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Abstract

Dynamic FPGA reconfiguration represents an
overhead that can be critical to the performance of
a realised circuit. To address this problem, this pa-
per presents a technique that is applicable at the
times of loading the configuration data on the device.
The technique involves re-using the on-chip configu-
ration fragments to implement the next configuration
thereby reducing the amount of data that must be ex-
ternally transfered to the configuration memory.

This paper provides an analysis of the effect of
circuit placement and configuration granularity on
configuration re-use. The problem of finding place-
ments of each circuit in a sequence of circuits so as
to maximize configuration re-use is considered in de-
tail. A greedy solution to this NP complete problem
was found to reduce configuration overheads by less
than 5% for a benchmark set. The effect of config-
uration granularity on configuration re-use was also
considered and it was found that reducing the size of
the unit of configuration allowed us to reduce the size
of the benchmark configurations by 41%.

1. Introduction
The process of dynamically reconfiguring an

FPGA introduces a delay into the operation of the re-
alised circuit and can thus be critical to the perfor-
mance of the system. This is especially important
in embedded systems that can demand fast context
switching of the configured circuits [6]. In this pa-
per, we study an approach to reducing reconfiguration
cost that is applicable when the configurations are be-
ing loaded onto the device from off-chip.

The basic idea behind the technique is to re-use
the configurations that are on-chip, instead of load-
ing them afresh from off-chip, thereby reducing the
time needed to reconfigure the device. While this
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seems similar to instruction caching in a microproces-
sor, there are two differences between an instruction
sequence and a sequence of configurations. Firstly,
a configuration has a spatial dimension since it con-
figures a logic circuit inside the device. Secondly,
the smallest unit of configuration, or the configura-
tion granularity, can be many times larger than an
instruction for a typical processor.

To study the effect of circuit placement and config-
uration granularity on the problem, we analyse two
cases. First, when each configuration in a sequence
has a fixed placement on the device (Section 4). Sec-
ond, when we have freedom to place the configura-
tions anywhere on the device (Section 5). We have
such a freedom when the runtime management sys-
tem for the device provides a virtual address space of
the configuration memory to the higher layers of the
design environment either to support hardware re-use
or to support multiple applications running concur-
rently (e.g. see [22]). In this work, we allow config-
urations to be shifted in one dimension, horizontally
(or vertically) across the chip. We show that for a
typical commercial device, only 1% of the configura-
tion data in the input sequence can be re-used if the
configuration placements are fixed, and 3% can be re-
used if configuration relocation is allowed. However,
we show that the amount of configuration re-use can
be dramatically improved by reducing the size of the
basic unit of reconfiguration (Section 6).

We conclude this paper by summarising our main
result — we were able to reduce the amount of config-
uration data for a sequence of benchmark circuits, by
as much as 41% — however, the actual reduction in
reconfiguration time is not possible without a config-
uration memory that allows fine-grained and random
access to its data. In the light of this result, we plan
to further investigate configuration memory architec-
tures for FPGA-based systems.

2 Related Work and Contributions
Various algorithmic (e.g. [17]) and architectural

(e.g. [20] [18]) techniques have been presented in



the literature to address the problem of reducing re-
configuration time. This paper deals with this prob-
lem at the configuration level. Other researchers have
also considered the problem at this level. Configura-
tion compression has been studied by Li et al. [11],
and in the context of embedded systems by Dandalis
et al. [6]. In contrast to compression techniques,
our method does not modify the configuration data.
Hence, we classify our technique as configuration
caching. DISC [23] was an early attempt to exploit
the locality of configurations in an FPGA. More re-
cently, coarse-grained , circuit level caching has been
studied by Li et al. [10] and Sadhir et al. [16]. Our
technique focuses on the unit of configuration. Re-
cently, Kennedy has performed experiments that are
somewhat similar to ours [8]. While we confirm his
findings that as much as 80% of the configurations
can be redundant while changing a typical circuit into
another, our techniques are essentially different. He
generated pseudo-configurations using JBits and in-
spected only two of them at a time. In contrast, our
method considers a sequence of actual configuration
datasets and focuses on the unit of configuration in
particular. Koch et al. [9] outline their configuration
model and present techniques somewhat similar to
Kennedy’s. They also consider configuration place-
ment but at the circuit level. We instead focus on the
placement of circuits from the perspective of the con-
figuration bitstreams. We have been able to show the
impact of the configuration-memory architecture on
this problem.

Various tools to generate the difference between
two configurations have been reported e.g. for Virtex
series [15] and for XC6200 series [12] and can be
incorporated into our methodology.

3 Models and Problem Statement
We use the following definitions in our analysis: A

configuration for a device consists of data that will be
loaded into the configuration memory during a given
circuit-(re)configuration phase. The instructions to
write this data at appropriate places are also included
in a configuration. A complete configuration contains
data for each and every configurable element of a de-
vice. A partial configuration is a configuration that
only contains the configuration data for a sub-set of
the elements. By an application, we mean a circuit,
or a set of inter-related circuits (e.g. the output of one
is an input to another).

3.1 Models

3.1.1 The device model
Our device model is derived from Virtex [4] as we
have a Virtex board [5] available in our laboratory.
The device is an SRAM-based partially reconfig-
urable FPGA consisting of c columns. We assume
that the FPGA offers a column oriented reconfigu-
ration method in which the atomic unit of configu-
ration is a frame consisting of a slice of configura-

tions data for an entire column of resources. Let there
be f frames per column where each frame contains b
bytes of configuration data. Reconfiguration time is
directly proportional to the number of frames loaded
onto the device. We also assume that the device is
homogeneous meaning that, excepting the frame ad-
dresses, the same configuration configures the same
circuit no matter where it is loaded. While commer-
cial devices do not represent this ideal (e.g. some hex
wires in Virtex can be read after three CLBs), our as-
sumption about the homogeneity of the device sim-
plifies the subsequent analysis and helps us to under-
tsand the issues involved in configuration re-use.

The device is attached to a micro-processor as a
peripheral component (e.g. [5]). The partial reconfig-
urability of the device is a pre-requisite to the prob-
lems presented in this paper. However, a loose cou-
pling of the gate-arrays with the host processor is not
critical and is only mentioned because the experimen-
tal results reported in this paper have been gathered
on such a model. Indeed we intend to study tightly-
coupled architectures in the future.

3.1.2 The application model
The need to construct a reconfigurable circuit arises
in many situations. We consider two cases:

• The circuit needs more hardware resources than
are available. The design is partitioned into man-
ageable units and configurations are generated for
each partition. The loading of these configura-
tions is then scheduled to produce the same fi-
nal result as if a bigger FPGA were present (e.g.
[21]).

• The circuit is specialised around certain com-
monly occurring data patterns. Configurations
corresponding to these customised partitions are
generated and loaded onto an FPGA when
needed. (e.g. [13]).

We assume that our model circuits span the entire
height of the FPGA (a similar model to the one de-
scribed by Li et. al [10]) and their physical place-
ments are specified by the column/frame addresses
. We also assume that the execution times of the
circuits are not configuration delay or placement de-
pendent. We therefore assume a sufficiently homoge-
neous and interconnected resource to allow arbitrary
circuit placement without affecting performance. We
assume that IO is performed either via the top or the
bottom of the device or is managed by the runtime
system. We also assume that we can disconnect IO
pins from cached configurations that are no longer
active or become active again. In this paper, we ig-
nore the performance issues that arise due to IO con-
straints. Instead our focus is on analysing the effect
of circuit placement on configuration re-use. We as-
sume a time-shared multi-tasking model (e.g. [22]).



3.2 The Configuration Re-use Problem

Consider a sequence of three configurations,
C1 → C2 → C3, to be loaded onto a device having
three columns and five frames per column (Figure
1). Let us represent frames by characters. Assume
that each configuration has a fixed placement, e.g.
C1 will start from the second frame of the first
column (i.e. @1.2). Assume that the device has been
initialised to the null configuration, φ0. We then load
the first configuration, C1. Let us call the resulting
on-chip configuration φ1. Now consider C2 which
starts from the fourth frame of the first column. We
note that there are common frames between φ1 and
C1 (i.e. a1@1.4 and a2@1.5). We leave these frames
and load the residue, C[φ1,2], onto the device. We
repeat the same procedure for C3. This time the
residual configuration does not result in contiguous
frames (the gap indicated by ×). Thus, instead of
loading 27 frames altogether, we have removed 7
frames from the input sequence resulting in the total
reconfiguration cost of 20 frames. Notice that there is
a better overlap between φ1 and C2 if C2 can placed
at address 2.4. We now formalise this problem.
Problem Statement: Let there be c columns and
f frames per column in the device. Each frame
contains b bytes of configuration data. Let φi be the
configuration currently loaded onto the chip and let
C[φi,i+1] be the configuration we load onto the chip,
or add to φi, in order to obtain φi+1 (Figure 1).
INPUT: A sequence of configurations
C0 → C1 → C2... → Cn.
OUTPUT: A sequence of configurations
C[φ0,1] → C[φ1,2] → C[φ2,3]... → C[φn−1,n] such
that:

• Loading C[φi,i+1], given φi is already on-chip, re-
sults in a configuration φi+1 that contains Ci+1.

• The total amount of reconfiguration data is min-
imised. �

As φi may contain configurations from the previ-
ous partial reconfigurations, let us recursively define
φi = C0, for i = 0, else φi = C[φi−1,i] ⊕ φi−1. Thus, φi

is recursively defined as an addition (⊕) of all previ-
ous configurations. C0 is the initial null configuration
that is needed to start the device in a safe state.

Let fcount(Ci) be the number of frames in Ci. The
above problem can now be redefined as:

Minimise

n−1∑

i=0

fcount(C[φi,i+1]) (1)

3.3 Analysis

The configurations must be placed at a fixed lo-
cation on the device when the circuit is customised
around certain data and the configuration updates
modify a given part of the currently executing config-
uration, or when the designer fixes the circuit place-
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Figure 1. A motivational example.

ments for performance reasons (e.g. the use of a high-
bandwidth IO port). In the following, we first discuss
the above problem given the configurations have fixed
placements and then analyse the case when restricted
movement of the configured circuits is possible.

4 Reducing Reconfiguration Cost with
Fixed Placements

If placement is fixed then the amount of config-
uration data to be loaded can minimised by remov-
ing the common frames between successive config-
urations in the sequence. The algorithm in Figure 2
describes this procedure. The worst case complex-
ity for the algorithm is O(fnb) where f is the maxi-
mum number of frames in the device (f=4,096 for an
XCV1000), n is the number of configurations in the
sequence and b is the size of the frame (b = 156 bytes
for an XCV1000).
Discussion.

• In Virtex, one needs to write configuration com-
mands in the command register for every con-
tiguous block of frames. By removing the com-
mon frames, we fragment these blocks and we
thus increase the number of commands that must
be issued. However, it should be mentioned
that the commands contain only a few words of
data, while a single frame contains on the order
of a hundred bytes for a typical device. Thus
the amount of data saved by removing common
frames is much more than the extra command



present in φtemp;

Initialisation
Variable
Input

Begin:

End

φtemp ← C0;
Load C0 on-chip;

(C0, C1, C2, ... Cn)
Configuration φtemp

for(i = 1 to n){

}
Add Ci to φtemp;
Load unmarked frames in Ci

Mark frames in Ci that are also

on to the chip;

Figure 2. Configuration caching algo-
rithm for fixed placements.

No. Circuit Size(#cols) Delay(ns) Src

1 Blue-Tooth 86 8.26 [2]
2 RSA 31 8.26 [2]
3 Cordic 39 8.26 [2]
4 FPU 72 8.42 [2]
5 DES 50 7.81 [2]
6 Convolution 2 6.89 [2]
7 1D-DCT 17 7.93 [2]
8 Cosine-LUT 5 6.89 [1]
9 Decoder 21 8.26 [1]

10 32-bit Adder 1 6.99 [1]
11 UART 31 10.7 [1]
12 Bit-Comparator 1 6.99 [1]
13 2’s Complement 2 6.99 [1]

Table 1. A set of benchmark circuits for
a Virtex device.

data.

• We assume that simply laying the next configu-
ration over the current will give us a safe circuit.
This is very much a device specific issue and will
not be considered in detail. For a discussion on
this, please see [8].

4.1 Results

In this section, we illustrate the use of our tech-
nique by giving an example. We envisage that our
technique will be useful in an embedded system
domain where fast context switching of circuits is
needed and application characteristics are known a
priori making static optimisations possible. We have
in our mind an FPGA-based system where various
cores are swapped in and out of the device (e.g. [19]).

We generated a sequence of thirteen cores targeted
at an XCV1000 device [4] using ISE5.2 [1] CAD
tools (see Table 1). We let the tool decide the physi-
cal placement of these circuits. The first column of
Table 1 assigns a number to each core. The third
column lists the number of columns spanned by the
respective core (XCV1000=96 columns). The fourth
column lists the critical delay of the circuit (as calcu-
lated by the CAD tools) and the last column lists its

source.

We implemented the algorithm of Figure 2 in Java.
As the configuration format for the Virtex devices is
not fully open, we first generated a byte representa-
tion of the configurations using JBits. The JBits read-
Partial() and writePartial() methods [3] could be used
to implement the algorithm. However, we did not use
JBits as it does not consider frames in the BRAM
configurations (size = 20,359 bytes for an XCV1000)
while computing the difference. It should be men-
tioned that we removed the null frames from the con-
figurations by only considering the frames within the
boundary of the required circuit.

A thousand random permutations of the sequence
of thirteen cores were considered. For each permu-
tation the program took on average 3.6 seconds to
compare the frames in the successive configurations
and output the difference. There is a total of 18,008
frames present in the input sequence and, on aver-
age, the greedy algorithm removed 229 frames (with
a standard deviation of 110 frames). The resulting re-
duction in reconfiguration time was calculated to be
about 1%. There can be three reasons for this rela-
tively small improvement: there are not many com-
mon frames to remove; there are common frames but
they do not occur in consecutive configurations; and
there are common frames but they do not occupy the
same column/frame position in the respective config-
urations.

We analysed the configurations to answer these
questions. Let us assume that we have n configu-
rations. Let funique be the total number of unique
frames in the n configurations. Reconfiguration cost
cannot be less than funique. It was found that funique

was equal to 16,916 frames for the thirteen config-
urations under test. This still gives us 1,092 frames
that could be removed (or a 6% maximum possible
reduction assuming the cores were placed at posi-
tions that maximised their overlap and the configu-
ration sequence suited our placement). For the pur-
poses of this analysis, two frames were considered
similar only if they had the same configuration data
and they were located at the same frame index within
the respective columns.

Let us consider the second and third of the above
mentioned reasons for poor performance. As we gen-
erated a thousand random permutations of the se-
quence and found that the standard deviation in the
result was only 0.6%, the second reason does not
seem plausible. Hence we are left with the issue
of frame alignability. By alignability we mean that
the frames can be placed at the same column/frame
address (thereby eliminating the frames in the suc-
cessive configurations once the first frame has been
loaded). We analyse this dimension of the problem in
the next section.



5 Reducing Reconfiguration Cost with
1D Placement Freedom

In this section we tackle a more general version
of the problem defined in Section 3.2. We allow one-
dimensional placement freedom and introduce further
simplifications to the models outlined in Section 3.1.

The input configurations provide data for a con-
tiguous region of the configuration memory meaning
that each configuration has a start column/frame ad-
dress and an ending column/frame address. More-
over, the configurations span the entire column of the
device. The placement freedom of a configuration,
Ci, is given by c-|Ci| where c is the total number of
columns in the device and |Ci| is the number of col-
umn spanned by Ci. The placement freedom corre-
sponds to all legal column addresses for the leftmost
column of the configuration. The configurations can
only be shifted by a multiple of columns. This means
that if a particular frame is at position x within a col-
umn then it will occupy the same position in any col-
umn when the configuration is shifted across the de-
vice. The partitioning of the configuration address
space into columns and frames therefore simplifies
our analysis.

5.1 Complexity analysis

This section analyses the complexity of the one-
dimensional configuration re-use problem. It shows
that the problem is NP-complete by transforming k-
cache misses problem [14] to it. We first discuss this
problem.

We are given a direct-mapped cache of size k, a
finite main memory, and a set of m > k memory ob-
jects Om = {o1, o2, ..., om} to place in the mem-
ory. We are given a sequence of memory accesses
Σn = (σ1, σ2, ..., σn) such that σi ∈ Om for all
i ∈ {1, 2, ....., n}. Let the placement of the objects
to the memory be a function f : Om → N. In simple
words we are assigning memory addresses to these
objects. Let Misses((Om, Σn), f) be the number of
cache misses. The k-cache misses problem is to find
a placement of the objects such that the number of
cache misses is minimised. This problem is shown to
be NP-complete in [14]. We now state the following
theorem:
Theorem 2: With 1D placement freedom, the config-
uration re-use problem is NP complete.
Proof: We provide a straight-forward transformation
between the k-cache misses problem and the configu-
ration re-use problem when one degree of placement
freedom is given. That is, let us have an instance of
a k-cache misses problem, (Om, Σn). We will gen-
erate the corresponding configuration re-use problem
as follows:

Consider the FPGA to be a c-cache. That is, let
there by c columns in the device such that c = k and
let there be only one frame per column. Let Cm =
{c1, c1, ....., cm} be a set of configurations such that

each ci ∈ Cm is one column wide. Let us have
a sequence of configurations Δn = (δ1, δ2, ..., δn)
such that δi ∈ Cm for all i ∈ {1, 2, ....., n}. With
1D placement freedom, the number of reconfigura-
tions can be minimised if the corresponding frames
are available on the FPGA when needed. The prob-
lem of deciding where to place a configuration when
it is to be loaded, and thus which configuration frames
to replace, directly corresponds to minimising the
number of cache misses in the original problem.
�

Please note that our problem allows configura-
tion relocation whereas in the k-cache misses prob-
lem each object has a fixed location in memory. It
can be seen that the k-cache misses problem remains
NP-complete even if we allow re-allocation. This is
because it does not matter where an object is placed in
a k-cache as long as it is in the cache (in other words,
k-cache hits are position oblivious).

present in 

Begin:

Variables
Input

Initialisation

End

for(j = 1 to placementFreedom(i)){

} }

φtemp ← C0;
Load C0 on-chip;

(C0, C1, C2, ... Cn)
Configuration φtemp

int minCost, minPlacement, #frames

minCost = #frames;
minPlacement = j;

Place Ci at j;
#frames = number of frames in

Ci but not in φtemp;

Mark frames in Ci that are also

}
Add Ci to

Place Ci at minPlacement;

for(i = 1 to n){

Load unmarked frames in Ci on to the chip

if(#frames < minCost){

φtemp;

φtemp;

Figure 3. Caching algorithm given vari-
able configuration placements.

5.2 A greedy approach

Algorithm. We have examined the performance of
a greedy algorithm when applied to the problem of
configuration re-use with variable placements. This
algorithm places each configuration at a position that
minimises the reconfiguration data between it and the
on-chip configuration ((Figure 3)). The worst case
complexity for this algorithm is O(f 2nb) where f is
the maximum number of frames in the device, n is
the number of configurations in the sequence and b is
the size of the frame.

We generated a hundred different permutations of



the sequence in Table 1. The program took, on aver-
age, 72.4 seconds to run for each sequence. With an
initial cost of 18,008 frames, the program removed
579 frames, resulting in a 3% reduction in configu-
ration data (standard deviation = 154 frames). This
is still 3% less than the estimated minimum cost (see
previous section). We found that even though there
can be common frames among configurations, they
might not be alignable due to physical constraints on
the configuration placements. Please consider Fig-
ure 4, in which two configurations Ci and Ci+1 are
shown on a device with only one frame per column.
Let the common frames between the two be located at
opposite ends as shown by the lighter regions (blocks
numbered 1). It is clear that because of constraints on
the placement freedom the two configurations cannot
be placed such that the common frames of C i+1 are
placed in the same column as those of Ci. Thus, the
common frames of Ci+1 should be considered to be
unique. We developed a simple algorithm to detect
such non-alignability.

Max Number of Columns

11

1 1

Ci+1

Ci

Figure 4. Explaining the non-alignability
of the common frames.

The algorithm operates on frames that occur more
than once in the overall sequence. It takes one such
frame at a time and creates n bit vectors each of size
equal to the maximum number of frames the device
can have. If the frame occurs in the i th configuration,
0 ≤ i ≤ n, it marks those bits of the ith vector where
this frame can possibly be placed. Finally, it traverses
the sequence from the start and performs an AND op-
eration between successive vectors. The uniqueness
of the frames is thus deduced from the result. In or-
der to accommodate the frames that are separated by
configurations that do not contain those frames, the
algorithm simply assumes that these configurations
are placed such that the frame before the in-between
configurations can be seen by the frames after these
configurations.

We performed the above analysis for 100 random
permutations of the sequence listed in Table 1. It was
found that there were 16,916 actual unique frames (as
found previously) and after running the alignability
test, this number rose to 17,012 (or almost 95%) —
partly explaining the unexpectedly poor reduction in
cost. The non-alignability of frames arises due to the
limited size of the device. In order to explore this we
increased the device size and ran the program again
for 10 random permutations of the input sequence.

Device Size (#cols) %Reduction in frames
96 3.6
192 4.1
288 4.5
384 4.6

Table 2. The effect of device size on con-
figuration caching.

The results are shown in Table 2. We increased the
number of columns but kept the number of frames-
per-column the same. It can be seen that the reduc-
tion in reconfiguration cost approaches the estimated
5%. It should be noted that increasing the device size
beyond this will gain no benefit as the total number
of frames (18,008) can only span 374 columns (this
happens when configurations do not share any area of
the device).

Max Number of Columns

1

1 2

2

Ci

Ci+1

Figure 5. An example of frame interlock-
ing.

In the case of an FPGA there exists another kind
of non-alignability which we call frame-interlocking.
As an example, consider Figure 5. Shown are com-
mon frames numbered 1 and 2. Notice that we can
either align 1’s (resulting in a misalignment of 2’s) or
vice versa but we cannot align both simultaneously.
As we have not yet developed a simple solution to
detect frame-interlocking of a sequence of configu-
rations, we are unable to provide the tightest lower
bound on the optimal cost. Thus, our cost estimates
are optimistic. In the coming section we show that:

• The absolute lower bound on the number of
unique frames (whether alignable or not) can be
drastically reduced if we divide a frame into sub-
frames and allow them to be loaded indepen-
dently.

• The greedy method of placing the configurations,
if such freedom is allowed, is a reasonable solu-
tion in practice.

6 Breaking the Atom of Reconfiguration
Every FPGA has a smallest unit of reconfigura-

tion. This means that a certain amount of data must
be written to the configuration memory even if only
a one-bit change is required. Our target device, Vir-
tex, has a name for this unit (a frame). The frame size
is 156 bytes for an XCV1000 device. The technique
presented so far performs a frame-by-frame compar-



Frame Size(bytes) %Est. %Fix. Place %Var. Place.

156 5 1 3
78 36 27 33
39 46 36 39
20 55 37 45
16 59 42 49
8 62 48 51
4 72 52 58
2 89 71 75
1 99 78 85

Table 3. Estimated and Actual % reduc-
tion in configuration data for various
sized frames.

Frame Size Unopt. EIFA Opt. EIFA %Improv-
(bytes) Bitstream Bitstream ment

Size (bytes) Size (bytes)

156 2,845,264 2,816,810 1
78 2,881,280 2,103,334 26
39 2,953,312 1,890,120 34
20 3,169,408 1,996,727 30
16 3,241,440 1,880,035 34
8 3,961,760 2,060,115 28
4 4,916,184 2,359,768 17
2 7,023,120 2,036,704 28
1 11,236,992 2,472,138 13

Table 4. Deriving the optimal frame size.

ison. Let us now break the frames into smaller sub-
frames and re-apply the caching technique assuming
that the sub-frames can be loaded independently.

We divided the frames into sub-frames of vari-
ous sizes (using the same configurations as in Sec-
tion 4.1). The results are shown in Table 3 (figures
rounded to the nearest whole number). The first col-
umn lists the frame sizes we examined. The %Est
column states our estimate of the possible percent-
age reduction in the configuration data of the input
sequence. This is the percentage of common frames,
i.e. 100% less the percentage of unique frames (cal-
culated by performing the alignability test) assuming
an XCV1000 target device. The %Fix. Place col-
umn lists the reduction in configuration data obtained
after applying the fixed placement algorithm (Figure
2) and the last column lists the reduction in config-
uration data obtained when the variable placements
algorithm (Figure 3) is applied.

It can be seen that the number of unique frames
steadily decreases as the frame size gets smaller. It
can also be seen that for a byte-sized frame, the vari-
able placement algorithm yields an 85% reduction in
the configuration data. The significant reduction in
the configuration data can be due to three reasons.
First, the floor-plans of the benchmark circuits re-
vealed that all of the resources within the columns
were not used. These resources were probably set to
the null configuration by the CAD tool thereby allow-

ing us to increase the reduction in configuration data
once a smaller frame size was introduced. Second,
there can be circuit fragments that occur in more than
one core. Lastly, a sparse encoding of the configura-
tions can also result in redundant configurations (see
[7]). A detailed analysis of these factors is yet to be
done.

The above analysis does not include the overhead
incurred due to the addition of extra address data that
is required as frames become smaller and more frag-
mented. While decreasing the frame size decreases
the amount of data to be loaded, it also increases the
addressing overhead. Let us derive an optimal frame
size for the configurations under test (see Table 4).
We assume that the configuration interface consists of
an 8-bit port. We also assume that each frame is indi-
vidually addressed. Note that this over-estimates the
addressing overhead used currently by Virtex, which
provides a start address and a count of the number of
consecutive frames to be loaded. However, we only
account for the minimum number of bytes needed to
address each frame. Whereas Virtex currently uses 4-
byte addresses we estimate 2 suffice for an XCV1000
with 156 bytes. We call this model explicit individual
frame addressing (EIFA).

The second column of Table 4 lists the total size
of the unoptimised bitstreams taking into account the
number of frames loaded as well as the address of
each frame. For example, for a frame size of 156
bytes, we had 18,008 frames. We added 2 bytes
of address data to each of these yielding a total of
2,845,264 bytes. The number of frames needed for
the smaller frame sizes was estimated by dividing 156
by each respective frame size and multiplying the re-
sult by the number of original frames, 18,008. For
frame sizes of less than 16 bytes we estimated 3 ad-
dress bytes were needed per frame written.

The optimised EIFA bitstream sizes listed in the
third column were obtained by reducing the sizes ob-
tained in the second column by the %Fix. Place
listed in Table 3. Finally, the %improvement in bit-
stream size, the last column of Table 4, was es-
timated by comparing the optimised bitstream size
with the unoptimised bitstream size using 156 bytes
frames (close to the actual total Virtex configuration
file sizes). Table 4 suggests that a frame size of 39
bytes, or one quarter the current Virtex frame size, is
optimal since it offers good compression with little
address overhead. A frame size of 16 offers an equal
compression.

A similar analysis for the variable placement case
reveals that a frame size of 16 bytes offers a 41%
reduction in the total bitstream size. While this is
7% more than the fixed placement case, extra ef-
fort is needed to find the placement of each config-
uration. Moreover, variable placement demands an
FPGA model that allows one-dimensional configura-
tion shifts. The device we worked on (an XCV1000)



does not fully support arbitrary placements of config-
urations.

We now discuss the main conclusions from the
above analysis. Firstly, for relatively fine-grained
logic fabrics such as Virtex, fine-grained, random ac-
cess to the configuration memory is needed in or-
der to adequately exploit the redundancy present in
configuration data. Secondly, introducing placement
freedom does reduce the amount of reconfiguration
data but not significantly. Lastly, the relatively simple
and quick greedy strategies we explored provided rea-
sonable reductions in overall configuration bitstream
sizes.

7 Conclusions and Future Work
In this paper we have developed techniques to re-

duce the reconfiguration overhead of an FPGA. Our
method reduces the amount of reconfiguration data
that needs to be transfered to the device by making
use of configurations that are already present in the
configuration memory. We have studied the effect
of circuit placement and configuration granularity on
configuration re-use. We have found that introducing
placement freedom has little impact on the overall re-
duction in configuration data. However, fine-grained,
random access to configuration memory could help to
reduce the reconfiguration time by more than 41%.

In future, we intend to investigate configuration-
memory architectures that support efficient reconfig-
uration. We intend to focus on the granularity of the
configuration memory and efficient configuration ad-
dressing schemes for a given circuit domain.
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