
Deep Neural Networks for Network Intrusion Detection

Author:
Yang, Shiyi

Publication Date:
2021

DOI:
https://doi.org/10.26190/unsworks/23881

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100189 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/23881
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100189
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Deep Neural Networks for Network
Intrusion Detection

Shiyi Yang

A thesis in fulfilment of the requirements for the degree of

Master of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

December 2021

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Yang
First name: Shiyi Other name/s:

Abbreviation for degree as given in the University calendar: MPhil
School: School of Computer Science and Engineering Faculty: Faculty of Engineering
Title: Deep Neural Networks for Network Intrusion Detection

Abstract

Networks have become an indispensable part of people’s lives. With the rapid development of new technologies such as 5G and
Internet of Things, people are increasingly dependent on networks, and the scale and complexity of networks are ever-growing.
As a result, cyber threats are becoming more and more diverse, frequent and sophisticated, which imposes great threats to the
massive networked society. The confidential information of the network users can be leaked; The integrity of data transferred over
the network can be tampered; And the computing infrastructures connected to the network can be attacked. Therefore, network
intrusion detection system (NIDS) plays a crucial role in o�ering the modern society a secure and reliable network communication
environment.

Rule-based NIDSs are e�ective in identifying known cyber-attacks but ine�ective for novel attacks, and hence are unable to cope
with the ever-evolving threat landscape today. Machine learning (ML)-based NIDSs with intelligent and automated capabilities,
on the other hand, can recognize both known and unknown attacks. Traditional ML-based designs achieve a high threat detection
performance at the cost of a large number of false alarms, leading to alert fatigue. Advanced deep learning (DL)-based designs
with deep neural networks can e�ectively mitigate this problem and accomplish better generalization capability than the traditional
ML-based NIDSs. However, existing DL-based designs are not mature enough and there is still large room for improvement.

To tackle the above problems, in this thesis, we first propose a two-stage deep neural network architecture, DualNet, for network
intrusion detection. DualNet is constructed with a general feature extraction stage and a crucial feature learning stage. It can
e�ectively reuse the spatial-temporal features in accordance with their importance to facilitate the entire learning process and
mitigate performance degradation problem occurred in deep learning. DualNet is evaluated on a traditional popular NSL-KDD
dataset and a modern near-real-world UNSW-NB15 dataset, which shows a high detection accuracy that can be achieved by
DualNet.

Based on DualNet, we then propose an enhanced design, EnsembleNet. EnsembleNet is a deep ensemble neural network model,
which is built with a set of specially designed deep neural networks that are integrated by an aggregation algorithm. The model
also has an alert-output enhancement design to facilitate security team’s response to the intrusions and hence reduce security risks.
EnsembleNet is evaluated on two modern datasets, a near-real-world UNSW-NB15 dataset and a more recent and comprehensive
TON_IoT dataset, which shows that EnsembleNet has a high generalization capability.

Our evaluations on the UNSW-NB15 dataset that is close to the real-world network tra�c demonstrate that DualNet and
EnsembleNet outperform state-of-the-art ML-based designs by achieving higher threat detection performance while keeping lower
false alarm rate, which also demonstrates that deep neural networks have great application potential in network intrusion detection.

Declaration relating to disposition of project thesis/dissertation

I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including
to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here
after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright
and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works
(such as articles or books).

For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright
material is removed from the final public version of the thesis.

Signature Shiyi Yang Witness Date 06 December, 2021

FOR OFFICE USE ONLY Date of completion of requirements for Award

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge
it contains no materials previously published or written by another person, or substantial
proportions of material which have been accepted for the award of any other degree or
diploma at UNSW or any other educational institution, except where due acknowledge-
ment is made in the thesis. Any contribution made to the research by others, with whom
I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also
declare that the intellectual content of this thesis is the product of my own work, except
to the extent that assistance from others in the project’s design and conception or in style,
presentation and linguistic expression is acknowledged.

Shiyi Yang
06 December, 2021

Copyright Statement

I hereby grant the University of New South Wales or its agents a non-exclusive licence to
archive and to make available (including to members of the public) my thesis or dissertation
in whole or part in the University libraries in all forms of media, now or here after known.
I acknowledge that I retain all intellectual property rights which subsist in my thesis or
dissertation, such as copyright and patent rights, subject to applicable law. I also retain
the right to use all or part of my thesis or dissertation in future works (such as articles or
books).

For any substantial portions of copyright material used in this thesis, written permission
for use has been obtained, or the copyright material is removed from the final public
version of the thesis.

Shiyi Yang
06 December, 2021

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final o�cially
approved version of my thesis.

Shiyi Yang
06 December, 2021

Abstract

Networks have become an indispensable part of people’s lives. With the rapid development
of new technologies such as 5G and Internet of Things, people are increasingly dependent
on networks, and the scale and complexity of networks are ever-growing. As a result,
cyber threats are becoming more and more diverse, frequent and sophisticated, which
imposes great threats to the massive networked society. The confidential information of
the network users can be leaked; The integrity of data transferred over the network can be
tampered; And the computing infrastructures connected to the network can be attacked.
Therefore, network intrusion detection system (NIDS) plays a crucial role in o�ering the
modern society a secure and reliable network communication environment.

Rule-based NIDSs are e�ective in identifying known cyber-attacks but ine�ective for novel
attacks, and hence are unable to cope with the ever-evolving threat landscape today.
Machine learning (ML)-based NIDSs with intelligent and automated capabilities, on the
other hand, can recognize both known and unknown attacks. Traditional ML-based de-
signs achieve a high threat detection performance at the cost of a large number of false
alarms, leading to alert fatigue. Advanced deep learning (DL)-based designs with deep
neural networks can e�ectively mitigate this problem and accomplish better generalization
capability than the traditional ML-based NIDSs. However, existing DL-based designs are
not mature enough and there is still large room for improvement.

To tackle the above problems, in this thesis, we first propose a two-stage deep neural net-
work architecture, DualNet, for network intrusion detection. DualNet is constructed with
a general feature extraction stage and a crucial feature learning stage. It can e�ectively
reuse the spatial-temporal features in accordance with their importance to facilitate the
entire learning process and mitigate performance degradation problem occurred in deep
learning. DualNet is evaluated on a traditional popular NSL-KDD dataset and a modern
near-real-world UNSW-NB15 dataset, which shows a high detection accuracy that can be
achieved by DualNet.

Based on DualNet, we then propose an enhanced design, EnsembleNet. EnsembleNet is a
deep ensemble neural network model, which is built with a set of specially designed deep
neural networks that are integrated by an aggregation algorithm. The model also has an
alert-output enhancement design to facilitate security team’s response to the intrusions
and hence reduce security risks. EnsembleNet is evaluated on two modern datasets, a

iii

near-real-world UNSW-NB15 dataset and a more recent and comprehensive TON_IoT
dataset, which shows that EnsembleNet has a high generalization capability.

Our evaluations on the UNSW-NB15 dataset that is close to the real-world network tra�c
demonstrate that DualNet and EnsembleNet outperform state-of-the-art ML-based designs
by achieving higher threat detection performance while keeping lower false alarm rate,
which also demonstrates that deep neural networks have great application potential in
network intrusion detection.

iv

Acknowledgement

I wish to express my deepest gratitude to my supervisor, Dr. Hui Guo, for her excellent
guidance, especially in the rigor of research and the logic of writing. I am also grateful
to Dr. Nour Moustafa of UNSW Canberra and Peilun Wu of Sangfor Technologies Inc..
Their contributions to the field of network intrusion detection laid a good foundation for
my research and they gave me many constructive suggestions. Moreover, many thanks
to my colleague, Brian Udugama of UNSW Sydney, who always gives me some useful
feedbacks both in study and in life. Last but not least, I thank my parents, relatives and
all my friends for their support and help all the time.

v

Publications

List of Publications

This thesis has led to the following first author conference publications and they are
included in lieu of chapters.

• Shiyi Yang, Hui Guo, and Nour Moustafa, “Hunter in the Dark: Discover Anoma-
lous Network Activity Using Deep Ensemble Network”, the 21st IEEE International
Conference on Software Quality, Reliability, and Security (QRS), 2021.

• Shiyi Yang, Peilun Wu, and Hui Guo, “DualNet: Locate Then Detect E�ective
Payload with Deep Attention Network”, IEEE Conference on Dependable and Secure
Computing (DSC), 2021.

• Peilun Wu, Nour Moustafa, Shiyi Yang, and Hui Guo, “Densely Connected Resid-
ual Network for Attack Recognition”, IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), 2020.

vi

Contents

Abstract iii

Acknowledgement v

Publications vi

Contents vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Background and Related Work 6

2.1 Attack Categorization . 6

2.1.1 Reconnaissance . 6

2.1.2 Denial of Service and Distributed Denial of Service 7

2.1.3 Phishing and Spear-Phishing . 7

vii

2.1.4 Malwares . 7

2.1.5 Injection . 8

2.1.6 Advanced Persistent Threat . 9

2.2 Network Intrusion Detection System . 9

2.3 Rule-Based Network Intrusion Detection System 11

2.4 Anomaly-Based Network Intrusion Detection System 12

2.4.1 Unsupervised Machine Learning Methods 12

2.4.2 Supervised Machine Learning Approaches 14

3 DualNet: A Deep Neural Network for Network Intrusion Detection 21

3.1 Introduction . 21

3.2 DualNet . 22

3.2.1 General Feature Extraction Stage . 23

3.2.2 Crucial Feature Learning Stage . 29

3.3 Evaluation and Discussion . 30

3.3.1 Datasets Selection . 30

3.3.2 Data Preprocessing . 32

3.3.3 Training and Testing . 33

3.3.4 DualNet Performance . 36

3.4 Conclusion . 38

4 EnsembleNet: A Deep Ensemble Network for Network Intrusion Detec-
tion 40

4.1 Introduction . 40

4.2 EnsembleNet . 41

4.2.1 Stream Processor . 41

4.2.2 Detection Engine . 43

viii

4.2.3 Alert Interface . 50

4.3 Evaluation and Discussion . 52

4.3.1 Experimental Environment Settings 52

4.3.2 Datasets Selection . 52

4.3.3 Configuration of EnsembleNet . 54

4.3.4 Evaluation Metrics . 54

4.3.5 EnsembleNet Performance . 55

4.4 Conclusion . 63

5 Conclusion and Future Work 64

5.1 Future Work . 65

References 67

ix

List of Figures

2.1 A Typical Setting of Network Intrusion Detection 10

3.1 DualNet System Overview . 23

3.2 Plain Block of DualNet (Spatial-temporal Feature Extractor) 23

3.3 Comparison of Normal Convolution and Depthwise Separable Convolution . 24

3.4 Gated Recurrent Unit . 27

3.5 A Dense Block of DualNet with a Growth Rate of g = 4 28

3.6 The Performance Degradation Problem of Deep Neural Network for Net-
work Intrusion Detection on UNSW-NB15 34

3.7 The Detection Accuracy of Proposed Designs on Two Datasets 35

4.1 EnsembleNet System Overview . 42

4.2 Detection Engine of EnsembleNet . 43

4.3 Plain Block of EnsembleNet . 44

4.4 Residual Block of EnsembleNet . 45

4.5 Dense Block of EnsembleNet . 46

4.6 The Input and Output of Greedy Majority Voting Algorithm 48

4.7 An Exploit Attack within a TCP Stream: Microsoft Internet Explorer
Frameset Memory Corruption and the Attack Reference Is CVE-2006-3637 50

4.8 Comparison of the Payloads of the Normal Tra�c and Di�erent Attacks . . 57

x

List of Tables

3.1 Ground Truth of UNSW-NB15 Dataset . 31

3.2 The Comparative Results on UNSW-NB15 Dataset 37

3.3 DualNet Performance for Each Category on Two Datasets 38

4.1 Testing Performance of EnsembleNet and Its DNN Subnets on UNSW-NB15 55

4.2 Testing Performance of EnsembleNet and Its DNN Subnets on TON_IoT . 56

4.3 Testing Performance of Using EnsembleNet for Each Category on UNSW-
NB15 . 60

4.4 Testing Performance of Using EnsembleNet for Each Category on TON_IoT 60

4.5 Testing Performance of Existing Typical Machine Learning-based Designs
on UNSW-NB15 . 62

xi

Abbreviations

k-NN k-Nearest Neighbor

ACC Accuracy

ACSC Australian Cyber Security Centre

AdaBoost Adaptive Boosting

Adam Adaptive Moment Estimation

AI Artificial Intelligence

API Application Program Interface

APT Advanced Persistent Threat

ATT&CK Adversarial Tactics, Techniques, and Common Knowledge

BiLSTM Bidirectional Long Short-Term Memory

BN Batch Normalization

C&C Command & Control

CDOF Cost Distribution-based Outlier Factor

CLSID Class Identifier

CNN Convolutional Neural Network

ConvNet Primitive Convolutional Neural Network

COVID Corona Virus Disease

CVE Common Vulnerabilities and Exposures

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial of Service

DenseBlk Dense Block

xii

DenseNet Dense Neural Network

DL Deep Learning

DMZ Demilitarized Zone

DNN Deep Neural Network

DNS Domain Name System

DoS Denial of Service

DR Detection Rate

DSC Depthwise Separable Convolutional Neural Network

DT Decision Tree

FAR False Alarm Rate

FBI Federal Bureau of Investigation

Fintech Financial Technology

FN False Negative

FP False Positive

GAP Global Average Pooling

GPU Graphic Processing Unit

GRU Gated Recurrent Unit

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

IBM International Business Machine

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

LAN Local Area Network

LB Linear Bridging

LDAP Lightweight Directory Access Protocol

LOF Local Outlier Factor

LSTM Long Short-Term Memory

xiii

MITM Man-In-The-Middle

ML Machine Learning

MLP Multilayer Perceptron

MP Max Pooling

MSIE Microsoft Internet Explorer

NB Naive Bayes

NIDS Network Intrusion Detection System

OS Operating System

OSI Open Systems Interconnection

OWASP Open Web Application Security Project

PHP Professional Hypertext Preprocessor

PlainBlk Plain Block

PRE Precision

Probe Probing

R2L Remote to Local

RAM Random Access Memory

RBF Radial Basis Function

ReLU Rectified Linear Unit

ResBlk Residual Block

ResNet Residual Neural Network

RF Random Forest

RMSprop Root Mean Square Propagation

RNN Recurrent Neural Network

RPC Remote Procedure Call

SIEM Security Information and Event Management

SNMP Simple Network Management Protocol

SP Service Provider

SQL Structured Query Language

xiv

SSL Secure Sockets Layer

STSD Sample Table Sample Descriptor

SVM Support Vector Machine

Tanh Hyperbolic Tangent

TCP Transmission Control Protocol

TLS Transport Layer Security

TN True Negative

TP True Positive

TPU Tensor Processing Unit

TTPs Tactics, Techniques and Processes

U2R User to Root

UDP User Datagram Protocol

UNSW University of New South Wales

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAN Wide Area Network

XML Extensible Markup Language

XSS Cross-site Scripting

xv

xvi

Chapter 1

Introduction

The global COVID-19 pandemic has shaped the cyber security posture of organizations

in unprecedented ways. Since the pandemic began, the FBI reported a 300% increase in

reported cyber-crimes [1,2]. With the urgent need to enable continuity of business through

remote working and cloud services, there are new opportunities for hackers to exploit

vulnerable employees’ devices and networks. IBM noted that remote work has increased

the average cost of a data breach by $137,000 [3]. According to Fintech News, cloud-based

cyber-attacks rose 630% between January and April 2020 [4]. In addition, with the rapid

development and popularization of new technologies such as 5G and Internet of Things

(IoT), systems and devices are increasingly interconnected and hence the cyber attack

surface is ever-expanding [5] – more and more exploitable vulnerabilities (e.g., zero-day)

are emerging for hackers to launch attacks [6]. As a result, cyber-attacks are becoming

more and more diverse, frequent and sophisticated.

Network intrusion detection system (NIDS) plays an important role in protecting against

an ever-evolving threat landscape today and safeguarding secure sharing of online resources

as well as reliable transmission of information for end-users and organizations.

Rule-based NIDS, due to its stability and dependability, has been widely used in practical

network environments. The system identifies threats by matching attack patterns against

1

CHAPTER 1. INTRODUCTION

a pre-defined knowledge base of manually crafted expert rules, making it very e�ective to

identify known threats. However, it is nearly impossible for the system to recognize novel

threats due to the rules containing overly detailed descriptions of known attacks. The

system also requires frequent and manual updating of the rule library by security experts,

which is laborious and time-consuming. It is obvious that such a detection system is

inadequate to cope with the current networked society in which the volume, frequency

and complexity of unknown attacks are increasingly growing [7].

Artificial intelligence (AI) is helping cyber threat defense communities stay ahead of at-

tacks. Security teams take advantage of the availability of massive network data and the

intelligence of machine learning (ML) to develop a NIDS that can automatically learn

attack behaviors from the network tra�c and hence discover not only previously seen and

known but also unseen and unknown cyber threats1 [8].

1.1 Problem Statement

While ML-based NIDSs have a high capability of novel threat perception, existing designs

achieve a high attack detection performance often at the cost of a large number of false

alarms. Traditional ML methods [9], due to their limited scalability to the large network

tra�c, treat most new and unanticipated behaviors as anomalies even if some of them

are legitimate tra�c [10]. The high level of false positive predictions would cause alert

fatigue and likely make real threats miss in the noise of false alarms and fail to get timely

attention from the security team. In addition, these methods rely on handcrafted feature

engineering that is a labor-intensive work to achieve good performance.

The advanced deep learning (DL) approaches with deep neural networks (DNNs) can ef-

fectively mitigate the aforementioned problems. DNN with multiple learning layers can

self-learn features at various levels of abstraction from a large amount of raw network

1An unseen cyber threat is a threat from a category that the model has learned, but
has a di�erent attack behavior when compared to the learned threat. It is di�erent from
unknown types of network intrusion, which the model has never learned.

2

1.2. CONTRIBUTIONS

tra�c in an end-to-end training manner, thus accomplishing much better generalization

performance – the adaptability to previously unseen data – than the traditional ML meth-

ods [11]. However, existing DL-based designs are still not mature enough [12] – the attack

recognition capability still needs to be improved and the false alarm rate still cannot be

ignored, which leaves room for improved design solutions.

1.2 Contributions

The thesis contributions are summarized as follows.

• To achieve a high attack recognition capability while keeping a low false alarm rate,

we propose a deep neural network architecture, DualNet, that consists of two asyn-

chronous stages: 1) a general feature extraction stage to maximally capture spatial

and temporal features by densely connecting a series of convolutional neural network

(CNN) and recurrent neural network (RNN) subnets, and 2) a crucial feature learn-

ing stage to improve the detection e�ciency by targeting important features for the

final learning outcome through the self-attention mechanism.

DualNet is evaluated on two datasets, a traditional popular dataset, NSL-KDD [13],

and a modern near-real-world dataset, UNSW-NB15 [14]. It has been compared with

a set of existing traditional ML-based and advanced DL-based designs. Our eval-

uation shows that DualNet outperforms those existing designs by achieving higher

threat detection performance while maintaining lower false alarm rate.

• To improve the generalization capability and enhance the understandability of detec-

tion results, we propose a deep ensemble neural network-based defense mechanism,

EnsembleNet. EnsembleNet consists of a set of di�erent DNNs and a specially de-

signed integration algorithm: 1) each DNN is built with the CNN and RNN subnets

that are connected in a way such that features learned by the subnets can be reused

for good detection performance, and 2) an algorithm that e�ciently integrates the

detection results from the DNNs to further improve the detection performance. For

3

CHAPTER 1. INTRODUCTION

the detection results to be useful to the security team, EnsembleNet is empowered

with an alert-output enhancement design. The design restores the threats (detected

by the neural network) to their human-understandable raw tra�c format and pro-

duces alerts of the current threats in the order of their severity so that the security

team can make prompt responses and hence maximally reduce the security risk.

EnsembleNet is evaluated on two modern datasets, a near-real-world dataset, UNSW-

NB15, and a more recent and comprehensive dataset, TON_IoT [15]. It has been

compared with some classical ML-based designs, state-of-the-art DL-based designs

and DualNet. The experimental results demonstrate that EnsembleNet outperforms

those existing designs and is able to achieve a high threat detection accuracy while

keeping a low false positive rate.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

In Section 2.1 of Chapter 2, we introduce typical cyber-attacks in today’s ever-changing

threat environment and we describe the general workflow of network intrusion detection

systems in Section 2.2. In Section 2.3 and Section 2.4, we review the representative work

related to rule-based and ML-based network intrusion detection systems that can be found

in the literature.

In Section 3.1 of Chapter 3, we briefly introduce DualNet. Its two-stage design is elabo-

rated in Section 3.2. The evaluation of DualNet performance is detailed in Section 3.3. In

Section 3.4, we provide a brief summary of Chapter 3.

In Section 4.1 of Chapter 4, we provide an overview of EnsembleNet. Its design is detailed

in Section 4.2, where a set of deep neural networks and an integration algorithm are

discussed. A design for user-friendly threat alerts is also introduced in this section. The

evaluation of EnsembleNet performance is given in Section 4.3 and Chapter 4 is briefly

concluded in Section 4.4.

4

1.3. THESIS ORGANIZATION

In Chapter 5, we summarize the thesis and discuss some possible future research works

and potential future research directions in Section 5.1.

5

CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 2

Background and Related Work

In this chapter, we first briefly introduce typical cyber-attacks and then describe the gen-

eral workflow of network intrusion detection systems. Finally, we review the representative

work of network intrusion detection systems that can be found in the literature.

2.1 Attack Categorization

Cyber threats can be considered as malicious activities that breach the confidentiality,

availability or integrity of a system or the information contained within a system. Cyber

threat actors often take advantage of technological vulnerabilities that exist in networks,

endpoints, databases, servers, applications, websites, to name a few, or manipulate hu-

man emotions and psychology to launch crafted attacks in order to achieve their specific

objectives. Typical attacks are described below.

2.1.1 Reconnaissance

In a reconnaissance attack, hackers use a set of methods, such as probing the network

or through social engineering and physical surveillance, to covertly harvest as much in-

6

2.1. ATTACK CATEGORIZATION

formation as possible about the victim. Such e�orts include gathering general knowledge

by utilizing port scanning, ping sweeping, packet sni�ng, phishing, domain name system

(DNS) queries, search engine retrieval and public website browsing [16].

2.1.2 Denial of Service and Distributed Denial of Service

Denial of service (DoS) attack floods the target with tra�c to deplete available resources of

the network or system, thereby preventing authorized users from accessing the resources.

In contrast to DoS attack, in which the tra�c pouring into the victim originates from the

only one source, distributed denial of service (DDoS) attack requires multiple di�erent

sources – normally deploying Botnets [17] – to send excessive requests to the victim.

2.1.3 Phishing and Spear-Phishing

Phishing [18] is a type of social engineering attack usually aimed at stealing confidential

information. Cyber adversaries often masquerade as trusted entities and trick victims into

opening malicious links or attachments via fraudulent emails, websites, or text messages,

resulting in the leakage of user credentials or the installation of malwares. Unlike phishing

campaigns which are generic and commonly sent out in thousands [6], spear-phishing

is a well-designed and pointed method of phishing that targets specific individuals or

organizations [19]. The current typical example is COVID-19-related phishing [20], which

exploits public fears about the sometimes-deadly virus.

2.1.4 Malwares

Trojan, Worm, Backdoor and Ransomware are common types of malware [21].

Trojan is a kind of malware disguised as legitimate software. It is often used to take

control of the victims’ computers for certain malicious purposes, such as stealing sensitive

data. Unlike Computer Viruses, Trojans cannot replicate themselves. Trojan can infect

7

CHAPTER 2. BACKGROUND AND RELATED WORK

devices through social engineering, drive-by download, unauthorized access and other

ways. Trojan is very covert and deceptive and is di�cult to be discovered.

Worm is a stand-alone malware that can self-replicate recursively and spread itself to

other computers via the network without any human intervention. In contrast to Computer

Viruses that are often designed to damage the data and destroy devices, Worms are usually

aimed at consuming network bandwidths and slowing down computer systems.

Backdoor is a type of malware in which hackers bypass normal authentication and se-

curity controls by spoofing and properly hiding to obtain stealthily access to the target

system. Backdoor is subtly designed and is usually hidden in another form of software,

such as application patches, program updates and file converters. Trojans are frequently

used to create Backdoors on the target.

Ransomware is an ever-evolving form of malware that encrypts a victim’s folders and

files, rendering the systems that rely on those folders and files unusable. By using the

malware, cybercriminals then demand a certain amount of ransom in exchange for de-

cryption, often in the form of untraceable cryptocurrencies such as Bitcoin. According

to the ACSC’s Annual Cyber Threat Report July 2019 to June 2020, ransomware has

become one of the most significant threats given the potential impact on the operations

of governments and businesses [6].

2.1.5 Injection

Injection attack is ranked first on the Open Web Application Security Project’s (OWASP)

list of the top 10 most critical security risks to Web applications [22]. Scanners and

fuzzers can help attackers find injection flaws. Attackers send commands or queries with

embedded malicious statements to an interpreter by exploiting injection flaws, which may

cause valuable data to be disclosed, tampered with, or corrupted. Typical injection attacks

are Structured Query Language (SQL) injection, Operating System (OS) injection and

Lightweight Directory Access Protocol (LDAP) injection.

8

2.2. NETWORK INTRUSION DETECTION SYSTEM

2.1.6 Advanced Persistent Threat

Advanced persistent threats (APTs) [23] are remarkably subtle, sophisticated and long-

term targeted intrusions, typically resulting in the theft of large amounts of sensitive data.

APT actors target organizations across a wide variety of industries, often lurk illicitly in

the target network for a prolonged period of time, many weeks, months or even years,

to extend their reach before initiating devastating attacks [24]. APTs usually conform to

the cyber kill chain framework [24,25] that enhances the visibility of attacks and enriches

security analysts’ understanding of adversarial Tactics, Techniques and Processes (TTPs).

The publicly available TTPs can be found in the MITRE ATT&CK knowledge base [26].

The framework reveals seven steps that adversaries must complete in order to accomplish

their goals: Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Com-

mand & Control and Actions on Objectives. A typical intrusion scenario is that intruders

perform reconnaissance to probe for exploitable vulnerabilities in the target network, build

deliverable payloads (e.g., Microsoft O�ce files) by coupling tailored shellcodes with back-

doors, send weaponized bundles to the victim via attachments of phishing emails, exploit

the vulnerabilities to execute malicious codes on the target system, install malwares on

the system such as backdoors that allow persistent access, “Hands on Keyboard” to con-

tinuously manipulate the compromised machine and finally achieve their objectives such

as data exfiltration or encryption for ransom. Hence, each individual attack (e.g., from

Section 2.1.1 to Section 2.1.5) often belongs to one of steps of the kill chain.

2.2 Network Intrusion Detection System

Intrusion detection systems have been studied for years and many detection systems have

been developed and they have played a vital role in protecting organizations and end-

users from cyber-attacks. The early detection systems identify anomalous behaviors on

the OS kernel-level audit data [27] (i.e., Host-based Intrusion Detection Systems). With

the increased connectivity of computer systems and hence rapid expansion of heteroge-

9

CHAPTER 2. BACKGROUND AND RELATED WORK

0DLO�6HUYHU

:HE�6HUYHU

'16�6HUYHU

'0=

,QWHUQHW

$SSOLFDWLRQ
6HUYHU

)LOH�6HUYHU

'DWDEDVH�
6HUYHU

/$1

1,'6

:$1 ,QVLGH�
+DFNHUV

6HFXULW\
7HDP

25

$OHUWV

%RWQHW

&	&

2XWVLGH
+DFNHUV

Figure 2.1: A Typical Setting of Network Intrusion Detection

neous computer networks, hackers take the network as the main carrier to launch attacks.

Therefore, intrusion detection systems have been gradually expanded to cover abnormal

activities on the network flow-level tra�c data [28] (i.e., Network-based Intrusion Detec-

tion Systems).

Fig. 2.1 shows a typical setting of network intrusion detection. A NIDS is deployed

at multiple strategic points within a network to continuously monitor the inbound and

outbound network tra�c of all devices connected to the network. It generates alerts of

any perceived suspicious activities or policy violations and either reports them to the

security team for due responses (e.g., threat investigation, containment and elimination)

or collects them centrally using the security information and event management (SIEM)

(e.g., Splunk [29]) – a system that provides real-time analysis of security alerts produced by

multiple sources [30], as demonstrated in the figure. SIEM correlates the related security

events to integrate alerts and then sends the alerts to the security team to take further

action against the attacks.

Two kinds of NIDS that are currently used in the industry are rule-based and anomaly-

based (i.e., ML-based) [31]. Their related work is described in the following two sections.

10

2.3. RULE-BASED NETWORK INTRUSION DETECTION SYSTEM

2.3 Rule-Based Network Intrusion Detection System

Early solutions to network intrusion detection are rule-based. The rule-based NIDS dis-

covers threats by matching attack signatures or patterns against a pre-defined blacklist,

which is e�ective to identify known attacks and often produces low false alarms. Due to

its stability and dependability, the NIDS has been widely used in real-world business en-

vironments. Snort1 and Zeek2 are open-source NIDSs that can be found in the literature.

These tools monitor tra�c flows, especially checking for some specific features, such as a

certain protocol or suspicious IP addresses or a byte pattern existing in packet payloads

like some URI or USER-AGENT that may indicate some malicious activities. Once these

features match their well-defined rules, an alarm is triggered. A short introduction and

comparison of the two NIDSs are given below.

Snort [32] is a lightweight command-line tool for network intrusion detection created

in 1998 by Martin Roesch and now developed by Cisco. It is fairly easy to use and is

capable of running on Linux, Unix and Windows operating systems to perform real-time

tra�c analysis. Snort can detect probes and various attacks, such as operating system

fingerprinting attempts, common gateway interface scans and bu�er overflows. The tool

would take specific actions against detected abnormal behaviors. The drawback of the

command-line tool is the lack of a real graphical user interface.

Zeek [33], formerly known as Bro, was developed in 1994 by Vern Paxson. The tool is used

to monitor tra�c streams in real time and produce higher-level event logs in NetFlow-

like format that record everything it understands from the network activities including

normal tra�c metadata and weird behaviors. It is more flexible than Snort in that it

adds a programmatic interface, allowing users to customize tra�c analysis according to

di�erent network environments. Furthermore, it can run on the application layer, making

it possible to track di�erent services from di�erent OSI layers, such as HTTP, SNMP

and DNS. A comparative study of the two systems [34] using a specific set of rules under

1Snort: https://www.snort.org
2Zeek: https://www.zeek.org

11

CHAPTER 2. BACKGROUND AND RELATED WORK

various attacks showed that Zeek was superior to Snort.

Six research groups participated in the 1998 DARPA o�-line intrusion detection evaluation

[35] based on more than 300 instances of 38 di�erent attacks including probe, remote

to local (R2L), user to root (U2R) and DoS attacks. The experimental results showed

that rule-based systems with the best overall performance were e�ective to detect known

attacks but failed to identify most (roughly half) of unknown attacks. The main reason

is that hand-designed attack signatures contain excessively detailed descriptions of known

attacks, making it almost impossible for such a NIDS to discover novel threats. Another

disadvantage of the rule-based NIDS is that it requires the security team to frequently and

manually update the signature and rule database, which is tedious and time-consuming.

This o�-line evaluation strongly suggested that further research directions should be di-

rected towards developing new detection methods to recognize new attacks instead of

extending existing rule-based detection approaches, due to the number, frequency and

complexity of unknown (zero-day) attacks are ever-increasing. Therefore, the anomaly-

based NIDS comes into play.

2.4 Anomaly-Based Network Intrusion Detection System

The anomaly-based NIDS leverages the available massive learning data and the heuristics

generated from machine learning to create a model of trustworthy network activities; Any

activities deviated from the model can be treated as threats, hence making it possible to

detect new attacks. Two typical machine learning methods can be used in building such

a detection model: unsupervised machine learning and supervised machine learning [36].

2.4.1 Unsupervised Machine Learning Methods

Unsupervised learning focuses on finding patterns, structures or knowledge from unlabeled

data. Outlier detection and centroid-based clustering are two representative techniques

12

2.4. ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

used in the early anomaly-based NIDSs. They are briefly described below.

Outlier detection. Prakobphol et al. developed a cost distribution-based outlier factor

(CDOF) scheme [37] in 2008 to identify abnormal network tra�c. Compared to local

outlier factor (LOF) that calculates the local density deviation of the tra�c flow with

respect to their neighbors as the outlier factor, the CDOF method generates a stronger

outlier factor by amplifying the expressive power of the connectivity outlier factor to

distinguish anomalous flows from normal flows. The evaluations using KDD Cup 1999

dataset, which contains various intrusions simulated in a military network environment,

showed that although CDOF had higher detection performance than LOF, they both

achieved high attack detection rates at the expense of high false positive rates.

Centroid-based clustering. Meng et al. proposed a k-means-based NIDS [38] in 2009.

The model divides the given tra�c data into k homogeneous and well-separated clusters,

and each network tra�c record belongs to the cluster with the nearest mean (cluster cen-

troid). The proposed method was evaluated on the KDD Cup 1999, and the experimental

results demonstrated that the clustering method could e�ectively detect novel intrusions

in real network connections. They also pointed out that k-means clustering has better

flexibility for large datasets, but is sensitive to noisy data and relies on feature engineering

that is a labor-intensive work to achieve good performance.

Unsupervised learning, as a preliminary attempt of using machine learning for network

intrusion detection, shows good performance of unknown threat perception. Another ad-

vantage of adopting unsupervised learning is that it avoids the costly and time-consuming

data labeling process, hence freeing up human and computing resources for other im-

portant tasks, such as threat investigation and digital forensics. As a result, unsuper-

vised machine learning has flourished in the past decade, and some related methods have

emerged and been used to construct anomaly-based NIDSs. The most typical one is the

autoencoder, as introduced in short below.

Autoencoder. Choi et al. presented an autoencoder [39] for network intrusion detection

in 2019. It is a type of artificial neural network model that uses unsupervised learning. The

13

CHAPTER 2. BACKGROUND AND RELATED WORK

model is composed of an encoder sub-model and a decoder sub-model. During the training

process, the encoder is to compress the input tra�c data into a latent space representation

(dimensionality reduction), where meaningful features will be retained and insignificant

features will be ignored, and the decoder is to learn to precisely reconstruct the input

from the representation provided by the encoder. In the testing phase, the new network

flow is fed into the trained model to output the reconstructed data. If the reconstruction

error (the error between the original data and its low dimensional reconstruction) is higher

than a certain threshold, the flow can be considered as abnormality, and vice versa. Their

evaluation based on the NSL-KDD dataset (an improved version of the KDD Cup 1999

dataset) showed that autoencoder performed better than the k-means and outlier detection

models by achieving an accuracy of 91.70%. However, the explain-ability of the detection

results of this model is low, which is also the problem existing in other unsupervised

learning-based models.

Although unsupervised learning methods are capable of detecting new attacks, supervised

learning approaches are more suitable to practical implementations [40] and often are

superior to unsupervised learning methods in terms of detection accuracy [41], which is in

line with the general trends in the machine learning community. Therefore, most recent

studies focus on developing supervised machine learning-based network intrusion detection

systems.

2.4.2 Supervised Machine Learning Approaches

Supervised learning constructs a predictable profile with a set of well-tagged network tra�c

records. The supervised learning-based designs can be basically divided into two groups:

classical machine learning-based and advanced deep learning-based.

14

2.4. ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

2.4.2.1 Traditional Machine Learning Models

For network intrusion detection, the classical ML methods [9] can be further considered

as two kinds: individual classifiers and ensemble classifiers. Among many individual

classifiers, kernel-based support vector machine (SVM) and probability-based naive Bayes

(NB) are two representative designs, which are briefly introduced below.

SVM. Bhavsar et al. developed a SVM-based NIDS [42] in 2013. The model uses a

kernel trick, radial basis function (RBF) kernel, to implicitly map the input data to the

high-dimensional feature space, so as to find the optimal decision boundary, namely, the

maximum margin hyperplane for data classification. SVM has regularization capability,

which can prevent it from over-fitting. However, it takes a long training time on large

datasets due to a large number of support vectors are generated. The experiments on

the NSL-KDD showed that SVM was able to detect novel attacks with high detection

accuracy.

NB. Gumus et al. proposed a NB [43] for network intrusion detection in 2014. The model

is a special case of Bayesian network, which makes classification by applying Bayes’ The-

orem and assuming that features in the data are mutually independent. Their evaluations

showed that NB was easy to implement and was time e�cient, as compared to k-nearest

neighbor (k-NN) – a classifier assigns the tra�c flow to the most common category of its

k nearest neighbors – on the KDD Cup 1999 dataset. However, the potential problem is

that for a network flow, features are not completely independent, which may slightly limit

the detection capability of NB.

Ensemble classifier leverages an integration scheme to integrate several weak learners into

a stronger learner in order to improve generalizability and robustness over a single learner.

Decision tree (DT) [9] is a tree-like structure model that generates classification rules em-

ploying information gain, which is highly interpretable but prone to over-fitting. Adaptive

boosting (AdaBoost) [44] and random forest (RF) [45] are two typical ensemble classifiers.

They use DT as the base classifier, but adopt di�erent aggregation strategies to enhance

the detection performance of individual base classifiers. AdaBoost and RF are described

15

CHAPTER 2. BACKGROUND AND RELATED WORK

in short below.

AdaBoost. Gudadhe et al. generated an AdaBoost-based NIDS [44] in 2010. The model

consists of many decision trees and is based on Boosting aggregation algorithm. The

trees are created sequentially and errors of each tree a�ect the weights of the training

data for the next tree. For testing, depending on the performance, each tree obtains a

di�erent weight in the final classification decision (weighted majority voting). AdaBoost

decreases the bias and hence is more generalizable, but it lacks the explain-ability. The

evaluations on the KDD Cup 1999 dataset showed that the proposed method achieved

higher generalization accuracy than the k-NN classifier.

RF. Farnaaz et al. developed a RF [45] to detect network intrusions in 2016. The model

is also composed of multiple decision trees but is based on Bagging aggregation algorithm,

in which the trees are independently generated from subsets of the dataset and their

predictions are combined by the majority voting. RF overcomes the over-fitting problem of

decision trees and reduces the variance, thus improving the accuracy. However, compared

with decision trees, the interpret-ability of the model is reduced. The experimental results

demonstrated that RF was more accurate than decision trees in identifying DoS, Probe,

R2L and U2R attacks, and produced lower false alarm rates.

As the scale and complexity of network tra�c increase rapidly in recent years, the tra-

ditional machine learning techniques have su�ered from the performance optimization

bottleneck, due to so-called “the curse of dimensionality” issue [46]. Consequently, even

though the classical machine learning-based design is able to discover new attacks, it

achieves high detection rates at the cost of high false alarms [47], resulting in “threat alert

fatigue” problem that currently plaguing the industry. Another shortcoming of traditional

machine learning models is that they rely on feature engineering to obtain detectable and

representative tra�c patterns for good performance of learning algorithms, which is di�-

cult and expensive in terms of time and expertise required. Deep learning o�ers a promising

solution to the above problems.

16

2.4. ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

2.4.2.2 Advanced Deep Learning Techniques

Deep learning is based on a neural network with a stack of learning layers as feature

extractors. It performs intrusion detection tasks in an end-to-end manner, which can self-

learn features from raw heavy network tra�c and learn higher-level data representations

from the learning results of previous layers, thus achieving a high detection accuracy. The

typical detection models are based on multilayer perceptron (MLP), convolutional neural

network (CNN), recurrent neural network (RNN) and hybrid algorithm (e.g., CNN+RNN).

A short introduction of some state-of-the-art designs is given below.

MLP. Rosay et al. proposed a MLP [48] for network intrusion detection in 2020. The

model is a kind of feed-forward artificial neural network with multiple layers and non-linear

activation functions. Their evaluation, based on a network tra�c dataset that can be rep-

resentative of current network usage, showed that MLP outperformed several traditional

machine learning techniques, such as k-NN classifier, with higher generalization capability.

The disadvantage of the proposed model is that it has a fully connected structure, which

incurs a large amount of computation and hence restricts its learning e�ciency on heavy

network tra�c.

CNN and RNN are two paradigms that apply parameter sharing techniques to reduce

computational costs and are more suitable to network intrusion detection.

CNN. Azizjon et al. developed a CNN-based NIDS [10] in 2020 to extract spatial-oriented

features from network tra�c. CNN uses weight-shared filters to conduct convolution cal-

culations and produces translation equivariant responses known as feature maps, where

the convolution performs element-wise multiplication and addition. The proposed model

was compared with SVM and RF methods on a set of serial TCP/IP packets in a prede-

termined time range, and the experimental results demonstrated that CNN outperformed

these methods in terms of detection accuracy and was e�ective to network intrusion de-

tection.

In contrast to CNN, RNN establishes loop connections to capture the temporal-oriented

17

CHAPTER 2. BACKGROUND AND RELATED WORK

features in the tra�c data. However, vanilla RNN fails to learn the long-term dependencies

and su�ers from the vanishing-gradient problem. To address these problems, long short-

term memory (LSTM) [49] has been proposed.

LSTM. Boukhalfa et al. adopted LSTM [11] in 2020 to recognize network intrusions.

The model is a special kind of RNN, which consists of a cell and three gating mechanisms:

a forget gate, an input gate and an output gate. Through the protection and control of

the cell state by the three gates, the cell can remember benign and anomalous behaviors

in network tra�c. As a result, the model has a great ability to di�erentiate between

normal tra�c and network intrusions. Their experiments on NSL-KDD dataset showed

that LSTM was superior to SVM, k-NN and DT models with higher attack detection rate

and lower false alarm rate.

The aforementioned neural network models are shallow. Intuitively, to unleash the learning

potential of deep learning, the neural network is required to be deeper in order to learn all

the intermediate features between the raw data and the high-level classification to improve

its generalization capability. However, as the depth of the neural network increases, the

neural network will su�er from “performance degradation” problem [47]. Feature reuse is

an e�ective strategy to solve this problem by making features learned from the shallow

layer available at deeper layers. Densely-ResNet is a state-of-the-art design that adopts

this strategy to handle performance degradation in deep neural networks.

Densely-ResNet. Wu et al. developed a deep densely connected residual network [12]

in 2020, which is constructed with several basic residual units, where each unit consists of

two CNN-RNN subnets by wide connections. The model alleviates the vanishing-gradient

problem and reduces feature loss. But with the increase in width, the computational

cost of the model increases greatly. As a result, Densely-ResNet is very data-hungry, in

the sense that it requires su�cient data to fully support its rich parameterization, which

slightly limits its generalizability. The model was deployed at a detection surface that

includes Cloud layers (Network), Fog layers (Windows and Linux) and Edge layers (IoT)

for attack recognition, and accompanied by a module that uses timestamps to correlate

alerts from the three computing layers to eliminate redundant alerts and hence mitigate

18

2.4. ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

alarm fatigue issue.

The development of open-source neural network frameworks such as Keras3, Tensorflow4

and PyTorch5 makes deep learning technologies highly flexible and easily scalable. Most

of these tools are developed in a modular manner, making it easy to use, modify and con-

solidate their modules, thereby accelerating the building of powerful deep learning-based

detection models and the deployment of these models into real-world network environ-

ments. Furthermore, the success of deep learning is partially attributed to the rapidly

developing computational resources such as GPUs and TPUs, which greatly speed up the

training process for constructing high-quality models.

Through the above review of the existing related works, we find that supervised deep

learning is the most e�ective method to develop NIDSs adapted to the current networked

society. As a summary, the reasons of using supervised deep learning for network intrusion

detection are listed below.

• Rule-based NIDSs have been unable to cope with the current threat environment in

which the number, frequency and sophistication of unknown attacks are constantly

increasing. It is suggested that rule-based solutions should be replaced with anomaly

detection-based NIDSs to enhance the capability of identifying previously unseen

and unanticipated attacks, and to avoid the laborious and time-consuming updating

process of the rule library.

• Machine learning is a technology to build the anomaly detection-based NIDS, which

can be divided into unsupervised machine learning and supervised machine learning.

Supervised machine learning-based designs often outperform unsupervised machine

learning-based designs in terms of detection accuracy and are more suitable for

practical applications. Hence, supervised machine learning is an optimal choice.

3Keras: https://keras.io
4Tensorflow: https://www.tensorflow.org
5PyTorch: https://pytorch.org

19

CHAPTER 2. BACKGROUND AND RELATED WORK

• With the ever-increasing scale and complexity of network tra�c, the weaknesses of

traditional machine learning methods have been gradually exposed. The traditional

methods, due to their limited scalability to the large network tra�c, achieve high

attack detection rates at the cost of high false alarm rates, leading to alert fatigue,

and they also rely on labor-intensive feature engineering to obtain good performance.

Deep learning approaches can self-learn features from the raw heavy tra�c data and

accomplish better generalization performance than the traditional machine learning

methods.

Deep learning has revolutionized many fields in recent years, from computer vision to

natural language processing, but in the field of network intrusion detection, deep learning-

based designs are largely at the research investigation stage. The learning potential of deep

learning has not been fully unleashed yet. The attack detection capability in the existing

designs still needs to be improved and the false alarms are still not ignorable. As such, we

propose two designs using supervised deep learning, DualNet and EnsembleNet. DualNet

is a deep neural network architecture that can reuse features to achieve a high detection

performance, which is elaborated in Chapter 3. To improve the detection performance of

DualNet, we introduce ensemble learning, which is to be described in detail in Chapter 4

(EnsembleNet).

20

Chapter 3

DualNet: A Deep Neural Network

for Network Intrusion Detection

3.1 Introduction

As discussed in previous chapters, neural network-based models can detect both known

and unknown threats in response to an ever-evolving threat environment and are superior

to traditional machine learning-based designs with higher generalization performance.

It is intuitive that a deep neural network could have a much better detection accuracy

than its shallower counterpart that possesses fewer learning layers, due to the higher-level

features could be learned and hence the mapping relationship between the raw data and

correct classification results could be enhanced. Unfortunately, as the neural network goes

deeper, the problem of vanishing gradient occurs [50,51], which makes that the parameters

of the initial layers of the neural network cannot be tuned properly [52] and hence the

learning performance of the network decreases – specifically the detection accuracy tends

to saturate and then declines rapidly. Such a problem is called “performance degradation”

[47] and it greatly limits the learning potential of deep learning. The problem can also be

observed in other deep neural network application areas, such as image recognition [53].

21

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

ResNet [54] and E�cientNet [55] have been proposed to address this issue though finding

an optimal network architecture still remains a di�cult problem.

To alleviate performance degradation problem to improve the generalization capability of

neural networks, we propose a special learning method, densely connected learning, which

can reuse features to enhance the detection accuracy when neural networks are deeply

extended. We use this learning method to develop a specially designed deep dense neural

network (DenseNet), which is the first stage of our design DualNet. And we leverage the

self-attention mechanism to e�ectively locate then detect the most valuable payloads from

network packets to further improve the detection accuracy, which is the second stage of

DualNet. DualNet is elaborated in the next section.

3.2 DualNet

Our goal is to build a deep learning model that has a high detection capability (model

quality) and is easy to train (training e�ciency), and the trained model is small in size

and incurs short execution time (model cost).

We consider that the model quality is closely related to the features extracted from the

security data and how the extracted features are e�ectively used for the final prediction

outcome. To this end, we propose a two-stage deep neural network architecture, DualNet:

a general feature extraction stage to maximally capture spatial-temporal features from the

network tra�c records; and a crucial feature learning stage to focus more on important

features to further improve the detection e�ciency.

In terms of training e�ciency and model cost, they are relevant to the number of trainable

parameters, and a small trainable parameter number is desired. We, therefore, take this

into account in our design.

An overview of our system is given in Fig. 3.1. The DualNet mainly performs two stages

for attack recognition. The construction of two stages is elaborated in the next two sub

22

3.2. DUALNET

���'DWD�

3UHSURFHVVLQJ
$ODUPV

$GPLQ

25

1HWZRUN�7UDIILF

'HQVH�%ORFN

6SDWLDO�

WHPSRUDO�

)HDWXUH�

([WUDFWRU

FRQFDWHQDWH

7UDQVLWLRQ

%ORFN

'
H
Q
V
H
�%
OR
F
N

*HQHUDO�)HDWXUH�([WUDFWLRQ�6WDJH &UXFLDO�)HDWXUH�/HDUQLQJ�6WDJH

816:�1%��

6WDWH

3URWR

6HUYLFH

$WWHQWLRQ

*
OR
E
D
O�
$
Y
H
U
D
J
H
�3
R
R
OL
Q
J
�/
D
\
H
U

816:�1%��

6WDWH

3URWR

6HUYLFH

'
H
Q
V
H
�/
D
\
H
U

'HWHFWLRQ�(QJLQH��'XDO1HW�

__ __ __ __

Figure 3.1: DualNet System Overview

'6& *58
6LJPRLG

7DQK

5H/8

3ODLQ�%ORFN

%1 03 %1 'URSRXW /LQHDU

Figure 3.2: Plain Block of DualNet (Spatial-temporal Feature Extractor)

sections.

3.2.1 General Feature Extraction Stage

We consider that the multi-sourced security data has both spatial and temporal correla-

tions. Hence, we present a special learning method, densely connected learning, which can

learn as many spatial-oriented and temporal-oriented features at various levels of abstrac-

tion as possible from the input representations, and allow to build deeper neural network

without performance degradation. The densely connected learning is to establish an in-

terleaved arrangement pattern between two types of particularly designed blocks, dense

blocks and transition blocks, where the number of dense blocks is one more than the num-

ber of transition blocks, as shown in Fig. 3.1. To construct dense blocks and transition

blocks e�ectively, we introduce plain block as the basic building block.

23

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

�
�

���/

1RUPDO�&RQYROXWLRQ�3URFHVV
,QSXW

+

:
0

1

���/

0

1

���/

)LOWHUV

3 ���

���3

)HDWXUH�0DSV

+

:

'HSWKZLVH�6HSDUDEOH�&RQYROXWLRQ�3URFHVV

���/

,QSXW

+

:

0

1

���/
���/

+

:

)LOWHUV ,QWHUPHGLDWH�
)HDWXUH�0DSV

3 ���

)LOWHUV

���3

)HDWXUH�0DSV

+

:

�D�

���/

���/

���/

���/

�E�

'HSWKZLVH�&RQYROXWLRQ 3RLQWZLVH�&RQYROXWLRQ

�
�

���/

���/

Figure 3.3: Comparison of Normal Convolution and Depthwise Separable Convolution

3.2.1.1 Plain Block of DualNet

The plain block is a seven-layer (four parameter layers) spatial-temporal feature extractor,

as shown in Fig. 3.2. The block is built upon CNN and RNN subnets, where CNN is to

extract the spatial-oriented features from the learning dataset and RNN is to capture the

temporal-oriented features in the dataset.

Compared to primitive CNN (ConvNet) that uses the normal convolution process, depth-

wise separable CNN (DSC) [56] divides the whole convolution process into two simplified

steps: depthwise convolutions and pointwise convolutions, as such the number of multipli-

cations can be decreased and hence the number of trainable parameters can be reduced [57].

Fig. 3.3 demonstrates a comparison of the two convolution processes. Assume that the

24

3.2. DUALNET

shape of the input tensor is H ◊ W ◊ L, where H is height, W is width and L is depth

(the number of input feature maps), the convolutional kernel size is M ◊ N , where M is

height and N is width, and the expected number of output feature maps is P . To facilitate

subsequent design, all convolutional operations adopt the same padding. As a result, the

output size is the same as the input size, which is also H ◊ W .

For the normal convolution process, the number of kernels in each filter should be the

same as the number of input feature maps, which is L, and the number of filters should

be the same as the number of output feature maps, which is P . As can be seen from

Fig. 3.3(a), each filter is convolved with the input, where each kernel is convolved with

an input feature map, and then an output feature map is generated. Since weights are

shared in the same filter, the trainable parameters of this convolution process can be

calculated by L ◊ M ◊ N ◊ P . Fig. 3.3(b) shows the process of the depthwise separable

convolution. In the depthwise convolution step, the number of filters should be the same

as the number of input feature maps, which is L, and each filter has only one kernel

to convolve with an input feature map to generate an intermediate feature map for the

next step. So, the trainable parameters in this step are M ◊ N ◊ L. In the pointwise

convolution step, it is similar to the normal convolution process, but the kernel size is

1 ◊ 1. Hence, the trainable parameters in this step are L ◊ P . As a result, the total

trainable parameters of the depthwise separable convolution process are L◊ (M ◊N +P).

For example, when L = 196, M = 1, N = 10 and P = 196 (These are hyper-parameter

settings using the UNSW-NB15 dataset, which will be detailed in the next section), the

trainable parameters of depthwise separable convolution are 40,376, while the trainable

parameters of normal convolution are 384,160, which is about 10 times that of depthwise

separable convolution.

As mentioned in Section 2.4.2.2, LSTM [49] with three gates solves the gradient vanishing

problem and the inability of acquiring long-term dependencies in the vanilla RNN. Gated

recurrent unit (GRU) [58] is a simplified LSTM with fewer number of gates and much

lower trainable parameters.

GRU has two input tensors: one representing the current information is xt and the other

25

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

representing the previous information is ht≠1, and its output tensor is ht. Fig. 3.4

shows the GRU internal structure with two gating mechanisms: a reset gate rt and an

update gate ut. The reset gate uses sigmoid activation function: sigmoid(z) = 1
1+e≠z to

determine how much the previous information to be ignored. The output values range

from 0 (completely discarded) to 1 (completely retained). The formula is given below.

rt = sigmoid(Wr[ht≠1, xt] + br), (3.1)

where Wr and br are parameter matrix and parameter vector respectively.

The update gate decides what previous information to be forgot and what new information

to be added. The output values are also compressed between 0 and 1, as specified below.

ut = sigmoid(Wu[ht≠1, xt] + bu), (3.2)

where Wu and bu are parameter matrix and parameter vector respectively.

A hyperbolic tangent (Tanh) activation function: tanh(z) = 2sigmoid(2z) ≠ 1 is used

to scale the values of the tensor that combines the previous information adjusted by the

reset gate with the current information in the range of -1 to 1 to create a tensor of new

candidate values h̃t, as shown by the following formula.

h̃t = tanh(Wh[rt ú ht≠1, xt] + bh), (3.3)

where Wh and bh are parameter matrix and parameter vector respectively.

The previous and new current information are modulated by the update gate to form the

output, as given below.

ht = (1 ≠ ut) ú ht≠1 + ut ú h̃t (3.4)

26

3.2. DUALNET

[W

KW�� �

UW XW
��

KW
ι

KW[

VLJPRLG

*DWHG�5HFXUUHQW�8QLW

[
[

__

__

VLJPRLG WDQK

Figure 3.4: Gated Recurrent Unit

In consequence, the GRU can remember the normal patterns and anomalous patterns of

network tra�c.

As mentioned earlier, to e�ciently leverage the feature extraction capability of both CNN

and RNN for the security data and reduce the potentially high computational cost of our

densely connected learning, we combine DSC with GRU to build the plain blocks, where

DSC uses rectified linear unit (ReLU) [59]: relu(z) = max(0, z) as the activation function

to accelerate convergence rate. As can be seen from Fig. 3.2, apart from DSC and GRU

subnets, we also add five layers (including two parameter layers) to further enhance the

learning ability. We introduce batch normalization (BN) [60] to standardize the data of

each mini-batch in training before feeding it into DSC and GRU to reduce the internal

covariate shift, thus accelerating model fitting and decreasing the final generalization er-

rors. In addition, there is a max-pooling (MP) layer after DSC to provide basic translation

invariance for the internal representations and reduce the computational cost by down-

sampling its inputs. And a regularizer dropout [61] after GRU is used to prevent overfitting

and further decrease the computational cost by randomly removing several neurons. We

also add a linear bridging layer [12] to transform non-linear parameter layers into a linear

space, which is helpful for stabilizing the learning process.

27

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

FRQFDWHQDWH
3ODLQ�%ORFN����OD\HUV�

'HQVH�%ORFN

__ __ __ __

Figure 3.5: A Dense Block of DualNet with a Growth Rate of g = 4

3.2.1.2 Dense Block of DualNet

Dense block is formed with a set of densely connected plain blocks. Fig. 3.5 shows a dense

block containing four plain blocks, where each plain block receives the concatenation of the

input data and the output of all the preceding plain blocks through shortcut connections

as its new inputs. The scale of the dense block increases with the plain blocks, and we

define growth rate g as the number of plain blocks in the dense block.

The dense blocks encourage feature reuse and strengthen propagation of features and

gradients within the network thanks to the dense connections1.

3.2.1.3 Transition Block of DualNet

We can stack more dense blocks for a deeper neural network. To handle the potential

decrease in accuracy due to the increased number of features (i.e., the dimensionality of

feature space) when building deeper networks to fully learn the features at various levels

of abstraction, we add a transition block between two dense blocks to reduce the dimen-

sionality. Since the DSC subnet has strong down-sampling capability, we use it for the

dimensionality reduction. DSC favors the spatial features. To maintain both spatial and

temporal features during the dimensionality reduction, we also add GRU subnet to the

1The idea of building dense connections originated from densely connected convolu-
tional networks [62], which have shown good performance for object recognition tasks.

28

3.2. DUALNET

transition block. As a result, the transition block has the same structure as the plain block

presented before. Inserting the block between dense blocks limits the feature space grow,

improves the generalization capability and robustness of the model and makes the model

easy to train.

With the dense blocks and transition blocks, the first stage of DualNet can be formed as

a very deep neural network for maximal extraction of general spatial-temporal features,

as shown in Fig. 3.1. To further improve the detection capability, we present the second

stage to focus attention on those features that are more important to the predicted results

of the detection engine.

3.2.2 Crucial Feature Learning Stage

We apply a self-attention mechanism [63] to focus more on the crucial features that should

be considered as the most e�ective payloads to distinguish attack from normal behavior.

In this stage, each feature would obtain an attention score. The higher the attention score

is, the more important the feature is and the more influence it has on the prediction of

the detection engine. The attention function can be described as mapping a query and a

series of key-value pairs to an output [63] that is specified as below.

Attention = softmax(Similarity(Q, K))V, (3.5)

where Q, K, V are the matrices of query, key, value respectively. The Similarity function

performs dot-product calculation between the query and each key to obtain a weight:

wi, i = 1, 2, ..., n, which is much faster and more space-e�cient in practice [63], that

is, fewer trainable parameters are required. A softmax function [64]: softmax(wi) =
ewiqn

j=1 ewj is then applied to normalize these weights between 0 and 1, and finally the

weights are combined with their corresponding values to obtain the final attention scores.

Self-attention mechanism can enhance the interpretability of captured features and hence

29

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

shrink the semantic gap between AI detectors and security analysts. Moreover, the mech-

anism can enable security analysts to identify important features of attacks to e�ectively

respond to threats. By using the self-attention mechanism, our model can better memorize

the long-term dependencies existed in the tra�c flow records so that the gradient vanish-

ing and performance degradation problems can be e�ectively mitigated, thereby achieving

higher detection accuracy.

3.3 Evaluation and Discussion

Our evaluation is based on a cloud AI platform configured with a Tesla K80 GPU and

a total of 12 GB of RAM. The designs are written in Python and built upon tensorflow

backend with APIs of keras libraries and scikit-learn packages.

3.3.1 Datasets Selection

The training and testing of the designs are performed on two heterogeneous network intru-

sion detection datasets. One is a traditional well-known dataset, NSL-KDD [13], generated

by Canadian Institute for Cyber Security in 2009, which is an improved version of the KDD

Cup 1999 dataset [65]. The other is a more recent modern dataset, UNSW-NB15 [14],

developed by Australian Cyber Security Centre in 2015, which is a more comprehensive

representation of a contemporary low footprint attack environment. There are no dupli-

cate network tra�c records in the two datasets to ensure that the designs used in the

evaluation do not favor more frequent records, and the designs with better detection rates

for repetitive records will not bias their performance [13], [66]. In addition, both datasets

are balanced with similar numbers of normal and abnormal records, and they do not con-

tain missing values, which further ensures the e�ectiveness of the evaluation [13], [14].

Thus, NSL-KDD and UNSW-NB15 are often used as the baseline datasets for network

intrusion detection related research [67–69].

The two cyber attack datasets are composed of two classes: normal and anomalous. In

30

3.3. EVALUATION AND DISCUSSION

Table 3.1: Ground Truth of UNSW-NB15 Dataset

Attack Category Attack References (Description)
Generic CVE-2005-0022, CVE-2006-3086, ...
Exploits CVE-1999-0113, CVE-2000-0884, ...
Fuzzers NULL (HTTP GET Request Invalid URI)

Reconnaissance CVE-2001-1217, CVE-2002-0563, ...
DoS CVE-2007-3734, CVE-2008-2001, ...

Shellcode milw0rm-1308, milw0rm-1323, ...
Backdoors CVE-2009-3548, CVE-2010-0557, ...
Analysis NULL (IP Protocol Scan)
Worms CVE-2004-0362, CVE-2005-1921, ...

NSL-KDD, the abnormal tra�c includes 4 categories [13]: DoS, Probing (Probe), Remote

to Local (R2L) and User to Root (U2R), where the attack samples were gathered based

on a U.S. air force network environment. There are 148,516 processed tra�c records with

41 features that can be used for training and testing from NSL-KDD. In UNSW-NB15,

there are nine contemporary synthesized attack activities [14]: Generic, Exploit, Fuzzer,

Reconnaissance, DoS, Shellcode, Backdoor, Analysis and Worm, which were collected from

Common Vulnerabilities and Exposures2, Symantec3 and Microsoft Security Bulletin4.

There are 257,673 processed tra�c records with 42 features that can be used for training

and testing from UNSW-NB15. It is worth noting that each attack event is simulated from

a real-world attack scenario with a specific attack reference, as demonstrated in Table 3.1.

The actual attack references used for our evaluation are based on this table but not limited

to it, and they are in the range from CVE-1999-0015 to CVE-2014-6271. To perform a

comprehensive evaluation, we use all of the attack types provided by the two datasets.

2CVE: https://cve.mitre.org/
3BID: https://www.securityfocus.com
4MSD: https://docs.microsoft.com/en-us/security-updates/securitybulletins

31

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

3.3.2 Data Preprocessing

Before training and testing, we pre-process the network tra�c records in three phases, as

given below.

3.3.2.1 Categorical Conversion

Since categorical data cannot be fed into neural networks directly, textual notations such

as ‘http’ and ‘smtp’ are required to be converted to numerical form. Hence, we apply

one-hot encoding [70] to encode nominal feature values into their dummy representations

to expand the sparsity of the data to accelerate the training.

3.3.2.2 Random Shu�ing

We randomly disrupt the order of the data records to prevent the selectivity of gradient

optimization direction from severely declining caused by data regularity, hence reducing

the tendency of overfitting and accelerating the convergence rate.

3.3.2.3 Data Normalization

Features in di�erent dimensions cannot contribute equally to model fitting, which may

give undue emphasis to the features with larger magnitudes and eventually result in biased

predictions. Therefore, we use min-max normalization [70] to rebuild the values of each

feature on a scale of 0 to 1 to maintain certain numerical comparability and improve the

speed of backpropagation. The normalization is performed with the following formula.

Xvalue = X ≠ Xmin

Xmax ≠ Xmin
, (3.6)

where X is the original feature value, Xmin is the minimum value of the correspond-

ing feature, Xmax is the maximum value of the corresponding feature and Xvalue is the

32

3.3. EVALUATION AND DISCUSSION

normalized feature value.

3.3.3 Training and Testing

To investigate the e�ectiveness of our densely connected learning in handling performance

degradation problem of deep neural networks and the e�ectiveness of self-attention mecha-

nism for network intrusion detection, we create three DenseNets in di�erent depths. They

are briefly described below.

DenseNets. We apply our densely connected learning to establish these DenseNets. They

are denoted as Dense ≠ n, where n is the number of dense blocks used in a DenseNet,

n = 1, 2, and 3. All dense blocks have a growth rate of 4. Each Dense ≠ n has n dense

blocks along with (n ≠ 1) transition blocks in an interleaved arrangement pattern plus

one global average pooling layer and one dense layer. Therefore, Dense ≠ 1 has 31 layers

including 19 parameter layers, Dense ≠ 2 has 66 layers including 39 parameter layers, and

Dense ≠ 3 has 101 layers including 59 parameter layers.

DualNet is Dense ≠ 3 enhanced with a self-attention mechanism.

3.3.3.1 Hyperparameter Settings

To ensure a fair comparison of those designs, uniform hyperparameter settings are applied

to the training on each of the two datasets. For all designs, the number of filters in the

convolutions and the number of recurrent units are adjusted to be consistent with the

number of features in each dataset, where NSL-KDD has 122 features and UNSW-NB15

has 196 features after the data pre-processing (the number of features increases due to

the one-hot encoding). Sparse categorical cross entropy loss function is used to calculate

the errors, which avoids possible memory constraints incurred by the classification tasks

with a large variety of labels. Adaptive moment estimation (Adam) algorithm is used as

an optimizer to update trainable parameters to minimize the errors, which is especially

33

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

Figure 3.6: The Performance Degradation Problem of Deep Neural Network for Network
Intrusion Detection on UNSW-NB15

e�ective for the sparse inputs [71] (the input becomes sparse after the one-hot encoding).

The learning rate is set to 0.001 here.

3.3.3.2 Stratified K-fold Cross Validation

We apply stratified k-fold cross validation to evaluate the generalization capability of

designs. The method splits the entire dataset into k groups by preserving the same pro-

portion of each class in original records, where k-1 groups are combined for training and

the remaining one is used for testing. Here, k is set to 10 to keep non-computational

advantage of bias-variance trade-o� [72].

3.3.3.3 Evaluation Metrics

We use five metrics to evaluate the performance of the designs: accuracy (ACC), detection

rate (DR), false alarm rate (FAR), precision (PRE) and F1 score, as defined below.

ACC = Number of correct predictions

Total number of predictions
, (3.7)

34

3.3. EVALUATION AND DISCUSSION

ൈ ͳͲ
 (a) The Detection Accuracy of Proposed Designs on NSL-KDD

 ൈ ͳͲ
 (b) The Detection Accuracy of Proposed Designs on UNSW-NB15

Figure 3.7: The Detection Accuracy of Proposed Designs on Two Datasets

DR = TP

TP + FN
, (3.8)

FAR = FP

FP + TN
, (3.9)

PRE = TP

TP + FP
, (3.10)

F1 score = 2 ◊ PRE ◊ DR

PRE + DR
, (3.11)

where TP and TN are, respectively, the number of attacks and the number of normal

network tra�c correctly categorized; FP is the number of actual normal tra�c misclassified

as attacks, and FN is the number of attacks incorrectly classified as normal network tra�c.

35

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

3.3.4 DualNet Performance

We evaluate the generalization capability of DualNet by first evaluating the densely con-

nected learning and the self-attention mechanism. To further evaluate the generalizability

of DualNet, we then compare it with a set of existing designs.

3.3.4.1 Densely Connected Learning Performance

We stack plain blocks in a range from 1 to 10 to build some baseline comparison models to

investigate the performance degradation problem in deeper neural networks for network

intrusion detection. Fig. 3.6 shows the training and testing accuracy of the networks with

di�erent number of parameter layers on UNSW-NB15 dataset. As can be seen from the

figure, with the increase of the network depth, the training and testing accuracy gets sat-

urated at first and then decline rapidly as unexpected, namely, the performance gradually

degrades. Fig. 3.7 displays the detection accuracy of three DenseNets and DualNet on two

datasets. According to the figure, the accuracy of DenseNet improves with the increase

of the network depth on two datasets (Dense-2 outperforms Dense-1 and Dense-3 outper-

forms Dense-2), which demonstrates our densely connected learning (feature reuse) can

e�ectively handle performance degradation problem in building deeper neural networks

for network intrusion detection.

3.3.4.2 Self-attention Mechanism Performance

As shown in Fig. 3.7, compared to Dense-3, DualNet presents a sharp increase in detec-

tion accuracy on two datasets, achieving 99.37% (Dense-3 achieved 99.12%) on NSL-KDD

dataset and 83.30% (Dense-3 achieved 83.09%) on UNSW-NB15 dataset (multi-class clas-

sification), which demonstrates the e�ciency and e�ectiveness of the self-attention mech-

anism for network intrusion detection. The self-attention mechanism helps to achieve

a significant performance gain with fewer additional parameters when compared to the

parameters required to improve performance from the Dense-2 to Dense-3 architecture.

36

3.3. EVALUATION AND DISCUSSION

Table 3.2: The Comparative Results on UNSW-NB15 Dataset

Design ACC % DR % FAR % PRE % F1 ScoreMulti Binary
RF 61.02 73.24 61.67 6.28 94.56 74.66

AdaBoost 67.67 87.46 93.31 22.90 87.83 90.48
SVM 72.86 85.78 81.76 7.11 95.32 88.02
GRU 79.22 92.94 93.02 7.22 95.80 94.39
MLP 79.27 92.57 91.58 5.67 96.62 94.03

LSTM 79.42 92.91 92.61 6.55 96.16 94.35
BiLSTM 79.43 93.06 93.90 8.42 95.18 94.53
ConvNet 79.66 93.03 93.11 7.11 95.87 94.47

DSC 80.16 93.45 92.95 5.66 96.68 94.78
DualNet 83.30 94.58 94.46 5.20 96.98 95.71

3.3.4.3 DualNet Detection Performance

DualNet is compared with a set of existing traditional machine learning designs: RF [73],

AdaBoost [74] and SVM [75], and advanced deep learning designs: GRU [76], MLP [77],

LSTM [78], bidirectional LSTM (BiLSTM) [79], ConvNet [80] and DSC [56] on the near-

real-world dataset, UNSW-NB15. Table 3.2 shows ACC, DR, FAR, PRE and F1 score

of these designs. From the table, we can find that DualNet outperforms those designs

by achieving higher ACC on both multi-class and binary classification tasks, higher DR,

higher PRE, higher F1 score and lower FAR – higher generalization performance. The

comparative results further demonstrate the e�ectiveness of DualNet for network intrusion

detection.

In addition to recognizing whether the network tra�c record is normal or abnormal,

DualNet can also identify a packet flow either as normal or as specific attacks. Table

3.3 shows ACC, DR, FAR, PRE and F1 score of DualNet for the normal and each attack

on two datasets. From the table, we can see that DualNet has a strong ability to recognize

normal network tra�c and most types of specific attacks (DoS, Probe, R2L, U2R, Generic,

Exploit, Reconnaissance, Shellcode, Backdoor and Worm) with a high ACC, a high DR,

a high PRE, a high F1 score and a low FAR. Its performance on the Fuzzer attack is

37

CHAPTER 3. DUALNET: A DEEP NEURAL NETWORK FOR NETWORK
INTRUSION DETECTION

Table 3.3: DualNet Performance for Each Category on Two Datasets

Datasets Category ACC % DR % FAR % PRE % F1

NSL-KDD

Normal 99.41 99.48 0.67 99.38 99.43
DoS 99.92 99.96 0.10 99.85 99.91

Probe 99.71 98.93 0.14 99.22 99.07
R2L 99.38 92.23 0.27 94.25 93.22
U2R 99.97 91.30 0.00 100.00 95.45

UNSW-NB15

Normal 94.58 94.80 5.54 90.62 92.66
Generic 99.98 99.98 0.02 99.97 99.97
Exploit 98.98 97.69 0.41 99.13 98.40
Fuzzer 89.82 66.49 4.61 77.48 71.56

Reconnaissance 99.83 99.53 0.14 98.87 99.20
DoS 99.80 88.11 0.01 99.21 93.33

Shellcode 99.82 91.00 0.08 92.86 91.92
Backdoor 99.98 92.00 0.00 100.00 95.83
Analysis 99.53 19.23 0.00 100.00 32.26
Worm 100.00 100.00 0.00 100.00 100.00

moderate, with a 66.49% DR. The case that especially needs to discuss is related to

Analysis attacks. DualNet only achieves a DR of 19.23% on Analysis attacks. The main

reason is inadequate relevant training data (only about 1% Analysis records in the UNSW-

NB15 dataset), leading to insu�cient learning and hence poor detection performance.

Overall, DualNet performs well in recognizing both normal and abnormal tra�c flows. It

can achieve 99.41% ACC, 99.33% DR, 99.44% PRE, 99.38 F1 score while keeping 0.52%

FAR on NSL-KDD dataset and 94.58% ACC, 94.46% DR, 96.98% PRE, 95.71 F1 score

while keeping 5.20% FAR on UNSW-NB15 dataset.

3.4 Conclusion

In this chapter, we propose a detection engine for network intrusion detection, DualNet,

which is an extendable DenseNet with a self-attention mechanism. To allow to build deeper

neural networks to achieve a high detection performance, we propose densely connected

learning, which can reuse features to e�ectively handle performance degradation prob-

38

3.4. CONCLUSION

lem of deep neural networks for network intrusion detection and is applied to construct

the DenseNet. We also demonstrate the e�ectiveness and e�ciency of the self-attention

mechanism for network intrusion detection.

Our experiments show that DualNet outperforms existing traditional machine learning and

advanced deep learning designs in terms of accuracy, detection rate, precision, F1 score

and false alarm rate. Most importantly, its e�ectiveness on the near real-world UNSW-

NB15 dataset demonstrates its practical value to security teams for tra�c analysis and

attack recognition.

39

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

Chapter 4

EnsembleNet: A Deep Ensemble

Network for Network Intrusion

Detection

4.1 Introduction

In order to improve the detection performance of an individual detection model, we lever-

age the synergy of multiple di�erent detection models to develop an e�ective ensemble

design for attack recognition, namely EnsembleNet. Unlike the traditional ensemble de-

signs, which are mainly based on simple and weak ML models, EnsembleNet is constructed

with the DNN models so that the high learning potential of DNNs can be utilized for good

detection performance. In this design, similar to DualNet, each DNN model is built with

the CNN and RNN subnets that are connected in a way such that features learned by the

subnets can be reused and hence the performance degradation problem can be e�ectively

mitigated. To e�ciently integrate the detection results from the DNNs of EnsembleNet,

we propose a greedy majority voting algorithm that can be applied not only to binary

classification but also to multi-class classification tasks and is scalable for a large ensemble

40

4.2. ENSEMBLENET

network with many DNNs.

In addition, for the detection results to be useful to the security team, we propose an

alert-output enhancement design as a user-friendly interface of EnsembleNet. The design

restores the threats (detected by the neural network) to their human-understandable raw

tra�c format and produces alerts of the current threats in the order of their severity

so that the security team can make prompt responses and hence maximally reduce the

security risk. EnsembleNet is presented in the next section.

4.2 EnsembleNet

EnsembleNet consists of three modules: stream processor, detection engine and alert

interface, as shown in Fig. 4.1. The design of each module is explained below.

4.2.1 Stream Processor

The stream processor is for data preprocessing. As illustrated in Fig. 4.1(a), the stream

processor converts network tra�c flows (shown in Fig. 4.1(d)) into corresponding statistical

representation records (shown in Fig. 4.1(e)) that are suitable for neural network learning.

Take the first statistical representation record shown in Fig. 4.1(e) as an example. The

complete set of features of this statistical representation record (47 features) is illustrated

in Fig. 4.7(a). The stream processor contains three functions for converting network tra�c

flows into corresponding statistical representation records, as shown in Fig. 4.1(a). Each

of them is elaborated below.

4.2.1.1 Data Consolidation

For EnsembleNet, we extend our design to be more flexible and scalable. The tra�c data

can be collected from multiple sources and have various formats, such as .argus, .log, and

.json. The data consolidation function merges the data records with a unified format.

41

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

'11�

'11�

'11Q

6WUHDP�3URFHVVRU

���

'HWHFWLRQ�(QJLQH $OHUW�,QWHUIDFH

*UHHG\
0DMRULW\
9RWLQJ

5HFRUGV
ZLWK

3UHGLFWLRQV

$OHUWV

6HFXULW\�7HDP

0XOWL�
VRXUFH
1HWZRUN
7UDIILF

'HYLFHV

�D� �E� �F�

�G�

'HIHQVH�0HFKDQLVP��(QVHPEOH1HW�

�H� �I�

'
LP
HQ
VL
RQ

1
RU
P
DO
L]
DW
LR
Q

1
RP

LQ
DO

&
RQ

YH
UV
LR
Q

'
DW
D

&
RQ

VR
OLG
DW
LR
Q

6WDWLVWLFDO�5HSUHVHQWDWLRQ

�

����������H���������������H���������������H��������

����������H���������������H���������������H��������

����������H���������������H���������������H��������

��

1HWZRUN�7UDIILF�)ORZ

�

���������������������WFS�����

��������������������WFS�����

���������������������XGS�����

��

5DZ�1HWZRUN�7UDIILF�)ORZ

�

���������������������WFS��*(7��+773���

���������������������XGS��$4��44$���

��������������������WFS��*(7��$$$$����

��

3UHGLFWLRQ

([SORLW

6KHOOFRGH

)X]]HU
���

6HYHULW\

�

�

�
���

7KUHDW
5HVSRQVH
3ULRULW\

$VVHVVPHQW

2ULJLQDO�
3DFNHW�
6WUHDP

%DFNWUDFNLQJ

Figure 4.1: EnsembleNet System Overview

In addition, to ensure the data quality, the function also removes duplicate records and

replaces missing data with the mean value of the related features.

4.2.1.2 Nominal Conversion

As discussed in Chapter 3, there are many categorical features in the tra�c flow, such as

IP address and protocol, which cannot be fed straight into the neural network. Moreover,

there are too many types of the categorical feature values. The nominal conversion function

applies label encoding technique [81] to convert the textual notation into a machine-

readable form. Since the function employs digital codes to represent long textual values,

the amount of computation by the neural network is reduced.

4.2.1.3 Dimension Normalization

As mentioned in Chapter 3, the features with larger magnitudes in the tra�c data records

may dominate in model fitting, leading to biased predictions. The dimension normalization

function uses the min-max normalization [70] to reconstruct data in each feature on a scale

of 0 to 1 so that all features contribute to model fitting equally. The normalization also

improves the learning stability and accelerates the backpropagation in training.

42

4.2. ENSEMBLENET

5HV%ON�%

'HQVH

6XE(QV1HW�%

__
*UHHG\
0DMRULW\
9RWLQJFRQFDWHQDWH

���__ __

VRIWPD[

VRIWPD[

5HV%ON�$

VRIWPD[���
'HQVH

6XE(QV1HW�$

'HWHFWLRQ�(QJLQH

*$3

*$3

3ODLQ%ON

���
'HQVH*$3

6XE(QV1HW�&
'HQVH%ON

Figure 4.2: Detection Engine of EnsembleNet

4.2.2 Detection Engine

The detection engine is an ensemble neural network, as shown in Fig. 4.1(b). Unlike the

traditional ensemble designs (such as RF), which are constructed with weak ML models,

EnsembleNet aims for high detection performance and hence uses the strong DNN models.

Fig. 4.2 illustrates the overall architecture of a detection engine with three DNNs. For

high e�ciency, we want those DNN to have the following attributes: 1) capable of spatial-

temporal learning, 2) able to reuse learning features, and 3) having a low computational

cost. To this end, we build the DNNs on specially designed blocks: plain blocks (Plain-

Blks), residual blocks (ResBlks) and dense blocks (DenseBlks). Each has a di�erent com-

plexity. In fact, PlainBlk is a building block of ResBlks and DenseBlks. Their designs are

discussed below.

4.2.2.1 Plain Block of EnsembleNet (PlainBlk)

The plain block design is based on the plain block of DualNet, which contains the simplified

versions of CNN, DSC [56] and the simplified versions of RNN, GRU [58] to extract the

43

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

6LJPRLG

7DQK

5H/8

3ODLQ%ON

*58%1 /% /%'6& 03 %1 'URSRXW

Figure 4.3: Plain Block of EnsembleNet

spatial-temporal features and reduce the computational cost, as has been discussed in

Section 3.2.1.1. Fig. 4.3 shows the structure of PlainBlk. In contrast to the plain block of

DualNet, we add one more linear bridging (LB) layer after the BN to enhance the learning

stability. Due to the randomness of neural network training, the results of each complete

training process will be slightly di�erent. LB helps to reduce the cost of retraining required

to obtain the optimal model and stabilize the learning process. Consequently, the model

does not need to be retrained.

As shown in Section 3.3.4.1, with the stacking of more PlainBlks – the network goes

deeper, the network would su�er performance degradation. The main reason is that as the

network depth increases, the learned features gradually become extremely specific but far

away from their original meanings, eventually resulting in gradient vanishing [12]. One of

the e�ective methods to solve this optimization obstacle is feature reuse, as demonstrated

in the previous chapter. Feature reuse keeps the features initially learned from the shallow

parameter layers and makes them available at the deep layers to retain the originality of

features. This is done by connecting shallow layers to deep layers, and combining the

early learned features with the later learned features. The combination can be in two

operation modes: add and concatenation, which leads to our other block designs: ResBlk

and DenseBlk.

4.2.2.2 Residual Block of EnsembleNet (ResBlk)

ResBlk incorporates the residual learning [54] into PlainBlk to handle performance degra-

dation, where the e�ectiveness of using the residual learning to reuse features to build

DNNs for network intrusion detection has been proved in [47]. ResBlk adds a shortcut

44

4.2. ENSEMBLENET

6LJPRLG

7DQK

5H/8

5HV%ON�$

03'6& *58%1 �/% /%%1 'URSRXW

(a) Residual Block Type A

6LJPRLG

7DQK

5H/8

5HV%ON�%

03'6& 'URSRXW*58%1%1 �/%/%

(b) Residual Block Type B

Figure 4.4: Residual Block of EnsembleNet

connection and uses “add” to combine the features from both connected layers. ResBlk

has two versions of design: ResBlk-A and ResBlk-B. Fig. 4.4(a) shows the structure of

ResBlk-A, where the input of DSC is connected to the output of the last layer. While

for ResBlk-B, there is a slight di�erence in the shallow layer to be connected, as shown

in Fig. 4.4(b), which will be further discussed later. The shortcut facilitates the forward

propagation of activations and the backward propagation of errors, thus avoiding gradient

vanishing. It is worth noting that the summation operation requires that the tensors to

be added have the same shape.

4.2.2.3 Dense Block of EnsembleNet (DenseBlk)

The DenseBlk design is based on the dense block of DualNet (Fig. 3.5), as shown in

Fig. 4.5, where each PlainBlk receives a concatenation of the input and the data from all

its preceding PlainBlks. In such a dense connectivity pattern, features at various levels of

abstraction can be fully learned. Moreover, the flow of gradients within the network can

be significantly strengthened, thus addressing the performance degradation caused by the

vanishing gradient.

Based on the above basic building blocks, we develop three DNNs as sub-classifiers for

45

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

3ODLQ%ON

__

FRQFDWHQDWH

���__ __

'HQVH%ON

Figure 4.5: Dense Block of EnsembleNet

EnsembleNet.

4.2.2.4 Sub-classifiers of EnsembleNet

The three sub-classifiers named as SubEnsNet-A, SubEnsNet-B and SubEnsNet-C, as

shown in Fig. 4.2, are presented below.

SubEnsNet-A. SubEnsNet-A is a deep residual neural network. It is constructed with a

series of residual blocks, ResBlk-A blocks, followed by a global average pooling (GAP)

layer and a dense layer with the softmax activation function. The GAP layer is to further

strengthen corresponding relationships between features and the classification categories

and the dense layer is to determine the final detection result. As can be seen from Fig. 4.2,

both GAP layer and dense layer are also applied to the other two sub-classifiers (for the

same purposes).

SubEnsNet-B. SubEnsNet-B is a deep densely connected residual neural network, which

is also built upon a group of ResBlks but with a dense connection structure, as shown in

Fig. 4.2. In addition, instead of using ResBlk-A, ResBlk-B is used. The reason is that

the data dimension from the concatenation would increase, making the shape of tensors

to be added inconsistent if ResBlk-A was adopted. To handle the problem, we leverage

the down-sampling ability of the MP (max-pooling) and move the shortcut just after the

MP (see Fig. 4.4(b)) so that the tensor shape can be adjusted while the local originality

of features can be mostly retained.

46

4.2. ENSEMBLENET

SubEnsNet-C. SubEnsNet-C is a deep dense neural network that uses our densely con-

nected learning, as detailed in Section 3.2.1. As can be seen from Fig. 4.2, SubEnsNet-C

is established with DenseBlks and PlainBlks in an interleaved arrangement pattern. In

this way, we can build a very deep SubEnsNet-C, which has been proved to be e�ective

for performance improvement in Section 3.3.4.1.

In summary, we have built three extensible DNNs that allow themselves to go deeper for a

good intrusion detection performance. When we put them into EnsembleNet, even better

performance can be achieved, which is closely related to how to combine the prediction

results from these sub-classifiers. Our design is given below.

4.2.2.5 Greedy Majority Voting Algorithm

There are some existing aggregation algorithms for ensemble classifiers, such as Boosting

and Bagging, as mentioned in Section 2.4.2.1. Boosting is a sequential process on a set

of sequentially performed sub-classifiers, which could result in considerable computing

time if these classifiers were DNNs. Bagging, on the other hand, can be performed on

the parallel sub-classifiers. But each of sub-classifier only works on a small subset of

the input data, which may cause model underfitting if DNN was used. Moreover, due

to sampling with replacement used in Bagging, these subsets always contain duplicate

records, which may result in biased predictions of the sub-classifiers. In addition, Bagging

uses random selection when the sub-classifiers come to multiple tied-voting results, which

is not e�ective for multi-class classification, and the binary classification with an even

number of voters. Here, we propose a di�erent integration algorithm, Greedy Majority

Voting, for EnsembleNet.

Our algorithm combines the idea of majority voting with the detection performance of each

DNN sub-classifier, where each DNN learns the entire dataset and is trained and tested in

parallel. The algorithm supports any number of classifiers and can handle both binary and

multi-class classification tasks. Considering that for a DNN model, Accuracy indicates its

generalization capability and Precision indicates whether a high threat detection capability

47

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

7DEOH�'��,QWHUPHGLDWH�'HWHFWLRQ�

5HVXOWV�RI�WKH�&XUUHQW�5HFRUG

7DEOH�$�

$FFXUDF\

7DEOH�3�

3UHFLVLRQ�

,QSXW��'��$��3�

*UHHG\

0DMRULW\

9RWLQJ

5�

2XWSXW

3UHGLFWLRQ

5HVXOW�RI�

7KLV�5HFRUG

'11�
�
�
�

'11L
�
�
�

'11Q

&��
��� &M�

��� &P

��� ���

���

���

�
�
�

�
�
�

G��

�
�

GL�
�
�
�

GQ�

�

G�M

�
�

GLM
�
�
�

GQM

�

G�P

�
�

GLP
�
�
�

GQP

�

���

���

�

�
�
�

�
�

'11�
�
�
�

'11L
�
�
�

'11Q

D�

�
�

DL
�
�
�

DQ

�

$FF

'11�
�
�
�

'11L
�
�
�

'11Q

S�

�
�

SL
�
�
�

SQ

�

3UH

)RU�P�&DWHJRULHV��Q�'11V

Figure 4.6: The Input and Output of Greedy Majority Voting Algorithm

of the model comes at the cost of high false alarms, we use the score obtained from these two

metrics to represent the DNN performance in our algorithm. The algorithm is explained

below.

Assume there are m detection categories, C1, ..., Cm and n DNNs, DNN1, ..., DNNn. We

use three tables to present the information available to the algorithm, as shown in Fig. 4.6.

Table D holds the detection results from the n DNNs for the current network tra�c record

to be classified, where dij is the decision of DNNi on whether the tra�c record belongs

to category Cj ; if yes, dij is 1, otherwise 0. For a tra�c record, each DNN will predict one

and only one category to be true, therefore, the sum of each row in Table D is 1. Table A

stores the accuracy of each DNN, where ai is the accuracy of DNNi. The precision of the

DNNs is saved in Table P ; on the same notion, pi is the precision of DNNi. The result

returned from the algorithm is saved in R that holds the final prediction of the ensemble

network.

Algorithm 1 describes steps of the greedy majority voting. Given the predictions from

the DNNs, D, the DNNs’ accuracy in A and precision in P , the algorithm first collects

votes for each prediction category (line 1 - line 3). Then it selects the predictions with

the highest votes and saves it in S (line 4 - line 5). If there is only one prediction in S,

it returns the prediction and the algorithm stops (line 6 - line 7); Otherwise, if there is

more than one prediction in S (e.g., two predictions are tied in votes), it removes those

predictions from S that are generated by the DNNs with lower performance, which is

48

4.2. ENSEMBLENET

Algorithm 1 Greedy Majority Voting Algorithm
Input: D, A, P

Output: R

1: for each j = 1, 2, ..., m do

2: vj = Sum(d1j + d2j + ... + dnj)

3: end for

4: V = Max({vj , j = 1, 2, ..., m})

5: S = getPredictionWithMaxVote(V)

6: if |S| = 1 then Û Only one element in S

7: R = Cj , Cj œ S

8: else

9: S = getPredictionWithHighAccuracy(S, A)

10: if |S| = 1 then

11: R = Cj , Cj œ S

12: else

13: S = getPredictionWithHighPrecision(S, P)

14: if |S| = 1 then

15: R = Cj , Cj œ S

16: else

17: R = getFirstPrediction(S)

18: end if

19: end if

20: end if

21: return R

based first on their accuracy and then on their precision if required (line 8 - line 15). After

that, if there is still more than one prediction in S, return the first one (line 16 - line 17).

As a result, the algorithm produces a prediction for each tra�c record.

49

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

([SORLW�$WWDFN�3DFNHW�6WUHDP

3D\ORDGV��*(7���+773����
+RVW��4X8W%0YUO
8VHU�$JHQW��0R]LOOD������FRPSDWLEOH��06,(�����
:LQGRZV�17������69����1(7�&/5�����������
$FFHSW���
&RQQHFWLRQ��NHHS�DOLYH
&RQWHQW�/HQJWK���

+773���������2.
'DWH��7XH�����-DQ���������������*07
6HUYHU��$SDFKH�������
+RVW��4X8W%0YUO
/DVW�0RGLILHG��7XH�����-DQ���������������*07
$FFHSW�5DQJHV��E\WHV
&RQWHQW�/HQJWK����
&RQQHFWLRQ��FORVH
&RQWHQW�7\SH��WH[W�KWPO

�IUDPHVHW�FROV ������!
�IUDPH�VUF �X&VU<�YN�I;�/�KWPO�!
��IUDPHVHW!

6WDWLVWLFDO�5HSUHVHQWDWLRQV
����������H��������������H��������������H��������������H��������������H��������������H��������������H��������������H����
����������H��������������H��������������H��������������H��������������H��������������H��������������H��������������H����
����������H��������������H��������������H��������������H��������������H��������������H��������������H��������������H����
����������H��������������H��������������H��������������H��������������H��������������H��������������H��������������H����
����������H��������������H��������������H��������������H��������������H��������������H��������������H��������������H����

����������H��������������H��������������H��������������H��������������H��������������H��������������H�����

�D�

�E�

Figure 4.7: An Exploit Attack within a TCP Stream: Microsoft Internet Explorer Frame-
set Memory Corruption and the Attack Reference Is CVE-2006-3637

4.2.3 Alert Interface

We want the threat alerts generated from the detection engine to be understandable and

useful to human security analysts. Therefore, we include a user-friendly alert interface, as

shown in Fig. 4.1(c). The interface o�ers two functions: original packet stream backtrack-

ing and threat response priority assessment, which are presented below.

4.2.3.1 Original Packet Stream Backtracking

As shown in Fig. 4.1(e), the features used for learning are vectorized, making it di�cult for

security analysts to understand, interpret and analyze. Our investigation on the network

tra�c data shows that the network tra�c streams can be uniquely identified by their

source IP address, source port number, destination IP address, destination port number,

50

4.2. ENSEMBLENET

flow start time and end time, and protocol. We use this combined information to correlate

a threat detected by the neural network to the related raw network flow in di�erent

source traces and restore the threat from the neural-network-used format to the human-

understandable textual tra�c format.

We adopt Wireshark1 to visualize the original packet streams. Fig. 4.7 shows an example

for a detected Exploit attack. Its neural-network-used format is shown in Fig. 4.7(a) and

Fig. 4.7(b) is its restored raw network stream.

As can be seen from the figure, the stream contains 3-way handshake packets for es-

tablishing TCP connections, HTTP request packets, HTTP response packets and 4-way

handshake packets for tearing down TCP connections. The payloads of the stream provide

more valuable attack-related information. Tra�c from the client to the server is colored

in red, while tra�c from the server to the client is colored blue. The payloads indicate

‘Microsoft Internet Explorer Frameset Memory Corruption [82]’ (CVE-2006-3637 [83]): a

flaw in Microsoft Internet Explorer (MSIE) 6.0 (marked in pink) that makes the browser

unable to properly handle various combinations of HTML layout components. The hacker

exploits the vulnerability when rendering HTML using a crafted frameset (marked in blue),

which results in memory corruption.

By obtaining the raw tra�c format, security analysts can find more cyber threat intelli-

gence and specific attack behavior from the payloads to get insight into the threat so that

they can e�ectively respond to the threat. More examples are demonstrated in Section

4.3.5.2.

4.2.3.2 Threat Response Priority Assessment

Di�erent attacks may impose di�erent levels of security risk. Based on the recommendation

of the security analysts in the industry, we group all cyber threats into five severity levels,

ranging from level 1 (of the lowest) to level 5 (of the highest): level 1—low impact, level

1Wireshark: https://www.wireshark.org

51

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

2—possible impact, level 3—medium impact, level 4—significant impact and level 5—high

impact. For example, Analysis attack belongs to level 1; Reconnaissance, Scanning and

Fuzzer attacks belong to level 2; DoS and Man-In-The-Middle (MITM) attacks belong to

level 3; Generic, Backdoor, Password Cracking, Injection, Cross-site Scripting (XSS) and

Worm attacks belong to level 4; and Exploit, Shellcode, DDoS and Ransomware attacks

belong to level 5. Based on our observations, the majority of false positives produced

by the anomaly-based NIDSs are the normal network tra�c mis-classified as low-severity

threats (e.g., Analysis). This may be due to their similar behaviors.

We output alerts of the attacks in the order of their severity, as demonstrated in Fig. 4.1(f),

so that the severest attacks can get immediate attention from the security team and be

contained to minimize security risks.

4.3 Evaluation and Discussion

4.3.1 Experimental Environment Settings

Our evaluation is based on a cloud AI platform configured with an NVIDIA Tesla K80

GPU and a total of 12 GB of RAM. EnsembleNet and some related ML-based designs to

be used for comparison are modeled in Python, with Tensorflow as the backend and the

APIs of Keras libraries and scikit-learn packages.

4.3.2 Datasets Selection

We use two modern datasets, UNSW-NB15 [14] and TON_IoT [15] as cyber threat assess-

ment testbeds. Unlike the evaluation of DualNet that directly adopted processed datasets

for evaluation, we use the testbeds including raw network tra�c flows, which allows for a

more complete evaluation of EnsembleNet. They were both generated by Australian Cy-

ber Security Centre Laboratory, where UNSW-NB15 was created in 2015 but TON_IoT

was produced in 2020. Similar to the UNSW-NB15 dataset, the TON_IoT dataset is also

52

4.3. EVALUATION AND DISCUSSION

a balanced dataset without duplicate records and missing values [15], which ensures the

e�ectiveness of the evaluation, as discussed in Section 3.3.1. Like the other datasets used

in this thesis, TON_IoT is also a widely used dataset in modern research on network

intrusion detection systems [12,84,85].

UNSW-NB15 was generated by IXIA PerfectStorm tool2. The tool simulates a real-word

network environment with millions of up-to-date attack scenarios that are updated reg-

ularly from the Common Vulnerabilities and Exposures (CVE) site and the normal traf-

fic. As mentioned in Chapter 3, this testbed o�ers both real and synthesized anomalous

network activities and covers nine typical attack types [14]: Generic, Exploit, Fuzzer,

Reconnaissance, DoS, Shellcode, Backdoor, Analysis and Worm. To obtain a more com-

prehensive evaluation, we use the original testbed containing 2,540,044 tra�c records with

47 features, where 10% of the records are randomly selected for evaluation. TON_IoT is

a more recent testbed to mimic the complexity and scalability of the Industry 4.0 network

that includes IoT and industrial IoT (IIoT) networks. The testbed consists of a telemetry

testbed of IoT/IIoT sensors, testbeds of Linux- and Windows-based audit traces and a

testbed of network tra�c. Today more than 70% of network tra�c is based on Transport

Layer Security (TLS)/Secure Sockets Layer (SSL) cryptographic protocols to ensure se-

cure communications. Since the network tra�c testbed of TON_IoT contains TLS/SSL-

related features, we use this testbed for the evaluation in order to reflect the current

network tra�c and intrusion behaviors. In addition to benign tra�c, the testbed covers

nine contemporary attack families [15]: Backdoor, Password, Injection, DDoS, Scanning,

DoS, XSS, Ransomware and MITM. There are 461,043 tra�c records with 44 features in

the network tra�c testbed. Similar to the evaluation of DualNet, we use stratified 10-fold

cross validation for evaluation, as detailed in the previous chapter. And we use all of the

attack types provided by the two datasets for a comprehensive evaluation.

2IXIA: https://support.ixiacom.com/strikes

53

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

4.3.3 Configuration of EnsembleNet

For the detection engine of EnsembleNet, we configure SubEnsNet-A with 10 ResBlk-

A blocks, SubEnsNet-B with 10 ResBlk-B blocks and SubEnsNet-C with two Dense-

Blks interleaved by one PlainBlk, where each DenseBlk has five PlainBlks. Therefore,

SubEnsNet-A has 83 layers including 53 parameter layers; Similarly, SubEnsNet-B has

83 layers including 53 parameter layers, and SubEnsNet-C has 91 layers including 58 pa-

rameter layers. EnsembleNet also requires configuring a group of hyper-parameters for

model initialization. For each DNN sub-classifier of EnsembleNet, the number of filters

in the convolutions and the number of recurrent units are adjusted to be consistent with

the number of learning features. In the training phase, we employ sparse categorical cross

entropy as loss function for performing error calculation that is used in the backpropaga-

tion. And we use root mean square propagation (RMSprop) algorithm [86] as optimizer to

minimize errors and accelerate gradient descent as well as convergence rate. The learning

rate is set to 0.001 here.

4.3.4 Evaluation Metrics

Similar to other ML-based designs, we use five metrics to evaluate the performance of the

designs: accuracy (ACC), detection rate (DR), false alarm rate (FAR), precision (PRE)

and F1 score, as defined below.

ACC = Number of correct predictions

Total number of predictions
, (4.1)

DR = TP

TP + FN
, (4.2)

FAR = FP

FP + TN
, (4.3)

54

4.3. EVALUATION AND DISCUSSION

Table 4.1: Testing Performance of EnsembleNet and Its DNN Subnets on UNSW-NB15

Design ACC % DR % FAR % PRE % F1 ScoreMulti Binary
SubEnsNet-A 75.45 87.53 97.57 24.76 82.84 89.60
SubEnsNet-B 75.71 87.28 97.56 25.32 82.52 89.41
SubEnsNet-C 76.26 88.38 97.67 23.01 83.87 90.25

EnsembleNet 77.27 88.66 98.12 22.92 83.99 90.51

PRE = TP

TP + FP
, (4.4)

F1 score = 2 ◊ PRE ◊ DR

PRE + DR
, (4.5)

where TP and TN are, respectively, the number of attacks and the number of normal

network tra�c correctly categorized; FP is the number of actual normal tra�c misclassified

as attacks, and FN is the number of attacks incorrectly classified as normal network tra�c.

4.3.5 EnsembleNet Performance

We first evaluate the overall detection performance of the three sub-classifiers of Ensem-

bleNet and the standalone EnsembleNet. Then, we evaluate the performance of original

packet stream backtracking strategy. We finally evaluate the detection capability of En-

sembleNet for each category and compare it with a set of existing typical ML-based designs

to further evaluate its generalization capability.

4.3.5.1 Overall Detection Performance

Table 4.1 and Table 4.2 illustrates the testing performance of SubEnsNet-A, SubEnsNet-

B, SubEnsNet-C and EnsembleNet on UNSW-NB15 and TON_IoT datasets respectively.

From the tables, we can see that the three sub-classifiers of EnsembleNet achieve a high

55

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

Table 4.2: Testing Performance of EnsembleNet and Its DNN Subnets on TON_IoT

Design ACC % DR % FAR % PRE % F1 ScoreMulti Binary
SubEnsNet-A 99.13 99.14 99.42 1.01 98.15 98.78
SubEnsNet-B 99.48 99.48 99.51 0.53 99.02 99.26
SubEnsNet-C 99.78 99.78 99.58 0.11 99.79 99.69

EnsembleNet 99.95 99.95 99.94 0.04 99.93 99.93

threat detection capability while keeping a low false alarm rate, enabling EnsembleNet

to have a good performance. Moreover, EnsembleNet outperforms all its sub-classifiers

by achieving higher ACC on processing both multi-class and binary classification tasks,

higher DR, higher PRE, higher F1 score and lower FAR on two datasets, which testifies

the e�ectiveness of proposed greedy majority voting algorithm. To further demonstrate

the e�ectiveness of the algorithm, we also applied the simple majority voting on the three

di�erent neural networks. Our experiment results show that Greedy Majority Voting

algorithm improves the detection accuracy by 1.24% on UNSW-NB15 dataset and 0.46%

on TON_IoT dataset. Specifically, the detection accuracy of using the simple majority

voting on UNSW-NB15 dataset is 76.32%, which is lower than 77.27% generated by our

algorithm and the detection accuracy of using the simple majority voting on TON_IoT

dataset is 99.49%, which is lower than 99.95% produced by our algorithm. Hence, the

proposed algorithm is e�ective.

From the tables, we can also find that our designs accomplish better overall detection

performance on TON_IoT dataset, as compared to UNSW-NB15 dataset. The main

possible reason is that the TON_IoT dataset has more payload-related typical features

that can help accurately distinguish anomalous tra�c flows from legitimate tra�c flows,

such as ‘http_method’, ‘http_uri’ and ‘http_user_agent’. A detailed discussion will be

given in the next sub-section.

56

4.3. EVALUATION AND DISCUSSION

3D\ORDGV��*(7��DQQRXQFH"SHHUBLG �87�����
������������	SRUW �����	XSORDGHG �	GRZQORDGHG �	OHIW �������	FRPSDFW �	
QXPZDQW �	HYHQW VWDUWHG	LQIRBKDVK <�((�(����*�����'�&'�($%[�)(�
���'&��&]�'�����&���)�+773����
3UDJPD��QR�FDFKH
$FFHSW��WH[W�KWPO��LPDJH�MSHJ��LPDJH�SQJ��WH[W���LPDJH����
+RVW��7UDFNHU
&RQQHFWLRQ��FORVH

+773���������2.
&RQWHQW�7\SH��WH[W�SODLQ
&RQWHQW�/HQJWK����

G��FRPSOHWHL��H���LQFRPSOHWHL��H��LQWHUYDOL����H��SHHUV�����a�����a�����a���������H

�D��1RUPDO�1HWZRUN�7UDIILF

$SSOH�4XLFN7LPH�676'�$WRPV�+DQGOLQJ
+HDS�2YHUIORZ

3D\ORDGV��*(7��aD]KDQJ�SRF�PRY�+773����
$FFHSW��LPDJH�JLI��LPDJH�[�[ELWPDS��LPDJH�MSHJ��LPDJH�SMSHJ��DSSOLFDWLRQ�[�VKRFNZDYH�IODVK��DSSOLFDWLRQ�YQG�PV�H[FHO�
DSSOLFDWLRQ�YQG�PV�SRZHUSRLQW��DSSOLFDWLRQ�PVZRUG���
$FFHSW�/DQJXDJH��HQ�XV
$FFHSW�(QFRGLQJ��J]LS��GHIODWH
8VHU�$JHQW��0R]LOOD������FRPSDWLEOH��06,(������:LQGRZV�17������69��
+RVW������������
&RQQHFWLRQ��.HHS�$OLYH

+773���������2.
'DWH��7KX�����1RY���������������*07
6HUYHU��$SDFKH���������&HQW26��3+3�������PRGBS\WKRQ�������3\WKRQ�������PRGBSHUO�������3HUO�Y�����
/DVW�0RGLILHG��7KX�����1RY���������������*07
(7DJ����H�����G�����H����F��
$FFHSW�5DQJHV��E\WHV
&RQWHQW�/HQJWK�������
.HHS�$OLYH��WLPHRXW ����PD[���
&RQQHFWLRQ��.HHS�$OLYH
&RQWHQW�7\SH��YLGHR�TXLFNWLPH

����IW\STW������TW������������������PRRY���OPYKG������W��W���;���6��#����������������������6������������WUDN���
���PRUH�FRQWHQW���

�E��*HQHULF�$WWDFN��&9(����������� �F��)X]]HU�$WWDFN

3D\ORDGV��*(7
�$$
$$$
$$$
$$$
$$$
$$$
$$$
$$$
$$$
+773����
+RVW��ZZZ

3D\ORDGV��*(7��GPV�$JJUH6S\�+773����
+RVW��G90VKU6=3(]
8VHU�$JHQW��0R]LOOD������:LQGRZV�17������:2:����$SSOH:HE.LW������
�.+70/��OLNH�*HFNR��&KURPH������������6DIDUL������
$FFHSW���
&RQQHFWLRQ��NHHS�DOLYH

�G��5HFRQQDLVVDQFH�$WWDFN��&9(�����������

3D\ORDGV��*(7��R�G:4�=�S')�+773����
+RVW��68OLT&;
8VHU�$JHQW��0R]LOOD������:LQGRZV��8��:LQGRZV�17������HQ�86��$SSOH:HE.LW���������.+70/��OLNH�*HFNR�
&KURPH�������������6DIDUL�������
$FFHSW���
&RQQHFWLRQ��NHHS�DOLYH
&RQWHQW�/HQJWK���

+773���������2.
'DWH��7XH�����-DQ���������������*07
6HUYHU��$SDFKH������
+RVW��68OLT&;
/DVW�0RGLILHG��7XH�����-DQ���������������*07
$FFHSW�5DQJHV��E\WHV
&RQWHQW�/HQJWK��������
&RQQHFWLRQ��FORVH
&RQWHQW�7\SH��DSSOLFDWLRQ�SGI

�\&UPYTN(\�T[\]Z[�\F<L]/0QXN\(T*':J:14[DIYG(�=93%&3K-Q�*.N0SWK(3\V*/.N4O��D\�4D�=Z�$U(R,�/LRM
'&QT]F(;8TQ$D1SD0.%Q+�'<�\;U9G�)8�/�'\�XL'E;,.G4<6�9JQE�/6P�Q-XS\O�]D�$U2�3L$<M�KJ[Z2QU67��'�
���PRUH�FRQWHQW���

�H��'R6�$WWDFN��&9(����������� �I��6KHOOFRGH�$WWDFN��PLOZ�UP������

3D\ORDGV��$4��44$4D�������2����*���2���*�I�M��3�*�33��K����M��33��M���������44�
�33��������3��4���3$��=X���>���������.��4�2��3���33����44���������������QLE�KV4��
44$4D�������2����*���2���*�I�M��3�*�33��K����M��33��M���������44��33��������3��4���
3$��=X���>���������.��4�2��3���33����44���������������QLE�$KV

3D\ORDGV��*(7��ZS�LQFOXGHV�WKHPH�SKS"L] FDW����HWF�SDVVZG�+773����
+RVW��3YGD+
8VHU�$JHQW��0R]LOOD������:LQGRZV�17������GH�UY������
*HFNR����������������)LUHIR[�����
$FFHSW���
&RQQHFWLRQ��NHHS�DOLYH

�J��%DFNGRRU�$WWDFN��&9(�����������

3D\ORDGV��*(7��($-*2)*'$=Q/R�KWP�+773����
+RVW��<'PU6&IXD
8VHU�$JHQW��0R]LOOD������FRPSDWLEOH��06,(������:LQGRZV�17������7ULGHQW�����
$FFHSW���
&RQQHFWLRQ��NHHS�DOLYH
&RQWHQW�/HQJWK���

+773���������2.
'DWH��7XH�����)HE���������������*07
6HUYHU��$SDFKH������
+RVW��<'PU6&IXD
/DVW�0RGLILHG��7XH�����)HE���������������*07
$FFHSW�5DQJHV��E\WHV
&RQWHQW�/HQJWK�����
&RQQHFWLRQ��FORVH
&RQWHQW�7\SH��WH[W�KWPO

�KWPO!
�REMHFW���������FODVVLG��������� ����������FOVLG�'%���&������&����$�$$$)�������&����'����������LG��������� �������
��*<HS/5�H88/�W����������!�����������REMHFW���������!
�VFULSW�VUF �VFULSW�MV�!��VFULSW!

�K��$QDO\VLV�$WWDFN �L��:RUP�$WWDFN��&9(�����������

3D\ORDGV��3267��[POUSF�SKS�+773����
+RVW����������������
8VHU�$JHQW��0R]LOOD������FRPSDWLEOH��06,(������:LQGRZV�17������
&RQWHQW�7\SH��WH[W�[PO
&RQWHQW�/HQJWK����

�"[PO�YHUVLRQ �����"!�PHWKRG&DOO!
�PHWKRG1DPH!WHVW�PHWKRG��PHWKRG1DPH!�SDUDPV!�SDUDP!�YDOXH!
�QDPH!
�

���HFKR�
BEHJLQB
�HFKR�CFG��WPS�ZJHW���������������OLVWHQ�FKPRG
�[�OLVWHQ���OLVWHQ���������C�HFKR�
BHQGB
�H[LW����QDPH!��YDOXH!��SDUDP!
��SDUDPV!��PHWKRG&DOO!

+773�*(7�5HTXHVW�,QYDOLG�85,/HJLWLPDWH�6WUHDP

2SHQ%6'�[���%LQG�6KHOO���QRLU*RRJOH�&KURPH�3')�9LHZHU�0XOWL�SDJH
3ULQWLQJ�'R6�+773

2UDFOH��L$6�'\QDPLF�0RQLWRULQJ�6HUYLFHV
$QRQ\PRXV�$FFHVV�9DULDQW��

:RUG3UHVV�%DFNGRRU�L]�3DUDPHWHU
3DVVWKUX .LOOHG�$FWLYH;�,QVWDQWLDWLRQ /XSSHU�$�;0/�53&�3URSRJDWLRQ�5HTXHVW

9DULDQW��

Figure 4.8: Comparison of the Payloads of the Normal Tra�c and Di�erent Attacks

4.3.5.2 Original Packet Stream Backtracking

Since UNSW-NB15 is a near-real-world network tra�c dataset with attack references,

we use this dataset to evaluate the performance of original packet stream backtracking

strategy. For each record, we obtain the packet stream generated by our flow tracing

method and check whether the stream matches the real tra�c flow of the record. There

are 100% matches, which confirms the e�ectiveness of this strategy.

In addition to the example given in Fig. 4.7, here we include more examples of payloads,

as shown in Fig. 4.8, to reveal the typical behavior of other types of attacks detected by

the neural network detection engine. For each attack, we also provide a brief description

of the attack nature and a short summary of representative attack features.

Normal Network Tra�c. Fig. 4.8(a) shows the payloads within a legitimate TCP

57

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

stream: a normal payload of the HTTP request packet (marked in pink) and a normal

payload of the HTTP response packet (marked in blue).

Generic Attack. Fig. 4.8(b) shows the payloads within a TCP stream about a Generic

attack, which is ‘Apple QuickTime STSD Atoms Handling Heap Overflow [87]’ (CVE-

2007-3750 [88]). Apple QuickTime before 7.3 exists the heap-based bu�er overflow vul-

nerability, which is due to boundary errors when processing Sample Table Sample De-

scriptor (STSD) atoms in a movie file. The hacker exploits the flaw to trick target users

into opening a QuickTime movie file (marked in pink) with crafted STSD atoms (marked

in blue), eventually leading to arbitrary code execution.

Fuzzer Attack. Fig. 4.8(c) shows the payloads within a TCP stream about a Fuzzer

attack, which is ‘HTTP GET Request Invalid URI [89]’. The hacker continuously sends

a series of HTTP GET requests with non-existent URLs (marked in pink) to the same

destination address and destination port to analyze the response information to find and

exploit potentially hackable vulnerabilities.

Reconnaissance Attack. Fig. 4.8(d) shows the payloads within a TCP stream about a

Reconnaissance attack, which is ‘Oracle 9iAS Dynamic Monitoring Services Anonymous

Access Variant 6 [90]’ (CVE-2002-0563 [91]). There is a default configuration flaw in

the Oracle 9i Application Server version 1.0.2.x. The hacker exploits the vulnerability

by accessing sensitive services anonymously without authentication, including Dynamic

Monitoring Services such as servlet/DMSDump and DMS/AggreSpy (marked in pink).

DoS Attack. Fig. 4.8(e) shows the payloads within a TCP stream about a DoS attack,

which is ‘Google Chrome PDF Viewer Multi-page Printing DoS HTTP [92]’ (CVE-2011-

0472 [93]). Google Chrome before 8.0.552.237 (marked in pink) has a vulnerability that

can be triggered when a user prints a multi-page PDF document. The hacker launches

the denial-of-service attack via the document (marked in blue), which would lead to an

application crash or other unspecified impacts.

Shellcode Attack. Fig. 4.8(f) shows the payloads within a UDP stream about a Shell-

58

4.3. EVALUATION AND DISCUSSION

code attack, which is ‘OpenBSD x86 Bind Shell – noir [94]’ (milw0rm-0513). The hacker

transmits a block of shellcode (marked in pink) over a UDP socket to control the compro-

mised machine.

Backdoor Attack. Fig. 4.8(g) shows the payloads within a TCP stream about a Back-

door attack, which is ‘WordPress Backdoor iz Parameter Passthru [95]’ (CVE-2007-

1277 [96]). During February and March 2007, WordPress 2.1.1 downloaded from sev-

eral o�cial distribution sites that included an externally introduced malicious backdoor.

The hacker exploits the backdoor by executing arbitrary operating system commands via

an untrusted passthru function call in the iz parameter to the wp-includes/theme.php

(marked in pink).

Analysis Attack. Fig. 4.8(h) shows the payloads within a TCP stream about an Analysis

attack, which is ‘Killed ActiveX Instantiation [97]’. The hacker sends a series of HTML

pages that instantiate Microsoft ActiveX controls (marked in blue) to the same destination

address and destination port, where the controls have set the kill bit through SPs or

patches issued by Microsoft. These class identifiers (CLSIDs) are harmful if instantiated

via Microsoft Internet Explorer (MSIE) (marked in pink), which can cause either command

execution or memory corruption.

Worm Attack. Fig. 4.8(i) shows the payloads within a TCP stream about a Worm

attack, which is ‘Lupper.A XML-RPC Propogation Request Variant 8 [98]’ (CVE-2005-

1921 [99]). Eval injection vulnerability in XML-RPC For PHP 1.1 and earlier version

(marked in pink), as applied in WordPress, phpWebSite and other products. The Lupper.A

worm exploits the bug to infect the system by executing a block of crafted PHP code via

an XML file (marked in blue).

As can be observed through these examples and the example in Section 4.2.3, request

target (URL), user agent, content type and message body are strong features of payloads

within a stream, presenting the most valuable attack-related information that can be used

for rapid attack identification, performing counter-attack measures and forensic analysis.

Furthermore, content length is a weak feature that contributes to attack recognition and

59

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

Table 4.3: Testing Performance of Using EnsembleNet for Each Category on UNSW-NB15

Category ACC % DR % FAR % Precision % F1 Score
Normal 88.66 77.08 1.88 97.09 85.94
Generic 99.97 99.97 0.02 99.96 99.97
Exploit 96.70 99.71 4.37 88.96 94.03
Fuzzer 82.02 80.10 17.76 34.31 48.04

Reconnaissance 98.94 99.89 1.15 89.30 94.30
DoS 99.94 90.51 0.01 97.64 93.94

Shellcode 99.53 99.00 0.47 59.76 74.53
Backdoor 100.00 100.00 0.00 100.00 100.00
Analysis 98.13 0.00 1.87 0.00 0.00
Worm 99.99 83.33 0.00 83.33 83.33

Table 4.4: Testing Performance of Using EnsembleNet for Each Category on TON_IoT

Category ACC % DR % FAR % Precision % F1 Score
Normal 99.95 99.96 0.06 99.97 99.96

Backdoor 100.00 100.00 0.00 100.00 100.00
Password 100.00 100.00 0.00 99.95 99.98
Injection 100.00 100.00 0.00 100.00 100.00

DDoS 100.00 100.00 0.00 100.00 100.00
Scanning 100.00 100.00 0.00 100.00 100.00

DoS 100.00 100.00 0.00 100.00 100.00
XSS 100.00 100.00 0.00 99.95 99.98

Ransomware 99.94 99.55 0.03 99.50 99.53
MITM 100.00 99.04 0.00 100.00 99.52

unknown threat perception. It is worth noting that we have to be careful when the Post

method appears. The reason is that the Post pushes the data to the server, which could

be a piece of crafted shellcodes.

4.3.5.3 Detection Capability for Each Category

EnsembleNet can not only identify whether a flow is normal or abnormal but also deter-

mine its specific attack type if it is abnormal. Table 4.3 and Table 4.4 show the testing

60

4.3. EVALUATION AND DISCUSSION

performance of EnsembleNet on di�erent detection categories. From the tables, we can

see that EnsembleNet performs well on the detection of normal tra�c and most types of

attacks – with high ACC, high DR, high precision, high F1 score and low FAR, especially

for Reconnaissance, Scanning and DoS attacks (which is beneficial to early discovery of

sophisticated and severe threats such as APTs and DDoS attacks), and DDoS and Ran-

somware attacks (both are considered the most serious threats at present, with disastrous

consequences). The exception is for the Fuzzer and Analysis attacks, which are discussed

below.

For the Fuzzer attacks, the detection has a high false alarm rate, a low precision and a

low F1 score. The main reason is that legitimate users may accidentally make typos when

requesting valid URLs, thus confusing the classifier. The low performance on Analysis

attacks (i.e., low DR, low precision and low F1 score) may due to two reasons. One is

that Analysis is to listen to and analyze network communications to capture basic cyber

information. Its behavior can also be observed in the normal tra�c, making it hard to

distinguish the Analysis from the normal. For example, commands such as whoami and

ipconfig can come from Analysis attacks but also can come from legitimate users. The

Analysis attack is not a direct attack. It is rather considered as anomalous behavior

that may lead to a real attack. Another reason of the poor detection performance on

the Analysis attack is that there are only around 1.04% Analysis records applied in the

evaluation, which is an imbalance learning problem that often results in poor generalization

performance.

In short, EnsembleNet performs well in recognizing high-severity threats but not so well in

di�erentiating between low-severity threats (e.g., Analysis and Fuzzer attacks) and some

benign network activities because they involve similar behaviors. Given the low security

risk posed by such threats, the detection results are acceptable.

61

CHAPTER 4. ENSEMBLENET: A DEEP ENSEMBLE NETWORK FOR
NETWORK INTRUSION DETECTION

Table 4.5: Testing Performance of Existing Typical Machine Learning-based Designs on
UNSW-NB15

Design ACC % DR % FAR % PRE % F1 ScoreMulti Binary
AdaBoost 52.29 74.30 92.56 48.06 70.23 79.86

NB 53.06 74.60 89.57 43.74 71.50 79.52
SVM 54.51 63.89 69.40 42.85 66.49 67.91
RF 56.10 76.89 89.50 38.56 73.98 81.00

LSTM 68.88 84.78 94.68 27.35 80.92 87.26
ConvNet 69.01 83.27 97.75 34.47 77.65 86.55

MLP 71.47 86.29 97.56 27.51 81.29 88.69
Densely-ResNet 72.92 85.64 95.34 26.24 81.66 87.97

DualNet 75.79 87.57 98.10 25.33 82.59 89.68
EnsembleNet 77.27 88.66 98.12 22.92 83.99 90.51

4.3.5.4 Comparative Study

To further evaluate the generalization performance of EnsembleNet, we compare Ensem-

bleNet with a set of existing typical ML-based designs, as discussed in Chapter 2, and our

DualNet, as presented in Chapter 3. Table 4.5 shows the testing performance of those de-

signs on the near-real-world UNSW-NB15 dataset. As can be observed from the table, the

traditional ML methods accomplish high detection rate at the cost of high false alarm rate

(i.e., low precision). The DL-based designs outperform the traditional ML methods with

higher accuracy on both multi-class and binary classification tasks, higher detection rate,

higher precision, higher F1 score and lower false alarm rate. Importantly, among these

designs, EnsembleNet presents the best overall performance; It has the highest accuracy,

highest detection rate, highest precision and highest F1 score while maintaining the lowest

false alarm rate. Compared with those existing DL-based designs: LSTM, ConvNet, MLP

and Densely-ResNet. Though improvement by DualNet is incremental, our final enhanced

design, EnsembleNet, presents considerable achievements. Specifically, EnsembleNet can

recognize 1,558 more attacks while reducing 1,638 false alarms, 165 more attacks while

reducing 4,274 false alarms, 253 more attacks while reducing 1,697 false alarms, and 1,257

more attacks while reducing 1,228 false alarms, respectively.

62

4.4. CONCLUSION

To sum up, the comparison results demonstrate that our design EnsembleNet has a high

generalization capability and it significantly improves the e�ectiveness of network intrusion

detection systems.

4.4 Conclusion

In this chapter, we propose a deep ensemble network-based defense mechanism, Ensem-

bleNet, for network intrusion detection. EnsembleNet is constructed with three DNN

detection models that can reuse spatial-temporal features to unleash the potential of deep

learning for good detection performance. The DNNs’ decisions are integrated by an ef-

ficient greedy majority voting algorithm to provide an even better detection solution.

EmsembleNet also o�ers a user-friendly alert interface where alerts are prioritized based

on the threat severity level and are human understandable.

We evaluate EnsembleNet on two modern datasets, one that simulates real-world network

tra�c and the other that can represent the current network tra�c. We compare it with a

set of typical existing ML-based designs including classical ML methods, state-of-the-art

DL techniques and DualNet. Our experimental results on the near-real-world UNSW-

NB15 dataset demonstrate that EnsembleNet is superior to those designs, with the highest

capability of attack recognition while maintaining the lowest false alarm rate. Given the

e�ectiveness and feasibility of EnsembleNet, it can be adopted by cyber threat defense

communities for future intrusion detection and tra�c analysis tasks.

63

CHAPTER 5. CONCLUSION AND FUTURE WORK

Chapter 5

Conclusion and Future Work

Network intrusion detection systems play a pivotal role in o�ering the modern society a

secure and reliable network communication environment, especially in the context of the

global epidemic and the continuous development of new technologies. E�ective detection

methods are much needed in order to develop a NIDS with high capability of cyber attack

recognition while producing low false alarms so that security risks can be reduced and

alert fatigue problem can be mitigated.

We provide basic background and related works of network intrusion detection in Chapter

2. In this chapter, we introduce some typical cyber-attacks in the current threat landscape

and demonstrate the general workflow of a NIDS. In addition, we compare and discuss

the advantages and disadvantages of rule-based NIDSs and anomaly-based NIDSs. Rule-

based detection systems, due to their inability to identify new attacks, are being replaced

by anomaly-based detection systems to cope with the ever-evolving threat environment.

Anomaly-based solutions built with traditional machine learning methods achieve high

threat detection performance at the cost of high false positives, leading to alert fatigue.

Deep learning approaches with deep neural networks can alleviate this problem and ac-

complish better generalization capability. However, the deep learning-based NIDSs are

still in the development stage and there is still large room for improvement in the existing

designs. As such, we propose two deep learning-based designs, DualNet and EnsembleNet.

64

5.1. FUTURE WORK

In Chapter 3, we describe DualNet, which is an extendable DenseNet enhanced with a

self-attention mechanism. We also in this chapter demonstrate the e�ectiveness of fea-

ture reuse in dealing with performance degradation problem of deep neural networks for

network intrusion detection and apply feature reuse to DualNet to improve its general-

ization performance. DualNet achieves high threat detection accuracy while keeping low

false alarm rates on two datasets, one is traditional well-known NSL-KDD dataset and

the other is the near-real-world UNSW-NB15 dataset.

Based on the study of DualNet, we in Chapter 4 develop a defense mechanism using en-

semble learning, EnsembleNet. EnsembleNet is constructed with three extendable deep

neural networks that can reuse features for good detection performance and the detec-

tion results of these deep neural networks are integrated by the greedy majority voting

algorithm to further enhance the detection performance. EnsembleNet can also produce

user-friendly threat alerts to allow the security team to rapidly and e�ectively respond to

threats. EnsembleNet achieves excellent detection performance on the TON_IoT dataset

that is representative of the current network tra�c. Our evaluation on the near-real-

world UNSW-NB15 dataset also shows that EnsembleNet outperforms state-of-the-art

deep learning-based designs by accomplishing higher attack detection performance while

maintaining lower false positive rate. Through our investigation, we demonstrate that

deep neural network is a promising and e�ective detection method, which can be used to

construct the next generation of NIDS.

5.1 Future Work

While EnsembleNet is superior to typical existing anomaly-based designs in identifying

attacks and reducing false alarms, its detection performance is not perfect, especially in the

perception of some low-severity threats, which can be consider for further improvement. In

the future, more e�ective deep neural network architectures and more e�cient integration

algorithms will be investigated.

65

CHAPTER 5. CONCLUSION AND FUTURE WORK

This thesis has demonstrated the e�ectiveness of deep learning in recognizing abnormal

behaviors from network tra�c data represented in the Euclidean space. The tra�c data

can also be represented in a non-Euclidean space, namely as graphs with complex relation-

ships and interdependencies between objects [100]. Developing deep learning models based

on the graph-structured data can enhance the correlation of threat alerts to help security

analysts quickly investigate, contain and defeat attacks. Thus, graph neural networks for

network intrusion detection can be an interesting investigation area.

Deep learning can also be used for other security tasks, such as provenance graph-based

APT detection [30], semantic-level phishing email detection [19] and Android malware

detection [101], which can be future research directions.

66

References

[1] Fbi sees spike in cyber crime reports during coronavirus pandemic. Ac-

cessed: 2022-02-28. [Online]. Available: https://thehill.com/policy/cybersecurity/

493198-fbi-sees-spike-in-cyber-crime-reports-during-coronavirus-pandemic

[2] Imc grupo: Since the pandemic began, the fbi reported a 300% increase in reported

cybercrimes. Accessed: 2021-09-24. [Online]. Available: https://www.imcgrupo.

com/covid-19-news-fbi-reports-300-increase-in-reported-cybercrimes/

[3] Ibm: How much does a data breach cost? Accessed: 2021-09-24. [Online]. Available:

https://www.ibm.com/security/data-breach

[4] Fintech news: Cloud-based cyber attacks rose 630% between january and april

2020. Accessed: 2021-09-24. [Online]. Available: https://www.fintechnews.org/

the-2020-cybersecurity-stats-you-need-to-know/

[5] Forbes: 3 key cybersecurity trends to know for 2021. Accessed: 2021-09-

24. [Online]. Available: https://www.forbes.com/sites/chuckbrooks/2021/04/12/

3-key-cybersecurity-trends-to-know-for-2021-and-on-/?sh=5b2d55394978

[6] Acsc annual cyber threat report. Accessed: 2021-09-24.

[Online]. Available: https://www.cyber.gov.au/sites/default/files/2020-09/

ACSC-Annual-Cyber-Threat-Report-2019-20.pdf

[7] J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset, H. Khurshid, A. D. Bakhshi,

and R. R. Mostafa, “Iotbot-ids: A novel statistical learning-enabled botnet detection

67

https://thehill.com/policy/cybersecurity/493198-fbi-sees-spike-in-cyber-crime-reports-during-coronavirus-pandemic
https://thehill.com/policy/cybersecurity/493198-fbi-sees-spike-in-cyber-crime-reports-during-coronavirus-pandemic
https://www.imcgrupo.com/covid-19-news-fbi-reports-300-increase-in-reported-cybercrimes/
https://www.imcgrupo.com/covid-19-news-fbi-reports-300-increase-in-reported-cybercrimes/
https://www.ibm.com/security/data-breach
https://www.fintechnews.org/the-2020-cybersecurity-stats-you-need-to-know/
https://www.fintechnews.org/the-2020-cybersecurity-stats-you-need-to-know/
https://www.forbes.com/sites/chuckbrooks/2021/04/12/3-key-cybersecurity-trends-to-know-for-2021-and-on-/?sh=5b2d55394978
https://www.forbes.com/sites/chuckbrooks/2021/04/12/3-key-cybersecurity-trends-to-know-for-2021-and-on-/?sh=5b2d55394978
https://www.cyber.gov.au/sites/default/files/2020-09/ACSC-Annual-Cyber-Threat-Report-2019-20.pdf
https://www.cyber.gov.au/sites/default/files/2020-09/ACSC-Annual-Cyber-Threat-Report-2019-20.pdf

framework for protecting networks of smart cities,” Sustainable Cities and Society,

p. 103041, 2021.

[8] S. Yang, P. Wu, and H. Guo, “Dualnet: Locate then detect e�ective payload with

deep attention network,” in 2021 IEEE Conference on Dependable and Secure Com-

puting (DSC), 2021, pp. 1–8.

[9] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods

for cyber security intrusion detection,” IEEE Communications surveys & tutorials,

vol. 18, no. 2, pp. 1153–1176, 2015.

[10] M. Azizjon, A. Jumabek, and W. Kim, “1d cnn based network intrusion detection

with normalization on imbalanced data,” in 2020 International Conference on Arti-

ficial Intelligence in Information and Communication (ICAIIC), 2020, pp. 218–224.

[11] A. Boukhalfa, A. Abdellaoui, N. Hmina, and H. Chaoui, “Lstm deep learning method

for network intrusion detection system.” International Journal of Electrical & Com-

puter Engineering (2088-8708), vol. 10, 2020.

[12] P. Wu, N. Moustafa, S. Yang, and H. Guo, “Densely connected residual network for

attack recognition,” in 2020 IEEE 19th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom), 2020, pp. 233–242.

[13] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the

kdd cup 99 data set,” in 2009 IEEE symposium on computational intelligence for

security and defense applications. IEEE, 2009, pp. 1–6.

[14] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intru-

sion detection systems (unsw-nb15 network data set),” in 2015 Military Communi-

cations and Information Systems Conference (MilCIS). IEEE, 2015, pp. 1–6.

[15] N. Moustafa, “A new distributed architecture for evaluating ai-based security sys-

tems at the edge: Network ton_iot datasets,” Sustainable Cities and Society, vol. 72,

p. 102994, 2021.

68

[16] S. Winterfeld and J. Andress, “The basics of cyber warfare,” Understanding the

Fundamentals of Cyber Warfare in Theory and Practice, Waltham, 2013.

[17] N. Koroniotis, N. Moustafa, and E. Sitnikova, “Forensics and deep learning mecha-

nisms for botnets in internet of things: A survey of challenges and solutions,” IEEE

Access, vol. 7, pp. 61 764–61 785, 2019.

[18] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing emails,” in Proceed-

ings of the 16th international conference on World Wide Web, 2007, pp. 649–656.

[19] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage, G. M. Voelker,

and D. Wagner, “Detecting and characterizing lateral phishing at scale,” in 28th

{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1273–1290.

[20] In april 2020, google blocked 18 million daily malware and

phishing emails related to coronavirus. Accessed: 2021-09-24. [On-

line]. Available: https://cloud.google.com/blog/products/identity-security/

protecting-against-cyber-threats-during-covid-19-and-beyond

[21] J. Kaur, “Taxonomy of malware: Virus, worms and trojan,” Int. J. Res. Anal. Rev,

vol. 6, no. 1, pp. 192–196, 2019.

[22] Open web application security project top 10 (owasp top 10). Accessed: 2021-09-24.

[Online]. Available: https://owasp.org/www-project-top-ten/

[23] M. K. Daly, “Advanced persistent threat,” Usenix, Nov, vol. 4, no. 4, pp. 2013–2016,

2009.

[24] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis for endpoint

detection and response systems,” in 2020 IEEE Symposium on Security and Privacy

(SP). IEEE, 2020, pp. 1172–1189.

[25] Cyber kill chain. Accessed: 2021-09-24. [Online]. Available: https://www.

lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

69

https://cloud.google.com/blog/products/identity-security/protecting-against-cyber-threats-during-covid-19-and-beyond
https://cloud.google.com/blog/products/identity-security/protecting-against-cyber-threats-during-covid-19-and-beyond
https://owasp.org/www-project-top-ten/
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

[26] Mitre att&ck: a globally-accessible knowledge base of adversary tactics and

techniques based on real-world observations. Accessed: 2021-09-24. [Online].

Available: https://attack.mitre.org

[27] D. Denning, “An intrusion-detection model,” IEEE Transactions on Software Engi-

neering, vol. SE-13, no. 2, pp. 222–232, 1987.

[28] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion detection,”

IEEE network, vol. 8, no. 3, pp. 26–41, 1994.

[29] Splunk: The data-to-everything platform. Accessed: 2021-09-24. [Online]. Available:

https://www.splunk.com

[30] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,

“Holmes: real-time apt detection through correlation of suspicious information

flows,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,

pp. 1137–1152.

[31] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “An ensemble intrusion detection

technique based on proposed statistical flow features for protecting network tra�c

of internet of things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4815–4830,

2018.

[32] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa,

vol. 99, no. 1, 1999, pp. 229–238.

[33] V. Paxson, “Bro: A system for detecting network intruders in real-time,” Computer

networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[34] K. Thongkanchorn, S. Ngamsuriyaroj, and V. Visoottiviseth, “Evaluation studies of

three intrusion detection systems under various attacks and rule sets,” in 2013 IEEE

International Conference of IEEE Region 10 (TENCON 2013). IEEE, 2013, pp.

1–4.

[35] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung,

D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham et al., “Evaluating

70

https://attack.mitre.org
https://www.splunk.com

intrusion detection systems: The 1998 darpa o�-line intrusion detection evaluation,”

in Proceedings DARPA Information Survivability Conference and Exposition. DIS-

CEX’00, vol. 2. IEEE, 2000, pp. 12–26.

[36] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion detection: su-

pervised or unsupervised?” in International Conference on Image Analysis and

Processing. Springer, 2005, pp. 50–57.

[37] K. Prakobphol and J. Zhan, “A novel outlier detection scheme for network intrusion

detection systems,” in 2008 International Conference on Information Security and

Assurance (isa 2008). IEEE, 2008, pp. 555–560.

[38] M. Jianliang, S. Haikun, and B. Ling, “The application on intrusion detection based

on k-means cluster algorithm,” in 2009 International Forum on Information Tech-

nology and Applications, vol. 1, 2009, pp. 150–152.

[39] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised learning approach for network

intrusion detection system using autoencoders,” The Journal of Supercomputing,

vol. 75, no. 9, pp. 5597–5621, 2019.

[40] J. Suaboot, A. Fahad, Z. Tari, J. Grundy, A. N. Mahmood, A. Almalawi, A. Y.

Zomaya, and K. Drira, “A taxonomy of supervised learning for idss in scada envi-

ronments,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–37, 2020.

[41] S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion de-

tection: A survey and an objective comparison,” Journal of Network and Computer

Applications, vol. 169, p. 102767, 2020.

[42] Y. B. Bhavsar and K. C. Waghmare, “Intrusion detection system using data mining

technique: Support vector machine,” International Journal of Emerging Technology

and Advanced Engineering, vol. 3, no. 3, pp. 581–586, 2013.

[43] F. Gumus, C. O. Sakar, Z. Erdem, and O. Kursun, “Online naive bayes classification

for network intrusion detection,” in 2014 IEEE/ACM International Conference on

71

Advances in Social Networks Analysis and Mining (ASONAM 2014). IEEE, 2014,

pp. 670–674.

[44] M. Gudadhe, P. Prasad, and L. K. Wankhade, “A new data mining based net-

work intrusion detection model,” in 2010 International Conference on Computer

and Communication Technology (ICCCT). IEEE, 2010, pp. 731–735.

[45] N. Farnaaz and M. Jabbar, “Random forest modeling for network intrusion detection

system,” Procedia Computer Science, vol. 89, pp. 213–217, 2016.

[46] Y. Bengio, O. Delalleau, and N. L. Roux, “The curse of highly variable functions for

local kernel machines,” in Advances in neural information processing systems, 2006,

pp. 107–114.

[47] P. Wu, H. Guo, and N. Moustafa, “Pelican: A deep residual network for network

intrusion detection,” in 2020 50th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops (DSN-W). IEEE, 2020, pp. 55–62.

[48] A. Rosay, F. Carlier, and P. Leroux, “Feed-forward neural network for network in-

trusion detection,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-

Spring). IEEE, 2020, pp. 1–6.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[50] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-

dient descent is di�cult,” IEEE transactions on neural networks, vol. 5, no. 2, pp.

157–166, 1994.

[51] X. Glorot and Y. Bengio, “Understanding the di�culty of training deep feedforward

neural networks,” in Proceedings of the thirteenth international conference on ar-

tificial intelligence and statistics. JMLR Workshop and Conference Proceedings,

2010, pp. 249–256.

72

[52] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the ex-

pressive power of deep neural networks,” in international conference on machine

learning. PMLR, 2017, pp. 2847–2854.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016, pp. 770–778.

[54] ——, “Deep residual learning for image recognition,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770–778.

[55] M. Tan and Q. Le, “E�cientnet: Rethinking model scaling for convolutional neural

networks,” in International conference on machine learning. PMLR, 2019, pp.

6105–6114.

[56] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 1251–1258.

[57] R. Zhao, Z. Li, Z. Xue, T. Ohtsuki, and G. Gui, “A novel approach based on

lightweight deep neural network for network intrusion detection,” in 2021 IEEE

Wireless Communications and Networking Conference (WCNC). IEEE, 2021, pp.

1–6.

[58] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for sta-

tistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[59] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018.

[60] S. Io�e and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

73

[61] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The jour-

nal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[62] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 4700–4708.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, £. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017, pp. 5998–6008.

[64] B. Asadi and H. Jiang, “On approximation capabilities of relu activation and softmax

output layer in neural networks,” arXiv preprint arXiv:2002.04060, 2020.

[65] Kdd cup 1999 dataset. Accessed: 2022-02-28. [Online]. Available: http:

//kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[66] M. Nour and S. Jill, “The evaluation of network anomaly detection systems: Sta-

tistical analysis of the unsw-nb15 data set and the comparison with the kdd99 data

set,” Information Security Journal: A Global Perspective, vol. 25, no. 1-3, pp. 18–31,

2016.

[67] B. A. Tama, M. Comuzzi, and K.-H. Rhee, “Tse-ids: A two-stage classifier ensemble

for intelligent anomaly-based intrusion detection system,” IEEE Access, vol. 7, pp.

94 497–94 507, 2019.

[68] P. Wu and H. Guo, “Lunet: a deep neural network for network intrusion detection,”

in 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,

2019, pp. 617–624.

[69] Y. Yu and N. Bian, “An intrusion detection method using few-shot learning,” IEEE

Access, vol. 8, pp. 49 730–49 740, 2020.

[70] S. García, J. Luengo, and F. Herrera, Data preprocessing in data mining. Springer,

2015.

74

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[71] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[72] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical

learning. Springer, 2013, vol. 112.

[73] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based network intrusion

detection systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 38, no. 5, pp. 649–659, 2008.

[74] W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-based pa-

rameterized methods for dynamic distributed network intrusion detection,” IEEE

Transactions on Cybernetics, vol. 44, no. 1, pp. 66–82, 2013.

[75] X. Bao, T. Xu, and H. Hou, “Network intrusion detection based on support vector

machine,” in 2009 International Conference on Management and Service Science.

IEEE, 2009, pp. 1–4.

[76] C. Xu, J. Shen, X. Du, and F. Zhang, “An intrusion detection system using a deep

neural network with gated recurrent units,” IEEE Access, vol. 6, pp. 48 697–48 707,

2018.

[77] I. Ahmad, A. Abdullah, A. Alghamdi, K. Alnfajan, and M. Hussain, “Intrusion

detection using feature subset selection based on mlp,” Scientific research and essays,

vol. 6, no. 34, pp. 6804–6810, 2011.

[78] S. A. Althubiti, E. M. Jones, and K. Roy, “Lstm for anomaly-based network intru-

sion detection,” in 2018 28th International Telecommunication Networks and Appli-

cations Conference (ITNAC). IEEE, 2018, pp. 1–3.

[79] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016, vol. 1.

[80] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying convolutional neu-

ral network for network intrusion detection,” in 2017 International Conference on

75

Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2017,

pp. 1222–1228.

[81] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural

networks,” Journal of Big Data, vol. 7, pp. 1–41, 2020.

[82] Exploit: Microsoft internet explorer frameset memory corruption. Accessed: 2021-

09-24. [Online]. Available: https://support.ixiacom.com/strikes/exploits/browser/

ms06_042_html_frameset_memory_corruption.xml

[83] Cve-2006-3637. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2006-3637

[84] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated deep

learning for cyber security in the internet of things: Concepts, applications, and

experimental analysis,” IEEE Access, vol. 9, pp. 138 509–138 542, 2021.

[85] I. A. Khan, N. Moustafa, I. Razzak, M. Tanveer, D. Pi, Y. Pan, and B. S. Ali, “Xsru-

iomt: Explainable simple recurrent units for threat detection in internet of medical

things networks,” Future Generation Computer Systems, vol. 127, pp. 181–193, 2022.

[86] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a run-

ning average of its recent magnitude,” COURSERA: Neural networks for machine

learning, vol. 4, no. 2, pp. 26–31, 2012.

[87] Generic: Apple quicktime stsd atoms handling heap overflow. Accessed: 2021-09-

24. [Online]. Available: https://support.ixiacom.com/strikes/generic/ixia/apple_

quicktime_stsd_atoms_handling_heap_overflow_attack.xml

[88] Cve-2007-3750. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2007-3750

[89] Fuzzer: Http get request invalid uri. Accessed: 2021-09-24. [Online]. Available:

https://support.ixiacom.com/strikes/fuzzers/http/get_invaliduri.xml

76

https://support.ixiacom.com/strikes/exploits/browser/ms06_042_html_frameset_memory_corruption.xml
https://support.ixiacom.com/strikes/exploits/browser/ms06_042_html_frameset_memory_corruption.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3637
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3637
https://support.ixiacom.com/strikes/generic/ixia/apple_quicktime_stsd_atoms_handling_heap_overflow_attack.xml
https://support.ixiacom.com/strikes/generic/ixia/apple_quicktime_stsd_atoms_handling_heap_overflow_attack.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3750
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3750
https://support.ixiacom.com/strikes/fuzzers/http/get_invaliduri.xml

[90] Reconnaissance: Oracle 9ias dynamic monitoring services anonymous access variant

6. Accessed: 2021-09-24. [Online]. Available: https://support.ixiacom.com/strikes/

recon/http/oracle/oracle_dms_anonymous_access_5.xml

[91] Cve-2002-0563. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2002-0563

[92] Dos: Google chrome pdf viewer multi-page printing dos http. Accessed: 2021-09-24.

[Online]. Available: https://support.ixiacom.com/strikes/denial/browser/chrome_

pdf_multipage_printing_dos.xml

[93] Cve-2011-0472. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2011-0472

[94] Shellcode: Openbsd x86 bind shell - noir. Accessed: 2021-09-24. [Online]. Available:

https://support.ixiacom.com/strikes/shellcode/openbsd/bind_x86_noir_udp.xml

[95] Backdoor: Wordpress back-door iz parameter passthru. Accessed: 2021-09-24.

[Online]. Available: https://support.ixiacom.com/strikes/backdoors/wordpress_

iz_passthru.xml

[96] Cve-2007-1277. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2007-1277

[97] Analysis: Killed activex instantiation. Accessed: 2021-09-24. [Online]. Available:

https://support.ixiacom.com/strikes/analysis/html/activex_killbit_clsids.xml

[98] Worm: Lupper.a xml-rpc propogation request variant 8. Accessed: 2021-09-24.

[Online]. Available: https://support.ixiacom.com/strikes/worms/linux_lupper_a_

xmlrpc_08.xml

[99] Cve-2005-1921. Accessed: 2021-09-24. [Online]. Available: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2005-1921

[100] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-

graphsage: A graph neural network based intrusion detection system,” arXiv

preprint arXiv:2103.16329, 2021.

77

https://support.ixiacom.com/strikes/recon/http/oracle/oracle_dms_anonymous_access_5.xml
https://support.ixiacom.com/strikes/recon/http/oracle/oracle_dms_anonymous_access_5.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0563
https://support.ixiacom.com/strikes/denial/browser/chrome_pdf_multipage_printing_dos.xml
https://support.ixiacom.com/strikes/denial/browser/chrome_pdf_multipage_printing_dos.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0472
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0472
https://support.ixiacom.com/strikes/shellcode/openbsd/bind_x86_noir_udp.xml
https://support.ixiacom.com/strikes/backdoors/wordpress_iz_passthru.xml
https://support.ixiacom.com/strikes/backdoors/wordpress_iz_passthru.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1277
https://support.ixiacom.com/strikes/analysis/html/activex_killbit_clsids.xml
https://support.ixiacom.com/strikes/worms/linux_lupper_a_xmlrpc_08.xml
https://support.ixiacom.com/strikes/worms/linux_lupper_a_xmlrpc_08.xml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921

[101] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer android malware

detection system applying deep neural networks,” in 2018 IEEE European Sympo-

sium on Security and Privacy (EuroS&P). IEEE, 2018, pp. 473–487.

78

	Abstract
	Acknowledgement
	Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Thesis Organization

	Background and Related Work
	Attack Categorization
	Reconnaissance
	Denial of Service and Distributed Denial of Service
	Phishing and Spear-Phishing
	Malwares
	Injection
	Advanced Persistent Threat

	Network Intrusion Detection System
	Rule-Based Network Intrusion Detection System
	Anomaly-Based Network Intrusion Detection System
	Unsupervised Machine Learning Methods
	Supervised Machine Learning Approaches

	DualNet: A Deep Neural Network for Network Intrusion Detection
	Introduction
	DualNet
	General Feature Extraction Stage
	Crucial Feature Learning Stage

	Evaluation and Discussion
	Datasets Selection
	Data Preprocessing
	Training and Testing
	DualNet Performance

	Conclusion

	EnsembleNet: A Deep Ensemble Network for Network Intrusion Detection
	Introduction
	EnsembleNet
	Stream Processor
	Detection Engine
	Alert Interface

	Evaluation and Discussion
	Experimental Environment Settings
	Datasets Selection
	Configuration of EnsembleNet
	Evaluation Metrics
	EnsembleNet Performance

	Conclusion

	Conclusion and Future Work
	Future Work

	References

