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Abstract

Modern smartphones are increasingly performant and feature-rich, but because they are battery

powered, remain highly power-constrained. Energy management is the art and science of

maximising battery lifetime, and effectively doing so requires a solid understanding of how

a devices uses energy to inform policy and algorithms backed by accurate data. This work

addresses each of these issues.

First, we present a detailed power analysis of two smartphones, the Openmoko Freerunner

and the Samsung Galaxy S III. We measure power consumption by direct instrumentation at

the circuit level by interposing on the power supplies of the individual components, includ-

ing CPU, RAM, display, GPU, wireless radios, camera, GPS, storage, audio, and environ-

mental sensors. With this instrumentation in place, we produce breakdowns of how energy

is distributed under micro-benchmarks and realistic usage scenarios. We also measure two

other devices at the whole-system level to validate our earlier results, and to draw conclu-

sions about how smartphone power consumption is changing over time. Additional to the

results presented, we also describe a methodology for instrumenting commercial mass-market

off-the-shelf devices.

Based on these measurements we observe that peak CPU energy consumption is increasing

due to the advent of multi-core processors in the mobile segment. Thus, effective power

management of these will be important for battery life on future mobile devices. Such multi-

core processors add a new dimension, the number cores active, to the spectrum of available

energy management mechanisms.

In the second part of this work, we investigate how this mechanism, which we call core

offlining, interacts with the well-established technique of dynamic voltage and frequency scal-

ing (DVFS) for minimising power consumption. We find surprising differences in the char-

acteristics of contemporaneous smartphones, specifically in the importance of static power,

which we show to be a critical factor in minimising energy consumption. We design and im-

plement medusa, a policy that exploits our findings to integrate core offlining with DVFS in

the Linux kernel. We show that despite its simplicity, medusa obtains energy savings that are

at least as good as, and often better than, the algorithms that ship on the studied phones, and

that it approaches the optimal static algorithm.
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Chapter 1

Introduction

Mobile devices derive their energy supply from batteries. For many such devices, particularly

mobile phones, energy capacity is severely restricted due to size and mass constraints on the

device’s form factor, cost of manufacture, and safety and environmental concerns on the bat-

tery technology used. Therefore, the careful expenditure of this precious resource is critical to

the utility and user experience of mobile devices.

In stark opposition, the functionality, compute throughput, storage capacity, and network-

ing speed of these devices is increasing exponentially. From 1990 to 2003, processor speed,

disk capacity, and memory size each increased by more than 200-fold, whereas battery en-

ergy density merely tripled [PS05]. In additional to basic telephony, modern high-end mobile

phones include such functionality as audio and video streaming, playback, and capture, GPS

navigation, 3D and virtual-reality gaming, email and web browsing, and so on. These devices,

typically referred to as smartphones, are placing increasing pressure on energy consumption

and thus battery lifetime. This deepens the need for intelligent and effective energy manage-

ment.

Energy management is the art and science of using the available energy supply as efficiently

as possible, that is, maximising the work done per unit energy consumed. The operating

system (OS) plays a crucial role in support of this goal as the implementor of policy around

power management mechanisms exposed by the hardware. The OS also manages scheduling

of work, such as compute tasks on the processor or packets on the network interface, and thus

sets policy for how and when work is presented to the hardware.

In implementing and configuring such policies, it is important to understand how energy

is used in a device; specifically, how much energy each component consumes, and under

what circumstances. For example, if we can reduce the accuracy of a particular sensor (say, a

compass) in order to achieve a 50 % reduction in its power draw, should we make that trade-

off? While a halving of power sounds like an attractive optimisation, this in fact would be a

1



2 CHAPTER 1. INTRODUCTION

poor decision: the vast majority of the energy cost of sampling a sensor is in fact consumed by

the processor and not the sensor hardware. Intelligent power management demands accurate

data.

In this work, we set out to achieve two goals. Firstly, to understand the energy consumption

characteristics of modern smartphones with typical workloads and applications, using direct

measurement at the finest possible granularity. Secondly, based on observations made in our

measurement study, we aim to reduce energy consumption for a particular type of processor

typical in current and emerging smartphones: the mobile multi-core.

Measuring smartphone power

Assumptions about smartphone energy consumption are all too often based on intuition or

guesswork. For instance, it is often assumed that reducing power is equivalent to reducing

energy, when in fact this also depends on factors such as time. For example, executing a

compute workload on one processor instead of two significantly reduces the power drawn, but

as we show in this work, the net result is often to increase the total energy used. Our intuition

also tends to fail in approximating the energy consumption of certain tasks. For instance,

making a phone call is generally considered an energy intensive workload, but as we will

show, on modern devices this ranks among the lowest-energy use cases.

We aim to provide a corpus of ground-truth to this discussion, both in terms of where and

how energy is consumed in smartphones. The approach we take is electrical measurement,

which involves instrumenting a device with a power meter, then executing certain workloads

while collecting power samples in real time. Compared with modeling, the other main ap-

proach to estimating energy consumption, instrumentation has several advantages. It is more

accurate since no prediction is required, and it is free from observer effects because the soft-

ware remains unmodified and only passive hardware modifications are required.

Others have undertaken similar endeavours, but these works are limited in several ways.

In most cases, the analyses are based on power measurements of the whole system made by

instrumenting the power supplied from the battery. This is a coarse-grained approach, in the

sense that attributing energy consumed to specific components of the device, such as the pro-

cessor, memory, wireless interfaces, etc., can only be done indirectly. Smartphones however

have many components and their energy consumption is inter-dependent. For example, send-

ing data on a WiFi network consumes energy in the processor to drive the network stack and

application, in memory to load and store the associated data, and in the WiFi modem to send

and receive data over-the-air. A whole-system approach is unable to differentiate the energy

consumed by each of these components.
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In contrast to existing works, we perform a fine-grained instrumentation which is able to

separately sample power of most of a device’s main components. We do this by adding mea-

surement circuitry to the internal power distribution network. Specifically, we insert current-

sense resistors between the individual power supplies and the components they power. These

resistors are then connected to a data acquisition unit, which is essentially an accurate, multi-

channel power meter. This is connected to a desktop computer running our sampling software,

which collects the power measurements in real-time and writes them to a file for later process-

ing.

We perform this instrumentation on two devices. On the first, the Openmoko Freerun-

ner, this is a relatively straightforward task due to the availability of documentation, which

simplifies identification of power supplies, and the hardware design, which provides conve-

nient instrumentation points. On the second device, the Samsung Galaxy S III, it is a more

complicated process. However, we develop a methodology for instrumenting commercial off-

the-shelf devices, based on a common design feature of efficient power supplies.

With our instrumented devices, we are able to directly measure the power consumption

of the processor, memory, display, graphics unit, wireless interfaces, sensors, and others. We

then analyse energy consumption under a range of realistic workloads, including web brows-

ing, sending and receiving email, audio and video playback, still and video photography, gam-

ing, text messaging, and telephony, as well as various idle states. We also perform micro-

benchmarks to better understand behaviour of particular components, including sensors, GPS,

display, storage, and networking.

In addition to the fine-grained analysis of the Freerunner and Galaxy devices, we also

measure whole-system energy consumption for two other devices, the HTC Dream and the

Google Nexus One, under similar workloads. This serves two purposes. Firstly, it provides a

degree of validation for our earlier results, i.e. that the results apply to a wider class of devices

than just the two we measured. Secondly, it allows us to analyse how energy consumption of

smartphones has changed over time. The four devices we use represent 5 years of technology,

which is sufficient to draw conclusions about trends in smartphone technology.

Reducing multi-core processor power

As a result of our energy consumption analysis, we observe an interesting trend. The compute

capacity of a smartphone (i.e. the maximum throughput), and in turn the maximum power,

have increased significantly, yet the average used in practice has not increased by the same

degree. This is a kind of analog to the so-called dark silicon problem, which is that compute

capacity is exceeding thermal capacity. In other words, the devices are becoming more capa-

ble, but less utilised. As a consequence, the efficiency of intermediate power and performance

states is becoming increasingly important to optimising a device’s overall energy consumption.
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Two factors are largely responsible for this trend. Firstly, processors in the embedded

space have continued to scale up—running at higher clock speeds, and doing more work per

clock cycle. However, we have begun to see them also scale out, with the introduction of the

multi-core processor in the mobile sector. Such processors feature multiple execution units

which can run tasks truly in parallel.

The multi-core process also introduces new complexities and opportunities for power man-

agement. In a single-core system, one of the main power management mechanisms is dynamic

voltage and frequency scaling (DVFS). This allows the OS to reduce the clock speed (and thus

performance) of the processor, which reduces the power drawn. Because power is super-linear

in frequency, if used correctly, DVFS can reduce total energy consumption. The multi-core

processor introduces a new dimension that can be controlled: the number of online cores. If

more compute throughput is required, two options are available: either a new core can be on-

lined, or the frequency of existing cores can be increased. The optimal decision depends on

the power–performance trade-offs of the two mechanisms.

In the second part of this work, we investigate the trade-off between the frequency and

number-of-cores axes of power management. More specifically, we investigate these in the

context of idle power management, that is, how to most efficiency execute a workload which

under-utilises the processor capacity but without affecting performance.

We first run a series of micro-benchmarks to investigate the problem space, measuring

power while varying the compute load, number of cores, and core frequency. We also model

this response mathematically in order to understand the parameters that affect processor power.

We find that per-core static power—the cost of onlining a core, regardless of the work it

performs—is an important and differentiating factor among mobile multi-cores.

For processors with low per-core static power, we find that the optimal policy is to always

online cores where possible, rather than increasing frequency, since there is no “penalty” to

having additional cores running, even if they are under-utilised. However, when static power

is non-trivial, a policy must weigh the cost of onlining a core against the cost of increasing

frequency. We find that a good model for such a policy is to define a threshold frequency

which divides the optimisation space into two regions: one where increasing and decreasing

frequency is optimal, and one where onlining and offlining cores is optimal. The threshold

frequency is device-dependent, and we show how to determine its value both theoretically and

experimentally.

Using the insights above, we design and implement medusa, a power management policy

for Linux. Medusa controls frequency and number of cores to reduce energy consumption

without affecting performance, and we implement it on two devices which have different per-

core static power characteristics. The first, based on the Samsung Exynos processor, has very
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low static power, so we configured a threshold frequency of zero. The second device is based

on the Qualcomm Snapdragon chip, which has higher per-core static power. We use a model

of both the device’s processor and our policy to predict the optimal threshold frequency.

We measure the energy consumption of medusa on each device under a number of scenar-

ios, including micro-benchmarks of varying load, video playback, and two mobile benchmark-

ing applications, AnTuTu 3DRating and Vellamo HTML5. We compare medusa against other

policies, such as the defaults that ship on our test devices, standard Linux policies, and, where

possible, the optimal policy. In addition to power, we also use the performance metric of the

benchmarking applications to quantify the effect our policy has on execution time. Finally,

we perform a sensitivity analysis to determine the effect of our chosen threshold frequency on

energy consumption.

Summary

We make two main contributions in this work:

• a study of the energy consumption of several smartphones; and

• the design and implementation of a DVFS control algorithm for multi-core processors

which incorporates knowledge of offline power states.

Our study of smartphone power leads us to the conclusion that managing intermediate

power states is critical to future energy efficiency, due to the growing disparity between av-

erage and peak throughput and power. One such driver for this trend is the emergence of

the mobile multi-core processor. We perform an analysis of such devices and discover that

per-core static power can vary significantly, and that it is a critical factor in implementing ef-

ficient power-management policies. We implement such a policy and show that it performs

favourably compared with existing policies.

Structure

This remainder of this work is structured as follows. In Chapter 2 we provide the necessary

background, including introductions to energy consumption concepts, processor technology,

power management mechanisms, and multi-core processors. In Chapter 3 we discuss exist-

ing literature, dividing our attention between power measurement and analysis works, and

those focused on power management. Then, in Chapter 4, we discuss our work on profiling

smartphone energy consumption. Chapter 5 contains a discussion of our power management

work, including the design and implementation of the medusa policy. Finally, in Chapter 6, we

conclude with a summary of our work, including a discussion of limitations and future work.





Chapter 2

Background

2.1 Power, Energy and Performance

A computer is a device that produces heat and radiation, performing calculations as a side-

effect. The input to this process is energy, originating either as chemical energy in a battery, or

electrical energy from a mains supply. This energy supply is limited, and must be used wisely:

this is the art of power or energy management. While often used interchangeably to refer to

roughly the same ideas, these are different quantities: power, measured in watts (W), is the

time rate-of-change in energy, measured in joules (J). Equivalently, energy is the integral of

power over time:

P =
dE

dt
[W] or E =

∫
P dt [J] .

While power is an “instantaneous” quantity, average power over some period T is often used:

E = PaverageT .

Power/energy management encompasses two distinct but related goals:

• Minimise the energy consumed in performing a computation, perhaps satisfying some

performance requirement. This is desirable because batteries are limited in capacity: re-

ducing energy consumption increases the useful life of portable devices. Moreover, the

production and storage of energy is environmentally damaging, and lowering consump-

tion reduces the financial costs associated with producing the input energy and removing

the output energy.

• Constrain the instantaneous (or short-term average) power draw to comply with tem-

perature limits and/or power supply maxima. This is generally referred to as thermal

management.

In this work, we will use the term “energy management” to refer specifically to the first sense,

7

--
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and “thermal management” for the second sense. Energy management approaches can be

further categorised into two types: idle and active.

Idle An idle energy management policy aims to reduce energy consumed without affecting

performance, by exploiting the difference between the computational resources available and

the demand of an application. This difference is called “slack”, so the technique is also known

as slack management.

Active An active policy makes the concession of degraded performance in exchange for

reduced energy. Usually the two dimensions are weighted according to some policy: energy-

delay product (EDP), energy-delay-squared (ED2P), minimal energy, and bounded-degradation

are common.

2.2 CMOS Primer

The basic building block of modern digital logic circuits, such as computer processors, is the

metal-oxide-semiconductor field-effect transistor, or MOSFET: a device which acts logically

as a switch. When the input is above a certain voltage the transistor is “on,” otherwise it is

“off.” There are two important types of MOSFET, known as n-channel and p-channel.

An n-channel MOSFET consists of two pieces of highly-doped n-type semiconductor (de-

noted “n+”) called the source and drain, separated by a piece of p-type semiconductor, called

the body or substrate. The fourth terminal, called the gate, is separated from the body by a

dielectric (non-conducting) oxide layer. With no external voltage applied, no current can flow

between the source and drain terminals, since the p-type body is depleted of the n-type ma-

jority carriers (i.e. electrons) of the source and drain. However, when the gate–body voltage

is sufficiently large, above the threshold voltage Vth, an inversion layer of n-type carriers is

produced in the space between the source and drain, called the channel, which allows current

to flow from drain to source. Figure 2.1 shows the topology of an n-channel MOSFET.

A p-channel device operates similarly; the source and drain terminals are composed of a

doped p+ semiconductor and the body an n-doped material which is thus depleted of p-type

carriers (i.e. holes). For a p-channel MOSFET, the threshold voltage is negative, and when the

gate–body voltage drops below this level, an inversion layer of p-type carriers is produced at

the channel allowing current to flow between source and drain. While the MOSFET is actually

a 4-terminal device, the source and body terminals are usually shorted internally, so in a circuit

schematic appears as a 3-terminal symbol, as shown below in Figure 2.2.

Basic logic gates (AND, OR, NOT, etc.) can be constructed from pairs of MOSFETs,

one n-channel and one p-channel, in a technology called CMOS: complimentary metal-oxide-

semiconductor. For example, an inverter, or logical NOT gate, can be created from a single
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Figure 2.1: Cross-sectional topology of an n-channel MOSFET.

CMOS pair, as shown in Figure 2.2. When the input signal is “high” (i.e. Vin = Vdd), the

p-channel MOSFET is off so its source–drain is an open circuit, whereas the n-channel is on,

pulling its drain, and hence the output (Vout), to ground (“low”). When the input is low, the

reverse occurs, and the output is “high.”

The complimentary arrangement of CMOS pairs means that one MOSFET from each pair

is always off, and hence ideally, a CMOS circuit consumes zero energy because there is never

a path for current to conduct between the supply voltage Vdd and ground. However, the MOS-

FET is fundamentally an analog device, and so while it acts logically as a switch, its behaviour

deviates from the digital ideal when considered as an electronic circuit. In particular, there are

two classes of energy consumption: dynamic power, the cost to switch the state of a gate from

“on” to “off” (or vice versa), and static power, the constant loss from applying a voltage to the

circuit to maintain its current state.

2.2.1 Dynamic power

Dynamic power is the component of CMOS energy consumption due to the switching of tran-

sistor states, and is thus a function of frequency. It is caused by two phenomena: switching

power and short-circuit power.

Switching power is due to the parasitic (i.e. unintentional and undesired) capacitance seen

between the gate and source/drain terminals of each MOSFET. To change the voltage at the

gate, this capacitance must be “charged” which necessitates a certain amount of current flow,

and thus, the input of energy. Switching power can be derived as follows. The energy con-
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Figure 2.2: CMOS inverter schematic. The inverter is made up of a single MOSFET pair: one
p-channel (top) and one n-channel (bottom).

sumed in an arbitrary circuit can be determined by

E =

∫ ∞
0

i(t)v(t) dt ,

where i(t) and v(t) are the instantaneous current and voltage at time t, respectively. (As a

matter of notational convention, lower-case v, i are used for the instantaneous, time-varying

quantity, whereas upper-case V, I are used for constant or average values.) The fundamental

capacitor equation relates the current to the capacitance (C) and voltage as

i(t) = C
dv

dt
,

and so the energy consumed in switching a CMOS circuit with equivalent capacitance of C

farads from a supply voltage of Vdd is

E =

∫ ∞
0

C
dv

dt
Vdd dt = CVdd

∫ Vdd

0
dv = CV 2

dd .

(As an aside: the energy stored in a capacitor is 1
2CV

2, so charging a capacitor with a fixed

voltage is at best 50 % efficient.) For a circuit switching at frequency f , this charge/discharge

cycle occurs f times per second, so using E = Pt, the average power can be expressed as

P = CfV 2
dd .
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In typical operation however, only a subset of gates are switched on each clock cycle. This

fraction is called the activity factor, denoted by α. Multiplying the capacitance C by the

activity factor α yields a quantity called the effective capacitance, Ceff , which is used in the

common expression for switching power

Pswitching = CefffV
2

dd .

Short-circuit current, the second form of dynamic energy consumption, is due the imper-

fect relationship between gate voltage and source-drain resistance. Logically, we model this

relation as a delta function: the switch is fully open (i.e. infinite resistance) when the gate volt-

age is above the threshold and fully closed (i.e. zero resistance) when gate voltage is below

threshold. However, in practice the MOSFET has three so-called operating regions, depend-

ing on whether the gate voltage is: (1) close to zero (the “sub-threshold” region); (2) near but

above the threshold voltage (the “linear” region); and (3) near the supply voltage (the “satura-

tion” region).1 Since switching is not instantaneous, there is a brief period during which both

transistors in the CMOS pair are operating in the linear region, temporarily short-circuiting

the supply voltage to ground. Current that flows during this time is lost as short-circuit energy.

The expression for short-circuit current is reasonably complex, but in the worst-case can be

expressed as

Pshort−circuit ∝ f (Vdd − 2Vth)3 ,

where Vth is the transistor threshold voltage [Vee84]. In practice, Pshort−circuit is significantly

less than Pswitching, no more than 20 % [Vee84, NS00], so short-circuit power is often folded

in to the constants for switching power, and total dynamic power simplified to

Pdynamic ∝ fV 2 . (2.1)

2.2.2 Static power

Static energy consumption is due to “leakage” current which encompasses several different

phenomena whereby current flows between the source, drain, gate and substrate of a MOSFET

whenever a supply voltage is applied. In current process nodes (≈ 25 nm), there are three

significant forms of leakage current, each of which contributes roughly equally:

Gate leakage The gate terminal is insulated from the source, drain, and substrate by a dielec-

tric (non-conductive) layer. To maximise transistor density, this layer is thin, and this

allows electron tunneling whenever a voltage differential is present.

Sub-threshold leakage When gate voltage is below the threshold (i.e. the transistor is op-

1Signal amplification, the other main application of MOSFETs, makes use of the linear operating region, but
for CMOS digital circuits it is merely an inconvenience.
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erating in the sub-threshold region), resistance between source and drain is nominally

infinite. However, when a source–drain voltage is present, a small “diffusion” current

continues to flow due to a concentration of minority charge carriers which accumulate

at the surface of the channel. These are produced by material impurities and input of

heat and radiation which causes spontaneous elevation of electrons to the conduction

band. Majority carriers, which are introduced intentionally by doping, constitute the

main “drift” current when the transistor is switched on and are opposite in polarity to

the minority carriers.

Reverse-bias current The drain–substrate and source–substrate interfaces form P-N junc-

tions. When a reverse-bias voltage is applied to a P-N junction with a high doping

density (such as in a MOSFET), a particular type of electron tunneling occurs, called

band-to-band tunneling (BTBT), whereby valence electrons jump both across the junc-

tion and into the conduction band. There is also a small diffusion current between

drain/source and substrate due to minority charge carriers, but BTBT dominates the

total reverse-bias current.

Note that while reverse-bias and gate leakage flow consistently whenever a supply voltage is

applied, sub-threshold leakage only occurs when the transistor is off. When turned on, the

diffusion current flows in the same direction as the drift current and thus is not lost energy.

Each of these sources of static energy consumption are increasing over time as transistor

size decreases [MRR05, RMMM03, KAB+03]. The exact magnitude of each is a complex

function of transistor geometry, material, temperature, and supply voltage. After fabrication,

geometry and material composition are immutable. Thus, for a given circuit, the variables

available for managing static leakage power are temperature and supply voltage.

Gate leakage is independent of temperature, while reverse-bias leakage is linear (with a

shallow gradient) and sub-threshold leakage is exponential. However, in realistic temperature

ranges, the overall temperature response is very flat [MRR05], increasing only 30 % from 300–

400◦K. In terms of supply voltage, reverse-bias current is weakly correlated, whereas gate and

sub-threshold leakage grow exponentially, particularly in the 0–1.5 V range where modern

CMOS circuits operate [KADB02]. Thus, supply voltage control is the main mechanism for

managing static energy consumption.

The relative magnitude of the two sources of energy consumption depends on many quan-

tities, and indeed they are interdependent. For modern processors, both must be addressed as

significant contributors, in contrast to early power management work which largely ignored

the static power contribution. While perfectly acceptable at the time, this simplification no

longer represents reality, despite its prevalence even in the modern literature.
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2.2.3 Switching frequency

While a lower source voltage reduces static power, it also limits the switching frequency (i.e.

speed) of the circuit. Due to the inherent capacitance and resistance of a CMOS gate, it

takes a certain amount of time (the rise time) for the transistors to switch between the on and

off states. Driving the transistor with a higher source voltage reduces the rise time, so the

switching frequency can be increased. The maximum frequency for a CMOS circuit at supply

voltage Vdd is

f ∝ (Vdd − Vth)β

CVdd
, (2.2)

where β is a constant in the range 1.4–2.0 [YWV+05].

For a fixed micro-architectural design, the throughput of a processor is primarily deter-

mined by the switching frequency. Increases in speed have been largely driven be reducing

transistor gate length, which affords increased frequency by several mechanisms. Firstly, the

threshold voltage can be reduced, which per Equation 2.2 increases the peak frequency [MRR05].

Secondly it reduces the gate capacitance which improves the rise time of the transistors. Fi-

nally, smaller transistors allow a commensurate increase in density, which reduces the effect

of clock drift.

In addition to speed increases, smaller transistors also reduce dynamic power (for a given

frequency) due to the reduction in gate capacitance. However, they cause an increase in static

power: thinner gate oxides increase tunneling, higher doping density increase BTBT, and so-

called “short-channel” effects increase sub-threshold leakage. Thus, as switching speeds have

increased, so has the ratio of static to dynamic power. However, dynamic power grows very

quickly with frequency in typical voltage and frequency ranges and continues to dominate at

very high frequencies.

2.2.4 Temperature

The energy consumption of a CMOS circuit is dependent on its temperature T , which is both

a property of the environment (i.e. ambient temperature) and a side-effect of its operation.

As discussed above, static power is exponential in temperature, specifically in sub-threshold

leakage, because heat produces minority carriers. Nonetheless, the curve is reasonably flat

in realistic operating conditions. Dynamic power and gate leakage, on the other hand, are

independent of T [LHL05, MRR05]. While temperature control is therefore only moderately

important in directly reducing overall energy consumption, there are a number of secondary

effects which can impact energy.

CMOS circuits have an upper limit on temperature, the maximum junction temperature,

above which temporary malfunction or permanent damage can occur, for example, by break-

down of the gate oxide layer. Processor packages usually include a temperature sensor to
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detect and prevent such situations from occurring. If the measured temperature approaches

a predetermined safe upper limit, known as a thermal emergency, the processor is slowed (or

stopped completely) to avoid damage. This reduces the performance of the processor, and thus

can impact total energy consumption.

Temperature management is also important to other aspects of system design, particularly

reliability [SABR04] and safety [LWC+14], and is generally achieved by cooling and power

management. Cooling dissipates heat into the environment, either passively via a heat sink, or

actively with cooling fans. Power management modulates the circuit frequency and utilisation

to reduce the power output and thus temperature.

2.3 Power Control Mechanisms

From Section 2.2 it is clear that many parameters affect CMOS power. Most of these however

are properties of the transistor material and geometry and therefore immutable after fabrica-

tion: gate width and length, capacitance, doping profile, threshold voltage, oxide thickness,

etc. From a systems perspective, the only parameters available to control are supply voltage,

Vdd, and frequency, f , from which several power control mechanisms can be constructed:

Frequency scaling Per Equation 2.1, the dynamic component of power can be controlled

linearly by scaling the operating frequency f . Static (i.e. leakage) power remains unaf-

fected.

Voltage and frequency scaling According to Equation 2.2, reducing frequency also allows

the operating voltage Vdd to be scaled. This reduces both dynamic and static power,

which are super-linear in voltage.

Clock modulation The effective operating frequency of a circuit can be reduced by omitting

some clock edges without changing the source clock frequency. This is known as clock

modulation, and can be seen as equivalent to reducing the activity factor. Compared

with frequency scaling, clock modulation has a very simple implementation and can

thus switch quickly between effective frequencies. However, it can not be accompanied

by a reduction in Vdd because the maximum rise time is unchanged.

Clock gating Dynamic power can be reduced to zero by removing (i.e. gating) the clock

supply completely, effectively reducing frequency to zero and stopping all transistors

from switching, but resulting in loss of functionality. Clock gating does not affect static

power, which is independent of frequency.

Power gating By completely removing the supply voltage, known as power gating, both dy-

namic and static power are reduced to zero. This also results in complete loss of state,
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since CMOS is volatile, i.e. transistor “on” or “off” status is lost when no source voltage

is applied.

When a mechanism can be enabled and/or configured online, that is, during circuit oper-

ation, it is called a dynamic mechanism. For example, dynamic frequency scaling allows the

circuit frequency to change, and dynamic clock modulation allows controlling the duty cycle,

while the circuit is running. A typical processor will utilise some or all of these mechanisms

in various forms to control energy consumption. Some of these are automatic and transpar-

ent to software, while others are made explicitly available via an API, often at a higher-level

abstraction. Figure 2.3 shows how these mechanisms affect the core clock signal and supply

voltage over time. Each mechanism is enabled at t = 0 and results in a power decrease.

The most important of these from the perspective of operating-system-directed power man-

agement are DVFS and clock/power gating, discussed in the following sections.

2.3.1 DVFS

Dynamic voltage and frequency scaling (DVFS), or P-states in ACPI [HIM+09] terminology,

is a mechanism that allows changing the frequency of a processor core at run time. The supply

voltage can then be set to the minimum required for correct operation at the chosen frequency.

Per Equation 2.2, this voltage is a non-linear function of several parameters, however it is often

approximated as a simple linear function of frequency [KAB+03],

V ≈ β1f + β2 ,

for some constants β1, β2. Thus, using Equation 2.1, dynamic power can be approximated as

Pdynamic ∝ fV 2 ∝ f3 . (2.3)

Performance of a workload is (approximately) linear in frequency, so

t ∝ 1

f
(2.4)

for execution time t, and thus dynamic energy consumption can be expressed with the first-

order approximation

Edynamic = Pdynamict ≈ f2 ,

showing that DVFS can be highly effective in reducing dynamic energy consumption. Here

we have assumed that when the workload completes, no more energy is consumed. While

it might seem obvious that this would be the case, it is in general not true: even moderately

complex systems have some cost to keeping them “online”, and this must be factored into the

calculation. We discuss the solution to this point later in the section.
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While DVFS clearly reduces dynamic energy consumption, this does not necessarily re-

duce total energy, due to the contribution of static power: the longer a workload takes to run,

the more static energy accumulates. To illustrate this point, let us make the simplifying as-

sumption that Pstatic is independent of supply voltage. Although not strictly true in general,

this assumption is nevertheless ubiquitous in the literature. It then follows from Equation 2.4

that static energy can be expressed as

Estatic = Pstatict ∝
1

f
.

So while dynamic energy increases with frequency, static energy decreases and the energy-

optimal frequency therefore depends on the relative value of the static and dynamic compo-

nents. When static dominates, it is optimal to run the workload as quickly as possible (max-

imum frequency) to reduce the accumulation of static power, an approach known as race to

halt. When dynamic power dominates, minimum frequency is optimal. In the general case,

the optimal frequency is somewhere between these two extremes. Figure 2.4 shows this graph-

ically.

With DVFS, both frequency and voltage must be scaled to see any benefit in energy con-

sumption. If V is a constant, then from Equation 2.3 we get

Pdynamic ∝ fV 2 = kf

for some constant k, so

Edynamic = Pdynamict =
Pdynamic

f
= k .

That is, dynamic energy is constant when scaling f without also scaling V . By fixing V , reduc-

ing frequency merely increases run-time and accumulation of static energy, with no change to

dynamic energy. Fixing f and scaling V is equally nonsensical because there is no advantage

to increasing voltage above the minimum required for each frequency. Scaling only frequency

can however be useful for thermal management, since it reduces instantaneous power, for

systems which are so constrained.

Memory In general, it is not true that performance is linear in frequency, because the speed

of main memory does not necessarily scale linearly with CPU frequency. A memory-bound

workload spends a large portion of its execution time waiting for memory access to complete:

if memory speed is constant, increasing the CPU speed does not change the performance of this

fraction, so a proportional increase in overall speed is not observed [SAMR03]. For example,



18 CHAPTER 2. BACKGROUND

Figure 2.4: Power and energy vs. frequency under DVFS.
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if a workload running at frequency f executes in time

Tf = Tmem + Tcpu ,

where Tmem is the time spent waiting on memory, and Tcpu is the instruction execution time,

then doubling the frequency (with memory speed unchanged) results in an execution time of

T2f = Tmem +
1

2
Tcpu .

The overall speedup is therefore

Tf
T2f

=
Tmem + Tcpu

Tmem + 1
2Tcpu

= 2− Tmem

Tmem + 1
2Tcpu

< 2 .

In general, performance is a complex function of CPU frequency [SvdLPH07].

Padding The preceding analysis makes the implicit assumption that when a workload com-

pletes (i.e. after time T has elapsed), the power drawn is zero. In a real system, this assumption

is generally untrue; rather, the system enters a low power state with lower but non-zero power

Pidle. To make a fair comparison between energy at different frequencies (and hence run-

time), energy results must be padded by adding idle power to compensate for the difference in

run-time:

Epadded = E + Pidle(Tmin − T ) ,

where E is the original, uncorrected energy consumption, and Tmin is the minimum execution

time across all frequencies to be compared. Padding always biases the optimal point towards

lower frequencies, since higher frequencies have faster run-times and thus a larger T − Tmin,

so they have more padding added. The actual effect on optimal frequency depends on the

relative magnitude of Pidle.

2.3.2 Power states

Power states (also called sleep states, or in ACPI, C-states), allow components to be disabled

in exchange for reduced energy consumption. In general, multiple states exist, each with

different power and latency; deep sleep states save significant power but take a long time to

exit and enter, whereas shallow sleep states are fast, but save less power. Two special cases of

sleep states are the online state (C0 in ACPI), where the component is fully powered up and

available to do work but consuming maximum power, and the offline state, the deepest sleep

state with power at the minimum level, zero in some cases.

Power states are implemented with various combinations of clock and power gating of the

components subsystems, and provide different levels of data retention. In the deeper states,
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data loss is complete and must be saved in software (if required) before entering the sleep state.

The shallower “retention” states save all data by maintaining power to the relevant circuits.

Components supporting sleep states are often arranged in a hierarchical topology of do-

mains, which represent the dependencies between components. A domain can enter a par-

ticular power state only when each sub-domain has entered that state. For example, a CPU

package can sleep only when all cores in the package have entered a sleep state.

2.4 Multi-core Processors

A multi-processor system is one in which multiple threads can execute truly in parallel. Such

a system can achieve higher throughput than a uniprocessor clocked at the same frequency

because more work is completed on each cycle. The primary unit of instruction execution is

called a core, each of which can execute one or more threads at any time. A core consists of

a register file per thread, and a set of functional, control, and storage units. Cores execute in-

structions independently of other cores, but share higher-level resources. A key characteristic

of a multi-processor system is how the cores are interconnected and their degree of resource

sharing. Typically this would be divided into a hierarchy of four levels: system, package, die,

and core.

At the system level, several physical CPU packages (or sockets) are interconnected by a

relatively slow memory bus, and share only high-level resources like the primary power supply,

memory, and external I/O buses. A single socket may contains multiple dies (contiguous pieces

of silicon) connected by a moderately fast memory bus, and might additionally share resources

like a last-level cache (LLC). At the next level, a die can contain one or more cores linked by

a very high-speed interconnect and sharing many resources, typically a L2 cache, and perhaps

clock synthesisers and voltage regulators. At the lowest level, within a core, hardware threads

share all resources with other threads on the same core, except their register file. This includes

functional and control units, and the L1 cache.

Of particular interest to us is one point in this design space: the single-socket, single-die,

single-threaded multi-core processor. This is often called a chip-multi-processor (since the en-

tire device is fabricated on a single piece of silicon) or mobile multi-core. This design is typi-

cal in current and emerging multi-processor mobile system which integrate the processor onto

an SoC (system-on-chip): a single-package integrated circuit with a host of peripherals and

miscellaneous support modules: ROM, boot RAM, GPU, DSPs, I/O controllers, audio/video

codecs, clock synthesizers, etc. The caches in such a system are typically arranged in a 2-level

hierarchy, with a private L1 for each core and a shared L2 (last-level) cache.

A smartphone will typically contain several discrete integrated circuits, some of which

may contain a processor. However, all but one of these are special purpose: they provide some

specific functionality to the rest of the system, such as image or signal processing, and may
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have specialized instruction sets. One processor is designated for general-purpose work: it

runs a full operating system, coordinates the other processors and peripherals, and runs the

user applications. For this reason it is called the applications processor, or AP. For the rest

of this work, when we refer to a multi-core processor, we specifically mean a mobile SoC

applications processor.

Figure 2.5 shows a schematic for an example mobile multi-core system, including the SoC

and several external components. The applications processor and its support circuitry can be

divided into two categories, called the core and uncore. The core components consist of the

circuitry private to a particular processor core, such as the functional and control units, register

file, and the L1 cache. These are independent of the other cores, and thus can be powered and

clocked independently. The uncore consists of those components shared among all cores,

including the last-level cache, system bus, and memory controller. These have the property

that they must be online if any core is online and thus can be powered off only when all cores

are offline.

2.4.1 Voltage and clock distribution

The distribution network of power and clocks to an AP follow two main designs: either each

core receives an independent supply, or all cores are tied to the same voltage and frequency.

The latter is simpler, whereas the former allows per-core DVFS. An intermediate design, where

cores share one of voltage or frequency, is possible but uninteresting because, as discussed

above, DVFS does not save energy unless the voltage is scaled with frequency.

Power is supplied to the cores from an external component called the PMIC—the power-

management integrated circuit—which converts battery voltage to that needed by the cores. To

support DVFS, these are variable-voltage supplies, programmable by the AP, typically over an

I2C bus or similar. Clocks generally follow a multi-stage distribution scheme, with an external

component supplying an accurate fixed base frequency to an on-chip clock generator module

with a bank of programmable frequency dividers and PLL (phase-locked loop) multipliers for

synthesising the requisite core frequencies.

2.4.2 Regulation

Each integrated circuit in a system has some pins used to receive supply power. Typically, a

specific voltage is required, which can be either fixed or variable, such as with DVFS-capable

devices. The conversion of system input voltage to that required by the component is called

regulation. These voltage regulators however are not 100 % efficient—some energy is lost

in the conversion process. Thus to determine the total energy consumption of a system, the

regulation loss must be included.

Two types of voltage regulation are typically employed in power-constrained devices like
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the smartphone. The first, called the linear or LDO (low drop-out) regulator, is low cost and

low noise, but suffers from poor efficiency proportional to the input/output voltage difference.

A switch-mode power supply (SMPS) on the other hand, is highly efficient, typically 80–90 %

in the design operating region, but is expensive and noisy.

SMPSs are usually employed for high-current supplies when good efficiency is required,

except in low noise situations, such as high-frequency radios. In those cases, linear regula-

tors are used for their superior noise rejection [Vol02]. A multi-stage regulation process may

also be used, with the SMPS performing the bulk voltage conversion and a downstream LDO

providing noise immunity.





Chapter 3

Related Work

In this chapter we discuss related work. Firstly in Section 3.1, we discuss the literature around

energy measurement, and then in Section 3.2 we review existing works on energy manage-

ment.

3.1 Energy Measurement

There are two types of papers in the literature focused on energy consumption per se: direct

measurement and analysis of the energy consumption of specific devices, and the design and

implementation of systems that provide online power estimation by measurement, modeling,

and prediction.

3.1.1 Direct measurement

In this section we will summarise the related work on the direct measurement of energy con-

sumption. First we cover whole-system analyses of mobile computers, then we cover desktop,

server, and laptop-class systems. Finally, we look at works that concentrate on specific sub-

systems which make up a smaller part of some larger system.

Mobile

Sagahyroon [Sag06] performs energy measurements of the iPAQ pocket PC (a precursor to

the smartphone but without telephony capabilities). They instrument the whole system at the

battery terminals, measuring the power draw for workloads including CPU-intensive, MP3

playback, graphical, and file access. The maximum power observed was 550 mW, which is

much lower than in modern devices. The CPU maximum frequency is 500 MHz. They also

perform battery discharge experiments by measuring battery voltage, which correlates with

charge level. Finally, the author performs some “real-world” experiments involving the open-

25
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ing and closing of word documents. This use-case however is unlike how modern smartphones

are used.

In 2010, with my advisor, we published our paper [CH10] performing an energy measure-

ment and analysis of the Openmoko smartphone, as described in Chapter 4. We include this

reference here for context, as the paper pre-dates many of the other works summarised in this

section.

Perrucci et al. [PFW11] perform a series of experiments on the Nokia N95 phone using

the “Nokia Energy Profiler” which appears to provide access to on-board energy measurement

functionality. The paper refers to previous work that compares the profiler precision with an

external measurement apparatus, showing no significant difference. In these experiments, spe-

cific components are exercised with the unrelated components powered down. They focus

specifically on wireless interfaces: Bluetooth, WiFi in both infrastructure and ad-hoc modes,

and 2G and 3G cellular radios. The various modes of these radios are analysed, including

idle, send, receive, and connect, with higher-level uses cases such as SMS messaging, and

voice and video calling. The joules per bit metric is used to evaluate the efficiency of each

technology at varying bitrates. They also measure the effect of varying the display repaint

rate on screen power, but it is unclear whether this affects the display’s actual refresh rate,

or whether this simply shows the changing cost of software rendering. Finally, Perrucci per-

forms a series of combination measurements with the various radios, showing that their power

contributions are additive except for the Bluetooth + WiFi case, since the device features a

combined Bluetooth/WiFi chip. Thus the static energy consumption is amortized when using

the two radios simultaneously. Across all benchmarks, downloading a file with HSDPA is the

most energy-intensive operation.

Li et al. [LZCF14] perform whole-system measurements of three Android smartphones

under a number of macro workloads. While no specific conclusions are drawn, a large body of

data are presented. As expected, the wireless radios consume a significant amount of power,

and the multi-threaded CPU benchmarks show that CPU power can also be significant under

certain workloads.

Bai et al. [BMH+13] perform a similar analysis, while also presenting plots of power over

time which reveal transitions between various operating states. From these data they show

that the power drawn by wireless radios tend to have high variance over short time scales.

Similarly, our data show high cellular radio power variance over all time scales. They also

show the cost of entering and exiting flight mode, and the suspend mode for 2G/3G modems.

LiKamWa et al. [LWC+14]1 perform energy and heat measurements on the Google Glass,

an AR (augmented reality) device with an optical head-mounted display (OHMD). It features

the same sort of peripherals as a smartphone, but with different characteristics and use-cases.

The heat analysis described in the paper shows that thermal limits may stem from safety con-

1Aaron Carroll was co-author of this paper while a visitor at Rice University.
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cerns, in addition to power supply and head dissipation restrictions, and that this may place

an even smaller power constraint on the device. Further, the paper shows that screen power is

important in OHMDs, despite the small size, due to its always-on nature.

Desktop/server/laptop

Flinn and Satyanarayanan [FS99a, FS99b] measure the energy consumption of two laptops:

the IBM ThinkPad 560X and the IBM ThinkPad 701C. They use a digital multimeter con-

nected to the machines’ power supplies to sample whole-system power. Using benchmarks

that exercise specific components, they measured the power draw of the display, network card,

and disk, plus the remainder of the system. On the 560X machine, they found that display,

particularly at high brightness, consumes the majority of the energy: 35–55 % depending on

brightness. However, on the 701C, the brightness of the display surprisingly does not sig-

nificantly affect power, with only a 20 % increase between the dim and bright settings. It is

unclear why this is the case, since both devices feature backlit LCD displays. Further, the au-

thors claim that component power is super-linear when run simultaneously; that is, the power

while running two components at the same time is greater than the sum of the power of the

components when run individually. Although they do not offer an explanation of this, one

possibility is that it is due to power supply non-linearities. When multiple components are

powered up, higher current flows, and this may push the power supply into a less efficient re-

gion of operation. It could also simply be due to copper loss in the power distribution network,

which is the quadratic P = I2R power loss when a conductor of resistance R ohms carries

a current I amps. In any case, this is not true in general, because components often share

common circuitry, the energy consumption of which is amortized when running components

simultaneously. Uncore is an example of this in CPU power.

Mahesri and Vardhan [MV04] perform power measurements on a laptop, including the

CPU, optical drive, hard disk, display, GPU, RAM, wireless radio, speaker, fan, USB, and the

whole system. Some of these measurements are direct and some subtractive. However, they

were not able to account all power consumption of the platform to a corresponding component.

Overall, the main energy consumers are the CPU and display. In particular, they show that

reduction of the backlight brightness is one of the most important mechanisms for power

saving. Power is measured with a current probe: a device which couples magnetically to

a current-carrying wire, but requires a full loop around the conductor. This does not work

for PCB slot-connected components, so the authors use connector shims that split out power

rails for easy connection to a voltage probe. CPU power is determined by a simple model,

P ∝ fV 2, which ignores static power and the fact that different workloads may have different

power consumption at the same frequency. Similar to our results, the paper shows that a white

screen is more efficient than a black screen for LCD-type displays. They also measure the

effect of varying the colour bit-depth, but show no power variation in doing so.
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Hamady et al. [HCK11] measure the power of an Intel-based laptop platform, including

the contribution of CPU, storage, RAM, WiFi, and display, using various micro-benchmarks

and real-world workloads. They show total energy results as an increase above idle, with a

maximum of 140 %, showing this platform has a high static-to-dynamic power ratio. Approx-

imately half of the platform’s energy consumption is unaccounted for, as shown in the “rest of

platform” numbers. Like our results, Hamady shows that storage and RAM contribute little

to overall energy consumption. They also highlight the importance of functional and energy

inter-dependence, that is, components that require other components for support. For exam-

ple, the power of the network card is tied to the CPU power, since the processor is required to

process incoming packets.

Ferreira et al. [FHM+13] describe “SEFLab,” a system where power measurement is pro-

vided as a service. They are able to measure CPU, RAM, the system fans, hard disk, and the

motherboard. A server coordinates the execution of the submitted workloads with the col-

lection of power measurements from a connected data acquisition system (DAQ). Like other

measurements on server/desktop systems and workloads, they show that idle power is a sig-

nificant contributor, even for energy-intensive benchmarks. They also claim that the (spinning

platter) hard disk is entirely static power. An explanation of this is that keeping the platters

spinning, which is required whether or not an access is in flight, is the dominating energy

consumer. Further, Ferreira shows that RAM power is also largely static. This mirrors similar

studies on desktop-class systems, but differs from our results on mobile platforms which show

that RAM power is primarily dynamic. The paper focuses on the energy consumption of dif-

ferent browsers loading different web pages. From benchmarks of these, the authors conclude

that both the browser implementation and website content has significant impact on energy

consumption, and specifically that browser choice can impact dynamic energy by up to 70 %.

Cui et al. [CZBC11] present a methodology for performing energy measurements on ATX

systems—a standard that specifies physical form factor and power supply voltages and con-

nectors for desktop computers. In the work, components are broken down into three classes

based on how they are supplied with power: 1) a cable directly from the power supply unit,

2) a slot connector which connects one circuit board to another, or 3) direct connection to

conductors on the motherboard (so called pads or lands). For wired devices such as disks,

they simply cut the wire and insert a sense resistor. For slotted components, they use a simi-

lar approach to [FHM+13], namely, they design a shim card that passes through signal traces

but diverts power rails to external measurement circuitry. This approach works for the RAM,

network card, and GPU. Although the CPU could in principle also be measured this way, due

to extremely tight timing and noise requirements, it is more practical to instead use the ded-

icated ATX CPU supply wires. An interesting result presented in this paper is a comparison

between sequential and strided reading of RAM. They show that the power draw in both cases

is approximately the same, but the strided case takes longer due to an increase number of
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row-buffer misses. As a result, the total energy consumption is greater by a factor of 6.

Chen, Wang, and Shi [CWS11] present an analysis of energy consumption in two desktop

PCs. As in the above studies, the CPU, memory, and disk power are measured by cutting the

supply line and inserting instrumentation, in this case a digital multimeter (DMM). Whole-

system power is measured with an off-the-shelf power meter. Attributing power supply lines

to components is done similarly to us: by instrumenting the unknown lines and exercising

different components in software. After this, idle power can be determined trivially.

50–75 % of the system’s idle power is unaccounted in this work. The authors claim this

power is due to the motherboard and power supply conversion loss. To quantify the latter, they

measure the total system power with and without a fan connected, and compare the difference

to the power measured directly at the fan. This shows a low efficiency of only 25 %. The CPU,

disk, and memory power supply efficiency is also quoted (at 70–90 %, much more reasonable

in our experience), though it is unclear how these numbers are determined. We suspect that

the low efficiency reported for the fan is because it is variable-speed, so the measurement is

including the efficiency of the speed controller as well as the voltage conversion.

Between the old and new systems, idle power is shown to decrease by 45 %, while dynamic

power decreased by 35 %. In contrast, our results showed stable idle power with a significant

increase in peak dynamic power (and a commensurate increase in compute power). Since

performance figures are not provided, it is hard to rationalise this discrepancy. Moreover,

Chen claims that cache contributes 20–35 % of the total system power, but the methodology

for separating cache power from the rest of the CPU is not explained.

Subsystems

Balan et al. [BLWM14] discuss the energy behaviour of environmental sensors in smartphone

platforms. They quote the power drawn for a number of sensors, and highlight the cost in the

CPU processing the sensor data, in addition to the physical device. As expected, they show

that higher sampling rates lead to higher energy costs, however on some devices this difference

is small due to a large static power component, such as GPS. They do not however attempt to

decouple the sensor power from the corresponding CPU power. Our work, which does, shows

that for the most part power consumed in the sensor unit is insignificant compared with the

corresponding CPU cost. Balan et al. go on to measure the costs of sampling several sensors

concurrently, showing that some are additive, whereas others are not, due to common circuitry.

However, this again conflates the CPU and sensor power costs. Overall they claim that “con-

tinuous mobile sensing” is not practical on current platforms, and as such, duty cycling is

important in sensing applications.

König et al. [KMD13] also investigate the energy consumption of smartphone sensors with

whole system power measurements. They compare the measured cost with that reported by
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estimation APIs provided by the platform, and show that they are reasonably accurate: 16 % or

better. This is in contrast to our experience, which is that they are wildly inaccurate. This may

be due to different mechanisms: the platforms we studied use simple models, whereas it is

implied (but not directly stated) that their API under test uses some internal sensing. Like us,

König et al. assert that the CPU is the main consumer in sensing applications, and in contrast

to Balan et al., claim that continuous sensing is in fact feasible. This is at least partly due to a

difference in sampling rates each party treats as “continuous,” which the authors of this work

do not treat explicitly.

Abreu and Villapol [AV12] measure the full-system power of two smartphones under var-

ious Bluetooth, WiFi and cellular usage scenarios. They show the surprising result that Blue-

tooth has the highest scanning cost. However, similarly to us, they show it has the lowest

energy per bit cost, following by WiFi and then cellular.

3.1.2 Modeling and prediction

Bellosa [Bel00] looks at the correlation between micro-architectural events and power. These

events can be counted automatically in the performance monitoring unit (PMU), including

micro-operations retired, floating point operations, and L2 cache and memory accesses. This

work established the use of the performance monitoring unit as the basis for online power es-

timation, a technique that is still widely used today. Power is estimated using a simple linear

model where each event corresponds to a particular amount of energy consumed. The perfor-

mance events are not independent (i.e. an L2 access is the result of a retired load or store, so

necessarily include a retired micro-op), so the event coefficients are determined subtractively.

Since machines at the time included only two physical counters but more than two possible

events, the counters are time multiplexed. As an example use case, the predictions are used

for power capping (via clock throttling), and they also implement a power API which allows a

thread to read its own power consumption.

Isci and Martonosi [IM03] model a Pentium 4 processor by a linear combination of per-

formance counters with coefficients calibrated offline using measurements of the CPU’s 12 V

input power supply. They explicitly model all the CPU’s functional units (FUs), including:

cache, branch predictor, trace cache, ALU, TLB, decode unit, and microcode ROM. They use

15 counters in total to model the energy consumption of 22 functional units. Each FU is mod-

elled as a dynamic plus static component, where the dynamic component is a product of the

FU’s utilisation and its peak power. Peak power is determined first by an estimate based on

die area of that FU, then further tuned by exercising it with specific workloads. Isci proposes

program phase detection as a potential use case for this methodology. In particular, they claim

that the change in FU power is a good indicator for a phase transition, since total power may

not change significantly. With SPEC benchmarks, they show an average prediction error of

4 %, with a worst case of about 10 %.
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Snowdon, Heiser, and others [SRH05, SvdLPH07, SPH07] published a series of papers on

prediction of power and performance slowdown due to voltage and frequency scaling. Sim-

ilar to earlier works, they use performance counters sampled online, plus the current CPU

frequency, as inputs fed to a linear model which is calibrated offline. Earlier systems either

blindly sample all events, or produce the model by manual analysis. In Snowdon’s methodol-

ogy, this is done automatically using best-subset linear regression which is able to determine

the most relevant counters for the model. Since it is a multi-variate regression, dependencies

among events are also accounted for. Further, Snowdon’s formulation is predictive across fre-

quencies. That is, given the current conditions, their model is able to predict the effect on both

power and execution time if frequency were to be changed. This avoids the need for searching.

Bircher and John [BJ07] propose extending the use of CPU performance counters for

power consumption estimation of a whole desktop system, including CPU, chipset, memory,

PCI I/O, and disk. The methodology is based on what they call the “trickle-down effect,” which

says that devices are connected in a hierarchy rooted at the CPU, and the further away the de-

vice is in the hierarchy, the less its activity is correlated to events countable at the CPU. The

models are non-linear and derived by hand. Memory, which is close to the CPU, is modeled

by last-level cache (LLC) misses and bus transactions, which account for CPU and DMA ac-

cesses to memory, respectively. Interestingly, the authors found that features like pre-fetching,

write-allocate caches, etc., which break the 1-1 relationship between LLC misses and DRAM

accesses, did not significantly impact the accuracy of the model. Further away from the CPU,

I/O and disk is modeled with interrupt and DMA rates. However, it is hard to see how this

would apply in mobile systems, where components have high and highly-variable power con-

sumption. For example, WiFi and cellular network interfaces can carry the same throughput

with vastly different power consumption. On the desktop system in question however, Bircher

shows this approach yields 9 % or better prediction accuracy for each subsystem.

In response to significant interest in modeling as a power estimation approach, McCul-

lough et al. [MAK+11] investigate the limitations of event-based linear-regression modeling

techniques on modern hardware. They show that, although CPU power prediction is still

in single-digit percentage accuracy, multi-core is significantly worse than single core due to

contention on shared resources. For peripheral devices, accuracy is much worse, and this is

primarily due to hidden states and complex transition semantics. They also highlight the high

variability in power consumption for apparently identical devices. Many works assume the

power model for a specific device model can be calibrated once (often with significant time,

complexity, and/or specialised hardware), then run on any instance of that device. However,

McCullough shows that this is not necessarily true, and that calibration for one device is not

necessarily good for another. This motivates the inclusion of direct power measurement hard-

ware in devices.

Flinn and Satyanarayanan present PowerScope [FS99b] which is a system for profiling the
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power consumption of applications. It consists of online power measurements at the supply,

which are then correlated with samples of the program counter. A pin on the parallel port is

used to synchronise the two samples. After execution, an offline analysis is run on the samples

to produce a function-level power profile of the application. Flinn presents a case study into

the applicability of this approach with a video playback application.

Yoon et al. [YKJ+12] describe AppScope, a whole-application power estimation method-

ology for Android applications which does not use performance monitor counters. The models

are a linear combination of device state and utilisation, which are produced manually and cali-

brated offline against test workloads. For example, the CPU model uses utilisation and current

core frequency to estimate CPU power. Utilization of other device types is detected though

a combination of tracing (kprobes) and IPC (Binder) interposition. AppScope has a higher

overhead than PMC-based systems because the counting/sampling happens in software rather

than hardware. They measure a 2.1 % CPU overhead, but a power estimation error of only

5.2 %.

Pathak et al. [PHZ+11] argue that such utilisation-based models fail due to complex asyn-

chronous and hidden states, such as tail power, or due to lack of suitable utilisation metrics

(for example, the camera). Further, they argue that with PMC- or utilisation-based models

it is difficult to account power to functions or even specific applications. Thus, they propose

the use of syscall tracing. Devices are modeled as a finite state machine (FSM), where each

state corresponds to a certain power level. Transition between states is triggered by syscalls,

timeouts, and utilisation thresholds. The FSM for each device is produced by hand.

Pathak et al. [PHZ12] extend their previous work and present “Eprof” which, similar to

PowerScope, is a gprof-like tool for analysing the energy consumption of an application in the

source code domain. Eprof includes an instrumentation phase which inserts code at function

and system-call boundaries to trace program flow at runtime. During the offline analysis phase,

these events are replayed to the FSM power model and presented in profile form. Pathak

shows that there is significant complexity in accounting power to a responsible agent due to

the asynchronous nature of many devices and their corresponding software. An example is so-

called “tail power,” in which a portion of the energy consumption for an action happens after

that action has appeared to complete. Concurrency also presents an accounting complexity,

since the energy cost is effectively shared among several, possibly completely unrelated tasks.

Pathak devises methods to improve energy accounting under these conditions. Some devices

however, like RAM and display panels, do not lend themselves to a syscall-based approach,

due to the high rate of access. Handling these is relegated to future work.
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3.2 Energy Management

There exists a vast body of work studying mechanisms and policies for controlling power and

energy consumption at the OS level. These fall broadly into two categories: reduction of total

energy consumption (i.e. energy efficiency), and control of peak power (thermal management).

In this section we discuss the key works in these areas, with a particular focus on dynamic

frequency and voltage scaling (DVFS) and multi-processor/multi-core systems. Thermal man-

agement is a comparatively immature topic of study, but employs similar tools and techniques.

Moreover, as peak CPU power increases as a fraction of average power (the so-called dark

silicon problem [EBA+11]), thermal management will become increasingly important.

3.2.1 Energy reduction

DVFS

Weiser’s seminal paper [WWDS94] kick-started the field of operating-system-directed CPU

energy management. They introduced the concept of MIPJ—millions of instructions per

joule—as an energy analogue to the MIPS measure of performance, and observed that MIPJ

is a constant function of clock speed (when voltage is fixed), because both power and perfor-

mance are linear in frequency. This is no longer true in general, due to the significance of

static power, the effect of memory speed relative to CPU speed, and the prevalence of DVFS

in modern machines. While DVFS was not available at the time, Weiser et al. correctly pre-

dicted that voltage scaling would be a feasible approach to achieving a super-linear reduction

of energy, and performed an analysis under this assumption.

The authors take a trace and simulation approach to investigating slack management al-

gorithms for reducing energy. Events such as entering or exiting the idle loop, performing

a scheduling decision, executing a new process, etc. are recorded, and three algorithms sim-

ulated against these event logs: one with perfect future knowledge (oracle), one with small

look-ahead, and one using only past history. They show a 50–70 % energy reduction is avail-

able, depending on the specific assumptions made, and showed the trade-off in selecting the

interval for making new frequency decisions. They also observed that running too slow can be

counter-productive, due to the additional energy consumed while “catching up.”

Miyoshi et al. [MLH+02] laid much of the groundwork for practical dynamic frequency

scaling (DFS), particularly in their handling of static power. Most work up to that point had

assumed that lower frequencies are more efficient, but this paper shows that the assumption

does not hold due to the accumulation of more static power over longer run-times, and that

both static and idle power are critical inputs for estimating total energy consumption.

The key insight made by the authors is that a power analysis can not simply assume power

goes to zero when the workload completes: systems have non-zero idle power, and this must
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be accounted for to make fair comparisons. This correction is now known as padding. With

padding, they show that with clock throttling (as opposed to scaling), higher frequencies are

always more efficient. However, with DFS, the optimal frequency depends on the relative

magnitude of idle and active power. A particular device can be characterised by its “power

slope”—the frequency-power curve. A positive slope implies that lower frequencies are prefer-

able, whereas higher frequencies are more efficient for a negative slope. The critical power

slope introduced in this paper is the cross-over point between these two regimes.

Miyoshi seems to have missed the physical significance of this result: specifically, that

the quantities in opposition are idle power (Pidle) and the static component of active power

(Pstatic). Since Pdynamic is constant under DFS, then the optimal frequency is low if Pstatic <

Pidle and high if Pstatic > Pidle.

The critical power slope is no longer a useful analysis technique, since any modern ma-

chine has idle power lower than static power; clock gating is enough to ensure this, but the

difference is typically larger due to deep power-gating. Moreover, with the addition of volt-

age scaling, the power-performance curve is non-linear, thus the power slope is not constant.

Miyoshi correctly predicted that under DVFS, the optimal frequency could occur in the middle

of the frequency range, rather than its extremes as in DFS. They also recognized that memory

performance does not necessarily scale with effective frequency under clock throttling and

scaling, because the relative speed of memory can increase as CPU clock speed decreases.

They showed this effect to be small, so did not account for it in modeling.

Weissel and Bellosa [WB02] were the first to propose CPU performance counters as a means

to estimating both performance and power under DFS, a technique which is today applied

almost universally. They aimed to control frequency (without voltage scaling) to minimise en-

ergy consumption under the constraint of at most 10 % impact on performance, i.e. a bounded

degradation policy.

Using the “memory accesses per cycle” and “instructions per cycle” (IPC) performance

monitoring events, they perform an offline calibration using a series of varying workloads

and produce a 2-dimensional lookup table mapping IPC and memory access rate to minimum

required frequency. This strategy exploits the fact that some instructions can be blocked behind

events which are not tied to the core clock speed, such as memory accesses, so reducing

frequency also reduces power but with a lesser effect on performance, thus reducing energy.

The results showed up to 22 % reduction in energy consumption for memory-bound tasks

(subject to 10 % bounded degradation), and the authors predicted this could be as much as

37 % if voltage scaling was also available.

Extending their previous work on performance and power prediction of DVFS ([SvdLPH07,

SPH07, SRH05], discussed above), Snowdon et al. [SLSPH09] develop “Koala,” a DVFS
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control system in Linux. The authors add idle power and frequency switch time to their model

which predicts active core power and performance at any frequency, based on a sampling of

performance monitoring events at the present frequency. They devise the “generalised energy-

delay policy” which can express several policies in terms of a single parameter α, minimising

ν = P 1−αT 1+α for some −1 < α < 1. Energy-delay product (EDP), energy-delay-squared

product (ED2P), minimum energy and maximum performance can all be expressed in this

formulation with an appropriate selection of α. With the addition of bounded degradation,

which they also implement, this covers the most common policies found in the literature. An

implementation and benchmarks of Koala on several real systems shows a best case of 26 %

energy saving with only 1 % performance degradation.

Le Sueur and Heiser [LSH10, LSH11] revisit the effectiveness of DVFS and idle states on

newer platforms. They note that the CPU characteristics on which many assumptions about

DVFS rest have changed significantly. In particular: transistor scaling changing the relative

static vs. dynamic power, the relative performance of memory and CPU, improving sleep

states, and the prevalence of multi-core.

The authors show that for pure computational workloads (such as SPEC CPU, which they

measure), race-to-sleep is generally the best option. However, for more heterogeneous work-

loads (for example Apache, video playback, SPEC JBB), DVFS is still effective, particularly

for slack management. The measurements are based on both Intel and ARM-based processors

covering desktop- and embedded-class systems. They conclude that both DVFS and idle states

are still important energy management mechanisms, and that employing the correct one for a

given situation is key to maximising energy efficiency.

DVFS controllers are typically reactive, i.e. based only on past and current conditions. Isci

et al. [ICM06] introduce a proactive system which sets the DVFS state based on an estimation

of future behaviour using a phase analysis and prediction scheme. They use performance

monitoring counters (specifically memory accesses per micro-op) to estimate and classify the

memory-boundedness of a task into 1 of 6 phases. The current phase feeds a predictor, similar

in design to a branch history predictor, which predicts the phase of the thread for the next

interval. This prediction indexes a static lookup table which maps phase to optimal frequency.

With this scheme the authors claim an average of 7 % improvement to EDP over a reactive

scheme. They observe that most workloads don’t see a significant improvement with proactive

control (for example because they are non-phasic, or the phases are difficult to predict), while

a small number see substantial improvement.
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Multi-core

Anderson and Baruah [AB04] consider the trade-off between frequency and core count in

real-time systems. They observe that, because power is super-linear in frequency, reducing

frequency and adding cores reduces energy consumption, and that energy can be made ar-

bitrarily small by adding cores. However, in their real-time system model, the maximum

utilisation of a core must be capped for the schedulability of the system to remain feasible,

thus increasing core count reduces the maximum effective frequency. This conflicts with the

goal of reducing power by adding arbitrarily-many cores, and the authors devise an algorithm

for balancing these two concerns to synthesize a system with minimal energy consumption.

This paper ignores the contribution of static power, which places a (in practice, low) limit

on scaling of core count, as does the hardware complexity. The analysis also applies to very

specific real-time systems consisting of independent tasks (i.e. no communication) in a fixed-

priority scheduling scheme.

Xu et al. [XZR+05] study the relationship between DVFS and offlining in the context of

a cluster of single-core embedded systems. Rather than traditional task scheduling, they use

a load-balancing front-end that makes node online and offline decisions, and dispatches jobs

across nodes. The nodes then select the lowest frequency to sustain the incoming workload.

Their power model and analysis is similar to our DVFS work, but applied to a different system

architecture. Our model, for instance, includes an uncore component that theirs does not.

The authors show, based on an analysis of their power model, that if static power dominates

then the optimal solution is to run fewer nodes at higher frequency. When dynamic power

dominates, it is preferable to run more nodes at lower frequencies. This largely mirrors our

results, except that for us, the relative uncore and static power is important. They also find that

the addition of hysteresis to the implementation of the algorithm to be important to stability.

They call this a “threshold scheme,” but this is unrelated to our concept of frequency threshold

that we introduce in Chapter 5.

Their systems run at a coarse granularity since it takes 33 seconds to online a node. DVFS

decisions are made once per second and driven by incoming jobs from the dispatcher. Compare

this with the single-node multi-core case, where decisions are based on processes blocking and

therefore have to be made at a much higher rate—in the 10’s of milliseconds range.

Li and Martinez [LM06] developed an approach to selecting the optimal number of cores

and frequency specifically for parallel application, that is, a single multi-threaded application

running on all cores of the system. Their goal was to minimise energy consumption given a

performance target, which they do using a search methodology with online power measure-

ments. The main contribution of this paper is techniques for efficiently exploring this 2D

search space. The optimal number of cores is found by hill climbing, and a frequency pre-
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diction is made assuming linearity between frequency and performance. The operating point

is then adjusted, and measurements of the actual power impact are made before iterating the

algorithm.

Simulations of this approach show that the algorithm converges to near optimal in most

cases, with algorithmic complexity linear or better (a precise complexity is not derived). How-

ever, it requires online power measurements.

Ghasemazar at al. [GPP10] aim to minimize total energy consumption for workloads with

a fixed throughput requirement on multi-core DVFS-capable machines. They argue that an

analytical solution is NP-hard, and that mathematical optimization is not robust for such prob-

lems due to workload variation. Instead they propose a closed-loop control solution using a

three-tier hierarchy: a steepest-decent search for the optimal number of cores, a PI controller

of frequency, and a task-to-core assignment phase.

This controller is simulated, and compared to a controller with open-loop DVFS and no

core-count selection, shows a 17 % improvement in energy consumption while meeting the

performance constraints. Compared to an oracle controller, it performs within 9 %.

Bircher and John [BJ08] perform a measurement and analysis of many factors that affect

multi-core power management on server-class processors. Firstly they measure the energy cost

and latency for transitioning between P- and C-states (frequency and sleep states, respectively).

They then look at the effect of the frequency of idle cores in terms of cache probing latency

from active cores. They show that more idle cores increase the cost of a cache probe, and show

that there exists a “crossover” frequency of the idle cores, above which cache probe latency is

no longer a dominant factor. They show the surprising result that core affinity can sometimes

decrease performance, because the lack of thread migrations cause a decrease in the frequency

of idle cores, and thus an increase in cache probe latency.

Further, they analyse the effect of workload “phases,” which is affected both by changing

application behaviour, and due to process scheduling. Variation in power consumption is used

as a metric to classify phases and detect their length. Based on measurements, they show that

the operating system is a significant determinant of phase length due to thread scheduling and

power management decisions. They show that phases of higher power tend to have shorter

lengths, that most phases fall int the 1–10 ms range, and that few phases last above 100 ms.

Analysing the effect of frequency and active core transitions, Bircher shows that running

at a sub-optimal operating point is costlier than the overhead of increased transition frequency,

which is relatively cheap on modern machines. Finally, they perform CPU and memory power

measurements with the SPEC CPU benchmark and show that for highly CPU-bound work-

loads, core power exceeds memory by a factor of 5, but are approximately equal for memory-

bound workloads.



38 CHAPTER 3. RELATED WORK

Merkel and Bellosa [MB08a] consider the effect on performance and energy caused by con-

current memory accesses on multi-core systems. Previous work has considered co-scheduling

for maximising performance, but has assumed cores run at independent frequencies. Merkel

considers the trade-offs when co-scheduling in the case where cores share a single frequency

plane, as is the case on many systems. Running at a lower frequency favours memory-bound

tasks, but higher frequencies are better for CPU-bound tasks.

The authors find that memory, and not cache, is the constraining resource, since it is statis-

tically unlikely that a single workload’s working set fits within the cache, but two workloads

do not. Thus, co-scheduled tasks tend to either not conflict at all, or conflict on main memory

bandwidth. Further, they show that in selecting frequency, increasing the execution time of

compute-bound workloads costs more energy than running a memory-bound task at a higher

frequency than would be optimal for it in isolation. In other words, it makes sense from an

energy perspective to scale down the frequency plane if only memory-bound tasks are running.

With these observations, Merkel implements a system that uses performance counters

to measure memory-boundedness online, and uses this to sort the scheduling run-queues.

Tasks are dispatched off opposite ends of these run-queues to achieve a balance of CPU-

and memory-bound tasks to reduce contention on shared resources. The maximum frequency

is selected unless only memory-bound tasks are running, in which case frequency is reduced.

Benchmarks show that this scaling can achieve an energy-delay product of 0.92 compared with

running at maximum frequency.

Merkel and Bellosa [MSB10] extend their previous work to use task activity vectors (dis-

cussed in the following section), which they use to represent contention at multiple levels of

the memory hierarchy. They also introduce new mechanisms, such as cross-node migration as

a means to increase workload diversity at each node. They perform an analysis of these tech-

niques on both Intel and AMD server-class machines, but do not consider embedded systems.

Chen et al. [CHK06] consider scheduling of periodic real-time workloads on DVFS-capable

multi-core systems from a real-time-theoretical perspective. They use a power model (which

accounts for static leakage power, unlike many similar works) combined with a real-time

model to minimise energy consumption over a workload’s hyper-period, without missing

deadlines. They show that this problem is NP-hard, and derive two approximate solutions:

a 1.3-approximation (i.e. an algorithm that produces a solution within 1.3 times the optimal)

that assumes negligible cost to switch operating points, and a 2-approximation that includes

switching energy. The evaluation is entirely analytical (i.e. no measurements on a real system).

Gupta et al. [GBK+12] focus on energy consumption of heterogeneous multi-core systems.

In particular, they analyse the increasing importance of the “uncore” component—the part of

a CPU shared across all cores. Thus, the uncore cost must be paid if any cores in the CPU are
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online. This means that in a heterogeneous system, running a small, energy-efficient core may

not the globally optimal because the uncore power costs may be significant.

The authors model uncore power as a static contribution plus an amount proportional to

the last-level cache (LLC) miss rate. They predict that uncore consumes 20–80 % of the total

processor power, depending on the specific workload. This is validated against an SMP x86

test system in which some of the cores are “defeatured” to emulate a heterogeneous multi-

core, though it remains unclear how this is achieved or exactly what this means at a micro-

architectural level.

3.2.2 Thermal management

Isci et al. [IBC+06] consider how to use per-core DVFS to maximise total performance while

bounding chip-level power. Their design is to control frequency locally (i.e. at the core level),

with a layer of global coordination on top. Three policies are explored: two open-loop control

systems, and one with closed-loop power and performance modeling and control. For the

open-loop schemes, they consider one which attempts to keep all cores at equal speeds, and

another which tries to slow down the slowest core and speed up the fastest core where possible,

maximising the performance difference.

With simulation of a POWER4-like system, Isci shows that the predictive model performs

within 1 % of an oracle. Moreover, they find that as cores are added, performance improves be-

cause the control becomes closer to continuous by amortizing the otherwise discrete operating

points.

Rangan et al. [RWB09] present “thread motion,” a system for capping the power consump-

tion of a DVFS-capable processor using scheduling, rather than dynamically changing oper-

ating point. To motivate this unusual approach, the authors note that DVFS is typically slow

to change operating point—too slow to adapt to find-grained application variation. They show

this via benchmarking, and note that workloads with low IPC tend to have high variability at

short timescales.

Rather than changing core frequency to meet the requirements of the task running on

it, thread motion moves the task to a more suitable core. Cores are run at fixed power and

performance levels, and intermediate operating points can be “emulated” by rapidly migrating

tasks between these cores. This can also reduce system cost, since fewer hardware-supported

frequencies are required for a similar outcome. The decision to migrate cores is triggered

by one of two means: time-driven migrates at a fixed period, and miss-driven when a cache

miss occurs. The thread motion design includes an off-core manager that makes the migration

decisions, plus dedicated cache resources for quickly transferring register state between cores.

By simulation, Rangan shows that thread motion can improve performance by up to 20 %

compared with a traditional OS-directed policy at a fixed power budget. Further, they show
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that a thread motion system with only two voltage/frequency planes is nearly as good as con-

tinuous, per-core DVFS.

Cochran et al. [CHCR11] present “Pack & Cap”—a system for maximising performance

for multi-core HPC applications while capping peak processor power. Their systems uses a

multinomial logistic regression (MLR), a mathematical classifier which maps the power cap

and performance counter and temperature data to the best predicted operating point (frequency

and thread-core assignment).

The paper argues that thread packing, i.e. assigning an arbitrary number of threads created

by an application to the cores available, is more practical than reconfiguring the application to

use fewer cores, since it is simpler, more general, and achieves similar performance and power

results. Moreover, they show via benchmarking that power and energy reduction are at odds:

lowering the instantaneous power cap necessarily increases the total energy consumption. This

is a consequence of static power and can be considered an analogue of race-to-halt.

The classifier is trained offline with the PARSEC benchmark suite. Using a so-called

L1-regularization, the most relevant performance counter events are automatically selected

in a way that reduces sensitivity of the result to any single event by artificially capping the

regression coefficient of that event. The resulting model is a linear combination of events

and ratios between events. Invoking the classifier online is expensive, costing 10–50 ms for a

single iteration of the algorithm. Thus the algorithmic period must be restricted to seconds or

longer.

Evaluating the approach, Cochrane shows that it can meet a power budget 82 % of the time.

Compared with existing work, this reduces energy consumption by 52 % for the same power

range. However, the analysis uses the same benchmark suite for both training and analysis,

which can result in model over-fitting and artificially inflated results.

Raghavan et al. [RLC+12] observe that while transistor density is increasing, voltage scal-

ing is no longer progressing since the transistor threshold voltage has been reached. As a

result, power is the limiting factor for long-term average throughput. However, workloads

often demand responsiveness rather than long-term throughput. “Computational sprinting” is

a technique that allows the CPU to exceeds its power budget for short bursts to achieve good

responsiveness, then returning to nominal power to cool, without exceeding the instantaneous

power budget. The additional short-term power is absorbed by a phase-change material which

exhibits high thermal capacitance.

The evaluation system is a 16-core machine which is assumed to have peak power 16×
greater than the nominal TDP (thermal design power). The authors perform a thermal heat flow

analysis to determine the sprint energy, peak sprint power, and cooling time, in terms of the

thermal resistances and capacitances in the system. They also consider the effect on the power
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distribution network due to the load spike when powering-up cores. To avoid overloading the

supply, core power-up is carefully staged to match the decoupling capacitance of the power

network. However, this does not address the issue of increased power supply during the main

phase of the sprint, which still requires above-TDP power supply.

Merkel and Bellosa [MB06] study the effect on performance of enforced periods of throt-

tling due to power consumption above TDP. They argue that since power consumption is

workload-dependent, some CPUs in a multi-processor system may require throttling while

others do not, depending on how tasks are assigned to CPUs. Thermally balancing tasks across

CPUs may therefore improve performance by reducing the incidence of thermal throttling.

They estimate power consumption using performance counters with a model based on

[BWWK03] and note that minimising migrations is a goal due to the high cost of cross-node

task migration. At the node level, their policy involves co-scheduling of “hot” and “cold”

tasks, as predicted by the power model. If fewer tasks are runnable than CPUs available, hot

tasks are migrated regularly to avoid throttling any one CPU. The scheduler is augmented with

a processor thermal model: input power plus a thermal RC circuit representing the heat sink,

which can be used to predict when a package will reach its thermal limit to trigger a migration.

The system is implemented in Linux and shows an approximately 5 % average increase

in throughput for mixed workloads, and 76 % in the best case. The technique is most useful

for over-provisioned systems (i.e. where the number of processors exceeds threads). However,

for high utilisation systems the effectiveness depends critically on having a diverse mix of hot

and cold workloads; homogeneous workloads are inherently balanced so migration offers no

benefits.

[MB08b] is an extension of this work (also by Merkel and Bellosa) to the core functional-

unit level. They observed by running SPEC CPU workloads on a Xeon machine that temper-

ature varies by up to 30 degrees between functional units on a single core. This is called the

“hotspot” problem. However, thermal limiting by throttling activates if any part of the chip

exceeds the temperature limit. Thus, limiting hotspots can reduce thermal throttling and hence

improve performance.

Merkel proposes the concept of the “task activity vector”—an object that represents a

task’s utilisation of functional units. Performance counters are again used to predict the

power consumption at the functional unit level, as proposed by Isci and Martonosi [IM03].

The scheduler run-queues are sorted based on these activity vectors to avoid the formation of

hotspots. The sort function is a (higher-dimensional) vector angle, and the next task selected

is the one that maximises the vector angle from the current task. They also use a more sophis-

ticated thermal model that represents the physical geometry of the chip: each functional unit

is modeled as a thermal capacitor linked to its neighbours by a thermal resistor. The paper also

considers the effects of multi-threaded (SMT) processors, and task balancing across multi-core
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systems to ensure a mix of diverse tasks is available to each core.

With a Linux implementation, the authors measure the system’s performance under SPEC.

Since it is hard to directly measure the temperature of functional units, they use the (unfortu-

nately named) HotSpot simulator with a model based on the floorplan of a Pentium 4. They

are able to achieve a 7–14 % increase in throughput compared to the baseline system, which

includes the performance loss due to the run-queue sorting. Finally, they argue that this tech-

nique can also increase the lifetime and reliability of a processor, since thermal wear is super-

linear in temperature.

Powell et al. [PGV04] make a similar contribution. They observe that SMT exacerbates

the hotspot problem since its goal is to increase core utilisation. They also observe that the

thermal resistance between functional units is much higher than that between the die and the

heat sink; that is, heat tends to flow from the hotspots out of the chip, rather than laterally

across the chip. Thus, cooling is more efficient if the whole die is allowed to cool at once. To

exploit this fact, the authors propose a policy of maximally heating multiple functional units in

a core by intelligent SMT scheduling, then cooling the entire core by migrating off all threads.

For an over-utilised system (i.e. when there are more software threads than available hardware

threads), heat and run increases duty cycle of throttling because the “off” periods are more

efficient at cooling, so the overall throughput is increased. Measurements of this approach

show a 9 % improvement in throughput compared with a base system, and 6 % higher than if

DVFS was used to limit power.

3.3 Other topics

Understanding and optimizing energy consumption is a vast topic which intersects many other

subjects within operating systems and computer systems more generally. A full exploration is

out of scope for this work, but this section serves to highlight some of these topics and their

key works.

Several studies look at how power and energy can be incorporated as a first-class resource

in OS design, similar to CPU and memory in contemporary systems. These include the works

of Zeng et al., specifically “ECOSystem” and “Currentcy” [ZELV02, ZELV03], and the “Re-

source Containers” work by Banga et al. [BDM99]. Stoess et al. [SLB07] explore the interac-

tion of virtualization and energy management.

Operating systems design for emerging low-power and heterogeneous architectures has

recently seen some attention, such as the “Reflex” and “K2” works of Lin et al. [LWLZ12,

LWZ14] and the “Popcorn” architecture by Barbalace et al. [BSA+15]. On the other end of the

scale, energy management for data-center-class machines has seen renewed interest due to the

explosion in popularity of cloud computing, such as [CAT+01] and [MGW09]. Barroso and
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Hölzle’s article [BH07] makes the argument that server systems need to be energy efficient at

a range of utilisation levels, and name this the “energy-proportionality” problem. Specifically,

systems should be designed such that the energy consumption is proportional to the utilisation.

This is in contrast to today’s server systems, which tend to be under-utilised yet dominated by

static power.

A number of works have explored the role of applications in overall system power manage-

ment. Flinn and Satyanarayanan [FS99a] introduce the idea of trading application “fidelity”

for reduced energy consumption. Pathak et al. [PJHM12] look at the downsides of exposing

energy decisions to applications via Android’s wake-lock API, which introduces a new class of

programming error, the “energy bug,” which impacts battery life by preventing system sleep.

3.4 Summary

Studies of computer energy consumption, as a topic in itself, has seen small but sustained

interest in the academic community in the past two decades. The majority of these works

make whole-system measurements by instrumenting the power supply (battery or mains). This

approach is limited in specificity, that is, the degree and accuracy to which energy can be

attributed to individual sub-components of the system. With whole-system measurements,

component power can be estimated by exercising the component and subtracting the measured

power from a base-line measurement. However, this approach is fundamentally limited in that

it cannot disentangle the power of inter-dependent components.

In desktop, server, and laptop-class systems, a number of works have performed fine-

grained power measurements. Power distribution for some components of such systems (e.g.

CPU and disk drives) is by dedicated wiring, which makes instrumentation reasonably sim-

ple. For components which connect by circuit board slots (e.g. RAM and GPU), a common

approach is to use a shim card that sits between the component and motherboard and diverts

the power rails for instrumentation. These measurements, while interesting, can not easily be

extrapolated to mobile systems, because the systems have different components, form factors,

and use cases.

In the mobile space, a number of works have studied whole-system energy consumption.

However, what is lacking is a detailed measurement and analysis study at the component level.

Approaches based on modeling fill this gap to some extent. Models for individual compo-

nent can be calibrated by carefully exercising that component while taking full-system power

measurements. These can then be combined for fine-grained energy estimation under arbitrary

workloads. This approach is limited by the accuracy of the models, which varies by compo-

nent and methodology. Single-core CPU models based on performance monitoring counters,

for example, can predict power to within a few percent. However, accurate multi-core models
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are still an open problem.

In general, current approaches struggle to capture functional dependencies among com-

ponents. The increasing asynchronous nature of component interactions adds further com-

plication, particularly in mobile systems which are rich in such components (such as WiFi,

Bluetooth and cellular radios). In response, recent works have moved away from low-level

event monitoring toward higher-level, framework- and application-focused models. Moreover,

some components, such as OLED displays, remain out of reach for accurate and low-overhead

modeling.

Modeling does have some advantages over instrumentation: once the model is built and

calibrated, no physical modifications or external hardware are required, so it is easy to deploy.

However, for energy consumption analyses, measurement remains the only way to profile

power across a wide array of components, with high accuracy and low overhead.

Energy management, i.e. the optimization of energy consumption, has seen significant aca-

demic attention. DVFS in particular has, and continues to be, the topic of many papers, both

theoretical and practical, and in many areas of research, including OS, real-time, distributed

systems, and mobile systems. However, DVFS on multi-processor systems has seen surpris-

ingly little attention. This is at least partly due to the elusiveness of accurate modeling of core

interactions through shared resources, particularly cache and main memory.

This makes predictive online-model-based approaches (e.g. Koala [SLSPH09]) largely in-

feasible at present for multi-core systems. Reactive approaches are therefore the most com-

mon way to utilise DVFS on multi-processing systems. Idle energy (i.e. slack) management

is conducive to a reactive approach, since processor and core utilisation are good parameters

to estimate slack, and they are simple to measure online. Existing works, however, are limited

in general applicability to mobile multi-cores, for example requiring online power measure-

ment [LM06], or targeting different system architectures [XZR+05]. We attempt to fill this

gap.

Thermal management has seen comparatively little study, particularly in mobile, because

until recently the ability for devices to supply and dissipate power generally met or exceeded

their requirement. This is no longer the case, thus controlling power at relatively short timescales

is now an active area of research. Many of these works exploit under-utilised resources to

spread heat generation spatially or temporally. Our observation that average utilisation is de-

creasing implies such techniques will become more relevant in the future.



Chapter 4

Profiling Smartphone Energy
Consumption

This section describes work published in a pair of peer-reviewed papers co-authored with

my advisor. The first [CH10], published at the 2010 USENIX Annual Technical Confer-

ence (ATC), covers the basic methodology and includes the measurements and analysis of the

Freerunner device, and the validation on the G1 and N1 devices. The second paper [CH13b]

was published at the 2013 Asia-Pacific Workshop on Systems (APSys) and includes our up-

dated methodology for instrumenting commercial off-the-shelf devices, and the measurement

and analysis of the Galaxy S III device.

4.1 Introduction

Mobile devices derive the energy required for their operation from batteries. In the case of

many consumer-electronics devices, especially mobile phones, battery capacity is severely re-

stricted due to constraints on size, weight, and cost of the device. This implies that energy

efficiency of these devices is very important to their usability, so intelligent management of

energy consumption is critical. At the same time, device functionality is increasing rapidly.

Modern high-end smartphones combine the functionality of a pocket-sized communication de-

vice with PC-like capabilities, integrating such diverse functionality as voice communication,

audio and video playback, web browsing, short-message and email communication, naviga-

tion, gaming, and more. The rich functionality increases the pressure on battery lifetime, and

deepens the need for effective energy management.

A core requirement of effective and efficient management of energy is a good understand-

ing of where and how the energy is used: how much of the system’s energy is consumed by

which parts of the system and under what circumstances. In this chapter we attempt to answer

this question and thus provide a basis for understanding mobile-device energy consumption

45
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and for focusing future energy-management research.

Our approach is to profile smartphone power consumption broken down by a device’s ma-

jor subsystems under a range of realistic usage scenarios. We do so by taking physical power

measurements at the component level (CPU, RAM, etc.) on real hardware by instrumenting

the power supply to these components: Section 4.2 details how to perform such an instrumen-

tation, and a methodology for performing energy benchmarks. In Section 4.3 we describe the

two devices under examination: the Openmoko Freerunner, and the Samsung Galaxy S III.

The results of benchmarking on these devices is presented in Section 4.4. In Section 4.5 we

perform a validation of these data by comparing against two additional smartphones at a less-

detailed level: the HTC Dream and Google Nexus One. Along with the Freerunner and Galaxy

S III, these four devices represent approximately 5 years of mobile phone technology, 2008–

2013. Finally, we analyse the results and trends revealed by the measurements in Section 4.6.

4.2 Methodology

4.2.1 Instrumentation

To calculate the power consumed by a component, two quantities must be known: the current

flowing (I), and the source voltage (Vdd). From these, the power consumption at that instant

can then be calculated by

P = IVdd .

Source voltage measurements can be taken by attaching a voltmeter in parallel with the compo-

nent’s power rail and electrical ground. To determine current, we measure it indirectly using a

current-sense or shunt resistor: a small-value (typically in the milli-ohm range) resistor which

is placed in series with the power rail to be measured. If a voltage drop of Vsense is measured

across a sense resistor of value Rsense, then the current flowing through the resistor and hence

into the component can be determined by Ohm’s law:

I =
Vsense

Rsense
.

The use of a sense resistor does decrease the voltage supplied to the component by Vsense volts,

but by using a low-value sense resistor, the perturbation is kept small enough to be within the

tolerance of the component. The trade-off is that a high-sensitivity voltmeter is required to

measure the small Vsense.

To measure the source and sense voltages, we use a National Instruments PCI-6229 data-

acquisition system (DAQ). The key characteristics of this hardware are summarised in Ta-

ble 4.1. The sense resistors are connected to the DAQ with twisted-pair wiring to reduce

common-mode interference. The sense-resistor voltage drops are then sampled differentially
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Figure 4.1: Power instrumentation logical schematic. The sense resistors (Rsense) are added to
the circuit to support power measurements. The PMIC (power management integrated circuit)
converts battery voltage to the specific voltage required by each component.

at the±0.2 V input range. We used the same physical connections to measure supply voltages,

but instead measure the voltage relative to ground from the component side of the resistors,

in the ±5 V range. We apply the same methodology to determine the power supplied by the

battery to the PMIC—the power management integrated circuit. The PMIC contains a bank

of regulators which convert the battery supply voltage to the voltage required by each compo-

nent. Instrumenting the battery input yields total energy consumption of the device. Figure 4.1

shows the instrumentation schematic.

This methodology relies on the ability to insert a sense resistor in series with the power

rail, which requires the rail to be broken at some point. We achieve this in three different

ways. First, we can make use of circuit support in the form of sense-resistor placeholders.

These are PCB footprints factory-populated with 0 Ω resistors, which we simply replace with

sense resistors. This is the simplest approach, but generally is not possible on commercial off-

the-shelf products, which don’t feature sense-resistor placeholders. Second, we can exploit

the design of the power supply to instrument the rail. Smartphone designs utilise switch-mode

power supplies (SMPS) to achieve good energy efficiency in converting the battery voltage

to the various required supply voltages. Inherent to an SMPS is an output inductor, which is

typically large and discrete (i.e. not integrated with other packages). This inductor provides a

convenient point at which the circuit can be opened and a series current-sense resistor inserted

for power measurement. This is shown schematically in Figure 4.2. The inductor is desoldered

..L 
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Characteristic Value
Max. sample rate 250 kS/s
Input ranges ±0.2 V, ±1 V, ±5 V and ±10 V
Resolution 16 b
Accuracy 112µV @ ±0.2 V range

1.62 mV @ ±5 V range
Sensitivity 5.2µV @ ±0.2 V range

48.8µV @ ±5 V range
Input impedance 10 GΩ

Table 4.1: National Instruments PCI-6229 DAQ specifications [Nat16].

on one side and lifted from the board, and the resistor soldered between the DC side of the

inductor and the original pad in a “tipi” configuration, shown in Figure 4.3. Finally, we can

make use of “choke” components: circuit elements which suppresses high-frequency noise.

On power supply lines, chokes are usually implemented as a series inductor which filter out

HF signal components by radiating the energy into the environment. We can instrument such

supply rails with a tipi configuration, as above. However, we found that by simply replacing

the choke inductors with a sense resistors, the residual inductance was sufficient to prevent

any noise-related issues, at least under our laboratory conditions.

On the Freerunner, we power the device through a bench power supply connected to the

battery terminals. On the other devices this was not possible due to the battery detection

feature, which forcibly shuts down the device if the battery is not detected or the charge level

becomes too low. For those devices, we use the original battery which we charge as necessary.

In either case, we measure total system power at the battery terminals by inserting a sense

resistor between the positive terminal and the power supply/battery.

Identifying supplies We approach the problem of mapping components to their power rails

(and hence sense resistors) in several ways. The simplest approach is to trace the rails by in-

spection of the circuit schematic. However, since this documentation is generally not available

for off-the-shelf devices, it must be done indirectly. The PMIC device driver often exposes

some details, such as the name, voltage, and on/off status of certain power rails, which can be

correlated with measurements of the supply voltages. We found however that the most useful

strategy is to exercise components in software, and correlate that with physical measurements

of the supplies. This can be done in several ways. One is to observe the change in current of the

power supplies when exercising a specific component. For example, by changing the display

from minimum to maximum brightness, we expect only the supply responsible for powering

the backlight to change appreciably. A second method is to enable and disable devices, and

correlate this with power supplies turning on and off. For instance, when entering airplane

mode, we expect to see the voltage of supplies for components with radios, such as WiFi and
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Figure 4.2: SMPS (switch-mode power supply) instrumentation schematic. The PMIC cir-
cuitry plus the external output inductor (Lout) form the SMPS. This inductor is used as a point
to insert the series sense resistor Rsense.

Figure 4.3: SMPS instrumentation photograph of one of the power supplies. The SMPS in-
ductor is on the left, partially lifted off the board and soldered to a sense resistor on the right.
Connected to the resistor is a twisted-pair wire leading to the data acquisition system.

---------------- --------------- ------------' 
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Bluetooth, to change to 0 V. Finally, for DVFS-capable devices such as the CPU, we expect

supply voltage (as well as current) to change as device utilisation changes.

Software The DAQ is connected to a host PC on which we run power-data collection soft-

ware: a C program which interfaces with the National Instruments DAQmxBase 3.3 library to

collect raw samples, aggregate them, and write the result to a file for post-processing. Each

logged sample consists of a timestamp and the power for each power supply, calculated from

at least 1000 consecutive raw samples each of source and sense voltage for that supply. A

complete snapshot of system power is output every 200–400 ms, depending on the number

of measured supplies. The host machine also coordinates the benchmarks on the Freerunner

platform via a serial connection. This involves executing the benchmark, synchronising the

power measurement and benchmark software, and collecting device data. On the Galaxy S3,

there is no serial port available, so we perform these tasks manually.

Regulator efficiency In addition to the power supplied directly to each component, a certain

amount of additional energy is lost in converting (regulating) the battery supply voltage to the

levels required by the components. This energy is lost in the PMIC (and related circuitry),

and thus in our methodology would not be measured as energy consumed by the component,

since our instrumentation is inserted after the PMIC. However, since this loss is inherent to

powering a component, we have decided to account it as energy consumed by the component.

Thus, for all our reported results, for devices which are powered by a regulator, we have scaled

the raw power measurements to include the regulation loss.

Since the actual regulator efficiency varies from supply to supply and is a function of

current, for simplicity we use a fixed scaling factor of 1.2, corresponding to a conversion

efficiency of 83 %. We determined this number by a combination of experimentation on the

platforms, and from the public data sheet of a typical PMIC (the Philips/NXP PCF50606

[Phi04], similar to the Freerunner PMIC) which quotes efficiencies in the range of 75–85 %,

depending on current.

4.2.2 Benchmarks

We run two types of benchmarks: micro-benchmarks designed to independently characterise

components of the system, particularly their peak and idle power consumption, and a series of

macro-benchmarks based on real usage scenarios. For low-interactivity applications, such as

music playback, we simply launch them from the command line. For interactive applications

driven by user input, such as web browsing, we take a trace-based approach.

Input tracing and replay Many smartphone applications are highly interactive, driven by

touchscreen input from a user. Benchmarking such applications presents a repeatability chal-
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lenge: we would like to run the benchmark scenarios many times to maximise confidence in

the results, but repeating the same sequence of inputs by a human user is both difficult and

boring. Thus, we automate this process with a two-stage solution. In the first stage, tracing,

we execute the workload manually (i.e. with human-generated input) while simultaneously

recording the sequence of inputs performed. In the second stage, the live benchmarking situ-

ation, we replay the same sequence of input events by generating them in software, exactly as

they occurred during tracing.

During tracing, we use the benchmark application normally while running another pro-

gram in the background that records touchscreen touches and physical button presses.1 For

each input event we record a time-stamp, the ID of the device providing the input, and for

touchscreen events, the screen coordinates of the touch. These are written to a trace file on disk.

The Linux kernel makes this information available by reading from the /dev/input/event*

device files. To replay a trace file, we run another program that reads the trace file and synthe-

sises input events by writing to the /dev/input/event* device files, maintaining the original

intra-event timing.

This approach does bypass the hardware and interrupt paths that would usually be followed

for an input event. Thus, our methodology does not capture the associated power. However,

the vast majority of the energy consumed in delivering an input event to an application is

incurred in software [HCH+14]. Our measurements include this cost.

4.3 Devices

4.3.1 Freerunner

The Openmoko Neo Freerunner (revision A6) device is a “2.5G” smartphone released in mid

2008, featuring a touchscreen display and many of the peripherals typical of modern devices.

It supports GSM cellular network connectivity with GPRS (2G) data. Table 4.2 lists its key

components. The software running on top is the Freerunner port of the Android 1.5 operating

system [And09] using the Linux v2.6.29 kernel. The notable differences between this device

and contemporary off-the-shelf smartphones are the lack of a camera and 3G/4G modem. We

select this device because the design files, particularly the circuit schematics, are freely avail-

able [Ope08], and because it features placeholders for sense resistors. This greatly simplifies

the instrumentation problem, as described earlier. For the few components where placeholders

are not available, we take the approach of replacing choke inductors.

Measuring backlight power requires special attention because its supply voltage (10–15 V,

depending on the brightness) far exceeds the maximum range supported by our DAQ. To

resolve this, we pre-scale the backlight voltage with some external circuitry, shown in Fig-

1 The source code for the record and replay tools is available at https://github.com/xaaronc/injectevents. Thanks
to Nicholas FitzRoy-Dale for providing the first version of these tools.

https://github.com/xaaronc/injectevents
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Figure 4.4: Backlight voltage pre-scaling circuit schematic. The FET opamp buffers Vin with
high input impedance and low output impedance, and drives a voltage divider which scales the
output down by a factor of 3.

ure 4.4. A FET opamp is configured as a voltage follower which has the property of high input

impedance, meaning that that we draw close to zero current from Vin, the backlight power rail,

and thus don’t affect its operation. The output of the voltage follower feeds a voltage divider

network, which scales the voltage down to the ±5 V range. R1, R2 are chosen to achieve a

scaling factor of approximately 3, which is constant due to the high input impedance of our

DAQ sampling Vout. In our case we use R1 = 3.3 kΩ and R2 = 6.8 kΩ for a scaling factor of

3.061. Finally we scale the voltage back up to its original value in software.

We are able to directly measure the power consumed by the following components: CPU

core, RAM, cellular radio, GPS, Bluetooth, LCD panel and touchscreen, LCD backlight, WiFi,

audio (codec and amplifier), internal NAND flash, and SD card. Since the graphics module

has too many supply rails to measure directly, we instead use a combination of direct and

subtractive measurements.

4.3.2 Galaxy S III

The second device we studied is the Samsung Galaxy S III GT-I9300 (S3) smartphone. This

is a high-end mass-market device, released in mid 2012, running Android 4.0.4 on Linux

kernel 3.0.15. The main hardware components are summarised in Table 4.3. The main differ-

ences with the Freerunner is the OLED display, multi-core CPU, 3G/UMTS modem support-

ing HSPA data rates, and a camera. Compared to current devices, this model S3 lacks a 4G

modem, but is similar in other respects.
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Component Specification
SoC Samsung S3C2442
CPU ARM 920T @ 400 MHz
RAM 128 MiB SDRAM
Flash 256 MiB NAND
Cellular radio TI Calypso GSM+GPRS
GPS u-blox ANTARIS 4
GPU Smedia Glamo 3362
LCD Topploy 480× 640
SD Card SanDisk 2 GiB
Bluetooth Delta DFBM-CS320
WiFi Accton 3236AQ
Audio codec Wolfson WM8753
Audio amplifier National Semiconductor LM4853
Power controller NXP PCF50633
Battery 1200 mAh, 3.7 V Li-Ion

Table 4.2: Freerunner hardware specifications.

Component Specification
SoC Samsung Exynos 4412
CPU ARM Cortex-A9 quad-core @ 1.4 GHz
RAM 1 GiB LP-DDR2
3D GPU ARM Mali-400 MP
Cell radio Intel PMB9811X 3G UMTS/HSPA
Display Super AMOLED, 4.8”, 720× 1280
PMIC Maxim MAX77693
Battery 2100 mAh, 3.8 V Li-Ion

Table 4.3: S3 hardware technical specifications.
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Power (mW)
Image (brightness) Sum Total POLED Pmodel Pdisplay Error Error %
1 (min) 399.0 673.2 25.7 263.3 274.1 10.9 4.0
1 (max) 408.4 1141.4 322.3 729.0 733.0 4.0 0.6
2 (min) 397.3 649.8 9.3 237.6 252.6 15.0 5.9
2 (max) 402.4 819.0 115.4 404.2 416.6 12.4 3.0
3 (min) 393.4 654.3 19.2 253.2 260.9 7.6 2.9
3 (max) 406.8 1024.7 246.0 609.2 617.9 8.8 1.4

Geometric mean 2.3

Table 4.4: OLED model validation data.

On the S3, instrumentation is not so simple due to the lack of placeholders for sense

resistors, and because the schematics are not available. Instead we use the SMPS output

inductors as described in Section 4.2.1. By applying this methodology to the S3, we can

directly measure: the CPU cores, RAM, 3D GPU and several general system-on-chip (SoC)

supplies. For the SoC, we distinguish three supplies: MIF (memory interface), INT (internal),

and remaining miscellany SoC. Measuring power supplies to the radios is less straightforward:

they are very sensitive to noise in the power supply, and therefore, some of their power is

supplied from linear regulators, which are typically less energy efficient but show superior

noise performance [Vol02]. As these have no discrete components, we cannot insert a sense

resistor. We therefore determine WiFi and cellular power by subtracting the sum of measured

components from total power. We also use this approach to determine camera and audio power,

which we are unable to measure at all. While this precludes measuring more than one of the

WiFi, cellular, camera or audio subsystems simultaneously, we believe this does not rule out

any significant benchmarking scenarios. Furthermore, we are only able to measure one of

several power supplies for the OLED display. However, we find that

Pmodel = 223 mW + POLED × 1.57

is a fairly accurate model of the overall display power Pdisplay, where POLED is the part we

could measure directly. This model exhibits an average 2.3 % error (maximum 5.9 %) when

validated against three images, selected for varying color content, at varying brightness levels.

The data for this validation are shown in Table 4.4. Each of the images is measured at minimum

and maximum display brightness. “Sum” shows the sum of measured power for all non-OLED

supplies, and “Total” is the power measured at the battery. The difference between the two is

thus the actual display power (Pdisplay). POLED is the measured OLED power, and Pmodel is

the predicted total OLED power produced by our model. “Error” shows the difference between

the measured (Pdisplay) and predicted (Pmodel) display power.

Similarly, we can only measure part of the power drawn by flash storage, but in this case
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Power (mW)
Benchmark Measured Actual Error Error (%)
Read 76 230 154 67
Write 95 191 96 50
Metadata read 51 159 108 68
Metadata write 16 26 10 38

Table 4.5: Flash modeling data.

we are not able to determine an accurate model. Instead we perform a series of benchmarks

which stress the storage subsystem performing one of four types of operations: data read, data

write, metadata read and metadata write. For each, we determine flash power by subtracting

the sum of all measured components from the total power measured at the battery. We then

compare the averages of the partial measured value with the actual flash power. The results

are shown in Table 4.5.

We see that the error across the benchmarks is high and variable, with a worst-case error

of 68 % for the metadata read workload. We use that data point to build a pessimistic model

of worst-case flash power: Pflash = 3.1× Pmeasured. We then use this model to predict which

workloads have potentially significant flash activity. This turns out to be only the camera video

recording benchmark. Across all other scenarios, the average flash power is only 6 mW. These

data is shown in Section 4.4.4.

Full instrumentation of the S3 smartphone, including circuit analysis, took about 2 person-

weeks of work.

4.4 Fine-grained measurements

In this section we describe the details of each benchmark and present the results on both the

Freerunner and S3. Sections 4.4.1–4.4.7 deal with the baseline cases and micro-benchmarks,

and in Sections 4.4.8–4.4.15 we present the macro-benchmarks. Unless otherwise noted, we

use 50 % display brightness power: that is, brightness-dependant power consumption is half

of its maximum value for each device. This does not necessarily correspond to a centered

brightness slider, which may provide non-linear control. Furthermore, for the Freerunner we

report the results with the GSM cellular module enabled and connected to the voice network,

but GPRS and WiFi data connection disabled unless required for the benchmark. This repre-

sents a common scenario at the time of that device’s release. However, with current network

heterogeneity and the relative affordability of data access, this simplification is no longer true.

Thus, for the S3, we instead perform all measurements in airplane mode (unless networking is

required for the benchmark), and separately investigate the impact of network connectivity.
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Figure 4.5: Freerunner power breakdown in the suspended state.

Each data point, unless noted otherwise, is an average taken over 3 or more iterations of

the respective benchmark. The error bars on graphs show the standard deviation.

4.4.1 Suspend

A mobile phone will typically spend a large amount of time in a state where it is not actively

used. This means that the application processor and most peripherals are idle, while the net-

work processors perform a low level of activity to remain connected, in order to be able to

receive calls, data, SMS messages, etc. As this state tends to dominate the time during which

the phone is switched on, the power consumed in this state is critical to battery lifetime. The

Android OS running on the application processor aggressively suspends to RAM during idle

periods, whereby all necessary state is written to RAM and the devices are put into low-power

sleep modes (where appropriate).

To quantify power use while suspended, we force the device into Android’s suspended

state and measure the power over at least 60 seconds. Figure 4.5 shows the power breakdown

in the suspended state on the Freerunner, with cellular (no GPRS) network connection enabled

and WiFi disabled. On the S3 we investigate several suspend scenarios depending on which

radio technology was enabled: either none (airplane mode), 2G only, 3G only, or WiFi only.

These results are shown in Figure 4.6, broken down by the three highest energy consumers:

the radio module (either WiFi or cellular), RAM, and the SoC, plus the sum of all remaining

components, “other”. The relative standard deviation (RSD) of total power is 6.5 % or less.

In all cases we ensure no data packet transfers occur either by explicitly disabling it, or by
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Figure 4.6: S3 power breakdown in the suspended state.

discarding iterations where a transfer occurred. This yields the power required to maintain

the network connection, but excludes the cost of data access which is highly application- and

user-dependent.

4.4.2 Idle

The device is in the idle state if it is fully awake (i.e. not suspended) but no applications are

active, for example with the home screen open. This case constitutes the static contribution

to power of an active system. Figure 4.7 shows the Freerunner in the idle state. The cellular

module is enabled but with GPRS disabled. The results for the S3 are shown in Figure 4.8, in

this case in airplane mode.

The results show that the display-related subsystems consume the largest proportion of

power in the idle state: more than 50 % on both devices. On the Freerunner, the cellular sub-

system consumes 58 mW, about 10 % of total. On the S3 however, our idle and suspend results

show that the cellular consumes less than 10 mW in the worst case: only 1 % of total. While

the CPU itself consumes little power on either platform, S3 shows significant consumption in

the various SoC supplies (SoC, MIF and INT).

4.4.3 Display

Our two devices feature different display technologies. The Freerunner uses a transmissive

liquid crystal display (LCD). Such a display does not generate light itself, but rather forms
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Figure 4.7: Freerunner idle power.
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Figure 4.8: S3 power while in the idle state in airplane mode.
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Figure 4.9: Freerunner display backlight power at varying brightness levels.

an image by filtering light generated behind the panel by an LED backlight. Thus on the

Freerunner, the energy contribution due to display brightness and content are independent. On

the other hand, the S3 display is an emissive OLED (organic light-emitting diode) type. For

these displays, each pixel generates light of a particular colour and brightness, so the content

and brightness are highly dependent.

Figure 4.9 shows the power consumption of the Freerunner’s backlight over the range of

available brightness levels. That level is an integer value between 1 and 255, programmed

into the power-management module, used to control backlight current. Android’s brightness-

control user-interface provides linear control of this value between 30 and 255, which corre-

sponds to 9 mW and 497 mW backlight power respectively. At half brightness (centred slider),

the backlight consumes 90 mW. For the LCD panel itself, we measure 40 mW for a completely

white screen, and 89 mW for a black screen. Display content can therefore affect overall power

consumption by up to 49 mW. In addition to the panel and backlight, power is consumed in

delivering pixels to the screen by the 2D GPU. Comparing the idle and suspend cases, we see

a 90 mW increase in GPU power consumption when the display is enabled.

On the S3, understanding display power is more complicated. Power consumption of an

OLED display has a constant component for the display driver, plus a dynamic component

dependent on both display content and brightness [DCZ09]. We measure the S3 display to

consume a constant 223 mW. For a completely black display (i.e. no pixels actuated) we see

an additional 1.9–3.1 mW (for minimum and maximum brightness, respectively). For a com-

pletely white screen, the power consumption is an additional 84 mW at minimum brightness,
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Figure 4.10: SD, flash, CPU and RAM power on Freerunner for flash storage read and write
benchmarks.

Metric Flash SD
Idle (mW) 0.5 1.7
Read

throughput (MiB/s) 4.7± 0.8% 2.3± 2.0%
efficiency (MiB/J) 33.6± 0.9% 16.0± 5.9%

Write
throughput (MiB/s) 0.91± 0.5% 0.30± 2.0%
efficiency (MiB/J) 5.6± 0.8% 1.9± 2.8%

Table 4.6: Freerunner flash storage power and performance.

and 1027 mW at maximum brightness.

4.4.4 Flash storage

Bulk storage on the Freerunner device is provided by 256 MiB of internal NAND flash, and an

external micro Secure Digital (SD) card slot. To measure their maximum power consumption,

we use the Linux dd program to perform streaming reads and writes. For reads we copy a

64 MiB file, filled with random data, to /dev/null in 4 KiB blocks. For writes, 8 MiB of ran-

dom data is written, with an fsync between successive 4 KiB blocks to ensure predictability

of writes. Between each iteration we force a flush of the page cache.

Figure 4.10 shows the power consumed by the NAND flash and SD card, as well as the

CPU and RAM which are required to drive the benchmark. Table 4.6 shows the corresponding
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Power (mW)
Benchmark Measured Predicted Std. dev. (%)
Camera (video) 16.5 51.1 8.6
Email 4.6 14.3 13.4
Call 2.0 6.2 33.3
Camera (still) 1.6 5.0 44.5
Web 1.4 4.3 9.2
Gaming 1.3 4.0 26.3
SMS 1.3 4.0 24.9
Audio 1.0 3.1 13.7
Video 0.4 1.2 36.8

Table 4.7: S3 predicted worst-case flash power.

data throughput, efficiency (including flash/SD, CPU and RAM), and idle power consumption.

For the flash device, equal power is consumed for write and reads (6.7 mW), despite read

throughput exceeding writes by more than 5 times. The same is true for the SD card. However,

SD power exceeds flash power by an order of magnitude, while achieving less than half the

throughput. Including the CPU and RAM power, flash is 2–3 times more efficient than SD.

The S3 features an internal NAND flash, but does not support an external SD card. As

previously discussed in Section 4.3.2, we were unable to make direct measurements of the

flash storage. Table 4.7 shows the predicted flash power across the benchmarks using the

worst-case power model. With the exception of the camera benchmarks, where flash power can

be significant, we ignore the contribution of flash on S3, since even the worst-case estimated

power is trivial.

4.4.5 Network

In this benchmark we stress the networking components of the devices: WiFi and cellular. On

Freerunner, the test consists of downloading a file via HTTP using wget. The files contain

random data, and are 15 MiB for WiFi, and 50 KiB for GPRS. On S3, we use a common net-

work benchmarking Android application, speedtest.net, to benchmark the 3G subsystem. To

average out variations due to factors outside our control, network-operator load, environmental

variations, signal strength etc., we perform the iterations spread out over a 24 hour period.

Table 4.8 shows the results on both platforms in terms of throughput, power consumption,

and network efficiency—that is, the number of bits sent/received per unit energy consumed

(higher is better). In terms of download, all three network technologies (2G/GPRS, 3G/UMTS

and WiFi) have similar power consumption despite vastly different bandwidths—a factor of

200 between GPRS and WiFi on Freerunner. Unsurprisingly, both power and bandwidth fluc-

tuate significantly, particularly so on the cellular radios.
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Galaxy S3 (3G) Freerunner
Upload Download Download (GPRS) Download (WiFi)

Throughput (kbps) 547± 149 1317± 814 30± 8 5280± 296
Radio power (mW) 1137± 372 768± 64 636± 81 874± 30
Efficiency (kb/J) 481 1715 47 6041

Table 4.8: Network power and performance (average ± std. dev.)

To test the effect of signal strength on power and throughput, we re-run the Freerunner

benchmarks with the device shielded within a metal box of 2 mm thickness. Over GPRS, this

results in an increase in cellular power of 30 %, but no effect on throughput. The shielding

results in a reported signal strength drop of 10 dBm. Over WiFi, the signal strength drops by

only 2 dBm, and no effect on throughput or power consumption is observed.

4.4.6 GPS

To measure power consumption of the GPS subsystem, we enabled the module and ran an An-

droid application (GPS Status 2 on Freerunner and Data Monitor on S3) to collect location

information, and compare idle and active power. The Freerunner features an external GPS

antenna connector, so on that platform we also measure the power consumption using such

an antenna. On S3, we are unable to directly measure GPS power consumption, because our

instrumentation requires opening the case, which disconnects the antenna. Instead, we use a

different, uninstrumented Galaxy S3 (a slightly different model, the GT-I9305) and compare

total system power consumption with and without the GPS enabled.

On Freerunner, we measure 171 mW using the internal antenna, which slightly increased

to 199 mW while using the external antenna. These measurements are extremely stable (< 1 %

standard deviation), independent of signal and time—neither the number of satellites, the sig-

nal strength, nor the tracking time have any appreciable effect. This observation is contrary to

the part’s data sheet [u-b06], which specifies that power consumption should drop by approx-

imately 30 % after satellite acquisition. It is unclear why we do not see such behaviour, but

experience suggests that an error in hardware integration or software is not unlikely.

On S3, we do observe a difference between acquisition and tracking power, but surpris-

ingly, tracking power was higher. We measured 386 ± 20 mW in acquisition mode, which

jumped to 433± 22 mW in tracking: acquisition mode is the time until a position is reported,

and tracking is the time thereafter. We also experimented with both hot and cold GPS state, but

find no significant difference in average power consumption. However, with cold GPS state,

the device takes approximately 400 seconds to acquire a fix, consuming 154 J of energy. For

warm state (5–10 minutes old), this reduces to approximately 30 seconds.
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4.4.7 Sensors

The Galaxy S3 supports a number of environmental sensors, measuring acceleration, orienta-

tion, light intensity, air pressure, and physical proximity. To determine the power draw while

using these sensors, we configure the Data Monitor application to sample them at 50 Hz

(one sensor at a time). We then compare the total power measured against a scenario with the

same application sampling a “dummy” sensor, which simply delivers software events at a rate

of 50 Hz, but involves no additional hardware. This allows us to isolate the contribution of the

sensor itself, without including the idle power, the cost of running the sampling software, etc.

In Table 4.9, we display the increase in power consumption for each sensor above the dummy,

averaged across 3 runs of 60 seconds each. In all cases, the device is in airplane mode with

the screen turned off.

Sensor Power (mW)
Accelerometer 5± 2.3
Gyroscope 30± 1.3
Light 3± 1.7
Magnetometer 12± 0.6
Barometer 1± 0.7
Proximity 7± 2.2

Dummy 573± 0.6

Table 4.9: S3 sensor power consumption (average ± std. dev.) above the “dummy” sensor.

The power consumption of the sensors is clearly small: at most 30 mW, with most of

them using under 10 mW. This corresponds to less than 6 % of the total system power of

approximately 580 mW. The cost of using the sensors therefore is not the power consumed by

the sensor hardware, but rather the cost of having the entire system online.

4.4.8 Audio

This benchmark is designed to measure power in a system being used as a portable media

player. We use the in-built media application to play a sample MP3 to a pair of stereo head-

phones. The measurements are taken with the backlight off, which is representative of the

typical case of someone listening to music or podcasts while carrying the phone in their pocket.

Figures 4.11 and 4.12 shows the power breakdown for this benchmark on Freerunner and

S3 respectively. The audio subsystems (amplifier and codec) consume 20–40 mW. On Freerun-

ner we can break this down: about 60 % of audio power goes to the codec, and the remaining

40 % to the amplifier. Overall, the audio subsystem accounts for 12–20 % of total system

power. We investigate the effect of output volume by comparing the results at both maximum

and minimum volume, and notice very little difference. On Freerunner we see amplifier power

increase by 5 mW at maximum volume, but due to (perhaps incidental) decreases in other
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Figure 4.11: Freerunner audio playback power breakdown.
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Figure 4.12: S3 audio playback power breakdown.
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Figure 4.13: Freerunner video playback power breakdown.

supplies, the total system power consumption increases by only 1 mW. On S3, we see a total

increase of 5 mW.

On Freerunner, we also experiment with the cost of loading the audio file from storage,

in our case, from the SD card. We do this by forcing a flush of the buffer cache between

iterations, and the result is a negligible 2 % increase in total power consumption.

4.4.9 Video

In this benchmark we measured the power requirements for playing a video file. For each

platform, we used an encoding contemporary with the device: H.263 on Freerunner and H.264

on S3, at native resolution. On S3 we also experimented with video at different bit rates: a

high quality one at 9084 kbps, and low quality at 1013 kbps. The S3 features a hardware unit

capable of decoding H.264, so we also compared the cases of software and hardware decoding

on that platform. On Freerunner we used the in-built camera application to play the video

and on S3 we use MX Player v1.6j. The power breakdown for the Freerunner benchmark is

shown in Figure 4.13, and the S3 results for low- and high-quality respectively are shown in

Figures 4.14 and 4.15.

On Freerunner the CPU power is (unsurprisingly) high, since video decoding is a compute-

intensive workload. We also see increases in RAM and GPU power. However the display

subsystem is still consuming 40 % of total system power.

The S3 results show the importance of specialized decoder hardware for modern video

codecs and bitrates: it reduces total system power consumption by 30 % and 45 % for low and

- -

-,- -

-
- -

~ + - ---- ~ 
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Figure 4.14: S3 low-quality video playback power breakdown.
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Figure 4.15: S3 high-quality video playback power breakdown.
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Figure 4.16: Freerunner power breakdown for sending an SMS.

high quality, respectively. Comparing the software- and hardware-decoded cases, we see that

at both quality levels, software decoding results in power increases on every supply, with the

exception of INT. This suggests that the hardware video decoding unit is powered from this

supply.

4.4.10 Text messaging

We benchmarked the cost of sending an SMS by using a trace of real phone usage with the

record/replay tools described in Section 4.2.2. The trace consists of loading the contacts ap-

plication and selecting a contact, typing and sending a message, then returning to the home

screen, lasting a total of approximately 1 minute. To ensure the full cost power cost is ac-

counted for, we include the time taken for the cellular transaction after the SMS app is closed,

which can take up to an additional 20 seconds.

The results for SMS messaging on Freerunner and S3 are shown in Figures 4.16 and 4.17

respectively. On Freerunner, energy consumed is again dominated by the display components.

The cellular radio, which carries the SMS transmission, shows an average power only 8 mW

greater than idle over the full length of the benchmark, accounting for 11 % of the aggregate

power. On the S3, the cellular subsystem draws similar power, 60 mW average, but due to the

increased idle power on S3, this accounts for only 5 % of total power. On the other hand, the

total SoC power increase compared with idle is 226 mW; the energy cost of running the SMS

app far exceeds the radio cost to send the message.
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Figure 4.17: S3 power breakdown for sending an SMS.

4.4.11 Phone call

We measured the energy consumption while making a phone call, again using the trace record

and replay tools. The trace includes loading the dialer application, dialing a number, then

making a 1 minute call. This breaks down as approximately 10 seconds to connect the call, 10

seconds for the receiving device to accept, and 40 seconds of talk time.

The power of this benchmark is graphed in Figures 4.18 and 4.19 for Freerunner and S3

respectively. On both devices, the cellular subsystem dominates significantly at 832 mW and

566 mW, approximately 10 times more than any other subsystem, and accounting for about

70 % of total power on both platforms. Display and backlight contribution is lower than other

uses cases, since Android disables the screen during the call. On Freerunner, this is timer-

based, and on S3 the proximity sensor is used to detect when the user has put the phone to

their ear. Moreover, the S3 supports a pass-through mode, whereby the cellular subsystem

directly controls any necessary peripherals (microphone, speaker, etc.) during a call, allowing

the applications processor to enter a sleep state. This is why most of the supplies consume less

energy during a phone call than even the idle state.

4.4.12 Email

For this benchmark, we used Android’s email application to measure the cost of sending and

receiving emails. The workload consists of opening the email application, downloading and

reading 5 emails (one of which includes a 60 KiB image) and replying to two of them. We use
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Figure 4.18: Freerunner cellular phone call average power.
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Figure 4.19: S3 phone call average power.
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Figure 4.20: Freerunner average power for the email macro-benchmark.

the input tracing tools to drive the benchmark, and after each iteration reset the state of the

email server and local email cache. On both platforms we repeat the experiment using both a

cellular data connection and WiFi. The results are shown in Figures 4.20 and 4.21.

The power breakdown between the GPRS and WiFi benchmarks is very similar, except for

the cellular and WiFi radios themselves. Despite presenting identical workloads to the radios,

using a cellular network uses 3–5 times the power of a WiFi connection. Moreover, while

the 3G radio on the S3 is a higher-bandwidth interface, it uses lower average power than the

slower GPRS radio on the Freerunner. We also see a somewhat elevated level of activity in the

SoC supplies, since email includes significant UI interaction.

4.4.13 Web browsing

This benchmark measures a web-browsing workload using both cellular and WiFi connections.

It is trace-based, and consists of loading the browser application, selecting a bookmarked web

site, and several minutes of browsing pages. We used a snapshot of the BBC News mobile

website which we mirrored to improve the reliability of the benchmark. After each run, the

browser cache was cleared.

The results are shown in Figures 4.22 and 4.23. Cellular consumes more power than WiFi

by about a factor of 3 on both platforms. As in the email scenario, the other components do

not display any significant difference in consumption between the cellular and WiFi cases.

However, in the case of web browsing, the higher-bandwidth 3G radio interface on the S3

consumes higher power (45 mW average) than the Freerunner’s GPRS radio.
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Figure 4.21: S3 average power for the email macro-benchmark.
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Figure 4.22: Freerunner web browsing average power over WiFi and GPRS.
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Figure 4.23: S3 web browsing average power over WiFi and 3G.

4.4.14 Gaming

On S3, we measured two gaming scenarios. The first is the 2D game Angry Birds. The

workload consists of loading the application and playing through two levels using the trace

record/replay tools for input, for a total 1.5 minutes of gaming. The second is the graphics-

intensive 3D racing game Need for Speed Most Wanted. Data is collected while playing the

game for a period of around 2 minutes. In the latter case, we provided input manually. We

attempted a trace-based benchmark, but found that despite identical input, the results were

wildly inconsistent between iterations in terms of game state (i.e. where the car went on the

track). We hypothesize that this is due to small variations in execution time of the game engine,

causing the game state to diverge with respect to the timing of the input event delivery. This

does not occur on any other scenario because they all have periods of idleness: any variation

in execution time is absorbed by the idle period, implicitly synchronising the benchmark with

the input.

The results of the two gaming scenarios are shown in Figure 4.24. Unsurprisingly we see

elevated power consumption across all components, with Angry Birds consuming significantly

less power than Need for Speed (1483 and 2400 mW respectively). The GPU in the latter case

is particularly power-hungry, using 767 mW (32 % of total).
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Figure 4.24: S3 gaming power consumption.

4.4.15 Camera

On the S3, we benchmarked two scenarios that make use of the camera: taking a still photo-

graph, and recording a short video. For the still case, the scenario is opening the camera app,

focusing on a near-ground object, taking the photograph, and finally viewing the image taken.

In the video scenario, we record a 20 s video but do not view it in the benchmark. The results

are shown in Figure 4.25.

The total power consumed in the still scenario is 2256 mW, while video consumes 2614 mW.

This makes video recording the most power-hungry of all our measured scenarios. As dis-

cussed in Section 4.3, the flash2 storage results are worst-case estimates, but we find that it

is still negligible to overall consumption. With the exception of the GPU, we see significant

increase in total SoC power consumption across all supplies, with an additional 400–650 mW

being consumed in the camera subsystem.

4.5 Validation

We have measured, at a fine-grained per-component level, the energy consumption of two de-

vices. In this section, we attempt to put these measurements into context by comparing the

results with measurements taken on two additional smartphones: the HTC Dream (G1), and

the Google Nexus One (N1). The aim of this exercise is to evaluate 1) whether our mea-

2Throughout this discussion, flash refers to NAND flash storage, not the LED camera flash which is unused in
our experiments.
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Figure 4.25: S3 camera power consumption.

G1 N1
SoC Qualcomm MSM7201 Qualcomm QSD 8250
CPU ARM 11 @ 528 MHz Scorpion @ 1 GHz
RAM 192 MiB 512 MiB
Display 3.2” TFT, 320x480 3.7” OLED, 480x800
Radio 3G UMTS+HSPA 3G UMTS+HSPA
OS Android 1.6 Android 2.1
Kernel Linux 2.6.29 Linux 2.6.29

Table 4.10: G1 and N1 technical specifications.

surements are representative; and 2) determine power consumption trends across smartphone

generations. However, rather than perform a complete instrumentation of these devices, which

is very resource-intensive, we instead measure only the total system power consumption, i.e.

energy flow at the battery terminals. We use the same methodology to measure this power as in

the previous section. Adding the G1 and N1 results to what we already have for the Freerunner

and S3 gives coverage of approximately 5 years of smartphone technology.

Table 4.10 lists the key features of the G1 and N1 devices. Both are 3G Android smart-

phones with single-core CPUs. The N1 is a significantly higher-spec device, with approxi-

mately 3 times more RAM, 2.5 times higher clock speed on a newer architecture, and a larger

screen with a factor of 2.5 times the screen pixel count at 1.4 times the pixel density. The

G1 features an LCD-type display, while the N1 has an OLED-type. Uniquely among these

devices, the G1 features a physical slide-out QWERTY keyboard, whereas the others use on-
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Figure 4.26: Battery capacity for each device.

screen software keyboards. The battery capacity for each device is shown in Figure 4.26.

In this section, we first look at the display/backlight power, and then measure Bluetooth,

which we were unable to do on the Freerunner or S3. We then compare the total system power

consumption for the usage scenarios across the four devices. We analyse the measurements

gathered here in Section 4.6.2.

4.5.1 Display

The G1 device features an LCD-type display, so like the Freerunner it is lit with a backlight. It

also features two additional backlights for the physical buttons: one for the keyboard, and one

for the control buttons (menu, call, etc.) Figure 4.27 plots the power consumption of the vari-

ous backlights on the G1 as a function of brightness level. The screen backlight power is con-

trolled linearly with the brightness setting, whereas the keyboard and button backlights have

no brightness control, only “on” and “off” settings. When both are enabled, they contribute

189 mW. The screen backlight varies between 20 mW at minimum brightness, and 552 mW at

maximum. While the backlight power itself is independent of the display content, it can affect

LCD power consumption by up to 17 mW.

As with the S3, the N1 OLED display does not have a separate backlight, but individually

lit pixels. Thus the effect of display content and brightness on power consumption are tightly

coupled. We measured the power consumption of a completely white screen at minimum

brightness at 194 mW, and at maximum brightness it is 1313 mW. For a completely black

screen, power is independent of brightness.

- · ········ ·········· ··················•······ ··· · ···························· ·•·························· ·········· · ·•·· · ····· ··········-
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Figure 4.27: Display, button and keyboard backlight power on the G1.

4.5.2 CPU

To investigate the trends in peak CPU power consumption, we perform compute-intensive

micro-benchmarking to find a workload that maximally exercises the CPU. On Freerunner, we

find that the equake benchmark from the SPEC CPU2000 suite elicits worst-case power con-

sumption in the CPU. This benchmark does not significantly stress any other component of the

system, including RAM, so we are also able to determine the CPU power for this benchmark

on the G1 and N1 devices subtractively. For the S3, which is a multi-core device, we find that

the multi-threaded AnTuTu Benchmark yielded maximum power. These results are shown in

Figure 4.28.

4.5.3 Bluetooth

As noted earlier, we are unable to get Bluetooth working reliably on the Freerunner phone, and

we can not get fine-grained measurements on the S3. To get an idea of Bluetooth power con-

sumption, we run the audio benchmark on the G1 with the audio output to 1) a Bluetooth stereo

headset; and 2) headphones at minimum volume. We determined from our earlier benchmarks

that power consumed in the audio subsystems is largely static, so the difference between the

headset and Bluetooth audio results should yield consumption of the Bluetooth module.

Table 4.11 shows the Bluetooth and total system power consumption for the audio bench-

marks. In the ”near” benchmark, the headset is placed approximately 30 cm from the phone,

and about 10 m in the ”far” benchmark. The Bluetooth module consumes fairly minimal

--+--
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Figure 4.28: Peak CPU power consumption.

Power (mW)
Benchmark Total Bluetooth
Audio baseline 460 -
Bluetooth (near) 496 36
Bluetooth (far) 505 45

Table 4.11: G1 Bluetooth power under the audio benchmark.

power: 7 % for the case where the devices are placed near each other, and 9 % when they

are placed far away. For use cases where the screen is on, Bluetooth would consume an even

smaller fraction of total power.

4.5.4 Usage Scenarios

Table 4.13 shows total system power consumption for the Freerunner, G1, N1 and S3 for

our macro-benchmarks. The setup of the G1 and N1 in these scenarios is the same as the

Freerunner. The brightness-dependent component of display power consumption has been

subtracted out, because it is highly dependent on the user’s brightness setting. It is trivial to

determine this for backlit LCD displays, but for the OLED it is a more complicated calculation.

We show in Table 4.12 the additional power consumption of the OLED display at minimum

and maximum brightness levels for several of the benchmarks.

-

- ········ ················· ······ ·····•······ ·· ·········· ········· ············· ····· · ············· ···· · ····················· ·· ········· -
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OLED Power (mW)
Benchmark Min. Max.
Idle 38.0 257.3
Phone call 16.7 112.9
Web 164.2 1111.7
Video 15.1 102.0

Table 4.12: N1 OLED display additional power at maximum and minimum brightness.

Average System Power (mW)
Benchmark Freerunner G1 N1 S3
Suspend 103 27 25 24
Idle 334 161 334 666
Phone call 1135 822 747 854
Email (cell) 691 599 - 1299
Email (WiFi) 506 349 - 1020
Web (cell) 500 430 538 1080
Web (WiFi) 430 271 412 874
Video 559 568 526 1044†
Audio 419 460 322 226

Table 4.13: Freerunner, G1, N1 and S3 total system power. The brightness-dependent com-
ponent of power has been subtracted out. †The S3 results use a video of higher resolution to
match the significantly larger screen.

4.6 Analysis

4.6.1 Where does the energy go?

Display Display power is a significant contributor in every scenario where the display is ac-

tive, even at the 50 % brightness level we used in these benchmarks. In all except the most

cellular-intensive benchmarks, the brightness of the display is the most critical factor in de-

termining overall power consumption. However, this is a relatively simple component from a

power-management perspective, and largely depends on the user’s brightness preference. Our

results confirm that aggressive backlight dimming can save a significant amount of energy, and

further motivates the inclusion of ambient light and proximity sensors in mobile devices to as-

sist with selecting an appropriate brightness. On OLED displays, power is highly-dependent

on the image content. For example, on S3, just varying the colour scheme (e.g. to light-on-

dark) can save up to 300 mW at medium brightness, or 600 mW at maximum brightness. On

LCD-based devices, the screen content has a small but still measurable effect on display power.

However this is completely independent of the brightness setting.
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Network The networking subsystems, namely the cellular and WiFi radios, are historically

considered to be energy-intensive. In scenarios where these are used—web, email, phone call,

SMS—we indeed see non-trivial network energy consumption. WiFi is always more energy

efficient than the cellular technologies for the usage scenarios, however we found that the

cost to maintain an unused data connection is lower for 3G than WiFi: on S3, approximately

10 mW for 3G, compared with 50 mW for WiFi. In the phone call scenario, the cellular radio

accounts for a higher fraction of overall power consumption that any other case. However on

S3, this scenario is among the lowest in total power consumption. It is in fact more efficient

to make a call on this device than to send an SMS. This is because the display can be disabled

during the call, which is a particularly significant contributor on S3.

CPU We see the CPU contributing substantially in almost every scenario, with the exception

of idle and (most of) phone call, where it is powered off. This is consistent with the fact that the

CPU is involved in most operations, such as through updating the user interface or coordinating

another component’s operation with the device driver. The CPU is the largest contributor in

only the most computationally-demanding workloads. However, the peak power results show

that in such scenarios, the CPU can consume a very large amount of energy.

Camera The camera workloads show particularly high power, not only in the camera sub-

system, but also across the various SoC supplies, the CPU core, and RAM. Surprisingly, these

two scenarios are among the highest energy consumers across all our benchmarks: taking a

still draws an average of 2149 mW, while video uses 2449 mW, only 300 mW more than still.

This result is perhaps surprising, but consistent with our previous results. When taking a still

photograph, the image contents are displayed in real-time on the display, similarly to video.

The additional work required for video is coding and storage, which we have already shown

to be efficient.

Idle and peak power Idle power is the cost off having a device powered up, but not run-

ning any workload. Overall, idle power contributes substantially to total system power. On

Freerunner, idle power accounts for at least 50 % of the total in the usage scenarios (excepting

the phone call case, where cellular power dominates). Including the backlight power raises

this figure significantly. On S3, idle power accounts for on average 52 % of total power in

scenarios where the screen is on.

A consequence of this observation is that idle power management (shutting down unused

components, disabling their power supplies, etc.) is extremely important to achieving energy

efficiency. To achieve good end-to-end efficiency, it is critical that devices implement deep

low-power states, and that the OS makes good use of these states, in order to keep idle power

under control.



80 CHAPTER 4. PROFILING SMARTPHONE ENERGY CONSUMPTION

Using our data we perform the following thought experiment: for each component, find

its maximum power consumption across all benchmarks, and sum these to find the system’s

peak power under some theoretical workload that maximally stresses all components. On

S3, this is almost 9 W: a power draw that could drain a full battery in around 50 minutes,

but realistically would produce an unmanageable amount of heat and quickly lead to thermal

shutdown. Nonetheless, comparing this result to the average power consumption for realistic

workloads (100’s of mW range) demonstrates that typical usage is in fact a state of extreme

under-utilisation. Thus, as well as deep low-power states needed to control idle power, it is also

critical that components support efficient intermediate power states, where they are expected

to spend the vast majority of their time.

Dedicated hardware Our S3 video results demonstrate the efficacy of using the dedicated

hardware video decode unit, rather than a software decoder running on-processor, for energy-

efficient video playback. For the high-quality video, a saving of more than 1 W (45 % reduc-

tion) can be achieved, which translates to 2.6 hours of additional playback time. For low-

quality video, power is reduced by 30 % (490 mW, 2.2 hours of playback).

Small contributors We have discussed the components that contribute significantly to over-

all power drain on the system. However some components show consistently low energy

consumption, in particular the RAM, sensors, audio, and storage subsystems.

While peak RAM power is high (up to 200 mW), high activity always correlates with

high CPU or GPU power consumption. This is because RAM is a slave device: it responds

to requests from bus masters and maintains state, but never initiates work. Therefore as a

percentage, RAM contributes little to overall power consumption: only 6 % on Freerunner.

The exception is suspend mode, where RAM must maintain significant state while all other

devices enter their lowest-power mode. The absolute RAM power cost does not increase, but

its relative contribution does. On both Freerunner and S3, this costs about 4 mW, which on S3

is 15–25 % of total power, depending on the network technology used.

Environmental sensors contribute little to overall power consumption, even at very high

sampling rates. On the S3 device, we measured a maximum of 30 mW consumed in any sensor

(the gyroscope) and an average of 10 mW. We measured the cost of running the software that

collects the samples to be 10 mW: equal to the hardware cost! While 20 mW is low compared

with the full system, this cost assumes that the smartphone is already in (at least) the idle state.

If however sensor usage causes the device to wake from suspend mode, the cost is substantial:

583 mW on average, compared with approximately 35 mW of idle power. Thus, restricting

non-essential sensor use to times when the device is already online has a significant positive

impact on energy efficiency.

The audio subsystem is another largely insignificant energy consumer: 20–40 mW in our
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experiments, including both the amplifier and codec/DAC, and mostly independent of the out-

put volume. Similarly to the sensor case however, audio playback requires the device to be

powered up. Audio playback is therefore very cheap if the smartphone is already on, but, like

all workloads, expensive if it requires bringing the device out of suspend. On S3 for exam-

ple, the audio playback scenario consumes about 220 mW, an order of magnitude higher than

suspend, but comparable with idle.

While our micro-benchmarks showed that the peak power of storage could be substantial

(50 mW for the SD card on Freerunner, and 230 mW for flash on S3), in practice the utilisation

is low enough such that average power is negligible. Even video playback, one of the more

data-intensive uses of mobile devices, showed SD and flash power well under 1 % of total. In

every scenario, flash memory on the S3 is a negligible contributor to total power. It peaks at

51 mW in the camera video recording benchmark (2 % of total), and for all others is less than

0.5 % of total.

GPS One might also consider GPS to be a sensor, but its power usage profile is significantly

different to that of environmental sensors: high and somewhat variable, depending on the “fix”

state. In our GPS benchmark, the receiver consumes around 40 % of total. We found the sur-

prising result that on both devices, the tracking power exceeded the acquisition power, contrary

to popular folklore (and indeed at least one device manual) that suggests power consumption

drops when entering tracking mode.

Network-assisted GPS technologies (A-GPS) are designed to reduce the time spent in ac-

quisition mode by downloading satellite orbitals from a fast secondary source, such as a cel-

lular connection to a terrestrial server, rather than the slow GPS satellite downlink. Our data

demonstrate that the relative magnitude of network and GPS power consumption (approx-

imately 2:1 for 3G) is such that the use of A-GPS is clearly a win in total system energy

consumption: not because it reduces instantaneous power, but due to the significant reduction

in time to first fix (TTFF), hence reducing the time that the GPS module must be enabled.

4.6.2 Trends

Having collected and analysed the data from four devices of roughly four consecutive smart-

phone generations, we can now analyse the trends in power consumption over time.

We observe very similar suspend power for the G1, N1 and S3 (≈ 25 mW), suggesting

that this may be an intrinsic lower bound. Given that battery size/capacity has been increasing

(Figure 4.26), standby lifetime has increased by around 75 % with no change in functionality.

Idle power, however, appears to increase over time. We believe this to be mainly driven by

increasing display size, not only in terms of geometric dimension but also resolution. Physi-

cally larger screens consume more energy due to increased light output, while increasing the

pixel density causes an increase in power from clocking out more bits per screen update, wider
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and faster buses, increased cost of rasterization, etc. Across the G1, N1, and S3 devices, the

screens increase in both physical dimension and pixel density. The Freerunner however has

a small screen of particularly high resolution, atypical for devices at the time.3 Figure 4.29

plots the total number of pixels in each device’s screen versus the full-system idle power, a

relationship that appears approximately linear. In scenarios where the display is not active, we

see either a reduction or no significant change in total power consumption over time, further

supporting the conclusion that the screen is the primary driver of energy consumption over

time, and suggesting an overall increase in efficiency for the majority of smartphone function-

ality. However, the screen power increases far outstrip this efficiency improvement, leading to

a net increase in energy consumption over time.

Audio playback is the prime example of a workload where the screen is typically disabled.

In that scenario, we see that power consumption has dropped steadily across the generations,

from 460 mW on the G1 to 226 mW on the S3. Since the display is disabled and audio levels

unchanged, this shows a substantial increase in energy efficiency in the newer devices.

The power consumption for a voice call has not appreciably changed across the genera-

tions; the G1, N1 and S3 are within 15 % of each other, with the Freerunner a little higher. As

we noted earlier, this fact, combined with the overall increase in power consumption, means

that making a phone call has gone from the most power-hungry workload (almost 2 times more

than the nearest on Freerunner) to one of lowest-power workloads performed on a modern de-

vice.

While average energy consumption is the important metric to determine energy efficiency,

instantaneous peak power is also relevant due to power supply current constraints and ther-

mal limitations. Our results indicate that maximum power has increased significantly over

the generations. As a thought experiment, we determined the maximum “theoretical” power

consumption of the S3 to be around 9 W, calculated by summing the peak power observed for

each component across all our benchmarks. A similar calculation on the Freerunner yields

around 2 W. This factor of 4.5 increase is certainly due to increased functionality of newer de-

vices: they can simply do more, requiring more power. However, this also reflects an increase

in capacity: CPUs can execute more instructions (and in particular, in parallel with multi-

core), GPUs can render more complicated scenes at higher frame rates, network interfaces can

push more data, and so on. Our analysis shows that most typical “every-day” workloads do

not require this increased capacity. Consequently, the gap between average and peak power

is increasing rapidly. This suggests that intelligent management of intermediate states, and

thermal management at high power levels, will increasingly become an important aspect of

smartphone energy management.

3The main interaction with the Freerunner screen is via stylus, partly as a design choice, but also due to its resis-
tive touchscreen, which are generally unsuitable for finger touch input compared with the capacitive touchscreens
of the three other devices. However, the stylus provides much finer input control, so a high-resolution display is
used to enable finer GUI elements.
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Figure 4.29: Device idle power vs. total number of display pixels.

This is particularly true for CPU in the “light weight” real world usage scenarios, like

email, web browsing, and audio playback, where we don’t see any particular upward or down-

ward trend in CPU energy consumption: average power is largely consistent across the de-

vices for many workloads. However, peak power has increased significantly. The results in

Section 4.5.2 show two phenomena: per-core peak power is increasing, as evidenced by the

single-core Freerunner, G1, and N1 results, and total processor peak power is also increasing

due to the advent of multi-core. This increase in peak power is a consequence of a significant

increase in performance, which enables new, more computationally-demanding applications

to become available in the smartphone space. As a result, running the applications proces-

sor efficiently at intermediate operating points will be increasingly important for optimising

battery lifetime.

+ 





Chapter 5

Offline-aware Frequency Scaling

This section describes work published in a pair of peer-reviewed papers co-authored with my

advisor. The first [CH13a] was published at the 2013 Workshop on Power-Aware Computing

and Systems (HotPower), and in it we present our observation that onlining cores of a multi-

core processor is cheaper than expected due to low static power. We also present the first

implementation of our medusa policy which takes advantage of this fact. In the 2014 Real-

Time and Embedded Technology and Applications Symposium (RTAS) we present a second

paper [CH14] on this topic which broadens the analysis to include systems with significant

per-core static power. We also generalise the medusa algorithm to account for these devices.

5.1 Introduction

In Chapter 4, we observed an interesting trend in smartphone development. Namely, that CPU

peak compute capacity and power consumption are increasing substantially over time, yet the

average usage has not followed anywhere near as fast. This has enabled computationally-

demanding applications, hitherto restricted to more energy-abundant platforms, to become

available in the mobile space: image processing, gaming, augmented and virtual reality, etc.

Since battery capacities have not increased substantially, the additional compute resources

must be managed very carefully to provide reasonable battery lifetime on a single charge.

Clearly the efficiency of the applications processor at intermediate utilisation levels is therefore

a key factor to the efficiency of the devices as a whole. In this chapter, we tackle this particular

problem.

The capacity increase of applications processors has occurred in three main dimensions:

the number of cores per CPU (also called TLP, for thread-level parallelism), clock speed, and

instruction-level parallelism (ILP), i.e. the number of instructions executed per clock cycle.

ILP is largely transparent to software, particularly on architectures common in the smartphone
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space (ARM, for instance). Except in extreme cases, even low-level system software operates

in total ignorance of any ILP implemented by the hardware. That leaves TLP and clock speed

as knobs which can be set to control the processor’s performance-power trade-off.

The modern mobile multi-core processor provides control of cores and clock frequency

with two main mechanisms. The first of these is offlining, which allows the operating system to

switch off individual cores, reducing the per-core power consumption to zero, but allowing the

remaining cores to continue processing. The other is DVFS, or dynamic voltage and frequency

scaling, which provides for the reduction of CPU operating frequency and voltage at the cost

of performance.

These mechanisms can be used simultaneously, and both control performance/power. Us-

ing them in tandem therefore presents an interesting trade-off: to respond to increasing system

load, either the frequency of online cores can be increased or additional cores can be on-

lined (and vice versa for decreasing load). The energy-optimal decision depends, among other

things, on the particular power/performance response of these two mechanisms.

Past research has observed the increasing importance of static power, and the resulting

importance of sleep states in reducing energy consumption [BJ08, LSH11]. When the per-

core static power is significant, more active cores means more static power, and thus a higher

energy consumption. In particular, deep sleep states mean that the race-to-halt approach may

be beneficial, as it minimises the accumulation of static energy loss. Consequently, running

at minimum frequency may not minimise energy use [MLH+02]. However, since power is

super-linear in frequency, simply running at the maximum frequency to minimise the number

of cores required is also suboptimal.

In this chapter we revisit these assumptions and observations in the context of modern

smartphone applications processors. We investigate the combined efficacy of core idle power

states and DVFS for maximising energy efficiency in situations where the CPU is under-

utilised—a technique more generally known as slack management. More precisely, this means

minimising energy consumption under the constraint of low impact to application perfor-

mance. Our goal is to determine a methodology for selecting the energy-optimal setting for

CPU frequency and the number of online cores—this pair we call the operating point, or OP.

We find a surprising diversity in characteristics of latest-generation ARM processor imple-

mentations: from very significant to completely negligible static power. This has a significant

impact on energy management, which does not seem to be well understood: phones ship with

energy-management policies which produce highly non-optimal results.

We start our investigation by measuring the energy consumption of a range of synthetic

workloads while varying the core frequency and number of active cores. Then we analyse

these data from both an empirical and theoretical perspective, and show that running with

more online cores generally reduces energy consumption, so aggressive offlining of proces-

sors cores is an ineffective energy management strategy. We design and implement an energy-
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management policy in the Linux kernel called medusa, which exploits these insights to reduce

energy consumption, and we perform a series of benchmarks to evaluate medusa’s effective-

ness, comparing it against existing policies, and exploring how to adapt its algorithms for

particular platforms.

5.2 Motivation

We begin the investigation with a series of simple micro-benchmarks that exercise the CPU in

predicable ways. We run these on two different platforms, and measure the system’s power

consumption while varying the processor’s operating point (frequency and core count).

5.2.1 Platforms

We run our benchmarks on two versions of the Samsung Galaxy S4 smartphone. The first,

which we denote S4-E, is the GT-I9500 model which features the Samsung Exynos 5410

system-on-chip (SoC) with a quad-core Cortex-A15 and a quad-core Cortex-A7 CPU. These

run in an ARM big.LITTLE “task migration” configuration [Gre11] whereby one of the quad-

core CPUs (called clusters) can be active at any time. Switching between the clusters is con-

trolled by the operating system, and on our device this is done in the DVFS subsystem by

“virtualising” the frequency control. Like with a traditional OS energy-management policy,

the governor periodically selects the clock frequency it thinks best meets the goals of the pol-

icy. Normally this would map 1:1 to the actual CPU operating frequency, but when virtualised,

it is used as a proxy for desired performance. The selected frequency is used to select a cluster

to activate, and then mapped to a physical frequency that the cluster will run at. The particular

algorithm implemented on the platform is this: virtual frequencies in the range 250–600 MHz

will cause the Cortex-A7 (“little”) cluster to be active, running at twice the virtual frequency.

For virtual frequencies at or above 800 MHz, the Cortex-A15 (“big”) cluster will be active at a

physical frequency equal to the virtual frequency. This is the default behaviour that ships with

the GT-I9500 device, and for the purposes of our work we retain this behaviour and, unless

otherwise noted, we use virtual frequencies in the remainder of the chapter.

Our second platform is the GT-I9505 model featuring a Qualcomm Snapdragon 600 SoC

with a quad-core Krait 300 CPU; we call this the S4-S. Table 5.1 summarises the relevant

parameters for these two platforms. On S4-E, all cores run at the same voltage and frequency.

The S4-S allows cores to run at independent voltages and frequencies, but for the purposes of

this work we force all active cores to run at the same setting. Herbert and Marculescu [HM07]

show that this is not a significant limitation.

These devices are recent-generation, off-the-shelf commodity smartphones. They repre-

sent two SoC vendors (Samsung and Qualcomm) and two independent implementations of the
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Characteristic S4-E S4-S
Model GT-I9500 GT-I9505
SoC Exynos 5410 Snapdragon 600 (8064T)
CPU Cortex-A15/A7 Krait 300

cores 4† 4
Frequency (MHz)

min 250 384
max 1600 1890

Voltage (V)
min 0.9 0.9
max 1.2125 (A15 “big”) 1.2125

1.15 (A7 “little”)
Cache (KiB)

L0 (I/D) — 4 / 4
L1 (I/D) 32 / 32 16 / 16
L2 (shared) 1024 2048

OS Android 4.2.2

Table 5.1: Characteristics of the two Galaxy S4 platforms. †The S4-E has 8 CPU cores, but
only 4 are active at any time.

ARMv7 architecture (ARM Cortex and Qualcomm Krait), and hence give us good coverage

of the high-end mobile CPU space.

5.2.2 Measurement

We measure power consumption of the devices by instrumenting them in much the same way

as the devices in Chapter 4. Specifically, we insert a 20 mΩ current sense resistor between

the battery and the device, and use the same National Instruments NI-6229 data acquisition

system to sample the voltage drop across the sense resistor and the battery supply voltage,

from which power can be determined. Since we are focused specifically on CPU energy in

the present investigation, we configure the devices differently to our previous measurements

to minimise the interference from non-CPU components: we run the devices in airplane mode

with all unrelated components disabled, including the screen. When the screen is required, as

in the medusa evaluation benchmarks, we run it at minimum brightness.

5.2.3 Benchmarks

As discussed earlier, this work targets applications where the CPU is under-utilised. We use a

simple periodic task model to represent these workloads, in which the task alternates between

fully idle and compute-intensive. The effective CPU utilisation can be controlled by setting

the amount of work to perform in the compute phase of each period. We use three variants

of this workload, which differ in the level of memory intensity during the compute phase,
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denoted loadcpu, loadcache and loadmem, which primarily exercise the CPU, L2 cache, and

main memory, respectively. We control the number of loops in the compute phase to select a

desired level of load, defined as the percentage of total system capacity used. For example,

100 % means running all cores at maximum frequency, 50 % means either all cores at half

frequency, or two cores at maximum frequency, and so on. We set up each benchmark at four

load levels, 10, 25, 50, and 75 %. 100 % is of course omitted, since there is, by definition, only

one operating point which can sustain that load level. We run the benchmarks for a fixed period

of time, and measure the power consumption while varying the processor’s operating point.

However, we select only the operating points which can sustain the desired load without over-

running the period. That is, we keep the CPU utilisation less than (or equal to) 100 %. This

means that for a particular load level, both the run-time and total work done is constant—what

varies is the duty-cycle, i.e. the percentage of each period spent in the compute phase.

In loadcpu, the workload is a simple busy loop with no memory accesses. For loadcache,

each process strides through a memory region performing read-modify-write cycles on succes-

sive cache lines. The size of the region is 2× the L1 cache size per process, for a total working

set of 128 KiB on S4-S and 256 KiB on S4-E. This results in significant cache pressure, with

few accesses to main memory. For loadmem we do the same, but increasing the total working

set size to 2× L2 cache size, resulting in many accesses to main memory.

To compare with fully CPU-bound workloads, we also run a micro-benchmark spin, which

simply executes a busy-loop for a fixed number of iterations, with no periods of idleness. We

measure the power consumption of this workload at all operating points, which changes the

execution time but not the total work performed.

For all micro-benchmarks, the work is shared over four processes, each doing one quarter

of the total, so that it can be distributed across cores. These processes are are scheduled by

the default Linux task scheduler. While this does not enforce any particular assignment of

processes to cores, we observe that in practice, the work performed by each core involved is

approximately equal. In all cases we report the average of three iterations of the workload, and

for all data reported, the relative standard deviation across iterations is less than 6 %. We report

the energy consumption for the benchmark, normalised to the highest for each load level.

5.2.4 Results

The results of loadcpu on each platform are shown in Figures 5.1 and 5.2. Note that as the load

level increases, the number of points plotted decreases. As described above in Section 5.2.3,

we only measure the feasible operating points, which are those that can execute the work-

load without over-running the fixed execution time. On S4-E, the discontinuity from 600 to

800 MHz is due to the switch from the little (A7) to big (A15) CPU cluster.

On both S4-S and S4-E, energy is an increasing function of frequency when the number of

online cores is fixed. That is, the lowest energy consumption occurs at the lowest frequency



90 CHAPTER 5. OFFLINE-AWARE FREQUENCY SCALING

0 800 1600
0

0.2

0.4

0.6

0.8

1

1 core
2 cores
3 cores
4 cores

(a) 10%

0 800 1600
0

0.2

0.4

0.6

0.8

1

(b) 25%

0 800 1600
0

0.2

0.4

0.6

0.8

1

(c) 50%

0 800 1600
0

0.2

0.4

0.6

0.8

1

(d) 75%

N
o
rm

a
lis

e
d
 e

n
e
rg

y

Frequency (MHz)

Figure 5.1: S4-S loadcpu normalised energy vs. frequency at 10, 25, 50, and 75 % load.
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Figure 5.2: S4-E loadcpu normalised energy vs. frequency at 10, 25, 50, and 75 % load.
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attainable for a given number of cores.

If we fix the frequency, we see different characteristics between the two devices. On S4-E,

the correlation between online cores and energy consumption is weak: in some cases it is more

efficient to run with fewer cores online, but in most cases there is no correlation. However,

on the S4-S, energy varies significantly with the number of online cores at fixed frequency. At

10 % load, for example, the energy consumption at maximum frequency is more than doubled

when running four cores compared with one. As load level increases, the number of cores

becomes less significant to overall energy consumption.

On both platforms and considering a fixed frequency, using a single core (where load is

low enough to allow this) is more efficient than 2, 3 or 4 cores, and this disparity increases with

frequency (although this effect is much more pronounced on the S4-S than the S4-E). This is

due to a CPU-wide sleep state that significantly reduces power, but can be entered only when

cores 1–3 are offline, and core 0 becomes idle. We will return to this point in Section 5.3.3.

Across all operating points on both platforms, the minimum energy point occurs with more

than the minimal number of online cores in cases where this allows a significant reduction in

frequency.

When running with added L2 or main memory pressure, the same observations continue

to hold. Figures 5.3–5.5 show the results for loadcache and loadmem. In particular, adding

cache pressure on the S4-S platform has not noticeably changed the shape of the curves, but

when adding main-memory accesses, we see a pronounced increase in the absolute energy

difference while varying the number of cores. The other major difference compared with the

CPU-bound case is that, under cache pressure, the discontinuity on S4-E from 600–800 MHz

caused by the CPU cluster switch has largely disappeared. In other respects, the loadcache

and loadmem results do not differ from loadcpu in any significant aspect.

The results of the spin benchmark for both platforms are shown in Figure 5.6. While

energy is a complex function of frequency, maximising the number of online cores is always

optimal for this workload, both globally and at each frequency. The discontinuity in (a) is again

due to the CPU cluster switch from 600 to 800 MHz. While the power curve is reasonably

smooth across the switch (as shown in Figures 5.2 and 5.4), the performance curve shows a

significant discontinuity, resulting in this effect on the energy curve. The use of little cores

can significantly improve energy efficiency, more than a factor of two if the correct OPs are

selected. However this of course results in an increased workload run-time.

Compared with the previous benchmarks, this nicely demonstrates our earlier claim: en-

ergy management for periodic workloads is significantly different than for compute-bound

workloads. In the CPU-bound case, selecting the number of cores is simple: online as many

as the thread-level parallelism allows. Selecting a frequency, however, is complicated due to

the significance of static power. Running faster increases the dynamic energy, but reduces
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Figure 5.3: S4-S loadcache normalised energy vs. frequency at 10, 25, 50, and 75 % load.
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Figure 5.4: S4-E loadcache normalised energy vs. frequency at 10, 25, 50, and 75 % load.
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Figure 5.5: S4-S loadmem normalised energy vs. frequency at 10, 25, 50, and 75 % load.
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Figure 5.6: spin normalised energy vs. frequency (MHz) for (a) S4-E, and (b) S4-S.

the static energy. Reducing frequency decreases dynamic energy but increases static energy.

Performance requirements must also be accounted for. This particular DVFS problem has

been well-studied, exemplified by Snowdon et al. [SLSPH09], so we return our attention to

the less-well-understood problem of periodic workloads.

5.3 Modeling and Analysis

In this section we analyse the results from Section 5.2, and provide a theoretical framework in

which to understand them.

5.3.1 CPU Model

We will use a simple multi-core CPU power model in which each core can be in one of three

states, active, idle and offline. Active is the state in which instructions are executing. The

offline state is the deepest sleep state in which the core and all supporting circuity is fully

powered down. Idle is the shallowest sleep state in which the core is ready to perform com-

putation but not actually executing instructions. These states correspond roughly to ACPI

C-states C0, C1–C(x-1), and Cx respectively (if x is the deepest C-state). Each core may be in

a different power state, but we assume that the CPU has a single voltage and frequency plane,

and hence all cores are clocked at the same frequency and supplied with the same voltage. As

mentioned previously, Herbert and Marculescu [HM07] argue that the ability to independently

control frequency and voltage for each core in a chip multi-processor yields only marginal

improvements in energy consumption. Further, we assume that the idle state can be entered
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and exited instantaneously with no performance or energy overhead, and that this is done im-

mediately and automatically when no computation is available to run. On the other hand, we

assume a deep offline state, which has a high entry and exit cost and thus is used at a coarse

granularity under control of the OS-level energy management policy.

We model the power consumption of a CPU with n online cores at frequency f as:

PCPU = Puncore + n(Pdynamic + Pstatic) . (5.1)

Pstatic is the power drawn by a core when it is online but otherwise idle. It is workload

independent, but varies with core voltage. Pdynamic is the additional power when a core is

active, and is dependent on workload and voltage/frequency. The sum of the dynamic and

static components forms the per-core contribution to total power. The remaining CPU power

is independent of the number of online cores, and hence called the uncore, denoted Puncore.

The uncore must remain powered as long as any core is online, and typically includes the

shared last-level caches, buses, the memory controller, etc. We can express Pdynamic by the

well-known equation

Pdynamic = CefffV
2 , (5.2)

where Ceff is the effective switching capacitance, f is the core frequency, and V is the core

voltage.

This model is based on Gupta et al. [GBK+12], but others have used similar models [XZR+05,

ZMM04]. Importantly, we are using a functional power model, and not a physical one: we

are interested in how power appears to be drawn from the OS perspective, rather than the lo-

cation or subsystem to which the corresponding circuit belongs. For example, if the transistor

leakage power of a core persists whether or not that core is online, such as if all cores share

a power plane, then functionally we consider this uncore power, since it is independent of n.

We discuss the validity of this model in Section 5.3.3.

5.3.2 Analysis

The energy cost of choosing an incorrect operating point can be substantial, a result well

known from the single-core DVFS literature [SLSPH09]. Our results show that the multi-

core processor only exacerbates this problem, both by increasing the penalty of incorrect OP

selection, and by increasing the size of the optimisation problem with the additional “number

of online cores” dimension (denoted n). Moreover, the results show that the offline and DVFS

mechanisms are inherently tied: one cannot be optimised independently of the other. Applying

the naive wisdom that lower power implies lower energy, i.e. that fewer cores result in lower

energy consumption, can lead to catastrophic results, in some cases (e.g. Figure 5.2(b)) a

quadrupling of energy consumption!

As the experiments of Section 5.2.4 show, energy is generally minimised by running at
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the lowest possible frequency on both platforms. However, to meet performance require-

ments, cores must be onlined to offset the capacity lost by reducing frequency. Put another

way, onlining cores allows us to run workloads at lower, more energy-efficient frequencies

for equivalent throughput. This is the primary mechanism by which running more cores can

reduce energy consumption.

We can develop an understanding of how this occurs using the above CPU model. Treating

the workload as periodic, using Equation 5.1 and substituting T for the period of the workload,

and t for the per-period execution time (where t ≤ T ), we get a per-period energy of

ECPU = PuncoreT + n(Pdynamict+ PstaticT ) . (5.3)

Using the approximation [SKK11] that

Pdynamic ∝
instructions

cycles
(5.4)

for fixed frequency f , it follows that Edynamic is proportional to the number of executed in-

structions, which is constant for a fixed workload. So if we execute i instructions spread across

n cores, then

Edynamic ∝ i/n , (5.5)

and substituting into Equation 5.3, we get

ECPU = (Puncore + nPstatic)T + ie , (5.6)

where e is the proportionality constant of Equation 5.4, corresponding to the per-instruction

energy, and ie is constant for a given workload. Thus, if Pstatic is small compared to Puncore,

then ECPU is independent of n. In the following sections, we show this to be true on S4-E,

and then deal with the case where it is not. Note that for the purposes of this analysis we can

treat Puncore as constant, since adding the dynamic uncore contribution would only increase

the uncore/static ratio.

For workloads with no periods of idleness (i.e. compute-bound, such as our spin), it is

always more energy efficient to run with more cores online, because increasing throughput

reduces execution time and thus reduces the accumulation of static CPU energy. This is an ex-

ample of the race-to-idle effect, which is well-documented in the DVFS literature [MLH+02].

However, with DVFS, dynamic power is super-linear in frequency (since P ∝ fV 2 and V is

monotonic in f ) and hence race-to-idle with frequency is not necessarily optimal. On the other

hand, core power is linear in the number of online cores.

A workload is considered perfectly scalable in the thread-level parallelism sense if the

performance increase seen by increasing the number of CPU cores is proportional to the com-

pute capacity added, or more precisely, if t ∝ 1/n, where t is the execution time and n is the
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Figure 5.7: S4-E idle power for the Cortex-A15 (big) CPU cluster at minimum (800 MHz) and
maximum (1600 MHz) frequencies, and with idle states enabled and disabled (noidle).

number of cores used in the computation. Scalability can be broken down into two aspects:

algorithmic scalability, that the problem can be divided into components that can be solved

in parallel; and hardware scalability, that the processor is able to efficiently execute multiple

threads that may be competing for shared resources like L2 cache and the memory bus. If we

make the assumption that a workload is scalable, then from Equation 5.1 we get

ECPU ∝
Puncore

n
+ Pdynamic + Pstatic , (5.7)

and hence increasing n will always decrease ECPU (for workloads with ideal scalability). The

results of Figure 5.6 (which is scalable by design) show this clearly. Determining the optimal

frequency however, depends on the relative values of the power terms and the quality-of-

service expectations for the workload. As discussed earlier, this particular problem is outside

the scope of the current work.

5.3.3 Model validation

In the previous section, we established that if Pstatic is low, then CPU energy is minimised by

onlining as many cores as required to run at the lowest possible frequency. To validate this

assumption, we directly measure the static power on both platforms.

Figure 5.7 shows idle power consumption as a function of the number of online cores

for the S4-E platform running with the big (A15) cores only, at maximum (1600 MHz) and
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Figure 5.8: S4-E idle power for the Cortex-A7 (little) CPU cluster at minimum (500 MHz
physical) and maximum (1200 MHz physical) frequencies, and with idle states enabled and
disabled (noidle).

minimum (800 MHz) frequencies for that cluster. Shown are two data sets for each; one in

the normal configuration, and one with all idle states disabled (noidle). From these graphs

we can determine per-core static and uncore power as follows. From Equation 5.1, setting

Pdynamic = 0 (since we are in the idle state) we get

Pidle = Puncore + nPstatic .

This is the equation of a line with gradient Pstatic and y-intercept Puncore, which can be read

directly off the graphs.

With idle states disabled, we see that Pstatic is approximately 14 mW per core at fmax, and

6 mW at fmin, determined by dividing the difference in power consumption from 2–4 cores

by 2. This is a very small fraction of uncore power, only 3.5 % and 2.1 % respectively, so this

platform indeed has low static power. From our previous analysis we thus expect to see that on

S4-E, onlining cores consumes less energy, and Figures 5.2, 5.4 and 5.6 demonstrate exactly

that. Furthermore, the small difference in power consumption between the normal and idle-

disabled cases (worst-case of 42 mW for 4 cores at fmax) shows that our earlier assumption

of a 3-state core (offline, idle, active) holds reasonably well on this platform. Moreover, this

validates our assumption that idle state entry and exit cost is negligible; if the cost were high,

we could simply disable idle states which would remove this cost at negligible power penalty.

We measured the same data for the small (A7) CPU cluster on the S4-E, running at max-
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Figure 5.9: S4-S idle power at minimum (386 MHz) and maximum (1890 MHz) core frequen-
cies.

imum (1200 MHz) and minimum (500 MHz) physical frequency, plotted in Figure 5.8. This

shows negligible Pstatic even with idle states disabled (3 mW per core @ fmax), and a worst-

case difference between idle and noidle of 10 mW.

Figure 5.9 shows idle power as a function of online cores for the S4-S platform, at maxi-

mum (1890 MHz) and minimum (386 MHz) frequency. The per-core static power is 146 mW

per core at fmax, and 58 mW at fmin, corresponding to 60 % and 50 % of Puncore, respectively.

This is certainly significant, and hence we do not necessarily expect to see that maximising

the number of online cores yields minimum energy, and our micro-benchmark results reflect

this, particularly Figures 5.1, 5.3 and 5.5 at 10 and 25 % load levels. We deal with this issue in

Section 5.3.4. This figure shows the measurements with all core idle states enabled, however

disabling them increases the idle power by at most 2 %. This further validates our 3-state CPU

model.

As the idle states provide little power saving, race-to-idle is not beneficial. For periodic

workloads, this implies that minimising power is equivalent to minimising energy. Moreover,

since all power terms are increasing functions of f , then for fixed n, energy is minimised by

minimising f . The same does not apply however to CPU-bound loads, because the entire CPU

can be powered down and hence race-to-halt remains potentially effective.

It is certainly surprising to see such a big difference in static power with two contemporary

implementations of the same architecture, by manufacturers who are both major players in the

smartphone processor market! One explanation of this is that in the case of S4-E, all cores

share a power plane (i.e. they are connected to the same power supply), so they are powered

regardless of the power state of the core. This means that the leakage power, a significant

... ... ... 
... 

... ... ... 

---

... ... ... 
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Time (ms) ±1 % Power (mW) ±4 % Energy (mJ)
S4-E S4-S S4-E S4-S S4-E S4-S

offline at fmin 22.6 11.7 357 454 8.1 5.3
offline at fmax 16.5 4.1 1305 1926 21.5 7.9
fmin to fmax 2.1 11.1 1033 420 2.2 4.7
fmin to fmin+1 0.4 6.1 320 317 0.1 1.9
fmax to fmax−1 1.2 0.2 1400 838 1.7 0.2

Table 5.2: Average cost of operating point transition pair.

aspect of overall power consumption, can not be reduced by offlining a core. On the other

hand, the S4-S powers each core from independent supplies and hence leakage can be reduced

in offline cores. The latter is consistent with per-core DVFS, which is supported on the S4-S

platform, where cores require different supply voltages when running at different frequencies.

The significant reduction in power seen on both platforms with a single idle core is due

to the previously mentioned “package idle” state, which requires core 0 to be idle, and cores

1–3 to be offline. The existence of low-power idle states such as this means that the energy-

optimal OP may in fact not be at minimum frequency, due to race-to-idle reducing static energy

loss. Specifically, there is a trade-off between the energy saved by completing the workload

faster and entering the low-power state as soon as possible, and the additional dynamic energy

consumption caused by running at a higher frequency. We claim that in general, solving such

an optimisation requires a multi-core-aware online dynamic power model, which we believe

to be an open problem. For the remainder of this work we ignore the effect of package idle

states, but note that on our platforms, this appears not to be a significant drawback: the data

in Section 5.2 shows that running above minimum frequency does not result in appreciable

energy savings.

We asserted earlier that the cost of transitioning between the online and offline states is

significant, and thus the mechanism can only be used in a coarse-grained fashion. To validate

this, we perform an experiment where we on- and off-line a core 1000 times, measuring the la-

tency and power consumption. Table 5.2 shows the results. Also shown is the cost to transition

between core frequencies: from minimum to maximum, between the two lowest frequencies,

and between the two highest frequencies. In each case we repeat the experiment 3 times and

show the average cost of a transition pair (i.e. online and offline or frequency increase and de-

crease); our methodology does not allow us to determine the individual cost of each operation.

For all power data, the relative standard deviation is < 4 %, while for time it is < 1 %.

5.3.4 Adapting for high static power

We have shown both theoretically and empirically how to optimise the OP for a processor with

low per-core static power. If static power is significant however, our previous argument does
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not apply, because we now need to balance the static power cost of onlining cores with the

dynamic cost of changing frequency. We now develop a heuristic that can be used to predict

an efficient OP for such processors.

Earlier we argued that for periodic workloads, minimising PCPU is equivalent to minimis-

ing ECPU. If we treat n and f as continuous variables, then the optimal operating point can be

determined by minimising PCPU(f, n). If we assume scalability (i.e. n ∝ 1/f ), then we can

express n in terms of f as

n =
nmaxfmaxu

f
≡ γu

f
, (5.8)

where u is the total system utilisation and γ is a constant (≡ nmaxfmax). We can then minimise

PCPU by finding the f that solves

d

df
PCPU(f) = 0 . (5.9)

Substituting Equations 5.2 and 5.8 into Equation 5.1, we get

PCPU = Puncore + γu

(
CeffV

2 +
Pstatic

f

)
, (5.10)

where Puncore, Pstatic and V are functions of f , γ is a constant, and Ceff and u are workload-

dependent. Differentiating with respect to f :

P ′CPU = P ′uncore + γu

(
2CeffV V

′ +
P ′staticf − Pstatic

f2

)
. (5.11)

Puncore, Pstatic and V can be measured, and their derivatives determined numerically, so the

f that minimises PCPU is a function of the remaining variables, u and Ceff , both of which

are workload-dependent. Utilisation u can be easily measured online by sampling the task

scheduling queues. Instantaneous utilisation û for n online cores can be determined by

û =
1

n

n∑
x=1

R(x) ,

where

R(x) =

{
1 if core x has 1 or more runnable threads

0 otherwise

and then average utilisation u can determined by a running average of û sampled at some

suitable frequency.

The last unknown Ceff can be approximated as a function of instructions per cycle (IPC),

such as is done by Gupta et al. [GBK+12]. To do this on our platforms, we follow a method-

ology similar to that of Spiliopoulos et al. [SKK11]. Specifically, we run a series of compute-

bound benchmarks, each at minimum and maximum frequency, while concurrently measuring
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CPU power with our power meter, and IPC using the processor’s performance monitoring unit.

From above we have already determined Pstatic and Puncore, so by rearranging Equation 5.1

(with n = 1) we get

Pdynamic = Pcpu − Pstatic − Puncore .

Then using this value in Equation 5.2, we can determine Ceff for each benchmark by

Ceff =
Pdynamic

fV 2
=
Pcpu − Pstatic − Puncore

fV 2
.

This process yields a set of IPC-Ceff pairs, one for each benchmark, to which we can apply

linear regression to approximate the function Ceff(IPC), which we can then substitute into

Equation 5.11.

For this purpose we use the EEMBC telecommunications benchmark suite [Emb], com-

prised of 16 compute kernels representative of DSP algorithms common in telecommunica-

tions applications, such as convolution and FFT. We observe empirically that these bench-

marks show a wide range of IPC behaviour and are reasonably CPU-bound, minimising vari-

ation in Puncore from the measurements of Section 5.3.3 which would be caused by L2 cache

and memory activity. We verify that these benchmarks are indeed CPU-bound by comparing

the measured IPC at minimum and maximum CPU frequency—if performance scales linearly

with frequency, the workload is CPU-bound, since memory latency does not scale with fre-

quency. This can also be done directly by measuring the L1 cache miss rate using performance

counters. Across all 16 benchmarks, we observe IPC values between 1.0 and 2.3, varying at

most by 3 % between minimum and maximum frequency, showing that these workloads are

indeed highly CPU-bound. Applying the procedure outlined above, we are able to produce a

model of IPC to Ceff , with R2 = 0.73.

Finally, we add this model to Equation 5.11, and solve P ′CPU(u, IPC) = 0 for f ; in

other words, given a workload characterised by its IPC and utilisation u, we can predict the

frequency f that minimises power, and hence energy consumption. We use Mathematica to

solve this function numerically at the two extremes of IPC, 0 and 3, since the S4-S has a triple-

issue pipeline. Figure 5.10 plots the predicted optimal frequency as a function of utilisation.

Not all points on the optimal frequency curves correspond to valid operating points because

we have been treating n and f as continuous and unbounded, when in fact they are neither. For

example, at u = 0.5, the energy-optimal frequency is approximately 700 MHz, but achieving

the necessary throughput at this frequency would require more than four online cores. Since

the platform has only four, we have no option but to run at a sub-optimal frequency. The red

and orange dashed lines show the limits of valid operating points, corresponding to one and

four online cores.

From Figure 5.10 we observe several interesting characteristics of the optimal frequency
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Figure 5.10: Optimal operating frequency predicted by our power model for S4-S as a function
of utilisation for minimum (0) and maximum (3) IPC. The dashed lines delimit valid operating
points.

curves. At low utilisation, the optimal frequency closely tracks the n = 1 line, which means

that increasing frequency is the energy-efficient response to increasing load. As utilisation

increases, the curves deviate and the gradient of the energy-optimal curves rapidly drop. This

means we should reduce the rate of frequency increases, requiring the onlining of additional

cores to provide the necessary capacity. From utilisations above 40 %, the optimal frequency

curves leave the bounds of feasible operating points. Within the valid operating points, the

characteristic IPC of the running workload does not significantly affect the optimal OP. Thus,

for the remainder of this work, we will assume a fixed IPC at the midpoint 1.5.

5.3.5 Optimal operating point tracking

We have proposed a methodology for determining the optimal frequency (and, by implication,

the number of online cores) for a workload with a specific processor utilisation. To put this

into practice as an online power-management system, we need to solve several challenges:

• For the purposes of analysis, we made the assumption that n and f are continuous.

These parameters need to be discretized to the available operating points;

• The utilisation of a particular workload is not generally known a priori; and

• Workloads do not necessarily have fixed utilisation, but can change over time.

To solve these issues, we propose the algorithm depicted in Figure 5.11 to track the curve

of optimal energy consumption. The algorithm is parameterized by a threshold frequency,
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Figure 5.11: Proposed algorithm, shown as the target frequency as a function of utilisation.
The spikes in frequency correspond to the onlining/offlining of cores.

fthresh, which intuitively is the platform-specific cross-over point between per-core static and

dynamic power. In the figure, we use a hypothetical fthresh value of 700 MHz for illustration

purposes. The solid black line represents the (continuous) frequency selected by the algorithm

at particular utilisation levels—the actual frequency should be the lowest supported frequency

greater than or equal to the this (i.e. above the curve).

As utilisation increases from 0, the frequency is increased on a single core until reaching

the threshold frequency. At this point, we online a second core, which means the frequency

can be halved while still achieving the same throughput. As utilisation increases from this

point, we again scale frequency, now on two cores, until the threshold is reached again, where

the third core is onlined. Once all cores have been onlined in this manner, we have no choice

but to increase frequency.

This algorithm has several desirable properties:

• A single, well-defined tunable parameter fthresh to adapt it to the characteristics of each

platform;

• No workload-specific knowledge;

• It is implementable, as we will soon show.

The effectiveness of this policy clearly depends on selecting an appropriate threshold fre-

quency, for which we propose the following procedure. Using our existing power model, we

predict, for each candidate fthresh, the average energy consumption under the policy. We do
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Figure 5.12: Predicted energy consumption of proposed algorithm for varying threshold fre-
quency (fthresh), as a percentage above predicted optimal.

this by integrating the sawtooth curve shown in Figure 5.11 over utilisation, from u = 0 to

u = 0.6. We cap the integration at u = 0.6 to improve the fidelity of the analysis—at high

utilisations the optimal operating point is not feasible, but the predicted error grows rapidly.

We repeat the same procedure on the predicted optimal curve. Finally, we plot the percentage

power increase of the proposed policy compared with the predicted optimal, over the range

of threshold frequencies. A lower percentage means that the effectiveness of the algorithm is

closer to the predicted theoretical optimum. In Figure 5.12, we show the result of this analysis

on the S4-S platform.

From Figure 5.12 we see that the optimal fthresh selection lies in the 600–800 MHz range.

However, threshold frequency selection is not particularly sensitive over quite a wide range:

from 400 to 1000 MHz, energy varies by only about 1 % of optimal. At 1000 MHz or above

however, the energy loss becomes significant. On the basis of this result, we shall select

fthresh = 810 MHz, which is the nearest supported frequency on the S4-S at the upper knee of

the curve. Selecting a higher threshold frequency, where efficiency is not affected, reduces the

density of core online/offline events, which we hope will improve performance and stability

of the algorithm.

At the extremes, setting fthresh = 0 corresponds to a policy of onlining all cores before

increasing frequency at all—such a policy applies for systems with very low Pidle, such as the

S4-E. On the other hand, setting fthresh = ∞ corresponds to maximising frequency before

onlining any additional cores, useful only on (probably fictional) systems where Pdynamic is

sub-linear in f .
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5.3.6 Summary

We have shown that running a workload on more cores can reduce energy consumption by two

mechanisms:

1. allowing access to lower, more energy-efficient core frequencies for equivalent through-

put; and

2. reducing execution time and thus minimising the energy contribution of the per-core

static power and the chip-wide uncore.

This result is enabled by low per-core static power, which we have shown to be true for the

S4-E. From this it follows that the optimal policy for such devices is to run all cores at the

minimum frequency where utilisation is ≤ 100 %, offlining cores only when they idle. On S4-

S however, we observed comparatively high per-core static power, so the same policy is not

energy-optimal on that platform. However, we can predict the optimal OP from a processor

power model. We proposed an algorithm utilising this, which we now implement and evaluate.

5.4 Medusa: an offline-aware frequency governor

Based on our insights, we implemented an energy management policy, medusa, in the Linux

kernel running on both Galaxy S4 platforms. The goal of this policy is to control the CPU fre-

quency and number of online cores to minimise energy consumption by managing CPU slack

time, but without adversely affecting performance. The implementation is a Linux “cpufreq”

DVFS governor which controls frequency in the standard way, but also configures the number

of online cores with the cpu up() and cpu down() primitives.

The operation of medusa is summarised by the two invariants we attempt to maintain:

1. maximise utilisation < 100 %; and

2. minimise |f − fthresh|.

The number of cores to online is implied by the these invariants. However, this comes with

certain practical constraints. If the number of runnable threads is equal to the number of

online cores, there is no benefit to onlining additional cores, even if the existing cores are fully

utilised, because each thread occupies at most one core. Utilisation is estimated by sampling

and averaging the number of threads on each core’s runnable scheduler queue.

In more detail, medusa runs every 100 ms, and executes the following algorithm:

1. Select a candidate frequency, fnew, which is predicted to maximise utilisation without

reaching 100 %.
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2. If fnew > fthresh, and the number of runnable threads exceeds the number of online

cores, online an additional core if available. Otherwise, increase frequency to fnew.

3. If fnew ≤ fthresh, predict the frequency f ′new that would be required to run the current

load with n−1 online cores. If f ′new ≤ fthresh, then offline one core and switch to f ′new.

Otherwise, switch to fnew.

4. If any core is below 5 % utilisation, offline a core.

The candidate frequency fnew is predicted with the formula

fnew = fcurrent × (uavg + ε) ,

and f ′new is chosen by

f ′new =
n

n− 1
× fnew ,

where uavg is the current average utilisation across all online cores, and n/(n − 1) is the

decrease in compute capacity when switching from n to n − 1 cores. We implicitly round up

to the next supported frequency. We select 100 ms on that basis that other implementations

use similar values: we observed sampling periods of 50–500 ms, depending on the device.

In practice, we apply averaging and hysteresis to most calculations to improve OP stability,

particularly to avoid oscillations and thus expensive unnecessary OP switches. For example,

we slightly delay offlining a core to account for temporary reductions in system load. On

the other hand, we are reasonably aggressive in increasing frequency and onlining cores to

improve responsiveness. These increases accelerate—the longer the system has been over-

loaded, the faster we increase the OP. This is necessary due to a fundamental limitation in

using runnable threads as a measure for utilisation, which is that there is no way to discern the

degree of overload. We have to effectively search for the real load level, by increasing the OP

until average scheduling queue residency drops below 100 %.

The implementation, including extensive configuration and debug support, is 1500 lines of

C code.1

5.5 Evaluation

We now evaluate the energy consumption under medusa, comparing it against some existing

policies. We also investigate the selection of fthresh, both the quality of our theory-based

selection process, and a sensitivity analysis to determine how important that selection is. For

these benchmarks, we configure medusa on S4-E with fthresh = 0, which corresponds to

always onlining cores before increasing frequency, where possible. As we showed earlier,

1The code is available for download at https://github.com/xaaronc/medusa.

https://github.com/xaaronc/medusa
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this platform has very low Pstatic, so turning on cores is very energy-efficient compared with

increasing frequency. On S4-S, we use fthresh = 810 MHz, which we selected using the results

from Figure 5.12.

An online energy policy has two related but distinct goals. Firstly, selecting the optimal

OP for the current workload, and secondly, adapting that selection as the workload changes

over time. While our implementation does address both issues out of necessity, our analysis

has focused entirely on the first issue. Furthermore, a general-purpose algorithm might deviate

from the optimal OP for non-energy-efficiency reasons like quality of service. For example,

it may be desirable from a user perspective to increase the OP above the energy-optimal point

to provide a certain degree to performance headroom, so that sudden increases in load can be

handled immediately with the excess capacity. Such trade-offs are outside the scope of this

work, so our benchmarks are focused primarily on OP selection.

5.5.1 Benchmarks

We evaluate medusa with a series of benchmarks of three types. In the first case, we use

the loadcpu workload at the 10, 25, 50, and 75 % load levels. For each, we compare the

performance of medusa with the static-optimal. We determine the static-optimal by running

the load at every feasible OP and selecting the one that yields lowest energy consumption.

These have been determined earlier in Section 5.2. We call it static because the OP is fixed

for the full run of the benchmark, whereas medusa is a dynamic policy because it changes

operating point at runtime. However, since this synthetic workload is homogeneous, static-

optimal is in fact globally optimal in this case. We also compare with the performance of

the policies that ship with the devices, which we call default. On S4-S, this consists of the

ondemand frequency governor, plus a (closed source) userspace daemon called mpdecision

which controls the number of online cores. On S4-E, OP is, like medusa, controlled entirely

in the kernel with a modified version of ondemand.

Our second benchmark is a video playback application configured to use a software de-

coder to play an H.264-encoded video. We compare medusa with default as above, but also

compare with two of the standard Linux DVFS governors, ondemand and conservative. These

governors control only frequency, so we perform a similar procedure as above to select the

static optimal number of cores. We repeat the benchmark with the governor under test four

times, once for each online core count set statically for the full run. We then report the mini-

mum energy across the four scenarios.

Finally, we use two mobile benchmarking applications, AnTuTu 3DRating and Vellamo

HTML5. We compare only medusa and default because these are dynamic (i.e. time-varying)

workloads, so it makes no sense to statically select the number of cores for benchmarking the

other governors. In addition to measuring the energy consumption of each benchmark, we

also report the “score” which is a performance metric produced by the benchmark application
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Figure 5.13: Energy consumption of loadcpu on both devices under three energy-management
policies. For static-optimal the frequency and number of cores is fixed.

which reflects the aggregate performance of the various test workloads it executes. We use this

number as an attempt to quantify the impact on performance. As discussed above, performance

can vary across policies due to different approaches in responding to workload variation. Both

policies, in the steady state, keep utilisation below 100 %, however the default policy has been

designed for dynamic OP selection, whereas medusa has not. Nonetheless we include these

results as a sanity check, if nothing else. In the case of Vellamo, since we are running in

airplane mode, the parts of the benchmark that require network connectivity are not used.

All of these benchmarks are multi-threaded. For loadcpu, as earlier, the total work is split

over four processes. For video, AnTuTu and Vellamo, the degree of parallelism is controlled by

the applications themselves. The related configuration options are left to their default values.

For Vellamo, AnTuTu and video, the screen is on at minimum brightness.

5.5.2 Results

Figure 5.13 shows the performance of medusa with the loadcpu workload. Comparing geomet-

ric mean across all load levels, medusa achieves within 8 % (11 % worst case) of static-optimal

on S4-S, and within 1 % (5 % worst case) on S4-E. The default policy is on average 23 % above

optimal on S4-S (27 % worst case) and 6 % on S4-E (with 19 % worst case). Across all results,

the maximum RSD (relative standard deviation) is 7.3 %, and the geometric mean is 1.6 %.

Figure 5.14 shows the results of the video playback benchmark. On both platforms,

medusa has the lowest energy consumption: 88 % of default on average. For ondemand, the

minimal energy is with one core on S4-S, and 4 cores on S4-E, and for conservative, 2 cores on

S4-S. This is consistent with our expectations. The conservative governor on S4-E performs

extremely poorly, consistently setting frequency vastly above the performance required. Since

D • • 
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Figure 5.14: Video playback energy consumption on both devices under medusa and default,
as well as Linux standard ondemand and conservative governors with the number of cores set
statically to that which minimises energy.

this governor performs correctly on S4-S, the poor behaviour is probably due to a bug, and

thus for fairness we omit the data. The maximum RSD of the reported results is 4.1 % and the

geometric mean is 0.9 %.

Figure 5.15 shows the results of AnTuTu 3DMark and Vellamo HTML5 of medusa relative

to default, for both energy and benchmark score. In all cases, medusa has both a lower energy

consumption and lower score than default. On S4-S, medusa reduces energy by an average of

26 %, while the score decreases by only 10 %. For S4-E, the energy and score decrease by 6 %

and 7 % respectively.

We have already shown that medusa performs well compared with other policies under

reasonably static workloads such as loadgen and video playback. By contrast, Vellamo and

AnTuTu are dynamic workloads and as such, they are sensitive to the algorithm used to react

to changing load. As discussed above, we have not focused on this issue. Nonetheless, we can

attempt a quantitative evaluation of medusa’s performance under such workloads using the

benchmark throughput score. Using benchmark score per unit energy as the figure of merit:

FoM =
score

E
,

which is roughly analogous to the popular energy-delay product (EDP) metric, default and

medusa perform within 1 % of each other on S4-E, but on S4-S, medusa outperforms default

by 22 %. The maximum RSD of the measured energy is 11.7% with a geometric mean of

3.2 %, and for the measured score maximum RSD is 3.7 % with geometric mean 1.0 %.
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Figure 5.15: AnTuTu 3DMark and Vellamo HTML5 energy consumption and score results of
medusa, relative to default.

5.5.3 fthresh sensitivity analysis

In our implementation, we determine fthresh for S4-S by combining our model of energy con-

sumption with a model of the algorithm implemented by medusa. To determine the effect of

this choice on energy consumption, we perform the following sensitivity analysis. Using the

loadcpu program on S4-S, we run five benchmarks at 10, 15, 20, 30, and 40 % total load level,

and measure the energy consumption of each of these benchmarks under the medusa policy,

with ffthresh set to 486, 594, 702, 810, 918, 1026, and 1134 MHz. We then calculate the overall

efficiency of each threshold frequency by the following method.

Let Efl denote the energy consumption of load level l at a particular threshold frequency

f . Then we calculate Êl, which is the minimum energy consumption of load l over each of the

p threshold frequencies:

Êl =
fp

min
f=f1

Efl ,

That is, Êl is the minimum energy consumption for load l. Then for a particular threshold

frequency f , we calculate the overall efficiency of that frequency (denoted by ν(f)) as the

geometric mean of the increase in energy consumption of Efl compared with Êl, across all

load levels. Mathematically,

ν(f) = q

√√√√√ lq∏
l=l1

Efl
Êl

,

where q is the number of load levels. The results are graphed in Figure 5.16.

The results indicate that the optimal selection of fthresh is 810 MHz, which consumes ap-

proximately 1.5 % above the minimum energy, on average. The cost of incorrectly setting the

threshold frequency is much higher if it is over-estimated (i.e. higher than optimal), compared
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Figure 5.16: Energy consumption vs. fthresh selection, as a percentage above minimum.

with setting it below optimal. This is in line with expectation, because a higher threshold

means the core(s) spend more time at higher frequencies, and the power curve grows rapidly

in this area due to the quadratic dependence on voltage.

The anomaly at f = 918 MHz is statistically significant—all data points have a relative

standard deviation of well under 10 %—but the reason for this behaviour is unknown. We see

a uniform increase in power consumption at all load levels, compared with both 1026 MHz and

810 MHz, suggesting that the issue is not algorithmic, as that would be unlikely to affect all

load levels equally. Rather, this probably points to a deficiency in our modeling due to some

characteristic of the platform that is not accounted for. Nonetheless, we see a reasonably good

match in the predictions made by the model, compared with the experimental approach. Both

predict a range of threshold frequencies in a window of approximately 300 MHz where the

energy consumption is not particularly sensitive, performing within a few percentage points

of the minimum. Moreover, our somewhat arbitrary choice of fthresh = 810 MHz within that

range has turned out to be the best selection in practice. We argued that a higher threshold has

the property of reducing switching overhead, and while that appears that it may be the case,

the risk of over-estimating the frequency may outweigh this benefit in practice. Furthermore,

the theoretical approach to determining fthresh is quite cumbersome, requiring measurements

of the device’s static power and effective capacitance, and mathematical models of both the

power consumption and algorithm. Thus we concede that the empirical approach based on

benchmarking and total power measurements is more practical.



Chapter 6

Conclusion

In this work we make two main contributions:

• a detailed analysis of the energy consumption of several smartphones by direct measure-

ment of the individual components under realistic usage scenarios, and;

• the design and implementation of a DVFS control algorithm for multi-core processors

which incorporates knowledge of offline power states.

For our energy consumption analysis, we study two smartphone devices in detail: the Open-

moko Freerunner Neo, and the Samsung Galaxy S III. We directly measure power consumed

by each component of the device by inserting current sense resistors between the power supply

unit and the components. Using a data acquisition unit to sample the voltage at the compo-

nent’s power supply and the voltage drop across the sense resistor, we are able to accurately

measure instantaneous power consumption. Integrating this over time yields total energy.

These measurements show how the different components of the device contribute to overall

power consumption.

With this methodology we are able to determine the power consumption of components

such as the CPU, RAM, GPU, WiFi and cellular radios, GPS, Bluetooth, display panel and

touchscreen, audio, storage, and environmental sensors, as well as total power consumption

at the battery terminals. Some of these components we measured directly, while others are

indirectly determined by subtracting known power values from the device’s total power con-

sumption.

On the Freerunner, this kind of instrumentation is possible due to both the open nature

of the design—specifically that the schematics are freely available—and because the device

was designed with placeholders for current-sense resistors. Commercial off-the-shelf devices

are not generally amenable to this approach. However, we are in fact able to replicate our

measurements on a mass-market device, the Galaxy S III, using an observation about the

115



116 CHAPTER 6. CONCLUSION

design of smartphone power supplies, namely that efficiency necessitates the use of switch-

mode designs which feature large discrete inductors in series with the supply rail, offering an

ideal place to break the circuit for current sensing.

In addition to the fine-grained measurements made on the Freerunner and Galaxy devices,

we also make full-system measurements of two other devices, the HTC Dream and the Google

Nexus One, to validate our results.

We find that the display is the most significant contributor to overall energy consumption

in almost every use case, while network and camera also use substantial energy in scenarios

where those devices are active. Surprisingly, we find that RAM is not as important as might

first be thought: although its peak power is very high (approximately 200 mW), this always

correlates with high power in either the CPU or GPU, and thus consumes a small amount of

energy relative to the full system. Storage shows a similar trend.

Across device generations, we see sleep power is approximately constant, while idle power

is increasing, probably due to larger and higher-resolution screens. CPU efficiency has in-

creased significantly, as has peak performance and power consumption.

The ultimate aim of this work is to enable a data-driven approach to improving power man-

agement on mobile devices. We hope that by presenting this ground-truth, we will enable such

future research. Furthermore, by publishing a methodology for the instrumentation and anal-

ysis of commercial off-the-shelf devices like the Galaxy S III, we hope to reduce the barrier

for other researchers to use physical measurements on real devices for their own work, rather

than relying purely on models and estimates, as is all too common.

Two interesting observations emerge from the above measurements

• smartphone peak power consumption is increasing significantly faster than average power,

and;

• the CPU is largely responsible for this.

With this as motivation, we set out to study how best to manage power on emerging smart-

phone processors. These can be qualified not just by increasing frequency and complexity, but

also increasing core count. Indeed, multi-core application processors are becoming prevalent

even on low- and mid-range devices.

Historically, reducing frequency is the main mechanism for reducing energy consumption,

due to the super-linear dependence of power on frequency. A multi-core processor however

presents an additional dimension along which power can be controlled: the number of cores

active at a given time. In this work we consider how the two mechanisms can be used in
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tandem, and what are the right trade-offs for selecting one over the other based on the workload

and devices.

We can divide mobile multi-core processors into classes based on the static power cost

of onlining a core. That is, how much does power consumption increase, independent of

the selected frequency, if we enable another core. Due to how core power supply networks

are designed, devices fall one of two classes based on whether the static core-online cost is

significant or negligible. For devices with low static core power, onlining more cores generally

leads to decreased energy consumption. This is perhaps counter-intuitive, but occurs for two

reasons:

• onlining additional cores allows running them at lower, more energy-efficient frequen-

cies, and;

• the additional throughput allows the faster completion of a workload, and thus reduces

the accumulation of static power, otherwise known as race-to-idle.

However, when per-core static power is non-negligible, it is not necessarily the case that run-

ning with more onlining cores is more energy efficient. Specifically, it depends on the relative

contribution of the linear per-core static power to the super-linear dynamic component. For

this class of device we have shown that, up to a certain frequency which we call the threshold

frequency, reducing frequency is preferable to onlining cores. However, once the threshold

frequency is reached, it is more efficient to online cores than to further increase frequency.

This threshold frequency can be thought of as the cross-over point between the contributions

of static and dynamic power. We show how to determine the threshold frequency using both

a theoretical model based on various parameters of the processor in question, and a simpler

measurement-based empirical approach.

Based on this we design medusa, a power management algorithm running in the Linux

kernel which controls both frequency and the number of active cores. We implement this

on two Galaxy S4 smartphones; one with an Exynos 5410 SoC, and another with the Snap-

dragon 600, which show low and high static core power, respectively. We show that medusa is

capable of achieving close to optimal energy consumption for static workloads by comparing

it with an oracle. We also benchmark it against several existing policies, including the default

policy shipping on the devices, with favourable results: 12 % energy reduction on average for

video playback, and a 22 % improvement in energy-delay product for macro-benchmarks on a

device with high per-core static power.

6.1 Limitations

Any empirical analysis is inherently tied to the platform on which it is performed. We try

to minimise device specificity by analysing multiple platforms, specifically including a vali-



118 CHAPTER 6. CONCLUSION

dation phase where we compare total power consumption of additional devices under similar

benchmarking conditions as a sanity test of the results. Nonetheless, this does not guarantee

that our results are as widely applicable as we would hope.

This problem is exacerbated by the fact that the Freerunner is not a typical commercial off-

the-shelf device. Even at the time of that work, it was not a latest-generation mobile phone,

and is missing several features typical of contemporaneous devices such as a 3G cellular in-

terface, which supports a much higher data rates than the 2.5G GPRS interface. Moreover,

the application processor is based on the dated ARMv4 architecture, though clocked at a rate

consistent with 2009-vintage smartphones.

Our medusa work, both the theoretical analysis and the implementation, largely ignores the

effect of memory accesses. However, we believe this limitation is not quite as severe as it

sounds. Firstly, splitting a workload across multiple cores does not change the set of cache

lines actually accessed, just the timings. Secondly, while using multiple cores increases the

effective cache size due to the private L1 caches, this causes a significant effect only if the

workload’s working set size falls between n |L1| and (n + 1) |L1|, where n is the number of

cores active and |L1| is the size of the L1 cache. Of course this is only true if the cores do not

conflict significantly on shared resources, such as last-level cache and memory. Anecdotally

we find this to largely be the case, and these findings were explored more thoroughly in a

work by Kim et al. [KWC+16], who showed that features like wide memory buses and bank

interleaving alleviate this issue significantly.

We have also made a number of assumptions in the processor power model. While we

believe these to be reasonable for mobile multi-cores, it is unlikely to apply to a wider range

of devices. For example, x86 processors have a wide range of idle “C-states” which are critical

to achieving good power efficiency on those platforms. Indeed we experimented with an x86

Atom-based tablet and found that our 3-state model was unable to capture its behaviour with

sufficient accuracy.

6.2 Future directions

Due to the constant evolution of mobile devices, not just in performance and size but also

features, we believe that ongoing physical power measurements and analyses, like the ones

we performed, will be important to direct future power management research by providing

accurate ground truths.

The holy grail of power management on modern devices is a multi-core-aware online

dynamic power and performance model: essentially Koala [SLSPH09] extended to multi-

core. To date this has proved elusive due to the complex interaction between shared resources

and the lack of suitable performance counters. With such a model we could feasibly extend
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medusa to incorporate active energy management, allowing the trading of performance for a

reduction in energy consumption.

Our work has assumed a multi-core model where each core is identical and has the same

latency to all memory, i.e. SMP. However, heterogeneous multi-cores (HMP), where cores

can differ in speed, complexity, and power consumption, are starting to be seen in the mobile

world. Handling this type of processor will be crucial for power consumption in emerging

devices. An extension of this is processor specialisation, where certain processors are designed

for, and dedicated to, certain tasks. The GPU is a well-known and ubiquitous example of this,

but trends indicate that specialisation may become more common for other tasks such as sensor

management.
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