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Abstract 
 
We present an improved design approach for N×N silica-based multimode interference (MMI) devices. By this approach, 
we could determine a well-defined range of the length of the multimode section that would produce optimal device 
performance. The range is linked to the propagation constant spacing of fundamental and higher order modes of the 
multimode waveguide. Related design principles and issues of silica-based MMI devices will be discussed. 
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1.  Introduction 
The multimode interference (MMI) devices have many applications in photonic integrated circuits [1, 2]. The self-
imaging theory [1,2] is commonly used to design the devices. Because the theory is based on strongly guided structure if 
it is applied to design low n∆ silica MMI devices that are weakly guided structure the optimal process should be 
involved [3-5]. In this paper we give an improved approach for the design of silica N×N MMI couplers. Considering the 
mode propagation constant spacing in the silica multimode waveguide we show that length of MMI section could be 
adjusted within well-defined ranges to find optimal design of the devices. This approach is applied to design a 4×4 silica 
MMI couplers, and show that the device width and length must be adjusted simultaneously to get both low loss and good 
uniformity. 
 

2. N×N MMI Coupler: Model 
 

 
 

Fig.1. (a) The structure of a silica-based 4×4 MMI coupler and (b) its 2D model. 
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As shown in Fig.1(a), the central section of a N×N silica MMI coupler (N=4) is a multimode waveguide. In order to 
launch light into and recover light from this multimode waveguide, a number of access waveguides, usually single-
moded, are placed at its beginning and end. 
 
An MMI coupler can be made of silica buried waveguide as reported in [6], with a doped core layer and undoped 
cladding layers. The transverse direction of the silica waveguide is designed to be single-moded. The effective index 
method [7] can be used to convert the 3D MMI structure to a simple 2D model [1,2]. As discussed by Chiang in his 
paper [7], the effective index method solves approximately the scalar wave equation that is accurate for several cases.  
These cases include arbitrarily shaped waveguides that have a small relative index difference between the core and 
cladding. The cases here silica waveguides normally have a small relative index difference between the core and 
cladding and therefore, we would expect good accurate results could be obtained with the method. 
 
Fig.1(b) depicts the 2D model derived from the 3D structure in Fig.1(a). The width and the length of the multimode 

waveguide are W  and mmiL . The core effective index effn  of the correspondent 2D model can be found by the mode 

index (the propagation constant divided by the free-space wavenumber) in slab along x direction, and the cladding 
effective index is equal to the cladding index in 3D structure. 
 

3. Self-Imaging Theory 

When an input field )0,(yΨ  is injected into the multimode waveguide of an MMI coupler, the guided modes are 

predominantly excited. Therefore, to good approximation, the input field may be decomposed into the m guided modes 
of the multimode waveguide [1]. 
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Here, )(yvϕ  is the νth guided mode. The field excitation coefficients vc  can be estimated using overlap integrals 
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The field profile at a distance z can then be written as a superposition of all the guided mode field distributions 
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vβ  is the propagation constant of the νth eigenmode in the multimode waveguide. Taking the phase of the fundamental 

mode as a common factor out of the sum, dropping it, and assuming the time dependence )exp( tjω is implicit, the field 
profile becomes 
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Using the strongly guided approximation [1, 2], the mode fields amplitudes are given by  
 )sin()( yky yvv =ϕ                                                                            (5) 

where kyv is the transverse propagation constant of the v-th mode. And the propagation constants spacing is 
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where  
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After analysis to Eq. (4) it can be shown [1,2] that there are N images of the input light )0,(yΨ at 
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4. N×N MMI Coupler: Analysis 
We now apply guided-mode propagation analysis [1,4] and self-imaging theory to MMI coupler, taking into account the 
effect of input and output waveguides on loss and uniformity. Also, we take into account in that the 2D structure, TM 
modes correspond to TE modes in the actual 3D structure. This method is simpler and faster than full modal propagation 
analysis, and accuracy only slightly compromised.  
 
First the overlap integral of one input field profile and the normalized mode profile of the MMI section is used to find the 
excitation coefficient when the input field is at the input port. Then the field distributions at the end of the multimode 
waveguide are calculated. The length of the MMI section is found by Eq. (8). Finally the field coupling into the output 
waveguides can also be estimated by the overlap integral of the field profile at the end of MMI section and the 
normalized mode profiles in output waveguides. The loss LS  and uniformity UF  of a device for one input waveguide 
port i is defined by  

 ∑−=
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In our design, the input and output waveguides are positioned symmetrically, as in [3]. These positions are  
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where )0(We  is the effective width of fundamental mode, and can be found by 
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λ is wavelength, and 0=σ for TE and 1=σ for TM. Here we use the effective width )0(
eW  instead of the physical 

width W since the modal field is not confined in weakly-guiding waveguides.  
 
We can define a parameter to describe the overall performance of an N×N silica MMI coupler. This parameter is 
associated with loss (LS) and uniformity (UF) for every input port. We call this parameter the performance (PF)   
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where 2/,...,2,1 Ni =′  when N is even and 2/)1(,...,2,1 +=′ Ni  when N is odd. This definition is similar to that used in 
[3]. Due to symmetry, summation over all the input ports is not necessary. From Eq. (13) it can be seen that smaller 
uniformity and loss gives larger performance. The best performance occurs when PF equals 1, and the worst performance 
when PF is 0. 
 
Using the above analysis we calculate the loss and uniformity for a 4×4 silica MMI coupler in Fig.1. The wavelength is 
1.55µm. The refractive indices of core doped silica and cladding silica are 1.46 and 1.456, corresponding to refractive 
index contrast of 004.0=∆n , which is the same as single mode fiber [8]. The thickness of the guiding layer and the 
width of the access waveguides are both 6 µm. The width of multimode waveguide is set as 120um and it is wide enough 
to prevent coupling between adjacent access waveguides.  As mentioned, Eq. (8) is used to find the length of the 
multimode waveguide. Lmmi=14.95mm and the access waveguide position are 3.47± µm and 8.15± µm When the light is 
input into port 1 or port 4, the loss and uniformity are determined to be 1.354 dB and 1.048 dB respectively. When light 
is input in port 2 or port 3, the loss and uniformity are 1.037 dB and 1.696 dB respectively. The performance, PF, of the 
device is calculated as 0.307.  The performance is not particularly good. This confirms that the length determined by the 
self-image theory is not sufficiently accurate, as reported in [3].  
 

5. Optimizing Design of a Silica N×N MMI Coupler 
The reason of low performance is that in silica waveguides the propagation constant spacing is not governed by Eq. (6) 
and (7). So far if Eq. (8) is still used the images at the output position would have broader peak compared to input field 

and unwanted ripples, which degrade the performance of the device. Thus we could try to find a new πL that should 
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make mode propagation constant spacing relation in the silica waveguide fit Eq. (6) better. Substituting this value of πL  

into Eq. (8) would give a new mmiL , resulting in better image quality and therefore better performance.  

 

From Eq. (6) πL can be found by. 
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In Eq. (14) πL  differs from different mode propagation constant vβ . And it can be transformed to  
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In Eq. (15) for every )(vLπ effveff nn −0  is less than n∆ . In silica waveguide normally n∆ <<1. But for )2( +vv  v  is 

increased by 1. So far we have that effveff nn −0 changes little relatively to the changes of )2( +vv . Thus as mode index 

increases )(vLπ increases too. This results in a series of )(vLπ values, of which the minimum value is given in terms of 

0β  and 1β  and the maximum value in terms of 0β and maxvβ .  
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Note that the Eq. (16) is as same as Eq. (7), or the result from self-imagine theory. 
 
The degree of correspondence of mode propagation constant spacings in a silica waveguide to the values given by Eq. 

(6) with different πL  expressed by Eq. (14) can be checked numerically, and is presented in Fig.2. Here we have 

introduced a new parameter 
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where ηv∆  is the difference between the left side and right side of Eq. (6) for every mode propagation constant vβ  with 

different )(ηπL . Certainly )(ηπL is defined by Eq. (14) with replacing v  by η  for clear expressions. 
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Fig.2. The difference between modal dispersion for a silica waveguide and  the ideal 
dispersion relation given by Eq. (6) with different )(ηπL  . 

 

350     Proc. of SPIE Vol. 5642



 

In Fig.2 we use the same parameters as used for the calculation in section 4. For clear presentation on the graph the cases 
of )(ηπL found by the two lowest mode propagation constants and by the fundamental mode and even mode propagation 

constants are given.  Looking at Fig.2, it can be seen that the degree to which mode propagation constant spacing in a 

silica waveguide matches Eq. (6) varies with )(ηπL . The ηv∆  is all negative for minπL  and the ηv∆  is all positive for 

maxπL . Better fitting occurs when )(ηπL is determined from the propagation constants of the fundamental mode and one 

of the higher modes. This series of values of )(ηπL  results in a series values of mmiL  by means of Eq. (8). Using these 

values of mmiL , loss and uniformity can be calculated to see if better performance can be achieved. Generally it is 

reasonable to select πL as a value between minπL  and maxπL . Then mmiL  will be in a range 

 
N

L
Lmmi

min

min

3 π=                                                                       (19) 

 
N

L
Lmmi

max

max

3 π=                                                                       (20) 

Clearly this range is determined by the propagation constants of the fundamental, first, and highest order guided modes. 
Within this range, we can evaluate the loss and uniformity to find the optimal performance of an MMI device. Note that 
the min value of the range is as same as the result from self-imaging theory, or Eq. (8).  Instead of selecting an arbitrary 
range near the result from the self-imaging theory as previous approach [3, 4] we show that the length can be adjusted in 
a range which is found by Eq. (19) and Eq. (20).   It is clear that this approach is convenient for finding optimal device 
length since a well-defined range is given. 
 
The discussion above treats multimode waveguides with a fixed width of W only. However the width of a multimode 
waveguide also greatly influences the performance of the couplers, and therefore the above analysis must be done for 
different widths. A new device width will introduce a new series of mode propagation constants and, based on these new 
propagation constants, a new range of πL can be found. Thus a new range of mmiL  would be determined and used for 
evaluating the loss and uniformity of the device. In contrast to previous work reported in [3], we optimize the loss and 
uniformity simultaneously while varying both the width and length of the MMI section. 
 

6. Optimizing of a Silica 4×4 MMI Coupler: An Example 
Here we analyze the particular case of a  4×4 silica MMI in order to test our theoretical approach to the design of N×N 
silica MMI devices. Fig.3 shows the performance parameter, PF, of a 4×4 device for different lengths and widths of the 
multimode waveguide. We use the same parameters as for our earlier analysis of a non-optimized structure. That is, the 
wavelength is 1.55µm, the refractive indices of core and cladding are 1.46 and 1.456, and the thickness of the guiding 
layer and width of the access waveguide are both 6µm.     
 
For different widths of the multimode waveguide, mmiL is varied within the range found using Eq. (19) and Eq. (20). We 
did calculations for widths of 90µm, 100µm, 110µm, 120µm, 130µm, and 140µm, which correspond to 10, 11, 12, 13, 
14, and 15 modes, respectively, in the multimode waveguide. From Fig.3, three different situations occur at different 
widths. In the first situation, PF changed significantly with device length, and an optimal length could be found in the 
range given by Eq. (19) and Eq. (20). This situation occurred for widths of 100µm, 120µm, and 130µm. In this situation, 
we have a new result that there are multiple length/width combinations for which there exists similar optimal 
performance of the couplers. For example when the width is 120µm and the length is 15.25mm the performance is 0.64, 
which is similar to the case for which the width is 130µm and the length is 17.64mm. This means that optimal 
performance can be achieved for several choices of the multimode waveguide size. In the second situation, PF changed 
slightly and optimal performance could be achieved in the specified range. This situation can be found when the width is 
110µm or 140µm. In the third situation, PF changed little in the range and the overall performance is poor. This situation 
is found when the width is 90µm. In this case, the performance of a device drops slightly and then increases slightly in 
the specified range. These results show that the width of the multimode waveguide cannot be too small or too large for 
optimal performance. 
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Fig.3.  Performance variation for different widths and lengths for a 4×4 MMI coupler. 

 
The performance PF is associated with the loss and uniformity of a device with a number of inputs, and so now we study 
the loss and uniformity of a device with different lengths and widths to see why in some cases the PF can be improved 
and in the others it cannot. Figs. 4, 5 and 6 show the detailed features of loss and uniformity versus the length of the 
multimode waveguide for three width values: 90µm, 120µm, and 140µm. The other parameters are as in Fig.3. These 
three cases are shown in Fig.3. The length is also optimized in the range determined by the propagation constants of the 
fundamental, first, and highest order guided modes as calculated using Eq. (19) and Eq. (20). 
 

8.6 8.7 8.8 8.9 9 9.1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Length of MM WG (mm)

Lo
ss

, a
nd

 U
ni

fo
rm

ity
 (

dB
)

Port4 Loss
Port3 Loss
Port4 Uniformity
Port3 Uniformity

 
 

Fig.4 Variation of loss and uniformity with the length of the multimode waveguide 
when the width is 90µm 
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In Fig.4 it can be seen that for every input port the loss is a minimum in the given range, but the uniformity is poor. Since 
the uniformity exceeds the loss, the performance cannot be improved in this case.  
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Fig.5.  Variation of loss and uniformity with the length of the multimode waveguide 
when the width is 120µm 

 
In Fig.5 we can see that the loss and uniformity for each input port is a minimum in the given range, and that the optimal 
positions for both the loss and uniformity of each input port are at similar lengths. Therefore, the performance is 
significantly better for this width.  
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Fig.6 Variation of loss and uniformity with the length of the multimode waveguide 
when the width is 140µm 

 
In Fig.6 it can be seen that the loss for both input ports is a minimum in the specified range at a length of around 20.35 
mm, but the uniformity for port 3 is a maximum at that length. Therefore the overall performance is not significantly 
improved by adjusting the length within the given range.  
 
From these results, we find that the loss can always be improved within the range but the uniformity has a different 
behavior. Uniformity improves or deteriorates, depending on the device width. Based on the results, we conclude that if 
both the loss and uniformity need to be optimized then not only the length but also the width of multimode waveguide 
should be adjusted. As an example, using the results in Figs. 3-6, an optimal design for both low loss and good 
uniformity can be found. With the width of multimode waveguide fixed at 120µm, the optimal length is found to be 
approximately 15.25mm. When we use either port 1 or port 4 as the input, the excess loss and uniformity could be 
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determined to be  0.64 dB and 0.31dB, respectively. Fig.7 shows the relative power intensity distribution at the beginning 
of the output waveguides. While port 2 or port 3 is used as the input, the loss and uniformity 0.66 dB and 0.33 dB, 
respectively. Fig.8 shows the relative power intensity distribution at the beginning of the output waveguides The overall 
performance of this device is 0.64. Comparing the results with the case studied in section 4, where the width and length 
were not optimized, the value of the performance is improved by more than a factor of 2.  
 

             
 

Fig.7 Relative power intensity when port1 is as input for 
the optimal design of W=120µm 

Fig.8 Relative power intensity when port2 is as input for 
the optimal design of W=120µm 

 

7. Conclusion 
 
In this paper we introduced an improved approach for optimizing the design of silica N×N multimode interference 
(MMI) couplers. Guided mode propagation analysis was used. The approach adjusts the width and length of the 
multimode waveguide to achieve optimal device performance. We showed that the length of the multimode waveguide 
can be varied in a well-defined range to find optimal device performance. This range is related to the propagation 
constant spacing of the fundamental and higher order modes of the multimode waveguide. We use this approach to 
optimize the design of a 4×4 silica MMI coupler, and demonstrate that both device width and length must be adjusted to 
give optimal performance. In the numerical analysis it was found that optimal performance could be achieved for various 
length/width combinations. Moreover, it was concluded that not only the length but also the width of a N×N silica MMI 
coupler should be adjusted to achieve both low loss and good uniformity. 
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