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Abstract

This thesis examines the maximum generalised roundness properties of metric spaces

arising from graphs. The equivalent concepts of p-negative type and generalised

roundness p, introduced by Schoenberg and Enflo respectively, have been used for

several decades in the field of distance geometry, primarily to obstruct embeddings of

metric spaces isometrically (or with some distortion) into Euclidean space. Given a

metric space (X, d), we are particularly interested in the calculation of its maximum

generalised roundness }(X, d), and many existing results from various authors are

expounded in this thesis. A relatively recent formula of Sánchez provides a method

to numerically calculate the quantity of interest, but implementing this in practice

involves a number of previously unforeseen di�culties. In this thesis we develop

a robust algorithm which enables the e�cient numerical calculation of }(X, d) for

large sets of finite metric spaces.

We focus in particular on metric spaces constructed from graphs, usually with

the path metric, in order to relate the maximum generalised roundness value to

properties of the underlying graph. Many existing results describe the extremal

values of the maximum generalised roundness of trees or connected graphs, but

little is known about the values for ‘typical’ members of these classes. Equipped

with the earlier algorithm, we are able to quickly and reliably calculate the maxi-

mum generalised roundness of graphs sampled at random from these families, and

form hypotheses from the resulting data. We are able to prove that large random

trees have maximum generalised roundness arbitrarily close to 1 almost surely, and

provide more specific probabilistic results with explicit bounds. We also prove that

for large random graphs, the maximum generalised roundness is arbitrarily close

to 0 almost surely. In each case, we additionally state stronger heuristic conclu-

sions which are supported by the empirical evidence, but for which we do not yet
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have rigorous proofs. We also present several partial results, conjectures and un-

explained phenomena from our earlier investigations as well as peripheral work on

infinite trees and planar graphs.
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Chapter 1

Introduction

Distance geometry is the study of sets of points given only the pairwise distances

between them. Metric spaces (and more generally semi-metric spaces, without the

triangle inequality) are examples of settings where the distances between points are

known, but there is no obvious sense of how the points are positioned.

A classical problem in distance geometry asks whether a particular metric space

can be embedded isometrically into Euclidean space. For example, the discrete

metric space on four points can be identified with the points of a regular tetrahedron

in (R3, k·k2) so that all distances are preserved, but similar embeddings cannot be

achieved for some other four-point spaces, as shown in Figure 1.1.

In the 1930s Schoenberg attacked this problem by introducing the concept of

the p-negative type of the metric space. Much later it was shown that this was

equivalent to a di↵erent concept, generalised roundness p, which originated from

Enflo’s solution to some quite di↵erent embedding problems. The central concept

studied in this thesis is a constant }(X, d) called the maximal generalised roundness,

or supremal p-negative type, of a metric space (X, d).

In Section 1.1 we give an overview of the history of these ideas and give some

simple examples to illustrate the concepts involved.

Section 1.2 then describes the aims of the work in the later chapters of this the-

sis. This includes a more thorough understanding of the distribution of maximum

generalised roundness among certain families of metric spaces, as well as an e�cient

algorithm for the numerical computation of the maximum generalised roundness of

a finite metric space. Our main focus in the thesis will be on metric spaces which

arise from graphs equipped with the path metric. At the end of this chapter we

outline the structure of the remainder of the thesis.
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(b) Some other metric spaces cannot be embedded into Rn
for any n.

Figure 1.1: Two examples of metric spaces on four points.

1.1 History

1.1.1 Euclidean embeddings of metric spaces

Many problems in fields such as sensor networks, molecular modelling and naviga-

tion require us to draw inferences about the arrangement of the points with some

given distance structure within some vector space with well understood structure.

Such information can allow us to visualise the points in order to use clustering or

similar techniques, or to apply a wider set of tools such as those from linear algebra.

Multidimensional scaling is the process of representing dissimilarity data, which

naturally correspond to the distances of a metric space, by finding a set of coordi-

nates in some N -dimensional space which preserve these distances (often allowing

some amount of distortion either of the distances or in their relative order). The

following quote from Alon et al. [2] illustrates the utility of embedding results in

this field.
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‘The problem of multidimensional scaling is that of mapping points with

some measured pairwise distances into some target metric space. Origi-

nally, the MDS community considered embeddings into an `p space, with

the goal of aiding in visualization, compression, clustering, or nearest-

neighbor searching; thus, low-dimensional embeddings were sought. An

isometric embedding preserves all distances, while more generally, metric

embeddings trade o↵ the dimension with the fidelity of the embeddings.’

Example 1.1.1. Consider the fifteen largest Greater Capital City Statistical Areas

of Australia, namely the greater metropolitan area of each state capital, the rest

of each state, the Australian Capital Territory, Greater Darwin and the rest of

the Northern Territory. The 2016 Australian Census [3] counted the number of

residents of each area employed in each of twenty industries. After normalising, this

data can be represented by fifteen points lying on a hyperplane in R20. Applying

MATLAB’s cmdscale allows us to embed these points in Euclidean space of much

lower dimension, at the cost of some distortion. In particular, Figure 1.2 shows an

embedding in R2 where the relative error in the distances is up to 27%.

Figure 1.2: Greater Capital City Statistical Areas of Australia by industry of em-
ployment, after multidimensional scaling.

3



Even so, several conclusions can be immediately seen from this visualisation.

The employment profiles are similar in the largest two capitals, Sydney and Mel-

bourne, whereas the regional and rural areas of South Australia and Western Aus-

tralia are quite distinct from those of the other states. Notably, the ACT is partic-

ularly dissimilar to any other area, primarily because of its large share of employees

in Public Administration and Safety.

Another common application is in the construction of phylogenetic trees [1, 35,

75, 77], where the aim is to infer ancestry relationships among a group of organisms

by analysing the pairwise di↵erences between their DNA sequences in terms of the

Hamming metric.

One approach to answering such questions follows from Cayley [18] and Menger

[57, 58], who developed the Cayley-Menger determinant. This technique relates the

(n�1)-dimensional volume of an n-point simplex to the determinant of a particular

(n+1)⇥ (n+1) matrix, whose entries are purely in terms of the distances between

the points. The minimum dimension of Euclidean space that permits such an

embedding can also be found by analysing these determinants.

We will study another approach, first proposed by Schoenberg [72], who intro-

duced the following inequality criterion and proved that it completely determines

whether a finite metric space can be embedded into Euclidean space as well as the

dimension required for such an embedding.

Theorem 1.1.2 ([72, Theorem 1]). Let (X, d) be a finite metric space, where X =

{x0, x1, . . . , xn}. Then (X, d) embeds isometrically into Euclidean space if and only

if
nX

i,j=1

(d(x0, xi)
2 + d(x0, xj)

2 � d(xi, xj)
2)!i!j � 0

for all !1, . . . ,!n 2 R.

Furthermore, the rank of the matrix

M =
�
d(x0, xi)

2 + d(x0, xj)
2 � d(xi, xj)

2
�n
i,j=1

is the minimum embedding dimension, that is, if rank(M) = r, then (X, d) embeds

into Rr but not into Rr�1.

Schoenberg [74] used an algebraic manipulation to simplify this condition into

a more symmetrical form.

4



Definition 1.1.3 ([74]). Let (X, d) be a finite metric space, whereX = {x1, . . . , xn}.
Then (X, d) has 2-negative type if

nX

i,j=1

↵i↵jd(xi, xj)
2  0

for all ↵1, . . . ,↵n 2 R such that ↵1 + . . .+ ↵n = 0.

Theorem 1.1.4 ([74]). A finite metric space (X, d) embeds isometrically into Eu-

clidean space if and only if it has 2-negative type.

The proof relied on the work of Mathias [54] and Bochner [8], who defined a real

continuous even function f(x) as positive definite if

mX

i,j=1

f
�
x(i) � x(j)

�
⇢i⇢j � 0

for any real ⇢i and points x(i). Schoenberg equated both of the properties in Theo-

rem 1.1.4 to the question of whether the function e�|x|2 is positive definite, and in

fact proved the more general statement that e�|x|↵ is positive definite if and only if

0 < ↵  2. In [73] he considered the e↵ect of replacing a metric d(xi, xj) with the

new metric dc(xi, xj) = d(xi, xj)c where c 2 (0, 1), and applied his results to deduce

the embedding properties of the new metric space (X, dc). This is an example of

what is now called a metric transform of (X, d).

More generally, let F be a continuous increasing concave function such that

F (0) = 0, guaranteeing that F � d is still a metric on X. Denote the corresponding

metric space (X,F � d) as simply F (X). A natural example is the metric space Xc

given by the power function F (t) = tc, where 0 < c < 1. We observe that Euclidean

embeddings of these metric transforms directly correspond to a generalisation of

the 2-negative type property above.

Definition 1.1.5. Let (X, d) be a finite metric space, where X = {x1, . . . , xn}, and
let p � 0. Then (X, d) has p-negative type if

nX

i,j=1

↵i↵jd(xi, xj)
p  0

for all ↵1, . . . ,↵n 2 R such that ↵1 + . . .+ ↵n = 0.

Furthermore, if (X, d) has p-negative type and the inequality is strict unless all

↵i are zero, (X, d) is said to have strict p-negative type.
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This definition can be naturally extended to the infinite case.

Definition 1.1.6. An infinite metric space is said to have (strict) p-negative type

if every finite metric subspace has (strict) p-negative type.

The analogue to Theorem 1.1.4 is not exact. Instructive examples include infinite

discrete metric spaces, in which all distances between discrete points are 1. Here,

if the point set is countably infinite, the metric space embeds into `2 but not into

Euclidean space. If instead the cardinality is larger than the continuum, it cannot

be embedded into `2.

Theorem 1.1.7. An infinite metric space embeds isometrically into a (possibly

non-separable) Hilbert space if and only if it has 2-negative type.

We see that Xc is Euclidean, that is, has 2-negative type, if and only if X has 2c-

negative type. We can then ask: for a given metric space (X, d), for which values

of c does Xc embed isometrically into Euclidean space? The following example

illustrates a simple embedding problem of this form, which will motivate our future

work.

Example 1.1.8. Let X = {x1, x2, x3, x4}, with

d(xi, xj) =

8
<

:

1
2 i = 4 or j = 4

1 otherwise
,

as depicted in Figure 1.3.

x1

x2x3

x4

11

1

1
2

1
2

1
2

Figure 1.3: A four-point metric space.

We will first use a näıve geometrical approach, and then use Theorem 1.1.4 to

present an alternative approach in terms of 2-negative type, which will generalise

more easily to other metric spaces.
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It is straightforward to see that this metric space is not embeddable into Eu-

clidean space, as x4 would have to be the midpoint of each interval joining two of

the other points.

However, with some deformation, the embedding may be possible. Consider

instead the metric transform Xc, by replacing each distance of 1
2 with � = 2�c.

Again, a geometric argument su�ces here. Suppose an embedding exists. As there

are only four points, the minimum embedding dimension is at most three, that is,

Xc embeds into three-dimensional Euclidean space, as shown in Figure 1.4.

x1 x2

x3

x4

1

1 1

� �
�

Figure 1.4: An embedding of the metric transform into three-dimensional Euclidean
space.

The points x1, x2 and x3 form an equilateral triangle, and by symmetry x4 must

lie on a line through the centre of this triangle, orthogonal to the plane in which

it lies. It follows that the minimum value of � is realised when the four points

are coplanar, with elementary trigonometry showing that this value is � = 1/
p
3.

Therefore Xc is embeddable if and only if 2�c � 3�1/2, that is, c  1
2 log2 3, and

thus (X, d) has p-negative type for p 2 [0, log2 3].

We will now confirm our results in terms of the 2-negative type criterion from

Theorem 1.1.4.

First, we test whether the original metric space X has 2-negative type. The

desired inequality is

(↵1↵2 + ↵1↵3 + ↵2↵3) +
1

4
(↵1 + ↵2 + ↵3)↵4  0,

which after eliminating ↵4 reduces to

(↵1 + ↵2 + ↵3)
2 � 4(↵1↵2 + ↵1↵3 + ↵2↵3).

7



We must now ask whether this holds for all ↵1,↵2,↵3 2 R. It is clear that this fails;
consider for example ↵1 = ↵2 = ↵3 = 1.

However, for Xc to have 2-negative type, we require

(↵1 + ↵2 + ↵3)
2 � 22c(↵1↵2 + ↵1↵3 + ↵2↵3).

Again considering ↵1 = ↵2 = ↵3 = 1, we see that c can be no greater than 1
2 log2 3.

In fact, we can prove that this value is sharp by manipulating

(↵1 � ↵2)
2 + (↵2 � ↵3)

2 + (↵3 � ↵1)
2 � 0

to give

(↵1 + ↵2 + ↵3)
2 � 3(↵1↵2 + ↵1↵3 + ↵2↵3).

Thus Xc has 2-negative type (and therefore embeds isometrically in R3) for all

c 2 [0, 12 log2 3]. Once again it follows that X has p-negative type for p 2 [0, log2 3],

confirming our earlier result.

It is not hard to see that when more points are involved, the geometric analysis

becomes increasingly intricate and eventually infeasible. As a result, p-negative

type presents an attractive option for these embedding problems.

The embedding properties of metric transforms were further investigated by

Deza and Maehara [23], who proved that if X is an n-point metric space, then Xc

embeds in a Euclidean space for

0 < c  1

2n log 2
=

0.7213 . . .

n
.

They made a conjecture1 as to how much this bound could be improved, and proved

that their proposed bound is sharp for a particular ‘truncated distance’ metric.

1.1.2 p-negative type results and associated concepts

Given the results above, a natural direction is to describe the set of p for which a

given metric space has p-negative type. Let

P(X, d) = {p � 0 : (X, d) has p-negative type}.
1
This conjecture will be presented in Chapter 5.
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An easy calculation (see Proposition 2.1.3) confirms that all metric spaces have

0-negative type. Schoenberg [74] proved that if (X, d) has p-negative type, then it

has q-negative type for all 0  q < p, so the set P(X, d) is either just {0} or it is an

interval. Further, this interval is closed, as seen by fixing the ↵i in Definition 1.1.5

and taking the limit as the exponent p approaches the right endpoint from below.

Thus the set P(X, d) is always of the form [0,}] or [0,1). While the quantity } is

a maximum, it is often referred to in the literature simply as a supremum, and we

use the same terminology here.

Definition 1.1.9. Let (X, d) be a metric space. Define the supremal p-negative

type of (X, d) as

}(X, d) = sup{p � 0 : (X, d) has p-negative type},

with }(X, d) = 1 if the supremum does not exist.

The supremal p-negative type can be explicitly computed for several classical

Banach spaces. The first such result was established by Schoenberg [74], who proved

that for q  2, Lq([0, 1]) has p-negative type for all 0 < p  q. Note that for q < 1,

the corresponding Lq space is only a quasimetric space, with the triangle inequality

relaxed by a constant factor of 2
1
q�1.

Schoenberg also proposed the question of the p-negative type properties of

Lq([0, 1]) for q > 2. Yost [84] proved that all real normed spaces of dimension

at most two embed linearly and isometrically into L1[0, 1], so } � 1 in these cases.

It was proven that the finite dimensional sequence spaces `(n)q where n � 3 fail to

have p-negative type for any p > 0, as a consequence of results from Koldobsky [49]

for 2 < q < 1 and Misiewicz [59] for q = 1, showing a marked di↵erence from the

q  2 case. These results were generalised by Lennard, Tonge and Weston [51] to

any Lq(µ) space of dimension at least three.

Lennard, Tonge and Weston [51] noted that as a consequence of this result, the

Schatten class Cq, where q > 2, also fails to have p-negative type for any p > 0. A

recent result of Dahma and Lennard [21] extended the same result to q 2 (0, 2).

These supremal p-negative type values often present an obstruction to isometric

embeddings, as a metric (or quasimetric) space cannot embed into another of larger

supremal p-negative type. Proving the existence of an embedding from p-negative

type information is far more di�cult, and requires additional structure. Bretagnolle,

Dacunha-Castelle and Krivine [11] discovered the surprising result that for 0 < q 
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2, a real quasinormed space (in which the triangle inequality associated with a norm

is instead relaxed by a constant factor) can be linearly embedded into Lq space if

and only if it has q-negative type. A notable consequence of this result is the nesting

of real Lq spaces: if 0 < q1 < q2  2 then there is a linear isometric embedding

of Lq2 into Lq1 . More recent work has aimed to discover analogous results about

metric spaces which do not have the structure of a vector space, such as the work

of Graham [41, 42], Graham and Winkler [43, 44] and Roth and Winkler [70] on

embeddings of graphs, including into Cartesian products of other graphs.

A relaxation of the graph embedding problem asks whether a graph G = (V,E)

is a unit-distance graph in Rd. This criterion is satisfied if there exists an injective

function f : V ! Rd such that if {v, w} 2 E, then |f(v)� f(w)| = 1. Thus

neighbouring vertices can be mapped to pairs of points one unit apart, but unlike

the isometric embedding problems discussed in this thesis, there is no requirement

to also preserve distances greater than one within the graph. Erdős, Harary and

Tutte [32] defined the Euclidean dimension dimG as the smallest d for which G is

a unit-distance graph in Rd. For forty years, the best available result was due to

Erdős and Simonovits [34], who proved that dimG  �(G) + 2, where �(G) is the

maximum degree of the graph. A recent paper of Frankl, Kupavskii and Swanepoel

[37] improved this bound to dimG  �(G), with the exception of cases where

�(G) = 3 and G contains K3,3, and proved that if |E(G)| 
�
d+2
2

�
then dimG  d,

as well as further results on the related concept of spherical dimension.

Other related work relates to ultrametric spaces, in which the triangle inequality

is further strengthened to

d(x1, x3)  max(d(x1, x2), d(x2, x3)).

These correspond exactly to certain dendrograms, as shown by Carlsson and Mémoli

[17, Theorem 9], and therefore find applications in clustering techniques for data

analysis among other fields. Faver et al. [36] proved several key results for these

spaces, most notably that ultrametric spaces are precisely those metric spaces with

strict p-negative type for all p � 0. This work was extended by Doust, Sánchez and

Weston [27] in their analysis of the p-negative type gap of ultrametric spaces, pro-

viding an explicit combinatorial formula for the asymptotic negative type constant.
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1.1.3 Generalised roundness p

In 1964 Lindenstrauss [53] conjectured that no two Lebesgue spaces Lq[0, 1] (where

q 2 [1, 2]) are uniformly homeomorphic. This conjecture was proven by Enflo [30] in

1968. The method employed by Enflo involves the definition of a property of metric

spaces now known as2 roundness p, where p is again a non-negative real constant.

The criterion for a given metric space to have roundness p involves an inequality

condition reminiscent of the parallelogram identity of Euclidean space. Enflo proved

that Lq[0, 1] has roundness q, and fails to have roundness p for any p > q, and

used this to show that Lq1 [0, 1] and Lq2 [0, 1] are not uniformly homeomorphic for

1  q1, q2  2 where q1 6= q2.

A related question was asked by the topologist Yuri M. Smirnov concerning

universal uniform embedding spaces. A metric space M is a universal uniform

embedding space if every separable metric space is uniformly homeomorphic to a

subset of M . Since every separable metric space is isometric to a subset of C[0, 1],

this Banach space is certainly a universal uniform embedding space. It was already

known that every separable metric space is homeomorphic to a subset of L2[0, 1],

but not necessarily uniformly homeomorphic. Smirnov’s question was whether this

Hilbert space is a universal uniform embedding space.

Enflo [31] introduced a new property called3 generalised roundness p, gener-

alising his earlier concept of roundness. He proved that all Hilbert spaces have

generalised roundness 2 while universal uniform embedding spaces cannot have

generalised roundness p for any p > 0, and deduced that no Hilbert space could be

a universal uniform embedding space.

Research on p-negative type and generalised roundness p was undertaken inde-

pendently for several decades, until Lennard, Tonge and Weston [51, Theorem 2.4]

proved that the two conditions are in fact equivalent. We can therefore refer to

the constant }(X, d) as either the supremal p-negative type or the maximum gen-

eralised roundness; we will use the latter term. This constant will the key object of

study in this thesis.

1.2 Aims

Calculating the maximum generalised roundness of any particular metric space has

historically been very challenging, and until recently there were rather few spaces

2
Enflo’s original terminology is slightly di↵erent from the current standard.

3
Again, the formal definition can be found in Section 2.1.
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for which this value was known explicitly, even among finite metric spaces with

relatively few points. Certain upper and lower bounds were known for particular

classes of metric spaces, but it has not been clear whether these bounds are sharp or

not, and it has been particularly unclear whether the spaces for which the maximum

generalised roundness can be computed are ‘typical’ or ‘exceptional’ within these

families.

Examples of some of the open problems in this area include

Question 1: For each n � 2 the quantity

cn = inf{}(X, d) : (X, d) is an n point metric space}

is strictly positive. Only the values of c2, c3, c4 and c6 are known, from [23].

What are the values of c5, c7, c8, . . . ? What is the limiting behaviour of cn?

Are these infima achieved, and if so, for which metric spaces?

Question 2: For each n � 2, the quantity

dn = inf{}(X, d) : (X, d) is an n point metric tree}

is strictly greater than 1. What are the values of this sequence, and how does

it behave as n ! 1? Are the infima achieved, and if so, for which trees?

In Chapter 5, we present a general conjecture for cn, which Deza and Maehara

[23] proved to be a lower bound, and is widely believed to give the true value. Until

now, however, there has not been a great deal of empirical evidence to support the

conjecture.

Previous research has made more progress in revealing generalised roundness

properties of metric trees. The first major result in this area was the proof by

Hjorth et al. [47] that finite metric trees are of strict 1-negative type. This was

extended by Doust and Weston [28], who introduced the p-negative type gap, a

measure of strictness of the p-negative type inequality. These authors provided a

concise formula to evaluate the 1-negative type gap of metric trees, which led to a

lower bound for dn as proven by Li and Weston [52]. Again, there is currently no

basis to assess whether this bound is at all sharp.

A result of Sánchez [71], which we present in Chapter 3, gave a formula for the

maximum generalised roundness of a finite metric space in terms of certain equations

associated to its distance matrix. For some special spaces, these equations can be

12



solved exactly to obtain an explicit expression for }(X, d), but in general they

can only be solved numerically. Nevertheless, this has opened up the possibility

to collect experimental data within natural classes of finite metric spaces. An

important class of such spaces is the class of path metric graphs, that is, metric

spaces which arise from the unweighted path metric of a connected graph. These

metric spaces are of course important in many areas, but they have the added

advantage that much is known about the general properties of this class, and there

are finitely many of them on a specified number of points.

Much of the work in this thesis aims to establish results about the distribution

of the maximal generalised roundness within various classes of such metric spaces.

A starting point for this project was to empirically answer questions such as

Question 3: What can be said about the maximal generalised roundness of a ran-

domly chosen n vertex metric graph? How do the average and other distribu-

tion features vary with n?

Question 4: What can be said about the distribution of maximum generalised

roundness of metric trees on n vertices?

Question 5: What can be said about the distribution of maximum generalised

roundness of planar graphs on n vertices?

The results of this experimental work could then be used to form reasonable con-

jectures which might be proven analytically.

Since it involves calculation of the determinant and the inverse of an n ⇥ n

matrix, applying Sánchez’s formula for numerical computation presents a number

of challenges, especially as the size of the metric space gets large. In Chapter 3

we present several previously unexplored properties of this p-distance matrix and

discuss the practical issues that arise. A significant outcome of the thesis is a robust

and reliable algorithm for the computation of the maximum generalised roundness

of a finite metric space with up to 100 points. These metric spaces are large enough

that general patterns can be seen, and convincing conjectures formed.

A further challenge is that the size of these families of metric spaces grows very

rapidly in n, and so it quickly becomes impossible to evaluate }(X, d) for every

space in the family. Therefore we must decide on a suitable random graph model

to work with, and a way of generating elements via this model. Some of our results

will turn out to depend crucially on the model chosen.
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One quickly sees from the data that with high probability, the maximal gener-

alised roundness of an n point metric graph goes to zero as n ! 1. To make this

precise one needs to prove a statment of the following form.

Conjecture: For all ✏, � > 0 there exists N such that for all n � N ,

P (}(X, d) < ✏ | (X, d) is an n point metric graph) > 1� �.

It is actually not hard to give a proof of this. Much more challenging is to quantify

this more tightly by determining how N depends on ✏ and �. How large does n need

to be so that a randomly chosen n point metric graph (X, d) has }(X, d) < 0.1 with

probability 0.9999? Similar phenomena arise in our study of trees, planar graphs

and so on.

The thesis is then partly experimental and partly theoretical, and one may

classify the various results within it as analytically proven, experimentally verified

or ‘computationally dependent’. This last category is perhaps best explained by an

example.

Example 1.2.1. Consider the sequence (ak)
10000
k=1 , where ak = sin k + sin(k2). It

is di�cult to provide an elegant analytical proof that the largest element of this

sequence is a6046. Instead, one might compute each term numerically, and select

the largest value. However, these values are necessarily inexact, so one must have

confidence in how they are obtained. In particular, one must ensure that a6046 is

definitively the largest term, even accounting for the error bounds on all terms.

One might need to perform a more careful analysis of the values which are near to

optimal in order to be convinced that a6046 is indeed the largest.

In the context of this thesis, the development of a robust algorithm for com-

puting }(X, d) allows us to similarly identify the extreme values of the maximum

generalised roundness in some families of metric graphs.

1.3 Outline

In Chapter 2, we formally introduce the basic definitions and results for p-negative

type and generalised roundness p, as well as the graph theory used in later chapters.

In Chapter 3, we present a formula due to Sánchez [71] which is our primary

method for calculating the maximum generalised roundness of finite metric spaces
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in terms of the p-distance matrix. We then design and verify an algorithm imple-

menting this theorem, and explore the complications involved.

In Chapter 4, we explore the maximum generalised roundness properties of path

metric trees. We first detail existing procedures to generate random trees with ei-

ther uniform or non-uniform probability distributions. Using the algorithm from

Chapter 3 on random samples of trees, we can then approximate the distribution of

maximum generalised roundness values of trees. This data leads us to hypothesise

that the maximum generalised roundness of a random tree on n vertices, under

appropriate models, converges in distribution to 1. This result is proven by identi-

fying metrically embedded star graphs, drawing upon the work of Moon [61] on the

vertex degrees of random trees. We then provide probabilistic results with explicit

bounds for n, and present empirical data to support stronger conclusions.

In Chapter 5, we apply a similar approach to path metric graphs. We gener-

ate random graphs on n vertices in order to calculate their maximum generalised

roundness. In this case we show that the distribution converges to 0, making use of

the work of Palka [66] on complete bipartite induced subgraphs. The bounds ob-

tained are again far from sharp, as indicated by our test data. We also discuss the

relationship between the density of a graph and its maximum generalised roundness.

In Chapter 6, we lay out some directions for future work, including partial results

concerning infinite trees and planar graphs.
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Chapter 2

Background

In this chapter we introduce the metric space properties of p-negative type and

generalised roundness p and associated concepts which will be drawn upon in later

chapters. Proofs will be included where they are helpful in understanding the

later material. We also present some fundamentals of graph theory, including the

construction of metric spaces from unweighted and weighted graphs, and outline the

application of p-negative type and generalised roundness p ideas to graph metric

spaces.

2.1 p-negative type and generalised roundness p

2.1.1 p-negative type

We begin with a formal exposition of Schoenberg’s p-negative type criterion, first

introduced in 1937 [74].

Definition 2.1.1. Let p � 0. A metric space (X, d) has p-negative type if

kX

i,j=1

↵i↵jd(xi, xj)
p  0 (2.1.1)

for all k 2 N, x1, . . . , xk 2 X and ↵1, . . . ,↵k 2 R with
P

k

`=1 ↵` = 0. Note that

00 := 0 here, and the xi need not be distinct.

Note that this formulation applies equally to finite and infinite metric spaces,

as discussed in Remark 1.1.6.

The stronger condition of strict p-negative type proves to be useful in later

results.
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Definition 2.1.2. Let p � 0, and let (X, d) be a metric space of p-negative type.

(X, d) has strict p-negative type if the equality case of (2.1.1) occurs only when all

↵` = 0.

Questions of embeddings, and indeed inequality (2.1.1), are somewhat mean-

ingless for a one point metric space. For a two point space, (2.1.1) reduces to the

question of whether �↵2d(x1, x2)p  0 for all ↵ 2 R, which is obviously true for all

p � 0. For this reason, unless specified otherwise we will consider only nontrivial

metric spaces on at least three points and likewise graphs on at least three vertices

in this thesis.

Given a metric space (X, d), we would like to know for which values of p it has

(strict) p-negative type.

Proposition 2.1.3. Any metric space (X, d) has strict 0-negative type.

Proof. Let x1, . . . , xk be distinct points of X. Setting p = 0, so d(xi, xj)p = 1 for

distinct i, j, we have

kX

i,j=1

↵i↵jd(xi, xj)
p =

kX

i,j=1
i 6=j

↵i↵j =
kX

i=1

↵i

kX

j=1

↵j �
⇣ kX

`=1

↵2
`

⌘
= �

kX

`=1

↵2
`
 0,

with equality if and only if all ↵` = 0.

Schoenberg [73, Theorem 2] proved that a finite metric space of 2-negative type

also has q-negative type for all 0  q < 2. This was generalised in 2009 by Li and

Weston as follows.

Theorem 2.1.4 ([52, Theorem 5.4]). Let p � 0, and let (X, d) be a metric space

of p-negative type. Then (X, d) has strict q-negative type for all 0  q < p.

Corollary 2.1.5 ([52, Corollary 5.11]). Let (X, d) be a metric space of p-negative

type, but not strict p-negative type. Then }(X, d) = p.

Proof. If (X, d) has p-negative type, then clearly }(X, d) � p. If }(X, d) = q > p,

then Theorem 2.1.4 implies that (X, d) has strict p-negative type. Thus }(X, d) = p

as required.

It follows that a metric space (X, d) has p-negative type for all values p in a

(possibly degenerate) interval with left endpoint 0 included. The right endpoint

therefore determines the set almost completely.
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Definition 2.1.6. Let (X, d) be a metric space. The supremal p-negative type is

}(X, d) = sup{p � 0 : (X, d) has p-negative type},

or 1 if the supremum does not exist.

Remark 2.1.7. Considering the left-hand side of (2.1.1), we observe that

sup
x1,...,xk2X
↵1+...+↵k=0

kX

i,j=1

↵i↵jd(xi, xj)
p

is a continuous function of p. This ensures that if }(X, d) is finite, then (X, d) has

}(X, d)-negative type. Thus the supremum is in fact a maximum if it is finite.

2.1.2 Generalised roundness p

We now present the notion of generalised roundness p, from Enflo [30, 31].

Definition 2.1.8. Let p � 0. A metric space (X, d) has generalised roundness p if

nX

i,j=1
i<j

d(ai, aj)
p +

nX

i,j=1
i<j

d(bi, bj)
p 

nX

i,j=1

d(ai, bj)
p (2.1.2)

for all n 2 N and a1, . . . , an, b1, . . . , bn 2 X, where the ai and bj are not necessarily

distinct.

Note that Definition 2.1.8 allows a point x 2 X to appear among both the ai

and the bj simultaneously. However, Lennard, Tonge and Weston [51] showed that

if a1 = b1, the terms involving this point cancel, so the inequality reduces to

nX

i,j=2
i<j

d(ai, aj)
p +

nX

i,j=2
i<j

d(bi, bj)
p 

nX

i,j=2

d(ai, bj)
p.

It therefore su�ces to consider only cases where {ai}ni=1 and {bj}nj=1 are disjoint.

Although we may assume that no point appears among both {ai}ni=1 and {bj}nj=1,

we must still allow repetition within each set. Consequently, even for a finite metric

space there is no natural upper bound on the size of these sets. In other words,

one cannot reduce the question of whether a finite metric space has generalised

roundness p to an exercise of checking (2.1.2) for some finite collection of sets {ai}
and {bj}.
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A useful alternative was developed by Lennard, Tonge and Weston [51], who

noted that any choice of multiplicities of ai and bj can be simulated by assigning a

weight to each point.

Definition 2.1.9. A (q, t)-simplex in X is a vector

S = [ai; bj]q,t = (a1, . . . , aq, b1, . . . , bt)

where a1, . . . , aq, b1, . . . , bt are distinct elements of X.

Definition 2.1.10. A load vector for a (q, t)-simplex S is an vector

~! = (m1, . . . ,mq, n1, . . . , nt)

where m1, . . . ,mq, n1, . . . , nt 2 R+. Together, a (q, t)-simplex S and an associated

load vector ~! form a loaded (q, t)-simplex denoted S(~!) = [ai(mi); bj(nj)]q,t. We

call S(~!) a normalised (q, t)-simplex if ~! also satisfies

m1 + . . .+mq = 1 = n1 + . . .+ nt.

Theorem 2.1.11 ([51, Theorem 2.2]). A metric space (X, d) has generalised round-

ness p if and only if for all q, t 2 N and all normalised (q, t)-simplices S(~!) =

[ai(mi); bj(nj)]q,t in X we have

X

1i1<i2q

mi1mi2d(ai1 , ai2)
p +

X

1j1<j2t

nj1nj2d(bj1 , bj2)
p 

q,tX

i,j=1

minjd(ai, bj)
p.

(2.1.3)

The reverse direction requires only straightforward algebraic manipulation, while

the forward direction relies on a density argument.

2.1.3 Equivalence

In 1995, almost three decades after Enflo defined generalised roundness p, it was

proven by Lennard, Tonge and Weston that p-negative type and generalised round-

ness p are in fact equivalent.

Theorem 2.1.12 ([51, Theorem 2.4]). A metric space (X, d) has p-negative type if

and only if it has generalised roundness p.

Proof. We shall only prove the forward direction. Assume that (X, d) has p-negative

type.
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Let n 2 N and let a1, . . . , an, b1, . . . , bn 2 X. Set

x1 = a1, x2 = a2, . . . , xn = an

and

xn+1 = b1, xn+2 = b2, . . . , x2n = bn,

and define

↵k =

8
<

:
1 if 1  k  n

�1 if n+ 1  k  2n

so that
P2n

k=1 ↵j = 0. Then the p-negative type inequality (2.1.1) guarantees that

2nX

i,j=1

↵i↵jd(xi, xj)
p  0.

The left hand side can be decomposed further, so we have

nX

i,j=1

d(ai, aj)
p �

nX

i,j=1

d(ai, bj)
p �

nX

i,j=1

d(bi, aj)
p +

nX

i,j=1

d(bi, bj)
p  0

and upon rearranging and dividing by two, we have

nX

i,j=1
i<j

d(ai, aj)
p +

nX

i,j=1
i<j

d(bi, bj)
p 

nX

i,j=1

d(ai, bj)
p,

so (X, d) has generalised roundness p.

The proof of the reverse direction is much longer. It relies on an algebraic ma-

nipulation of the generalised roundness p inequality followed by a density argument,

so it is omitted here.

Recalling the supremal p-negative type }(X, d) from Definition 2.1.6, we can

therefore assign the same notation to the analogue in terms of generalised roundness.

Definition 2.1.13. Let (X, d) be a metric space. The maximum generalised round-

ness of (X, d) is

}(X, d) = sup{p � 0 : (X, d) has generalised roundness p},

or 1 if the supremum does not exist.
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We will refer to }(X, d) primarily as the maximum generalised roundness through-

out this thesis. Again, Remark 2.1.7 guarantees that the supremum is achieved if

it is finite, so it is indeed a maximum.

2.1.4 Transforms of the metric

Suppose that (X, d) is a metric space. It is clear that any positive multiple of d

also gives a metric on X, and it is a standard fact that dc is also a metric for

any c 2 [0, 1]. A simple application of the definition of p-negative type shows the

following results which will be needed later in the thesis.

Theorem 2.1.14. Let (X, d) be a metric space. Then }(X, cd) = }(X, d) for any

positive c.

Proof. Applying the p-negative type inequality (2.1.1) to (X, cd), a common factor

of cp appears in every term of the sum, and dividing this out recovers the original

p-negative type inequality. Thus p-negative type is invariant under scaling, and so

is the maximum generalised roundness.

Theorem 2.1.15. Let (X, d) be a metric space. Then }(X, dc) =
}(X, d)

c
for any

c 2 (0, 1].

Proof. Again examining inequality (2.1.1), we see that (X, dc) has p-negative type

if and only if (X, d) has (cp)-negative type, and the result follows.

2.1.5 Metric subspaces

Definition 2.1.16. Let (X, d) be a metric space and let Y be a nonempty subset

of X. Then (Y, d|Y⇥Y ) is said to be a metric subspace of (X, d)

The following easy fact relates the maximum generalised roundness of a metric

space to that of its metric subspaces.

Theorem 2.1.17. Let (X, d) be a metric space and let (Y, d|Y⇥Y ) be a metric sub-

space. Then }(X, d)  }(Y, d|Y⇥Y ).

Proof. If the generalised roundness p inequality (2.1.2) holds for any choice of points

in X, then it remains true if we restrict our choice of {ai}ni=1 and {bj}ni=1 to only

points in Y . It then follows that the maximum generalised roundness of (X, d) is

no greater than that of (Y, d|Y⇥Y ) as required.
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Remark 2.1.18. It is immediate from the definition of maximum generalised round-

ness that if there is an isometric bijection between two metric spaces (X1, d1) and

(X2, d2) then }(X1, d1) = }(X2, d2). We will sometimes abuse the above termi-

nology slightly by saying that (Y, d0) is itself a metric subspace of (X, d) if it is

isometric to a metric subspace of X. In particular, in that situation one has

}(X, d)  }(Y, d0).

This result shows in particular that it is impossible to isometrically embed a

metric space into one with larger maximum generalised roundness. We will use this

result repeatedly in later chapters to give upper bounds on the value of }(X, d) by

showing the existence of suitable metric subspaces Y .

2.1.6 Application to classical spaces

One might start by determining the maximum generalised roundness of the real line

R. This requires only a small computation and was known to Enflo and Schoenberg

in terms of generalised roundness and p-negative type respectively.

Theorem 2.1.19. The maximum generalised roundness of the real line with the

usual metric is }(R, |·|) = 2.

Proof. This proof is reproduced from [51, Corollary 2.6].

Choosing n = 2, we let a1 = 0 and a2 = 2, and let b1 = b2 = 1 to obtain

2X

i,j=1
i<j

|ai � aj|p +
2X

i,j=1
i<j

|bi � bj|p = 2p

and
2X

i,j=1

|ai � bj|p = 4.

Then (2.1.3) fails for p > 2 and hence }(R, |·|)  2.

For the other direction, we demonstrate that (R, |·|) has generalised roundness

2. Simplifying (2.1.2), we must prove that

nX

i,j=1
i<j

(ai � aj)
2 +

nX

i,j=1
i<j

(bi � bj)
2 

nX

i,j=1

(ai � bj)
2

22



holds for arbitrary {ai}ni=1 and {bj}nj=1 in R. Rearranging, we have

nX

i,j=1

(ai � bj)
2 �

2

64
nX

i,j=1
i<j

(ai � aj)
2 +

nX

i,j=1
i<j

(bi � bj)
2

3

75

=

"
n

nX

i=1

(a2
i
+ b2

i
)� 2

 
nX

i,j=1

aibj

!#
�

2

64(n� 1)
nX

i=1

(a2
i
+ b2

i
)� 2

nX

i,j=1
i<j

(aiaj + bibj)

3

75

=
nX

i=1

(a2
i
+ b2

i
) +

nX

i,j=1
i 6=j

(aiaj + bibj)� 2

 
nX

i,j=1

aibj

!

=

 
nX

i=1

ai

!2

+

 
nX

i=1

bi

!2

� 2

 
nX

i=1

ai

! 
nX

i=1

bi

!

� 0

as required, so }(R, |·|) = 2.

Remark 2.1.20. It is worth noting that the first part of this proof together with

Theorem 2.1.17 imply that if (X, d) is any metric space in which there are three

points x, y, z 2 X where y is the midpoint between x and z, then }(X, d)  2. For

example, this bound applies to any normed space. It will similarly apply to most

of the metric spaces arising from graphs which we will study later.

A second generalisation of the proof of the above theorem can be seen in the

following result from Enflo, with complex numbers in place of the reals.

Theorem 2.1.21 ([31, Theorem 1]). Let µ be a positive measure. Then the maxi-

mum generalised roundness of L2(µ) is 2.

Proof. As noted above in Remark 2.1.20, we must have }(L2(µ), |·|)  2.
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Suppose {ai}ni=1, {bj}nj=1 2 L2(µ). Then using the previous result pointwise, we

have

nX

i,j=1
i<j

d(ai, aj)
2 +

nX

i,j=1
i<j

d(bi, bj)
2 =

nX

i,j=1
i<j

Z
|ai(!)� aj(!)|2 dµ+

nX

i,j=1
i<j

Z
|bi(!)� bj(!)|2 dµ


nX

i,j=1

Z
|ai(!)� bj(!)|2 dµ

=
nX

i,j=1

d(ai, bj)
2.

Thus }(L2(µ), | · |) � 2 also, completing the proof.

Lennard, Tonge and Weston [51] credited the generalisation to Lq spaces where

1  q < 2 to lectures also delivered by Enflo, and proved the extension to 0 < q < 1.

Note that for q < 1, the usual distance dq(f, g) = kf � gk
q
does not satisfy the

triangle inequality, but rather the weaker property

dq(f, g)  2
1
q�1 (dq(f, h) + dq(h, g)) .

Thus Lq is only a quasimetric space. The earlier definitions of p-negative type and

generalised roundness p require no further amendment to cover quasimetric spaces,

and Theorem 2.1.17 extends naturally.

The same result was earlier proven in terms of p-negative type by Schoenberg

[74].

Theorem 2.1.22 ([51, Corollary 2.6]). Let µ be a positive measure, and let 0 <

q  2. Then

}(Lq(µ)) = q.

A surprising result of [51] is that this behaviour changes drastically beyond

q = 2.

Theorem 2.1.23 ([51, Theorem 2.8]). If Lq(µ) has dimension at least three then

}(Lq(µ)) = 0

for 2 < q  1.
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Remark 2.1.24. Yost [84] provided a simple proof that all two dimensional normed

spaces embed isometrically in L1, so they have generalised roundness 1 by Theo-

rem 2.1.17.

Remark 2.1.25. The results of Theorem 2.1.23 for finite dimensional sequence spaces

`(n)q , where again n � 3, were previously known, with the q = 1 case as a result of

Misiewicz [59] and the 2 < q < 1 case from Koldobsky [49].

Remark 2.1.26. The original proof of Theorem 2.1.23 is rather indirect. It does not

proceed by finding suitable families of points which must violate the generalised

roundness inequalities or the p-negative type inequalities, nor does the proof give

any insight as to what such sets might look like. Doust, Sánchez and Weston [26]

provided a constructive proof in the case of three-dimensional `1 space, that is,

}(`(3)1 ) = 0, and noted that this conclusion applies also to metric spaces containing

an isometric copy of `(3)1 , such as c0 and C[0, 1].

These results have been used together with Theorem 2.1.17 to disprove em-

beddings. It is clear from Theorem 2.1.22 that a metric space (X, d) must have

q-negative type in order to embed isometrically into Lq space (0 < q  2).

Bretagnolle, Dacunha-Castelle and Krivine [11] proved that this condition is in

fact su�cient for real normed spaces, and even quasinormed spaces.

Definition 2.1.27. Let X be a real vector space. A function k·k : X ! [0,1) is

a quasinorm if

• kxk � 0 for all x 2 X,

• k�xk = |�| kxk for all x 2 X, � 2 R, and
• there exists K � 1 such that kx+ yk  K (kxk+ kyk) for all x, y 2 X.

Then (X, k·k) is a real quasinormed space.

Theorem 2.1.28 ([11, Theorem 2]). Let (X, k·k) be a real quasinormed space. Then

(X, k·k) is linearly isometric to a subspace of some Lq space if and only if it has

q-negative type.

Corollary 2.1.29 ([11]). Let 0 < q1  q2  2. Then there is a linear isometric

embedding of Lq2 into Lq1.

2.1.7 The p-negative type gap

The above results show that one may give an upper bound for }(X, d) by choosing a

suitable subset Y with known maximum generalised roundness. Proving good lower

bound results for the maximum generalised roundness is significantly more di�cult.
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Hjorth et al. [47] showed that certain classes of metric spaces, including all metric

trees, must have maximum generalised roundness at least 1. Doust and Weston [28]

improved this lower bound using a concept called the p-negative type gap, which

quantifies the sharpness of the generalized roundness inequality. Importantly these

works gave a link between graph theoretic structures of a metric space X, and the

geometric quantity }(X).

Definition 2.1.30. Let (X, d) be a metric space of p-negative type. Let S(~!) be a

normalised (q, t)-simplex in X, and define

�p
S
(~!) =

q,tX

i,j=1

minjd(ai, bj)
p�

X

1i1<i2q

mi1mi2d(ai1 , ai2)
p�

X

1j1<j2t

nj1nj2d(bj1 , bj2)
p.

The p-negative type gap of (X, d) is given by

�p

X
= inf

S(!)
�p
S
(~!).

Clearly, (X, d) has generalized roundness p if and only of �p

X
� 0.

Doust and Weston also proved an equivalent formulation in terms of p-negative

type.

Theorem 2.1.31 ([28, Remark 4.17]). Let (X, d) be a metric space of p-negative

type. The p-negative type gap �p

X
is the largest non-negative constant such that

�p

X

2

 
kX

`=1

|↵`|
!2

+
X

1i,jk

d(xi, xj)
p↵i↵j  0

for all k � 2, x1, . . . , xk 2 X and ↵1, . . . ,↵k 2 R with
P

k

`=1 ↵` = 0.

Geometrically, the 2-negative type gap for a subset of Euclidean space mea-

sures the minimum distance between the weighted barycentres of two disjoint finite

collections of points, as observed by Deza and Maehara [24].

A natural dichotomy emerges between values of p for which �p

X
= 0, so the

inequalities of interest are already sharp, and those where �p

X
> 0. It is clear that

if the gap is positive, then (X, d) has strict p-negative type. The converse is not

trivial, and was proven to hold for finite spaces by Li and Weston.

Theorem 2.1.32 ([52, Theorem 4.1]). Let (X, d) be a finite metric space of p-

negative type. Then (X, d) has strict p-negative type if and only if �p

X
> 0.
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Remark 2.1.33. An infinite metric space (X, d) may have strict p-negative type even

if �p

X
= 0. Doust and Weston [28, Theorem 5.7] provide an example of an ‘infinite

necklace’ exhibiting this property for p = 1.

Li and Weston also proved that the gap can be directly used to extend the range

of p for which (X, d) is known to have (strict) p-negative type.

Theorem 2.1.34 ([52, Theorem 3.3]). Let (X, d) be a finite metric space with

n = |X| � 3, of strict p-negative type, with diameter

diam(X) = max
x,y2X

d(x, y)

and scaled diameter

D(X) =
diam(X)

min
x,y2X
x 6=y

d(x, y)
.

Then (X, d) is also of strict q-negative for all q 2 [p, p+ ⇠) where

⇠ =
log
⇣
1 +

�p
X

diam(X)p�(n)

⌘

logD(X)
,

and

�(n) = 1� 1

2

✓
1

bn/2c +
1

dn/2e

◆
.

Corollary 2.1.35 ([52, Corollary 4.3]). Let (X, d) be a finite metric space with

maximum generalised roundness p. Then (X, d) does not have strict p-negative

type.

Remark 2.1.36. This result does not extend to infinite metric spaces, as exemplified

by the counterexample discussed in Remark 2.1.33, where }(X) = 1.

Weston used the method of Lagrange multipliers to compute the 0-negative type

gap of an n-point metric space, which is clearly independent of the metric.

Theorem 2.1.37 ([78, Theorem 3.2]). Let (X, d) be a metric space on n � 2 points.

The 0-negative type gap of X is given by

�0
X
=

1

2

✓
1

bn/2c +
1

dn/2e

◆
.
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Remark 2.1.38. For the discrete metric space on n points, the distances within the

metric transform Xp are independent of p, and so is the p-negative type gap. Thus

�p

X
=

1

2

✓
1

bn/2c +
1

dn/2e

◆

for all p � 0.

Remark 2.1.39 ([78, Corollary 3.4]). Letting n ! 1 in Theorem 2.1.37, we see that

the 0-negative type gap of any infinite metric space is zero, in contrast to finite

metric spaces where �0
X
> 0.

More generally, Wolf provided a formula to compute the p-negative type gap of

a finite metric space, and demonstrates several applications to well-known spaces.

Theorem 2.1.40 ([82, Theorem 3.5]). Let (X, d) be a finite metric space of strict

p-negative type. Let n = |X|, and define Dp = (d(xi, xj)p)
n

i,j=1 and = (1, 1, . . . , 1)

in Rn. The p-negative type gap of X is given by

�p

X
=

2

�
,

where

� = max
x2[�1,1]n

hBx, xi = 4 max
x2[0,1]n

hBx, xi

and

B =
⌦
D�1

p
,
↵�1 �

D�1
p

� �
D�1

p

�T �D�1
p
.

Example 2.1.41 ([82, Example 3.6]). Recall from Example 1.1.8 that the metric

space X depicted in Figure 2.1 has p-negative type for p  log2 3. It follows from

Theorem 2.1.4 that the strict p-negative type condition holds for p < log2 3.

x1

x2x3

x4

11

1

1
2

1
2

1
2

Figure 2.1: A four-point metric space.
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Letting ↵ = 2�p, the p-distance matrix is

Dp =

0

BBBB@

0 1 1 ↵

1 0 1 ↵

1 1 0 ↵

↵ ↵ ↵ 0

1

CCCCA
,

so the inverse is

D�1
p

=
1

3↵2

0

BBBB@

�2↵2 ↵2 ↵2 ↵

↵2 �2↵2 ↵2 ↵

↵2 ↵2 �2↵2 ↵

↵ ↵ ↵ �2

1

CCCCA
.

Routine calculations show that

B =
⌦
D�1

p
,
↵�1 �

D�1
p

� �
D�1

p

�T �D�1
p

=
1

2(3↵� 1)

0

BBBB@

4↵� 1 1� 2↵ 1� 2↵ �1

1� 2↵ 4↵� 1 1� 2↵ �1

1� 2↵ 1� 2↵ 4↵� 1 �1

�1 �1 �1 3

1

CCCCA
.

The value of

� = max
x2[�1,1]4

hBx, xi

must occur at one of the “corners” of the 4-cube, so one can simply evaluate hBx, xi
at a small number of points to show that

�p

X
=

8
<

:

3
4 �

1
42

�p p  2� log2 3

2�p � 1
3 2� log2 3  p < log2 3.

Example 2.1.42 ([82, Corollary 4.1]). Let n � 3, Cn = {x1, . . . , xn} and

d(xi, xj) = min(|i� j| , n� |i� j|),

representing the smallest number of steps between vertices i and j of an n-sided

polygon. The example of C7 is depicted in Figure 2.2.
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x1

x2

x3

x4x5

x6

x7

Figure 2.2: The seven point metric space C7.

Wolf proved that the 1-negative type gap is

�1
X
=

8
<

:
0 if n is even

1
2

n

n2�2n�1 if n is odd.

Using this method, computation of the p-negative type gap for a given n-point

metric space requires us to consider 2n�1 assignments of �1 and 1 to the components

of x, which is computationally di�cult as n becomes large.

2.2 Graph metric spaces

A large and important family of metric spaces are those which, like Example 2.1.42,

are associated with connected graphs. The work of Hjorth et al. [47] and Doust and

Weston [28] indicate that there are some unexpected connections between purely

graph theoretic properties, and the geometric constants considered in the previous

section. A starting point for the research presented here was to examine whether

there are other similar connections to be uncovered. In particular we will be looking

at the typical geometric properties of metric spaces constructed from random graphs

of various types.

2.2.1 Fundamentals of graph theory

We will first formalise the main ideas and terminology from graph theory that we

will be using. The reader is encouraged to consult Diestel [25] for further details.
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Definition 2.2.1. A graph is a pair of sets G = (V,E), where V is a nonempty

set whose elements are called vertices and E is a set of unordered pairs of distinct

vertices, whose elements are called edges.

Remark 2.2.2. Throughout this thesis, all graphs are undirected. In addition, no

duplicate edges or loops are permitted, so our graphs are simple.

Remark 2.2.3. A graph is said to be finite if its vertex set is finite, and infinite

otherwise. In this thesis, all graphs will be finite except in Chapter 6.

Definition 2.2.4. Let G = (V,E) be a graph. The order of G is the number of

vertices |V |, which we will denote by |G|.

Definition 2.2.5. Let G = (V,E) be a graph, and let v 2 V be a vertex. The

degree of v is the number of edges incident to v, that is,

deg v = |{e 2 E : v 2 e}| .

Within a graph, we can form a subgraph by selecting some or all of the vertices

and a subset of the corresponding edges. Subgraphs will be vital in our understand-

ing of the structure of a graph.

Definition 2.2.6. Let G = (V,E) be a graph. A subgraph of G is a graph G0 =

(V 0, E 0) where V 0 ✓ V and E 0 ✓ E.

Traversing several edges in succession forms a path, allowing us to describe

indirect connections between pairs of vertices.

Definition 2.2.7. A path P = v0v1v2 . . . vk�1vk is comprised of a sequence of

edges {v0, v1}, {v1, v2}, . . . , {vk�1, vk}, where the intermediate vertices v1, . . . , vk�1

are distinct. We can denote subpaths of P as follows:

Pvj = v0v1 . . . vj�1vj

viP = vivi+1 . . . vk�1vk

viPvj = vivi+1 . . . vj�1vj.

Definition 2.2.8. A cycle is a path v0v1v2 . . . vk�1v0 consisting of three or more

edges.

Definition 2.2.9. A graph is acyclic if it has no cycles.

Definition 2.2.10. A graph is connected if there is a path joining each pair of

distinct vertices.
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We can now define path lengths within the graph, by taking the shortest path

available between each pair of vertices.

Definition 2.2.11. Let G = (V,E) be a connected graph. Define the path metric

d : V ⇥V ! N as follows: for u, v 2 V , let d(u, v) be the minimum number of edges

in a path between u and v.

Note that the graph must be connected to ensure that d(u, v) is defined for all

pairs of vertices.

Proposition 2.2.12. The path metric satisfies the definition of a metric, so (G, d)

is a metric space.

Notation 2.2.13. We denote the metric space (G, d) simply as G, and refer to it as

a path metric graph.

The path metric is not the only metric with which the vertices of a graph can

be endowed. Other notions of distance can be introduced by adding a weight to

each edge.

Definition 2.2.14. Let G = (V,E) be a graph. Let w : E ! (0,1) be a function

that assigns a weight to each edge. We refer to (G,w) as a weighted graph, and

often write |e| for the weight of the edge.

Proposition 2.2.15. In a connected weighted graph (G,w), let dw(u, v) be the

minimum total weight of a path between u and v. This also satisfies the definition

of a metric.

We may therefore refer to (G,w) as a metric graph. Note that if all edge weights

are set to 1, we recover the path metric d.

Remark 2.2.16. Observe that any metric space can be represented by an appropri-

ately weighted complete graph.

2.2.2 Trees

As with many graph problems, the more restricted setting of trees allows us to solve

problems more easily due to the additional structure. Several key results on the

maximum generalised roundness properties of trees are well known in the field, from

the work of Doust and Weston [28] among others. We will present and extend these

results in Chapter 4, and both the methods and outcomes will motivate further

study among general graphs in Chapters 5 and 6.

We begin our preliminaries with one of many equivalent definitions of a tree.

Definition 2.2.17. A tree is a connected acyclic graph.
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Doust and Weston [28] made important deductions by partitioning the vertices

of a tree about a fixed edge, and analysing the distances both across the partition

and on each side. The following fundamental result is crucial to this approach.

Proposition 2.2.18. Let T be a tree and v, w 2 V (T ) be two distinct vertices of

T . There is a unique path between v and w.

Proof. As T is connected, we are guaranteed the existence of one such path by

Definition 2.2.10.

Suppose that two paths exist, say P = vu1u2 . . . ukw and P 0 = vu0
1u

0
2 . . . u

0
`
w.

We will prove the presence of a cycle. First, we remove duplicated edges from the

start of both paths, by traversing both paths together until the last common vertex

ui = u0
i
= x. We then have subpaths xP and xP 0, noting that the second vertices of

the two paths are ui+1 6= u0
i+1. Next, let y be the first vertex of ui+1P to appear in

u0
i+1P

0 also. Note that some such y must exist as w is common to both paths. This

leaves two subpaths xPy and xP 0y, which cannot have any intermediate vertices

in common by the definition of y. Thus the path formed by xPy followed by the

reverse of xP 0y is a cycle in T , contradicting the definition of a tree, so exactly one

path exists between v and w.

It is well known that a finite tree has exactly one fewer edge than it has vertices.

Proposition 2.2.19. A tree on n vertices has exactly n� 1 edges.

A proof can be found in [25, Corollary 1.5.3]

The connected subgraphs of a tree are themselves acyclic, so they are also trees.

Definition 2.2.20. Let T be a tree. A subtree is a connected subgraph of T .

2.2.3 Examples

For some applications it is desirable to be able to embed a metric graph isometrically,

or with some distortion, in a Euclidean space Rn. One would therefore want to

know its maximum generalised roundness. We begin with the some of the most

elementary graphs.

Example 2.2.21. Let Kn be the unweighted complete graph on n vertices. Then

for v, w 2 Kn,

d(v, w) =

8
<

:
1 if v 6= w

0 if v = w,
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so d(v, w)p is independent of p. Since Kn has generalised roundness 0 by Corol-

lary 2.1.37, it must also have generalised roundness p for all p > 0, so }(Kn) = 1.

This graph metric space corresponds exactly to the discrete metric space on n

points. This example is in fact atypical, and other graphs exhibit very di↵erent

maximum generalised roundness properties, as alluded to in Remark 2.1.20.

Theorem 2.2.22. Let G be an unweighted connected graph on at least three vertices

which is not complete. Then }(G)  2.

Proof. Suppose that G has generalised roundness p. As G is connected but not

complete, there must exist three vertices v1, v2, v3 2 V so that {v1, v2}, {v2, v3} 2 E

but {v1, v3} /2 E, so d(v1, v3) = 2. Applying Definition 2.1.8 with n = 2, and

choosing a1 = v1, a2 = v3 and b1 = b2 = v2, the generalised roundness p inequality

(2.1.3) gives 2p  4 and hence p  2.

A similar result also applies to weighted graphs. The following example of

a three vertex graph with two weighted edges is crucial in establishing the more

general bound.

Example 2.2.23. Let a 2 (0, 1) be fixed, and let (G,w) be a weighted graph on

three vertices as in Figure 2.3. We claim that }(G,w) = 2.

x1 x2 x3
a 1� a

Figure 2.3: A graph on three vertices.

We begin by constructing the corresponding metric space (X, d), with point set

X = {x1, x2, x3} and distances

d(x1, x2) = a,

d(x2, x3) = 1� a,

d(x1, x3) = 1.

Note that Example 2.2.21 implies that any two-point subspace has generalised

roundness p for any p 2 [0,1), so it remains to test the simplices involving all three

points.
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Consider the normalised (2, 1)-simplex S = [ai(mi); bj(nj)]2,1 given by

m1 = t,m2 = 1� t, n1 = 1 and a1 = x1, a2 = x3, b1 = x2,

where t 2 (0, 1). For this simplex, the generalised roundness p inequality (2.1.3)

reduces to

t(1� t)  tap + (1� t)(1� a)p. (2.2.1)

By symmetry, the only other non-trivial (2,1)-simplex to consider is given by

m1 = t,m2 = 1� t, n1 = 1 and a1 = x1, a2 = x2, b1 = x3,

where t 2 (0, 1). Here, (2.1.3) reduces to

t(1� t)ap  t+ (1� t)(1� a)p. (2.2.2)

Comparing to (2.2.1), the left-hand side has been reduced and the right-hand side

increased since a, t 2 (0, 1). Hence if some p satisfies (2.2.1) for all t 2 (0, 1), then

it also satisfies (2.2.2) for all t 2 (0, 1). Thus we need only consider the first (2, 1)-

simplex to determine the values of p for which (X, d) has generalised roundness

p.

First, we observe that substituting p = 2 reduces (2.2.1) to (a + t � 1)2 � 0,

which holds for all t 2 (0, 1) with equality for t = 1 � a. Therefore (X, d) has

2-negative type, but does not have strict 2-negative type, so by Corollary 2.1.5 we

have }(X, d) = 2. We will therefore write }(G,w) = 2 also.

It follows that whenever the graph G discussed in Example 2.2.23 occurs as

a metric subspace of a larger metric space H, we can bound }(H) using Theo-

rem 2.1.17.

Proposition 2.2.24. For any metric space (X, d) with |X| � 3, in which three

points x1, x2, x3 2 X satisfy

d(x1, x3) = d(x1, x2) + d(x2, x3),

we have }(X, d)  2.

Such a triple occurs in every weighted graph, unless the graph is complete and

has no edge equal in weight to another path joining its endpoints. Note however
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that this condition cannot be removed; in fact we can easily construct a metric

space with }(X, d) = p for any 2 < p  1.

Remark 2.2.25. Let (G,w) be the weighted graph depicted in Figure 2.4, where

a 2 [1, 2) is fixed.

x1

x2 x3

1 1

a

Figure 2.4: A graph on three vertices.

Let (X, d) be the correspondng metric space. Again, we need only consider two

nontrivial normalised (2, 1)-simplices.

The first is S1 = [ai(mi); bj(nj)]2,1 given by

m1 = t,m2 = 1� t, n1 = 1 and a1 = x2, a2 = x3, b1 = x1,

where t 2 (0, 1). For this simplex, the generalised roundness p inequality (2.1.3)

reduces to

t(1� t)ap  t+ (1� t) = 1. (2.2.3)

The other simplex is S2 = [ai(mi); bj(nj)]2,1 given by

m1 = t,m2 = 1� t, n1 = 1 and a1 = x1, a2 = x2, b1 = x3,

where t 2 (0, 1). Here, (2.1.3) simplifies to

t(1� t)  t+ (1� t)ap. (2.2.4)

Again comparing with (2.2.3), since a > 1, the left-hand side has been reduced and

the right-hand side increased. Therefore we need only consider whether a value of

p satisfies (2.2.3).

Rearranging (2.2.3), we have

p  log
a

1

t(1� t)
 log

a
4,
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so

}(X, d) = }(G,w) = log
a
4,

which can take any value in (2,1] as a ranges over [1, 2).

For some families of graphs with very rigid structure, we can explicity find the

maximum generalised roundness. Two examples are detailed below.

Example 2.2.26. Let n � 3, and let Pn be a graph with vertex set {v1, v2, . . . , vn}
and edge set {{v1, v2}, {v2, v3}, . . . , {vn�1, vn}}. We refer to Pn as the path graph

on n vertices. Figure 2.5 depicts P5.

v1 v2 v3 v4 v5

Figure 2.5: The path graph on 5 vertices, P5.

Recall from Example 2.2.23 that }(P3) = 2. Noting that P3 is a metric subspace

of Pn for all n � 3, we have }(Pn)  2 by Theorem 2.1.17. This result can

alternatively be seen as an application of Remark 2.2.22.

However, Pn itself is a metric subspace of R with the usual metric. Recall from

Theorem 2.1.19 that }(R) = 2, so using Theorem 2.1.17 again, we are able to

deduce that }(Pn) � 2.

Combining the two results, we have }(Pn) = 2 for all n � 3.

Example 2.2.27 ([28, Theorem 5.6]). Let n � 3, and let Sn be a graph with vertex

set {v0, v1, . . . , vn�1} and edge set {{v0, v1}, {v0, v2}, . . . , {v0, vn�1}}. We refer to Sn

as the star graph on n vertices. Figure 2.6 depicts S6.

v0

v1

v2

v3v4

v5

Figure 2.6: The star graph on 6 vertices, S6.

To find the maximum generalised roundness, Doust and Weston consider a nor-

malised (q, t)-simplex S = [ai(mi); bj(nj)]q,t in Sn.
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First, if v0 does not appear in S, that is, v0 6= ai, bj, then the generalised

roundness p inequality (2.1.3) holds trivially for all p � 0 as all distances are 2.

Thus we proceed with the assumption that v0 is one of the vertices of the simplex,

say b1.

Next, we prove that it su�ces to consider only simplices where t = 1. A simple

calculation shows that if t > 1, S satisfies (2.1.3) only if the same is true of the

(q, t � 1) simplex formed by omitting b2 from the simplex and adding its weight

n2 to that of b1. Repeating this transformation, the problem can be restricted to

simplices where t = 1.

In this case, (2.1.3) reduces to

 
X

1i1<i2q

mi1mi2

!
2p 

 
qX

i

mi

!
1p = 1.

After manipulation, it can be seen that the coe�cient of 2p is at most
1

2

✓
1� 1

q

◆
,

which is maximised when q = n� 1, and hence

p  1 + log2

✓
1 +

1

n� 2

◆
.

Thus we have

} = 1 + log2

✓
1 +

1

n� 2

◆
.

Note that the graphs in Examples 2.2.26 and 2.2.27 are examples of trees. Both

have maximum generalised roundness strictly greater than 1, a special property of

trees which will be explored in Chapter 4. In Chapter 5, we will demonstrate that

such behaviour is rare among graphs in general.

For larger and more complex graphs, it is typically not possible to compute

the maximum generalised roundness directly from the definitions and theorems

presented earlier in this chapter. Chapter 3 details an alternative approach for

these computations.

2.2.4 Graph counting

In Chapters 4 and 5, we will discuss the typical maximum generalised roundness

properties of trees and graphs. Our focus will be on unweighted graphs, as there
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are only finitely many of these on n vertices. There are two natural schemes for

enumeration of these graphs, depending on the question of vertex labelling and

graph isomorphisms.

Definition 2.2.28. Two graphs G = (V,E) and G0 = (V 0, E 0) are said to be

isomorphic if there is an edge-preserving bijection f : V ! V 0, that is, (v, w) 2 E

if and only if (f(v), f(w)) 2 E 0. We denote this relation G ' H.

Proposition 2.2.29. Graph isomorphism (') is an equivalence relation on graphs

on n vertices, and on trees on n vertices.

One natural approach to count graphs is to label the vertices v1, . . . , vn, count-

ing isomorphic graphs with multiplicity. The other method is to count graphs up

to isomorphism, with unlabelled vertices, yielding the smaller number of isomor-

phism classes only. We primarily concern ourselves with the labelled case for two

main reasons. Graph isomorphism is not a natural lens to apply in our study of

maximum generalised roundness, as these properties are often determined entirely

by a subgraph as in Theorem 2.1.17. Furthermore, it is simple enough to list all

the graphs for small n, but the number of graphs in these families grows superex-

ponentially. Instead we use established methods of randomly sampling from these

families, which count graphs on labelled vertices.
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Chapter 3

Calculation of maximum generalised roundness

For many years, calculating the maximum generalised roundness of a particular

finite metric space was a di�cult endeavour. Even in spaces with few points, it

is di�cult to directly apply the generalised roundness p inequality from Defini-

tion 2.1.8,
nX

i,j=1
i<j

d(ai, aj)
p +

nX

i,j=1
i<j

d(bi, bj)
p 

nX

i,j=1

d(ai, bj)
p,

as the points ai and bj may be repeated. Although the weighted version presented

in Theorem 2.1.11 does not allow repetition, it introduces an additional real-valued

variable for each point of the metric space, again making the problem of maximising

p intractable in most cases. One encounters the same di�culty with the definition

of p-negative type from Definition 2.1.1. However, an alternative approach was

developed by Sánchez [71], who analysed the p-distance matrix, the elementwise

pth power of the distance matrix.

In Section 3.1 we shall introduce Sánchez’s formula, and discuss some of the

issues involved in using this formula in practice. For most finite metric spaces

p(X, d) is a zero of a rather complicated function, and so does not have an expression

in a closed form. Rather, Sánchez’s formula allows one to find p(X, d) numerically.

For an individual small metric space, this is not too di�cult to do using some human

judgement. In order to calculate p(X, d) for thousands of larger spaces, a robust

algorithm is needed, and so most of this chapter is devoted to a discussion of the

development and verification of such an algorithm.

At the end of the chapter we will look at some special structures where Sánchez’s

formula can be used to give an exact value of p(X, d).
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3.1 Calculation of maximum generalised roundness of individual

graph metric spaces

We first introduce some notation used in Theorem 3.1.3.

Definition 3.1.1. Let (X, d) be a finite metric space, with points labelled x1, . . . , xn.

For p � 0, define the p-distance matrix by

Dp = (d(xi, xj)
p)

i,j
.

Notation 3.1.2. Denote by a vector whose entries are all 1, so that the sum of the

entries of a matrix A may be written as hA , i.

Sánchez provided the following characterisation of strict p-negative type in terms

of the p-distance matrix. Importantly, this criterion is much easier to verify than

the definitions of p-negative type or generalised roundness p that were presented in

Chapter 2.

Theorem 3.1.3 ([71, Theorem 2.3]). Let (X, d) be a finite metric space of p-

negative type, with p-distance matrix Dp. Then (X, d) has strict p-negative type

if and only if

detDp 6= 0 and
⌦
D�1

p
,
↵
6= 0.

Proof. Recall that the p-negative type condition in Definition 2.1.1 selects n points

{x1, . . . , xn} of X and assigns weights ↵i to these points. For finite metric spaces,

we can assign weight zero to the remaining points of X to obtain a weight vector

↵ 2 R|X| whose entries sum to zero. We denote the set of such vectors

⇧0 = {↵ 2 R|X| : h↵, i = 0},

so (X, d) has p-negative type if and only if

hDp↵,↵i  0

for all ↵ 2 ⇧0, with strict p-negative type if equality occurs when ↵ = 0 only. We

similarly define ⇧1 = {↵ 2 R|X| : h↵, i = 1}.

Suppose (X, d) has strict p-negative type. We first show that Dp is not singular,

that is, Dp↵ = 0 has no non-trivial solutions. Suppose ↵ /2 ⇧0. Then

v =
↵

h↵, i 2 ⇧1,
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as is

w =

✓
1

2
,
1

2
, 0, . . . , 0

◆
,

so w � v 2 ⇧0. As (X, d) is of negative type, we have

hDp(w � v), w � vi  0.

Since Dp is symmetric, we have hDpw, vi = hDpv, wi, and Dp↵ = 0 implies that

hDpv, vi = 0 also, so after expanding and simplifying we have

hDpw,wi  0.

However,

hDpw,wi =
1

2
d(x1, x2)

p > 0,

so we have a contradiction and thus ↵ 2 ⇧0. Now, hDp↵,↵i = h0,↵i = 0, so for

strict p-negative type, ↵ = 0 only, proving that detDp = 0.

Next, we show that
⌦
D�1

p
,
↵
6= 0. Let � = D�1

p
, so we aim to prove � /2 ⇧0.

Assuming the contrary, we have hDp�, �i = h , �i = 0. Again using the strict

p-negative type condition, this can only be solved by � = 0, which is impossible,

completing the proof.

Finally, suppose that (X, d) is of p-negative type with detDp and
⌦
D�1

p
,
↵

nonzero. We wish to prove that (X, d) is of strict p-negative type by showing that

hDp↵,↵i = 0 only when ↵ = 0. As (X, d) is of p-negative type, the symmetric

bilinear form (�hDpx, yi) is a semi-inner product on ⇧0, so by the Cauchy-Schwarz

inequality we have

|hDp↵, �i|2  |hDp↵,↵i| |hDp�, �i| = 0

for any � 2 ⇧0. We therefore have hDp↵, �i = 0, which can only hold for all such

� if Dp↵ = � . Since Dp is non-singular, ↵ = �D�1
p

, so 0 = h↵, i = �
⌦
D�1

p
,
↵
,

and thus � = 0. It follows that ↵ = 0 as required, completing the proof.

Remark 3.1.4. Note in particular that the choice of labelling in Definition 3.1.1 does

not influence the two quantities of interest in Theorem 3.1.3.

We can therefore formulate a one-variable expression for the maximum gener-

alised roundness. This presents a great improvement from its earlier definition as

the solution of an optimisation problem in |X|+ 1 variables.
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Corollary 3.1.5 ([71, Corollary 2.4]). Let (X, d) be a finite metric space with p-

distance matrix Dp. Then

}(X, d) = min{p � 0 : detDp = 0 or
⌦
D�1

p
,
↵
= 0}.

Proof. The proof follows immediately from Theorem 3.1.3 and Theorem 2.1.35.

In principle, we can now calculate the maximum generalised roundness of any

finite metric space, by solving for the first non-negative roots of the functions detDp

and
⌦
D�1

p
,
↵
. In practice however, it is not at all straightforward to perform

this calculation accurately and e�ciently, especially for large metric spaces. In

the following subsections, we will see that only numerical computation of these

functions is feasible, and that several complications arise in our e↵orts to isolate

and approximate the smallest zero of each function.

3.2 Computational issues

In this section we shall look more closely at the quantities that appear in Sánchez’s

formula and examine some of the problems that may be encountered in the appli-

cation of this formula to metric spaces on n points.

3.2.1 Determinant of the p-distance matrix

Since the entries of Dp are of the form (d(xi, xj))
p, upon expansion we see that

detDp =
X

�2Sn

sgn(�)
nY

i=1

�
d(xi, x�(i))

p
�

=
X

k

ckd
p

k
,

where each dk is a product of distances between points of X. Evidently, solving

detDp = 0 analytically is often infeasible or impossible.

Example 3.2.1. Consider the graph depicted in Figure 3.1.
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x1

x2

x3

x4x5

x6
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Figure 3.1: A graph on seven vertices.

The p-distance matrix is

Dp =

0

BBBBBBBBBBBB@

0 1 1 2p 3p 2p 1

1 0 1 2p 2p 1 2p

1 1 0 1 2p 2p 2p

2p 2p 1 0 1 2p 3p

3p 2p 2p 1 0 1 2p

2p 1 2p 2p 1 0 1

1 2p 2p 3p 2p 1 0

1

CCCCCCCCCCCCA

.

Using Maple, we can evaluate the determinant

detDp = 8⇥ 9p � 2⇥ 32p + 14⇥ 2p � 4⇥ 3p � 4⇥ 27p � 14⇥ 6p + 4⇥ 36p

+ 30⇥ 12p � 6⇥ 18p � 4⇥ 72p + 12⇥ 24p � 42⇥ 48p + 22⇥ 96p + 20⇥ 144p

� 4⇥ 192p � 6⇥ 288p � 26⇥ 64p + 8⇥ 128p � 26⇥ 4p � 20⇥ 8p + 52⇥ 16p

+ 2⇥ 162p � 4⇥ 216p + 6⇥ 54p + 2⇥ 432p � 12⇥ 108p,

which does not factorise further, so detDp = 0 cannot be solved analytically.

We are therefore required to solve numerically for the zeroes. Observe that

our function detDp is smooth, not only in this example but in general, so one can

certainly use standard computer packages to find the zeros numerically.

Recall that Corollary 3.1.5 requires us to find the smallest positive zero of detDp.

Numerical packages are usually very good at finding a zero of a function, but they

are typically unable to find the smallest zero, or all zeros.1 For example, Maple’s

fsolve employs a combination of algorithms [46] including Newton’s method to find

1
A notable exception is that there are well established methods to find all roots of a polynomial,

easily accessible in computing packages such as Maple, which we will later make use of.
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a zero within a specified interval, so in cases where we can symbolically calculate

detDp, it is tempting to use the Maple command

fsolve(Determinant(Dp)=0,p=0..2);. (3.2.1)

Unfortunately, this frequently gives a zero which is not the smallest one.

Example 3.2.2. In Example 3.2.1, applying fsolve on [0, 2] gives an answer of

1.3016 . . ., which is only the second smallest zero. To ensure correctness, it is crucial

that we select a search interval containing only one zero, by first closely examining

the graph of detDp.

with(GraphTheory):
with(LinearAlgebra):
V := [1,2,3,4,5,6,7]:
E := {{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,1},{1,3},{2,6}}:
G := Graph(V,E):
n := NumberOfVertices(G):
Dm := AllPairsDistance(G):
Dp := Matrix(n,n,(i,j) -> Dm[i,j]^p):
plot(Determinant(Dp),p=0..1);

Figure 3.2: A plot of detDp for the graph depicted in 3.1.
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Assessing Figure 3.2, we can easily isolate the smallest zero within the interval

(0.8, 0.9), and we can obtain an approximate value for this zero using the command

fsolve(Determinant(Dp)=0,p=0.8..0.9);

to find p ⇡ 0.8816.

For many of the problems that we wish to attack later in this thesis however,

this ‘hands-on’ method of numerically calculating the smallest zero is not feasible.

First of all, it is computationally expensive to even compute the determinant

symbolically, making the calculation prohibitively slow for larger metric spaces, as

the number of terms may grow factorially in n in the worst case. For example,

symbolic calculation of the determinant in Maple on a desktop PC typically takes

less than one-tenth of a second for n = 10, a few seconds for n = 15, a few minutes

for n = 20 and several hours for n = 30.

More importantly however, in later applications, we wish to perform this cal-

culation for many metric spaces, in order to gather statistical data describing the

maximum generalised roundness properties of various families of metric spaces. The

solution outlined thus far is not suitable, as plotting and examining the graph of

detDp for each such metric space would be incredibly time consuming. We instead

aim for a fast, robust procedure that can be applied without human intervention,

allowing us to iterate through a family of metric spaces, or a random sample thereof,

and calculate the maximum generalised roundness of each space in turn.

Dp Dp⇤

detDp detDp⇤

substitute p = p⇤

numeric

evaluate
determinant

symbolic evaluate
determinant

numeric

substitute p = p⇤
numeric

Figure 3.3: Symbolic computation of detDp is much slower than repeatedly calcu-
lating Dp and its determinant numerically.
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A much faster approach is to use numerical computations throughout, as seen in

Figure 3.3. We consider detDp as a function of p, and sample values of this function.

For each value of p, the p-distance matrix is recalculated, and its determinant can

be found by standard methods, such as the LU factorisation. In this way, even for

n = 100 we can sample detDp for one thousand values of p in about one minute in

Maple, and faster still in MATLAB.

In Example 3.2.2, a human operator was required to visually identify an interval

to search for the smallest zero. To eliminate this role, our algorithm must isolate

this smallest zero. Recall that unless G is a complete graph, then p(G)  2 by

Proposition 2.2.22, so we are only concerned with values of p in the finite interval

[0, 2]. Therefore we compute detDp for several values 0 = p0 < p1 < . . . < pm where

pm > 2, choosing pk = k✏ for simplicity. When the first change in sign of detDp is

found, we can search an interval of width ✏ for a zero.

However, this relies on our ability to programmatically identify a change in sign

either side of the smallest zero. If two zeros lie close together, we may fail to find

either of them, as displayed in Figure 3.4a. This can of course be rectified by

sampling more frequently from the curve, as in Figure 3.4b. Unfortunately, it is

hard to know a priori just how fine the sampling needs to be. There is also a tradeo↵

between speed and accuracy, as a smaller value of ✏ may require more computations

before a change in sign can be found.

Similarly, if three or more zeros occur between two values of p, the rootfinding

algorithm may find the wrong zero. Figure 3.4c illustrates that as long as a change

of sign still occurs, the resulting error can only be an overestimate of at most ✏.
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pk pk+1

(a) A change in sign may not be observed across an interval containing two zeros.

p` p`+1 p`+2

(b) Reducing the step size ✏ ensures that a change in sign is detected.

pk pk+1

(c) If three zeros occur in the interval, the smallest zero may be overlooked.

Figure 3.4: Some configurations with more than one zero within an interval.
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A particularly di�cult case is C5, the cycle graph on five vertices, where we have

detDp = 2(1 + 2p)
�
22p � 3⇥ 2p + 1

�2
.

This quantity is non-negative throughout the neighbourhood of the only zero, as

shown in Figure 3.5. Thus no change in sign occurs, causing our proposed algorithms

to miss this zero and hence overestimate the maximum generalised roundness.

1.3 1.35 1.4 1.45 1.5
0

0.5

1

1.5

2

p

Figure 3.5: For G = C5, detDp has a zero without a change in sign.

The same behaviour occurs in C7 and C9, and we suspect the following, although

it is surprisingly di�cult to prove due to the presence of various exponentials of

di↵erent bases.

Conjecture 3.2.3. For C2n+1, the cycle graph on 2n+ 1 vertices, detDp is of the

form

2(1 + 2p + 3p + . . .+ np)(. . .)2.

This is not the only example of this phenomenon; see for example the graph

depicted in Figure 3.6, for which detDp = �(22p + 4)(22p � 3⇥ 2p + 1)2.

This type of error is particularly troubling as the resulting di↵erence between

our calculation of the maximum generalised roundness and the true value is not

bounded by ✏, and may be as large as 2. Thus, we must make e↵orts to identify

and correct such errors.

Recalling that detDp is a smooth function, we can attempt to identify cases with

two zeros close together or coincidental by analysing the stationary points. Since
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Figure 3.6: A graph on six vertices.

exact zeros of the derivative cannot be found, we calculate the finite di↵erences

gk = detDpk
� detDpk�1

. Suppose no change in sign of detDp is detected between

pk�2 and pk, that is, detDp has the same sign for p = pk�2, pk�1, pk. Assume without

loss of generality that these determinants are all positive. We also assume that ✏ is

small enough to ensure that at most one turning point exists in (pk�2, pk). Now, a

change in sign between gk�1 and gk indicates the presence of such a turning point,

and in particular if gk�1 < 0 and gk > 0, there is a minimum turning point p⇤. The

determinant will be decreasing on (pk�2, p⇤) and increasing on (p⇤, pk), so we can

use ternary search to find p⇤. If detDp⇤ < 0, as in Figure 3.7, we have a change

in sign on (pk�2, p⇤), and we can again find the smallest zero by bracketing. If

detDp⇤ > 0, no zero has been found, so we resume the search from pk onwards.

Finally, if detDp⇤ = 0, we have a zero at the minimum turning point, as required.

pk�2

p⇤

pk�1 pk

Figure 3.7: If one stationary point occurs in the interval, we may detect a zero
without a change in sign.

Note that if two or more turning points appear in (pk�2, pk), this procedure may

fail to find the smallest zero. In this case, any combination of signs of gk�1 and gk

permits a zero at a turning point. Also, the p⇤ found by ternary search may only

be a local minimum, so we may obtain a zero at p⇤ but miss an even smaller zero,
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or alternatively we may fail to find a zero altogether on (pk�2, pk) if our minimum

is not the smallest on this interval, as occurs in Figure 3.8.

pk�2 p⇤ pk�1 pk

Figure 3.8: If two or more stationary points occur in the interval, a zero may be
missed.

Fortunately, detDp is not a particularly pathological function, as it is only a

linear combination of exponentials. After inspection of many examples, we found

occurrences of many zeros in close proximity only for large n, and only rarely

did the determinant have a zero at a turning point. In a sample of graphs on

100 vertices, attempts to detect these zeros were able to improve our calculated

maximum generalised roundness value in fewer than one in ten cases, and reduce it

by more than ✏ much less often.

A further consideration here results from the arithmetic used in these compu-

tations. Exact arithmetic is infeasible due to the number of operations involved, so

we rely on floating point representations of numbers, which introduces small errors

in each calculation. It is di�cult to quantify how large the final errors are in values

of detDp, but values particularly close to zero are not necessarily reliable, as the

true value may be of the opposite sign to the result produced by a computer. This

is of particular concern if the true value is exactly zero, since we may fail to detect

a change in sign in the preceding interval.

A notable example arises from the cycle graph on four vertices. Since }(C4) = 1,

a relatively small value for a graph of this size, the addition of one or more vertices

and edges often creates a new graph with the same maximum generalised roundness.

51



As a result, 1 is a relatively common value especially among small graphs. Hence

we avoid step sizes ✏ of the form 1/k where k 2 Z+.

Also, in the case of zeros at turning points, the exact value will never be found

so we must accept detDp⇤ = 0 up to some tolerance �. However, if � is too large,

we may encounter false positives, where a turning point close to zero is mistaken

for a zero although no zero exists on the interval in question. Examination of many

examples indicates that such turning points do not occur often, and if a suitably

small tolerance is chosen, then |detDp⇤ | < � typically only occurs at a true zero.

Note finally that it is not immediately clear that we must analyse detDp at

all. The zeroes of detDp correspond exactly to the discontinuities of
⌦
D�1

p
,
↵
,

so one may be tempted to only consider the second function and search for both

zeros and discontinuities. However, this function can have removable singularities,

which cannot be detected by sampling values. Again, C5 is an example of this

phenomenon, where
⌦
D�1

p
,
↵
=

5

2(2p + 1)

with a removable singularity at p = log2
3 +

p
5

2
, the only zero of detDp.

3.2.2 Sum of entries of the inverse of the p-distance matrix

All of the problems raised in relation to detDp also apply to
⌦
D�1

p
,
↵
, but there

are some additional concerns to be addressed here. For one, the form of this quantity

is likely to be significantly more complicated than the form of detDp, making it

even more expensive to compute and solve symbolically. Finding the inverse of

the p-distance matrix is itself an expensive operation, but this can be mitigated by

instead solving the linear system Dpu = and then evaluating hu, i.

Recall that our rootfinding algorithm relies on the smoothness of the function in

question. Clearly, there may be some values of p for which Dp is singular and hence
⌦
D�1

p
,
↵
is undefined, but Cramer’s rule guarantees that it is otherwise smooth.

As we are only interested in the smaller zero of either expression, we can use the

algorithm to find a zero p⇤ of detDp, then look for zeros of
⌦
D�1

p
,
↵
on (0, p⇤) by

the same procedure. If p⇤ is indeed the smallest zero of detDp, then
⌦
D�1

p
,
↵
is

continuous on (0, p⇤) as desired. However, if a smaller zero of detDp exists, we may

be searching an interval on which the function is not continuous, making the result

unreliable. Again, this is rare provided that a small step size ✏ is used. Note that

it is also still possible for more than one zero to appear in close proximity.
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3.3 Algorithm

We now present an algorithm to numerically determine the smallest non-negative

zero of either detDp or
⌦
D�1

p
,
↵
, relying on the properties of these functions as

described in the previous section. The following algorithm FindSmallestZero

iterates through values of the argument p with stepsize ✏ and at each stage looks

for a change in sign or an appropriate turning point to indicate the presence of a

zero. The first interval detected to contain a zero is then searched more closely by

FindZero.

Algorithm 1 A procedure to approximate the smallest non-negative zero of f

Parameters: ✏, �

procedure FindSmallestZero(f)

k = 0

while pk = k✏ < 2 do

fk = f(pk)

if k � 1 then

gk = fk � fk�1

if fk = 0 then

return pk

else if k � 1 and fk�1fk < 0 then . change in sign detected

return FindZero(f, pk�1, pk)

else if k � 2 and gk�1gk < 0 then . turning point detected

if gkfk > 0 then . orientation allows a zero

if fk > 0 then

h = f

else

h = �f

p⇤ = FindMin(h, pk�2, pk)

if h(p⇤) < �� then

return FindZero(f, pk�2, p⇤)

. a zero occurs before the turning point

else if h(p⇤) < � then

return p⇤

. a zero occurs at the turning point

k = k + 1

return 1
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FindZero numerically finds a zero of f on a given interval on which f changes

sign. A simple yet robust implementation can be achieved using the bisection

method, with a parameter b for the number of iterations.

Algorithm 2 A procedure to approximate a zero of f on the interval (lo, hi), given

that f(lo)f(hi) < 0

Parameters: b

procedure FindZero(f, lo, hi)

for k = 1..b do

mid = (lo+ hi)/2

if f(lo)f(mid) < 0 then

hi = mid

else

lo = mid

return (lo+ hi)/2

Alternatives such as the secant method or false position may be preferred for

speed, but convergence is not guaranteed. However, most numerical computing

packages include highly optimised and reliable procedures for this task, such as

Maple’s fsolve and MATLAB’s fzero, and in practice these are the best choices.

fzero implements the Zeroin algorithm [60] developed by Brent [10], who built

upon an earlier algorithm of Dekker [22].
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Similarly, FindMin numerically finds a local minimum of f on a given interval,

for example by trisection.

Algorithm 3 A procedure to approximate a local minimum point of f on the

interval (lo, hi)

Parameters: b

procedure FindMin(f, lo, hi)

for k = 1..b do

mid1 = (2lo+ hi)/3

mid2 = (lo+ 2hi)/3

if f(mid1) � f(mid2) then

lo = mid1

else if f(mid1)  f(mid2) then

hi = mid2

return (lo+ hi)/2

Again, methods such as parabolic interpolation and golden-mean search are

applicable here, but we can instead invoke MATLAB’s fminbnd which uses a com-

bination of these two methods [60]. Alternatively, an approximation is e�ciently

achieved by simply iterating over the interval with a finer stepsize and selecting the

smallest value found.
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3.4 Implementation and Validation

Writing a short program in a high level mathematical package to find roots of detDp

and
⌦
D�1

p
,
↵
is very easy. The challenge is to be able to quickly and accurately

find the smallest roots. We initially coded trial procedures in Maple, and this

quickly threw up many of the potential problems discussed above.

In order to properly test our procedures we generated a large library of test

graphs, using Maple’s RandomGraphs package. For

n 2 {7, 10, 15, 20, . . . , 100}

we produced 100 random graphs on n vertices with edge probability p for each value

of p 2 {0, 1, 0.2, . . . , 0.9}. We also produced smaller test sets for for n = 200 and

n = 500. Additionally, we catalogued all graphs on up to eight vertices, all trees

on up to seventeen vertices, all planar graphs on up to ten vertices, various regular

graphs as well as larger collections of uniform random graphs and random trees to

accompany the work in later chapters. All up, the test library (which is available at

https://tinyurl.com/desilva-mgr) contains several hundred thousand graphs.

Notation 3.4.1. For k = 0, . . . , 99, let G(n, p, k) be the kth graph on n vertices with

edge probability p in the test library.

Maple is not a very e�cient tool for doing large scale numerical work, so our aim

was to do the bulk of our computations using MATLAB. Both these systems were

chosen because they include many inbuilt mathematical procedures and structures,

and allow arbitrary precision arithmetic.

Despite Maple’s computational limitations, it was very valuable to have com-

peting programs on di↵erent platforms. To minimize possible coding errors, my

supervisor and I independently coded procedures in Maple and MATLAB, and

then compared our results for the test library. These programs are available in

Appendices A and B respectively.

As discussed above in Figure 3.3, it was prohibitively slow to explicitly calculate

the two functions, so our procedures needed to depend purely on numerical sampling

of the functions.
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3.4.1 Parameters

Any implementation of the algorithm involves a choice of a number of parameters

which control the balance between accuracy and speed. Given the intended use in

the chapters to follow, extreme precision was perhaps less important than speed.

Our aim was to give an answer with an absolute error up to 10�3, 99% of the time,

for n  100.

The parameters include:

Precision d: Both MATLAB and Maple allow the user to set the number of digits

that they use when doing calculations with floating point numbers. Since we

were often dealing with nearly singular matrices, insu�cient precision could

have caused inaccuracies in our computations.

Stepsize ✏: We could achieve great accuracy by using very small values of ✏, but

this resulted in very long run-times. After considerable experimentation, we

used ✏ ⇡ 2
5n in the Maple procedure and ✏ = 0.0003 in MATLAB.

⌦
D�1

p
,
↵
upper bound pm: It is only useful to search for a zero of

⌦
D�1

p
,
↵
in

the interval up to the smallest zero p⇤ of detDp found. Of course
⌦
D�1

p
,
↵

is not defined at p⇤, so one can only sample up to some pm < p⇤. In some

graphs, the smallest zero of
⌦
D�1

p
,
↵
was very close to p⇤. A simple example

will be shown later in Example 3.6.1. If this smallest zero of
⌦
D�1

p
,
↵
was

greater than pm, this would cause an overestimate of the maximum generalised

roundness of up to p⇤ � pm. In Maple, we choose pm = p⇤ � 0.0001, ensuring

that p⇤ � pm < 10�3, so any error that results from this choice is within the

tolerable margin. The same outcome is achieved in MATLAB by our earlier

choice of ✏ = 0.0003.

Zero tolerance �: Since we are only sampling the functions, it is hard to numer-

ically determine whether a function has a zero at a turning point p†. This

parameter was chosen so that if the function was within � of zero at some

approximation to p† then we would assume it was zero at p†. After inspec-

tion of the function values near the first zero in several test cases, we used

� = 10�n/10 in MATLAB. This seemed to have minimal impact, as a much

higher value was used in Maple without causing conflicts. It should be noted

however that for very large n, say n � 170, the value of 10�n/10 may be

less than the machine epsilon and thus underflow to zero. We are therefore

cautious about applying this algorithm for such large metric spaces.
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Rootfinding iterations b: Once the procedures have found a change in sign, they

approximate the zero using some iterative method. One obviously obtains

greater accuracy with more iterations, but again at the cost of a longer run-

time. If the bisection method is used, the absolute error from this process

is at most 2�b✏, which is certainly at most 10�3 for b � 10. Therefore, for

the results later in the thesis we used at least ten iterations of the bisection

method in Maple. On the other hand, our MATLAB program uses a smaller

value of ✏ which ensures that the error is within acceptable margins even if

no rootfinding is attempted, but fzero yields a more precise result.

Our initial choices of the parameters were informed by trial runs on the test

library. In a number of cases, the two implementations gave di↵erent answers and

these were examined more closely using the more hands-on method described earlier.

We were thus able to correct systematic errors in both the MATLAB and Maple

implementations until both programs agreed with the results of the manual process

on many randomly chosen tests, and with each other on the entire dataset to an

even higher degree of precision and higher frequency than we had initially desired.

3.4.2 Accuracy

There are many potential sources of error, some due to the rootfinding procedures,

and some due to computational floating point error. Of these we believe that the

first is by far the most important. However, it is worth commenting on the floating

point errors first. In our rootfinding algorithm, it is crucial that we always correctly

identify the sign of say, detDp. We will see later in this section that |detDp| can
be very small over an extended range, and so it is quite reasonable to be cautious

as to whether the sign of the computed result is su�ciently reliable.

The calculation of a value of detDp involves two main steps. The first is to cal-

culate d(xi, xj)p numerically for each i and j, where we can safely assume that these

values are accurate to d digits. The second step is to then calculate the determinant

of a matrix, which for p close to a zero of detDp is likely to be almost singular. An-

alyzing the accuracy of this second step is considerably more complicated than the

first. We have throughout depended on the inbuilt and presumably state-of-the-art

numerical algorithms2 to calculate the determinants, although it seems rather dif-

ficult to obtain precise details of how much precision one should expect. It should

be noted of course that these algorithms avoid the sort of cancellation errors that

2
Maple’s numerical linear algebra algorithms are based on the BLAS CLAPACK and NAG

libraries [5].
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might occur if one tried naively to fully expand out the determinant. Typically

the determinant is calculated as a product of the diagonal elements from a suitable

factorization of the matrix, so the main concern for us is really that the signs of the

eigenvalues are correct.

Generally we worked with a fixed precision of d = 15 digits in Maple, but for

testing purposes we worked with up to 200 digits in order to make sure that this

was not changing what we were observing. The value of d sets the number of

significant digits that each step in the computation is calculated to. For a large and

complicated computation, the number of correct significant digits may be rather

smaller than d.

We ran several tests to investigate the e↵ect of changing the precision parameter.

For a fixed randomly generated 100 vertex graph and a fixed value of p, we used

Maple to calculate detDp with the precision d increasing from 2 to 100. The value

of p = 0.155 was chosen between the (apparent) first and second zeros of detDp.

The results for small d are shown in Table 3.1.

d detDp

2 �1.6495⇥ 10�3

3 �6.1254⇥ 10�6

4 1.2804⇥ 10�7

5 1.9240⇥ 10�7

6 1.9421⇥ 10�7

7 1.9439⇥ 10�7

8 1.9435⇥ 10�7

9 1.9436⇥ 10�7

10 1.9435⇥ 10�7

11 1.9435⇥ 10�7

12 1.9435⇥ 10�7

13 1.9435⇥ 10�7

14 1.9435⇥ 10�7

15 1.9435⇥ 10�7

Table 3.1: The first few digits of detDp for a nearly singular 100⇥ 100 matrix.

What we generally observed was that beyond any precision d, the first d � 3

digits stabilized. So, for example, for all d � 18, the first 15 digits were always the
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same. This gave us confidence in the values the computer was presenting to us, and

also in the precision level d = 15 that we used for most of our experimental runs.

Similar results were observed in MATLAB, using the Symbolic Math Toolbox to

calculate determinants with high precision. Again it was clear that the default of 52

bits of precision, as per IEEE Standard 754, was enough to reliably determine the

sign of detDp. Further confirmation will be provided in Subsection 3.4.5, in which

we compare our programs against a more stable method which is only applicable

for graphs of diameter two.

The primary aim of course was not to accurately calculate determinants, but to

find the zeros of detDp and
⌦
D�1

p
,
↵
. For this we were depending much more on

the e�cacy of our rootfinding algorithms. The biggest risk here was in choosing a

value of the stepsize ✏ which is too large and missing a zero (as in Figure 3.4a or

Figure 3.8), or in setting the zero tolerance � inappropriately so that either a zero

at a turning point was missed, or else one was incorrectly identified.

3.4.3 Speed

The interplay between precision and speed is not always very predictable, partly

due to the way the packages store floating point numbers of di↵erent precision.

In Maple, floating point numbers are stored as a pair of integers (S,E) repre-

senting S ⇥ 10E. At lower precision S can be stored as a hardware integer which

leads to more e�cient arithmetic operations. Higher precision obviously requires

larger values of S and this can result in significantly slower computation as seen in

Figure 3.9.

5 10 15 20 25 d

0.1

0.2

0.3
s

Figure 3.9: Average seconds for Maple to calculate the determinant of 70 ⇥ 70
matrices numerically at di↵erent values of the precision variable d (on a standard
PC).

Less expected was how the size of the matrices a↵ected the run time. As the size

passed 64, there was (at least on our machines) an abrupt and significant slowdown,
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which we suspect was due to some implementation detail in Maple’s linear algebra

libraries.

In MATLAB, the time taken to compute detDp was similar for all values of d

up to 15, followed by a large jump and then very little change for d � 16. Again,

this is likely explained by the internal details of the Symbolic Math Toolbox. The

relationship between matrix size and time did not exhibit any unusual behaviour,

simply growing faster than linear as one would expect.

Figure 3.10: Average seconds for MATLAB to calculate the determinant of 70⇥ 70
matrices numerically at di↵erent values of the precision variable d (on a standard
PC).

3.4.4 Larger graphs

For the majority of smaller graphs, the functions detDp and
⌦
D�1

p
,
↵
have easily

identifiable first roots which are well separated from any larger roots, and it is easy

to verify that our programs are correctly identifying the value of p(G). Checking

the programs for graphs of say 100 vertices is more di�cult. In order to test our

procedures at this scale, we numerically calculated detDp for a large number of

values of p to ascertain the general features of this function. It quickly became

apparent that for larger graphs this function typically behaves quite di↵erently to

the case for smaller graphs.

This is best illustrated by looking at a particular graph, G(100, 0.5, 0), from our

test library, although the same issues appear to be common among graphs on 100

vertices. Plotting 250 values of detDp (using 15 digit precision) from 0 to 0.367
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produced the graph in Figure 3.11, showing a large interval on which the functions

values appear to be small.

Figure 3.11: detDp for the graph G(100, 0.5, 0).

Zooming in to find the smallest zero of the function, we examined the values

in the interval [0.154, 0.17] (Figure 3.12). By the graph, this indicates a value of

p(G) of around 0.1549 which indeed matches the values found by both the Maple

and MATLAB procedure (0.15488). It also shows however that the values of detDp

are extremely small in this interval, and so it is not unreasonable to worry about

whether the calculation of the determinants is actually being performed accurately

enough that one can place faith in the values being shown. In particular, the

matrices Dp are extremely ill conditioned in this interval.

Figure 3.12: detDp for the graph G(100, 0.5, 0) near the first zero.

3.4.5 Verification

It does not appear to be easy to directly determine the accuracy of Maple or MAT-

LAB’s numerical determinant procedures. This depends rather crucially on the

algorithms used, and this is not entirely transparent. Fortunately, there is another

way to do these calculations which is easier to analyze.

As will be discussed in Chapter 5, a random graph on 100 vertices will have

diameter 2 with high probability. This means that the entries in Dp can only take
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the values 0, 1 and 2p. If we perform the substitution � = 2p, then detDp is

a polynomial q(�), which in this case has degree at most 100. Importantly, this

simpler structure does allow Maple to symbolically calculate q(�). For the example

considered above,

q(�) =
1X

k=0

ck�
k

= 1856810621108920971825327449735739491432122314981�100

� 249576817146606799242693308666651592837695218064294�99

...

+ 1243047100419479950644328663789530075664659356675536�

� 14190785215850538100794464003125835446457018702068.

We are interested in the value of q(�) for � near 20.156 ⇡ 1.114. As q is a

polynomial, it is somewhat easier to analyze the numerical accuracy.

Each of the individual terms ck�k is clearly very large. The largest of these

at � = 1.114 is c541.11454 ⇡ 2.67 ⇥ 1080. On the other hand, we are hoping that

q(1.114) ⇡ 1.08⇥10�7, so it is vital that each term is calculated with great accuracy.

Roughly speaking, one expects to lose up to 2 significant figures in computing

each term ck�k. The subtractions involved in computing q(1.114) however result

in a very large loss of significant figures. In order to have even a small number of

accurate digits in the final value we must therefore work to a precision of nearly

100 digits.

Setting the precision d to 100 (and again for safety to 200) digits, we then

evaluated detDp = q(2p) near the assumed first zero and also plotted the result.

Maple calculates the first zero to be at p = 0.15487944 . . .. The graph, shown in

Figure 3.13, is indistinguishable from the one in Figure 3.12. This gives us excellent

evidence that our programs are not su↵ering from any significant problems with

computational roundo↵ error, even with larger graphs.
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Figure 3.13: q(2p) for the graph G(100, 0.5, 0) near the first zero.

We repeated this exercise with the first 200 vertex graph G(200, 0.5, 0). For this

graph the first turning point of detDp has a value of about 10�16. The symbolic

evaluation of q(�) took thousands of cpu seconds, but at 300 digits of precision,

identified the first zero as occurring at � = 1.0781634154 . . . which corresponds to

p = 0.1085758610 . . . . This agrees with the value 0.10858 found by both the Maple

and MATLAB procedures.

As we observe later in the thesis, for large random graphs, the maximum gen-

eralised roundness is almost always determined by the first zero of detDp, and so

this is a viable way of calculating the maximum generalised roundness of most large

graphs. On the other hand, as soon as the graphs have a distance greater than 2,

for example in any nontrivial tree, one cannot reduce the problem to the analysis

of a polynomial in one variable.

3.5 Calculation of the maximum generalised roundness of families

of graph metric spaces

A wider question is to understand the distribution of the maximum generalised

roundness in a family F(n) of n-point metric spaces. In the chapters to follow, we

will examine in particular the trees, connected graphs and connected planar graphs

on n labelled vertices, all with the path metric.

For small values of n, the various families of n vertex metric graphs may be

small enough that one can evaluate p(G) for every graph in the family. It is compu-

tationally preferable to iterate through unlabelled graphs in this way, rather than

labelled graphs which may include several isomorphic copies of each graph. For

small n, complete lists of all members of particular families can be generated or

indeed found, using online resources such as the Combinatorial Object Server [63]

or the House of Graphs [13]. The time taken to compute p(G) for each G 2 F(n)
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depends both on the size of the family and the size of the graphs, as well as the

hardware used.

For n = 8, there are just over 11000 nonisomorphic3 unweighted connected

graphs [64, Sequence A001349], and these could be checked in just over 20 minutes

on a standard PC. The results of these calculations provided further evidence for

the conjecture of Deza and Maehara [23] on cn, the infimum over all n point metric

spaces of the maximum generalised roundness. Recall that the values of c5, c7 and

c8 are not currently known, although the minimising spaces are widely believed to

be the complete bipartite graphs K2,3, K3,4 and K4,4. Our calculations showed that

there are no unweighted graphs with smaller maximum generalised roundness for

these values of n.

For trees one can go somewhat further. There are almost 50000 nonisomorphic

unweighted trees on seventeen vertices [64, Sequence A000055] and so it is still

feasible to check each tree within two hours. We are thus able to computationally

verify that for n  17, no unweighted n-vertex tree has smaller maximum gener-

alised roundness than the star graph on n vertices. An analogous claim was made

for connected planar graphs, that the minimising graph is the complete bipartite

graph K2,n�2. This was surprisingly disproven, but only after testing all 1052805

candidates [64, Sequence A003094] for n = 10 over several hours.

For larger n however, the growth in size of the various families makes it infeasible

to test every member of the family. Indeed for some of these families, the size

grows superexponentially, so the runtime can balloon from minutes or hours to

days between one value of n and the next. For example, there are over ten million

nonisomorphic connected graphs to check for n = 10 [64, Sequence A001349].

Rather than computing p(G) for each G 2 F(n), we may attempt to take a

sample of fixed size from F(n) according to some random process, aiming to ap-

proximate the distribution of maximum generalised roundness values in F(n) by

instead finding the distribution among our sample. This raises its own issues, as

some procedures for generating members of F(n) are biased, producing some with

a higher probability than others. This may result in a skewed distribution, unrep-

resentative of the wider family. It is crucial to find a process that generates these

graphs uniformly at random, in order to calculate various statistics and make valid

3
For contrast, there are over 250 million connected graphs on eight labelled vertices [64, Se-

quence A001187]!
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inferences about the underlying distribution of maximum generalised roundness

values in F(n).

In the chapters to follow, we will examine such processes for various families of

graphs, and form hypotheses from the results. Recall that the procedure used to

calculate the maximum generalised roundness values may be inaccurate due to zeros

coinciding or occurring close together. However, upon inspecting many examples

we find that this does not appear to happen often, so the e↵ect on averages over

a large sample is typically negligible. Often, we will find that rigorous proof is

available only for relatively weak statements, while the empirical evidence hints

that stronger results hold.

3.6 Exact calculation of the maximum generalised roundness

Despite the di�culties that arise in calculating the exact maximum generalised

roundness of graph metric spaces using Corollary 3.1.5, it is particularly useful in

some circumstances. If very few points are involved, it may be feasible to calculate

detDp symbolically, but analytic solutions are still di�cult to obtain. However, as

discussed in Subsection 3.4.5, an exception arises if all distances are either 1 or 2

and therefore all products of distances are powers of two. It follows that detDp

is polynomial in 2p, so we may be able to find its exact zeros after a substitution.

Even if the resulting polynomial equation cannot be easily solved, numerical ap-

proaches such as the Durand-Kerner method [29, 48] can be used to find all its

roots. Similarly,
⌦
D�1

p
,
↵
may also be expressed entirely in terms of 2p in such

cases.

Example 3.6.1. Consider the graph on five vertices shown in Figure 3.14.

x1

x2

x3x4

x5

Figure 3.14: A graph on five vertices.
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The p-distance matrix is

Dp =

0

BBBBBBB@

0 1 2p 2p 1

1 0 1 1 2p

2p 1 0 1 1

2p 1 1 0 1

1 2p 1 1 0

1

CCCCCCCA

.

It follows that

detDp = �2
�
23p � 4⇥ 2p + 1

�
2p,

and
⌦
D�1

p
,
↵
=

1

2

✓
8⇥ 22p � 17⇥ 2p + 4

23p � 4⇥ 2p + 1

◆
.

Letting � = 2p, it remains to solve �3� 4�+1 = 0 and 8�2� 17�+4 = 0 on [1,1).

The only such roots are � ⇡ 1.8608 and � =
�
17 +

p
161
�
/16 ⇡ 1.8555 respectively,

so upon substituting back for p, we see that the maximum generalised roundness is

p = log2
17 +

p
161

16
⇡ 0.8918.

Unfortunately, graph metric spaces with only these distances are prevalent only

in some situations. For example, when we consider path metric trees on n vertices,

distances other than 1 and 2 occur in almost every tree, so both quantities of interest

typically contain terms in 2p, 3p and so on, making the substitution � = 2p useless.

To apply the formula for larger graphs, we typically require the graph to have

some particular structure in order to e�ciently compute detDp and
⌦
D�1

p
,
↵
and

find their exact zeros. For example, in a complete bipartite graph Km,n, the formula

allows us to calculate the exact value of maximum generalised roundness p. This

result follows from the work of Deza and Maehara [23], and the special cases for

m = 1, n � 2 and |m� n| 2 {0, 1} were proven in [28] and Weston [78] respectively,

but Sánchez’s later proof in [71] is simpler, so it is replicated here.

Proposition 3.6.2 ([71, Theorem 3.1]). The complete bipartite graph Km,n has

maximum generalised roundness

p(Km,n) =
2mn

2mn�m� n
.
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Proof. If detDp = 0, Dp↵ = 0 has a nontrivial solution ↵ 2 ⇧0, as in the proof

of Theorem 3.1.3. Computing the first m components of Dp↵, we have for each

j 2 {1, . . . ,m} that

2p
mX

i=1
i 6=j

↵i +
m+nX

i=m+1

↵i = 0,

so after adding 2p↵j to both sides we have

2p
mX

i=1

↵i +
m+nX

i=m+1

↵i = 2p↵j.

Thus ↵1 = ↵2 = . . . = ↵m. Similarly the last n components give

mX

i=1

↵i + 2p
m+nX

i=m+1

↵i = 2p↵j

for each j 2 {m + 1, . . . ,m + n}, so ↵m+1 = ↵m+2 = . . . = ↵m+n. Recalling that

↵ 2 ⇧0 � {0}, we can now let

↵j =

8
<

:

1
m

if j 2 {1, . . . ,m}

� 1
n

if j 2 {m+ 1, . . . ,m+ n}

without loss of generality. Now, we have

2p(1) + (�1) = 2p
✓

1

m

◆
, so p = log2

m

m� 1
,

but simultaneously

(1) + 2p(�1) = 2p
✓
� 1

n

◆
, so p = log2

n

n� 1
.

These two values are compatible if and only if m = n, so the determinant condition

is of relevance in this case only.
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On the other hand, if Dp is invertible, we can explicitly compute the inverse by

exploiting its block structure. Writing

Dp =

0

BBBBBBBBBBBBBBB@

0 2p · · · 2p 1 1 . . . 1

2p 0 · · · 2p 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...

2p 2p · · · 0 1 1 · · · 1

1 1 · · · 1 0 2p · · · 2p

1 1 · · · 1 2p 0 · · · 2p

...
...

. . .
...

...
...

. . .
...

1 1 · · · 1 2p 2p · · · 0

1

CCCCCCCCCCCCCCCA

,

we may then use the identity

 
A B

C D

!�1

=

 
A�1 + A�1B(D � CA�1B)�1CA�1 �A�1B(D � CA�1B)�1

�(D � CA�1B)�1CA�1 (D � CA�1B)�1

!
.

A lengthy process follows to calculate the required inverses using Gaussian elimi-

nation and eventually obtain

D�1
p

=
1

2p ((m� 1)(n� 1)22p �mn)

0

BBBBBBBBBBBBBBB@

a b · · · b c c . . . c

b a · · · b c c · · · c
...

...
. . .

...
...

...
. . .

...

b b · · · a c c · · · c

c c · · · c d e · · · e

c c · · · c e d · · · e
...

...
. . .

...
...

...
. . .

...

c c · · · c e e · · · d

1

CCCCCCCCCCCCCCCA

,

where

a = �(m� 2)(n� 1)22p + (m� 1)n,

b = (n� 1)22p � n,

c = �2p,

d = �(m� 1)(n� 2)22p +m(n� 1), and

e = (m� 1)22p �m.
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Finally, we have
⌦
D�1

p
,
↵
=

(2mn�m� n)2p � 2mn

(m� 1)(n� 1)22p �mn
,

which is zero at

p = log2
2mn

2mn�m� n
.

If m 6= n, this is the maximum generalised roundness, as required. On the other

hand, if m = n, this coincides with the value

log2
m

m� 1
= log2

n

n� 1

obtained from the determinant condition, so in fact the determinant is zero here

and the inverse does not exist. Even so, the same value

log2
2mn

2mn�m� n

is again the maximum generalised roundness, this time using the determinant con-

dition.

In later chapters, we aim to capitalise upon these exact maximum generalised

roundness results to deduce probabilistic results about certain families of graphs.

In general, we will achieve this by analysing large graphs in terms of their metric

subspaces of known maximum generalised roundness, and invoking Theorem 2.1.17.
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Chapter 4

Maximum generalised roundness of trees

Among graph metric spaces, a particularly important class is the family of metric

trees, which embed naturally into `1 space. Further embedding problems arise from

the fields of evolutionary biology [1, 35, 75, 77] and in computer science [4, 20],

where one wishes to approximate finite metrics by a small number of tree metrics

in order to improve algorithms for various optimisation problems. In this chapter,

we will explore the maximum generalised roundness of path metric trees. While

there is some previous understanding of the extreme values, we aim to describe the

properties of typical trees, drawing on concepts from enumerative graph theory. It

is relatively easy to prove the asymptotic behaviour of the maximum generalised

roundness of random trees. The question of probabilistic bounds is far more di�cult,

and there is significant distance between the bounds we can prove rigorously and

those we can determine experimentally.

4.1 p-negative type properties of trees

Recall from Chapter 2 that we defined a tree as a connected acyclic graph, and

proved that there is a unique path between any pair of vertices. Given a tree,

we can construct a corresponding metric space using the path metric, or the path

weight metric arising from any choice of edge weights.

Definition 4.1.1. A metric tree is a weighted tree, where |e| denotes the weight of
edge e, endowed with the path metric, as in Proposition 2.2.15.

Definition 4.1.2. A path metric tree is a tree endowed with the path metric, as

in Proposition 2.2.12.

The following theorem of Hjorth et al. established a strict lower bound for the

maximum generalised roundness of a metric tree.
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Theorem 4.1.3 ([47, Corollary 7.2]). A finite metric tree (T, d) has strict 1-negative

type, and hence }(T, d) > 1.

Doust and Weston gave another proof, and obtain an explicit formula for the

1-negative type gap. This value surprisingly depends only on the edge weights, and

not the internal structure of the tree.

Theorem 4.1.4 ([28, Corollary 4.13]). The 1-negative type gap of a finite metric

tree (T, d) is given by the formula

�T =

0

@
X

e2E(T )

|e|�1

1

A
�1

.

Corollary 4.1.5. The 1-negative type gap of a finite path metric tree T on n vertices

is

�T =
1

n� 1
.

Wolf [82, Corollary 4.3] provided an alternative proof of Theorem 4.1.4, using

the formula for the p-negative type gap from Theorem 2.1.40.

Doust and Weston also proved a lower bound on the maximum generalised

roundness of a finite tree on n vertices.

Theorem 4.1.6 ([28, Corollary 5.5]). A finite metric tree T on n � 3 vertices has

maximum generalised roundness

}(T, d) � 1 +
log
⇣
1 + 1

(n�1)3(n�2)

⌘

log(n� 1)
.

This was later improved by Li and Weston by applying the result of Theo-

rem 4.1.4 to Theorem 2.1.34.

Theorem 4.1.7 ([52, Corollary 3.4]). A finite metric tree T on n � 3 vertices with

diameter D has maximum generalised roundness

}(T, d) � 1 +
log
⇣
1 + 1

(n�1)·D·�(n)

⌘

logD ,

where

�(n) = 1� 1

2

✓
1

bn/2c +
1

dn/2e

◆
.
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Remark 4.1.8. Infinite trees also have strict 1-negative type, as the p-negative type

inequality only ever applies to a finite subtree. Similarly, the formula in Theo-

rem 4.1.4 also applies to infinite trees, where the gap is zero if the series diverges.

However, an infinite tree may fail to have p-negative type for any p > 1. Doust and

Weston [28, Theorem 5.7] constructed an example by linking an infinite sequence

of star graphs to form an ‘infinite necklace”.

Note that the best possible upper bound for the maximum generalised roundness

of a finite path metric tree on n � 3 vertices is simply }(T )  2, achieved by the

path graphs from Example 2.2.26. However, any tree with a vertex of degree at

least 3 does not have maximum generalised roundness close to 2.

4.2 The trees on n vertices

The previous section details many results regarding the extremal maximum gener-

alised roundness values among the trees on n vertices, but relatively little is known

about the ‘typical’ tree. We begin by considering the family of trees on n vertices,

and methods to randomly generate these trees.

For small values of n, it is possible to list all the possible trees on n vertices

and evaluate the maximum generalised roundness for each one. One can then pre-

cisely identify the maximum and minimum values. However, for further questions

concerning the distribution, one must make a distinction between labelled and un-

labelled trees.

For a labelled tree on n vertices, one fixes vertices labelled 1, 2, . . . , n and then

considers all the ways of attaching edges to these vertices to form a tree. Cayley’s

formula [19] states that there are exactly nn�2 labelled trees on n vertices. Note

that many of the trees formed in this way will end up being isomorphic. As a simple

example, there are 4!
2 = 12 di↵erent labellings of the path graph on four vertices.

In contrast, unlabelled trees do not have labelled vertices, so each nonisomorphic

tree is only counted once. The number tn of unlabelled trees on n vertices does not

have a known closed formula, with the asymptotic estimate

tn ⇠ C↵nn� 5
2

where C ⇡ 0.5349 and ↵ = 2.9558 due to Otter [65].

The numbers of labelled and unlabelled trees for small n are given in Table 4.1.
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n 2 3 4 5 6 7 8 9 10

nn�2 1 3 16 125 1296 16807 262144 4782969 100000000

tn 1 1 2 3 6 11 23 47 106

Table 4.1: The number of labelled and unlabelled trees on n vertices.

If one is searching for say the n vertex tree T with the smallest value of }(T ),

then it is clearly vastly more e�cient to only test one tree of each isomorphism

class. Enumerating all the unlabelled trees is a di�cult task, but fortunately an

algorithm of Wright et al. [83] provides an e�cient method of generation, and for

small values of n, complete lists of these trees are widely available such as at the

House of Graphs [13]. Appendix C catalogues the maximum generalised roundness

of each tree on 4  n  9 unlabelled vertices. In the next section we shall discuss

the significantly easier question of enumerating all the labelled trees, using Prüfer

sequences.

If one wishes to write precise statements of the form “at least x% of the trees

on n vertices have }(T ) < p”, then evidently one must be clear whether such a

statement is describing the labelled or unlabelled situation.

Past a certain point, one must obviously give up on listing all the possible trees

of a given size. Instead one can obtain distributional data by finding }(T ) for a

large sample of random trees. Here the situation becomes even more complicated.

Random trees can be generated by a variety of models, which may generate trees

with varying probability distributions. Some algorithms produce each labelled tree

with equal likelihood, while others are biased. The same is possible in principle

for unlabelled trees, although we are not aware of any su�ciently fast algorithm to

produce large unlabelled trees uniformly at random. We therefore work only with

labelled trees in the rest of this chapter. It is not surprising that our results for the

distribution of }(T ) can depend critically on the random model chosen.

In the next section we shall look at the numerical data concerning the distri-

bution of }(T ) for trees with relatively small numbers of vertices. In these cases

we can enumerate all the possible trees. Following this, Section 4.4 examines the

situation for larger trees, where we instead perform the same computations for a

random sample of trees.

In Section 4.5 we shall show that the maximal generalised roundness of a random

n point tree tends to 1 with high probability as n ! 1. This will be achieved by
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establishing that almost all trees on n vertices have maximum vertex degree at least

some given value k, and thus these trees have maximum generalised roundness less

than or equal to that of the star graph Sk+1, for which we have

}(Sk+1) = 1 + log2

✓
1 +

1

k � 1

◆
.

This work will depend partly on results of Moon [61] on the distribution of the

maximum degree of a random tree.

More precisely, in Section 4.6 we shall prove an upper bound on the proportion

⇢ of trees on n vertices with the aforementioned degree property. This will finally

allow us to bound the maximum generalised roundness of at least (1�⇢) proportion
of these trees, thus achieving meaningful descriptions of the typical tree without

regard to outliers such as the path graphs.

The rigorous bounds we can prove are certainly not sharp. In Section 4.7 we

shall compare these bounds with empirical data from an analysis of large samples of

random graphs. In particular we shall present some results on the average maximum

generalised roundness for samples of size 1000, for trees with between 10 and 100

vertices. Surprisingly, these averages agree almost exactly with

1 +
1.2

(n� 2)0.46
.

We also see that the standard deviations for these samples lie very close to1

0.37

(n� 2)0.69
,

and so one can at least heuristically suggest expressions L(n) and U(n) so that, for

example, 99.8% of trees on n vertices have maximum generalised roundness between

L(n) and U(n).

4.3 The uniform model of random trees

One can attach a probability distribution to any family of graphs in order to con-

struct a model of random graphs, and then describe the asymptotic properties of

these random graphs.

1
The exponents in our approximations are in ratio 2 : 3. It is as yet unclear whether or not

this relationship has deeper significance.
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Definition 4.3.1. For n = 1, 2, . . ., let G(n) be a set of graphs with an associated

probability measure µn. Then the collection

G = (G(n), µn)n�1

is a model of random graphs.

Definition 4.3.2. Let P be a property of graphs. Then P holds almost surely

(a.s.) in a model G if

µn ({G 2 G(n) : G has P}) ! 1

as n ! 1.

Using Cayley’s formula for the number of labelled trees on n vertices, we can

apply the uniform distribution to obtain a very simple model of random trees as

follows.

Definition 4.3.3. Define the uniform model of random trees

T = (T (n), µn)n�1,

where T (n) is the set of all nn�2 labelled trees on n vertices each with equal prob-

ability measure µn(T ) = n�(n�2).

Definition 4.3.4. Let T (n) be the discrete graph-valued random variable repre-

senting sampling from the uniform model, that is, uniformly at random from the

set T (n).

We then apply the maximum generalised roundness function to obtain the real-

valued discrete random variable }(T (n)), and aim to find its distribution features.

For small n, we can simply calculate the maximum generalised roundness of each

tree on n vertices. To e�ciently generate the trees, we make use of a bijection

[68] between the nn�2 trees on n vertices labelled {1, 2, . . . , n} and the sequences

{1, . . . , n}n�2, where each tree is identified with its Prüfer sequence.

Algorithm to convert a tree into a sequence:

• n � 2 times: Remove the smallest labelled leaf and record its neighbour’s

vertex label as the next entry of the sequence.

Algorithm to convert a sequence into a tree:
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• Calculate the required degree of each vertex, which is one more than the

number of times it occurs in the sequence.

• n� 2 times:

– Let i be the next term of the sequence.

– Find the smallest labelled vertex j with required degree 1, add the edge

ij to the tree and subtract one from the required degrees of i and j.

• After all n�2 terms of the sequence are handled, only two vertices will remain

with required degree one, with all others having required degree zero. Add

an edge between these two vertices.

• The resulting graph has n vertices, whose degrees are all positive and sum to

2n� 2. Such a graph must be a tree [61, p. 6].

As this process is invertible, it is a bijection.

By iterating through all possible Prüfer sequences, we can construct all the

labelled trees on n vertices and explicitly find the distribution of }(T (n)). The

example of }(T (8)) is pictured in Figure 4.1.

Figure 4.1: Log-scaled histogram of maximum generalised roundness values of all
262144 trees on 8 labelled vertices
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4.4 Large random trees

For larger n, the number of trees prevents fast enumeration of the entire space,

making it necessary to take a random sample of Prüfer sequences and hence trees.

While this is a viable approach, we also present another perspective on the problem,

viewing it as an attempt to generate random spanning trees of the complete graph

Kn. The best known methods for producing minimum spanning trees of a weighted

graph are Prim’s algorithm [67] and Kruskal’s algorithm [50]. Since all edges, and

hence all spanning trees, are of equal weight here, we can formulate a randomised

version of each algorithm.

Randomised Prim’s algorithm:

• Form a tree T initially consisting of one vertex u of Kn chosen at random.

• n� 1 times: Randomly select two vertices v 2 V (T ) and w 2 V (Kn) \ V (T ).

Add the vertex w and the edge vw to T .

Randomised Kruskal’s algorithm2:

• Form a graph G initially consisting of all n vertices of Kn and no edges.

• n� 1 times: Randomly select an edge e of Kn, avoiding those already present

in G. If e would create a cycle when added to G, discard it and pick again, as

many times as required. When we find an edge which does not form a cycle

in G, then add it to G.

• The resulting graph has n� 1 edges and is acyclic, so it is a tree.

Unfortunately, both these processes are biased, failing to generate trees uni-

formly at random. As an example, for n = 4 there are only two non-isomorphic

trees to consider, namely the path graph P4 and the star graph S4 shown in Fig-

ure 4.2.

v1 v2 v3 v4 w1 w2

w3

w4

Figure 4.2: The two trees on four vertices, up to isomorphism, P4 and S4.

2
This is the algorithm used by the RandomTree command of Maple’s GraphTheory package.

78



There are twelve relabellings of P4 and four of S4, so an algorithm which pro-

duces trees uniformly at random should output P4 with probability 3
4 and S4 with

probability 1
4 . However, simple calculations reveal that the probability of obtaining

P4 from Prim’s algorithm is only 2
3 , and from Kruskal’s algorithm it is 11

15 . As dis-

cussed in Section 3.5, sampling from a non-uniform process may bias our results.

For instance, both algorithms proposed thus far would give an underestimate of the

average maximum generalised roundness among trees on four vertices.

Another algorithm assigns random weights to each edge of the complete graph

Kn from the uniform distribution on [0, 1], and takes the minimum spanning tree

of the resulting weighted graph. Again, this fails to produce trees uniformly at

random [40].

Wilson [81] instead proposed the following algorithm which uses loop-erased

random walks to generate spanning trees of a given graph, in this case Kn, and

proved that the resulting distribution is uniform.

Wilson’s algorithm:

• Maintain a tree T , initially consisting of a single vertex chosen at random.

• n� 1 times:

– Select a vertex v /2 T , and perform a random walk in Kn from v until a

vertex of T is reached.

– Remove any cycles traversed during this walk so that a path remains,

and add all its edges and vertices to the tree.

For each n, we can now e�ciently sample many such trees, using either ran-

dom Prüfer sequences or Wilson’s algorithm. We can then calculate the maximum

generalised roundness of each tree of our sample, in order to approximate the dis-

tribution of }(T (n)). Our results for n = 20, 30, . . . , 90 are depicted in Figure 4.3,

and the basic distribution features are summarised in Table 4.2.

n 20 30 40 50 60 70 80 90

}max 1.4900 1.4046 1.3250 1.3028 1.2642 1.2842 1.2363 1.2213

}min 1.1806 1.1451 1.1390 1.1288 1.1188 1.1223 1.1089 1.1117

}̄ 1.3189 1.2603 1.2265 1.2044 1.1859 1.1727 1.1621 1.1538

Table 4.2: The maximum, minimum and average maximum generalised roundness

of 1000 trees on n vertices selected uniformly at random.
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The data suggests that as n grows, the maximum generalised roundness is close

to 1 with high probability, that is, for any ✏, � > 0, for n su�ciently large we have

µn ({T 2 T (n) | }(T ) < 1 + ✏}) > 1� �.

4.5 Limiting behaviour

Our approach is to first apply Sánchez’s formula from Corollary 3.1.5 to particu-

lar trees, then leverage it using our knowledge of metric subspaces to bound the

maximum generalised roundness of large random trees.

The following lemma provides a simple characterisation of Theorem 2.1.17 in

the context of trees.

Lemma 4.5.1. Let T be a tree and T 0 be a subtree of T , as in Definition 2.2.20.

Then }(T )  }(T 0).

Proof. Suppose v and w are vertices of T 0. Proposition 2.2.18 states that there is

a unique path between these vertices in T , and this path must also appear in T 0 as

the subtree is connected. Thus dT (v, w) = dT 0(v, w), that is, T 0 is a metric subspace

of T . The statement now follows by Theorem 2.1.17.

An immediate application of this shows that the path graph is indeed an outlier,

and other trees on n vertices have maximum generalised roundness much less than

2.

Corollary 4.5.2. Let T be a tree which is not a path graph. Then }(T )  log2 3.

Proof. First note that the maximum degree of a tree is two if it is a path, and at

least three otherwise. Thus S4, the star graph on four vertices shown in Figure 4.4,

must appear as a subtree of T .

v1

v2

v3

v4

Figure 4.4: The star graph on four vertices, S4.
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We can invoke the result of Example 2.2.27 here, but a simpler argument follows

from Corollary 3.1.5.

The p-distance matrix of T 0 is

Dp =

0

BBBB@

0 1 1 1

1 0 2p 2p

1 2p 0 2p

1 2p 2p 0,

1

CCCCA

so the determinant is

detDp = �3⇥ 22p

and the sum of entries of the inverse is

⌦
D�1

p
,
↵
= 2

✓
1� 2p

3

◆
,

so }(T 0) = log2 3.

Finally, using Theorem 2.1.17, we can deduce that }(T )  log2 3 for any tree

which is not a path graph.

More generally, the aim is to find a common subtree among large random trees.

Let Sm be the star graph with m vertices and m� 1 leaves, with maximum gener-

alised roundness

}(Sm) = 1 + log2

✓
1 +

1

m� 2

◆
(4.5.1)

from Example 2.2.27. For a given tree T on n vertices, Sm is a subtree if and only

if the tree has a vertex of degree at least m� 1, that is, �(T ) � m� 1 where �(T )

denotes the maximum degree over all vertices of T . Intuition suggests that as n

increases, the maximum degree of typical trees on n vertices should also increase,

and consequently the maximum generalised roundness will converge in probability

to one.

To confirm this claim, we must have an understanding of the distribution of the

maximum degree of random trees, which is governed by the following theorem of

Moon.

Theorem 4.5.3 ([61, pp. 70–72]). Let ✏ be a positive constant. Then

(1� ✏)
log n

log log n
< �(T (n)) < (1 + ✏)

log n

log log n
a.s.
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We can then deduce the following theorem.

Theorem 4.5.4. Let ✏ be a positive constant. Then

}(T (n))  1 + log2

 
1 +

1

(1� ✏) logn
log logn � 1

!
a.s.

Proof. The lower bound from Theorem 4.5.3 guarantees that for

m � (1� ✏)
log n

log log n
+ 1,

Sm is a subtree of T (n) almost surely, and therefore

}(T (n))  } (Sm)

almost surely. The right hand side is given by (4.5.1), and substituting for m

completes the proof.

This bound tends to 1 as n ! 1, confirming our earlier hypothesis, so the

maximum generalised roundness of a tree on n vertices chosen uniformly at random

is arbitarily close to 1 almost surely.

4.6 Probabilistic bounds

Theorem 4.5.4 gives an asymptotic bound for the maximum generalised roundness

of a random tree, but it does not give any information about the rate of convergence.

A more challenging problem is to answer the following question: given (small) � > 0

and p 2 (0, 1), how large does n need to be in order that

P (}(T (n)) < 1 + �) � 1� p. (4.6.1)

As in the last section, we know that }(T ) < 1+� if �(T ) > k :=
⌅�
1� 2��

�⇧�1
, and

so it is su�cient to determine how large n needs to be in order that P(�(T (n)) >

k) � 1� p, or equivalently that

P (�(T (n))  k)  p. (4.6.2)

We will see in Subsection 4.6.1 that using the bounds in Theorem 4.5.3 makes the

computations rather intractable. However, it is clear that for any � 2 (0, 1), one

has the weaker result that �(T (n)) > (log n)� a.s.
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Our aim in this section is then, given � and p, to find a constant M = M�,p

such that3 for all n � M we have

P
⇣
�(T (n))  (log n)�

⌘
 p (4.6.3)

and hence

P
 
}(T (n))  1 + log2

 
1 +

1

(logM)� � 1

!!
� 1� p. (4.6.4)

Ideally, one would like a small lower bound on the values of n satisfying (4.6.3) and

a small lower bound for }(T (n)) in (4.6.4), but these objectives are obviously in

conflict. It is clear that if � is small then (4.6.3) is satisfied more easily, and hence

one can choose a smaller value of M , but that this gives a worse upper bound for

}(T (n)) in (4.6.4). In order to obtain a bound of the form of (4.6.1) one needs to

choose � so that

log2

 
1 +

1

(logM)� � 1

!
 �.

It should be noted that for � near 1, n needs to be very large before

(log n)� <
log n

log log n
,

and consequently we do not expect this method to produce even approximately

sharp results.

3
We ignore issues of rounding the (log n)� term to an integer, as the resulting error is very

small for the magnitude of n we will consider.
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4.6.1 Preliminaries

According to Moon [61, p. 72],

P(�(T (n))  k) =
(n� 2)!

�
e� 1

k!

�n

nn�2

=
n

n� 1

n!

nn

✓
e� 1

k!

◆n

<
n

n� 1

p
2⇡nn+ 1

2 e�ne1/12n

nn

✓
e� 1

k!

◆n

(4.6.5)

=
p
2⇡

n

n� 1
e1/12n

p
n

✓
1� 1

ek!

◆n

 3
p
n

✓
1� 1

ek!

◆n

for n � 7,

where (4.6.5) makes use of a refinement of Stirling’s formula from Robbins [69].

Taking logarithms, we have

logP(�(T (n))  k)  log 3 +
1

2
log n+ n log

✓
1� 1

ek!

◆

< log 3 +
1

2
log n� n

ek!
,

since log(1� x) > �x for x positive.

Now, in order for inequality 4.6.2 to hold, it su�ces that

log 3 +
1

2
log n� n

ek!
 log p,

or upon rearranging,
n

ek!
� 1

2
log n � log

3

p
. (4.6.6)

From this point onwards, we change our perspective from a discrete problem

to a continuous one in order to make use of tools from calculus, and accordingly

change our notation from n to x and from the factorial to the gamma function.

Inequality (4.6.6) thus translates to

x

e�(k + 1)
� 1

2
log x � log

3

p
. (4.6.7)

Theorem 4.5.3 indicates that if k ⇡ log x/ log log x, then for any p > 0, in-

equality (4.6.7) does indeed hold for x su�ciently large, but it is di�cult to find a
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suitable threshhold Mp in this case. To support this conjecture, Figure 4.5a plots

the left hand side of (4.6.7) with k = log x/ log log x, suggesting that the function

is increasing towards infinity as required. Indeed, this expression for k appears to

be somewhat close to optimal, as Figure 4.5b shows that the same does not apply

if we instead use k = log x/
p
log log x.

(a) k =
log x

log log x

(b) k =
log xp
log log x

Figure 4.5: Plots of the left-hand side of inequality (4.6.7) with various expressions
for k in terms of n.
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In order to make later inequalities tractable, we use the slightly weaker expres-

sion k = (log x)�, where � 2 (0, 1). The remainder of this section is therefore

devoted to finding an explicit value M�,p such that

P
⇣
�(T (n))  (log n)�

⌘
 p

for all n � M�,p.

Substituting for k in inequality (4.6.7), we obtain

x

e�
⇣
(log x)� + 1

⌘ � 1

2
log x � log

3

p
,

which again appears to hold for x su�ciently large.

Our proof aims to replace the �(k + 1) term with a power of x, say x↵. Thus

we want to find a value M�,p such that whenever x � M�,p, we have

�
⇣
(log x)� + 1

⌘
 x↵ (4.6.8)

and
x1�↵

e
� 1

2
log x � log 3� log p (4.6.9)

for some chosen ↵ 2 (0, 1).

To solve these two inequalities, we will use the Lambert W function, which

is the inverse relation to the function f(t) = tet. The graph of f has a single

stationary point at (�1,�1/e), as depicted in Figure 4.6a. Thus the inverse is in

fact a multi-valued function, consisting of two branches

W0 :


�1

e
,1
◆

! [�1,1)

W�1 :


�1

e
, 0

◆
! (�1,�1]

as shown in Figure 4.6b.
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(a) A plot of f(t) = tet.

(b) A plot of the inverse relation of f , the Lambert W function.

Figure 4.6: The function f(t) = tet and its inverse relation, the multi-valued Lam-
bert W function.
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4.6.2 Solution to inequality 4.6.9

Inequality (4.6.9) is the easier of the two. Rearranging from

x1�↵

e
� 1

2
log x � log

3

p

gives

x↵�1 log
9x

p2
 2

e
,

and so ✓
9x

p2

◆↵�1

log
9x

p2
 2

e

✓
p2

9

◆1�↵

.

Now we let y = log
9x

p2
, so

ye(↵�1)y  2

e

✓
p2

9

◆1�↵

(↵� 1)ye(↵�1)y � 2(↵� 1)

e

✓
p2

9

◆1�↵

(↵� 1)y  W�1

 
2(↵� 1)

e

✓
p2

9

◆1�↵
!

y � 1

↵� 1
W�1

 
2(↵� 1)

e

✓
p2

9

◆1�↵
!

and hence
9x

p2
� exp

 
1

↵� 1
W�1

 
2(↵� 1)

e

✓
p2

9

◆1�↵
!!

.

Thus the solution to inequality (4.6.9) is x � f1(↵, p), where

f1(↵, p) =
p2

9
exp

 
1

↵� 1
W�1

 
2(↵� 1)

e

✓
p2

9

◆1�↵
!!

As inequality (4.6.8) does not involve p, f1 is the only component of our final

bound for M�,p which will depend on p. It is thus all the more surprising that f1

itself has very little dependence on p. Table 4.3 lists some values of log f1(↵, p),

showing that ↵ is far more influential than p.

For context, recall the original inequality (4.6.2)

P(�(T (n))  k)  p.
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↵

p
0.5 0.1 0.01 0.001 0.00001

0.1 2.3123 2.8614 3.3303 3.6507 4.0945

0.5 4.8869 5.6590 6.3695 6.8749 7.5957

0.75 12.2847 13.2135 14.1988 14.9598 16.1145

0.9 41.0544 41.9325 43.0411 44.0169 45.6819

0.95 98.6901 99.4542 100.4885 101.4614 103.2517

0.99 684.0042 684.5503 685.3255 686.0938 687.6100

0.999 9462.3025 9462.6826 9463.2262 9463.7694 9464.8549

Table 4.3: Values of log f1(↵, p) for various ↵, p.

It is evident that greatly reducing the failure probability p often requires us to

increase n by only one or two orders of magnitude. We will see that compared to

the scale of our eventual bound M�,p, this is almost negligible.

4.6.3 Solution to inequality 4.6.8

The other inequality to be solved is (4.6.8), that is,

�
⇣
(log x)� + 1

⌘
 x↵.

Let

F↵,�(x) =
�
⇣
(log x)� + 1

⌘

x↵
.

We want F↵,�(x)  1, that is, logF↵,�(x)  0. Simplifying, we have

logF↵,�(x) = log�
⇣
(log x)� + 1

⌘
� log(x↵)

= log�(y� + 1)� ↵y,

letting y = log x. Now using the same Stirling-type inequality as in (4.6.5),

logF↵,�(x)  log
⇣p

2⇡
�
y�
�y�+ 1

2 e�y
�
e

1
12y�

⌘
� ↵y

=
1

2
log 2⇡ + �

✓
y� +

1

2

◆
log y � y� +

1

12y�
� ↵y

 �y� log y + � log y � y� � ↵y (4.6.10)

90



where the last inequality holds for y su�ciently large. We can then use the fact

that y� exceeds � log y to simplify further, although the di↵erence between these

two quantities may be substantial for large y, which will result in a suboptimal

bound. Therefore

logF↵,�(x)  �y� log y � ↵y

= y�
�
� log y � ↵y1��

�
,

and finally

� log y � ↵y1��  0 (4.6.11)

for y su�ciently large, as required.

It remains to analyse just how large y (and hence x) must be in order for

inequalities (4.6.10) and (4.6.11) to hold.

4.6.3.1 Solution to inequality 4.6.10

Inequality (4.6.10) holds when

1

2
log y� � 1

2
log 2⇡ +

1

12y�
,

that is,
y�

2⇡
log

y�

2⇡
� 1

12⇡
.

Substituting z = log y
�

2⇡ , we have

zez � 1

12⇡

z � W0

✓
1

12⇡

◆

We can then substitute back for y to obtain

y �
✓
2⇡ exp

✓
W0

✓
1

12⇡

◆◆◆ 1
�

,

and thus x � f2(�), where

f2(�) = exp

 ✓
2⇡ exp

✓
W0

✓
1

12⇡

◆◆◆ 1
�

!
.
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Upon evaluating the constants in this expression, we find that

f2(�) ⇡ exp
⇣
6.4477

1
�

⌘
.

In particular, f2 is decreasing, so in fact inequality (4.6.10) becomes less restric-

tive on x as � approaches 1. Table 4.4 lists several values of f2(�) for � 2 (0, 1).

� f2(�)

0.5 1.13⇥ 1018

0.75 16287.4690 . . .

0.9 2782.8156 . . .

0.95 1226.8893 . . .

0.99 713.5465 . . .

0.999 638.9054 . . .

Table 4.4: Values of f2(�) for various � 2 (0, 1).

The limiting value is approximately

lim
�!1�

f2(�) ⇡ 631.2591.

4.6.3.2 Solution to inequality 4.6.11

Inequality (4.6.11) holds when

� log y � ↵y1��  0,

so upon rearranging we have

y��1 log y  ↵

�
.

Here we let z = log y, simplifying the inequality to

ze(��1)z  ↵

�
,

that is,

(� � 1)ze(��1)z � ↵(� � 1)

�
.
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Now, if ↵ > e �

1��
then this inequality holds for all z, and hence for all x > 1.

Otherwise, we require

(� � 1)z  W�1

✓
↵(� � 1)

�

◆

and thus

z � 1

� � 1
W�1

✓
↵(� � 1)

�

◆
.

Again we substitute back to find

y � exp

✓
1

� � 1
W�1

✓
↵(� � 1)

�

◆◆

so the solution is x � f3(↵, �), where

f3(↵, �) =

8
>><

>>:

1 if ↵ >
e�

1� �

exp

✓
exp

✓
1

� � 1
W�1

✓
↵(� � 1)

�

◆◆◆
if ↵  e�

1� �
.

Note however that the first case can only apply if
e�

1� �
< 1, that is, � <

1

1 + e
,

whereas we are primarily concerned with � close to 1.

4.6.4 Conclusion

Combining the above results, we have that inequalities (4.6.8) and (4.6.9) hold for

all x � M�,p, where

M�,p = max

✓
f2(�), min

↵2(0,1)
[max(f1(↵, p), f3(↵, �))]

◆
. (4.6.12)

Now for fixed � and p, f1 is increasing and approaches infinity as ↵ ! 1, while

f3 is decreasing in the first argument. Therefore the optimal choice for ↵ is that

which equates f1(↵, p) and f3(↵, �). This value can be found numerically using the

bisection method, and comparing to f2(�) gives M�,p. Furthermore, as documented

earlier in Table 4.3, the value of p has almost no e↵ect so all values in Table 4.5

were calculated with p = 0.001.
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� logM�,0.001

0.7 29.0466 . . .

0.75 493.5846 . . .

0.8 47507.2819 . . .

0.85 8.8059 . . .⇥ 107

0.9 7.8520 . . .⇥ 1014

0.95 3.2384 . . .⇥ 1038

0.99 3.9150 . . .⇥ 10280

Table 4.5: Values of M�,0.001 for various � 2 (0, 1).

Note that in all of these cases,

f2(�) ⌧ min
↵2(0,1)

[max(f1(↵, p), f3(↵, �))] ,

so M�,p is calculated exclusively from the latter expression.

Summarising, we have now established the following result.

Theorem 4.6.1. Suppose that �, p 2 (0, 1) and that M�,p is defined as in (4.6.12).

Then for all n � M�,p, we have

P
⇣
�(T (n))  (log n)�

⌘
 p,

and hence

P
 
}(T (n)) < 1 + log2

 
1 +

1

(logM�,p)
� � 1

!!
� 1� p

for n � M�,p.

Using the values from Table 4.5, we have:

� = 0.7 : P (}(T (n))  1.1304) � 0.999 for n � 4.1189⇥ 1012

� = 0.8 : P (}(T (n))  1.0002617) � 0.999 for n � 1020632

� = 0.9 : P
�
}(T (n))  1 + 5.6714⇥ 10�14

�
� 0.999 for n � 103.4101⇥1014

� = 0.99 : P
�
}(T (n))  1 + 2.3571⇥ 10�278

�
� 0.999 for n � 101.7003⇥10280 .
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In general, as � ! 1, we have for n � M�,p that

P
 
}(T (n)) / 1 +

1

(logM�,p)
� log 2

!
� 1� p,

since log2(1 + t) ⇡ t

log 2
for small t.

4.6.5 An aside: further investigation of inequality 4.6.8

In this subsection, we present our more general findings on inequality (4.6.8), that

is,

�
⇣
(log x)� + 1

⌘
 x↵.

The reader is advised that the results obtained in this subsection are not essential to

the overall direction of the chapter, but it is an interesting problem in its own right.

Also, the contrast between this inequality and an analogue with k = log n/ log log n

as in Theorem 4.5.3 is indicative of the wider di�culties encountered with the latter

form.

We first ask: for what values of ↵ and � does the inequality hold for all x � 1?

The following example is illustrative of our approach.

Proposition 4.6.2. For ↵ = � =
1

2
, inequality (4.6.8) holds for all x � 1, that is,

�
⇣p

log x+ 1
⌘


p
x.

Proof. Let

F (x) =
�
�p

log x+ 1
�

p
x

.

Then F (1) = 1 and

F 0(x) =
�
�p

log x+ 1
� �
 
�p

log x+ 1
�
�
p
log x

�

2x3/2
p
log x

,

where  is the digamma function

 (z) =
d

dz
log�(z) =

�0(z)

�(z)
.

Binet’s first integral for the logarithm of the gamma function [76] gives

log�(z) =

✓
z � 1

2

◆
log z � z +

1

2
log(2⇡) +

Z 1

0

✓
1

2
� 1

t
+

1

et � 1

◆
e�tz

t
dt,
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and di↵erentiating gives

 (z) = log z � 1

2z
�
Z 1

0

✓
1

2
� 1

t
+

1

et � 1

◆
e�tz dt.

Bernstein’s theorem [6] guarantees that this integral is totally monotone and hence

non-negative, so we have

 (z)  log z � 1

2z
 z � 1� 1

2z

for z � 1. It follows that

 
⇣p

log x+ 1
⌘
�
p
log x  � 1

2
�p

log x+ 1
� < 0,

so F 0(x) is negative for all x � 1 and hence F (x)  1, that is,

�
⇣p

log x+ 1
⌘


p
x,

for all x � 1 as required.

Next, we attempt to generalise to ↵, � 2 (0, 1). Let

F↵,�(x) =
�
�
(log x)� + 1

�

x↵

as in Subsection 4.6.3. Note that F↵,�(1) = 1 for all ↵, � 2 (0, 1), so imitating the

proof of Proposition 4.6.2 above, we hope to prove that

F 0
↵,�

(x) =
�
�
(log x)� + 1

� ⇥
 
�
(log x)� + 1

�
�(log x)��1 � ↵

⇤

x↵+1

is negative for all x � 1. Letting

G(x, �) = �
 
�
(log x)� + 1

�

(log x)1��
,

we require

↵ � G(x, �)

for all x � 1, that is ↵ � g(�) where

g(�) = max
x�1

G(x, �).
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As an example, using Maple we can evaluate

g(0.5) = max
x�1

G(x, 0.5)

= max
y�0

G(ey, 0.5)

⇡ 0.2347,

achieved when x ⇡ 12.6332. This confirms the result of Proposition 4.6.2, but does

not extend its conclusion to all ↵ 2 (0, 1).

Generalising to other values of �, we note that if x is held constant then G is an

increasing function of �. It follows that g is also increasing in �, so for larger �, our

choice of ↵ is more restricted. In fact, Maple finds that g(0.8) ⇡ 1.1800, achieved

when y ⇡ 139.8136, that is, x ⇡ 5.2514⇥ 1060. Thus, for some values of � close to

1, there is no ↵ 2 (0, 1) for which we cannot prove the desired inequality

�
⇣
(log x)� + 1

⌘
 x↵

for all x � 1 by this method of analysing its derivative.

For some applications, we may not require inequality (4.6.8) to hold for all x � 1.

Relaxing this condition slightly permits a proof not only for ↵ judiciously chosen

as a function of �, but indeed all ↵.

Proposition 4.6.3. For any ↵, � 2 (0, 1), we have

�
⇣
(log x)� + 1

⌘
= o(x↵),

and hence

�
⇣
(log x)� + 1

⌘
 x↵

for all x su�ciently large.

We make use of the following lemma.

Lemma 4.6.4. If log f(x) = o(log g(x)) and g(x) ! 1 as x ! 1, then we have

f(x) = o (g(x)c) for any c > 0.

Proof. For any c > 0, there exists M > 0 such that for all x > M ,

log f(x) < c log g(x).
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As log g(x) ! 1 as x ! 1, this property remains true if any real constant is

added to the right hand side4, that is, 8c > 0, 9M > 0 such that 8x > M ,

log f(x) < c log g(x) + k.

Exponentiating, we have

f(x) < ekg(x)c.

Now ek can take any positive value, so

f(x) = o (g(x)c)

as required.

Proof of Proposition 4.6.3. Recalling Stirling’s formula, we have

�(z) =
1

z
�(z + 1)

=

r
2⇡

z

⇣z
e

⌘z ✓
1 +O

✓
1

z

◆◆
,

so taking logarithms we have

log (�(z)) =
1

2
log(2⇡)� 1

2
log z + z log

z

e
+ log

✓
1 +O

✓
1

z

◆◆

= O(z log z).

Thus we have

log
⇣
�
⇣
(log x)� + 1

⌘⌘
= log

⇣
�
⇣
(log x)�

⌘⌘
+ log

⇣
(log x)�

⌘

= O
⇣
(log x)� log (log x)�

⌘
+ log

⇣
(log x)�

⌘

= O
�
�(log x)� log log x

�

= o(log x),

as � < 1 and log log x = o
⇣
(log x)1��

⌘
. It then follows by Lemma 4.6.4 that

�
⇣
(log x)� + 1

⌘
= o (x↵)

4
Note that this may not hold if g(x) is bounded; consider for example f(x) = exp(1/x) and

g(x) = exp
�
1/x2

�
.
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for any 0 < ↵ < 1, and hence

�
⇣
(log x)� + 1

⌘
 x↵

for su�ciently large x.

Finally, recall that inequality (4.6.8) originally arose from our choice to sub-

stitute k = (log x)� in inequality (4.6.7), but we suspect that sharper bounds for

�(T (n)) exist for k = log n/ log log n. In this case, the desired inequality is

�

✓
log x

log log x
+ 1

◆
 x↵. (4.6.13)

Naturally, we would like to obtain a result analogous to Proposition 4.6.3, but these

e↵orts fail as

log�

✓
log x

log log x
+ 1

◆
= log�

✓
log x

log log x

◆
+ log

✓
log x

log log x

◆

= O

✓
log x

log log x
log

log x

log log x

◆
+ log log x� log log log x

= O

✓
log x

log log x
(log log x� log log log x)

◆
+ log log x� log log log x

= O

✓
log x� log x log log log x

log log x

◆
+ log log x� log log log x,

which is not necessarily o(log x). This also hints at the di�culties encountered in

our e↵orts to solve inequality (4.6.13). Following the method of Subsection 4.6.3,

we let

F↵(x) =

�

✓
log x

log log x

◆

x↵
,

and aim to show that logF↵(x)  0 for x su�ciently large. However, simplifying

using the lower bound from Robbins’s version of Stirling’s formula from [69], we

have

logF↵(x) �
1

2
log 2⇡ +

✓
log x

log log x
+

1

2

◆
(log log x� log log log x)

� log x

log log x
+

1

12 log x
log log x + 1

,

in which the dominant positive term log x barely outweighs the negative terms.
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4.7 Empirical p-negative type properties of random trees

The rigorous bounds given in the last section have some shortcomings. In general,

in order to ensure that

P (}(T (n))  1 + �) � 1� p

for a small value of �, the bounds obtained on n are extremely large. Furthermore

it is not immediately clear how these bounds depend on the size of �. In this section

we shall examine empirical data which indicates that the rigorously proven bounds

are indeed far short of what appears to be true. As an example, in Section 4.6

we proved that 99.9% of random graphs have maximum generalised roundness less

than 1.1304 as long as the number of vertices is at least 4.12 ⇥ 1012. However,

taking a sample of one thousand random trees on n = 300 vertices, each of the

trees has maximum generalised roundness smaller than this. Indeed, the empirical

data suggests that the the mean maximum generalised roundness of n vertex trees

has a quite simple relationship to n.

The same empirical approach indicates additional information about the dis-

tribution of }(T (n)). Recall from Example 2.2.26 and Corollary 4.5.2 that this

distribution is supported on a subset of (1, log2 3] [ {2}. To refine this further, we

study the lower bound

d⇤
n
= min{}(T ) : T 2 T (n)}.

Considering the star graph on n vertices, we clearly have

d⇤
n
 }(Sn) = 1 + log2

✓
1 +

1

n� 2

◆
.

Our experimentation suggests that this bound cannot be improved.

Conjecture 4.7.1. The star graph has the smallest maximum generalised roundness

among all path metric trees on n vertices, that is,

d⇤
n
= 1 + log2

✓
1 +

1

n� 2

◆
.

This conjecture has been verified by calculating the maximum generalised round-

ness of each tree up to isomorphism for n = 3, 4, . . . , 17 by our MATLAB procedure,
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and for n = 3, 4, . . . , 12 by our Maple procedure. This result is ‘computation-

ally dependent’, and for larger n, there may be graphs with maximum generalised

roundness close enough to that of Sn to prevent us from definitively identifying the

smallest value.

To study other distribution features, we generated many samples of T (n) for

various n, and analysed the following statistics.

Definition 4.7.2. Let mn,N , Mn,N , }̄n,N and sn,N be random variables describing

the minimum, maximum, mean and standard deviation of N samples of T (n).

Clearly mn,N � d⇤
n
and Mn,N  2. Our earlier work in Section 4.6 shows that

for fixed N , we have Mn,N ! 1 in distribution and the same is true of mn,N . We

also expect }̄n,N ! 1 and sn,N ! 0.

We calculated the maximum generalised roundness of 1000 trees sampled from

T (n) for each n 2 {10, 11, . . . , 99, 100}. A plot of the minimum, maximum and

average in the sample can be seen in Figure 4.7.

Figure 4.7: A plot of the sample mean, minimum and maximum of the maximum
generalised roundness values of N = 1000 trees on n vertices generated uniformly
at random.

101



An obvious direction of inquiry relates to how these statistics vary with n.

Specifically, what is the rate of decay, and can we fit the data points with a simple

curve? After trying various curves, we found that

}̄n,1000 ⇡ 1 +
1.2

(n� 2)0.46
, (4.7.1)

as shown in Figure 4.8a. It is surprisingly di�cult to distinguish di↵erent curves

of the form a(n� 2)�b as the data is inherently noisy, with especially large relative

and absolute error for small n. Indeed, including one or more lower-order terms

may also improve the approximation. Even so, it is a pleasant surprise that we can

so closely estimate the sample mean.

Similarly, the standard deviation is quite well approximated by

sn,1000 ⇡
0.37

(n� 2)0.69
, (4.7.2)

as shown in Figure 4.8b.

102



(a) A plot of the sample mean }̄n,1000, fitted with the curve (4.7.1).

(b) A plot of the sample standard deviation sn,1000, fitted with the curve (4.7.2).

Figure 4.8: Curve fitting for the sample mean and standard deviation of one thou-
sand trees on n vertices, 10  n  100.
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While the mean value varies little with the sample chosen, it is to be expected

that the extreme values will not be so repeatable, and hence it is di�cult to mean-

ingfully fit a curve through these points. Indeed, among ten samples for n = 50, we

observe values of }̄50,1000 between 1.2031 and 1.2052, whereas

1.1207  m50,1000  1.1444

and

1.2888  M50,1000  1.3546,

where all values are rounded to four decimal places.

However, it is notable that [mn,1000,Mn,1000] is a (1000� 1)/(1000 + 1) ⇡ 99.8%

prediction interval, that is, an additional sample will be either less than mn,1000 or

greater than Mn,1000 each with probability about 0.001. Under the assumption that

the distribution is approximately normal, one would expect the following heuristic

bounds:

P (}(T (n)) < }̄n,1000 � 3sn,1000) < 0.001

and P (}(T (n)) < }̄n,1000 + 3sn,1000) > 0.999,

and hence

mn,1000 ⇡ }̄n,1000 � 3sn,1000 and Mn,1000 ⇡ }̄n,1000 + 3sn,1000.

However, Figure 4.9 indicates that the sample minimum is often slightly outside

the predicted range and the sample maximum even more so, suggesting that the

distribution of }(T (n)) has long tails5, particularly on the right side. We correct

for this by extending to four standard deviations on the left side and six on the

right, to obtain the bounds

L(n) = 1 +
1.2

(n� 2)0.46
� 4

✓
0.37

(n� 2)0.69

◆

and

U(n) = 1 +
1.2

(n� 2)0.46
+ 4 = 6

✓
0.37

(n� 2)0.69

◆
,

5
This indicates that the underlying distribution is not normal, and further investigation of this

distribution is a direction for future research.
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so that ‘typically’

P(}(T (n)) < L(n)) < 0.001 and P(}(T (n)) > U(n)) < 0.001.

Figure 4.9: A plot of the z-scores of our observed values of mn,1000 and Mn,1000,
relative to N

�
}̄n,1000, s2n,1000

�
.

The most notable outlier occurs for n = 67, where the calculated value ofM67,1000

is more than six standard deviations from the mean. Repeating the process forty

times, each with a new sample of 1000 trees, the maximum Z-score exceeded four

only twice, and never exceeded five. Similar behaviour was also observed for other

values of n, with samples occasionally containing a tree of particularly large max-

imum generalised roundness. The evidence thus suggests that despite the large

sample size, Mn,1000 is usually quite far from the actual maximum even among non-

degenerate trees. We suspect that this maximum is achieved by some tree very close

in structure to the path graph, such as the graph is pictured in Figure 4.10 which

is the best known candidate on 100 vertices. Its maximum generalised roundness

is 1.5608, well over twenty standard deviations above the mean. This type of tree

will be discussed in more detail in Section 6.4.

105



x1

x2

x3 x4 x5 xn· · ·

Figure 4.10: A graph on 100 vertices with unusually large maximum generalised
roundness.

As remarked in Section 4.2, generating trees by some non-uniform random pro-

cess may change the distribution. Recall from Section 4.4 that alternative models of

random trees could be produced from randomised versions of Prim’s algorithm and

Kruskal’s algorithm, which we will denote by T (P ) and T (K) respectively. Our data,

available at https://tinyurl.com/desilva-mgr, shows that T (K) yields a smaller

sample mean, maximum and minimum, and the results from T (P ) are much smaller

still. Recalling that the maximum generalised roundness is small for ‘star-like’ trees

and large for ‘path-like’ trees, these results are consistent with our earlier calcula-

tions for n = 4 and suggest that the distributions }
�
T (P )(n)

�
and }

�
T (K)(n)

�
are

produced by similar distortions of }(T (n)) for larger n.
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Chapter 5

Maximum generalised roundness of connected graphs

Recall from Chapter 2 that any metric space can be represented by a complete

graph with appropriately chosen edge weights. The reverse construction is more

interesting, as we seek to construct metric spaces from graphs and relate properties

of the metric space to its underlying graph theoretic properties. Of particular

interest are path metric graphs, where our metric is the distance between the vertices

of an unweighted graph, and we can calculate the maximum generalised roundness

accordingly.

Previous work on this subject has focused on the extremal maximum generalised

roundness values among families of graphs. As a simple example, we have already

established that path metric graphs have maximum generalised roundness in (0, 2],

with the exception of the complete graph. We will see that the lower bound can

be improved when we restrict ourselves to graphs on n vertices. However, little is

known about the ‘typical’ graph on n vertices, in any sense of the word.

In this chapter, we will examine the maximum generalised roundness properties

of the path metric graphs on n vertices, and apply ideas from random graph theory

to study the properties of typical graphs, as well as those of sparse and dense graphs.

As in the previous chapter, we are able to prove significant new theorems on the

limiting behaviour, and we have empirical evidence for stronger heuristic results.

5.1 p-negative type properties of graphs

The existing literature contains various results on the maximum generalised round-

ness of graph metric spaces in terms of the diameter of the graph. Recall that the

diameter of (G, d) is

diam(G, d) = max
v,w2V (G)

d(v, w).
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For path metric graphs in particular, the diameter is always a positive integer.

If diam(G, d) = 1, the graph is complete, so }(G) = 1 from Example 2.2.21.

Deza and Maehara proved a sharp lower bound for the maximum generalised

roundness of a path metric graph on n vertices with diameter two.

Theorem 5.1.1 ([23, Theorem 6]). Let

c⇤
n,2 = min{}(G, d) : |G| = n and diam(G, d) = 2 where d is the path metric}.

Then

c⇤
n,2 = log2

✓
1

1� �(n)

◆

where

�(n) =
1

2

✓
1

bn/2c +
1

dn/2e

◆
.

Naturally, we would like to study the analogous quantity over all metric graphs

on n vertices.

Definition 5.1.2. Let cn be the infinimum of the maximum generalised roundness

among all n-vertex metric graphs, that is,

cn = inf{}(G, d) : |G| = n}.

The first notable lower bound for cn was expressed purely in terms of n by

Weston.

Theorem 5.1.3 ([79, Theorem 4.3]). Define the sequence ⇣ recursively by ⇣(1) =

⇣(2) = 1 and ⇣(k) = ⇣(k � 1) + ⇣(k � 2) + 1 for k � 3. Then

cn � log2

 
1 +

1

(2n)2⇣(n)

!
.

Weston recognised that this bound was likely to be far from sharp, and later

generalised Theorem 5.1.1 to general metric graphs. Note that the earlier theorem

makes reference to the diameter of a path metric graph. In the general case, we

instead use the scaled diameter

D(G, d) =
diam(G, d)

min
v,w2V (G)

v 6=w

d(v, w)
,
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since generalised roundness properties are invariant under scaling by Theorem 2.1.14.

Theorem 5.1.4 ([78, Theorem 4.1]). Let

cn,t = inf{}(G, d) : |G| = n and D(G, d) = t}.

Then

cn,t � log
t

✓
1

1� �(n)

◆

where �(n) is as defined in Theorem 5.1.1, with equality for t 2 (1, 2].

It is clear that cn  c⇤
n,2, and Deza and Maehara conjectured that this is in fact

the correct value for cn.

Conjecture 5.1.5 ([23]). The infimum of the maximum generalised roundness of

n-vertex metric graphs is

cn = c⇤
n,2 = log2

✓
1

1� �(n)

◆

for all n.

Deza and Maehara [23] also provided the explicit construction for an n-vertex

graph with this maximum generalised roundness. Recall from Proposition 3.6.2 that

the maximum generalised roundness of the complete bipartite graph Km,n with the

path metric is

}(Km,n) = log2

✓
2nm

2nm� n�m

◆
.

Choosing parts of size dn/2e and bn/2c achieves the desired result.

On the other hand, recall from Proposition 2.2.22 that the maximum generalised

roundness of a path metric graph is at most 2, with the exception of complete graphs,

where }(Kn) = 1 as proved in Example 2.2.21. While a maximum generalised

roundness of two is achieved by the path graphs in Example 2.2.26, it is in some

sense almost as much of an outlier as the value 1. Path metric graphs cannot have

}(G) = 2 � ✏ for small ✏, as Sánchez established the following gap in maximum

generalised roundness values.

Theorem 5.1.6 ([71, Theorem 3.2]). If G is a connected path metric graph, then

}(G) /2 (log2(2 +
p
3), 2).
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Proof. First, we note that for n < 4, G is either a complete graph or a path

graph, with maximum generalised roundness 1 or 2 respectively, so the theorem is

satisfied.

Now, when n � 4, we can again discount complete graphs and path graphs.

Sánchez proved that a graph which is neither of these must contain a metrically

embedded cycle, in which case }(G)  log2 3, or a metrically embedded copy of one

of the three graphs depicted in Figure 5.1.

v1

v2

v3 v4

v1

v2

v3 v4

v1

v2

v3 v4

Figure 5.1: Three graphs on four vertices.

These graphs have maximum generalised roundness log2 3, log2(2 +
p
3) and

log2 3 respectively by 3.1.5, so }(G)  log2(2 +
p
3) by Theorem 2.1.17.

5.2 The graphs on n vertices

Aside from these extreme values, little is known about the ‘typical’ graph on n ver-

tices. We seek to understand the maximum generalised roundness properties of the

family of path metric graphs on n vertices for large n. Recall from Definition 2.2.11

that a graph must be connected in order to define the path metric.

Just as in Section 4.2, we must distinguish between labelled and unlabelled

connected graphs. Let `n be the number of connected graphs on n vertices labelled

1, 2, . . . , n. In the labelled case, there is no known simple formula for `n, but instead

each term of the sequence can be calculated from the recurrence

X

k�1

k`k2(
n�k
2 ) = n2(

n
2).

A proof using exponential generating functions is provided by Wilf [80, p. 87]. We

will see later that of the 2(
n
2) graphs on n vertices, relatively few are not connected.

Note however that many of the graphs counted by `n are isomorphic to each other.

On the other hand, we denote un for the number of connected graphs on n

unlabelled vertices, counting only one representative of each isomorphism class.
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Again there is no known closed form for un, although un ⇡ `n/n! provides a rough

approximation.

The numbers of labelled and unlabelled connected graphs for small n are given

in Table 5.1.

n 2 3 4 5 6 7 8 9

`n 1 4 38 728 26704 1866256 251548592 66296291072

un 1 2 6 21 112 85 11117 261080

Table 5.1: The number of labelled and unlabelled connected graphs on n vertices.

Appendix C catalogues the maximum generalised roundness of each tree on four

or five unlabelled vertices. Echoing our discussion of labelled and unlabelled trees

in Section 4.2, it will eventually be infeasible to list all the connected graphs on n

vertices, so we must at some point take a random sample of these graphs. We are

not able to e�ciently generate unlabelled connected graphs uniformly at random,

nor with another useful probability distribution. For the labelled case however,

there are well-established methods to generate random graphs, which can be easily

adapted to produce only connected graphs.

In the next section, we discuss the Erdős-Rényi model of random graphs, in

which edges appear independently with some fixed probability q. In Section 5.4

we study the special case where q = 1
2 , and prove that the maximum generalised

roundness of a random graph from this “uniform model” approaches zero with

high probability as the number of vertices n ! 1. Section 5.5 then discusses the

probabilistic bounds implied by this proof, as the experimental data suggests that

our known bounds are far from sharp. Indeed, sampling 1000 graphs on n vertices

for 10  n  100, the average lies quite close to

1.9

(n� 2)0.55

with standard deviation approximately

0.91

(n� 2)1.18
.

Further analysis of the extremal values allows us to estimate 99.8% intervals [L(n), U(n)]

for the maximum generalised roundness of a uniform random graph.
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In Section 5.6, we identify that the “uniform model” almost exclusively repre-

sents graphs with about half the possible edges, and we must consider other values

of q in order to understand the properties of graphs with either fewer or more

edges. We are able to extend the results of Section 5.4 for general q, and then in

Section 5.7 we examine empirical data for additional insights on the relationship

between maximum generalised roundness and edge probability.

5.3 Random graphs

Random graphs can be produced by various models, most notably the model pro-

posed by Gilbert [38] and developed further by Erdős and Rényi [33], in which we

place each possible edge independently with probability q.

Definition 5.3.1. Define the Erdős-Rényi model of random graphs

G(q) = (G(n), µn,q)n�1,

where G(n) is the set of all labelled graphs on n vertices and µn,q(G) = qm(1� q)(
n
2)�m

where m = |E(G)|.

Notation 5.3.2. In particular, if q = 1
2 , all graphs G 2 G(n) have equal measure, so

we refer to the special case G
�
1
2

�
as the uniform model, and abbreviate it to G.

Definition 5.3.3. Let G(n, q) be the discrete graph-valued random variable repre-

senting sampling from the Erdős-Rényi model, that is, from the set G(n) according
to the probability measure µn,q. We will abbreviate G

�
n, 12
�
to G(n).

For a full exposition of this model of random graphs, we direct the reader to

Blum, Hopcroft and Kannan [7] or Bollobás [9]. For our purposes, it is necessary to

modify the Erdős-Rényi model slightly by excluding disconnected graphs, to ensure

that the path length is defined for all pairs of vertices. Here, we consider only

constant values of q, and under this assumption, we can establish a bound for the

proportion of graphs to be discarded.

Proposition 5.3.4. Let G = G(n, q) be a random graph from the Erdős-Rényi

model. Then G is of diameter two, and hence connected, almost surely.

Proof. Let Xn(G) be the number of pairs of vertices (v, w) in G where d(v, w) > 2.

Such pairs are not connected by an edge, and do not have a common neighbour.

Then by the Markov inequality we have

P(Xn(G) � 1)  E(Xn(G)).
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Using the linearity of the expectation, we can evaluate this expression, as in the

proof of [7, Theorem 8.5]. We have

E(Xn(G)) = E
 
X

v,w2V

P(d(v, w) > 2)

!

=

✓
n

2

◆
⇥ P(d(v, w) > 2)

=

✓
n

2

◆
⇥ P((v, w) /2 E)⇥

0

@
Y

u2V \{v,w}

P
⇣
(u, v), (u, w) /2 E

⌘
1

A

=

✓
n

2

◆
(1� q)

�
1� q2

�n�2
,

so

P(Xn(G) = 0) = µn,q ({G 2 G(n, q) : diam(G)  2})

� 1�
✓
n

2

◆
(1� q)

�
1� q2

�n�2
.

Letting n ! 1, the result follows immediately.

In fact, these properties may remain true if q is allowed to vary with n up to

certain threshholds, as demonstrated by Blum, Hopcroft and Kannan. These results

can be stated concisely using the following asymptotic notation.

Notation 5.3.5. Let f(n) = !(g(n)) denote that f grows asymptotically faster than

g, that is,

lim
n!1

f(n)

g(n)
= 1.

Proposition 5.3.6 ([7, p. 253]). The following threshholds govern the properties of

the random graph G = G(n, q(n)).

• If q(n) = !

✓
log n

n

◆
, then G is connected almost surely.

• If q(n) = !

✓
log n

n

◆
, then diam(G) = O(log n) almost surely.

• If q(n) = !

 r
2 log n

n

!
, then diam(G) = 2 almost surely.

Although we will not consider the construction G(q(n)) further, these facts assist
in understanding the space of random graphs.
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Definition 5.3.7. Define the connected Erdős-Rényi model

G⇤(q) =
�
G⇤(n), µ⇤

n,q

�
n�1

,

where G⇤(n) is the set of all connected labelled graphs on n vertices with probability

measure

µ⇤
n,q

(G) =

8
>>><

>>>:

µn,q(G)X

G02G⇤(n)

µn,q(G
0)

if G is connected

0 otherwise.

Proposition 5.3.8. Let c be a positive constant. Any graph property which holds

in G(q) with probability 1 � o(n�c) must also hold with probability 1 � o(n�c) (and

hence almost surely) in G⇤(q).

Proof. This is a consequence of the fact that

µn,q(G⇤(n)) � 1�
✓
n

2

◆
(1� q)

�
1� q2

�n�2
,

from the proof of Proposition 5.3.4.

Remark 5.3.9. Note that G⇤ �1
2

�
generates the connected graphs on n vertices uni-

formly at random. We will refer to this model as simply G⇤, the connected uniform

model.

Notation 5.3.10. Let G⇤(n, q) be the discrete graph-valued random variable rep-

resenting sampling from the connected Erdős-Rényi model. We will abbreviate

G⇤ �n, 12
�
to G⇤(n).

In the next two sections we will study the maximum generalised roundness under

the connected uniform model, before returning to the more general connected Erdős-

Rényi model in Section 5.6.

5.4 p-negative type properties of uniform random connected graphs

We first generated a sample of graphs G⇤(n) for various values of n, and calculated

the maximum generalised roundness of each graph. This allowed us to approximate

the distribution of }(G⇤(n)), which is supported on [c⇤
n,2, 2][{1} by Theorem 5.1.1.

The resulting data suggested that as n grows, the maximum generalised roundness

is usually small with occasional larger values, as seen in Figure 5.2 and Table 5.2.
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n 20 30 40 50 60 70 80 90

}max 0.4976 0.3808 0.2944 0.2529 0.2236 0.2026 0.1865 0.1775

}min 0.3092 0.2442 0.2164 0.1923 0.1771 0.1606 0.1552 0.1473

}̄ 0.3984 0.3065 0.2558 0.2250 0.2028 0.1859 0.1723 0.1616

Table 5.2: The maximum, minimum and average maximum generalised roundness

of 1000 graphs on n vertices from the connected uniform model.

To prove these results, we will identify a graph with small maximum generalised

roundness which appears with high probability as a metric subspace of G⇤(n). This

will allow us to conclude that with the same probability, G⇤(n) has maximum

generalised roundness no larger than that of our chosen graph.

Note however that this does not correspond exactly to the notion of subgraphs

from Definition 2.2.6. Unless all valid edges are inherited by the subgraph, some

distances of 1 in the original graph will di↵er from the corresponding distances in

the subgraph.

Example 5.4.1. It is easy to confirm that

}(C4) = 1 < 1 = }(K5).

Although the 4-cycle C4 is clearly a subgraph of the complete graph K5, this does

not contradict Theorem 2.1.17 on metric subspaces. We note that C4 is not a metric

subspace of K5 since the distances do not agree. Some pairs of vertices in C4 are

separated by a distance of 2, but there are no such pairs in K5.

To overcome this problem, we introduce the notion of induced subgraphs.

Definition 5.4.2. Let G = (V,E) be a graph and let V 0 ✓ V . The induced

subgraph G[V 0] is the subgraph of G with vertex set V 0 and edge set {(v, w) 2 E :

v, w 2 V 0}, that is, all the edges of G which join vertices of V 0.

Theorem 5.4.3. If H is an induced subgraph of G with diameter 2, then the path

metric on H is the restriction of the path metric on G to the vertices of H.

Proof. Let u, v 2 H. We must prove that dG(u, v) = dH(u, v).

It is trivial to see that the shortest path in G cannot be improved upon by

restricting to H, so dG(u, v)  dH(u, v).
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Suppose for a contradiction that dG(u, v) < dH(u, v). Since dH(u, v)  2, we

must have dG(u, v) = 1 and dH(u, v) = 2, which is impossible. Therefore the

distance between u and v in G and H coincide, so the metric in H is the restriction

of the metric in G.

Our aim is to find a particular small graph of diameter two which is likely to oc-

cur as an induced subgraph of a large random graph, and hence state a probabilistic

upper bound on the maximum generalised roundness of the large graph.

A simple application of this idea is su�cient to prove a weak result suggested

by Figure 5.2.

Theorem 5.4.4. Under the uniform model, }(G(n)) < 1 almost surely.

Proof. Consider the complete bipartite graph K2,3, whose maximum generalised

roundness is } = log2(12/7) < 1 by Theorem 3.6.2. Suppose a graph G has an

induced subgraph H which is isomorphic to K2,3. Since diamH = 2, dH = dG|H
and hence }(G)  }(H) < 1.

We then ask how likely it is that G = G(n) contains an embedded copy of

K2,3. A crude underestimate can be found by partitioning the vertices of G into the

following bn/5c sets: {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, and so on. There are
�
5
2

�
= 10

potential edges among the first five vertices, giving 210 possibilities for the induced

subgraph G[{1, 2, 3, 4, 5}]. Of these, ten are isomorphic to K2,3, so

P (G[{1, 2, 3, 4, 5}] ' K2,3) =
5

512
.

The same probability applies to each of the other sets of five vertices, so the prob-

ability that no copy of K2,3 appears is at most

1�
✓
1� 5

512

◆bn/5c

.

Thus }(G(n)) < 1 almost surely.

Corollary 5.4.5. Under the connected uniform model, }(G⇤(n)) < 1 almost surely

also.

Proof. This follows immediately from Theorem 5.4.4 by applying Proposition 5.3.8.
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Remark 5.4.6. This result confirms that trees have unusual maximum generalised

roundness, compared to connected graphs in general.

The proof of Theorem 5.4.4 suggests that this theorem is far from the strongest

available result. We considered only very few of the subgraphs of G, and compared

them only against the particular graph K2,3. Figure 5.2 suggests that a far stronger

result is true, namely that }(G) < ✏ almost surely for any ✏ > 0. To prove this

hypothesis, we look for metrically embedded subgraphs with even smaller maxi-

mum generalised roundness. We return to the complete bipartite graphs studied in

Theorem 3.6.2, and for simplicity use the special case where both parts are of equal

size.

Theorem 5.4.7. The maximum generalised roundness of the complete bipartite

graph Km,m with the path metric is

}(Km,m) = log2

✓
1 +

1

m� 1

◆
.

Applying Theorem 5.4.3 gives the following immediate corollary.

Corollary 5.4.8. Let G be a graph containing an induced copy of Km,m. Then

}(G)  log2

✓
1 +

1

m� 1

◆
.

We seek a function m(n) which increases slowly to infinity, such that G⇤(n)

contains an induced copy of Km(n),m(n) almost surely. Here, we make use of the

following theorem of Palka, which was proven using the second moment method.

While the theorem applies to random graphs from the uniform model G, the same

result will hold when we later move to the connected uniform model G⇤, as discussed

in Proposition 5.3.8.

Theorem 5.4.9 ([66, Theorem 2]). Given two non-decreasing sequences of positive

integers r = (r1, r2, . . .) and w = (w1, w2, . . .), such that the sequence r + w is

increasing, define

Bn(r,w) = max {rk + wk : there is a copy of Krk,wk
in G(n)} .

Suppose that
wk

rk
! c as k ! 1, where 0 < c  1 is a constant. Then for every

✏ > 0,

P (Bn(r,w) < (2� ✏) log2 n) = o
�
n�1��

�

118



and

P (Bn(r,w) > (2 + ✏) log2 n) = o
�
n�k
�
,

where 0 < � < 1 is a constant and k is any integer.

In particular, we choose r = w = (1, 2, 3, . . .), and define

m(n) =
1

2
Bn(r,w) = max {m : there is a copy of Km,m in G(n)} .

Then for every ✏ > 0, we have

(1� ✏) log2 n < m(n) < (1 + ✏) log2 n a.s. (5.4.1)

Note that only the lower bound here is useful to us.

We now know that G(n) contains an induced copy of Km(n),m(n) almost surely,

and that this subgraph has diameter 2, so we have

}(G(n))  }
�
Km(n),m(n)

�

= log2

✓
1 +

1

m(n)� 1

◆

< log2

✓
1 +

1

(1� ✏) log2 n� 1

◆
a.s.

and therefore by Proposition 5.3.8, we have the following theorem.

Theorem 5.4.10. In the connected uniform model,

}(G⇤(n)) < log2

✓
1 +

1

(1� ✏) log2 n� 1

◆
a.s.

for every ✏ > 0.

Note that this bound tends to zero as n ! 1, so the maximum generalised

roundness of a path metric graph chosen uniformly at random from G⇤(n) can be

made arbitrarily small almost surely, by choosing n su�ciently large.

5.5 Empirical p-negative type properties of uniform random

connected graphs

Although we now know that }(G⇤(n)) eventually approaches zero, Theorem 5.4.10

says very little about the rate of this convergence. An obvious question is: how
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large must n be so that G⇤(n) contains Km,m ‘with high probability’?

To be more precise, for ✏ > 0 and 0 < p < 1, we seek M = M✏,p such that if

n � M then

P(}(G⇤(n)) < ✏) > 1� p.

Again we simplify by interchanging G⇤(n) for the more accessible (and almost

identical) G(n). Following Palka’s proof of Theorem 5.4.9 (see [66, Theorem 2]), we

have

P (G(n) has an induced copy of Km,m) > 1� m6

1
2(n� 4m+ 2)(n� 4m+ 1)

. (5.5.1)

To ensure that this probability is greater than 1� p, it is su�cient to have

(n� 4m+ 2)(n� 4m+ 1) >
2m6

p
.

Solving this inequality, we obtain

M =
8m� 3 +

q
1 + 8m6

p

2
.

This bound is still quite large. As an example, setting p = 0.001 gives M = 1218

for m = 3, proving that

P (}(G⇤(n))  }(K3,3) < 0.585) > 0.999

for n � 1218. However, the data suggests that we should be able to do better. For

n as small as 100, calculating the maximum generalised roundness of ten thousand

such random graphs, we do not obtain any values exceeding 0.167. Indeed, in a

sample of 10, 000 random graphs on thirty vertices, all had an induced subgraph

isomorphic to K3,3, and none had maximum generalised roundness greater than

0.368.

Likewise, for m = 4, the bound above gives M = 2877, when in fact 10, 000

random graphs on sixty vertices all had an copy of K4,4, and had maximum gener-

alised roundness not exceeding 0.217, much less than }(K4,4) ⇡ 0.415. Testing for

the presence of larger complete bipartite subgraphs quickly becomes computation-

ally infeasible, but it is clear that at least for small m, this bound leaves room for

improvement.
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Thus it appears that our theorems do not fully describe the observed maximum

generalised roundness values. While we have established that }(G⇤(n)) converges

almost surely to zero, the data suggests that we are some way short of tight bounds,

perhaps because inequality (5.5.1) is not very tight or because the prevalence of

complete bipartite graphs Km,m are not the strongest cause of the convergence.

In a similar way to Definition 4.7.2, for a sample of N graphs on n vertices,

we denote by mn,N , Mn,N , }̄n,N and sn,N the sample minimum, maximum, mean

and standard deviation of the maximum generalised roundness values. From the

previous section, we expect all four statistics to approach zero in distribution as

n ! 1 for fixed N .

We calculated these statistics for a sample of N = 1000 graphs from the con-

nected uniform model1, for each n 2 {10, 11, . . . , 99, 100}. A plot of the minimum,

maximum and average in the sample can be seen in Figure 5.3.

Figure 5.3: A plot of the sample mean, maximum and minimum of the maximum
generalised roundness values of N = 1000 graphs on n vertices generated by the
connected uniform model.

1
In order to guarantee that the mean was well-defined, we had to also exclude the complete

graph. Fortunately, there is a vanishingly small chance that G⇤
(n) = Kn, so this has a negligible

e↵ect on our results.
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Again we would like to study how these quantities decay with n and fit curves

to these data points. For the mean, we used

}̄n,1000 ⇡
1.9

(n� 2)0.55
, (5.5.2)

as shown in Figure 5.4a.

The standard deviation is quite well approximated by

sn,1000 ⇡
0.91

(n� 2)1.18
, (5.5.3)

as shown in Figure 5.4b.

122



(a) A plot of the sample mean }̄n,1000, fitted with the curve (5.5.2).

(b) A plot of the sample standard deviation sn,1000, fitted with the curve (5.5.3).

Figure 5.4: Curve fitting for the sample mean and standard deviation of one thou-
sand connected graphs on n vertices, 10  n  100.
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The sample minimum and maximum are again slightly further dispersed from

the mean than we would expect under the normal distribution. Figure 5.5 shows

that mn,1000 and Mn,1000 are often up to four standard deviations from }̄n,1000. We

therefore have the approximate bounds

L(n) =
1.9

(n� 2)0.55
� 4

✓
0.91

(n� 2)1.18

◆

and

U(n) =
1.9

(n� 2)0.55
+ 4

✓
0.91

(n� 2)1.18

◆
,

so that ‘typically’

P(}(T (n)) < L(n)) < 0.001 and P(}(T (n)) > U(n)) < 0.001.

Figure 5.5: A plot of the z-scores of our observed values of mn,1000 and Mn,1000,
relative to N

�
}̄n,1000, s2n,1000

�
.
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5.6 p-negative type properties of atypical connectedgraphs

Our analysis thus far has focused on G⇤(n), which samples connected graphs on n

vertices uniformly at random. However, it is important to identify that the structure

of such a graph is not as random as it might initially appear. We have already found

that G⇤(n) is typically very di↵erent from any tree on n vertices. On average, we

expect G⇤(n) to have about half the possible edges, while a tree has only n � 1

edges, so a natural direction is to analyse the relationship between the number of

edges of a graph and its maximum generalised roundness.

We begin by describing the number of edges of G(n) more precisely, as an

approximation to G⇤(n). Recalling from Definition 5.3.1 that each edge appears

independently with probability 1
2 , we see that the number of edges En = |E(G(n))|

is binomially distributed, with

En ⇠ Bin

✓✓
n

2

◆
,
1

2

◆
,

so we have

E(En) =
1

2

✓
n

2

◆
=

n(n� 1)

4

and

Var(En) =

✓
n

2

◆
1

2

✓
1� 1

2

◆
=

n(n� 1)

8
,

so �(En) < n/3. Thus for large n, the normal approximation to the binomial

distribution suggests that well over 99% of our sample will be comprised of graphs

where
n2 � 5n

4
< En <

n2 + 3n

4
.

It should be noted however that not all such graphs have the property of The-

orem 5.4.10, that is, some have relatively large maximum generalised roundness.

One way to construct such a graph is to recall from Example 2.2.21 that complete

graphs have infinite maximum generalised roundness, and accordingly create large

complete subgraphs where possible.

Example 5.6.1. For n even, consider the graph Ln formed by connecting two

copies of Kn/2 with a single edge. The example of L10 is depicted in 5.6.
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Figure 5.6: The graph L10.

More precisely, let n = 2m, and let Ln = (V,E) where V = {1, . . . , 2m} and

E = {{i, j} : 1  i < j  m} [ {{i, j} : m+ 1  i < j  2m} [ {{1,m+ 1}},

so the number of edges is

|E| = 2

✓
m(m� 1)

2

◆
+ 1 =

n2 � 2n+ 4

4
.

The p-distance matrix is

Dp =

0

BBBBBBBBBBBBBBB@

0 1 · · · 1 1 2 · · · 2

1 0 · · · 1 2 3 · · · 3
...

...
. . .

...
...

...
. . .

...

1 1 · · · 0 2 3 · · · 3

1 2 · · · 2 0 1 · · · 1

2 3 · · · 3 1 0 · · · 1
...

...
. . .

...
...

...
. . .

...

2 3 · · · 3 1 1 · · · 0

1

CCCCCCCCCCCCCCCA

.

Calculating L2m for several values of m, a clear pattern emerges where

detDp = ((m� 1)⇥ 4p � (m� 1)⇥ 3p � 2(m� 1)⇥ 2p + (2m� 3))

⇥ ((m� 1)⇥ 4p � (m� 1)⇥ 3p + 2(m� 1)⇥ 2p + 1)

and
⌦
D�1

p
,
↵
=

2 (2(m� 1)⇥ 2p � (m� 1)⇥ 3p + 1)

(m� 1)⇥ 4p � (m� 1)⇥ 3p + 2(m� 1)⇥ 2p + 1
.
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In each case, the maximum generalised roundness is governed by
⌦
D�1

p
,
↵
rather

than detDp. Solving for the numerator to equal zero gives

2⇥ 2p � 3p +
1

m� 1
= 0,

and letting m ! 1 we obtain

lim
m!1

} (L2m) = log 3
2
2 ⇡ 1.709511.

We confirmed this result by calculating the values in Table 5.3 using our MATLAB

program.

m } (L2m)

10 1.7499

20 1.7290

30 1.7224

40 1.7191

50 1.7172

60 1.7159

70 1.7149

80 1.7143

90 1.7137

100 1.7133

Table 5.3: Values of } (L2m) for various m, to four decimal places.

Thus Ln has a similar number of edges to the graphs of G⇤(n), but has much

greater maximum generalised roundness.

Outliers notwithstanding, Theorem 5.4.10 describes the behaviour of graphs

with about n(n � 1)/4 edges. In order to describe graphs with significantly more

or fewer edges, it is useful to define the density of a graph.

Definition 5.6.2. Let G = (V,E) be a graph. Then the density of G is

⇢(G) =
|E|✓
|V |
2

◆ ,

the ratio of the number of edges to the number of possible edges.

127



Remark 5.6.3. A graph with density close to 1 is said to be dense, whereas a graph

with density close to 0 is said to be sparse.

The Erdős-Rényi random graph G(n, q), and thus also the connected Erdős-

Rényi random graph G⇤(n, q), typically has

En,q ⇡
n(n� 1)

2
q

edges, so we can simply change the value of q in order to produce graphs of density

approximately q. Indeed, ⇢(G⇤(n, q)) ! q as a consequence of the law of large

numbers.

We can then apply the full version of Theorem 5.4.9 to dense or sparse graphs

to obtain a very similar theorem and proof to the q = 1
2 case explored in Theo-

rem 5.4.10.

Theorem 5.6.4 ([66, Theorem 2]). Given two non-decreasing sequences of positive

integers r = (r1, r2, . . .) and w = (w1, w2, . . .), such that the sequence r + w is

increasing, define

Bn(r,w) = max {rk + wk : there is a copy of Krk,wk
in G(n, q)} .

Suppose that
wk

rk
! c as k ! 1, where 0 < c  1 is a constant, and denote

f = max

✓
1

q
,

1

1� q

◆
and h = min

✓
1

q
,

1

1� q

◆
.

Then for every ✏ > 0,

P
✓
Bn(r,w) < (2� ✏)

log n

log f

◆
= o

�
n�1��

�

and

P
✓
Bn(r,w) > (2 + ✏)

log n

log h

◆
= o

�
n�k
�
,

where 0 < � < 1 is a constant and k is any integer.

We can now prove the main theorem of this section.

Theorem 5.6.5. In the connected Erdős-Rényi model,

}(G⇤(n, q)) < log2

 
1 +

1

(1� ✏) lognlog f � 1

!
a.s.,
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where f = max

✓
1

q
,

1

1� q

◆
.

Proof. Following the structure of the proof of Theorem 5.4.10, we apply Theo-

rem 5.6.4. We choose r = w = (1, 2, 3, . . .) and define

m(n) =
1

2
Bn(r,w) = max {m : there is a copy of Km,m in G(n, q)} ,

so that for every ✏ > 0 we have

(1� ✏)
log n

log f
< m(n) < (1 + ✏)

log n

log h
a.s. (5.6.1)

The lower bound now guarantees that Km(n),m(n) almost surely appears as an

induced subgraph of G(n, q), with diameter 2, so

}(G(n, q))  }
�
Km(n),m(n)

�

= log2

✓
1 +

1

m(n)� 1

◆

< log2

 
1 +

1

(1� ✏) lognlog f � 1

!
a.s.,

and invoking Proposition 5.3.8 again relates G(n, q) and G⇤(n, q) to complete the

proof.

5.7 Empirical p-negative type properties of atypical connected

graphs

Although }(G⇤(n, q)) ! 0 in distribution for any fixed q, we still suspect that

for given n, the distribution of }(G⇤(n, q)) still depends significantly on the edge

probability q. The sparsest connected graphs on n vertices are the trees, with

maximum generalised roundness greater than one by Theorem 4.1.3. At the other

extreme, the densest graph is Kn, with infinite maximum generalised roundness

from Example 2.2.21. Even omitting one edge of Kn still leaves a graph with

maximum generalised roundness

1 + log2

✓
1 +

1

n� 2

◆
.
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Halfway between these extremes, we recall from Theorem 5.4.4 that }(G(n)) < 1

almost surely. This suggests that both sparse and dense graphs have unusually

large maximum generalised roundness as compared to those in between.

This conjecture can be experimentally verified and indeed expanded upon for

particular values of n. For example, we computed }(G⇤(100, q)) for q chosen uni-

formly at random between 0.05 and 0.95, and plotted the results against the number

of edges of these graphs to obtain the results in Figure 5.7.

Figure 5.7: A plot of }(G) against |E(G)| for G = G⇤(100, q), where q 2 [0.05, 0.95)
uniformly at random.

For very sparse (⇢ < 0.05) and very dense (⇢ > 0.95) graphs, we typically obtain

maximum generalised roundness values well outside the range of this chart. The

corresponding values of q have been omitted for practicality, as our graph generating

algorithm has a low probability of yielding a connected graph when q is very small.

This visualisation shows that the maximum generalised roundness of a graph

of G⇤(n, q) is strongly linked to its density, with the typical maximum generalised

roundness smallest for graphs of density approximately one-half, and increasing

as the graph becomes either more dense or more sparse. We can then infer the

same result for q, with }(G⇤(n, q)) generally smallest for q ⇡ 1
2 and increasing

as q moves away from 1
2 in either direction. Recall however that the relationship

between density and maximum generalised roundness is not without exceptions, as

demonstrated by Example 5.6.1.
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Note also that this relationship does not contradict the result of Theorem 5.6.5.

While this theorem showed that }(G⇤(n, q)) approaches zero with high probability

for any q, the rate of convergence appears to depend not only on n but also on q.
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Chapter 6

Future Work

This chapter outlines assorted partial results and demonstrates potential directions

for further discoveries in this field.

6.1 Confluence of determinants for connected uniform random

graphs

In our study of the connected uniform model of random graphs in Chapter 5, we

often graphed the determinant detDp for a sample graph G⇤(n). For n su�ciently

large, we frequently observed the behaviour seen in Figure 6.1. Beginning at a

common point (0, (�1)n+1n), the determinant would briefly increase in magnitude

before decreasing towards its first zero, then remain very close to zero over an

unexpectedly large interval.

Figure 6.1: detDp for the graph G(100, 0.5, 0).

A surprising observation is that this behaviour seems to be almost universal

in graphs of su�cient size. Figure 6.2 shows a plot of detDp for one thousand

graphs each on one hundred vertices, where each curve is evaluated numerically at

points 0.0001 apart. We see a similar initial dip in all plotted curves, after which a

‘pinching’ phenomenon takes e↵ect.
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Figure 6.2: A plot of detDp for N = 1000 graphs on n = 100 vertices generated by
the connected uniform model.

A more detailed investigation in Figure 6.3 reveals that:

• |detDp| < 1 for p 2 [0.12, 0.3]

• |detDp| < 1⇥ 10�5 for p 2 [0.16, 0.25]

• |detDp| < 1⇥ 10�6 for p 2 [0.17, 0.23]

• |detDp| < 1⇥ 10�7 for p 2 [0.18, 0.21].

This behaviour is particularly remarkable when we consider the algebraic ex-

pressions in question. Recall from Subsection 3.4.4 that the substitution � = 2p

transforms the function detDp into a polynomial q(�) with integer coe�cients on

the order of 1080. These coe�cients are not consistent between the di↵erent graphs

of our sample, exhibiting significant variety. It is surprising that any one of these

polynomials remains so close to zero on a nontrivial interval, let alone all the poly-

nomials we encountered in a random sample. Unfortunately we have not been able

to provide a complete explanation for this phenomenon.

The corresponding graphs for
⌦
D�1

p
,
↵
are less useful, as they have many

discontinuities corresponding to the many zeroes of detDp.
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(a) |detDp| < 1

(b) |detDp| < 1⇥ 10
�5

Figure 6.3: More detail of the ‘pinching’ e↵ect from Figure 6.2.
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(c) |detDp| < 1⇥ 10
�6

(d) |detDp| < 1⇥ 10
�7

Figure 6.3: More detail of the ‘pinching’ e↵ect from Figure 6.2. (continued)
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6.2 Weston tree conjecture

In a 2019 seminar at UNSW Sydney, Anthony Weston conjectured that trees can be

distinguished (up to isomorphism) by their maximum generalised roundness, with

the obvious exception of the path graphs, all of which have }(T ) = 2. To test this

claim, we obtained lists of trees (up to graph isomorphism) on 3  n  17 vertices

from the Combinatorial Object Server [63], which provides a web interface to various

programs to generate combinatorial objects. In particular, trees are generated by

the nauty program developed by McKay and Piperno [56]. Computation of the

maximum generalised roundness of each tree using our MATLAB program has failed

to reveal two non-trivial trees with equal maximum generalised roundness, so the

problem remains open. However, one should note that this testing was very much

‘computationally dependent’. With almost fifty thousand trees to test for n = 17,

we encountered several pairs of trees whose maximum generalised roundness agree

to four or even five decimal places, so a more careful manual analysis was needed to

confirm that these values were indeed distinct. This phenomenon will be intensified

for larger n as a consequence of the pigeon-hole principle, perhaps requiring a more

precise algorithm for the numerical evaluation of }(G).

Notably, the conjecture does not extend to path metric graphs in general. The

graphs in Figure 6.4 both have }(G) = 1, and similarly }(G) = log2

⇣
3+

p
5

2

⌘
for

both graphs depicted in Figure 6.5.

A B

CD

E F

A B

CD

E F

Figure 6.4: Two non-isomorphic six-vertex graphs with equal maximum generalised
roundness.
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A

B

CD

E

A

B

CD

E

Figure 6.5: Two non-isomorphic five-vertex graphs with equal maximum generalised
roundness.

6.3 Sánchez formula types

Recall Sánchez’s formula for the maximum generalised roundness of a finite metric

space, from Corollary 3.1.5:

}(X, d) = min{p � 0 : detDp = 0 or
⌦
D�1

p
,
↵
= 0},

where Dp is the p-distance matrix and is a vector of ones of the appropriate

dimension. We aim to classify finite metric spaces by the criterion which determines

this minimum.

Definition 6.3.1. A finite metric space (X, d) is of Type I if

}(X, d) = min{p � 0 : detDp = 0},

or Type II if

}(X, d) = min{p � 0 :
⌦
D�1

p
,
↵
= 0}.

Remark 6.3.2. Note that these two classes are mutually exclusive unless }(X, d) is

infinite, as Dp is not invertible when detDp = 0.

We then wish to describe these two classes of metric spaces in terms of their

graph theoretic properties. The only existing result in the literature is due to

Murugan [62], concerning vertex transitive graphs.

Definition 6.3.3. Let G = (V,E) be a (possibly infinite) graph. G is vertex

transitive if for any v, w 2 V there is an edge-preserving bijection f : V ! V such

that f(v) = w.
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Murugan listed several examples of vertex transitive graphs, including the cycle

graph Cn, the complete graph Kn, the complete bipartite graph Kn,n, as well as the

Peterson graph, Platonic solids, Hamming cubes and Cayley graphs of groups.

Theorem 6.3.4 ([62, Theorem 3.1]). A finite vertex transitive graph must be of

Type I.

Proof. A consequence of Definition 6.3.3 is that for a finite vertex transitive graph,

each row of the distance matrix is a permutation of the first row.

It follows that is an eigenvector of Dp. Let the corresponding eigenvalue be �,

and note that � =
P

n

j=1 d(x1, xj)p > 0. Now we have Dp = � , and multiplying

on the left by D�1
p
, if it exists, yields D�1

p
= 1

�
. Then

⌦
D�1

p
,
↵
= n

�
6= 0 for any

p, and the result follows.

A surprising pattern emerged in our study of trees, as calculations showed that

the maximum generalised roundness was always determined by the sum of entries

of the inverse.

Conjecture 6.3.5. All path metric trees are of Type II.

An analogous method of proof to that used for vertex transitive graphs seems

unlikely, as the situation is more complicated here. For path metric graphs, detDp

can have zeros, but it appears that
⌦
D�1

p
,
↵
always has a smaller zero.

Example 6.3.6. Let T be the tree on six vertices in Figure 6.6.

x1 x2

x3

x4

x5

x6

Figure 6.6: A tree on six vertices.

Maple calculates the determinant of the p-distance matrix

detDp = 4p (3⇥ 16p � 6⇥ 12p + 3⇥ 9p � 2⇥ 4p � 6⇥ 3p + 3) ,

which can be plotted as in Figure 6.7.
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Figure 6.7: The determinant of the p-distance matrix of T from Example 6.3.6.

Applying fsolve on (1.7, 1.8) finds a zero at p ⇡ 1.7540. However,
⌦
D�1

p
,
↵

is zero at p ⇡ 1.4080, so T is of Type II.

The situation for random graphs is quite di↵erent, as seen in Figure 6.8. Taking

one thousand connected graphs on n vertices chosen uniformly at random, we find

that the proportion of Type II graphs increases over the first few values of n,

reaching a peak around 92%, before decreasing steadily. However, even for n = 100,

more than 10% are of Type II.

Figure 6.8: The number of Type II graphs among one thousand connected uniform
random graphs on n vertices.
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In fact, there appears to be some correlation between the maximum generalised

roundness of a graph and its type. Our data indicates that graphs of high maximum

generalised roundness are disproportionately of Type II, as seen in Figure 6.9.

(a) Type I

(b) Type II

Figure 6.9: Histograms of maximum generalised roundness values among a total
of one thousand graphs from the connected Erdős-Rényi model G⇤(50, q), where
q 2 (0.05, 0.95) uniformly at random.
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6.4 Infinite metric trees

Infinite trees have also been studied in some detail, beginning with the work of Doust

and Weston [28] who showed that infinite metric trees also have strict 1-negative

type, but may have maximum generalised roundness of 1. Ca↵arelli, Doust and

Weston [16] then showcased classes of spherically symmetric trees, k-regular trees,

infinitely bifurcating trees and comb graphs, all of which have maximum generalised

roundness one. A well known open question in the field asks whether there are any

infinite metric trees with maximum generalised roundness strictly between 1 and 2.

One direction of investigation was to extend the existing work on comb graphs,

which are a particular type of metric tree.

Definition 6.4.1. Let S be a subset of the positive integers. Define the comb graph

CS = (V,E), where

V = {(k, 0) : k 2 Z+} [ {(k, 1) : k 2 S}

and

E = {((k, 0), (k + 1, 0)) : k 2 Z+} [ {((k, 0), (k, 1)) : k 2 S},

with the path metric. The edges ((k, 0), (k, 1)) are known as teeth.

· · ·

Figure 6.10: An example of a comb graph.

Theorem 6.4.2 ([16, Corollary 4.5]). Let S be a nonempty subset of Z+. If the

distance between any two consecutive teeth is uniformly bounded by some r > 0,

then }(CS) = 1.

It is unknown whether the same result applies if this condition is relaxed in any

way.

We conjectured that the forked path graph Y shown in Figure 6.11 has maxi-

mum generalised roundness strictly greater than one and less than two, for suitably

chosen edge weights wi. In particular, we suspected that an appropriate sequence of

edge weights must be rapidly increasing to infinity, in order to provide the starkest

contrast to the condition studied in Theorem 6.4.2.
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x1

x2

x3 x4 x5 x6

1

1

w1 w2 w3 · · ·

Figure 6.11: The forked path graph.

We aimed to first study the maximum generalised roundness of the truncations

Yn as in Figure 6.12.

x1

x2

x3 x4 x5 xn

1

1

w1 w2 w3 · · ·
wn�3

Figure 6.12: A truncation of the forked path graph.

Our method involved analysing the related graphs Zn in which each vertex xi

(i � 4) is joined by an edge of weight wi�3 not only to xi�1, but to each xj for j < i.

The example of Z5 is depicted in Figure 6.13,

x1

x2

x3 x4 x5

1

1

w1

w1

w1

w2

w2

w2

w2

Figure 6.13: A truncation of the forked path graph with added edges.

Recall from Corollary 3.1.5 that the maximum generalised roundness of a finite

metric space can be evaluated using the p-distance matrix of the space. The graph

in Figure 6.13 has p-distance matrix as follows.
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D(n)
p

=

0

BBBBBBBBBBBB@

0 2 1 w1 w2 · · · wn�3

2 0 1 w1 w2 · · · wn�3

1 1 0 w1 w2 · · · wn�3

w1 w1 w1 0 w2 · · · wn�3

w2 w2 w2 w2 0 · · · wn�3

...
...

...
...

...
. . .

...

wn�3 wn�3 wn�3 wn�3 wn�3 · · · 0

1

CCCCCCCCCCCCA

=

 
D(n�1)

p wn�3

wn�3
T 0

!
,

We see that additional vertices contribute a row and column whose entries are

all wn�3, away from the main diagonal. This structure allows for easier computation

of }(Zn), using the identity

det

0

BBBBB@

. . .
...

A B
. . .

...

· · · C · · · d

1

CCCCCA
=
�
d� CA�1B

�
detA,

where the right hand side is zero when A is not invertible. Thus we have

det
�
D(n)

p

�
=
⇣
�wn�3

T
�
D(n�1)

p

��1
wn�3

⌘
detD(n�1)

p

= �w2
n�3

D�
D(n�1)

p

��1
,
E
detD(n�1)

p
.

Note that the right hand side has its first zero at }(Zn�1), as discussed in a 2019

seminar by Gavin Robertson at UNSW Sydney.

Next, we remove the artificial edges to recover Yn. This perturbs the distance

matrix somewhat. For example, Y5 has distance matrix

D(5)
p

=

0

BBBBBBB@

0 2 1 w1 + 1 w2 + w1 + 1

2 0 1 w1 + 1 w2 + w1 + 1

1 1 0 w1 w2 + w1

w1 + 1 w1 + 1 w1 0 w2

w2 + w1 + 1 w2 + w1 + 1 w2 + w1 w2 0

1

CCCCCCCA

.
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Similarly, for larger n, we typically replace wn�3 by wn�3+wn�4+. . .. If the sequence

of edge weights wi is rapidly increasing, for example wi = 1010
i
, then each distance

changes by a relatively small fraction. We conjectured that a small perturbation of

the distance matrix would result in only a small change in the maximum generalised

roundness, that is, the maximum generalised roundness is a continuous function of

the distances between points. Since detDp is a smooth function, the only point of

contention relates to turning points at zeros.

Recall the example of C5, the cycle graph on five vertices, whose determinant is

plotted in Figure 6.14.

1.3 1.35 1.4 1.45 1.5
0

0.5

1

1.5

2

p

Figure 6.14: A plot of detDp for the cycle graph on five vertices.

It is plausible that a perturbation of the edge weights in the underlying graph

could shift the turning point upwards, so

} = min{p � 0 : detDp = 0 or
⌦
D�1

p
,
↵
= 0}

would change abruptly. This quantity would then fail to be continuous in the

distances comprising D. As it happens, in the example of C5, no perturbation has

this property. More surprisingly, we were not able to find any graph which serves

as a counterexample of this form. For instance, we identified five graphs (up to

isomorphism) on six vertices where the maximum generalised roundness is achieved

at a maximum turning point of detDp, pictured in Figure 6.15.
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Figure 6.15: All connected graphs on six unlabelled vertices where the maximum
generalised roundness occurs at a maximum turning point of detDp.

Small modifications to edge weights caused one of three e↵ects:

• shifted the turning point above the axis;

• shifted the turning point along the axis, or

• caused
⌦
D�1

p
,
↵
to have a zero smaller than those of detDp, close to the

original maximum generalised roundness.

None of these cases nor any larger examples provided a counterexample to the

continuity of }, so the question of continuity remains open, as does the viability of

modelling the forked path graph Y by the modified truncations Zn.

6.5 Planar graphs

We examined the maximum generalised roundness of planar graphs using techniques

similar to those employed in Chapters 4 and 5.

Definition 6.5.1. A graph G = (V,E) is planar if it can be embedded (not neces-

sarily isometrically) into R2. In such an embedding, each vertex v is represented by

a point in the plane and each edge (v, w) by a polyline between the corresponding

points containing no other vertex and no point of any other edge.
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This definition omits some technical details. For a full exposition of the subject,

the reader may consult Diestel [25, Chapter 4]. Note that we will again consider

only the path metric on these planar graphs.

Remark 6.5.2. It is important not to confuse the graph theoretic property of pla-

narity with the metric space property of embedding in R2. In fact, it is often

the case that a planar graph endowed with the path metric cannot be embedded

isometrically into the plane.

The following fundamental result in the study of planar graphs follows from

Euler’s formula.

Theorem 6.5.3. A planar graph on n vertices has at most 3n� 6 edges.

A proof is provided by Diestel [25, Corollary 4.2.10].

There are two particularly famous small graphs which are not planar.

Example 6.5.4. Consider the complete graph K5. This graph has five vertices and

ten edges, violating Theorem 6.5.3, so it is not planar.

Example 6.5.5. The complete bipartite graph K3,3 has six vertices and nine edges,

so it does not immediately contradict Theorem 6.5.3. However, for planar graphs

without a cycle of length three, we can show that the number of edges cannot

exceed 2n � 4 using the same method of proof as Diestel above. Thus K3,3 is also

not planar.

As a result, any graph where K5 or K3,3 appears as a subgraph1 cannot be

planar. We therefore do not find large complete bipartite subgraphs as in Chapter 5.

Furthermore, we can deduce from Theorem 6.5.3 that the density of a planar graph,

as defined in Definition 5.6.2, is at most

6(n� 2)

n(n� 1)
<

6

n
,

so large planar graphs are very sparse. As a consequence of our discussion in

Subsection 5.7, we expect large planar graphs to generally have large maximum

generalised roundness compared to random graphs on the same number of vertices,

but it is initially unclear just how large these values must be.

At first, we considered whether planar graphs have the same property as trees,

that is, }(G) � 1. However, counterexamples are easily found. Proposition 3.6.2

1
Indeed, Kuratowski’s theorem famously states that a graph is planar if and only if it has no

subgraph that is a subdivision of K5 or K3,3.
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gives }(K2,3) = log2(12/7) < 1. More generally, larger complete bipartite graphs

K2,n�2 are always planar, with a straightforward (non-isometric) embedding in the

plane shown in Figure 6.16.

· · ·

Figure 6.16: The complete bipartite graph K2,n�2

We hypothesised that this graph has the smallest maximum generalised round-

ness among all planar graphs on n vertices with the path metric.

Conjecture 6.5.6. Let G be a planar graph on n vertices, endowed with the path

metric. Then

}(G) � }(K2,n�2) = log2
4n� 8

3n� 8
.

We tested this conjecture by obtaining a list of planar graphs (up to graph iso-

morphism) from the House of Graphs [13], and calculating the maximum generalised

roundness for each graph using the MATLAB program developed in Chapter 3. We

found that the conjecture holds for n  9, but fails for n = 10. Note that there

are over ten million graphs to test for n = 10, so it was vital to use a very e�cient

algorithm and implementation. Indeed, it would have been very di�cult to disprove

this conjecture without such a program!

There are two ten-vertex graphs (up to isomorphism) for which

}(G) < }(K2,8) = log2(32/22) ⇡ 0.5406.

One is formed by deleting an edge of K2,8, giving }(G) = 0.5398. The other is

depicted in Figure 6.17, with }(G) ⇡ 0.5385. The second counterexample is more

instructive, as it suggests that we can construct planar graphs of small maximum

generalised roundness by attaching several smaller complete bipartite graphs K2,m.
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Figure 6.17: A planar graph on ten vertices

The following result would be a consequence of Corollary 6.5.6, but it too is

false.

Conjecture 6.5.7. Let G be a finite planar graph, endowed with the path metric.

Then

}(G) > log2
4

3
⇡ 0.4150.

We present a counterexample similar to that in Figure 6.17. By constructing

two copies of K2,7 with two links, we obtain a graph with }(G) ⇡ 0.4103. Indeed,

letting Gm be the graph formed by joining two copies of K2,m in this way, Maple

calculates for m = 3, 4, . . . , 8 that2

detDp =
�
2(2m�2)p

�
(2p � 1 + 3p)(2p + 1� 3p)

⇥ ((m+ 1)⇥ 4p + (2m� 1)⇥ 6p �m⇥ 9p � (3m+ 1)⇥ 2p �m⇥ 3p + 2m)

⇥ ((m+ 1)⇥ 4p � (2m� 1)⇥ 6p �m⇥ 9p + (3m+ 1)⇥ 2p �m⇥ 3p + 2m)

and

⌦
D�1

p
,
↵
=

2 ((2m+ 4)⇥ 2p � 3m⇥ 3p + 3m)

(m+ 1)⇥ 4p � (2m� 1)⇥ 6p �m⇥ 9p + (3m+ 1)⇥ 2p �m⇥ 3p + 2m
.

In each of these cases, Gm is of Type II, that is, }(Gm) is the smallest zero of
⌦
D�1

p
,
↵
. The symbolic calculation of these quantities is prohibitively slow for

m � 9, but we are confident that the pattern continues. After dividing through by

m, the numerator is ✓
1 +

2

m

◆
2p � 3⇥ 3p + 3,

2
Our attempts to prove this analytically for general n have thus far been fruitless. The primary

di�culty is that unlike a complete bipartite graph, the p-distance matrix of Gm contains terms in

both 2
p
and 3

p
, greatly complicating the required calculations.
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and letting m ! 1 we must solve

2p � 3⇥ 3p + 3 = 0.

Solving numerically, we have

lim
m!1

}(Gm) ⇡ 0.3159.

This is consistent with results obtained using our MATLAB program for larger

values of m, as in Table 6.1.

m }(Gm)

10 0.3818

20 0.3488

30 0.3378

40 0.3323

50 0.3290

60 0.3269

70 0.3253

80 0.3241

90 0.3232

100 0.3225

Table 6.1: Values of }(Gm) for various m, to four decimal places.

It remains to be seen whether we can use more sophisticated constructions to

produce planar graphs with even smaller maximum generalised roundness.

Finally, a probabilistic result similar to those in Chapters 4 and 5 is another

direction for further investigation. Again, the most straightforward approach is to

consider probabilities with respect to the uniform measure on the connected planar

graphs on n vertices. There are finitely many such graphs, but there is relatively

little known about random connected planar graphs in the literature.

Indeed, the enumeration of these graphs is itself quite di�cult. Letting gn be the

number of connected planar graphs on n labelled vertices, no explicit formula for

gn is known. The asymptotic behaviour is better understood, with progress made
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using enumerative methods [55] and generating functions [39]. The best available

result, due to Giménez and Noy [39], states that

gn ⇠ gn�7/2�nn!

where g ⇡ 0.41043 ⇥ 10�5 and � ⇡ 27.22688. They then prove that for a graph

chosen uniformly at random from this collection, the number of edges is asymp-

totically normal, with mean µn ⇠ n and variance �2
n
⇠ �n, where  ⇡ 2.21326

and � ⇡ 0.43034, and that the number of ‘appearances’ of a given subgraph is also

normally distributed. These results may prove useful for a proof similar to those

used in Chapters 4 and 5.

To make the necessary hypotheses for such a proof, we would like to first generate

connected planar graphs uniformly at random, in order to compute their maximum

generalised roundness using the algorithm developed in Chapter 3. Again, methods

for generating these graphs are limited. The plantri algorithm [15] uses triangu-

lations to produce planar graphs up to isomorphism on up to 64 vertices at great

speed, often more than one million per second. The related algorithms fullgen

[15] and buckygen [14] produce fullerenes, a more restricted class of planar graphs,

on up to several hundred vertices. To generate larger connected planar graphs uni-

formly at random, one may consider the algorithm of Bodirsky, Gröpl and Kang

[12], which runs in O(n3) time after Õ(n6) = O(n6p(log n)) preprocessing, where

p is a polynomial. A recent algorithm by Gri�th [45] generates connected planar

graphs on up to 4489 vertices, providing another direction for further investigation.
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Appendix A

Maple programs

The following Maple code implements the algorithm developed in Chapter 3.

with(GraphTheory) :
with(LinearAlgebra) :
with(RandomGraphs) :

###################################################
# mgr
###################################################

mgr:=proc(Dm)
# Calculate the maximal generalized roundness of a metric graph space
# with distance matrix Dm via Sanchez’s formula

local nvert, DM, p1, p2, p3, DMinv, F1, F2, t, dt, delp, debug :
local minp, maxp, npts, eps1, eps2 :

# Set parameters

debug:=false :
# search in the interval [minp, maxp]
minp:=0.05123 : # Needs to be smaller for very large graphs
maxp:=2.1 : # it is only bigger than this for complete graphs
eps1:=0.2 : # how small is considered zero?
eps2:=0.02 : # how small is considered zero?
delp:=0.0001 : # amount to move endpoint for second check
nvert:=RowDimension(Dm):
npts:=5*nvert : # Number of points to check
t:=time():

# Find p1, the first p for which det(D_p) = 0

DM:=p-> map( x -> evalf(x^p) , Dm) :
F1:=p->Determinant(DM(p)):
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p1:=findroot(F1, minp, maxp, npts, eps1) :

# Deal with the case that no root is found

if not(type(p1, float)) then
p1:=infinity :

end if:
dt:=time()-t :
if debug then print("p1 is", p1, dt): end if:
t:=time():

# Now try to see if the sum of entries of the inverse are zero
# in [minp, p1-delp)

try
p2:=findrootSE(Dm, minp, min(p1, 2.1)-delp, npts, eps2) :

# Hope to never hit this. It means we missed a root of det Dp

catch "singular" :
print ("Singular: ", DM(1)) :
p2:=2 :

end try:

# Deal with case of no solution

if not(type(p2, float)) then
p2:=infinity :

end if:
dt:=time()-t :
if debug then print("p2 is", p2, dt) : end if:
if p1 <= p2 then

return([evalf(p1, 5) , 0]) :
else

return([evalf(p2, 5) , 1]) :
end if:

end proc:

###################################################
# findroot
###################################################

findroot:=proc(f, lb, ub, npts, eps)
# Find the first root of f between lb and ub
# npts is the number of points to test for a change of sign
# eps is a tolerance: if |f(x)| < eps then we have a root
# dirl and dirr are the signs of slopes over two consecutive intervals
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# if these change sign then we have a turning point

local xl, xr, xm, yl, yr, ym, i, k :
local stepsize, dirl, dirr, t, dt, debug, bits :
debug:=false :
Digits:=15 :
bits:=15 : # number of iterations of bisection method
stepsize:=evalf((ub-lb)/npts):
xl:=evalf(lb) :
yl:=evalf(f(lb)) :
if yl = 0 then

return xl :
end if:
dirl:=0 :
t:=time():

# Loop through the interval by stepsize

for i from 1 to npts do
xr:=evalf(xl+stepsize) :
yr:=evalf(f(xr)) :
if debug then print(xl, yl, xr, yr) : end if:
dirr:=signum(yr-yl) :

# Check for the function changing sign

if yl*yr < 0 then
t:=time():

# Sign change found. Now use bisection to find root

for k from 1 to bits do
xm:=evalf((xl+xr)/2.0):
ym:=evalf(f(xm)) :
if debug then print(xl, yl, xm, ym, xr, yr) : end if:
if ym = 0 then

return(xm) :
end if:
if yl*ym < 0 then

xr:=xm :
yr:=ym :

else
xl:=xm :
yl:=ym :

end if:
end do:
return(xm) :
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# Next check to see whether we had a turning point

elif dirl*dirr < 0 then
# the function had a turning point !
# better look to see whether it gets close to zero
# first check that it is not the wrong way up
# Only worth checking if the middle point is closer to zero
# than the end ones
if debug then print("turning point!", xl, yl, xr, yr) : end if:
if abs(yl) < abs(yr) then

# Send off to find where the turning point is

xm:=findminB(f, xl-stepsize, xr, 10) :
ym:=evalf(f(xm)) :

# Decide that we have found a root if the function is close
# enough to zero at the (approximate) value of the turning point

if abs(ym) < eps then
if debug then print("Used findmin, returning", xm) : end if:
return(xm) :

end if:
end if:

end if:

# Shift values to iterate to next interval.

xl:=xr :
yl:=yr :
dirl:=dirr :
t:=time() :

end do:

# If we get here, we failed to find a root

return(infinity) :
end proc:

###################################################
# findrootSE
###################################################

findrootSE:=proc(Dm, lb, ub, npts, eps)
# This procedure finds the first value of p at which the sum of the
# entries of Dp^(-1) is zero.
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# npts is the number of points to test for a change of sign
# eps is a tolerance: if |f(x)| < eps then we have a root

local xl, xr, xm, yl, yr, ym, i, k, stepsize, dirl, dirr, t, dt :
local nvert, Dp, Dpinv, SE, C, substepsize, ii, debug, bits :
debug:=false :
Digits:=15 :
bits:=10 : # number of iterations of the bisection method
nvert:=RowDimension(Dm) :
Dp:=p->map( x -> evalf(xp) , Dm) :
Dpinv:=p->MatrixInverse(subs(q = evalf(p) , Dp(q))) :
SE:=p->add(add(Dpinv(p))[i, j] , i = 1..nvert) , j = 1..nvert) :
stepsize:=evalf((ub-lb)/npts):
xl:=evalf(lb) :
C:=Dpinv(xl) :
yl:=add(add(C[i, j] , i = 1..nvert) , j = 1..nvert) :
if yl = 0 then

return xl :
end if:
dirl:=0 :
t:=time() :

# Loop through the interval by stepsize

for i from 1 to npts do
xr:=evalf(xl+stepsize) :
C:=Dpinv(xr) :
yr:=add(add(C[i, j] , i = 1..nvert) , j = 1..nvert) :
if debug then print("step", i, xl, yl, xr, yr) : end if:
dirr:=signum(yr-yl) :

# First check for a change in sign

if yl*yr < 0 then

# Sign change found. Do bisection to approximate root

t:=time() :
for k from 1 to bits do

xm:= (xl+xr)/2.0:
C:=Dpinv(xm) :
ym:=add(add( C[i, j] , i = 1..nvert) , j = 1..nvert) :
if debug then print("bisection", xl, yl, xm, ym, xr, yr) :
end if:
if ym= 0 then

return(xm) :
end if:
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if yl*ym < 0 then
xr:=xm :
yr:=ym :

else
xl:=xm :
yl:=ym :

end if:
end do:
return(xm) :

# Now check for a turning point

elif dirl*dirr < 0 then
# the function appears to have a turning point !
# better look to see whether it gets close to zero
# first check that it is not the wrong way up
if debug then print("turning point!", xl, yl, xr, yr) : end if:
t:=time() :
# First rule out turning points for which |f| does not have
# a local min
if abs(yl) < abs(yr) then

# do a more careful check that it is not catching a singularity!
# Check 20 points near here

substepsize:= stepsize/20.0:
xl:=xl-stepsize :
C:=Dpinv(xl) :
yl:=add(add(C[i, j] , i = 1..nvert) , j = 1..nvert) :

# use the dirl from before

for ii from -9 to 10 do
xr:=xl+substepsize :
C:=Dpinv(xr) :
yr:=add(add(C[i, j] , i = 1..nvert) , j = 1..nvert) :
dirr:=signum(yr-yl) :

# if the y value is small enough, this is close enough!
if abs(yr) < eps then

if debug then print("close enough", xr, yr) : end if:
return(xr) :

# Also check whether there was actually a zero before
# the turning point

elif yl*yr < 0 then
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return(findrootSE(Dm, xr, xl, 4, eps) :

# Now check for a turning point on this finer scale
# if so, check more to find it

elif dirl*dirr < 0 then
xm:=findminB(SE, xl-substepsize, xr, 10) :
ym:=evalf(SE(xm)) :
if abs(ym) < eps then

# declare that we have found a root if it is close enough!
return(xm) :

end if:
end if:

end do:
end if:

end if:
xl:=xr :
yl:=yr :
dirl:=dirr :
t:=time() :

end do:

# If we get here, we didn’t find a root

return(infinity) :
end proc:

###################################################
# FindminB
###################################################

findminB:=proc(f, lb, ub, steps)
# Find the turning point of a function between
# lb and ub.
# It is assumed that |f| has a local min in (lb,ub)
# But check that there isn’t a root in here too
# nits is the number of iterations to do.

local stepsize, xmin, ymin, imin, i, t, debug, xl, xr, yl, yr, fgrid :
debug:=false :
if debug then print("Entering findmin", lb, ub, steps) : end if:
t:=time() :
Digits:=20 :
stepsize:=evalf((ub-lb)/steps):
xl:=lb :
yl:=evalf(f(xl)) :
ymin:=abs(yl) : # ymin stores the smallest value so far
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imin:=0 :

# Loop through first on a somewhat coarse scale

for i from 1 to steps do
xr:=xl+stepsize :
yr:=evalf(f(xr)) :

# Has the function changed sign near the turning point?
# If so, find that root

if yl*yr < 0 then
return(findroot(f, xl, xr, 10, 0.01)) :

else
if debug then print("still seaching in minB", i, xr, yr, ymin) :
end if:

# Is this the closest y value yet?

if abs(yr) < ymin then
imin:=i :
ymin:=abs(yr) :

end if:
end if:
xl:=xr :
yl:=yr :

end do:

# Now we know about where the min is, decrease the interval and
# make the grid finer

xmin:=lb+imin*stepsize :
xl:=lb + (imin-1)*stepsize :
yl:=f(xl) :
fgrid:=20 :
stepsize:= stepsize/fgrid:
for i from -(fgrid-1) to (fgrid-1) do

xr:=xl+stepsize :
yr:=evalf(f(xr)) :

# Again...make sure there isn’t a root there!
if yl*yr < 0 then

return(findroot(f, xl, xr, 10, 0.01) :
else

if debug then
print("still seaching in minB, level 2", i, xr, yr, ymin) :

end if:
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if abs(yr) < ymin then
imin:=i :
xmin:=xr :
ymin:=abs(yr) :

end if:
end if:
xl:=xr :
yl:=yr :

end do:
if debug then print("Leaving minB", imin, xmin, ymin) : end if:
return(xmin) :

end proc:
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Appendix B

MATLAB programs

The following MATLAB code implements the algorithm developed in Chapter 3.

function [p, t] = mgr(D,eps ,tree)
% MGR Maximum generalised roundness.
% MGR(D,eps ,tree) finds (numerically) the maximum

generalised roundness and type of the metric space
with distance matrix D, using steps of eps , with the
optional flag tree for efficiency.

% MGR(D,eps) uses the default value tree = 0.
% MGR(D) uses the default value eps = 0.0003.

% for trees , begin searching at p = 1
if nargin < 3

tree = 0;
end

if nargin == 1
eps = 0.0003;

end

n = size(D,1);

% zero tolerance
tol = 10^(-n/10);

detDp = @(p) det(D.^p);
p1 = myfzero(detDp ,tree ,2.5,eps ,tol);

suminv = @(p) sum(sum(inv(D.^p)));
p2 = myfzero(suminv ,tree ,p1 ,eps ,tol);

if p2 < p1
p = p2;
t = 2;
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elseif p1 < 2.5
p = p1;
t = 1;

else
p = 2.5;
t = 0;

end

function p = myfzero(f,pmin ,pmax ,eps ,tol)
% MYFZERO Finds the smallest zero of f in [pmin ,pmax].
% MYFZERO(f,pmin ,pmax ,eps ,tol) finds (numerically) the

smallest zero of the function f on the interval [pmin ,
pmax], using steps of eps and zero tolerance tol. The
function returns pmax if no zero is found.

% MYFZERO(f,pmin ,pmax ,eps) uses the default value tol =
1e-3.

% MYFZERO(f,pmin ,pmax) uses the default value eps =
0.03.

if nargin < 5
tol = 1e-3;

end

if nargin < 4
eps = 0.0003;

end

p = -1;
v1 = f(pmin);
df1 = 0;
for s = pmin:eps:pmax

v2 = f(s+eps);
df2 = v2 -v1;
if v1*v2 < 0

p = fzero(f,[s s+eps]);
return;

elseif df1*df2 < 0
x = s-eps;
if v1 > 0 && df1 < 0

x = fminbnd(f,s-eps ,s+eps);
y = f(x);
if y < -tol

p = fzero(f,[s-eps x]);
break

elseif y < tol
p = x;
break
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end
elseif v1 < 0 && df1 > 0

x = fminbnd (@(x)-f(x),s-eps ,s+eps);
y = f(x);
if y > tol

p = fzero(f,[s-eps x]);
break

elseif y > -tol
p = x;
break

end
end

end
v1 = v2;
df1 = df2;

end

if p < 0
p = pmax;

end
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Appendix C

Catalogue of trees

The following tables list the maximum generalised roundness values of all un-

weighted trees on 4  n  9 vertices, as confirmed by both the MATLAB and

Maple programs.

1.5850 2.0000

Table C.1: All trees on four unlabelled vertices and their maximum generalised

roundness values.

1.4150 1.5761 2.000

Table C.2: All trees on five unlabelled vertices and their maximum generalised

roundness values.
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1.3219 1.4080 1.5713

1.5166 1.5658 2.0000

Table C.3: All trees on six unlabelled vertices and their maximum generalised

roundness values.
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1.2603 1.3167 1.4046

1.3906 1.5271 1.4004

1.5687 1.5603 1.5058

1.5540 2.0000

Table C.4: All trees on seven unlabelled vertices and their maximum generalised

roundness values.
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1.2224 1.2590 1.3142

1.3073 1.3954 1.3468

1.3111 1.3854 1.4027

1.3967 1.3824 1.5359

Table C.5: All trees on eight unlabelled vertices and their maximum generalised

roundness values.
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1.5176 1.5671 1.5544

1.5003 1.4647 1.3922

1.4946 1.5574 1.5477

1.4938 2.0000

Table C.5: All trees on eight unlabelled vertices and their maximum generalised

roundness values (continued).
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1.1926 1.2193 1.2572

1.2529 1.3097 1.2895

1.3608 1.2543 1.3041

1.3129 1.3086 1.3015

Table C.6: All trees on nine unlabelled vertices and their maximum generalised

roundness values.
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1.3729 1.3922 1.3976

1.3872 1.3401 1.3796

1.4016 1.3827 1.3929

1.3784 1.3646 1.5408

Table C.6: All trees on nine unlabelled vertices and their maximum generalised

roundness values (continued).
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1.4748 1.5122 1.3054

1.3770 1.3947 1.3882

1.3737 1.5079 1.5266

1.5064 1.5660 1.5512

Table C.6: All trees on nine unlabelled vertices and their maximum generalised

roundness values (continued).
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1.4551 1.4971 1.5555

1.4888 1.5410 1.4877

1.4524 1.3835 1.4823

1.5443 2.0000

Table C.6: All trees on nine unlabelled vertices and their maximum generalised

roundness values (continued).
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Appendix D

Catalogue of graphs

The following tables list the maximum generalised roundness values of all un-

weighted connected graphs on 4  n  5 vertices, as confirmed by both the MAT-

LAB and Maple programs.

1.5850 2.0000 1.9000

1.0000 1.5850 1

Table D.1: All connected graphs on four unlabelled vertices and their maximum

generalised roundness values.
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1.4150 1.5761 1.5390

1.0000 1.8013 1.4886

0.7776 1.1699 2.0000

1.8954 1.8074 1.3885

Table D.2: All connected graphs on five unlabelled vertices and their maximum

generalised roundness values.
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1.0000 1.3885 1.5713

1.8612 1.4461 0.8918

1.0000 1.4150 1

Table D.2: All connected graphs on five unlabelled vertices and their maximum

generalised roundness values (continued).
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[29] Durand, E., Équations du type F (x) = 0; racines d’un polynôme., in
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[33] Erdős, P. and Rényi, A., On the evolution of random graphs, Bull. Inst.

Internat. Statist. 38 (1961), 343–347.
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