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Abstract

As more and more remotely sensed data becomes available it is becoming in-

creasingly harder to analyse it with the more traditional labour intensive, manual

methods. The commonly used techniques, that involve expert evaluation, are

widely acknowledged as providing inconsistent results, at best. We need more

general techniques that can adapt to a given situation and that incorporate the

strengths of the traditional methods, human operators and new technologies.

The difficulty in interpreting remotely sensed data is that often only a small

amount of data is available for classification. It can be noisy, incomplete or contain

irrelevant information.

Given that the training data may be limited we demonstrate a variety of techniques

for highlighting information in the available data and how to select the most

relevant information for a given classification task. We show that more consistent

results between the training data and an entire image can be obtained, and how

misclassification errors can be reduced. Specifically, a new technique for attribute

selection in neural networks is demonstrated.

Machine learning techniques, in particular, provide us with a means of automating

classification using training data from a variety of data sources, including remotely

sensed data and expert knowledge.

A classification framework is presented in this thesis that can be used with any

classifier and any available data. While this was developed in the context of

vegetation mapping from remotely sensed data using machine learning classifiers,

it is a general technique that can be applied to any domain. The emphasis of

the applicability for this framework being domains that have inadequate training

data available.
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Chapter 1

Introduction

In this thesis we investigate the analysis of remotely sensed data specifically in the

context of mapping vegetation, particularly where limited information is available.

Maps are developed to show where particular plants or plant communities are

likely to occur for a given area.

The advantages of detailed and accurate vegetation maps are numerous, however,

their generation remains an expensive and largely manual task. Technological

changes have meant improvements in our ability to automatically generate such

maps, some of which are developed and demonstrated in this thesis.

1.1 The Uses of Vegetation Maps

Vegetation maps can be used in a number of ways. Native forests still cover much

of the Australian continent, as well as countries such as Alaska and Brazil, with

significant areas essentially untouched by man. Any hope of protecting these areas

lies with understanding and monitoring them.

The Australian National Forest Inventory aims to characterise Australian forests

for the entire continent to enable better decision making [120]. Aside from the

sheer size of such an area, large parts are inaccessible and so impossible to map

using surveys. Similar problems exist in Alaska, with the need to monitor 151 mil-

lion hectares of land [140] and, of course, the South American rainforest’s [100].

Even if large scale surveys were possible it is an ongoing concern as natural envi-
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ronments are constantly changing.

In 1995 the NSW state government initiated the Basincare project, an environ-

mental planning initiative to control and restrict clearing of native vegetation as

a means of conserving the existing biodiversity and preventing further land and

water degradation [55]. As part of the Basincare project a state-wide vegetation

map is being generated which will provide a basis for long term monitoring of

vegetation.

Not only do we need to monitor natural environments we need also to monitor

agricultural and plantation crops for irrigation, nutrient levels, plant stress and

pest and weed infestations [153]. In this case, changes can be on the scale of

weeks or months, rather than years as may be the case with forests. Damage can

be rapid and costly, not only to individual farmers, but to a country as a whole

through lost export dollars or an increased dependance on imports.

A low cost, fast and effective means of monitoring agricultural crops can ensure the

reduction and better targeting of the use of pesticides, herbicides and synthetic

fertilisers. This can result in reduced production costs for farmers, as well as

reducing the environmental impact of modern agricultural techniques.

Agricultural crops are not limited only to those that are annually planted and

sown. Sugar maple is of major economic significance in north-eastern Amer-

ica [180]. In Australia, perennial species that are of importance include citrus and

grapes. Such crops could also be monitored for pests or appropriate nutrient and

water levels.

There is a clear need for vegetation maps that will help us to monitor and manage

our natural resources. The benefits of more accurate mapping techniques are both

economic, environmental and social. To protect vegetation we need to know, not

only where it is, but how much of it there is, what species exist and in what ways

they are threatened. Over time we need to be able to distinguish between threats

and natural variability of the system.

1.2 Difficulties in Vegetation Mapping

Generation of vegetation maps requires the characteristics of a given plant com-

munity to be established and then to monitor the changes that are occurring.
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However, vegetation mapping using current techniques is costly and error prone.

Ground survey data has long been used to produce vegetation maps, but have

a number of drawbacks. A small number of sites, relative to the size of the

overall area being mapped, are likely to be used due to the costs and difficulties

in surveying. This means that it is likely that isolated pockets of unique plant

communities, as well as the changes due to natural variation and micro climates,

will be missed. There are also the problems associated with human evaluation,

such as inconsistent judgement and variation in expertise. Overall, this means

that ground survey data is scarce and when available can be of an unknown or

questionable accuracy.

Additional complexity in mapping tasks is introduced by the constantly changing

nature of plant communities, requiring continual updates of maps. Survey data

is usually collected over a long period of time and may even be held by a number

of different organisations, with different data standards. Overall, map generation

is a long term, highly subjective and costly process.

While survey data is expensive to collect, and subjective in nature it is still con-

sidered necessary to generate useful maps [26]. It can provide us with attributes

that can be used to determine which species are occurring in an area being stud-

ied, such as known existing species, soil type, aspect and topography. Given that

we have such data we should still use it for mapping applications, if we have ways

of dealing with the subjectivity and inaccuracy.

The widespread availability of aircraft has meant it has been possible to collect

photographs of the earths surface on a regular basis. Such data provides reason-

able levels of detail for large areas, with photo-interpretation traditionally being

used to generate vegetation maps. However, it has been found that these maps

can also contain significant errors due to human evaluation [26].

Statistical techniques have also been used to generate vegetation maps. These

techniques are most effective with numerical data, and incorporating non-numerical

data, such as a subjective human evaluation, is difficult. However, such techniques

can be used to produce reasonably accurate maps for specific data sets. The par-

ticular shortcoming of such methods is that they are not necessarily predictive

over the large areas for which maps may need to be generated, and they require

large amounts of up-to-date and accurate data to be most effective.

To further compound the problems with vegetation mapping, complete informa-
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tion is difficult to collect. That is, all possible contributing factors that cause a

particular plant species to grow in a specific area are not completely understood

and so it is impossible to collect all the required data for accurate mapping. To

simplify a mapping task, a reasonable set of attributes are identified that can be

used to classify plant communities. Simplifications such as these result in the loss

of information and potentially reduce the long term efficacy of the collected data.

As we are a long way from understanding plant communities and surveying tech-

niques are inherently inaccurate, any maps we do generate will also contain, at

least, some generalisations, and at worst significant errors. As more information

comes to light it would be useful to have reliable and consistent ways of updating

maps. This means that we need to have an idea of how well a given map represents

an area and so have an understanding of when the changes observed are due to

true changes or inadequacies in the original classification1.

Given the above factors, the amount and quality of training data available for

use in classification schemes is going to be small in comparison to the ground

area to be classified. As human development is moving so quickly it is no longer

possible or useful to generate and refine vegetation maps over long periods of time.

Changes can be quick, and permanent damage can be done. Thus, we need ways

to generate up-to-date vegetation maps quickly and efficiently, with as high a level

of accuracy as possible.

1.3 Vegetation Mapping from Remotely Sensed

Data

Remotely sensed data is any kind of data collected at a distance from the object

of interest, including images of the Earth’s surface from satellites and aircraft.

These images can provide data for large areas on a regular basis, and allow moni-

toring without physical interference. Such data is used as the basis for generating

vegetation maps.

One of the strengths of remotely sensed data is the large areas for which data is

available, far more than could ever be effectively surveyed. The Landsat system,

1Map in the context of this work meaning a classification of an entire remotely sensed image.
The terms map and classification are used interchangeably throughout this work.
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for example, gives complete coverage of the Earth’s surface every 18 days [134].

Consistent, long term data collection using remote sensing means that relation-

ships can be found that might otherwise be missed if relying only on human

evaluation skills and surveys. It also has the power to provide information that

may be overlooked or under-estimated from ground level information [86].

Remotely sensed data can be utilised in the initial phases of a mapping task to

support survey work. An initial investigation of a remotely sensed image for the

area in question can help identify the most productive sites to survey as well as

highlight areas of interest that may otherwise have been over looked.

It is widely accepted, however, that the use of remotely sensed data alone is not

enough in vegetation mapping applications. The characteristics of vegetation, as

represented in remotely sensed data, can change from day to day, and even hour

to hour, based on factors such as moisture and nutrient levels, and atmospheric

conditions. Individual plant species are identified not just by their spectral char-

acteristics but also by bark colour and texture, the shape of the leaves and other

information not currently available in remotely sensed data. Information about

topographical location and climate are also important in determining which plant

species will occur. So, while it is agreed that human interpretation and other

forms of surveyed data are is fraught with problems, they can still be used to add

value to the use of remotely sensed data.

With the increasing amounts of remotely sensed data the task of manually analysing

it has become intractable. A database can contain gigabytes of data for one small

study area. As higher resolution data becomes more readily available the problem

will only compound.

In summary, to enable useful vegetation mapping from remotely sensed data we

need more general techniques that can adapt to a given classification task and be

able to process large amounts of data, as well as incorporating the strengths of

the traditional classification methods and human operators.

1.3.1 Knowledge Based and Machine Learning Systems

Geographic information systems are used to store the types of data that are used to

generate vegetation maps, including remotely sensed data. However, the ability to

fully integrate remotely sensed data with such systems has been hampered by the
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need for human interpretation and assistance [65]. Effective utilisation of human

expertise, through knowledge based systems, can mean that we can extract the

maximum amount of information from remotely sensed data and produce high

quality vegetation maps.

Interpretation of individual spectral values given in remotely sensed images is

difficult and not usually done by humans. Human interpretation usually involves

subjective concepts such as texture, colour and shape. While the use of expert

knowledge is useful in vegetation mapping, it is not necessarily clear when and

how it can be most effectively used when classifying remotely sensed images.

A variety of systems have been developed that incorporate expert knowledge and

the classification of remotely sensed imagery. While these systems have been suc-

cessful for specific applications they still suffer from a problem called the knowl-

edge acquisition bottle neck. That is, the difficulty in transferring the knowledge

of an expert into a set of computer usable rules. This is particularly pronounced

in remote sensing domains as there may not be an expert for a particular area

due to its inaccessibility or the fact that it has not yet been studied.

Reasons traditional knowledge acquisition approaches are limited in remote sens-

ing applications include:

• Experienced photo-interpreters can spend large amounts of time generating

rules.

• The rules need to be updated for different geographical regions.

• No spatial rules exist for complex imagery.

• Limited amounts of ground survey data.

• Maintaining the consistency of the knowledge base.

• Increasing volumes of remotely sensed data.

While progress has been made in addressing these issues there still do not exist

automated systems that show robust and accurate behaviour across a wide range

of image data and ancillary2 information.

2Ancillary information or data is a commonly used term in remote sensing to describe any
data that can be used to enhance the information in spectral data for generating a map. This
includes, but is not limited to, expert knowledge, climate data, topographic and soil data.
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Recently the field of machine learning has developed in an attempt to address such

issues. Machine learning refers to the set of algorithms which acquire knowledge

through experience [170], and can be applied to a wide range of classification

domains. Experience is generally provided in the form of a data set containing a

number of cases with a known set of attributes used to describe them and with each

case belonging to a known class. Machine learning provides us with a number of

classification techniques that can be used to automatically generate classifications

of a remotely sensed image and are able to incorporate the information from a

wide range of other data sources.

The strengths of machine learning techniques include:

• The ability to use numeric and non-numeric data in a classification.

• The ability to use expert knowledge to direct or enhance classification.

• Some classifier systems can yield an explanation for a particular conclusion.

Due to the difficulties in collecting data in vegetation mapping domains all in-

formation that is available should be used. To do this we need to be able to

incorporate data that is available from satellite imagery, from a number of plat-

forms over time, expert knowledge and other mapped information such as soil and

existing vegetation maps. Machine learning techniques provide us with a number

of ways of doing this.

1.4 Contribution Demonstrated in this Thesis

The focus of this work is on domains that are difficult to apply standard classifi-

cation techniques to, due to inadequate data being available. This thesis demon-

strates techniques that allow the extraction of as much information as possible

from all sources of available data, and then choosing only the most relevant in-

formation for the automatic generation of accurate classifications. Such classifi-

cations are generated by combining the results of a number of simple classifiers.

The final outcome of this thesis is:

To provide a framework for automatically generating accurate classifi-

cations, using any classifier and any available data.
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While the framework described is general enough to be applied to any domain,

the particular domain that is used to demonstrate its use is vegetation mapping

from remotely sensed and ancillary data. Nel et al. [117] propose the notion that

mapping need not be an exercise in providing accurate maps, rather it can be used

to identify where particular features might be found. The classification framework

described here also intends to meets this aim. We show ways to automatically

generate maps that will provide both information about areas in which vegeta-

tion classes are most likely to occur and also to show areas that need further

investigation.

Specifically, the new techniques developed that are incorporated into the classifi-

cation framework are:

Highlighting information in the available data. As we are interested in

domains for which small, noisy datasets are available for training classifiers we

need to extract as much relevant information as possible from the data that is

available. Techniques to achieve this are demonstrated.

Neural network attribute selection and performance improvement. Neu-

ral networks have been successfully demonstrated for a wide range of image anal-

ysis problems. While neural networks are able to distinguish objects in the pres-

ence of noise or irrelevant information, they can be made to perform better when

such information is removed from the training data. A new method of attribute

selection for neural networks was developed and successfully used. Heuristic meth-

ods for automating and improving the performance of neural networks are also

demonstrated. Thresholding the output values of neural networks, to improve

classification accuracy, was also developed and demonstrated.

Simulating a remotely sensed image. A technique for generating plausible

remotely sensed images was developed. The simulated image is generated from the

known properties of a real image. Most importantly, the image is generated in such

a way that the classification of every pixel in the image is known. This allows us

to compare classification techniques quantitatively and assess the correspondance

between the error on the training data and the error over the entire image.

Combining a number of simple classifiers to improve classification accu-

racy. A technique for combining simple classifiers was developed. A classification

is broken down into a number of simple tasks rather than training one large clas-

sifier to recognise everything. In this way we can improve classification accuracy,
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and consistency. Firstly, a hierarchy of classes is generated. A number of simple

binary classifiers are trained on different views of the data and a classification is

given to a pixel only when all classifiers agree on class membership. The per-

formance of individual classifiers is further improved by using attribute selection.

This approach also means that we can produce more consistent results between

the training data and the entire image, and so reducing the number of misclassified

pixels.

Automated generation and assessment of classifications of images. A

classification system was developed that allowed automatic generation of a large

number of maps which were ranked according to their measured quality.

The particular impediments to automatic generation of maps that are addressed

in this work are:

• Large scale investigation of the available data to extract as much useful

information as possible.

• The flexibility of neural network classifiers, in the topology and training

regime, and determining when a given network has generalised the charac-

teristics of a particular dataset.

• Producing consistent classification results between the training dataset and

an entire image so that automatic evaluation of the quality of the classifica-

tions can be done. If we can not do this we need to rely on human evaluation

of the classified images.

1.4.1 Thesis Organisation

It is important to understand the organisation of this thesis at the outset. As

this work involves the combination of a number of disparate techniques the initial

chapters introduce these concepts, largely in isolation, and later chapters demon-

strate their combination. Some work may seem irrelevant or unrelated, but needs

to be seen in its full context. To maintain the readability of this work each concept

is individually introduced and discussed before the overall classification framework

is introduced.

Chapter 2 discusses previous work in classifying remotely sensed data and ma-

chine learning as well as giving an overview of the classification algorithms and
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analysis techniques that will be used throughout the thesis. This chapter is only

intended as a general overview to the field and further discussion of specific top-

ics is given in the relevant section, as required. This approach has been used

to aid readability, again, due to the large number of disparate subjects that are

incorporated into this work.

Chapter 3 outlines the properties of the datasets used in this work.

Chapters 4 through to 9 are introductory work, discussing each of the individual

techniques that will later be combined to automatically generate vegetation maps.

Each chapter discusses a single concept and demonstrates its use. In isolation these

chapters may not seem relevant or useful, however, each of the ideas discussed are

brought together in Chapters 10 and 11.

Chapter 4 discusses misconceptions about the use of neural networks and how

to improve classifications using them.

Chapters 5, 6 and 7 then go on to investigate techniques for the generation

of additional attributes that highlight information in remotely sensed images and

methods for selecting the most pertinent attributes for a given classification task.

Chapter 7 introduces a novel attribute selection technique, specifically for use

with neural networks, that was developed in the course of this work. As this is

a new technique this chapter diverges temporarily from the main theme of this

thesis to demonstrate its effectiveness as a generic attribute selection technique.

Chapter 8 demonstrates a number of techniques for improving the reliability of

classifications. In particular, the thresholding of neural network output values is

a new idea developed as part of this work.

Chapter 9 outlines a technique for simulating remotely sensed data so that com-

plete class information is available for an entire image and so allowing the classifi-

cation techniques developed throughout this thesis to be quantitatively evaluated.

The work in the Chapters 10 and 11 are the culmination of the work discussed in

the earlier chapters and demonstrates the results from a fully automated classi-

fication system. The classification system takes a set of remotely sensed images,

generates the specified additional attributes and returns a set of classifications

and their rankings. These are the critical chapters in demonstrating the results

of the automated classification of remotely sensed images.
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Chapter 10 investigates automating classification and evaluation using the simu-

lated data. This chapter demonstrates that it is possible to generate classification

schemes such that the error rates on the training data can be translated to the

error rate over the entire classified image in a meaningful way.

Chapter 11 demonstrates the automated classification and evaluation of real

images.

Chapter 12 discusses the key points of this work and the direction of future work

and conclusions.

Appendix A contains a glossary of terms and abbreviations used in both remote

sensing and machine learning.

Appendix B gives links to the publications that were generated from this work.

Appendix C contains a survey of the literature published recently in multi-

strategy classification and attribute selection.

1.4.2 Publications

The work discussed in these papers is included in and referenced in the relevant

sections of the thesis.

L.K. Milne, T.D. Gedeon, and A.K. Skidmore. Classifying dry sclerophyll forest

from augmented satellite data : Comparing neural network, decision tree and

maximum likelihood. In Proc. 6th Australian Conference on Neural Networks,

Sydney, pages 160–163, February 1995.

L.K. Milne. Feature selection using neural networks with contribution measures.

In AI’95 Poster Proceedings, Canberra, November 1995.

L.K. Milne and C. Willock. Comparison of two methods for increasing training

set size for neural networks. In AI in the Environment Wkshp, Canberra, pages

89–94, November 1995.

L.K. Milne. Attribute selection in neural networks used to classify remotely sensed

data. In Visual Information Processing Wkshp, Sydney, pages 21–26, December

1997.
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L.K. Milne. Improving Classification Accuracy of Machine Learning Techniques

applied to Remotely Sensed Data. In Proc AI’98, Brisbane, pages 26–37, July

1998.



Chapter 2

Previous Work

Since the 1970’s remotely sensed data from satellite platforms has become more

readily available. It has been used in many mapping applications, including eleva-

tion model1 development, orthoimage2 production, automated update and gener-

ation of topographic maps3, land usage and vegetation inventories and automated

feature4 extraction [157, 152, 11, 149, 163]. However, much work is still needed

for accurate and consistent mapping to be achieved. In this chapter we look at

some of the work that has been done to this end.

2.1 Mapping Applications

Fast and accurate generation of maps of natural resources is essential. If remotely

sensed data is to be used on a more regular basis for real-world applications we

need to have a better understanding on how to use it most effectively.

Assessment of the amount and extent of damage is essential to manage agricultural

crops of various kinds [180, 151, 86, 87, 13]. It is also important to have up-to-

1An elevation model is a representation of the height and shape of the Earth’s surface.
2An orthoimage is generated by rectifying distortions in an image caused by variations in the

height of the terrain. It contains pixels that are all to the same scale.
3Topographic maps contain natural features such as hills and rivers, as well as cultural

features such as roads, bridges and railways.
4Features in this context mean any object that can be identified in an image. These include,

but are not limited to, buildings, trees, cities, forests, and even more intangible objects such as
snow removal routes.

13
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date inventories of forest resources for management and conservation purposes.

Inventories have been, and continue to be, derived from human experts using

aerial photographs and manually collected ground truth data [140]. Generating

such maps is a difficult task, and is further complicated by the need to regularly

update them to ensure appropriate decisions can be made [49].

The use of remotely sensed data in water management [118] and estimation of

rainfall [109] has also been investigated. Again, to be of the most use maps need

to be updated regularly.

Isolated and difficult to access forests are an obvious application of remotely sensed

data. McGowen et al [103] look at monitoring the Jemalong area in Central

Western NSW for water logging and salinity. The Australian National Forest

Inventory aims to characterise Australian forests, across the entire continent, to

enable more informed decision making [120]. Both these areas, and others around

the world, are large enough that manual generation and update of maps is not

feasible.

The major advantage of remotely sensed data in mapping exercises is that the

data available covers large areas and can be collected on a regular basis.

2.2 Remotely Sensed Data

Many remote sensing platforms exist producing a number of different products,

a sample of which can be seen in Table 2.1. Each platform has a particular type

of sensor that takes reflectance measures for a set of predefined spectral ranges.

Each spectral range is called a band. If the range of values is large the data

is referred to as broad band, and for small ranges, narrow band. For example,

recording values in a 2μm range of the electro-magnetic spectrum is a broad band

measurement, while a range of 0.1μm is narrow band.

Each remotely sensed image that is acquired covers a particular area on the Earth’s

surface and contains a set number of spectral bands. Each band of a given image is

essentially an image in its own right. The pixels in each of these images correspond

to the reflectance measured from a particular point on the Earth’s surface for the

given spectral range. The spatial resolution for a given image is determined by

the area on the ground that each pixel corresponds to. Data is low resolution
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if each pixel in the image corresponds to a large area on the ground, while high

resolution data corresponds to a small area.

Platform Resolution Wavelength(μm)

AVHRR 1.1km 1. 0.58-0.68
2. 0.725-1.1
3. 3.55-3.93
4. 10.3-11.3
5. 11.5-12.5

Landsat MSS 79m 4. 0.5-0.6 (green)
5. 0.6-0.7 (red)
6. 0.7-0.8 (near infra-red)
7. 0.8-1.1 (near infra-red)
8. 10.4-12.6 (thermal)

Landsat TM 30m 1. 0.45-0.52 (blue)
2. 0.52-0.6 (green)
3. 0.63-0.69 (red)
4. 0.76-0.9 (near infra-red)
5. 1.55-1.75 (mid infra-red)
7. 2.08-2.35 (mir)

120m 6. 10.4-12.5 (thermal)
SPOT (multi-spectral) 20m 0.5-0.59

0.61-0.68
0.79-0.89

(panchromatic) 10m 0.57-0.73
ABVS 1m/2m 450nm (blue)

550nm (green)
650nm (red)
770nm (near infra-red)

Table 2.1: Selection of remote sensing platforms.

The most readily available remotely sensed data is AVHRR, due to its relatively

low cost and the regularity with which the satellite returns to the same point on

the Earth’s surface. However, it is very low resolution data and so limited in its

use. When using remotely sensed data there is a trade-off between the coverage5,

resolution and the cost.

More recently airborne video systems have been under development, using aircraft

instead of satellites for collection of data. The advantages of such systems are that

5Coverage refers to how often a satellite passes over the same place on the Earth’s surface.
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images can be collected as often as required with very high resolutions, currently

up to 1m, for a fraction of the cost of satellite data. In addition the advantage

of airborne video systems over satellite systems is that it is easier to modify the

spectral bands for which data is collected. Airborne video imaging is of particular

use in agricultural applications due to the increased flexibility of data collection

and higher resolutions. The ABVS system listed in Table 2.1 is a specific instance

of an airborne video system, which will be discussed in more detail later.

In spite of the advances in data collection techniques, it is widely accepted that

remotely sensed data alone is not enough for many applications. Incorporating

other types of data, such as climate and topographic data, into classifications

using spectral data has long been recognised as vital for improving classification

performance [158, 59, 66, 103, 149].

2.3 Remotely Sensed Data for Mapping Appli-

cations

In spite of the advantages of remotely sensed data, there are a number of reasons

why remotely sensed data can not be used for mapping applications in isolation.

Distinct objects can look spectrally similar due to the mixing of spectra6 of the

objects, natural variability in spectral response and different objects having similar

spectra.

The AVIRIS system was developed to enable better differentiation of different

objects. It provides 224 narrow band spectral measurements per pixel, with a

spectral resolution of 0.01μm [130]. However, work investigating the mapping

of significantly different tree species has shown that distinctions are not always

possible even with this level of spectral information [130]. That is, we require

more than just remotely sensed data to generate accurate maps.

Before the widespread availability of fast, cheap computer based classification

6For lower resolution data, in particular, it is desirable to determine what is contributing to
the spectral characteristics of each pixel in an attempt to provide reliable classifications. Pixels
are usually treated as pure elements, that is a pixel contains a single clearly identified object.
Use of the spectral characteristics derived in this way will lead to errors in classification. This
is a significant area of study in its own right and will not be investigated here. Techniques for
dealing with mixed pixels can be found in [58, 102].
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systems the only solution for interpretation of images was using human expertise.

When producing maps a human photo-interpreter utilises a large amount of prior

knowledge that extends beyond the images being used and the context they are

used in [40]. For example, when producing a vegetation map a photo-interpreter

will use remotely sensed data, topographic, climate and soil information, as well

as knowledge about the vegetation of the area and its physical characteristics.

That is, a human expert will use all available information to identify patterns.

Ideally mapping should be based on remotely sensed data and be augmented with

other types of data appropriate to the type of map to be produced. Specifically

in the case of vegetation mapping, the types of data would include climate, topo-

graphical and soil data, as well as expert knowledge on the characteristics of the

species being mapped.

Two specific areas of vegetation mapping that are of interest are agriculture and

forestry. These will be discussed in more detail in the following sections.

2.3.1 Mapping for Agriculture

Remote sensing has been applied to problems such as detecting rust in wheat,

blight in potatoes and corn, scale in citrus and root rot in field beans, and ir-

rigation scheduling. Early identification of problems can result in containment,

reduced need for chemical solutions and increases in yield. An indicative sample

of remotely sensed data being applied to agricultural applications is given in this

section.

Smith and O’Neill [150] investigated the identification of noxious weeds in pas-

tures from spectral information. This initial work was to determine the spectral

characteristics using an infrared spectro-radiometer, with the ultimate aim of be-

ing able to identify the weeds in remotely sensed images. The results indicated

that sufficient information can be extracted from the airborne Daedelas scanner

imagery7 to be able to target areas of infestation for the specific weed species

investigated.

Steven et al. [153] investigated the use of high spectral resolution data to monitor

crop stress and so estimate productivity of a given area. It was hoped that the

7See [134] for more information on this platform.
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increased spectral resolution would allow for better detection of changes in plant

spectra. However, it was found that plant stress is a complex and little understood

problem, and that the spectral characteristics of plants are only one of many

indicators. Even if high resolution data of this type were inexpensive and readily

available, useful monitoring is still limited by the long return times8 and limited

data for training classifiers.

Changes in conditions of agricultural areas can be fast and action may need to

be taken within a day or so of problems occurring. Existing commercial satellite

systems do not have the required resolution or return periods for reliable mapping

of agricultural crops [116]. Currently the highest resolution is the SPOT sensor at

10m (in panchromatic mode only). Though higher resolution sensors are becoming

available they will still provide less than ideal solutions due to inadequate coverage

and high cost.

A purpose built airborne video system (ABVS) developed at the Spatial Analysis

Research Unit at Charles Sturt University has been used in a number of agricul-

tural applications [87]. The main advantage of this system, and others like it,

are the high resolution of the data and the regularity with which data can be

collected. Additional flexibility, over satellite imagery, is given as the spectral

bands for which data is collected can easily be modified for specific applications

by using different filters on the cameras used to collect the data. Results have so

far been encouraging, and with the increased flexibility and reduced cost of data

collection, is a solution that may be preferable to other types of remotely sensed

data for this domain.

Pearson et al [124] investigated real-time monitoring of a variety of crops using

airborne video. Farmers included in the study reported that images needed to be

delivered in less than 48 hours to be of use. However, the frequency of coverage

varies during the season from weekly to every two days. This study demonstrated

that real-time monitoring was indeed possible for a number of agricultural applica-

tions, but that automated processing is the main concern in using the technology.

Lamb [86] demonstrated the use of airborne video for mapping weeds in cultivated

fields. Maps such as these have the potential to allow targeted spraying for weeds,

increasing the efficiency of herbicide usage from 2% to 60% of the herbicide reach-

8The return time of a satellite refers to the time it takes for it to return to the same location
on the earths surface. The higher the resolution of the data, the larger the amount of data
collected and the longer the return times.
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ing the target. It was noted that ground inspection of fields provides an average

picture of crop status, but intra-field variability is what makes management diffi-

cult and can result in substantially reduced yields. Airborne video data can go a

long way to addressing these problems by providing detailed information on crop

variation across a field. This in combination with GPS on farm machinery can be

used to target specific areas within fields.

Another advantage of remotely sensed data over human evaluation is the ability

to provide data outside the range of human perception. However, further work

needs to be done to determine which spectral responses correspond to specific

crop problems.

Monitoring of agricultural crops via remotely sensed imagery has been shown

to be possible and even desirable. As data may be required as often as every

two days, airborne video data is a better alternative to satellite imagery. Of

course, weather and other factors can still prevent data collection with the desired

frequency or quality. Mapping accuracy can be improved when remotely sensed

data is augmented with other types of data, such as climate, soil and rainfall.

However, airborne video monitoring of agricultural land is a relatively inexpensive

and effective solution that has the potential to provide data as required if we can

find the ways to automatically process it quickly and accurately.

2.3.2 Mapping Tree Species

Mapping tree species has slightly different requirements to agricultural mapping,

but the implementation suffers from many of the same problems. Changes are

generally over longer periods of time and the areas to be mapped are often signif-

icantly larger and less homogeneous.

The dominant native tree species in Australia are eucalypts whose characteristics

are quite different to those of forests in the northern hemisphere, where much of

this research is done. The areas for which maps are required can be vast making

this a major undertaking, and remotely sensed data has a significant role to play.

However, a lot more work needs to be done, under Australian conditions, to

determine the best approach to effective use of this data [122]. With the amount

of remotely sensed data available and limited amounts of ground truth data there

is a need for techniques that will direct and support this type of investigation.
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Ripple [135] used AVHRR data to determine the proportion of closed canopy

in coniferous forests, as well as trying to characterise the spectral signatures of

various successional stages. Although individual areas of clear-cut forest are not

visible at 1km resolution there are changes in the reflectance for pixels containing

such areas.

Similar problems were described by Caicco et al [18]. Landsat MSS data was used

to map 71 vegetation and land-use categories for the state of Idaho, U.S.A. – an

area of over 200,000km2. Mapping accuracy was estimated to be around 92%.

The conclusion reached was that the use of remotely sensed data gave an efficient

means of assessing the protection of land-cover types and biodiversity over large

areas. Limitations identified included the low resolution of the data being used

and the lack of data on the ecological condition of vegetation complexes. That is,

the remotely sensed data could be used more effectively with the incorporation of

other types of data.

Stone et al. [154] developed a land cover map of South America, also using AVHRR

data. Classifications using vegetation indices (see Section 5.2.3) were possible with

an overall accuracy of around 90%. However, a problem with this work was the

misclassification of sites in the study area and the variable reliability of the results

across different classes.

Overall low resolution data can only be used to map broad characteristics, but

this should not stop its use if it is the only available data. Techniques need to be

developed that can make best use of what is available.

Wilkinson et al. [175] investigated the use of multi-source data to monitor forest

ecosystems. The problem of mapping such environments is the complex mixtures

of species. With the use of both Landsat TM data and SAR data mapping

accuracies of 70-80% were able to be achieved. The use of the SAR data enabled

better distinction between the broad leaf and conifer species. This particular

study contained areas of eucalypts and increased accuracies in identifying these

were found when both types of imagery were used. The problems with this type

of work are the use of different resolution data, which requires re-sampling and

registration. This pre-processing of the data can result in information loss and so

decreased mapping accuracy.

Schreuder et al. [140] investigated the use of a four-phase sampling technique using

Landsat MSS, colour infrared and ancillary data to inventory Alaskan forests.
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While this technique had been used successfully in previous work [91], it did not

generalise well to new study areas. Part of the reason for the failure of this

technique was attributed to the commonly experienced problems of noise in the

available data and not enough ground truth data.

Airborne video has also been used for forestry applications. It can provide detailed

information, down to individual trees, for a fraction of the cost of satellite imagery

or ground surveys. In addition, it can be collected as often as required.

Yuan et al. [180] successfully used airborne video data to assess the decline of

sugar maple due to problems such as pollution and soil deficiencies. But again,

the recommendation was made that additional types of data be used to improve

the process.

Logging of native forests is of particular concern in Australia. Wood chips provide

significant export income, and there is plenty of room for expansion in the market

place. However, there is concern about the degradation of currently logged forests,

let alone the concerns about expanding the industry further. Squire [151] discussed

the need to balance sustained wood production and ecosystem conservation in

native forests. In particular, Squire discusses the need for increased scientific

research and monitoring of native forests. An important part of such evaluations

are to include information such as political, financial and technological data. In

this situation, and others like it, the use of pure statistical techniques are not

necessarily appropriate as the data contain non-numeric attributes.

The obstacles to adopting widespread remote monitoring are common to all do-

mains. Problems include insufficient data, coverage, registration, calibration, ef-

fective use of ancillary data and automated processing.

2.4 Classification Techniques

Much work has been done using statistical techniques for classifying remotely

sensed data, an overview of which can be found in [145, 148]. However, as already

noted, these techniques are not always adequate for dealing with small noisy

datasets, nor can they easily be used with the ancillary data types that are required

in mapping applications. Machine learning is an area of research that has more

recently appeared on the scene and provides solutions to some of the problems
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faced when using statistical techniques.

This section gives and overview of the specific techniques used in this thesis. We

discuss their advantages and disadvantages, and the reasons for their use in this

work.

2.4.1 Maximum Likelihood Classification

One of the most commonly used statistical classification techniques in remote

sensing domains is maximum likelihood classification, which is based on Bayes

theorem [134]. It is available in most remote sensing and image processing pack-

ages and is often used as the standard against which other classification algorithms

are measured [74].

Classification is based on Bayes rule as follows. The n spectral values associated

with each pixel can be written as a n-dimensional vector xj , for j = 1..K pixels.

For each class ci and vectors xj in that class, we calculate the mean vector and

covariance matrix as follows.

mi =
1

K

K∑

j=1

xj

Ci =
1

K − 1

K∑

j=1

(xj −mi)(xj −mi)
t

where vt is the transpose of vector v.

The discriminant function for each class ci is then given by

gi(xj) = −ln | Cj | −(xj −mi)
tC−1

i (xj −mi)

The class ci assigned to a vector xm is

xm ∈ ci if gi(xm) > gk(xm) for all i �= k
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This assumes that the probability distributions of the data are multivariate nor-

mal. However, this assumption can cause significant errors, the extent of which

is not known as the underlying probability distribution is usually not known [74].

One study found that nearest neighbour classification was more accurate and far

more robust than maximum likelihood classification [74].

Training a maximum likelihood classifier requires a reasonably large sample of

data – around 10n cases, where n is the number of attributes. Unfortunately, it

is usually difficult to obtain this amount of data [134].

Unsupervised maximum likelihood classification can also be carried out by first

generating a set of classes using an unsupervised classification technique, such as

ISOCLASS [9]. Unsupervised maximum likelihood classification is used here as a

data mining technique rather than a classification technique (see Section 2.4.10).

The algorithm maxlik, from the GRASS GIS package [169], was used for this

work.

2.4.2 Problems with Statistical Techniques

Statistical techniques, including maximum likelihood classification, can be used

with great success when only considering remotely sensed or other numerical types

of data. It is also widely acknowledged that poor classifications will result from

insufficient and missing data [134]. However, the biggest disadvantage to using

statistical techniques is the difficulty in incorporating non-numeric data in a clas-

sification in a meaningful way. When we add this to the large amounts of training

data required, we need to consider using other classification systems.

The Statlog project [108] investigated classification procedures on large-scale and

commercially important problems. The aim was to determine to what extent

these techniques met the needs of industry. Around 20 procedures were tested on

22 datasets, one of the datasets being satellite imagery.

The most effective five algorithms for classifying an image were nearest neighbour

classification, learning vector quantisation (LVQ), DIPOL929, radial basis function

9DIPOL92 is a learning algorithm that constructs an optimised piecewise linear classi-
fier [137]. Initially, discriminating hyper-planes are determined by pair wise linear regression.
An error function is then defined based on the misclassified patterns. This function is then
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network (RBF)10 and ALLOC8011.

The outcome of the Statlog Project was that traditional statistical techniques

are not necessarily appropriate for classification of remotely sensed data. Rather,

non-parametric techniques are more appropriate. Commonly used techniques that

fall into this category, that were used in this work, are neural networks, decision

trees and nearest neighbour classification.

2.4.3 Error Back-Propagation Trained Neural Networks

Neural networks are classifiers that aim to simulate the behaviour of the brain.

They consist of simple nodes, that behave similarly to the neurons in a brain, that

are inter-connected to mimic the complex behaviour of the brain.

They are widely regarded as a powerful image processing classification algorithm.

The most commonly used and best understood networks are multi-layer percep-

trons trained with error back-propagation [138, 96]. These types of networks were

used in this work.

Each node in a multi-layer perceptron consists of n inputs and an output o, as

shown in Figure 2.1. A node is a simple functional unit that computes the weighted

sum of it inputs, with the output being some function of this sum. Typically the

sigmoid function is the function applied to the sum to give the output of a node

and to constrain the output values, defined as follows.

ai =
1

1 + e−si

where si is the weighted sum of the inputs to the node and ai is the output value,

or the activation, of node i.

minimised using gradient descent.
10A radial basis function network [137] is similar to a multi-layer perceptron (MLP) but

the hidden layer nodes compute an arbitrary function of the inputs (often Gaussian) and the
transfer function of each output node is the identity function. Though RBF and MLP are
computationally equivalent the RBF has some advantages over the MLP. The RBF does not
suffer from finding local minima and is better able to make statements about the accuracy of
the probabilistic interpretation of the outputs.

11ALLOC80 is a specific implementation of a non-parametric classifier that aims to estimate
the underlying density function [114].
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Figure 2.1: A node of a multi-layer neural network.

Any number of nodes can be connected in any number of layers to give a network,

an example of which is shown in Figure 2.2. The first layer of nodes does not

perform any calculation, simply distributing the input values to the next layer

of nodes. Not every node in a layer need be connected to every node in the

succeeding layer, though for this work all nodes are fully connected to all nodes

in the next layer.

Each iteration, or epoch, in training the neural network presents each case in the

training dataset to the input nodes and generates output values in the final layer.

The total error for the dataset is given by:

E =
∑

p

∑

i

(tpi − opi)
2

where p ranges over the set of input patterns and i over the number of outputs,

tpi is the target output and opi is the output of the neural network. The total

error E is also called the total sum of squares error (tss).
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Figure 2.2: An example neural network topology.

The aim in training the neural network is to minimise E. Starting with random

numbers assigned to each of the weights, the error is propagated backwards at

each epoch through the network by adjusting the weights as follows.

Δwij = ε(tpi − opi)apj

for some constant ε and apj the activation of node j for pattern p.

Presenting the entire training set to the network and adjusting the connection

weights continues until the error E is a minimum. However, to ensure that the

network has generalised the characteristics of the training set the minimum error

is taken for an unseen data set. That is, the training data is split into three sets

as follows:

training set the cases presented to the neural network for training, the error

calculated from the classification of these cases being used to adjust the

weights of the network

stopping set the cases presented to the neural network only to be classified,

when the error on this set is at a minimum training is stopped
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test set the cases presented to the neural network to be classified and are not

used at all during training, rather are presented to the trained network to

give an unbiased estimate of the error

For further detail of the implementation of perceptron neural networks trained

using back-propagation as used here see [138].

2.4.4 Previous Work in Neural Network Classification

The use of neural networks for classification of remotely sensed imagery have been

widely investigated, for example see [178, 12, 179, 147, 175, 54]. Many different

types of networks have been used more specifically for mapping applications, for

examples see [155, 22, 94, 176, 167, 56]. However, only multi-layer perceptron

networks trained using back propagation will be considered here as they have

been the most widely used and are reasonably well understood.

Xu and Yin [178] trained neural networks for forest management. The attributes

used in classification were based on economic return, habitat and soil information.

They were able to distinguish, to a limited extent, between areas that should be

preserved and others that could be logged. An important aspect of this study

is the use of both numeric and non-numeric data. This non-numeric data is not

required to have well founded statistical distributions or properties. However, the

non-numeric attributes need to be mapped in some way to numeric values to be

used in the neural network classification.

Wilkinson et al. [175] reported overall classification accuracy of 92% when using

neural networks to map cover types using Landsat TM and SAR data. Classifi-

cation accuracy was higher when using both types of imagery, over classifications

using only one. However, individual forest classes varied in accuracy from 43% to

93%. Again, the problems in vegetation mapping being the quality of the available

data and the subjectivity involved in its collection.

Skidmore and Knowles [147] described the use of backpropagation networks for

mapping eucalypt forest types12, using both numeric and non-numeric attributes.

12Forest types being scientific groupings of species that are commonly found growing together
under particular environmental conditions. The use of forest types is a way of reducing the
complexity of forest ecosystems.
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While the error rates on the training data were less than 10%, the error on un-

seen data jumped to between 45–58%. Conventional classification schemes often

perform poorly at this type of classification, but in this particular study the main

problem was that of inconsistent results. That is, no set of consistent classifi-

cations for a given input could be obtained from the networks trained, and this

was due to inadequate data. In spite of this, the use of neural networks was still

supported due to their ability to identify subtle patterns in the data and model

the data.

Milne [113] (published from work carried out as part of this thesis) compared the

use of C4.5, neural networks and maximum likelihood classification, using both

numeric and non-numeric attributes for binary classification. While there was no

statistically significant difference in the accuracy of the classifiers used, the neural

network classifier was the preferred solution as a technique was used to reduce

the number of false positive or false negative classifications. This technique was

developed as part of this work and involves thresholding the outputs of the neural

networks. This is discussed further in Section 4.4.

A similar application domain to that of remote sensing is the classification of

sounds and speech recognition. Potter et al. [129] used backpropagation neural

networks to recognise endnotes of bowhead whale songs. Again, a reason for their

use was that neural networks “have been shown to excel at pattern classification

where data is noisy and the solution formulation is not well defined”. The neural

network was able to correctly identify sounds 98.5% of the time. This was a

two-fold improvement over the more commonly used spectrogram correlator filter

algorithm.

Neural networks are widely promoted as a model free methodology and can be

trained to approximate any arbitrary non-linear function. This property makes

them a suitable classification technique where there is limited understanding of

the domain [71]. Unfortunately, this opinion has meant that pre-processing of

data and understanding of the domain has not been sufficiently emphasised in

their use. This has lead to inappropriate application of neural networks and

disappointing results in some cases. Studies that have included analysis of the

domain or pre-processed the available data show better results than those that do

not.

Legitimus and Schwab [93] pre-processed data by, firstly, applying a low pass filter

to underwater sounds. Free isolated clicks were detected according to the signal
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to noise ratio and an energy detection program. Each signal was reduced to 31

attributes using auto regression analysis and Daubechies wavelets analysis. The

binary neural networks used produced better results than traditional classifiers

(factorial discriminant analysis and clustering), and a multi-class network. Addi-

tional improvements of up to 6% on the classification accuracy were achieved for

these binary networks using the pre-processed data.

Stretching the contrast of the reflectance values in remote sensing applications

can be used to improve classification accuracy [175]. This technique was used

throughout this thesis and was also discussed in work published as a result of this

research in [113]. As different data types will have different ranges of data values,

scaling the data will reduce the dominance of one attribute over another, unfairly

biasing the result.

Neural networks have also been shown to be useful when the n-dimensional at-

tribute space that describes each class is not linearly separable. That is, the

attribute space of the classes overlap or are made up of interlocking curving bound-

aries. In particular, this is the reason that neural networks are more appropriate

than maximum likelihood classification in some cases. Case studies in the remote

sensing literature confirm that where classes are not linearly separable, neural

network solutions were better [176, 167, 63].

Neural networks are reasonably fast to generate classifications once trained and

can be used in domains for which there is little understanding of the underlying

data characteristics. The disadvantage is that their conclusions can not be readily

verified or be used to improve our understanding of the domain. This often

translates to not enough work being done to optimise their results. A further

complication is that while they are reasonably good at handling noisy data, large

training datasets are required to mitigate its effects. In this work we look at a

number of general techniques that can be used improve the performance of neural

networks on small datasets, and that allow automation of the classification.

2.4.5 Decision Tree Classification and C4.5

While it is acknowledged that one form of valuable information in vegetation

mapping domains is that of expert knowledge, it is also widely agreed that gen-

erating a knowledge-based system from the knowledge of one or more experts is

fraught with problems [107, 30]. Ideas need to be communicated by an expert
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to a knowledge engineer which then need to be coded in some machine readable

form. Problems can arise in communication, consistency and update of rules.

An alternative approach to capturing human knowledge is to learn patterns from

a dataset using cases with known class membership. Once the patterns have

been identified they can be represented using decision trees. A single decision, or

classification, given some set of inputs is a sequence of small decisions that lead

to a particular conclusion. An example can be seen in Figure 2.3. Each decision

node in the tree gives the test to be carried out and the leaf nodes give the final

classification. The decision making path through a decision tree mimics the kinds

of rules that human experts generate to reach a decision.

temperature

raining

wear shirtwear coat

wear rubber boots wear tshirt
maybe

>=20<20

yes no

Figure 2.3: Example of a decision tree.

Once the decision tree has been generated from a labelled dataset, it is possible

to generate rules from the tree. This makes the model human readable, especially

in the case of large decision trees. Rules can be read directly from the tree, for

example, for the tree in Figure 2.3 the rules generated are as follows.

if (raining = yes) then wear rubber boots

if (raining = maybe) then

if (temperature < 20) then wear coat

else wear shirt

if (raining = no) then wear tshirt

C4.5 [132] is one of the best known and most widely used classification systems
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in the machine learning community. It is a suite of programs that can generate

decision trees or a set of rules from a set of training cases.

A decision tree is generated in C4.5 from a set of training cases T , with classes

{C1, C2, ... Ck} in the following way. T is partitioned into subsets T1, T2, ... Tm

which contain all the cases that have the same outcome for a given test. This is

then repeated for each subset until each set contains cases for a single class.

2.4.6 Previous Work in Decision Tree Classification

Decision tree classification is a technique widely used in both the machine learning

and remote sensing communities. Its success has been based on the fact that hu-

man readable rules are generated, either encoding or extending our understanding

of a given domain. An added advantage is that decision tree classification allows

the meaningful use of non-numeric data. A sample of work carried out in this

area, specifically using C4.5, is given here.

Grigg et al. [67] and Taylor [159] used C4.5 to automatically recognise sounds.

Audio data was first processed using a fast Fourier transform to generate a spec-

trogram, from this a set of attributes was identified for classification. In these

cases it was possible to classify at least 80% of the sounds correctly.

Evans et al. [50] investigated the use of C4.5 for predicting areas at risk of salinity.

The data used included Landsat TM imagery, slope, aspect and water accumu-

lation information. Mapping areas affected by salinity were able to be identified

with accuracies ranging from 61% to 78%. Areas not affected by salinity could be

identified with more than 90% accuracy, as these areas made up the bulk of the

training data. These results tend to imply that the classifier is not particularly

good at predicting areas at risk of salinity. If identifying areas at risk of salini-

sation was the higher priority the effectiveness of this classifier would not be as

high as the overall error rate would imply. So, while C4.5 can handle numeric and

non-numeric data it, like all classifiers, suffers from the problems associated with

inadequate training data.

Chen et al. [24, 23] used C4.5 classification to recognise lesions in renal biopsy

section images. It was possible to automatically recognise boundaries and features

within the biopsy sections with 90% accuracy. This work has contributed greatly

to the accurate detection of kidney transplant rejections, a task that is typically
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done by human experts manually.

Rao et al. [133] used C4.5 for monitoring turf grass from highly subjective data.

The classification accuracy obtained was only 59.4%, however, this was a signifi-

cant increase in the evaluations given by the domain experts. In one aspect of the

study the experts refused to give recommendations due to their lack of confidence

in their ability to accurately do so.

The use of decision tree classification is widespread due to the simplicity of its

application, particularly with tools such as C4.5, and the ease of interpretation

of results. In particular, C4.5 has been used for this work due to its ability to

incorporate numeric and non-numeric data in a classification.

A specific advantage of using algorithms, such as C4.5, are that they only require

a relatively small dataset to learn a given concept [141].

The main disadvantage associated with the use of C4.5 is similar to those of

most other classifiers – misclassification errors. In this thesis we look at ways

of reducing misclassifications, particularly those due to incomplete or inadequate

class information and small noisy datasets.

2.4.7 C4.5 Configuration

A number of parameters can be used to fine tune the behaviour of C4.5.

-s Group discrete values for tests in building the decision tree and each possible

value will have a different branch of the tree. Few of the attribute values

for this work were discrete values making this flag unnecessary.

-m weight Any test used in the tree must have at least 2 outcomes with a mini-

mum number of cases (i.e. at least 2 branches from each node in the decision

tree). The default weight is 2.

-c cf The amount of pruning to apply to the decision tree. The default value is

25%.

-i increment The maximum number of cases that can be added to the window

at each iteration. A randomly selected subset of the training cases is used

to build an initial decision tree, this is then used to classify the cases not
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included in the window, some of the cases that are misclassified are added

to the window and the process is repeated until the current window can

correctly classify the cases outside of the window. The default value is 20%

of the initial window size.

-w size The number of cases to be used in the initial window for building the

decision tree. The default value of cases from the training set to be used is

the maximum of 20% of the training cases and twice the square root of the

number of training cases.

-p Soft thresholds use weighting to determine which branch to traverse when the

attribute values are close to the thresholds being used, hard thresholds just

go down the branch specified by the threshold. The default is for hard

thresholds.

Weiss and Hirsh [171] investigated the use of C4.5 to classify noisy datasets. In

particular, their aim was to investigate the effect of small training sets on the

error rate. The configurations used were:

• the default parameter values with pruning

• the default parameter values without pruning and -m1 (i.e. a decision tree

node can be formed be only a single example being covered)

The pruning strategy improved classification accuracy over the use of default pa-

rameters in the presence of noise. They found that the small numbers of training

cases for each class contributed more to the error rate. When -m20 was used the

results were better than the default pruning strategy in the presence of very high

(30%) levels of noise. But again, large datasets are required for pruning to be

effective.

Baldwin et al [8] used C4.5 to analyse Japanese relative clause constructions. De-

fault parameters were used with 10% pruning, and using 10-fold cross-validation.

A base line accuracy of 64.7% was achieved, and was increased to 89% by trans-

forming the data rather than trying to optimise the C4.5 configuration. Similarly

Bala et al [7] used C4.5 with the default parameters and used hybrid techniques

to improve performance.
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Dietterich [41] found that the use of pruning with C4.5 did not provide any sta-

tistically significant difference in the in the results. Although this may have been

due to the low amount of pruning done.

For the datasets used here a range of C4.5 configurations (i.e. parameter values)

were initially tested and no significant improvements in error rate were able to be

achieved over just using the default parameter values. However, when the default

configuration for C4.5 is used with the techniques described in this thesis the error

rates can be reduced. For more detail on C4.5 see [132].

2.4.8 Nearest Neighbour Classification

Another commonly used pattern recognition technique is nearest neighbour clas-

sification [35]. It is based on using the training set as a set of prototypes, and

does not construct an abstract representation of the data [1]. A classification is

given to an unseen case based on its similarity to the prototypes.

When classifying an unseen case a search is carried out to find the prototype

case that is most similar. Similarity is measured by the distance to the closest

prototype case. Any distance measure can be used, though Euclidean distance is

typically used. The distance is calculated attribute by attribute and then summed.

The class of the closest prototype case is the class given to the unseen case. The

class given need not be that of the single closest prototype case, it can instead be

the majority of the k-nearest neighbours, for some constant k [174].

More recently instance-based learning (IBL) was proposed by Aha et al [1] and

is a specific implementation of nearest neighbour classification. Three main ap-

proaches, IB1, IB2 and IB3, were initially investigated [139]. IB1 stores all training

cases as prototypes and the class for an unseen case is the case of the prototype

that is closest. IB2 aims to reduce the storage requirements of IB1. This is done

by not adding cases to the prototype set when they can be correctly classified

by existing prototypes. IB3 extends IB2 by maintaining a record of the number

of correct and incorrect classifications for each prototype during training. Those

prototypes that result in a large number of incorrect classifications are removed

from the prototype set. The discrimination of IBL can also be increased further

by considering the classes of the k closest prototypes.

All attributes used in a nearest neighbourhood classification are assumed to be
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independent. That is, there is no overlap between the values of attributes that may

bias the result. Normalisation of attributes may be of use when the magnitudes

of attribute values differ significantly and so reduce bias in the distance to the

closest prototype. [174]

Training time is minimal for nearest neighbour classification, however, classifica-

tion of unseen cases can be expensive because of the need to compare each case

with each of the prototype cases. The main advantage of this technique is that

it is non-parametric, that is, little is assumed about the characteristics of the

dataset [174].

A disadvantage of this classification scheme is that it does not generate a model of

the data, and so does not provide any real insight into the general characteristics

of the domain. Another disadvantage is, again, that of misclassification due to

incomplete class information and small noisy datasets, which we will investigate

in this thesis.

Further details on nearest neighbour classification can be found in [35, 44] and for

IBL can be found in Aha et al [1].

2.4.9 Previous Work in Nearest Neighbour Classification

Nearest neighbour classification is another technique that has been widely used in

both remote sensing and machine learning domains. It is a technique that is easy

to implement and it can produce high accuracy results when sufficient training

data is available.

Avi-Itzhak et al. [6] proposed a two-phase nearest neighbour classification al-

gorithm for character recognition, a domain similar to classification of remotely

sensed images. The two stage approach used, that mapped a character to be recog-

nised first to a broad class then to the actual character, was not only efficient, but

also reduced the numbers of misclassifications. In a domain that almost perfect

character recognition is being reported, this two-phase approach gave accuracies

of over 99%, which was an improvement over other classification packages.

Chittineni [26] describe the use of nearest neighbour classification from data that

contains errors, as can be found when using remotely sensed data. Techniques

were given for error correction using the probability of errors occurring.
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Breuel [17] used nearest neighbour classification to recognise hand printed digits

from noisy data. Post-processing using decision trees was also carried out and

improved the classification accuracy. Accuracies of up to 99% were reported for

the combined technique.

Ince [74] compared nearest neighbour and maximum likelihood classification. Land-

sat TM data was used to map seven classes including wheat, fallow land, roads

and villages. Accuracies of around 90% were reported for both classifiers and

it was found that nearest neighbour classification was more accurate and robust

than maximum likelihood classification.

2.4.9.1 Nearest Neighbour Configuration

Nearest neighbour algorithms are useful for recognising cases that are in some

way similar to cases that we know the class membership of, however, they can be

a poor classification scheme for the following reasons.

• All attributes are assumed to be effectively independent, that is there is no

overlap between the values of attributes that may bias the result.

• The variance of attribute values has been normalised.

• They can exhibit poor generalisation as they provide essentially a specific

model of the training data.

• Classification times depend on the number of cases in the training set.

IBL has been used in this work using the IB1 approach of storing all cases in the

training dataset as prototypes. It was chosen because some of the disadvantages of

this technique are offset by the classification framework used. Classification times

will remain within reasonable bounds as in this thesis we are only interested in

domains with small training datasets. Specifically, however, we are interested in

the property of poor generalisation – a reasonably specific model of the training

data is exactly what we want in the context of this work.
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2.4.10 Unsupervised Classification Techniques

Typically, reliable classification requires large amounts of training data which,

as already stated, is a problem in domains using remotely sensed data. If we

pre-process the available data we can simplify large amounts of information to

highlight particular details within the data or remove noise from the data.

Unsupervised classification, or clustering, has the advantage of grouping instances

with similar properties and so simplifies the data [81]. Rather than forcing a set of

classes onto the data set, an unsupervised classification scheme will reflect natural

clusters in the data. This can be useful for finding novel or interesting features

in the data that would not otherwise be found. It can also be used to highlight

significant information by reducing the dimensionality of the data.

One unsupervised classification technique used in remote sensing domains is ISO-

CLASS. It is essentially the iterative optimisation algorithm of Ball and Hall [9,

125]. A set of points is chosen in multidimensional space that serve as the centre

value of each cluster, or class. Training cases are moved from one cluster to an-

other, to minimise the Euclidean distance to the centre of each cluster. The centre

point of each cluster, which is the mean of all points in the cluster, is recalculated

for each iteration. [134]

AutoClass [21, 69, 168] is another tool used for data exploration and knowledge

discovery. It is not intended as a one off classification algorithm, rather as a tool

to enhance the work of an expert in classifying data. It has successfully been

applied to many different domains, including classification of remotely sensed

imagery [64, 80]. Further discussion of this algorithm is given in the following

section.

A classification generated from a clustering algorithm is typically mapped directly

to real world classes, or investigated by experts to improve their understanding

of the given domain. An alternative is to use the classification as an additional

attribute in other classification tasks. By using unsupervised classifications in this

way we can utilise their ability to highlight relevant information in the available

data. Putting this another way, we can use these techniques to help reduce the ir-

relevant information in any available data and so make the most of the information

contained in it.
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2.4.11 AutoClass Classification

AutoClass [21, 69] is well known within the data mining community as a data

exploration and knowledge discovery tool. Although it essentially generates an

unsupervised classification, it is not intended as a one-off classification algorithm,

rather as a tool to enhance the work of an expert working with large and complex

datasets.

AutoClass is an unsupervised Bayesian classifier that searches for the model that

best describes a given dataset. As part of this, it determines the appropriate num-

ber of classes as well as the level of complexity required for each class. The most

probable classification given the data is such that the members of a class are most

predictive of each other, giving a domain independent measure of similarity [64].

This is of particular use for exploratory data analysis. The data presented to Au-

toClass can be a mixture of discrete or real values and there can be correlations

between attributes within a class. It can also handle missing attribute values,

although all attributes are assumed to be relevant.

Processing time is approximately linear in the amount of data. This means that

large amounts of data can be classified using AutoClass reasonably efficiently.

Rather than a simple partitioning of the space, AutoClass tries to find the best

class description. For a given data set, the aim is to find the most likely probability

density function, and find the maximum posterior parameter values for a given

probability density function. An outline of the algorithm is as follows.

Given hypothesis H and evidence E we define

π(H) the prior probability, that is, the belief in H prior to or in the absence of

evidence E

π(H | E) the posterior probability, that is, the belief in H after observing E

L(E | H) the likelihood of each possible evidence combination E in each possible

world H

It is assumed that the world is in some state and that some evidence will be

observed, and so,
∑

H π(H) = 1 and
∑

H L(E | H) = 1.

The joint probability J of E and H is
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J(E | H) ≡ L(E | H)π(H)

and the normalised joint probability (Bayes rule)

J(E | H) ≡ L(E|H)π(H)�
H L(E|H)π(H)

In theory it is possible for a given situation to choose a set of states H , an

associated likelihood function describing what evidence is expected to be observed

in those states, a set of prior probabilities on those states and to collect relevant

evidence. However, in practice these sums will be intractable.

So rather than considering all possible states H , we assume the model falls into

some smaller space S, and refine the model. The parameters that can describe

the model are

1. A probability density function T that describes the general form of the

model.

2. The free variables in the general form V .

Given T , V and S, the likelihood function becomes, L(E | V TS) and the prior

probability π(V T | S). If we also have that H and E are continuous then the

joint probability becomes

dJ(EV T | S) = L(E | V TS)dπ(V T | S)

which typically cannot be normalised. Combinations of RT are searched until the

marginal joint probability

M(ERT | S) ≡ ∫
V ∈R

dJ(EV T | S)

is as large as possible. Searching for better models of RT can be stopped when

estimates of how long it would take to find a better model become too large.

Further detail on the AutoClass algorithm can be found in [168, 21, 69].
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2.4.12 Previous Work using AutoClass

The use of AutoClass was demonstrated by using it to reclassify the Infrared As-

tronomical Satellite (IRAS) Low Resolution Spectra (LRS) Atlas [64]. Previously,

the more than 5000 stellar infrared spectra in the atlas, were organised according

to spectral features. However, this was found to be an inappropriate representa-

tion in some cases. AutoClass was used to reclassify the spectra automatically,

and found the previously known classes as well as some new ones. AutoClass was

useful for finding subtle differences in spectral signatures, allowing differentiation

that would otherwise have been impossible. It also allows large amounts of data

to be explored and classified reliably, rather than having to analyse it manually.

Kanefsky et al. [80] used AutoClass to investigate classes in a Landsat TM image

for an area in Kansas, U.S.A., containing only crop and grazing land, and marginal

woodlands. AutoClass identified 93 classes in the image, the majority of which

were able to be mapped directly to meaningful physical features.

Due to the success of AutoClass in highlighting information it was chosen as for

use in this work. Further discussion of this can be found in Chapter 5.

2.5 Accuracy Assessment

Error rates of 20-40% are not uncommon when classifying remotely sensed data,

and for specific classification tasks higher error rates have been reported. Even

if high error rates are considered acceptable in a given domain we still have the

problem of how reliable these estimates really are.

Higher resolution data or aerial photographs have been used to provide training

data for lower resolution data. Ripple [135], for example, used colour aerial pho-

tographs to determine the accuracy of a canopy cover classification from AVHRR

data. This kind of assessment assumes that accurate information can be derived

from the higher resolution data by a human interpreter.

The classifications provided by photo-interpretation have also been used for as-

sessing the accuracy of classification of other lower resolution remotely sensed

data. While it is accepted that there will be some inconsistency or errors in such

classifications they are assumed to be correct. This can lead to invalid results and
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unfair assessment of the classifications generated as the true accuracy of the lower

resolution classification is difficult to determine.

Until recently the same data was often used to train and test classification systems

in remote sensing and vegetation mapping domains [33, 105]. This can lead to

invalid measures of accuracy as the classifier may not give a generalised represen-

tation of the concepts within the data. Ideally an independent dataset, that has

not been used in training, should be used to test the performance of the classifier

and determine its error rate. The absence of a test dataset makes it impossible to

give a reasonable estimate of the true error rates on a classifier.

Other factors affecting the accuracy of a classification that must be taken into

account when using remotely sensed data are the methods for collecting ground

truth data, the classification scheme being used, spatial autocorrelation13, sample

size and sampling scheme [33]. The accuracy of the ground truth data should be

known, although in practice this is difficult and it is assumed to be correct.

The sample size should be large enough to contain statistically significant numbers

of cases in each of the desired categories. Unfortunately, the sample size must be

balanced with the cost of collecting the data. Richards [134], states that for n

attributes being used in a classification n+1 training cases are required to avoid the

covariance matrix being singular. A rule of thumb, suggested by Congalton [33], is

50 samples for each class in the classification. Swain and Davis [156] recommend a

minimum of 10n, and if possible 100n, training cases should be available. However,

in practice these amounts of data are not necessarily going to be possible.

The sampling scheme determines which sites are to be surveyed for the given

study area. Poor choice of sampling scheme can seriously bias the occurrence

of particular classes in the classification. For example, just surveying vegetation

along a valley would give very different species to surveying along ridges.

Ideally we would have large amounts of accurately classified data, that has been

generated with an appropriate sampling scheme, for use in training classifiers.

Where such data are available we are able to produce classifiers that have accurate

representations of the domain and produce low error rate classifications when

presented with new data. Unfortunately in vegetation mapping domains this

is rarely possible. The central theme of this thesis is to address the problems

13Spatial autocorrelation is where a pixels class is not independent of the class of the neigh-
bouring pixels.
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associated with limited availability of high quality training data, and aims to

produce the best possible classifications from the data that is available.

Once we have some data available for training classifiers it should be partitioned

into training and test sets, and for this there are a number of approaches that can

be taken.

The hold-out method [85] uses two thirds of the data for training the classifier

and keeps the remaining third for testing the classifier. The test set is not used at

all during the training of the classifier. The training and test sets can be found by

random sub-sampling which can be repeated a number of times to estimate the

standard deviation of the accuracy assessments. The holdout approach is used

through out this work.

Another approach, similar to random sub-sampling, is n-fold cross validation [85].

It has been used widely within in machine learning community to improve the

estimate of classification accuracy. Examples of its use can be found in [85, 173,

45, 172, 16]. It involves splitting the available training data into n mutually

exclusive subsets of approximately equal size. The classifier is trained n times on

all of the data in n − 1 of the partitions and tested on the remaining partition.

The error estimate is the average error over each of the n test partitions.

If the accuracy estimate is highly variable over each of the test partitions the error

estimate provided by sub-sampling techniques is likely to be unreliable [85]. This

is generally the case in vegetation mapping domains, that is error rates across

partitions can vary significantly. The classification framework presented in this

thesis has been developed to address such consistency problems. In addition to the

consistency problems these techniques are a computationally expensive method

of determining classifier accuracy. For these reasons cross-validation is not used

in this work. This is discussed further in Chapter 8.

Finally the error rate needs to be presented in a meaningful way. The simplest

and most common method for representing the accuracy of a classification is the

confusion, or error, matrix [28]. Using such a matrix you can obtain the error

rates on individual classes as well as the overall error for a classifier. This is the

means by which error rates will be discussed here.
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2.6 Conclusions

While the classification of remotely sensed data has been extensively investigated

there is still more work to be done. In this thesis we look at a number of techniques

for improving and automating the classification of remotely sensed data using

existing classification algorithms.

In this Chapter we introduced a broad range of topics across a number of research

areas. Each of these will be discussed further and built on throughout the thesis.

In particular, to aid readability, further discussion of the literature in specific

areas has been included in the relevant sections as required.



Chapter 3

Overview of the Image Datasets

Investigated

Two study areas were used for this work and are described here.

3.1 Charles Sturt University

A single airborne video image was acquired using the airborne video system

(ABVS) developed at Charles Sturt University [87]. An ABVS image1 contains

737× 537 pixels and for each pixel four spectral values are measured.

The ABVS image was acquired over the Charles Sturt University campus (CSU)

in Wagga Wagga, NSW. It contains open forest, water and urban areas as shown

in Figure 3.1.

While majority of the image contains vegetation, particular features of interest

have been labelled and are as follows.

B Buildings with landscaped gardens surrounding them. Many trees surround

the buildings, some trees overhanging the roofs. Many areas of green lawn

are also maintained around the buildings.

1Each remotely sensed image is essentially n images, one for each spectral band. In the
case of an ABVS image there are actually four independant sensors that measure data in a
given spectral range, while for the Landsat TM images each image is generated by splitting the
reflectance measured by a single sensor.

44
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Figure 3.1: Identification of areas of interest for the CSU image.

C Car parks with a bitumen surface.

D Dirt tracks.

F Cultivated field.

G Open forest that is fenced off for grazing. This area is bounded above and

below by roads and to the right by a fence - showing as a lighter colour

background. The soil is far more likely to show through here as there will

be less vegetation cover.

L Lakes or dams. The spectral signatures for these are likely to be confused

due to trees along the banks that overhang the water, water may be muddy

or covered with water weeds. In particular, the fourth lake from the right

was covered with azolla (a water weed) that is red when in sunlight (as is

the case here) and green when in shadow.

O Open forest - a mixture of eucalypts and conifers. A hill extends, sloping

downwards to the area labelled G, the remainder of the landscape being

much flatter. The under-story consists of grasses and weeds.
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P Landscaped trees with low cut grass and some weeds underneath. Some

areas, particularly to the right of the image, are watered and so are much

like lawns.

W Water storage tanks on the top of the hill.

A colour composite of the image can be seen in Figure 3.2.

Figure 3.2: Colour composite of the CSU ABVS image.
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3.2 Royal National Park

Royal National Park, in NSW, Australia, situated approximately 30km south

of Sydney. Although it is the second oldest national park in the world, being

declared a national park in 1879, until recently a vegetation map of the area was

not available. Automatically generated vegetation maps would be a particular

advantage in this case for a number of reasons. Due to the proximity of the

city the impact of human activity can be significant and so should be monitored.

Detailed surveys would be difficult to carry out on a regular basis, even for an

area of this size and accessibility.

The park is bounded roughly by Port Hacking and suburbs to the north, the

Pacific ocean to the east and limited suburban areas to the west and south as

shown in Figure 3.3.

Figure 3.3: Royal National Park.

The area investigated was Audley (identified here as RNP) as it is easily identified
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and has a range of cover types (urban, river, landscaped and bush areas). The

Audley area can be seen in Figure 3.4.

Figure 3.4: Identification of areas of interest for the RNP image.

Particular features of interest have been labelled and are as follows.

A Picnic areas. Maintained lawns and a number of exotic tree species.

B Wooden bridge.

C Cement causeway.

M Buildings.

P Car parks.

R Bitumen roads.

S Boat shed with a wooden platform that extends to the waters edge.

T Walking tracks.

W Fresh water river. In places quite shallow with water weeds.
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Sensor Path/Row Date Resolution Corrections

ABVS N/A 10/01/97 2× 2m none
Landsat TM 089/084 30/05/96 30× 30m geocoded
Landsat TM 089/084 02/08/96 30× 30m geocoded
Landsat TM 089/084 08/12/96 30× 30m geocoded

Table 3.1: Acquisition information for the RNP dataset.

For this dataset two types of remotely sensed data were available – a single ABVS

image and three Landsat TM images. Acquisition details for the images can be

seen in see Table 3.1.

Information about data corrections can be found in [28, 134].

A colour composite of the ABVS image can be seen in Figure 3.5.

Figure 3.5: Colour composite of the RNP ABVS image.
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3.3 Generating Training Data

The term dataset in the context of this work will typically mean the attributes

available for a particular area. Attributes could potentially be a variety of re-

motely sensed data, as well as climate, soil or other information. However, in this

work we will use only remotely sensed data. Each case in the dataset corresponds

to a pixel2 in the image, and each will have a value for each of the attributes.

Further discussion of attributes used for classification can be seen in Chapter 5.

Each dataset will have a sub-set of cases which is the training dataset, where

the class of each case is known. The training data is divided into three further

sets, a training set, stopping set and test set. The training set contains the cases

presented to a classification system for training. The test set contains the cases

presented to the classifier to give an estimate of the error. The test set is not used

at all during the training of the classifier. The stopping set is used for training

the neural networks only and is used to determine when to stop training, and will

be discussed further in Chapter 4.

When surveying a study area to generate a training dataset random selection of

sites may be done. The training datasets used here were generated as follows.

Firstly, areas for which class labels could be reasonably accurately determined

were manually identified from an image. Then, a random selection of n cases for

each class is made from these areas. Congalton [33] suggests that around 50 cases

were generated for each class in a given classification task attributes. This means

that for a single image we may have at most 1% of the pixels in an image for

training. This, however, is not unusual in this domain.

Generating accurate training datasets is a significant problem in itself and can not

possibly be addressed thoroughly here. Errors in training datasets can arise for a

number of reasons, including incorrectly classified cases, noise in the data due to

incorrect pre-processing of the images and incorrectly locating survey sites within

an image. However, the aim of this work is, in part, to reduce the misclassifications

due to the inaccuracy of generating training data.

2The terms case and pixel may be used interchangeably and the meaning should be clear
from the context.



Chapter 4

Issues in Neural Network

Classification

Neural networks have been promoted as the answer to all pattern recognition

problems since their introduction in the 60’s. While extremely useful in pat-

tern recognition problems, their ability to produce meaningful classifications from

small noisy training datasets has been greatly exaggerated. However, as we shall

demonstrate, it is possible to obtain useful classifications from such data using

neural networks. In this chapter we introduce the types of networks that will

be used throughout this thesis and outline some of the methods by which net-

work performance on small noisy datasets can be improved and automated. The

concepts introduced here will be discussed later in more detail in the relevant

sections.

4.1 Determining Network Topology

Determining the best topology for a neural network for a specific classification task

is a problem that is largely done by brute force search. The main problem is that

different configurations of a network can result in wildly varying results. Gahegan

et al [61] state that one of the reasons there has not been wider acceptance of

neural networks in GIS and remote sensing domains is the difficulty in configuring

a network.

Determining the number of input nodes for a network is generally easy – one

51
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input node is required for each attribute in the dataset. Similarly, the number of

output nodes is going to be constrained in some way by the number of classes to

be identified. Determining the remainder of the configuration is a little harder.

The number of hidden layers and number of nodes in each of these layers also

needs to be determined. The aim is to maximise the performance of the network

is maximised. Determining the topology the hidden layers presents the greatest

problem in configuring a neural network for a given classification task.

Rumelhart [138] suggested that networks with more hidden layers, and fewer

nodes in the earlier layers may generalise better than those with few layers and

more nodes in those layers. However, networks with many layers are harder to

train [143].

Much of the work reported in the literature use a single hidden layer as there is

little in the way of compelling evidence to support the idea that more than one

hidden layer improves the performance of a neural network [129]. However, this

does not mean that the use of multiple hidden layer networks can be completely

discounted. It has been shown that problems that involve an exclusive-or type

operation can not be solved with a single layer network [143]. An explanation

that has been given for using multiple layers is that the first hidden layer may be

extracting features of the classes that can be interpreted by later layers [143].

Nikolopoulos and Fellrath [119] used a neural network to detect interest rate

trends. A four layer network with 33 inputs, three nodes in the second layer, two

nodes in the third layer and one output node was used. This configuration was

found by using a genetic algorithm based system for configuring neural networks.

The accuracy reported on this network was 71%, and presumably was the highest

of all configurations trialled. Only a small amount of training data was available1

for this work, indicating that multiple hidden layers may be appropriate in this

situation.

Skidmore and Knowles [147] found that when classifying forest types, three hidden

layers gave better results than those with only one or two layers. The dataset

used for this work was small and noisy, and contained numeric and non-numeric

attributes. Again, this supports the idea that multiple hidden layers may provide

an advantage for small noisy datasets.

175 cases for training and 25 cases in the test set.
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Jarvis and Stuart [75] gave a summary of network topologies used in remote

sensing literature and found that around 25% used more than one hidden layer.

Overall there is little agreement about how many hidden layers there should be

for neural networks. The literature seems to indicate that we can not even narrow

down a set of rules for determining an appropriate number of hidden layers for

classifications tasks within a single domain.

The second issue is determining the number of nodes in each of the hidden layers.

It has been suggested that the number of hidden layer nodes needs to be at least

the number of classes in the given classification task [129]. A common practice is

to use the geometric or arithmetic mean of the number of input nodes and output

nodes for the hidden layer [129].

Sietsma and Dow [143] found that networks with the minimum number of nodes

in the hidden layer did not generalise as well as those with a “larger” number

of nodes. It has also been found that extra nodes in the hidden layer can help

to remove local minima which contributes to the generalisation ability of the

network [138].

Gahegan et al [61] and German and Gahegan [63] discussed ways of improving

classification accuracy for neural networks. In particular, a rule for choosing the

number of hidden nodes in single hidden layer networks was given – ( n
2 ), where

n is the number of classes. The reason for choosing this number is that it is the

number of pairwise discriminant functions needed to separate n classes, and each

node should behave as one such function.

The results for neural networks trained using ( n
2 ) hidden nodes gave similar re-

sults to that of a maximum likelihood classifier. No comparison was made with

alternative network configurations. Most importantly, however, this work demon-

strated that if a reasonable network configuration can be found the performance

can be tuned using other methods.

Skidmore et al [146] investigated varying the number of hidden nodes in a neural

network for mapping forest types. Each of the 14 attributes were mapped to 14

input nodes, and each of the 5 classes were represented by a single output node. A

single hidden layer was used and the number of nodes in this layer was varied from

one to 20. The test set error varied quite significantly for the different topologies,

from 45% to 95%. The optimal number of hidden layer nodes was found to be

10. Adding more hidden layer nodes only served to reduce the generalisation
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ability, supporting the use of the rule given by Gahegan et al. [61]. However, the

dataset used was small and noisy, which may also account for the wildly varying

accuracies.

Potter et al [129] investigated the use of neural networks for identifying whale song

endnotes from other sounds. This was a two class problem, giving classifications

of a yes or no answer for the detection of whale song end notes from spectrograms.

Experimentation with network topologies found that the best configuration was

four hidden nodes for 192 inputs and one output node. The Gahegan et al.

rule [61] would suggest only one hidden node.

Battiti and Colla [10] used neural networks for character recognition, specifically

to recognise digits from image data. A number of different networks were trained,

each using different attributes extracted from the image data. Five networks were

trained with the configurations shown in Table 4.1. In this case, the Gahegan et

al rule [61] would suggest using 45 hidden layer nodes. However, as can be seen

in Table 4.1 all networks gave error rates that were similar. Even for networks

that had very different numbers of hidden layer nodes, from those suggested by

the Gahegan rule, the error rates were low.

# Inputs # Hidden nodes # Outputs % Test Error

28 28 10 5.29%
48 28 10 5.4%
32 64 10 6.83%
56 32 10 5.03%
45 45 10 5.32%

Table 4.1: Network configurations and error rates reported in [10].

Jarvis and Stuart [75] found from their surveys of the remote sensing literature

that the number of hidden nodes is typically more than the number of nodes in the

input layer. They suggest that a larger number of hidden nodes may be required

to classify remotely sensed data, particularly scenes with greater complexity and

granularity.

Sigillito and Hutton [144] suggest that for radar signalling applications the number

of nodes should be less than half the number of inputs. Blum [14] narrows this

down further by saying the number of hidden nodes should be between the number

of input nodes and the number of output nodes.
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Overall, too few nodes in the hidden layers and the network may not be able to

distinguish between each of the classes. Too many nodes and the network may

not converge in a reasonable time, and the network generalisation decreases. The

only generally agreed upon guidelines given are that one hidden layer is usually

sufficient and the number of hidden nodes should not be “too large” or “too small”.

Sietsma and Dow [143] took an alternative approach to configuring networks,

called pruning. A three layer network topology is chosen that is larger than

the anticipated minimum requirements, the initial configuration being based on

intuition or experimentation. After the network is trained the nodes that are not

contributing to the solution (stage one pruning), as well as the nodes that are

not contributing to the next layer (stage two pruning) are removed. The non-

contributing nodes are those that have approximately constant outputs across

the training set or have outputs that mimic the outputs of other nodes. The

nodes that are not contributing to the next layer are determined by a minimum

information content criterion. To ensure linear separability is maintained after

stage two pruning, additional layers can be added to the network. The results of

this work showed that stage two pruning, and the subsequent addition of hidden

layers where required, did not provide robust performance, and that stage one

pruning was the significant step. Most importantly in the context of this work,

it was also found that stage one pruning did not substantially improve network

performance in the presence of noise. This makes pruning inappropriate for the

datasets being used in this thesis.

In contrast to the majority of discussions on network topologies in the literature

some authors report that topology is not necessarily a defining factor in classifi-

cation accuracy. This idea is central to the work in this thesis.

Jarvis and Stuart [75] carried out experiments on network topologies to classify

land cover types of water, built and vegetation from Landsat TM data. Three

layer networks were trialled with six inputs2, three output nodes and varying the

number of hidden nodes from three to 15. They concluded that these networks

were insensitive to the number of hidden nodes as the classification accuracies

did not change significantly. However, they also state that the robustness of the

networks trained may be due to the large amounts of data used in training.

Rogova [136] trained a number of networks with varying numbers of hidden layers

2TM band 6 was excluded from the set of input attributes.
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and nodes in the hidden layers for character recognition. In addition to this,

networks were trained on different sets of attributes. The results of the individual

networks were then combined using the Dempster-Shafer theory of evidence. The

results were better for the combined networks over individual networks. But

more importantly, in the context of this work, combinations involving the use of

different attributes in training performed better than those for which different

network architectures were used. That is, other factors can mitigate the effects of

a less than optimal network topology. Again, an idea that is central to this thesis.

Lees [92] states that most emphasis on neural network classification is placed on

the algorithm and not enough emphasis is given to analysis of the available data.

He points out that no matter how sophisticated an algorithm is inadequate data

will result in poor results.

In this thesis the focus is shifted towards investigation of the data and making

the most of the available information. We do not focus on finding an optimal

topology for the networks used. Here we find a workable configuration that allows

automation of neural network classification and use other techniques to fine tune

the results.

4.2 Network Configurations Used

The guidelines discussed in the previous section were used initially to help deter-

mine network topology. That is, it is generally agreed that a single hidden layer

is sufficient and that performance of a neural network is degraded if the number

of nodes in the hidden layer is too small or too large.

The work of Gahegan et al [61], German and Gahegan [63], Jarvis and Stuart [75]

and Rogova [136] demonstrate an important point, that the topology of an indi-

vidual network is not always the single most critical factor in maximising perfor-

mance. These papers demonstrate the use of techniques used to improve overall

classification accuracy, in addition to the choice of a “reasonable” network topol-

ogy. In the same way here, a reasonable network topology was determined, via

extensive experimentation, and is used in conjunction with other techniques to im-

prove classification accuracy. The techniques used to achieve this will be discussed

in later chapters.
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The aim of a neural network, in the context of this work, is to reduce a large

number of overlapping and interacting, noisy attributes into a single concept (i.e.

a single target class or classification). That is, the classification task is broken

down into a number of simple tasks, rather than training one large classifier to

recognise everything. The simpler the classification task the easier it is to recognise

the general characteristics of a given class from a small noisy dataset. We can then

combine the results of the simple classifiers. Specifically classification is simplified

in the following ways.

Binary Classification Each classifier should only be trying to distinguish be-

tween two classifications. By doing this we reduce the number of attributes

required and are able to improve the classification accuracy of individual

classifiers [76].

Hierarchical Classification Classification should be hierarchical in nature. That

is, start with classifying an image into broad classes, such as vegetation and

water. Then each class can be further broken down into its sub-classes, for

example segmenting a vegetation class into grass and trees, or forest types.

Experiments with a range of neural network topologies, varying the numbers of

layers, number of hidden nodes in each layer, and number of output nodes were

trialled for small noisy datasets. The overall accuracy was often consistent over all

network topologies trained. A significant difference in performance was, however,

provided by the use of a binary structure in the classification task. More consistent

classifications were obtained for individual test cases, across multiple networks,

by training each network to determine class membership for a single class only.

As we shall see, throughout this work, single output binary classifiers are prefer-

able to networks with one output node for each class as they allow us to better

deal with noisy data and class separability issues. Experiments with networks

with more than one output, on small noisy datasets, resulted in output values

all clustering around the same values. This meant that class membership is not

easily determined and so high error rates result.

As we shall see in later chapters a single output binary network provides more

accurate and consistent results. This approach also provides a way for us to

explicitly handle misclassifications. Thus, unless otherwise stated, the neural

networks used in this thesis have the topologies as given in Figure 4.1.
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• A three layer network is used – one input layer, one hidden layer and one
output layer.

• There is one input node for each attribute in the dataset.

• A single output is used to give a binary classification.

• The number of hidden nodes is half the number of input nodes, if the number
of input nodes is less than or equal to 40. If the number input nodes is greater
than 40 the number of hidden nodes defaults to 20.

• The network is fully connected, that is, each node is connected to all nodes
in the previous and following layers.

• A learning rate (ε) of 0.4 was found by experimentation to be the most
appropriate value for the datasets investigated here. This value reduced
the incidence of oscillation in the total sum of squares error and seemed to
reduced the possibility of finding a local minimum.

Figure 4.1: Neural network configurations used throughout this thesis.

4.3 Input and Output Values

Neural networks will perform better when the input values are all of the same

order of magnitude. For this reason all values presented to the input layer of the

neural network were scaled to be between 0 and 1. This was achieved by simply

dividing each number by the maximum value for that attribute.

Target classes were mapped to output values between 0 and 1, exclusive. This is

because training perceptron networks with target values of exactly 0 or 1 can result

in problems with the backpropagation of the error. In particular the single output

binary networks that were used to give a yes/no answer for class membership of

a single class, used target classes of 0.1 for no and 0.9 for yes.

4.4 Thresholding Output Values

Neural networks produce continuous output values in a given range, which for

this work was values between 0 and 1. These output values need to be mapped

to target values in a meaningful way. Typically, output values are divided into
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a number of sub-ranges, which are mapped to the values representing the target

classes.

For example, if we have a four class classification problem we may map each

class to one of the binary vectors in the set [0, 0], [0, 1], [1, 0] or [1, 1]. This

would require two output nodes to represent, both of which would produce values

ranging from 0 to 1. To avoid problems with the backpropagation of the error

during training, the target output values can be represented by the vectors [0.1,

0.1], [0.1, 0.9], [0.9, 0.1] and [0.9, 0.9] respectively. The output values from each

node can then be given two ranges - 0 to 0.5, and 0.5 to 1. If the value from an

output node is in the range 0 to 0.5 it has an output class of 0, and if the range is

0.5 to 1 it has an output class of 1. The mappings for these outputs can be seen

in Figure 4.2.
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Figure 4.2: Typical class separation for the outputs of a neural network.

Early work with small noisy datasets showed that simply dividing the output

values for each node into equal ranges resulted in much higher error rates. The

output values for these datasets tend not to cluster around target values. It was

found that clusters were less clearly defined and often closer together, as shown

in Figure 4.3. This however is not necessarily a limitation as smaller ranges for

the output values being mapped back to the target values can be used to ensure

that the majority of pixels are still classified with a reasonable level of accuracy.
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Figure 4.3: Outputs for a neural network trained on small, noisy datasets where
class separation is poor.

Alternatively, the threshold between classes need not be an equal split of the

output value range. Extensive experimentation showed that, with the binary

networks as described in Figure 4.1, rather than using a fixed threshold to give

fixed ranges determining class membership, a varying threshold could be used.

That is, in the case of the binary networks, if the threshold of 0.7 was used, an

output value between 0 and 0.7 would be mapped to the target value 0.1, and an

output value of 0.7 to 1 would be mapped to 0.9. The actual threshold used can

be chosen to minimise the number of false positives and false negatives.

The concept of thresholding neural network outputs was also reported in [113]. A

comparison of the classifications given by C4.5, maximum likelihood and thresh-

olded neural networks to distinguish high level tree species was carried out. It

was found that the neural network results could be refined using thresholding to

give the minimum number of misclassifications when compared with the other

techniques. That is, by choosing an appropriate threshold we are able to reduce

the number of pixels that are classified as being in a given class when they are

not.

Varying the thresholds for determining class membership from the output values

works for a number of reasons:

• It is not easy to obtain clear class separation for small training datasets

without specialising the neural network to recognise the training data only.

i.e. the network is unable to generalise the information it has learnt and so
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is unable to classify unseen data with a reasonable degree of accuracy.

• Insufficient class separation in a dataset will cause the outputs of the neural

network to spread across the range 0.1 to 0.9, rather than clustering closely

around the target output values.

Thresholding the output values can be done in one of two ways:

• A case is only given a classification when its output value is within ±e, for

some e, of a target value.

• A variable threshold is used that splits the output values into two ranges

that are not equal in size.

The second method is used most in this work as we are training networks to

determine a yes or no answer for membership of a single class. A threshold is

chosen that minimises the number of false positives and false negatives. The

result of this is that unless the outputs cluster reasonably close to the target yes

output value of 0.9, the classification given will be no.

It is still possible for thresholding to be ineffective in generating meaningful classi-

fications if all outputs cluster within a small range of values, and show no real sep-

aration at all. This tends to happen when the neural network has been swamped

with too many classes or too much information. The problem is compounded if

the data is noisy or irrelevant. In this case a default classification occurs, that is,

all outputs are essentially the same value which would all map to the same target

class.

The use of thresholding neural network outputs will be demonstrated in Chapter 8.

The application of thresholding was also published in [113], a link for which can

be found in Appendix B.

4.5 Determining When to Stop Training

As discussed in Section 2.4.3 training a neural network stops at the point at

which the error on the stopping set is at a minimum, indicating that the further

training of neural network would begin to specialise to the training data, rather
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than generalise the information. It is quite simple to plot the value of the total

sum of squares error, or tss, during training for the training and stopping sets,

and then use that to determine visually the point at which training should stop.

A neural network is trained iteratively by presenting each case in the training

dataset to it for classification. In each iteration of training, each case is classified

by the neural network and the difference, or error, between the target value and

the actual output value is determined. The error is then used to adjust the weights

and the training dataset is presented to the neural network again. Each iteration

of presenting the dataset to the neural network and then adjusting the weights is

called an epoch.

The point at which to stop training a neural network is the epoch at which the

total sum of squares error (tss) on the stopping set is at a minimum:

tss =
∑

p

∑

i

(tpi − opi)
2

where p ranges over the set of input patterns and i over the number of outputs,

tpi is the target output and opi is the output of the neural network [138].

The tss is a measure of the closeness of the approximation to the optimal solution

and will generally decrease over the course of training the neural network [138].

Stopping the training of a neural network too early results in a meaningless classi-

fier with none of the general characteristics of the training set. The classification

given by the network is largely determined by the initial random weights when

training is stopped too early. It is also widely accepted that a network is still not

trained while the tss is oscillating between high and low values.

Through extensive experimentation the author found that for this type of data a

stopping point less than 50 epochs indicates that the network has not had a chance

to learn anything. The choice of this threshold is demonstrated by the graph in

Figure 4.4, showing a typical plot of the tss at each epoch of training. As can be

seen the tss is still oscillating within the first 50 epochs and the minimum error

occurs here, at around 45 epochs. Choosing this first minimum as the stopping

point results in poor generalisation and inconsistent results. If we choose the true

minimum, at around 260 epochs, the tss has stabilised and the error on the test



63

set is at “a minimum”. For the types of networks and data used here the second

minimum error on the stopping set has been found to be a more appropriate

choice.
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Figure 4.4: Total sum of squares error on training, stopping and test datasets.

Conversely it was also found that if a neural network is trained for more than 500

epochs, with the given topologies on small noisy datasets, it is usually the the case

that network has over-fitted the data. That is, it has learnt the specific details of

the training set and is unable to generalise the characteristics of the classes for use

with unseen data with reasonable accuracy. German and Gahegan [63] similarly

found that more than 1000 epochs was unnecessary.

Determining when to stop training is a little harder to achieve automatically, but

has been done for the neural networks in this thesis using the following heuristics.

These heuristics were derived as a result of extensive experimentation carried out

over a period of time on small noisy datasets.

1. Train a neural network for 500 epochs – as there are such a small number of

training cases the networks were found to have specialised the information

in the data, rather than generalising it, if training continues past this point.

The sum of squares error on the stopping set at each epoch is recorded by

classifying the data, but, this data is not used to train the network.

2. The epoch at which the minimum tss (i.e. the minimum error) occurs for

the stopping set becomes the stopping point in the training of the neural

network. The point at which the tss at epoch t + 1 is greater than the tss



64

at epoch t signifies a local minima in the tss. This may not necessarily be

the absolute minimum over the attribute space but is used as the point at

which to stop training the neural network.

3. If the epoch is less than 50 find the next epoch with a minimal error on the

stopping set. This becomes the stopping point.

4. Once the stopping point has been established the weights of the neural

network are fixed.

4.6 Choosing a Neural Network

Back-propagation networks can show substantial variation in their outputs as a

result of the random selection of the initial weights. Different local minima may

be found that result in poor classifiers. For this reason five networks, each with

different initial weights, were trained for each classification task. This leaves us

with the problem of which specific network to use for a given classification task.

An important result of this work was that networks trained as described here

showed only a small variation in the range of output values. That is, these net-

works are less likely to find a local minima that results in a poor classifier. Thus,

the specific network that is used in classification is the one that minimises the

number of misclassifications by minimising the the number of false positives and

false negatives.

A simple program was written to test a number of thresholds for each network

and minimise the misclassified pixels. That is, we can automatically choose the

best performing network for use.

4.7 Classification Accuracy

Once we have a trained classifier how can we be sure that the test set error is a

reasonable estimate of the overall error of the classifier on unseen data?

A commonly used technique for assessing the true accuracy of classifiers is cross-

validation [85, 173, 45, 172, 16]. Cross-validation splits the training data into

different partitions, with each set of partitions being used to train a classifier.
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In the case where different partitions of the data result in similar classifications

and error rates, the error rate is considered a reasonable estimate of the error on

unseen data.

Cross-validation used in association with neural networks requires a much larger

number of networks to be trained. For each partition of the data we need to train

a number of networks each with different initial weights, significantly increasing

the training time required.

When all networks trained have similar error rates, either by training a number

with different initial weights or using cross-validation, the networks are considered

to be reasonable classifiers and the data is a reasonable representation of the

concepts attempting to be captured by the classifier.

All networks, with the topologies given here and trained as described, displayed

consistent results in classification accuracy for any given classification task. That

is, the networks used here showed less variation in output values for specific inputs,

and gave similar overall classification accuracies. Experimentation showed that

training a number of networks, with different initial weights and simplifying the

neural network topology as described here, achieves the same outcome as would

have been achieved with cross-validation.

As cross-validation did not contribute to an improved estimation of classification

accuracy it was not used in this work for neural networks. Accuracy assessment

was based only on the accuracy of the five networks trained for each task. The

network with the minimum number of false positives and false negatives was

chosen for use.

4.8 Conclusions

Neural network classifiers are extremely flexible in how they can be used, which

can mean that classification is difficult to automate. We have however limited the

neural networks and given heuristics for training them that allow us to automate

classifications. In summary, these are as follows.

• We restrict the topology of the networks to a three layer network that only

does a binary classification. The single output node is used to determine
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class membership for a single class. A different network is trained for each

class to be identified.

• Output values are thresholded to minimise the number of false positives and

false negatives.

• A set of heuristics were determined through experimentation that allow the

stopping point in training to be determined automatically.

It must be noted that a number of network topologies were investigated before fi-

nalising this particular topology and training strategy. Most importantly no other

topologies were found that gave consistent or better results. That is, networks

having other topologies and configuration parameters, trained with different ini-

tial weights but using the same data, generally resulted in significantly different

classifications for individual cases and often significantly different overall error

rates.

While it can be argued that more optimal strategies may exist, we did not find

other topologies that resulted in more accurate classifiers. Throughout this thesis

we will be looking at other techniques to improve classification accuracy, rather

than trying to fine tune the network topology to be optimal for the given classifi-

cation task. However, the techniques given here do not exclude the possibility of

modifying network configurations where appropriate or necessary.

A key result of this work is that the networks trained with this configuration give

robust results without the overhead of investigating a large number of topolo-

gies and training strategies for each new data set being investigated. This is a

significant step forward in automating classification.



Chapter 5

Automatic Generation of

Attributes from Image Data

It is widely accepted that remotely sensed data alone is not enough to produce

reliable vegetation maps. Information such as aspect, slope and climate can help

determine which species will grow in a given location. However, in practice this

information may not be available or if it is can be highly subjective and even erro-

neous. We do, however, need to ensure that the maximum amount of information

is extracted from the data that is available.

The use of data from multiple sensing platforms has been widely reported in the

literature. In one example, both SAR and Landsat TM data were used to increase

the differentiation of broad leaf and conifer classes [175]. The use of multi-sensor

information resulted in an increase in the accuracy of the classification through

better differentiation of the classes.

A variety of pre-processing techniques are available that remove noise from an

image and so improve classification accuracy [134]. However, rather than trying

to extract as much information from the data as possible, classification is often

done directly from the image after only limited pre-processing.

Rather than using a very limited range of pre-processing and classification tech-

niques we can instead apply a large number of such techniques to the data which

can be used as additional attributes in a classification task. Generating a large

number of additional attributes can be used to highlight many different features

captured in the image and so will help us to improve classification accuracy.

67
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5.1 Using Multiple Attributes to Highlight In-

formation

Maloof et al [98] demonstrated that useful generalisation is possible when us-

ing data that differs in location and aspect. Specifically on the data used here,

Figure 5.1 is an example of how different techniques can highlight different infor-

mation in an image.

(a) (b)

Figure 5.1: Highlighting different features in an image using different techniques.

The classification in Figure 5.1(a) shows quite clearly a fence line (diagonal line

from the top down, in the top left quadrant) that is the boundary between a pad-

dock that is grazed and one that is not. However, the classification in Figure 5.1(b)

more clearly delineates the road and roundabout in the image (along the bottom

half of the image), which is not as clearly differentiated from the grazed paddock

in the other classification. Note that both classifications were generated from the

same spectral data.

If either technique had been used alone information that may help to distinguish

between objects would not have been available. In particular, techniques that

simplify the information in an image result in loss of information. However, a

variety of techniques applied to an image and used as additional attributes can

serve to highlight or distinguish between different features and so improve the

quality of the maps produced when used in combination.

We need not limit ourselves to just pre-processing techniques. When available,
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images from a variety of sensing platforms with different acquisition dates can be

used. In fact, an attempt should be made to make use of any available data.

5.2 Generating Attributes

Additional attributes used for classification were generated for this work using a

variety of traditional remote sensing techniques and unsupervised classification

algorithms. Many more techniques could have been used, however those used for

the work described in this thesis are outlined in the following sections.

5.2.1 Pre-processing Remotely Sensed Data

One of the simplest ways to highlight information in a remotely sensed image is

to use simple transformations of the existing spectral data. The techniques used

in this work are as follows.

Proportional Spectral Data Determining which spectral bands show the most

reflectance can help to distinguish between objects. For example, vegetation

will show low values in the red part of the electro-magnetic spectrum and

high values in the infrared part of the spectrum [164]. We can emphasise the

relative reflectance values by generating the proportional reflectance values

over all bands.

The total reflectance R for a given pixel is given by

R =
∑

b

rrc,b

where rrc,b is the reflectance value for a pixel in row r and column c from

spectral band b. A new band of data is generated from each of the original

spectral bands where each pixel is assigned the value

rrc,b

R

Averaging Spectral Data We can incorporate texture information by calcu-

lating the average reflectance values [2]. An additional band of information

can be generated from each of the spectral bands where each pixel is given
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the average value of all pixels in an n × n radius immediately surrounding

it.

That is, the pixel in row r and column c of a texture image gets the value
∑1

i=−1

∑1
j=−1 r(r+i)(c+j)

9

where rij is the reflectance of the pixel in row i and column j in the given

spectral band.

A possible variation on this is to calculate the variance of the pixels values

in a given neighbourhood.

5.2.2 Principal Components Analysis

Principal components analysis [134] of n spectral bands produces n linearly inde-

pendant bands. This is done by transforming the n bands into a new co-ordinate

system in n-space. The first component will contain most of the variation between

the n bands, while the last component will contain mostly noise.

The spectral values of each pixel (i, j) can be described using a n-dimensional

vector xi, j, where n is the number of spectral bands. If the total number of

pixels is K then we define the mean vector and covariance matrix as follows.

m =
1

K

K∑

i,j=1

xi, j

C =
1

K − 1

K∑

i,j=1

(xi, j −m)(xi, j −m)t

where vt is the transpose of vector v.

The transformation applied to the n bands is given by y = Gxm where each

column i in G is the ith eigen vector.

An example of the result of applying principal components analysis to the CSU

airborne video image is shown in Figure 5.2. Clearly the majority of the infor-

mation is represented in the first component. The second component has more



71

clearly distinguished the urban features, such as roads and buildings, as well as

the lawn surrounding them. The last two bands contain mostly noise, though this

will not always be the case.

All principal components analysis for this work has been carried out using the

GIS package GRASS [169].
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(a) Band 1 (b) PC 1

(c) Band 2 (d) PC 2

(e) Band 3 (f) PC 3

(g) Band 4 (h) PC 4

Figure 5.2: Original spectral bands compared with the principal components anal-
ysis for the CSU image.
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5.2.3 Vegetation Indices

Vegetation indices have been widely used in mapping applications to highlight

vegetation characteristics in remotely sensed data. They can be used as additional

attributes and are generated from combinations of differences, ratios, products and

sums of spectral values for each pixel in an image. Differences can be useful for

highlighting changes between two images over the same area. Ratios between

two bands can be used to reduce the effects of topography and enhance subtle

differences, such as between rock and soil [134].

The red (RED) and near–infrared (NIR) bands are most commonly used for

vegetation indices. The reflectance in the red band is inversely proportional to

the amount of chlorophyll since it is absorbed by the chlorophyll [164]. Solar

radiation in the near–infrared is not absorbed by the vegetation, but rather is

scattered and the measured reflectance values depend on the reflectance of the

materials in the image [164]. That is, both the red and near–infrared bands are

sensitive to vegetation [164], and so the name vegetation indices.

The simplest and most commonly used vegetation indices are, the ratio vegetation

index (RV I) given by

NIR
RED

the difference vegetation index (DV I) given by

NIR − RED

and the normalised difference vegetation index (NDV I) given by

NIR−RED
NIR+RED

These indices aim to take advantage of the strong contrast between the reflectance

of green healthy vegetation in the visible and near–infrared band and the lack of

contrast in these bands for soils [127].

The NDV I ranges in value from -1 to 1, with values around -1 indicating clouds,

water or snow, 0 rock or soil and 1 vegetation. The closer the NDV I is to 1 the

more vegetation there is.
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The NDV I has been useful in monitoring vegetation as it is relatively insensitive

to changes in, for example, illumination, slope and aspect [95]. The RV I helps

reduce the effects of changes in illumination over the image due to the sensor or

topography. However, quantitative interpretation of both the NDV I and RV I is

difficult as they are sensitive to the conditions in the atmosphere and the geometry

of illumination and observation [128]. The RV I,
√

RV I and DV I have also been

found to be useful for monitoring plant development [164].

The transformed normalised difference (TV I) [72] given by

√
NIR−RED

(NIR+RED+0.5)

has been used to monitor rangelands and wheat crops as it shows a high correlation

with green biomass and so is useful for monitoring plant growth [164].

To monitor changes in the growth of a plant the GREEN/RED ratio has been

found to be useful although the RED and NIR combinations appear to be supe-

rior [164].

Variations in the rock or soil brightness will have a large effect on the above men-

tioned indices [47]. Dark backgrounds will cause an overestimation of vegetation

when compared with bright backgrounds [47]. The background soil effects can in-

fluence the values produced by a vegetation index and so reduce its effectiveness

in predicting vegetation cover.

Indices such as the perpendicular vegetation index (PV I), green vegetation index

(GV I), soil line index (SLI) and soil adjusted vegetation index (SAV I) have

been used to detect changes in green vegetation while holding the soil background

constant [72, 131]. The disadvantage with the PV I, GV I and SLI, in the context

of this work, is that they all depend on ground truth data. That is information

about the soil characteristics are taken into account.

The SAV I, defined as

0.5(NIR−RED)
(NIR+RED+0.5)

lead to the modified soil adjusted index (MSAV I) being proposed [131] to increase

the sensitivity to vegetation as well as further reducing the soil effects.
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2.NIR+1−
√

(2.NIR+1)2−8(NIR−RED)

2

A major problem with vegetation indices is that they are sensitive to the properties

of the background materials and can produce incorrect results [46]. Greenness

measures are highly dependant on the soil brightness [72].

Crippen [38] suggests that the popular vegetation indices are used, at least in part,

because of the success of past work rather than looking at possible alternatives.

There are however a potentially infinite variety of vegetation indices.

For the Australian semi–arid regions the commonly used vegetation indices have

been shown to be inappropriate [122]. O’Neill [122] found that there is a need to

explore the potential of vegetation indices using high spectral and spatial resolu-

tion data under Australian conditions as little has been done. She also states that

different indices are appropriate in different seasons.

The NDV I and RV I have been found to have limitations in semi–arid regions

due to the effects of soil background. O’Neill found that the stress related index

(SRI)

MIR.RED
NIR

using the mid-infrared, near-infrared and red spectral bands, was useful in moni-

toring semi–arid vegetation which was strongly related to the vegetation cover in

both winter and summer.

5.2.4 Using Multiple Vegetation Indices

Malthus et al [99] tested combinations of ratios and the NDV I for a number of

mid-infrared (MIR) bands. A number of vegetation indices were found to be least

sensitive to soil effects and gave reasonable estimates of canopy cover.

This seems to imply that a combination of vegetation indices may be useful in

generating evidence for the occurrence of a particular class. Each of the vegetation

indices used can serve to compensate for the inadequacies of the others, and

highlight different information within the data.
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Little work appears to have been done in comparing many combinations of bands

for a large number of different indices. With the more recent advances in sensor

technology very detailed spectral data is now available. For example, the AVIRIS

system provides 224 spectral measurements per pixel [130]. This means a far

richer set of vegetation indices is possible, but also that more computationally

expensive investigations of combinations will need to be carried out.

There is no reason to limit ourselves to the use of a single vegetation index. If we

generate a number of different vegetation indices using all possible combinations

of bands we are extending our ability to find subtle information in the data. We

are also better able to find information that can help distinguish between two

different objects that may otherwise have been confused.

A common theme when using specific indices for specific classification problems is

that they are sensitive to noise of various kinds. That is, when the environment

contains certain elements it can bias the results of the index. However, if a

vegetation index is not used in isolation, as an end in itself, we can reduce the

effects of the noise.

For the purposes of this work the vegetation indices used have been limited to those

described in this chapter, though many more could be used. A large number of

indices were generated using all possible combinations of spectral bands for each

type of vegetation index listed in this section. For example, with an ABVS image

with four bands we would generate all six combinations of bands using the ratio

vegetation index - red
blue

, red
NIR

, red
green

, blue
NIR

, blue
green

, NIR
green

.

5.2.5 Unsupervised Classification

As discussed in Section 2.4.10, unsupervised classification aims to group pixels

with similar properties. This can be useful for finding novel or interesting features

in the data that would not otherwise be found. It can also be used to highlight

significant information by reducing the dimensionality of the data.

Unsupervised classifiers used in this work to generate additional attributes were

AutoClass and unsupervised maximum likelihood. The main advantage of Auto-

Class is that it settles on a number of classes based on the characteristics of the

data. Unsupervised maximum likelihood classification was carried out using the

GIS package GRASS [169] and required the number of classes to be specified by
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the user. For this reason a number of maximum likelihood classifications were

generated.

5.2.6 Incorporating Contextual Information

To date much of the classification of remotely sensed data has been with attribute-

based techniques. However, it is well known in the field of machine learning that

attribute value learning is not always sufficient. This sentiment is also expressed

within the remote sensing community. In remote sensing and vegetation mapping

domains it would be unusual for a pixel to have a class independantly of its

neighbours. The difficulty is how to incorporate this contextual1 information into

a classification.

A number of methods are available for incorporating contextual information. For

example, relaxation labelling [134] takes a classified image and updates the prob-

abilities of class membership for each pixel using the class probabilities of neigh-

bouring pixels. Ahuja [2] found that using the surrounding n× n pixel values as

additional attributes for training a classifier was more useful than using attributes

derived from the contextual information.

Simple ways of including context in an unsupervised, or even a supervised, clas-

sification are as follows.

• Include the values for a given attribute in an n × n region surrounding a

pixel in the list of attributes for that pixel.

• Take the classes2 from a classified image in an n × n region surrounding a

pixel as the attributes for that pixel.

1In remote sensing and vegetation mapping domains this is referred to as spatial information.
2That is, once a classification of an image has been generated using a supervised or unsuper-

vised classification technique each pixel in the image will be given a class label. In the case of
a supervised classification this label already maps directly to an identifiable real world concept
like “grass” or “building”. In the case of an unsupervised classification the class given would
be based on a measure of similarity between pixels and each label can be mapped to a real
world concept using expert knowledge. Typically a classification will serve to reduce the dimen-
sionality of the data and simplify it into a smaller number of classes. Where a classification is
being used in further classification tasks (i.e. it becomes an attribute in another classification)
a smaller number of classes means a smaller number of possible values for the given attribute.
Labels generated by such classification techniques can be considered an additional attribute of
a given pixel so used in further classification tasks.
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• Take the counts of pixels in each class from a classified image in an n × n

region surrounding a pixel as the attributes for that pixel.

• Weight the attribute values to be considered in an n×n region surrounding

a pixel. That is, the further away the context pixel is the less influence its

class has.

Incorporating context in this way can generate a large number of additional at-

tributes very quickly as the number of attributes, classes or radius of context

pixels n increases. However, to keep the number of attributes used in a given clas-

sification within reasonable bounds unsupervised classification was carried out on

an n × n region for a single attribute using AutoClass. This classification then

became an additional attribute for a supervised classification.

5.3 Discussion and Conclusions

Using the techniques described in this Chapter we can clearly generate a large

number of additional attributes. Such attributes are commonly used in remote

sensing applications because they serve to highlight particular features in a re-

motely sensed image and help to remove irrelevant information.

A large number of attributes can be generated just from contextual information.

The spectral values from each of the eight neighbouring pixels could be used

as additional attributes for a given pixel or used in the generation of further

attributes that can be presented to a classifier. While such approaches are possible

the increased data dimensionality does increase the amount of information being

presented to a classifier and consequently increases the training times dramatically.

As there are already a large number of attributes being investigated neighbouring

pixels were not were not considered here.

The techniques used to generate additional attributes need not be limited to

those discussed here. It is possible to generate a vast number of attributes from

a single image, even if we limit ourselves to the techniques described here. The

transformations described here are only a small selection of those that can be used

and were chosen as they are commonly used in remote sensing domains.

The problem now is that using all of these techniques will certainly result in the

generation of a large number of possibly irrelevant or overlapping attributes. For
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a specific classification task not all attributes that can be generated will be useful

and will only serve to obscure the most relevant information in the available data.

This additional data can swamp a given classifier and end up reducing classifica-

tion accuracy. In fact, we use the classifiers themselves to learn which attributes

contain information of relevance and which do not. This will be addressed, using

attribute selection, in the following two Chapters.

It must also be reiterated that the techniques being discussed in this thesis, in-

cluding generation of a large number of attributes, is not being recommended as

a general technique for all datasets. The domains this work should be applied

to are those where only small, noisy datasets are available. If a large dataset is

available, that has an information dense set of attributes to work with, then this

approach would most certainly be overkill.

As we will see identification of the most relevant attributes of those generated

means that the classifier can be trained on a significantly reduced set of attributes.

Training times at this point become considerably faster, as do classification times,

and the overall error rates can be reduced.



Chapter 6

Attribute Selection

Attributes used in classifications can contains errors, due to inaccuracies in col-

lecting data or noisy information. This can mean that attributes, that in theory,

should be useful can be rendered useless. An example of this is climate data,

which is often generalised and so does not take into account local variations or

microclimates. This makes such data of questionable use for detailed species level

vegetation maps.

Additional attributes can be generated using a variety of techniques, as discussed

in the previous chapter. By generating additional attributes from the existing

data we can highlight significant features in an image and so improve classification

accuracy. However, training a classifier with a small number of cases and a large

number of attributes we may over-fit1 the training data [34, 56]. In addition a

large number of attributes takes longer to train the classifier and may generalise

poorly [129]. That is, with a large number of attributes we either run the risk

of learning the details of the training set, or not learning enough of the general

properties of the training set, and so are not able to predict anything about unseen

data with any reasonable degree of accuracy.

From the large number of possible generated attributes, along with those originally

available we need to find the most useful for a given classification. We also need

to be able to do this automatically.

1To over-fit a classifiers is where the classifier can not return meaningful classifications for
unseen data unless it is almost identical to the original training data. This makes the classifier
all but useless in classification tasks.

80
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6.1 Previous Work

Identifying irrelevant attributes, to remove them from a given classification task,

is a major area of concern in machine learning [89]. To enable useful predictions

to be made a learning algorithm needs to be presented with the attributes that

are most relevant for a particular domain.

Langley and Sage [90] showed that naive Bayesian classifiers are sensitive to re-

dundant attributes. Chen et al [24] were able to achieve higher classification rates

using C4.5 after attribute selection was carried out. Work carried out as part

of this thesis (see [111], and discussed later in this and the following chapter)

demonstrated improved performance in neural networks after attribute selection

was carried out.

Grigg et al. [67] used the wrapper technique with C4.5 to select the most relevant

attributes, derived from a spectrogram. From a set of 70 attributes as identified by

a group of experts, only 15 were chosen for use by C4.5. Reducing the number of

attributes in this way contributes to faster processing times in a trained classifier.

Induction algorithms, such as C4.5, generalise poorly if allowed to use all available

attributes as compared with using a good subset of attributes [20]. Poor generali-

sation is only exacerbated when the attribute values are also noisy. In particular,

attribute selection in a vegetation mapping domain becomes important when we

consider that hyper-spectral data is now becoming available (up to 255 bands) [76]

and other derived or surveyed data may be noisy.

By selecting the most relevant attributes we can potentially show a more direct

relationship between the attributes and the objects on the ground [39]. Crist et

al. [39] used tasseled cap transformations to capture 95% of the variability in an

image using half the number of bands for Landsat MSS and Landsat TM data.

The tasseled cap transformations adjust the viewing perspective of the data such

that temporal sequence information is highlighted.

One of the main problems with supervised classification in a vegetation mapping

domain is the small amount of training data. Classification accuracy will start to

decrease as the ratio of training cases to attributes decreases [76]. So, if we have a

large number of irrelevant attributes our ability to produce a reliable classification

is reduced. On the other hand, the more classes a classifier needs to identify the

more attributes that are needed [76]. Thus, there is a trade off between the
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number of attributes and the number of training cases and classes, requiring us

to identify the most relevant attributes for a given classification task.

6.2 Attribute Selection Algorithms

In general, an exhaustive search for the best set of attributes is not possible as

there are 2n−1 subsets of n attributes. So a number of heuristic search techniques

have been developed.

The search for a set of attributes can use a number of approaches, starting with

an empty set of attributes and successively adding attributes, or starting with all

attributes and successively removing them [89]. Often greedy search is used – one

attribute is considered at a time, rather than groups of attributes – to produce

a subset of good attributes. In the case of greedy search, once an attribute has

been chosen it is never reconsidered.

Evaluation of the search is often measured by the error on a test set for a given

classification technique. The search can be stopped when the error rate on the

test set stops improving, continuing while the error rate does not degrade or

investigating all possible subsets and choosing the one with the best error rate [89].

The FOCUS algorithm [5] exhaustively examines all subsets of the attributes for

the minimal subset that is sufficient to determine the class of a given input case.

The Relief algorithm [82] uses a measure of relevance for each attribute to do

attribute selection.

John et al. [77] argue, however, that the attributes selected should depend not

only on the attributes and classification task but also on the classification system

used. To this end, they proposed the wrapper method which uses the classifier

itself to do the attribute selection. Starting with an empty set, attributes are

added and the accuracy of a classification from these attributes is tested. This

process continues until the accuracy does not improve. Cross-validation can be

used to test classification accuracy. This search method can be further improved

by considering deletion of attributes at each step as well.

Attribute selection for different classifiers has shown that different subsets of at-

tributes can be more relevant to a given classifier, for the same classification

task [77, 76]. The key point to note about the wrapper method is that selecting
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appropriate attributes is done by the classifier to be used.

Not all datasets will have irrelevant attributes as an expert working in a given

domain will tend to chose only those attributes for inclusion in a dataset that are

relevant. In addition to this, the majority of datasets contain a large number of

training cases. For example, the UCI machine learning database, which contains a

large number of datasets for testing machine learning techniques, tends to contain

only relevant attributes [89]. In this case attribute selection may not be relevant.

In this thesis we are investigating datasets with potentially irrelevant attributes

and we are generating a large number of additional attributes. The number of

attributes used, and so the number of irrelevant attributes, is then decreased by

carrying out attribute selection. This approach is only feasible if the task can

be automated, which can be achieved by using the wrapper attribute selection

technique.

The wrapper technique is a significant improvement over simply verifying the

error rates for all possible subsets of the available attributes. The computational

requirements for this algorithm are O(n(n+1)
2

), where n is the number of attributes.

The worst case is where one classifier is required to be trained for each possible

subset of the attributes. In practice the number is substantially less than this,

particularly when there are noisy or irrelevant attributes.

When using the wrapper with neural networks the additional training overhead is

generally too high. The overhead is created by having to train additional networks

for each subset of attributes with different starting weights, to ensure that a local

minima is not found. This increases the worst case number of classifiers to mn(n+1)
2

,

where m is the number of networks trained for each subset of attributes. As

training times are already significantly higher for neural networks than for many

other classifiers an alternative would be preferable. A solution to this problem is

introduced in Chapter 7.

6.3 Attribute Selection in Remote Sensing Do-

mains

Typically only a relatively small number of attributes is used for a given problem in

mapping from remotely sensed data. Attributes seem more often to be generated
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and then selected based on expert knowledge, rather than from extensive searches,

as is often the case in machine learning domains. In the past this has been due, in

part, to limited computational resources. It is now feasible to explore considerably

larger data sets automatically.

Much work has been done on comparing vegetation indices, as outlined in Sec-

tion 5.2.3. For these problems vegetation indices are chosen based on their ability

to distinguish specific characteristics of the area being studied.

One approach to attribute selection used in the remote sensing domain has been to

remove redundancy using separability measurements, such as the Bhattacharryya

distance, so that the selected attributes provide class separability [78].

A commonly used approach to reduce the number of attributes is by using prin-

cipal components analysis, a technique that transforms the data into a different

attribute space (see Section 5.2.2). The last few components are removed as most

of the variation in the data is contained in the earlier components, however, it is

possible for subtle details to show up in the later components. Such techniques

serve to remove noise from the data as well as reduce the number of bands to be

considered [134, 60, 97], but once again are difficult to apply to data sets that

include non-numeric data.

Conese and Maselli [32] investigated the use of mutual information analysis to se-

lect the optimum bands for a given classification task. Mutual information analysis

is a statistical technique that evaluates the probabilistic information common to

different variables. This can be used to determine which bands contain the most

information for a given classification task. Techniques such as this are particularly

useful when trying to reduce the number of irrelevant bands without transforming

the original spectral data, as would happen with principal components analysis.

Using the optimum subset of spectral bands from such analysis increased classi-

fication accuracy by around 10%. However, there were still problems with the

effects of topography and illumination, for example.

Attribute selection in a remote sensing domain has also been carried out to not

only achieve more efficient classifications but also to display images to their best

advantage. For example, a false colour composite maps the green, infrared and red

bands in an image to the colours blue, red and green respectively. However, such

displays are used largely to highlight information for human rather than computer

interpretation.
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Overall, attribute selection appears not to have been investigated in this domain

to the same extent as for machine learning as it has relied more heavily on expert

evaluation. Now with the widespread availability of remotely sensed data and

computing systems, systematic and extensive investigations can be carried out

automatically.

However, it must be kept in mind that background knowledge is also critical in

making sense of the attributes being chosen from the attribute selection process.

Training data may not be truly representative of the classes and so not be able to

fully make use of the relationships between the attributes used in classification.

6.4 Conclusions

One aim of this thesis is to select the attributes that are most useful for a given

classification task from a large set of attributes that have come from either existing

data for an area or have been generated from existing data. Generating a large

number of attributes allows us to highlight a large number of features in the data

and attribute selection allows us to choose the most relevant attributes for a given

classification task.

The wrapper is a relatively simple technique for attribute selection and can be

used with any given classifier. The main advantage of this technique is that

the attributes are chosen by using the classifier itself. As different classifiers use

different properties of the data, different subsets of the attributes may be more

appropriate for different classifiers.

The wrapper method of attribute selection is used for C4.5 and IBL classification

tasks discussed in this thesis. However, as the wrapper is such a computationally

expensive technique when used with neural networks an alternative is demon-

strated in the next chapter.



Chapter 7

Attribute Selection for Neural

Networks

The wrapper method of attribute selection is not ideal when applied to neural

networks as the computation time becomes intractable for any reasonably sized

dataset. As attribute selection is central to this work an alternative for neural

networks needed to be found.

The technique developed, called contribution analysis, used the weights of a

trained neural network to determine the contribution of each input to the output

of the neural network. Initial experiments showed this was a useful measure for

determining which of the attributes are the most relevant in a given classification

task. An advantage of this technique over the wrapper is that it only requires one

additional training run of the neural network and provides similar results to the

wrapper, which is demonstrated in this chapter. The use of this technique has

also been discussed in [110].

As contribution analysis is a new technique we diverge temporarily from the main

theme of this thesis to demonstrate its use as a general purpose attribute selec-

tion technique. The results of its application to a number of different datasets in

different domains was investigated. Neural network classification after contribu-

tion analysis attribute selection was compared with classification after wrapper

attribute selection. Both attribute selection techniques were also compared to

a straight classification using all attributes for each dataset, using both neural

network and C4.5 classification.

86
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7.1 Assigning Contribution to Attributes

The networks for which the contributions of inputs are determined, consist of

three layers, an input layer (with ninputs inputs), a single hidden layer (with

nhidden nodes) and an output layer (with noutputs nodes). The input nodes are

numbered from 1 to ninputs, the hidden nodes are numbered from ninputs + 1 to

ninputs+nhidden and the output nodes are numbered from ninputs+nhidden+1

to ninputs + nhidden + noutputs. The connection weight between node i in layer

n and node j in layer n+1 is given by wji.

Garson [62] proposed the following measure of contribution. The contribution

that input node i makes to output node o is

nhidden∑

j=1

wji∑ninputs
l=1 wjl

.woj

ninputs∑

k=1

(
nhidden∑

j=1

wjk∑ninputs
l=1 wjl

.woj)

This method will not give a true proportion when there is a combination of positive

and negative weights. Another measure of contribution, used in [177], gives the

contribution of a node in one layer to a node in the next layer. For example, the

contribution of input node i to the hidden node h would be

|whi|
ninputs∑

l=1

|whl|

A disadvantage of this in its current form is that the sign of the contribution is

lost, and so a true proportion is not given.
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The measure used for this work (also discussed in [110]) is a modification of the

original measure given by Garson and instead, defines the contribution of input

node i to output node o as follows.

nhidden∑

j=1

wji∑ninputs
l=1 |wjl|

.woj

ninputs∑

k=1

(
nhidden∑

j=1

| wjk∑ninputs
l=1 |wjl|

.woj|)

Figure 7.1: Contributions for each input to the output of the neural network.

When defined in this way weights can be positive or negative and we will still

obtain a true proportion.

7.2 Attribute Relevance

John, Kohavi and Pfleger [77] define attributes as being

Strongly relevant if the attribute is necessary and can not be removed without

decreasing the number of correct classifications

Weakly relevant if the attribute sometimes contributes to the classification

Irrelevant if the attribute will never contribute to the classification

How to apply these definitions to contributions of attributes was investigated as

part of this work. The initial investigation of identifying the relevance of attributes

was also published in [110].

To use the contribution for attribute selection, the contributions of all inputs of

a single neural network can be calculated and those with small contributions can

be discarded as irrelevant.
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In addition, the consistency of the contribution was investigated. As neural net-

works are trained with random initial weights a minimum error network may be

found that does not provide a meaningful or useful classification. When a num-

ber of networks are trained the contributions of individual attributes will show at

least some variation. The hypothesis was that attributes with large variation in

contributions across a number of networks could also be removed as there is no

consistent information content in the available data.

Therefore, the approach investigated to measure the relevance of attributes from

the contribution analysis was as follows:

• Large contributions with small variations across all trained networks deter-

mine the strongly relevant attributes.

• Small contributions with small variations across all trained networks deter-

mine the irrelevant attributes.

• Large variations with contributions clustering around zero determine weakly

relevant or irrelevant attributes.

• Large variations with large contributions determine weakly relevant attributes,

but in some cases may be strongly relevant attributes.

The experiments carried out in this work, and discussed in this chapter demon-

strate what constitutes a large or small contribution and a large or small variation.

7.3 Using Contributions for Attribute Selection

The relevance of attributes, giving their contributions and the variation in that

contribution, can be visually represented by plotting the contribution of each

attribute for each of the networks trained (see Figure 7.2). Each point in the plot

shows the contribution of a single attribute for one of the neural networks trained

on the given classification task.

Figure 7.2 shows an idealised situation for a three input network. Each attribute

of the classification task being mapped to an input node of the network. For

each input node in each network trained the contribution to the output node is
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calculated using the formula in Figure 7.1, and then all contributions are plotted

on the graph.
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Figure 7.2: Plotting contribution of each attribute.

The graph in Figure 7.2 shows that attribute 1 has a large variation in the con-

tribution, while attribute 3 has a small variation. Attribute 2 shows a large con-

tribution with variation. A small contribution is one where the values all cluster

closely to zero.

The results reported in [110] removed attributes that showed:

• a small contribution, that is, attributes whose contributions clustered around

zero, and showed little variation

• a large variation in contributions across each of the networks trained

When these attributes were removed, an improvement in classification accuracy

was achieved. In particular, if too many attributes were removed the classification

accuracy decreased, as would be expected.

We extend the work discussed in [110] further by investigating how contribution

analysis compares with the wrapper for attribute selection, as well as determining

what constitutes an irrelevant attribute.
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7.4 Evaluation of Contribution Analysis

The following classifications were carried out and the results compared.

• neural network using all attributes

• C4.5 using all attributes

• neural network with wrapper attribute selection

• C4.5 with wrapper attribute selection

• neural network with contribution analysis attribute selection

The default settings were used for the C4.5 classifications and the neural network

configurations used were as described in Chapter 4.

The datasets used were selected from the UCI Machine Learning Repository [170].

The training data for each dataset was split into three sets of roughly equal size

using random selection. The training set was used to train the classifier. The

stopping set was used only for the neural network to determine when to stop

training as described in Chapter 4. The test set was not used at any time during

training and was used to give an unbiased estimate of the error for the classifier.

Each classification task was formulated as a binary classification problem – typi-

cally this meant that a case is in a given class or not in that class. That is, where

there were more than two classes for the given task all cases not in the given class

were grouped into a single “not in” class.

Attributes were mapped to values between 0 and 1, and outputs to 0.1 (not in

the given class) or 0.9 (in the given class). An input case was classified as not in

the given if the output of the neural network was less than 0.5 and in the given

class otherwise.

7.4.1 Iris Flower Data

The iris dataset (IRIS) has been widely used for evaluating classification algo-

rithms. Training cases were given for three types of iris – SETOSA, VIRGINICA

and VERSICOLOR. The attributes used to describe the flowers were
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Attribute Number Attribute Name

0 sepal-length

1 sepal-width

2 petal-length

3 petal-width

where each attribute was measured in centimetres.

Fifteen networks, five for each type of iris, were trained. All training cases were

used for each of the networks with the class of each case mapped to either 0.1 or

0.9. Target classes were mapped to 0.9 for an iris of a given single type and 0.1

otherwise. The number of cases in each of the training sets was as follows.

Target Class # Training Cases # Stopping Cases # Test Cases

setosa 0.9 17 17 16
not setosa 0.1 33 33 34

virginica 0.9 16 17 17
not virginica 0.1 34 33 33

versicolor 0.9 17 16 17
not versicolor 0.1 33 34 33

The contribution of each attribute to the output of five different networks trained

for each class can be seen in Figure 7.3. For both the SETOSA and VIRGINICA

class the contributions of all attributes is fairly consistent, that is, the contribu-

tions from different networks for each attribute cluster at a similar level.
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(a) SETOSA.
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(b) VIRGINICA.
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(c) VERSICOLOR.

Figure 7.3: Contribution of each attribute for the IRIS data. Plots show attribute
number vs contribution for each of the five networks.
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Using the contributions of each attribute the relevant attributes were chosen. The

attributes with contributions larger than 0.2 or less than -0.2 and a small variation

were kept.

The wrapper attribute selection was also done for each of the datasets. The

attributes selected from each of the three methods are listed in Table 7.1.

Contribution NN Wrapper C4.5 Wrapper

SETOSA petal-length petal-length petal-width

petal-width

VIRGINICA petal-length petal-width petal-width

petal-width

VERSICOLOR sepal-width petal-width petal-width

petal-length

Table 7.1: Attributes selected for the iris data.

Next, the five types of classifiers were trained - both the neural network and C4.5

using all of the attributes, the neural network after contribution analysis attribute

selection and the neural network and C4.5 after wrapper attribute selection. Each

case in the test set was then classified using each classifier, a summary of the

results on the test set can be seen in Tables 7.2, 7.3 and 7.4. Each table shows

the number of cases for each class and the classification they were given by the

classifier.
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Classified As
setosa not setosa

Class
setosa 16
not setosa 34

(a) Neural network with all attributes.

Classified As
setosa not setosa

Class
setosa 15 1
not setosa 34

(b) C4.5 with all attributes.

Classified As
setosa not setosa

Class
setosa 16
not setosa 34

(c) Neural network wrapper.

Classified As
setosa not setosa

Class
setosa 15 1
not setosa 34

(d) C4.5 wrapper.

Classified As
setosa not setosa

Class
setosa 16
not setosa 34

(e) Contribution analysis.

Table 7.2: Summary of the SETOSA error rates for the test set, numbers repre-
senting the actual number of cases in the given class and the classification they
were given.
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Classified As
virginica not virginica

Class
virginica 17
not virginica 3 30

(a) Neural network with all attributes.

Classified As
virginica not virginica

Class
virginica 15 2
not virginica 3 30

(b) C4.5 with all attributes.

Classified As
virginica not virginica

Class
virginica 15 2
not virginica 3 30

(c) Neural network wrapper.

Classified As
virginica not virginica

Class
virginica 15 2
not virginica 3 30

(d) C4.5 wrapper.

Classified As
virginica not virginica

Class
virginica 17
not virginica 4 29

(e) Contribution analysis.

Table 7.3: Summary of the VIRGINICA error rates for the test set.
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Classified As
versicolor not versicolor

Class
versicolor 14 3
not versicolor 33

(a) Neural network with all attributes.

Classified As
versicolor not versicolor

Class
versicolor 14 3
not versicolor 3 30

(b) C4.5 with all attributes.

Classified As
versicolor not versicolor

Class
versicolor 14 3
not versicolor 2 31

(c) Neural network wrapper.

Classified As
versicolor not versicolor

Class
versicolor 14 3
not versicolor 3 30

(d) C4.5 wrapper.

Classified As
versicolor not versicolor

Class
versicolor 11 6
not versicolor 33

(e) Contribution analysis.

Table 7.4: Summary of the VERSICOLOR error rates for the test set.
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Clearly the contribution analysis attribute selection compares favourably with the

wrapper technique.

For the neural network wrapper both petal-length and petal-width had a 0%

error rate when used alone to train a neural network for the SETOSA dataset

- this means that either attribute could have been chosen. The implementation

of the wrapper technique used throughout this work classifies each subset and

chooses the first attribute in the list that reduces the error rate. This attribute is

then added to the set of good attributes. Thus, the attributes chosen will depend

to some extent on their order in the search list.

The VERSICOLOR data set had a much larger error rate than either of the other

two iris types, as shown in Tables 7.4(a) and 7.4(b). This appears to be reflected

in the contributions of the attributes with a larger variation for each attribute

over the five networks as seen in Figure 7.3(c).

Little or no improvement was shown in the accuracy after attribute selection for

each of the classification tasks, though a smaller number of attributes reduces the

classification times. That is, attribute selection has removed irrelevant or weakly

relevant information without impacting the classification accuracy.
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7.4.2 Mushroom Data

The mushroom (MUSHROOM) dataset was drawn from The Audubon Society

Field Guide to North American Mushrooms, G.H. Lincoff, 1981. It has 22 at-

tributes, as follows

Attribute Number Attribute Name Attribute Values

1 cap-shape bell, conical, convex, flat, knobbed, sunken
2 cap-surface fibrous, grooves, scaly, smooth
3 cap-color brown, buff, cinnamon, gray, green, pink,

purple, red, white, yellow
4 bruises? yes, no
5 odor almond, anise, creosote, fishy, foul, musty,

none, pungent, spicy
6 gill-attachment attached, descending, free, notched
7 gill-spacing close, crowded, distant
8 gill-size broad, narrow
9 gill-color black, brown, buff, chocolate, gray, green,

orange, pink, purple, red, white, yellow
10 stalk-shape enlarging, tapering
11 stalk-root bulbous, club, cup, equal, rhizomorphs,

rooted
12 stalk-surface-above-ring fibrous, scaly, silky, smooth
13 stalk-surface-below-ring fibrous, scaly, silky, smooth
14 stalk-color-above-ring brown, buff, cinnamon, gray, orange, pink,

red, white, yellow
15 stalk-color-below-ring brown, buff, cinnamon, gray, orange, pink,

red, white, yellow
16 veil-type partial, universal
17 veil-color brown, orange, white, yellow
18 ring-number none, one, two
19 ring-type cobwebby, evanescent, flaring, large, none,

pendant, sheathing, zone
20 spore-print-color black, brown, buff, chocolate, green, or-

ange, purple, white, yellow
21 population abundant, clustered, numerous, scattered,

several, solitary
22 habitat grasses, leaves, meadows, paths, urban,

waste, woods

Each attribute value was mapped to a number between 0 and 1. Five networks

were trained to recognise a mushroom as poisonous or edible, with target neural
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network outputs of 0.1 and 0.9 respectively. The number of cases in each of the

training datasets was as follows.

# Training Cases # Stopping Cases # Test Cases

edible 436 143 135

poisonous 241 83 91

We must keep in mind that the attributes used in the datasets discussed in this

chapter were originally chosen because they do indeed have relevant information.

In particular, the attributes used to distinguish edible and poisonous mushrooms

are most likely all relevant. However, can we at least find weakly relevant at-

tributes that can be removed?

The contribution for the five networks trained on the MUSHROOM data can be

seen in Figure 7.4.
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Figure 7.4: Contribution of each attribute for the MUSHROOM data.

Attributes that can be chosen for a large contribution are

stalk-shape(10)

stalk-root(11)

ring-number(18)

Those that could be selected for low variation and non-zero contribution, though

not as clear, are
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stalk-shape(10)

stalk-surface-above-ring(12)

stalk-surface-below-ring(13)

stalk-color-below-ring(15)

veil-type(16)

veil-color(17)

The attributes that were retained were those that did not cross the zero axis or

clustered close to zero. The attributes selected by the three attribute selection

methods are listed in Table 7.5.

Contribution NN Wrapper C4.5 Wrapper

stalk-shape cap-shape odor

stalk-root cap-surface spore-print-color

ring-number cap-color population

stalk-surface-above-ring gill-size

stalk-surface-below-ring stalk-shape

stalk-color-below-ring stalk-root

veil-type stalk-surface-below-ring

veil-color veil-type

spore-print-color

population

habitat

Table 7.5: Attributes selected for the MUSHROOM data.

The results for all of the five final classifications give a 0% error rate on the test

set, except for the contribution attribute selection which had an error rate of 4%,

as seen in Table 7.6(e)). It is unclear why the C4.5 wrapper should produce a

0% error, first on the training set and then as well for the test set with so few

attributes. Further investigation of the data, with input from a domain expert, as

well as investigation of the classification algorithm might be able to resolve this

issue.

Attribute selection for the MUSHROOM dataset has allowed us to reduce the

number of attributes with only a small reduction in the accuracy for the contribu-

tion attribute selection. In this particular case it would, however, be desirable to

investigate additional subsets of the attributes to ensure that at least poisonous

mushroom are never identified as edible.
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Classified As
edible poisonous

Class
edible 135
poisonous 91

(a) Neural network with all attributes.

Classified As
edible poisonous

Class
edible 135
poisonous 91

(b) C4.5 with all attributes.

Classified As
edible poisonous

Class
edible 135
poisonous 91

(c) Neural network wrapper.

Classified As
edible poisonous

Class
edible 135
poisonous 91

(d) C4.5 wrapper.

Classified As
edible poisonous

Class
edible 131 4
poisonous 4 87

(e) Contribution analysis.

Table 7.6: Summary of the MUSHROOM error rates for the test set.
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7.4.3 The MONK’s Dataset

The MONK’s dataset was generated to compare the performance of different

learning algorithms [162]. The problem describes an artificial robot domain, where

three predicates using the following six attributes were used.

Attribute Number Attribute Name Attribute Values

1 head shape round, square, octagon

2 body shape round, square, octagon

3 is smiling yes, no

4 holding sword, balloon, flag

5 jacket colour red, yellow, green, blue

6 has tie yes, no

The original neural network problem in [162] was to investigate binary classifica-

tion where each attribute value was used as a binary input for a neural network.

For the purposes of this work it was more useful to assign each attribute to an

input of the neural network, with the attribute values assigned numbers between

0 and 1. A single output node was used to give a true or false classification.

7.4.3.1 MONK’s Problem 1

The first problem (MONKS1) was to train a classifier to give a true (target output

0.9 for our purposes) or false value (target output 0.1) for the predicate

(head shape = body shape) or (jacket colour = red)

Obviously for this problem the attributes head shape, body shape and jacket colour

are strongly relevant and the others are irrelevant.

The number of cases in each class were as follows.

# Training Cases # Stopping Cases # Test Cases

true 62 108 108

false 62 108 108
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The contributions for all of the attributes is shown in Figure 7.5. As expected the

head shape, body shape and jacket colour attributes all have quite large con-

tributions in relation to the other attributes and so were retained for classification.

These results confirm that the magnitude of the contribution is important.

These results also support the hypothesis that variation in contributions is not

a key determinant in identifying the relevant attributes. Each of the strongly

relevant attributes show a reasonable amount of variation in contribution.

Once again, wrapper attribute selection was also carried out for both C4.5 and

neural network classification. The attributes selected for each of the three methods

is summarised in Table 7.7.
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Figure 7.5: Contribution of each attribute for the MONKS1 data.

Contribution NN Wrapper C4.5 Wrapper

head shape head shape head shape

body shape body shape body shape

jacket colour is smiling jacket colour

jacket colour

Table 7.7: Attributes selected for the MONKS1 data.
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Each of the attribute selection techniques chose the relevant attributes. The

neural network with wrapper attribute selection included the additional attribute

is smiling because it did not increase the error rate. A different presentation

order for the attributes removes this attribute from the chosen set.

All of the classifications achieved a 0% error rate on the test set, except for the

neural network using all the attributes. The irrelevant attributes serve to confuse

the true characteristics being represented in the dataset.

Classified As
true false

Class
true 91 17
false 16 92

(a) Neural network with all at-
tributes.

Classified As
true false

Class
true 108
false 108

(b) C4.5 with all attributes.

Classified As
true false

Class
true 108
false 108

(c) Neural network wrapper.

Classified As
true false

Class
true 108
false 108

(d) C4.5 wrapper.

Classified As
true false

Class
true 108
false 108

(e) Contribution analysis.

Table 7.8: Summary of the MONKS1 error rates for the test set.

For this particular problem contribution analysis as the attribute selection tech-

nique is the superior method as the wrapper used with a neural network takes

considerably more time for training. However, this is a very simple problem with

obvious attribute choices.
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7.4.3.2 MONK’s Problem 2

The next problem (MONKS2) was to train a neural network to give a true or false

value for exactly two of the following predicates

head shape = round

body shape = round

is smiling = yes

holding = sword

jacket colour = red

has tie = yes

The key points to this classification are that:

• All of the attributes are relevant.

• This is an XOR problem that requires a network topology with two hidden

layers for an optimal solution. As it is the contribution analysis that is being

tested for a standard network topology, two hidden layers will not be used,

with the understanding that the best possible accuracy will not be obtained.

The number of cases in each of the datasets was

# Training Cases # Stopping Cases # Test Cases

true 64 71 71

false 105 145 145

If we look at the contribution for each of the attributes, as shown in Figure 7.6, we

see that none of the attributes stands out as being more or less relevant than any

other. This supports the hypothesis that it is not the variation in the magnitude

of the contribution, but rather that each relevant attribute has a reasonably large

contribution.

With the assumption that variation in contribution is not an indicator of attribute

relevance all of the attributes were retained. The attributes chosen for each of

the three attribute selection methods can be seen in Table 7.9. The four other
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Figure 7.6: Contribution of each attribute for the MONKS2 data.

Contribution NN Wrapper C4.5 Wrapper

head shape head shape head shape

body shape

is smiling

holding

jacket colour

has tie

Table 7.9: Attributes selected for the MONKS2 data.

classifications were carried out as before, with no additional training runs done

for the contribution attribute selection.

The error rates for all classifications are relatively high, as shown in Table 7.10.

The wrapper technique chose only a single attribute for both the neural network

and C4.5 classifiers, and the high error rates are due to a default classification

of true being given. A result such as this is to be expected as all attributes are

relevant and only one was used. Extending the search done by the wrapper may

show an improvement in the attributes chosen.

For the classifications using all of the attributes true and false classifications are

being differentiated to some extent. Contribution attribute selection is superior

for this data set as a better set of attributes has been found than for the wrapper

attribute selection, and with only one additional training run of a neural network.

Obviously the choice of attributes using contributions is to some extent subjec-

tive, but is an excellent indicator of attribute relevance as this classification task
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demonstrated.
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Classified As
true false

Class
true 53 18
false 34 111

(a) Neural network with all at-
tributes.

Classified As
true false

Class
true 46 25
false 17 128

(b) C4.5 with all attributes.

Classified As
true false

Class
true 71
false 145

(c) Neural network wrapper.

Classified As
true false

Class
true 71
false 145

(d) C4.5 wrapper.

Classified As
true false

Class
true 53 18
false 34 111

(e) Contribution analysis (all at-
tributes chosen).

Table 7.10: Summary of the MONKS2 error rates for the test set.
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7.4.3.3 MONK’s Problem 3

The final MONK’s (MONKS3) problem aims to give a true or false value for the

predicate

(jacket colour = green and holding = sword) or

(jacket colour �= blue and body shape �= octagon)

That is, jacket colour, holding and body shape are strongly relevant. This is a

particularly difficult problem to solve as there are two conditions on jacket colour.

In addition to this 5% of the cases in the dataset are misclassified.

The number of cases in each dataset are

# Training Cases # Stopping Cases # Test Cases

true 60 114 114

false 62 102 102
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Figure 7.7: Contribution of each attribute for the MONKS3 data.

From the contributions shown in Figure 7.7 the attributes body shape and jacket colour

definitely contribute the most to the output of the network. The attributes

head shape and holding cluster around zero but have a large variation in contri-

butions over the different networks, and so it was considered to be worth retaining

them. The attributes chosen by the three attribute selection methods are sum-

marised in Table 7.11.
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It is worth noting that the training set did not contain any cases where

(jacket colour = green and holding = sword)

was true. This meant that the choice of only body shape and jacket colour for

the wrapper is to be expected.

Contribution NN Wrapper C4.5 Wrapper

head shape body shape body shape

body shape is smiling jacket colour

jacket colour jacket colour

holding

Table 7.11: Attributes selected for the MONKS3 data.

Overall the error rates for all classifications were surprisingly low (see Table 7.12).

In particular, the error rate for the neural network and C4.5 dropped significantly

after wrapper attribute selection and it is not clear why this should be the case.

Further investigation of the properties of the test set will be required.

The error rate for the contribution attribute selection did not decrease, but neither

did it increase. This is a useful result as it means that we have found the attributes

that are relevant and reduced our classification times.
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Classified As
true false

Class
true 86 28
false 4 98

(a) Neural network with all at-
tributes.

Classified As
true false

Class
true 109 5
false 5 97

(b) C4.5 with all attributes.

Classified As
true false

Class
true 108 6
false 102

(c) Neural network wrapper.

Classified As
true false

Class
true 108 6
false 102

(d) C4.5 wrapper.

Classified As
true false

Class
true 88 26
false 2 100

(e) Contribution analysis.

Table 7.12: Summary of the MONKS3 error rates for the test set.
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7.4.4 Solar Flare Dataset

The FLARE dataset gives the number of solar flares in a 24hr period and the

conditions under which they occurred. The attributes used to describe solar flare

activity are as follows:

Attribute Number Attribute Name Attribute Values

1 modified Zurich class A, B, C, D, E, F, H

2 largest spot size X, R, S, A, H, K

3 spot distribution X, O, I, C

4 activity reduce, unchanged

5 evolution decay, no growth, growth

6 previous 24hr activity not as big as M1, one M1,

more activity than one M1

7 historically complex yes, no

8 became historically complex yes, no

9 area small, large

10 area largest spot <= 5, > 5

For each case the number of C (common), M (moderate) and X (severe) class

flares were given. Ideally it would have been more interesting to identify cases

where there were X-class flares, however only a total of 12 cases were available

and so insufficient for the purposes of these experiments. So, the M-class flares

were investigated.

The cases in the dataset used for this classification task (MFLARE) were given a

classification of an M-class flare occurring (target output value 0.9) or an M-class

flare not occurring (target output value 0.1). The number of flares were not used

in this classification, it was simplified to be a true / false problem. The numbers

of cases in each dataset were follows.

# Training Cases # Stopping Cases # Test Cases

M-class flare occurred 34 17 17

no M-class flare occurred 145 73 73
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The contributions of the attributes is reasonably high for most of the attributes,

as shown in Figure 7.8. Only the attributes activity(4)

and became historically complex(8) contribute little to the classification. The

contributions for these attributes cluster very close to zero and show little variation

in the magnitude of the contributions over the different networks.
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Figure 7.8: Contribution of each attribute for the MFLARE data.

The attributes selected for the three attribute selection approaches are sum-

marised in Table 7.13.

Contribution NN Wrapper C4.5 Wrapper

modified Zurich class evolution modified Zurich class

largest spot size area area

spot distribution

evolution

previous 24hr activity

historically complex

area

area largest spot

Table 7.13: Attributes selected for the MFLARE data.

The results of the five classifications on the test set can be seen in Table 7.14.

Using the wrapper with both the neural network and C4.5 there is no real change

in the error rates when compared with the classification using all the data. In

particular, using C4.5 with wrapper attribute selection finds only a small number

of relevant attributes due to the bias in the data. Only 19% of the training
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dataset are M-class flares. This means that a default classification of no M-class

flare occurring gives an error rate of 19%, and any increase in the ability to identify

M-class flares causes an overall decrease in the error rate. This overall decrease

in the error rate causes the wrapper algorithm to stop searching prematurely.

The neural network trained on attributes selected using contributions produced

similar results to the other neural network classifications. This means that we

have correctly identified the relevant attributes for this classification task.
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Classified As
mflare no mflare

Class
mflare 10 7
no mflare 8 65

(a) Neural network with all attributes.

Classified As
mflare no mflare

Class
mflare 3 14
no mflare 3 70

(b) C4.5 with all attributes.

Classified As
mflare no mflare

Class
mflare 10 7
no mflare 8 65

(c) Neural network wrapper.

Classified As
mflare no mflare

Class
mflare 5 12
no mflare 4 69

(d) C4.5 wrapper.

Classified As
mflare no mflare

Class
mflare 11 6
no mflare 9 64

(e) Contribution analysis.

Table 7.14: Summary of the MFLARE error rates for the test set.
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7.4.5 Variations in Contribution

In both the MONKS3 and FLARE datasets we saw indications that it is the

magnitude of the contributions, not the variations in the magnitude of the contri-

bution, that determine the relevance of an attribute. To investigate this further,

an additional classification was carried out for the MFLARE dataset.

For the neural network trained on the MFLARE dataset, attributes that had a

variable contribution

(modified Zurich class(1), area(9) and area largest spot(10)) were also re-

moved. That is, only the attributes largest spot size(2), spot distribution(3),

evolution(5), previous 24hr activity(6) and historically complex(7) were

used in the classification.

For this classification the accuracy decreased from 83% for the original contribu-

tion attribute selection to 55% for the test set. This indicates that the additional

attributes are, at least, weakly relevant attributes and should not have been re-

moved. That is, it is the magnitude of the contribution that is important not the

variation in the contributions for a given attribute. Only attributes that have a

contribution clustering close to zero should be removed from the set of attributes.

It must be noted, once again, that attribute selection using contributions is to

some extent a subjective choice, which may be harder to make on less well behaved

real-world datasets. However, the contributions can at least provide an indication

of the relevance of an attribute for a given classification task.



118

7.5 The Effects of Noise on Contributions

Each of the datasets mentioned previously are fairly well behaved in that there is

minimal noise in each dataset, the attributes used have been chosen by domain

experts for their information content and because they provide a reasonably clear

separation between each of the classes in the attribute space Generally, there will

be little or no noise in the actual attribute values and so each of these datasets

can be used for investigating the effects of noise in a dataset.

7.5.1 Irrelevant Attributes

For each of the datasets discussed previously noise was added firstly by adding an

additional attribute that was made up of random numbers, then the contribution

of all the attributes was determined. The contributions of the original attributes

and the extra noise attribute can be seen in Figure 7.9. The last attribute in each

plot is the noise attribute.

In the majority of cases, the contribution of the noise attribute clusters fairly

close to zero. That is, an irrelevant attribute is likely to be identified by its

almost zero contribution. Once again, this supports the hypothesis that it is

the magnitude of the contribution not the variations in the contributions that

determine an attributes relevance. However, the ability to identify irrelevant

attributes in this way will depend on the specific characteristics of a given dataset.
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Figure 7.9: Contribution for each dataset with an additional noise attribute added.
In each case the noise attribute is the one on the far right.
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7.5.2 The Effects of Noise on Attribute Contributions

A specific attribute may be identified by an expert as a strongly relevant attribute.

However, if the attribute values are incorrect or contain a lot of noise the attribute

will be irrelevant for the purposes of a classification task.

The effect of adding increasing amounts of noise on the magnitude of the con-

tribution of a strongly relevant attribute was investigated. The list of datasets

chosen and the strongly relevant attribute used are listed below. These attributes

were chosen as they had large contributions in the previous experiments.

Dataset Relevant Attribute

SETOSA petal-length

MONKS1 jacket colour

MONKS2 holding

MONKS3 jacket colour

MUSHROOM stalk-root

MFLARE historically complex

Noise levels of 1%, 5%, 10%, 20%, 50% and 100% were added to the attribute

values for the given attribute to generate six new data sets. The networks were

retrained for the new data as before, and the contributions for the strongly relevant

attribute calculated.

Figure 7.10 shows just the contributions for the strongly relevant attribute with

increasing levels of noise. The contributions of the remaining attributes changed

a little to adjust for the loss of information in the given attribute, but generally

remained the same.

Clearly in each case the contribution of the attribute decreases towards zero.

In general, each seems to show a decrease in the variation of the contributions

over the five networks as well. Again, this supports the idea that it is not the

variation in contributions over different networks that determines the relevance of

an attribute, rather, it is the magnitude of the contribution relative to the other

attributes that is important.

As expected, if the noise in an attribute is high it will be of little use in a classifi-

cation and can be removed from the attribute set. In terms of the neural network

a contribution that is “close to zero” indicates a noisy or irrelevant attribute.
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Figure 7.10: Contribution for a strongly relevant attribute for each dataset.
(% noise added vs contribution)



122

7.6 Application to Remotely Sensed Data

Contribution analysis is clearly useful when used on datasets with small numbers

of attributes. How well does it perform when used on datasets with large numbers

of noisy or irrelevant attributes?

Contribution analysis was applied to remotely sensed data, where the classification

task was to distinguish between two classes, grass and trees, using 151 attributes.

A discussion of this was also published in Milne [111].

Classification using all 151 attributes resulted in no distinction being made be-

tween the two classes. The average error rate on the test set was 38%, but varied

from 24% to 53% for individual networks. This indicates that the neural networks

were not able to distinguish between relevant and irrelevant attributes, and were

unable to find the central characteristics that distinguish the two classes.

Attribute selection was carried out on the 151 attributes using contribution anal-

ysis. The magnitude of the contributions varied from around -0.04 to 0.03 and so

thresholds for selecting attributes of ±0.01, ±0.02 and ±0.03 were tested. That

is, if attributes fell within the given range they were removed from the training

data.

Neural networks were then trained on the attributes selected. The error rates for

these classifications on the test set can be seen in Table 7.15.

Dataset # Attributes Av. Test Error

all attributes 151 38%
attributes with contribution >0.01 and <-0.01 53 5%
attributes with contribution >0.02 and <-0.02 12 7%
attributes with contribution >0.03 and <-0.03 3 14%

Table 7.15: Average error rates for classification of remotely sensed data as re-
ported in [111].

In all cases, after attribute selection the error rates decreased significantly. In

addition, the error rates for the different neural networks trained on the same

training dataset only differed from the average by at most a few percent between

individual neural networks. That is, we are able to obtain more reliable and

consistent classifications from neural networks if we remove irrelevant and noisy

data.
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The classifiers were then used to classify the entire remotely sensed image on

which the training dataset was based. In spite of the low error rates, it was found

that the classification using the threshold of 0.01 still had too many attributes as

there was little differentiation of the two classes over the entire image. On the

other hand, the classification with the threshold of 0.03 had too few attributes,

and again, was unable to show any differentiation between the two classes over

the entire image.

Overall it was demonstrated that it is possible to use contribution analysis for

attribute selection with large number of attributes. A number of training runs

may be required to determine which is the best subset of attributes, however, it

is significantly less time consuming than using wrapper attribute selection with

neural networks.
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7.7 Discussion

This chapter discussed a new technique for selecting relevant attributes for a

number of different datasets when using neural network classifiers. A comparison

between the wrapper method and contribution analysis for attribute selection on

neural networks was carried out for well understood data sets. Attribute selection

for large numbers of attributes was also discussed.

Only the contributions of inputs to a neural network with a single output node

were considered here. Further work is needed to investigate the best approach for

networks with more than one output node.

Selection of attributes using their contributions was done by the author based

on the absolute magnitude of a given contribution and the relative magnitudes

of the contributions for each of the attributes. For the remotely sensed data

used in this work, extensive experimentation showed that a threshold of ±0.2

was an appropriate choice. Further work will need to be done to determine if

this is a generally applicable threshold for the relevance of an attribute from its

contribution.

It must be noted that both the wrapper method and contribution analysis are

heuristic search techniques and can only choose a good set of attributes, not

necessarily the optimal set of attributes. However, attribute selection using con-

tribution analysis is still a considerably faster approach for neural networks and

overall performed no worse than the wrapper method.

It is not a requirement that the error rates of a classifier must decrease after

attribute selection. By reducing the number of attributes we are at least reduc-

ing the time taken to generate a classification. In some cases the error rates

of the classifiers after attribute selection actually increased than when using all

attributes. This is due to relevant attributes not being chosen or irrelevant at-

tributes retained. There is no reason why a number of iterations of attribute

selection can’t be carried out to find a better set of attributes, and so at least

maintain the accuracy.

Overall, when using contribution analysis for attribute selection only those at-

tributes with a contribution that cluster close to zero should be removed. How-

ever, as the datasets contain increasing numbers of attributes the magnitude of

the contributions will decrease. The relative contribution is still the important
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factor in determining relevance.

7.8 Conclusions

We now have two useful attribute selection techniques, the wrapper method and

contribution analysis specifically for use with neural networks. This allows us to

generate a large number of attributes, as discussed in Chapter 6, and then remove

the irrelevant information. This is of particular use in the context of this work as

many of the attributes generated will be irrelevant for a given classification task.

The application of these attribute selection techniques will be used further in later

chapters. Next we look at other ways of improving classification accuracy.



Chapter 8

Improving Classification

Accuracy

So far we have discussed methods for extracting the most useful information from

remotely sensed data, but this only addresses part of the problem. Additional

problems include:

Misclassified training data. Errors in survey data due to problems such as

inexact identification of location, differing expert opinion, and vague con-

cepts1.

Incomplete class information. It is not necessarily desirable or even possible

to enumerate all classes that could occur in a remotely sensed image, and

harder again to collect training data for them. A specific example of this is

mapping forest types. It is difficult, if not impossible, to carry out sufficient

surveys to obtain data on each possible forest type, for a given area.

Small training datasets. In this domain it is difficult and expensive to generate

large training datasets. Data collection is expensive as it typically requires

ground surveys, over large areas.

Misclassifications from classifiers. Misclassification of unseen data is, in part,

due to misclassified training data and incomplete class information. It is also

1An example of this is the forest types as defined by the NSW Forestry Commission [57]. The
forest types define proportions of particular species that occur in association. The proportions
are defined in terms of ranges making this is a highly subjective classification.

126
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due to the way in which the classifier generates a model of the training data.

There are, however, a number of techniques we can use to reduce the number of

misclassifications.

Other work, such as that discussed in [93, 76, 70], has shown that binary classifi-

cation requires fewer attributes and produces more accurate classifications due to

the simplification of the task. Initial experiments carried out as part of this work

published in [113] confirmed these results.

Misclassifications can also be due to the characteristics of remotely sensed data.

For example, the spectral signatures for bare soil or rocks can be similar to that of

man made structures [102]. This can be due to the small number of broad spectral

bands being used, however, Price [130] found that even using a large number of

narrow spectral bands, separation of some classes is still not possible. Problems

related to the limitations of the available data should not stop us from using the

data that is available to generate a reasonable classification.

Pixel unmixing has been used to avoid misclassification of remotely sensed data

(for examples see [102, 58]). The disadvantage of this technique is that data sam-

ples are needed for pure classes. That is, the spectral characteristics for just soil

or just vegetation are needed. To complicate matters further, spectral signatures

can vary quite significantly with varying conditions, and so pure class data must

be collected under a variety of conditions.

Stone et al [154] developed a land cover map of South America using AVHRR

data. Classifications using vegetation indices were possible with an overall error

rate of around 10%. However, a problem in this study was the misclassification

of sites in the study area. It was estimated that 8.5% of the map was between

76% and 89% reliable, while 6.5% of the map was less than 75% reliable. While

the use of low resolution data is limiting, its use should not result in such varying

classification reliability.

Given that misclassification errors can arise, and may be for a number of reasons,

it would be preferable to only classify areas that are sufficiently similar to classes

that are understood and not try to classify anything else. That is, only give a

classification when a number of techniques are in agreement and not have to make

the assumption that we have data on all possible classes in an image.
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In this chapter we investigate a number of techniques that will help us to increase

classification accuracy for noisy, small or incomplete training sets.

8.1 Training Dataset

In this chapter we look at a simple classification of the CSU dataset. Four broad

classes were identified as the main classes in the image (grass, trees, urban and

water). A small dataset for a simple classification task was deliberately chosen

so that the improvements demonstrated could be attributed to the technique, not

the vagaries of the data.

A multi-class neural network was trained to recognise each the four classes, using

only the spectral data as inputs. The inputs were scaled to values between 0 and

1. The network topology used was four inputs, two hidden nodes and two output

nodes. Each of the classes was mapped to target output values as shown below.

A total of 433 training cases were extracted from the image and were split up into

three sets, as described in Section 3.3.

Class Target Output Values Total Cases Training Cases Stop Cases Test Cases

grass 0.1 0.1 109 56 29 24
trees 0.1 0.9 103 65 22 16
urban 0.9 0.1 103 64 16 23
water 0.9 0.9 118 74 20 24

The multi-class classification gave an error rate of 4.6% on the test set for the four

class neural network (see Table 8.1), and we can generate a reasonably accurate

map from the image (see Figure 8.1). Comparison should be made with the

labelled image in Figure 3.1.

In Figure 8.1 we can see that a few of the lakes in the image have been misclassified

as trees, which is not unreasonable considering that most are covered by water

weeds. Boundaries around some of the buildings have been given a classification

of water. As well, in the lower right quadrant some of the buildings and trees

have been confused. This is also a reasonable error as many of the buildings have

overhanging trees.
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Classified As
grass trees urban water

grass 21 2 1
Class trees 16

urban 1 22
water 24

Table 8.1: Classification accuracy on the test set for the best multi-class neural
network.

grass trees urban water

Figure 8.1: A four class classification of the image using a multi-class neural
network.

It is important to note that data specific properties, such as the effects of shadow

and mixed pixels, were not investigated as part of this work. However, the classi-

fication framework developed in this thesis lends itself well to this kind of inves-

tigation.

8.1.1 Incomplete Information

In practice a reasonably high accuracy classification in not necessarily going to

be possible. The classification in Figure 8.1 had complete class information and

relatively accurate training data. That is, the training data contained classes
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that cover all objects in the image, and the cases for each class were reasonably

representative of the characteristics for the given class.

In classifications where this level of detail is used high accuracies are readily

obtained. However, when we start to consider more detailed classifications, such

as identifying specific plant species, it is much harder to generate high accuracy

classifications. This is, in part, due to the difficulty in collecting enough training

data of sufficient quality.

Even for broad class classifications as done here, errors will still occur. If we

assume that it is better to give no classification to a pixel rather than an incorrect

classification we can still produce reasonably accurate classifications.

To test this the grass class was left out of the training set and stopping set for the

dataset mentioned in the previous section. A multi-class neural network, with the

same topology was trained on the data for the trees, water and urban classes

only. The networks still have two outputs, and the output 0.1 0.1 is given an

unknown classification.

The error rate on the test set has apparently dropped from 4.6% to 1.1%, as seen

in Table 8.2. The neural network was then applied to the 24 grass pixels from the

original test set, and 15 were misclassified as trees and 7 misclassified as urban.

Two of the grass pixels have been given the unknown class.

Classified As
trees urban water

trees 16
Class urban 1 22

water 24

Table 8.2: Classification accuracy of a neural network.

As would be expected the classification of the entire image is not as good as

the original four class classification, as seen in Figure 8.2. The classifier was not

trained to recognise grass pixels and so pixels that should have this class have

been misclassified as belonging to one of the other classes. On the test set, the

grass pixels have been classified as trees or urban. A few of the pixels have been

given the unknown classification, though this will not always happen in practice

and depends on the number of classes and the network topology.

In this particular case the pixels given the unknown classification are largely bound-



131

unknown trees urban water

Figure 8.2: Neural network map, grass class left out.

ary pixels. These pixels can contain spectral information from one or more classes

and so are likely to be misclassified. For the ABVS imagery in particular there is

also a slight offset that occurs between the bands during image acquisition2 that

will also cause misclassification of pixels at the boundaries of classes.

The misclassified region at class boundaries is generally one to two pixels wide

in this specific case, but this will vary from image to image. A more detailed

investigation of the effects of boundary pixels was not carried out as part of this

work.

The poor performance demonstrated in classifying unseen cases using neural net-

works is not due the classification technique or the configuration of the networks

used. Similar results are obtained for other classification systems.

Two further classifications were generated using C4.5 and IBL(k=1). The same

data that was used to train the neural networks were used to train the additional

classifiers. Both gave exactly the same error as the multi-class neural network

2Rectification of the ABVS image has not been carried out and is a preferable solution.
However, as the ABVS is an experimental system, rectification of images is being investigated
by the researchers at the Spatial Analysis Unit at Charles Sturt University, Wagga Wagga,
Australia.
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classification – an overall error on the test set of 1.1% as shown in Table 8.2. As

expected, the low error rates on the test data are not reflected in the classifications

of the entire image (see Figure 8.3) due to incomplete information.
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(a) C4.5 classification.

(b) IBL(k=1) classification.

trees urban water

Figure 8.3: Multi-class classifications.
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The classifications given by the three classifier systems for the incomplete training

data have very low error rates on the test set. However, when we apply the

classifiers to an entire image the error is apparently quite high when visually

evaluated. While we are unable to quantify the error over the entire image as

we only know the classes of a relatively small number of pixels, the error is high

enough that qualitative assessment can be used.

A high error rate over the entire image is, of course, expected. We know that the

classifier will never be able to recognise grass as it has not been trained to do so.

When using all of the available data to train the neural network we are able to

produce a reasonable classification of the entire image.

Within a vegetation mapping domain noisy and incomplete data is always a pos-

sibility. Misclassifying training data is possible for a variety of reasons, as with

any other domain. This problem is compounded when we try to carry out more

detailed classifications that may not contain training data for all possible classes.

Overall we have the following problems:

• If there are classes that we do not have training data for our classifiers will

never be able to recognise them.

• Misclassifications can occur when there are noise or errors in the training

data.

We will now look at techniques that will help to reduce the number of misclassifi-

cations for datasets that are incomplete or noisy, using the three class dataset as

described here.
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8.2 Thresholding Neural Networks

A major problem with misclassification of pixels arises from the fact that classifiers

pigeon hole all cases into one of the known classes. A neural network, however,

produces continuous outputs, typically in the range 0 to 1. The target outputs

are at specific points within this range. The actual outputs rarely fall exactly at

these points and so the output values are partitioned to give a range of outputs

for each of the target values. Input cases are assigned the class that corresponds

to the range in which the output value falls.

For the networks described in the previous section, to get a classification the

output range of each output node was divided into two. That is, an output > 0.5

meaning the node has given a classification of 0.9, otherwise the classification is

0.1. These values for both outputs of the neural network are then mapped to one

of the four classes including the unknown class. However, if an output is close

to 0.5 which target output value should it be mapped to? Rather than simply

dividing the output space of a neural network between the known classes we can

instead threshold the outputs and only accept a classification when it is “close”

to an expected output value. The results of this work was also discussed in [113].

Using a number of networks with different input data, a range of thresholds were

trialled. It was found that for networks with two target output values per node a

threshold of ±10% of the target output values minimised the numbers of misclas-

sifications arising from noisy or incomplete data, and maximised the numbers of

correct classifications. So, in the case of the networks described in the previous

section, a class is given only when the output is within ±0.1 of the target output

values. When an output falls outside of this range the case is given an unknown

classification. This is not an error, as such, it just signifies that the pixel being

classified is not similar enough to the classes that we have data for.

If we do this for the network trained on three classes we can still obtain an overall

error rate of 3.4%, as shown in Table 8.3.

When we apply the thresholded neural network to the grass pixels from the

original test set, 11 are misclassified as trees and 4 as urban. However, 9 of

the grass pixels have been correctly given an unknown classification. This is a

significant improvement over the neural network trained on just the three classes.

If we look at the map produced from the thresholded neural network we again
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Classified As
unknown trees urban water

trees 16
Class urban 2 1 20

water 24

Table 8.3: Classification accuracy of neural networks after thresholding the output
values.

see a significant improvement (see Figure 8.4). A large proportion of the grass

pixels have been given an unknown classification.

unknown trees urban water

Figure 8.4: Neural network map with thresholding applied to the output values.

Although we have been able to limit the classification to pixels that are close to

cases we have seen before there are still problems. In the thresholded network map

there are still a large number of misclassifications. In the top left hand quadrant

of the image there are grass pixels that have been misclassified as urban and in

the bottom left quadrant as trees. Only two of the lakes have been identified.

Thresholding the outputs of a neural network can improve classification accuracy,

but will only work for this type of neural network classification. We now look at

ways to improve classification accuracy when using any classification system.
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8.3 Classifier Configuration and Training

The increasing complexity of a classification task can result in increasing error

rates. Classification problems with large numbers of attributes and classes will

tend to give higher error rates. As discussed in Chapter 6 irrelevant attributes will

also result in errors in classification. Similarly, a large number of classes requires

a more complex division of the attribute space by the classifier system and so can

increase the error rate.

Murre [115] described a modular hierarchical neural network methodology that

more accurately reflects the structure of the human brain. It consisted of small

modules that solve specific problems and are then combined in a hierarchical

fashion. Smaller interacting networks are not only much faster to train, but also

require smaller numbers of inputs to achieve a given task.

The use of a binary tree structure to simplify the classification process, was demon-

strated in [68, 76]. A case is classified through a chain of binary classifiers, similar

to a decision tree. Each node in the binary tree is a binary classifier that is

trained to split the decision between two alternatives. This approach reduces the

number of attributes required for each classifier and the accuracy of the resulting

classification increased.

Binary classifiers can also be trained to distinguish one class from all other

classes [93]. As with the IRIS and MFLARE experiments in Chapter 7, the target

classes for the training data are grouped into two classes – in a single specified

class or not in that class.

By breaking down a large classification problem into a series of smaller ones we can

improve the accuracy of individual classifiers, and so the reliability of the maps

generated. As we shall see, an additional benefit is that a different topology forces

a different view of the data and so enables the number of incorrectly classified

pixels to be reduced.

8.3.1 Binary Classifiers

Binary classification is achieved by grouping the training cases into two classes –

the single class that is to be distinguished and the remainder of the cases from

the other classes grouped into a single class. Training a classifier in this way finds
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the characteristics of the most consistent class.

The topology of the binary neural networks used for this work are as follows. A

binary network has a single output. The class to be recognised is given a target

of 0.9 and the remainder of the classes are given a target of 0.1. The outputs of

the network are also thresholded as discussed in Section 8.2.

Binary neural networks were trained to recognise each of the classes trees, urban

and water. The error rates for these neural networks are similar to the multi-class

neural network (see Table 8.4).

This approach gives us two measures of error. Firstly, the overall error gives the

number of cases that have not been assigned their correct class. Secondly, the

misclassification error is the number of cases that have been given an erroneous

classification, which does not include the cases given an unknown classification.

The cases given an unknown classification are not considered to be in error, rather

are those that require further investigation.

When measured this way the overall error – all pixels that can not be correctly or

reasonably accurately classified – for the tree class, for example, is 4.7% while the

misclassification error – the pixels that have been given an incorrect classification

– is 1.6%.

It was also found that the variance between the outputs of the neural networks

trained on the same data but with different initial weights is considerably smaller

for binary networks than for multi-class networks. This means that a pixel being

classified by a number of different, trained binary classifiers all give outputs for

a specific input within a much smaller range of output values. Simplifying the

problem to be a binary classification has meant more consistent classifications can

be obtained and so the reduced flexibility of the configuration is not a problem.

The classifications produced by the individual binary neural networks can be seen

in Figure 8.5.

As can be seen in Figure 8.5(a) there has been some overestimation of the tree

class – mostly grassed areas. However, the tree canopies are clearly visible.

The urban classification has a large amount of soil and rock areas included in it.

But, the urban features have been clearly identified.

The water classification has minimal misclassifications. However, three of the
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Classified As
trees not trees unknown

Class
trees 16
not trees 1 44 2

(a) Trees.

Classified As
urban not urban unknown

Class
urban 20 3
not urban 40

(b) Urban.

Classified As
water not water unknown

Class
water 24
not water 38 1

(c) Water.

Table 8.4: Classification using binary neural networks.

lakes have not been identified, which is due to a thick coverage of water weeds.

Again, this is an anomoly that justifies an unknown classification and would war-

rant further investigation for mapping purposes.
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(a) Trees. (b) Urban.

(c) Water.

not in the given class in the given class

Figure 8.5: Maps from binary neural networks classifiers.
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For comparison, binary classifications using C4.5 and IBL were also generated.

The results on the test set for the C4.5 classification can be seen in Table 8.5 and

the classifications over the entire image can be seen in Figure 8.6.

The C4.5 classification was better at identifying urban features. All grassed and

soil areas have been given a tree classification (see Figure 8.6(a)). The water

class has been substantially overestimated.

Classified As
trees not trees

Class
trees 16
not trees 1 46

(a) Trees.

Classified As
urban not urban

Class
urban 22 1
not urban 40

(b) Urban.

Classified As
water not water

Class
water 24
not water 39

(c) Water.

Table 8.5: Classification using binary C4.5 classifiers.



142

(a) Trees. (b) Urban.

(c) Water.

not in the given class in the given class

Figure 8.6: Maps from the binary C4.5 classification.

The IBL classification used the three nearest neighbours. If the IBL classification

used only one nearest neighbour the result should not be significantly different

to a multi-class classification. The error on the test set is identical to the binary

error for C4.5, as shown in Table 8.5. The classifications for the entire image can

be seen in Figure 8.7.

In this case, the tree and urban classes have been overestimated, while the water

class has only a relatively small overestimate for class membership.

All three binary classifier systems have shown improvement in the classification

accuracy, even though grass pixels are still being misclassified. We also see,

particularly in the case of the IBL classification, that the occurrence of the water

class has been over-estimated. As we need to combine binary classifications we
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(a) Trees. (b) Urban.

(c) Water.

not in the given class in the given class

Figure 8.7: Maps from the binary IBL(k=3) classification.

can do this in such a way that reduces the overall error rate even further.
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8.4 Multi-Strategy Classification

Real-world problems rarely satisfy all the requirements of a single strategy classifi-

cation technique, it is more common for problems to only partially satisfy classifier

pre-conditions [160]. Specifically in the case of neural networks, Thiria et al [161]

state that the complexity of remotely sensed domains mean that a single classifier

approach is not possible. Even if a dataset is a correct and complete description

of a given domain it may be too complex to use with learning algorithms [141].

An alternative approach is to integrate a number of different strategies in some

way. This can be done in one of two basic ways.

• The output of one classifier is used as input to a further classifier or arbi-

tration scheme.

• Completely new classifiers can be created by merging the algorithms from

existing classification techniques in some way.

The first approach is the one being considered in this thesis as there already exist

a large number of excellent classification algorithms that have been proven to be

effective. The central problem being addressed here is the amount and quality of

the training data, not the issues with the classification algorithms themselves.

Layered neural networks were used by Yoshida and Omatu [179] to classify Land-

sat TM data. They were able to produce more realistic classifications as compared

with standard backpropagation networks and maximum likelihood classification.

The layered approach firstly classified pixels in the image into broad categories

using a Kohonen self-organising map. Training data is then selected from geo-

graphical information and the self-organising feature map, which is used to train

a backpropagation network. The results from this network are further improved

by deleting pixels that are incorrectly classified from the training data set and a

further backpropagation network trained.

The work of Yoshida and Omatu found that the mean squares error of their layered

approach was not smaller than a standard backpropagation network. However,

the layered approach was considered an improvement as it does not require com-

plete class information and is more resistant to noise in the data. The layered

approach increased the overall accuracy to 85%, from 61% for both standard

backpropagation network and maximum likelihood classifiers.
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Van Allen et al [4] used a combined approach to identify objects in noisy images.

Firstly a nearest neighbour neural network classifier was used to extract common

features from object shapes with reinforcement learning rules used to store the

extracted features. Next the boundaries of the objects were completed using the

Boundary Contour System [166].

In this case new classes could be identified for unfamiliar objects, mitigating the

effects of incomplete information. A strength of this approach was considered

to be the flexible system architecture provided by decomposing the problem into

several stages. This modular approach also meant that each stage of classification

could be individually optimised and so improve classification accuracy.

Thiria et al [161] found that the requirement of significant amount of a priori

knowledge about a classification task made determining neural network topolo-

gies difficult. Their belief is that complex problems can not be solved with a

single neural network, no matter how sophisticated it is. Their approach was in-

stead to use a number of simple back-propagation neural networks that co-operate

together.

Thiria et al [161] built a classification system of co-operating neural networks – the

output of one or more of the back-propagation neural networks is used as input a

successive layer of one or more neural networks. Each network in the architecture

is dedicated to a specific task and is used to perform successive processing of the

data. This approach meant that changes to the data or the problem to be solved

could be more easily accommodated by adjusting the system architecture, rather

than re-training the neural networks. This also means that errors in one module

have the chance of being corrected in others.

Similarly Rogova [136] combined the results of multiple neural networks using

the Dempster-Shafer theory of Evidence3 for character recognition. Classification

improvements of 15-30% were obtained as compared with the best single classifier.

Shavlik and Towell [141] combined the use of explanation based learning (tech-

niques such as C4.5) and neural networks to recognise a variety of objects, such

as chairs and cups. The advantage of the explanation based systems are that they

only require a small number of examples to learn a concept, however, they do not

function well with uncertainty, incomplete or changing information. Neural net-

3Used to assign probabilities to classifications and so determine the accuracy.
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works, on the other hand, require large amounts of training data, training times

are significantly longer and are difficult to interpret, but are better able to handle

uncertainty and noisy data.

The hybrid system developed by Shavlik and Towell used explanation based learn-

ing to develop a set of rules from a small training dataset, and used the neural

network to refine the rules using additional data for training. Again, the hybrid

classifier performed better than either of the individual classifiers used alone.

Battiti and Colla [10] used statistical measures to assign votes to classifications

produced by different neural networks. In particular they found that combining

the classifications of networks trained with different attributes, different topolo-

gies and using different learning algorithms saw the greatest improvements in

classification accuracy.

Drucker and Cortes [42] also believe that committees of classifiers perform better

than single classifiers. Boosting was used to combine the results of classifiers –

each classifier is trained on data that has been filtered by a previously trained

classifier. The outcome is to identify, and then remove the misclassified or low

signal to noise ratio cases from the training set.

The error rates for character recognition reported by Drucker and Cortes were

reduced to 0.7% for neural networks with boosting, from 1.6% for networks with-

out boosting4. Similar results have been reported for C4.5 classification across a

number of different domains [70].

Real world data typically contains noise, is subjective or can contain contradictory

information [70]. He and Huang [70] used neural networks with boosting to classify

credit card data – real world data that is noisy, subjective and has contradictory

information – and were again able to reduce classification error rates.

For small datasets boosting is difficult as we may end up removing information

that could be used in the classification. Pre-processing the data in some way, such

as discussed in Chapter 6 is preferable as we are removing some of the noise and

contradictory information, without removing the relevant information.

There is ample evidence in the literature to suggest that significant improvements

can be obtained by combining the results of more than one classifier (see also [121,

4In character recognition domains very high accuracies are already possible and error reduc-
tion from 1.6% to 0.7% is significant
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27, 53, 79, 83, 15, 19, 7, 73, 3, 41]). The aim for combining classifiers in the context

of this work is to make use of the best properties and results of each classifier,

and mitigate the effects of inadequate, noisy data.

8.5 Agreement Classification

An approach for combining binary classifications was developed as part of this

work, and was first published in [99]. The technique, called agreement classi-

fication, only gives a classification for a specific pixel if all binary classifiers are

consistent in their classifications. It is based in the idea that a classification system

should reject cases that have a high probability of being misclassified [10].

As an example, if a binary neural network classifier gave the following outputs:

Binary Binary

Classifier NN Output NN Classification

tree 0.92 tree

urban 0.01 not urban

water 0.25 not water

would result in a pixel being classified as tree – the classifications of all three

binary classifiers support the same conclusion. Whereas a classification with the

following outputs:

Binary Binary

Classifier NN Output NN Classification

tree 0.93 tree

urban 0.87 urban

water 0.31 not water

would result in a pixel being classified as unknown – the classifications of the three

classifiers do not support each other.

An agreement classification can be used to combine the binary classifications.

They are generated by giving a class to a pixel only when all the classifiers agree
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on the class membership of a given case. If one or more of the classifiers gives a

different class for a pixel an unknown classification is given.

Battiti and Colla state that disagreement between individual classifiers is seen

as a symptom of an uncertain classification [10]. Accepting a classification only

when all classifiers agree ensures that only pixels with characteristics consistent

with the known members of a given class are classified, and reduces the effect of

errors in an individual classifier.

A majority vote in an agreement classification is not used as it requires the as-

sumption that individual classifiers are accurate, which may not be the case with

small noisy datasets.

Figure 8.8 shows the agreement classifications generated from each of the classifier

systems.

Unfortunately, there has been little change in the classification of the entire image.

Each of the classification systems gave a reasonably consistent result over the

three binary classifications. However, it is clear that each classifier has given

very different classified images. We can use this result to improve our overall

classification accuracy further.
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(a) Agreement NN classification. (b) Agreement C4.5 classification.

(c) Agreement IBL(k=3) classification.

unknown trees urban water

Figure 8.8: Agreement classifications for binary classifiers.
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Classified As
unknown trees urban water

trees 16
Class urban 4 19

water 24

Table 8.6: Agreement classification between binary neural network, C4.5 and
IBL(k=3) classifications for the test error.

8.6 Multi-Strategy Agreement Classification

Different classifier systems can provide complimentary results which when in-

tegrated can support each other as well as compensate for each others weak-

nesses [106]. By combining classifications from a number of different classification

systems we are able to remove some of the misclassified pixels.

Different classifications can be generated in two ways.

Varying the classifier system. A variety of classifiers can be trained on the

same dataset. We have done this here by using neural networks, C4.5 and

IBL.

Varying the training data. We can vary the training data by grouping dif-

ferent cases together into the known classes. For example, a dataset that

contains data for all classes and a dataset that contains only two classes, as

we have already done with the multi-class and binary classifications.

Any of the classifications generated using these or other approaches can be com-

bined using agreement classification.

8.6.1 Different Classifier Systems

The agreement classifications that were generated from the binary neural network,

binary C4.5 and binary IBL classifications (as shown in Figure 8.8) were combined

in a further agreement classification. The error on the test set can be seen in

Table 8.6.
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For the test set we see that none of the pixels were misclassified and this is due to

the neural network classification. That is, the C4.5 and IBL binary classifications

did not produce classifications inconsistent with the neural network classifications

– the majority of the inconsistent classifications were already given a class of

unknown by the neural network agreement classification. The original test set,

that contained grass pixels, were given the same classifications as were given in

the agreement classification for the binary neural networks.

The classification of the entire image is almost identical to the agreement classifi-

cation of the binary neural networks, and can be seen in Figure 8.9(a). In spite of

its similarity to the classification shown in Figure 8.8(a), 4% of the unknown pixels

were actually due to inconsistent classifications between the three classifiers.

If we look at the 4% of the pixels that were given inconsistent classifications

between the three classifiers we find that they lie mostly on the boundaries of

objects (see Figure 8.9(b), note that the boundaries between buildings stand out in

particular). This is due to rectification errors and mixtures of spectral information

at class boundaries. Agreement classification allows us to reduce the effects of

these boundary pixels in the training set and will go some of the way to producing

a more accurate classifications.

In spite of some misclassifications being removed there are still a large number

of pixels with incorrect classifications. For example, the large number of pixels

classified as urban in the top left hand corner of the image should be classified as

unknown as they are in the grass class. This means that the models that have

been generated by the three classifiers are not sufficiently different to improve

classification accuracy to a high enough degree.
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unknown trees urban water

(a) Agreement classification.

inconsistent

(b) Inconsistently classified pixels.

Figure 8.9: Agreement classification between binary neural network, C4.5 and
IBL(k=3) classifications.
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Classified As
unknown trees urban water

trees 16
Class urban 1 22

water 24

Table 8.7: Test set error for agreement classification between multi-class and
binary C4.5 classifications.

8.6.2 Different Training Datasets

Different training datasets can provide a different view of the area to be classified

and so produce a different classification. Without generating new data, different

training datasets can be quite simply generated by grouping the existing data

into different subsets. This has already been demonstrated with the multi-class

and binary classification schemes. Each uses the same cases in the training set,

however, the cases are grouped into classes in different ways. This forces the

classifier to generate a different model of the data, even if the same underlying

classification system is being used on the same actual data.

The previously generated C4.5 multi-class (Figure 8.3(a)) and C4.5 binary classi-

fications (Figure 8.8(b)) were combined using agreement classification. The error

on the test set was 1.6% as before (see Table 8.7). Of the 24 grass pixels from

the original test set, 12 were given an unknown classification, 11 a tree classifi-

cation and one an urban classification. This is a significant improvement over all

previous classifications – 50% of the misclassified pixels have been removed.

As can be seen in Figure 8.10, the map produced is also an improvement over the

other approaches discussed. Most of the grass class has been removed by giving

them an unknown classification. Some areas in the bottom left hand quadrant

remain classified as trees, and some as urban in the top right. But, overall

majority of the grass pixels have been removed. All other structures are as clear

as for the classifications trained on all four classes (as seen in Figure 8.1).

The use of differently trained classifiers causes different models of the data to

be found. The characteristics that describe prototypical cases of each class are

refined when such classifications are combined using agreement.
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unknown trees urban water

Figure 8.10: Agreement classification between the multi-class and binary C4.5
classifications.

8.7 Comparison with Cross-Validation

A commonly used technique used to determine classification accuracy is n-fold

cross validation [85]. The available training data is split into n mutually exclusive

subsets of approximately equal size. The classifier is trained n times on all of

the data in n − 1 of the partitions and tested on the remaining partition. The

error estimate is the average error over each of the n disjoint test partitions. If

the accuracy estimate is highly variable over each of the test partitions the error

estimate provided by sub-sampling techniques are likely to be unreliable [85].

Early experiments using cross validation on small, noisy datasets confirmed the

high variability in error estimates across different classifiers trained on different

sub-samples of the data. However, using cross validation in combination with the

techniques as discussed here do not add any additional value as the error estimates

are more consistent when using agreement classification for a given classification

task. In addition the error estimates using cross validation were found to be

comparable to that obtained by the classification framework described in this

thesis, and requires an additional n − 1 classifiers to be trained. This increases

the training times substantially.
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For these reasons cross validation was not used in this work.



156

8.8 Discussion and Conclusions

In this chapter we discussed techniques for reducing the numbers of misclassifi-

cations – firstly, by thresholding neural network output values, and secondly by

generating a number of classifications that are combined by agreement classifica-

tion. In particular, binary classifiers have allowed two opportunities for reducing

the number of misclassification – first, by training classifiers on a simple task, and

then when the results are combined using an agreement classification. The per-

formance of each classifier can be further improved by using attribute selection,

as discussed in Chapter 6.

The reasons for inconsistent classifications being given to a pixel can include:

• Inconsistently classified pixels may belong to an existing class but have suf-

ficiently different characteristics to other members of that class. Differences,

for vegetation mapping for example, may be due to factors such as different

light or nutrient levels, or noise and errors in the training dataset.

• An area may not be classifiable because it belongs to a class not represented

in the training dataset.

Partial classification of an image, to remove the misclassified pixels, is not seen

as a disadvantage, rather as an advantage. Areas that are classified have a better

chance of being correctly classified, while those that have not been classified are

simply those needing further investigation.

Combining the results from different classifiers may seem to increase the error rate

on the test set in the sense that some pixels are given an unknown classification.

However, these pixels have not been misclassified and so are not considered in

error. If we look at the classification over an entire image we see a significant

reduction in the number of misclassifications. This approach is seen as an im-

provement over simpler classification approaches as we have an increased level of

confidence that the error rate on the test set can be translated directly to an error

rate over the entire image.

Most importantly any classification system can be included in an agreement clas-

sification as it is a general technique that uses previously classified data only.

An important consequence of the approach described in this chapter is that, rather
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than classifying an entire image with limited accuracy (varying with class and

conditions) we identify areas we know we can classify relatively accurately, and

say nothing about the rest of the image. This also means that we no longer have

to assume we have complete information. That is, we can assume we do not have

sufficient labelled training data to entirely describe the domain.

When only a small number of training cases are misclassified, due to there being a

large amount of high quality training data, the approach suggested in this thesis

is certainly overkill. Rather, these techniques are specifically for domains with

small and noisy datasets, where the number of misclassifications is going to be

high.

A simple dataset was used in this chapter, firstly, so that the improvements demon-

strated could be attributed to the technique, not vagaries of the data. Secondly, a

small number of training cases were deliberately chosen to simulate the real world

situation where only small amounts of training data are available.

The techniques described here can also be used to identify some types of data

errors. In the situation where a training case is given an incorrect classification

by a classifier it should be investigated further. This kind of error may indicate an

error in the data or the need to investigate why such cases differ from the general

properties of the given class. In this situation the classification techniques can

provide a data mining function, and be used to analyse the available data.

A further problem with the vegetation mapping domain in particular is that it is

generally not possible to quantify the error over the entire image accurately. The

error rate on a test set does not always translate directly to a reasonable estimate

of the error rate over the entire image, due to the inadequacy of the training data.

So far we have been evaluating the error on the entire image using qualitative

assessment, which is obviously a source of errors. In the next chapter we look

at simulating remotely sensed data to allow us to better quantify classification

error and so further investigate the application of attribute generation, attribute

selection and agreement classification.



Chapter 9

Simulating Remotely Sensed

Data

A major concern for classification of remotely sensed data is quantification of the

accuracy of the training data and that of classifications generated from it. The

training data itself may contain errors or noise. The classifier generated from

this data often also produces misclassifications. From the training data, typically

containing only a few hundred cases at best, we are trying to classify an entire

image consisting of hundreds of thousands of pixels. How can we quantify the

true error?

In the absence of a training dataset with a large number of cases, a low error rate

on a test set does not necessarily mean a low error rate over the entire image. This

is of particular importance when we wish to compare the performance of different

classification techniques. This was clearly demonstrated in the previous chapter

– all test sets had very low error rates and it was only when the classifiers were

applied to an entire image that it became clear that all varied quite substantially

in their classifications and which one was the superior classification.

As there were no datasets with the required properties that were publicly available

at the time of writing, simulating a remotely sensed image was seen as the only

viable alternative. A simulated image is one where the class of all pixels are known

and so can help us to quantitatively compare the classifications generated by

different classification systems. An image can be simulated by using the statistical

properties of training data from an actual image.

158
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Chen et al [22] simulated remotely sensed images to test the performance of a

dynamic learning neural network. An unsupervised classification of the image

was generated using ISOCLASS clustering [9] for three bands of a 512x512 frame

from a SPOT image. This generated an 8 class classification which was used as

the basis for a simulated image. The mean values for each class in each band were

calculated and the pixels in the simulated image were assigned random numbers

having the mean of the given class and a variance of four.

In the classifications carried out by Chen et al [22] error rates of between 1% and

10% were reported for the simulated remotely sensed data. These results carried

through to the classification of a real image with an estimated error rate of 8%.

By using a variance of four the generated spectral values for each of the classes

have been tightly constrained, possibly helping to achieve the very low error rates.

The larger the variance, the larger the overlap between classes is going to be. That

is, the classes will be more easily distinguishable for a small variance, especially

when there are only a small number of broad classes, such as water and vegetation.

Images produced in this way do not reflect the variance seen in a real image very

well.

A real image will also show correlations between pixels. The spectral value for a

given pixel in a given band will be correlated to the spectral values of its neigh-

bouring pixels. This is because most pixels will contain mixtures of objects and so

contain a mixed spectral response and most scenes show gradual changes between

pixels.

In addition, the spectral values for each pixel in an image will be correlated across

each of the bands. The covariance’s between spectral bands in the approach

used by Chen et al [22] are taken care of in that the standard deviations for the

simulated image are very small. This means that the simulated values will show

similar covariance’s to the original data.

In this chapter we look at extending the method for simulating a remotely sensed

image used in [22] to include these additional statistical characteristics.

9.1 Method for Generating Images

The simulated image generated here was based on the CSU image (see Figure 9.1).



160

The process for simulating a remotely sensed image was as follows.

1. Generate training data. A set of classes to be used for the simulated im-

age are identified in a real image. Pixels that can be reasonably accurately

classified are extracted from the existing image, giving a set of classified

cases. The mean spectral value for each class over each band and the co-

variance’s between bands for each class are then calculated.

Fifteen high level classes were identified in the CSU image. These classes

were chosen because consistent areas of pixels could be easily identified

within the image. At least 100 pixels were extracted for each of the classes

and the means and covariance’s calculated. The classes and statistical char-

acteristics can be seen in Table 9.1.

2. Generate a classified image. An image of size r × c is generated where

the class of each of the pixels is known. This can be easily done by mapping

the desired classes to the classes given for an unsupervised classification of

a real image.

The classified image used here can be seen in Figure 9.4 and was generated

from an AutoClass classification of the CSU spectral data.

3. Generate standard normal random numbers. For each pixel in each

band in the simulated image a random number with mean 0 and standard

deviation 1 is generated. The number of bands in the simulated image will

be the same as the original image the training data was derived from.

The CSU image contains four spectral bands and so the simulated image

will also have four bands. For each of the pixels in the classified image,

four random numbers were generated that will become the four spectral

values. The Box-Muller method was used here to generate random normal

numbers [84].

4. Band Covariance. The spectral response for a given pixel will be cor-

related across all bands for a given class. Using the algorithm described

in Figure 9.3, we can generate dependant numbers with given distributions

from random numbers.

The four independant random numbers generated for each pixel in the clas-

sified image are correlated using the algorithm in Figure 9.3 using the means
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and covariance’s of the class for that pixel. The values for each pixel result-

ing from this transformation will be correlated between the bands and are

in the range 0 to 255.

At this stage we have a simple simulated remotely sensed image with 15

classes and four spectral bands.

5. Pixel spatial correlation. The spectral values between neighbouring pix-

els within a given spectral band in an image are also correlated. To achieve

this in the simulated image the spectral value of a pixel in a given band is re-

placed by the weighted sum of its spectral value and that of its neighbouring

pixels.

For the simulated CSU image the weighted sum was as follows. Each pixels

value is replaced by 0.8r + 0.2m, where r is the pixels current value and m

is the average spectral value of the 8 neighbouring pixels. This also serves

to blur the boundaries between classes by averaging the spectral values.

6. The addition of noise. A real image will contain at least some noise due

to factors such as atmospheric effects and properties of the sensor being

used. The simulated image generated so far is statistically well behaved and

so a small amount of noise should be added. This can be done in a number

of ways.

One source of noise in an ABVS image is the the video camera lenses. This

noise radiates out in a circular pattern from the centre of the lens. Pixels

at the edge of the image cover a larger area on the ground than the pixels

at the centre of the image and so are slightly darker. The circular noise

pattern produced by a camera lens was simplified to a darkening across the

image for this work.

A graduated image, as seen in Figure 9.2, was used to scale the spectral

values in the simulated image and make the pixels darker at one end of the

image. The graduated image was the same size as the simulated image with

values in the range 192 to 255.

Each pixel in the simulated image was replaced by the value

rijmij

255

where rij is the spectral value of the pixel in row i and column j and mij is

the value in the corresponding pixel in the graduated image.
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The image generated using this method can be seen in Figure 9.5.
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(a) Blue, original image. (b) Green, original image.

(c) Red, original image. (d) NIR, original image.

Figure 9.1: Original remotely sensed image.
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255

192

Figure 9.2: Noise levels added to the simulated remotely sensed data – the value
in the graduated image was used to reduce the magnitude of the values in the
simulated image.
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Generating dependant random numbers.

Given n independant normal random variables Xi (mean 0 and standard deviation
1) it is possible to generate n dependant normally distributed variables Yi (means
μi and covariance cij between variables Yi and Yj) as follows.

Y = AX + M
AAT = C

where A is a triangular matrix, M is the vector of means and C is the covariance
matrix.
If we wish to generate four bands of data four dependant numbers (yi) can be
generated from four independant random numbers (xi) as follows.

y1 = μ1 + a11x1

y2 = μ2 + a21x1 + a22x2

y3 = μ3 + a31x1 + a32x2 + a33x3

y4 = μ4 + a41x1 + a42x2 + a43x3 + a44x4

The following simultaneous equations need to be solved for the given covariance
matrix to get the coefficients aij .

a11 =
√

c11 a21 = c12
a11

a31 = c13
a11

a41 = c14
a11

a22 =
√

c22 − a2
21 a32 = c23−a21a31

a22

a42 = c24−a21a41

a22
a33 =

√
c33 − a2

31 − a2
32

a43 = c34−a31a41−a32a42

a33
a44 =

√
c44 − a2

41 − a2
42 − a2

43

Further details can be found in [84].

Figure 9.3: Generating correlated random numbers.
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bitumen buildings cement dirt road exotic trees field
gazebo grass grazed lawn grass understory roundabout

tanks trees water

Figure 9.4: Classification of the simulated image.
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Mean Standard Deviation
Class blue green red nir blue green red nir

bitumen 177 112 128 107 38 36 41 31
buildings 171 158 178 135 43 33 47 30
cement 248 220 230 215 23 53 55 35
dirt.road 192 157 198 224 51 52 48 33
exotics 31 54 9 223 21 30 15 55
field 78 57 104 122 17 16 26 19
gazebo 185 155 146 134 40 25 25 33
grazed 116 88 138 150 28 29 40 29
lawn 67 89 41 250 25 22 30 22
grass 120 89 130 173 18 16 24 25
understory 104 82 93 192 24 18 27 27
trees 40 13 12 147 22 14 15 65
water 57 51 29 16 39 35 32 49

Table 9.1: Statistical characteristics of the classes used in image generation.
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(a) Blue band. (b) Green band.

(c) Red band. (d) NIR band.

Figure 9.5: Simulated remotely sensed data.
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9.2 Comparison of the Simulated Image and the

Original Image

The characteristics of the two images are compared here.

9.2.1 Statistical Characteristics

The statistical characteristics1 for each band can be seen in Tables 9.2 - 9.5. Each

table shows the minimum, maximum, mean (μ), median values and the standard

deviation (σ) for each class in the image.

As expected both images show similar statistical properties, although the sim-

ulated image values are generally slightly lower. This is due to the addition of

noise, reducing the values in the simulated image.

1The statistical characteristics for the original image use only the class data that was ex-
tracted, not the entire image for obvious reasons.
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Blue
Original Image Simulated Image

Class Min Max μ Median σ Min Max μ Median σ

bitumen 12 255 177 176 38 1 229 146 151 44
buildings 27 255 171 161 43 1 250 153 153 38
cement 12 255 248 255 23 1 199 96 50 85
dirt.road 72 255 192 198 51 1 238 146 170 72
exotics 1 124 31 27 21 7 83 33 32 15
field 27 154 78 79 17 58 140 84 83 15
gazebo 91 243 185 191 40 11 200 154 154 29
grazed 1 255 116 124 28 81 214 123 121 24
lawn 1 213 67 61 25 31 140 63 62 18
grass 16 191 120 124 18 92 185 123 122 15
understory 5 202 104 102 24 64 159 96 95 17
trees 1 131 40 39 22 13 103 42 41 17
water 20 236 57 35 39 13 158 56 53 26

Table 9.2: Statistical characteristics of the classes in the simulated image for the
blue band.

Green
Original Image Simulated Image

Class Min Max μ Median σ Min Max μ Median σ

bitumen 1 255 112 120 36 3 224 108 105 33
buildings 9 255 158 154 33 1 248 140 141 47
cement 16 255 220 247 53 1 200 102 119 62
dirt.road 1 255 157 154 52 1 237 146 150 57
exotics 1 139 54 57 30 12 159 57 55 27
field 5 124 57 53 16 32 144 66 64 20
gazebo 120 202 155 154 25 110 186 139 136 20
grazed 1 255 88 91 29 28 246 102 100 34
lawn 1 191 89 91 22 44 162 83 81 22
grass 1 154 89 91 16 60 176 95 94 19
understory 1 154 82 83 18 45 169 79 77 18
trees 1 79 13 12 14 1 226 30 20 48
water 1 191 51 31 35 2 163 55 51 33

Table 9.3: Statistical characteristics of the classes in the simulated image for the
green band.
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Red
Original Image Simulated Image

Class Min Max μ Median σ Min Max μ Median σ

bitumen 1 255 128 135 41 1 230 114 113 52
buildings 1 255 178 165 47 1 251 119 130 66
cement 5 255 230 255 55 1 200 103 110 59
dirt.road 5 255 198 202 48 1 242 127 146 71
exotics 1 98 9 12 15 1 215 59 29 74
field 1 195 104 102 26 12 242 120 117 36
gazebo 79 180 146 150 25 88 191 130 126 28
grazed 1 255 138 146 40 1 255 145 146 57
lawn 1 198 41 39 30 1 216 61 54 45
grass 5 254 130 131 24 1 253 143 140 36
understory 1 165 93 94 27 8 209 96 93 33
trees 1 91 12 16 15 1 226 53 31 68
water 1 221 29 12 32 1 203 61 49 52

Table 9.4: Statistical characteristics of the classes in the simulated image for the
red band.

NIR
Original Image Simulated Image

Class Min Max μ Median σ Min Max μ Median σ

bitumen 1 202 107 117 31 2 213 101 98 30
buildings 1 255 135 139 30 1 251 124 124 38
cement 12 255 215 221 35 1 196 107 133 65
dirt.road 24 255 224 228 33 1 243 129 174 84
exotics 5 255 223 255 55 1 217 108 130 67
field 31 255 122 120 19 95 198 127 126 18
gazebo 46 172 134 143 33 27 210 126 114 43
grazed 5 255 150 154 29 1 254 158 159 46
lawn 20 255 250 255 22 1 216 95 38 88
grass 1 255 173 176 25 5 251 176 174 19
understory 16 255 192 191 27 1 222 170 169 23
trees 1 255 147 146 65 1 225 137 139 48
water 1 255 16 76 49 1 203 89 80 61

Table 9.5: Statistical characteristics of the classes in the simulated image for the
near infra-red band.
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9.2.2 Histograms

Histograms for each band of each image can be seen in Figure 9.6. The histograms,

using the data from the entire image, show that the spread of spectral values are

similar.

Note that the values for the simulated image are spread over all possible 256

spectral values. However, the original image does not have all spectral values

represented in the image due to the method of data acquisition. This means that

the histograms for the simulated image would have smaller counts spread over all

values. To reduce the spread for the simulated image every three values have been

grouped into the same bin in the histogram.



173

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250

C
ou

nt

Intensity

(a) Blue, original image.
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(b) Blue, simulated image.
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(c) Green, original image.
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(d) Green, simulated image.
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(e) Red, original image.
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(f) Red, simulated image.
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(g) NIR, original image.
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(h) NIR, simulated image.

Figure 9.6: Histograms of the original spectral data and simulated data.
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# Pixels % Pixels # Training # Stop # Test
Class Class id. in Image in Image Cases Cases Cases

bitumen 1 19552 4.6% 44 21 22
buildings 2 12115 2.7% 38 18 19
cement 3 8427 2.0% 34 17 17
dirt.road 4 9501 2.2% 28 14 14
exotics 5 1873 0.4% 31 15 16
field 6 13419 3.2% 25 12 12
gazebo 7 137 19 9 9
grazed 8 33240 7.9% 42 20 21
lawn 9 30869 7.3% 34 17 17
grass 10 61806 20.9% 42 21 21
understory 11 88348 14.6% 44 21 22
roundabout 12 735 0.2% 27 13 13
tanks 13 543 0.2% 18 9 9
trees 14 138957 32.8% 37 18 19
water 15 3516 0.8% 33 16 17

Table 9.6: Number of cases in each dataset.

9.2.3 Classification Performance

Finally, we do a simple classification of the simulated image to test its behaviour

when classified.

The classification carried out here is a simple four attribute multi-class classifica-

tion. The attributes are the four spectral bands from the simulated image that

can be classified into one of the 15 classes as shown in Table 9.6. A total of 985

cases were randomly selected, as described in Section 3.3, from the image and

split into three sets.

The C4.5 and IBL classifications gave the kind of results that would be expected

(see Table 9.7). These test set error rates are not unusual for this domain, but

are still high. Table 9.8 shows the number of pixels given each classification from

the test set.
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Classifier Test Error Image Error

C4.5 44.0% 56.6%
IBL(k=1) 32.6% 73.6%
IBL(k=3) 44.7% 70.2%

Table 9.7: Classification error on the simulated image data.

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 16 1 1 1 1 1 1
2 5 7 1 1 2 1 1 1
3 4 2 5 2 2 1 1
4 1 9 1 3
5 1 11 1 3
6 7 1 2 1 1
7 2 4 2 1

Class 8 1 2 1 10 1 3 2 1
9 2 4 7 4
10 4 2 14 1
11 5 15 1 1
12 1 2 1 8 1
13 1 3 5
14 1 1 16 1
15 2 1 3 2 2 1 1 5

(a) C4.5 Classification.

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 15 3 1 1 1 1
2 3 5 2 1 4 1 2 1
3 1 9 2 1 2 1 1
4 3 9 1 1
5 11 2 3
6 8 1 2 1
7 1 6 2

Class 8 1 1 2 14 1 2
9 12 1 4
10 2 19
11 1 21
12 3 1 8 1
13 1 2 5 1
14 1 17 1
15 1 2 2 3 1 8

(b) IBL(k=1) Classification.

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 15 5 1 1
2 5 5 4 1 2 1 1
3 1 7 1 3 1 1 2 1
4 4 7 2 1
5 9 2 1 3 1
6 7 1 3 1
7 1 3 3 2

Class 8 1 1 1 12 2 3 1
9 1 9 1 6
10 1 17 3
11 3 1 1 17
12 2 1 1 7 2
13 1 3 1 3 1
14 2 14 3
15 1 2 6 2 1 5

(c) IBL(k=3) Classification.

Table 9.8: The number of pixels given in each class for the test set.
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Over the entire image we see a large increase in the error rate as compared with

the test set error, as seen in Table 9.9. The number of incorrectly classified pixels

has increased, but with no particular pattern of misclassification.

The neural network that was trained on the simulated data had three layers, each

with four nodes. The four input attributes, which were the four spectral values,

were scaled to be between 0 and 1. The 15 target classes were mapped to a four

digit binary number, giving the four output values for the four output nodes, as

seen in Table 9.10.

The neural network classification performed very poorly and almost all cases were

classified as cement (class id 5), giving an error rate of 93% on the test set.

However, this is to be expected in a neural network classification as there were

only 4 inputs and 15 classes to be identified.

This neural network was unable to distinguish any of the class characteristics

in the input data. All but a few of the output values were identical to within

2 significant digits. While the other classifiers were able to distinguish at least

limited features in the input data, the neural network could distinguish none.

Thresholding output values is of no use in this case due to the lack of separation

in output values.

Even if we consider the C4.5 and IBL test set error as acceptable, we see that the

error over the entire image is considerably higher. The problem with this type of

approach is that each classifier is trying to distinguish a large number of classes

with a small amount of information.

Such poor classification results indicate that the classification task is too complex

and not enough information of sufficient quality is available to the classification

system. And yet these types of classifications are not all that unusual within the

remote sensing and vegetation mapping domains.



177

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7145 2944 2114 841 80 310 37 2398 42 1552 1642 125 91 4083 261
2 4947 2528 1510 989 29 40 29 2216 27 490 243 41 61 8 13
3 298 302 1312 1035 147 0 4 15 0 0 0 85 140 1019 54
4 1131 1419 604 2520 0 34 6 4660 13 1384 125 33 25 1 19
5 93 16 386 217 435 1 0 0 7279 0 39 35 18 25707 684
6 59 46 0 0 0 10004 0 2372 0 1352 8278 0 0 548 88
7 2945 1748 494 319 0 127 33 2141 2 1199 110 21 25 0 0

Class 8 736 1272 0 593 5 905 18 11593 777 32879 22901 0 0 1560 57
9 12 4 31 97 56 458 0 590 6459 225 1917 3 4 6659 259
10 234 516 0 70 0 35 8 3047 27 18391 8604 0 0 0 7
11 223 532 0 219 3 587 0 2379 2850 4190 40833 0 0 1658 182
12 1179 510 1079 1930 24 0 1 4 578 0 9 290 108 3766 66
13 139 28 99 165 46 0 1 1 404 0 0 32 16 514 29
14 111 101 523 222 846 424 0 1649 8560 142 2650 40 31 81656 1173
15 300 149 275 284 202 494 0 175 3851 2 997 30 24 11778 624

(a) C4.5 Classification.

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6712 3276 1752 1399 3 266 57 1957 302 662 2065 91 90 1579 13
2 1337 1511 694 1356 0 0 15 737 0 39 7 86 56 236 0
3 402 220 929 964 211 611 1 107 839 0 110 124 88 6034 195
4 238 257 406 1022 0 0 0 21 0 0 0 56 45 1065 4
5 369 88 791 234 823 819 0 1106 19707 1269 11788 34 27 19416 1805
6 2337 1649 73 247 6 1943 16 12517 275 40139 17957 3 3 44 38
7 464 592 375 298 1 4 3 245 13 0 0 23 15 140 3

Class 8 823 931 617 1058 0 0 5 1133 3 254 10 41 41 3 1
9 1153 587 252 250 0 40 0 1159 1100 528 1401 11 14 1 70
10 207 389 106 609 0 0 5 1452 4 246 2 4 6 0 3
11 619 642 112 499 1 10 14 4860 102 8086 1472 2 1 13 9
12 577 130 751 734 33 781 0 222 1476 3 316 117 64 5133 131
13 144 29 499 285 144 428 0 58 834 0 498 75 37 10590 134
14 248 129 517 65 598 2068 0 2517 5264 6257 30308 43 29 94510 920
15 3922 1685 553 481 53 6449 21 5149 950 4323 22414 25 27 193 190

(b) IBL(k=1) Classification.

Classified As
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7847 3610 1761 1466 3 297 71 2424 289 622 1274 96 90 1195 12
2 1218 1697 849 1616 0 0 14 592 0 48 5 90 69 170 0
3 375 247 936 981 194 444 2 59 715 0 74 119 78 3054 169
4 175 197 257 895 0 0 0 17 0 0 0 54 30 910 3
5 387 77 813 223 834 977 0 1033 19726 1555 11284 38 28 9912 1738
6 2241 1508 103 244 12 1807 11 11499 293 35692 13507 3 6 25 36
7 481 557 382 319 0 2 1 209 4 0 0 31 26 101 3

Class 8 737 912 467 914 0 0 10 1074 3 318 9 36 24 5 1
9 1030 539 273 265 3 30 0 1130 2448 406 1982 9 14 3 121
10 271 494 124 715 0 0 8 2135 9 449 8 3 8 0 3
11 544 648 166 524 0 2 7 5332 141 9402 2802 2 2 20 9
12 378 99 759 681 40 447 0 187 587 4 464 118 70 7515 84
13 140 19 479 249 143 507 0 59 866 0 491 65 39 10961 144
14 251 123 496 61 560 2334 0 2640 4929 6170 31643 42 30 104985 989
15 3477 1388 562 348 84 6572 13 4850 859 7140 24805 29 29 101 204

(c) IBL(k=3) Classification.

Table 9.9: The number of pixels given in each class over the entire image.
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Class Target NN Output Values

bitumen 0.1 0.1 0.1 0.9
buildings 0.1 0.1 0.9 0.1
cement 0.1 0.1 0.9 0.9

dirt road 0.1 0.9 0.1 0.1
exotic trees 0.1 0.9 0.1 0.9

field 0.1 0.9 0.9 0.1
gazebo 0.1 0.9 0.9 0.9

grazed grass 0.9 0.1 0.1 0.1
lawn 0.9 0.1 0.1 0.9
grass 0.9 0.1 0.9 0.1

understory 0.9 0.1 0.9 0.9
roundabout 0.9 0.9 0.1 0.1

tanks 0.9 0.9 0.1 0.9
trees 0.9 0.9 0.9 0.1
water 0.9 0.9 0.9 0.9

Table 9.10: Neural network class labels.
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9.3 Discussion and Conclusions

In this chapter we have introduced a method of generating a simulated remotely

sensed image that is realistic enough for us to use in further investigations of

the classification techniques so far discussed. In the following chapters we will

look at the application of the attribute generation and selection techniques and

generating agreement classifications using the simulated image.

The assumption that the data used to generate the simulated image is reasonably

accurately classified has been made and clearly there is no way of quantifying how

accurate it is. Statistically the simulated image is similar to the original image

and it demonstrates enough of the characteristics of a real image to be useful.

Error rates of around 40% on the classification of the test set are reasonably high

when compared to that seen on other real datasets, and are on the border of

usable results. But it must be kept in mind that we are not necessarily trying

to get a high accuracy classification from this data. We are more interested in

quantifying the results given by the techniques as discussed in previous chapters.

The classes in the simulated image are reasonably high level classes, but, not a lot

would be gained from a more detailed simulation. More detail would mean more

consistent classes (i.e. smaller variance), but again, generating accurate statistical

data is a problem.

As with a real image there is overlap between the classes in the simulated image

as demonstrated by the error rates in classification, and in the statistical charac-

teristics of the image. In a real image this may be due to a number of factors.

There may be actual overlap in the spectral characteristics of different classes or

there may also be spectral mixing2.

It must be emphasised that no claim is being made to having produced a genuine

remotely sensed image. We have merely tried to mimic some of the behaviour

of remotely sensed data to enable us to evaluate the classification techniques

described in this thesis. It would not be possible, nor even desirable, to emulate

the nuances and detail of a true remotely sensed image. The image generated

is, however, a close enough approximation to enable us to make quantitative

2That is, it is unlikely that a pixel will contain only one object from a well defined class.
This means that the spectral characteristics of a pixel will be a mixture of its components.
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comparisons between different classifications and to evaluate the effectiveness of

the classification techniques described in this thesis.

The simulated data can be used to demonstrate the techniques introduced in

Chapters 4 to 8 to increase the classification accuracy, and to reduce the number

of misclassifications over an entire image. This will be discussed in the following

chapters.



Chapter 10

Automated Classification and

Evaluation

In this thesis we have introduced a variety of techniques that can be used for

automatically generating classifications. Firstly, we discussed extracting informa-

tion from remotely sensed data to highlight information. The information that we

extract can be used as additional attributes in a classification. As we can generate

a large number of attributes, and existing attributes may contain noise or errors,

we then looked at attribute selection to choose the most relevant attributes for

a given classification task. Finally, we looked as ways of increasing classification

accuracy in remotely sensed images. However, we could only qualitatively assess

the accuracy of the classified images, so we looked at simulating remotely sensed

data so that we can evaluate the accuracy of a classifier over an entire image.

In this chapter we look at combining all of the techniques introduced in this

work to automatically classify the simulated remotely sensed image and assess

the accuracy of those classifications. For a given classification task the automated

process involves the following steps to generate a classified image.

1. A large number of additional attributes are generated from the remotely

sensed data using any number of pre-processing and data mining techniques.

2. A multi-class classifier is trained on all available data and attribute selection

is carried out using the wrapper method for C4.5 and IBL classifications and

contribution analysis for neural networks.

181
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3. Binary neural network, C4.5 and IBL classifiers are generated for each of the

classes in the classification, also using attribute selection. The cases in the

training dataset are grouped into two classes, the first containing a single

class to be recognised and the second to contain the cases for all remaining

classes. The resulting classifications from the individual binary classifiers

are combined into a single classification using agreement classification.

4. Final classifications of the image are generated by combining up to four

multi-class or binary agreement classifications in a further agreement clas-

sification.

A large number of classifications can be generated automatically in this way, and

not all will be of sufficient quality. So, we also look at assessing the quality of such

classifications using the simulated data and discuss a method for ranking them.

10.1 Classification Experiments

For these experiments the simulated data (SIM) is used so that we can quantify

the error over the entire image and compare it with the estimated error from the

test set. The training data used was generated as described in Section 3.3.

The classification techniques used were C4.5 (c4), back-propagation neural net-

work (nn) and the instance based learner with one nearest neighbour (iblk1) and

three nearest neighbours (iblk3). These classifiers were trained, used to classify

the test set and then the entire image.

As we saw in the previous chapter, classification with all possible classes and a

small number of attributes results in high error rates. We need to simplify the

problem being tackled and improve the quality of the information being presented

to each of the classifiers. One simplification is to firstly classify the high level

classes in an image. Once we have a good classification of the image at this level

we can look at classifying each class into its sub-classes to obtain a more detailed

classification if required.

The 15 classes in the simulated image were grouped into three broad classes –

vegetation, urban and water. The number of cases in each class can be seen in

Table 10.1. As we are using the SIM dataset we know the classes of each pixel in

the image, and the target classification can be seen in Figure 10.1.
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vegetation urban water

Figure 10.1: A three class classification of the simulated image.
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Class Training Set Stop Set Test Set Image

vegetation 224 114 120 368649
urban 174 93 101 50873
water 28 13 17 3516

Table 10.1: Number of cases in each of the training sets used for a 3 class classi-
fication.

As discussed in Chapter 5 a large number of attributes can be generated in order

to differentiate features in the data. The attributes used were generated from

the original simulated spectral data and include an unsupervised AutoClass clas-

sification (as discussed in Section 2.4.11) and vegetation indices (as discussed in

Section 5.2.3). The attributes generated were as follows.

band original simulated spectral data, band=blu,grn,red,nir
pca i the principal components of the each spectral band i=1..4
sp ac AutoClass classification of the spectral data, each pixel from

the image is used as a case in the classification and the spec-
tral values for a given pixel from each of the simulated spec-
tral bands are the attributes for that pixel

ratio ij ratio of pairs of spectral bands i and j, i,j=blu,grn,red,nir,
i �=j

dvi ij the difference of spectral bands i and j, i,j=blu,grn,red,nir,
i �=j

ndvi ij the normalised difference vegetation index of bands i and j,
i,j=blu,grn,red,nir, i �=j

tvi ij the transformed normalised difference vegetation index of
bands i and j, i,j=blu,grn,red,nir, i �=j

savi ij c the soil adjusted vegetation index between bands i and
j, i,j=blu,grn,red,nir, i �=j, with soil adjustment factor
c=0.1,0.3,0.5,0.7,0.9

msavi ij the modified soil adjusted vegetation index between bands i
and j, i,j=blu,grn,red,nir, i �=j

sri ijk stress related index of bands i,jand k, i,j,k=blu,grn,red,nir,
i �=j �=k

All attribute values were scaled to between 0 and 1. This was done by dividing

each value by the maximum value across the entire image for that attribute.

Target classes for each classification task were also mapped to values between 0

and 1.
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In some cases, specifically for the vegetation indices, the values for a particular

attribute were close to zero for all pixels in the training dataset after scaling.

Even though these attributes had larger values over the entire image, they do not

provide enough information to be used for training classifiers. Thus, the attributes

that had values all in the range ±0.0001 in the test set were discarded. This gave

a total of 81 attributes for use in the classification.

According to the approach outlined in Chapter 4, the neural networks used had

81 inputs, corresponding to the 81 attributes used, 20 hidden nodes and 1 output.

The outputs of the neural networks were assigned classes by dividing the output

values into ranges such that both the number of false positives and false negatives

were minimised.

Unless otherwise stated the neural network classifiers were set up as described in

Chapter 4. The C4.5 and IBL classifications were as described in Section 2.4.

Each of the 81 attributes became the inputs to each of the classifiers and attribute

selection was carried out. Typically around 10 attributes were chosen for each

classifier, the minimum number of attributes chosen for a given classifier being

one and the maximum being 18. Two examples of the attribute sets can be seen

in Table 10.2.

A number of neural networks were trained on all attributes and contribution anal-

ysis was used for attribute selection. Extensive experimentation for the datasets

discussed in this thesis found that removing attributes that had contributions

greater than -0.2 and less than 0.2 consistently gave a set of relevant attributes.

With an identified threshold we are able to completely automate the attribute

selection process for neural networks1.

10.2 Multi-class Classification

Firstly multi-class classifications with attribute selection for the three classification

schemes were carried out.

In the case of the neural network classification the three classes were mapped to

1A threshold of ±0.2 was appropriate for the datasets and types of classifications used here.
However, the general applicability of this threshold to other domains and datasets would need
to be investigated.
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Multi-class C4.5 Binary NN water

sp ac blu
savi blu red 0.9 grn

red
nir

pca 1
pca 2
pca 4

dvi blu grn
dvi blu red
dvi blu nir
dvi grn red
dvi grn nir

savi blu red 0.5
savi blu red 0.7
savi blu red 0.9
savi red nir 0.3
savi red nir 0.9

Table 10.2: Sample attribute sets after attribute selection.

values between 0 and 1. The output values of the network were then divided into

three ranges to give 3 classes. The values used are shown in Table 10.3.

Class Target Output Output Range
vegetation 0.1 ≤0.3

urban 0.5 >0.4 and ≤0.7
water 0.7 >0.7

Table 10.3: Neural network target and output values.

The results of the four multi-class classifications can be seen in Table 10.4 and the

classification of the entire image in Figure 10.2. In all cases the amount of water

has been significantly overestimated, causing a large proportion of the speckle

seen throughout the vegetation areas of each of the classified images.
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Classifier Test Error Image Error

c4 15.1% 7.2%
iblk1 11.3% 15.4%
iblk3 13.0% 15.3%
nn 26.5% 10.1%

Table 10.4: Three class, multi-class classifications with attribute selection.
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(a) C4.5 (b) IBL(k=1)

(c) IBL(k=3) (d) NN

vegetation urban water unknown

Figure 10.2: Multi-class classifications.
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10.3 Binary Classification

Next, binary classifications were carried out. For a given classification system a

classifier was trained to recognise a single class, as described in Section 8.3.1. All

cases in the class to be recognised from a single “in” class (target class label 0.9)

and the cases for all remaining training classes are grouped into a “not in” class

(target class label 0.1).

The results from the three binary classifications for each classifier were then com-

bined using agreement classification as described in Section 8.5. The error rates

for the agreement classifications generated can be seen in Table 10.5.

As discussed previously, once you start using agreement classification you have

the ability to give pixels an unknown classification. The error given can be either

the total number of pixels that have not been given the correct classification

including those with an unknown classification (denoted as “Error” in the table)

or the number of pixels that have been given a classification that is incorrect

(denoted “Miscl Err” in the table).

Test Error Image Error % Image
Classifier Error Miscl Err Error Miscl Err Unclassified

c4 24.0% 7.6% 18.4% 5.2% 13.2%
iblk1 16.8% 9.2% 21.1% 7.1% 14.0%
iblk3 17.7% 10.5% 13.5% 5.4% 8.1%
nn 20.6% 14.3% 10.7% 6.1% 4.6%

Table 10.5: Three Class, binary classifications with attribute selection.

The overall error on the binary classifications is comparable to that on the multi-

class classifications. However, we see a decrease in the number of misclassifica-

tions. That is, we should not consider the pixels that have been given an unknown

classification to be true errors. These pixels have been identified as being different

in some way from the members of each of the classes in the training dataset and

require further investigation.

As can be seen in Figure 10.3, classification of the entire image shows that the

pixels that have been given an unknown classification are pixels that tend to fall

into the tree class (compare with the correct classification in Figure 9.4). A small

number of isolated pixels have been given the water class but are largely in error.
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(a) C4.5 (b) IBL(k=1)

(c) IBL(k=3) (d) NN

vegetation urban water unknown

Figure 10.3: Binary classifications.
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10.4 Multi-strategy Agreement Classification

Using the multi-class and binary classifications 38 additional agreement classifi-

cations were generated. Up to four of the multi-class or binary agreement classi-

fications were combined using the agreement technique. These classifications are

listed in Table 10.6 with their error rates. The combinations of the multi-class

and binary classifications used in each agreement classification are denoted by a

cross in the appropriate column. The multi-class and binary classifications have

been included in the table for comparison.

The error rates for each of the classifications are generally within reasonable

bounds on the test set, all being less than 40%. Again, we see a large reduction

in the absolute error by considering only the pixels that have been misclassified

to be true errors.

We also see that the error rates on the test set translates to a similar error rate

for the entire image. However, we still need to identify the best classifications.
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Binary Multi-Class
Classifications Classifications Test Image %Image

Error Error Uncl

c4 ib
lk

1

ib
lk

3

n
n

c4 ib
lk

1

ib
lk

3

n
n

%Err %Miscl %Err %Miscl

x 24.0 7.6 18.4 5.2 13.2
x 16.8 9.2 21.1 7.1 14.0

x 17.7 10.5 13.5 5.4 8.1
x 20.6 14.3 10.7 6.1 4.6

x 15.1 15.1 7.2 7.2 0.0
x 11.3 11.3 15.4 15.4 0.0

x 13.0 13.0 15.3 15.3 0.0
x 26.5 26.5 10.1 10.1 0.0

x x 30.3 4.2 30.0 3.0 27.1
x x 27.3 5.5 23.7 3.1 20.6
x x 29.8 6.3 21.2 3.4 17.9

x x 24.0 5.0 24.9 3.5 21.4
x x 29.4 5.5 25.1 3.0 22.0

x x 25.2 9.2 17.6 3.3 14.3
x x 18.9 5.9 17.8 4.3 13.5
x x 24.8 8.8 18.5 3.8 14.7
x x 29.0 11.8 13.6 3.5 10.1

x x 24.4 6.3 24.7 5.2 19.6
x x 29.8 7.1 21.5 3.3 18.2

x x 34.5 10.5 21.0 4.2 16.9
x x x 31.9 3.4 32.3 2.4 29.9
x x x 35.7 3.8 32.1 2.1 30.0
x x x 31.9 5.0 26.0 2.2 23.7

x x x 31.5 5.0 27.9 2.3 25.5
x x x 28.2 5.0 26.3 2.9 23.4
x x x 31.5 5.5 22.9 2.4 20.5
x x x 36.1 8.0 22.9 2.2 20.6

x x x 36.6 4.6 29.2 2.3 26.9
x x x x 38.2 4.6 30.1 1.8 28.4

x x x x 36.6 3.4 34.2 1.7 32.4
x x 26.5 5.9 20.3 3.0 17.3
x x 26.5 4.2 27.0 3.0 24.0
x x 31.5 5.9 25.9 4.2 21.7
x x 34.5 6.7 22.9 2.9 20.0

x x 23.1 6.3 22.9 3.1 19.8
x x 18.1 7.6 26.6 4.8 21.8
x x 29.0 5.0 28.5 4.1 24.3
x x 34.0 7.1 25.8 3.0 22.8

x x 21.0 10.1 15.4 3.5 11.9
x x 20.4 5.5 21.3 3.9 17.5
x x 26.1 7.6 21.1 4.4 16.8
x x 31.1 9.7 18.6 3.2 15.4

x x 23.1 10.5 13.0 3.5 9.5
x x 25.2 5.0 20.9 3.2 17.7
x x 28.2 8.4 19.7 4.7 15.0
x x 28.6 13.5 13.5 4.6 8.9

Table 10.6: Agreement classification error rates for SIM test set.
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10.5 Kappa Evaluation

Choosing the classification with the smallest error on the test set is not necessarily

the best classification. For example, the test set error on the binary iblk1 classifi-

cation increased from 16.8% to 21.1% for the entire image. The C4.5 classification

had an overall error that was low for the entire image, however a large number of

water pixels were scattered throughout the vegetation areas. The image with

the smallest percentage of pixels left unclassified may still contain many misclassi-

fications, while the classification with the largest number of pixels left unclassified

may be assigning an unknown class too readily.

Fitzgerald and Lees [54] also found that measuring the accuracy by the percent

correct can be misleading. They showed that using the kappa statistic, which gives

a measure of classification agreement, was far better for measuring the accuracy of

classifications. The kappa statistic is increasingly used as a measure of accuracy,

with examples of its use in [55, 54, 88, 134, 33, 100].

The kappa statistic is calculated from the error matrix of a classification. Given

the error matrix for a k class classification:

Actual Class

1 2 ... k Total

1 p11 p12 ... p1k p1.

Classed

As

2 p21 p22 ... p2k p2.

... ... ...

k pk1 pk2 ... pkk pk.

Total p.1 p.2 ... p.k 1

where pij is the proportion of agreement between the test set and the classification

given:

pij =
p

N

where p is the number of pixels in class i classified as class j and N is the total

number of pixels.

The Kappa statistic (κ) is then defined as follows:
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po =

k∑

i=1

pii

pe =

k∑

i=1

pi.p.i

κ =
po − pe

1− pe

When comparing the quality of classifications the one with the highest kappa value

is the better classification.

The kappa statistic was used here to refine the evaluation of classified data by

giving an agreement rating with the test set. Its use for this work was modified

slightly to allow for the unknown classifications.

If the unknown class is labelled i = 1 we exclude it from the calculation and define

kappa (κ) as follows:

po =

k∑

i=2

pii

pe =

k∑

i=2

pi.p.i

κ =
po − pe

1− pe

Figure 10.4: The kappa statistic modified to ignore unknown classifications.

The kappa statistic gives us a further estimate of the accuracy of the classification

than just using the overall percent correct.

10.6 Ranking Agreement Classifications Auto-

matically

Automated ranking based on agreement with a target classification is a complete

area of study on its own, and one for which there is no accepted approach that
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can consistently provide reliable results [165].

The values of each of the error measures are highly correlated between the test set

and the image, as seen in Table 10.7. That is, the measures of error on the test set

are a reasonable estimate of the error over the entire image. The modified kappa

value as calculated here takes into account the numbers of misclassified pixels,

and ignores the unclassified pixels. So, it is possible to have an excellent match

between the classified image pixels and the test set, but still have the majority of

the image unclassified.

Error Measure Correlation

kappa 0.994
error 0.975

misclassified pixels 0.898
unclassified pixels 0.983

Table 10.7: Correaltions between each of the error measures on the test set and
over the entire image.

A heuristic method to automatically rank classifications was developed that aimed

to maximise the modified kappa statistic and minimise the numbers of misclassi-

fied and unclassified pixels. The kappa statistic, as defined in Figure 10.4, mea-

sures the match with the target classification by removing the unclassified pixels,

which means we can potentially get a very accurate classification by having the

majority of the pixels unclassified. We therefore need to ensure that we choose

classifications with the highest accuracy as well as the largest number of pixels

classified as possible. So, the method used for measuring relative accuracy is given

in Figure 10.5, where r is the rank given to a classification, u is the number of

pixels given an unknown classification and N is the total number of pixels.

r = κ− u

N

Figure 10.5: The modified kappa statistic used for ranking classifications.

It is important to note that this produces a reasonable ranking of the classified

images, not the optimal ranking. In the same way that the attribute selection

techniques are heuristic techniques, this is also a heuristic technique for choosing

the better classifications. Determining a more effective and accurate ranking
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method is a substantial body of work in its own right [165] and so out of the

scope of this work. None the less, this technique is suitable for our purposes.

The rankings generated using this measure can be seen in Table 10.8. The multi-

class classifications for each of the algorithms are ranked at the top, but still have

a higher misclassification rate in general than for the agreement classifications.

The agreement classifications also give more information about the areas of an

image that need further investigation, that is, the areas of the image that can

not be consistently classified. For this reason agreement classifications are cho-

sen in preference, although the multi-class classifications have been included in

Table 10.8 for reference.
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Binary Multi-Class
Classifications Classifications Test Image

c4 ib
lk

1

ib
lk

3

n
n

c4 ib
lk

1

ib
lk

3

n
n

Kappa %Err %Miscl %Uncl Kappa %Err %Miscl %Uncl

x 0.728 16.8 9.2 7.6 0.533 21.1 7.1 14.0
x 0.702 17.7 10.5 7.2 0.624 13.5 5.4 8.1

x x 0.716 18.1 7.6 10.5 0.510 26.6 4.8 21.8
x 0.643 20.6 14.3 6.3 0.641 10.7 6.1 4.6

x x 0.703 18.9 5.9 13.0 0.588 17.8 4.3 13.5
x x 0.661 21.0 10.1 10.9 0.616 15.4 3.5 11.9
x x 0.683 20.6 5.5 15.1 0.559 21.3 3.9 17.5

x x 0.632 23.1 10.5 12.6 0.632 13.0 3.5 9.5
x x 0.654 23.1 6.3 16.8 0.545 22.9 3.1 19.8

x 0.639 24.0 7.6 16.4 0.574 18.4 5.2 13.2
x x 0.626 24.8 8.8 15.9 0.582 18.5 3.8 14.7

x x 0.643 24.4 6.3 18.1 0.525 24.7 5.2 19.6
x x 0.649 24.0 5.0 18.9 0.527 24.9 3.5 21.4

x x 0.616 25.2 9.2 15.9 0.583 17.6 3.3 14.3
x x 0.618 26.1 7.6 18.4 0.554 21.1 4.4 16.8

x x 0.629 25.2 5.0 20.1 0.558 20.9 3.2 17.7
x x 0.618 26.5 5.9 20.5 0.572 20.3 3.0 17.3
x x 0.623 26.5 4.2 22.2 0.520 27.0 3.0 24.0

x x 0.551 28.6 13.5 15.1 0.595 13.5 4.6 8.9
x x 0.611 27.3 5.5 21.9 0.541 23.7 3.1 20.6

x x 0.588 28.2 8.4 19.7 0.553 19.7 4.7 15.0
x x 0.558 29.0 11.8 17.2 0.602 13.6 3.5 10.1
x x x 0.605 28.2 5.0 23.1 0.526 26.3 2.9 23.4

x x 0.598 29.0 5.0 23.9 0.497 28.5 4.1 24.3
x x 0.588 29.4 5.5 23.9 0.519 25.1 3.0 22.0

x x 0.569 29.8 7.1 22.7 0.536 21.5 3.3 18.2
x x 0.549 31.1 9.7 21.4 0.559 18.6 3.2 15.4

x x 0.588 30.3 4.2 26.1 0.494 30.0 3.0 27.1
x x 0.580 29.8 6.3 26.5 0.550 21.2 3.4 17.9
x x 0.569 31.5 5.9 25.6 0.518 25.9 4.2 21.7

x x x 0.569 31.5 5.0 26.4 0.504 27.9 2.3 25.5
x x x 0.561 31.5 5.5 26.0 0.531 22.9 2.4 20.5

x x x 0.565 31.9 5.0 26.8 0.520 26.0 2.2 23.7
x x x 0.574 31.9 3.4 28.5 0.481 32.3 2.4 29.9

x x 0.513 34.5 10.5 23.9 0.530 21.0 4.2 16.9
x x 0.532 34.0 7.1 26.8 0.502 25.8 3.0 22.8

x x 0.531 34.5 6.7 27.7 0.524 22.9 2.9 20.0
x x x 0.510 36.1 8.0 28.1 0.529 22.9 2.2 20.6

x x x 0.536 35.7 3.8 31.9 0.477 32.1 2.1 30.0
x x x 0.518 36.6 4.6 31.9 0.466 34.2 1.7 32.4

x x x x 0.530 36.6 3.4 33.1 0.489 29.2 2.3 26.9
x x x x 0.505 38.2 4.6 33.6 0.485 30.1 1.8 28.4

x 0.797 11.3 11.3 0.0 0.510 15.4 15.4 0.0
x 0.718 15.1 15.1 0.0 0.704 7.2 7.2 0.0

x 0.639 13.0 13.0 0.0 0.501 15.3 15.3 0.0
x 0.490 26.5 26.5 0.0 0.554 10.1 10.1 0.0

Table 10.8: Automatic assessment of the SIM classifications using the test set
rankings.

The best classifications are those that are either binary classifications or have no

more than two classifications used. Using more than two classifications removes

too much information from the image unnecessarily.
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It must be noted that as a definitive ranking is difficult to give, the rankings

here are merely indicative. In the same way that the error on the test set is

only an estimate of the error on unseen data, the ranking method used is only

an estimate of the relative merit of each classification – it will not always rank

the best classification first. This method of ranking, however, is sufficient for

removing the worst of the classifications.
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(a) Binary iblk1 classification. (b) Binary iblk3 classification.

(c) Multi-class and binary iblk1
agreement classification.

(d) Binary nn classification.

vegetation urban water unknown

Figure 10.6: Top ranked SIM classifications.
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(a) Binary c4, iblk1 and nn agree-
ment classification.

(b) Multi-class iblk1, iblk3 and nn
agreement classification.

(c) Binary c4, iblk1, iblk3 and nn
agreement classification.

(d) Multi-class c4, iblk1, iblk3 and
nn agreement classification.

vegetation urban water unknown

Figure 10.7: Bottom ranked SIM classifications.
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From the top ranked images the pattern of unclassified pixels is showing the

confusion between grass, trees and urban structures. Areas of vegetation include

both trees and grass which are quite different. There are areas of cultivated

lawns and areas of weeds and uncultivated or grazed grasses that are clearly being

confused. In addition, areas on the left side of the image have exposed areas of soil

and rocks which are being confused with the urban features. The water class has

been clearly missed in these classifications, and is not able to be reliably identified

in any of the classifications. This is most likely due to the water plants covering

the surface in the original image making the water class difficult to distinguish.

In general this highlights the issue of distinguishing between different types of

vegetation – that is, it is currently a difficult, if not impossible, task to carry out.

To do more detailed classifications, down to the level of tree species for example,

you need to be able to reliably distinguish between features such as grass and

trees. In these classifications we have made a start on making these distinctions.

We could use these classifications to identify specific areas to collect more ground

truth data and so clarify the differences between the different features in the image.

The more data we have the better able we are to generate reliable classifications.

In its absence we are still able to generate a reasonable classification with areas

identified that we can give a reliable classification for.

10.7 Comparison with Maximum Likelihood Clas-

sification

In this section we compare the results of the agreement classifications with a

traditional maximum likelihood classification. These will also be compared with

more traditional and simplified C4.5, IBL and neural network classifications.

10.7.1 Multi-class Classification

The datasets as described in Section 10.1 were used to generate five additional

classifications. However, for these experiments the only attributes used were the

spectral data, that is the red, green, blue and near-infra red bands from the

original simulated image.
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All classifiers were configured as previously discussed, with the exception of the

neural network. The topology of the neural network was modified to accommodate

the reduced number of attributes. Each of the spectral values was mapped to an

input node as usual. The number of output nodes was changed to three, one for

each class, and three hidden nodes were used. The output values of each node were

divided into 2 ranges - ≤0.5 and >0.5. The target output values for each class

are shown in Table 10.9. The results of the five additional multi-class spectral

classifications can be seen in Table 10.10.

Class Target Output

vegetation 0.9 0.1 0.1
urban 0.1 0.9 0.1
water 0.1 0.1 0.9

Table 10.9: Neural network target and output values.

In all cases the error rates are much higher than for any of the agreement classi-

fications generated using the spectral data and the generated attributes.

Classifier Test Error Image Error

maxlike 36.67% 53.82%
c4 14.71% 31.94%

iblk1 12.61% 41.26%
iblk3 15.13% 40.37%
nn 57.56% 87.97%

Table 10.10: Three class, multi-class classifications using only spectral data.

The neural network classification had the worst error rate because it gave ev-

erything a default urban classification. Varying the thresholds for the output

values did not improve classification accuracy as all output values, for all classes,

clustered together with no differentiation possible.

It might have been possible to find a network topology and configuration that

could produce better results, although this has already been achieved with the

agreement classifications previously discussed. However, as the main concern

here is to compare maximum likelihood and agreement classification the multi-

class neural network, trained using only the spectral data, has been excluded from

further discussion.

The remainder of classifications that use only spectral data overestimate the num-
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ber of urban or water pixels. The higher error rate for the maximum likelihood

classification is a result of both being overestimated. The classified images are

shown in Figure 10.8.

These classifications further support the widely accepted idea that additional data

should be used in a classification of remotely sensed data. Not only that, classifica-

tion can still be improved when the additional data is generated by pre-processing

or pre-classifying the spectral data, as with the techniques discussed throughout

this work.



204

(a) C4.5 (b) IBL(k=1)

(c) IBL(k=3) (d) Maximum likelihood

vegetation urban water unknown

Figure 10.8: Multi-class classifications using spectral data attributes only.
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10.7.2 Comparison Of Maximum Likelihood and Agree-

ment Classification

The “best” and “worst” agreement classifications were compared with the spectral

data only classifications. The “best” classifications were identified as those with

the smallest error rate, smallest misclassification error or the smallest numbers

of pixels with an unknown classification, or those with the largest kappa values,

on either the test set or image data. Similarly, the “worst” were those that had

the largest error rate, numbers of misclassifications or unclassified pixels, or the

smallest kappa values. These classifications are listed in Table 10.11.

Binary Multiclass
Id Category Classifications Classifications

c4 ib
lk

1

ib
lk

3

nn c4 ib
lk

1

ib
lk

3

nn

GD01 good x
GD02 good x
GD03 good x
GD04 good x
GD05 good x
GD06 good x x
GD07 good x x x
GD08 good x x x x
GD09 good x x
GD10 good x x
BD01 bad x
BD02 bad x x x x
BD03 bad x
BD04 bad x x x x
BD05 bad x x x
BD06 bad x x x
BD07 bad x x
BD08 bad x x
SP01 spectral data only x
SP02 spectral data only x
SP03 spectral data only x
SP04 spectral data only Maximum Likelihood

Table 10.11: Best and worst classifications.

The binary IBL (k=1) classification, is categorised as one of the best classifications

(GD01) and one of the worst (BD01) as the kappa value on the test set is the

highest, as well as the misclassification error being the highest of all the agreement
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classifications. The agreement classification using the binary C4.5, IBL (k=1

and 3) and neural network classifications, is also in both categories (GD08 and

BD02) as it has the smallest number of misclassified pixels but a large number of

unclassified pixels.

The error rates, with 95% confidence intervals for the test set error, for the clas-

sifications can be seen in Table 10.12. As can be seen the maximum likelihood

classification (SP04) is amongst the worst classifications by all measures, other

than the percent unclassified. In particular, the error rate for the entire image is

higher than any of the other classifications.

Id Test Image Kappa
%Err %Miscl %Uncl %Err %Miscl %Uncl Test Image

GD01 16.8±4.7 9.2 7.6 21.1 7.1 14.0 0.728 0.533
GD02 17.7±4.8 10.5 7.2 13.5 5.4 8.1 0.702 0.624
GD03 20.6±5.1 14.3 6.3 10.7 6.1 4.6 0.643 0.641
GD04 15.1±4.5 15.1 0.0 7.2 7.2 0.0 0.718 0.704
GD05 11.3±4.0 11.3 0.0 15.4 15.4 0.0 0.797 0.510
GD06 18.9±4.9 5.8 13.0 17.8 4.3 13.5 0.703 0.588
GD07 31.9±5.9 3.3 29.9 32.2 2.3 29.9 0.574 0.481
GD08 36.5±6.1 3.3 33.1 34.1 1.7 32.4 0.530 0.466
GD09 23.1±5.3 6.3 19.7 22.8 3.0 19.7 0.654 0.545
GD10 18.0±4.8 7.5 10.5 26.5 4.7 21.8 0.716 0.510
BD01 16.8±4.7 9.2 7.6 21.1 7.1 14.0 0.728 0.533
BD02 36.5±6.1 3.3 33.1 34.1 1.7 32.4 0.530 0.466
BD03 26.5±5.6 26.5 0.0 10.1 10.1 0.0 0.490 0.554
BD04 38.2±6.1 4.6 33.6 30.1 1.7 28.3 0.505 0.485
BD05 36.1±6.1 7.9 20.6 22.8 2.2 20.6 0.510 0.529
BD06 36.5±6.1 4.6 31.9 29.1 2.2 26.9 0.518 0.489
BD07 34.4±6.0 10.5 23.9 21.0 4.1 16.8 0.513 0.530
BD08 28.5±5.7 13.4 8.8 13.5 4.6 8.8 0.551 0.595
SP01 15.1±4.5 15.1 0.0 31.7 31.7 0.0 0.511 0.275
SP02 15.1±4.5 15.1 0.0 41.2 41.2 0.0 0.647 0.168
SP03 16.8±4.7 16.8 0.0 40.3 40.3 0.0 0.617 0.174
SP04 30.6±5.8 30.6 0.0 53.8 53.8 0.0 0.513 0.167

Table 10.12: Error rates for the best and worst classifications.

The kappa value on the test set for the maximum likelihood classification is not the

smallest value, but it is similar to the kappa values for the worst of the agreement

classifications. However, the kappa value is the smallest over the entire image by

quite a large margin. Again, the low value of the modified kappa statistic over

the entire image shows the clear inability of the classifier to generalise over unseen



207

data.

Landis and Koch [88] and Fitzgerald and Lees [54] ranked classifications based on

their κ values as follows.

poor κ < 0.4

good 0.4 ≤ κ ≤ 0.75

excellent κ > 0.75

These ratings are meaningless for ranking the agreement classifications over the

entire image as all get a rating of good. The ranges are not fine grained enough

and do not distinguish even the worst of the classifications. However, the max-

imum likelihood classification falls well and truly in the poor category for the

classification of the entire image.

The error for the agreement classifications over the entire image falls within or is

close to the ranges given by the 95% confidence interval on the test set error. This

is not the case for any of the spectral data only classifications. That is, agreement

classifications, with the classifiers configured as described here, as gives us a more

reliable estimate of error for unseen data.

Overall agreement classification provides a more consistent classification across

different data or classifiers. Most importantly the test set error rates for agreement

classifications are a more reliable estimate of the error over the entire image.

10.7.3 Overlap Between Classified Images

The overlap between each of the classifications listed in Table 10.12 were also

compared. The kappa statistic, using the original definition from [54], was calcu-

lated between each pair of classifications, with the pairwise kappa values given in

Table 10.13. This gives a measure of overlap between each pair of classifications.

The kappa values for each classification on the test and image data sets have also

been included for comparison purposes.
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Good Classifications
GD01 GD02 GD03 GD04 GD05 GD06 GD07 GD08 GD09 GD10

GD01 1.00
GD02 0.74 1.00
GD03 0.70 0.77 1.00
GD04 0.75 0.83 0.78 1.00
GD05 0.71 0.67 0.55 0.58 1.00
GD06 0.67 0.69 0.62 0.69 0.69 1.00
GD07 0.62 0.57 0.51 0.50 0.47 0.56 1.00
GD08 0.58 0.53 0.51 0.48 0.45 0.53 0.86 1.00
GD09 0.79 0.63 0.58 0.60 0.53 0.68 0.93 0.95 1.00
GD10 0.77 0.60 0.54 0.54 0.60 0.68 0.82 0.81 0.80 1.00

BD01 1.00 0.65 0.58 0.57 0.56 0.67 0.62 0.58 0.79 0.77
BD02 0.58 0.53 0.51 0.48 0.45 0.53 0.86 1.00 0.62 0.61
BD03 0.59 0.66 0.80 0.59 0.42 0.66 0.74 0.84 0.70 0.64
BD04 0.52 0.53 0.53 0.51 0.51 0.61 0.59 0.62 0.58 0.60
BD05 0.55 0.59 0.59 0.57 0.46 0.61 0.64 0.67 0.63 0.59
BD06 0.53 0.55 0.54 0.50 0.52 0.61 0.60 0.63 0.58 0.61
BD07 0.57 0.61 0.64 0.54 0.46 0.59 0.66 0.69 0.62 0.60
BD08 0.63 0.69 0.83 0.62 0.48 0.68 0.76 0.86 0.72 0.67

SP01 0.30 0.30 0.27 0.27 0.29 0.32 0.34 0.32 0.32 0.33
SP02 0.20 0.19 0.18 0.16 0.19 0.19 0.24 0.23 0.20 0.22
SP03 0.21 0.19 0.19 0.17 0.19 0.20 0.26 0.25 0.21 0.23
SP04 0.21 0.19 0.18 0.17 0.22 0.19 0.24 0.23 0.20 0.21

Test 0.72 0.70 0.64 0.71 0.79 0.70 0.57 0.50 0.65 0.71
Image 0.53 0.62 0.64 0.70 0.51 0.58 0.48 0.46 0.54 0.51

(a) Kappa values between the “good” and other classifications.

Bad Classifications Spectral Classifications
BD01 BD02 BD03 BD04 BD05 BD06 BD07 BD08 SP01 SP02 SP03 SP04

BD01 1.00
BD02 0.58 1.00
BD03 0.59 0.84 1.00
BD04 0.52 0.62 0.51 1.00
BD05 0.55 0.67 0.57 0.71 1.00
BD06 0.53 0.63 0.52 0.90 0.71 1.00
BD07 0.57 0.69 0.62 0.65 0.82 0.68 1.00
BD08 0.63 0.86 0.73 0.94 0.93 0.92 0.90 1.00

SP01 0.30 0.32 0.18 0.27 0.24 0.26 0.22 0.24 1.00
SP02 0.20 0.23 0.12 0.16 0.15 0.17 0.15 0.16 0.30 1.00
SP03 0.21 0.25 0.11 0.17 0.15 0.17 0.15 0.16 0.28 0.75 1.00
SP04 0.21 0.23 0.14 0.16 0.15 0.16 0.15 0.17 0.29 0.32 0.35 1.00

Test 0.72 0.53 0.49 0.50 0.51 0.51 0.51 0.55 0.51 0.51 0.64 0.61
Image 0.53 0.46 0.55 0.48 0.52 0.48 0.53 0.59 0.16 0.27 0.16 0.17

(b) Kappa values between the “bad” and spectral data only classifications.

Table 10.13: Kappa values between classifications.
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The overlap between each pair of good classifications is higher than the overlap

between the other classifications. This is indicated by the higher kappa values

in Table 10.13(a). In particular, the overlap between the classifications using the

spectral data only and all agreement classifications is substantially lower. That is,

agreement and maximum likelihood classification result in substantially different

classifications. In addition, the maximum likelihood classification has amongst

the highest error rates, and the lowest kappa values for both the test set and the

image data.

The average overlap kappa values for each category of classifications are given in

Table 10.14. The average kappa values for the spectral data only classifications

are significantly lower than for the agreement classifications. That is, there is a

significant difference between the quality of the agreement classifications and the

classifications that use only the spectral data.

Good Bad Spectral

Good 0.659±0.126
Bad 0.616±0.094 0.698±0.141

Spectral 0.235±0.051 0.196±0.052 0.388±0.183

Table 10.14: The average kappa values for each group of classifications.

Table 10.15 shows the average kappa values across the test and image data sets.

All classifiers give similar kappa values for the test set data (μκtest). However,

the agreement classifications have a significantly higher kappa value for the image

data (μκimage
) and this value is consistent with the kappa value for the test set.

The spectral data only classifications are also less consistent in the error rates

given. If we look at the variance in the kappa values, comparing each of the

classifications with the image data, we see that it is significantly higher for the

spectral data only classifications (see σκimage
in Table 10.15). That is, the error

rates using spectral data only, vary significantly and more than for the agreement

classifications.

Overall, the maximum likelihood classification has the highest error for the im-

age data, and overlaps least with the agreement classifications. Thus, maximum

likelihood is clearly an inadequate technique for data of this kind. These results

further support the findings of the Statlog Project [108] that traditional statistical

techniques are not appropriate for use with remotely sensed data.
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μκtest μκimage
σκimage

Good 0.677±0.006 0.560±0.077 0.044
Bad 0.548±0.006 0.523±0.042 0.002

Spectral 0.572±0.004 0.196±0.053 0.143

Table 10.15: Average kappa values for each group of classifications on the test
and image data.

In this case we only have the spectral data and the attributes generated from it –

we do not have other ancillary data, such as climate or topology at our disposal.

In spite of this we have still demonstrated the value of generating additional

attributes from the available data – we can highlight information in the data and

improve the accuracy of the classification.

10.8 Other Methods for Combining Classifica-

tions

Other methods of combining classifications were also investigated. Arbitration

of classifiers and simple majority voting schemes were also investigated as an

alternative to agreement classification.

Arbitration was carried out by using C4.5, IBL and neural network classifiers

to determine the final class of a pixel, from the classifications given by the other

trained classifiers. The target class for an arbitration classifier was the actual class

for the given pixel. In all situations tested the classifications defaulted to that of

the highest accuracy classifier. That is, arbitration did not give any additional

information about the accuracy of a classification than a single classifier gave.

Similarly, majority voting schemes resulted in much higher misclassification rates

as the conflicts between classifications were ignored. The value of agreement

classification is predicated on conflicts indicating unreliable classification and so

an unknown classification is preferable. Majority voting therefore did not result in

any improvements in the number of misclassified pixels over the results obtained

by agreement or arbitration.

When used in combination with the modified kappa statistic agreement classifi-

cation produces higher accuracy classifications by reducing the number of mis-
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classified pixels when compared with arbitration classification or majority voting

schemes.
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10.9 Discussion

In this chapter we demonstrated the combination of attribute generation, attribute

selection and agreement classification techniques to generate classifications of re-

motely sensed images. The modified kappa statistic was also demonstrated for

use in automatic evaluation. In particular, each step in the classification process

has been automated. Traditional maximum likelihood classification was also com-

pared with agreement classification, with agreement classification producing more

consistent and accurate results.

The modified kappa statistic was shown to give us a reasonable method of ranking

classifications. It is a better measure of agreement with the test set than the overall

error, misclassification error or proportion of the image unclassified alone would

provide. The best classifications were those that had the highest modified kappa

and smallest number of unclassified pixels.

Once a relative ranking has been given to each of the classifications using the

ranking value in Figure 10.5, we can choose the best classifications for investiga-

tion or further classification tasks. This allows us to generate a large number of

classifications and discard the poor ones automatically.

We demonstrated the automation of classification using a relatively simple set

of broad classes – vegetation, water and urban structures. The success of these

techniques is not entirely due to the simplicity of the classification task. We have

quantifiably demonstrated improvements in classification accuracy by comparison

with more traditional maximum likelihood, neural network, C4.5 and IBL clas-

sifications. In addition to this, initial investigations carried out and published

in [112], for distinguishing sub-classes within a given class using the same tech-

niques have shown that reduced error rates can still be obtained.

It is possible that using agreement classification can reduce to that given by the

worst classifier generated – the worst case scenario being that it gets minimal mis-

classified pixels because the majority of pixels are given an unknown classification.

However, agreement classification is an improvement because we produce a num-

ber of alternative classifications and choose the best, rather than just generating a

single classification from a single fixed classification method. With the number of

classifications generated we can find a good classification, that is not necessarily

the optimal solution, but is an improvement over other techniques.
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Using agreement classification it is possible to maximise the identification of mis-

classifications. This, in combination with the use of the modified kappa statistic,

ensures that the correspondance between the test data and the trained classifiers

are as high as possible. Using the modified kappa statistic for ranking ensures

that the worst classifiers do not bias the final results, and also that the number

of misclassifications are not overestimated.

The number of classifications that can be used in an agreement classification are

potentially unlimited. However, a point will be reached where no new information

can be found in the data and the additional effort in training and classification

will be of no benefit.

Another concern in this is that too many classifications, each misclassifying its

own small subset of the data, will all disagree giving a mostly unclassified image.

This was beginning to happen in classifications ranked lowest using the modified

kappa statistic.

It could be argued that a brute force technique such as described here could ben-

efit from exploratory analysis before, enabling a more reasoned argument about

the attributes that are constructed for a given classification task. However, as

discussed in Section 1.4, we argue that “mapping need not be an exercise in pro-

viding accurate maps, rather it can be used to identify where particular features

might be found”. The initial classification using the techniques discussed here can

be an exercise in data mining.

Exploratory analysis can indeed be carried out, but it is important that informa-

tion that individual classifiers might be able to use is not eliminated or overlooked.

It is in fact recommended that the techniques discussed here are actively incorpo-

rated into the exploratory phase of classification. The attributes chosen, as well as

the areas of an image that can not reliably be classified (i.e. are given an unknown

classification) can be used to focus efforts by human experts in the exploratory

phase.

As no clear patterns of specific attributes being favoured by a particular classifier

or particular classification task emerged in the course of this work, it is believed

that this is an appropriate data exploration technique. The fact that there were no

such patterns also supports the notion that individual classifiers will identify dif-

ferent pieces of information in a given dataset, and that the information available

in a given dataset will vary according to the quality and quantity of data.
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A final benefit of the techniques discussed here for automatically generating and

assessing classifications, are that they are general enough to be used with any

number of different classification systems and datasets. The best combinations

as judged by the modified kappa statistic will vary with the specific dataset and

domain. Finding the optimal classification is impossible using any technique,

however we can generate a set of good classifications for small, noisy datasets.



Chapter 11

Additional Case Studies

In previous chapters we have investigated numerous techniques that allow us to

automatically generate and assess classifications of remotely sensed images more

accurately. In this chapter we demonstrate the use of these techniques with the

CSU and RNP datasets.

For both datasets a three class classification was carried out, attempting to identify

vegetation, urban and water in each image. As before, the classifiers used were

C4.5(c4), neural networks(nn) and IBL for one nearest neighbour(iblk1) and three

nearest neighbours(iblk3).

As with the previous chapter, a large number of classifications were generated

automatically and then ranked according to the error measures. The steps in

classification are as follows:

1. Generate additional attributes using the techniques as described in Chap-

ter 5.

2. Train binary and multi-class classifiers, and carry out attribute selection,

using the wrapper method for C4.5 and IBL, and contribution analysis for

the neural networks.

3. Train the classifier on the selected attributes using the training dataset.

4. Classify the entire image and give a ranking of each using the modified kappa

value to give the correspondance between the classification and the test set,

as described in Section 10.5.
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For each classification system a multi-class and binary classification was generated,

as described in Sections 10.2 and 10.3. From these classifications 38 agreement

classifications were generated, as described in Section 10.4.

It is important to note that now were are classifying real images it is not possible

to quantify the accuracy over the entire image, only that of the test set. We will

need to rely to some extent on qualitative assessment of the classified images.

11.1 Charles Sturt University

The CSU dataset, introduced in Section 3.1, consists of a single ABVS image. It

can be used to give us additional support in the use of the classification framework

in that it can have a simple interpretation. The image is of the Charles Sturt

University campus and has clearly identifiable areas of buildings and vegetation.

The total number of cases in the set are listed in Table 11.1 and were generated

as described in Section 3.3.

class training set stop set test set

vegetation 121 51 40
urban 64 16 23
water 74 20 24

Table 11.1: Number of cases in each of the training sets used.

The attributes used were generated from the original ABVS spectral data and

include unsupervised AutoClass (Section 2.4.11) and maximum likelihood (Sec-

tion 2.4.1) classifications, vegetation indices (Section 5.2.3), principle components

analysis (Section 5.2.2) and the image pre-processing techniques (Section 5.2.1).

The list of attributes used were as follows.



217

band original ABVS spectral data, band=blu,grn,red,nir
band pr proportional spectral values of each ABVS band, that is, the

total reflectance (R) is the sum of the reflectance values in
each band (rband), each pixel in band pr is given the value
rband

R , band=blu,grn,red,nir
band av 3x3 each pixel in this image is given the average value of all

pixels in a 3x3 radius surrounding the given pixel, that
is, the pixel in row r and column c in band text 3x3 is

given the value
�1

i=−1

�1
j=−1 r(r+i)(c+j)

9 where rij is the re-
flectance of the pixel in row i and column j in the given
band, band=blu,grn,red,nir

pca i the principal components of the each spectral band i=1..4
sp ac AutoClass classification of the spectral data, each pixel from

the image is used as a case in the classification and the spec-
tral values for a given pixel from each of the ABVS bands
are the attributes for that pixel

sp ac pr AutoClass classification of the proportional spectral data,
each pixel from the band pr data, band=blu,grn,red,nir, is
used as a case in the classification and the values for a given
pixel from each of the band pr images are the attributes for
that pixel

ml c unsupervised maximum likelihood classifications for
c =2,3,5,7,10,15,20,33,53 classes

band 3x3 a contextual AutoClass classification using the spectral data
from the ABVS image, each pixel from the image is used as
a case in the classification, the attributes for each pixel are
the spectral value of the given pixel and the spectral values
in a 3 × 3 radius around the that pixel for the given band,
band=blu,grn,red,nir

band pr 3x3 a contextual AutoClass classification using the proportional
spectral data (band pr), each pixel from the image is used
as a case in the classification, the attributes for each pixel
are the proportional spectral value of the given pixel and
the proportional spectral values in a 3×3 radius around the
that pixel for the given band, band=blu,grn,red,nir

ratio ij ratio of pairs of spectral bandsi and j, i,j=blu,grn,red,nir,
i �=j

dvi ij the difference of spectral bands i and j, i,j=blu,grn,red,nir,
i �=j
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ndvi ij the normalised difference of bands i and j,
i,j=blu,grn,red,nir, i �=j

tvi ij the transformed normalised difference of bands i and j,
i,j=blu,grn,red,nir, i �=j

savi ij c the soil adjusted vegetation index between bands i and
j, i,j=blu,grn,red,nir, i �=j, with soil adjustment factor
c=0.1,0.3,0.5,0.7,0.9

msavi ij the modified soil adjusted vegetation index between bands i
and j, i,j=blu,grn,red,nir, i �=j

sri ijk stress related index of bands i,j and k, i,j,k=blu,grn,red,nir,
i �=j �=k

All attributes were scaled to values between 0 and 1, using the range of val-

ues across the entire image. Target classes for each classification task were also

mapped to values between 0 and 1.

In some cases, specifically for the vegetation indices, the values for a particular

attribute were close to zero for all pixels in the training dataset after scaling.

Even though these attributes had larger values over the entire image, they do not

provide enough information to be used for training classifiers. Thus, the attributes

that had values all in the range ±0.0001 in the test set were not used, giving a

total of 95 attributes.

Each of the 95 attributes became the inputs to each of the classifiers and attribute

selection was carried out. The wrapper method of attribute selection was used

for the c4, iblk1 and iblk3 classifications and contribution analysis was used for

the nn classification. Typically around 6 attributes were chosen for each classifier,

the minimum number of attributes chosen for a given classifier being one and the

maximum being 23.

The outputs of the neural networks were assigned classes by thresholding the

output values into ranges such that both the number of false positives and false

negatives was minimised.

11.1.1 Multi-Class Classification

Firstly, the multi-class classifications with attribute selection were done for each

of the classification systems. The results of the classification can be seen in Ta-

ble 11.2.
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Classifier Test Error

c4 2.3%
iblk1 0%
iblk3 0%
nn 2.3%

Table 11.2: 3 class, multi-class classifications with attribute selection.

All classifiers have very low error rates on the test set and show a corresponding

high quality classification over the entire image (see Figure 11.1). Not all of the

lakes have been identified, but two have been identified reasonably accurately.

However, in all classifications there has been an excessive assignment of water

pixels (particularly in areas between buildings) and a large peppering of urban

pixels in areas that are definitely vegetated. It would be desirable to remove, or

at least to identify, these misclassifications.



220

(a) c4 (b) iblk1

(c) iblk3 (d) nn

vegetation urban water unknown

Figure 11.1: CSU multi-class classifications.



221

11.1.2 Binary Classification

Next, binary classifications with attribute selection for the three classification

schemes were carried out. Once again, as we are performing an agreement clas-

sification to combine the results of the binary classifiers we are able to assign an

unknown class to pixels and remove some of the misclassifications1. The error

rates and the percentage of the image unclassified can be seen in Table 11.3.

Classifier Test Error Test Miscl Err % Image Unclassified

c4 19.5% 2.3% 23.45%
iblk1 0% 0% 4.69%
iblk3 1.1% 0% 3.77%
nn 6.9% 0% 6.39%

Table 11.3: Three class, binary classifications with attribute selection.

The overall error on the binary classifications is comparable to that on the multi-

class classifications, with the exception of the C4.5 classification. In all cases we

have reduced the number of misclassifications, as seen in the difference between

the error and the misclassification error.

The classified images, as seen in Figure 11.2, show that the nearest neighbour clas-

sifications are slightly better, with the smallest number of errors and unclassified

pixels.

The C4.5 classification (Figure 11.2(a)) still contains some water misclassifica-

tions, and most of the urban pixels have been given an unknown classification.

However, it may be considered reasonably reliable if you are more interested in

sub-classes of the vegetation class. A large number of the pixels that you would

expect to fall broadly into the vegetation class have in fact been given unknown

classification due to them containing dirt, rock, dry grasses or other such classes.

This makes it a better quality classification than might at first be thought.

The neural network classification (Figure 11.2(d)) can also be considered a rea-

sonably accurate classification. Two of the lakes have been identified, as well as

part of the dam on the left hand side of the image. There are minimal misclassifi-

1As in Chapter 10 the error is the total percentage of pixels in the test set not given the
correct classification, the misclassification error is the percentage of pixels given an incorrect
classification but does not include those pixels given an unknown classification.
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cations and again some of the under-story areas, particularly in the bottom right

hand corner of the image, have been removed as atypical examples of vegetation.
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(a) c4 (b) iblk1

(c) iblk3 (d) nn

vegetation urban water unknown

Figure 11.2: CSU binary classifications.
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11.1.3 Multi-Strategy Agreement Classification

Using the multi-class and binary classifications 38 additional agreement classifi-

cations were generated as described in Figure 8.5.

11.1.4 Automatic Assessment

As defined in Section 10.5, the modified kappa value for each classification was

calculated. The modified kappa values for each of the classifications can be seen in

Table 11.4, sorted from the highest modified kappa value to the lowest. The cor-

responding best four classifications for the entire image can be seen in Figure 11.3

and the worst four in Figure 11.4.
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Binary Classifications Multi-Class Classifications Test Error % Image
c4 iblk1 iblk3 nn c4 iblk1 iblk3 nn Kappa Error Miscl Err Unclassified

X X 1.000 0.0 0.0 4.6
X 1.000 0.0 0.0 4.7

X 0.982 1.1 0.0 3.8
X X 0.982 1.2 0.0 4.5

X X 1.000 0.0 0.0 6.3
X X 1.000 0.0 0.0 6.6

X X 0.965 2.3 0.0 3.4
X X 0.965 2.3 0.0 4.5

X X 0.982 1.2 0.0 6.3
X X 0.982 1.2 0.0 7.5

X X 0.947 3.5 2.3 4.1
X X X 0.965 2.3 0.0 6.2

X X 0.948 3.5 0.0 4.8
X X 0.965 2.3 0.0 6.8

X X 0.948 3.5 0.0 5.1
X X 0.948 3.5 0.0 5.4

X X X 0.948 3.5 0.0 6.3
X X X 0.948 3.5 0.0 6.7
X X X 0.948 3.5 0.0 7.3

X X 0.948 3.5 0.0 7.7
X X X X 0.948 3.5 0.0 8.2

X X 0.932 4.6 0.0 6.7
X 0.899 6.9 0.0 6.4
X X 0.899 6.9 0.0 7.6
X X 0.899 6.9 0.0 8.3

X X 0.899 6.9 0.0 10.1
X X 0.899 6.9 0.0 10.2
X X 0.883 8.1 0.0 9.8

X X 0.899 6.9 0.0 11.6
X X X 0.899 6.9 0.0 12.9

X 0.736 19.5 2.3 23.5
X X 0.736 19.5 2.3 25.1
X X 0.740 19.5 0.0 25.6
X X 0.740 19.5 0.0 25.8
X X 0.740 19.5 0.0 26.5
X X 0.724 20.7 2.3 25.3
X X 0.726 20.7 0.0 26.3
X X X 0.726 20.7 0.0 27.6
X X 0.698 23.0 0.0 28.1
X X X 0.698 23.0 0.0 29.1
X X X 0.698 23.0 0.0 29.6
X X X X 0.698 23.0 0.0 30.2

X 1.000 0.0 0.0 0.0
X 1.000 0.0 0.0 0.0

X 0.964 2.3 0.0 0.0
X 0.947 2.3 0.0 0.0

Table 11.4: Automatic assessment of the CSU classifications.
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The agreement classifications that use the binary C4.5 classification have the high-

est error rates and pixels in the image left unclassified and so these classifications

are all ranked at the bottom (examples can be seen in Figure 11.4). They are

ranked low as they mostly only identify trees and grass. But even in this case it

is due to pixels being given an unknown classification and the misclassifications

on the test set are largely removed. All of the classifications that include the

binary C4.5 classification have the lowest modified kappa ranking and so can be

discarded.

The multi-class and binary iblk1 and iblk3, as well as the agreement classifications

between them were ranked highest. These are good classifications due to good

identification of all three classes. The number of misclassifications has been clearly

reduced – roads and urban features that have been misclassified have been given

an unknown classification in the agreement classifications.

The multi-class neural network classification appears to be a reasonable classifi-

cation (see Figure 11.1(d)) but the misclassification rates are much higher than

for the agreement classifications that are ranked highest.

The highest ranked classifications are of high enough quality that they could be

used to do a more detailed investigation of the image. As an example the vegeta-

tion components of the image could be isolated and more detailed classifications

of the vegetation types could be done.
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(a) Multi-Class iblk1 and iblk3
agreement classification.

(b) Binary iblk1 agreement classifi-
cation.

(c) Binary iblk3 agreement classifi-
cation.

(d) Binary iblk1 and multi-class
iblk3 agreement classification.

vegetation urban water unknown

Figure 11.3: Top ranked CSU classifications.



228

(a) Binary c4 and nn agreement
classification.

(b) Binary c4, iblk3 and nn agree-
ment classification.

(c) Binary c4, iblk1 and nn agree-
ment classification.

(d) Binary c4, iblk1, iblk3 and nn
agreement classification.

vegetation urban water unknown

Figure 11.4: Bottom ranked CSU classifications.
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11.2 Royal National Park

The RNP dataset, introduced in Section 3.2, consists of an ABVS image and three

Landsat TM images.

Three class classifications were generated, the classes used and the number of

cases in each set seen in Table 11.5.

Class Training Set Stop Set Test Set

vegetation 65 43 85
urban 17 11 22
water 34 22 44

Table 11.5: Number of cases in each of the training sets used.

The attributes used were generated from the original ABVS and Landsat spectral

data and include unsupervised AutoClass classification (Section 2.4.11) and prin-

cipal components analysis (Section 5.2.2). Vegetation indices (Section 5.2.3) were

not generated for the Landsat image as it is of a lower resolution than the ABVS

image and the resulting number of additional attributes would have been too high

to carry out attribute selection. The list of attributes used were as follows.
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band original ABVS spectral data, band=blu,grn,red,nir
may tmi Landsat TM spectral bands for May 1996, i = 1..7
aug tmi Landsat TM spectral bands for August 1996, i = 1..7
dec tmi Landsat TM spectral bands for December 1996, i = 1..7
band pr proportional spectral values of each ABVS band, that is, the

total reflectance (R) is the sum of the reflectance values in
each band (rband), each pixel in band pr is given the value
rband

R , band=blu,grn,red,nir
band pr 3x3 a contextual AutoClass classification using the proportional

spectral data (band pr), each pixel from the image is used
as a case in the classification, the attributes for each pixel
are the proportional spectral value of the given pixel and
the proportional spectral values in a 3×3 radius around the
that pixel for the given band, band=blu,grn,red,nir

pca i the principal components of the each spectral band, i=1..4
pca may tm i the principal components of the May Landsat TM data,

i=1..7
pca aug tm i the principal components of the August Landsat TM data,

i=1..7
pca dec tm i the principal components of the December Landsat TM

data, i=1..7
sp ac AutoClass classification of the spectral data, each pixel from

the image is used as a case in the classification and the spec-
tral values for a given pixel from each of the ABVS bands
are the attributes for that pixel

sp ac pr AutoClass classification of the proportional spectral data,
each pixel from the band pr data, band=blu,grn,red,nir, is
used as a case in the classification and the values for a given
pixel from each of the band pr images are the attributes for
that pixel

band 3x3 a contextual AutoClass classification using the spectral data
from the ABVS image, each pixel from the image is used as
a case in the classification, the attributes for each pixel are
the spectral value of the given pixel and the spectral values
in a 3 × 3 radius around the that pixel for the given band,
band=blu,grn,red,nir
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band pr 3x3 a contextual AutoClass classification using the proportional
spectral data (band pr), each pixel from the image is used
as a case in the classification, the attributes for each pixel
are the proportional spectral value of the given pixel and
the proportional spectral values in a 3×3 radius around the
that pixel for the given band, band=blu,grn,red,nir

ratio ij ratio of pairs of spectral bandsi and j, i,j=blu,grn,red,nir,
i �=j

dvi ij the difference of spectral bands i and j, i,j=blu,grn,red,nir,
i �=j

ndvi ij the normalised difference of bands i and j,
i,j=blu,grn,red,nir, i �=j

tvi ij the transformed normalised difference of bands i and j,
i,j=blu,grn,red,nir, i �=j

savi ij c the soil adjusted vegetation index between bands i and
j, i,j=blu,grn,red,nir, i �=j, with soil adjustment factor
c=0.1,0.3,0.5,0.7,0.9

msavi ij the modified soil adjusted vegetation index between bands i
and j, i,j=blu,grn,red,nir, i �=j

sri ijk stress related index of bands i,j and k, i,j,k=blu,grn,red,nir,
i �=j �=k

All attributes were scaled to values between 0 and 1, using the range of val-

ues across the entire image. Target classes for each classification task were also

mapped to values between 0 and 1.

In some cases, specifically for the vegetation indices, the values for a particular

attribute were close to zero for all pixels in the training dataset after scaling.

Even though these attributes had larger values over the entire image, they do not

provide enough information to be used for training classifiers. Thus, the attributes

that had values all in the range ±0.0001 in the test set were not used, giving a

total of 122 attributes.

Each of the 122 attributes became the inputs to each of the classifiers and attribute

selection was carried out. The wrapper method of attribute selection was used

for the c4, iblk1 and iblk3 classifications and contribution analysis was used for

the nn classification. Typically around 8 attributes were chosen for each classifier,

the minimum number of attributes chosen for a given classifier being two and the

maximum being 21.
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The outputs of the neural networks were assigned classes by dividing the output

values into ranges such that both the number of false positives and false negatives

was minimised.

11.2.1 Multi-class Classification

Firstly, the multi-class classifications with attribute selection were done for each

of the classification schemes. The results of the classification can be seen in

Table 11.6.

Classifier Test Error

c4 11.3%
iblk1 1.9%
iblk3 2.6%
nn 17.9%

Table 11.6: 3 class, multi-class classifications with attribute selection.

The error rates for both the C4.5 and neural network classifications are consid-

erably higher than for the IBL classifications. However, evaluation of the clas-

sification over the entire image shows that only the C4.5 classification contains

a significant number of misclassifications (see Figure 11.52). The neural network

classification is still a reasonable classification in that there has been a reasonably

clear distinction between the vegetation and water classes. However, there are

a reasonable number of misclassified water pixels and no urban pixels have been

identified.

Note, however, that the IBL classifications, in particular, are obviously influenced

by the lower resolution of the Landsat data, in spite of the fact that all classi-

fiers had at least one Landsat derived attribute chosen in the attribute selection

process.

2Note that the bottom right hand corner of the image is missing due to missing data from
the Landsat TM image.
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(a) c4 (b) iblk1

(c) iblk3 (d) nn

vegetation urban water unknown

Figure 11.5: RNP multi-class classifications.
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11.2.2 Binary Classification

Next, binary classifications with attribute selection for the three classification sys-

tems were carried out. The error rates and the percentage of the image unclassified

can be seen in Table 11.7.

Classifier Test Error Test Miscl Err % Image Unclassified

c4 13.2% 2.0% 9.31%
iblk1 5.30% 0.7% 7.98%
iblk3 15.9% 0.0% 31.46%
nn 19.2% 4.0% 25.20%

Table 11.7: Three class, binary classifications with attribute selection.

The overall error rate is comparable to that in the multi-class classifications, but

we now see a large number of pixels being given unknown classifications for both

the three nearest neighbour (iblk3) and neural network (nn) classifications. For

the test set we again see a reduction in the number of misclassifications.

The classified images, as seen in Figure 11.6, show that the C4.5 classification is

now slightly better. It is less influenced by the lower resolution of the Landsat

data, but it also has minimal misclassified pixels (Figure 11.6(a)). The neural net-

work classification (Figure 11.6(d)) has a large number of water misclassifications

and is quite sensitive to the lower resolution Landsat data.

The poor performance of both the multi-class and binary neural networks may

appear to indicate unsuitable network topologies. However, the results given do

compare favourably to those reported in the literature for remotely sensed data

(see Section 2.4.4 and Chapter 4). As previously noted, we failed to discover a

topology with better classification accuracy for these data sets. In addition to

this, the techniques described here supports the findings of Rogova [136]. That

is, the results can be better for combined classifiers over individual classifiers and

that this can mitigate the effects of a less than optimal network topology.
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(a) c4 (b) iblk1

(c) iblk3 (d) nn

vegetation urban water unknown

Figure 11.6: RNP binary classifications.
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11.2.3 Multi-Strategy Agreement Classification

Using the multi-class and binary classifications 38 additional agreement classifi-

cations were generated as described in Section 8.5.

11.2.4 Automatic Assessment

As defined in Section 10.5, the modified kappa value for each classification was

calculated. This ordering can be seen in Table 11.8, sorted from the highest

modified kappa value to the lowest.
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Binary Classifications Multi-class Classifications Test Error % Image
c4 iblk1 iblk3 nn c4 iblk1 iblk3 nn Kappa Error Miscl Err Unclassified

X 0.914 5.30 0.70 7.98
X X 0.834 10.60 0.00 11.10

X 0.790 13.20 2.00 9.31
X X 0.807 12.58 2.65 16.19

X X 0.748 16.56 0.66 13.29
X X 0.687 19.21 3.97 7.28

X X 0.815 12.58 0.00 20.64
X X 0.769 15.23 0.00 16.82

X X 0.691 19.87 0.00 12.59
X X 0.662 21.85 1.99 12.74

X 0.730 19.20 4.00 25.20
X X 0.658 23.18 0.66 18.20

X X 0.719 19.87 0.00 24.59
X 0.779 15.90 0.00 31.46

X X X 0.642 24.50 0.66 20.58
X X 0.757 17.88 0.00 36.01
X X 0.720 20.53 0.00 34.56

X X 0.731 19.87 0.00 36.16
X X 0.701 22.52 1.32 36.24

X X 0.701 22.52 0.00 40.32
X X 0.668 25.17 0.00 37.16

X X 0.654 26.49 0.00 38.79
X X 0.600 29.80 0.00 35.33

X X X 0.639 27.81 0.00 40.97
X X 0.580 31.79 0.00 38.68

X X 0.633 28.48 0.00 44.01
X X X 0.619 29.80 0.00 46.19

X X 0.665 26.49 0.00 51.68
X X 0.579 35.10 1.32 43.99

X X 0.608 32.45 0.00 47.15
X X 0.593 33.77 2.65 45.69

X X X 0.636 29.14 0.00 53.36
X X 0.552 37.75 0.00 48.44

X X X 0.549 38.41 1.32 52.42
X X 0.476 44.37 0.66 45.23

X X X 0.575 35.10 0.00 55.94
X X X X 0.567 35.76 0.00 56.93

X X 0.579 35.76 0.00 58.69
X X X 0.460 46.36 0.00 48.05

X X 0.523 41.72 0.66 60.61
X X X 0.444 48.34 0.00 54.01
X X X X 0.433 49.67 0.00 55.29

X 0.870 1.90 0.00 0.00
X 0.866 2.60 0.00 0.00

X 0.679 17.90 0.00 0.00
X 0.554 11.30 0.00 0.00

Table 11.8: Automatic assessment of the RNP classifications.
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The overall error rates for these classifications are higher on average than seen

on the SIM and CSU datasets. As the error rates for the multi-class and binary

classifications are higher this is to be expected. We see the expected reduction in

the number of misclassifications, which means a large number pixels with unknown

classifications.

In spite of the fact that the modified kappa statistic is considered a better evalua-

tion of classification accuracy we can see that it can still lead to poor choices being

made when used for ranking. For example, the agreement classification between

the binary iblk1 and multi-class nn classifications, as seen in Figure 11.7, is clearly

a better classification than that for the binary nn classification. However, in the

summarised table below we see that the binary nn agreement classification has a

higher misclassification error and a larger proportion of pixels that have been left

unclassified.

Binary Classifications Multi-class Classifications Test Error % Image

c4 iblk1 iblk3 nn c4 iblk1 iblk3 nn Kappa Error Miscl Err Unclassified

X 0.730 19.20% 4.00% 25.20%

X X 0.691 19.87% 0.00% 12.59%

Once again, the method of ranking used is heuristic and so is not guaranteed to

give the best overall classification the highest ranking.

For the top four classifications see Figure 11.8.

In this case the multi-class iblk1 and iblk3 classification (Figure 11.8(d)) in par-

ticular shows some impact from the lower resolution Landsat data, although these

areas of the image have been left unclassified. Majority of the errors are reduced

in the agreement classifications leaving a classification that could be considered

reasonably reliable.

Agreement classifications using the multi-class C4.5 classification are given as the

worst classifications. The modified kappa value for this classification is amongst

the lowest. This is due to the significant overestimate of water giving a large

number unknown classifications in the agreement classifications. See Figure 11.9

for the worst four classifications listed in Table 11.8.

The multi-class neural network classifier is able to clearly distinguish between

vegetation and water, without being affected by the lower resolution data. How-

ever, it does not recognise urban pixels and agreement classifications using it are

ranked lower in the table.
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(a) Binary neural network classifi-
cation, kappa value 0.73

(b) Binary iblk1 and multi-class nn
agreement, kappa value 0.69

vegetation urban water unknown

Figure 11.7: Comparison of kappa values and classification quality.
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(a) Binary iblk1 classification. (b) Multi-class and binary iblk1
agreement classification.

(c) Binary C4.5 classification. (d) Multi-class iblk1 and iblk3
agreement classification.

vegetation urban water unknown

Figure 11.8: Top ranked RNP classifications.
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(a) Multi-class c4 and iblk1 agree-
ment classification.

(b) Binary nn and multi-class c4
agreement classification.

(c) Multi-class c4, iblk3 and nn
agreement classification.

(d) Multi-class c4, iblk3 and nn
agreement classification.

vegetation urban water unknown

Figure 11.9: Bottom ranked RNP classifications.
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11.3 Discussion

In this chapter we have looked at classifying real remotely sensed images using

the techniques described in previous chapters. We have demonstrated that it is

possible to automatically generate and assess classifications.

For each of the datasets we generated large numbers of additional attributes to

highlight information in the remotely sensed data. Both multi-class and binary

classifiers were used to generate a number of classifications of the image. Attribute

selection was carried out so that only a small number of relevant attributes was

used for a given classification task. Finally, each of the classifications was auto-

matically ranked according to its modified kappa value.

The classifications generated here serve to demonstrate that a single classifica-

tion approach would not have produced consistent high quality classifications. In

particular, the SIM, CSU and RNP datasets resulted in

• Vastly different subsets of attributes being chosen by each classifier trained,

even the variation between classifiers generated for a single image were sig-

nificant.

• Classifications for individual classifier algorithms varying quite substantially

in quality across different images. For example the multi-class C4.5 classifi-

cation for the RNP image was of a much poorer quality than for the CSU

image.

By choosing a single classification method, with fixed attributes being used and

single classification method, the quality of the classifications would not have been

as high. By using the classifier to determine the most appropriate set of attributes,

generating a range of classifications automatically and then ranking them allows

us to improve the quality of the final classifications. In using this method of

generating classifications we have removed the need to manually configure clas-

sifications for each new image and dataset obtained and are still able to achieve

good quality maps.

A way to threshold rankings given to classifications so that the “bad” classifica-

tions can be discarded early in the process without discarding useful information

would also be of value. This would also help to reduce classifier training times.
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11.4 Conclusions

In this chapter we demonstrated the combination of the techniques discussed in

this thesis for automatically generating an assessing classifications of remotely

sensed data. Automated classification gives us the ability to generate a large

number of alternative classifications and choose the best, which can then be used

for mapping applications or use in further classifications and analysis.



Chapter 12

Conclusions and Future Work

In this thesis we have attempted to address some of the issues in automatically

classifying remotely sensed data, however, there is still much work that can be

done.

We have demonstrated a set of techniques that have the following features.

• We can produce more consistent results between the test set and the entire

image. We can now be reasonably confident that the error on the test set

will be reflected in the error over the entire image. That is, the test set error

is a reasonable estimate of the image error.

• We can reduce the error in a classification by removing some of the misclas-

sified pixels.

• Classifications can be generated and assessed automatically. The techniques

used are general enough to be used with a wide range of classifier systems.

The key impediments to automating the classification of remotely sensed data

that were overcome were:

• Large scale investigation of the available data to highlight the information

contained in it by generating additional attributes and to use only the most

relevant of those for a given classification task.

244
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• Constraining the neural network classifier topology and training regime.

Heuristics for determining when a given network has generalised the char-

acteristics of classification task were given. An attribute selection technique

for neural networks was introduced that is less computationally expensive

than many of the currently used heuristic attribute selection techniques.

• Producing more consistent classification results between the training dataset

and an entire image, and so enable automatic evaluation of the quality of

the classifications generated.

12.1 Contribution Demonstrated in this Thesis

The key techniques demonstrated in this thesis are as follows.

Generating additional attributes for use in classification. A number of gen-

eral techniques for highlighting information from the available data were dis-

cussed. These techniques were used to generate a large number of additional

attributes for use in classification. (Chapter 5)

Neural network attribute selection and performance improvement. Neural

networks, while obviously useful in pattern recognition problems, are not the

classification panacea they are sometimes claimed to be. In particular, it

was demonstrated that even though neural networks are able to distinguish

objects in the presence of noise, they can be made to perform better when

irrelevant or very noisy attributes are removed from the training data. An

attribute selection technique that used the weights from a trained neural

network to select the most relevant attributes was given. Heuristic methods

for automating and improving the performance of neural networks were also

given. (Chapters 4 and 7)

Simulating a remotely sensed image. Using the known properties of an ac-

tual image to generate an image where the cover type for each pixel is

known. This allows us to compare classification techniques quantitatively.

(Chapter 9)

Agreement classification to improve the reliability of a classification. A

number of simple classifiers are trained on different views of the data. That
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is, different subsets of the available data are used to train each classifier.

A classification is given to a pixel only when all classifiers trained agree

on class membership. The performance of individual classifiers is improved

by using attribute selection. As well, agreement classification allows us to

make effective use of small training datasets that may only contain data for

a small number of the possible classes. (Chapter 8)

Automated generation and assessment of classifications Using the Kappa

statistic, the misclassification error and the percentage of the image unclas-

sified it is possible to rank the classifications generated. This ranking can

be used to select the best classification or identify the top n classifications

for further work or evaluation. (Chapter 10)

12.1.1 Neural Network Classification

Large variations in output values for a given case when classified by neural net-

works have been reported [147, 111]. This can be the case when networks have

the same topology and are trained on the same data, with the only difference

being the initial set of connection weights. This is due to the neural networks

not being able to find consistent information in the training dataset in complex

classification tasks.

Variations in output values were significantly reduced when the network topology

is constrained, as described in Figure 4.1. The constraints limit the number

of output classes and remove irrelevant information by attribute selection. The

lessons learnt are that neural networks are still constrained by the information

contained within the data.

In this work we demonstrated that the flexibility of neural network topology does

not necessarily provide additional benefits. For the datasets used here it was

possible to automate neural network classification using a reasonably constrained

network topology and a well defined process for carrying out the classification

task. Key points for automating classification are as follows.

• Limit the number of classes to be recognised to improve classification accu-

racy. This was particularly necessary in this work as attribute selection was

only investigated for single output neural networks.
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• Attribute selection using contribution analysis to limit the number of inputs

to the neural network. This was automated by determining a minimum

contribution that each attribute must make – the threshold used here of

±0.2 was found to be appropriate for the datasets being investigated and

was arrived at by extensive experimentation. Further work needs to be done

on this to determine how to choose a reasonable threshold for a given dataset

with a given number of input attributes.

• It is necessary to constrain the number of nodes in the hidden layers feeding

into the single output node, for binary classification. This was achieved by

using half the number of hidden nodes as there were input nodes. However,

if the number of inputs was greater than 40 the number of hidden nodes

defaulted to 20.

• The stopping point for the neural network training can be determined au-

tomatically by choosing the point of minimum error on the stopping set as

described in Section 4.5.

• As most of the networks described here had only two classes to be recognised

(0.1 and 0.9) a default thresholding of outputs of 0.5 could have been used.

It was found, however, that the outputs typically did not separate that well

and so a threshold was chosen that minimised both the number of false

positives and the number of false negatives.

It was clearly demonstrated that the full capabilities and flexibility of neural

network classification can be a weakness in certain types classification tasks.

12.2 Future Work

The central aim of this work was to allow the maximum amount of information to

be extracted from the available data. In particular it provides a set of techniques

that allows large scale automated searches for the most relevant attributes for a

given classification task.
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12.2.1 Generating Additional Attributes

Generation of attributes need not be limited to those used in this work. A wide

range of alternative techniques are available that can be used to extract useful

information from a given data set. In particular, there may be specific attributes

that have already been proven to be useful in a given domain that can be used

without much additional investigation. Another area that may provide additional

techniques is that of data mining in large databases (for further discussion see [52,

126, 51]). The work described in this thesis provides the framework for using a

wide range of such techniques.

It is important to note that just generating large numbers of attributes is unlikely

to improve classification accuracy and that attribute selection will continue to be

required. The aim of generating additional attributes is to provide alternative

views of the data available and so ensure the maximum amount of information is

extracted from it. From these alternative views of the data only the most relevant

for the given classification task should be used. As we saw in the classification

tasks carried out here, from an initially large number of possible attributes, only

a relatively small number of attributes were actually chosen as being relevant and

so used in a final classification.

Very large numbers of attributes are not necessarily needed before improvements

in classification accuracy can be seen. Work published from this thesis, Milne [110],

describes work that used attribute selection on only 17 attributes. As was the case

in this work, irrelevant attributes may simply be those that have low signal to

noise ratios and so are of no use in a classification task. The approach described

in this thesis can easily be used on existing attributes without creating additional

attributes. This will enable faster more accurate classifications by removing irrel-

evant attributes.

Trials carried out but not included here, tested attribute selection with up to

151 attributes. Unsurprisingly, this resulted in an increase in the training times

but still gave improvements in the final error rates. However, it would not be

surprising if increasing the number of attributes beyond this would quickly degrade

classification accuracy due to sub-optimal subsets of attributes being chosen. This

would, however, require further investigation.

If large numbers of attributes are to be investigated iterative attribute selection

may be the solution. That is, dividing the available attributes into partitions and
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then carrying out attribute selection on individual partitions. The smaller set of

attributes chosen from each partition could then be either used in classification or

further attribute selection carried out. More work would be required to find the

best approach.

12.2.2 Neural Network Classification

One of the main criticisms of neural networks are that they are black box clas-

sifiers. That is, you can not reason about the information in the trained neural

network. One of the aims of automated classification should be to also increase

our understanding of remotely sensed data and in this case the natural environ-

ment. Work has already begun on interpreting the results from neural networks

and is a necessary area of focus for this domain. Examples of interpreting neural

networks can be seen in [36, 37, 141], but much work is still to be done in this

area.

12.2.3 Simulating Remotely Sensed Data

While this work extended the work of [22] further improvements are still possible.

The values of neighbouring pixels will generally show some correlation and in

this work we used a simple weighted sum to simulate this. Other approaches for

correlating the values between neighbouring pixels should be investigated.

Masson and Pieczynski [101] found that variance of noise in images depends on the

class. The noise that was added to the simulated image simply made the values

a little bit smaller from one end of the image to the other. While this changed

the statistical properties of the values slightly a more realistic method for adding

noise to simulated images should be investigated.

Simulating remotely sensed data need not be restricted to evaluation of classi-

fier systems. McKeowen et al. [104] discuss the use of large-scale virtual world

databases for ground based simulations that incorporate remotely sensed data.

Improving the simulation of remotely sensed data would mean that a variety of

images could be generated to investigate a variety of scenarios. Such scenarios

might include the simulation of pest damage or the effects of logging in forests.

The simulated data generated for this work could be of used as the basis of creating
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such simulations.

12.2.4 Attribute Selection

In spite of only having small noisy training sets we can highlight information in the

available data to make the best use of it by generating additional attributes. We

can then use attribute selection techniques to select the most relevant attributes

for a given classification task.

As the attribute selection techniques described here are heuristic techniques, im-

provement in their performance is always going to be possible.

The attributes used in this work were limited to the spectral data and the at-

tributes derived from it, however, they need not be limited to just these. Any

additional information that can be used in a classification should be considered.

Examples include soil maps, climate models, and expert knowledge.

The attributes chosen can give us insight into the characteristics of each class and

the underlying properties that make classes different from each other. Analysis

of the training dataset and the attributes selected will also ensure that artefacts

in the data are not biasing the result. Investigations such as this would require

input from domain expertise.

Machine learning techniques generally aim to produce a human readable form of

the classifier to help extend our knowledge in a particular area. Further work

needs to be done to extract more useful information from the attributes that are

chosen as well as the classifiers that are trained from them.

12.2.5 Contribution Analysis

A number of techniques are available for attribute selection, one being the wrap-

per method as used in this work. However, this is a computationally expensive

approach and is inappropriate for use with neural networks. For this reason con-

tribution analysis was demonstrated for attribute selection in neural networks.

This approach uses the weights from a trained neural network to determine the

contribution of an attribute to the output of a neural network.

Attribute selection using contribution analysis was demonstrated and found to
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improve the classification accuracy of neural networks in a number of different

domains. The relevant attributes were determined by thresholding the contribu-

tions. More extensive investigation should be done, across a number of domains,

to determine if there is an optimal threshold for a given domain based on the data

or the number of attributes being used.

In this work the application of contribution analysis was only described for sin-

gle output neural networks. This will need to be extended for networks with

more than one output, and how best attribute selection can be done, needs to be

investigated further.

12.2.6 Incorporating Contextual Information

While it is accepted that in classifying remotely sensed data the use of contextual,

or spatial, information is important there are still no clear cut approaches for

achieving this.

In this work contextual information was incorporated using quite simple ap-

proaches. In Section 5.2.1 method of generating an average image was outlined.

This involved replacing each pixel in an image with the average value of it and its

neighbours. In Section 5.2.6 we discussed using neighbouring pixels as attributes

in unsupervised classifications.

Further work needs to be done to find more effective ways of incorporating con-

textual information either as attributes in a classification or within the actual

classification system. Examples of this can be found in [101, 50, 48]. The clas-

sification framework described in this work is particularly suited to large scale

investigation of this type as it is fully automated.

12.2.7 Agreement Classification

In this work we generated a large number of agreement classifications and then

evaluated them using the kappa statistic. Clearly there were classifications that

were generated of such a low accuracy that they would never improve the quality

of a classification when using them in an agreement classification. Determining if

such classifications can be discarded early on, and so also reduce the amount of

computation required, should be investigated.
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Combining the results from classifiers need not be as simple as described here

and other methods should be investigated. For example, Drucker et al [43] used a

two level classification scheme that involved training a classifier on a given task.

The misclassified pixels were then used to train a second classifier and a third to

arbitrate the results and give a final class. Such a technique could be adapted

and extended to work for small noisy datasets and the classification framework

described here.

12.2.8 Accuracy Assessment

While we demonstrated the use of the kappa statistic and the number of unclas-

sified pixels to rank classifications much work can still to be done to refine this.

For this work the kappa statistic gives the most significant measure of accuracy,

but it needs to be adjusted to take into account the number of unclassified pixels

in the final ranking.

Uebersax [165] discusses the complexity of determining level of agreement between

two classifications and that this is an area requiring further research. In particular,

for this work using the level of agreement to automatically rank classifications

could be investigated further.

Ultimately the error on unseen data is always only an estimate based on classi-

fication accuracy for a classifier on a test set and so anything that improves this

estimate will increase our ability to automatically rank classifications.

The kappa statistic could be used earlier in the classification process to remove less

accurate information. This would also serve to reduce the processing requirements

earlier. The focus of this work was in maximising the amount of information

extracted from data and then only reducing this information at the very end.

It would, however, be worthwhile investigating a reduction of the information

available earlier in the classification process, and so potentially increasing the

efficiency of the classification framework.

12.2.9 Increasing Classification Detail

Being able to generate more detailed classifications should be possible using the

techniques described here. This could be to further refine class membership and
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remove misclassified pixels, or to identify subclasses. As an example, for the

classifications that were generated here we could take the tree class and further

distinguish between trees, grass and water weeds, or to identify different tree

species.

Initial investigations, carried out as part of this work and published in [111], seg-

mented classes into sub-classes gave reasonable results. This will need to be inves-

tigated further, with extensive investigations now possible due to the automation

of the classification framework.

12.3 Extensions to this Work

In addition to improvements that can be made to the techniques described in this

work extensions into other areas are also desirable.

12.3.1 Knowledge-Based Systems

Incorporating remotely sensed data with geographic information systems has been

hampered by the need for human interpretation and assistance [65]. That is, hu-

man expertise is still needed for tasks such as image registration and interpretation

type tasks. By utilising expert knowledge as well means that we can extract fur-

ther information from the data collected.

The problem with expert systems has been the human input for generating and

maintaining the knowledge base. This issue has been addressed by Ripple Down

Rules (RDR) expert systems [30, 31, 29]. A set of rules can be automatically

generated using a training dataset and the expert can make changes to the rules,

only in the given context, when errors are found.

While RDR still requires human input it can, at least, be partially automated and

it is the ideal platform for incorporating expert knowledge into a classification.

That is, once the knowledge base has been generated it can be used to generate

classifications for use in agreement classifications.

It may also be possible to use an RDR type approach to improve agreement clas-

sifications and automated ranking of classifications, for example. In the case of

agreement classifications a set of rules might be generated that take into account
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properties of the data as well as the classifications generated. For the error es-

timation a simple set of rules for determining a good classification versus a bad

classification might be generated.

12.3.2 Maintaining Classification Systems

Transience or concept drift is also a major concern. The objects in remotely

sensed data are always changing and the classifications generated must evolve

and adapt. Pest or fire damage, for example, are problems that always have the

potential to exist but will not occur at predetermined times. Such problems will

mean a different context is required for mapping these areas from remotely sensed

images, and at some point in the future that context would once again become

meaningless. How we deal with these types of issues is a major area of research

on its own.

Much work has been done in remote sensing to detect changes between remotely

sensed images collected at different times. For examples see [55, 123, 142]. Being

able to detect changes requires that you can accurately generate classifications

from different images that can be compared. Once this can be achieved changes

will become easy to track. However, to reduce the amount of work done in classi-

fications it would be better to be able to update the classification system rather

than have to classify from scratch.

Cheon and Chang [25] used multiple neural networks to identify transient prob-

lems in nuclear power plants. A number of classifiers trained in my way mean

that a large number of concepts can potentially be identified by training a large

number of classifiers. The binary classification scheme then serves to identify the

most appropriate classifier at a given point in time. The use of multiple classi-

fiers, as described in this thesis, might be extended to deal with concept drift.

Again, RDR may also be of use here to determine which are the most appropriate

classifiers to use at a given time.

12.3.3 Real Time Classification

A real challenge for this work is to determine how best to automate this process

for real time applications. For example, a farmer needs to know within days if
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his crops are under threat, not after weeks of processing data. The techniques

described in this work are ideal for applications such as agricultural mapping as

they are fully automated.

Training times are still in the order of days rather than minutes or hours. Addi-

tional work on optimising the classification algorithms used should be investigated.

As well, more detailed investigations of a given domain may be able to identify

specific configurations and attributes that are more appropriate. By reducing the

attribute search space classification time frames can most likely be reduced.

12.4 Conclusion

In this thesis we have demonstrated the use of a wide range of general classification

techniques for extracting as much information as possible from the data available

for training classification algorithms, and using only the most relevant information

for the automatic generation and evaluation of accurate maps.

While this work focused on the classification of remotely sensed and ancillary data,

the techniques described here are general enough to be applied to any domain, but

are particularly relevant where training datasets are small, with noise or irrelevant

attributes.

Specifically, this work demonstrated:

• Highlighting information in the available data.

• Neural network attribute selection and performance improvement.

• Simulating remotely sensed data.

• Combining a number of simple classifiers to improve classification accuracy.

• Automated generation and assessment of classifications of images.

Not only can we automatically generate reasonably reliable classifications for

small, noisy datasets, we can also assess their relative accuracy with an acceptable

degree of accuracy. In particular, the advantages of the techniques described in

this work are:
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• We can produce more consistent results between the test set and the entire

image. That is, we can be reasonably confident that the error on the test

set will be reflected in the error over the entire image.

• We can reduce the error in a classification by removing some of the misclas-

sified pixels due to inconsistent classifications from a number of classifiers.

• Classifications can be generated and assessed automatically.
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Appendix A

Glossary

ABVS Airborne video system, developed at Charles Sturt University, Wagga

Wagga.

Ancillary data Data used in addition to spectral data, that is, additional at-

tributes.

attribute Any numeric or non-numeric value associated with a given pixel in an

image. These may be the original spectral values, derived values or other

ancillary information.

AVHRR Advanced very high resolution radiometer, a satellite sensing platform.

AVRIS Airborne visible/infrared imaging spectrometer.

band/spectral band A remotely sensed image, as used here, is of an area on

the ground with each pixel having a number of reflectance values measured.

Each reflectance value is in a given range of the electromagnetic spectrum

and is referred to as a spectral band.

binary classifier A classifier that gives a yes or no classification.

broad band Reflectance values in a given band are measured over a given range

of the electromagnetic spectrum, and when the range of values is large the

measurement is referred to as broad band.

case/training case Corresponds to a pixel in an image. Each pixel has a number

of attributes associated with it and a class label.
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class/class label A category assigned to a given pixel, either by a classifier sys-

tem or human interpretation.

classification A broad term encompassing the actual classification

CSU The Charles Sturt university dataset.

default classification A trained classifier that has not been able to separate the

characteristics of the classes in the training data. Each input case is given

a default class membership regardless of its actual attribute values.

DEM Digital elevation model, see elevation model.

elevation model An elevation model is a representation of the height and shape

of the Earth’s surface.

epoch When training a neural network one full presentation of the training data

to the neural network is referred to as a epoch.

ground truth Ground truth data is essentially the collection of training data

from ground surveys of the study area. Knowing what is on the ground

at a given point gives us a class label that can be combined with a set of

attributes and used as training data. The type and quality of the data is

entirely dependant on the experience of the team carrying out the survey,

and may vary between teams. This is added to the fact that reasonably

cheap and accurate positioning systems (GPS) have only recently become

available and in the past the actual positions of these sites were estimated

using maps.

IBL Instance-based learning.

Landsat TM Landsat thematic mapper, a satellite sensing platform.

Landsat MSS Landsat multi-spectral scanner, a satellite sensing platform.

map A classification of a given area that may have been generated manually by a

human expert, in combination with ground truth surveys or even historical

data, or a computer generated classification.

NIR Near-infrared.

NN Neural network.

NSW New South Wales.
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orthoimage An orthoimage is generated by rectifying distortions in an image

caused by variations in the height of the terrain. It contains pixels that are

all to the same scale.

overfitted/overgeneralised The classifier has learnt the details of the training

data and has not found a generalisation of the training data.

remotely sensed image Data from any remote sensing platform with any num-

ber of spectral bands.

resolution The resolution data refers to the area on the ground that each pixel

corresponds to. Low resolution data represents a large area for each pixel

and high resolution data represents a small area.

RNP The Royal National Park dataset. This is for a small area within the park,

called Audley.

SIM The simulated remotely sensed image dataset.

single class classifier A classifier that gives an in or notin classification for a

given class. The classifier is trained on data with two classes - the in class

which contains training cases for a single class and the notin class which

contains training cases from all other known classes. The aim is to train a

classifier that will recognise the characteristics of the most consistent class.

specialisation The classifier has learnt the details of the training data and has

not found a generalisation of the training data.

SPOT System Probatoire d’Observation de la Terre, a French satellite sensing

platform.

stop set Used only in the training of the neural network. The specific set of

labelled cases that are used to determine the stopping point in training.

They are presented to the classifier after training and the point at which the

error on the stop set starts increasing is the point at which to stop training.

test set The specific set of labelled cases that are not used in at all in training

a classifier. They are, however, presented to the classifier after training has

been completed to estimate the error of the classifier on data for which the

class is not known.

topographic maps Topographic maps contain natural features such as hills and

rivers, as well as cultural features such as roads, bridges and railways.
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training data The entire labelled data set, split into training, stop and test sets.

training set The specific set of labelled cases that are presented to a classifier

for training.

two class classifier A classifier that has been trained on data containing only

two classes. This attempts to distinguish between two classes.

UCI University of California, Irvine.

unseen data Refers to data that is not used at all during the training of a

classifier, but rather is presented to the trained classifier for classification.



Appendix B

Publications

Publications from this work can be found via the following links. The work de-

scribed in these papers has been incorporated into the thesis in the relevant sec-

tions.

L.K. Milne, T.D. Gedeon, and A.K. Skidmore. Classifying dry sclerophyll forest

from augmented satellite data : Comparing neural network, decision tree and

maximum likelihood. In Proc. 6th Australian Conference on Neural Networks,

Sydney, pages 160–163, February 1995.

http://handle.unsw.edu.au/1959.4/37616

L.K. Milne. Feature selection using neural networks with contribution measures.

In AI’95 Poster Proceedings, Canberra, November 1995.

http://handle.unsw.edu.au/1959.4/37628

L.K. Milne and C. Willock. Comparison of two methods for increasing training

set size for neural networks. In AI in the Environment Wkshp, Canberra, pages

89–94, November 1995.

http://handle.unsw.edu.au/1959.4/37622

L.K. Milne. Attribute selection in neural networks used to classify remotely sensed

data. In Visual Information Processing Wkshp, Sydney, pages 21–26, December

1997.

http://handle.unsw.edu.au/1959.4/37610
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L.K. Milne. Improving Classification Accuracy of Machine Learning Techniques

applied to Remotely Sensed Data. In Proc AI’98, Brisbane, pages 26–37, July

1998.

http://handle.unsw.edu.au/1959.4/37655
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Appendix C

Recent Developments

A review of the research published since the submission of this thesis is given here.

C.1 Multi-Strategy Classification Schemes

Multi-strategy classification schemes, such as that given in this thesis, continue

to be discussed in the machine learning literature.

Liu et al. [LCJM04] describe a classifier scheme using combinations of neural net-

works with attribute selection that has many similarities with the work discussed

in this thesis.

The classification scheme starts by pre-processing the data. The data is then

resampled 100 times using bootstrapping – a new training set is created by se-

lecting a subset of cases with replacement from the original training set, this new

training set is then used to train a new classifier [Die00]. The classifier used was

three co-operative and competitive neural networks. Attribute selection is first

carried out using a ranksum test, principle components analysis and a t-test to

determine the most relevant attributes and give three different datasets to train

the three different neural networks. The average output of the three networks is

the output given.

The resampling is carried out for 100 iterations to give 100 subsets of the data

to train the co-operative and competitive neural networks, which gives 100 clas-

sifications for each instance presented. The final classification given to a single
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instance is simply a majority vote of the 100 classifications given.

Three publicly available medical datasets were used to test the classification

scheme. As with this thesis, each of the classification problems were reduced

to binary classifications.

The results of the classification scheme were compared against other published re-

sults for the given datasets, as well as compared against bagged decision trees [Die00].

In all cases the multi-strategy classification scheme used by Liu et al. was an im-

provement over other techniques described. Comparison with leave one out cross

validation on the datasets gave the similar error rates to the multi-strategy clas-

sification scheme and so provided support for the validity of the improvements

achieved.

Liu et al. concluded that the improved error rates were largely due to the attribute

selection. One of the aims in this thesis was to create different views of the data

to enable better classification. The method of attribute selection used by Liu et

al. is an alternative way of achieving this. They also state that the advantage of

using more than one classifier with a majority voting scheme is that it reduces the

effects of noise in the data and identifies the central features of each class, which

is in complete agreement with the work done in this thesis.

In contrast to the work discussed in this thesis, they used a combination of 100

neural network classifiers. While the results are clearly an improvement over

other classification schemes the large number of classifiers being trained and used

might result in long execution times, although this is not discussed. Given that the

datasets were all less than 1,000 instances in total, training and classification times

are not likely to be an issue. However, in a remote sensing or other imagery based

domains, where it is not uncommon to have hundreds of thousands of instances,

the efficiency of this classification scheme given might be prohibitive.

Lee and Ersoy [LE07] also discuss a classification scheme that used multiple neural

networks, each trained by varying the data or other training parameters. The

outputs of each trained neural network were combined by using a weighted sum to

generate a single output. Similar to the results obtained in this thesis classification

accuracy improved over using a single classifier. They state that the improvement

of classification performance by consensus is achieved when the errors produced

by multiple classifiers are different, and there is little correlation between them.

While the classification scheme of Lee and Ersoy was different to that given in
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this thesis their findings and conclusions are in complete agreement with those

reported in this thesis.

At the time of writing the author was unable to find work that was directly

comparable to the work carried out in this thesis in remote sensing or vegetation

mapping domains, and this continues to be the case. Hybrid classification schemes

are used in these domains, but nothing could be found that is similar to the

framework introduced in this work. The focus of hybrid approaches tends to be

more on statistically based methods or methods for pre-processing the data before

using a single classifier. A sample of the publications found discussing such hybrid

techniques include [KKOL00, SMS00, DWBS+04, LVK+05, ACN07, CCP07].

Neural networks have been popular in remote sensing domains for some time, and

while not widespread there is evidence that other machine learning techniques

and multi-strategy classification schemes are beginning to be used.

Boosting and bagging [Die00] have become more commonly used techniques which

are also being discussed within the remote sensing literature. These techniques

have become popular due to the reported improvements in classification accu-

racy. In particular they are of interest in remote sensing applications because

they overcome some of the drawbacks in using more traditional statistical ap-

proaches [GBS06].

Bagging is based on training many classifiers on bootstrapped samples from a

training set (such as that discussed in [LCJM04]). Bagging has been shown to be

effective on datasets for which the classifier is unstable, that is, small changes in

the training set cause large changes in the classification results. The small, noisy

training sets discussed in this thesis fall into this category, particularly when used

with neural networks. Bagging has been demonstrated to reduce the variance of

the classification and reduce the error rates [GBS06].

In this thesis, the use of multiple classifiers with attribute selection has been used

to serve the same result as bagging. In the case of neural networks the use of

binary classifiers in combination with contribution analysis increased the stability

of the trained classifiers. In addition, the use of contribution analysis requires only

two iterations of training, rather than a large number of iterations as is required

with bagging.

Boosting uses iterative re-training of a classifier, where the incorrectly classified

samples are given increased weighting as the iterations progress. Boosting pro-
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duces more accurate classifications but is slow, tends to overfit the data and is

sensitive to noise [Die00, GBS06]. This makes it an unsuitable approach for the

types of data discussed in this thesis. This conclusion seems to be supported by

the remote sensing literature as bagging was referred to more often.

Breiman [Bre01] introduced a technique called random forests based on bagging

and the random subspace method of Ho [Ho98]. The random forest algorithm cre-

ates multiple decision trees, each trained on a bootstrapped sample of the original

training data. It searches a randomly selected subset of the input attributes to

determine a split for each node in the decision tree. A majority vote of each of

the classifiers trained in this way is used to give the final classification for a given

input.

There does continue to be some evidence that statistically based techniques are not

as effective in classifying remotely sensed data, particularly when non-numerical

data is being used as well. Gislason et al. [GBS06] used random forests to classify

remotely sensed data and reported improved classification accuracies over more

traditional statistical techniques. Lower error rates were obtained when using

boosting and bagging however the faster training times of random forests were

considered a reasonable trade off for the relatively small increases in the error

rates when using random forests. The random forest algorithm is also preferred

as it can also be used to determine mislabelled data.

Gislason et al. recommend the use of random forests for classification of multi-

source remotely sensed data, particularly where appropriate statistical models

cannot be used. However, random trees are a less general approach than that dis-

cussed in this thesis which is not limited to decision tree classifiers. The common

ground with the work in this thesis is the use of multiple classifiers trained on

different subsets of the data and a final classification being given with a voting

scheme.

For noisy datasets bagging generally performs better than boosting and random

forests [Die00, GBS06]. Other work reported on the use of boosting, bagging and

random forests in remote sensing include [HCCG05, MB05, KN07].

The author believes that the use of different classification algorithms is a major

strength of the work introduced in this thesis. Different classification algorithms

use different properties of the training data and the combination of approaches in-

creases the classification accuracy over just using a single classification algorithm.
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In addition the classification framework used in this thesis is general enough to

incorporate the use of boosting, bagging, random forests or other resampling tech-

niques. However, the additional overhead in training may not result in further

decreases in error rates. Investigation of this would certainly be worthwhile.

Overall multi-strategy approaches, such as that described in this thesis, continue

to be widely reported in the literature and are preferred for small, noisy datasets.

C.2 Attribute Selection

Ensuring that the set of attributes used in a classification problem are relevant

continues to be discussed in the machine learning literature. In the past attribute

selection in remote sensing domains was carried out by domain experts based on

their knowledge and / or detailed analysis of the data. It was not common to

see more formal and rigorous methods of attribute selection being carried out in

remote sensing and this does not appear to have changed very much.

The most commonly used attribute selection techniques are referred to as filter or

wrapper techniques. Filter attribute selection uses a separate process that is in-

dependant of the classifier to determine the most relevant attributes. Approaches

used include correlation of the attributes with the target outputs, or principle

components analysis. Wrapper techniques were discussed in the thesis and were

considered preferable as they allow the classifier itself to determine which are the

most relevant attributes.

In 2003 NIPS ran a feature selection challenge [GGBD05]. One of the reasons for

this was that the last decade has seen a number of application domains emerge

that have very large numbers of attributes (up to hundreds of thousands) and yet

can have small training datasets. One of the original motivations for the work

carried out in this thesis was indeed the limited training data available in remote

sensing, and this problem appears to have only compounded in the time since the

original submission of this work. This indicates an increased need for classification

frameworks such as that described in this thesis, and the continuing relevance of

this kind of research.

Datasets with very large numbers of attributes, and limited training data were

chosen for the NIPS challenge. Five datasets from different application domains
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were used. All datasets were given as two-class classification problems. The data

were split into three subsets – a training set, a validation set, and a test set. The

identity of the data was concealed using a number of preprocessing techniques, as

well as including additional attributes (called probes) similar to the real data but

which contained no information. Participants could submit prediction results for

ranking over a 12 week period.

The results were ranked based on four measures:

• The balanced error rate (BER), which is the average of the error rate of the

positive class and the error rate of the negative class.

• Area under the ROC curve (AUC). The ROC curve is obtained by varying a

threshold on the outputs of the classifier. The curve represents the fraction

of true positive as a function of the fraction of false negative. For binary

classifiers, BER = 1−AUC.

• The fraction of features selected.

• The fraction of probes that were found in the attribute set selected.

The winners of the challenge used a combination of Bayesian neural networks [Nea96]

and Dirichlet diffusion trees [Nea01] with attribute selection carried out as follows:

1. The number of attributes were reduced to a few hundred, either by selecting

a subset of attributes using simple univariate significance tests, or by prin-

cipal component analysis performed on all available labelled and unlabeled

data.

2. They then applied a classification method based on Bayesian learning, us-

ing an automatic relevance determination prior that allows the model to

determine which of the attributes are most relevant.

Common features of the solutions used by the participants were:

• Principle components analysis was used successfully by a number of the

participants to reduce the number of attributes and did not require any

domain specific knowledge to do so.
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• Multi-strategy classification techniques were commonly used, with the win-

ners and several of the top ranked solutions using combinations of methods.

Some entries used voting to determine the final decision and these solutions

gave improved classification results.

• Preprocessing of the data to generate additional attributes was used by a

number of participants.

As wrapper methods are computationally expensive, filter methods have been used

in preference for many years even though not considered as effective [GGBD05].

However, some of the top ranked entries in the feature selection challenge used

one or more filters to reduce the number of attributes. As filters do not remove

redundant attributes some solutions combined filters with other methods to reduce

the number of attributes further and remove redundancies.

A conclusion from the challenge was that eliminating meaningless attributes was

not critical – it is still possible to generate good classifications with the attributes

that contain no information (i.e. the probes). The authors of the paper also

state that a surprising result was that some of the best entries used all of the

attributes, however, there were always entries that had only a small number of

attributes that had similar error rates. It is still desirable to reduce the number of

attributes to reduce training and classification times. Multi-strategy approaches

that include attribute selection, such that used in this thesis, can be used to

improve classification accuracy.

C.2.1 Neural Network Attribute Selection

A significant part of the original contribution in this thesis was the development

of a neural network attribute selection technique. Many approaches to attribute

selection for neural networks have been discussed, but very little that is directly

comparable to contribution analysis.

The main approach that continues to be commonly used is to select attributes are

filter approaches, such as principle components analysis or statistical significance

tests, and then training the network on the resulting attribute subset. A sample

of papers that use such approaches are [ANHN+00, JA03, SS03, SR07].

Not much work could be found that discussed using the properties of the trained
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neural network directly to determine the most relevant set of attributes (also

referred to as embedded techniques) for use in classification. Very few entries

in the NIPS feature selection challenge [GGBD05] used embedded techniques to

determine the most relevant set of attributes.

Gascaa et al. [GSA06] proposed a technique similar to contribution analysis that

uses the connection weights in multi-layer perceptron neural networks trained with

back-propagation to determine the relevance of attributes.

The contribution of an input node i to output node o was defined as

Cio =

nhidden∑

j=1

wjoβjwji

ninputs∑

l=1

|
nhidden∑

j=1

wjoβjwjl|

where wij is the connection weight between input node i and hidden node j, wjo

is the connection weight between hidden node j and output node o, ninputs and

nhidden are the number of input and hidden nodes respectively. The contribution

of the hidden layer j is approximated by βj as follows

βj = (1/n)

n∑

t=1

Ojt(1− Ojt)

where n is the number of training cases and Ojt is the output of hidden layer j

for case t of the training set.

The paper is not clear on what is meant by the output of a hidden layer and

how this is calculated or determined. Neither is approximating the contribution

of hidden layers to the outputs necessary. It is possible to calculate a specific

contribution using the weights of the nodes in the hidden layers, the method used

in this thesis being at least one example.

Once the contributions were calculated, the prominence of an input was then

determined as follows.
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1. Calculate the contribution of each input node to each output node

2. Sort the contributions for each output node in descending order

3. For each output node compute how many times (nil) the ith attribute is in

position l

4. The prominence Pi of attribute i is
∑ninputs

l=1
1
2i nil

5. Sort the attributes according to their prominence

The correlation between two attributes a and b was determined:

rab =
cab√
caacbb

where

cab = (1/n)

n∑

i=1

(xt
a − μa)(x

t
b − μb)

and where xt
a is the value of attribute a for case t of the training set, and μa is

the expected value.

Two attributes were correlated if |rab| > 0.707 and two methods for removing

them were investigated:

Opt-I Discard the attribute with the lowest prominence value.

Opt-II Discard the attribute with the lowest prominence value provided that it

is among the ninputs/2 top ranked attributes.

Nine of the benchmark databases from the UCI Machine Learning Database

Repository (http://www.ics.uci.edu/mlearn) were used to test this method

of attribute selection. The Opt-I approach gave higher error rates than both the

Opt-II approach and using the complete dataset for classification. This was due

to Opt-I removing relevant attributes from the dataset. The Opt-II approach gave

http://www.ics.uci.edu/mlearn
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slightly lower error rates over 60% of the datasets used. Where Opt-II performed

worse than using the entire dataset the error rate was only slightly higher.

The attribute selection method described by Gascaa et al. had the effect of

removing redundant attributes, while contribution analysis, as discussed in this

thesis, is better for removing irrelevant attributes. It is unclear how effectively

contribution analysis performs in removing redundant attributes. It is certainly

dependant on how the neural network uses the attributes - if the neural network

had strong connection weights for redundant attributes they would be retained.

Further investigation of this would need to be carried out to determine the ability

of contribution analysis to identify redundant attributes.

The conclusion of Gascaa et al. was that attribute selection was most useful for

reducing data dimensionality. Overall opinion in the attribute selection litera-

ture seems to now indicate that the removal of redundant or irrelevant attributes

will contribute more to reducing computational load rather than reducing error

rates. This thesis used attribute selection in combination with a number of other

techniques to increase classification accuracy, which also agrees with the findings

in [GGBD05].

C.2.2 Wrapper Attribute Selection in Remote Sensing Do-

mains

At the time of writing the use of wrapper attribute selection was not apparent

in remote sensing literature, although widely used in machine learning domains.

Discussion of the application of wrappers to remotely sensed data continues in

the machine learning literature, and is now also evident in the remote sensing

literature [KM02, Yu03, VOVS05, BGK06, ZZW08].

C.3 Attribute Generation

Attribute generation has been discussed for some time across many application

domains, including remote sensing. Much of the work done in explicitly generating

attributes for use in classification, in the way that was carried out in this thesis,

appears in the genetic algorithms literature and increasingly in the data mining

literature.
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In remote sensing attribute generation has generally taken the form of pre-processing

the data, and then using the transformed data directly for classification. For ex-

ample, generating an unsupervised classification and then mapping the labels to

known classes, or to use attributes generated by principle components analysis

as inputs to a classifier. This continues to be the case in remote sensing, and

more rigorous and formal approaches for attribute generation, as was done in this

thesis, are not apparent in the literature. The work presented in the data mining

literature seems to indicate that this continues to be a productive area of focus

for research.

More recent work investigating generation of attributes have been reported in [LX01,

GM02, MR02, GGBD05, CAT05, SB05, MM05, IGW06]. Much of this work also

includes the use of multi-strategy classification schemes and attribute selection.

C.4 Simulating Remotely Sensed Data

In the last few years remotely sensed data has certainly become more readily

available on the internet. However, the problem of the availability of high quality

classified data remains – the collection of ground truth data continues to be ex-

pensive and error prone [Yu03]. As a result the use of multi-strategy techniques,

including some kind of attribute generation and selection, will continue to be

relevant in this domain.

C.5 Citations Since 2000

Work that cited publications from this thesis since 2000 are given below. In partic-

ular, attribute selection for neural networks using contribution analysis continues

to be relevant in the literature.

L.K. Milne, T.D. Gedeon, and A.K. Skidmore. Classifying dry sclero-

phyll forest from augmented satellite data : Comparing neural network,

decision tree and maximum likelihood. In Proc. 6th Australian Con-

ference on Neural Networks, Sydney, pages 160–163, February 1995.

Cited by:
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Y. M. Sebzalli and X. Z. Wang. Knowledge discovery from process operational

data using PCA and fuzzy clustering. Engineering Applications of Artificial

Intelligence, 14(5):607–616, October 2001.

L.K. Milne. Feature selection using neural networks with contribution

measures. In AI’95 Poster Proceedings, Canberra, November 1995.

Cited by:

D.F. Millie, G.R. Weckman and R.J. Pigg. Modeling phytoplankton abundance

in Saginaw Bay, Lake Huron: Using artificial neural networks to discern functional

influence of environmental variables and relevance to a great lakes observing sys-

tem. Journal of Phycology, 42(2):336–349, April 2006.

D.F. Millie, G.R. Weckman and H.W. Paerl. Neural net modeling of estuarine

indicators: Hindcasting phytoplankton biomass and net ecosystem production in

the Neuse (North Carolina) and Trout (Florida) Rivers, USA. Ecological Indica-

tors, 6(3):589–608, August 2006.

J.J Montano and A. Palmer. Numeric sensitivity analysis applied to feedforward

neural networks. Neural Computing & Applications, 12(2):119–125, November

2003.

S. Piramuthu. On learning to predict Web traffic. Decision Support Systems,

35(2):213–229, May 2003.

S. Piramuthu. Evaluating feature selection methods for learning in data mining

applications. European Journal of Operational Research, 156(2):483–494, July

2004.

S. Piramuthu. On preprocessing data for financial credit risk evaluation. Expert

Systems with Applications, 30(3):489–497, April 2006.

M.J. Watts and S.P.Worner. Using artificial neural networks to determine the

relative contribution of abiotic factors influencing the establishment of insect pest

species. Ecological Informatics, 3(1):64–74, January 2008.
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C.6 Conclusion

The literature related to this thesis, published between 2000 and 2008 was re-

viewed. Publications discussing the key themes of

• multi-strategy classification

• attribute generation

• attribute selection

were reviewed, with a particular focus on work done using remotely sensed data.

Classification schemes that use more than one technique or classifier continue to

be commonly reported as providing reduced error rates over just using a single

classifier. Most approaches tend to use one or two techniques in combination,

for example, attribute selection with a single classifier algorithm, or ensembles

of a single classifier type to improve classification accuracy. No work was found

that used the combination of attribute generation and selection, with a range of

different classification algorithms.

Attribute selection also continues to be widely discussed. Many attribute selection

techniques used are still computationally expensive and are typically based on

some kind of brute force search or highly iterative approach. Neural network

attribute selection using contribution analysis is still very relevant as it is an

efficient means of removing attributes that are not used by the network, and

so contain large amounts of noise or no information that the network can use.

The relevance of this work is supported by the fact that the paper discussing

contribution analysis continues to be cited in the literature.

There has been an increase in the discussion of explicit attribute generation tech-

niques. This is now more an exercise in data mining, similar to the approach

taken in this thesis, rather than just preprocessing the data. This is also often

reported in combination with attribute selection.

In conclusion, the literature continues to support the relevance and original con-

tribution of the thesis.
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