
Efficient processing of Top-k queries on spatial and temporal
data

Author:
Shen, Zhitao

Publication Date:
2012

DOI:
https://doi.org/10.26190/unsworks/15912

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/52362 in https://
unsworks.unsw.edu.au on 2024-05-05

http://dx.doi.org/https://doi.org/10.26190/unsworks/15912
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/52362
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Efficient Processing of Top-k Queries on

Spatial and Temporal Data

by

Zhitao Shen

B.E. Shanghai Jiao Tong Univeristy, 2006

M.E. University of Tsukuba, 2009

A THESIS SUBMITTED IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL

OF

Computer Science and Engineering

December, 2012

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institution,

except where due acknowledgement is made in the thesis. Any contribution made

to the research by others, with whom I have worked at UNSW or elsewhere, is

explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style, presentation and

linguistic expression is acknowledged.’

Signed ..

Name: Zhitao Shen

i

ii

Abstract

Spatial and temporal databases play a vital role in many applications in different

areas such as Geographic Information Systems (GIS), stock market, wireless sensor

network, traffic monitoring and internet applications, etc. Due to their impor-

tance, a huge amount of work has focused on efficiently computing various spatial

and temporal queries. Among the applications, end-users are more interested in the

most important query answers in the potentially enormous answer space. There-

fore, different types of information systems use various techniques to rank query

answers and return the most important query results to users. Observed in real

world scenario, top-k results are more interesting to users and a top-k query is a

natural way to be asked to reflect a user’s preference in terms of a user-defined

scoring function. In this thesis, we provide efficient solutions for the top-k queries

under various settings and different criteria for users’ preferences. Specifically, we

tackle three types of top-k queries in a systematic way. Below is a brief description

of our contributions.

We are the first to study the efficient monitoring of top-k pairs queries over data

streams. We present the first approach to answer a broad class of top-k pairs and

top-k objects queries over sliding windows. Our framework handles multiple top-k

queries and each query is allowed to use a different scoring function, a different value

of k and a different size of the sliding window. Furthermore, the framework allows

iii

the users to define arbitrarily complex scoring functions and supports out-of-order

data streams.

We are the first to study the top-k loyalty queries. We propose a measure named

loyalty that reflects how persistently an object satisfies the criteria. Formally, the

loyalty of an object is the total time (in past T time units) it satisfied the query

criteria. We propose an optimal approach to monitor the loyalty queries over

sliding windows that continuously report k objects with the highest loyalties. We

also experimentally verify the effectiveness of the proposed approach by comparing

it with a classic sweep line algorithm.

We are the first to study the I/O efficient solution for depth-related problems

which can be used for retrieving the top-k objects with linear scoring functions.

Half-plane depth of a plane is the number of objects lying in the plane. Location

depth of a point p is the minimum half-plane depth of any plane that is bounded by

any line passing through p. We propose disk-based algorithms for a few important

depth-related problems namely k-depth contour, k-snippet and k-upper envelope.

We show that one of our proposed algorithms is I/O optimal for k-snippet and

k-upper envelope problems.

iv

Publications Involved in Thesis

• Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang,

Haixun Wang. Efficiently Monitoring Top-k Pairs over Sliding Windows.

in 28th IEEE International Conference on Data Engineering (ICDE), Wash-

ington DC, USA, 2012. (Chapter 3)

• Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang,

Haixun Wang. A Generic Framework for Top-k Pairs and Top-k Objects

Queries over Sliding Windows. in IEEE Transactions on Knowledge and Data

Engineering (TKDE), (accepted in Sep 2012). (Special issue of IEEE-TKDE

on the “Best Papers of ICDE 2012”) (Chapter 3)

• Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin. Loyalty-based Se-

lection: Retrieving Objects that Persistently Satisfy Criteria. in The 21st

ACM International Conference on Information and Knowledge Management

(CIKM), Maui, Hawaii, USA, 2012. (Chapter 4)

• Muhammad Aamir Cheema, Zhitao Shen, Xuemin Lin. A Unified Framework

for Efficiently Processing Various Ranking Related Queries. Submitted to

SIGMOD 2013. (Chapter 5)

v

Acknowledgements

First of all, I would like to deliver sincere gratitude to Prof. Xuemin Lin for

supervising me during the past three and half years. I thank him for guiding

me constantly through the road of my research and encouraging me to overcome

the difficult times. I have been deeply impressed by his insight and breadth of

knowledge in his research area as well as his continuous dedication to research

work. Without his significant encouragements and supports, my research years

will never be able to run smooth.

I would like to acknowledge the support from my senior colleague, Muhammad

Aamir Cheema, together with whom I conducted research on many research topics

and thus had a lot of fun. I would like to give my thanks to the senior colleagues,

Dr. Ying Zhang and Dr. Wenjie Zhang who are always willing to provide their

help whenever I am faced with difficulties in conducting research work.

Part of the work in this thesis is conducted in collaboration with Dr. Haixun

Wang. I deliver my thanks to him for supporting the work presented in Chapter 3.

Besides, my thanks also go to my group members: Dr. Haichuan Shang, Dr.

Chuan Xiao, Dr. Gaoping Zhu, Ke Zhu, Xiang Zhao, Weiren Yu, Liming Zhang,

Jin Xu, Jianfen Zhang, Chengyuan Zhang. It is a great honor to work with all

these talented people.

Last but not the least, I would also like to thank my parents and my wife,

vi

Yiqiong, for their constant love, support and encouragement during my PhD study.

Although they are not involved in this thesis, they are everywhere in my life sup-

porting me with love and care.

vii

Contents

Originality Statement i

Abstract iii

Acknowledgements vi

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 A major challenge . 3

1.2 Various Problem Settings . 4

1.2.1 Static Databases v.s. Data Streams Processing 4

1.2.2 Objects Queries v.s. Pairs Queries 6

1.2.3 Snapshot Queries v.s. Continuous Queries 6

1.2.4 Main Memory-based Approach v.s. Disk-based Approach . . 7

1.3 Contributions . 8

1.3.1 Top-k Pairs and Objects Queries over Data Streams 8

1.3.2 Top-k Loyalty Queries . 9

1.3.3 Depth-related Queries for Top-k Objects 10

viii

1.4 Thesis Organization . 11

2 Related Work 13

2.1 Top-k Queries . 13

2.1.1 Top-k Objects Queries . 13

2.1.2 Top-k Pairs Queries . 15

2.2 Continuous Queries over Sliding Windows 16

2.2.1 Queries Over Sliding Windows 17

2.2.2 Continuous Spatial and Temporal Queries 18

2.3 Sweep Line Algorithm . 19

2.3.1 Bentley-Ottmann Algorithm 19

2.3.2 Kinetic Data Structure . 20

2.4 Depth-related Problems . 20

3 Continuous Monitoring Top-k Pairs and Objects Queries 23

3.1 Overview . 23

3.2 Preliminaries . 28

3.3 Solution Overview . 30

3.3.1 Expected size of K-skyband 32

3.3.2 Framework . 34

3.4 Query Answering Module . 36

3.4.1 Snapshot Top-k Pairs Queries 36

3.4.2 Continuous Top-k Pairs Queries 40

3.5 Skyband Maintenance Module . 42

3.5.1 Handling Arbitrary Scoring Functions 42

3.5.2 Optimization for Certain Scoring Functions 49

3.6 Extensions . 53

ix

3.6.1 Handling Out-of-order Streams 53

3.6.2 Top-k Objects Queries . 54

3.6.3 Batch Processing for Multiple Queries 57

3.6.4 Handling Chromatic Top-k Pairs Queries 58

3.7 Experiments . 61

3.7.1 Top-k Pairs Queries . 61

3.7.2 Top-k Objects Queries . 72

3.7.3 Miscellaneous . 74

3.8 Conclusion . 76

4 Continuous Monitoring of Top-k Loyalty Queries 77

4.1 Overview . 77

4.2 Preliminaries . 81

4.3 Framework . 83

4.3.1 Traditional Query Module 84

4.3.2 Loyalty Query Module . 85

4.4 Top-k Loyalty Queries . 85

4.4.1 Algorithms . 86

4.4.2 Analysis . 95

4.4.3 Pruning . 98

4.5 Threshold Loyalty Queries . 101

4.6 Experiments . 103

4.7 Conclusion . 108

5 Depth-Related Problems for Top-k Queries 109

5.1 Overview . 109

5.1.1 Problem Statements . 111

x

5.2 Preliminaries . 115

5.2.1 Computing k-depth Contour in Dual Space 115

5.2.2 Problem Settings and Assumptions 118

5.3 The SkyRider Algorithm . 119

5.3.1 The Rider: An Elementary Algorithm 119

5.3.2 SkyRider: An I/O Economical Version of Rider Algorithm . 125

5.4 KnightRider: An I/O Optimal Algorithm 128

5.4.1 Outline . 128

5.4.2 Best (Worst) Envelope . 129

5.4.3 Proof of Correctness . 132

5.4.4 Proofs of Optimality . 133

5.4.5 Discussion . 139

5.5 Experiments . 140

5.5.1 Experimental settings . 140

5.5.2 Competitors and Benchmarks 141

5.5.3 Performance Analysis . 142

5.5.4 k-skyband vs k-snippet . 146

5.6 Conclusions . 148

6 Final Remarks 149

6.1 Conclusions . 149

6.2 Future Work . 150

6.2.1 Top-k Spatial-keyword Search over Data Streams 151

6.2.2 Top-k Diversity Queries over Data Streams 151

6.2.3 Disk-based Approach for Other Depth Measures 152

Bibliography 153

xi

List of Figures

1.1 A top-k queries example in Google Map 2

3.1 K-skyband (K=2) . 30

3.2 Framework . 35

3.3 2-skyband . 38

3.4 Priority Search Tree . 38

3.5 2-staircase . 44

3.6 Optimization for global scoring functions 50

3.7 Sorted lists (a) non-chromatic (b) heterochromatic (c) homochro-

matic . 60

3.8 Overall cost evaluation on the real data 64

3.9 Effect of K and N on synthetic data 65

3.10 Effect of k and n on synthetic data 65

3.11 Linear vs Snapshot Algorithm . 67

3.12 Evaluation of continuous queries algorithm 68

3.13 Skyband maintenance techniques 70

3.14 Top-k objects queries for n = N . 73

3.15 Top-k queries for randomly generated k and n 73

3.16 Evaluating the memory usage . 74

3.17 Out-of-order data streams . 75

xii

3.18 Batch processing and chromatic queries 76

4.1 Example of Loyalty Queries . 82

4.2 Framework of Loyalty Queries . 86

4.3 Example of Top-2 Loyalty Queries 90

4.4 Performance evaluation on the climatic data 105

4.5 Performance evaluation on the synthetic data 106

4.6 Efficiency evaluation for the pruning rule 107

4.7 Evaluating communication cost . 108

5.1 Illustration of k-depth contour, k-snippet and k-upper envelope . . 112

5.2 Illustration of k-depth contour and related concepts 116

5.3 Mapping a rectangle to dual space 121

5.4 Pruning irrelevant data points . 126

5.5 Best and worst k-upper envelopes are shown using bold lines 130

5.6 Proving the optimality . 136

5.7 Effect of data sizes . 142

5.8 Effect of k . 143

5.9 Effect of different data distributions 144

5.10 Effectiveness of the rider algorithm 145

5.11 Size of query results . 147

5.12 I/O cost comparison with BBS . 147

5.13 CPU time comparison with BBS . 148

xiii

List of Tables

3.1 Experiment Parameters for Top-k Pairs Queries 62

3.2 Memory Usage on Varying K (N = 10, 000) 71

3.3 Memory Usage on Varying N (K = 20) 71

3.4 Parameters for Top-k Objects Queries 72

4.1 Experiment Parameters for Loyalty Queries 104

5.1 Experiment Parameters for Depth-related Problems 141

5.2 Number of I/O accesses for k-depth contour problem 145

xiv

Chapter 1

Introduction

In many applications domains, end-users are more interested in the most important

query answers in the potentially enormous answer space. Therefore, different types

of information systems use various techniques to rank query answers and return

the most important query results (top-k results) to users. For instance, in the

contents of spatial databases, users are interested in ranking query answers based

on the distances to the query location. Similar applications exist in the context of

data stream processing systems. Most of these applications compute queries that

involve a certain ranking model to provide users with top-k results.

One common way to identify the top-k results is scoring all instances of the

result based on some scoring function. A score of the instance acts as a valuation

for that result according to its characteristics (e.g. distance-based score in spatial

databases, or price and volume in the stock transaction databases). For data

objects queries, the score is corresponding to one data object, while for data pairs

queries, the score is corresponding to a pair of objects.

The spatial objects are composed of one or more points, lines / polygons which

present the location information of the object. Figure 1.1 shows a map from Google

1

2 Chapter 1. Introduction

Maps (http://maps.google.com) obtained by entering the query “Find hotels near

the University of New South Wales”. The query results are shown in red circles

and balloons labelled from A to J. The lines represent the facilities of moving

through space or connections in space (i.e., roads, rivers). A region represents the

spatial object for which its spatial extent is also important. A region may consist

of disjoint pieces each containing many polygons. In Figure 1.1, University of New

South Wales and Prince of Wales Hospital are represented by regions.

Figure 1.1: A top-k queries example in Google Map

As observed in Figure 1.1, a top-k query is processed to generate the most

interesting results among the numerous relevant answers. Moreover, the example

implies that the scoring function used by the top-k query is related to both the

distance to the university and the textual relevance of an object. Thereby, the

results shown on the map are ranked accordingly. The balloons illustrate the top-

10 results with a ranking order indicated by the labels and the red circles without

balloons describe another 10 less important results.

The temporal objects store the time related to the objects. In a more natural

Chapter 1. Introduction 3

way, the objects are usually collected chronologically in the form of data streams.

In database area, A data stream is a massive real-time continuous sequence of data

objects. The typical applications of data streams include sensor network, stock

tickers, network traffic measurement, click streams and telecom call records. The

main challenge of these applications is that the data objects arrive continuously

and the volume of the data is difficult to store the entire data set in main memory.

Therefore, the system sometimes need to drop some of the data objects due to high

arrival speed.

1.1 A major challenge

One of the main challenges in answering the top-k queries on spatial and temporal

data is that there is no nature total ordering among these kinds of data sets. A

simple example is that a user wants to find 5 restaurants nearest to her location. A

naive approach is to compute the distances of all the restaurants from her current

location and then report the 5 closest restaurants. Therefore, one way to answer

such a spatial top-k query is by sequentially scanning all database objects, com-

puting the score of each instance according to the certain feature. However, this

approach suffers from scalability problems with respect to database size and the

number of features of objects. Assuming that the scoring functions are monotonic,

an alternative way is to map the query into a join query that joins the output of

multiple single-feature queries, and then sorts the joined results based on combined

score. This approach also does not scale with respect to both number of features

and database size since all join results have to be computed then sorted.

The main problem with sort-based approaches is that sorting is a blocking

operation that requires full computation of the join results, which performs not

4 Chapter 1. Introduction

well for online processing. Moreover, although the input to the join operation

is sorted on individual features, this order is not exploited by conventional join

algorithms. Hence, sorting the join results becomes necessary to produce the top-k

answers.

Additionally, for online processing of the temporal data, the input data varies

dynamically. It is even more challenging to maintain the sorted join results over

such data stream model (e.g. sliding window model), in which the objects may

appear and expire dynamically. Therefore, embedding rank-awareness in top-k

query processing techniques provides a more efficient and scalable solution.

1.2 Various Problem Settings

In this thesis, we mainly tackle three types of top-k queries under different problem

settings in a systematic way. In Chapter 3, we study the top-k objects and pairs

queries in a data stream model. Chapter 4 studies the problem of continuously

monitoring top-k loyalty objects. Chapter 5 presents the techniques for answering

top-k objects queries using linear scoring functions over large static databases.

Below, we discuss the various problem settings investigated in the thesis.

1.2.1 Static Databases v.s. Data Streams Processing

The query processing over static databases has been extensively studied since the

invention of database systems. Recently, “Big Data” has been a hot topic in both

research and industry communities due to the recognition that the data set col-

lected by databases could be extremely enormous. Therefore, query optimizers are

demanded to provide efficient algorithms for the (top-k) query processing. Typ-

ically, for the design of any algorithm over large static databases, two types of

Chapter 1. Introduction 5

costs in terms of the number of I/O operations required and the CPU requirements

should be carefully considered.

Beside this, in recent years, we have witnessed the widely recognised phe-

nomenon of high speed data streams. A data stream is a massive real-time contin-

uous sequence of data elements. The typical applications include sensor network,

stock tickers, network traffic measurement, click streams and telecom call records.

The main challenge of these applications is that the data element arrives continu-

ously and the volume of the data is so large that they can hardly be stored in the

main memory (even on the local disk) for online processing, and sometimes the sys-

tem has to drop some data elements due to the high arriving speed. The data in the

traditional database applications are organized on the hard disk by the Database

Management System(DBMS) so the queries from the users can be answered by

scanning the indices or the whole data set. Considering of the characteristics of

the stream applications, it is not feasible to simply load the arriving data elements

onto the DBMS and operate on them because the traditional DBMS’s are not de-

signed for rapid and continuous loading of individual data element and they do not

directly support continuous queries that are typical of data stream applications

In the thesis, we focus on efficient data stream processing over the sliding win-

dow model. The sliding window model is extensively used in querying stream-

ing data as well as analyzing the spatial and temporal data [BBD+02, MBP06,

LMT+05, LYWL05, MP07a, BO79]. A sliding window maintains the most recent

data which may be most interesting to the users. As the contents of the sliding

windows evolve over time, it makes sense for user to ask a query once and receive

the updated answers over time. For a fixed length of time period T , a sliding

window contains all the query results within last T time units.

6 Chapter 1. Introduction

1.2.2 Objects Queries v.s. Pairs Queries

The traditional top-k objects queries compute the ranking of scores based on each

object. Given a scoring function s(oi) that computes the score of one object, a

top-k objects query returns k objects with the smallest scores.

Moreover, in many applications, we may consider the ranking of scores based

on each pair of objects. Given a scoring function s(oi, oj) that computes the score

of a pair of objects (oi, oj), a top-k pairs query returns k pairs with the smallest

scores among all possible pairs of objects. k closest pairs queries, k furthest pairs

queries and their variants are some well studied examples of top-k pairs queries

that rank the pairs on distance functions.

In the thesis, we study the problem of top-k pairs queries over data streams

based on the sliding window model. Top-k pairs queries over sliding windows

have many interesting applications. Consider the example of a data stream of

ATM transactions. Assume that there are two transactions such that both the

transactions belong to the same bank account and both are made within a small

duration of time. The transactions may indicate a fraud if the distance between the

ATM machines where these transactions were made is large (e.g., the transactions

are made within 15 minutes of each other but are made from two different cities

or even countries). Analysing such top-k pairs may not only help to detect fraud

but may also help to understand the spatial and temporal relations between the

transactions. The query below shows a simple example of such top-k pairs query

over the transactions issued in last 24 hours.

1.2.3 Snapshot Queries v.s. Continuous Queries

Note that the set of objects in the sliding window changes dynamically as the new

objects arrive and the old objects expire from the sliding window. Hence, some

Chapter 1. Introduction 7

users may be interested in continuous update of the results. In contrast, some users

may only be interested in retrieving the top-k pairs from the current sliding window

and may not be interested in the updates of the results. The queries that require

continuous updates of the results are called continuous queries and the queries

that compute the results only once are called snapshot queries. In this thesis, we

consider both snapshot queries and continuous queries for top-k pairs and objects

queries over sliding windows.

1.2.4 Main Memory-based Approach v.s. Disk-based Ap-

proach

For data stream processing, we focus on the main memory-based approach for

efficient online processing. This is because that the stream data changes frequently

and dynamically, and it is infeasible to record the high volume stream data in a

disk storage.

In contract, for very large static databases, it is difficult to fit the entire data

sets into main memory. However, for the depth-related queries, all of the existing

algorithms assume that the data can fit into main memory. This assumption does

not always hold because massive data sets have become quite common in almost all

disciplines ranging from financial markets to human biology to sociology. Unfor-

tunately, the concept of data depth has not received sufficient attention from the

database community. The absence of disk-based algorithms for the depth-related

problems opens up a new area that needs to be explored.

Motivated by this, we also propose efficient and I/O optimal disk-based algo-

rithms for solving some important depth-related problems over large data sets.

8 Chapter 1. Introduction

1.3 Contributions

In this section, we summarize our contributions in this thesis. We proposed effi-

cient techniques for three important problems related top-k queries on spatial and

temporal data. For each of these problems, we describe our contributions below.

1.3.1 Top-k Pairs and Objects Queries over Data Streams

In this thesis, we study top-k pairs and objects queries over data streams. Below

is a summary.

• To the best of our knowledge, we are first to study a broad class of top-k

pairs queries over sliding windows. The server maintains a K-skyband for

most recent N objects and we can answer any top-k query over most recent

n objects for any k ≤ K and any n ≤ N . We introduce a novel concept of

K-staircase to efficiently maintain the K-skyband.

• We provide a generic framework for querying top-k pairs and objects over

sliding windows. The proposed framework can handle arbitrary scoring func-

tions, supports queries with any window size and works for out-of-order data

streams.

• We provide detailed complexity analysis for our techniques and show that the

expected cost of our approach is reasonably close to the lower bound cost.

We show that the expected cost of our skyband maintenance algorithm is

O(N ·(log(log N)+log K)) where O(N) is a lower bound cost for the skyband

maintenance. Given a K-skyband, the expected cost of our algorithm to

answer a query Q(k,n,s) is O(log(log n) + log K + k) where O(k) is a lower

bound cost for query answering.

Chapter 1. Introduction 9

• We conduct extensive experiments on both the real and synthetic data sets

to demonstrate the efficiency and the scalability of our framework. Our algo-

rithm demonstrates more than three orders of magnitude improvement over

a näıve algorithm. Furthermore, we demonstrate its efficiency by comparing

it with a specially designed supreme algorithm that uses an oracle to conduct

certain steps.

1.3.2 Top-k Loyalty Queries

We study a novel query operator, called loyalty queries. We propose a measure

named loyalty that reflects how persistently an object satisfies the criteria. For-

mally, the loyalty of an object is the total time (in past T time units) it satisfied

the query criteria. The major contributions are shown below.

• To the best of our knowledge, we are the first to study continuous loyalty

queries. In this thesis, we formalize the definition of loyalty queries and

present a framework that efficiently solves the loyalty queries.

• We study the problem in a continuous time domain where the updated results

are reported as soon as the results change as opposed to the time-stamp model

where the results are updated after every u time units. Note that the time-

stamp model suffers from either high computational cost or low accuracy.

More specifically, if u is small, the computation cost increases because the

results are to be updated more often. On the other hand, if u is large, the

accuracy is reduced because the results may have become invalid between two

successive time-stamps. The continuous updates provided by our algorithm

do not have these limitations.

• An object issues an update if it starts satisfying the query criteria or if it

10 Chapter 1. Introduction

stops satisfying the query criteria. Note that the top-k loyal objects may

change whenever an object issues an update. Let N be the total number of

object updates issued in the last T time units. We prove that our algorithm is

optimal by showing that the cost of our algorithm is the lower bound update

cost for top-k loyalty queries..

• We theoretically analyse the complexity of our algorithm and prove that

it meets the lower bound cost. We also conduct experiments to show the

effectiveness and the efficiency of our proposed approach. We compare our

algorithm with the Bentley-Ottmann sweep line algorithm [BO79].

1.3.3 Depth-related Queries for Top-k Objects

We study a series of depth-related problems over very large databases in the thesis.

Half-plane depth of a plane is the number of objects lying in the plane. Location

depth of a point p is the minimum half-plane depth of any plane that is bounded

by any line passing through p. The concept of location depth is crucial for ranking

the objects in a multi-dimensional space. In this thesis, we study three problems

involving location depth: k-depth contour, k-snippet and k-upper envelope query.

These queries have a wide range of applications in ranking systems as well as in

various other domains such as in outlier detection, clustering, Voronoi diagrams

etc. Summarily, we make the following contributions in this work.

• To the best of our knowledge, we are the first to propose disk-based algo-

rithms for a few important depth-related problems that have a wide range of

applications in various domains.

• We present two efficient disk-based algorithms named SkyRider and

KnightRider. We show that KnightRider algorithm is I/O optimal for k-

Chapter 1. Introduction 11

upper envelope and k-snippet problems. It is also I/O optimal for k-depth

contour when k is smaller than the minimum number of objects in any leaf

node of the data structure (e.g., R-tree). Although KnightRider is not I/O

optimal for k-depth contour problem when k is large, our experimental re-

sults demonstrate that its I/O cost is almost the same as the lower bound

cost even when k is very large.

• We extensively evaluate our algorithms on both synthetic and real data sets.

The experimental results demonstrate that our algorithms do not only have

low I/O cost but are also quite efficient. More specifically, we compare the

CPU time of our algorithms with the CPU time of the best known main-

memory algorithms [JKN98, EW86] assuming that their algorithms have suf-

ficient main-memory to store the whole data set. The experimental results

demonstrate that our algorithms are more than an order of magnitude faster.

1.4 Thesis Organization

This thesis focuses on three fundamental problems in analyzing spatial and tem-

poral data: (1) Top-k Pairs and Objects Queries; (2) Loyalty Queries; and (3)

Depth-related Queries. We organize the rest of the thesis as follows. Chapter 2

surveys the existing works related to this thesis. For each problem, we present

the preliminaries, problem statement, problem solution and empirical study in an

individual chapter. Specifically, Chapter 3 studies the problem of top-k pairs and

top-k objects queries over data streams while Chapter 4 studies the problem of

top-k and threshold loyalty queries. Chapter 5 studies the depth-related problems

for large databases. Finally, Chapter 6 concludes the thesis and proposes feasible

future works.

12 Chapter 1. Introduction

Chapter 2 provides a literature review of the existing works on the three prob-

lems. We organize this chapter in three parts. The first part summarizes the related

works on top-k pairs and objects queries, while the rest two parts report related

works on loyalty queries and depth-related queries, respectively.

Chapter 3 presents our approach to efficiently solve top-k pairs and objects

queries over data stream. We first justify the motivations behind our proposed

framework. Secondly, we develop efficient algorithms to maintain the minimum

candidates, k-skyband, over data stream and to process top-k pairs and objects

based on k-skyband. Finally, we evaluate the performance of our proposed algo-

rithms by comparing with a naive approach and a supreme approach.

Chapter 4 describes our approach to efficiently solve loyalty queries over data

streams. We first explain the motivations of the loyalty queries. Then, an optimal

algorithm is presented to efficiently monitor the results of top-k loyalty queries. A

detail analysis is provided to show the optimality of our algorithm. Finally, we

evaluate the performance of the proposed algorithm by comparing with a classic

sweep line algorithm.

Chapter 5 studies the depth-related problems for top-k queries over large

databases. Two algorithms are proposed to solve the problems and one of them

is I/O optimal. We show a detail proof of the optimality. Finally, we conduct

extensive experiments to demonstrate the efficiency of our proposed algorithms.

Chapter 6 finally summarizes our work in this thesis and provides feasible novel

directions regarding our future work.

Chapter 2

Related Work

In this chapter, we present an overview of the related work for each problem we

studied in the thesis. More specifically, we firstly introduce the related work on

top-k queries in Section 2.1 which is related to all three types of queries. Next,

Section 2.2 presents the related work on the sliding window model and continuous

queries. An overview of the sweep line algorithms is shown in Section 2.3. Finally,

in Section 2.4, we provide a description of the existing techniques on depth-related

problems.

2.1 Top-k Queries

First, in Section 2.1.1, we present related work on answering top-k objects queries.

Then, in Section 2.1.2, we provide a description of the existing techniques to answer

top-k pairs over static databases and data streams.

2.1.1 Top-k Objects Queries

Given a set of objects and a user defined scoring function, a top-k query retrieve the

k objects with the smallest scores. The top-k objects queries have been extensively

13

14 Chapter 2. Related Work

studied [MBP06, FLN03, NR99]. See [IBS08] for a comprehensive survey of the

top-k query processing techniques. Fagin’s algorithm (FA) [FLN03], threshold al-

gorithm (TA) (independently proposed in [FLN03, NR99, GBK00]) and no-random

access (NRA) [FLN03] propose some of the top-k processing algorithms that com-

bine multiple ranked lists and return the top-k objects.

A major problem with FA is that it uses unbounded buffer (i.e., the number of

objects stored in the main memory may be arbitrarily large). On the other hand,

the buffer size of TA is O(k). Moreover, TA is optimal in number of objects accessed

from the ranked lists. NRA algorithm is applicable to the case when the ranked lists

can only be accessed in sorted order (i.e., the objects cannot be accessed using a

random access). Mamoulis et al. [MYCC07] present several interesting observations

and propose an algorithm LARA that significantly improves the performance of

NRA.

Processing the top-k objects queries and k nearest neighbor queries [MBP06,

BOPY07, DGKS07] on the data stream has received significant attention. Moura-

tidis et al. [MBP06] propose an efficient technique to compute top-k objects

queries over sliding windows. They make an interesting observation that a top-

k objects query can be answered from a small subset of the objects called k-

skyband [PTFS05]. Our algorithm is similar in the sense that we also maintain

the K-skyband to answer the top-k queries. However, we use a single K-skyband

to answer multiple queries having different values of k ≤ K and different sizes of

the sliding windows. Also, the previous techniques [MBP06, BOPY07] to maintain

K-skyband are not applicable to our problem because the techniques rely on the

fact that the newly arrived objects cannot be dominated by any of the existing

objects. Hence, these techniques unconditionally include the newly arrived objects

in the K-skyband. We remark that this observation does not hold for out-of-order

Chapter 2. Related Work 15

data streams which renders the existing techniques invalid for out-of-order streams.

Furthermore, in our problem, even for the in-order streams, the newly formed pairs

may or may not be dominated by the existing pairs, which make the request of

online maintenance technically more challenging.

2.1.2 Top-k Pairs Queries

The database community has devoted significant research attention to the process-

ing of k-closest pairs queries[HS98, CMTV00, YL02] and their variants [UMY07,

AP05]. See [Smi97] for a nice survey that covers the research conducted by com-

putational geometric community.

All of the above mentioned techniques are applicable only to the k-closest pairs

queries or their variants. Cheema et al. [CLW+11] propose a unified framework

to efficiently answer a broad class of the top-k pairs queries including the queries

mentioned above. k-closest pairs queries on moving objects are studied in [ZZS+05,

UMY07]. However, the extension of these techniques to answer k-closest (or top-k)

pairs queries over sliding windows is either non-trivial or inefficient.

Cheema et al. [CLW+11] first generalize k-closest pairs problem to a top-k pairs

problem. A top-k pairs query returns k pairs with the smallest scores where the

score of each pair is computed by using a user specified scoring function. A unified

approach is presented to answer a broad class of top-k pairs queries including the

k closest pairs queries, the k furthest pairs queries and their variants. A detailed

complexity analysis is presented to show that the expected performance of the

proposed algorithms is optimal when the scoring functions involve less than three

attributes. In this work, each dataset is indexed by an R-tree and a priority queue

is used to store the intermediate entry pairs. While the proposed solution has a

nice feature that it returns the pairs incrementally, its priority queue size may be

16 Chapter 2. Related Work

prohibitively large. For this reason, a part of the priority queue is kept in main

memory and remaining elements are stored in secondary memory as a number of

linked lists.

Hjaltason et al. [HS98] propose incremental distance joins where two data sets

are joined and the closest pairs are returned to the users in incremental order of

the distances between them. Corral et al. [CMTV00] propose several algorithms

for k-closest pairs queries. Both of these algorithms index the data sets by R-

trees and provide several pruning strategies to improve the performance. Yang et

al. [YL02] propose a data structure to further improve the performance of k-closest

pairs queries. However, their algorithm works for the case when all the pairs have

unique distances [SZS03]. Several variants of k closest pairs queries have also been

studied in [UMY07, AP05, SZS03].

Bohm et al. [BOPY07] maintain skyband for monitoring nearest neighbor

queries. Techniques are presented for k = 1 and no optimization is considered

for maintaining k-skyband. Das et al. [DGKS07] propose a technique for answer-

ing ad-hoc top-k query in data streams by using a linear scoring function. To the

best of our knowledge, there does not exit any previous work to answer top-k pairs

queries over sliding windows. Next, we describe previous work related to the top-k

pairs query in conventional databases.

2.2 Continuous Queries over Sliding Windows

In Section 2.2.1, we review the techniques on querying data streams over sliding

windows. Section 2.2.2 shows the related techniques on continuous queries for

spatial and temporal data.

Chapter 2. Related Work 17

2.2.1 Queries Over Sliding Windows

Processing aggregate queries on data stream [LMT+05, ZKOS05, NNRS08,

YLz+07, WRG+06, BDMM04, TZZ06] has been extensively studied. Li et

al. [LMT+05] propose an efficient algorithm to compute aggregate queries over

sliding windows. We may perform an aggregate query to count the occurrences of

the query results over sliding windows in the discrete time domain. However, there

are some disadvantages of using the time-stamp model in a discrete time domain

for loyalty queries in Chapter 4. We discuss the reason below. The streaming data

in the discrete time domain is usually retrieved by sampling the physical world

every every u time units. If u is too small, then the size of data to be processed is

large, which will affect the efficiency of the algorithm. If we choose a large u, the

accuracy cannot be guaranteed because some value changes are lost in the process-

ing. Therefore, it is either imprecise or inefficient to perform aggregate queries to

find the loyal objects by sampling in the discrete time domain.

Alternatively, we may process the data stream of the result changes from the

traditional queries. However, this involves the current time as an attribute in the

aggregation operator, which makes the aggregation results (loyalties) are change-

able from time to time. Therefore, a data stream processor has to monitor the

aggregated values at every moment, which actually incurs enormous overhead. We

remark that most algorithms [GBÖ06, LMT+05, ZKOS05, NNRS08] for computing

aggregation over data streams do not specifically consider this point, and thus are

not able to efficiently support loyalty queries. Additionally, the objects should be

further ranked by their loyalties for processing top-k loyalty queries. This is also

non-trivial to be implemented in a data stream processor due to the changeable

loyalty values, while our focus is on efficiently processing the continuous updates

and detecting loyalty query results in the continuous time domain.

18 Chapter 2. Related Work

2.2.2 Continuous Spatial and Temporal Queries

The database community has devoted significant research attention to continu-

ously processing spatial and temporal queries [GL04, GWYL06, CBL+10, LYH04,

XMA05, BOPY07, MXA04, SCL+12b, MBP06]. The difference between traditional

continuous queries and our queries is that the traditional continuous queries return

the query results at each timestamp, while our queries return the objects which

appear in query results for a majority of the recent time. Continuous spatial and

temporal queries such as the continuous range queries [GL04, GWYL06, CBL+10]

and the k-nearest neighbour queries [LYH04, XMA05, BOPY07] are well studied.

Mokbel et al.[MXA04] present an incremental evaluation paradigm for continuous

queries in spatial and temporal databases and its variant [XMA05] can be used

to solve continuous k-nearest neighbour queries. We argue the existing work of

continuous queries can be used as the front end in our framework in Chapter 4. An

example of the application is that loyalty queries can be used as filters to eliminate

the noisy (low loyalty) results from continuous queries. The details will be shown

in Chapter 4. Farrell et al. [FRC11] present a system to process continuous range

queries considering spatiotemporal tolerance. However, their scheme is different

from ours. We remark that the loyalty queries may help users discover interesting

motion patterns based on a large number of existing techniques.

Besides the continuous queries, the spatial and temporal queries over historical

data have also been extensively studied. Li et al [LYL10] present a solution to find

top-k objects on temporal data. They use a B-tree based indexing structure for the

historical data. Top-k objects are efficiently answered based on the index. Tao et

al [TPP05] study the problem of processing spatial-temporal window aggregation

queries over historical data. However, such offline algorithms [LYL10, TPP05]

cannot be utilized to efficiently solve our problem because the loyalty queries report

Chapter 2. Related Work 19

the results on the fly and it is not efficient to build the index for online processing.

2.3 Sweep Line Algorithm

In Section 2.3.1, we present a classic sweep line algorithms, the Bentley-Ottmann

algorithm. Next, in Section 2.3.2, we give an overview of the related techniques for

kinetic data structures.

2.3.1 Bentley-Ottmann Algorithm

The Bentley-Ottmann algorithm is a sweep line algorithm for reporting all inter-

sections between all line segments in the plane. The algorithm is initially pro-

posed by Bentley and Ottmann [BO79] and discussed in detail by Preparata and

Shamos [PS85]. Consider a vertical sweep line, first placed at the extreme left of

the plane. Then, it will move to the right by jumping between endpoints of the line

segments and intersections. The algorithm maintains the vertical ordering of the

line segments intersecting the vertical line. An event is created when two adjacent

line segments on the vertical line will possibly intersect in the future, namely, the

two line segments will possibly exchange their vertical ordering. An event queue

is organized for processing the future events. The Bentley-Ottmann algorithm can

be used to retrieve the top-k loyalty objects as it always keeps the total ordering of

the line segments. Our proposed algorithm also uses a sweep line approach. How-

ever, we create less events. The total cost of the Bentley-Ottmann algorithm is

O((N +M) logN), where N is the number of line segments and M is the number

of events (intersections). In the worst case, M can be O(N2). We improve the

complexity of solving the top-k loyalty queries and the total cost of our proposed

algorithm is O(N logN).

20 Chapter 2. Related Work

2.3.2 Kinetic Data Structure

For k = 1, the top-k loyalty query is equivalent to finding the upper enve-

lope [Her89] of N line segments in the plane. The upper envelope computation

can be done in O(N logN). Kinetic data structures [BGH99, RKGG07] can also

be used to find the upper envelop in a sweep-line fashion. However, it is non-trivial

to extend the existing variants of kinetic data structures such as the kinetic heap

or the kinetic tournament to support the top-k objects queries (k-level arrange-

ments [EW86, AS98]). Moreover, our proposed algorithm is theoretically more

efficient even when k = 1. As it is necessary to maintain a priority queue for

scheduling the events in the continuous time domain for these data structures, the

total cost of the kinetic heap is O(N log3N) and the total cost of the kinetic tour-

nament is O(N log2 N), where N is the number of line segments to process. We

remark that these techniques for finding the upper envelope can only handle the

case when k = 1 and are not applicable for k > 1.

2.4 Depth-related Problems

Because of the wide range of applications, the depth related problems have received

significant attention by the community of statistics and computational geometry.

Statistics Community

The term location depth was first introduced by Tukey who showed that k-

depth contours can be used for data picturization [Tuk74]. The significance

of data depth in multivariate analysis was further elaborated in various stud-

ies [Bar76, LPS99, Liu90, KZ10, Tuk77]. Ruts and Rousseeuw developed a series

Chapter 2. Related Work 21

of algorithms (ISODEPTH [RR96], HALFMED [RR98] and BAGPLOT [RRT99])

to compute the depth contours.

However, All of these algorithms assume that the data can fit into main-memory.

Moreover, their main purpose is to compute the depth of all points, which makes

their algorithms computationally difficult over very large database.

Computational Geometry Community

k-depth contour has also received significant research attention [CSY84, MRR+01,

KMV02] from the computational geometry community. Cole et al. [CSY84] pro-

posed an algorithm to compute k-depth contour in 2-dimensional space. Later,

the problem was solved in dual space using similar basic ideas [EW86]. In the

following decades, significant research attention was put to improve the complexity

of the problem (see [AS98] for a nice survey). Miller et al. [MRR+01] proposed

an algorithm to compute all depth contours using topological sweep of the dual

arrangement of lines. Krishnan et al. [KMV02] introduced a hardware-assisted

algorithm with approximate solution. research

Others

Inspired by the usefulness of k-depth contour in outlier detection, Johnson et

al. [JKN98] proposed a main-memory algorithm to compute k-depth contours.

They demonstrated that their proposed algorithm outperforms the existing al-

gorithms. Surprisingly, the problem of depth contours did not receive sufficient

attention from the database community. Although several papers touched similar

concepts and contain the flavor of data depth, the focus has been different. There

is no work solving the depth contour queries over large databases. Böhm and

Kriegel [BK01] proposed an I/O efficient algorithm for computing convex hull which

22 Chapter 2. Related Work

is a special case of our problem where k = 1. We remark that solving k-depth con-

tour is considerably more challenging and it is non-trivial to extend their techniques

to solve this problem. Xin et al. [XCH06] proposed indexing schemes using the

concept of location depth to efficiently answer top-k queries involving linear score

functions. However, their focus is on building an index and they did not discuss

any disk-based algorithm to compute the location depths. In [DGKS07, YAY12],

k-level arrangement has been used to answer the top-k queries involving linear

scoring functions. However, they use the existing techniques to compute k-level

arrangements.

Chapter 3

Continuous Top-k Pairs and

Objects Queries

In this chapter, we study a generalized version of the top-k pairs and objects query

over data streams. We provide a unified framework to answer a broad class of

top-k queries over sliding windows including top-k pairs queries and top-k objects

queries. This chapter is based on our research reported in [SCL+12c].

3.1 Overview

Given a scoring function s(oi) that computes the score of an object oi, a top-k

objects query returns k objects with the smallest scores. Given a scoring function

s(oi, oj) that computes the score of a pair of objects (oi, oj), a top-k pairs query

returns k pairs with the smallest scores among all possible pairs of objects. k closest

pairs queries, k furthest pairs queries and their variants are some well studied

examples of top-k pairs queries that rank the pairs on distance functions.

Due to the importance of the top-k queries, numerous algorithms have

been proposed to answer several variants of the top-k objects and top-k pairs

23

24 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

queries [CLW+11, HS98, CMTV00, Smi97, YL02, MBP06]. Our focus is on de-

veloping efficient techniques for top-k queries over sliding windows. Top-k objects

queries over sliding windows have many applications and have received significant

research attention in the past few years [MP07b, MBP06, BOPY07]. However,

Top-k pairs query over sliding windows has not been studied well. Therefore, our

main focus in this chapter is on presenting the techniques for top-k pairs queries.

Then, we show that the framework can be used to answer top-k objects queries.

Top-k pairs queries have many interesting applications in different areas such as

wireless sensor network, stock market, traffic monitoring and internet applications

etc. For instance, top-k pairs queries can be used for pair-trading [Vid04]. Pair-

trading is a market neutral strategy according to which two correlated stocks that

follow same day-to-day price movement (e.g., Coca-Cola and Pepsi) may be used

to earn profit when the correlation between them weakens, i.e., one stock goes up

and the other goes down. The profit can be earned by buying the underperforming

stock and selling it when the divergence between the two stocks returns to normal.

A top-k pairs query can be issued to obtain the pairs of stocks that are correlated

(e.g., they belong to the same business sector and have similar fundamentals such

as market caps, dividends etc.) and display different trends. Pair-trading can be

profitable only if the trader is the first one to capitalize on the opportunity [Vid04].

Hence, the trader may want to continuously monitor the top-k pairs from the most

recent data (e.g., a sliding window containing most recent n items).

Consider another example of an online auction website. A user may be inter-

ested in finding the pairs of products that have similar specifications but are sold

at very different prices (i.e., different final bids). Such pairs may be used to under-

stand the users behavior and market trends, e.g., suitable bidding time for buyers

and suitable bidding closing time for sellers etc. An analyst or a user may issue

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 25

the following query to obtain top-k pairs of such products sold during last 7 days.

Q1:

Select a.id, b.id from auction a, auction b

where a.id < b.id

order by dist(a.spec,b.spec) - |a.bid - b.bid|

limit k

window [7 days]

Here dist(a.spec, b.spec) computes the distance (or difference) between their

specifications and |a.bid − b.bid| denotes the absolute difference between the final

bids they receive. Note that the query prefers the pairs of products that have

small difference between their specifications but have large difference between their

selling prices. The condition a.id < b.id ensures that a pair (a, b) is not repeated

as (b, a).

While the above example shows a simple scoring function, in real-world applica-

tions, the users may specify a more sophisticated scoring function. Our framework

allows the users to define arbitrarily complex scoring functions. A query that re-

trieves top-k pairs among the most recent n data items (i.e., sliding window of size

n) and uses the scoring function s is denoted as Q(k,n,s).

Our framework that handles top-k pairs queries has the following features.

Unified framework. To the best of our knowledge, we are the first to study top-k

pairs queries over sliding windows. We present a unified framework that efficiently

solves the top-k pairs queries involving any arbitrarily complex scoring function.

In our framework, the server maintains N most recent objects where N indicates

the size of the largest sliding window any query is allowed to use. Each object

has D attributes and the users may define any scoring function that uses d ≤ D of

these attributes to compute the scores. Our framework handles multiple top-k pairs

26 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

queries where each query is allowed to use a different scoring function, a different

size of sliding window n ≤ N and a different value of k.

Intuitively, it may be possible to improve the performance if the scoring func-

tions satisfy certain properties. We propose optimizations to significantly enhance

the performance for a broad class of scoring functions called global scoring func-

tions [CLW+11]. We remark that k-closest pairs queries, k-furthest pairs queries

and their variants are among many of the popular queries that use the global scoring

functions.

Low storage requirement. Our system uses O(ND) space to maintain the most

recent N objects. The system may receive different queries (issued by a single user

or different users) and several queries having different values of k and n may share

the same scoring function. For each unique scoring function, our system maintains

a small subset of candidate pairs called K-skyband (to be formally introduced in

Section 3.3). All the queries that use this scoring function are answered using only

the pairs in the K-skyband. We show that the expected size of the K-skyband

is O(K log (N/K)) where K is the maximum value of k of the queries that use

this scoring function and N is the size of the largest sliding window any query

is allowed to use. Hence, in addition to O(ND) memory space, our system uses

O(K log (N/K)) memory for each unique scoring function. Note that the total

number of possible pairs is O(N2) and O(K log (N/K)) is much smaller. Later,

we show that O(ND) is the lower bound storage requirement (see Theorem 4).

Efficient skyband maintenance. As the new objects arrive and the old objects

expire, the skyband is needed to be maintained. Based on a novel concept of K-

staircase, we present efficient techniques to maintain the K-skyband. We show that

O(N) is a lower bound cost for maintaining the K-skyband for arbitrarily complex

scoring functions or when the system is unaware of the properties of the scoring

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 27

functions. For this case, the expected cost of our algorithm is O(N(log (logN) +

logK)) which is reasonably close to the lower bound cost. Note that, in practice,

K is usually small (e.g., less than 1000) and log (logN) is less than 2 even for a

very large value of N (e.g., N = 1099).

Efficient query answering. We propose efficient techniques to answer the top-k

pairs queries using the K-skyband. Given a K-skyband, the complexity of our

technique to answer a top-k pairs query is O(log |SKB| + k) in the worst case

where |SKB| is the size of the K-skyband. The expected cost of our technique is

O(log (log n) + logK + k) where n is the size of the sliding window used by the

query and K is the largest value of k any query may use. Note that the lower

bound cost for query answering is O(k) and the expected cost of our algorithm is

reasonably close.

Support for top-k objects queries. We present techniques for answering top-k

objects queries over sliding windows (Section 3.6.2). In contrast to the existing

techniques, our framework allows arbitrarily complex scoring functions, supports

out-of-order data streams and can answer top-k objects queries involving any value

of k and n such that k ≤ K and n ≤ N . The experimental results demonstrate the

superiority of our algorithm over the state-of-the-art algorithm [MBP06] in terms

of running time as well as memory consumption.

Handling out-of-order streams. In Section 3.6.1, we show that our proposed

techniques for top-k pairs queries can be applied on out-of-order data streams. The

experimental results demonstrate that the performance of our algorithm is better

for the out-of-order streams as compared to that of in-order streams.

Batch query processing. We present a new batch processing algorithm that

computes the results of multiple top-k queries in a batch (Section 3.6.3). The

amortized cost of the algorithm meets the lower bound cost O(k) when the number

28 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

of queries is larger than the number of elements in the K-skyband.

Support for chromatic queries. We show that our techniques can handle both

chromatic and non-chromatic variants of top-k pairs queries [CLW+11]. For more

details, see Section 3.6.4.

Extensive evaluation and analysis. As discussed above, we conduct a detailed

complexity analysis to evaluate our algorithms and demonstrate that the cost of our

proposed approach is reasonably close to the lower bound cost. To experimentally

verify this, we design an algorithm called supreme algorithm that assumes the

existence of an oracle that can conduct certain calculations without requiring any

computation time. The usage of oracle allows the supreme algorithm to meet the

lower bound. Our extensive experiments on real and synthetic data demonstrate

that our algorithm performs reasonably well as compared to the supreme algorithm

and is more than three orders of magnitude faster than a näıve algorithm.

The rest of this chapter is organized as follows. Section 2.1 presents the re-

lated work. We formally define the problem and present a solution overview in

Section 3.3. Our system consists of three modules and these modules are presented

in Section 3.4 (query answering module), Section 3.5 (skyband maintenance mod-

ule). Section 3.7 presents our experiment results followed by the conclusion of this

chapter in Section 3.8.

3.2 Preliminaries

Sliding windows. Consider a stream of objects. For a fixed number N , a count-

based sliding window contains the most recent N objects of the data stream. Sim-

ilarly, for a fixed value T , a time-based sliding window contains the objects that

arrive within last T time units. Note that the objects defined here may refer to the

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 29

different instances of an object in different time in the real world application (e.g.

pair-trading). For the ease of presentation, in the rest of the chapter, we consider

only the count-based windows. However, our techniques can also be applied to

answer the top-k pairs queries over the time-based sliding windows.

Age of a pair of objects. Let o be the ith most recent object. We say that the

age of the object o is i and we denote the age of an object as o.age. Note that a

sliding window of size N consists of every object o for which o.age ≤ N . We say

that an object o has been expired if o.age > N .

A pair of objects (oi, oj) expires if at least one of the objects oi and oj expire.

Note that the age of a pair (oi, oj) is max(oi.age, oj.age). For the simplicity of

the notations, we denote the age of a pair p as p.age. A sliding window of size N

contains every pair p for which p.age ≤ N .

Score of a pair. Given a scoring function s(·, ·), the score of a pair (oi, oj) is

s(oi, oj). For the simplicity of notations, the score of a pair p is denoted as p.score.

Top-k pairs query. A top-k pairs query Q(k,n,s) takes three parameters k, n and

s and considers a set of pairs P that consists of every pair x for which x.age ≤ n.

The query Q(k,n,s) returns an answer set from P that consists of k pairs such that

for every pair p in the answer set and for any other pair p′ ∈ P , p.score ≤ p′.score

(the scores are computed using the scoring function s).

Snapshot vs continuous queries. Note that the set of objects in the sliding

window changes dynamically as the new objects arrive and the old objects expire

from the sliding window. Hence, some users may be interested in continuous update

of the results. In contrast, some users may only be interested in retrieving the top-k

pairs from the current sliding window. The queries that require continuous updates

of the results are called continuous queries and the queries that compute the results

only once are called snapshot queries.

30 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

3.3 Solution Overview

Before we present our framework, we revisit the concept of K-skyband [PTFS05].

Then, we prove that K-skyband is the minimal set of pairs required to be main-

tained in order to answer top-k pairs queries.

K-Skyband. Let x and y be two points in d dimensional space. For any point x,

x[i] denotes the value of x in ith dimension. A point x dominates a point y if for

every dimension i, x[i] ≤ y[i] and for at least one dimension j, x[j] < y[j]. Given

a set of points P , a K-skyband consists of every point x ∈ P that is dominated by

at most (K − 1) other points of P .

2

p1

p2

p3

p4
p5

p6

4 6 8 10

2

4

6

8

Age

Figure 3.1: K-skyband (K=2)

Consider the example of Figure 3.1 that shows six points p1 to p6 in a two-

dimensional space. The point p6 is dominated by two points p3 and p4. Hence, the

K-skyband (K=2) does not contain the point p6. The 2-skyband consists of the

points p1, p2, p3, p4 and p5 because each of these points is dominated by at most

one other point.

Given a pair of objects p = (oi, oj) and a scoring function s, the pair can be

mapped to a two dimensional age-score space where score is p.score = s(oi, oj) and

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 31

age is p.age = max(oi.age, oj.age). Figure 3.1 shows six pairs of objects shown in

the age-score space.

theorem 1 : Let P be the set of all possible pairs of most recent N objects

and each pair be mapped to the age-score space using a scoring function s1. Let

SKB(K,s1) be the K-skyband of P in the age-score space. Every top-k pairs query

Q(k,n,s1) can be answered using the pairs in SKB(K,s1) if k ≤ K and n ≤ N .

Proof. It is sufficient to show that a pair p′ /∈ SKB(K,s1) cannot be among the

top-k pairs of any query Q(k,n,s1). Since p′ is not in the K-skyband, it implies that

there are at least K other pairs such that for each such pair p, p.score ≤ p′.score

and p.age ≤ p′.age. Hence, for any sliding window of size n ≤ N that contains p′,

there exist at least K other pairs that are in the sliding window and have scores

at most equal to the score of p′. Hence, such top-k pairs query can be answered

without considering p′.

Consider the example of Figure 3.1. Any top-k pairs query Q(k,n,s) can be

answered by considering only the pairs p1 to p5 where k ≤ (K = 2), n ≤ (N = 10)

and s is the scoring function used to map the pairs to the age-score space. The

next theorem shows that the K-skyband is a minimal set of pairs required to be

maintained in order to guarantee the correctness.

theorem 2 : Let SKB(K,s1) be the K-skyband as defined in Theorem 1. For

any algorithm that does not maintain a pair p ∈ SKB(K,s1), there exists a query

Q(k,n,s1) that cannot be answered correctly.

Proof. Consider a query Q(K,p.age,s1) (i.e., k = K and n = p.age). Since p is a

pair in the K-skyband, there exist at most (K − 1) other pairs with age at most

equal to p.age and scores smaller than p.score. In other words, there are at most

32 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

(K − 1) pairs in the sliding window of size n = p.age that have scores smaller than

p.score. Hence, p must be among the top-K pairs of the query1.

3.3.1 Expected size of K-skyband

Existing analysis to estimate the expected size of K-skyband (e.g., [ZLZ+09]) as-

sumes that i) the values of objects in one dimension are independent of their values

in the other dimensions and ii) the values of the objects on each dimension are

unique. Unfortunately, the existing analysis cannot be directly applied to our

problem because the second assumption does not hold in our problem settings.

This is because many pairs have the same value on the age dimension (i.e., have

the same age). Nevertheless, we conduct an analysis and show that the expected

size of the K-skyband we need to maintain is O(K log (N/K)).

We assume that the scores of pairs are independent of their ages. This is a

reasonable assumption for the scoring functions that do not use ages of the objects

to determine the scores of pairs.

Lemma 1 : Let p be a pair with age x. Assuming that the scores of pairs are

independent of their ages, the probability that p is in K-skyband is min(K/x2, 1).

Proof. Consider an object oi and assume that oi.age = x. Every pair (oi, oj)

for which oj.age < oi.age has age equal to oi.age. Hence, the number of pairs with

age equal to x is (x− 1). Also, for any pair p with p.age = x, the number of pairs

that have age less than x is 1 + 2 + · · · + (x − 2) = O(x2). Let p′ be one of these

O(x2) pairs. Note that the pair p is dominated by p′ iff p′.score ≤ p.score. Hence,

the probability that a pair with age x is not dominated by any other pair in the

1Note that the proof assumes that there does not exist any other pair p′ for which p′.age =
p.age and p′.score = p.score. We remark that even if such pairs exist, we can easily handle this
case by assuming that the score of one pair is slightly larger (larger by an infinitely small value)
than the other based on some criteria such as the IDs of the objects in the pairs.

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 33

sliding window is 1/x2 assuming that every pair is equally probable to have the

smallest score. Similarly, the probability that a pair with age x is dominated by at

most K other pairs is min(K/x2, 1).

theorem 3 : Assuming that the scores of pairs are independent to the ages of

the pairs, the expected size of the K-skyband is O(K log (N/K)).

Proof. From Lemma 1, the probability that a pair p with age x is dominated

by at most K other pairs is min(K/x2, 1). As stated in the proof of Lemma 1, the

number of pairs with age equal to x is (x−1). Hence, the expected number of pairs

that have age equal to x and are in K-skyband is (x − 1) × min(K/x2, 1). The

expected total number of pairs that are in K-skyband is approximately
∑N

x=2 x ·

min(K/x2, 1). Let y = ⌊
√
K⌋. This expression can be simplified as follows.

N∑
x=2

min(
K

x
, x) ≈

y∑
x=2

x+
N∑

x=y+1

K

x

≈ K +K
N∑

x=y+1

1

x

≈ K +K(HN −Hy)

where HN =
∑N

x=1 1/x and is called N th harmonic number. For the case when

y = 1 (i.e., K < 4) , the term
∑y

x=2 x is considered zero and note that this does

not affect our complexity analysis.

It is well known thatHN grows almost as fast as natural log of N. More precisely,

HN is known to be (e.g., see [Knu73]) approximately equal to ln(N) + γ where

γ ≈ 0.577 is Euler’s constant. Hence, HN and Hy can be approximated to ln(N)

and ln(y), respectively . So, the expected number of pairs in K-skyband is O(K ·

(ln(N)− ln(
√
K)) or O(K log (N/K)).

34 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

3.3.2 Framework

In real world scenarios, different users have different requirements. Therefore, dif-

ferent users may choose different scoring functions each involving a different set

of attributes. Similarly, different users (or even a single user) may issue the top-k

pairs queries with different values of k and n. We present a framework that aims to

handle all these different queries efficiently. Our framework consists of the following

three modules:

1. Stream Manager. Assume that each object has D attributes and every query

issued on the system can use d ≤ D of these attributes in its scoring function.

Moreover, suppose that N is the maximum size of the sliding window any query

is allowed to use. The stream manager maintains (D + 1) lists each consisting

of N elements. For every 0 < i ≤ D, the i-th list stores the objects sorted in

ascending order of i-th attribute values of the objects. The (D+1)-th list is sorted

in ascending order of the ages of the objects. Clearly, the storage requirement is

O(ND). The theorem below shows that this is the minimum amount of storage

required to answer the top-k pairs queries.

theorem 4 : To answer a top-k pairs query over the sliding window of sizeN , the

lower bound on storage requirement is O(ND) where D is the number of attributes

involved in the scoring function.

Proof. Assume that an object o is deleted such that o.age ≤ N . Since the

values of the newly arrived objects are unknown, a new object o′ may arrive in the

stream such that s(o, o′) is minimum (i.e., the pair (o, o′) is one of the top-k pairs).

If the object o is deleted from the stream, this pair will not be considered and

the system will miss the correct answer. Hence, the object o must not be deleted.

Moreover, the system must store all D attribute values of each object because the

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 35

scoring function s may involve d ≤ D attributes. Hence, the lower bound on the

storage requirement is O(ND).

2. Skyband Maintenance Module. Let S = {s1, · · · , sm} be the set of unique

scoring functions used by different queries. For each scoring function si, the sky-

band maintenance module maintains a set of skyband pairs SKB(Ki,si) where Ki

is the maximum value of k for any query that uses the scoring function si (see

Figure 3.2).

Stream

Manager

{o1,�,oN}

Skyband1

for K1, s1

Data Stream Skyband2

for K2, s2

Skybandm

for Km, sm

Queries

using s1

with k≤K1

Queries

using s2

with k≤K2

Queries

using sm

with k≤Km

New scoring

functions

Figure 3.2: Framework

If a user issues a query Q(k,n,si) that uses a scoring function si not being used

by any of the existing queries in the system, the skyband maintenance module

creates a new skyband SKB(Ki,si) for this new scoring function. Upon receiving

the object updates and new queries, the skyband maintenance module updates all

the skybands in the system.

3. Query Answering Module. The query answering module is responsible

for answering the snapshot or continuous top-k pairs queries. A query Q(k,n,si) is

answered using the skyband SKB(Ki,si).

In Section 3.4, we present the details of the query answering module. The details

of the skyband maintenance module is presented in Section 3.5. The techniques

36 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

used for stream manager are shown in Section 3.6.4.

3.4 Query Answering Module

In this section, we present our query answering technique. As discussed earlier, to

answer a query Q(k,n,si), the query answering module uses the skyband SKB(Ki,si).

For the ease of presentation, we denote Ki as K and SKB(Ki,si) as skyband in this

section.

3.4.1 Snapshot Top-k Pairs Queries

A straight forward approach to answer a top-k query is to scan the list of skyband

pairs in increasing order of their scores. Any pair p for which p.age > n is ignored.

The algorithm stops when k pairs with age at most equal to n are retrieved. These

k pairs are reported. Note that the cost of this algorithm is O(|SKB|) in the worst

case where |SKB| is the size of the K-skyband. Next, we present an approach that

answers the top-k pairs query in O(log |SKB|+ k) in the worst case.

To enable efficient computation of the queries, the skyband maintenance mod-

ule indexes all the K-skyband pairs in a priority search tree (PST) [McC85]. Al-

gorithm 1 shows the PST construction algorithm and Figure 3.4 shows a PST

constructed using the pairs in 2-skyband of Figure 3.3. The pairs are labeled such

that the age of a pair pi is i. The number inside each node corresponds to its score.

For each node, PST also stores the median value used to split the left and right

subtrees (see line 3 of Algorithm 1). For example, the age of root node p1 is 1, its

score is 6 and the left and right subtrees are decided based on the median score 4

(shown under the dotted line).

Before we describe the properties of PST, we define a few terms. Ancestor of

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 37

Algorithm 1: PrioritySearchTree(P)

1: if P is empty then return NULL

2: Choose an element p with smallest age among P

3: median = median of score values of elements in P

4: PR = {elements in P with score greater than median}

5: PL = P − PR − {p}

6: p.right-subtree = PrioritySearchTree(PR)

7: p.left-subtree = PrioritySearchTree(PL)

8: return p

a node is its parent or (recursively) the parent of its ancestor. For example, in

Figure 3.4, the nodes p1 and p2 are the ancestors of the node p3. Two nodes are

called cousins to each other if they have a common ancestor and they do not have

a child-ancestor relationship with each other. For example, the nodes p4 and p6 are

cousins to each other because they have a common ancestor p1. A node x is called

a left cousin of a node y if they share a common ancestor e and x is in the left

subtree of e and y is in the right subtree of e. Right cousins are defined similarly.

In Figure 3.4, the node p6 is a left cousin of the node p4 and the node p4 is a right

cousin of the node p6.

The priority search tree has the following properties: 1) the age of a node cannot

be smaller than the age of its ancestor (e.g., the age of p3 is larger than the ages of

its ancestors p1 and p2), 2) the score of a node is always greater than the scores of

its left cousins and is always smaller than the scores of its right cousins (e.g., the

score of p6 is greater than the scores of its left cousins (p7 and p8) and is smaller

than the scores of its right cousins (p2, p3 and p4). Note that the score of a child

may be smaller or larger than (or even equal to) the score of its ancestor.

We utilize the above mentioned properties to efficiently answer a top-k pairs

38 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

2

p1

p2

p3

p4

p5

p6

4 6 8 10

2

4

6

8

Age

p7
p8

Figure 3.3: 2-skyband

p1

p5
4

2p7

1 p8

p6

p2

8p3

5
p4

6

3

1 4

2

9

8

5

Figure 3.4: Priority Search Tree

query Q(k,n,s). Algorithm 2 shows our query processing algorithm that traverses the

PST in an order very similar to the post-order traversal. In a post-order traversal,

for any node e, its left subtree is visited before its right subtree and the node e

is visited in the end. Our algorithm traverses the PST in the post-order except

the following two differences: i) it only considers the nodes that lie in the sliding

window (see lines 9 and 10) and ii) the algorithm terminates when k objects are

visited in the post-order (line 3). It can be proved that the top-k pairs are among

the pairs that are either visited or are among the marked nodes in the stack S

(line 11). Finally, the set of candidates is scanned and k pairs with the smallest

scores are obtained (line 12).

Example 1 : Consider the 2-skyband shown in Figure 3.3 and the PST shown

in Figure 3.4. Consider a query that wants to retrieve top-2 pairs in the sliding

window of size 7. The post-order traversal returns two nodes p7 and p6 and the

stack contains the nodes p1, p5 and p2. The nodes p1 and p5 are the marked nodes

and p2 is not a marked node. The top-2 pairs are p7 and p5 which are selected from

the candidates (p7, p6, p1 and p5). Note that our algorithm does not consider the

node p8 because it does not lie in the sliding window. �

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 39

Algorithm 2: TopPairs(PST,k, n)

1: visitedSet = ϕ

2: if root.age ≤ n then insert root in a stack S

3: while visitedSet.size < k AND S is not empty do

4: e = top element of S

5: if e is a leaf OR is marked then

6: insert e in visitedSet and remove from S

7: else

8: mark e

9: if e.rightChild.age≤ n then push e.rightChild in S

10: if e.leftChild.age ≤ n then push e.leftChild in S

11: candidates = visitedSet ∪ marked nodes in stack S

12: visit candidates to obtain k pairs with smallest scores

Proof of correctness. The algorithm returns k nodes in post-order traversal.

Let x be the node with the largest score among these k nodes. Any other node

y that has score smaller than x.score must satisfy one of the followings: 1) y is

one of the left cousins of x; 2) y is a child of x or 3) y is an ancestor of x. Since

our algorithm visits the nodes in post-order, any node that satisfies the condition

1 or 2 is either visited by our algorithm or is not visited because it does not lie

in the sliding window (its age is greater than n). Hence, any node that lies in the

sliding window and may possibly have score smaller than the score of x is one of

its ancestors. Note that the stack contains the unvisited ancestors of all the visited

nodes. Moreover, every ancestor of a visited node is a marked node in the stack (see

line 8) and our algorithm considers all the marked nodes of the stack (see line 11

of Algorithm 2). Hence, our algorithm correctly determines the top-k pairs.

Complexity analysis. Priority search tree is always a balanced tree [McC85]

40 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

because the left subtree and right subtree of a node are determined based on the

median score. Therefore, the height of the tree in the worst case is O(log |SKB|)

where |SKB| is the number of pairs stored in PST. Hence, the number of candidates

at line 11 of Algorithm 2 is O(log |SKB| + k). This is because the number of

elements in stack at any time is bounded by the height of the tree. To obtain

the top-k pairs, we use the the median of medians selection algorithm [BFP+73] to

obtain the k pairs in time linear to the number of candidates. Hence the complexity

of the algorithm is O(log |SKB|+ k) in the worst case.

As shown earlier, the expected size of K-skyband for a sliding window of size

N is O(K · log (N/K)) (Theorem 3). Note that our algorithm does not access a

node e and its children if e does not lie in the sliding window of size n. This means

that we essentially consider only the pairs in K-skyband that lie in the sliding

window of size n. Hence, the expected cost is O(log |SKBn|+ k) where |SKBn| is

the size of K-skyband for the sliding window of size n. Hence, the expected cost

is O(log (K · log (n/K)) + k) = O(log (log n) + logK + k). We remark that in the

worst case the expected cost is O(log (logN) + logK + k) because the maximum

size of the stack in the worst case may still be O(log |SKB|) even though we ignore

the nodes with age greater than n. This is because the PST is a balanced tree with

respect to the overall data set and may not necessarily be balanced for a subset of

the data.

3.4.2 Continuous Top-k Pairs Queries

The initial results of a continuous top-k pairs query are computed using the algo-

rithm presented earlier for computing the snapshot queries. The results of a query

Q(k,n,s) may change if one of the top-k pairs expires or if a new pair has a score

smaller than the score of one of the existing top-k pairs. We first handle the expired

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 41

pairs and then handle the new pairs.

Handling pairs expired from K-skyband. For each query Q(k,n,s), we maintain

two lists of top-k pairs one sorted on their ages and the other sorted on their scores.

We use the list of top-k pairs that is sorted on the ages to determine when a pair

expires. Let p be an expired pair. We delete p from both of the sorted lists.

Handling new pairs in K-skyband. The skyband maintenance module provides

a list of new pairs added to the K-skyband. The list is provided sorted in ascending

order of the scores of the new pairs. We scan the list in ascending order and every

pair p is added to the answer of the query if p.score < scorek where scorek is the

largest score among the scores of the top-k pairs. Whenever such a pair p is added

to the answer, the pair with the largest score in the top-k pairs is deleted and the

scorek is updated accordingly. The algorithm stops scanning the sorted list when

p.score ≥ scorek. This is because all the remaining pairs are guaranteed to have

scores greater than scorek and are not needed to be considered.

Note that after handling the expired pairs and the newly arrived pairs, the

answer set of a query may contain less than k pairs (e.g., when the number of deleted

pairs is greater than the number of pairs added in the answer set). In such cases,

we call Algorithm 2 to compute the top-k pairs from scratch in O(log |SKB|+ k).

Complexity analysis. In the worst case, the complexity of updating the results is

O(log |SKB|+k) because we call Algorithm 2 when the number of deleted pairs is

greater than the number of inserted pairs. This worst case may happen only when

one or more pairs are deleted from the top-k pairs. We analyse the probability of

this case to happen.

For any object oi, the number of pairs containing oi in the sliding window of

size n is O(n). The total number of possible pairs in sliding window is O(n2). The

probability that any of the pairs related to an object oi has the smallest score among

42 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

all possible pairs is n/n2 = 1/n. The probability that any of the pairs related to

the object oi is one of the top-k pairs is k/n. Hence, the probability that any of

the expired pairs is among the top-k pairs is k/n. Therefore, the probability of the

worst case to happen is k/n and the expected amortized complexity of updating

the results is O(k/n(log |SKB|+ k)) per update.

3.5 Skyband Maintenance Module

3.5.1 Handling Arbitrary Scoring Functions

In this section, we present the details of skyband maintenance module (SMM) for

arbitrarily complex scoring functions. The K-skyband needs to be updated when

an object expires or when a new object arrives. Below, we describe how to handle

both of the cases.

Handling when an object expires. Handling an expired object is easy because

we only need to delete the relevant pairs from the K-skyband. Note that the age

of an expired object oi is the largest among all the objects in the sliding window.

Moreover, every pair that is to be deleted has age equal to oi.age. We keep a list

of K-skyband pairs sorted on their ages and for each pair in the list we store a

pointer to the relevant node in the PST. We use this list to delete every pair p for

which p.age = oi.age.

Handling when an object arrives. When a new object oi arrives, we may

need to update the K-skyband. For arbitrarily complex scoring functions, we need

to consider all valid pairs of oi with the existing objects in the sliding window.

The number of pairs to be considered in this case is O(N). Note that O(N) is the

lower bound cost for handling a new object because, for arbitrarily complex scoring

functions, if we do not consider a pair (oi, oj) then we may miss the correct result

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 43

because (oi, oj) may be one of the top-k pairs.

Algorithm 3: Handling new object (o)

1: Let S be the pairs in K-skyband sorted on scores

2: for each new pair p of the object o do

3: compute the score and age of p

4: if p is not dominated by K-skyband then

5: insert p in S in sorted order

6: UpdateSkybandAndStaircase(S)/* Algorithm 4 */

Algorithm 3 shows the details of handling a newly arrived object o. We say

that a pair p is dominated by a K-skyband if there are at least K pairs in the

K-skyband that dominate p. For each new pair p, we first need to check whether

it is dominated by the existing K-skyband or not (line 4). The pairs that are not

dominated by the K-skyband are added to the existing K-skyband which is kept

sorted in ascending order of the scores of pairs (line 5). After all the pairs are

considered, the algorithm updates the K-skyband (line 6).

As mentioned earlier, for each new pair p, we need to check whether it is dom-

inated by the existing K-skyband or not (line 4). A näıve approach to do so is to

consider all the pairs in the existing K-skyband and count the number of pairs that

dominate p. If the number of dominating pairs is less than K then the pair p is not

dominated by the K-skyband. Note that the complexity of this approach is linear

to the size of the K-skyband, i.e., O(|SKB|). Next, we present an approach that

checks whether a pair p is dominated by the K-skyband or not in O(log |SKB|.

First we introduce the concept of K-staircase.

44 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

2

p1

p2

p3

p4
p5

4 6 8 10

2

4

6

8

Age

s1

s2

p6

Figure 3.5: 2-staircase

K-staircase

Given a set of points P , the K-staircase is a set of points SCase such that if a

point p is dominated by any point x ∈ SCase then there are at least K points

in P that dominate p. Moreover, for any point p′, if there does not exist any

point x ∈ SCase that dominates p′ then there are at most K − 1 points in P that

dominate p. Note that the points in the K-staircase can be used to check whether

a point is dominated by the K-skyband or not. More specifically, a point p is

dominated by the K-skyband if and only if it is dominated by at least one point of

the K-staircase.

Figure 3.5 shows a set of points P = {p1, · · · , p6}. The K-staircase (K = 2)

is also shown which consists of the points p1, p5, s1 and s2 (shown as stars). Note

that the points in the staircase are not necessarily the points in the set P (see s1

and s2). Before we show our algorithm to compute the K-staircase, we present the

intuition.

Consider a point p3 that is in K-skyband (K = 2) as shown in Figure 3.5.

Among the points that have scores at most equal to p3.score, we identify a point

that has Kth smallest age. In Figure 3.5, the points that have scores at most equal

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 45

to p3.score are p3, p4 and p5 and the point p4 has the Kth (K = 2) smallest age

among these points. Based on p3 and p4, we determine a K-staircase point s1 such

that s1.score = p3.score and s1.age = p4.age. Please note that such a point s1 is

dominated by at least K points of P . Hence, any point that is dominated by s1

is dominated by at least K points of P . Moreover, any point that dominates s1

is dominated by at most K − 1 points of P . To construct K-staircase, we repeat

the above procedure for every point of the K-skyband and determine a relevant

K-staircase point. Below, we present the details.

Updating K-skyband and K-staircase

Recall that in Algorithm 3, we need to update theK-skyband andK-staircase after

all the new pairs are added to the existing K-skyband (see line 6). In this section,

we present our technique to efficiently update the K-skyband and K-staircase.

In [TPK+03], the authors presented an algorithm to construct the K-skyband

from a set of two-dimensional points P . Since our algorithm to construct the K-

staircase has a similar structure, we embed the two algorithms to construct both

the K-skyband and K-staircase in parallel. If the points in the dataset P are sorted

in the ascending order of their scores, the algorithm constructs the K-skyband and

K-staircase in O(|P | · logK) where |P | is the number of points in P .

Algorithm 4 presents the details. The points in P are accessed in ascending

order of their scores (if two points have the same score, the point with the smaller

age is accessed first). An accessed point p cannot be the K-skyband point if the

algorithm has accessed at least K other points with age at most equal to p.age

(line 10). This is because all of these K points have scores at most equal to p.score

(recall that the points are being accessed in ascending order of scores).

If a point p is in K-skyband then we identify a K-staircase point x such that

46 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

Algorithm 4: UpdateSkybandAndStaircase(P)

1: Initialize a max-heap H with key set to age of elements

2: Let P be sorted in ascending order of scores

3: for each pair p in P do

4: if |H| < K then

5: add p to SKBK

6: insert p in H

7: if |H| = K then

8: insert (p.score,H.top().age) into K-staircase

9: else

10: if p.age ≥ H.top.age then

11: discard p

12: else

13: add p to SKBK

14: insert p in H

15: H.pop()/* delete top element of H */

16: insert (p.score,H.top().age) into K-staircase

17: output SKBK and K-staircase.

x.score = p.score and x.age = H.top().age where H.top().age is the maximum age

of a pair in the heap (line 16). Note that the heap stores K smallest ages and

H.top().age corresponds to the Kth smallest age among the points that have been

accessed (i.e., have scores smaller than p.score).

Checking dominance using K-staircase. We say that a point p is dominated by

the K-staircase SCase if and only if there exists a point x ∈ SCase that dominates

the point p. As stated earlier, a point p is dominated by K-skyband if and only if

p is dominated by the K-staircase. Next, we show that checking whether a point

p is dominated by the K-staircase can be done in O(log |SKB|).

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 47

Note that the points of the K-staircase returned by Algorithm 4 are sorted on

their scores. To check whether a point p is dominated by the K-staircase or not,

we do a binary search on the points in the K-staircase and retrieve a point x that

has score smaller than p.score and the point next to x in the K-staircase has score

greater than p.score. It can be proved that if p is not dominated by x then the

point is not dominated by any point in the K-staircase. This is because all the

points of the K-staircase that have scores smaller than x have age greater than

x.age (see the K-staircase of Figure 3.5). Since the size of K-staircase is bounded

by the size of K-skyband, checking whether a point is dominated by K-staircase

takes O(log |SKB|).

Complexity analysis

The following lemma is important in analysing the complexity.

Lemma 2 : When a new object arrives, the expected number of new pairs that

are not dominated by the existing K-skyband is O(K).

Proof. For a newly arrived object onew, there are O(N) new pairs in the sliding

window. Let px be a new pair with age equal to x. The set of new pairs is

{p2, p3, · · · , pN}. From Lemma 1, a pair with age x has probability min(K/x2, 1)

not to be dominated by K-skyband. Hence,
∑N

x=2 min(K/x2, 1) gives the number

of new pairs that are not dominated by the K-skyband. The summation can be

approximated to
√
K +K ·

∑N
x=

√
K+1 1/x

2. This is reduced to
√
K +K · C where

C is a constant smaller than π2/6 (see Basel’s problem2). Hence, the number of

such pairs is O(K).

Cost of handling a new object. We analyse the complexity of Algorithm 3.

2http://en.wikipedia.org/wiki/Basel problem

48 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

lines 2 to 4: For a newly arrived object, Algorithm 3 considers O(N) new pairs

(line 2). For each of these pairs, the algorithm checks whether it is dominated by

the K-staircase or not. Hence, the total cost of these lines is O(N · log |SKB|).

line 5: According to Lemma 2, the number of pairs that are not dominated by

the K-skyband is O(K). These O(K) pairs are inserted in the K-skyband set S.

The cost of each such operation is logarithmic to the size of S. Hence, the cost of

line 5 is O(K · log (|SKB|+K)) where O(|SKB| + K) is the expected size of S

after all K pairs are added.

line 6: At line 6, Algorithm 4 is called. The cost of Algorithm 4 to com-

pute the K-skyband and the K-staircase for a sorted dataset of size |S| is O(|S| ·

logK) [TPK+03]. Since the size of S is O(|SKB|+K), the cost of computing the

K-skyband and the K-staircase (line 6 of Algorithm 3) is O((|SKB|+K) · logK).

After the K-skyband is updated, the new pairs inserted in the K-skyband are

inserted in the priority search tree (PST) and the pairs that are not among the K-

skyband pairs anymore are deleted from the PST. Since the size of the K-skyband

is expected to remain the same before and after the update, the number of new

pairs is equal to the number of pairs deleted from the PST, i.e., O(K) accord-

ing to Lemma 2. The cost of inserting and deleting these pairs from the PST is

O(K · log |SKB|).

Overall cost of Algorithm 3: The above analysis demonstrates that the overall

complexity of Algorithm 3 is O(N ·log |SKB|+K ·log (|SKB|+K)+(|SKB|+K)·

logK). Since |SKB| is larger thanK and N is larger than |SKB| ifK ≪ N (which

is usually the case), the overall complexity of Algorithm 3 is O(N · log (|SKB|)).

Cost of handling an expired object. When an object oi expires, the number

of pairs that are to be deleted from the K-skyband is at most K. This is be-

cause the K-skyband contains at most K pairs that have equal age (the K pairs

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 49

with the smallest scores). Recall that each deletion and insertion on PST takes

O(log |SKB|). In the worst case, K pairs are to be deleted and the worst case cost

is O(K · log |SKB|).

Overall cost. Note that the cost of handling a new object dominates the cost

of handling an expired object. Hence, the overall cost is O(N · log |SKB|). Since

the expected size of |SKB| is O(K · log (N/K)), the overall expected complexity

is O(N · (log (logN) + logK)).

3.5.2 Optimization for Certain Scoring Functions

In the previous subsection, we showed that the skyband can be maintained by con-

sidering O(N) new pairs when a new object arrives in the data stream. In this

section, we show that for a broad class of scoring functions we can reduce the num-

ber of considered pairs. We call these scoring functions the global scoring functions.

The global scoring functions are based on monotonic and loose monotonic functions

as defined in [CLW+11] and can be used to model several important queries such

as k-closest pairs queries, k-furthest pairs queries and their variants.

we give formal definitions of these functions.

Monotonic function. A function f is called a monotonic function if it satisfies

f(x1, · · · , xn) ≤ f(y1, · · · , yn) whenever xi ≤ yi for every 1 ≤ i ≤ n.

Loose monotonic scoring function. Let ls(., .) be a scoring function that takes

two values as parameter and returns a score. A function ls(., .) is a loose monotonic

function if for every value xi both of the following are true: i) for a fixed xi and every

xj > xi, ls(xi, xj) either monotonically increases or monotonically decreases as xj

increases, and ii) for a fixed xi and every xk < xi, s(xi, xk) either monotonically

increases or monotonically decreases as xk decreases.

Note that the loose monotonic scoring functions are more general than the

50 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

monotonic scoring functions, i.e., every monotonic function is a loose monotonic

function but the converse may not be true. The absolute difference of two values

(e.g., |xi − xj|) is a loose monotonic function but not a monotonic function. The

average of two values is a loose monotonic function as well as a monotonic function.

Global scoring function. Let d be the number of attributes used by the scoring

function. For each attribute i, the user specifies a loose monotonic scoring function

lsi(., .) that computes the score of a pair on the attribute i. Such scoring function is

called a local scoring function and the score lsi(a, b) of a pair (a, b) is called its local

score. The users are allowed to define a different local scoring function for each

attribute. The user defines a global scoring function gsf that takes d local scores as

parameter and returns the final score of a pair (a, b) as gsf(ls1(a, b), · · · , lsd(a, b)).

We require that such global scoring function must be a monotonic function. Note

that the global scoring functions are more general than the monotonic scoring

functions used by many real world applications [CLW+11]. For instance, k-closest

pairs queries, k-furthest pairs queries and their variants can be answered by using

global scoring functions (see [CLW+11] for details).

(a) Sorted Lists

(o1,o7) 2

(o1,o6) 2

(o1,o3) 3

(o1,o4) 3

(o1,o2) 5

(o1,o5) 6

(o1,o7) 1

(o1,o5) 1

(o1,o4) 2

(o1,o2) 3

(o1,o6) 4

(o1,o3) 5

(o1,o2) 2

(o1,o3) 3

(o1,o4) 4

(o1,o5) 5

(o1,o6) 6

(o1,o7) 7

LS1(x,y) = LS2(x,y) = |x-y|
age(x,y) = max(x,y)

Threshold Algorithm

Scoring Function Manhattan Distance

(b) Applying TA

Figure 3.6: Optimization for global scoring functions

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 51

Technique

Let D be the total number of attributes of the objects. As described in Section 3.2

and shown in Figure 3.6(a), the stream manager maintains (D + 1) sorted lists

(D lists each sorted on one of the attributes and one list sorted on the ages). The

global score (i.e., final score) of a pair is computed by combining d ≤ D local scores

where the i-th local score corresponds to the score of a pair on the i-th attribute.

For a newly arrived object o and for an attribute i, we can incrementally retrieve

the pairs of objects related to the object o in ascending order of their i-th local

scores (see [CLW+11] for details). Figure 3.6(b) shows an example where, for a

newly arrived object o1, the lists can be used to incrementally retrieve the pairs

of o1 in sorted order of the scores. We iteratively retrieve these pairs in ascending

order of scores for each attribute i and then apply an algorithm similar to the

threshold algorithm (TA) [FLN03] to terminate the algorithm before visiting all

O(N) new pairs of the newly arrived object.

Algorithm 5 presents the details. The algorithm accesses the pairs in round-

robin fashion from the d+1 attributes where the (d+1)th attribute corresponds to

the age of a pair (line 4). Each accessed pair p is mapped to age-score space and

is inserted in S if it is not dominated by the K-staircase (line 6).

Let lsi be the local score of the last retrieved pair for the ith attribute and age

be the age of the last pair retrieved for the age attribute. Note that lsi corresponds

to the smallest possible local score of any unseen pair for the ith attribute. Hence,

gsf(ls1, · · · , lsd) is the smallest possible final score of any unseen pair where gsf()

denotes the global scoring function. Similarly, age is the smallest possible age of

any unseen pair. Hence, we map a dummy point (see line 10) to the age-score

space with the smallest possible age and the smallest possible score. If this dummy

point is dominated by the K-staircase then any unseen pair will also be dominated

52 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

Algorithm 5: handling new object o)

1: S = points in K-skyband sorted on scores

2: dummy point = (0, 0)

3: while dummy point not dominated by K-staircase do

4: for i = 1 to i = d+ 1 do

5: access next best pair p of o in ascending order of ith local score

6: if p is not dominated by K-staircase then

7: insert p in S in sorted order of scores

8: Let lsi be the score of last pair seen for ith attribute

9: Let age be the age of last pair seen from the age list

10: dummy point = (age, gsf(ls1, · · · , lsd))

11: UpdateSkybandAndStaircase(S)

by the K-staircase. For this reason, we do not need to consider remaining unseen

pairs (see line 3) if the dummy pair is dominated by the K-staircase.

Complexity analysis

Note that the main difference between Algorithm 3 and Algorithm 5 is that Algo-

rithm 3 considers O(N) new pairs when a new object arrives whereas Algorithm 5

considers fewer pairs by using the threshold algorithm (TA). Let M be the number

of the pairs considered by Algorithm 5. We estimate the value of M and obtaining

the overall complexity is similar to that of the Algorithm 3.

We access the pairs in round robin fashion for the d+1 attributes. Note that the

algorithm may terminate if at least K pairs have been seen for each of these d+ 1

attributes. This is because for any unseen pair there would be at least K pairs that

have both the score and age less than it. Fagin showed that the number of elements

accessed from the d+1 lists in such case is M = (d+1) ·Nd/(d+1) ·K1/(d+1) [FLN03].

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 53

3.6 Extensions

3.6.1 Handling Out-of-order Streams

In many real-world applications, the objects do not arrive in correct order

due to various reasons such as network delay and data sent from different

sources [CKT08, LLG+09]. Such streams are called out-of-order data streams.

In out-of-order streams, the age of an object does not denote the time since it has

been in the sliding window (i.e., the time since it was received) but it denotes the

time since it was sent to the server. Hence, the age of a newly received object may

be larger than the age of objects received earlier.

As mentioned in [LLG+09], various stream processing technologies experience

significant challenges when faced with out-of-order data streams. Our proposed

techniques do not rely on the assumption that the age of a newly received object

is the smallest among the existing objects. Hence, all of our proposed techniques

can be directly applied on out-of-order data streams. In fact, one optimization is

possible in the skyband maintenance module (Algorithm 3). For out-of-order data

streams, we update K-skyband and K-staircase (line 6 of Algorithm 3) only if the

set S is changed due to insertion of any pair at line 5. Note that for in-order data

streams, when an object arrives, there is at least one new pair that has the smallest

age among all existing pairs in the sliding window. Hence, S is always updated

due to insertion of this new pair and K-skyband and K-staircase is needed to be

updated.

Our theoretical analysis and experimental evaluation demonstrate that our pro-

posed techniques perform better for out-of-order streams. This is mainly due to the

following reason. As shown in Lemma 3, if an object arrives late (i.e., out-of-order),

the new pairs have lesser chance to be in the K-skyband and this results in low

54 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

maintenance cost of the K-skyband.

Lemma 3 : Assume that the age of a newly received object onew is y. The ex-

pected number of new pairs that are not dominated by the existing K-skyband is

inversely proportional to the value of y.

Proof. If y > N , then every new pairs has age greater than N and can be

ignored. Otherwise, there are O(N) new pairs in the sliding window. There are

(y − 1) pairs with age equal to y (the pairs of onew with every object o that has

age smaller than y). The remaining pairs can be denoted as the following set

{py+1, py+2, · · · , pN} where px denotes that the age of pair px is x. From Lemma 1,

a pair with age x has probability min(K/x2, 1) not to be dominated by K-skyband.

Hence, (y − 1)×min(K/y2, 1) +
∑N

x=y+1min(K/x2, 1) is the expected number of

new pairs that are not dominated by the K-skyband. Clearly, this value is inversely

proportional to the value of y, i.e., the expected number of new pairs that are not

dominated by the K-skyband is larger for smaller values of y and vice versa.

3.6.2 Top-k Objects Queries

Given a scoring function that computes the score of an object, a top-k objects

query retrieves k objects with the smallest scores. A top-k objects query over

sliding windows considers the objects in the current sliding window (e.g., the most

recent n objects) and returns k objects with the smallest scores. Such queries

have many applications and have received significant research attention [MP07b,

MBP06, BOPY07].

In this section, we present techniques to efficiently handle top-k objects queries

that outperform state-of-the-art algorithm [MBP06] in terms of both running time

and memory consumption. We remark that our proposed algorithm has the fol-

lowing novel features not considered/supported by the existing algorithms: 1) It

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 55

supports arbitrarily complex scoring functions whereas the existing algorithms only

support either monotonic functions [MBP06] or kNN queries [MP07b, BOPY07];

2) It can answer top-k objects queries having any window size n ≤ N in contrast

to the previous techniques that focus only on n = N ; 3) Our proposed techniques

can handle out-of-order data streams.

Our framework is similar to the framework we presented to answer top-k pairs

queries. Specifically, each object is mapped to a score-age space and aK-skyband is

maintained by the skyband maintenance module. The query answering module uses

the K-skyband to answer snapshot and continuous top-k objects queries for any

k ≤ K and any n ≤ N . The query answering module (and its complexity analysis)

is exactly the same as presented in Section 3.4. The skyband maintenance module

is different and is presented below.

Skyband maintenance for top-k objects

Note that if the data stream is in-order then the newly arrived object has the

smallest age and cannot be dominated by any existing object in the sliding window.

Hence, the newly arrived object must always be inserted in K-skyband. This

observation was exploited in the existing work [MBP06]. In contrast, for out-

of-order data streams, a newly arrived object may or may not be dominated by

the K-skyband. We present the techniques for out-of-order streams which can be

directly applied for in-order streams.

A straightforward approach to maintain K-skyband is to insert the newly ar-

rived object o in the K-skyband (if it is not dominated by K-skyband) and remove

every object o′ that is dominated by o and (K − 1) existing objects. To effi-

ciently check whether the newly arrived object is dominated by the K-skyband,

we can use K-staircase. This straightforward approach may be expensive because

56 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

it requires updating K-skyband and K-staircase every time a new object arrives.

Therefore, we adopt a lazy-update approach shown in Algorithm 6 that updates the

K-skyband and K-staircase only if the size of K-skyband increases by a parameter

x.

Algorithm 6 computes the score and age of the newly arrived object o and checks

whether it is dominated by K-staircase or not (line 3). If o is not dominated, it is

inserted in S and the priority search tree (line 4). Let x be a parameter and |SKB|

denote the size of K-skyband after the last update of K-skyband and K-staircase

(line 7). If after the insertion of o in S, the size of S becomes larger than x+ |SKB|

then Algorithm 4 is called to update the K-skyband and K-staircase.

Algorithm 6: Handling new object(o)

1: Let S be the objects in K-skyband sorted on scores

2: compute the score and age of o

3: if o is not dominated by K-Staircase then

4: insert o into S and PST

5: if |S| > x+ |SKB| then

6: UpdateSkybandAndStairCase(S)/* Algorithm 4 */

7: |SKB| = size of K-skyband

Complexity analysis. Assume that the size of K-skyband is reasonably sta-

ble. The cost of line 3 is O(log |SKB|). The insertion cost of each object

into S and PST is at most O(log (x+ |SKB|)) (line 4). The cost of line 6 is

O((x+ |SKB|) logK) where x+ |SKB| is the number of elements in S at the time

K-skyband and K-staircase is updated (see the cost of Algorithm 4 presented in

Section 3.5.1). Since line 6 is called after at least x new arrivals, the amortized

cost of line 6 is (x+|SKB|) logK
x

. Hence, the amortized cost of the whole algorithm

is O(log (x+ |SKB|) + 1
x
(x + |SKB|) logK). Assuming that x = |SKB|, the

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 57

amortized cost of the algorithm is O(log |SKB|+ logK) = O(log |SKB|).

Optimizing the value of x. Intuitively, if we choose larger x, the cost of line 4

increases whereas the amortized cost of line 6 is reduced (and vice versa). Next,

we show how to choose an optimal value of x. Let Cost(x) denote the amortized

cost of the algorithm for value x.

Cost(x) = log (x+ |SKB|) + (x+ |SKB|) logK
x

(3.1)

To minimize the cost, we take the derivative of Cost(x) and set it equal to 0.

1

x+ |SKB|
− |SKB| logK

x2
= 0

The optimal value of x is then obtained by solving the above equation.

x =
|SKB| × (logK +

√
logK(4 + logK))

2

Note that the above analysis is valid for K > 1. For a more accurate analysis

that is also applicable for K = 1, O(logK) in Eq. (3.1) is to be replaced by

O(C + logK) where C is a constant.

3.6.3 Batch Processing for Multiple Queries

In this section, we present a query processing algorithm that answers multiple

snapshot queries in a batch. Suppose Q is a set of queries that share the same

scoring function. For a query Qi ∈Q, ki and ni denote the values of k and n used

for Qi, respectively. Algorithm 7 presents the details of the technique.

Recall that the skyband maintenance module stores the pairs in K-skyband

in sorted order of scores. The algorithm accesses the pairs in ascending order of

scores. For each accessed pair p, it accesses the queries in Q in descending order of

the window lengths. Note that if the age of p is greater than the window length ni

58 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

Algorithm 7: Batch(SKB, Q)

1: for each pair p in SKB in ascending order of scores do

2: for each Qi in descending order of window lengths ni do

3: if p.age > ni then

4: break;

5: insert p into Qi.topK

6: if |Qi.topK| = ki then

7: report Qi.topK and remove Qi from Q

of an accessed query then p cannot be an answer to any of the remaining queries

(because the age of p would be larger than the window lengths of such queries).

This observation is exploited at line 4 of Algorithm 7. If p.age ≤ ni then p is added

to a linked list Qi.topK that stores the answer of Qi (line 5). If Qi.topK contains

ki elements then Qi is removed from Q and the results of Qi are reported (line 7).

We remark that the algorithm for top-k objects queries is exactly the same except

that pair is replaced with object in the pseudocode.

Complexity Analysis. For the sake of simplicity, assume that each query has

same value of k. For each pair p accessed at line 1, the condition of line 3 is satisfied

at most once. For each query Qi accessed before this condition is satisfied, p is

inserted as an answer in Qi. Hence, the overall cost of the algorithm is O(|SKB|+

k|Q|) where |Q| is the total number of queries. Note that when |Q| is larger than

|SKB| the amortized cost for each query is O(k) which meets the lower bound

query processing cost.

3.6.4 Handling Chromatic Top-k Pairs Queries

The top-k pairs queries can be classified into chromatic and non-chromatic top-k

pairs queries [CLW+11]. Chromatic queries are further classified into homochro-

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 59

matic and heterochromatic queries. Assume that each object in the stream is as-

signed a color. A homochromatic top-k pairs query returns the top-k pairs among

the pairs that contain two objects having the same color. In contrast, a hete-

rochromatic top-k pairs query considers only the pairs that contain two objects

with different colors. The top-k pairs queries that consider all the pairs (i.e., the

colors are not taken into consideration) are called the non-chromatic queries.

Consider the query Q1 shown in Section 1.2 and assume that a user wants to

consider only the pairs of products that were auctioned by different sellers. The user

may issue a heterochromatic query by adding a condition a.seller ̸= b.seller.

Similarly, a user who wants to consider the pairs of products sold by the same seller

may issue a homochromatic query by adding a condition a.seller=b.seller. In

this section, we propose extension to handle chromatic top-k pairs queries.

Recall that stream manager receives the data stream and maintains the most

recent N objects. As showed in Section 3.5.2, the skyband maintenance module

can efficiently maintain K-skyband for a broad class of scoring functions if the

objects are sorted on their attribute values as well as on their ages. Next, we show

that the stream manager can store the objects in sorted order in a way that enables

the system to efficiently handle both the non-chromatic and chromatic top-k pairs

queries.

For each of D attributes and the age, the stream manager stores three doubly

linked lists as shown in Fig. 3.7. Fig. 3.7 shows an example where three lists are

shown for the objects sorted on their ages. Some objects are assigned grey color

(o2, o4 and o5) and the others are assigned white color (o1, o3, o6). Below, we

describe the structure of each of the three lists.

Non-chromatic list. Since non-chromatic queries do not impose any restriction

on the colors of the objects in the pair, the non-chromatic list links the adjacent

60 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

o1 o2 o3 o4 o5 o6

(a)

(c)

o1 o2 o3 o4 o5 o6

o1 o2 o3 o4 o5 o6

(b)

1 2 3 4 5 6

31 2 4 5 6

31 2 4 5 6

Figure 3.7: Sorted lists (a) non-chromatic (b) heterochromatic (c) homochromatic

objects to each other (see Fig. 3.7 (a)).

Homochromatic list. For any new object oi, we only need to consider its pairs

with the objects that have the same color as that of oi. Hence, for every object oi,

the homochromatic list provides the links to its adjacent objects (in sorted order)

of the same color. For example, in Fig. 3.7 (b), the right adjacent object of o3 is

o6 and its left adjacent object is o1.

Heterochromatic list. For every object oi, the heterochromatic list provides

links to its adjacent objects (in sorted order) having different colors. For example,

in Fig. 3.7 (c), the right adjacent object of o4 is o6 and the left adjacent object of

o4 is o3. These links are used to access the heterochromatic pairs related to oi in

constant time [CLW+11].

As the new object arrives or the old object expires, the lists and affected links

to the adjacent objects are updated. This can be done in O(logN) for each object

update. To answer the chromatic queries, the skyband maintenance module only

uses the relevant lists to maintain the K-skyband. For example, to maintain a

K-skyband for the homochromatic top-k pairs queries, the skyband maintenance

module only uses the homochromatic lists. The query answering module does not

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 61

require any change.

3.7 Experiments

First, we present the results for our top-k pairs algorithms and then we provide the

results for other techniques.

3.7.1 Top-k Pairs Queries

Experimental settings

Real data. We use a publicly available data set3 collected from 54 sensor nodes

deployed in the Intel research lab in Berkeley between February 28th and April 5th,

2004. Each node measures environment readings such as temperature, humidity

and light. The data set consists of 2.3 million records collected from these sensors.

We use the following scoring function.

s(ox, oy) =
|ox.time−oy .time|

|ox.temp−oy .temp||ox.humidity−oy .humidity|

The scoring function prefers the pairs of sensor readings that are taken within

small duration of time and report quite different temperature and humidity. We

remark that we tried several other inherently different scoring functions and the

experimental results demonstrated similar trends.

Synthetic data. We generate synthetic data following uniform, correlated and

anti-correlated [BKS01] distributions and each data set consists of 2 million objects.

Let o[i] be the value of the object o in ith dimension. For a scoring function that

uses d dimensions, we use the following four different scoring functions.

s1(ox, oy) =
∑d

i=1 |ox[i]− oy[i]|

s2(ox, oy) = −
∑d

i=1 |ox[i]− oy[i]|
3http://db.csail.mit.edu/labdata/labdata.html

62 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

s3(ox, oy) =
∏d

i=1 |ox[i]− oy[i]|

s4(ox, oy) = −
∏d

i=1 |ox[i]− oy[i]|

Note that the scoring function s1 retrieves the k-closest pairs and s2 retrieves

the k-furthest pairs according to the Manhattan distance between the pairs. Analo-

gously, s3 and s4 retrieve top-k similar pairs and top-k dissimilar pairs, respectively,

according to the product of the differences of the attributes. We conducted exper-

iments for several other scoring functions and obtained results similar to the ones

reported in this chapter.

Parameter Range

Data distribution real, uniform, correlated, anticorrelated

of attributes (d) 2, 3, 4, 5, 6

N (in thousands) 10, 50, 100, 500, 1000

K 1, 5, 10, 20, 50, 100

Table 3.1: Experiment Parameters for Top-k Pairs Queries

Unless mentioned otherwise, for a fixed value of k and n, we issue four queries

Q(k,n,si), one for each of the four scoring functions, and report the average query

cost per object update. The table 3.1 shows the different parameters used in our

experiments and the bold values are the default values used in the experiments

unless mentioned otherwise.

Evaluating overall cost

To the best of our knowledge, we are the first to study the problem of top-k pairs

over data stream. This problem is inherently different from other related problems

such as k-closest pairs queries on moving objects [ZZS+05, UMY07], static top-k

pairs queries [CLW+11] and incremental distance join [HS98] etc. Although at first

it may seem easy to extend previous techniques, a careful analysis demonstrates

that the extension of these techniques to answer k-closest (or top-k) pairs queries

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 63

over sliding windows is either non-trivial or inefficient.

We evaluate our algorithm (Algorithm 3) that answers the queries involving

arbitrarily complex scoring function. Since it uses a K-staircase to maintain the

K-skyband, our algorithm is called SCase. For an extensive evaluation of our

algorithm, we carefully design two competitors called Näıve and Supreme. Below,

we present the details.

Näıve Algorithm. A näıve approach to answer continuous top-k pairs query is

to maintain all O(N2) pairs in sorted order of their scores. However, this approach

appeared to be too slow. Another serious drawback is that the space complexity

is quadratic and is prohibitive for large sliding windows. Therefore, we devised a

better näıve approach that uses O(KN) space. For each newly arrived object, K

pairs related to it with the smallest scores are computed. All O(KN) pairs are

kept sorted on their scores. When an object oi expires, all the pairs related to it

are deleted. Note that the object oi may be among the top-K pairs of an unexpired

object oj. After we delete the pairs related to oi, we need to update the top-k pairs

of every such object oj.

Supreme algorithm. We assume that there exists an oracle that answers ques-

tions without requiring any computation time. We use this oracle such that the

supreme algorithm meets the lower bound cost4. More specifically, for query an-

swering, we assume that the supreme algorithm requests oracle to return, in sorted

order of scores, only the pairs of K-skyband that lie in the sliding window. The

supreme algorithm returns first k pairs and requests oracle to stop. Clearly, the

query answering cost of the supreme algorithm is O(k) that meets the lower bound.

As implied by Theorem 2, every algorithm must maintain the pairs in K-

4Note that the performance of an algorithm also depends on the way it is implemented. How-
ever, we remark that the supreme algorithm is a reasonable benchmark to evaluate the scalability
of our approach. Having said this, for a fair evaluation, the supreme algorithm is implemented
by using the code that is a subset of the code used by our algorithm.

64 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

skyband for exact answering of top-k pairs queries. To maintain K-skyband, the

supreme algorithm uses Algorithm 3 and computes only line 2 and line 3. The

remaining steps are answered by the oracle in no time. Note that the skyband

maintenance of the supreme algorithm meets the lower bound of O(N).

10-4

10-3

10-2

10-1

100

1 10 20 50 100

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(a) Varying K

10-4

10-3

10-2

10-1

100

101

10 100 500 1000

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(b) Varying N (in thousands)

Figure 3.8: Overall cost evaluation on the real data

In Figure 3.8, we compare our algorithm with other algorithms using the real

sensor data set. We issue 100 top-k pairs queries Q(k,n,s) where k ≤ K and n ≤ N

are randomly chosen for each query. Our algorithm demonstrates two to three

orders of magnitude improvement over the näıve algorithm and performs reasonably

well as compared to the supreme algorithm. For N ≥ 500, 000, the näıve algorithm

did not complete its execution in 7 days and the estimated completion time was

around 2 months. Therefore, we do not show results for the näıve algorithm for

the larger values of N .

In Figure 3.9 and Figure 3.10, we perform experiments on synthetic data sets to

conduct a more detailed evaluation. Since we also want to observe the performance

of the algorithms for varying n and varying k, we decide not to randomly generate

n and k. Instead, in each experiment, we run four queries each using a fixed value

of n and k and using one of the four scoring functions (s1, s2, s3 and s4) presented

in Section 3.7.1. In Figure 3.9(a) and Figure 3.9(b), we study the effect of K and

N on both algorithms. For each query, we set n = N (the largest sliding window)

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 65

10-4

10-3

10-2

10-1

100

101

1 10 20 50 100

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(a) Varying K

10-4

10-3

10-2

10-1

100

101

10 100 500 1000

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(b) Varying N (in thousands)

Figure 3.9: Effect of K and N on synthetic data

and k = K (the largest possible value of k). The results are similar to the results

obtained using the real data set.

10-4

10-3

10-2

10-1

1 5 10 20

T
im

e
(in

 s
ec

)

Naive++
SCase

Supreme++

(a) Varying k

10-5

10-4

10-3

10-2

10-1

100

1 5 10

T
im

e
(in

 s
ec

)

Naive++
SCase

Supreme++

(b) Varying n (in thousands)

Figure 3.10: Effect of k and n on synthetic data

In Figure 3.10, we study the effect of k and n. As stated earlier, our algorithm

does not know the values of n and k in advance hence maintains a K-skyband for

most recent N objects. In contrast, for a more strict evaluation of our algorithm,

we assume that both the näıve and the supreme algorithms know the values of

n and k in advance. In effect, the supreme algorithm maintains k-skyband (note

that k ≤ K) for most recent n objects only. The näıve algorithm uses only O(kn)

memory instead of O(KN) memory. We call these variations of the supreme and

näıve algorithms as supreme++ and näıve ++, respectively.

The results are reported in Figure 3.10(a) and Figure 3.10(b). In Figure 3.10(a),

66 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

the näıve ++ algorithm performs better for k = 1 because it needs to maintain

only O(n) pairs in total whereas we need to maintain 20-skyband (K = 20) for

most recent N = 10, 000 objects.

Figure 3.10(b) shows that our algorithm outperforms näıve ++ algorithm even

for n = 1000 although it incurs maintenance cost to maintain a K-skyband for a

window size N of 10, 000. Note that the complexity of supreme++ is O(n) and

the complexity of our algorithm is O(N · (log (logN) + logK). Hence, the cost of

supreme++ increases with increase in n whereas the cost of our algorithm remains

unaffected.

Evaluating query answering module

In this section, we evaluate the performance of our query answering module.

Snapshot Query Answering. We compare our query answering algorithm with

the supreme query answering algorithm as well as another algorithm called linear

algorithm. The linear algorithm is the approach we discussed in the first paragraph

of Section 3.4.1 and it takes time linear to the size of K-skyband in the worst case.

Our query answering algorithm (Algorithm 2) is called snapshot. We study the

effect of each of the parameters K, N , k and n, separately.

In Figure 3.11(a) and Figure 3.11(b), we study the effect of varying K and N ,

respectively. The default value of n is 1000 and the default value of k is 20. As

expected, the cost of supreme algorithm is negligible. This is because, in all the

experiments, the supreme algorithm needs to iterate over a link list of size k. The

snapshot algorithm outperforms the linear algorithm and scales better with the

increase in the values of K or N . The cost of linear algorithm increases because

the size of K-skyband increases with the increase in K or N .

In Figure 3.11(c) and Figure 3.11(d), we fix the values of K and N and study

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 67

 0

 5

 10

 15

20 50 70 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Supreme

(a) Varying K

 0

 20

 40

 60

 80

10 100 500 1000

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Superme

(b) Varying N(in thousands)

 0

 10

 20

 30

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Superme

(c) Varying k

 0

 5

 10

 15

1 3 5 7 10

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Supreme

(d) Varying n (in thousands)

Figure 3.11: Linear vs Snapshot Algorithm

the effect of k and n on both of the algorithms. The default value of K is chosen

to be 100 so that we can answer the queries with any k ≤ 100. The snapshot

algorithm performs better than the linear algorithm for varying k.

Figure 3.11(d) shows that the linear algorithm performs slightly better than

the snapshot algorithm when the value of n is close to N . This is because the

linear algorithm accesses the pairs in K-skyband in ascending order of scores and

terminates when k pairs are found with age at most equal to n. The algorithm is

expected to terminate earlier when n is large. Note that when n = N the cost of

linear algorithm is O(k) which is impossible to be outperformed.

Recall that our complexity analysis shows that the cost of snapshot algorithm

is O(log(log n) + logK + k). As anticipated by our complexity analysis, the cost

of our snapshot algorithm increases with increase in k (see Figure 3.11(c)) but is

not significantly affected by a moderate increase in K or n (see Figure 3.11(a) and

68 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

Figure 3.11(d)).

Continuous Query Answering. Next, we evaluate the performance of our con-

tinuous query algorithm which is denoted as continuous in the figures. The supreme

algorithm for continuous query answering assumes that the oracle notifies it when-

ever a pair is deleted or added to the existing answer and the supreme algorithm

updates the results accordingly. We also choose the linear algorithm and the snap-

shot algorithm as competitors such that these algorithms compute the results from

scratch whenever the results are to be updated.

In Figure 3.12(a), we show the effect of K on the continuous query algorithm for

1000 queries that randomly choose the values of n and k. Figure 3.12(a) shows the

average cost per query per object update. Clearly, our continuous query algorithm

outperforms the linear and snapshot algorithms and scales better.

 0

 2

 4

 6

 8

 10

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Continuous

 Supreme

(a) Varying K

 0

 20

 40

1 2 3 4 5

T
im

e
(in

 m
ill

i s
ec

)

 Linear
 Snapshot

 Continuous
 Supreme

(b) Varying |Q| (in thousands)

Figure 3.12: Evaluation of continuous queries algorithm

Figure 3.12(b) shows the performance of the algorithms for the increasing num-

ber of queries. Each query Q(k,n,s) uses a randomly chosen value of k and n.

Figure 3.12(b) shows the total cost for all the queries per object update. Our

continuous query algorithm outperforms the linear and snapshot approaches.

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 69

Evaluating skyband maintenance module

In this section, we evaluate our skyband maintenance module. We compare four

algorithms. The SCase algorithm is the Algorithm 3 which uses K-staircase and can

be applied on any arbitrarily complex scoring function. The basic algorithm is the

same as Algorithm 3 but does not use K-staircase. As stated in Section 2.1, previous

algorithms to maintain K-skyband [MBP06, BOPY07] cannot be directly applied.

Nevertheless, we embedded all applicable optimizations (e.g., dominance counter)

of their techniques in the basic algorithm. The TA algorithm is Algorithm 5 which

is applicable only on the queries using global scoring functions. The supreme

algorithm maintains the skyband as discussed in Section 3.7.1. Note that TA has

an advantage over all other algorithms (including the supreme algorithm) that it

knows that the scoring function is a global scoring function and uses its properties.

In Figure 3.13(a) and Figure 3.13(b), we study the affect of K and N , respec-

tively. As expected, the TA algorithm always outperforms the basic and SCase

algorithms. This shows the effectiveness of using optimizations for global scoring

functions. Also, note that SCase algorithm outperforms the basic algorithm which

shows the effectiveness of using the K-staircase. TA outperforms even the supreme

algorithm when window size N is large. This is because TA utilizes the properties

of the global scoring function and does not compute the score of all O(N) objects

when a new object arrives.

In Figure 3.13(c), we vary the number of attributes d used by the scoring func-

tions and study the effect on the algorithms. The performance of TA degrades as

the number of attributes increases. This verifies our complexity analysis given in

Section 3.5.2. The cost of supreme algorithm increases mainly because the cost of

computing the score of a pair increases as the number of attributes increases. The

basic and SCase algorithms are not affected by the number of attributes because

70 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

10-4

10-3

10-2

10-1

100

1 10 20 50 100

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(a) Varying K

10-3

10-2

10-1

100

10 100 500 1000

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(b) Varying N(in thousands)

10-4

10-3

10-2

10-1

2 3 4 5 6

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(c) # of attributes (d)

10-4

10-3

10-2

10-1

uniform corr anti-corr sensor

T
im

e
(in

 s
ec

)

Basic

SCase

TA

Supreme

(d) Varying Distributions

Figure 3.13: Skyband maintenance techniques

the main cost in these two algorithms is not the cost of computing the scores of

the pairs.

In Figure 3.13(d), we show the effect of data distribution on the algorithms.

TA consistently performs better than SCase and the basic algorithm on each dif-

ferent data set. Also, SCase algorithm performs significantly better than the basic

algorithm.

Evaluating memory and theoretical analysis

Table 3.2 and 3.3 evaluate the memory cost of our algorithm and our theoret-

ical analysis for varying K and varying N , respectively (other settings are de-

fault). The tables compare our memory usage with the lower bound memory

required (as per Theorem 4). Note that the memory used by our algorithm is

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 71

quite close to the lower bound memory required. The tables also compare the

theoretical value of K-skyband size with the experimental value of K-skyband size

(average size of K-skyband for all queries in the system). Note that in our the-

oretical analysis (Theorem 3), we state that the expected size of K-skyband is

O(K(ln N − ln
√
K)) = O(K log (N/K)). Our experiments show that the actual

size of K-skyband is about 2(K(ln N − ln
√
K)); this confirms the correctness of

our theoretical analysis.

Below is the explanation of the legend used in the tables.

LB: Lower bound memory usage (in MB)

OUR: The memory used by our algorithm (in MB).

|SKB|: Experimental value of average K-skyband size (in number of pairs)

T = K(ln N − ln
√
K).

K LB (in MB) OUR (in MB) |SKB| 2T

1 0.46 0.461 17.4 18.42
5 0.46 0.467 82.3 84.05
10 0.46 0.473 159.9 161.18
20 0.46 0.486 308.5 308.50
50 0.46 0.522 730.6 725.43
100 0.46 0.58 1398.0 1381.55

Table 3.2: Memory Usage on Varying K (N = 10, 000)

N LB(in MB) OUR(in MB) |SKB| 2T

1000 0.04 0.058 216.5 216.40
5000 0.23 0.254 280.8 280.77
10000 0.46 0.486 308.5 308.50
50000 2.28 2.312 372.9 373.88
100000 4.58 4.614 399.8 400.60
500000 22.88 22.920 465.7 465.98
1000000 45.78 45.822 496.8 492.71

Table 3.3: Memory Usage on Varying N (K = 20)

72 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

3.7.2 Top-k Objects Queries

We compare our proposed algorithm with the state-of-the art algorithm SMA (Sky-

band Monitoring Algorithm) [MBP06] that answers top-k object queries for mono-

tonic scoring functions. We obtain the source code of SMA from the authors and

perform the experiments using the settings similar to those used in [MBP06]. We

use the synthetic data set that follows anti-correlated distribution and consists of

10 millions objects. We also conducted experiments for other data distributions

and observed similar trends. Table 3.4 shows the parameters used in experiments

and the default values are shown in bold. The scoring function we used in the

experiment is s(o) =
∑d

i=1 o[i].

Parameter Range

of attributes (d) 2, 3, 4, 5, 6

N (in millions) 1, 2, 3, 4, 5

K 1, 5, 10, 20, 50, 100

Table 3.4: Parameters for Top-k Objects Queries

Running time

Figure 3.14 compares our algorithm with SMA for a top-k object query where the

window size n is equal to N . Note that our algorithm maintains PST to support

any window size n ≤ N . If n = N , our algorithm is not required to store the PST

and the query can be answered by returning first k objects from the K-skyband

which is kept sorted on scores by the skyband maintenance module. We use this

optimization to answer the query where n = N and call this algorithm No-PST.

The algorithm that uses PST is called SCase. No-PST outperforms the other two

algorithms. The cost of SCase is higher than the cost of other two algorithms

because it needs to maintain the PST to support any n ≤ N .

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 73

 0.5

 1

 1.5

 2

1 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) No-PST

SCase
SMA

(a) Varying K

 0.5

 1

 1.5

 2

1 2 3 4 5

T
im

e
(in

 m
ic

ro
 s

ec
) No-PST

SCase
SMA

(b) Varying N (in millions)

Figure 3.14: Top-k objects queries for n = N

Next, we compare our algorithm with SMA for the queries with window sizes

n ≤ N . We extend SMA so that it can also support any n ≤ N . Specifically, to

support any query with n < N , SMA ignores every object that has age greater

than n during the computation of top-k queries. In Figure 3.15, we randomly

generate 1000 queries with each query using randomly generated values k and n

(k ≤ K and n ≤ N). Although our proposed algorithm is more general and can

support arbitrarily complex scoring functions and out-of-order streams, the results

demonstrate that our proposed algorithm outperforms SMA and scales better.

 0

 20

 40

 60

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) SMA

 SCase

(a) Varying K

 0

 10

 20

 30

 40

 50

1100 200 400 600 800 1000

T
im

e
(in

 m
ic

ro
 s

ec
) SMA

 SCase

(b) Varying the number of queries

Figure 3.15: Top-k queries for randomly generated k and n

74 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

Memory usage

In this section, we show that the memory consumed by our algorithm is much

lower than the memory used by SMA. This is because our algorithm maintains

only the K-skyband whereas SMA indexes all N objects in a grid data structure.

Figure 3.16(a) and Figure 3.16(b) show the memory used by the algorithms for

varying N and varying d (number of attributes used in the scoring function), re-

spectively. The memory used by SMA is significantly higher (please note that

log-scale is used). The memory used by No-PST is smaller than SCase because the

former does not need to store the priority search tree. The memory consumption of

SMA increases with the increase in d because d-dimensional grid is required which

consumes higher memory. In contrast, our algorithms are not affected by d.

1K

10K

100K

1M

10M

100M

1G

1 2 3 4 5

S
pa

ce
 (

by
te

)

No-PST
Scase

SMA

(a) Varying N (in millions)

1K

10K

100K

1M

10M

100M

1G

2 3 4 5 6

S
pa

ce
 (

by
te

)

No-PST
Scase

SMA

(b) Varying number of attributes d

Figure 3.16: Evaluating the memory usage

3.7.3 Miscellaneous

Results for out-of-order streams. We present the results for out-of-order data

streams where objects may arrive late. For each object that arrives late, we ran-

domly generate a value y between 1 to N and delay it by a value y (e.g., its age

when it arrives is y). Figure 3.17(a) and Figure 3.17(b) show the results for top-k

pairs queries and top-k objects queries, respectively. x% denotes that x percentage

Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries 75

of the objects arrive late. Note that 0% corresponds to the in-order data streams.

In each experiment, we run 100 queries and report the overall running time. As

anticipated by our theoretical analysis, the performance of the algorithms is better

for the cases when more objects arrive late.

 1

 2

 3

 4

1 10 20 50 100

T
im

e
(in

 m
ill

i s
ec

)

0%
20%

40%
60%

80%
100%

(a) Top-k pairs queries

 0

 1

 2

 3

 4

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
)

K

0%
20%

40%
60%

80%
100%

(b) Top-k objects queries

Figure 3.17: Out-of-order data streams

Batch query processing. We next evaluate our technique for the batch query

processing algorithm proposed in Section 3.6.3. The algorithm that uses the batch

query processing is denoted as B-snapshot. Note that the complexity of the snap-

shot algorithm for |Q| queries is O((log |SKB|+ k)|Q|) whereas the complexity of

B-snapshot is O(|SKB| + k|Q|). According to this analysis, B-snapshot performs

better when |Q| is large enough such that |Q| log |SKB| > |SKB|. Figure 3.18(a)

compares the cost of snapshot and B-snapshot algorithms and verifies the com-

plexity analysis that B-snapshot performs better when the number of queries is

large.

Results for chromatic queries. In Figure 3.18(b), we vary the number of col-

ors (each object is randomly assigned one color) and study the performance of

our algorithms for heterochromatic and homochromatic queries. Note that the ho-

mochromatic query is the same as a non-chromatic query when only one color is

used. The cost of both homochromatic and heterochromatic queries is lower than

76 Chapter 3. Continuous Monitoring Top-k Pairs and Objects Queries

 0

 5

 10

 15

 20

0.1 0.5 1 2 3 4 5

T
im

e
(in

 m
ill

i s
ec

)

 Snapshot
 B-Snapshot

(a) Batch processing for varying |Q|(in thou-
sands)

 0

 1

 2

 3

1 2 3 5 7 10

T
im

e
(in

 m
ill

i s
ec

)

Homochromatic
Heterochromatic

(b) Chromatic queries for varying number of
colors

Figure 3.18: Batch processing and chromatic queries

the cost of non-chromatic queries. The cost of homochromatic queries decreases

with the increase in number of colors because the number of valid pairs decreases.

In contrast, the cost of heterochromatic queries increases because the number of

valid pairs increases when the number of colors is larger.

3.8 Conclusion

We present efficient techniques to answer a broad class of top-k pairs and top-k

objects queries over sliding windows. The efficiency of the proposed techniques is

evaluated by a detailed complexity analysis and an extensive experimental study.

The proposed framework can handle arbitrary scoring functions, supports queries

with any window size and works for out-of-order data streams.

Chapter 4

Continuous Monitoring of Top-k

Loyalty Queries

Chapter 4 presented our technique to answer continuous loyalty queries and thresh-

old queries over sliding windows.

4.1 Overview

A traditional query Q returns every object that satisfies the query criteria at the

time t query was issued. The traditional queries do not consider the history of

the objects’ values, i.e., the values of objects in the recent past. Hence, the tradi-

tional queries fail to capture how persistently an object satisfies the query criteria.

Consider the example of a stock broker who issues a query at time t to retrieve

the profitable stocks. He may define a set of criterions to denote the profitability.

A traditional query returns every stock s that satisfies the criterions at time t.

Although a returned stock s meets the criteria at time t, the history of the stock s

may indicate that it usually does not satisfy the criteria and is not a good choice

for investment. Hence, a query that does not take into account the history of stock

77

78 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

items is not suitable.

To address the above mentioned problem, in this chapter, we propose a new

query operator called loyalty queries. A loyalty query considers how persistently

the objects satisfy the query criteria. Consider a traditional query Q that defines

a set of criterions. Let Q(o, t) denote whether an object o satisfies the criteria of

query Q at time t or not. More specifically, Q(o, t) is true if and only if the object o

satisfies the query criteria at time t. Let T be a user defined parameter. The loyalty

of an object o is the total time duration for which Q(o, t) is true within last T time

units. The measure is called “loyalty” because it signifies how persistently the

object o meets the criteria in the recent past. In this chapter, we study continuous

top-k loyalty queries that continuously report k objects with the highest loyalties.

We also show that the proposed approach can be easily used to answer threshold

loyalty queries that return every object with loyalty greater than a given threshold.

Loyalty queries have many interesting applications in different areas such as

location based services, wireless sensor network, stock market, traffic monitoring,

and internet applications, etc. For instance, in the example of the stocks, the stock

broker may retrieve top-k loyal objects to retrieve better options for investment.

Consider another example of a paid parking system that notifies the nearby cars

of its availability, i.e., the cars that are in its influence zone [CLZZ11] or the cars

that are within 1 Km of the parking space [CBL+10]. At a given time t, the system

may send SMS to some cars that satisfy the criteria (e.g. a car that lies within

1Km at time t). However, most of such cars may just be passing through that

area and may not be interested in parking. On the other hand, a car that satisfies

the criteria for majority of the time in recent past may actually be looking for the

parking. Hence, the system may use top-k loyalty queries to send notifications to

such cars.

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 79

Consider another example of a wireless sensor network. An environmental sci-

entist may be interested in monitoring the most rainy sites. A traditional query

selects every sensor that reports rain at a given time t. Clearly, the query may miss

a site s that is usually the rainiest but it is not raining there at time t. Moreover,

the results are also affected by an erroneous reading by a sensor at time t. For

these reasons, a top-k loyalty query is a more feasible tool to retrieve the rainiest

sites.

We next summarize our contributions in this chapter.

• Novel query operator. To the best of our knowledge, we are the first to

study continuous loyalty queries. In this chapter, we formalize the definition

of loyalty queries and present a framework that efficiently solves the loyalty

queries.

• Continuous updates. We study the problem in a continuous time domain

where the updated results are reported as soon as the results change as op-

posed to the time-stamp model where the results are updated after every u

time units. Note that the time-stamp model suffers from either high compu-

tational cost or low accuracy. More specifically, if u is small, the computation

cost increases because the results are to be updated more often. On the other

hand, if u is large, the accuracy is reduced because the results may have be-

come invalid between two successive time-stamps. The continuous updates

provided by our algorithm do not have these limitations.

• Optimal computation cost. An object issues an update if it starts satisfy-

ing the query criteria or if it stops satisfying the query criteria. Note that the

top-k loyal objects may change whenever an object issues an update. Let N

be the total number of object updates issued in the last T time units. Upon

80 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

receiving an object update, our algorithm updates the top-k loyal objects in

O(logN). We prove that this is the lower bound update cost for top-k loyalty

queries, hence our algorithm is optimal.

• Low communication cost. In distributed environment, the updates of an

object are generated locally and sent to a centric server for query processing.

We obverse that some updates do not contribute to computing the final results

of the loyalty queries. These updates are so called trivial updates. We further

develop an efficient pruning technique on the trivial updates to further reduce

the communication cost and the overall computation cost as well.

• Extensive evaluation and analysis. We theoretically analyse the com-

plexity of our algorithm and prove that it meets the lower bound cost. We

also conduct experiments to show the effectiveness and the efficiency of our

proposed approach. We compare our algorithm with the Bentley-Ottmann

sweep line algorithm [BO79]. For N object updates, the total cost of the

Bentley-Ottmann algorithm is O(N2 logN) in the worst case. In contrast,

the total worst case cost of our algorithm is O(N logN). Extensive experi-

ments conducted on both real and synthetic data sets demonstrate that our

proposed approach is an order of magnitude faster than the Bentley-Ottmann

algorithm.

The remainder of the chapter is organized as follows. In Section 4.2, we give

an overview of the related work and formalized definition of loyalty queries. We

introduce our framework in Section 4.3, while in Section 4.4 we present our solution

to the top-k loyalty queries. The techniques of the threshold queries are presented

in Section 4.5. The experimental results are reported in Section 4.6. Section 4.7

concludes the chapter.

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 81

4.2 Preliminaries

In this section, we first present an overview of the related work. Then, we formally

define the problem studied in this chapter.

Traditional queries. A traditional query Q defines a set of criteria. Given an

object o and a timestamp t, we use Q(o, t) to denote whether o satisfies the query

criteria of Q at t. For ease of presentation we define Q(o, t) using a step function.

Q(o, t) =

{
1 if o satisfies the query critera of Q at t;

0 if o does not satisfy the query critera of Q at t.

Consider an application for monitoring the cars around the parking space and

the parking system notifies the cars with high loyalties in Figure 4.1. Given two

moving objects(cars) o1 and o2, o1 enters the space at time 5 and leaves at time 8.

o2 enters at time 10 and leaves at time 18. Therefore, Q(o1, 6) = 1 and Q(o2, 6) = 0.

Sliding windows. Usually users are not interested in the entire past history of

the data stream but rather the recent data over sliding windows. In this chapter,

we consider a data stream model in the continuous time domain. For a fixed length

of time period T , a sliding window contains all the objects and the corresponding

attributes within last T time units. We argue that the stream model in the con-

tinuous time domain is more general than the model in the discrete time domain.

In the rest of the chapter we only consider our problem in the continuous time

domain. However, our techniques can also be applied to answer the loyalty queries

in the discrete time domain. Note that different types of models can be adopted

instead of using a sliding window model. For example, users consider a tilted his-

tory for loyalty queries. That is, the more recent instants carry heavier weights.

This problem is more challenging and could be the further work of our research.

Loyalty of an object. Given a traditional query Q and a sliding window size T ,

we define loyalty(o, t) (the loyalty of an object o at time t) as follows.

82 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

8

Lo
y

a
lt

y

10 20 28

3

o1 o2

Parking Space

5 8 15 1813

o1

o2

Time0

t=5

t=8

t=10
t=18

23

θ=5

Figure 4.1: Example of Loyalty Queries

loyalty(o, t) =

∫ t

t−T

Q(o, x)dx

The loyalty of an object o shows how long o is a query result of Q during the

last T time units. Without loss of generality, in this chapter we prefer the objects

with higher loyalties.

Consider a sliding window of size 10 (T = 10) in Figure 4.1. Then, loyalty(o1, 8)

(the loyalty of o1 at time 8) is 3 because o has been around the parking space for 3

time units. Note that the coordinates in Figure 4.1 present the loyalties of o1 and

o2 as the time t changes. Similarly, we can see that loyalty(o2, 13) = 3.

Top-k loyalty queries. Consider a set of objects O, a traditional query Q, a

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 83

sliding window size T and a parameter k. The top-k loyalty query at time t returns

an answer set from O that consists of k objects such that for every object o in the

answer set and for any other o′ ∈ O, loyalty(o, t) ≥ loyalty(o′, t).

Consider the example in Figure 4.1. If we monitor the top-1 loyal object and

the window size T is 10, o1 is the result of the top-1 loyalty query from 5 to 13 and

o2 is the result from 13 to 28.

Threshold loyalty queries. Consider a set O of objects, a traditional query Q, a

sliding window size T and a threshold θ, the threshold loyalty query at time t returns

an answer set from O that consists of any object o such that loyalty(o, t) ≥ θ.

In Figure 4.1, given the threshold θ = 5, o2 is a result of the threshold loyalty

query from time 15 to 23.

Continuous queries. In this chapter, we study the continuous loyalty queries,

namely, we issue the query once and it monitors the query results continuously.

Since we solve the queries in the continuous time domain, it is impossible to com-

pute the results for an infinite number of time snapshots. In this chapter we shows

that although the loyalty of an object is changing over time, we do not need to

update the loyalty and the query results for every time snapshot.

Note that the top-k loyalty queries are more challenging to solve, since we need

to consider the relationships among the objects. In this chapter we mainly focus

on solving the top-k loyalty queries.

4.3 Framework

In this section we introduce our framework for solving loyalty queries for any given

traditional query Q. In real world scenarios, given a set of objects of observation

O, the objects may be distributed and users may want to know the global results

84 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

of a loyalty query. Thus, we present a general framework that aims to handle the

loyalty queries in both centralized and distributed environments.

Our framework consists of two main components: the traditional query module

and the loyalty query module.

4.3.1 Traditional Query Module

Given a traditional query Q (e.g., a range query), each object issues an update

when it starts satisfying the query criteria or when it stops satisfying the criteria.

More specifically, traditional query module is responsible to report to loyalty query

module whenever the value of Q(o, t) is changed for any object o.

In a centralized system, the system detects the updates of the objects and pro-

cesses the updates internally. In distributed environments such as client-server ar-

chitectures, an object (client) sends a message to the loyalty query module (server)

to report an update.

Object updates. Given a query Q and an object o, we say there is an update u

of o at time t if the derivative of Q at t is infinity, i.e., d
dt
Q(o, t) = ∞. In other

words, Q(o, t) changes at time t.

Consider the example in Figure 4.1, a moving object issues the update only

when it enters or exits the monitoring space. Therefore, o1 reports two updates at

time 5 and 8, and o2 reports two updates at time 10 and 18.

Basically we adopt existing techniques for continuously monitoring the results

of the traditional queries. A straightforward way is to continuously monitor the

traditional query result and report once the update occurs. However, since most

state-of-art techniques for continuous monitoring queries compute and output their

results incrementally, it is seamless to report updates based on these online algo-

rithms. For instance, the techniques in the papers [CBL+10, CLZZ11] can work as

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 85

a traditional query module to find the loyal objects within the query range or the

influence zone for a majority of the recent time. As this part of work has already

been done and our aim is to support a variety of traditional queries in our loyalty

query framework, in this chapter we focus on efficiently processing of the loyalty

queries.

4.3.2 Loyalty Query Module

If we assume the attributes of an object is varying continuously such as a moving

object, the number of updates during a time period is finite. For a specified loyalty

query, it receives updates from the traditional query module in the form of an

update stream U = {u1, u2, u3, ..., un}. The updates arrive in the time order. We

process the updates continuously in the loyalty query module and output the results

to users.

Our query algorithm is triggered only when the update arrives or a possible

result change of the loyalty query happens. Therefore, we can output updated

results of the loyalty queries when the result changes. In other words, we report

which object is newly added in the answer set or which object is removed from

the set. Then, the cost of each output is O(∆) where ∆ is the number of result

changes. Figure 4.2 shows the general framework for processing loyalty queries in

a distributed system.

4.4 Top-k Loyalty Queries

Before we describe the algorithm of processing threshold loyalty queries, we present

the details of answering top-k loyalty queries. This is because it is more challenging

to solve the top-k loyalty queries and similar techniques can be applied to the

86 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

Local

Traditional Query

Loyalty Query

Module

U
p

d
a

te
s

U
p

d
a
te

sUpdate
s

Local

Traditional Query

Local

Traditional Query

Local

Traditional Query

Users

Update
s

Figure 4.2: Framework of Loyalty Queries

threshold queries.

Initially, we present the base algorithm of solving top-k loyalty queries. We

then extensively analyze the time and space complexity of the proposed approach.

Finally, we present an efficient pruning technique to further accelerate the base

algorithm.

4.4.1 Algorithms

Consider a top-1 loyalty query. If we draw the loyalty changes in a loyalty-time

plane (see Figure 4.1), intuitively this problem is similar to finding the upper en-

velop in this plane. Similarly the top-k query is to retrieve k upper envelops.

This problem can be solved by the line sweep algorithm in computational ge-

ometry. Given N line segments in the plane, the Bentley-Ottmann sweep algo-

rithm [BO79, PS85] maintains the exact vertical ordering of the intersections of

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 87

the line segments, when the vertical line sweeps the plane from left to right. The

total cost is O((N +M) logN) where M is the number of intersections of the line

segments. In the worst case, the number of intersections M can be O(N2). A sim-

ple example is that the half of lines are horizontal and the other half are increasing.

In this case the number of intersection is N2/4. Therefore, the overall complexity

can be O(N2 log(N)). In our problem, we use N to denote the number of updates

issued in the last T time units. Then, the amortized cost of the Bentley-Ottmann

algorithm is O(N logN) for each update. In this chapter we present an algorithm

to answer the top-k loyalty queries in O(logN) time for each update. The space

requirement of our algorithm is O(N).

Before we describe the algorithm, we show some obversion for handling updates

in the sliding windows to enable the efficient computation.

States of objects. The state of an object o denotes whether the loyalty of o is

increasing, stationary or decreasing. The state of o can be derived by computing

the derivative of loyalty(o, t).

state(o, t) =
d

dt
loyalty(o, t)

=
d

dt

∫ t

t−T

Q(o, x)dx

= Q(o, t)−Q(o, t− T)

As shown above, state(o, t) depends on the traditional query result at the cur-

rent time Q(o, t) and the result T time before the current time Q(o, t− T). More-

over, there are only three types of states: increasing, stationary and decreasing.

• Increasing. The loyalty of o is increasing if state(o, t) = 1.

• Stationary. The loyalty of o is stationary if state(o, t) = 0.

• Decreasing. The loyalty of o is decreasing if state(o, t) = −1.

88 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

In Figure 4.1, the loyalty of object o1 is increasing from 5 to 8. Then, the loyalty

of o1 is stationary from 8 to 15 and finally becomes decreasing from 15 to 18.

Echo updates. As soon as an original update arrives from the traditional query

module, we know the traditional query result at the current time Q(o, t) changes.

Moreover, these updates will expire from the sliding window after T time, which

will affect Q(o, t − T). Therefore, we clone a series of original updates and make

them take effect after T time. These updates are annotated as echo updates. For

example, in Figure 4.1 we retrieve an original update at time 5 that o1 becomes a

result of the range query. Given T = 10, the echo update is created at time 15. The

updates stand for both original and echo updates in the following of this chapter,

unless mentioned otherwise.

Determining states. When we receive an original update u from a traditional

query, we update the current query result Q(o, t). Then we create an echo update

u′. The timestamp of u′ is t+T and we also attach the new query result. Therefore,

state(o, t) can be computed by maintaining Q(o, t) and Q(o, t − T) correctly. In

our algorithm we only handle the update if the state of an object changes.

Data structures. In order to efficiently maintain the top-k loyal objects over

sliding windows and the sequence of future updates and events, our algorithm

maintains the following data structures:

• Update queue U (a FIFO data structure) is utilized to maintain a sequence

of echo updates. Each update is associated with the timestamp t4 when it will

be issued, the object o and the updated traditional query result Q(o, t). The

echo updates are created in the sequence of the original updates. Therefore,

we can simply use a FIFO to organize the echo updates.

• Border object BO is denoted as the (k + 1)th loyal object at time t. We

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 89

set BO empty if the number of objects is less than k + 1. We define the

border line indicating the (k+1)th line segment which divides the top-k lines

and the remaining lines in the loyalty-time plane. In our algorithm only the

line intersections related to the border line are processed. Consider a more

complicated example of the top-2 loyalty query in Figure 4.3. The object o3

is the 3rd loyal object from t1 to t3. Hence, BO = o3 from t1 to t3. We mark

the border line with a bold polyline in Figure 4.3.

• Event queue E (a priority queue) is utilized to maintain a sequence of

potential future events. Events denote the potential future result changes of

the loyalty queries. The result changes occur only when the border object

swap its order of the loyalty with another object. In the loyalty-time plane,

the event is created when one line will potentially intersect the border line in

the future. If an event is created at time t, each event is associated with the

signatures of the border object BO and another o at time t. A signature is

the identification of the last update of an object. The signature of o will be

changed if any update or event related to o is processed. An event is invalid

and will not be processed if the signature of BO or o of the event is not up-to-

date. The event is inserted into the event queue with the timestamp t′ where

t′ is the potential intersecting time. Consider the example in Figure 4.3. We

can predict that the line segment of o1 will potentially intersect the border

line at t3. Therefore, an event is created to handle the intersection.

• Top-k sets A = A+ ∪A= ∪A− maintain the objects geometrically above the

border object, namely the top-k loyal objects. A is divided into three subsets

according to the states of the objects. A+, A= and A− are the subsets of the

top-k objects with increasing, stationary and decreasing states respectively.

Each subsets is organized in a binary search tree and the elements in the

90 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

subset are sorted in the decreasing order of their loyalties. Consider the

example of Figure 4.3. A contains two objects o1 and o2 at t1. A+ = {o2}

and A= = {o1}.

• Bottom sets B = B+ ∪B= ∪B− maintain the remaining objects below the

border object. B is also divided into B+, B= and B− according to the states.

Note that unlike other subsets, B− can be organized just in a list without

sorting their loyalties. B+ and B= are represented explicitly in the binary

search trees with the decreasing order of loyalties. Consider the example of

Figure 4.3. B contains one object o4 at t4 and B+ = {o4}.

Lo
y
a
lt
y

t1 t6t2 t3

o1

t7 t8 t9 Time

o2

o3

t4

o4

t5

e1 e2

e3

Figure 4.3: Example of Top-2 Loyalty Queries

Solution overview. Before we present the details of our algorithm for processing

top-k loyalty queries, we show the main idea of our algorithm. The algorithm uses a

sweep line approach to process updates and create events for handling the possible

result changes. The algorithm is triggered when 1) an original update arrives from

traditional query module, or 2) an echo update arrives from the update queue, or 3)

an event arrives from the event queue. We make sure that our algorithm correctly

maintains the border object and the objects in top-k set. An event is created if a

possible result change of the loyalty query will occur in the future.

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 91

Algorithm 8: ProcessUpdate(u)

1: Determine state(o, t) and update loyalty(o, t).

2: if o ∈ A then /* o is in the top-k set */

3: Remove o from the subset Ai

4: Add o into the corresponding subset Aj

5: else if o ∈ B then /* o is in the bottom set */

6: Remove o from the subset Bi

7: Add o into the corresponding subset Bj

8: else if o /∈ BO then /* o is a new comer */

9: if |A| < k then /* # of objects less than k */

10: Add o into A+

11: else if BO = ∅ then /* # of objects is k */

12: BO = o

13: else

14: Add o into B+

15: CheckSetVariation(BO, A, B) /* Call Algorithm 9 */

16: Update the signature of o.

Processing updates. When a new update arrives from the update queue, we

first recompute the state and loyalty of the corresponding object. Then, the object

is moved to the correct subset. As the position of the object in a subset may be

changed, we check the subsets and the border object and create the possible events.

Algorithm 8 shows our algorithm for processing a newly arriving update. First

we determine the state of the object o based on the query results on both slides of

the sliding window (see line 1). If the update is original, we create an echo update

by cloning the original update and insert it into the update queue P . Since the

state of the object o changes, we move o into the corresponding subset based on its

92 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

state and current position(lines 2–8). As the orders of elements in the subsets may

change, we call Algorithm 9 to check the variation related to the border line and

create new events to handle the future intersection(line 15). Finally we update the

signature of o (line 16) as the state of o changes.

Algorithm 9: CheckSetVariation(BO, A, B)

1: if A=.last is varied and state(BO, t) is increasing then

2: AddEvent(A=.last, BO)

3: else if A−.last is varied and state(BO, t) is not decreasing then

4: AddEvent(A−.last, BO)

5: else if B+.first is varied and state(BO, t) is not increasing then

6: AddEvent(B+.first, BO)

7: else if B=.first is varied and state(BO, t) is decreasing then

8: AddEvent(B=.first, BO)

9: if BO is varied then

10: if state(BO, t) is increasing then

11: AddEvent(A=.last, BO)

12: AddEvent(A−.last, BO)

13: else if state(BO, t) is stationary then

14: AddEvent(A−.last, BO)

15: AddEvent(B+.first, BO)

16: else if state(BO, t) is decreasing then

17: AddEvent(B+.first, BO)

18: AddEvent(B=.first, BO)

Handling set variations. Algorithm 9 shows the procedure of handling the vari-

ation of the subsets and creating events for the possible result changes. We observe

that any intersection related to the border line is associated with the line segment

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 93

immediately above or below the border line in each subset. Another important

observation is that the two line segments with the same state(in the same subset)

will not intersect each other. Therefore, we only check the last elements(objects

with the minimal loyalty) in A= and A−, and the first elements(objects with the

maximal loyalty) in B+ and B=, which are the only potential line segments (ob-

jects) to first intersect the border line without considering the new updates in the

future (see lines 1–8). In Figure 4.3, A= contains two objects o2 and o3 at t6, and

the last element in A= is o2. Then, we consider the state change of the border

object BO. Based on the state of the border line, two events are created to handle

the possible intersections(lines 9–18).

Algorithm 10: AddEvent(o, BO)

1: Compute the intersecting time t′ of o and BO.

2: Create an event e associated with o, BO and their signatures.

3: Insert e into event queue E with timestamp t′.

Creating events. Algorithm 10 shows how we create a new event. We first

compute the intersecting time t′ of the two lines segments(line 1). Then, the event

e is created and inserted into the event queue E with t′(lines 2 and 3). Note that

it is important for us to store the signature information of o and BO with event e.

The change of the signature of o indicates that the state or position of the object

has been updated before the event occurs. Therefore, the event is invalid and will

not be processed.

Processing events. The details for processing an event is shown in Algorithm 11.

When an event e arrives from the event queue E, we first check the validity of

the line intersection by verifying the signatures (line 1). If it is valid, we swap the

positions of BO and o (lines 2 and 3), and call Algorithm 9 again since the subsets

and BO are changed(see line 4). We update the signatures of the objects as well

94 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

Algorithm 11: ProcessEvent(e)

1: if the signatures of o and BO are not varied then

2: Add BO into the subset of o and remove o from the subset.

3: BO = o.

4: CheckSetVariation(BO, A, B)

5: Update the signatures of o and BO.

(see line 5), since the positions of the objects are changed.

Handling objects with zero or maximum loyalty. Note that in the above

algorithms we do not especially handle the objects with zero loyalties or maximum

loyalties(the loyalty is T). Here, we show that these objects can be processed

more efficiently. For an object o with loyalty(o, t) = 0 and state(o, t) = 0, we

simply remove o from the subsets. For the objects with loyalty(o, t) = T and

state(o, t) = 0, we maintain a list F to store the objects instead of placing them in

A=. We can save the cost because maintaining the list is constant in time.

Example 1: Consider the top-2 loyalty query shown in Figure 4.3. Initially,

there are two objects o1 and o2 with non-zero loyalties. An update of o3 arrives at

t1. o3 becomes the border line object(line 11 in Algorithm 8). We mark the border

line with a bold line in Figure 4.3. Then, we check the set variation(Algorithm 9).

Since BO has been changed, we create an event e1 with the last element in A= (o1)

for possible order swapping at t3(line 11 in Algorithm 9). We mark the created

event with a star. Note that we only create and process the events (intersections)

related to BO. An update of o4 arrives at t2. We check subsets variation and no

event is created. Event e1 is processed at t3. o3 is moved into A+ and o1 becomes

the border object(line 2 and 3 in Algorithm 11). We check the set variation (line 4

in Algorithm 11) and create an event e2 with o4 at t6 (line 15 in Algorithm 9). After

that o4 issues another update at t5 and the signature of o4 is changed. Therefore,

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 95

e2 is invalid and is not processed at t6. At t7, o4 issues an update and the state of

BO is changed. After checking the variation, e3 is created similarly.

4.4.2 Analysis

Proof of Correctness

In the proposed algorithm, we make the border object BO present the (k + 1)th

loyal object correctly. All the potential events (intersections) related to BO are

created and processed. Therefore, we always make the following inequalities hold.

{ mino∈A {loyalty(o, t)} ≥ loyalty(BO, t)

loyalty(BO, t) ≥ maxo∈B {loyalty(o, t)}

|A| ≤ k

In our algorithm the objects in top-k set cannot be changed unless BO is

changed. As a consequence, our algorithm correctly determines the top-k loyal

objects.

Performance Analysis

We first analyze the time complexity of our algorithm. As we use binary search trees

to maintain the subsets, the cost of inserting or removing an object in a subset of

A is O(log k) and the corresponding cost in a subset of B is O(logL) where L is the

number of objects which have updates in the last T time unit. The cost of insertion

in the update queue is O(1) because the update queue is a FIFO. Let M be the

number of events processed in the last T time units and M ′ be the number of events

created in the last T time units. Note that some created events may become invalid

and will not be processed in the future. As the event queue is organized by a priority

queue, the cost of insertion in the event queue is O(logM ′), where M ′ is also the

96 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

size of the event queue. Let N be the number of updates issued in the last T time

units. For each processed update and event, the algorithm creates constant number

of events. Therefore, M ′ = O(N+M). Then, the total cost in the last T time units

is O((N +M)(logM ′ + log k + logL) = O((N +M)(log (N +M) + log k + logL).

Note that k ≤ L and L is usually much smaller than the total number of objects n.

Therefore, the total cost in the last T time units is O((N+M)(log (N +M)+logL).

In Theorem 5 we prove that the number of processed events is at most twice of

the number of updates, i.e., M ≤ 2N . For each processed update (see Algorithm 8

and Algorithm 9), we create at most two events. Note that actually at most one

event will be processed among the created two events. This is because after one

event is processed, the signature of the object is changed and the other event

becomes invalid. However, when we process an event (see Algorithm 11), another

two events will be created. Hence, the theorem is non-trivial. We show that the

theorem can be proved by the geometry property of the border line.

theorem 5 : GivenN updates, our algorithm processes at most 2N events. M ≤

2N .

Proof. Consider the loyalty-time plane and assume that each line segment

presents an update in the plane (see Figure 4.3). The border line is actually one

of the connected line segments that go through the plane from left to right. For

an increasing line or decreasing line, it appears in the border line at most once,

while a horizontal line may appear in the border line multiple times. However, the

horizontal lines are only connected with the increasing and decreasing lines in the

plane. Assume that the border line has at least two line segments. Therefore, one

horizontal line on the border line must connect with one increasing line or decreas-

ing line. Let P be the number of line segments on the border line and Q be the

number of increasing and decreasing lines. In the worst case, every horizontal line

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 97

segment is associated with one increasing or decreasing line. Therefore, P ≤ 2Q.

Each connected vertex on the border line presents a processed event. Consequently,

we prove that M ≤ 2N .

Theorem 5 indicates that the number of processed events is at most twice of the

number of updates. We can derive that M = O(N). Moreover, L ≤ N because the

number of objects which have updates will not larger than the number of updates.

Therefore, the total cost of our algorithm in the last T time units is O(N(logN)).

The cost for each update is O(logN).

Proof of Optimality

theorem 6 : In the worst case, the lower bound cost of updating the results of a

top-k loyalty query is O(logN) for each update where N is the number of updates

issued in the last T time units.

Proof. We show that it is necessary to maintain a priority queue to process the

future events. An event actually means a possible result change of the loyalty query.

Consider that we have n objects with the stationary state and different loyalties,

and we are monitoring a top-1 loyalty query. Let oi be the ith loyal object. The

border object is o2. Then, the object with lowest loyalty on has an update and

the loyalty of the object becomes increasing. This creates an event because on is

possible to become a border object in the future. After that on−1 issues an update

and becomes increasing and so forth. Assume loyalty of o2 is much higher than

the objects below. Therefore, we have N updates and may create N events where

N = n − 2. Firstly, we argue that we must store all the these possible events to

correctly report a future result change, otherwise we may miss a possible result

change. This is because any object is possible to become a border line object if all

the objects above it issues an update and become stationary state. Secondly, we

98 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

must keep the event in order so that we can efficiently know the first event in future.

In other words, we employ the priority queue to maintain all the possible events.

The minimum cost of maintaining an event in such data structure is O(logN).

Therefore, in the worst case it takes O(logN) time to process an update.

In the worst case, our algorithm meets the lower bound cost of the problem,

thus is optimal in the worst case.

Space Analysis

Next, we investigate the space requirement of our algorithm. The space of the

update queue is O(N) where N is the number of updates issued in the last T time

units. The size of the event queue is O(M ′). According to the above analysis,

M ′ = O(N). The size of each subset is O(L). If we do not consider the objects

with maximum loyalties, then L ≤ N . Therefore, for each top-k loyalty query, our

algorithm uses O(N) space.

4.4.3 Pruning

Although the algorithm is already optimal for solving the top-k loyalty queries

in terms of time complexity, in this subsection we show that we can further prune

some of the updates from the computation of the final results. The pruning rule can

reduce both the overall computation cost and the communication cost in terms of

the number of messages exchanged over distributed data streams. We first present

an observation that can reduce the number of considered updates, and show how

the pruning rule works over centralized data streams.

theorem 7 : Let ok be the object with the minimal loyalty in A and o be any

object in O. o will not be a result of top-k loyalty query in the next (loyalty(ok, t)−

loyalty(o, t)/2 time, where t is the current timestamp.

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 99

Proof. Consider that ok becomes decreasing and o becomes increasing at t.

Let d = (loyalty(ok, t) − loyalty(o, t))/2. o will be always below ok in the time

period [t, t + d). Thus, loyalty(ok, t +∆t) > loyalty(o, t +∆t) where 0 ≤ ∆t < d.

Consequently, we prove Theorem 7.

Based on the theorem, we may ignore some computation of o ∈ O in time period

[t, t + d). We call d is the safe time of object o at t. To achieve this we maintain

a list of echo updates for each object. In our algorithm we avoid the redundant

computation for the trivial updates in the safe time. Next, we define the trivial

updates.

Trivial updates. Let Uo = u1, u2, ..., un be a series of echo updates of object o in

the update queue U at time t. The trivial updates are a subset Ut ⊆ Uo such that

for each ui in Uo, ui.time < t+ d.

Since the object will never be a top-k loyal object during the safe time, the

trivial updates in this period will not affect the top-k results. Thus, it is not

necessary to wait and process the trivial updates one by one. Instead, for all the

trivial updates in Uo we only update the data structure once.

Algorithm 12 shows how we process the trivial updates. We process the updates

from the list Uo. If the first update is non-trivial (line 3), we just call Algorithm 8

and process the update normally (line 7). If the update from the list is trivial, the

algorithm continue to find the next update from Uo and update the loyalty of the

objects according to the update ui until the next update is non-trivial or there is

no update left in the list.(see lines 3–5). Then, we process the echo update ui−1

with the modified loyalty of o (line 9).

The algorithm is triggered only when an echo update is processed. The cost

of finding the trivial updates and updating the loyalty takes O(|Ut|) time and

processing of the update using Algorithm 8 takes O(logL). Therefore, (|Ut| − 1)

100 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

Algorithm 12: ProcessUpdateWithPruning(Uo)

1: Let ui be the ith update in Uo.

2: i = 1

3: while ui exists and ui is trivial do

4: Recompute the loyalty of o based on ui.

5: i = i+ 1

6: if i = 1 then

7: ProcessUpdate(u1). /* Call Algorithm 8 without pruning */

8: else

9: ProcessUpdate(ui−1). /* Call Algorithm 8 with pruning */

trivial updates scheduled to be processed in the future are processed in O(1) time

for each. Thus, our pruning technique reduces the total cost of the computation.

Optimizing communication cost. In the context of many applications within

distributed networked systems such as sensor networks, the communication over-

head is also an important issue. Since the communication is the principal energy

drain for a sensor node, reduction on the number of communication times can

maximize the running time of a sensor node. A lot of research has gone into

design of algorithms that are optimal with respect to the number of messages

exchanged[KPKK09, CMY+12, KCRR06, DKR06]. Here we consider the network

messages are based on a two-way communication protocol which is commonly uti-

lized in distributed data stream processing[CMY+12, KCRR06], and we show that

the communication cost can be reduced by pushing the pruning rule into the local

nodes.

For each local node, we dynamically maintain the loyalties of a subset of objects

Oi based on the updates and current objects’ states. When a local node sending an

update to the loyalty query module, the loyalty query module immediately returns

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 101

the current loyalty of the kth object loyalty(ok, t). Thus, whenever the node detects

a new update, we can determine the update is trivial or not based on Theorem 7.

If the update is trivial, we do not send a message to report the update and just

update the loyalty of the object locally. Note that the pruning rule can still be

applied to prune the trivial updates for the echo updates on the server side. We

evaluate the pruning rule in the experiments and show that the it can reduce about

45% messages exchanged in the network with a large sliding window.

Discussion. One issue is that the answers to a top-k loyalty query may be sensitive

to the size of a sliding window. If we choose the sliding window size too small, the

answers of top-k loyalty queries are meaningless because most results may have

maximum loyalties. In contrast, if the window size is too large, the query answers

could not represent the timeliness of objects. Therefore, a user may determine the

size of sliding windows empirically and the methodology of determining the window

size could be the further work of this research.

4.5 Threshold Loyalty Queries

Different from the top-k queries, the threshold loyalty queries report the object

whose loyalty is above a threshold θ. This problem is simpler because we do

not need to consider the ordering the objects and each object can be considered

individually. In the algorithm of threshold queries, we consider the border object

BO as a dummy object with constant loyalty which is the threshold. We also

maintain two sets: the top-k set A and the bottom set B, but not divide them

by the different states. We also retain the event queue and update queue in the

algorithm for threshold queries. An event-based algorithm is proposed in the similar

way to the algorithm of top-k queries. Here, we show the differences. 1)A and B

102 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

do not need to be sorted. 2) When we process an update, the event is created if the

object will potentially cross the border line. Therefore, for each update we create

at most one event. 3) We do not check the set variation because each object is

considered individually. 4) When we process an event of an object o, o is either

moved from B to A or moved from A to B. In other words, o either becomes

a query result or is removed from the result set. The details of the algorithm is

straightforward and omitted.

Analysis. For the threshold queries, we do not make the set A and B sorted.

Therefore, each insertion and deletion in A and B takes constant time. Let N

be the number of updates issued in the last T time units, M be the size of event

queue. The cost of maintaining the event queue is O(log (M)). For each update

we create at most one event and for each object we maintain at most one event,

namely M ≤ N . Therefore, the cost of the algorithm is O(logN) for each update.

As we handle the events for multiple objects, the part O(logN) is necessary for

our algorithm to maintain the priority queue. Similarly, our algorithm uses O(N)

space.

Pruning. The similar pruning technique proposed for top-k queries can be used

for answering the threshold loyalty queries. The definition of the trivial updates is

slightly different. Since we know the border line is horizontal, an increasing object

in B will not cross the border line in the next θ − loyalty(o, t)) time. Let safe

time d = θ − loyalty(o, t)). Therefore, any update in the time period [t, t + d] is

considered as a trivial update. Also, the technique for reducing the communication

cost is still applicable for the threshold queries. We omit the details here.

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 103

4.6 Experiments

All algorithms are implemented in C++ and complied by GNU GCC. The exper-

iments are performed on a PC with Intel Core i5 3.10GHz CPU and 8G memory

under Debian Linux. We conducted extensive experiments on both real and syn-

thetic data sets.

In the experiments, we focus on evaluating the performance of the proposed

algorithm for answering top-k loyalty queries. Therefore, we do not count the cost

of computing traditional query results and assume that all the inputs are in the

form of object updates.

Real data. We use the global surface summary data (GSOD)1 produced by the

National Climatic Data Center (NCDC). We collect the climatic data from GSOD

between 1930 to 1980. The record in the data set includes timestamp, station id, a

variety of sensor data, and indictors for occurrence of fog, rain, snow, hail, thunder

and tornado. We preprocess the data set to output the updates of the occurrences

of rain. Therefore, we can find the rainiest stations over sliding windows by using

a top-k loyalty quires. The data set consists of 7.6 million records collected from

12237 stations.

Synthetic data. In our experiment we simulate continuous time domain in dis-

crete timestamps. Synthetic data is generated by a two state Markov chain model,

which has many applications as statistical models of real-world processes. For each

object oi,

1ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

104 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 0) = pi

Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 0) = 1− pi

Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 1) = p′i

Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 1) = 1− p′i

pi and p′i are uniformly chosen from [0,m] for each object. The data set consists

of 10 million random updates with n objects.

Table 4.1: Experiment Parameters for Loyalty Queries
Parameter Range

Sliding window size T (× 1000) 10, 25, 50, 75, 100
of objects n (× 1000) 1, 5, 10, 15, 20
of results k 1, 10, 20, 50, 100, 150, 200
Probability parameter m 0.0001, 0.001, 0.01, 0.1, 1

The table 4.1 shows the different parameters used in our experiments and the

bold values are the default values used in the experiments unless mentioned other-

wise.

To the best of our knowledge, we are the first to study the problem of top-k

loyalty queries. We use the Bentley-Ottmann algorithm as our competitor called

BO below. Our base loyalty query processing algorithm is called LQ. The loyalty

query processing algorithm optimized by using the pruning rule is called LQPR.

Note that all the figures are in the logarithmic scale except the figures for evaluating

our pruning technique.

In Figure 4.4, we compare our algorithm with the Bentley-Ottmann algorithm

using the real climatic data set. We process the whole data set and evaluate the

running time of the algorithms. Our algorithm is extremely efficient (processing 7

million updates in seconds) and demonstrates one order magnitude improvement

over the Bentley-Ottman algorithm. The algorithm with pruning rule outperforms

the base algorithm in all the settings. In Figure 4.4(a) and Figure 4.4(b), we study

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 105

the effect of k and T on the algorithms. The default window size is 1000. As

expected, the cost of these algorithm is not significantly effected by the variation

of k and T . In Figure 4.5(b) we vary the sliding window size T from 100 to 5000.

An interesting observation is that the performance of the algorithms is even better

when the window size T is large. This is because the range of loyalties is large

when the sliding window size is large. This makes the objects less possible to swap

their orders. We observe this significantly on BO since it need to process every

order change among the objects.

 10

 100

1 20 50 100 150 200

T
im

e
(in

 s
ec

)

BO LQ LQPR

(a) Varying k

 10

 100

100 1000 3000 5000

T
im

e
(in

 s
ec

)
BO LQ LQPR

(b) Varying T (in thousands)

Figure 4.4: Performance evaluation on the climatic data

In Figure 4.5, we perform experiments on syntectic data sets to conduct a more

detailed evaluation. We study the effect of varying k and T in Figure 4.5(a) and

Figure 4.5(b). The similar tendency can be observed on the synthetic data set.

Figure 4.5(a) shows that the pruning rule does not work well when the sliding

window size T is small. The reason is that the number of updates generated with

certain probability in a small sliding window is small. Therefore, not many updates

can be pruned according to the pruning rule.

In Figure 4.5(c) and Figure 4.5(d), we vary the number of objects n and the

probability m used in generated synthetic data and study the effect on the algo-

rithms. Figure 4.5(c) shows that the processing time of our algorithms increases

106 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

with increase in n. This is because the number of objects which have updates in

the sliding window L increases with larger n. Figure 4.5(d) shows that the per-

formance of our algorithms remains unaffected with increase in the frequency of

updates, although we vary m in a very large scale. LQPR does not show a good

pruning power when m = 0.0001 because the number of updates in the sliding

window is too small so that few updates can be pruned.

 1

 10

 100

1 20 50 100 150 200

T
im

e
(in

 s
ec

)

BO LQ LQPR

(a) Varying k

 1

 10

 100

1 10 25 50 75 100

T
im

e
(in

 s
ec

)
BO LQ LQPR

(b) Varying T (in thousands)

 10

 100

 1000

1 5 10 15 20

T
im

e
(in

 s
ec

)

BO LQ LQPR

(c) # of objects n (in thousands)

 1

 10

 100

10-4 10-3 10-2 10-1 100

T
im

e
(in

 s
ec

)

BO LQ LQPR

(d) Probability parameter m

Figure 4.5: Performance evaluation on the synthetic data

Next, we evaluate the efficiency and effectiveness of the pruning rule on the

synthetic data set. We find that BO is about one order of magnitude slower than

our algorithms. Thus, we exclude BO in the following evaluation and show the

processing time in linear scale. We evaluate the total running time of both our

algorithms for a centralized computation in Figure 4.6. Then, we assume that the

Chapter 4. Continuous Monitoring of Top-k Loyalty Queries 107

updates of each object are reported on an independent local client. We simulate

a distributed data stream environment and conduct the experiments on evaluating

the communication cost in terms of the total number of messages exchanged in the

network in Figure 4.7.

Figure 4.6(a) evaluates the total processing varying the number of objects n.

We find that the processing time of both algorithms increases with the increase

of the number of objects. This is because the number of updates N over the

sliding windows increases when n increases for the synthetic data sets. Due to

the effectiveness of our pruning technique, LQPR outperforms LQ in all the cases.

Figure 4.6(b) studies the average processing per update. Since the processing time

of one update is too short to capture precisely, we record the average time for each

batch of 10000 updates to estimate the delay per update. It shows that both of our

algorithms are very efficient. LQPR can process more than 1.8 million updates per

second even in the worst case on the synthetic data set. Moreover, the processing

time per update of LQPR varies in a very small range, therefore has better stability

than LQ. The algorithms performs slightly better at the beginning of the data sets,

because we start our algorithm from scratch.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 5 10 15 20

T
im

e
(in

 s
ec

)

LQ LQPR

(a) # of objects (in thousands)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 2 4 6 8 10

LQPR

LQ

T
im

e
pe

r
up

da
te

 (
in

 m
ic

ro
 s

ec
)

(b) # of updates (in millions)

Figure 4.6: Efficiency evaluation for the pruning rule

In Figure 4.7(a) and Figure 4.7(b), we vary k and the window size T and evaluate

108 Chapter 4. Continuous Monitoring of Top-k Loyalty Queries

the number of messages exchanged. Figure 4.7(a) presents that we can reduce the

communication cost by about 25% under the default setting. We observe that the

pruning power is sightly better for a small k value, because of the higher loyalty

of kth object for the small k. Figure 4.7(b) illustrates that the pruning rule works

well for a larger window size. The number of messages decreases as T increases.

This is due to the loyalties have large scales on large sliding windows and thus leads

to a longer safe time to silence a local client. We obverse that about 45% updates

be can be ignored with a sliding window of size 100 thousand.

 0

 5

 10

 15

 20

 25

 30

1 20 50 100 150 200

of

 m
es

sa
ge

s
(in

 m
ill

io
ns

)

LQ LQPR

(a) Varying k

 0

 5

 10

 15

 20

 25

 30

1 10 25 50 75 100

of

 m
es

sa
ge

s
(in

 m
ill

io
ns

)

LQ LQPR

(b) Varying T (in thousands)

Figure 4.7: Evaluating communication cost

4.7 Conclusion

We introduce the loyalty queries for a variety of applications. We present efficient

algorithms to answer the top-k and threshold loyalty queries. We prove the lower

bound cost of the problem and present a detailed complexity analysis to show

that our algorithm is optimal. We verify this by an experimental evaluation and

demonstrate the efficiency of our approach.

Chapter 5

Depth-Related Problems for

Top-k Queries

In this chapter, we introduce a series of depth-related problems. Our target is

to provide I/O efficient algorithms for solving these problems, and we show that

our techniques can be utilized to answering various top-k queries using only linear

scoring functions over very large databases.

5.1 Overview

It is well known that we cannot directly compare two points in multi-dimensional

space and there is no natural way to rank such data [Bar76]. Therefore, significant

research attention has been put to somehow generalize the standard one dimen-

sional ranking. As a result, the statisticians have developed the concept of data

depth that is an attractive alternative to classical statistics [HRSS06]. The depth

of a point p signifies how “deep” the point is w.r.t. a set of objects. For instance,

for a one-dimensional data set, the objects with minimum and maximum values

have a depth one whereas the median is the object with maximal depth. For multi-

109

110 Chapter 5. Depth-Related Problems for Top-k Queries

dimensional data sets, the location depth gives a ranking mechanism where the

objects are ranked based on their location depths [LPS99] (e.g., the objects on the

convex hull have the depth one).

The data depth also provides the ability to quantify, analyze and visualize the

multi-dimensional data sets without making prior assumptions about the prob-

ability distribution [LPS99]. It has a variety of applications such as statistical

quality control, aviation safety, data analysis, gene clustering, regression analy-

sis and query processing, to name a few. While the statisticians introduced the

concept of data depth and laid its theoretical foundation, the need of developing

efficient and implementable computer algorithms inspired computer scientists to

study the depth-related problems. As a result, researchers from statistics commu-

nity [Bar76, LPS99, Liu90, KZ10, Tuk77, RR96, RR98, RRT99] and computational

geometry community [CSY84, MRR+01, KMV02, EW86, AS98] have put signifi-

cant attention on solving and analysing these problems.

All of the existing algorithms assume that the data can fit into main-memory.

However, this assumption does not always hold because massive data sets have

become quite common in almost all disciplines ranging from financial markets to

human biology to sociology. Unfortunately, the concept of data depth has not

received sufficient attention from the database community. The absence of disk-

based algorithms for the depth-related problems opens up a new area that needs

to be explored by the database community.

Motivated by this, we propose efficient and I/O optimal disk-based algorithms

for solving some important depth-related problems over large data sets. We chose

these problems based on the following criteria: i) the problems should be similar

to each other in nature; and ii) the problems must cover a variety of applications

(e.g., the problems we study in this chapter have applications in data analysis,

Chapter 5. Depth-Related Problems for Top-k Queries 111

outlier detection, top-k queries, clustering, Voronoi diagrams etc.). We hope that

this research will motivate other database researchers to explore this area because

many interesting problems remain open (see Section 5.6). Next, we introduce the

problems we study in this chapter.

5.1.1 Problem Statements

In the past few decades, various notions of data depth have been introduced such

as half-plane depth [Tuk74], convex peeling depth [Bar76], simplicial depth [Liu90]

and regression depth [RH99] etc. In this chapter, we focus on the problems related

to half-plane depth which is arguably the most promising depth measure [KZ10].

Definition 1 : Half-plane depth. Let H be a closed half-plane bounded by a

line L. Half-plane depth of H is the number of data objects lying in H.

Definition 2 : Location depth (also called Tukey depth). Location depth of

a point p (not necessarily a data object) is the minimum depth of any closed half-

plane that is bounded by a line passing through p.

Fig. 5.1(a) shows 7 data objects a to g (the circles) and an arbitrary point p

(the star). For a line L, a half-plane is called upper (resp. lower) half-plane of L if

it is bounded from below (resp. above) by L. In Fig. 5.1(a), the upper half-plane

of L contains 3 objects (c, d and e). Note that this is the minimum depth of any

half-plane bounded by any line passing through p. Hence, the location depth of p

is 3. Similarly, the location depth of g is 2 because the lower half-plane of L′ has

depth equal to 2 (it contains two objects g and b) and this is the minimum depth

of any half-plane bounded by a line passing through g. Note that all the points

that lie on the convex hull of the data set have depths equal to 1.

112 Chapter 5. Depth-Related Problems for Top-k Queries

(a) k-depth contour and k-snippet (b) k-upper envelope

Figure 5.1: Illustration of k-depth contour, k-snippet and k-upper envelope

Problem 1 : k-depth contour. Given a set of objects O and a positive integer

k, find k-depth contour where k-depth contour is the set of points (not necessarily

the objects) with location depth ≥ k.

k-depth contour (also known as k-hull in computational geometry literature)

is always a convex polygon. In Fig. 5.1(a), 1-depth contour and 2-depth contour

are the outer and inner convex polygons, respectively. Note that the vertices of a

depth contour are not necessarily the data objects. Furthermore, k-depth contour

always contains (k + 1)-depth contour.

Applications: k-depth contour has various applications such as in outlier de-

tection [JKN98, HRSS06, KMV02, MRR+01], regression analysis [KZ10], cluster-

ing [RR96] and data visualization [Tuk74]. k-depth contour is a robust tool for data

picturization [Tuk74] and can be used for a visual representation of location, spread,

correlation, skewness and tails of data [RRT99]. For instance, depth contours in

Fig. 5.1(a) show that there is a positive correlation between x and y attributes

of the objects. k-depth contour has also been used for outlier detection [JKN98]

and has a nice feature that it does not rely on the probability distribution of the

Chapter 5. Depth-Related Problems for Top-k Queries 113

underlying data set. Ruts et al. [RR96] demonstrated the applications of k-depth

contours in clustering and discriminant analysis.

Problem 2 : k-snippet. Given a set of objects O, find k-snippet which is a set

consisting of every object o ∈ O that either lies on the boundary of k-depth contour

or outside it.

In Fig. 5.1(a), 1-snippet contains the objects a to e and 2-snippet contains every

object.

Applications: k-snippet has applications in top-k queries involving linear scoring

functions (e.g., weighted average where weights are allowed to be negative). Given

a linear scoring function f , a top-k query returns k objects having the smallest

scores where score of each object is computed using f . For a positive integer k,

we say that an object o is valuable if it is among the top-k objects for least one

linear scoring function. It is easy to show that k-snippet corresponds to the set of

all valuable objects. This set is important in top-k queries because every top-m

(m ≤ k) query (involving linear scoring function) can be answered using k-snippet

instead of accessing the whole database (e.g., see [XCH06]). Furthermore, in various

applications, users may not be willing/able to define suitable scoring functions due

to various reasons such as lack of knowledge about the data domain or due to

incompatible attributes on each dimension (e.g., dollars vs inches) [FKS03]. In

such cases, k-snippet returns a small subset of shortlisted objects that guarantees

that no matter what linear scoring function is chosen, the top-k objects are found

in k-snippet. Hence, k-snippet serves as a data summarization tool that returns

only the objects that may be important for the user.

Problem 3 : k-upper envelope. Given a set of lines L, the upper score of a

point p is the number of lines that lie strictly above it. k-upper envelope is the

closure of the set of points that lie on the lines and have upper scores equal to k−1.

114 Chapter 5. Depth-Related Problems for Top-k Queries

In Fig. 5.1(b), 2-upper envelope is shown using bold lines.

Applications: We demonstrate the relationship between k-depth contour and

k-upper envelope in Section 5.2. k-upper envelope is also known as k-level arrange-

ment [AdBMS98]. k-upper envelope has many important applications in domains

such as Robotics and Computer Graphics [DGKS07]. It is also useful in solving

various other important problems such as computing higher-order Voronoi dia-

grams [AdBMS98, Cha00, CE87], processing ranking queries [YAY12, SCL12a],

designing data structures for halfspace range searching [CP86, Cla87], and solving

hyper-plane partitioning problems such as sandwich cuts [Bor94] and weak line-

separators [ERvK96].

Contributions

We make the following contributions in this chapter.

• To the best of our knowledge, we are the first to propose disk-based algo-

rithms for a few important depth-related problems that have a wide range of

applications in various domains.

• We present two efficient disk-based algorithms named SkyRider and

KnightRider. We show that KnightRider algorithm is I/O optimal for k-

upper envelope and k-snippet problems. It is also I/O optimal for k-depth

contour when k is smaller than the minimum number of objects in any leaf

node of the data structure (e.g., R-tree). Although KnightRider is not I/O

optimal for k-depth contour problem when k is large, our experimental re-

sults (see table 5.2 in Section 5.5) demonstrate that its I/O cost is almost the

same as the lower bound cost even when k is very large.

• We extensively evaluate our algorithms on both synthetic and real data sets.

Chapter 5. Depth-Related Problems for Top-k Queries 115

The experimental results demonstrate that our algorithms do not only have

low I/O cost but are also quite efficient. More specifically, we compare the

CPU time of our algorithms with the CPU time of the best known main-

memory algorithms [JKN98, EW86] assuming that their algorithms have suf-

ficient main-memory to store the whole data set. The experimental results

demonstrate that our algorithms are more than an order of magnitude faster.

The rest of this chapter is organized as follows. Section 5.2 presents the pre-

liminaries of techniques involving in solving the problem. In Section 5.3 we first

present a basic algorithm for solving k-upper envelope, called Rider algorithm,

while we present an I/O optimal algorithm for this problem in Section 5.4.4. The

proof of optimality is shown in Section 5.4.4. The extensive experimental results

are presented in Section 5.5. Then, a conclusion is given in Section 5.6.

5.2 Preliminaries

5.2.1 Computing k-depth Contour in Dual Space

In this section, we show that k-depth contour can be computed by mapping the

objects to a dual space. Throughout this chapter, O denotes the set of data objects

and n denotes the number of objects in O. First, we define a few concepts.

Definition 3 : k-divider. k-divider is a line that passes through at least 2

objects and contains exactly k−1 objects on one side and at most n−k−1 objects

on the other side.

Definition 4 : k-half-plane. A half-plane that is bounded by a k-divider and

contains at most n− k + 1 objects is called a k-half-plane.

116 Chapter 5. Depth-Related Problems for Top-k Queries

The k-depth contour can be obtained by taking the intersection of all k-half-

planes [MRR+01]. We use pq to denote a line that passes through points p and q.

−→pq denotes the upper half-plane defined by pq and pq−→ denotes its lower half-plane.

Consider the example of Fig. 5.2(a) that shows 5 data objects a to e. The line

bc is a 2-divider and bc−→ is a 2-half-plane. Note that all the broken lines shown in

Fig. 5.2(a) are 2-dividers. In Fig. 5.2(a), 2-depth contour (the shaded polygon) is

obtained by taking the intersection of the 2-half-planes cd−→, ae−→, bc−→,
−→
ad and

−→
be.

(a) Primal Space (b) Dual Space

Figure 5.2: Illustration of k-depth contour and related concepts

Definition 5 : Lower (upper) hull. Let Z be the convex hull of a set of points

P . The lower (resp. upper) hull of P is the set of edges of Z that lie on or below

(resp. on or above) every point p ∈ P .

In Fig. 5.2(a), the convex hull of the set of objects a to e is the outer polygon.

The upper hull consists of the edges ac and ce. Similarly, the lower hull is the set

of edges ab, bd and de.

Dual Mapping. A point p = (u, v) in primal space is mapped to a line p∗ : y =

ux+ v in the dual space and a line L : y = −ux+ v in the primal space is mapped

Chapter 5. Depth-Related Problems for Top-k Queries 117

to a point L∗ = (u, v) in the dual space (e.g., see [Mat02]). The transformation

from/to primal to/from dual is denoted by using a superscript ∗, e.g., a point p in

primal is denoted as p∗ in dual and a line L in primal is denoted as L∗ in dual. It

is easy to see that p∗∗ = p.

Fig. 5.2(b) shows the points and lines of Fig. 5.2(a) mapped to a dual space.

For example, the objects a to e are mapped to the lines a∗ to e∗ and the line bc is

mapped to a point m.

This dual mapping has a number of interesting properties: 1) A point z lies

below (resp. above) a line L if and only if the line z∗ lies below (resp. above) the

point L∗ (e.g., in Fig. 5.2(a), e lies below bc and, in Fig. 5.2(b), e∗ lies below bc
∗
; 2)

two lines L1 and L2 intersect at a point z if and only if the line z∗ passes through

the points L∗
1 and L∗

2 (e.g., in Fig. 5.2(b), the lines b∗ and c∗ intersect each other

at a point bc
∗
and, in Fig. 5.2(a), the line bc passes through the points b and c.

Next, we show that k-depth contour of a set of objects O can be computed

by mapping all objects in dual space and then computing k-upper and k-lower

envelopes.

Definition 6 : k-upper (lower) envelope. Consider a set of lines L. Upper

(resp. lower) score of a point p is the number of lines above (resp. below) p. k-

upper (resp. lower) envelope is the closure of the set of points that have upper

(resp. lower) score equal to k − 1.

In Fig. 5.2(b), the upper score of point m is 1 and its lower score is 2. 2-

upper envelope and 2-lower envelope are shown using bold line segments. Note

that k-upper envelope is the same as (n− k + 1)-lower envelope.

Definition 7 : Convex vertices. Let LH be the lower hull of the points on

k-upper envelope and UH be the upper hull of the points on k-lower envelope. The

vertices of LH and UH are called the convex vertices.

118 Chapter 5. Depth-Related Problems for Top-k Queries

Fig. 5.2(b) shows all the convex vertices as hollow circles. Note that convex

vertices correspond to lower (resp. upper) hull of all points (not only the vertices)

of k-upper (resp. lower) envelopes (e.g., see the convex vertices of 2-lower envelope

in Fig. 5.2(b)). For clarity of presentation, the lower hull of k-upper envelope and

the upper hull of k-lower envelope are not shown.

Assume that the set of objects O is mapped to a dual space. Note that each

convex vertex v in dual space corresponds to a k-divider in the primal space. For

example, the vertex m = bc
∗
in Fig. 5.2(b) corresponds to the 2-divider bc in

Fig. 5.2(a). All convex vertices shown in Fig. 5.2(b) correspond to 2-dividers in

Fig. 5.2(a) (the broken lines). Since k-depth contour can be computed once all k-

dividers are known, it is easy to compute k-depth contour once all convex vertices

are determined. Below, is a step-by-step description of computing k-depth contour

by using dual mapping.

1. Map all objects in O to lines in a dual space.

2. Compute k-upper envelope and k-lower envelope on these lines and determine

the convex vertices (by computing lower and upper hulls).

3. Map the convex vertices to lines in primal space. Use these k-dividers to obtain

the k-depth contour.

5.2.2 Problem Settings and Assumptions

We assume that all the data objects are indexed by a branch-and-bound data

structure such as R-tree and Quad-tree etc. Although our algorithms can be applied

on any branch-and-bound index, in this chapter, we use R-tree due to its simplicity

and popularity.

Like most of the existing techniques (e.g., see [EW86]), we assume that no two

lines are parallel and no three lines are concurrent when the objects are mapped

Chapter 5. Depth-Related Problems for Top-k Queries 119

to the dual space. We remark that this assumption is made only for the ease of

presentation. Later in Section 5.4.5, we show that such situations can be handled

easily.

As discussed earlier, k-depth contour can be computed by obtaining k-upper

and k-lower envelopes in the dual space. We also show (Lemma 13 and 14) that

the lines in dual space that overlap with k-upper and k-lower envelope correspond

to the objects in k-snippet. Therefore, computing k-upper (lower) envelope is

the key component of solving these problems. Hence, we focus on presenting the

techniques for k-upper envelope computation (the techniques to compute k-lower

envelope are similar). In Section 5.4.4, we present techniques that are specific to

compute k-depth contour and k-snippet.

5.3 The SkyRider Algorithm

5.3.1 The Rider: An Elementary Algorithm

In this section, we present a basic disk-based algorithm for computing k-upper

envelope. This is called Rider algorithm and is also used as a subroutine in our

main algorithms, SkyRider and KnightRider.

Intuitive description. Assume that all objects in O have been mapped to lines

in a dual space. Let origin line Lo be the line with the k-th smallest slope. Let

destination line Ld be the line with the k-th largest slope. Assume that all lines

are roads and a bike rider starts traveling from the left most point on the origin

line (i.e., at x = −∞). The rider always travels towards its right (i.e., towards

increasing value of x). Whenever it reaches at an intersection of two lines, it

makes a turn. The rider keeps traveling until it reaches the right most point of the

destination line (i.e., at x = ∞). It is easy to verify that the path that the rider

120 Chapter 5. Depth-Related Problems for Top-k Queries

travels on corresponds to the k-upper envelope. The proof is straightforward and

intuitive and is omitted.

In Fig. 5.2(b), assuming k = 2, the origin line is b∗ and the destination line is

d∗. The rider starts from the left most point of b∗ and travels towards right. When

he reaches at the intersection m, he makes a turn and continues traveling on c∗.

The algorithm continues until the rider reaches the right most point of d∗. The

path (shown in bold) is the path traveled by the rider and corresponds to k-upper

envelope.

Algorithm 13 presents a more formal description.

Algorithm 13: Rider Algorithm

1 Find the origin line and call it Lc. Set the current location loc as the point on Lc

with x = −∞;

2 Among the lines that intersect Lc on right of loc, find the line L′ that is the first

line to intersect Lc. Let z be the intersection of L′ and Lc. Add z to k-upper

envelope;

3 Terminate the algorithm if there does not exist any such L′ at line 2. Otherwise,

set the current location as z (i.e., loc← z) and current line as L′ (i.e., Lc ← L′)

and go to line 2;

Implementing rider algorithm on disk-resident data. In this section, we

show how to implement the rider algorithm when the data objects (i.e., the lines in

dual space) cannot fit into main-memory and are indexed by a branch-and-bound

data structure (i.e., R-tree). More specifically, we describe how to implement the

first two lines of the algorithm (the third line is self describing).

Chapter 5. Depth-Related Problems for Top-k Queries 121

Line 1

Note that the origin line is the line with k-th smallest slope and it corresponds

to the object in primal space that has the k-th smallest x-coordinate value. Such

object can be easily found using a best-first search algorithm on R-tree.

Line 2

Before we present the details, we discuss how a rectangle in primal space is mapped

to dual space and define a few terms and notations.

Spectrum of a rectangle. Consider the rectangle R shown in Fig. 5.3(a). In

Fig. 5.3(b), we map the four corners of the rectangle (a to d) to four lines in dual

space (a∗ to d∗). The 1-upper envelope and 1-lower envelope of these four lines

are shown using bold lines. The space between the 1−upper envelope and 1-lower

envelope is called the spectrum of rectangle R and is denoted as R∗. In Fig. 5.3(b),

the spectrum of R is shown shaded. It is easy to verify that, for any point p ∈ R,

its corresponding line p∗ in dual space lies entirely in R∗. In Fig. 5.3, the point p

lies in the rectangle R and p∗ lies in R∗.

(a) Primal Space (b) Dual Space

Figure 5.3: Mapping a rectangle to dual space

122 Chapter 5. Depth-Related Problems for Top-k Queries

Entering (departing) junctions. Given a line L, assume that a rider starts trav-

eling on L from its left most point towards its right most point. The point when the

rider enters the spectrum of a rectangle R for the first time is called the entering

junction of L w.r.t. R and is denoted as Re(L). Similarly, the point when the rider

leaves the spectrum of R for the last time is called the departing junction of L

w.r.t. R. Note that the entering and departing junctions of a line L w.r.t. R can

be easily computed using the intersections of L with the dual lines corresponding

to the corners of R. In Fig. 5.3(b), the entering junction of L w.r.t. R is the

intersection of L and a∗ and the departing junction is the intersection of L and c∗.

Lemma 4 : For each point p ∈ R, the intersection of p∗ with a line L (in dual

space) is always between the entering junction Re(L) and departing junction Rd(L).

The proof is straightforward and is omitted. In Fig. 5.3, p ∈ R and its dual line

p∗ intersects with L between the entering and departing junctions of L w.r.t. R.

Hereafter, whenever clear by context, we just use the terms entering/departing

junction of L or entering/departing junction of R to denote entering/departing

junction of L w.r.t. R.

Based on Lemma 4, we present a branch-and-bound algorithm that efficiently

implements line 2 of Algorithm 13. Recall that line 2 requires finding the first line

L′ that intersects Lc on the right of the current location loc. The following two

pruning rules prune the intermediate entries of the R-tree that cannot contain such

line L′.

Pruning Rule 1 : An intermediate node R can be pruned if departing junction

Rd(Lc) does not lie on the right of loc.

Proof. Since Rd(L) does not lie on the right of loc, Re(Lc) cannot lie on the

right of loc. Therefore, for every point p ∈ R, p∗ cannot intersect Lc on the right

Chapter 5. Depth-Related Problems for Top-k Queries 123

of loc. Hence, R can be pruned.

Pruning Rule 2 : Given the current line Lc and two rectangles R1 and R2, the

rectangle R1 can be pruned if i) entering junction of R2 lies on the right of loc and

ii) entering junction of R1 lies on the right of departing junction of R2.

Proof. Since the entering junction of R2 lies on right of loc, it guarantees that

there exists at least one object o ∈ R2 such that o∗ intersects Lc on the right of loc.

Furthermore, the entering junction of R1 lies on the right of departing junction of

R2. This guarantees that, for every point p ∈ R1, there exists an object o ∈ R2

such that the intersection of o∗ with Lc lies on the left of the intersection of p∗ with

Lc. Hence, R1 can be pruned.

Algorithm 14 shows the detailed implementation of line 2 of the rider algorithm.

iBest stores the current best intersection and is initialized to a point on Lc that

lies on x =∞. A min-heap H is initialized with root of the R-tree. The key of each

element e in heap is the entering junction of e (line 13). The heap is implemented

such that its top-element always corresponds to the element with the left most

entering junction (i.e., its entering junction lies on the left of the entering junction

of every other element). If the de-heaped entry e is a data object then e∗ is the

first line to intersect Lc on right of loc. This is because i) at line 10, every line that

does not intersect Lc on right of loc is pruned and ii) the heap guarantees that all

other entries in the heap have entering junctions on the right of entering junction

of e. Hence, the intersection of e∗ and Lc is computed and returned (line 7).

If de-heaped entry e is an intermediate or leaf node then, for each child c of e, c

is pruned (see line 10) if the departing junction of c does not lie on the right of loc

(pruning rule 1). The child c can also be pruned if the entering junction of c lies

on the right of iBest (line 12). This is an indirect application of pruning rule 2.

124 Chapter 5. Depth-Related Problems for Top-k Queries

Algorithm 14: GetIntersection(Lc, loc)

Input : Lc: the current line; loc: the current location

Output : z: the next intersection; L′: first line intersecting Lc

1 iBest← the point on Lc with x =∞;

2 Initialize a min-heap H with root of the R-tree;

3 while H is not empty do

4 de-heap an entry e;

5 if e is a data object then

6 z ← intersection of e∗ with Lc;

7 Return z and e∗;

8 for each child c of e do

9 if departing junction of c does not lie on right of loc then

10 continue; /* Pruning Rule 1 */;

11 if entering junction of c lies on right of iBest then

12 continue; /* Pruning Rule 2 */;

13 enheap c in H with key set to entering junction of c;

14 if entering junction of c lies on the right of loc then

15 if departing junction of c lies on left of iBest then

16 iBest = departing junction of c;

17 Return NULL;

Chapter 5. Depth-Related Problems for Top-k Queries 125

If the child c cannot be pruned using the above two conditions, we insert it in

the heap (line 13). Then, we check whether iBest should be updated or not. iBest

needs to be updated if both of the following are true: i) entering junction of c lies

on the right of loc; and ii) departing junction of c lies on the left of iBest. In this

case, iBest is updated to the departing junction of c (line 16). Note that if the

first condition does not hold then we cannot guarantee that there exists an object

o ∈ c such that o∗ intersect on the right of loc.

The while loop terminates when the heap becomes empty. This implies that all

lines intersect Lc on left of loc. Hence, the algorithm returns NULL.

5.3.2 SkyRider: An I/O Economical Version of Rider Al-

gorithm

A major problem with the rider algorithm is that it calls Algorithm 14 as many

times as the number of vertices of the k-upper envelope. This results in a very high

I/O cost because the rider algorithm accesses the R-tree each time Algorithm 14

is called. Next, we present an observation that significantly reduces the I/O cost

of the rider algorithm.

Fig. 5.4 shows a few data objects in primal space and their corresponding lines

in the dual space. In Fig. 5.4(b), the 2-upper envelope is shown using bold lines.

Note that the line o∗ (the dotted line) does not contribute to 2-upper envelope and

can be pruned. In the following, we identify conditions required to prune such a

line o∗. We divide the dual space into two regions: the space for which x ≥ 0 is

called positive space and the space for which x ≤ 0 is called negative space. In

Fig. 5.4(b), the space on right (resp. left) of the broken vertical line is positive

(resp. negative) space.

126 Chapter 5. Depth-Related Problems for Top-k Queries

Lemma 5 : A line L cannot be a part of k-upper envelope in the positive space

if there exist at least k lines that have y-intercepts greater than the y-intercept of

L and slopes greater than the slope of L.

Proof. A line L cannot be a part of the k-upper envelope in the positive space

if there exist at least k lines that lie strictly above L in the positive space. Any line

L′ lies strictly above L in the positive space if L′ has y-intercept greater than the

y-intercept of L and L′ has slope greater than the slope of L (e.g., in Fig. 5.4(b),

both the lines a∗ and b∗ lie strictly above o∗ in the positive space). Hence, L cannot

be a part of the k-upper envelope in the positive space if there exist at least k such

lines.

(a) Primal Space (b) Dual Space

Figure 5.4: Pruning irrelevant data points

Lemma 6 : A line L cannot be a part of k-upper envelope in the negative space

if there exist at least k lines that have y-intercepts greater than the y-intercept of

L and slopes smaller than the slope of L.

The proof is similar to the proof of Lemma 5 and is omitted. In Fig. 5.4(b), both

of the lines c∗ and d∗ have y-intercepts greater than the y-intercept of o∗ and slopes

Chapter 5. Depth-Related Problems for Top-k Queries 127

smaller than the slope of o∗. Hence, o∗ is not a part of 2-upper envelope in the

negative space.

A line o∗ that satisfies the conditions in both Lemma 5 and Lemma 6 is not

required to compute k-upper envelope and can be pruned. Based on Lemma 5 and

Lemma 6, we define pruning condition in primal space to prune the objects for

which their corresponding lines in dual can be pruned. For a point p, let p[x] and

p[y] denote its x and y coordinate values in the primal space.

Lemma 7 : An object o can be pruned (i.e., its dual line cannot be a part of

k-upper envelope) if both of the following conditions hold: i) there exist at least k

objects such that for each such object r, r[x] > o[x] and r[y] > o[y]; and ii) there

exist at least k objects such that for each such object s, s[y] > o[y] and s[x] < o[x].

Proof. For an object o mapped to a line o∗ in dual space, o[x] corresponds to

the slope of o∗ and o[y] corresponds to the y-intercept of o∗. If the first condition is

satisfied then o∗ satisfies Lemma 5 and hence o∗ is not a part of k-upper envelope

in the positive space. If the second condition is satisfied then o∗ satisfies Lemma 6

and cannot be a part of k-upper envelope in the negative space. Hence, o can be

pruned.

In Fig. 5.4(a), the object o can be pruned because 2 objects (a and b) satisfy

the first condition and 2 objects (c and d) satisfy the second condition.

Note that the conditions defined in Lemma 7 have similarity to the concept of

dominance [PTFS05]. An object o′ dominates another object o if o′ is preferable

to o on every attribute. A k-skyband [PTFS05] consists of every object that is

dominated by at most k − 1 objects. Assume that the preference function f1

prefers larger values on both coordinates x and y. Then, an object o satisfies the

first condition of Lemma 7 if it is dominated by at least k objects according to f1

128 Chapter 5. Depth-Related Problems for Top-k Queries

(i.e., in Fig. 5.4(a), o is dominated by a and b according to f1). In other words, o

satisfies the first condition if it is not a k-skyband object according to preference

function f1. Similarly, assume that another preference function f2 prefers larger

values on y-coordinate and smaller values on x-coordinate. The object o satisfies

the second condition of Lemma 7 if o is not a k-skyband according to f2.

The above discussion implies that the objects that are k-skyband objects ac-

cording to f1 or f2 can be used to correctly compute the k-upper envelope. Hence,

SkyRider algorithm first computes these two k-skybands using BBS [PTFS05].

Note that BBS stores the k-skyband objects in a main-memory R-tree. This R-

tree is then used by the rider algorithm (Algorithm 13) to compute the k-upper

envelope.

5.4 KnightRider: An I/O Optimal Algorithm

5.4.1 Outline

For a node R of the R-tree, the cardinality of R is the number of data objects

contained in the sub-tree of this node. As described earlier, each rectangle in

primal space is represented as a spectrum in dual space. Each spectrum is assigned

a number that denotes the cardinality of the rectangle. Starting from the root node,

we iteratively explore the entries of R-tree. At each step, we select one or more

entries of R-tree and, for each such entry, we insert its children (i.e., corresponding

spectrums) in a queue. Then, using the spectrums in the queue, we compute two

approximations of k-upper envelope named best envelope and worst envelope (to be

defined later) such that k-upper envelope lies on or below best envelope and lies on

or above worst envelope. To achieve optimality, we employ a certain access order

and pruning rule to ensure that the algorithm accesses only the entries that must

Chapter 5. Depth-Related Problems for Top-k Queries 129

be accessed. Terminating condition ensures that the best envelope is the same as

k-upper envelope when the algorithm terminates.

5.4.2 Best (Worst) Envelope

Top-layer of a spectrum R∗ is the upper boundary of the spectrum and bottom-

layer of a spectrum is the lower boundary of the spectrum. In Fig. 5.3(b), the

top-layer of R∗ is the upper boundary shown in bold and the bottom-layer is the

lower boundary (also shown in bold).

Definition 8 : Best k-upper envelope. Assume a set of top-layers where

each layer is assigned a number that denotes the cardinality of the corresponding

spectrum. For a point p, upper cardinality (resp. lower cardinality) is the sum

of the cardinalities of all top-layers that lie above (resp. below) it. Best k-upper

envelope is the closure of the set of points that lie on top-layers, and have upper

cardinality at most k − 1 and lower cardinality at most n− k.

The worst k-upper envelope is defined similarly with the only difference that

bottom-layers are used instead of top-layers. Unless specifically mentioned, here-

after we use the term best (resp. worst) envelope to refer to best (resp. worst)

k-upper envelope. In Fig. 5.5, three spectrums R∗
1 (the dotted spectrum), R∗

2 (the

shaded spectrum) and R∗
3 (the spectrum with broken lines) are shown with cardi-

nalities 3, 4 and 2, respectively. Assuming that k = 2, the best envelope and worst

envelope are shown using bold lines (note that n = 9).

Assuming that higher the k-upper envelope is the better it is, the best (resp.

worst) envelope denotes the best (resp. worst) possible k-upper envelope, i.e.,

k-upper envelope always lies between the best and worst envelope. We give an

intuitive explanation of the proof. Note that every object o ∈ R has its dual line o∗

130 Chapter 5. Depth-Related Problems for Top-k Queries

inside R∗. This implies that o∗ is on or below the top-layer of R∗ and on or above

the bottom-layer of R∗. Hence, it is easy to verify that the k-upper envelope lies

on or below the best envelope and lies on or above the worst envelope.

Figure 5.5: Best and worst k-upper envelopes are shown using bold lines

Next, we define a condition that prunes the entries of R-tree that are not re-

quired to compute k-upper envelope. We say that a spectrum R∗ overlaps an

envelope if at least one point of the spectrum lies on or above the envelope.

Pruning Rule 3 : An entry R can be pruned if its spectrum R∗ does not overlap

the worst envelope.

Proof. Let p be a point on k-upper envelope. By definition, upper score of p

is k − 1. As stated earlier, k-upper envelope always lies on or above the worst

envelope. Since R∗ does not overlap the worst envelope, for every object o ∈ R, o∗

passes below p. Hence, o∗ does not affect the upper score of p and can be pruned.

In Fig. 5.5, R3 can be pruned because its spectrum does not overlap the worst

envelope.

Algorithm 15 provides the details of an I/O optimal algorithm to compute k-

upper envelope. The algorithm initializes two sets Q and S where Q contains the

Chapter 5. Depth-Related Problems for Top-k Queries 131

Algorithm 15: KnightRider Algorithm

1 initialize a queue Q with root of the R-tree;

2 insert top and bottom layers of root of R-tree in S;

3 Compute best and worst envelope using S;

4 while Q is not empty do

5 for each entry e in Q do

6 remove top and bottom layers of e from S;

7 for each child c of e do

8 if c cannot be pruned using pruning rule 3 then

9 insert top and bottom layers of c∗ in S;

10 recompute best and worst envelopes using S;

11 remove entries from S using pruning rule 3;

12 Q← intermediate or leaf nodes that contribute a line to best envelope;

13 Return the best envelope;

132 Chapter 5. Depth-Related Problems for Top-k Queries

root of the R-tree and S contains top and bottom layers of the root node. Through-

out the execution of the algorithm, Q maintains the entries of R-tree that are to be

opened in next iteration and S maintains the spectrums that are used to compute

best and worst envelopes. For each entry e in Q, the algorithm first removes its

corresponding top and bottom layers from S (line 6). Then, the algorithm uses

pruning rule 3 and inserts every child c in S that cannot be pruned (line 9).

After every entry e of Q is processed as described above, the algorithm recom-

putes the best and worst envelopes using the updated S (line 10). Since the worst

envelope has been recomputed, there may be some entries in S that can be pruned

using pruning rule 3. Hence, the algorithm prunes such entries (line 11). Then,

the algorithm chooses the entries that are to be opened in next iteration. More

specifically, during the computation of the best envelope at line 10, the algorithm

keeps track of each entry e such that e∗ contributes a line to the best envelope (in

Fig. 5.5, R∗
1 and R∗

2 contribute lines to the best envelope whereas R∗
3 does not).

Among these entries, the entries that are intermediate or leaf nodes of the R-tree

are inserted in Q and will be accessed in next iteration (line 12). The while loop

terminates when no such entry e is found in Q. It can be shown that the best

envelope at this stage is the same as k-upper envelope (see Lemma 8).

Note that the best (worst) envelopes can be easily computed using a slightly

modified version of the rider algorithm. More specifically, at each intersection, the

rider decides whether to make a turn or not based on which of the two lines satisfies

the definition of best (worst) envelope.

5.4.3 Proof of Correctness

Lemma 8 : Best envelope is the same as k-upper envelope if i) no entry e∗ that

overlaps the best envelope is pruned; and ii) every entry e for which e∗ contributes

Chapter 5. Depth-Related Problems for Top-k Queries 133

a line to the best envelope is a data object.

Proof. First, we show that our algorithm satisfies both conditions when it ter-

minates.

i) Every entry e∗ that overlaps the best envelope is guaranteed to overlap the

worst envelope. Hence, the pruning rule 3 cannot prune any such entry e.

ii) If there exists such an entry e∗ which is not a data object, it will be inserted

in Q (at line 12) which contradicts that the algorithm has been terminated.

Now, we show that the best envelope is the same as k-upper envelope when the

algorithm terminates. By definition, every point p on the best envelope has upper

cardinality at most k− 1 and lower cardinality at most n− k. We show that every

such point p is also a point on k-upper envelope, i.e., upper score of p is equal to

k − 1. Since the number of lines that lie below p is at most n − k, the number

of lines that lie on or above p is at least k. Since p lies on the best envelope, the

cardinality of line e∗ passing through p is one (e∗ is a data object). Hence, the

number of lines above p is at least k− 1. By definition of best envelope, the upper

cardinality of p is at most k − 1. Hence, the number of lines above p is exactly

equal to k − 1. Hence, p is a point on k-upper envelope.

5.4.4 Proofs of Optimality

We focus our discussion for k ≤ n/2. This is because k-depth contour is empty (and

is not required to be computed) when k > n/2 [RR96]. Similarly, when k > n/2, k-

snippet contains all of the data objects and does not require computation. Finally,

k-upper envelope is the same as (n − k + 1)-lower envelope [Mat02]. Hence, if

k > n/2, the k-upper envelope can be obtained by computing k′-lower envelope

where (k′ = n− k + 1) ≤ n/2.

Optimality for k-upper envelope. We prove the optimality by showing that i)

134 Chapter 5. Depth-Related Problems for Top-k Queries

every entry R must be accessed if R∗ overlaps the k-upper envelope (Lemma 9);

and ii) our algorithm accesses only the entries for which their spectrums overlap

the k-upper envelope (Lemma 11).

Lemma 9 : Every entry R must be accessed if its spectrum R∗ overlaps k-upper

envelope.

Proof. There may be two cases: i) R∗ lies completely above k-upper envelope

(i.e., every point of R∗ lies above k-upper envelope); ii) R∗ does not lie completely

above k-upper envelope. We show that the first case can never happen (Lemma 10).

For the second case, we show that such R∗ must be accessed. We prove this by

contradiction. Assume that k-upper envelope can be computed without accessing

such a rectangle R. Let ER denote the part of k-upper envelope that is contained in

the spectrum R∗. For any point p on ER, its upper score depends on the locations

of objects in R, e.g., for each object o ∈ R, o∗ may or may not lie above p. Hence,

it cannot be determined whether p is a point on k-upper envelope unless such

rectangle R is accessed.

Lemma 10 : There does not exist any rectangle R such that R∗ lies completely

above k-upper envelope.

Proof. As stated earlier in Section 5.3, two lines (origin line Lo and the desti-

nation line Ld) are always the lines on k-upper envelope. Origin line Lo has k-th

smallest slope and the destination line Ld has k-th largest slope. Consider a rect-

angle R and its spectrum R∗ (both shown in Fig. 5.6(a)). For a line L, let L.slope

denote its slope. R∗ cannot lie completely above k-upper envelope unless both of

the following hold: i) a∗ lies above Ld as a∗ tends to ∞ (i.e., a∗.slope ≥ Ld.slope);

and ii) b∗ lies above Lo as b∗ tends to −∞. (i.e., b∗.slope ≤ Lo.slope).

Chapter 5. Depth-Related Problems for Top-k Queries 135

We show that these two conditions cannot hold simultaneously. Without loss

of generality, assume that the first condition holds, i.e., a∗.slope ≥ Ld.slope.

We prove by contradiction that the second condition cannot hold. Note that

Lo.slope ≤ Ld.slope because k ≤ n/2 and Lo is k-th smallest slope whereas Ld

is k-th largest slope. This implies that a∗.slope ≥ Lo.slope. This implies that

if the second condition holds then a∗.slope ≥ b∗.slope. However, we know that

a∗.slope < b∗.slope because1 a∗ corresponds to the lower left corner of R in primal

space and b∗ corresponds to the lower right corner of R (see Fig. 5.6(a)).

Lemma 11 : Our algorithm accesses only the entries for which their spectrums

overlap k-upper envelope.

Proof. Note that at line 12 of the algorithm, we choose the spectrums that

must be accessed in each round. We always choose a spectrum R∗ that contributes

a line to the best envelope. Since k-upper envelope is always on or below the best

envelope, it implies that the chosen spectrum R∗ has at least one point that lies on

or above k-upper envelope. Hence, R∗ overlaps k-upper envelope.

Optimality for k-depth contour. To compute k-depth contour, we need to

compute both k-upper and k-lower envelopes. It is easy to modify Algorithm 15

such that it computes both k-upper and k-lower envelopes in one traversal of R-

tree. Specifically, a pruning rule similar to pruning rule 3 is defined for pruning

the entries that are not required to compute k-lower envelope. Then, during each

iteration, best and worst k-upper and k-lower envelopes are computed and the

entries that are not required for computing both k-upper and k-upper envelopes

1Note that the proof does not hold if a∗.slope = b∗.slope, i.e., if entry R is a vertical line.
In such special case, during the execution of Algorithm 15, we can prune a rectangle that lies
completely above the best envelope.

136 Chapter 5. Depth-Related Problems for Top-k Queries

are pruned. In each iteration, every intermediate or leaf node that contributes a

line to best k-upper envelope or best k-worst envelope is chosen to be accessed in

the next round.

(a) R∗ cannot lie completely above k-upper en-
velope

(b) R must be accessed to compute k-depth
contour

Figure 5.6: Proving the optimality

It is easy to show that this algorithm only accesses the spectrums that over-

lap with k-upper or k-lower envelopes. Although the algorithm is I/O optimal for

computing k-upper and k-lower envelopes, it cannot be shown optimal for k-depth

contour computation. This is because k-depth contour computation does not re-

quire exact computation of k-upper (lower) envelope (only the convex vertices are

to be computed). Nevertheless, we show that this k-depth contour algorithm is I/O

optimal when k is smaller than the minimum number of objects in a leaf node of

the R-tree. We prove this by showing that: i) every rectangle R must be accessed

if its cardinality is greater than k and it does not completely lie within the k-depth

contour (Lemma 12); and ii) for a rectangle R that does not lie completely within

k-depth contour, its spectrum overlaps either k-upper envelope or k-lower envelope

(Lemma 13).

Chapter 5. Depth-Related Problems for Top-k Queries 137

Lemma 12 : In order to compute the k-depth contour, every rectangle R that

does not completely lie within the k-depth contour and has a cardinality greater

than k must be accessed.

Proof. We prove by contradiction. Assume that k-depth contour has been

computed without accessing such a rectangle R. Fig. 5.6(b) shows this k-depth

contour (the shaded polygon abcde) and such a rectangle R. Since R has not been

accessed, we do not know anything about the orientation of objects inside it (except

that it contains more than k objects and is a minimum bounding rectangle of these

objects). We show that k-depth contour may be incorrect if R is not accessed (i.e.,

there exists at least one point p outside the contour that has depth at least equal

to k).

Since k-depth contour is a convex polygon, at least one corner of R lies outside

it (e.g., z in Fig. 5.6(b)). Without loss of generality, assume that k objects lie

infinitely close to the this corner and the remaining objects lie elsewhere (e.g., on

the opposite corner). Construct a triangle by joining z with any two arbitrary

points inside the k-depth contour (e.g., see △qrz). Since z lies outside k-depth

contour, there exists at least one point p that lies inside △qrz and outside the

k-depth contour. We show that p has depth at least equal to k which implies that

it must be a part of k-depth contour (hence, a contradiction of the assumption).

Note that any line L passing through p has the corner z on one side and at

least one of q or r on the other side. Without loss of generality, assume that the

upper half-plane
−→
L contains the corner z and the lower half-plane L−→ contains q.

We show that for every such line L, the half-plane depth of
−→
L and L−→ is at least

equal to k (hence, depth of p is at least k). Since z contains k objects, it is easy to

see that the half-plane depth of
−→
L is k. Now, we show that the half-plane depth

of L−→ cannot be less than k. We draw a line L′ parallel to L and passing through

138 Chapter 5. Depth-Related Problems for Top-k Queries

point q. Since q lies inside k-depth contour, the depths of both L′
−→ and

−→
L′ are at

least k. Since the depth of L′
−→ is at least k, the depth of L−→ is also at least k.

Lemma 13 : For every rectangle R that does not lie completely within k-depth

contour, R∗ overlaps either k-upper envelope or k-lower envelope.

Proof. Let p ∈ R be a point outside or on k-depth contour. By definition,

location depth of p is at most k. This implies that, in dual space, there exists

at least one point z on p∗ such that the upper (or lower) score of z is at most

k− 1. Hence, z either lies on or above k-upper envelope or lies on or below k-lower

envelope. Hence, p∗ overlaps with k-upper or k-lower envelope.

Optimality for k-Snippet. As shown in Lemma 13, for every object o that does

not lie within k-depth contour (i.e., o is a k-snippet object), o∗ overlaps k-upper

or k-lower envelope. Hence, k-snippet can be computed when k-upper and k-lower

envelopes are computed. Next, we show that our algorithm is I/O optimal for

computing k-snippet.

Lemma 14 : To compute k-snippet, every I/O optimal algorithm must access

every spectrum R∗ that overlaps k-upper envelope.

Proof. We prove this by showing that every object o ∈ O is an object in k-

snippet if o∗ overlaps k-upper envelope. Since o∗ overlaps k-upper envelope, there

exists at least one point z on o∗ that lies on or above k-upper envelope. By definition

of k-upper envelope, the upper score of such point z is at most equal to k− 1. Let

z∗ be the line in primal space mapped from the point z in dual space. Since the

upper score of z is at most k − 1, the number of objects lying above z∗ is at most

k− 1. This implies that o is one of the top-k objects for the linear scoring function

that corresponds to the line z∗. Hence, o is a k-snippet object.

Chapter 5. Depth-Related Problems for Top-k Queries 139

Following the similar arguments, we can prove that the algorithm must access

every spectrum R∗ that overlaps k-lower envelope. Since our algorithm accesses

only the spectrums that overlap k-upper or k-lower envelope, it is I/O optimal.

5.4.5 Discussion

Handling special cases. For the ease of presentation, we assumed that the dual

mapping does not contain two parallel lines and more than two concurrent lines.

However, our techniques can be easily applied even when this assumption does

not hold. More specifically, the former case can be handled by assuming that the

parallel lines intersect each other at infinity [EW86]. To handle the latter case, the

rider algorithm is to be modified such that when the rider reaches at an intersection

of more than two lines it continues traveling on a line that has upper score equal

to k − 1.

Extension to higher dimensionality. Like most of the existing techniques,

the focus of this work is two dimensional data sets. Nevertheless, the framework

of KnightRider can be used to solve these problems in higher dimensions. In a

d-dimensional space, a point in primal is mapped to a hyper-plane in dual (e.g.,

see [YAY12]). The pruning rules presented in this chapter can be extended to higher

dimensionality because the basic properties of dual space mapping are preserved in

higher dimensionality, e.g., a point p in primal lies above a hyper-plane L if and only

if p∗ lies above L∗. Hence, our framework can be used to prune the intermediate and

leaf nodes of the R-tree. The best and worst envelope in multidimensional space

can be computed using existing main-memory algorithms [AM95, AS98] because

the number of unpruned entries is expected to be small (i.e., logarithmic to the

data size [PTFS05]).

140 Chapter 5. Depth-Related Problems for Top-k Queries

5.5 Experiments

5.5.1 Experimental settings

We mainly focus on evaluating our algorithm for computing k-depth contour. This

is because our algorithms for other two problems have lower costs (since these

problems do not require computing the convex vertices).

Synthetic data. We generate several data sets each following a different data

distribution. More specifically, we generate data sets following Normal (norm for

short), Correlated (corr), Anti-correlated (anti) [BKS01] and Uniform (unif) dis-

tributions in a unit square. We also generate data sets that follow Uniform distri-

bution in a unit circle (circ for short). This type of distribution is expected to be

more challenging because it increases the number of edges of k-depth contour.

Real data. We use roads data set which contains 2,249,727 streets of California

(http://www.rtreeportal.org). We generate 5 million objects such that each street

contains around 2 objects on average. Each object represents a house and has two

attributes. The first attribute indicates its distance to the nearest beach and the

second attribute corresponds to the distance to nearest airport. The locations of

beaches and airports are taken from a collection of points of interest in Califor-

nia [LCH+05]. The users may prefer houses close to (far from) a beach and an

airport. k-snippet then represents the set of houses such that each house is among

top-k houses for at least one preference function. k-depth contour may find outliers,

e.g., the houses that do not have any beach or airport nearby.

The table 5.1 shows different parameters used in our experiments and the bold

values are the default values used in the experiments unless mentioned otherwise.

The objects are indexed by an R-tree with page size set to 4KB (the minimum

number of objects in any leaf node was 36)

Chapter 5. Depth-Related Problems for Top-k Queries 141

Parameter Range

Data distribution real, norm, unif, anti, corr, circ

of objects n (in millions) 1, 2, 5, 10, 15, 20

k 1, 10, 20, 50, 100, 150, 200

Table 5.1: Experiment Parameters for Depth-related Problems

5.5.2 Competitors and Benchmarks

CPU time. We compare our algorithms with the best known main-memory al-

gorithms and assume that their algorithms have access to enough main memory

to store the whole data set. Specifically, we compare our algorithm with FDC

algorithm [JKN98] which is shown to be the most efficient main-memory algo-

rithm. To compute k-depth contour, FDC needs to compute all m-depth contours

(1 ≤ m ≤ k). For a strict evaluation, we only count the initialization (convex

hull computation) time and the computation time for the last depth contour (when

m = k). We rename this algorithm to FDC* because it is superior to the original

FDC algorithm.

Computational geometry community also proposed several algorithms with

complexities close to the optimal. Despite the fact that these algorithms pro-

vide nice complexity guarantees, unfortunately, these do not work well in practice.

Nevertheless, we choose one such algorithm called BELT algorithm [EW86] that

computes k-upper and k-lower envelopes with complexity guarantees close to opti-

mal.

I/O cost. As shown in Section 5.4.4, KnightRider algorithm is I/O optimal for

k-upper envelope and k-snippet problems. Unfortunately, KnightRider is not I/O

optimal for k-depth contour problem when k is large. To evaluate the I/O cost, we

assume the existence of an oracle and design an algorithm that achieves optimal

I/O cost for k-depth contour problem.

It is easy to show that every I/O optimal algorithm must access every spectrum

142 Chapter 5. Depth-Related Problems for Top-k Queries

R∗ that contains a convex vertex (this can be shown by following similar arguments

as in the proof of Lemma 9). Hence, to obtain the lower bound I/O cost, we assume

that an oracle computes all the convex vertices (without incurring any I/O). Then,

we traverse R-tree accessing only the entries such that their spectrums overlap

one of these convex vertices. These I/Os are counted and correspond to the lower

bound I/O cost. To evaluate the I/O costs of our algorithms, we use this lower

bound cost as a benchmark.

5.5.3 Performance Analysis

Effect of data set size

In Fig. 5.7, we vary the data set size and evaluate I/O and CPU costs of our algo-

rithm. Fig. 5.7(a) shows that I/O cost of our algorithm meets the lower bound I/O

cost and is significantly lower than the I/O cost of SkyRider algorithm. Fig. 5.7(b)

shows that our algorithms are more than an order of magnitude faster than FDC*

and BELT algorithms.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 5 10 15 20

IO

SkyRider
KnightRider

Lower Bound

(a) Varying n (in millions)

 1

 10

 100

 1000

 10000

1 2 5 10 15 20

T
im

e
(in

 s
ec

)

SkyRider
KnightRider

FDC*
BELT

(b) Varying n (in millions)

Figure 5.7: Effect of data sizes

Chapter 5. Depth-Related Problems for Top-k Queries 143

Effect of k

In Fig. 5.8, we vary the value of k and evaluate the performance of our algorithms.

Fig. 5.8(a) shows that the I/O cost of KnightRider meets the lower bound I/O

cost and is significantly smaller than the I/O cost of SkyRider. Also, KnightRider

scales better than SkyRider in terms of I/O cost.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 10 20 50 100 150 200

IO

SkyRider
KnightRider

Lower Bound

(a) Varying k

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 10 20 50 100 150 200

T
im

e
(in

 s
ec

)

SkyRider
KnightRider

FDC*
BELT

(b) Varying k

Figure 5.8: Effect of k

Fig. 5.8(b) shows that our algorithms are 1 to 3 orders of magnitude faster than

FDC* and BELT algorithms. BELT is not significantly affected by the value of k

because the time to initialize the dynamic convex hull [OvL81] used by BELT is

the dominant cost. When k is 1, FDC* is identical to computing convex hull using

Graham scan algorithm. Note that the cost of our algorithms even for k = 200 is

lower than the cost of computing convex hull (k = 1) using Graham scan algorithm.

We remark that this impressive result is partly due to the fact that our algorithm

uses indexes whereas the existing algorithms do not use any index. We are not aware

of any algorithm that computes k-depth contour utilizing any pre-built index.

Effect of data distribution

Fig. 5.9 studies the effect of data distribution on our algorithms. Since computa-

tional costs of FDC* and BELT are quite high, in Fig. 5.9(b), we only show the

144 Chapter 5. Depth-Related Problems for Top-k Queries

costs of our algorithms for a better illustration of their comparison. In terms of

CPU cost, KnightRider performs better than SkyRider on circ data set whereas its

performance on other data sets is slightly worse.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Real Norm Anti Unif Circ

IO

SkyRider
KnightRider

Lower Bound

(a) Varying distribution

 0

 2

 4

 6

 8

 10

 12

 14

Real Norm Anti Unif Circ

T
im

e
(in

 s
ec

)

SkyRider
KnightRider

(b) Varying distribution

Figure 5.9: Effect of different data distributions

I/O cost for large k

As stated earlier, KnightRider is I/O optimal for k-depth contour computation

only when k is small. In this section, we run experiments for large values of k and

evaluate the I/O costs of our algorithms. Table 5.2 demonstrates that the I/O cost

of KnightRider algorithm is almost the same as the lower bound I/O cost even when

k = 100, 000. Recall that we were unable to show I/O optimality because k-depth

contour may be computed correctly even if only the convex vertices are computed

instead of k-upper and k-lower envelopes. We observe that it is extremely rare

that a rectangle affects the k-upper and k-lower envelopes but does not affect the

convex vertices. Hence, the I/O cost of our algorithm is almost the same as lower

bound I/O cost.

Chapter 5. Depth-Related Problems for Top-k Queries 145

k 1 10 100 1000 10,000 100,000

SkyRider 147 400 933 2081 9864 53907

KnightRider 114 241 453 670 2444 12294

Lower Bound 114 241 452 667 2442 12293

Table 5.2: Number of I/O accesses for k-depth contour problem

Effectiveness of the rider algorithm

An alternative approach to compute k-upper envelope is to first compute k-

skybands using BBS (as discussed in Section 5.3.2) and then use some existing

main-memory algorithm (e.g., FDC*) instead of the rider algorithm. We call

such algorithm SkyFDC* algorithm. In this section, we demonstrate the effective-

ness of the rider algorithm by showing that SkyRider is significantly more efficient

than SkyFDC* algorithm. Fig. 5.10 shows the results for varying n and varying k

and demonstrates that SkyRider is more than an order of magnitude faster than

SkyFDC* (note that Fig. 5.10(b) uses logscale). I/O costs are not shown because

both SkyRider and SkyFDC* have the same I/O cost (both algorithms use BBS

to compute k-skybands).

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 5 10 15 20

T
im

e
(in

 s
ec

)

SkyFDC*
SkyRider

(a) Varying n (in millions)

 0.01

 0.1

 1

 10

 100

 1000

1 10 20 50 100 150 200

T
im

e
(in

 s
ec

)

SkyFDC*
SkyRider

(b) Varying k

Figure 5.10: Effectiveness of the rider algorithm

146 Chapter 5. Depth-Related Problems for Top-k Queries

5.5.4 k-skyband vs k-snippet

k-skyband [PTFS05] is a problem quite closely related to k-snippet. Specifically,

assume that a user prefers larger values on both x and y coordinates. A k-skyband

returns a set of objects such that each object o is one of the top-k objects for at

least one monotonic scoring function. We define k-snippet++ as a set of objects

such that each object o is one of the top-k objects for at least one monotonic linear

scoring function. We call it k-snippet++ because this set is smaller than k-snippet

and only considers scoring functions that prefer larger values on both x and y

coordinates.

k-skyband is useful in the applications that use top-k queries involving any

monotonic function (not necessarily linear functions). However, k-snippet++ may

be preferable in the scenarios where top-k queries involve only linear functions.

This is because k-snippet++ is expected to have smaller size as compared to k-

skyband. In this section, we evaluate the effectiveness of k-snippet++ and our

KnightRider algorithm. Both of our algorithms can be easily extended to return

k-snippet++ by computing the k-upper envelope only in the positive dual space

(see Section 5.3.2). We omit the proof of its optimality and correctness since it is

straightforward.

Result size

k-skyband and k-snippet++ both are useful tools for returning a small subset of

objects that may be among top-k objects for a broad class of top-k queries. Hence,

the size of the returned subset is an important measure. Since k-snippet++ con-

siders only linear functions, its size is expected to be smaller. This is demonstrated

in Fig. 5.11 where we vary the value of k and data distribution and show the size

of k-skyband and k-snippet++. The size of k-snippet++ is up to 5 times smaller

Chapter 5. Depth-Related Problems for Top-k Queries 147

than the size of k-skyband. This shows that k-snippet++ may be a more useful

tool to summarize the data when the queries involve only linear scoring functions.

 0

 2000

 4000

 6000

 8000

 10000

1 10 20 50 100 150 200

re

su
lts

k-skyband
k-snippet++

60

49
5 92

7

22
05

41
65

60
69

78
42

26 13
3

22
2

49
6 92

9 13
38 16

96
(a) Varying k

 0

 5000

 10000

 15000

 20000

Real Corr Norm Anti Circ

re

su
lts

k-skyband
k-snippet++

12
34

18
5 11

29

41
65

15
49

6

61
2

15
7

54
0

92
9 27

41

(b) Varying distribution

Figure 5.11: Size of query results

Performance evaluation

In this section, we compare the performance of our KnightRider algorithm with

BBS [PTFS05] which is an I/O optimal algorithm for k-skyband. In Fig. 5.12,

we compare the I/O costs of both algorithms. Note that both algorithms are I/O

optimal for their respective problems. As expected, the I/O cost of KnightRider is

significantly lower because it requires to return a smaller set of objects.

 0

 100

 200

 300

 400

 500

1 10 20 50 100 150 200

IO

BBS
KnightRider

(a) Varying k

 0

 100

 200

 300

 400

 500

Real Corr Norm Anti Circ

IO

BBS
KnightRider

(b) Varying distribution

Figure 5.12: I/O cost comparison with BBS

In Fig. 5.13, we compare computational costs of both algorithms. While the

difference is not significant, BBS performs slightly better than KnightRider except

148 Chapter 5. Depth-Related Problems for Top-k Queries

for circ data set which is the most challenging data set for both of the algorithms.

The performance of BBS is better because the requirement to prune objects for

k-snippet is more challenging than k-skyband. Nevertheless, KnightRider has rea-

sonably good performance as compared to BBS.

 0

 0.5

 1

 1.5

1 10 20 50 100 150 200

T
im

e
(in

 s
ec

)

BBS
KnightRider

(a) Varying k

 0

 0.5

 1

 1.5

 2

 2.5

 3

Real Corr Norm Anti Circ

T
im

e
(in

 s
ec

)

BBS
KnightRider

(b) Varying distribution

Figure 5.13: CPU time comparison with BBS

The experimental results in this section demonstrate that k-snippet++ has a

significantly smaller size and can be obtained almost as efficiently as k-skyband

while incurring considerably less I/Os. Hence, k-snippet++ is more preferable

than k-skyband for the applications that use top-k queries involving only linear

scoring functions.

5.6 Conclusions

We are the first to propose efficient disk-based algorithms to solve depth-related

problems over large data sets. One of our proposed algorithms is I/O optimal for

k-upper envelope and k-snippet problems. We also show that it is I/O optimal for

k-depth contour problem when k is smaller than the minimum number of objects

in a leaf node of the R-tree. Our experimental results demonstrate the efficiency

of our proposed algorithms.

Chapter 6

Final Remarks

6.1 Conclusions

In this thesis, we present efficient techniques to answer various top-k queries over

spatial and temporal data under different settings. Chapter 3 provides our uni-

fied approach on top-k objects and pairs queries over sliding windows. Chapter 4

presents our research to answer top-k loyalty queries over data streams. Chapter 5

presents our I/O efficient algorithms for answering depth-related problems. Below

are the details.

In Chapter 3, we study the problem of continuously monitoring top-k pairs and

top-k objects. We present efficient techniques to answer a broad class of top-k

pairs and top-k objects queries over sliding windows. The queries are answered

using a small subset of pairs called K-skyband. We present efficient query an-

swering techniques and skyband maintenance techniques. We provide a detailed

complexity analysis and show that the storage requirement and the performance

of our algorithms is reasonably close to the lower bound. The proposed framework

can handle arbitrary scoring functions, supports queries with any window size and

149

150 Chapter 6. Final Remarks

works for out-of-order data streams. We verify this by an extensive experimental

evaluation and demonstrate the efficiency of our approach.

In Chapter 4, we introduce the loyalty queries for a variety of applications.

We present efficient algorithms and data structures to answer the top-k loyalty

queries as well as threshold loyalty queries. The algorithm is based on the idea

of line sweeping over the loyalty-time plane. We prove the lower bound cost of

the problem and present a detailed complexity analysis to show that our algorithm

is optimal. We verify this by an experimental evaluation and demonstrate the

efficiency of our approach.

In Chapter 5, we study the depth-related problems which have a wide range of

applications and have been extensively in the communities of statistics and com-

putational geometry. We are the first to propose efficient disk-based algorithms to

solve depth-related problems over large data sets. One of our proposed algorithms

is I/O optimal for k-upper envelope and k-snippet problems. We also show that it

is I/O optimal for k-depth contour problem when k is smaller than the minimum

number of objects in a leaf node of the R-tree.

6.2 Future Work

Observing the increasing popularity of spatial and temporal data in modern appli-

cations such as location-based services, researchers have dedicates to accommodate

such data sets into real-life applications. Top-k queries have been extensively stud-

ied in the last decade and novel techniques have been proposed to support top-k

queries in different applications. However, there are still a number of interesting

problem to be investigated in the future.

Chapter 6. Final Remarks 151

6.2.1 Top-k Spatial-keyword Search over Data Streams

In the real world applications, spatial data is always coexists with text information

such as labels and comments. The problems of spatial-keyword search have been

extensively studied in the recent years and novel techniques have been proposed

to support top-k spatial-keyword queries over static databases in many applica-

tions. However, there are still a number of interesting problem to be investigated

in the future. One direction is that we may consider the problem of online pro-

cessing spatial-keyword queries over data streams. In application of Facebook and

Twitters, people may attach their location information with the text information.

Therefore, users may want to find the twitters or comments which contain the sim-

ilar keywords and appear in a certain place. However, no existing work studies the

problem of top-k spatial-keyword search in the context of data streams. Due to the

high volume of data streams, online algorithms are demanded to efficiently answer

spatial-keyword queries by the limited memory usage.

6.2.2 Top-k Diversity Queries over Data Streams

An interesting case is provided by spatial objects, which are produced in great

quantity by location-based services that let users attach content to places, and

arise also in many applications such as trip planning, new analysis, and real estate

scenarios. The issued queries for retrieving the best set of objects relevant to given

user criteria and well distributed over the region of interest. Therefore, diversifying

top-k results of queries is crucial for such cases. Straightforward method for top-k

diversity queries based on the existing methods are too costly, as they evaluate

diversity by accessing and scanning all relevant objects, even if only a small subset

is needed. Thus, efficient algorithm is necessary to processing the top-k diversity

queries. The top-k diversity queries have been studied over the static databases by

152 Chapter 6. Final Remarks

Fraternali et al. [FMT12]. Motivated by the wide range of applications over data

streams, top-k diversity queries over data streams could be a future direction of

the research. Furthermore, it is more challenging to diversifying the results over

data streams, as the available results vary dynamically.

6.2.3 Disk-based Approach for Other Depth Measures

In Chapter 5, we assume that the data is indexed by a branch and bound data struc-

ture. An interesting direction for further work is to design disk-based algorithms

for the case when the data is not indexed. While the algorithms we propose in this

chapter can be extended to compute Tukey median [Tuk74] and Bagplot [RRT99],

the algorithms specially designed for these problems may be more effective. Tukey

median is the center of gravity of the deepest k-depth contour and Bagplot is a two-

dimensional generalization of of Tukey’s univariate boxplot [Tuk77]. It will also be

interesting to design disk-based algorithms for other depth measures such as convex

peeling depth [Bar76], simplicial depth [Liu90] and regression depth [RH99] etc.

Bibliography

[AdBMS98] Pankaj K. Agarwal, Mark de Berg, Jiŕı Matousek, and Otfried

Schwarzkopf. Constructing levels in arrangements and higher order

voronoi diagrams. SIAM J. Comput., 27(3):654–667, 1998.

[AM95] P.K. Agarwal and J. Matoušek. Dynamic half-space range reporting

and its applications. Algorithmica, 13(4):325–345, 1995.

[AP05] Fabrizio Angiulli and Clara Pizzuti. An approximate algorithm for

top-k closest pairs join query in large high dimensional data. Data

Knowl. Eng., 53(3):263–281, 2005.

[AS98] Pankaj K. Agarwal and Micha Sharir. Arrangements and their ap-

plications. In Handbook of Computational Geometry, pages 49–119,

1998.

[Bar76] V. Barnett. The ordering of multivariate data (with discussion). Jour-

nal of the Royal Statistical Society. Series A, 139:318–354, 1976.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. In Lucian

Popa, editor, PODS, pages 1–16. ACM, 2002.

153

154 BIBLIOGRAPHY

[BDMM04] Brian Babcock, Mayur Datar, Rajeev Motwani, and Rajeev Motwani.

Load shedding for aggregation queries over data streams. In ICDE,

pages 350–361, 2004.

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest,

and Robert Endre Tarjan. Time bounds for selection. JCSS, 1973.

[BGH99] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data struc-

tures for mobile data. J. Algorithms, 31(1):1–28, 1999.

[BK01] Christian Böhm and Hans-Peter Kriegel. Determining the convex hull

in large multidimensional databases. In DaWaK, pages 294–306, 2001.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The sky-

line operator. In ICDE, pages 421–430, 2001.

[BO79] Jon Louis Bentley and Thomas Ottmann. Algorithms for report-

ing and counting geometric intersections. IEEE Trans. Computers,

28(9):643–647, 1979.

[BOPY07] Christian Böhm, Beng Chin Ooi, Claudia Plant, and Ying Yan. Effi-

ciently processing continuous k-NN queries on data streams. In ICDE,

2007.

[Bor94] Alberto Borobia. Mirror property for nonsingular mixed configurations

of lines and points in r3. Discrete & Computational Geometry, pages

311–320, 1994.

[CBL+10] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie

Zhang, and Wei Wang. Multi-guarded safe zone: An effective tech-

nique to monitor moving circular range queries. In ICDE, pages 189–

200, 2010.

BIBLIOGRAPHY 155

[CE87] Bernard Chazelle and Herbert Edelsbrunner. An improved algorithm

for constructing k th-order voronoi diagrams. IEEE Trans. Computers,

pages 1349–1354, 1987.

[Cha00] Timothy M. Chan. Random sampling, halfspace range reporting, and

construction of (<= k)-levels in three dimensions. SIAM J. Comput.,

pages 561–575, 2000.

[CKT08] Graham Cormode, Flip Korn, and Srikanta Tirthapura. Time-

decaying aggregates in out-of-order streams. In PODS, pages 89–98,

2008.

[Cla87] Kenneth L. Clarkson. New applications of random sampling in com-

putational geometry. Discrete & Computational Geometry, 2:195–222,

1987.

[CLW+11] Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin

Wang, and Wenjie Zhang. A unified approach for computing top-k

pairs in multidimensional space. In ICDE, pages 1031–1042, 2011.

[CLZZ11] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying

Zhang. Influence zone: Efficiently processing reverse k nearest neigh-

bors queries. In ICDE, pages 577–588, 2011.

[CMTV00] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and

Michael Vassilakopoulos. Closest pair queries in spatial databases.

In SIGMOD, pages 189–200, 2000.

[CMY+12] Graham Cormode, S. Muthukrishnan, Ke Yi, Qin Zhang, and Qin

Zhang. Continuous sampling from distributed streams. page 10, 2012.

156 BIBLIOGRAPHY

[CP86] Bernard Chazelle and Franco P. Preparata. Halfspace range search: An

algorithmic application of k-sets. Discrete & Computational Geometry,

pages 83–93, 1986.

[CSY84] Richard Cole, Micha Sharir, and Chee-Keng Yap. On k-hulls and

related problems. In STOC, pages 154–166, 1984.

[DGKS07] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Nikos Sarkas.

Ad-hoc top-k query answering for data streams. In VLDB, pages 183–

194, 2007.

[DKR06] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Pro-

cessing approximate aggregate queries in wireless sensor networks. Inf.

Syst., 31(8):770–792, 2006.

[ERvK96] Hazel Everett, Jean-Marc Robert, and Marc J. van Kreveld. An op-

timal algorithm for the (<= k)-levels, with applications to separation

and transversal problems. Int. J. Comput. Geometry Appl., 6(3):247–

261, 1996.

[EW86] Herbert Edelsbrunner and Emo Welzl. Constructing belts in two-

dimensional arrangements with applications. SIAM J. Comput.,

15:271–284, 1986.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity

search and classification via rank aggregation. In SIGMOD, 2003.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

BIBLIOGRAPHY 157

[FMT12] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. Top-

k bounded diversification. In SIGMOD Conference, pages 421–432,

2012.

[FRC11] Tobias Farrell, Kurt Rothermel, and Reynold Cheng. Processing con-

tinuous range queries with spatiotemporal tolerance. IEEE Trans.

Mob. Comput., 10(3):320–334, 2011.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing

multi-feature queries for image databases. In VLDB, 2000.

[GBÖ06] Lukasz Golab, Kumar Gaurav Bijay, and M. Tamer Özsu. Multi-query

optimization of sliding window aggregates by schedule synchroniza-

tion. In CIKM, pages 844–845, 2006.

[GL04] Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of con-

tinuously moving queries on moving objects in a mobile system. In

EDBT, pages 67–87, 2004.

[GWYL06] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Processing

moving queries over moving objects using motion-adaptive indexes.

IEEE Trans. Knowl. Data Eng., 18(5):651–668, 2006.

[Her89] John Hershberger. Finding the upper envelope of n line segments in

o(n log n) time. Inf. Process. Lett., 33(4):169–174, 1989.

[HRSS06] J. Hugg, E. Rafalin, K. Seyboth, and D. Souvaine. An experimental

study of old and new depth measures. In ALENEX, pages 51–64, 2006.

[HS98] Gı́sli R. Hjaltason and Hanan Samet. Incremental distance join algo-

rithms for spatial databases. In SIGMOD, 1998.

158 BIBLIOGRAPHY

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of

top- query processing techniques in relational database systems. ACM

Comput. Surv., 40(4), 2008.

[JKN98] Theodore Johnson, Ivy Kwok, and Raymond T. Ng. Fast computation

of 2-dimensional depth contours. In KDD, pages 224–228, 1998.

[KCRR06] Ram Keralapura, Graham Cormode, Jeyashankher Ramamirtham,

and Jeyashankher Ramamirtham. Communication-efficient dis-

tributed monitoring of thresholded counts. In SIGMOD Conference,

pages 289–300, 2006.

[KMV02] Shankar Krishnan, Nabil H. Mustafa, and Suresh Venkatasubrama-

nian. Hardware-assisted computation of depth contours. In SODA,

pages 558–567, 2002.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume I:

Fundamental Algorithms, 2nd Edition. Addison-Wesley, 1973.

[KPKK09] Maleq Khan, Gopal Pandurangan, V. S. Anil Kumar, and V. S. Anil

Kumar. Distributed algorithms for constructing approximate mini-

mum spanning trees in wireless sensor networks. pages 124–139, 2009.

[KZ10] Linglong Kong and Yijun Zuo. Smooth depth contours characterize the

underlying distribution. J. Multivariate Analysis, 101(9):2222–2226,

2010.

[LCH+05] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and

Shang-Hua Teng. On trip planning queries in spatial databases. In

SSTD, pages 273–290, 2005.

BIBLIOGRAPHY 159

[Liu90] R.Y. Liu. On a notion of data depth based on random simplices. The

Annals of Statistics, 18(1):405–414, 1990.

[LLG+09] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and Ka-

jal T. Claypool. Sequence pattern query processing over out-of-order

event streams. In ICDE, pages 784–795, 2009.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.

Tucker. Semantics and evaluation techniques for window aggregates

in data streams. In SIGMOD Conference, pages 311–322, 2005.

[LPS99] Regina Y. Liu, Jesse M. Parelius, and Kesar Singh. Multivariate anal-

ysis by data depth: Descriptive statistics, graphics and inference. The

Annals of Statistics, 27(3):783–840, June 1999.

[LYH04] Yifan Li, Jiong Yang, and Jiawei Han. Continuous k-nearest neighbor

search for moving objects. In SSDBM, pages 123–126, 2004.

[LYL10] Feifei Li, Ke Yi, and Wangchao Le. Top-k queries on temporal data.

VLDB J., 19(5):715–733, 2010.

[LYWL05] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. Stabbing

the sky: Efficient skyline computation over sliding windows. In ICDE,

pages 502–513. IEEE Computer Society, 2005.

[Mat02] J. Matoušek. Lectures on discrete geometry. Springer Verlag, 2002.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Con-

tinuous monitoring of top-k queries over sliding windows. In SIGMOD

Conference, 2006.

160 BIBLIOGRAPHY

[McC85] Edward M. McCreight. Priority search trees. SIAM Journal on Com-

puting, 14(2):257–276, May 1985.

[MP07a] Kyriakos Mouratidis and Dimitris Papadias. Continuous nearest

neighbor queries over sliding windows. IEEE Trans. Knowl. Data

Eng, 19(6):789–803, 2007.

[MP07b] Kyriakos Mouratidis and Dimitris Papadias. Continuous nearest

neighbor queries over sliding windows. IEEE TKDE, 2007.

[MRR+01] Kim Miller, Suneeta Ramaswami, Peter Rousseeuw, Joan Antoni Sel-

larès, Diane L. Souvaine, Ileana Streinu, and Anja Struyf. Fast imple-

mentation of depth contours using topological sweep. In SODA, pages

690–699, 2001.

[MXA04] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scal-

able incremental processing of continuous queries in spatio-temporal

databases. In SIGMOD Conference, pages 623–634, 2004.

[MYCC07] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W.

Cheung. Efficient top- aggregation of ranked inputs. ACM Trans.

Database Syst., 32(3):19, 2007.

[NNRS08] Kanthi Nagaraj, K. V. M. Naidu, Rajeev Rastogi, and Scott Satkin.

Efficient aggregate computation over data streams. In ICDE, pages

1382–1384, 2008.

[NR99] Surya Nepal and M. V. Ramakrishna. Query processing issues in image

(multimedia) databases. In ICDE, 1999.

[OvL81] Mark H. Overmars and Jan van Leeuwen. Maintenance of configura-

tions in the plane. J. Comput. Syst. Sci., 23(2):166–204, 1981.

BIBLIOGRAPHY 161

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: an

Introduction. Springer, Berlin, 1985.

[PTFS05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-

sive skyline computation in database systems. ACM Trans. Database

Syst., pages 41–82, 2005.

[RH99] P.J. Rousseeuw and M. Hubert. Depth in an arrangement of hyper-

planes. Discrete & Computational Geometry, 22(2):167–176, 1999.

[RKGG07] Daniel Russel, Menelaos I. Karavelas, Leonidas J. Guibas, and

Leonidas J. Guibas. A package for exact kinetic data structures and

sweepline algorithms. pages 111–127, 2007.

[RR96] I. Ruts and P.J. Rousseeuw. Computing depth contours of bivariate

point clouds. Computational Statistics & Data Analysis, 23:153–168,

1996.

[RR98] Peter J. Rousseeuw and Ida Ruts. Constructing the bivariate tukey

median. Statistica Sinica, pages 827–839, 1998.

[RRT99] Peter J. Rousseeuw, Ida Ruts, and John W. Tukey. The bagplot: A bi-

variate boxplot. The American Statistician, 53(4):382–387, November

1999.

[SCL12a] Zhitao Shen, Muhammad Aamir Cheema, and Xuemin Lin. Loyalty-

based selection: Retrieving objects that persistently satisfy criteria.

In CIKM, 2012.

[SCL+12b] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang,

and Haixun Wang. Efficiently monitoring top-k pairs over sliding win-

dows. In ICDE, 2012.

162 BIBLIOGRAPHY

[SCL+12c] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang,

and Haixun Wang. Efficiently monitoring top-k pairs over sliding win-

dows. In ICDE, 2012.

[Smi97] Michiel Smid. Closest-point problems in computational geometry. In

Handbook on Computational Geometry, published by Elsevier Science,

1997.

[SZS03] Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range

closest-pair query. In SSTD, pages 252–269, 2003.

[TPK+03] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick

Koudas, and Divesh Srivastava. Ranked join indices. In ICDE, 2003.

[TPP05] Yufei Tao, Dimitris Papadias, and Dimitris Papadias. Historical

spatio-temporal aggregation. pages 61–102, 2005.

[Tuk74] John W. Tukey. Mathematics and picturing of data. In International

Congress of Mathematicians, 1974.

[Tuk77] J.W. Tukey. Exploratory data analysis. Reading, MA, 1977.

[TZZ06] Nesime Tatbul, Stanley B. Zdonik, and Stanley B. Zdonik. Window-

aware load shedding for aggregation queries over data streams. In

VLDB, pages 799–810, 2006.

[UMY07] Leong Hou U, Nikos Mamoulis, and Man Lung Yiu. Continuous mon-

itoring of exclusive closest pairs. In SSTD, 2007.

[Vid04] Ganapathy Vidyamurthy. Pairs Trading: quantitative methods and

analysis. John Wiley & Sons, Inc., 2004.

BIBLIOGRAPHY 163

[WRG+06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, Sudeept Bhat-

nagar, and Sudeept Bhatnagar. State-slice: New paradigm of multi-

query optimization of window-based stream queries. In VLDB, pages

619–630, 2006.

[XCH06] Dong Xin, Chen Chen, and Jiawei Han. Towards robust indexing for

ranked queries. In VLDB, pages 235–246, 2006.

[XMA05] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Sea-cnn:

Scalable processing of continuous k-nearest neighbor queries in spatio-

temporal databases. In ICDE, pages 643–654, 2005.

[YAY12] Albert Yu, Pankaj K. Agarwal, and Jun Yang. Processing a large num-

ber of continuous preference top-k queries. In SIGMOD Conference,

pages 397–408, 2012.

[YL02] Congjun Yang and King-Ip Lin. An index structure for improving

nearest closest pairs and related join queries in spatial databases. In

IDEAS, 2002.

[YLz+07] Xiaoyan Yang, Hock-Beng Lim, M. Tamer zsu, Kian-Lee Tan, and

Kian-Lee Tan. In-network execution of monitoring queries in sensor

networks. In SIGMOD Conference, pages 521–532, 2007.

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava. Mul-

tiple aggregations over data streams. In SIGMOD Conference, pages

299–310, 2005.

[ZLZ+09] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, and Jeffrey Xu

Yu. Probabilistic skyline operator over sliding windows. In ICDE,

pages 1060–1071, 2009.

164 BIBLIOGRAPHY

[ZZS+05] Panfeng Zhou, Donghui Zhang, Betty Salzberg, Gene Cooperman, and

George Kollios. Close pair queries in moving object databases. In GIS,

2005.

	Title Page - Efficient Processing of Top-k Queries on Spatial and Temporal Data
	Abstract
	Publications Involved in Thesis
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Related Work
	Chapter 3 - Continuous Top-k Pairs and Objects Queries
	Chapter 4 - Continuous Monitoring of Top-k Loyalty Queries
	Chapter 5 - Depth-Related Problems for Top-k Queries
	Chapter 6 - Final Remarks
	Bibliography

