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Alzheimer's disease (AD) is a multifactorial neurodegenerative disease characterised by 

dysregulation of various cellular and molecular processes. Apart from environmental and 

lifestyle effects, genetic variations of the apolipoprotein E (APOE) gene plays a significant 

role in AD risk and progression, but these factors are poorly understood from a mechanistic 

perspective. In chapter 2, a meta-analysis of blood and CSF biomarkers of AD was performed, 

noting that the range of biomarkers studied has been restricted to a handful of classical proteins 

(Aβ and tau) and heavily focused on CSF. Still, more research is needed to establish robust 

blood tests to complement CSF or imaging tests for non-invasive testing options. Mass 

spectrometry significantly outperforms conventional antibody-based approaches such as 

ELISA and western blotting in specificity and quantification of low abundant proteins. Plasma 

proteomics has historically been limited by the lack of throughput and sensitivity, owing 

mainly to the complexity of the plasma samples. In chapter 3, I have developed a method for 

determining the fractionation strategy that provides in-depth plasma proteome coverage 

identifying 4,385 total proteins. This work demonstrates that simpler and faster approaches 

can provide substantial proteome coverage in conventional biochemistry laboratories. In 

chapter 4, I performed label-free proteomics analysis on plasma samples from clinical cohorts, 

using the newly developed fractionation method. Longitudinal and cross-sectional analyses of 

normal ageing and ageing with progression to MCI and AD were performed, based on plasma 

proteomic changes in the Sydney Memory and Ageing Study cohort. A replication cohort was 

used in my chapter 5, the Australian Imaging, Biomarkers and Lifestyle study, which also 

included APOE3 and 4 allele carriers. This additional information facilitated plasma 

proteome profiling to understand the impact of APOE3 and APOE4 carriers on AD 

dementia. Apart from comparing the effect of APOE genotypes on the AD proteome, I have 

confirmed a panel of reliable AD biomarkers that are consistently changing in both cohorts. 

In conclusion, I have successfully developed and applied MS-based fractionation methods for 

in-depth plasma proteome coverage of age, cognition and disease-related changes. Finally, a 

list of 44 plasma biomarkers consistently dysregulated in both AD cohorts presents a 

promising foundation for future clinical studies. 
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Abstract 

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease characterised by 

various cellular and molecular processes dysregulation. Apart from environmental and 

lifestyle factors, genetic polymorphisms of the apolipoprotein E (APOE) gene and other risk 

genes play significant roles in AD pathogenesis. Still, these factors are poorly understood 

from a mechanistic perspective. In chapter 2, a meta-analysis of blood and cerebrospinal 

fluid (CSF) biomarkers of AD was performed, noting that the range of biomarkers studied 

has been restricted to a handful of classical proteins (β-amyloid and tau) and heavily focused 

on CSF. Still, more research is needed to establish robust blood tests to complement CSF or 

imaging tests for non-invasive testing options. Mass spectrometry significantly outperforms 

conventional antibody-based approaches such as ELISA and Western blotting in specificity 

and quantification of low abundance proteins. Plasma proteomics has historically been 

limited by the lack of throughput and sensitivity, owing mainly to the complexity of the 

plasma samples. In chapter 3, I evaluated several fractionation strategies, providing an in-

depth plasma proteome coverage identifying 4,385 total proteins. This work demonstrates 

that more straightforward and faster approaches can provide substantial proteome coverage 

in conventional biochemistry laboratories. In chapter 4, I performed label-free proteomics 

analysis on plasma samples from clinical cohorts, using the newly developed fractionation 

method. Longitudinal and cross-sectional analyses of normal ageing and ageing with 

progression to MCI and AD were performed based on plasma proteomic changes in the 

Sydney Memory and Ageing Study cohort. A replication cohort was used in chapter 5, the 

Australian Imaging, Biomarkers and Lifestyle study, including APOEε3 and ε4 allele 

carriers. This additional information facilitated plasma proteome profiling to understand the 

impact of APOE3 and APOE4 carriage on AD dementia. Apart from comparing the effects 

of APOE genotypes on the AD proteome, I have confirmed a panel of reliable AD biomarkers 

that are consistently altered in both cohorts. In conclusion, I have successfully developed 

and applied MS-based fractionation methods for in-depth plasma proteome coverage of 

ageing, cognition and disease-related changes. Finally, a list of 44 plasma biomarkers 

consistently dysregulated in both AD cohorts presents a promising foundation for future 

biomarker studies. 
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1. Neurodegenerative diseases - an introduction  

Neurodegenerative disease is an umbrella term that describes a range of clinical conditions occur 

when degeneration of neurons in the brain or peripheral nervous system leads to loss of function 

over time and, in many cases, ultimately death1. The type of disease or syndrome depends on the 

type of cell(s) and brain region(s) affected, the combinations of affected regions, and the types 

of pathological accumulations that result in significant heterogeneity of clinical presentations in 

various combinations. In addition, numerous molecular processes, including programmed cell 

death, inflammation, autophagosomal/lysosomal system, proteotoxic stress and its attendant 

abnormalities in the ubiquitin–proteasomal molecular “machinery”, and oxidative stress are 

shared by a variety of neurodegenerative diseases2. 

 

Neurodegenerative diseases are characterized by amyloidoses, tauopathies, transactivation 

response DNA binding protein 43 (TDP-43) proteinopathies, and α-synucleinopathies3. 

Accumulations of toxic proteins are caused by several factors, including specific gene mutations, 

some of which are familial. Familial variants often vary from the sporadic form of the disease, 

with an earlier age of onset being one feature of the familial forms4. Some of the genetic 

mutations associated with commonly occurring neurodegenerative diseases are presented in 

Table 1.1. These disorders, unfortunately, are little understood in terms of their pathophysiology. 

This poses several challenges, such as diagnostic inaccuracy in differentiating some 

neurodegenerative disorders, identifying changes in the often long presymptomatic phase, and 

developing potential biomarkers specific to the pre-clinical stages of the diseases.  

Table 1.1 Gene mutations and malformed proteins as causative agents of neurodegenerative disease 

Disease Genes mutations 

causing Familial 

variant 

Risk factor genes for 

late-onset variant 

Proteins commonly associated 

with plaque or inclusion 

bodies 

Alzheimer’s Disease 

(AD) 

APP, PSEN1, 

PSEN2 
APOE4, CLU  APP fragments, excess tau 

phosphorylation 

Vascular Dementia 

(VD) 

HTRA1 NOTCH microinfarcts, lacunar infarcts 

Lewy Body Dementia SNCA or SNCB APOE, SNCA, and GBA alpha-synuclein, aggregation, 

and Lewy body 

Frontotemporal 

Dementia (FTD) 

C9ORF72, MAPT 

and progranulin 

(GRN) 

TMEM106B Accumulation of Tau protein 

and TDP-43 

Parkinson’s Disease 

(PD) 

SNCA,  PARK7, 

PINK1, or PRKN 

LRRK2  α-synuclein forms aggregates 

called Lewy bodies 

Amyotrophic lateral 

sclerosis (ALS) 

SOD, C9orf72 SOD1, TARDBP, FUS, 

and C9ORF72 

TDP-43, SOD1, and FUS 
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1.1 Dementia and Alzheimer's disease 

Dementia describes a collection of symptoms associated with progressive cognitive 

impairment, often involving memory loss, caused by disorders affecting the brain. The ability 

to perform independent tasks and daily activities decline with disease progression, eventually 

diminishing independence and quality of life. The initial symptoms are often behavioural 

changes, forgetfulness, problems in executive function, language impairment, and visuospatial 

dysfunction. Dementia is usually caused by neurodegeneration, with the most common types 

of dementia being Alzheimer’s disease (AD), vascular dementia, and Lewy body dementia5. 

AD accounts for up to 60-70% of all dementia cases, and according to the World Health 

Organization (WHO) 2019-2020 report, it is now estimated to be the third-leading cause of 

deaths worldwide after heart disease and cancer6. AD international reported that ~50 million 

people worldwide live with dementia (2020), of which ~60% live in low to middle-income 

countries7. In addition to the health burden, dementia is an immense economic burden on 

society. As the world's population ages, dementia emerges as a significant challenge 

internationally. The WHO has considered dementia a public health priority and implemented a 

global action plan aiming to increase dementia awareness, improve care, diagnosis, treatment, 

and support dementia research to accelerate the development of better diagnosis, prevention, 

and effective treatments.  

1.2 Pathology of AD 

AD is a progressive neurodegenerative disorder and the most prevalent cause of dementia. It 

was first described and named after a German psychiatrist and pathologist, Alois Alzheimer, 

in 1906. The most common sporadic AD form occurs in older people (>65 years), the late-

onset Alzheimer’s disease (LOAD), and accounts for 95% of all AD cases. In contrast, early-

onset Alzheimer’s disease (EOAD) accounts for about 5% of all AD cases8. The familial or 

autosomal dominant Alzheimer’s disease (ADAD) represents about 1% of AD cases, and it is 

the more aggressive form due to specific gene mutations in one of the three genes: amyloid 

APP, PSEN1, and PSEN29-12. More than 350 mutations have been reported in these genes 

(https://www.alzforum.org/mutations). Sporadic AD also has strong genetic underpinnings, 

with several risk genes identified. Three alleles, i.e., APOE2, APOE3, and APOE4, result 

in six possible genotypes (APOE 2/2, 2/3, 3/3, 2/4, 3/4, and 4/4). These three polymorphic 

alleles, i.e., ε2, ε3, and ε4, have a worldwide frequency of 8.4%, 77.9%, and 13.7%, 

https://www.alzforum.org/mutations
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respectively13,14. Recent studies reported that approximately 65% of individuals with late-onset 

familial and sporadic AD bear the APOE4 allele4. One copy of APOE4 is associated with a 

threefold increase in disease risk, while two copies are associated with a more than tenfold 

increase in risk15. 

 

1.2.1 Aβ pathology 

One of the most commonly observed pathology-associated markers in AD is amyloid-beta (Aβ) 

peptide, whose complex lifecycle produces not only a plethora of chain length variants such as 

Aβ38, Aβ40, Aβ42, and Aβ43
16, but also multimeric aggregate structures such as oligomers, 

fibrils, and plaque17. Of these, an increase in the production of the Aβ42 (42 amino acid long 

fragment), due to either mutation in the amyloid precursor protein (APP) or disruption in other 

molecular pathways (e.g., inflammation, oxidative stress, poor clearance due to associated 

vascular issues, and others), leads to aggregation of toxic Aβ42 variants, such as oligomers18. 

With disease progression, Aβ plaque eventually builds up in various brain regions. This 

process, known as the sink model, results in lower soluble Aβ42 as plaque/insoluble levels 

increase19. Additionally, Aβ has been shown to aggregate in two distinct reactions: non-metal-

dependent association and metal-dependent association. Non-metallic Aβ aggregates produce 

soluble oligomers and amyloid fibrils, whereas metallic Aβ aggregates generate ionically 

bridged aggregates, covalently cross-linked oligomers, and precursors for non-metallic Aβ 

fibrillization20. Deposition of Aβ initially results in the formation of Aβ oligomers and later 

fibrils and senile plaques. Our meta-analysis results showed a drop in CSF Aβ42 levels in 

EOAD variants, and this observation is consistent with previous meta-analytic data on LOAD 

CSF Aβ42
21. According to current knowledge, Aβ oligomers are the most toxic variations, 

particularly synaptic function, whereas, Aβ plaque is likely a less harmful endpoint, in which 

Aβ aggregates with the cellular debris from dying neurons functionally much less problematic. 

Several cell mechanisms play an essential role in the degradation of misfolded proteins such 

as lysosomes, endosomes, or endoplasmic reticulum/Golgi22. The APP is continuously 

metabolized in the central nervous system (CNS), and Aβ is quickly produced and cleared23. 

Several investigations have suggested that the increased production and reduced clearance of 

Aβ over a long period might be responsible for the deposition of Aβ plaques in the brain of AD 

patients24.  
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1.2.2 Tau pathology 

Tau is the primary microtubule-associated protein (MAP) in a mature neuron in its normal 

state25. Tau protein is one of the most abundant proteins in neurons, with a role in stabilizing 

the structure of microtubules26. In AD, tau becomes abnormally hyperphosphorylated and 

dissociates from microtubules, which causes tau to self-assemble in the form of aggregates into 

neurofibrillary tangles (NFTs)27 (Figure 1.1). The NFTs can be detected in the CSF at an 

increased level relative to healthy controls28. Current studies have reported the 

hyperphosphorylation of thr181 and ser199, suggesting that these specific epitopes have higher 

diagnostic accuracy in differentiating AD from healthy controls29. In LOAD, the thr231 tau 

epitope was detected before forming paired helical filaments29, whereas thr181 and ser199 were 

considered late events in AD 30. The hyperphosphorylation of tau further disrupts its interaction 

with microtubules, kinesin, dynein motor protein function, and axonal transport, which is  

incompatible with neuronal function and ultimately results in neuronal death. 

 

Figure 1.1i: Pathophysiology of Alzheimer’s disease. (a) The healthy brain has intact neurons that transmit nerve 

impulses and interact with adjacent neurons, thereby forming a neuronal network. The axonal microtubules are 

stabilized by tau, maintaining axonal shape and stability. (b) In AD, tau protein is subjected to various post-

translational modifications that reduce the affinity of tau for microtubules and instead, they assemble to form 

aggregates. Microtubule depolymerization causes loss of axonal integrity, leading to degeneration and eventually 

cell death, which is anatomically visualized as a shrunken brain in AD cases. This figure was prepared using 

molecular subcomponents provided in Biorender software (Toronto, Canada). 
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1.2.3 Treatment strategies 

Several failed clinical trials highlight the urgent need to understand the disease before the onset 

of clinical symptoms, as most treatments have maximum impact and efficiency if implemented 

at earlier stages of the disease. To date, there is no reliable treatment to cure or halt the 

progression of the disease. The only approved treatments available are NMDA agonists like 

memantine and cholinesterase inhibitors (donepezil, galantamine, and rivastigmine), which 

may give symptomatic relief but do not alter the course of the disease30. Patients with mild to 

moderate AD are often prescribed cholinesterase inhibitors (inhibitors of enzymes that catalyse 

acetylcholine breakdown) to increase the half-life and level of acetylcholine in the nervous 

system. By contrast, memantine is generally prescribed for moderate to severe AD, the 

mechanism of action involving an alteration of neuronal excitotoxicity by blocking the 

prolonged calcium ion influx into the postsynaptic terminal. 

 

Current research on AD specific drugs is focused on inhibiting the activity of beta-secretase 1 

(BACE1) from reducing the Aβ burden, increasing clearance of Aβ (by active or passive 

immunotherapy), inhibiting GSK3 to reduce the abnormal hyperphosphorylation of tau, or its 

fibrillation/deposition into NFTs (by active or passive immunotherapy)31. Since 2002, when 

memantine was approved for moderate to severe AD, no new drug has been approved. The 

only exception is the 2021 accelerated approval of a monoclonal antibody against amyloid β 

(Aβ) – aducanumab – by the US Federal Drug Administration (FDA) on the basis that it 

removes amyloid from the brains of AD patients and potentially leads to cognitive benefit.  

This approval has been controversial for several reasons, the main reason is that the cognitive 

benefits remain conclusively established, and the belief that removing amyloid will lead to 

clinical benefit is not well-supported by evidence32. 

 

Apart from the accumulation of well-defined Aβ plaques and hyperphosphorylated tau proteins 

in AD, various biochemical pathways are disrupted in AD, and is, therefore, features a complex 

web of pathological processes. Other pathological processes involved include 

neuroinflammation, oxidative stress and synaptic loss, which are potential therapeutic targets.   

 

Recent studies have shown that the accumulation of proteins and other pathological changes in 

the brain might begin 15-20 years before the onset of clinical symptoms. Therefore, the 

possibility of disease identification in its early (pre-clinical) stages is also of considerable 

interest33. The long pre-clinical trajectory of AD means that neurodegenerative damage can 
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progress to an irredeemable stage when the patient (or carrier/s) notices symptoms, seeks 

medical attention, and confidently identifies clinical symptoms diagnosis provided. 

Furthermore, it is essential to keep in mind the complexity of AD pathology. Drugs targeting 

a specific molecular pathway have failed several times. Consequently, in this multifactorial 

disease, multi-target therapies may represent a more effective approach to manage the different 

pathogenic aspects of AD34. 

1.3 Biomarker and Biofluids 

A biomarker is an objective indicator either of pathological processes or biological and/or 

physiological changes in response to an intervention or drug exposure, which can be measured 

accurately and reproducibly. Biomarker discovery aims to differentiate the disease condition 

from the corresponding normal control individuals. A secondary goal of biomarker discovery 

may include a better understanding of pathological pathways, but understanding disease 

mechanisms is not necessarily a pre-requisite for a disease biomarker. 

 

Various body fluids like CSF, synovial fluid, urine and blood are clinically useful sample types 

often used for disease diagnosis and biomarker research. In principle, the closer body fluid 

contact with the diseased organ, the more direct the measure of organ-specific changes. For 

this reason, blood is often used in pathology testing since many of the organs (e.g., heart, liver, 

spleen, pancreas, kidneys, and others) of the body come in direct contact with blood and blood 

vasculature. Blood is also a relatively easy fluid to collect, and venepuncture is a routine and 

commonly performed procedure, both for clinical purposes and research. By contrast, the CNS 

is shielded by the blood-brain barrier (BBB), so in this case, CSF comes in closest contact with 

the brain and spinal cord. The CSF shares some of the protein content from plasma since about 

500 mL of CSF is exchanged to blood daily in humans. The CSF is occasionally clinically 

sampled to assist the diagnosis of some conditions (e.g., meningitis). However, the collection 

of CSF is invasive and painful, requires expertise to overcome the risk involved, and is 

generally reserved for specific clinical requirements, and is rarely allowed for purely research 

purposes. 

 

Body fluids such as urine and saliva are immerging as useful research samples because they 

are non-invasive, cheap and easy to collect. However, they are generally further removed from 

the target organ, and the sensitivity and specificity of biomarker detection may be 

compromised. In saliva, protein composition varies with different physiological conditions, 

diet, age, gender, and circadian rhythm and sample variations also occur with the procedure of 
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sample collection and time of collection. Urine is mainly an aqueous solution (greater than 

95%) with its content to a significant extent comprised of waste metabolites and electrolytes 

(like chloride, sodium, potassium), inorganic and organic compounds, and some proteins at 

low concentrations (<150mg/day), primarily albumin (<30mg/g) in the normal individual. 

Urine is a valuable sample for urinary system diseases like renal disease, but it is uncertain 

whether it can be a good sample for other vital organs such as the brain due to low protein 

concentration. Furthermore, saliva and urine may have microbial contamination as samples are 

collected externally and maintaining sample integrity for clinical analysis may be more 

challenging.  

 

By contrast, human blood is ordinarily sterile, relatively easy to collect with minimal training 

required (venepuncture) and contains analytes from all organs and tissues, including proteins 

(as leakage markers) such as numerous immunoglobulins circulating in the blood, lipids and 

metabolites35. The brain, however, has a privileged position because of the BBB, which 

controls the influx and efflux of biological substances between the brain and the blood, and 

helps control the microenvironment of the brain. The BBB comprises the endothelial cells of 

the capillaries, pericytes and the foot processes of astrocytes36. Transport across the BBB 

occurs by passive and active diffusion, carrier-mediated transport, receptor-mediated transport, 

adsorptive mediated transport and cells diapedesis. The BBB is relevant to the study of blood 

biomarkers of AD in several ways. First, Aβ is reversely transported from the brain to the blood 

by binding to LRP1, resulting in its clearance from the brain. There is evidence that disruption 

of the BBB occurs early during AD. This is due to immune cell activation and migration and 

the release of cytokines that affect BBB integrity. Several factors, including vascular factors 

and APOE4, has been shown to cause BBB disruption. The presence of blood biomarkers of 

AD is thereby facilitated by the early changes in BBB integrity related to the disease37.  

 

In terms of pathways association, there are a number of significant genetic variables linked 

with AD, however even these cannot completely account for the entirety of AD cases. Rather  

than focusing on specific genes, a more appropriate approach would be to investigate AD as a 

result of disruptions to whole biological networks. The wider pathway that plays a significant 

role in AD pathogenesis is shown in figure 1.2. Numerous mechanisms have been proposed to 

contribute to AD, including neuroinflammation, oxidative stress, defects in mitochondrial 

dynamics and function, cholesterol and fatty acid metabolism, as well as impairments in 

glucose energetic pathways in the brain, autophagy failure, and other less studied mechanisms. 

I have included a short overview of these processes in this paragraph. Section 1.9 contains 
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additional detailed information. While the different processes are explained individually, they 

are intricately linked and often act synergistically in the CNS. 

 

 

 

Figure 1.1ii Protein aggregation mechanisms in AD are shown schematically. Two portions are shown in the 

illustration. The left half outlines the progression from a healthy to a diseased state, while the right section 

contains material specific to AD pathology. 

 

In regards to biomarkers, blood, plasma, and serum are exceptional sample types to study 

disease biomarkers, and in particular, the protein component of blood is one of the most 

complexes of all tissues. However, the high dynamic range and complexity of plasma protein 

abundance also present a challenge for analysis, particularly when using non-targeted 

discovery approaches, such as mass spectrometry-based proteomics. To address this challenge, 

plasma samples need to be extensively processed to analyse a significant part of the plasma 

proteome. Low abundance proteins are also frequently those which originate from organs and 

are therefore most relevant as potential disease biomarkers or biomarkers of physiological 

change. Various methods are available to enrich low abundance proteins at protein or peptide 

levels, including immunoaffinity-based depletion of high abundance proteins, bead-based 

enrichment, and offline chromatography-based separation approaches38. 

1.4 Methods for identification of plasma proteins:  

1.4.1 ELISA (enzyme-linked immunosorbent assay) 
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ELISA is one of the most widely used methods for quantification and characterization of 

specific analytes using antigen-antibody interactions on the surface of a microtiter 

plate39. Advantages of the ELISA assay include: (1) it is a safe, easy and cost-effective 

procedure, reagents are relatively low cost, and the procedure is simple to perform; (2) it has 

high efficiency, as samples do not require complicated pre-treatments before the analysis; and 

(3) it has high sensitivity and specificity because of specific antigen-antibody interactions. 

Conversely, disadvantages of ELISA assay include: (1) the synthesis of antibodies is expensive 

as they require high-quality cell culture media to obtain a specific antibody; (2) antibodies are 

unstable and require optimum refrigeration for storage and transportation; (3) insufficient 

blocking of immobilized antigen surface of a microtiter plate can increase the possibility of 

false-positive results; (4) antibodies are not readily available for several analytes40, and (5) lack 

of sufficient antibody specificity can result in an increased risk of false-positive results.  

1.4.2 Western blot (WB)  

Western blotting is one of the most common procedures in biochemical labs. It is also an 

antibody-based approach and therefore has similar advantages and limitations as described 

above for ELISA assays. For Western blotting, proteins are first separated by size (1D or 2D 

SDS/PAGE), and then transferred to a membrane such as nitrocellulose or PVDF by contact 

transfer or electroblotting. The membrane is exposed to the specific primary antibodies which 

bind to the specific protein/epitope, if it is present. Following the primary antibody incubation 

step, the membrane is exposed to a secondary antibody, which binds to any primary antibody 

which may be present, and provides the detection signal (such as optical or chemiluminescent 

development)41. This approach is beneficial not only in research but also in medical or 

diagnostic labs; tests for both HIV and Lyme disease, for example, involve an enzyme-linked 

immunosorbent assay (ELISA) test, followed by a Western blot if the ELISA tests are 

positive. Western blots are often used to determine relative protein levels between samples. 

They also establish the molecular weight of the target, which may provide insight into its post-

translational processing. Furthermore, they can provide additional evidence of primary 

antibody specificity for the target protein of interest, especially if coupled with use of positive 

and negative control samples. Proteins from tissue/cell lysates are separated by gel 

electrophoresis according to their molecular weight.  

 

Advantages of Western blotting are: (1) it is a safe and eco-friendly procedure; (2) gel 

electrophoresis sorts proteins of different size, charge and conformation, which gives an idea 

of the size of protein or polypeptide of interest; and (3) specificity of antigen-antibody 

interaction can identify the protein of interest in a mixture of thousands of 
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proteins.  Disadvantages of Western blotting include: (1) it is non-quantitative as Western blot 

can only determine the presence/absence of a specific protein but cannot quantify the exact 

amount of the protein present in the sample, since standards are generally not used; (2) as with 

ELISA assay, Western blotting requires antibodies which are expensive, unavailable for several 

proteins, and often cross-react with multiple similar epitopes, and may therefore not have 

sufficient specificity for the target protein; (3) the protein sequence epitope against which an 

antibody is raised may be masked if the target protein is posted transitionally modified (e.g., 

by glycosylation, which can be reasonably extensive); (4) insufficient antibody specificity is a 

common problem, since the epitopes of commercial antibodies are often not fully characterised  

and consequently false positive or negative results may occur42. 

1.4.3 Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) is an important application of monoclonal and polyclonal 

antibodies to determine the tissue distribution of an antigen of interest in health and 

disease. Immunohistochemistry (IHC) combines anatomical, immunological and biochemical 

techniques to image discrete components in tissues using appropriately labelled antibodies to 

bind specifically to their target antigens in situ43. IHC makes it possible to visualize and 

document the high-resolution distribution and localization of specific cellular components 

within cells and within their proper histological context. While there are multiple approaches 

and permutations in IHC methodology, all the steps involved are separated into two groups: 

sample preparation and sample staining. As outlined in the ELISA and Western blotting 

sections above, the approach has similar advantages and limitations to other antibody-based 

techniques. 

1.4.4 Evolution of mass spectrometry:  

In 1911, Joseph John Thomson developed the first mass spectrometer, a parabola spectrograph 

used to analyse the isotopes of neon after the pioneering work on electrons in 1899. He was 

later awarded a Nobel Prize in Physics "in recognition of the great merits of his theoretical and 

experimental investigations on the conduction of electricity by gases"44. Thomson’s student 

Francis W. Aston further developed the instrument and played a significant role in improving 

the resolving power to study other isotopes of non-radioactive elements, and was awarded the 

Nobel Prize in Chemistry in 1922. Promising developments in areas such as increased 

sensitivity, resolving power and ionization sources in the instrumentation led to the use of mass 

spectrometry in a wide range of fields, including chemistry, physics and more recently, biology 

and medicine, for characterization and quantification of biomolecules from a variety of 
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complex samples, demonstrating the versatility of mass spectrometry for interdisciplinary 

research 45.  

1.4.4.1 What is mass spectrometry?  

Mass spectrometry is a technique used to determine the mass-to-charge ratio (m/z) of gas-phase 

ions. Mass spectrometry is frequently coupled with a chromatographic technique such as gas 

or liquid chromatography to separate complex sample mixtures and provide multidimensional 

information, such as chromatographic retention time, parent ion mass, and tandem instruments 

fragment masses to provide structural information. Some excellent books and review articles 

have been written outlining mass spectrometry principles and applications, particularly 

regarding biological, biomedical and proteomics applications46-48.  

1.4.4.2 Mass spectrometry-based proteomics:   

The term proteomics was first introduced into the scientific lexicon by Wasinger et al. 1994 at 

Macquarie University49, Australia, though the approach was used at least a decade before the 

term was coined. The approach depends on three main components: (1) mass spectrometry for 

high throughput processing of proteins or protein mixtures; (2) software/algorithms which can 

convert mass spectrometric data of peptides into amino acid sequences (e.g., Mascot, Sequest, 

Andromeda, and others); and (3) availability of comprehensive protein databases (derived from 

genome sequencing, now available for many organisms). Proteomics is a powerful tool for 

identifying and quantifying all the proteins in an organism expressed by a genome under a 

defined environmental condition such as pathophysiological processes, response to 

environmental stimuli, treatment responses in patients, and others. The study of the constantly 

evolving proteome is essential for understanding complex biological machinery, it’s normal 

function and how it changes in response to specific environmental variables, or as a function 

of disease processes. For example, one human gene can result in more than ten protein variants, 

and changes in the level and pattern of post-translational modifications can change the 

differential expression and functioning.  

 

Several other challenges in identifying the changing proteome include the complexity of human 

fluids, tissues, and cells. Multidimensional Protein Identification Technology (MudPIT) 

approaches are commonly used as proteomics tools. However, sample complexity can cause 

signal suppression, and therefore limit the full potential range of the identified proteome. To 

improve proteome coverage, sample fractionation can help, and several separation technologies 

can be used, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)50 and 

nano liquid chromatography (nanoLC) methods, in addition to improvement of ionization 



Introduction  Chapter 1 

13 

 

methods or scan rates in mass spectrometry such as matrix-assisted laser desorption/ionization 

(MALDI)51 and electrospray ionization (ESI)52.   

 

Furthermore, advances in instrument design have improved the sensitivity and mass resolving 

power of mass spectrometry instruments, including Fourier transform ion cyclotron resonance 

and orbitrap technology. This has vastly improved the identification and quantification of 

hundreds to thousands of proteins in a short period.  

1.4.4.3 Proteomic workflow (MudPIT approach):  

In discovery and targeted proteomics experiments, proteins are extracted from the sample and 

cleaved into defined peptides using a protease, typically trypsin. The digested peptides are 

fractionated using liquid chromatography and analysed by electrospray ionization coupled to 

mass spectrometry53. The mass spectrometer separates charged ions in its analyser, and the ions 

are then detected and reported as the mass-to-charge (m/z) ratio. With a discovery-based 

strategy, the aim is to identify protein expression changes, in addition to providing protein 

specificity which results from peptide sequencing by MSMS. Such an approach is also called 

data-driven proteomics and is an observational approach that often precedes and underpins 

subsequent hypotheses. In this approach, all peptide ions which fall above a specified signal 

intensity threshold are transmitted to the mass spectrometer first-stage analyser (parent ions), 

followed by a second stage in which the parent ions are fragmented, producing daughter ions 

(also called MSMS fragment ions). Bioinformatics software uses the parent and related 

daughter ions to interrogate protein sequence databases (e.g., SwissProt, NCBI, and others) in 

a pattern recognition approach to identify proteins that best match the available protein 

sequence data. Discovery-based proteomics experiments often report the identification of 100s 

– 1000s of proteins, and they also provide some rudimentary quantitative information, such as 

fold change or relative quantification, based on techniques such as spectral counting or peak 

area integration. However, they do not provide absolute quantification of concentration. By 

contrast, targeted proteomics experiments are designed to detect specific peptide ions resulting 

from proteins of interest. Their selection generally requires some prior knowledge, this 

approach is frequently used in hypothesis-driven work, and involves either single reaction 

monitoring (SRM) or multiple reaction monitoring (MRM), which have high sensitivity, 

reproducibility, and quantitative accuracy54. Figure 1.2 shows typical workflows for label-free 

discovery-based mass spectrometry and targeted mass spectrometry.  
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Figure 1.2: Workflows of discovery-based and targeted proteomics using mass spectrometry. This figure was 

prepared by Ms Kaur, using molecular subcomponents provided in Biorender software (Toronto, Canada). 

 

1.4.4.4 Quantitation methods of MS 

After initial protein identification, quantification of the identified proteins is a more challenging 

task in MS-based proteomics. However, several MS-based quantification methods have been 

developed for both relative and absolute measurements (Figure 1.3), and proteomics 

technologies continue to develop better and more efficient quantification approaches.  

 The digested peptides derived from two or more samples to be compared are separated by LC-

MS and then analysed by MS and MS/MS (tandem mass spectrometry) followed by database 

searching of the raw data, to identify the protein sequences present. One commonly used label-



Introduction  Chapter 1 

15 

 

free quantification approach, is that identical proteins derived from two different biological 

samples or states are quantified based on either the relative intensity of the precursor mass or 

else a fragment ion mass from the MS/MS spectrum55. Label-free quantification is a relatively 

simple and cost-effective approach, with minimal sample processing, since it does not involve 

sample labelling with mass tags or stable isotopes (such as iTRAQ, SILAC, TMT, etc). Using 

a label-free MudPit MS-based approach, relative quantification of proteins in two or more 

biological samples is typically achieved using either of two strategies: (1) spectral counting, 

and/or (2) extracted ion chromatograms (XICs)/spectral signal intensity/peak intensity56. 

Spectral counting is a relative protein quantification approach which “counts” the number of 

times all peptides corresponding to a particular protein were sequenced. The more abundant 

protein will result in a greater opportunity for ionisation of the peptides which comprise its 

sequence, detection above the limit-of-detection threshold, and therefore a greater number of 

LC MSMS spectral counts. Normalization of spectral counts is required by correcting for the 

protein length (exponentially modified protein abundance index, emPAI) or the spectral counts 

for each protein by the mass or protein length (normalized spectral abundance factor, or 

NSAF)57. Another common approach for label-free quantification is by use of peak intensity 

(either peak height or peak area). Proteomic quantification of this kind is analytically 

demanding, and is typically facilitated with use of software, such as MaxQuant, 

ProteomeDiscoverer, Progenesis, etc. Such software typically utilises a number of variables 

available in the LCMSMS data, such as quantification of peptide ion intensity, m/z, and 

chromatographic elution time to ensure high analytes specificity. Such software typically also 

performs some basic statistical analyses for across sample comparisons. In this method, the 

intensity and number of selected precursor ions at a particular m/z are summed, and the peak 

areas are used to measure relative abundance across samples. Some software has additional 

refinements, with the aim of improving quantitative accuracy. For example, in the intensity-

based absolute quantification (iBAQ)58 method, the sum of XIC peptide intensities is divided 

by the number of theoretically observable peptides.  
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Figure 1.3: An overview of MS-based quantitative proteomics: MS-based quantification can be achieved either 

by relative or absolute quantification. Both relative and absolute quantification can be classified into labelled 

and label-free quantification, each performed by several approaches. Relative quantification techniques: Isobaric 

tags for relative and absolute quantitation (iTRAQ), tandem mass tag (TMT), Isotope-coded affinity tag (ICAT), 

Selective/Multiple Reaction Monitoring (SRM/MRM), Sequential Window Acquisition of all Theoretical Mass 

Spectra (SWATH). Absolute quantification techniques: Protein Standard Absolute Quantification (PSAQ), 

Absolute Quantification (AQUA), Quantification conCATemer (QconCAT) 

 

The ability to differentiate stable isotopes based on small differences in mass is a capability 

unique to mass spectrometry, and enables a powerful quantitative tool, which is the use of 

structurally identical internal standards. There are several ways in which stable isotopes can be 

utilised in mass spectrometry. One of the most common approaches is stable isotope dilution 

mass spectrometry, in which a labelled analyte (e.g., peptide) is used at a constant amount 

across all samples (including calibration standards and controls). It is therefore one of the most 

robust sample normalisation techniques, since both analytes and its internal standard are not 

only structurally identical, but they are analysed within the same LCMSMS run, thereby 

eliminating run to run variation. If used at the earliest feasible step at the beginning of sample 

processing, a stable isotope labelled internal standard can correct for variations in sample 

extraction efficiency, sample handling losses during processing, analyte instability during 

processing, variation in sample delivery into the mass spectrometer, and any other variables 

affecting sample preparation. As with label-free proteomics methods, use of stable-isotope 
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labelling, coupled with LC-MSMS, provides a fast method to simultaneously provide 

quantitative and qualitative information (protein identification) in a single run, with the added 

advantage of a powerful normalisation approach enabled by the use of the stable-isotope 

labelled peptides. Use of specific isotope labelled analytes/peptides, is possible in targeted 

approaches, but stable isotopes can also facilitate discovery-based proteomics. A variety of 

methods are available for labelling of complex sample mixtures, enabling analysis of multiple 

samples within a single run. The labelling methods are usually categorized into three types: 

chemical labelling, enzymatic labelling, and metabolic labelling. Isotopic elements can be 

incorporated into the sample at the peptide level (enzymatic labelling), protein level (chemical 

and metabolic labelling), or after enzymatic digestion (chemical labelling). Isobaric tags for 

relative and absolute quantitation such as Isotope-Coded Affinity Tags (ICAT)59, isobaric Tag 

for Relative and Absolute Quantitation (iTRAQ), and Tandem Mass Tags (TMT) can compare 

multiple samples (multiplex) combined in one LC-MS run60 (Figure 1.5). In metabolic 

labelling, stable isotope labelling by amino acids in cell culture (SILAC) and enzymatic 

labelling such as H2O/H2
18O labelling61 (Figure 1.4) are benchmark labelling methods for 

quantitative proteomics.  

Figure 1.4: An overview of the SILAC labelling protocol. In a conventional SILAC experiment, cells are grown 

in light (red) and heavy (green) SILAC media until the cell grown in heavy media have fully incorporated the 

heavy amino acids. Labelled cultures are mixed upon the treatment, and the relative protein changes are 

determined from the ratio of heavy and light peptide signals in MS (This figure was generated using Biorender 

software (Toronto, Canada). 
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Table 1.2:  This table, adopted from Ludwig et al., 201862 shows the advantages and limitations of SWATH-MS 

compared to data-dependent (DDA) and targeted (SRM, PRM) proteomics.                

                                                                                                                             

Figure 1.5: An overview of TMT labelling: 1) After lysis of cultured cells, cysteine bonds are reduced and 

alkylated. Next, extracted proteins were digested using trypsin. The resulting peptides were labelled with TMT, 

and all samples were mixed to perform a single run. 2) The TMT labelled peptide mix is run on LC-MSMS, and 

further data are collected and analysed using bioinformatics tools to mine meaningful biological information 

from the protein data.  
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Advantages and disadvantages:  

Protein quantification using labelling strategies often requires pairwise comparisons, which 

becomes a limitation when quantifying proteins that only exist in a given physiological state. 

Lack of retrospective quantification and high costs are major disadvantages of labelled 

approaches. On the other hand, one of the main advantages of label-free protein quantification 

is that the number of samples per experiment are not constrained by numbers of labels available 

e.g., iTRAQ is limited to 8-plex format, TMT is limited to 10-plex format, SILAC similarly 

restricts experimental design to numbers of  available labelled amino acids, while the numbers 

of samples per experiment are unlimited using the label-free approach. In addition, the analysis 

can be conducted retrospectively, allowing for protein quantification/abundance across a 

longitudinal set of studies. Furthermore, labels generally represent a substantial experimental 

cost in terms of both reagents and time involved in sample preparation. The analysis can be 

conducted retrospectively, and with greater flexibility, since data is collected on samples 

individually, rather than pooled samples, allowing for protein quantification across a 

longitudinal set of studies, or reanalysis of data using a different comparison approach.  

 

1.5 Biomarkers of AD pathology:  

In 2018, the National Institute on Aging and Alzheimer’s Association (NIA-AA) research 

framework presented the possibilities of the addition of more biomarkers to the ATN 

framework for AD [presence of β-amyloid (CSF Aβ or amyloid PET: “A”), hyper-

phosphorylated tau (CSF p-tau or tau PET: “T”), and neurodegeneration (atrophy on structural 

MRI, FDG PET, or CSF total tau: “N”)]63. They introduced the ATNZ classification, where Z 

could characterise the underlying pathophysiological changes. However, except for Aβ and tau 

biomarkers, other AD markers such as inflammation often lack specificity, and new ones are 

being developed at a relatively slow rate. Keeping in mind the urgency of developing strategies 

to combat the rising number of AD cases, it would be more effective to track the disease in its 

earlier stages, with a focus on stopping or slowing disease progression rather than focusing on 

stages post-clinical diagnosis of AD, at which point disease progress has likely caused life-

style altering damage to the brain. 
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1.5.1 CSF biomarkers of AD:  

Numerous research has evaluated three main CSF biomarkers for Alzheimer's disease (Aβ42, 

T-tau, and P-tau), and several more Alzheimer's disease markers are emerging in the 

literature21. Aβ peptide is a hallmark of AD, whose complex lifecycle not only produces a 

plethora of chain length variants such as Aβ38, Aβ40, Aβ42, Aβ43
16 but also multimeric aggregate 

structures such as oligomers, fibrils and plaque17. Of these, the 42-amino-acid peptide (Aβ42) 

is the most studied variant due to its enhanced tendency to aggregate64. Tau is one of the most 

abundant proteins in neurons, with a role in stabilizing the structure of microtubules26. In AD, 

tau is hyperphosphorylated, dissociated from microtubules, and detected in CSF at an increased 

level relative to healthy controls28. Apart from the well-studied CSF biomarkers, loss of 

integrity of white matter pathways that consist of myelinated axons rich in neurofilaments 

(light, medium and heavy) in AD patients has led to biomarker discovery. Several studies have 

demonstrated a significant increase in the concentration of neurofilament light (NfL) in AD 

patients' CSF compared to healthy controls65. An increase in NfL concentration has also been 

reported in other neurodegenerative diseases65, thereby limiting the diagnostic specificity of 

CSF NfL for the differentiation of AD from other neurodegenerative diseases. However, it may 

serve well as a marker of neurodegeneration. Another emerging study showed the disruption 

and increased permeability of the blood-brain barrier (BBB) correlated with an increased level 

of platelet-derived growth factor receptor-β (sPDGFRβ) in the hippocampus66. The sPDGFRβ 

is highly expressed in brain capillary pericytes, vascular mural cells, and arterial vascular 

smooth muscle cells (VSMCs). Neurogranin (NRGN) is a calmodulin-binding protein secreted 

by neuronal cells that are highly expressed in the cortex, hippocampus, and amygdala, and it is 

mainly concentrated at the dendritic spines67. The level of NRGN is elevated in both mild 

cognitive impairment (MCI) and dementia due to AD compared to cognitively normal elderly 

subjects68. Synaptic degeneration is an early event in AD, making synaptic biomarkers relevant 

for early diagnosis. A recent meta-analysis, which included 16 independent studies, confirmed 

CSF NRGN as a potential marker for AD. The authors recommended that NRGN be added to 

the panel of existing biomarkers to improve diagnostic accuracy 69.  

 

Neuroinflammation is a well-known dysregulated mechanism, which may cause 

pathophysiological changes in neurodegenerative diseases, including AD. Microglial 

activation in the brain is the primary innate immune response to pathogens and amyloid plaques 

in AD. Microglia are involved in the reduction in Aβ42 neurotoxicity through phagocytosis of 

https://www.sciencedirect.com/topics/medicine-and-dentistry/neurofilament
https://www.sciencedirect.com/topics/medicine-and-dentistry/neurofilament
https://www.sciencedirect.com/topics/medicine-and-dentistry/platelet-derived-growth-factor-beta-receptor
https://www.sciencedirect.com/topics/medicine-and-dentistry/brain-capillary
https://www.sciencedirect.com/topics/medicine-and-dentistry/pericyte
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amyloid plaques to maintain brain homeostasis70. Activation of various immune system 

proteins includes increased Triggering Receptor Expressed on Myeloid cells 2 (TREM2) in 

CSF. The TREM2 protein is a receptor expressed on the surface of microglial cells71. As a 

multi-functional protein, TREM2 regulates phagocytosis, inhibiting the proinflammatory 

response and removing apoptotic neurons72,73. The soluble form of TREM2 (sTREM2) has 

been detected in CSF and may result from proteolytic cleavage and release into the interstitial 

fluid of membrane-bound TREM274-76. An increase of CSF sTREM2 has been reported as 

an early biomarker in AD patients11,77-80. A higher CSF sTREM2 at a given biomarker level of 

Aβ and pathologic tau were associated with larger grey matter volume81 and slower subsequent 

cognitive and clinical decline in symptomatic elderly participants82. In the symptomatic phase 

of AD, these results support a protective role of elevated sTREM2 in AD. However, it is 

unclear whether increased CSF sTREM2 is associated with the reduced longitudinal increase 

of fibrillar Aβ83. A rare homozygous loss-of-function mutation in the human TREM2 gene can 

cause an acute form of FTD-like dementia linked with cystic bone lesions known as Nasu-

Hakola disease84,85. Interestingly, heterozygous missense mutations in the TREM2 gene have 

been recently described to significantly increase the risk of AD, with an odds ratio similar to 

that of carrying an APOE4 allele and other neurodegenerative diseases, including PD, FTD, 

and ALS86,87. The TREM2 mutation might be responsible for increased density of 

neurofibrillary tangles and amyloid plaques, upregulation of proinflammatory cytokine levels, 

and downregulation of protective markers88.  

 

Chitinase-3-like protein 1 (CHI3L1), also known as YKL-40 and HCgp-39, was proposed as a 

neuroinflammatory biomarker89. This protein is generally produced in reactive astrocytes, and 

reports show an increased concentration of CSF YKL-40 in AD and cognitively normal late-

middle-aged individuals90-93. An increased concentration of YKL-40 was reported in MCI 

patients carrying an APOE4 allele compared to noncarrier MCI patients. These studies suggest 

that YKL-40 may be a possible inflammatory biomarker for identifying individuals converting 

from MCI to AD94. On the contrary, some studies reported no difference in YKL-40 levels 

between APOE4 carriers and noncarriers91. More extensive cohort studies are needed to 

understand the correlation between CSF YKL-40 levels vs. APOE4 and progression from 

prodromal MCI to AD and whether YKL-40 combined with core CSF biomarkers could be 

used as a risk predictor 95.  Additionally, the CSF levels of pre/postsynaptic proteins GAP43, 
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SNAP25, and SYT1 were able to distinguish AD, and MCI from other non-AD dementia 

groups and control groups requires further attention96.  

1.5.2 Blood biomarkers of AD: 

The main blood-based biomarkers, i.e. Aβ42/40 ratio, tTau and pTau (181, 217 and 231 isoforms) 

and NfL, have been widely studied and might approve for clinical use in the near future97-99. 

Several studies have shown a significantly lower concentration of plasma Aβ42/40 found in AD 

compared to control samples100. Interestingly, immunoprecipitation and mass spectrometry 

studies identified the APP 669–711/Aβ42 and Aβ40/Aβ42 ratios significantly correlated with 

levels of Aβ42 in the CSF and amyloid PET imaging101. A longitudinal study of the ADNI 

cohort found plasma NfL level to be increased around 7 years before the onset of clinical 

symptoms in individuals carrying familial AD mutations, and that NfL levels correlated with 

change in cognitive scores, imaging measures of hypometabolism and neurodegeneration102. 

However, NfL is considered a marker of neurodegeneration and not specific to any particular 

neurodegenerative disease, showing poor specificity for AD101,103. Additionally, β-secretase 1 

(BACE1) is an enzyme responsible for cleavage and generation of Aβ peptides from APP104 

and is categorized as an emerging blood-based biomarker105. ELISA based assays depicted 

increased BACE1 activity in MCI or AD patients as compared to healthy controls106,107. A 

longitudinal study over a 3-year follow-up period reported significantly higher plasma BACE1 

activity in MCI, which progressed to AD, than individuals who remained cognitively normal 

over the 3-year follow-up period. In addition to the CSF mentioned above biomarker, plasma 

BACE1 activity can be used as a potential biomarker to predict the progression from MCI to 

AD106. 

1.5.3 Imaging Biomarkers of AD: 

Advances in the field of neuroimaging have resulted in several imaging biomarkers for 

neurodegenerative diseases. Neuroimaging offers flexibility in terms of targeting distinct 

pathophysiological and age-related mechanisms such as pathological aggregates (amyloid and 

tau positron emission tomography - PET), functional decline (functional magnetic resonance 

imaging - fMRI – activity, network correlations), structural decline (MRI based volumetry, 

cortical thinning), connectivity decline (MRI diffusion anisotropy). One of the major 

challenges in imaging is that PET tracers require high binding affinity and the ability to cross 

the blood-brain barrier without being metabolized108. Amyloid tracers are the most well 

developed, and the first one to be developed was the C11-PiB (Pittsburgh B compound).  There 
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are now three F18 tracers available– 18F-florbetapir, 18F-florbetaben, and 18F-

flutemetamol109,110. A recent study showed that tau ligands to visualize NFTs strongly correlate 

with the pattern of neurodegeneration and cognitive impairment in AD compared to imaging 

amyloid deposits111. 

 

Furthermore, first-generation PET tracers AV1451 or T-807 were able to reproduce the features 

of Braak histopathological stages112. These PET tracers were limited by their off-target binding 

of monoamine oxidase A/B, and increased striatal retention, which was inconsistent with 

autopsy reports. Most recent tracers have overcome this off-label binding, but more clinical 

studies are needed 113. Second-generation tau ligands such as [18F] PI-2620 and [18F] MK-

6240 were developed to avoid off-target binding and improve diagnostic accuracy114. Besides 

this, several innovative imaging techniques/methods are under development, such as 

translocator protein (TSPO)-PET to assess the microglial/neuroinflammation activation115, 

synaptic density/loss and epigenetic modifications116. Neuroimaging biomarkers have several 

limitations: (1) they are expensive and therefore unlikely to be useful for population-based 

screening or longitudinal studies requiring repeat measures; (2) they are invasive, in that tracer 

dyes need to be infused, and require highly-trained specialists to implement; (3) several studies 

show that brain plaque levels do not correlate well with disease severity. Other studies show 

that substantial plaque levels are also present in some individuals who do not meet the criteria 

for dementia diagnosis (i.e., “normal” individuals). Therefore, the relationship between 

pathology and disease severity is not always clear. Current thinking suggests that soluble Aβ 

oligomers may be the toxic variant, but these do not appear in PET imaging117.  

1.5.4 Additional biomarkers of AD: 

Clinically relevant biomarkers for Alzheimer's disease continue to be in great demand. 

However, owing to the limitation of currently available biomarkers (as discussed above), other 

biomarker approaches are being studied. In particular, a biomarker within a low or non-invasive 

tissue sample would be highly beneficial. 

 

Some compounds are directly expressed in the salivary glands, while others pass from the blood 

via active transport and passive diffusion. Several studies show that promising biomarkers are 

secreted in saliva, including Aβ42, p-tau, t-tau, acetylcholinesterase, and lactoferrin118. A two-

fold increase in the level of Aβ42 was detected in saliva from AD cases compared to controls119-

121. By contrast, another study reported that significant findings were confined to mild AD 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cognitive-defect
https://www.sciencedirect.com/topics/medicine-and-dentistry/mitochondrial-membrane-transport-protein
https://www.sciencedirect.com/topics/medicine-and-dentistry/epigenetic-modification
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cases and were not observed in severe AD121. However, other studies have reported no changes 

in AD vs control saliva using similar antibody-based methodologies122. The discrepancies in 

data can be due to several reasons. The source of the biomarkers excreted into the saliva 

remains unknown. To determine the biomarker's concentration reference intervals, more 

significant sample numbers must be examined. Another factor to examine is the biomarker’s 

diurnal variation depending on when it was collected (close to a meal/drink or not), time of day 

(i.e., circadian variability), manner of collection, and others. The diminished capacity of AD 

patients to self-care raises the question of whether poor dental health or cleanliness could 

impair biomarker detection. It is therefore critical to standardise sampling, processing, and 

analytical processes in order to assess the reproducibility of the results118,123. In the case of tau 

protein, similar issues were reported with identification of an increase in T-tau/P-tau181 in 

some studies while others demonstrated no change of salivary T-tau using a Luminex assay124. 

Lau et al., 2015 demonstrated no change in salivary T-tau but increased P-tau125. Published 

data on salivary tau is highly inconsistent, making it an unreliable marker. Microbial peptides 

such as lactoferrin, secreted in saliva, are positively correlated with CSF Aβ42 and Mini-Mental 

State Examination (MMSE) scores in AD cases and negatively correlated with T-tau protein123. 

In a longitudinal study, a group of control participants presented with low concentrations of 

lactoferrin (< 7.43 μg/mL), and 78% of them converted to AD or MCI within 5 years. 

Interestingly, control individuals with an average concentration of lactoferrin (> 7.43 μg/mL) 

did not convert within the same time frame. Another potential salivary marker is acetylcholine 

(AChE) which decreased with age and was downregulated in AD patients compared to age-

matched controls123,125.  

1.6 Proteomics-based emerging biomarkers: 

In the case of neurodegenerative diseases, replacing established and specific markers of PET 

imaging and/or CSF biomarkers with blood-based biomarkers is questioned126. The main 

advantages of blood-based biomarkers include; (1) that they can be more frequently and easily 

obtained in the context of community-based studies, large cohorts, or tracking changes in 

response to drugs or lifestyle changes. (2) blood is one of the most common sample types and 

is widely used in pathology testing. It involves a relatively low-risk type of sampling, even in 

the elderly, and requires just a moderate level of training, specifically venepuncture.  
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Proteomics technologies allow unbiased hypothesis-free biomarker discovery and have the 

potential to identify several candidate markers relatively quickly. In a recent systematic review 

and meta-analysis, Rehiman et al., 2020 identified 48 candidate proteomics biomarkers of MCI 

and AD (out of a total of 207 proteins identified), reported in > 2 studies. This review 

highlighted six potential blood-based markers; apolipoprotein A-1 (ApoA-1), insulin growth 

factor binding protein-2 (IGFBP-2), alpha-2-macroglobulin (α2M), fibrinogen-γ-chain, 

afamin, and pancreatic polypeptide (PP), which had similar trends in >3 independent 

cohorts127. Several studies suggest that complement activation in the central nervous system 

(CNS) might contribute to Aβ aggregation and microglial activation, as Aβ plaques were 

detected in the presence of complement proteins such as C1q, C3 and C4128. Other than 

complement components, α2M has been reported to bind to Aβ with high affinity assisting its 

degradation and clearance. In 2019, Hall and colleagues reported a significant correlation 

between the upregulation of α2M with cognitive decline129 and α2M has previously been 

reported as an AD risk factor130,131. Three independent cohorts found another interesting marker 

named afamin. Afamin, mainly secreted by the liver to transport vitamin E, showed a consistent 

downregulatory trend in plasma samples of AD vs healthy controls. In vitro studies have shown 

that afamin facilitates transport of α-tocopherol across the blood-brain barrier 132. In the brain, 

afamin may function as an antioxidant, and studies suggest that downregulation of afamin 

might lead to neurodegeneration in AD brain133. Another potential biomarker reported in the 

Rehiman et al. 2020 meta-analysis review was ApoA-1, mainly localises to high-density 

lipoproteins (HDL) in blood and is transported to the brain across the BBB from the 

periphery134. Sengupta et al. suggested ApoA-1 could bind to neurotoxic Aβ and reduce 

neuronal oxidative stress, thus playing a neuroprotective role135. Other than these biomarkers, 

IGFBP-2 and fibrinogen-γ-chain were consistently upregulated in AD cohorts127. Lastly, 

differential expression of pancreatic polypeptide (PP) in AD cohorts might provide insight into 

the relationship and involvement of PP in type 2 diabetes mellitus and the effect of abnormal 

insulin towards Aβ aggregation and neurofibrillary tangles136. The majority of potential AD 

blood biomarkers identified to date are involved in inflammation, so high specificity for AD is 

unlikely, since many if not most diseases/disorders have an inflammatory component. 

Specificity of such markers needs further validation, by comparison with other diseases, 

neurodegenerative as well as other age related diseases (e.g., metabolic syndrome, type 2 

diabetes, cardiovascular disease, etc). Neuroinflammation is a central phenomenon for several 

neurodegenerative diseases such as Parkinson’s disease137. There is an urgent need to conduct 
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more proteomics experiments to identify biomarkers with specificity to differentiate AD from 

other age related diseases. Considered from a somewhat different perspective, it is useful to 

identify processes which are shared across a variety of age-related diseases, since such 

processes may reflect age-related changes which predispose/contribute to disease progression. 

Examining the proteome as broadly as possible may also identify changes which are disease 

specific. With such a dual approach, biomarkers for disease risk factors (e.g., inflammation, 

neurodegeneration, vascular disease, metabolic syndrome, etc) might be identified and 

differentiated from disease specific biomarkers. Such an approach would require both a 

diversity of appropriate cohorts, as well as broad spectrum “omics” biomarker detection 

protocols.     

1.6.1 Different samples used for the analysis of AD proteome:   

Proteomics methods have evolved over time to examine clinical AD in order to clarify the 

disease's underlying biomolecular pathways. Given the difficulties associated with examining 

the entire proteome initially, the sub-proteome analysis looked to be an efficient technique, 

using a diversity of tissue types in both human and AD animal models. Table 1.3 highlights the 

proteomics techniques and sample types used to profile the AD proteome in previous studies. 

Apart from subproteome investigations, various researchers attempted to characterize the 

complete proteomic alterations in AD brain, CSF and blood, obtaining between <100 and 

14,000 proteins, using bottom-up proteomics approaches (Table 1.3).  Despite its numerous 

advantages, plasma/serum is one of the least investigated samples in Alzheimer's disease 

research, highlighting the critical necessity to examine AD plasma.  

 

Table 1.3: This table shows the number of proteins from different sample types in AD identified by mass 

spectrometry-based proteomics techniques.  

Sample type Technique used Number 

of proteins 

identified 

Reference 

Amyloidome from 

AD brain tissue 

Label-free LC-

MS/MS 

488 Liao et al., 2004 

https://pubmed.ncbi.nlm.nih.gov/15220353/  

Amyloidome from 

AD brain tissue 

Label-free LC-

MS/MS 

900 Drummond et al. 2017 

https://pubmed.ncbi.nlm.nih.gov/28258398/  

Amyloidome from 

AD APP/PSEN1 

transgenic model 

mice 

TMT-LC/LC-

MS/MS 

4,000 Xiong et al., 2019 

https://pubmed.ncbi.nlm.nih.gov/30502339/  

Detergent-insoluble 

frontal cortex AD 

tissue 

Sequential 

fractionation 

using gel 

electrophoresis 

512 Gozal et al. 2009 

https://pubmed.ncbi.nlm.nih.gov/19746990/  

https://pubmed.ncbi.nlm.nih.gov/15220353/
https://pubmed.ncbi.nlm.nih.gov/28258398/
https://pubmed.ncbi.nlm.nih.gov/30502339/
https://pubmed.ncbi.nlm.nih.gov/19746990/
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coupled with LC-

MS/MS 

AD brain insoluble 

proteome 

Label-free LC-

MS/MS 

4,216 Bai et al., 2013 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3

799305/  

Synapse AD 

proteome 

Label-free LC-

MS/MS 

494 Zhou et al., 2013 

https://pubmed.ncbi.nlm.nih.gov/23537733/  

Synapse AD 

proteome 

TMT-LC/LC-

MS/MS 

5,000 Hesse et al., 2019 

 https://pubmed.ncbi.nlm.nih.gov/31862015/  

AD brain tissue 

proteome 

Label-free LC-

MS/MS 

5,688 Johnson et al., 2020 

https://pubmed.ncbi.nlm.nih.gov/32284590/  

 

AD post-mortem 

brain tissue 

proteome 

Samples were 

fractionated by 

offline basic pH 

reverse phase LC 

and analysed 

using TMT-

LC/LC-MS/MS 

14,513 Bai et al., 2020 

https://pubmed.ncbi.nlm.nih.gov/31926610/  

AD CSF proteome Data-independent 

acquisition 

strategy (DIA) 

MS/MS 

1,233 Bader et al., 2020 

https://www.embopress.org/doi/full/10.15252/ms

b.20199356  

AD plasma 

proteome 

Olink Proteomics 

using PEA 

technology 

1,160 Jiang et al., 2021 

https://alzjournals.onlinelibrary.wiley.com/doi/10.

1002/alz.12369  

AD plasma 

proteome 

iTRAQ/ LC-

MS/MS 

145 Song et al., 2014 

https://proteomesci.biomedcentral.com/articles/10

.1186/1477-5956-12-5  

AD plasma 

proteome 

iTRAQ/ LC-

MS/MS 

81 Muenchhoff et al., 2016 

https://www.nature.com/articles/srep29078  

 

1.7 Major challenges in blood-based proteomics technologies:   

In the past decades, proteomics technologies have advanced to become extremely useful tools 

for a wide range of applications to investigate the new drug targets and early disease markers 

by understanding the biological systems. Mass spectrometry-based methods are more rapid, 

sensitive and provide greater proteome coverage than other approaches, in addition to 

providing an unbiased/non-selective approach, in the sense that all proteins within detection 

limits are identified using the non-targeted data-dependent analysis mode. The greater 

throughput MudPIT approaches are replacing, the slower and laborious traditional methods of 

top-down analysis such as 2D gels138,139. However, the major challenge of investigating 

proteomics profiles remains the complexity of the physiological conditions and biological 

systems, in addition to big data processing and analysis. Several studies have investigated 

biofluid or tissue changes in diseased conditions; however, only a handful of proteins have 

been confirmed as potential targets. After years of development, current proteomics 

technologies are still under development and show certain limitations, including 1) the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799305/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799305/
https://pubmed.ncbi.nlm.nih.gov/23537733/
https://pubmed.ncbi.nlm.nih.gov/31862015/
https://pubmed.ncbi.nlm.nih.gov/32284590/
https://pubmed.ncbi.nlm.nih.gov/31926610/
https://www.embopress.org/doi/full/10.15252/msb.20199356
https://www.embopress.org/doi/full/10.15252/msb.20199356
https://alzjournals.onlinelibrary.wiley.com/doi/10.1002/alz.12369
https://alzjournals.onlinelibrary.wiley.com/doi/10.1002/alz.12369
https://proteomesci.biomedcentral.com/articles/10.1186/1477-5956-12-5
https://proteomesci.biomedcentral.com/articles/10.1186/1477-5956-12-5
https://www.nature.com/articles/srep29078
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complexity of the analysis; 2) the risk of a high rate of false positives; 3) the lack of 

standardisation in sample processing; 4) the dynamic range of the samples such as blood 

limiting the identification of low abundance proteins, and 5) the inability to validate biomarkers 

in a large number of patients due to a lack of antibodies. 

 

Apart from technological advancements in mass spectrometry, sample preparation protocols 

can contribute greatly to level of proteome coverage. Sample fractionation is critical for 

complicated samples such as plasma (with a concentration range of up to 13 orders of 

magnitude between the lowest and highest concentration component)38. Without preliminary 

fractionation, even the most advanced mass spectrometers are unable to achieve sufficient 

depth of proteome coverage on such a sample. This work can be challenging, but is necessary 

to achieve necessitate an increase in the sensitivity and performance of analytical techniques, 

particularly for the identification and quantification of specific protein classes, such as low-

abundance proteins.  

 

The abundance of a few proteins such as albumin and the immunoglobulins, representing ~75% 

of the total protein content in the plasma and serum, which can limit the MS detection range of 

medium to less abundant proteins, without prior fractionation or enrichment of lower 

abundance proteins140. Prefractionation of serum/plasma samples is widely used to reduce 

sample complexity and provide better coverage of the proteome profile. Another approach is 

immunoaffinity-based depletion of the high abundance proteins or enrichment of the low 

abundance proteins to improve the detection of lower molecular weight proteins. Lack of 

studies on the effects of the fractionation and depletion approaches on the potential removal of 

low abundance proteins in addition to targeted high abundance proteins is a limitation. For 

example, albumin-bound lower molecular weight proteins may also be removed in addition to 

albumin. Another issue with profiling the plasma/serum proteome for tissue-specific proteins 

more likely to be clinically relevant is that they are likely to be of medium to low abundance 

and, therefore, more likely to be identified in fractionated plasma. It is essential to use specific 

prefractionation and depletion schemes and prudent adoption of methods that can both identify 

and quantify proteins to answer biological questions. These advances will have a significant 

impact on diagnostic research and development as well as pharmaceutical and biotechnology 

industries141. 
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Additionally, ongoing improvement of proteome throughput increases the depth of identified 

proteomes and enables large sample sizes to overcome constraints imposed by dynamic protein 

range and clinical sample heterogeneity. 

1.8 Discovering early biomarkers of AD pathology:  

Preclinical AD, defined as a stage of amyloid-mediated neurodegeneration occurring before 

the onset of clinical symptoms, is an appealing target for disease-modifying intervention in 

AD142,143. AD development occurs during a lengthy prodromal stage prior to progressive 

neurodegeneration, implying the existence of a resilient mechanism against Aβ toxicity in the 

human brain, followed by amplified insults that overwhelm resilience and precipitate 

irreversible degeneration. By the time AD is clinically recognized, neuronal death in numerous 

brain and retinal locations has already happened. Thus, the availability of early and reliable 

disease biomarkers would enable the disease to be detected and preventive treatments be taken 

to avoid neuronal death. A recent study has identified some differentially expressed proteins, 

such as netrin-1 (NTN1), netrin-3 (NTN3), midkine (MDK), pleiotrophin (PTN), hepatocyte 

growth factor (HGF), and WNT5B, may serve as protective factors prior to the onset of AD, 

notably in human resilient instances with high Aβ pathology but no clinical symptoms144. Due 

to the scarcity of research demonstrating early AD changes, there is an urgent need to 

incorporate longitudinal cohorts to determine which proteins are essential for illness 

development over the years. 

1.8.1 ADAD and EOAD:  

AD is typically classified into two kinds according to the age at which it manifests: early-onset 

AD (EOAD) and late-onset AD (LOAD), with 65 years as the generally accepted cut-off145. 

EOAD accounts for just 5%–10% of all AD cases, with <1% caused by mutations in one of 

three genes: amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2). 

Generally, autosomal dominant AD (ADAD) cases indicate a "purer" form of AD with fewer 

coexisting diseases and thus fewer confounding variables146. Whereas early-onset sporadic AD 

(EOsAD) is rarely investigated in isolation, it is a critical subset because it allows the discovery 

of novel lifestyle risk factors or the exploration of novel mutations responsible for the earlier 

age of onset. However, there are various reasons why biomarkers for the two disorders may 

differ: 1) The fact that they are pathologically similar does not necessarily suggest that the 

pathology is identical. 2) There are compelling reasons to believe that excessive Aβ42 
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production is an early and defining feature of ADAD. 3) The rate of development and 

progression of pathology is different in the two disorders such that at a particular stage of the 

disease (as identified by cognitive deficits), the biomarkers may differ quantitatively.  

1.8.2 Risk factors for LOAD:  

Late-onset AD (LOAD) is a highly complex genetic disease with a heritability between 60% 

and 80%147. There are numerous genetic risk factors for developing LOAD, the strongest of 

which is the apolipoprotein E ε4 allele inheritance (APOE4)13,148-150. There are three common 

alleles (APOE2, APOE3, and APOE4), resulting in six possible genotypes (APOE 2/2, 2/3, 

3/3, 2/4, 3/4, and 4/4). These three polymorphic alleles, i.e., ε2, ε3 and ε4, have a worldwide 

frequency of 8.4%, 77.9% and 13.7%, respectively13. Recent studies reported that 

approximately 65% of individuals with late-onset familial and sporadic AD bear the APOE4 

allele4. One copy of APOE4 is associated with a threefold increase in disease risk, while two 

copies are associated with a more than tenfold increase in risk15. In addition, APOE plays a 

critical role in lipid transport and cholesterol homoeostasis in the brain, as it does in the rest of 

the body13,151. In the CNS, APOE is primarily made in astrocytes, and it facilitates the 

transportation of cholesterol to neurons by binding to LDLR family members, known as APOE 

receptors. However, approximately 25%–40% of patients with AD dementia do not carry the 

APOE4 allele, and the pathophysiological mechanisms underlying AD are less clear in these 

individuals13,152. To gain a better understanding of how APOE genotypes may influence AD 

pathology, a comprehensive proteomic analysis of human plasma samples using a series of 

differentially expressed proteins and molecular networks is required. Additional common 

genetic variations associated with late-onset AD have been found through genome-wide 

association studies153. These genes may interact with one another through biological processes 

involving lipid metabolism, innate immunity, and endocytosis. With the advent of next-

generation sequencing, it is becoming possible to identify uncommon genetic variations that 

have a significant effect on illness risk. For example, uncommon mutations in the triggering 

receptor expressed on the myeloid cells 2 (TREM2) gene are associated with an approximately 

three-to-fourfold increased risk of developing AD153.  

 

Early AD manifests clinically as mild cognitive impairment (MCI)154, although a clinical 

diagnosis of MCI does not always progress to dementia. By the time AD manifests as dementia, 

the level of brain pathology is impossible to revert since substantial neuronal cell death has 
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occurred. Identifying biomarkers of transition from normal to MCI (if not earlier) might 

provide a window of opportunity for prevention trials that focus on ameliorating symptoms 

before neurodegeneration progresses to clinically identifiable symptoms. The transition from 

MCI to AD may be triggered by an increase in harmful events and a decrease in protective 

events, which occurs along with a significant increase in tau pathology. A recent study 

discovered a long list of differentially expressed proteins such as C1QL1, C1QA, C4B, 

C1QTNF5, C1R and others involved in the complement system and may influence the cellular 

and molecular events in the progression of AD155. Neurotrophic factors, such as VGF, BDNF, 

NRN1, and CRH, were decreased during the progress from MCI to AD144.  

1.9 Pathways dysregulated in AD:  

Major unresolved questions in AD research pertain to the interrelationships between the 

different pathologies. Overexpression of the mutant APP protein results in the formation of 

plaques but not in neuronal death in transgenic animals156. These findings imply that the 

creation of plaques alone is insufficient to induce disease and that additional elements must be 

involved in human pathophysiology. Numerous mechanisms have been proposed to contribute 

to AD, including neuroinflammation and oxidative stress, metabolic dysfunction, reduced 

clearance of misfolded proteins and other less-studied mechanisms.  

1.9.1 Metabolic dysfunction:  

While the several genetic factors listed above contribute significantly to AD, none can explain 

100% of AD cases. Therefore, rather than focusing on individual genes, it may be appropriate 

to explore AD due to disturbances to entire biological networks. During ageing, neurons with 

a low capacity for regeneration become unable to adapt to changes in the basal metabolic rate, 

and the energy-driven state is diminished or damaged, perhaps contributing to the development 

of a variety of neurodegenerative diseases. Decreased neuronal glucose metabolism and 

accompanying bioenergetic changes are well-known characteristics of AD157. In AD, decreased 

glucose sensing by the brain may signal the body to enter a fasting state, triggering 

compensatory activation of alternative fuel sources for the TCA cycle, such as amino and fatty 

acids158. Mitochondrial dysfunction may cause the release of reactive oxygen species, hence 

initiating oxidative stress, or, conversely, other oxidative stress initiators may result in 

mitochondrial dysfunction. Regardless of the initiator, mitochondrial insufficiency results in a 
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decrease in cellular ATP in CNS neurones. Increased extracellular glutamate, the primary 

excitatory neurotransmitter in the CNS, is another possible AD starter159.  

1.9.2 Clearance of misfolded proteins: 

Despite the fact that all cells have multiple, well-characterized protein quality control systems 

to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein 

homoeostasis (‘proteostasis') in health and how their disintegration contributes to disease 

remains an exciting and fast-paced area of research. Autophagy is becoming recognized as a 

critical function in regulating neuronal and glial cell health in AD160. It is a multistep process 

involving sequestration, degradation, and amino acid/peptide generation. It is mediated by a 

unique organelle called the autophagosome, a vesicle containing cellular material targeted for 

degradation (macromolecules and organelles) by an intracellular degradation system. Notably, 

there is strong evidence that autophagy is dysregulated in AD patients and animal models161. 

The researchers administered rat cortical neurons with rapamycin, lysosomal inhibitors, or 

vinblastine, a compound that activates autophagy and inhibits autophagic vacuoles (AVs) 

clearance by lysosomes. Neurons treated with lysosomal inhibitors or vinblastine accumulated 

AVs with similar morphologies to those found in the AD brain in the PSEN1/APP mice model. 

As a result, the authors concluded that autophagy dysfunction caused by defective AVs 

clearance, rather than autophagy induction alone, resulted in AD-like degenerative 

abnormalities162. In general, research continues to differ on which stage or stages of the 

autophagic-lysosomal pathway are defective in Alzheimer's disease. 

1.9.3 Inflammation and oxidative stress:  

Although acute inflammation in the brain is a well-established defence against infection, injury, 

and toxins, disruption of the balance of anti-inflammatory and pro-inflammatory signalling, as 

in AD, results in chronic inflammation163. Numerous studies have demonstrated increased 

inflammatory markers in the brains of patients with Parkinson's disease (PD)164, traumatic brain 

injury associated with chronic traumatic encephalopathy (CTE)165, and amyotrophic lateral 

sclerosis (ALS)166, to name a few key examples. Stimulation of the immune system in response 

to Aβ and proinflammatory cytokines affects the microglial clearance of Aβ and neuronal 

debris. Simultaneously, immunological activity may impair microglial production of 

neurotrophic factors167. Collectively, phenotypic alterations in microglia contribute to 

cognitive impairment. It is becoming increasingly clear that persistent immunological response 
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is a hallmark of neurodegenerative diseases. Oxidative stress, a process that occurs more 

frequently in the brain as we age, is caused by a redox imbalance involving the formation of 

excessive reactive oxygen species (ROS) or the antioxidant system malfunctioning168. Recent 

evidence suggests that the Hippo signalling pathway is involved in neuroinflammation, 

neuronal cell differentiation, and neuronal death169. 14-3-3 protein family is highly expressed 

in the brain and influence many aspects of brain function through interactions with a diverse 

set of binding partners, including neural signalling, neuronal development, and 

neuroprotection170, and is a well-studied protein family in AD CSF171,172.  

1.9.4 Post-translation modifications (PTMs): 

The complex interplay and post-translational modifications (PTMs) of a range of proteins 

regulate many pathogenic processes. To discover new biomarkers for reliable diagnoses and 

therapeutics, it is necessary to explore the potential role of diverse PTMs in illness 

development. Tau is an essential regulator of the neuronal cytoskeleton and is involved in the 

stabilisation of microtubule assembly. The interaction of kinases and phosphatases regulates 

the phosphorylation status of the protein. A recent study has discovered one of the most 

thorough tau PTM investigations in AD brains using a variety of MS techniques173. On 

numerous tau isoforms from 42 control and 49 AD patients, a total of 95 alteration events (55 

in phosphorylation, 17 in ubiquitination, 19 in acetylation, and 4 in methylation) were found. 

Many protein phosphatases (PPs), including PP1, PP2A, PP2B, and PP5, have been 

demonstrated in vitro to dephosphorylate the tau protein at Ser199, Ser202, Thr205, Thr212, 

Ser214, Ser235, Ser262, Ser396, Ser404, and Ser409. Additionally, tau acetylation has been 

shown to increase during the early and moderate Braak phases of tauopathy, perhaps slowing 

tau breakdown174. Acetylation of K280/K281 sites has been proposed to increase tau 

aggregation175. Furthermore, a global investigation of protein ubiquitination in AD was 

published, spanning 4,291 ubiquitinated sites in 1,682 proteins, with over 800 sites changed in 

AD176. Polyubiquitination chains (Lys11, Lys48, and Lys63) were also observed to accumulate 

in AD brain tissues177. These comprehensive PTM datasets show the importance of PTMs 

modifications on the pathology of AD. Further research on PTMs modification in AD might 

be useful for studying biochemical signalling networks during AD development. 
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1.9.5 Concluding Remarks 

The core AD biomarkers (Aβ and Tau) are included in research diagnostic criteria, and we 

anticipate an increase in their usage in clinical routine practice. While conventional AD 

diagnostic criteria are based on clinical data, additional criteria are required to detect the disease 

in its early stages. It is now well known that AD begins decades before clinical symptoms 

manifest. The ability to detect biological changes prior to clinical symptoms would enable early 

diagnosis and potentially alter therapy options. Recent deep proteomics studies have already 

profiled the brain and biofluids raising numerous novel hypotheses for a subsequent validation. 

However, only a small proportion of the plasma proteome has been studied to date, mostly 

because of the complexity of the plasma proteome and the huge quantitative dynamic range. 

More research is required to develop reliable blood tests that can be used in conjunction with 

CSF or imaging tests as non-invasive testing methods. Additionally, this chapter has identified 

a gap in our understanding of longitudinal alterations necessary to elucidate disease causes in 

AD aetiology. Understanding the basic mechanisms that occur when AD begins or worsens 

will aid in AD diagnosis and therapy. Therefore, in this thesis I have provided a holistic view 

of the AD proteomic landscape, focusing on new insights into AD pathogenesis and potential 

biomarkers. 

2.0 Aims and Rationale 

 

The primary objective of this thesis was to investigate plasma biomarkers that may be implicated 

in the pathogenesis of Alzheimer's disease (AD). To gain an in-depth understanding of plasma 

biomarker changes in AD, I have developed a fractionation strategy that could provide good 

plasma proteome coverage and identify tissue-specific proteins while being compatible with 

the higher sample throughput required for many clinical studies. I further applied our developed 

method on two different clinical cohorts to profile the plasma proteome changes in ageing, 

MCI and AD dementia samples.  

 

More specific aims were: 

 

Aim 1:  



Introduction  Chapter 1 

35 

 

To compare the fluid biomarker patterns in early-onset subtypes of AD; early-onset sporadic 

AD (EOsAD) and autosomal dominant AD (ADAD). ADAD and EOsAD can be clinically and 

phenotypically identical, with the critical difference being the presence of an autosomal 

dominant mutation in the former and perhaps risk genes and environmental/lifestyle factors in 

the latter. Further, the focus of this chapter was also to show the relative paucity of additional 

biomarkers, and low numbers of reported studies in relatively accessible serum/plasma sample 

types were notable (chapter 2). 

 

Aim 2:   

The principal aim of chapter 3 was to identify a fractionation strategy that would provide 

adequate plasma proteome coverage and identify tissue-specific proteins while being 

compatible with the higher sample throughput required for many clinical studies. Plasma is 

arguably one of the most challenging sample types for identifying biomarkers in AD. The 

predominance of high-abundance proteins, which account for >99 percent of the total plasma 

protein content, might obfuscate the detection of low-abundance components by mass 

spectrometry. Due to the lack of robust, reproducible, and high-throughput proteomics 

workflows, relatively few plasma biomarkers identified by proteomics techniques have 

progressed to use in clinical practice. As a result, in chapter 3, I began to overcome these 

limitations by combining different prefractionation methods to speed the development of 

plasma-based biomarkers. 

 

Aim 3:  

The label-free proteomics analysis of longitudinal and cross-sectional analyses of ageing and 

disease-related proteomic changes in the Sydney Memory and Ageing Study (MAS) cohort. In 

combination with the above-stated method (chapter 3), this study design has addressed the 

following questions: (1) plasma profile of differentially expressed proteins in normal ageing, 

ageing with progression to mild cognitive decline (MCI) and AD over the time of 6 years (2) 

differentially expressed plasma proteome profiles of MCI and AD as compared to their age-

matched normal cognitive controls which may give possible plasma biomarkers to aid in 

diagnosis (3) cross-sectional analysis of baseline data, when the subjects are clinically 
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identified as cognitively normal, provides insight into the preclinical changes which precede 

subsequent progression to AD (chapter 4).  

 

Aim 4:  

The main objective of this project was to understand better the changes in plasma proteome 

caused by APOE3 and APOE4 that contributes to the biomarkers profile in AD. A 

comprehensive proteomic analysis of human plasma samples using Australian Imaging, 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort was conducted following our 

method optimization in chapter 3. In this study, both PiB-PET confirmed AD and control 

carriers of APOE3 and APOE4 alleles were included. Lastly, I discovered a set of potential 

AD dementia plasma biomarkers replicated in both cohorts, i.e., MAS and AIBL cohorts.  
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Chapter 2 

 

Fluid Biomarkers and APOE Status of Early Onset 

Alzheimer's Disease Variants: A Systematic Review and 

Meta-Analysis 

 

The majority of the content of this chapter has been published: 

 

Gurjeet Kaur, Anne Poljak, Nady Braidy, John D Crawford, Jessica Lo, 

Perminder S Sachdev. Fluid Biomarkers and APOE Status of Early Onset 

Alzheimer's Disease Variants: A Systematic Review and Meta-Analysis. 

Journal of Alzheimers Disease 2020;75(3):827-843. doi: 10.3233/JAD-

200052. PMID: 32333592. 

 

See Appendix for the complete publication 
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2.1 Introduction 

Despite intensive research over the last two decades, no reliable treatment exists to 

reverse or impede the onset and progression of Alzheimer's disease (AD), which is 

usually sub-categorized into two subtypes based on the age of onset: early-onset AD 

(EOAD) and late-onset AD (LOAD), with age 65 years as the generally accepted cut-

off 145. EOAD accounts for only 5%-10% of all AD cases 178, with <1% being attributed 

to autosomal dominant AD (ADAD), caused by mutations in one of three genes: 

amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2). 

ADAD cases have 100% penetrance of a known genetic mutation, with predictable age 

of symptom onset, and therefore presymptomatic individuals can be studied several 

years before symptom onset. ADAD cases generally represent a "purer" version of AD 

with fewer concomitant pathologies and hence confounding variables146. Early-onset 

sporadic AD (EOsAD) is rarely studied in its own right and is, therefore, a particularly 

important subset as it presents an opportunity to either discover new lifestyle risk factors 

or explore novel mutations responsible for the earlier age of onset. Genetic variations , 

particularly that of the apolipoprotein E (APOE) gene, play a significant role in LOAD 

but are poorly understood in EOsAD. ADAD and EOsAD can be similar pathologically 

and phenotypically, with the primary distinction being the presence of the autosomal 

dominant mutation in the former and possibly risk genes and environmental/lifestyle 

factors in the latter.  

 

However, there are several reasons why biomarkers may differ for the two disorders: 1) 

That they are pathologically similar does not imply that the pathology is exactly the 

same. Considering the difference in aetiology, it is possible that there are subtle 

differences in the pathology, e.g. the relative amyloid and tau burden, the degree of 

inflammation, oxidative stress and synaptic loss may differ, which may be reflected in 

quantitative differences in biomarkers; 2) There are good reasons to believe that over -

production of Aβ42 is an earlier and defining feature of ADAD pathophysiology, but one 

could argue that this may not be the central disturbance in EOsAD, which would be 

reflected in the biomarkers, in particular, Aβ levels; and 3) The rate of development and 
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progression of pathology is different in the two disorders such that at a particular stage 

of the disease (as identified by cognitive deficits), the biomarkers may differ 

quantitatively.   

 

Therefore, I started with the hypothesis that the biomarkers would be different. 

However, had I set up a null hypothesis, i.e., there would be no difference in the 

biomarkers for the EOsAD and ADAD at similar levels of cognitive deficit, our 

methodology or conclusions would not have been different. The failure of numerous 

clinical trials suggests that a focus on presymptomatic biomarkers with a view to 

prevention may be a better option than treatment once pathology has significantly 

progressed.  

 

The absence of comparative studies reporting pathological and phenotypical 

difference/s in ADAD and EOsAD makes it challenging to know whether there are 

qualitatively or quantitatively similar or different biomarker patterns in these 

genetically different AD subtypes. Therefore, I chose to perform a systematic review 

and meta-analysis on variants of EOAD to examine the shared and unique factors that 

influence subtypes of EOAD.  

2.2 Methods 

2.2.1 Search strategy  

This systematic review and meta-analysis followed Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines179 and Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines9. Literature 

searches were performed for papers published between January 1, 1988, and June 1, 

2019, using six major scientific databases: Medline Ovid, PubMed, EMBASE, 

PsycINFO, Web of Science and Scopus (Figure 2.1).  

 

http://www.equator-network.org/reporting-guidelines/strobe/
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Figure 2.1: Flow chart depicting the selection process of records found using six scientific databases and 

elimination of non-relevant articles. 

 

 

2.2.2 Data extraction 

Inclusion/Exclusion criteria 

Included in the review were papers reporting on quantified biomarkers (proteins/peptides) in 

CSF and/or blood (serum or plasma) in patients with EOsAD or ADAD and corresponding 

controls. These searches included combinations of the following Boolean terms: [blood OR 

serum OR plasma OR cerebrospinal fluid OR CSF] AND [autosomal dominant OR dominant 

inheritance OR early-onset OR young-onset Alzheimer's disease] and were run in all six 

  

3437 records identified through six databases 

1151 duplicates removed using 

Endnote software 

2286 after duplicates removed  

Manually removed duplicates, late 

onset studies, animal studies, review 

articles.  

1866 records excluded 

420 records remained and further 

extracted by two authors (GK, AP)  

109 full text studies fitting the criteria 

were included in the systematic review 

and 34 in the meta-analysis 
(20 EOAD and 14 ADAD)  

Removed articles which covered only non-

Alzheimer’s dementia, Down syndrome, 

Frontotemporal dementia, Creutzfeldt-Jacob’s 

disease, cerebral amyloid angiopathy, 

hypercholesterolemia, multiple sclerosis, 

exclusively imaging biomarkers, cell culture 

based studies, hormonal treatments, therapy 

based studies. Articles containing non-inclusion 

list data were included as long as they also 

contained data on EOAD, FAD and/or ADAD. 

Final list was prepared by discussion 

and agreement between GK, AP, NB 

and PS 

1136 records from EMBASE 
571 records from Web of science   
648 records from Scopus 
627 records from PubMed  
405 records from Medline  
50 records from PsycINFO 
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databases. Exclusion criteria were: (a) studies purely on LOAD or on any AD subtype with 

biomarker data on tissues other than blood, serum, plasma or CSF, studies reporting purely on 

non-protein biomarkers such as mRNA (Q-PCR) or studies that use non-quantitative 

observations (e.g., SDS-PAGE without identifying or quantifying specific protein changes); 

(b) studies purely on animal models, cell culture techniques, immunohistochemistry, 

genotyping, imaging (PET, FDG), laboratory tests such as blood cell counts, and identification 

of biomarkers from cellular blood fractions such as peripheral blood cells; (c) articles reporting 

data following treatment, therapy, intervention, toxicology or human in vivo challenge studies, 

with either endogenous or synthetic/pharmaceutical compounds and without baseline data, and 

(d) studies on diseases with early-onset dementia as a component of the phenotype but of 

predominantly different aetiology (e.g., vascular). Given the limited volume of literature on 

this topic, no studies were excluded based on cohort size and case studies were included in the 

systematic review, though not in the meta-analysis. However, only cross-sectional studies were 

available in sufficient numbers to allow meta-analysis.   

 

The meta-analysis included 34 studies, 20 for EOsAD and 14 for ADAD (which included both 

symptomatic and asymptomatic mutation carriers, sMC and aMC, respectively). By definition, 

the EOsAD individuals received a clinical diagnosis of AD with onset before 65 years, and the 

majority of them had no family history of EOAD. Genetic testing was generally not performed 

to eliminate APP, PSEN1 and PSEN2 mutations; however, in 4 of the 20 EOsAD studies, 

genetic testing was indeed carried out, and meta-analyses were also performed on these 

separately. The ADAD individuals had a similar age of onset, a positive family history of 

ADAD, and carried pathogenic mutation/s to one of the following genes: APP, PSEN1 and 

PSEN2. Across all studies, biomarker level changes were expressed as standardized mean 

differences (SMD), calculated relative to levels in cognitively healthy age-matched controls. 

 

Five articles identified as meeting inclusion criteria were published on participants from the 

Dominantly Inherited Alzheimer's Network (DIAN) cohort. After discussion with DIAN 

authors, and in order to avoid duplication of data on the same participants, I included only the 

most recently published DIAN article180, excluding the previous four from the meta-analysis 

where the biomarker data was duplicated11,12,181,182. For articles with insufficient data, or data 

presented in an inaccessible manner, I emailed authors requesting additional information. The 

majority either did not respond or no longer had access to data. One author provided data which 

is included in our analyses95.  
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While I did not use assay type as a selection criterion (either inclusion or exclusion) for the 

studies reported here, the majority (>95%) of studies used commercial kits which had been 

manufacturer validated. Of the 27 studies which reported assays of Aβ and/or tau variants, 26 

used the Innogenetics (Fujireibo-Europe) xMAP technology-based ELISA kits. This fortuitous 

“standardisation” is likely to minimise inter-laboratory variation for the meta-analysis results 

of Aβ and tau variants reported here. 

2.2.3 Meta-analyses   

Meta-analyses were conducted using the procedure metan, within the statistical program Stata, 

version 15.0, with the random-effects model and the inverse-variance weighting of studies. The 

type-one error rate was set at 0.05. Meta-analyses were performed if there were at least two 

independent published studies on a biomarker, but in most cases included 3-13 studies.  

 

For studies with continuous biomarker level as the outcome variable, data input into the 

statistical program were the number of cases, means and standard deviations (SDs) of the 

biomarker for each AD group and their corresponding control groups. The output of this 

program expresses the levels of biomarkers as the standardized mean differences (SMDs), 

equal to the difference in concentrations between the particular AD group and its control group, 

divided by the pooled SDs.   

 

For studies with a binary outcome measure (such as ε4 carrier status), data input were the 

natural logarithms of the odds ratios (log ORs) and their standard errors. These were calculated 

as follows. If a and b are the number of ε4 carriers in the AD and control groups, respectively, 

and c and d are the corresponding numbers of non-carriers in those groups, then the odds ratio 

is given by OR = a*d/b*c. The standard errors of each log OR are calculated as the square root 

of (1/a +1/b +1/c +1/d).   

 

The random-effects model was used for all of the meta-analyses based on the assumption that 

each study produces estimates of the true effects for that particular study population, but that 

the study populations vary across individual studies due to differences in populations, study 

design, and assay platforms183. The pooled effect sizes produced by meta-analyses using the 

random-effects model are the estimates of the mean effect sizes for all potential studies 



Systematic Review and Meta-Analysis Chapter 2 

43 

 

satisfying the selection criteria of the review. Publication bias was assessed using the Stata 

command metabias, which was employed to produce funnel plots and to perform the Egger's 

test to check for bias for meta-analyses comprising ≥8 studies. For meta-analyses comprising 

fewer individual studies, it was impossible to draw reliable conclusions from visual inspection 

of the funnel plots or Egger's test184.  Comparison of pooled effects from pairs of meta-analyses 

was achieved using the Stata procedure, metareg.  

  

Two articles185,186 presented data as median and range, and in these cases, I substituted median 

for mean and derived SD from range using the following approach: Range/4 (if n<70) or 

Range/6 (if n>70)187. For two articles, mean and SD values were estimated from bar graphs 

181,188. Two articles reported serum NfL in ADAD individuals189,190, although, for one of 

them189, I could not get access to the data and could therefore not perform a meta-analysis on 

serum NfL. A significant share of the ADAD data came from two large cohorts: the DIAN 

cohort and the Alzheimer's Prevention Initiative (API) cohort representing a large pedigree 

living in the state of Antioquia in Colombia, South America. The DIAN cohort includes carrier 

and non-carrier (NC) family members with various ADAD mutations, while the Colombian 

kindred likely descended from a single individual and carried the E280A mutation in the 

PSEN1 gene. 

2.2.4 Data availability statement 

Data are available to qualified investigators on request to the corresponding author. Data will 

be shared at the request of other investigators for purposes of replicating procedures and 

results.  

2.3 Results 

2.3.1 Protein/peptide biomarkers 

2.3.1.1 Early-onset Alzheimer's Disease (EOAD) 

I identified 34 eligible published studies on EOAD, comprising 20 studies on EOsAD and 14 

on ADAD. The results for established biomarkers (Aβ42, T-tau and P-tau) were as follows: All 

variants of EOAD had lower CSF Aβ42 and higher CSF T-tau and P-tau (Table 2.1, Figures 

2.2, 2.3 and 2.4), relative to their respective comparison groups. The majority of EOAD 

https://www.sciencedirect.com/topics/medicine-and-dentistry/funnel-plot
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biomarkers were identified in CSF, and few studies of blood biomarkers were replicated 

frequently enough to allow meta-analysis.  

Table 2.1: A) Pooled standardized mean difference (pooled SMD), I-squared (I2), and significance (p) are shown 

with p≤0.05 accepted as statistically significant. B) Meta-analysis of APOE ɛ4 carriers in early-onset AD pooled 

odds ratio (pooled OR), I-squared (I2), and significance (p) are shown with p≤0.05 accepted as statistically 

significant (random-effects model is represented in the tables). Meta-analysis of CSF and serum/plasma 

biomarkers of EOsAD and ADAD. 

(A) Biomarker 

No. of 

independent 

studies 

EOAD (total 

numbers) 

Controls 

(total 

numbers) 

Meta-Analysis 

Random effects model 

  (i
):

 E
a

rl
y
-o

n
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t 
sp

o
ra

d
ic

 A
D

 (
E

O
sA

D
) 

 

CSF Aβ42 8 266 211 

Pooled SMD = -1.83, 

p <0.001, 

I2=80.9% 

CSF T-tau 10 362 247 

Pooled SMD = 1.24, 

p <0.001, 

I2=80.6% 

CSF P-tau 13 375 321 

Pooled SMD = 1.39, 

p <0.001, 

I2=90% 

CSF P-tau181 &199 4 128 142 

Pooled SMD = 1.17, 

p = 0.018, 

I2=92.2% 

CSF P-tau181 3 95 102 

Pooled SMD = 0.80, 

p = 0.11, 

I2=90.5% 

CSF NfL 2 72 59 

Pooled SMD = 1.42, 

p < 0.001, 

I2=0.0% 

CSF IL6 2 17 39 

Pooled SMD = -3.56, 

p < 0.385, 

I2=95.2% 

CSF IgG 4 63 62 

Pooled SMD = -0.33, 

p = 0.075, 

I2=0.0% 

CSF albumin 3 52 39 

Pooled SMD = -0.94, 

p = 0.241, 

I2=90.9% 

Serum/ 

Plasma albumin 
3 52 39 

Pooled SMD = 1.66, 

p = 0.351, 

I2=96.8% 

Serum/ 

Plasma IgG 
4 63 62 

Pooled SMD = 1.8, 

p = 0.037, I2=93.1% 
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CSF Aβ42 4 136 112 

Pooled SMD = -2.18, 

p <0.001, 

I2=0.0% 

CSF T-tau 3 103 91 

Pooled SMD = 1.66, 

p <0.001, 

I2=85.5% 

CSF P-tau 4 136 117 

Pooled SMD = 1.45, 

p <0.001, 

I2=77.7% 
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 CSF Aβ42 4 130 99 

Pooled SMD = -1.45, 

p <0.001, 

I2=87.5% 

CSF T-tau 7 259 156 
Pooled SMD = 1.05, 

p <0.001, 
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I2=78.1% 

CSF P-tau 8 206 164 

Pooled SMD = 1.24, 

p <0.001, 

I2=91.7% 

(iv): ADAD 

All MCs CSF Aβ42 12 480 441 

Pooled SMD = -2.11, 

p <0.001, 

I2=94.0% 

 

sMCs 

 
CSF Aβ42 10 303 344 

Pooled SMD = -2.36, 

p <0.001, 

I2=95.3% 

 

aMCs 

 

CSF Aβ42 3 81 90 

Pooled SMD = -1.64, 

p = 0.055, 

I2=91.8% 

 

All MCs 

  

CSF Aβ40 3 81 120 

Pooled SMD = -0.81, 

p = 0.044,  

I2=79.4% 

 

All MCs 

 

CSF T-tau 10 318 288 

Pooled SMD = 1.53, 

p <0.001, 

I2=83.5% 

 

sMCs 

 

CSF T-tau 3 16 44 

Pooled SMD = 2.97, 

p <0.001, 

I2=23.5% 

 

aMCs 

 
CSF T-tau 5 41 55 

Pooled SMD = 1.67, 

p = 0.003, 

I2=75.9% 

 

All MCs 

 
CSF P-tau 5 283 267 

Pooled SMD= 1.63, 

p <0.001, 

I2=75.6% 

 

All MCs Plasma Aβ42 
2 164 115 

Pooled SMD = 0.69, 

p <0.001, I2=52.5% 

 

 

 

(B) Biomarker 

No. of 

independent 

studies 

Patients 

APOEε4+ 

Patients 

APOEε4- 

(%enrichmen

t)* 

Controls 

APOEε4+ 

Controls 

APOEε4- 

(%enrichm

ent)* 

Odds Ratio 

 

EOsAD APOEε4 4 

60 

81 

(43%) 

35 

83 

(30%) 

Pooled OR = 1.72 

p = 0.044, 

I2=0.0% 

 

ADAD APOEε4 3 

17 

43 

(28%) 

25 

62 

(29%) 

Pooled OR = 1.08, 

p = 0.838,   

I2=0.0% 

 

 

*LOAD meta-analyses report APOEε4 allele enrichment in the 13.7% - 40% range. 

(i) Early-onset sporadic AD (EOsAD); defined as the age of onset < 65 years and no family history of AD. 

(ii) EOsAD with the absence of APP, PSEN1 or PSEN2 mutations confirmed by genetic testing 

(iii) EOsAD with no genetic testing reported (diagnosis based only on the absence of family history) 

(iv) Autosomal dominant AD (ADAD); EOAD with the carrier of at least one APP, PSEN1 or PSEN2 mutations confirmed by 

genetic testing. 
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In addition to established biomarkers, quantitative data on several biomarkers of 

neurodegeneration and inflammation were reported in 2 to 4 studies each (Table 2.1). These 

were CSF NfL, IL-6, IgG, albumin, serum albumin and IgG (Table 2.1 and Figure 2.2). Of 

these non-classical biomarkers (i.e., protein/peptide biomarkers other than Aβ42, T-tau and 

P-tau), the only statistically significant results were for CSF NfL (pooled SMD = 1.42) and 

serum/plasma IgG (pooled SMD = 1.80) in the subset of all those with EOsAD. 

 

Most of the meta-analyses had high levels of heterogeneity (I2 > 75%), reflecting a large 

amount of scatter around the pooled SMD axis. However, the direction of change, if not its 

degree, was consistent in >80% of established biomarker studies. Methodological 

differences across studies likely accounted for this heterogeneity, and therefore the random-

effects model assumptions were the most appropriate183.  

 

Since this model permits small studies to contribute to outcomes, I explored such 

publication bias using funnel plots and Egger's test. Funnel plots of 5 biomarkers were 

performed as they had 8 or more individual studies each (Figure 2.5). Although visual 

inspection of the funnel plots did not give the impression of perfect symmetry around the 

vertical axis, the results from Egger's test implied that there was no statistically significant 

systematic relationship between the results of each study and its size.  

 

Comparisons of meta-analysis results of established CSF biomarkers were performed 

between pairs of patient groups vs controls to examine whether classical biomarker profiles 

of EOsAD and subsets of EOsAD are significantly different to those of ADAD. All the 

results of the meta-regression analyses were not significant, except for T-tau in EOsAD vs 

sMCs of ADAD, suggesting that the classical biomarker profile of EOsAD is not 

significantly different to the ADAD even though the majority of EOsAD individuals have 

no family history of early-onset AD, and some articles on EOsAD have even eliminated 

the possibility of APP, PSEN1 or PSEN2 spontaneous mutation/s by genetic testing.  
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2.2.3.2 Early-onset sporadic Alzheimer's disease (EOsAD) 

The 20 EOsAD studies collectively included 11 biomarkers (Table 2.1i and Figure 2.2) 

which had been assayed in at least two independent studies (majority >3) and on which 

meta-analyses could be performed. Significantly lower CSF levels of Aβ42 and higher levels 

of T-tau, P-tau and specific variants of P-tau: P-tau181 and 199 were observed in EOsAD vs 

control (Table 2.1i, Figure 2.2). Additional CSF biomarkers, with sufficient numbers of 

articles (≥2 articles) to allow meta-analysis, included NfL, IgG, IL6 and albumin (Table 

2.1i, Figure 2.2), of which only NfL had a significantly higher level, while the others had 

no significant difference relative to controls. In serum, only albumin and IgG were assayed 

in sufficient numbers of studies to allow meta-analysis, and only IgG had a statistically 

significant result (Table 2.1i, Figure 2.2E), is increased in AD relative to controls.  

 

Of the 20 studies on EOsAD, a subset of 4 was identified in which APP, PSEN1, or PSEN2 

gene mutations had definitively been ruled out by genetic testing (Table 2.1ii, Figure 2.3A, 

2.3B, 2.3C). A separate subset of 16 studies did not report confirmation of the absence of 

these mutations by genetic testing (Table 2.1iii Figure 2.3D, 2.3E, 2.3F). Meta-analyses 

were performed separately on these two sets of studies. As shown in Table 2.1, pooled SMD 

values for Aβ42 were lower in the group in which the absence of mutations had been 

confirmed by genetic testing, while those for both T-tau and P-tau were higher in this group. 

However, none of these differences was statistically significant when examined using the 

Stata procedure, metareg.   

 

Figure 2.2: Forest plots of early onset sporadic Alzheimer’s disease patients vs controls; (A) CSF Aβ42, SMD p 

<0.001, (B) CSF t-tau, SMD p <0.001 (C) CSF p-tau, SMD p <0.001, (D) CSF NfL, SMD p <0.001, and (E) 

serum/plasma IgG, SMD p =0.037. (F) CSF P-tau181&199, SMD p=0.018, (G) CSF P-tau181 SMD p=0.011, (H) 

CSF albumin, SMD p= 0.241, (I) CSF IL- 6, SMD p= 0.385, and (J) CSF IgG, SMD p= 0.075, (K) serum albumin, 

SMD p= 0.351. * values estimated from bar graph.  p value represents the statistical significance of SDM test. 

References for the manuscripts represented in these forest plots are shown in the supplementary section where 

the full list of manuscripts used for meta-analysis appear in supplementary tables S2 and S3. Ikeda et al 2013 

appears twice in panel C and F (Ikeda et al 2013 and Ikeda et a013*) as this study analyzed two different isoforms 

of P-tau i.e. P-tau181 and P-tau199 respectively.  
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(G) 

Figure 2.3: Forest plots of early onset sporadic Alzheimer’s disease patients (tested negative for APP/PSEN mutation 

carriers) vs normal control individuals; (A) CSF Aβ42 (pg/ml), (B) CSF t-tau (pg/ml) (C) CSF p-tau (pg/ml) and early onset 

sporadic Alzheimer’s disease patients (no APP/PSEN mutation test has been performed) vs normal control individuals; (D) 

CSF Aβ42 (pg/ml), (E) CSF t-tau (pg/ml), (F) CSF p-tau (pg/ml)  

*values estimated from bar graph. 
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2.2.3.3 Autosomal dominant Alzheimer's disease (ADAD)    

Individuals with a family history of AD and who also carry an AD-related mutation 

(APP/PSEN) are by definition autosomal dominant and may be identified at the asymptomatic 

mutation carrier (aMCs) stage or the symptomatic mutation carrier (sMCs) stage. To maximize 

statistical power, I initially performed a meta-analysis on all mutation carriers (all MCs), 

regardless of stage and subsequently stratified by symptom status (aMCs or sMCs) (Table 

2.1(iv) and Figure 2.4). AD vs control comparisons for the established biomarkers was 

statistically significant in all MCs, with lower CSF Aβ42 and Aβ40, higher CSF T-tau, and P-

tau and higher plasma Aβ42 for AD (Table 2.1, and Figure 2.4). Following stratification by 

symptom status, CSF Aβ42 and T-tau were significantly lower and higher, respectively, in 

sMCs vs controls (Table 2.1iv, Figure 2.4B, 2.4D). In aMCs, CSF Aβ42 also trended 

downwards, but pooled SMD was not as low as in symptomatic carriers and did not reach 

statistical significance (Table 2.1iv, Figure 2.4A). The level of T-tau significantly increased in 

aMCs; however, pooled SMD was not as high as in sMCs, and results were not statistically 

significant (Table 2.1iv, Figure 2.4C). No replicate studies of other biomarkers of AD 

pathology were reported in ADAD cohorts.  

 

Fagan et al. 2014 appear twice in the panel I (Fagan et al. 2014 and Fagan et al. 2014*) as this 

study analyzed Aβ42 in asymptomatic mutation carriers and asymptomatic mutation carriers, 

respectively. Ikeda et al. 2013 appear twice in panel G (Ikeda et al. 2013 and Ikeda et al. 

2013*)191 as this study analyzed two different isoforms of P-tau, i.e. P-tau181 and P-tau199, 

respectively. 
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 Figure 2.4: Forest plots of autosomal dominant Alzheimer’s disease patients vs normal control individuals; (A)  

CSF Aβ42 asymptomatic mutation carriers, SMD p< 0.001, (B) CSF Aβ42 symptomatic mutation carriers, SMD 

p< 0.001, C) CSF t-tau asymptomatic mutation carriers, SMD p= 0.003, (D) CSF t-tau symptomatic mutation 

carriers, SMD p< 0.001, (E) CSF Aβ42 all mutation carriers, SMD p <0.001, (F) CSF T-tau all mutation carriers, 

SMD p <0.001, (G) CSF P-tau all mutation carriers, SMD p <0.001, (H) CSF Aβ40 all mutation carriers, SMD p 

<0.044, ( I) Plasma Aβ42 all mutation carriers,   SMD p <0.001, APOEε4 allele enrichment in (J) early onset 

sporadic Alzheimer’s disease, SMD p= 0.044, (K) autosomal dominant Alzheimer’s disease patients relative to 

their normal controls SMD p= 0.838. *values estimated from bar graph.  
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Figure 2.5. Funnel plots and Egger’s test for 

publication bias were performed on all meta-analyses, 

including 8-13 individual studies. For meta-analyses 

comprising fewer individual studies, it is harder to make 

conclusions about distribution around the SDM axis, 

and the p-value from Egger’s test is unreliable, so funnel 

plots are not included for meta-analyses with lower 

study numbers 

 

 

 

 

 

 

 

Egger’s test:  P =0 .64 

 

Egger’s test:  P =0 .15 

 

Egger’s test:  P =0 .36 

 
Egger’s test:  P =0 .39 

 

Egger’s test:  P =0 .13 
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APOE genotype status 

2.2.3.4 APOEε4 allele enrichment in EOAD groups  

A significantly higher proportion of EOsAD participants were carriers of the APOEε4 allele 

relative to their controls (Table 2.1B and Figure 2.4J). There was no significant difference in 

APOEε4 prevalence between ADAD and controls (Table 2.1B and Figure 2.4K). The overall 

presentation of complete meta-analysis is provided in the illustration shown below (Figure 2.6). 

 

 

Figure 2.6: A systematic overview of the meta-analysis: (a) The healthy brain has intact neurons and in 

Alzheimer’s brain, tau protein is subjected to various post- translational modifications that reduce the affinity of 

tau for microtubules and instead, they assemble to form aggregates. Microtubule depolymerization causes loss of 

axonal integrity, leading to degeneration and eventually cell death, which is anatomically visualized as a shrunken 

brain in AD cases. (b) This meta-analysis is based on the blood and CSF based biomarkers in subtypes of early 

onset AD. (c) This section is highlighting the major findings from the meta-analysis and systematic review. This 

figure was prepared by Ms Kaur using molecular subcomponents provided in Biorender software (Toronto, 

Canada). 

2.4 Discussion 

I performed a comprehensive meta-analytic review of all currently available protein/peptide 

CSF and blood biomarkers of early onset AD subtypes and explored these early onset AD 

phenotypes in the context of quantified biomarkers. I found that the hallmark proteins (Aβ and 

tau) showed similar patterns in the CSF, both qualitatively and quantitatively between EOsAD 

and ADAD, which was unanticipated since the expression of pathology, as reflected in classical 
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biomarkers, might be expected to be less in the EOsAD group, which had no family history of 

EOAD. Instead, I found that genetic testing ruled out even in the small proportion of APP and 

PSEN mutations. This outcome suggests that an ADAD-like phenotype, without the 

accompanying genotype, occurs in EOsAD, a group representing the majority of early-onset 

cases, but has received surprisingly little attention to date. In addition, other potential emerging 

markers of neurodegeneration and inflammation, including CSF NfL, IgG and IL-6, were 

reported in EOsAD. However, the relative paucity of additional biomarkers and low numbers 

of reported studies was notable, particularly for the relatively accessible serum/plasma sample 

type.  

 

Aβ peptide is a hallmark of AD, whose complex lifecycle not only produces a plethora of chain 

length variants such as Aβ38, Aβ40, Aβ42, Aβ43
16 but also multimeric aggregate structures such 

as oligomers, fibrils and plaque17. Of these, the 42-amino-acid peptide (Aβ42) is the most 

studied variant due to its enhanced tendency to aggregate64. This process, known as the sink 

model, results in lower levels of soluble Aβ42 as plaque/insoluble levels increase19. Our meta-

analysis results, which show a drop in CSF Aβ42 in all EOAD variants (Table 2.1), are 

consistent with this model. These observations are consistent with previous meta-analytic data 

on LOAD CSF Aβ42
21. Interestingly, the lowest pooled SMD (highest drop in Aβ42) was for 

ADAD symptomatic mutation carriers (sMCs) and the EOsAD subset with no APP, PSEN1 or 

PSEN2 mutations. The decreased level of CSF Aβ42 in ADAD asymptomatic mutation carriers 

(aMCs) was almost equal to EOsAD and suggested an EOsAD aetiology similar to ADAD. 

There were few studies of other CSF Aβ peptides in the context of EOAD. However, a 

significant reduction in the level of Aβ43 in EOAD patients relative to controls has been 

reported192.  

 

Tau is one of the most abundant proteins in neurons, with a role in stabilizing the structure of 

microtubules26. In AD, tau is hyperphosphorylated, dissociated from microtubules and can be 

detected in CSF at an increased level relative to healthy controls28. Our meta-analyses showed 

a significant increase in both T-tau and P-tau in all subtypes of EOAD. The pooled SMD of T-

tau was significantly higher in ADAD sMCs as compared to EOsAD, likely reflecting a higher 

degree of neuronal damage in ADAD as compared to the EOsAD variant. The EOsAD subset 

with confirmed absence of APP, PSEN1/PSEN2 mutations had higher levels of both tau 

variants than the entire EOsAD group. While the significance of this is not entirely clear, it 

suggests the possibility that the EOsAD group has mixed aetiologies. Tau can be 
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phosphorylated on various sites; however, most assays report phosphorylation of thr181 and 

ser199 specific epitopes because of the higher diagnostic accuracy of these epitopes to 

differentiate AD from healthy controls29. While our meta-analysis results confirm that these 

two specific epitopes discriminate between control and AD participants, neither the SMD nor 

the p-values were higher than the general P-tau measure, suggesting a slight advantage in using 

these specific phospho-epitopes. In LOAD, several studies have reported other tau epitopes; 

thr231 was detected before the formation of paired helical filaments29, whereas thr181 and 

ser199 were considered late events in AD30.  

 

According to some models, neurodegeneration is more closely linked to symptomatology as 

compared to Aβ pathology193. A handful of other neurodegeneration and inflammation 

markers, including NfL, albumin, IL-6 and IgG that I identified as suitable for meta-analysis, 

were reported in only 2 to 4 studies each. CSF NfL was significantly upregulated in EOAD 

cases compared to healthy controls. NfL is the light chain protein of neurofilament, which 

makes up neurofilament bundles with counterparts that determine the axonal calibre and 

conduction velocity21. NfL is an integral component of synapses, and loss of synapses may 

account for the increasing level of NfL in blood and CSF194,195.  

 

Furthermore, recent studies have established a correlation between blood and CSF NfL in late-

onset AD196, making it a potentially helpful biomarker for neuronal apoptosis. Like tau, NfL is 

associated with the neuronal cytoskeleton, and interestingly, I found a similar increase in the 

pooled SMD of CSF NfL in EOsAD relative to controls (additional data provided in the 

published article). These findings relating to CSF levels of NfL in EOsAD suggest that 

additional studies in both CSF and serum/plasma are warranted since an additional potential 

biomarker has been identified, even within this narrow range of replicated markers. In addition, 

there are several other wells studied markers of neurodegeneration, such as sTREM2, VILIP-

1, NfH, reported in LOAD79,197, which have not, as yet, been explored in EOsAD and ADAD. 

 

A particularly notable feature of our EOAD meta-analysis was the lack of replicated data on 

blood biomarkers. Blood biomarker studies are more prevalent in LOAD21,198, whereas the 

EOAD biomarkers were assayed almost exclusively in CSF (Table 2.1). This may reflect 

clinical practice, whereby CSF may be collected more often in EOAD cases and less frequently 

in LOAD.  Assay of CSF Aβ and tau for the diagnostic evaluation of dementia has recently 

been recommended by an international consensus group199, but the invasive nature of a spinal 
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tap makes it unlikely that it will be taken up widely200. For plasma Aβ42, a comprehensive meta-

analysis was performed reporting a significant decrease in plasma Aβ42 in clinically diagnosed 

LOAD cases198. 

 

In contrast, our meta-analysis of ADAD (all MCs) shows a significant increase in plasma Aβ42, 

likely reflecting the higher peptide level in the plasma due to increased expression of Aβ42 or 

cleavage of APP at this earlier age group, in line with the Aβ sink model. Previous studies have 

reported that an increase in plasma level of Aβ42 correlates with the risk of AD development. 

With disease progression, the reduction of the Aβ42 level over time has been recorded in 

plasma, reflecting deposition in plaque201,202. In this younger cohort, plasma clearance may be 

more efficient. There were insufficient studies on plasma Aβ42 in EOsAD, so a meta-analysis 

was impossible. Our meta-analysis on EOAD identified several studies reporting serum/plasma 

albumin and IgG in which a significant increase of IgG was observed (Table 2.1). These 

observations reflect findings in previous studies showing increased levels of inflammation 

mediating proteins and pro-inflammatory IgG, which enhance the inflammatory activity in 

blood and represent a high-risk factor for AD203. In ADAD, serum NfL is emerging as a 

promising biomarker in the literature, but I could not perform a meta-analysis on NfL due to 

an insufficient number of studies. However, a longitudinal study reported that an elevated level 

of NfL could differentiate mutation carriers from non-mutation carriers much earlier than 

absolute NfL levels assayed in cross-sectional studies189.  

 

Interestingly, discovery-based approaches have the potential to quantify 100s-1000s of 

proteins. While the majority are unlikely to be significantly changed in AD, the few that do 

change may provide critical diagnostic tools and insight into disease mechanisms. For example, 

plasma protein profiling of symptomatic and asymptomatic ADAD patients from the DIAN 

cohort reported significant differential expression of seven and sixteen proteins in aMC and 

sMC, respectively. These proteins included complement and inflammation family members, 

which are known to exacerbate the pathogenic processes of AD204. Promisingly, an essential 

role for complement proteins in neuronal pruning has recently been identified205,206. 

 

The APOEε4 allele is the strongest genetic risk factor for LOAD15. In LOAD, APOEε4 is 

associated with increased Aβ levels and risk of Aβ accumulation at an earlier age, thereby 

accelerating the clinical onset of AD207. Furthermore, 50% of APOEε4 homozygous carriers 

have been diagnosed AD by 70 years of age15. Less is known about APOEε4 allele carrier 
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enrichment in EOAD. I identified a significant enhancement in the level of the APOEε4 allele 

in EOsAD compared to healthy controls: 43% and 30%, respectively. By contrast, the ADAD 

group had a similar APOEε4 allele expression level compared to healthy controls, 28% and 

29%, respectively, indicating no significant difference (Table 2.1B). The level of reported 

APOEε4 allele enrichment in LOAD compared to controls was in the range of 13.7-

40%13,14. Our meta-analysis shows EOsAD APOEε4 allele enrichment within the range of that 

reported for LOAD, and therefore enrichment of this allele does not account for the earlier age 

of onset of EOsAD relative to LOAD. Previous studies indicate a dose-dependent effect of 

APOEε4 on CSF Aβ42 level in LOAD208. However, insufficient study numbers were available 

to explore an APOEε4 dose effect for EOAD. EOsAD cohorts may represent an opportunity to 

explore novel genetic and lifestyle risk factors responsible for the earlier onset of symptoms in 

EOsAD.   

 

2.5 Limitations  

Some of the limitations of this study include the lack of longitudinal data, small sample size 

cohorts, and fewer studies that include analysis of plasma samples. For ADAD studies, the 

majority of the meta-analyses were based on two cohorts: DIAN and the Colombian 

Alzheimer's Prevention Initiative. Considerable heterogeneity was observed across studies, 

probably due to variation in study characteristics. I managed this in part by using a random-

effects model. Only 5 out of our 28 meta-analyses had sufficient study numbers to assess 

publication bias. The majority of EOsAD studies (16 out of 20) did not perform genetic 

analyses to eliminate APP/PSEN gene mutations and relied purely on the absence of family 

history. Interestingly, those 4 EOsAD studies in which APP/PSEN gene mutations were 

eliminated had lower levels of Aβ42 and higher levels of all tau variants, suggesting an ADAD-

like phenotype without the ADAD genotype, indicating that investigation of additional "non-

classical" drivers of EOsAD is warranted. Furthermore, study numbers of particular biomarkers 

(i.e., CSF IL-6, IgG, and albumin) are low, so in some cases, insignificant results could be a 

reflection of insufficient numbers of published studies, again reinforcing the need for additional 

biomarker work, particularly for genetically well-characterized EOsAD.  
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2.6 Conclusions 

Our meta-analysis of established biomarkers has confirmed the quantitative difference between 

two subtypes of EOAD vs corresponding control groups. CSF NfL and IgG were statistically 

significant and emerging as potential markers of neurodegeneration and inflammation to 

differentiate EOsAD from healthy individuals. EOsAD is a relatively neglected AD subtype of 

unknown etiology and therefore represents an opportunity to explore as yet unidentified genetic 

and/or lifestyle factors that contribute to earlier AD onset. To date, the range of biomarkers 

studied have been heavily focused on CSF, but for establishing promising blood tests, more 

research is needed before any of these could replace CSF or imaging tests. Generally, EOAD 

biomarker research is limited to the peptides considered hallmarks of AD pathophysiology, 

whereas screening a broader spectrum of analytes (e.g., proteomic profiling, lipids, RNA, 

metabolites) and longitudinal analysis is necessary to track the progress of disease pathology. 

The studies I included for meta-analysis was based on a dichotomization of age. However, 

studying age as a continuous variable in cohorts might provide insight into the trajectory of 

biomarker change with age and stage of the disease. Similarly, a longitudinal study design 

would offer greater statistical power to identify biomarker changes over time. These are 

important considerations for the planning and design of new studies. Understanding 

pathophysiology and identifying additional preclinical biomarkers can be facilitated using 

discovery-based "omics" approaches.  
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Chapter 3 

 

Extending the Depth of Human Plasma Proteome Coverage 

Using Simple Fractionation Techniques 

 

The majority of the content of this chapter has been 

published: 

 

 

Gurjeet Kaur, Anne Poljak, Syed Azmal Ali, Ling Zhong, Mark J. Raftery, and 

Perminder Sachdev. Extending the Depth of Human Plasma Proteome 

Coverage Using Simple Fractionation Techniques. Journal of Proteome 

Research 2021 20 (2), 1261-1279. DOI: 10.1021/acs.jproteome.0c00670 

 

See Appendix for the complete publication 
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3.1 Introduction 

Human blood, plasma and serum are clinical samples commonly used for diagnostic analyses 

as they are minimally invasive sample types, already in routine clinical use, and in direct 

contact with damaged tissues, and therefore frequently reflect downstream effects of disease 

processes209-211. These sample types contain a diversity of analytes, such as metabolites, lipids 

and proteins/peptides, of which proteins/peptides are commonly used as biomarkers, since 

arguably, they represent the full diversity of cellular machinery, are the drivers of all 

biochemical pathways and are the functional counterpart to the genome. Consequently, they 

are the most direct and specific cellular and physiological homeostasis or change targets. 

Immune assays, such as enzyme-linked immunosorbent assay (ELISA), are commonly used 

for quantitative analysis of individual proteins for disease diagnosis. However, they are 

inherently targeted approaches helpful in aiding the diagnosis of diseases where the 

pathophysiology is understood but are of limited use for discovery-based/data-driven 

investigations, even when used in multiplexed assays212. Furthermore, antibody-based 

approaches frequently lack specificity for proteins and/or isoforms. Consequently, mass 

spectrometry (MS)-based technology is not only the gold standard for targeted quantification 

but is the only approach which allows unbiased data-driven investigations. In clinical research, 

mass spectrometry is, therefore, a method of choice for both absolute and relative quantification 

of proteomic expression changes, exploration of disease mechanisms and biomarker discovery 

in plasma213. However, the extended dynamic range of protein abundance in plasma, reported 

to range between 9-13 orders of magnitude, makes MS-based plasma proteomics extremely 

challenging210,214. 

 

Over the last three decades, proteomics technologies have evolved and improved so that 

identification of 100s-1000s of proteins in various tissue samples is now routine. Nonetheless, 

relatively few biomarkers identified by proteomics techniques have progressed to use in 

clinical practice215-217. This is partly due to the lack of robust, reproducible, and high-

throughput proteomics workflows to determine and validate potential biomarkers in large 

cohorts. 

 

Some low abundance proteins (LAP) may be transient in the plasma due to variations in the 

disease state, temporary tissue damage, specific diet and other environmental factors and may 
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remain undetected.  Furthermore, the overwhelming presence of high abundance proteins 

(HAP), which represent >99% of total plasma protein mass218, can obscure lower abundance 

components from detection by mass spectrometry. Plasma prefractionation methods, therefore, 

play a crucial role to overcome the complexity of plasma samples, providing the opportunity 

to identify low abundance proteins219. More importantly, tissue-specific proteins, which are 

more likely to be clinically relevant, are likely to be of medium to low abundance, and therefore 

are more likely to be identified in fractionated plasma. Various standard plasma 

prefractionation approaches have been reported in the literature, including affinity enrichment, 

immunodepletion, and a variety of chromatographic and electrophoretic fractionation 

techniques. In general, the greater the plasma proteome coverage, the more complex and time 

consuming the prefractionation workflow220-222, making most methods impractical for large 

clinical studies.  

 

The objective of this study was to identify a fractionation strategy which would provide good 

plasma proteome coverage and identify tissue-specific proteins while being compatible with 

the higher sample throughput required of many clinical studies.  Using a two-step approach, I 

(1) compared high abundance protein depletion (immunoaffinity columns; Hu6, Hu14) vs low 

abundance protein enrichment (ProteoMiner combinatorial peptide ligands), followed by (2) 

further fractionation of the low abundance proteins using chromatographic and electrophoretic 

approaches (C18 column and 1D SDS PAGE respectively). 

 

3.2 Experimental procedures 

To optimize plasma fractionation methodology, whole blood was collected by venepuncture 

from two healthy volunteers, one male and one female, within the 35-55-year age range.  A 

single pooled sample was used to compare workflows and avoid confounding the method 

comparisons by biological variation. Blood was collected into EDTA containing tubes, 

centrifuged (2000g, 20min, 4oC), and the plasma transferred and pooled into a clean 15mL 

polypropylene tube. To minimize freeze-thaw cycles, plasma aliquots were prepared (250–500 

µl) and stored at -80oC till required. The UNSW Human Research Ethics Committee approved 

a protocol for blood collection. The blood samples used here were collected from volunteers, 

and both subjects gave written informed consent.  
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3.2.1 Depletion of high abundant proteins using immunoaffinity-based Columns: 

Human 6 (HU6) and Human 14 (HU14) columns 

 

I started my experiments with a total volume of 900 µl of plasma which was divided equally 

into 3 vials (each 300 µl), one for each of the three prefractionation techniques (Hu6, Hu14 and 

ProteoMiner). Depletion of 300 µl of crude plasma using antibody-based immunoaffinity 

columns HU6 (4.6 x 50 mm, Agilent, CA) and HU14 (4.6 x 100 mm, Agilent CA) was achieved 

as follows.  

 

3.2.1.1 Plasma preparation for HU6 column: 

300 µl plasma was diluted with 1200ul of Buffer A (1:5 dilution, as recommended by Agilent 

tech), and each injection was 100 µl on HU6 column (composed of 20 µl plasma+80 µl Buffer 

A). This step eliminates approximately 85-90% of total plasma protein by binding the six high 

abundance plasma proteins (albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin).  

3.2.1.2. Plasma preparation for Hu14 column  

300 µl plasma was diluted with 900ul of Buffer A (1:4 dilution, as recommended by Agilent 

tech), and each injection was 120 µl on HU14 column (composed of 30 µl plasma+90 µl Buffer 

A). This step eliminates approximately 94% of total plasma protein and contains antibodies to 

the fourteen high-abundance plasma proteins (albumin, IgG, antitrypsin, IgA, transferrin, 

haptoglobin, fibrinogen alpha2-macroglobulin, alpha1-acid glycoprotein, IgM, apolipoprotein 

AI, apolipoprotein AII, complement C3 and transthyretin). Plasma was diluted and filtered 

using spin filters (Corning Costar Spin-X centrifuge tube filter, 0.45 µm Cellulose Acetate, 

MERCK, Germany) before chromatography to remove any particulates. Chromatography and 

fraction collection was performed on an Agilent 1290 UHPLC system (Agilent, Santa Clara, 

CA). Binding buffer (A) and elution buffer (B) were commercial proprietary products, and the 

LC methods used were based on the manufacturer’s instructions (Agilent, Santa Clara, CA).  

Highly abundant proteins were retained on the columns while buffer A was in use, and the 

flow-through proteins represented the low abundance protein fraction. The high abundance 

proteins were then eluted with buffer B. The low abundance protein fractions were processed 

for further fractionation and LC-MS/MS analysis. 
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3.2.1.3 Enrichment of low abundant proteins using bead-based depletion 

I sought to compare high abundance protein depletion against a low abundance protein 

enrichment approach, using beads bound to complex mixtures of combinatorial peptide ligands 

ProteoMiner Beads; BIO-RAD, Berkeley, CA). The Proteominer bead preparation consisted 

of 500 μl bead slurry (20% beads in aqueous ethanol, 20% v/v), resulting in 100 μl settled bead 

volume. Plasma (300 μl) was used for depletion, with the manufacturer manual recommending 

200 μl of plasma sample with a protein concentration of 70 mg/ml. However, our plasma 

sample had a ~50mg/mL concentration, so I adjusted the volume up. The beads and plasma 

mixture was incubated for 2 h at ambient temperature on a rotation platform. The sample was 

then centrifuged (1000×g, 1 min, ambient temperature), and the flow-through fraction 

containing the unbound proteins was collected for further analysis. Based on the manufacturer's 

protocol, I performed three washing steps using a wash buffer, discarding the solution from 

each wash step. Therefore, the unbound fraction does not include any proteins that may have 

been present in the wash steps. In addition, this approach reduces the dynamic range of plasma 

proteins since low and high abundance proteins have a similar chance of being bound to their 

respective ligands, which are distributed in similar proportions. As a result, excess high 

abundance proteins are washed away once they have reached their ligand saturation point, 

whereas low abundance proteins may never saturate their ligand and are enriched within the 

sample. Both bound and unbound (flow-through) samples were further fractionated (C18 or 

SDS PAGE) and analysed by LC-MS/MS.  

 

Depleted plasma proteins from the above approaches were concentrated, and the buffer was 

exchanged to 50 mM ammonium bicarbonate back to the original volume (300 µl) using 

Amicon 3kDa concentrators (Millipore, Billerica, MA). Protein concentrations of depleted 

plasma were determined by use of a nanolitre scale spectrophotometer (DeNovix DS-11+, 

POCD, Sydney, Australia) used in microvolume mode with 2 µl of each 3kDa concentrated 

sample, 280 nm wavelength, and using the extinction coefficient of BSA (E1% (g/100mL) = 

6.67). The samples were retrieved from the DeNovix sample surface following absorbance 

reading to minimize total protein loss. The step was repeated three times, and mean values were 

used as the final sample concentration. To compare the protein profiles across all methods, 50 

µg of concentrated plasma from all methods were used as the starting point for further 

fractionation approaches. All subsequent fractionations were each performed in duplicate, 

providing two technical replicates for each fractionation approach. In this way, the depleted 
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plasma samples from each of the HU6, HU14, PB and PUB steps (outlined above) was 

fractionated in duplicate by each of the 1D SDS PAGE and C18 methods (explained below). 

Therefore, each step generated 24 fractions x2, and all were analysed separately by LCMS/MS 

using all 8 prefractionation methods, each using an identical pooled aliquot of depleted plasma. 

 

3.2.1.4 Electrophoretic fractionation of low abundance proteins using 1D-SDS PAGE 

Equal amounts of protein samples from crude and depleted plasma (50 µg), obtained from low 

and high abundant fractions of HU6, HU14, ProteoMiner bound (PB) and ProteoMiner 

unbound (PUB) methods were prepared in duplicate and diluted in 5 µl LDS sample buffer (4x 

NuPAGE, Invitrogen, USA), 2 µl reducing agent (10x NuPAGE, Invitrogen, USA), and 

deionized water to make a final volume of 20 µl. Samples were heated for 10 minutes at 70°C, 

and proteins were separated on NuPAGE 4-12% Bis-Tris midi gels (Invitrogen, USA) using 

1X SDS PAGE running buffer and the following electrophoretic parameters; voltage 200V, 

current  200I for 54 min. (NuPAGE, Invitrogen, USA). Gels were then stained223 (colloidal 

Coomassie G250). After destaining, the separated protein lanes were cut into 24 equal-sized 

gel bands using a gel cutter tool with a 24-lane blade (Gel Company Inc, CA, USA) and placed 

into 24 vials for in-gel trypsin digestion.   

 

3.2.1.5 In-gel trypsin digestion 

In-gel digestion was performed by adaptation of previously published approaches224. Prior to 

performing In-gel digestion, excised gel bands (duplicate gel lanes/depletion method) were 

destained by incubating in 100mM ammonium bicarbonate/acetonitrile (1:1, 200 µl) overnight 

at room temp. Proteins were then reduced in an aqueous solution of 100mM ammonium 

bicarbonate containing 100mM DTT (100 µl) and incubated at 37° C for 1 hour. Proteins were 

alkylated using 20 µl of 200mM iodoacetamide (IAA) and incubated at 37° C for 30 min. The 

reduction/alkylation solution was decanted, and the gel bits were further washed using 100% 

acetonitrile to remove DTT and IAA reagents. Tryptic digestion (Promega, sequence grade 

modified trypsin, USA) was performed (10 ng/2 µl) in 100 µl 10mM ammonium bicarbonate 

at 37° C for ~18hrs. Formic acid (0.1%, 20 µl) was added and incubated at ambient temperature 

(10 min.), followed by the addition of 100% acetonitrile (50 µl). The extracted peptide solution 

was transferred to LC vials (Agilent Technologies, USA) and dried using a centrifugal 

evaporator (SpeedVac, Thermo Fisher Scientific, USA). Peptides were redissolved in 5 µl of 
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0.1% heptafluorobutyric acid containing 1% formic acid and were then ready for LC-MS/MS 

analysis. 

 

3.2.1.6 In-solution protein digestion 

For chromatographic peptide fractionation, proteins were digested in situ using 50 μg of initial 

protein sample from all depletion methods in duplicate. Proteins were reduced by adding 2 µl 

of tris-(2-carboxyethyl) phosphine (TCEP) and incubated for 60 min at 60° C. Proteins were 

further alkylated using 1 µl of 200mM iodoacetamide (37mg IAA/mL), vortexed, spun briefly 

and incubated at ambient temperature for 10 min. The sample pH was checked and adjusted to 

pH 7-9 if necessary, then trypsin was added (4.4 µg/10L) (Promega, sequence grade modified 

trypsin, USA) and incubated at 37° C for ~16hrs. The extracted peptide solution was transferred 

to LC vials (Agilent Technologies, USA) and dried using a centrifugal evaporator (SpeedVac, 

Thermo Fisher Scientific, USA). Peptides were redissolved in 5 µl of 0.1% heptafluorobutyric 

acid containing 1% formic acid and were then ready for LC-MS/MS analysis225. 

3.2.1.7 Chromatographic fractionation of low abundance proteins using a C18 column 

(ZORABX extended-C18) 

A binary gradient achieved the chromatographic separation of tryptic peptides; Buffer A 

consisted of 20mM ammonium formate containing 2% acetonitrile (pH 10), and buffer B 

consisted of 20mM ammonium formate containing 90% acetonitrile (pH 10). The 64.5 min 

gradient was started with a 5 min isocratic step of 100% buffer A.followed by several gradient 

steps;0-15% buffer B in 8 min; 15-28.5%  buffer B in 33 min; 28.5-34% buffer B in 5.5 min; 

34-60% buffer B in 13 min. Peptide fractions were collected at 0.6 min time intervals, resulting 

in a total of 84 fractions. These were then concatenated by pooling equally spaced early, mid 

and late fractions, and the pattern repeated to a final number of 24 peptide fractions. The 

concatenation resulted in fractions consisting of peptides across the entire chromatographic 

timespan. The fractions were dried by vacuum centrifugation (SpeedVac, Thermo Fisher 

Scientific, USA), re-suspended in 1% formic acid containing 0.1% HFBA, and were ready for 

LC-MS/MS.  
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3.2.2 Mass Spectrometry  

Technical duplicates of each sample were analyzed using a Q-Exactive Plus mass spectrometer 

(Thermo Electron, Bremen, Germany), using an adaptation of previously published work226. 

Peptide separation was carried out using a nano-LC, Dionex UltiMate 3000 HPLC system 

(Thermo Scientific, Waltham, USA), equipped with an autosampler (Dionex, Amsterdam, 

Netherlands). Peptides (~2μg on-column) were initially captured onto a C18 cartridge (Acclaim 

PepMap 100, 5μm 100 Å, Thermo Scientific Dionex, Waltham, USA), switching to a capillary 

column (25 cm length, 350 μm o.d., 75 μm i.d.) containing reverse phase packing (C18, 

Reprosil-Pur, 1.9 μm, 200 Å, Dr Maisch GmbH, Ammerbuch-Entringen, Germany), placed 

within a column heater (45oC, Sonation GmbH, Germany). Peptide elution involved a 60 min 

run time and a binary gradient of 0 - 45% buffer B, at 200 nL/min.  The binary buffers consisted 

of buffer A (H2O: CH3CN of 98:2 containing 0.1% formic acid) and buffer B (H2O: CH3CN of 

20:80 containing 0.1% formic acid). Mass spectrometer settings were: ion spray voltage 

2000V, capillary temperature 275–300oC, positive ion mode. The method is a shotgun 

sequencing approach, using data-dependent acquisition (DDA), with a survey scan acquired 

(m/z 375-1750) and up to ten multiply charged ions (charge state ≥ 2+) isolated for MSMS 

fragmentation (intensity threshold of 8.0x104, with nitrogen as HCD gas). The auto MS/MS 

acquisition consisted of 10 scans per duty cycle, MS resolution of 30,000 and MSMS resolution 

of 70,000. 

 

3.2.3 Computational Analysis 

Initially, the data processing of the raw files was performed on MaxQuant (version 

1.6.10.43)227 using the Andromeda search engine228. I used the filter of ≥2 unique peptides per 

protein for profiling and quantitation. The UniProt Homo sapiens database (Proteome ID 

UP000005640, Swiss-Prot and TrEMBL) was used with reverse decoy protein sequences (used 

for protein identification false discovery rate estimation) frequent contaminant sequences. The 

default value of precursor mass tolerance (±0.07 Da) for the first search and (±0.006 Da) for 

the main search was applied. Mass tolerance for matching peaks to theoretical MSMS ion series 

was five ppm. Protein identification false discovery rate (FDR) was set to <1% to ensure only 

high-confidence identifications for the peptide to spectra match, protein, and site decoy 

fractions. Enzyme specificity was set to trypsin, with a maximum of two missed cleavages. 

Searches included variable modifications of protein N-terminal acetylation, methionine 
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oxidation, pyroGlu and pyroGln and fixed modification of carbamidomethylation of cysteines. 

The search tolerance used for both peptide precursor match and fragment ions was 20 ppm, 

and only those peptides of more than 6 amino acid residues in length. Peptide spectral matches 

(PSM), peptides and protein were selected based on a false discovery rate (FDR) of less than 

0.01based on a reversed sequence decoy database. Furthermore, only peptides with ≥2 PSM 

were selected following filtering with these criteria. To validate and transfer identifications 

across adjacent fractions and technical replicates, the ‘match between runs’ (MBR) option in 

MaxQuant was enabled, with a retention time window of 0.7 min and an alignment time 

window of 20 min.  

 

All the commonly identified proteins in all methods were quantified for peak area abundance 

within the MaxQuant environment using the MaxLFQ (label-free quantification) algorithm229. 

The MaxLFQ algorithm combines the measured intensities from all matched peptides 

combined into proteins for final abundance data230. Finally, the MaxLFQ values obtained from 

MaxQuant for each protein were statically analyzed in the Perseus environment. This workflow 

of Andromeda →MBR →MaxLFQ → Perseus is frequently used in studies using data-

dependent quantitative proteomics231.  

 

The raw files were also processed through the Trans-Proteomic Pipeline (TPP) version 5.1.0, 

released on 2017-11-03. This software considers additional factors, including the number of 

sibling experiments identifying the same peptide ions, the number of replicate ion 

identifications, sibling ions, and sibling modification states. TPP uses the iProphet algorithm 

to determine protein identification's false discovery rate (FDR). To perform the TPP analysis, 

the LC-MS/MS raw files were first converted to open format mzML files using the 

MSconvertGUI with the default parameters. The Uniprot database and sequence input were 

similar to the MaxQuant search. The 384 LC-MS/MS raw files were processed using three 

search engines; X! Tandem (with the k-score plug-in)232, Mascot and Comet, with all 

parameters kept similar. The PeptideProphet and ProteinProphet algorithms were employed to 

compute the probability scores for peptide and protein identification. The accurate mass model 

in PeptideProphet was used for high confidence peptide identifications233 and a requirement 

that each protein is identified with a minimum of two peptides, each with a peptide probability 

score >99%. All three search engine results were merged and validated using iProphet234. An 

iProphet probability of >0.99 was used as the cutoff for final protein identification235. The total 

sum mapping identified 10 million spectra, but I used only the common peptides representing 
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only the highest confidence data and without a search engine bias. Prior to further data 

processing of our confidently identified protein lists, contaminant proteins and a few remnant 

isoforms (mainly resulting from unreviewed UniProt TrEMBL data) were removed manually.  

3.2.4 Density and Multi scatter plots 

All analyses were performed using a combination of MS Excel 

(https://www.microsoft.com/en-us/microsoft-365/excel), R-language (https://www.r-

project.org/about.html) and Perseus (https://maxquant.net/perseus/) platforms. For density 

scatter plots, and multi scatter plots using gplots and ggplot2, packages in R were employed. 

The correlation was assessed for replicating LFQ intensities using the Pearson correlation 

coefficient. Multi scatter plots are prepared by combining all of the experiments and calculating 

the Pearson correlation of the expression data across methods.  

3.2.5 Hierarchical Clustering (HCA) 

Pairwise comparison of sample distance and similarity analysis was performed using 

Hierarchical Clustering (HCA). The KMeans clustering method was used for all protein LFQ 

intensities and was performed using the Heatmap package in R. The “one minus Pearson 

correlation coefficient” with the average linkage method was employed.  Boxplots were 

prepared using the ggplot2 package in R. 

3.2.6 Volcano plot and Principal Component Analysis (PCA) 

To compare depletion and fractionation approaches with the aim of identifying any significant 

protein fold change across methods, I used Volcano plots and principal component analysis 

(PCA). A two-sided student’s T-test for p-value calculation was used for the volcano plot. The 

test parameter includes the minimum number of 9 valid values in full mode (all groups per 

row). Correction for multiple testing was performed using the Benjamini-Hochberg correction, 

with an FDR of less than 0.05 accepted as significant. I used the KEGG database for pathway 

annotation of the whole plasma proteome, using all 28 pairwise method comparisons, 

encompassing all 3,548 proteins which overlapped across methods. Significant differences in 

protein recovery/identification across methods were accepted with a –Log P value >2.5, and 

these were represented on volcano plots by differential colouring (yellow dots). The PCA 

analysis (plotted in the Perseus environment) was used to determine whether the separation 

methods and technical replicates would be differentiated globally.  
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3.2.7 Human Protein Atlas Mapping 

I used data in the Human Protein Atlas database (https://www.proteinatlas.org/) and the 

3,597confidently identified proteins in our plasma proteome, which also overlapped across 

methods to determine the tissue specificity of each protein. First, confidently identified proteins 

were manually curated against the Protein Atlas lists, identifying tissue expression levels across 

the 51 tissues and/or tissue fractions reported in The Human Protein Atlas. This was done to 

establish the level of tissue specificity of each of the plasma proteins identified. Then, the data 

was collated to represent proteins specific to the 11 human organ systems (digestive, 

circulatory, integumentary, nervous, urinary, skeletal, lymphatic, respiratory, muscular, 

endocrine, and reproductive).      

3.3 Results  

3.3.1 Comparative proteomic data provided by plasma depletion and separation 

workflow 

The 2-step plasma fractionation approaches that I implemented in this study (Figure 3.1A) 

resulted in 8 sample types (Figure 3.1A), each with 24 fractions and 2 technical replicates, 

which were analysed by LC-MS/MS and resulted in 384 raw files, and a total of 2,890,105 

spectra (Table 3.1), of which approximately 25% were assigned to peptides following 

processing with search engines. All raw data files have been uploaded to ProteomeXchange 

(http://www.proteomexchange.org/) with identifier PXD02246. Comparison of the high 

abundance protein fraction and the depleted plasma SDS PAGE profiles showed that 

substantial amounts of the higher abundance proteins were extracted into the Hu6, Hu14 and 

PUB fractions, and the low abundant protein fractions showed a much more complex banding 

pattern, in comparison to undepleted plasma (Figure 3.2). Using computational bioinformatics 

analysis in MaxQuant: search engine, Andromeda, and Trans Proteomics Pipeline (TPP) search 

engine, Mascot, Comet, XTandem, (supplementary data presented in the full paper in the 

appendix). I found that the commonly mapped transitions from all four search engines 

(Andromeda, Mascot, Comet, XTandem) resulted in the identification of 90,237 peptides and 

~4,800 high confidence proteins (Table 3.1). In addition, an average of 8,845 peptides per 

fraction and 22,560 peptides per depletion strategy were identified. A schematic representation 

of the workflows used for methods development is shown in Figure 3.1, and the results are 

summarized in Table 3.1.  

http://www.proteomexchange.org/
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Figure 3.1. Schematic representation: workflow used to optimise plasma fractionation and proteomics analysis. 

(A) Fractionation approaches, (B) LC-MS/MS analysis and data processing. (C) Computational analysis. 

 

Figure 3.2. Representative NuPAGE LDS gel profile of undepleted plasma and the depleted plasma contains low 

abundant proteins (LAP) and high abundant proteins (HAP) plasma proteome using HU6, HU14 and 

ProteoMiner depletion methods (50 g total depleted proteins were loaded per gel lane).  
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Table 3.1: Equivalent amounts of total plasma low-abundance proteins (50 μg) were prepared by three different methods of eliminating high-abundance protein components 

(Hu6, Hu14, and ProteoMiner) and two fractionation approaches (SDS and C18). Two technical replicates were acquired per sample (T1 and T2, with T1T2 representing a 

database search with combined technical replicates). Summarized data on numbers of spectra, peptides, and proteins acquired and identified are shown, including the total 

number of query spectra (all LC-MS/MS spectra acquired, including background and peptide signals), assigned spectra (these are the spectra for which a protein database 

match was identified), and identified peptides (these are the unique plus razor peptides identified). They are fewer than the assigned spectra because frequently, multiple spectra 

for the same peptide are acquired due to the chromatographic peak width often exceeding the delay time set before the same mass precursor is again subject to LC-MS/MS, 

total proteins (the proteins identified for each fractionation approach and each workflow), and the common proteins (proteins that overlap across all workflows). 

Work Flow 

Peptide 

fractionation 

approach 

Number of 

Fractions 

Technical 

Replicate 

Total 

Number of 

queries 

Spectra 

Assigned 

Spectra 

Total 

peptides 

Total Proteins 

per 

Fractionation 

Approach 

Total 

Proteins 

Common 

proteins 

HU6 

(high 

abundance 

protein 

removal) 

SDS 24 Fractions 

T1 279069 90752 13132 4209 

4209 

3597 

T2 282075 82494 12355 4182 

T1T2 561144 173766 15080 4219 

C18 24 Fractions 

T1 111445 27656 8238 3696 

T2 148551 31216 8099 3652 

T1T2 259996 59226 10950 3680 

HU14 

(high 

abundance 

protein 

removal) 

SDS 24 Fractions 

T1 217542 54719 11536 4186  

4252 T2 184648 57803 12139 4125 

T1T2 391084 118476 14971 4190 

C18 24 Fractions 

T1 103220 26985 8068 3819 

T2 107281 22359 6241 3916 

T1T2 210501 49816 9944 4010 

Proteominer 

Bound SDS 24 Fractions 

T1 233641 73377 9949 2813  

3886 T2 217027 61341 9164 2974 
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(low 

abundance 

protein 

enrichment) 

T1T2 450668 134718 11239 3254 

C18 24 Fractions 

T1 94606 19451 5567 3406 

T2 90944 23686 7064 3812 

T1T2 185550 43645 8663 3825 

Proteominer 

Unbound 

(low 

abundance 

protein 

enrichment) 

SDS 24 Fractions 

T1 177590 45221 7774 4191 4285 

T2 204826 49603 7858 3840 

T1T2 382416 95521 9867 4198 

C18 24 Fractions 

T1 217538 47400 6507 4009 

T2 220102 51204 7820 4191 

T1T2 437640 99296 9523 4211 
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The highest number of total proteins (4,219) were identified with HU6 depletion SDS PAGE 

fractionation, and a similar number of proteins (4,190) were identified with the HU14 depletion 

SDS PAGE fractionation approach. The lowest number of proteins (3,297) were identified in 

the PB low abundance proteins enrichment SDS PAGE fractionation method (Table 3.1).  Of 

the ~4385 total proteins confidently identified, the majority are common to all methods, i.e., 

3064, representing ~70% overlap across methods (Figure 3.3A), while the approximately 3000 

were common in both SDS PAGE and C18 fractionation techniques (Figure 3.3B and C). The 

detailed information for all the identified LFQ intensities of 3064 proteins were extracted and 

used for downstream analysis (supplementary data presented in the full paper in the appendix). 

 

 

Figure 3.3. (A) Venn diagram shows 

the protein overlap across all 

depletion methods (HU6, HU14, 

PB, and PUB) for all proteins 

identified with unique Uniprot 

accession numbers. (B) Method 

comparison of proteins with unique 

Uniprot accession numbers using 

the C18 fractionation approach. (C) 

Method comparison of proteins with 

unique Uniprot accession numbers 

using the SDS PAGE fractionation 

approach. (D) Venn diagram 

showing protein overlap across all 

depletion methods together (HU6, 

HU14, PB, and PUB) for proteins 

with both unique Uniprot accession 

numbers and gene symbols. (E) 

Comparison of proteins identified 

with unique Uniprot accession 

numbers and gene symbols using 

the C18 fractionation approach. (F) 

Comparison of proteins identified 

with unique Uniprot accession 

numbers and gene symbols using 

SDS PAGE fractionation. 
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3.3.2 Technical performance across workflows 

Technical replicates were highly correlated across all eight methods, with an average Pearson 

correlation coefficient of r = 0.90, and density scatter plots of technical replicates are shown in 

Figure 3.4. While the within method technical replicate correlations are high, the cross-method 

correlations are lower. A detailed description is provided in the multi-scatter correlation plot 

(Figure 3.5).  

Figure 3.4. Density scatter plots of technical replicates for each of the eight methods, with a density color scale 

showing areas of higher and lower data density (blue and green respectively) Pearson correlation are indicated 

as r values on each plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Multiscatter plot 

depicting the cross-

correlation of all the methods 

among each other. 

 

 

 



Extending Plasma Proteome Coverage Chapter 3 

78 

 

Box plots showing the distribution and variations of the LFQ intensities in all 16 analyses (8 

methods, each with 2 technical replicates Figure 3.6A. The line within the box denotes the 

median value, the upper and lower ranges of the box indicate the 5 and 95 percentiles of the 

intensities. The dots above the box plots are outliers). Hierarchical clustering analysis (HCA) 

of the 16 analyses resulted in the formation of the 8 clusters, with associated technical replicates 

grouped most closely, as shown in Figure 3.6B. Dendrogram based hierarchical relationship 

(Figure 3.6B) and similarity matrix analyses (Figure 3.6C) showed the close association of 

protein expression data between the following method pairs: HU6 SDS PAGE and HU14 SDS 

PAGE, HU6 SDS PAGE and PB SDS PAGE, HU6 SDS PAGE and PUB SDS PAGE, HU14 

SDS PAGE and PB SDS PAGE, PB SDS PAGE and PB C18.   

Figure 3.6. A. Box-dot plots of LFQ intensity of all 16 experimental runs. The line within the box denotes the 

median value, the upper and lower ranges of the box indicate the 5 and 95 percentiles of the intensities. The dots 

above the box plots are outliers: B. Hierarchical Cluster analysis and heat map for the 3597 proteins common to 

all methods. The k means algorithm was used to identify protein clusters. C. The similarity matrix and heat map 

were constructed using the Pearson correlation values of the 16 methods, clustered based on the k means 

algorithm.  
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3.3.3 Comparison of different pre-fractionation and separation techniques 

I then compared the LFQ intensities merging the technical replicates to compare the C18 and 

SDS PAGE separation techniques (Figure 3.7). In each case, the relative peak intensities (LFQ 

intensity) profile is shifted to the right for the SDS PAGE relative to the C18 fractionation 

methods, indicating greater peak intensity/abundance in the SDS PAGE methods. This 

observation is also recapitulated in Table 3.1, which shows higher numbers of spectra, peptides 

and proteins for most SDS PAGE methods compared with C18 methods. Almost equal LFQ 

intensities were observed in the PB and PUB fractions, indicating that a substantial number of 

proteins were present in both fractions. The density overlay also shows similar signal 

intensities of the proteome, indicating that the number and intensity of proteins substantially 

overlap in the PB and PUB fractions.   

 

Figure 3.7. Juxtaposed LFQ intensities for pair-wise comparison of C18 vs SDS PAGE fractionation using the 

following initial depletion approaches; A. HU6 B. HU14 C. ProteoMiner Bound (PB) D. ProteoMiner Unbound 

(PUB). 

3.3.4 Principal Component Analysis (PCA)  

PCA was performed to explore the degree of differentiation or similarity between technical 

replicates and across methods. The first and second principal components explained 47.8% and 

12.9% of data variability, respectively. The PCA results show that the technical replicates 
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cluster together as might be expected, and all methods are discriminated from one another 

(Figure 3.8A). However, closer positioning of specific methods on the PCA plot is observed, 

particularly in the principal component 1 (PC1) dimension, for the following method pairs; 

HU6 SDS PAGE and HU14 SDS PAGE, HU6 C18 and HU14 C18, and PB C18 and PUB C18 

(Figure 3.8A). A sigmoidal-shaped plot was obtained when I ranked proteins based on the PC1 

score (Figure 3.8B), with a long flat section extending across most proteins (ca protein rank 

200 – 3500). This indicates that variability across methods was constant for the majority of 

proteins. In contrast, a few proteins had extremely low variability across methods (curve tail 

facing upwards on the far right), and a few proteins had higher variability across methods 

(curve tail facing downwards on the far left). Members of two large families of proteins, 

apolipoproteins and the serpin proteases, are marked on the PC1 plot (Figure 3.8B), and I note 

that the level of PC1 variability across methods seems to be a function of protein concentration; 

the higher concentration plasma proteins (APOA2, APOC4-APOC2, APOC1, SERPINA1, 

SERPINF2, SERPINA6) are detected at the higher rank (right side of the curve), and lower 

concentration plasma proteins (APOH, APOB, APOA1, SERPINB1, SERPINE1, 

SERPINA10) appear in the lower rank (left side of the curve) Figure 3.8B. I also ranked 

proteins for each depletion method based on their LFQ intensities together and separately 

(Figure 3.10) and annotated the plots with 9 proteins whose protein concentration in plasma is 

known. This concentration range spans from low pg/mL to low mg/mL, representing ≥9 orders 

of magnitude of concentration. Further, I compared the top 100 dynamic range of proteins in 

all depletion methods using Venn diagrams to find the number of overlapping proteins in C18 

and SDS PAGE, and I found ≥70% protein overlap except HU14, which showed 57% (Figure 

3.9). 
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Figure 3.8. Principal 

Component Analysis: A. 

The 2D principal 

component analysis 

uses the first two 

principal components 

B. 1D classification of 

all the proteins 

identified in protein 

rank order based on the 

first principal 

component. The long 

flat section in the 

sigmoidal shaped plot 

indicates that the 

variability across 

methods was constant 

for the majority of 

proteins. The level of 

PC1 variability across 

methods seems to be a function of protein concentration, with higher concentration plasma proteins of 

apolipoproteins and the serpin proteases family (APOA2, APOC4-APOC2, APOC1, SERPINA1, SERPINF2, 

SERPINA6) detected at the higher rank (right side of the curve) and lower concentration plasma proteins (APOH, 

APOB, APOA1, SERPINB1, SERPINE1, SERPINA10) appearing in the lower rank (left side of the curve) marked 

APOE in red and SERPIN in purple colour.  

 

 

Figure 3.9. Venn diagram showing overlap of top 100 dynamic range of protein between depletion methods A. 

HU6 C18 and HU6 SDS PAGE, B. HU14 C18 and HU14 SDS PAGE, C. PB C18 and PB SDS PAGE D. PUB 

C18 and PUB SDS PAGE. 
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Figure 3.10. Protein rank abundance plot based on LFQ intensities. A. All experiments together B. the four SDS 

PAGE methods. C. the four C18 fractionation methods, D. HU6 C18, E. HU6 SDS PAGE, F. HU14 C18, G. HU14 

SDS PAGE, H. PB C18, I. PB SDS PAGE, J. PUB C18, K. PUB SDS PAGE, are presented in plots separately. 

The plot's x-axis describes the rank of the proteins, while the y-axis denotes Log2 transformed LFQ intensities. 

Nine proteins whose protein concentration is identified in the literature are marked on the plots, and their 

concentrations are reported in the bottom-right table.  
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3.3.5 Volcano plot analysis 

To evaluate possible systematic bias across methods tested, I performed a volcano plot analysis 

for all combinations of methods, resulting in a total of 28 plots (Figure 3.11). I compared all 

the methods to identify the variations in the statistically significant proteins using common 

proteins across methods. Using the 3,548 proteins common across methods (Figure 3.3), the 

UniProt-based KEGG pathways identified a total of 39 proteins that were significantly 

differentially abundant across methods (Figure 3.11), representing ~1% of the full plasma 

proteome identified here. This slight overall difference across methods is not too surprising, 

given that an identical sample was analysed across workflows, and indicates that significant 

quantitative differences attributable to the different sample workup methods are minimal. 

Furthermore, this number can be taken as a quasi-indicator of protein quantification false 

discovery rate, and at ~1%, it is encouragingly low. One of these proteins is complement C3, 

a protein depleted using the Hu14 column, and it is of interest that this is picked up as one of 

the 39 differentially expressed proteins since the difference, in this case, is likely real and 

attributable to the method used.  

Figure 3.11. Volcano plot Analysis: Volcano plot showing significantly differentially abundant proteins in 

different 28 comparisons of the tested methods. The plots show the difference of LFQ intensities between method 

pairs (x-axis) versus the − log 10 p-values (y-axis) for each protein. The plots were based on n = 3597 proteins, 

and the horizontal bar in each plot represents –Log P value 2.5.  
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3.3.6 Human protein atlas-based tissue annotation. 

To attempt an analysis of the likely tissue origins of the plasma proteins identified in our workflows, 

I searched for tissue specificity of our total 3,597 commonly identified high confidence proteins 

within the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) (29-31). I provided a list of 

51 organs/tissues in which our 3,597 HPA curated proteins can be found in supplementary data 

presented in the full paper in the appendix. To obtain a global overview of the origin of our protein 

list, by specificity to organ systems, the 3,597 proteins were collapsed into 12 categories, which 

included the 11 main organ systems of the human body (Figure 3.12A).  Next, I sought to map the 

brain-specific proteins using the human brain protein atlas. The analysis mapped an average of 

1430 detected proteins in all the ten brain sub-regions, while a specific number of mapped proteins 

are reported in Figure 3.12B. The classification of the elevated regional level of proteins showed 

an average of 14 proteins while the minimum was found in the thalamus (1) and midbrain (2) and 

maximum in pons and medulla (39) and basal ganglia (28). The differential high abundance protein 

identification in our plasma proteins study reflects its high potential for the use of brain-specific 

biomarkers in altered physiological conditions. 

Figure 3.12. A. Table is representing the proteins identified in the plasma proteome, representative of the 11 

central organ systems; nervous system (spinal brain cord, sensory organs): digestive system (mouth, oral mucosa, 

salivary gland, esophagus, intestine, stomach, colon, duodenum, gall bladder): muscular system (heart, skeletal, 

smooth): skeletal system (bone, cartilage, ligaments, tendons): integumentary system (skin, hair, nails, breasts, 

soft tissue, adipose tissue): reproductive system (ovaries, testis, vagina, uterus, cervix, endometrium, epididymis, 

fallopian tube, prostate, seminal vesicle): urinary system (kidneys, bladder): circulatory system (liver, blood, 

blood vessels, bone marrow): endocrine system (pituitary, thyroid, parathyroid, adrenal, pancreas): lymphatic 

system (lymph nodes, spleen, thymus, appendix, tonsil): respiratory system (lungs, nasopharynx). Each of the 

proteins in our combined dataset (3,597 proteins) was manually checked against the Human Protein Atlas (HPA) 

(https://www.proteinatlas.org/) to determine which proteins are most abundantly expressed in 51 different organs. 

B. Similarly, the whole proteins were mapped to identify the brain-specific sub-organs using the Human brain 

atlas (https://www.proteinatlas.org/humanproteome/brain). The regionally elevated proteins identified were 

reported separately, while all the proteins specific to relevant organs were also reported.  

https://www.proteinatlas.org/
https://www.proteinatlas.org/humanproteome/brain/pons%20and%20medulla
https://www.proteinatlas.org/humanproteome/brain/basal%20ganglia
https://www.proteinatlas.org/
https://www.proteinatlas.org/humanproteome/brain
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3.4 Discussion  

The eight methods of plasma high abundance protein depletion and low abundance protein 

enrichment evaluated in this study allow considerable enhancement of typical plasma proteome 

coverage, with a total number of 4413 proteins identified with high confidence using LC-MS/MS 

(data-dependent analysis) and database searching with MaxQuant and TransProteomic Pipeline. 

Plasma is arguably one of the most challenging sample types for this kind of analysis. Nevertheless, 

I have demonstrated that good proteome coverage can be achieved even on this quantitatively and 

qualitatively complex proteome if appropriate sample processing approaches are applied. 

Furthermore, our results compare well with other reported work aimed to maximize plasma proteome 

coverage236,237.  

 

The human genome project has identified approximately 20000-25000 human genes 

(https://www.genome.gov/human-genome-project), while the human proteome draft article reported 

the identification of 17,294 proteins in total using mass spectrometry238. In our analysis, I identified 

a total of 4413 confidently identified proteins across all workflows, representing 3766, 3792, 3470 

and 3682 proteins in the HU6, HU14, PB, and PUB workflows, respectively. Therefore, our estimate 

of the human proteome coverage, as a percentage of the 17,294 proteins reported by Kim et al 2014 

are as follows; total = 25.52%, HU6 = 21.78%, HU14 = 21.93%, PB = 20.06%, and PUB = 21.29%. 

The average coverage I identified is 21.27% with standard error (SEM) = 0.42%. 

 

Of the 4385 total proteins identified, 3064 (ca. 70%) overlap across methods, and excellent 

correlations are observed for all within-method technical replicates, and even reasonable correlations 

for across-method technical replicates were obtained. Consequently, I observe that all eight methods 

performed well in facilitating the identification of high numbers of proteins, and all achieve 

comparable protein identifications to the highest of recent reports detailed in223-235,239,240 Table 3.2. 

However, a recent literature review observed that of ∼180 plasma proteomics studies (conducted 

during 2005–2017), only 50% reported identifying 500 of the most abundant plasma proteins, 

following reanalysis of data sets using PeptideAtlas241. This is likely a reflection of the enthusiasm 

for minimal sample processing since most approaches perform at most a single-step fractionation, 

usually focused on the removal of one or more of the highest abundance proteins. 

 

https://www.genome.gov/human-genome-project
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670#tbl2
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670#tbl2
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Table 3.2. Mass-Spectrometry-Based Plasma Proteomic Studies Allowing Comparison of Methodology, Run Time, and Numbers of Proteins Identified. 

S.No. Title of the study Depletion strategy Number of 

fractions/sa

mples ✕ run 

time for each 

fraction/sam

ple (min.) 

Total run 

time (min.) 

Total number of 

proteins 

PRIDE 

accession 

 1 Affinity Capture Enrichment 

versus Affinity Depletion: A 

Comparison of Strategies for 

Increasing Coverage of Low-

Abundant Human Plasma 

Proteins.  

Affinity-based probes 

based on agarose-

immobilized 

benzamidine (ABA), O-

Phospho-L-Tyrosine 

(pTYR), 8-Amino-

hexyl-cAMP (cAMP), 

or 8-Amino-hexyl-ATP 

(ATP) HU14 Agilent 

technologies 

100 ✕ 76 7600 Total 

proteins=1165 

HU14= 422; 

Proteominer= 

590; ABA=598; 

ATP=449; 

cAMP=436; 

pTYR=404 

PXD020727 

 2 In-depth plasma proteomics 

reveals an increase in 

circulating PD-1 during anti-

PD-1 immunotherapy in 

patients with metastatic 

cutaneous melanoma 

HU14 Agilent 

technologies 
72 ✕ 50 3600 1917 PXD017201 

 3 Blood plasma proteomic 

modulation induced by 

olanzapine and risperidone in 

schizophrenia patients 

 

HU14 Agilent 

technologies 

Patients group 

A 14 ✕ 39 

Patients group 

B 

40✕ 39 

Patients 

group A= 

546 

Patients 

group B= 

1560 

Patients group 

A= 319 

Patients group 

B= 251 

PXD015049 

4 Age-Dependent Changes in the 

Plasma Proteome of Healthy 

Adults. 

ProteoMiner (Bio-Rad 

Laboratories, Hercules, 

CA, USA) 

18 ✕  90 1620 1069 PXD016199  

https://www.ebi.ac.uk/pride/archive/projects/PXD020727
https://www.ebi.ac.uk/pride/archive/projects/PXD017201
https://www.ebi.ac.uk/pride/archive/projects/PXD015049
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5 Glyco-CPLL: an integrated 

method for in-depth and 

comprehensive N-

glycoproteome profiling of 

human plasma. 

ProteoMiner column 

(Bio-Rad Laboratories, 

Hercules, CA, USA) 

6 ✕ 78 468 Healthy control= 

567 

Patients= 537 

PXD016428 

 6 Identification of Potential 

Plasma Biomarkers for 

Abdominal Aortic Aneurysm 

Using Tandem Mass Tag 

Quantitative Proteomics  

TOP 12 depletion kit 

(Pierce, Thermo Fisher) 
27 ✕ 90 2430 169 PXD011309 

 7 Proteomes of paired human 

cerebrospinal fluid and plasma: 

Relation to blood-brain barrier 

permeability in older adults. 

HU14 Agilent 

technologies 
120 ✕ 150 18000 422 PXD009589 

 8 Plasma Proteome Profiles of 

Stable CAD Patients Stratified 

According to Total Apo C-III 

Levels. 

Hybrid SPE(R)‐

Phospholipid, a RP‐C4 

cartridge for solid-phase 

extraction (SPE) 

52 ✕ 17 884 188 PXD005973 

 9 Temporal expression profiling 

of plasma proteins reveals 

oxidative stress in the early 

stages of Type 1 Diabetes 

progression. 

HU14 Agilent 

technologies 
21 ✕ 120 2520 2235 PXD007884 

 10 Discovery of a Potential Plasma 

Protein Biomarker Panel for 

Acute-on-Chronic Liver Failure 

Induced by Hepatitis B Virus 

HU14 Agilent 

technologies 
14 ✕ 90 1260 427 PXD007975 

 11 Proteomics reveals the effects 

of sustained weight loss on the 

human plasma proteome 

 

HU6 Agilent 

technologies followed 

by ProteoPrep20 Plasma 

Immunodepletion Kit 

52 ✕ 45 2340 1294 PXD004242 
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12 Plasma Proteome Profiling 

Reveals Dynamics of 

inflammatory and Lipid 

Homeostasis Markers after 

Roux-En-Y Gastric Bypass 

Surgery 

High Select Top14 

Abundant Protein 

Depletion Midi Spin 

Column 

Multiple Affinity 

Removal Spin Cartridge 

Human 6 

24✕ 45 1080 1928 PXD009348 

13 Multiplexed, Quantitative 

Workflow for Sensitive 

Biomarker Discovery in Plasma 

Yields Novel Candidates for 

Early Myocardial Injury 

IgY14 LC20 followed 

by Supermix LC10 

column 

30✕ 172 5160 4641 Not Submitted 

14 My present study 1. Hu6 C18 

2. Hu6 1D SDS PAGE 

3. Hu14 C18 

4. Hu14 1D SDS PAGE 

5. PB C18 

6. PB 1D SDS PAGE 

7. PUB C18 

8. PUB 1D SDS PAGE 

24 × 60 

(equal run 

time for all 

eight-methods 

combination 

tested) 

1440 1. 3364 

2. 3752 

3. 3778 

4. 3508 

5. 3421 

6. 3157 

7. 3663 

8. 3813 

PXD02246 
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For initial fractionation, both high abundance protein removal (Hu6, Hu14) and low abundance 

protein enrichment (ProteoMiner beads) perform well in reducing the plasma protein dynamic 

concentration range. One advantage of high abundance protein removal over low abundance 

protein enrichment is that the antibody-based immunoaffinity chromatographic techniques 

(Hu6 and Hu14) are highly effective in the specific removal of the highest abundance proteins, 

with minimal non-specific loss of other proteins204. By comparison, the bead-based 

(ProteoMiner) method enriches the lower abundance proteins but also loses much of the 

proteome to the “unbound” fraction (i.e., bead saturation), which risks the loss of quantitative 

data (unless both the bound and unbound fractions are analysed), thereby increasing time and 

complexity for discovery-based quantitative projects. Previous studies have also shown almost 

equal numbers of proteins in bound and unbound fractions, and a large overlap (91% identified 

proteins) was found between crude samples and depleted unbound fractions. Our data support 

these observations242. I identified such a high number of bound proteins due to the extensive 

fractionation strategies I applied post-low-abundance protein enrichment. Most proteomics 

studies that have employed the ProteoMiner kit with no additional fractionation report 

identification of ∼500–1000 proteins223,226,227,243. 

 

While analyzing the ProteoMiner unbound fractions (flow-through), I identified 3,682 total 

proteins in the flow-through, indicating that the fractionation facilitated the identification of 

increased numbers of proteins and demonstrated bead saturation of a vast number of proteins, 

which would be problematic for subsequent quantitative work. To overcome this quantification 

issue, it is possible that the proteins uniquely expressed in the bound fraction but not present in 

the unbound fraction could be compared in a relative quantification approach since these are 

not saturated. Then the saturated proteins could be quantified in the unbound fraction, where 

the depletion via bound fraction may even enhance quantitative differences in case vs control 

comparisons. However, this would add complexity, time and cost to the methodology since 

both fractions would need to be assayed.     

 

In the second phase separations (C18 vs SDS PAGE), higher overall LFQ intensities, and in 

most cases also peak counts, were achieved in the Hu6 and Hu14 depleted samples, with the 

methods which included SDS PAGE fractionation. It is unclear why this should be, but the LC 

fractionation may dilute the peptide fractions, so peptide losses are likely to be more significant 

as the diluted peptides bind non-specifically to tube surfaces. By contrast, SDS PAGE does not 

dilute the sample and traps and concentrates proteins within gel bands until they are liberated 
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during in-gel tryptic digest. The sample volumes are minimal throughout these steps, providing 

fewer opportunities for non-specific binding. These problems with the C18 fractionation might 

likely be overcome using higher protein concentrations to start with and/or low protein binding 

tubes. Here I used a starting amount of 50g of low abundance plasma proteins for all methods 

to directly compare the 8 workflows. The amount of protein used reflects a level of low 

abundance protein that can easily be recovered from a 50 -100L aliquot of plasma. This is an 

important consideration for clinical and biobank samples, where plasma from population-based 

studies can be limited and demand a broad range of studies. Procedures which result in minimal 

sample loss are important in this context. Apart from minimizing sample volume required while 

maximizing data output, sample throughput is another vital consideration if clinical studies are 

completed in a reasonable timeframe. A further advantage of SDS PAGE is that it is inherently 

a higher throughput method than C18 LC because 10s – 100s of samples can efficiently be run 

in parallel during the 1hr gel run time and in a relatively cost-effective manner since the 

equipment for SDS PAGE is considerably less costly than HPLC equipment. The C18 approach 

allows only serial separation, thereby great increasing sample preparation time in direct 

proportion to the number of samples. Furthermore, equipment and running costs are 

considerably lower for SDS PAGE than for HPLC. Our observations are supported by other 

published work demonstrating a throughput advantage of gel-based separation vs LC 

fractionation244.  

 

Identifying and quantifying over 10,000 proteins in samples like tissue and cell lines is possible 

without extensive prefractionation245. This is true because while cellular proteomes are 

complex in terms of numbers of proteins, their concentration range is much less so (likely 103 

-104)53. By contrast, the concentration range of plasma proteins has been reported to be as high 

as 1013 239, with just a handful of proteins representing >80% of the total protein content, while 

1000s of proteins are represented within the remaining <20% fraction. Consequently, plasma 

fractionation is unavoidable to achieve protein coverage of the medium/low abundance proteins 

in plasma, particularly the lower abundance tissue-specific proteins that may reflect the 

disease-specific change. In 2015, Keshishian et al. demonstrated this point by fractionating 

plasma and reported the identification of ~5,000 proteins from 16 plasma samples, using high 

pH reversed-phase separation in combination with iTRAQ 4-plex labelling235. This work 

represents one of the most comprehensive plasma proteomics profiling projects to date, 

utilizing a 3 step procedure of fractionation, including; (1) depletion of the top 14 HAPs (IgY14 

https://elifesciences.org/articles/41608#bib28
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LC20 column), (2) removal of the next ∼50-100 moderate abundant proteins (MAPs) using a 

Sigma-Aldrich Supermix LC10 column, and (3) tryptic digestion of the remaining proteins and 

fractionating by C18 HPLC235. This powerful approach was an excellent demonstration of the 

effectiveness of fractionation to yield high coverage of the plasma proteome. However, the 

methodology is also complex, expensive, time consuming and unlikely to be practical for many 

clinical projects, thereby restricting general utility and replication of results in other 

laboratories. Consequently, cost effective and easily accessible plasma proteomics analysis 

remains a challenge.  

 

Here, the work demonstrates that more straightforward and faster approaches, accessible to 

most general biochemistry laboratories, can yield similarly high proteome coverage. Some 

examples of potential biomarkers which are usually present in plasma at ng/ml concentrations 

were identified in our data, including Superoxide dismutase (SOD2), Ribonuclease 4 (RAB4), 

72 kDa type IV collagenase (MMP2), Alpha-1-antitrypsin (SERPIN) proteins. Among these 

are some proteins with a role in disease, such as RAB4, which protects neurons from 

degeneration in amyotrophic lateral sclerosis (ALS) by stimulating neurofilament formation 

and protecting hypothermia-induced degeneration in mouse embryonic cortical neurons246. 

Another protein identified in our dataset is matrix metallopeptidase 2 (MMP2), which is 

involved in remodelling vasculature, neural progenitor cell migration, and tumour invasion247. 

Some of the lowest low abundant plasma proteins that I identified include Macrophage colony-

stimulating factor 1 (200 pg/mL), P-selectin (120 pg/mL), platelet-derived growth factor 

receptor β (3 pg/mL), and Leptin (4.7 ng/mL), some of which have also previously been 

reported248. 

 

Our study shows that a variety of approaches can achieve the depth of plasma proteome 

coverage249. Two critical points appear to be (a) removal of the relatively few highest abundant 

proteins, which represent >60-80% of plasma total protein, and (b) fractionation of the 

remaining medium-low abundance protein fraction.  Based on the 8 methods evaluated, I 

suggest the following: (1) with a view to subsequent quantification, high abundance protein 

removal is preferable to low abundance peptide enrichment to avoid the bead saturation 

problem; (2) for high throughput where analysis of high numbers of clinical samples is required 

(10s – 1000s), SDS PAGE is a faster approach than C18 as a secondary fractionation approach. 

Consequently, of the variety of methods evaluated here, the HU6-SDS PAGE and HU14-SDS 

PAGE approaches best satisfy all requirements, including narrowing the dynamic 
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concentration range and the resultant depth of proteome coverage, retaining quantitative 

characteristics of the sample and relatively simple, cost-effective and time-efficient workflow. 

There is no doubt that plasma proteomics can provide high confidence diagnostic tools for 

better stratification and monitoring of patient response to treatment212,213,235,249.  

  

3.5 Conclusion 

The primary objective was to design a fractionation approach that would offer plasma proteome 

coverage and identify approximately 4,000 tissue specific proteins. The results demonstrated 

the reliability of fractionation techniques as well as the benefits of gel-based tests over costly 

and time-consuming chromatographic procedures. The results are relevant in plasma 

proteomics research and to the diagnosis of probable AD. In particular, human plasma is one 

of the most extensively utilised tissues in clinical analysis, and plasma-based biomarkers are 

employed for monitoring patient health status and/or response to medical therapy to prevent 

needless invasive biopsy. This is partly because of the complexity of the plasma proteome, 

especially its wide quantitative dynamic range, estimated to be between 9 and 13 orders of 

magnitude between the protein with the lowest abundance and the one with the greatest 

abundance in data-driven plasma proteomics. A key problem is to find methods that may 

accomplish depth of plasma proteome coverage while limiting the complexity of the sample 

workup and increasing the sample throughput. In this study, we have used the Agilent multiple 

affinity removal liquid chromatography (LC) column, the Agilent multiple affinity removal LC 

column, and ProteoMiner to deplete high-abundant plasma proteins or to increase the amount 

of low-abundant plasma proteins. We then used sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS PAGE) and C18 prefractionation techniques. We analysed the 

performance of each of these fractionation procedures in order to determine which method best 

meets the criteria for clinical sample analysis while also providing enough plasma proteome 

coverage and suitable sample yield. Comparing one-dimensional (1D) gel-based 

prefractionation to serial chromatographic separation, we demonstrate that it allows for parallel 

sample processing with no loss of proteome coverage, and that it significantly reduces analysis 

time, which is particularly important for large clinical projects. Additionally, we show that a 

range of techniques may produce comparable levels of plasma proteome coverage, providing 

for method selection flexibility depending on project-specific requirements.  
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Limitation:  

A potential drawback of immunodepletion techniques is the elimination of nontargeted proteins 

by nonspecific interaction with depletion columns or trapped proteins. The bound fraction 

associated with immunodepletion columns comprised nontargeted proteins, the majority of 

which were detected at low levels using spectral counts. This observation is consistent with 

prior findings of IgY-14 columns capturing nontargeted proteins. Our results suggest that 

binding is repeatable for nontargeted proteins acquired at greater quantities. Along with 

continuously depleting targeted proteins and producing little depletion of nontargeted proteins, 

immunodepletion columns significantly increased detection of nontargeted proteins, often by 

roughly 4-fold, based on spectral counts.  

 

Significance:  

This work reveals that a variety of basic prefractionation procedures are capable of achieving 

the depth of coverage required for the plasma proteome. Additionally, the findings indicate the 

reliability of these pre-fractionation procedures and suggest that gel-based methodologies may 

be used in place of costly and time-consuming chromatographic separation, greatly shortening 

the time required for analysis. Additionally, the fact that a variety of methodologies can achieve 

comparable levels of proteome coverage provides flexibility in terms of project-specific 

requirements, such as whether qualitative or quantitative information is sought, the size of the 

project in terms of sample numbers, and the availability of specific laboratory resources. These 

factors are critical in the attempt to speed plasma proteomics research in order to enable rapid, 

reliable, and accurate diagnosis, population-based health screening, clinical research 

investigations, and other clinical activities. 
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Deep proteome analysis of plasma reveals novel biomarkers 

of Alzheimer's disease: A longitudinal study  
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4.1 Introduction:  

Alzheimer disease (AD) accounts for up to 70% of all dementia cases and is the most common 

cause of dementia. Ageing is the primary risk factor for AD; however, there is a poor 

understanding of the biological mechanisms by which the ageing process contributes to AD 

development in some individuals, while others progress to advanced age with relatively little 

AD neuropathology.  

 

The pathogenesis of AD is now recognized to be multifactorial, with dysregulation of various 

cellular and molecular processes contributing to the disease process, including synaptic 

damage, mitochondrial dysfunction, and oxidative stress18,100,250-253. While advancing age is the 

single greatest risk factor for AD254, other factors such as APOE4 allele13, comorbidities such 

as vascular disease255 and lifestyle factors such as head injuries256,257 all contribute to the level 

of AD risk. Early AD manifests clinically as mild cognitive impairment (MCI)154, particularly 

in the case of amnestic MCI, although a clinical diagnosis of MCI often stays stable or even 

reverts to normal and does not always progress dementia258,259. By the time AD manifests as 

dementia, the level of brain pathology may be impossible to revert since substantial neuronal 

cell death has occurred. Identifying biomarkers of transition from normal to MCI (if not earlier) 

might provide a window of opportunity for prevention trials that focus on ameliorating 

symptoms before neurodegeneration progresses to clinically identifiable symptoms. Several 

neuroimaging and CSF based biomarkers for diagnostic evaluation of dementia have recently 

been recommended by an international consensus group199. The major limitations with CSF 

and neuroimaging biomarkers are that they are not likely to be widely adopted for routine use 

or population screening due to their invasive nature, high cost, limited availability and 

requirement of high-level technical skill and training to implement. By contrast, blood is a 

relatively easy fluid to collect, and venepuncture is a routine and commonly performed 

procedure for clinical and research purposes.  

 

Mass spectrometry-based methods represent the only unbiased approach for discovery focused 

proteome analysis. They are rapid, sensitive, can provide both qualitative and quantitative 

information, and for the study of proteins, can also provide information about post-translational 

modifications and protein interactions. The main obstacle has been identifying methods of 

narrowing the extreme dynamic range of the plasma proteome while maintaining sufficient 

methodological simplicity to apply to moderately sized clinical studies. Recent advances in 
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plasma proteomics have identified promising approaches to achieve the depth of plasma 

proteome coverage using prefractionation methods38,249,260. In the current study, I used a two-

step plasma fractionation approach; HU14 removal of high abundance plasma proteins, 

followed by parallel 1D SDS/PAGE of the low abundance protein fractions, based on our 

previously published method38. This workflow facilitated extended plasma proteome coverage 

unbiased, allowing identification of biologically meaningful longitudinal and cross-sectional 

proteome changes in individuals progressing through stages of cognitive impairment over the 

decade in which greater risk commences (65-75+ years). A set of potential protein biomarkers 

might facilitate the development of precise tests for detecting the disease at the early stages. 

Furthermore, these markers may help identify unexpected biological pathways and new 

potential therapeutic targets for future development.  

4.2 Materials and Methods:   

4.2.1 Experimental procedures  

Cohort, plasma and experimental proteomics design 

Plasma samples were obtained from the Sydney Memory and Ageing Study (MAS) from 

participants aged 70-90 years261. The baseline sample was collected (Wave 1) between 

September 2005 and November 2007, at which time all participants were cognitively normal 

(n = 33). Participants were followed up for six years (Wave 4), with 11 participants remaining 

normal and the remainder progressing to MCI and AD (n=11 each). The diagnosis was by 

consensus and met the NIA-AA criteria for MCI and AD, respectively (Table 4.1). Detailed 

inclusion and exclusion criteria for the MAS cohort was previously published261. I selected 

only individuals with aMCI (amnestic MCI) for this study, as this subtype is generally related 

to subsequent progression to Alzheimer’s dementia262,263. Additionally, I analysed samples 

from individuals with a clinical diagnosis of dementia, probable AD, henceforth to be 

abbreviated as AD. 

 

Blood was collected into EDTA containing tubes, centrifuged (2000g, 20min, 4oC), and the 

plasma transferred into clean 1.5mL polypropylene tubes. To minimize freeze-thaw cycles, 

plasma aliquots were prepared (50, 250 and 500 µl) and stored at -80oC until required. The 
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UNSW Human Research Ethics Committee approved a protocol for blood collection (MAS 

ethics number; HC14327).  

 

Proteomics profiling was performed on 33 humans (66 total) plasma samples from wave 1 

(baseline) and wave 4 (6 years follow up), in the following three groups: (1) individuals 

cognitively normal at wave 1 denoted as CTRLW1, who remained normal at wave 4 denoted 

as CTRLW4, (2) individuals cognitively normal at wave 1 denoted as MCIW1 who progressed 

to MCI at wave 4 denoted as MCIW4, (3) individuals cognitively normal at wave 1 denoted as 

ADW1 who progressed to dementia, probable AD at wave 4 denoted as ADW4. 

 

4.2.2 Depletion of high abundant proteins using Human 14 (HU14) 

immunoaffinity-based columns: 

The protocol followed for plasma high abundance protein removal, and fractionation of the low 

abundance proteins was adapted from Chapter 338. The approach involved depletion of the top 

14 high abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, 

fibrinogen, α-2-macroglobulin, α-1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein 

AII, complement C3, and transthyretin) using an Hu14 column (4.6 x 100 mm, Agilent 

California, United States), followed by SDS/PAGE fractionation of the low abundance protein 

fraction.  

 

4.2.3 Fractionation of low abundance proteins using 1D-SDS PAGE, tryptic digest 

and LCMSMS 

Equal amounts of total protein (50 µg) from the Hu14 depleted plasma were filtered using 

Amicon ultra 3kDa centrifugal filter units (MERCK, New Jersey, USA), dried in speed vac 

(ThermoFisher, Massachusetts, USA) and diluted to a final volume of 20 µL by adding 5 µL 

LDS sample buffer Invitrogen NuPAGE (ThermoFisher, Massachusetts, USA), 2 µL reducing 

agent Invitrogen NuPAGE (ThermoFisher, Massachusetts, USA), and 13 µL deionized water 

(MilliQ). Samples were then briefly heated (10 minutes, 70°C), followed by electrophoresis; 

1D SDS/PAGE using Invitrogen NuPAGE 4-12% gradient Bis-Tris midi gels (ThermoFisher 

Scientific, Massachusetts, USA) and 1x Invitrogen MES running buffer according to the 

manufacturer's instructions (ThermoFisher Scientific, Massachusetts, USA, USA) followed by 
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colloidal coomassie G250 staining264 (Figure 4.1). After destaining, the separated protein lanes 

were cut evenly with a 24-lane blade (Gel Company Inc., CA), and the gel slices were collected 

into ten vials for destaining, in-gel trypsin digestion and label-free LCMSMS, following the 

approach taken in our previously published work38.  

 

 

Figure 4.1. Representative image of NuPAGE LDS gel profile of and depleted plasma containing low abundant 

plasma proteins (LAP) from HU14 from all the individuals. Each gel lane contained an equal loading of total 

protein (50 ug total proteins were loaded per gel lane).  

4.2.4 Computational Analysis  

Computational analysis of the raw files was performed for protein identification and 

quantification.  The consistency of protein expression change was determined using two label-

free quantification approaches, peak area integration and spectral counting.  Protein 

identification, peak area integration and fold-change calculation were performed using 

ProteomeDiscoverer v2.4 software (Thermo Fisher Scientific, Waltham MA), in conjunction 

with three search engines (Mascot, Sequest, and Amanda). Protein identification followed by 

spectral counting and fold-change determination was carried out using a combination of 

Mascot search engine and Scaffold Q+ software v 4.11.0 (Proteome Software, Portland, OR). 

A minimum of ≥2 unique peptides per protein were required for protein identification and 

quantitation on all data analysis software. The UniProt Homo sapiens (human) database was 

combined with reversed decoy database to determine FDR by all search engines for MS and 
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MS/MS spectral mapping. Mass tolerance for matching peaks to theoretical ion series was five 

ppm. False discovery rate (FDR) was set to <1% to ensure only high-confidence protein 

identifications. Enzyme specificity was set to trypsin, with a maximum of two missed 

cleavages. Searches included variable modifications of protein N-terminal acetylation, 

methionine oxidation, and fixed modification of carbamidomethylation of cysteines. All the 

parameters were kept similar in both search engines. To select only those proteins with robust 

expression change between groups, I used the following inclusion criteria: only those proteins 

quantified in >6 individuals, proteins identified with a minimum of two peptides per protein, 

the consistent direction of protein fold change across two bioinformatics platforms with 

orthogonal quantification approaches (peak area ratio with PD2.4 and spectral counting with 

Scaffold) with a fold change of at least 20% (≤0.08 and ≥ 1.2) in preferably both search engines 

but at least one. These orthogonal approaches have specific advantages and 

disadvantages265,266, so I reasoned that the most reliable changes should be consistent across 

platforms. 

4.2.5 Bioinformatics Analyses 

I used RStudio version 1.2.5033 and R version 3.6.3 for most post data processing analyses, 

including heatmap and volcano plots. Venny 2.1 was used to plot Venn diagrams267. I 

performed gene ontology (GO) term enrichment analysis using differentially expressed 

proteins (DEPs) to compare biological processes and pathways affected in normal ageing, MCI 

and AD, using STRING (version 11.5). This kind of analysis uses GO terms to classify proteins 

into particular roles or functions (i.e., biological processes, cellular components, molecular 

function and KEGG & Reactome pathways). From this kind of sorting, I can identify numbers 

of proteins that subserve specific functions (i.e., “observed gene count” within the STRING 

output). Information about the level of enrichment of functional categories is also provided by 

comparison with a background set of proteins (I used the default whole human genome 

available within STRING for the analyses presented here), which allows an estimation of the 

enrichment score (strength) and level of statistical significance (FDR). Together the observed 

gene counts and enrichment strength values give an idea of which functional categories are 

represented by (a) the most significant number of proteins and (b) are most enriched relative to 

the background set. Both observations help identify functional categories that are associated 

with the disease. However, it should be noted that (1) most proteins are pleiotropic and may be 

listed within several functional groups, and (2) the GO term lists are a manually curated 

artificial construct and include some very broad terms which may capture many proteins (e.g., 



MAS Cohort: Deep Proteome Analysis Chapter 4 

100 

 

cellular process, biological regulation, binding, and others), but which are minimally 

informative from a specific function perspective. For this reason, observed gene count and 

enrichment strength values generally vary in an approximately reciprocal manner and therefore 

should be used together to identify biological/disease relevance functions. It is likely that 

categories of the greatest relevance will be those with a moderate score for both observed genes 

count and enrichment strength, rather than those that fall at the extremes of either value.  

4.3 Results:   

4.3.1 Overview of proteomics study populations:   

The main objective of this study was to discover detailed plasma biomarker profiles reflecting 

normal ageing, mild cognitive impairment (MCI) and dementia, probable Alzheimer's disease 

(AD). Participant demographics are shown in Table 4.1.  

 

Since each plasma sample consisted of ten fractions, a total of 660 LC-MSMS runs were 

performed to maximize plasma proteome coverage of low abundant proteins. In total, I identified 

1,578 proteins (false discovery rate <1%) with 32,469 total peptides using the Proteome 

Discoverer 2.4 search engine. Data analysis was performed on 2 different search engines, i.e., 

Proteome Discoverer 2.4 and Scaffold Q+ software v 4.11.0. I performed analyses in seven 

different combinations, including both longitudinal and cross-sectional analyses. Longitudinal 

analyses included: 1. Ageing while maintaining normal cognition (CTRLW4/CTRLW1) 2. MCI 

(MCIW4/MCIW1); 3. AD (ADW4/ADW1) and cross-sectional analyses included; 4. MCI vs 

age-matched controls (MCIW4/CTRLW4); 5. Incipient AD vs age-matched controls 

(ADW4/CTRLW4); 6. MCI vs AD individuals (ADW4/MCIW4); and 7. preclinical AD vs age-

matched controls (ADW1/CTRLW1). The longitudinal analyses provide insight into changes 

that occur in normal ageing over 6 years and a progression from clinically normal to MCI or 

dementia, probable AD over 6 years of baseline to follow-up. These longitudinal analyses allow 

comparison of ageing while retaining clinically normal cognition and ageing with progression to 

cognitive disease and dementia, suggesting proteins and pathways which are disrupted in the 

development of disease/disorder. By contrast, the cross-sectional analyses compare incipient 

MCI or dementia and probable AD to cognitively normal age-matched controls, which may 

identify potential disease biomarkers.  
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Table 4.1: Details of the participant demographics which were included in our present study. 

Total participants Normal 

ageing 

MCI AD Kruskal-Wallis statistic 

 

Kruskal-Wallis P value  

Total participants in each wave 11 11 11 NA NA 

Wave 1 age in years mean±SD 

(CV%) 

76.89±3.39 

(4.41%) 

 

78.46±5.5 

(7.01%) 

 

80.62±4.72 

(5.85%) 

 

4.32 0.11 

Wave 4 age in years mean±SD 

(CV%) 

82.95±3.35 

(4.04%) 

84.37±5.59 

(6.63%) 

86.51±4.81 

(5.56%) 

4.38 0.11 

Education (years) at wave 1 10.84±4.05  

(37.44%) 

10.77±3.92 

(36.39%) 

10.48±2.53 

(24.16%) 

0.04 0.97 

Length of follow up (years) 5.77 5.95 5.75 NA NA 

Clinical diagnosis at W1 Normal Normal Normal NA NA 

Clinical diagnosis at W4 Normal amdMCI Dementia, probable 

AD 

NA NA 

W1 APOE status E3/3 E3/3 E3/3 NA NA 

MMSE at W1 

mean±SD 

(CV%) 

 

29.36±1.50 

(5.11%) 

2 

8.27±1.55 

(5.50%) 

 

28.36±1.80 

(6.36) 

5.61 0.06 

MMSE at W4 

mean±SD 

(CV%) 

 

29.55±0.93 

(3.16%) 

 

28.18±1.40 

(4.97%) 

 

23.64±4.05 

(17.16%) 

20.92 0.00 

Total WMH volume W1 

mean±SD 

(CV%) 

 

16032±19357 

(120.7%) 

 

9274±4112 

(44.34%) 

 

12612±13117 

(104%) 

0.28 0.87 

Total WMH volume W4  

mean±SD 

(CV%) 

 

21407±14975 

(69.96%) 

 

17145±7380 

(43.05%) 

 

33005±20872  

(63.24%) 

3.40 0.18 

BMI (median) 

mean±SD 

(CV%) 

26.91±4.98 

(18.54%) 

28.73±6.05 

(21.06%) 

26.82±2.89 

(10.78%) 

1.01 0.60 

Cholesterol (mmol/L)  5.08±0.98 4.41±0.75 4.79±0.72 3.41 0.18 
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mean±SD 

(CV%) 

(19.32%) (17.11%) (15.09%) 

Triglyceride (mmol/L) 

mean±SD 

(CV%) 

1.36±1.36 

(99.76%) 

1.26±0.71 

(56.88%) 

0.90±0.35 

(39.75%) 

1.47 0.47 

HDL-Chol (mmol/L) 

mean±SD 

(CV%) 

1.40±0.40 

(28.99%) 

1.20±0.35 

(29.81%) 

1.34±0.32 

(24.05%) 

2.16 0.33 

LDL-Chol (mmol/L) 

mean±SD 

(CV%) 

3.16±0.80 

(25.46%) 

2.64±0.66 

(25.04%) 

3.02±0.67 

(22.31%) 

2.71 0.25 

Glucose (mmol/L) 

mean±SD 

(CV%) 

6.58±2.76 

(42.05%) 

6.31±1.13 

(18%) 

5.80±0.58 

(10.11%) 

1.43 0.48 

Urate (mmol/L) 

mean±SD 

(CV%) 

0.32±0.07 

(24.5%) 

0.35±0.04 

(13%) 

0.35±0.08 

(24.08%) 

1.40 0.49 

Vitamin A (umol/L) 

mean±SD 

(CV%) 

2.80±0.48 

(17.42%) 

3.51±0.21 

(20.10%) 

3.15±1.27 

(40.54%) 

5.81 0.05 

Vitamin E (umol/L) 

mean±SD 

(CV%) 

44.13±33.77 

(76.53%) 

31.89±6.40 

(20.08%) 

31.74±9.14 

(28.22%) 

2.18 0.33 

Carotene (umol/L) 

mean±SD 

(CV%) 

1.03±0.76 

(73.07%) 

0.63±0.39 

(62.94%) 

0.79±0.52 

(66.38%) 

1.53 0.46 
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Figure 4.2i. Scatter plot and regression analysis of abundance ratio of DEPs in both PD2.4 and scaffold; 

CTRLW4/CTRLW1, MCIW4/MCIW1, ADW4/ADW1, ADW4/MCIW4, MCIW4/CTRLW4, ADW1/CTRLW1, 

ADW4/CTRLW4. 
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Figure 4.2ii: Density plot and regression analysis were plotted between all 7 comparisons of normal control, 

MCI, and AD in longitudinal and cross-sectional comparisons. Each dot represents the abundance ratio of each 

protein, and the colour shows the dot density.  
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Figure 4.2iii: Density plot and regression analysis were plotted between all 6 comparisons of normal control, 

MCI, and AD in longitudinal and cross-sectional comparisons. Each dot represents the abundance ratio of each 

protein, and the colour shows the dot density. S2iii. Scatter plots were plotted using only DEPs from each 

comparison. A. 71 DEPs from CTRLW4/CTRLW1 (Table 4.3) B. 66 DEPs from MCIW4/MCIW1 (Table 4.5) C. 

60 DEPs from ADW4/ADW1 (Table 4.4), D. 89 DEPs from MCIW4/CTRLW4 DEPs (Table 4.8), E. 70 DEPs from 

ADW4/CTRLW4 (Table 4.7), F. 160 DEPs from ADW1/CTRLW1 (Table 4.11) 
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Figure 4.3i: Proteome profiling and comparison of normal ageing, MCI, and AD in longitudinal and cross-

sectional cohorts. 

Overview of the study population and schematic proteomic workflow. The plasma of two waves comprising 

ageing, MCI and AD subjects was analysed. The total number of subjects per group is depicted. Blue subjects 

represent normal individuals which aged normally in wave 4. Whereas orange and green depicting which 

progressed to MCI and AD from normal individuals in wave 4, respectively  

Hierarchical cluster analysis and heat map for 1,578 total proteins identified in 66 individual samples (output 

from ProteomeDiscoverer 2.4 software). 

Scatter dot plot analysis using abundance ratio of all 7 comparisons used in this study. Horizontal lines show the 

mean and the error bars ± SD. 

D and E. Scatter plots and regression analysis were plotted using the final list of DEPs used in both longitudinal 

and cross sectional comparisons. 

F. Global analyses of proteomic changes in longitudinal groups. Bar graph showing the total number of proteins 

upregulated and downregulated in 1. Normal ageing (CTRLW4/CTRLW1), 2. MCI (MCIW4/MCIW1), 3. AD 

(ADW4/ADW1) and 4. MCI+AD (ADW4/MCIW4).  

G. Global analyses of proteomic changes in cross-sectional analysis groups. Bar graph showing the total number 

of proteins upregulated and downregulated in 1. Preclinical AD (ADW1/CTRLW1), 2. MCI (MCIW4/CTRLW4), 

3. AD (ADW4/CTRLW4) and 4. MCI+AD (ADW4/MCIW4).  

 

 

 

 



MAS Cohort: ageing, MCI and AD dementia Chapter 4 

 

107 

 

Figure 4.3ii:  

A. Box and Whisker plots of abundance values of all 66 individual samples. The line within the box denotes the 

median value, and the upper and lower ranges of the box indicate the 5 and 95 percentiles of the abundance 

values, respectively (output from ProteomeDiscoverer 2.4 software). 

B. The similarity matrix and heat map were constructed using the Pearson correlation values of the 7 

comparisons, clustered based on the k mean algorithm. 

C. Venn diagrams depicting the total number of proteins identified in longitudinal comparison. I identified 1467 

proteins in all three longitudinal groups, i.e., normal ageing, MCI and AD. 

D. Venn diagrams depicting the total number of proteins identified in cross-sectional comparisons. I identified 

903 proteins in all four cross-sectional groups, i.e., preclinical AD, MCI, AD and MCI+AD. 

 

The plasma proteomes of 33 individuals (11 individuals in each category; normal control, MCI, 

and AD) are compared by hierarchical clustering analysis (HCA) (Figure 4.3iB), abundance 

ratios (Figure 4.3iC) and box and whisker plot (Figure 4.3iiA), showing very similar 

distribution patterns overall. This is expected since most identified proteins' expression is 

unaltered between samples, even in disease. Similarity matrix analyses (Figure 4.3iiB) show a 

close association of protein expression data between the following group ratios: 

CTRLW4/CTRLW1, MCIW4/MCIW1, ADW4/ADW1 and ADW4/CTRLW4, 

MCIW4/CTRLW4. The two orthogonal methods of identifying differentially expressed 

proteins were compared using scatter plots and regression analyses (Figure 4.3iD and 1E), 
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showing significant regression between the two quantitative approaches (scaffold spectral 

counting and PD2.4 peak area integration). Bar graphs of the total number of proteins up and 

downregulated in longitudinal and cross-sectional comparisons are shown in Figures 4.3iF and 

1G. In all longitudinal comparison groups, more proteins are upregulated than downregulated; 

this difference is particularly pronounced in the normal ageing group, with 69 upregulated and 

only 2 downregulated proteins (Figure 4.3iF). The numbers of proteins up and downregulated 

with age (over the 6 years of the longitudinal analysis) were similar in MCI and AD (Figure 

4.3iF). In the cross-sectional comparison groups, the number of up and down-regulated proteins 

varies across groups (Figure 4.3iG), with MCI and AD having similar total numbers of DEPs. 

Interestingly, the preclinical AD group (Figure 4.3iG) had the greatest number of total DEPs, 

and also the more significant number of upregulated (59) and downregulated (101) proteins 

than either the incident clinical MCI or AD group.    

 

 

Table 4.2: This summary table contains the final list of differentially expressed proteins (DEPs) in all the 

longitudinal and cross-sectional comparisons analysed. This list contains DEPs those quantified in >6 

individuals, proteins identified with a minimum of two peptides/protein, the consistent direction of protein fold 

change across two bioinformatics platforms with orthogonal quantification approaches (peak area ratio with 

PD2.4 and spectral counting with Scaffold) with a fold change of at least 20% (≤0.08 and ≥ 1.2) in both search 

engines. 

Comparisons analysed Protein Gene Symbol 

Age-related changes 

observed across all 

longitudinal analysis 

groups see Table 4.3 for 

details of fold change per 

group and p-value 

Total protein number = 71 (69 Upregulated, 2 Downregulated) 

 

TPM4, CLIC1, ARHGDIB, YWHAZ, PAFAH1B2, TPI1, YWHAH, PGLS, 

ARPC3, PKM, PSMA4, ARHGDIA, GSTO1, GPI, ARPC2, YWHAB, YWHAE, 

SH3BGRL2, CFL1, NME2, LGALSL, ARPC1B, MAPRE1, PNP, TLN1, 

SERPINB1, ANXA5, GSTP1, PSME2, GAPDH, PSMB8, WDR1, ARPC4, 

ACTN1, PGAM1, FERMT3, PEBP4, MSN, ABHD14B, EIF5A, S100A9, TIMP1, 

CNN2, CLIC4, CMPK1, PARK7, LDHA, PPIB, FLNA, VCL, CALR, PPIA, 

PSMA5, YWHAQ, ARPC5, IGFBP2, RAB11A, ENO1, PSMA2, PGK1, ACTR3, 

LDHB, BIN2, OAF, CAP1, ILK, PRDX6, S100A4, TAGLN2, NCAM1, 

SELENBP1 

MCI specific changes in 

longitudinal analysis 

(see Table 4.5 for details 

of fold change per group 

and p-value 

Total protein number = 66 (41 Upregulated, 25 Downregulated) 

 

RHEB, SSBP1, NUTF2, KRT35, C19orf10, UBE2V1, PSMB5, PLEK, COL1A1, 

PPBP, ITLN1, KRT86, HSPA4, HIST1H4A, IGFBP6, MB, CAPZA2, TNC, 

QDPR, PPP1R7, ARRB1, VCP, ABI3BP, RARRES2, ZYX, RNH1, APOD, 

ASGR2, RAB27B, S100A4, GLO1, CYCS, ADAMTSL4, COL5A1, GLIPR2, 

DDT, SERPINA1, LTF, GP1BA, HSP90B1, CDH2, IDH1, IGLC3, ACY1, PROZ, 

GOT1, COL6A1, PSMB4, PEPD, BPGM, PSME1, IGLV3-21, CECR1, ALAD, 

PLA2G7, CPA1, PAFAH1B3, CTBS, BLVRB, FBP1, FUCA2, IGHG2, IGKC, 

PITHD1, B4GALT1, ALDH1A1 
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MCI specific changes in 

cross-sectional analysis 

see Table 4.8 for details 

of fold change per group 

and p-value 

Total protein number = 89 (53 Upregulated, 36 Downregulated) 

 

ITLN1, OGN, TRHDE, PRKACB, HSPA4, REG3A, ASGR2, NCAM1, IGF1, 

ORM1, GLOD4, APMAP, ANXA4, PPP1R7, SOD3, DUSP3, SULT1A1, LMAN2, 

PRDX4, CMPK1, IGFBP6, PON1, PRKAR1A, TF, C1QTNF3, C4BPB, PROC, 

IGFBP4, FAM3C;WNT16, A2M, IGFBP7, OAF, PEBP4, RARRES2, SNX3, 

CKM, APOL1, BST1, CR2, CDHR5, NIF3L1, PTPRF, CHI3L1, MASP2, 

C19orf10;MYDGF, ITIH3, ADAMTSL4, GANAB, CBR1;SETD4, COL5A1, 

MAN2A1, LTF, GPLD1, Sep-07, SELL, PPBP, GDI1, ARPC5, SPARC, CLIC1, 

FUCA2, CAT, NID1, LGALSL, SEPP1;SELENOP, FLT4, L1CAM, CPQ, 

PIP4K2A, PYGB, YWHAG, VWF, SVEP1, PSME1, MYH2, KRTAP4-4, CPA1, 

GSR, PEPD, BIN2, PA2G4, CECR1;ADA2, PPP2R4;PTPA, OTUB1, ICAM2, 

CALD1, LTBP1, AMY2A, KRTAP3-1 

MCI specific changes 

common to both 

longitudinal and cross-

sectional analysis see  

Table 4.11 

Total protein number = 16  

 

PPBP, LTF, ASGR2, PEPD, CPA1, COL5A1, IGFBP6, HSPA4, PSME1, PPP1R7, 

ADAMTSL4, ITLN1, C19orf10, RARRES2, FUCA2, CECR1  

 

AD specific changes in 

longitudinal analysis see 

Table 4.4 for details of 

fold change per group 

and p-value 

Total protein number = 60 (39 Upregulated, 21 downregulated) 

 

TPM1, MST1L, CAPNS1, HPRT1, AMY1A, BID, PTPRK, S100A7, SERPINB9, 

HPR, PSMB8, SH3BGRL3, SDPR, GPX3, MAPRE2, OIT3, RAN, COL5A1, 

FAM3C, GLIPR2, PSMB2, UMOD, MGAT1, PA2G4, PAM, CYCS, VCP, QDPR, 

IGFBP6, CECR1;ADA2, ACTG1, ELTD1, ALDOB, LAMA2, APOD, IGFBP5, 

HSP90B1, IGLC3, TXNL1, ENDOD1, KRT35, LTF, CDH2, SERPINA1, SELL, 

KRT5, RNH1, KPRP, COL1A1, KRT6A, EGFR, KRT13, TNXB, ALDH1A1, 

ITLN1, MAN2A2, TF, KRT86, OLFML3, ADAMDEC1 

 

AD specific changes in 

cross-sectional analysis 

see Table 4.7 for details 

of fold change per group 

and p-value 

Total protein number = 70 (27 Upregulated, 43 downregulated) 

 

PITHD1, S100A7, PRDX1, PRDX4, CALD1, PSMB2, IGFBP1, TNC, COL6A1, 

MANBA, FAM3C, WNT16, RTN4RL2, F7, QDPR, GNPTG, PTPRK, CNTN3, 

PROZ, PAM, EXT2, NAPA, C1QTNF3, CHI3L1, ALDOB, CTSD, CFH, LAMA2, 

TF, NID1, PYGB, PPP2R4, PTPA, GANAB, LGALSL, BIN2, CLTC, PPBP, 

CLIC1, VCL, GP6, TNXB, PTPN6, ISOC1, GDI1, WARS, ECI1, DSP, CNN2, 

PGK1, TPI1, MAN2A2, VCP, SEPT7, CYCS, SPARC, PSMF1, PNP, ENG, CPB1, 

SND1, MAPRE2, ITGA2B, TYMP, CUTA, EGFR, RNASET2, PKP1, ACO1, 

FDPS, ARPC5, TUBB 

 

AD specific changes 

common to both 

longitudinal and cross-

sectional analysis  see  

Table 4.10 

Total protein number = 15 

 

EGFR, TF, ALDOB, QDPR, PAM, TNXB, LAMA2, S100A7, MAN2A2, PSMB2, 

VCP, CYCS, PTPRK, MAPRE2, FAM3C 

Preclinical AD specific 

changes 

ADW1/CTRLW1 see 

Table 4.12 for details of 

fold change per group 

and p-value 

Total protein number = 160 (59 Upregulated, 101 downregulated) 

 

PPP2R4;PTPA, KRTAP132, ITLN1, AMY2B, ORM1, SERPINA1, ALB, CRP, 

BLVRB, TTR, CHIT1, CAMP, CDH2, LECT2, KRT86, PSMB6, PRDX2, 

ALDH1A1, TF, C4BPB, CHI3L1, APOA1, AK1, CLEC3B, PSMB2, RNH1, 

PROCR, BPGM, PSMA4, SPP2, PCOLCE, PSMB1, C3, MFAP4, IGFALS, 

CFHR5, FCGBP, CD93, C1QB, C1orf68, MPO, PTGDS, F12, SELL, PLXND1, 

SOD2, LCAT, MBL2, LUM, TIMP2, KRT31, PARK7, PTPRS, LILRA3, IL6ST, 

C1QA, PSMA2, PEBP1, APOD, CORO1A, C19orf10;MYDGF, WDR1, ZG16, 
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4.3.2 DEPs identified in longitudinal analyses of ageing regardless of diagnosis 

 

Comparing proteomic expression differences across the longitudinal cohorts provides insight 

into age-related changes, which are common across all three clinical groups, and appear to be 

largely independent of diagnosis. I observed that 71 proteins were dysregulated with ageing, 

the majority of which were upregulated (Figure 4.3iF, Figure 4.4A and Table 4.3). These 71 

age-related DEPs were manually grouped into 12 protein functional categories based on gene 

ontology (GO) using the PD2.4 analysis outcomes (Figure 4.5A). The three functional groups 

with the highest number of age-related DEPs were cell signalling (35%), cytoskeleton and 

microtubules function (17%), and metabolism (15%) (Figure 4.5A). A variety of other 

categories represented ≤8% of total DEPs each (Figure 4.5A). Of 71 DEPs in normal ageing, 

only two proteins were decreased, these being methanethiol oxidase (SELENBP1) and 

neuronal adhesion molecule 1 (NCAM1) Figure 4.4A. By contrast, proteins associated with 

inflammation (S100A9, S100A4, YWHA/14-3-3 family proteins), metabolic proteins (LDHA, 

LDHB, PKM, NME2), proteasome subunits (PSMA4, PSME2, PSMB8, PSMA6, PSMA5), 

and DNA binding and repair (ENO1, PARK7, CALR) were increased with ageing in all three 

clinical groups in the longitudinal analysis. However, they were not specific to disease (Figure 

4.4 and Table 4.3). The complete list of proteins that are differentially expressed in ageing is 

shown in Table 4.3 and heatmap (Figure 4.4A), while a volcano plot shows the top 20 age-

related DEPs with the greatest fold change (FC) Figure 4.4B. 

 

MAPRE2, ALDOB, AHCY, PGK1, SERPINA11, PKM, PGD, LUZP6;MTPN, 

HSPA8, SEMG1, SEPT2, GANAB, FAH, PLEK, ACTN1, FABP4, EXT1, 

CRHBP, GSR, GAPDH, VASP, FUCA1, ISOC1, LDHA, YWHAH, CALR, VCL, 

SSC5D, ENO1, PCYOX1, UBA7, ZYX, ROBO4, F13A1, LTA4H, CSTB, P4HB, 

TUBB1, SH3BGRL2, CLIC4, TLN1, ALDOC, VCP, PF4, TWF2, GRB2, SVEP1, 

LAMC1, HYOU1, PDLIM1, TXN, PDIA6, ICOSLG;, LOC102723996, FERMT3, 

PFN1, HSP90AA1, SH3BGRL, UBA1, PDIA3, CNTN4, NUTF2, TGFB1, GMFG, 

CAPZA2, LPA, THBS1, AKR1A1, SPARC, FCGR2A, CAPZA1, CAP1, PPIB, 

CAPN1, APOC4;APOC4, APOC2, ELTD1;ADGRL4, COTL1, FCN1, ESD, 

SDPR;, CAVIN2, ARPC1B, COL5A1, PAM, LGALSL, ANGPTL3, MIF, 

YWHAQ, ARPC5, ARHGAP1, KRT36, ANXA5, RSU1, FABP1, ARPC2, 

DUSP3, PRDX5, SERPINB9, BID 

Preclinical AD 

(ADW1/CTRLW1) 

common with incipient 

AD (ADW4/CTRLW4) 

see Table 4.13 

Total protein number = 15 (4 Upregulated, 11 downregulated) 

 

ARPC5, PGK1, TF, ALDOB, SPARC, VCL, PAM, CHI3L1, PSMB2, VCP, 

GANAB, PPP2R4, PTPA, MAPRE2, LGALSL, ISOC1 
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Figure 4.4. A. Heatmap of 71 dysregulated proteins containing 69 upregulated and 2 downregulated in a similar 

direction in all normal ageing, MCI and AD showing the plasma proteome changes with age and not specific to 

the disease. B: Volcano plots highlight the 20 DEPs with the highest fold change in longitudinal ageing (I have 

highlighted only the top 20 proteins to avoid the overcrowding on volcano plots); the complete list of DEPs with 

age are presented in Table 4.3. C: This figure presents the Upregulated GO enrichment of pathways linked to 

ageing. However, only 2 DEPs were downregulated in ageing, no GO enrichment was identified in STRING 

software for downregulated proteins.  
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Figure 4.5. The final list of DEPs from longitudinal comparisons was sorted into lists based on the protein 

function classes, i.e., extracellular function, cell adhesion, growth factors, cell signalling, neuroinflammation, 

cytoskeleton, protein turnover, DNA binding repair, metabolism, membrane trafficking, neuron and synapse, 

antioxidant activity: A. longitudinal ageing, B. longitudinal MCI, C. longitudinal AD.    

 

Several age-related DEPs with the highest fold change include the following: Tropomyosin 

alpha-4 (TPM4, FC= 3.4, p=0.00), chloride intracellular channel protein 1 (CLIC1, FC=3.391, 

p= 0.00), Rho GDP-dissociation inhibitor 2 (ARHGDIB, FC=3.126, p=0.00), 14-3-3 protein 

zeta/delta (YWHAZ, FC=3.09, p= 0.00), 6-phosphogluconolactonase (PGLS), Nucleoside 

diphosphate kinase B (NME2, FC=8.5, p=0.04), and NCAM1 (FC= 0.2, p=0.00) (see Table 

4.3 for the full list). Gene ontology (GO) enrichment analysis of these 71 DEPs was performed 

to understand the molecular pathways affected in normal ageing (Table 4.3). The ageing related 

DEPs list was analyzed using the STRING bioinformatics tool, and enrichment in multiple 

GO-based categories was observed, including; 157 biological processes, 36 cellular 

components, 16 molecular functions, 48 KEGG and Reactome pathways.  
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Table 4.3: The final list of longitudinal 71 DEPs in normal ageing (changed in a similar direction in normal longitudinal ageing, MCI and AD were considered ageing-related 

changes, not specific to the disease).  

Accession Description 
Gene 

Symbol 

PD2.4_Abu

ndance 

Ratio: 

(CTRLW4) / 

(CTRLW1) 

Scaffold_Fol

d change 

(CTRLW4) / 

(CTRLW1) 

PD2.4_Abu

ndance 

Ratio: 

(MCIW4) / 

(MCIW1) 

Scaffold_Fold 

change 

(MCIW4) / 

(MCIW1) 

PD2.4_Abu

ndance 

Ratio: 

(ADW4) / 

(ADW1) 

Scaffold_Fold 

change 

(ADW4) / 

(ADW1) 

P31946 
14-3-3 protein 

beta/alpha 
YWHAB 1.917 3.6 1.37 4.1 1.502 2.7 

P62258 
14-3-3 protein 

epsilon 
YWHAE 1.906 2.3 1.489 5.6 1.84 2.3 

Q04917 14-3-3 protein YWHAH 2.736 4.1 1.434 6.7 1.369 3.6 

P27348 
14-3-3 protein theta 

OS 
YWHAQ 1.467 2.4 1.55 5.8 1.381 3.2 

P63104 
14-3-3 protein 

zeta/delta 
YWHAZ 3.099 2.8 2.303 3.1 2.125 2 

O95336 

6-

phosphogluconolact

onase 

PGLS 2.695 2.3 1.45 2.6 1.717 3 

O15143 

Actin-related 

protein 2/3 complex 

subunit 1B 

ARPC1B 1.841 4.9 1.92 13 1.493 5 

O15144 

Actin-related 

protein 2/3 complex 

subunit 2 

ARPC2 1.937 2.4 1.452 INF 1.536 13 

O15145 

Actin-related 

protein 2/3 complex 

subunit 3 

ARPC3 2.661 4.4 2.028 4.3 1.949 3.1 

P59998 

Actin-related 

protein 2/3 complex 

subunit 4 

ARPC4 1.686 4.2 1.833 3 1.945 2.7 

O15511 

Actin-related 

protein 2/3 complex 

subunit 5 

ARPC5 1.459 1.2 1.96 6.5 1.227 2.1 
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P61158 
Actin-related 

protein 3 
ACTR3 1.377 1.3 1.833 12 1.201 6.7 

Q01518 
Adenylyl cyclase-

associated protein 1 
CAP1 1.253 2.2 1.425 22 1.285 4.4 

P12814 Alpha-actinin-1 ACTN1 1.682 1.9 1.483 3.2 1.207 2.1 

P06733 Alpha-enolase ENO1 1.387 1.7 1.845 4.6 1.27 2.7 

P08758 Annexin A5 ANXA5 1.764 4 1.361 4.3 1.747 10 

Q9UBW5 
Bridging integrator 

2 
BIN2 1.304 1.7 1.271 INF 1.389 11 

Q99439 Calponin-2 CNN2 1.594 4.4 1.754 INF 1.714 INF 

P27797 Calreticulin CALR 1.491 1.8 1.618 3.9 1.485 2.3 

O00299 

Chloride 

intracellular 

channel protein 1  

CLIC1 3.391 3.4 1.821 4.3 1.839 2.4 

Q9Y696 

Chloride 

intracellular 

channel protein 4 

CLIC4 1.585 1.8 1.324 INF 1.486 5.3 

P23528 Cofilin-1 CFL1 1.9 2.5 1.766 2.2 1.696 1.9 

P63241 

Eukaryotic 

translation initiation 

factor 5A-1 

EIF5A 1.605 2.7 2.737 INF 1.622 7.1 

Q86UX7 
Fermitin family 

homolog 3 
FERMT3 1.668 2.4 1.561 4.6 1.338 3.2 

P21333 Filamin-A FLNA 1.515 2.5 1.57 5.6 1.455 3.2 

Q3ZCW2 
Galectin-related 

protein 
LGALSL 1.869 5.9 2.037 3.5 1.893 4.8 

P06744 

Glucose-6-

phosphate 

isomerase 

GPI 1.994 2.6 1.398 2.8 1.215 2 

P78417 
Glutathione S-

transferase omega-1 
GSTO1 2.046 1.9 1.666 2.9 1.556 2.2 

P09211 
Glutathione S-

transferase P 
GSTP1 1.764 2.4 1.893 2.2 1.702 1.9 
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P04406 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

GAPDH 1.729 1.9 1.625 2.7 1.536 2.2 

P18065 

Insulin-like growth 

factor-binding 

protein 2 

IGFBP2 1.411 1.4 1.343 3 1.445 1.3 

Q13418 
Integrin-linked 

protein kinase 
ILK 1.249 1.6 1.749 4 1.214 3.3 

P30740 
Leukocyte elastase 

inhibitor 

SERPIN

B1 
1.767 2.2 1.478 3.5 1.309 2.8 

P00338 

L-lactate 

dehydrogenase A 

chain  

LDHA 1.519 1.5 1.304 2.1 1.84 1.7 

P07195 

L-lactate 

dehydrogenase B 

chain 

LDHB 1.361 1.2 1.57 1.4 1.291 1.3 

P01033 
Metalloproteinase 

inhibitor 1 
TIMP1 1.598 2 1.34 3 1.336 1.6 

Q13228 
Methanethiol 

oxidase 

SELENB

P1 
0.767 0.8 0.817 0.2 0.873 0.7 

Q15691 

Microtubule-

associated protein 

RP/EB family 

member 1 

MAPRE1 1.826 4.5 1.369 21 1.223 INF 

P26038 Moesin MSN 1.664 2.1 1.234 1.5 1.307 1.7 

P13591 
Neural cell adhesion 

molecule 1 
NCAM1 0.227 0.7 0.01 0.7 0.784 0.7 

P22392 

Nucleoside 

diphosphate kinase 

B 

NME2 1.885 8.5 1.606 5.7 1.464 INF 

Q86UD1 
Out at first protein 

homolog 
OAF 1.301 1.4 1.283 1.2 1.413 1.2 

P62937 
Peptidyl-prolyl cis-

trans isomerase A 
PPIA 1.485 2 2.867 2.2 1.674 1.9 
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P23284 
Peptidyl-prolyl cis-

trans isomerase B  
PPIB 1.518 2.1 1.911 2.3 1.536 3.4 

P30041 Peroxiredoxin-6 PRDX6 1.23 1.6 1.218 1.3 1.599 1.3 

Q96S96 

Phosphatidylethano

lamine-binding 

protein 4 

PEBP4 1.666 2.3 1.818 1.8 1.37 1.2 

P00558 
Phosphoglycerate 

kinase 1 
PGK1 1.384 1.6 1.247 1.9 1.504 1.6 

P18669 
Phosphoglycerate 

mutase 1 
PGAM1 1.674 2.6 1.915 3.6 1.609 3.2 

P68402 

Platelet-activating 

factor 

acetylhydrolase IB 

subunit beta 

PAFAH1

B2 
3.062 INF 2.275 2.4 2.308 3.6 

Q9UL46 

Proteasome 

activator complex 

subunit 2 

PSME2 1.739 1.2 1.86 3.8 1.482 6.3 

P25787 
Proteasome subunit 

alpha type-2 
PSMA2 1.387 3.8 1.212 2.1 1.781 1.3 

P25789 
Proteasome subunit 

alpha type-4 
PSMA4 2.174 3.1 1.227 3.6 1.521 2.6 

P28066 
Proteasome subunit 

alpha type-5 
PSMA5 1.479 1.3 1.602 2.4 1.248 2.1 

P28062 
Proteasome subunit 

beta type-8 
PSMB8 1.717 INF 1.474 INF 1.954 1.8 

Q96IU4 Protein ABHD14B 
ABHD14

B 
1.625 INF 1.312 2.9 1.778 INF 

P26447 Protein S100-A4 S100A4 1.25 2.4 1.477 1.6 1.365 1.3 

P06702 Protein S100-A9 S100A9 1.604 3 1.505 1.8 2.24 7 

Q99497 
Protein/nucleic acid 

deglycase DJ-1 
PARK7 1.55 3.6 1.306 2.6 1.47 1.9 

P00491 
Purine nucleoside 

phosphorylase 
PNP 1.813 2.1 1.698 2.9 1.352 1.7 
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P14618 
Pyruvate kinase 

PKM 
PKM 2.402 2.3 2.049 5 1.442 3.2 

P62491 
Ras-related protein 

Rab-11A 
RAB11A 1.408 INF 1.614 INF 1.464 6.8 

P52565 

Rho GDP-

dissociation 

inhibitor 1 

ARHGDI

A 
2.145 4.1 1.583 2.7 1.548 4 

P52566 

Rho GDP-

dissociation 

inhibitor 2 

ARHGDI

B 
3.126 3.4 2.864 4.6 1.363 3.9 

Q9UJC5 

SH3 domain-

binding glutamic 

acid-rich-like 

protein 2 

SH3BGR

L2 
1.905 1.9 1.877 INF 1.401 1.4 

Q9Y490 Talin-1 TLN1 1.789 1.6 2.021 3.3 1.503 2.3 

P37802 Transgelin-2 TAGLN2 1.23 3.6 1.66 2.3 1.545 2.6 

P60174 
Triosephosphate 

isomerase 
TPI1 2.811 2.4 1.91 2.4 1.936 1.6 

P67936 
Tropomyosin alpha-

4 chain 
TPM4 3.478 2.5 2.661 INF 2.268 2 

P30085 UMP-CMP kinase CMPK1 1.556 2.4 2.26 INF 1.645 INF 

P18206 Vinculin  VCL 1.508 1.6 1.624 2.6 1.501 1.6 

O75083 
WD repeat-

containing protein 1 
WDR1 1.699 1.9 1.339 7.4 1.329 3.4 
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4.3.3 DEPs that change longitudinally with progression to MCI and AD from 

normal cognition:  

A total of 60 DEPs were identified uniquely in the longitudinal AD group (progression from 

cognitively normal at W1 to AD at W4, 6 years later); 39 upregulated and 21 downregulated 

(Figure 4.3iF and Table 4.4). In longitudinal MCI, a total of 66 proteins were differentially 

expressed, with 41 upregulated and 25 downregulated (Figure 4.3iF, Table 4.5). Though the 

total number of dysregulated proteins is very similar in both conditions, only 19 appear in both 

MCI and AD (Figure 4.7A), and of these, only 9 have the same direction of fold-change, while 

the other 10 have opposite directions of fold-change (Figure 4.7B). Heatmaps based on 

differential protein abundance values from both search engines depicted overall reproducibility 

as well as individual protein expression profiles in AD and MCI in Figures 4.6A and 4.6C, 

respectively. Volcano plots highlight the top 20 DEPs with the greatest magnitude of 

longitudinal fold-change in AD and MCI (Figures 4.6B and 4.6D, respectively). Several DEPs 

unique to AD progression in W4, and that were significantly (p ≤0.05) upregulated include: 

Tropomyosin alpha-1 chain (TPM1, fold change (FC=19.4; p=0.00), Calpain small subunit 1 

(CAPNS1, FC=2.6; p=0.00), Caveolae-associated protein 2 (SDPR, FC=18; p=0.05), 

Endoplasmin (HSP90B1, FC=1.5, p=0.01). Additionally, proteins that were significantly 

downregulated included: Alpha-mannosidase 2x (MAN2A2, FC=0.56; p=0.02), Olfactomedin-

like protein 3 (OLFML3, FC=0.42; p=0.03), Keratin, type II cuticular Hb6 (KRT86, FC=0.51; 

p=0.00), and Serotransferrin (TF, FC=0.51; p=0.00). The complete list of DEPs unique to 

longitudinal AD group, is shown in Table 4.4. Functional categories with the greatest 

proportional change relative to either ageing or MCI, and with DEPs unique to longitudinal 

progression to AD, were associated with metabolism (26%,), membrane trafficking (10%) and 

neuron & synapse (4%), all higher in AD than either control or MCI. In comparison, cell 

signalling (12%), cell adhesion (3%) and protein turnover (2%) are all lower in AD than either 

control or MCI (Figure 4.5B and 4.5C). The presence of proteins in plasma belonging to this 

AD progression specific groups implies functional disruptions which may have contributed to 

the progression of AD (Figure 4.5C). Two functional categories which were proportionately 

increased in both MCI and AD, relative to normal ageing were growth factors and extracellular 

functions (Figure 4.5). Their difference to normal ageing and common MCI and AD, suggests 

a possible association with cognitive impairment.    

 



MAS Cohort: ageing, MCI and AD dementia Chapter 4 

 

119 

 

In AD (Table 4.4 DEP list), 39 upregulated proteins were associated with 36 biological 

processes, 19 cellular components, 12 molecular functions, and 7 KEGG & Reactome 

pathways. Approximately half of the proteins were linked to binding activity (protein binding, 

signalling receptor binding, and calcium ion binding), stress response, small molecule 

metabolic process, extracellular regions, and cytoplasm.  

 

The plasma proteome profile of longitudinal progression to MCI contained several unique 

DEPs not shared by AD and normal ageing W4 vs W1 groups (Figure 4.6 C and D). In 

particular, the protein turnover group was proportionately higher in MCI (15%) than either the 

normal ageing group or AD, while cytoskeletal & microtubule structure was lower in MCI 

(4%) than either of the other groups (Figure 4.5B and C). MCI-specific DEPs with particularly 

high fold change with ageing, are shown in the Figure 4.6C and 4.6D heatmap and volcano 

plot and include upregulation of GTP-binding protein (RHEB, FC=46.691; p=0.00), pleckstrin 

(FC= 5.1; p=0.00), F-actin-capping protein subunit alpha-2 (CAPZA2, FC=25; p=0.00), 

insulin-like growth factor-binding protein 6 (IGFBP6, FC=1.8, p=0.01). Significantly 

downregulated proteins in MCI W4/W1 included flavin reductase NADPH (BLVRB, FC=0.4; 

p=0.02). The full list of DEPs in longitudinal MCI is shown in Tables 4.2 and 4.5. 

 

In MCI, upregulated proteins from Table 4.5 were based on GO term enrichment analysis were 

significantly associated with 99 biological processes, 22 cellular components, 7 molecular 

functions, and 2 KEGG & Reactome pathways. Most DEPs fell into GO categories of; cellular 

process, cellular protein metabolism, regulation of protein phosphorylation, unfolded proteins, 

phosphate metabolic process, endomembrane system, signalling receptor binding and 

hemostasis. On the other hand, downregulated proteins from the MCI longitudinal analysis 

from Table 4.5 were significantly enriched in 33 biological processes, 10 molecular functions, 

and 11 KEGG & Reactome pathways. 
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Figure 4.6. A and C. Heat map analysis of unique DEPs in longitudinal AD (ADW4/ADW1) and MCI 

(MCIW4/MCIW1) respectively. B and D: Volcano plots highlight the 20 DEPs with the highest fold change in the 

AD and MCI longitudinal analysis (I have highlighted only the top 20 proteins to avoid overcrowding on the 

volcano plots). The complete list of DEPs, including p values, is shown in Tables 4.4 and 4.5, respectively.  
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Table 4.4: The list of proteins uniquely differentially expressed in AD in longitudinal analysis (ADW4/ADW1). 

Accession Description Gene Symbol 

PD2.4_Abundance 

Ratio: (ADW4) / 

(ADW1) 

Scaffold_Fold 

change (ADW4) 

/ (ADW1) 

PD2.4_Abundance 

Ratio Adj. P-Value: 

(ADW4) / (ADW1) 

Scaffold_P 

value(ADW4) / 

(ADW1) 

P09493 Tropomyosin alpha-1 chain  TPM1 19.405 14 5.36E-08 0.023 

Q2TV78 
Putative macrophage 

stimulating 1-like protein  
MST1L 2.757 1.5 0.355113 0.67 

P04632 Calpain small subunit 1  CAPNS1 2.652 16 0.007682 0.12 

P00492 
Hypoxanthine-guanine 

phosphoribosyltransferase  
HPRT1 2.46 3.8 0.168748 0.2 

P04745 Alpha-amylase 1 AMY1A 2.252 2.3 0.387844 0.45 

P55957 
BH3-interacting domain death 

agonist  
BID 2.123 7.4 0.5792 0.17 

Q15262 
Receptor-type tyrosine-

protein phosphatase kappa  
PTPRK 2.076 2.3 0.229221 0.38 

P31151 Protein S100-A7  S100A7 2.049 3.5 0.370187 0.5 

P50453 Serpin B9  SERPINB9 2.006 2 0.598428 0.57 

P00739 Haptoglobin-related protein  HPR 1.967 3.6 0.015629 0.21 

P28062 
Proteasome subunit beta type-

8  
PSMB8 1.954 1.8 0.437909 0.47 

Q9H299 
SH3 domain-binding glutamic 

acid-rich-like protein 3  
SH3BGRL3 1.77 2.5 0.069793 0.049 

O95810 Caveolae-associated protein 2  SDPR 1.75 18 0.079531 0.055 

P22352 Glutathione peroxidase 3  GPX3 1.71 1.3 0.104229 0.13 

Q15555 

Microtubule-associated 

protein RP/EB family member 

2  

MAPRE2 1.639 3.7 0.627507 0.1 

Q8WWZ8 
Oncoprotein-induced 

transcript 3 protein  
OIT3 1.639 1.4 0.284449 0.7 

P62826 
GTP-binding nuclear protein 

Ran  
RAN 1.609 1.8 0.549037 0.38 

P20908 Collagen alpha-1(V) chain  COL5A1 1.594 2.8 0.201157 0.05 
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Q92520 Protein FAM3C  FAM3C 1.555 2.8 0.656778 0.24 

Q9H4G4 
Golgi-associated plant 

pathogenesis-related protein 1  
GLIPR2 1.536 1.3 0.276903 0.38 

P49721 
Proteasome subunit beta type-

2  
PSMB2 1.481 5.6 0.766017 0.081 

P07911 Uromodulin  UMOD 1.422 1.3 0.475402 0.78 

P26572 

Alpha-1,3-mannosyl-

glycoprotein 2-beta-N-

acetylglucosaminyltransferas

e  

MGAT1 1.41 2.3 0.85012 0.61 

Q9UQ80 
Proliferation-associated 

protein 2G4  
PA2G4 1.381 1.6 0.837954 0.68 

P19021 
Peptidyl-glycine alpha-

amidating monooxygenase  
PAM 1.372 1.5 0.579433 0.48 

P99999 Cytochrome c  CYCS 1.369 6.6 0.853668 0.15 

P55072 
Transitional endoplasmic 

reticulum ATPase  
VCP 1.347 1.8 0.623921 0.39 

P09417 Dihydropteridine reductase  QDPR 1.334 5.4 0.870078 0.17 

P24592 
Insulin-like growth factor-

binding protein 6 
IGFBP6 1.31 1.2 0.684586 0.41 

Q9NZK5 Adenosine deaminase 2  CECR1; ADA2 1.305 1.7 0.689796 0.19 

P63261 Actin, cytoplasmic 2  ACTG1 1.297 2 0.809821 0.039 

Q9HBW9 
Adhesion G protein-coupled 

receptor L4  
ELTD1 1.266 3.2 0.908269 0.4 

P05062 
Fructose-bisphosphate 

aldolase B  
ALDOB 1.259 1.7 0.775233 0.12 

P24043 Laminin subunit alpha-2  LAMA2 1.249 1.4 0.911405 0.7 

P05090 Apolipoprotein D  APOD 1.247 1.2 0.79198 0.58 

P24593 
Insulin-like growth factor-

binding protein 5  
IGFBP5 1.228 1.6 0.824548 0.35 

P14625 Endoplasmin  HSP90B1 1.213 1.5 0.85012 0.01 

P0DOY3 
Immunoglobulin lambda 

constant 3  
IGLC3 1.201 1.4 0.865653 0.45 
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O43396 Thioredoxin-like protein 1  TXNL1 1.219 5.7 0.984986 0.16 

O94919 
Endonuclease domain-

containing 1 protein  
ENDOD1 0.882 0.5 0.791993 0.28 

Q92764 Keratin, type I cuticular Ha5  KRT35 0.813 0.1 0.665053 0.22 

P02788 Lactotransferrin  LTF 0.806 0.5 0.652507 0.15 

P19022 Cadherin-2  CDH2 0.801 0.3 0.4066 0.34 

P01009 Alpha-1-antitrypsin  SERPINA1 0.797 0.8 0.327383 0.91 

P14151 L-selectin  SELL 0.78 0.6 0.280574 0.072 

P13647 Keratin, type II cytoskeletal 5  KRT5 0.779 0.5 0.277712 0.011 

P13489 Ribonuclease inhibitor  RNH1 0.776 0.5 0.4066 0.51 

Q5T749 
Keratinocyte proline-rich 

protein  
KPRP 0.774 0.5 0.261166 0.061 

P02452 Collagen alpha-1(I) chain  COL1A1 0.755 0.4 0.623921 0.58 

P02538 
Keratin, type II cytoskeletal 

6A  
KRT6A 0.699 0.7 0.128638 0.43 

P00533 
Epidermal growth factor 

receptor  
EGFR 0.679 0.2 0.285206 0.19 

P13646 Keratin, type I cytoskeletal 13  KRT13 0.677 0.4 0.412871 0.43 

P22105 Tenascin-X  TNXB 0.676 0.8 0.396474 0.2 

P00352 Retinal dehydrogenase 1  ALDH1A1 0.639 0.4 0.032948 0.44 

Q8WWA0 Intelectin-1  ITLN1 0.594 0.4 0.154662 0.4 

P49641 Alpha-mannosidase 2x  MAN2A2 0.56 0.2 0.026716 0.22 

P02787 Serotransferrin  TF 0.517 0.2 0.000794 0.065 

O43790 Keratin, type II cuticular Hb6  KRT86 0.511 0.07 0.009598 0.099 

Q9NRN5 Olfactomedin-like protein 3  OLFML3 0.428 0.8 0.03225 0.84 

O15204 ADAM DEC1  ADAMDEC1 0.282 0.6 4.95E-06 0.7 
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Table 4.5: The list of proteins uniquely differentially expressed in MCI in longitudinal analysis (MCIW4/MCIW1) 

Accession Description 
Gene 

Symbol 

PD2.4_Abundance 

Ratio: (MCIW4) / 

(MCIW1) 

Scaffold_Fold 

change 

(MCIW4) / 

(MCIW1) 

PD2.4_Abundance 

Ratio Adj. P-

Value: (MCIW4) / 

(MCIW1) 

Scaffold_P 

value(MCIW4) / 

(MCIW1) 

Q15382 GTP-binding protein Rheb RHEB 46.691 INF 3.56E-07 0.33 

Q04837 
Single-stranded DNA-binding 

protein, mitochondrial 
SSBP1 5.324 INF 0.153119 1 

P61970 Nuclear transport factor 2 NUTF2 4.183 1.9 0.217691 0.68 

Q92764 Keratin, type I cuticular Ha5 KRT35 3.882 5.3 0.000149 0.43 

Q969H8 Myeloid-derived growth factor C19orf10 2.555 4.3 0.233602 0.22 

Q13404 
Ubiquitin-conjugating enzyme E2 

variant 1 
UBE2V1 2.469 7.3 0.117027 0.13 

P28074 Proteasome subunit beta type-5 PSMB5 2.321 3.5 0.233602 0.36 

P08567 Pleckstrin PLEK 2.229 5.1 0.045428 0.0011 

P02452 Collagen alpha-1(I) chain COL1A1 2.163 4.6 0.406281 0.29 

P02775 Platelet basic protein PPBP 2.159 1.2 0.063703 0.76 

Q8WWA0 Intelectin-1 ITLN1 2.158 1.5 0.326154 0.73 

O43790 Keratin, type II cuticular Hb6 KRT86 2.148 3.8 0.422336 0.28 

P34932 Heat shock 70 kDa protein 4 HSPA4 2.136 3.9 0.070025 0.24 

P62805 Histone H4 
HIST1H

4A 
2.065 1.4 0.2716 0.73 

P24592 
Insulin-like growth factor-binding 

protein 6 
IGFBP6 2.058 1.8 0.097857 0.016 

P02144 Myoglobin MB 2.045 2.8 0.40466 0.1 

P47755 
F-actin-capping protein subunit 

alpha-2 
CAPZA2 2.002 25 0.336535 0.0035 

P24821 Tenascin TNC 1.959 1.2 0.153829 0.56 

P09417 Dihydropteridine reductase QDPR 1.785 2.2 0.628449 0.52 
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Q15435 
Protein phosphatase 1 regulatory 

subunit 7 
PPP1R7 1.777 2.9 0.734765 0.54 

P49407 Beta-arrestin-1 ARRB1 1.76 4.3 0.675052 0.3 

P55072 
Transitional endoplasmic reticulum 

ATPase 
VCP 1.702 16 0.34793 0.036 

Q7Z7G0 Target of Nesh-SH3 ABI3BP 1.646 1.8 0.406289 0.22 

Q99969 
Retinoic acid receptor responder 

protein 2 

RARRE

S2 
1.569 1.5 0.491953 0.23 

Q15942 Zyxin ZYX 1.549 31 0.521529 0.016 

P13489 Ribonuclease inhibitor RNH1 1.545 2.3 0.56624 0.43 

P05090 Apolipoprotein D APOD 1.524 1.5 0.55505 0.037 

P07307 Asialoglycoprotein receptor 2 ASGR2 1.512 4.1 0.574602 0.19 

O00194 Ras-related protein Rab-27B RAB27B 1.506 2.4 0.871046 0.48 

P26447 Protein S100-A4 S100A4 1.477 1.6 0.887897 0.65 

Q04760 Lactoylglutathione lyase GLO1 1.441 1.7 0.90245 0.65 

P99999 Cytochrome c CYCS 1.431 3.4 0.899122 0.12 

Q6UY14 ADAMTS-like protein 4 
ADAMT

SL4 
1.415 1.3 0.695326 0.49 

P20908 Collagen alpha-1(V) chain COL5A1 1.373 3.6 0.81655 0.056 

Q9H4G4 
Golgi-associated plant pathogenesis-

related protein 1 
GLIPR2 1.362 1.3 0.750275 0.39 

P30046 D-dopachrome decarboxylase DDT 1.333 4.8 0.936923 0.077 

P01009 Alpha-1-antitrypsin 
SERPIN

A1 
1.323 1.2 0.79691 0.7 

P02788 Lactotransferrin LTF 1.288 1.6 0.841014 0.37 

P07359 Platelet glycoprotein Ib alpha chain GP1BA 1.272 1.3 0.871046 0.079 

P14625 Endoplasmin 
HSP90B

1 
1.267 1.6 0.875075 0.12 

P19022 Cadherin-2 CDH2 1.25 1.2 0.953576 0.76 

O75874 
Isocitrate dehydrogenase [NADP] 

cytoplasmic 
IDH1 0.874 0.6 0.743002 0.36 

P0DOY3 Immunoglobulin lambda constant 3 IGLC3 0.843 0.8 0.690868 0.56 
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Q03154 Aminoacylase-1 ACY1 0.794 0.1 0.583165 0.14 

P22891 Vitamin K-dependent protein Z PROZ 0.771 0.7 0.521558 0.16 

P17174 
Aspartate aminotransferase, 

cytoplasmic 
GOT1 0.77 0.7 0.517545 0.31 

P12109 Collagen alpha-1(VI) chain COL6A1 0.769 0.5 0.515771 0.15 

P28070 Proteasome subunit beta type-4 PSMB4 0.765 0.7 0.69545 0.74 

P12955 Xaa-Pro dipeptidase PEPD 0.758 0.8 0.490273 0.6 

P07738 Bisphosphoglycerate mutase BPGM 0.758 0.8 0.487438 0.16 

Q06323 
Proteasome activator complex 

subunit 1 
PSME1 0.748 0.5 0.461501 0.54 

P80748 
Immunoglobulin lambda variable 3-

21 

IGLV3-

21 
0.741 0.4 0.780722 0.45 

Q9NZK5 Adenosine deaminase 2 CECR1 0.723 0.6 0.401063 0.31 

P13716 
Delta-aminolevulinic acid 

dehydratase 
ALAD 0.721 0.6 0.397366 0.34 

Q13093 
Platelet-activating factor 

acetylhydrolase 
PLA2G7 0.719 0.6 0.392089 0.16 

P15085 Carboxypeptidase A1 CPA1 0.71 0.2 0.369326 0.091 

Q15102 
Platelet-activating factor 

acetylhydrolase IB subunit gamma 

PAFAH1

B3 
0.707 0.4 0.872012 0.61 

Q01459 Di-N-acetylchitobiase CTBS 0.698 0.6 0.341392 0.12 

P30043 Flavin reductase (NADPH) BLVRB 0.698 0.4 0.339628 0.024 

P09467 Fructose-1,6-bisphosphatase 1 FBP1 0.689 0.3 0.423045 0.35 

Q9BTY2 Plasma alpha-L-fucosidase FUCA2 0.689 0.5 0.317563 0.35 

P01859 
Immunoglobulin heavy constant 

gamma 2 
IGHG2 0.678 0.3 0.289903 0.31 

P01834 Immunoglobulin kappa constant IGKC 0.626 0.5 0.171385 0.23 

Q9GZP4 PITH domain-containing protein 1 PITHD1 0.624 0.6 0.610958 0.71 

P15291 Beta-1,4-galactosyltransferase 1 
B4GALT

1 
0.583 0.3 0.101291 0.27 

P00352 Retinal dehydrogenase 1 
ALDH1

A1 
0.473 0.07 0.010975 0.14 
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4.3.4 Common plasma proteome changes in longitudinal AD and MCI groups: 

Only about 20% of total DEPs in AD and MCI longitudinal analysis groups were identified in 

both groups (Figure 4.7A, 19 DEPs). Of these 19 DEPs, 9 have the same direction of fold 

change; 8 are upregulated, and 1 are downregulated (Table 4.6). The other 10 DEPs changed 

in the opposite direction in MCI and AD, showing that at the molecular level, substantial 

differences are apparent between MCI and AD, in that not only are a majority of DEPs different 

between the two groups (Figure 4.7A and 4.7B) but that even a good proportion of the proteins 

identified in common in the two groups have different directions of change. 

 

GO term enrichment analysis of the 19 DEPs shared by AD and MCI groups identified various 

functional groups, including metabolism, immune response, apoptosis, WNT signalling, and 

inflammation (Figure 4.7C).  The two functional groups which have the greatest number of 

DEPs shared by both MCI and AD are metabolism, and immune response, suggesting that 

dysregulation of these two functions are shared between MCI and AD, while the majority of 

other DEPs are unique to each group (Figure 4.7A, 4.7B and 4.7C).   
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Figure 4.7: A. Venn diagram showing 19 DEPs present in both longitudinal AD and MCI plasma proteome 

profiles (specific proteins are listed in Table 4.6). B. Heat map analysis of 19 DEPs common in longitudinal AD 

and MCI showing the pattern of common DEPs in both diseases. C. The 21 DEPs which were commonly 

dysregulated in MCI and AD were categorized into 10 GO enrichment terms including metabolism, immune 

response, apoptosis, WNT signalling, 5-Hydroxytryptamine degradation, a negative regulator of autophagy were 

associated with the list of common DEPs. D. Venn diagram showing 18 DEPs that were present in both cross-

sectional AD and MCI plasma proteome profiles (Table 4.9). E. Heat map analysis of 18 DEPs common in cross 

sectional AD and MCI showing the pattern of common DEPs in both diseases. F. The cross-sectional common 18 

DEPs were categorized into 9 GO enrichment includes an immune response, cytoskeleton, Alzheimer’s disease 

pathways, protein folding, metabolism, cell adhesion, inflammation, transport and carbohydrate-binding. 
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Table 4.6: A total of 19 DEPs were common in both the longitudinal AD and MCI plasma proteome profiles 

Accessio

n 
Description 

Gene 

Symbol 

PD2.4_Ab

undance 

Ratio: 

(ADW4) / 

(ADW1)  

Scaffold_Fol

d change 

(ADW4) / 

(ADW1) 

PD2.4_Ab

undance 

Ratio: 

(MCIW4) / 

(MCIW1) 

Scaffold_F

old change 

(MCIW4) / 

(MCIW1) 

PD2.4_Abund

ance Ratio 

Adj. P-Value: 

(ADW4) / 

(ADW1) 

Scaffold_P 

value(AD

W4) / 

(ADW1) 

PD2.4_Ab

undance 

Ratio Adj. 

P-Value: 

(MCIW4) / 

(MCIW1) 

Scaffold_

P 

value(M

CIW4) / 

(MCIW1

) 

P20908 
Collagen alpha-1(V) 

chain  
COL5A1 1.594 2.8 1.373 3.6 0.201 0.053 0.817 0.056 

Q9H4G4 

Golgi-associated 

plant pathogenesis-

related protein 1  

GLIPR2 1.536 1.3 1.362 1.3 0.277 0.38 0.750 0.39 

P99999 Cytochrome c  CYCS 1.369 6.6 1.431 3.4 0.854 0.15 0.899 0.12 

P55072 

Transitional 

endoplasmic 

reticulum ATPase  

VCP 1.347 1.8 1.702 16 0.624 0.39 0.348 0.036 

P09417 
Dihydropteridine 

reductase  
QDPR 1.334 5.4 1.785 2.2 0.870 0.17 0.628 0.52 

P24592 

Insulin-like growth 

factor-binding 

protein 6  

IGFBP6 1.31 1.2 2.058 1.8 0.685 0.41 0.098 0.016 

Q9NZK5 
Adenosine deaminase 

2  

CECR1; 

ADA2 
1.305 1.7 0.723 0.6 0.690 0.19 0.401 0.31 

P05090 Apolipoprotein D  APOD 1.247 1.2 1.524 1.5 0.792 0.58 0.555 0.037 

P14625 Endoplasmin  HSP90B1 1.213 1.5 1.267 1.6 0.850 0.01 0.875 0.12 

P0DOY3 
Immunoglobulin 

lambda constant 3  
IGLC3 1.201 1.4 0.843 0.8 0.866 0.45 0.691 0.56 

Q92764 
Keratin, type I 

cuticular Ha5  
KRT35 0.813 0.1 3.882 5.3 0.665 0.22 0.000 0.43 

P02788 Lactotransferrin  LTF 0.806 0.5 1.288 1.6 0.653 0.15 0.841 0.37 

P19022 Cadherin-2  CDH2 0.801 0.3 1.25 1.2 0.407 0.34 0.954 0.76 

P01009 Alpha-1-antitrypsin  
SERPINA

1 
0.797 0.9 1.323 1.2 0.327 0.91 0.797 0.7 
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P13489 
Ribonuclease 

inhibitor  
RNH1 0.776 0.5 1.545 2.3 0.407 0.51 0.566 0.43 

P02452 
Collagen alpha-1(I) 

chain  
COL1A1 0.755 0.4 2.163 4.6 0.624 0.58 0.406 0.29 

P00352 
Retinal 

dehydrogenase 1  

ALDH1A

1 
0.639 0.4 0.473 0.07 0.033 0.44 0.011 0.14 

Q8WWA

0 
Intelectin-1  ITLN1 0.594 0.4 2.158 1.5 0.155 0.4 0.326 0.73 

O43790 
Keratin, type II 

cuticular Hb6  
KRT86 0.511 0.07 2.148 3.8 0.010 0.099 0.422 0.28 
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4.3.5 Cross sectional proteome changes in AD and MCI – potential clinical 

biomarkers: 

Cross-sectional analyses compare the plasma proteome profiles of AD and MCI relative to 

their age-matched cognitively healthy controls. In the cross-sectional analysis of incipient AD 

group (ADW4/CTRLW4), 70 DEPs were identified, including 27 upregulated and 43 

downregulated DEPs (Table 4.7). In MCI, 89 proteins were differentially expressed relative to 

age-matched normal controls (MCIW4/CTRLW4), with 53 upregulated and 36 downregulated 

DEPs (Table 4.8), indicating the number of dysregulated proteins identified in both disease 

conditions are similar. Heatmap analysis of the differentially abundant proteins in AD and MCI 

(Figure 4.8A and 4.8C respectively) show that there is some overlap of AD and MCI DEPs 

(Figure 4.7D). Volcano plots show the 20 DEPs in AD and MCI with the highest and lowest 

fold change in Figures 4.8B and 4.8D. Cross-sectional analyses of plasma proteome profiles of 

AD and MCI subjects relative to age-matched normal controls also identified a variety of 

potential disease-specific markers. DEPs identified in AD (ADW4/CTRLW4) that were not 

found in MCI (MCIW4/CTRLW4) (Figure 4.8A and 4.8B), including functions such as; 

antioxidants (PRDX4), proteasome (PSMB2, PSMF1), metabolism (MANBA, PYGB), 

cytoskeleton (TUBB, ARPC5). GO term enrichment analysis identified a diversity of 

significantly enriched categories in the DEPs upregulated in AD (9 biological processes, 14 

cellular components, 7 molecular functions, 3 KEGG & Reactome pathways) and DEPs 

downregulated in AD (48 biological processes, 48 cellular components, 14 molecular 

functions, 2 KEGG & Reactome pathways). Approximately half of the proteins were associated 

with binding activity (protein binding, signalling receptor binding and calcium ion binding), 

response to stress, small molecule metabolic process, extracellular regions, and cytoplasm.  

 

When compared to age-matched cognitively normal controls, the plasma proteome profile of 

MCI (MCIW4/CTRLW4) demonstrated a plethora of DEPs that were not observed in cross-

sectional AD (ADW4/CTRLW4) group. These DEPs include functions such as growth factors 

(IGF1, MYDGF, OGN), metabolism (CBR1, GSR), signalling (YWHAG), immunity (ITLN1), 

and vascular function (VWF) (Figure 4.8C and 4.8D, Table 4.8).  GO term enrichment analysis 

identified 76 biological processes, 27 cellular components, 11 molecular functions and 6 

KEGG & Reactome pathway categories significantly enriched (Benjamini-Hochberg FDR 

<0.05) using DEPs upregulated in MCI. The main functional enrichments identified using the 
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DEPs upregulated in MCI included: metabolic process, vesicle-mediated transport, immune 

system process, homeostasis and the complement cascade. Enrichment analysis of DEPs 

downregulated in MCI identified 9 biological processes, 20 cellular components, 6 molecular 

functions, and 2 KEGG & Reactome pathway categories. 

Relatively few of the same DEPs were identified in both the cross-sectional and longitudinal 

analyses of AD and MCI, being 15 (Table 4.10) and 16 (Table 4.11) DEPs, respectively.  

 

 

 

Figure 4.8. A and C Heat map analysis of DEPs in cross sectional comparisons of AD (ADW4/CTRLW4) and 

MCI (MCIW4/CTRLW4), respectively. C and D: Volcano plots highlight the 20 DEPs with the highest fold change 

in cross-sectional AD and MCI comparisons (I have highlighted only the top 20 proteins to avoid the 

overcrowding on volcano plots). A complete list of DEPs with p-values is shown in Table 4.7 and Table 4.8, 

respectively. 
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Table 4.7: The list of proteins uniquely differentially expressed in AD in cross-sectional comparison (ADW4/CTRLW4).  

Accession Description 
Gene 

Symbol 

PD2.4_Abundance 

Ratio: (ADW4) / 

(CTRLW4) 

Scaffold 

fold change  

(ADW4) / 

(CTRLW4) 

PD2.4_Abundance 

Ratio Adj. P-

Value: (ADW4) / 

(CTRLW4) 

Scaffold P-

Value: 

(ADW4) / 

(CTRLW4) 

Q9GZP4 PITH domain-containing protein 1  PITHD1 1.96 1.7 0.468578 0.66 

P31151 Protein S100-A7  S100A7 1.749 1.5 0.572062 0.79 

Q06830 Peroxiredoxin-1 PRDX1 1.739 1.5 0.270851 0.43 

Q13162 Peroxiredoxin-4  PRDX4 1.694 4.7 0.738359 0.14 

Q05682 Caldesmon  CALD1 1.57 1.6 0.642572 0.74 

P49721 Proteasome subunit beta type-2  PSMB2 1.503 8.7 0.652877 0.083 

P08833 Insulin-like growth factor-binding 

protein 1  

IGFBP1 1.502 1.2 0.294789 0.65 

P24821 Tenascin  TNC 1.481 1.3 0.379469 0.16 

P12109 Collagen alpha-1(VI) chain  COL6A1 1.478 1.3 0.321531 0.59 

O00462 Beta-mannosidase  MANBA 1.473 2.6 0.61575 0.47 

Q92520 Protein FAM3C  FAM3C; 

WNT16 

1.409 2.4 0.652877 0.32 

Q86UN3 Reticulon-4 receptor-like 2 RTN4RL2 1.382 1.5 0.773128 0.72 

P08709 Coagulation factor VII  F7 1.352 1.2 0.540064 0.26 

P09417 Dihydropteridine reductase  QDPR 1.342 1.8 0.751176 0.51 

Q9UJJ9 N-acetylglucosamine-1-

phosphotransferase subunit gamma  

GNPTG 1.335 1.3 0.568657 0.29 

Q15262 Receptor-type tyrosine-protein 

phosphatase kappa  

PTPRK 1.322 2.2 0.740136 0.45 

Q9P232 Contactin-3  CNTN3 1.288 1.2 0.642572 0.65 

P22891 Vitamin K-dependent protein Z  PROZ 1.288 1.2 0.642572 0.54 

P19021 Peptidyl-glycine alpha-amidating 

monooxygenase  

PAM 1.27 1.4 0.655308 0.59 

Q93063 Exostosin-2 EXT2 1.266 4.3 0.658251 0.24 

P54920 Alpha-soluble NSF attachment protein  NAPA 1.266 1.8 0.811847 0.48 
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Q9BXJ4 Complement C1q tumor necrosis factor-

related protein 3  

C1QTNF3 

1.25 1.2 

0.32 0.23994 

P36222 Chitinase-3-like protein 1  CHI3L1 1.242 1.6 0.839637 0.18 

P05062 Fructose-bisphosphate aldolase B  ALDOB 1.221 1.3 0.731685 0.45 

P07339 Cathepsin D  CTSD 1.22 1.4 0.731685 0.47 

P08603 Complement factor H CFH 1.209 1.2 0.738399 0.14 

P24043 Laminin subunit alpha-2  LAMA2 1.202 2 0.833246 0.5 

P02787 Serotransferrin  TF 0.869 0.7 0.27 0.077121 

P14543 Nidogen-1  NID1 0.867 0.8 0.839637 0.55 

P11216 Glycogen phosphorylase, brain form  PYGB 0.865 0.06 0.916734 0.028 

Q15257 

Serine/threonine-protein phosphatase 2A 

activator  

PPP2R4; 

PTPA 0.863 0.6 0.85397 0.4 

Q14697 Neutral alpha-glucosidase AB  GANAB 0.857 0.5 0.819429 0.17 

Q3ZCW2 Galectin-related protein  LGALSL 0.82 0.6 0.759523 0.15 

Q9UBW5 Bridging integrator 2  BIN2 0.807 0.7 0.714901 0.47 

Q00610 Clathrin heavy chain 1  CLTC 0.796 0.7 0.775769 0.59 

P02775 Platelet basic protein  PPBP 0.787 0.6 0.667729 0.064 

O00299 Chloride intracellular channel protein 1  CLIC1 0.781 0.7 0.655308 0.13 

P18206 Vinculin  VCL 0.779 0.6 0.655308 0.024 

Q9HCN6 Platelet glycoprotein VI  GP6 0.769 0.1 0.749127 0.094 

P22105 Tenascin-X  TNXB 0.767 0.8 0.833246 0.12 

P29350 Tyrosine-protein phosphatase non-

receptor type 6  

PTPN6 0.761 0.5 0.784524 0.4 

Q96CN7 Isochorismatase domain-containing 

protein 1  

ISOC1 0.753 0.7 0.83001 0.56 

P31150 Rab GDP dissociation inhibitor alpha  GDI1 0.742 0.4 0.680185 0.16 

P23381 Tryptophan--tRNA ligase, cytoplasmic  WARS 0.74 0.5 0.667564 0.24 

P42126 Enoyl-CoA delta isomerase 1, 

mitochondrial  

ECI1 0.737 0.7 0.79367 0.83 

P15924 Desmoplakin  DSP 0.724 0.1 0.516532 0.29 



MAS Cohort: ageing, MCI and AD dementia Chapter 4 

 

135 

 

Q99439 Calponin-2  CNN2 0.723 0.4 0.625472 0.059 

P00558 Phosphoglycerate kinase 1  PGK1 0.716 0.6 0.48116 0.068 

P60174 Triosephosphate isomerase  TPI1 0.715 0.8 0.478043 0.4 

P49641 Alpha-mannosidase 2x  MAN2A2 0.706 0.4 0.549055 0.54 

P55072 Transitional endoplasmic reticulum 

ATPase  

VCP 0.704 0.5 0.435599 0.14 

Q16181 Septin-7  SEPT7 0.679 0.6 0.347957 0.5 

P99999 Cytochrome c  CYCS 0.679 0.7 0.705269 0.64 

P09486 SPARC  SPARC 0.675 0.4 0.335137 0.0089 

Q92530 Proteasome inhibitor PI31 subunit  PSMF1 0.67 0.8 0.860799 0.91 

P00491 Purine nucleoside phosphorylase  PNP 0.659 0.8 0.292817 0.46 

P17813 Endoglin  ENG 0.657 0.7 0.289361 0.77 

P15086 Carboxypeptidase B  CPB1 0.642 0.2 0.566837 0.43 

Q7KZF4 Staphylococcal nuclease domain-

containing protein 1  

SND1 0.605 0.3 0.580919 0.45 

Q15555 Microtubule-associated protein RP/EB 

family member 2  

MAPRE2 0.598 0.3 0.321531 0.0086 

P08514 Integrin alpha-IIb  ITGA2B 0.559 0.5 0.642572 0.57 

P19971 Thymidine phosphorylase  TYMP 0.555 0.3 0.307284 0.088 

O60888 Protein CutA  CUTA 0.555 0.7 0.682359 0.83 

P00533 Epidermal growth factor receptor  EGFR 0.525 0.6 0.262896 0.73 

O00584 Ribonuclease T2  RNASET2 0.521 0.5 0.555491 0.53 

Q13835 Plakophilin-1  PKP1 0.477 0.09 0.04102 0.33 

P21399 Cytoplasmic aconitate hydratase  ACO1 0.416 0.3 0.092928 0.48 

P14324 Farnesyl pyrophosphate synthase  FDPS 0.387 0.4 0.217861 0.34 

O15511 Actin-related protein 2/3 complex 

subunit 5  

ARPC5 0.374 0.7 0.045864 0.44 

P07437 Tubulin beta chain  TUBB 0.315 0.1 0.001446 0.0087 
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Table 4.8: The list of proteins uniquely differentially expressed in MCI cross-sectional comparison (MCIW4/CTRLW4). 

Accession Description 
Gene 

Symbol 

PD2.4_Abunda

nce Ratio: 

(MCIW4) / 

(CTRLW4) 

Scaffold fold 

change: 

(MCIW4) / 

(CTRLW4) 

PD2.4_Abundan

ce Ratio Adj. P-

Value: (MCIW4) 

/ (CTRLW4) 

Scaffold P-

Value: 

(MCIW4) / 

(CTRLW4) 

Q8WWA0 Intelectin-1  ITLN1 2.832 3.9 0.0481223 0.36 

P20774 Mimecan  OGN 2.377 2.6 0.023 1.6382722 

Q9UKU6 
Thyrotropin-releasing hormone-

degrading ectoenzyme  
TRHDE 2.04 1.2 0.125004 0.903076 

P22694 
cAMP-dependent protein kinase 

catalytic subunit beta  
PRKACB 2.038 3.3 0.7484872 0.1258156 

P34932 Heat shock 70 kDa protein 4  HSPA4 2.037 2.7 0.1266229 0.8974876 

Q06141 
Regenerating islet-derived 

protein 3-alpha  
REG3A 2.029 2.8 0.4717034 0.326331 

P07307 Asialoglycoprotein receptor 2  ASGR2 1.975 5.2 0.1967669 0.706048 

P13591 Neural cell adhesion molecule 1  NCAM1 1.884 1.3 0.6401493 0.1937187 

P05019 Insulin-like growth factor I  IGF1 1.841 2.6 0.6123379 0.2130088 

P02763 Alpha-1-acid glycoprotein 1  ORM1 1.794 1.3 0.2831411 0.547997 

Q9HC38 
Glyoxalase domain-containing 

protein 4  
GLOD4 1.751 1.4 0.5371733 0.2698856 

Q9HDC9 
Adipocyte plasma membrane-

associated protein  
APMAP 1.711 1.5 0.3595098 0.4442893 

P09525 Annexin A4  ANXA4 1.686 1.4 0.7141254 0.1462255 

Q15435 
Protein phosphatase 1 regulatory 

subunit 7  
PPP1R7 1.678 2.1 0.7484872 0.1258156 

P08294 
Extracellular superoxide 

dismutase [Cu-Zn]  
SOD3 1.667 1.5 0.4060378 0.3914335 

P51452 
Dual specificity protein 

phosphatase 3  
DUSP3 1.657 1.6 0.7702635 0.1133607 

P50225 Sulfotransferase 1A1  SULT1A1 1.612 2 0.7973053 0.0983754 

Q12907 
Vesicular integral-membrane 

protein VIP36  
LMAN2 1.586 1.6 0.501516 0.2997152 
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Q13162 Peroxiredoxin-4  PRDX4 1.581 1.7 0.8814668 0.61 

P30085 UMP-CMP kinase  CMPK1 1.55 1.6 0.7577868 0.120453 

P24592 
Insulin-like growth factor-

binding protein 6  
IGFBP6 1.548 1.2 0.5550578 0.2556618 

P27169 
Serum paraoxonase/arylesterase 

1  
PON1 1.537 1.2 0.5742667 0.2408863 

P10644 
cAMP-dependent protein kinase 

type I-alpha regulatory subunit  
PRKAR1A 1.532 1.2 0.7969063 0.0985927 

P02787 Serotransferrin  TF 1.478 2.6 0.6348591 0.27 

Q9BXJ4 
Complement C1q tumor 

necrosis factor-related protein 3  
C1QTNF3 1.471 1.7 0.6459608 0.1897938 

P20851 C4b-binding protein beta chain  C4BPB 1.458 2.2 0.097 1.0132283 

P04070 Vitamin K-dependent protein C  PROC 1.454 1.2 0.6718201 0.172747 

P22692 
Insulin-like growth factor-

binding protein 4  
IGFBP4 1.448 1.4 0.6816923 0.1664116 

Q92520 Protein FAM3C  
FAM3C; 

WNT16 
1.44 1.9 0.7913147 0.43 

P01023 Alpha-2-macroglobulin  A2M 1.428 1.2 0.7119065 0.147577 

Q16270 
Insulin-like growth factor-

binding protein 7  
IGFBP7 1.426 1.3 0.7141254 0.1462255 

Q86UD1 Out at first protein homolog OS OAF 1.424 1.2 0.7141254 0.1462255 

Q96S96 
Phosphatidylethanolamine-

binding protein 4  
PEBP4 1.411 1.6 0.7201387 0.1425838 

Q99969 
Retinoic acid receptor responder 

protein 2  
RARRES2 1.411 1.3 0.7201387 0.41 

O60493 Sorting nexin-3  SNX3 1.386 1.2 0.9024726 0.044566 

P06732 Creatine kinase M-type  CKM 1.375 1.8 0.75139 0.1241346 

O14791 Apolipoprotein L1 APOL1 1.355 1.8 0.7708556 0.113027 

Q10588 
ADP-ribosyl cyclase/cyclic 

ADP-ribose hydrolase 2  
BST1 1.331 1.2 0.045 1.3467875 

P20023 Complement receptor type 2  CR2 1.328 1.9 0.8687855 0.0610874 
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Q9HBB8 
Cadherin-related family 

member 5  
CDHR5 1.322 1.7 0.8383456 0.0765769 

Q9GZT8 NIF3-like protein 1  NIF3L1 1.309 2.2 0.8516682 0.0697295 

P10586 
Receptor-type tyrosine-protein 

phosphatase F  
PTPRF 1.302 1.2 0.8410053 0.0752013 

P36222 Chitinase-3-like protein 1  CHI3L1 1.2 1.3 0.988409 0.0050633 

O00187 
Mannan-binding lectin serine 

protease 2  
MASP2 1.295 1.2 0.845749 0.0727585 

Q969H8 Myeloid-derived growth factor  
C19orf10; 

MYDGF 
1.293 5.2 0.9252289 0.0337508 

Q06033 
Inter-alpha-trypsin inhibitor 

heavy chain H3  
ITIH3 1.285 1.3 0.045 1.3467875 

Q6UY14 ADAMTS-like protein 4  
ADAMTSL

4 
1.268 1.3 0.8687855 0.0610874 

Q14697 Neutral alpha-glucosidase AB  GANAB 1.264 1.3 0.8697649 0.0605981 

P16152 Carbonyl reductase [NADPH] 1  
CBR1; 

SETD4 
1.255 2.6 0.9178352 0.0372353 

P20908 Collagen alpha-1(V) chain  COL5A1 1.253 2.3 0.8947421 0.0483021 

Q16706 Alpha-mannosidase 2  MAN2A1 1.248 2.6 0.8877724 0.0516984 

P02788 Lactotransferrin  LTF 1.242 1.5 0.8944913 0.0484239 

P80108 
Phosphatidylinositol-glycan-

specific phospholipase D  
GPLD1 1.231 1.3 0.8990445 0.0462188 

Q16181 Septin-7  Sep-07 0.886 0.4 0.8627009 0.12 

P14151 L-selectin  SELL 0.866 0.8 0.8383456 0.26 

P02775 Platelet basic protein  PPBP 0.84 0.6 0.787821 0.065 

P31150 
Rab GDP dissociation inhibitor 

alpha  
GDI1 0.829 0.6 0.8237697 0.3 

O15511 
Actin-related protein 2/3 

complex subunit 5  
ARPC5 0.823 0.8 0.7543202 0.6 

P09486 SPARC  SPARC 0.822 0.5 0.752345 0.0074 

O00299 
Chloride intracellular channel 

protein 1  
CLIC1 0.809 0.8 0.7337874 0.46 
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Q9BTY2 Plasma alpha-L-fucosidase  FUCA2 0.804 0.3 0.7216359 0.034 

P04040 Catalase  CAT 0.796 0.5 0.7170453 0.1444534 

P14543 Nidogen-1  NID1 0.794 0.8 0.7141254 0.1462255 

Q3ZCW2 Galectin-related protein  LGALSL 0.793 0.6 0.7344685 0.1340268 

P49908 Selenoprotein P  
SEPP1; 

SELENOP 
0.79 0.8 0.7097972 0.1488657 

P35916 
Vascular endothelial growth 

factor receptor 3  
FLT4 0.783 0.7 0.6873885 0.1627977 

P32004 
Neural cell adhesion molecule 

L1 OS 
L1CAM 0.776 0.2 0.7662757 0.1156149 

Q9Y646 Carboxypeptidase Q  CPQ 0.766 0.8 0.7484872 0.1258156 

P48426 
Phosphatidylinositol 5-

phosphate 4-kinase type-2 alpha  
PIP4K2A 0.745 0.7 0.6236173 0.2050819 

P11216 
Glycogen phosphorylase, brain 

form 
PYGB 0.743 0.2 0.7484872 0.1258156 

P61981 14-3-3 protein gamma  YWHAG 0.736 0.6 0.5746125 0.240625 

P04275 von Willebrand factor  VWF 0.735 0.7 0.0057 2.2441251 

Q4LDE5 

Sushi, von Willebrand factor 

type A, EGF and pentraxin 

domain-containing protein 1  

SVEP1 0.73 0.7 0.5562921 0.2546971 

Q06323 
Proteasome activator complex 

subunit 1  
PSME1 0.717 0.2 0.5121104 0.2906364 

Q9UKX2 Myosin-2  MYH2 0.703 0.7 0.5949192 0.225542 

Q9BYR3 Keratin-associated protein 4-4  KRTAP4-4 0.694 0.3 0.7657821 0.48 

P15085 Carboxypeptidase A1  CPA1 0.692 0.2 0.4451852 0.3514593 

P00390 
Glutathione reductase, 

mitochondrial  
GSR 0.691 0.7 0.4416225 0.3549488 

P12955 Xaa-Pro dipeptidase  PEPD 0.685 0.8 0.4253025 0.3713021 

Q9UBW5 Bridging integrator 2  BIN2 0.663 0.6 0.3651087 0.4375779 

Q9UQ80 
Proliferation-associated protein 

2G4  
PA2G4 0.656 0.2 0.5114573 0.16 
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Q9NZK5 Adenosine deaminase 2  
CECR1; 

ADA2 
0.654 0.5 0.3439083 0.4635574 

Q15257 
Serine/threonine-protein 

phosphatase 2A activator  

PPP2R4; 

PTPA 
0.643 0.4 0.4104502 0.3867396 

Q96FW1 Ubiquitin thioesterase OTUB1  OTUB1 0.634 0.3 0.7624006 0.3 

P13598 
Intercellular adhesion molecule 

2  
ICAM2 0.627 0.7 0.2777685 0.556317 

Q05682 Caldesmon  CALD1 0.622 0.5 0.7550198 0.6 

Q14766 
Latent-transforming growth 

factor beta-binding protein 1  
LTBP1 0.586 0.5 0.2368549 0.6255176 

P04746 Pancreatic alpha-amylase  AMY2A 0.583 0.3 0.6804248 0.1672199 

Q9BYR8 Keratin-associated protein 3-1  KRTAP3-1 0.44 0.4 0.3415649 0.4665268 

 

 

4.3.6 Common proteome changes in cross sectional analysis of AD and MCI:  

There were 18 DEPs common to both AD and MCI in the cross-sectional analyses (Figure 4.7D, E, and F and Table 4.9). These MCI and AD 

shared DEPs were associated with functions such as immune system (PRDX4, CHI3L1, BIN2, PPBP, TF), cytoskeleton (ARPC5, SEPT7, GDI1, 

CALD1) and metabolism (PYGB, GANAB). Only 4 of these upregulated DEPs had a similar direction of fold-change in both AD and MCI 

(PRDX4, CHI3L1, FAM3C, C1QTNF3), while opposite directions of fold change were observed for TF, GANAB, and CALD1, Figure 4.7E. The 

majority of DEPs common to both MCI and AD in the cross-sectional analyses were downregulated (11/18 proteins), Figure 4.7E and, Table 4.9.  
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Table 4.9. The list of 18 DEPs common to both the cross sectional AD and MCI analyses. 

Accession Description 
Gene 

Symbol 

PD2.4_Ab

undance 

Ratio: 

(ADW4) / 

(CTRLW4

) 

Scaffold 

fold 

change 

(ADW4) / 

(CTRLW

4) 

PD2.4_Abu

ndance 

Ratio: 

(MCIW4) / 

(CTRLW4) 

Scaffold 

fold 

change: 

(MCIW

4) / 

(CTRL

W4) 

PD2.4_Abund

ance Ratio 

Adj. P-Value: 

(ADW4) / 

(CTRLW4) 

Scaffold 

P-Value: 

(ADW4) 

/ 

(CTRL

W4) 

PD2.4_Abund

ance Ratio 

Adj. P-Value: 

(MCIW4) / 

(CTRLW4) 

Scaffold 

P-Value: 

(MCIW

4) / 

(CTRL

W4) 

Q13162 
Peroxiredoxi

n-4  
PRDX4 1.694 4.7 1.581 1.7 0.738 0.14 0.881 0.61 

Q05682 Caldesmon  CALD1 1.57 1.6 0.622 0.5 0.643 0.74 0.755 0.6 

Q9BXJ4 

Complement 

C1q tumor 

necrosis 

factor-related 

protein 3  

C1QTNF

3 
1.25 1.2 1.471 1.7 0.32 0.24 0.646 0.19 

Q92520 
Protein 

FAM3C  

FAM3C; 

WNT16 
1.409 2.4 1.44 1.9 0.653 0.32 0.791 0.43 

P36222 
Chitinase-3-

like protein 1  
CHI3L1 1.242 1.6 1.3 1.3 0.84 0.18 0.988 0.005 

P02787 
Serotransferr

in  
TF 0.869 0.7 1.478 2.6 0.27 0.077 0.635 0.27 

P14543 Nidogen-1  NID1 0.867 0.8 0.794 0.8 0.84 0.55 0.714 0.146 

P11216 

Glycogen 

phosphorylas

e, brain form  

PYGB 0.865 0.06 0.743 0.2 0.917 0.028 0.748 0.126 

Q15257 

Serine/threon

ine-protein 

phosphatase 

2A activator  

PPP2R4 0.863 0.6 0.643 0.4 0.854 0.4 0.41 0.387 

Q14697 
Neutral 

alpha-
GANAB 0.857 0.5 1.264 1.3 0.819 0.17 0.87 0.061 
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glucosidase 

AB  

Q3ZCW2 

Galectin-

related 

protein  

LGALSL 0.82 0.6 0.793 0.6 0.76 0.15 0.734 0.134 

Q9UBW5 
Bridging 

integrator 2  
BIN2 0.807 0.7 0.663 0.6 0.715 0.47 0.365 0.438 

P02775 
Platelet basic 

protein  
PPBP 0.787 0.6 0.84 0.6 0.668 0.064 0.788 0.065 

O00299 

Chloride 

intracellular 

channel 

protein 1  

CLIC1 0.781 0.7 0.809 0.8 0.655 0.13 0.734 0.46 

P31150 

Rab GDP 

dissociation 

inhibitor 

alpha  

GDI1 0.742 0.4 0.829 0.6 0.68 0.16 0.824 0.3 

Q16181 Septin-7  SEPT7 0.679 0.6 0.886 0.4 0.348 0.5 0.863 0.12 

P09486 SPARC  SPARC 0.675 0.4 0.822 0.5 0.335 0.009 0.752 0.007 

O15511 

Actin-related 

protein 2/3 

complex 

subunit 5  

ARPC5 0.374 0.7 0.823 0.8 0.046 0.44 0.754 0.6 
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Table 4.10. The list of DEPs common to both longitudinal and cross sectional AD comparisons.  

Accession Description 
Gene 

Symbol 

PD2.4_Abu

ndance 

Ratio: 

(ADW4) / 

(ADW1)  

Scaffold 

Fold 

change 

(ADW4) / 

(ADW1) 

PD2.4_Abund

ance Ratio: 

(ADW4) / 

(CTRLW4) 

Scaffol

d fold 

change 

(ADW

4) / 

(CTRL

W4) 

PD2.4_Abund

ance Ratio 

Adj. P-Value: 

(ADW4) / 

(ADW1) 

Scaffold_ 

P 

value(AD

W4) / 

(ADW1) 

PD2.4_Abund

ance Ratio 

Adj. P-Value: 

(ADW4) / 

(CTRLW4) 

Scaffol

d P-

Value: 

(ADW

4) / 

(CTRL

W4) 

P00533 

Epidermal 

growth factor 

receptor  

EGFR 0.679 0.2 0.525 0.6 0.285 0.19 0.263 0.73 

P02787 
Serotransferri

n  
TF 0.517 0.2 1.478 2.6 0.001 0.065 0.270 0.08 

P05062 

Fructose-

bisphosphate 

aldolase B  

ALDOB 1.259 1.7 1.221 1.3 0.775 0.12 0.732 0.45 

P09417 

Dihydropteri

dine 

reductase  

QDPR 1.334 5.4 1.342 1.8 0.870 0.17 0.751 0.51 

P19021 

Peptidyl-

glycine 

alpha-

amidating 

monooxygen

ase  

PAM 1.372 1.5 1.27 1.4 0.579 0.48 0.655 0.59 

P22105 Tenascin-X  TNXB 0.676 0.8 0.767 0.8 0.396 0.2 0.833 0.12 

P24043 

Laminin 

subunit 

alpha-2  

LAMA2 1.249 1.4 1.202 2 0.911 0.7 0.833 0.50 

P31151 
Protein S100-

A7  
S100A7 2.049 3.5 1.749 1.5 0.370 0.5 0.572 0.79 

P49641 

Alpha-

mannosidase 

2x  

MAN2A

2 
0.56 0.2 0.706 0.4 0.027 0.22 0.549 0.54 
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P49721 

Proteasome 

subunit beta 

type-2  

PSMB2 1.481 5.6 1.503 8.7 0.766 0.081 0.653 0.08 

P55072 

Transitional 

endoplasmic 

reticulum 

ATPase  

VCP 1.347 1.8 0.704 0.5 0.624 0.39 0.436 0.14 

P99999 
Cytochrome 

c  
CYCS 1.369 6.6 0.679 0.7 0.854 0.15 0.705 0.64 

Q15262 

Receptor-

type tyrosine-

protein 

phosphatase 

kappa  

PTPRK 2.076 2.3 1.322 2.2 0.229 0.38 0.740 0.45 

Q15555 

Microtubule-

associated 

protein 

RP/EB 

family 

member 2  

MAPRE

2 
1.639 3.7 0.598 0.3 0.628 0.1 0.322 0.01 

Q92520 
Protein 

FAM3C  
FAM3C 1.555 2.8 1.409 2.4 0.657 0.24 0.653 0.32 
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Table 4.11. The list of DEPs was common to both longitudinal and cross-sectional MCI comparisons. 

Accession Description 
Gene 

Symbol 

PD2.4_Abun

dance Ratio: 

(MCIW4) / 

(MCIW1) 

Scaffold_

Fold 

change 

(MCIW4) 

/ 

(MCIW1) 

PD2.4_Abun

dance Ratio: 

(MCIW4) / 

(CTRLW4) 

Scaffold 

fold 

change: 

(MCIW

4) / 

(CTRL

W4) 

PD2.4_Abun

dance Ratio 

Adj. P-Value: 

(MCIW4) / 

(MCIW1) 

Scaffold_P 

value(MCI

W4) / 

(MCIW1) 

PD2.4_Abun

dance Ratio 

Adj. P-Value: 

(MCIW4) / 

(CTRLW4) 

scaffold 

P-

Value: 

(MCIW

4) / 

(CTRL

W4) 

P02775 Platelet basic protein   PPBP 2.159 1.2 0.84 0.6 0.064 0.760 0.788 0.065 

P02788 Lactotransferrin   LTF 1.288 1.6 1.242 1.5 0.841 0.370 0.894 0.048 

P07307 
Asialoglycoprotein 

receptor 2   

ASGR

2 
1.512 4.1 1.975 5.2 0.575 0.190 0.197 0.706 

P12955 Xaa-Pro dipeptidase   PEPD 0.758 0.8 0.685 0.8 0.490 0.600 0.425 0.371 

P15085 Carboxypeptidase A1   CPA1 0.71 0.2 0.692 0.2 0.369 0.091 0.445 0.351 

P20908 
Collagen alpha-1(V) 

chain   

COL5

A1 
1.373 3.6 1.253 2.3 0.817 0.056 0.895 0.048 

P24592 

Insulin-like growth 

factor-binding protein 

6   

IGFBP

6 
2.058 1.8 1.548 1.2 0.098 0.016 0.555 0.256 

P34932 
Heat shock 70 kDa 

protein 4   
HSPA4 2.136 3.9 2.037 2.7 0.070 0.240 0.127 0.897 

Q06323 
Proteasome activator 

complex subunit 1   
PSME1 0.748 0.5 0.717 0.2 0.462 0.540 0.512 0.291 
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Q15435 
Protein phosphatase 1 

regulatory subunit 7   

PPP1R

7 
1.777 2.9 1.678 2.1 0.735 0.540 0.748 0.126 

Q6UY14 
ADAMTS-like protein 

4   

ADAM

TSL4 
1.415 1.3 1.268 1.3 0.695 0.490 0.869 0.061 

Q8WW

A0 
Intelectin-1   ITLN1 2.158 1.5 2.832 3.9 0.326 0.730 0.048 0.360 

Q969H8 
Myeloid-derived 

growth factor   

C19orf

10 
2.555 4.3 1.293 5.2 0.234 0.220 0.925 0.034 

Q99969 
Retinoic acid receptor 

responder protein 2   

RARR

ES2 
1.569 1.5 1.411 1.3 0.492 0.230 0.720 0.410 

Q9BTY2 
Plasma alpha-L-

fucosidase   

FUCA

2 
0.689 0.5 0.804 0.3 0.318 0.350 0.722 0.034 

Q9NZK5 
Adenosine deaminase 

2   
CECR1 0.723 0.6 0.654 0.5 0.401 0.310 0.344 0.464 
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4.3.7 Plasma proteome changes in preclinical AD– potential early biomarkers:  

A retrospective analysis of baseline data allows us to identify potential early biomarkers of AD 

(i.e., ADW1/CTRLW1 ratios). I identified a total of 160 dysregulated proteins (Figure 4.9 and 

Table 4.12), including 59 upregulated and 101 downregulated proteins in preclinical AD 

(ADW1/CTRLW1). The volcano plot and heatmap of all AD preclinical DEPs are depicted in 

Figures 4.9A and 4.9B. The volcano plot shows the top 20 most upregulated and downregulated 

DEPs (Figure 4.9A) and include functions such as metabolism (AMY2B, BLVRB), regulation 

(PPP2R4, SERPINA1), cytoskeleton (KRTAP13-2), immunity (ITLN1, RNH1, CRP, CHIT1), 

and transport (ALB, TTR). In the volcano plot, the display shows the top ten downregulated 

DEPs in the preclinical AD group and manually identified roles using available literature and 

GO analysis. These DEPs were involved in antioxidant (PRDX5), apoptosis (BID), 

signalling/regulatory (DUSP3, RSU1, ARHGAP1, YWHAQ, PAM), cytoskeleton (ARPC2), 

metabolism (FABP1), and anticoagulant (ANXA5) Figure 4.9A, Table 4.12) pathways.  

 

A total of 15 DEPs were common to both incipient AD (ADW4/CTRLW4) and preclinical AD 

(ADW1/CTRLW1) (Figure 4.9C and Table 4.13). Of these, 9 DEPs were decreased in both 

clinical and preclinical AD, and included functions such as cytoskeleton/microtubule assembly 

(ARPC5, MAPRE2), signalling/regulation (PGK1), extracellular matrix (SPARC, VCL), 

apoptosis (VCP, ISOC1), protein folding (GANAB), and unknown (LGALSL). Two DEPs 

were increased in both preclinical and incipient AD: chitinase-3-like protein 1 (CHI3L1) and 

proteasome subunit beta type-2 (PSMB2). In addition, two DEPs were increased in preclinical 

AD but decreased in incipient AD: serotransferrin (TF) and Serine/threonine-protein 

phosphatase 2A (PPP2R4), and two proteins were decreased in preclinical AD and increased 

in incipient AD; fructose-bisphosphate aldolase B (ALDOB) and peptidyl glycine alpha-

amidating monooxygenase (PAM). These 15 DEPs may be potential preclinical plasma 

biomarkers of early AD.  

 

In preclinical AD, 59 upregulated proteins were associated with 93 biological processes, 18 

cellular components, 2 molecular functions, and 22 KEGG & Reactome pathways with 

significant GO enrichments. These GO-term enrichments were complement activation, post-

translational protein modification, inflammatory response, neutrophil degranulation, 

metabolism, proteasome, and immune system. The 101 downregulated proteins involved 143 
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biological processes, 42 cellular components, 26 molecular functions, and 35 KEGG. Most 

DEPs were found to be involved in one of the following categories: immune system, actin 

cytoskeleton and polymerization, response to unfolded proteins, protein binding, 

glycolysis/gluconeogenesis, signalling by Rho GTPases and haemostasis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. A. A total of 160 dysregulated 

proteins (Figure 4.9 and Table 4.12), including 

59 upregulated and 101 downregulated proteins in 

preclinical AD. Volcano plots highlight the 20 DEPs with the highest fold change in preclinical AD 

(ADW1/CTRLW1) comparisons (I have highlighted only the top 20 proteins to avoid the overcrowding on volcano 

plots). Table 4.12 contained the detailed information of 160 DEPs of preclinical AD. B. Heatmap of 160 

dysregulated proteins in preclinical AD presents all 160 DEPs in two panels to clearly show the fold change and 

protein names. C. I chose highly enriched GO from STRING, including upregulated and downregulated GO. D 

and E. Venn diagram showing the number of DEPs (15) which were common in preclinical AD (ADW1/CTRLW1) 

and cross-sectional AD (ADW4/CTRLW4), and these DEPs were further presented in the heatmap (Table 4.13).  
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Table 4.12. In preclinical AD, 160 proteins were dysregulated, including 59 upregulated and 101 downregulated proteins (ADW1/CTRLW1). 

Accession Description Gene Symbol 

PD2.4_Abundance 

Ratio: (ADW1) / 

(CTRLW1) 

Scaffold fold 

change: 

(ADW1) / 

(CTRLW1) 

PD2.4_Abundance 

Ratio Adj. P-Value: 

(ADW1) / 

(CTRLW1) 

Scaffold P-

Value: (ADW1) 

/ (CTRLW1) 

Q15257 

Serine/threonine-protein 

phosphatase 2A activator  PPP2R4; PTPA 3.762 1.6 5.3528E-06 0.7 

Q52LG2 Keratin-associated protein 13-2  KRTAP13-2 3.723 1.6 0.10676621 0.68 

Q8WWA0 Intelectin-1  ITLN1 3.289 2.6 0.00325529 0.46 

P19961 Alpha-amylase 2B  AMY2B 2.883 2 0.12436948 0.49 

P02763 Alpha-1-acid glycoprotein 1  ORM1 2.826 4.8 0.00085114 0.12 

P01009 Alpha-1-antitrypsin  SERPINA1 2.239 3.1 0.01708753 0.11 

P02768 Serum albumin  ALB 2.222 3.3 0.01822968 0.046 

P02741 C-reactive protein  CRP 2.188 1.3 0.02112758 0.56 

P30043 Flavin reductase (NADPH)  BLVRB 2.164 2 0.02404333 0.14 

P02766 Transthyretin  TTR 2.116 1.4 0.02986103 0.33 

Q13231 Chitotriosidase-1  CHIT1 2.012 4.4 0.05050651 0.12 

P49913 Cathelicidin antimicrobial peptide  CAMP 1.991 1.7 0.11444124 0.39 

P19022 Cadherin-2  CDH2 1.986 7 0.27463361 0.078 

O14960 

Leukocyte cell-derived chemotaxin-

2  LECT2 1.958 3.9 0.18776132 0.26 

O43790 Keratin, type II cuticular Hb6  KRT86 1.948 6 0.06757085 0.21 

P28072 Proteasome subunit beta type-6  PSMB6 1.87 1.2 0.20624972 0.85 

P32119 Peroxiredoxin-2  PRDX2 1.861 1.4 0.09874915 0.29 

P00352 Retinal dehydrogenase 1  ALDH1A1 1.819 2.2 0.21820511 0.47 

P02787 Serotransferrin  TF 1.817 5.4 0.11955734 0.082 

P20851 C4b-binding protein beta chain  C4BPB 1.816 1.3 0.11955734 0.35 

P36222 Chitinase-3-like protein 1  CHI3L1 1.766 1.6 0.14768823 0.34 

P02647 Apolipoprotein A-I  APOA1 1.724 2 0.17181951 0.26 

P00568 Adenylate kinase isoenzyme 1  AK1 1.629 3.6 0.27631292 0.05 
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P05452 Tetranectin  CLEC3B 1.552 1.3 0.31088637 0.3 

P49721 Proteasome subunit beta type-2  PSMB2 1.543 1.4 0.6646973 0.79 

P13489 Ribonuclease inhibitor  RNH1 1.52 1.7 0.36025267 0.67 

Q9UNN8 Endothelial protein C receptor  PROCR 1.515 1.3 0.34582552 0.39 

P07738 Bisphosphoglycerate mutase  BPGM 1.489 1.3 0.3798756 0.5 

P25789 Proteasome subunit alpha type-4  PSMA4 1.481 1.2 0.64828595 0.83 

Q13103 Secreted phosphoprotein 24  SPP2 1.474 1.2 0.40069352 0.61 

Q15113 

Procollagen C-endopeptidase 

enhancer 1  PCOLCE 1.465 1.2 0.41607405 0.32 

P20618 Proteasome subunit beta type-1  PSMB1 1.452 2.7 0.72685903 0.36 

P01024 Complement C3  C3 1.444 1.6 0.44300254 0.26 

P55083 

Microfibril-associated glycoprotein 

4  MFAP4 1.433 1.5 0.45788588 0.6 

P35858 

Insulin-like growth factor-binding 

protein complex acid labile subunit  IGFALS 1.393 1.2 0.51641443 0.32 

Q9BXR6 

Complement factor H-related 

protein 5  CFHR5 1.383 1.4 0.52794083 0.18 

Q9Y6R7 IgGFc-binding protein  FCGBP 1.363 1.2 0.55458471 0.51 

Q9NPY3 

Complement component C1q 

receptor  CD93 1.353 4.4 0.56974874 0.057 

P02746 

Complement C1q subcomponent 

subunit B  C1QB 1.341 1.2 0.58837601 0.27 

Q5T750 Skin-specific protein 32  C1orf68 1.34 1.3 0.64017955 0.75 

P05164 Myeloperoxidase  MPO 1.335 1.6 0.59544863 0.54 

P41222 Prostaglandin-H2 D-isomerase  PTGDS 1.333 1.6 0.59861347 0.097 

P00748 Coagulation factor XII  F12 1.325 1.2 0.6085159 0.33 

P14151 L-selectin  SELL 1.324 2 0.61115963 0.022 

Q9Y4D7 Plexin-D1  PLXND1 1.32 1.4 0.79266266 0.76 

P04179 

Superoxide dismutase [Mn], 

mitochondrial  SOD2 1.319 3 0.67863625 0.32 
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P04180 

Phosphatidylcholine-sterol 

acyltransferase  LCAT 1.317 1.2 0.61806649 0.39 

P11226 Mannose-binding protein C  MBL2 1.317 1.6 0.61806649 0.16 

P51884 Lumican  LUM 1.306 1.2 0.63839034 0.014 

P16035 Metalloproteinase inhibitor 2  TIMP2 1.292 1.9 0.65371813 0.1 

Q15323 Keratin, type I cuticular Ha1  KRT31 1.289 3.9 0.65687155 0.37 

Q99497 Protein/nucleic acid deglycase DJ-1  PARK7 1.287 2.2 0.65910847 0.072 

Q13332 

Receptor-type tyrosine-protein 

phosphatase S  PTPRS 1.279 1.2 0.66468896 0.71 

Q8N6C8 

Leukocyte immunoglobulin-like 

receptor subfamily A member 3  LILRA3 1.241 1.4 0.72685903 0.56 

P40189 Interleukin-6 receptor subunit beta  IL6ST 1.228 1.8 0.73859717 0.31 

P02745 

Complement C1q subcomponent 

subunit A  C1QA 1.222 1.3 0.74809978 0.37 

P25787 Proteasome subunit alpha type-2  PSMA2 1.212 4.8 0.7844346 0.024 

P30086 

Phosphatidylethanolamine-binding 

protein 1  PEBP1 1.212 1.2 0.7661659 0.7 

P05090 Apolipoprotein D  APOD 1.2 1.3 0.78324037 0.33 

P31146 Coronin-1A  CORO1A 0.896 0.2 0.88576186 0.21 

Q969H8 Myeloid-derived growth factor  

C19orf10; 

MYDGF 0.888 0.1 0.9707224 0.19 

O75083 WD repeat-containing protein 1  WDR1 0.876 0.3 0.84373271 0.28 

O60844 

Zymogen granule membrane protein 

16  ZG16 0.861 0.3 0.95987143 0.15 

Q15555 

Microtubule-associated protein 

RP/EB family member 2  MAPRE2 0.856 0.3 0.89783133 0.19 

P05062 Fructose-bisphosphate aldolase B  ALDOB 0.846 0.7 0.7751356 0.21 

P23526 Adenosylhomocysteinase  AHCY 0.843 0.4 0.89449043 0.56 

P00558 Phosphoglycerate kinase 1  PGK1 0.808 0.6 0.69374295 0.34 

Q86U17 Serpin A11  SERPINA11 0.798 0.7 0.6649673 0.35 

P14618 Pyruvate kinase PKM  PKM 0.795 0.3 0.65963294 0.18 
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P52209 

6-phosphogluconate 

dehydrogenase, decarboxylating  PGD 0.793 0.5 0.65910847 0.37 

P58546 Myotrophin  LUZP6; MTPN 0.79 0.4 0.73151142 0.4 

P11142 Heat shock cognate 71 kDa protein  HSPA8 0.789 0.5 0.65371813 0.39 

P04279 Semenogelin-1  SEMG1 0.788 0.6 0.93101197 0.74 

Q15019 Septin-2  SEPT2 0.786 0.1 0.64828595 0.18 

Q14697 Neutral alpha-glucosidase AB  GANAB 0.784 0.2 0.64727023 0.19 

P16930 Fumarylacetoacetase  FAH 0.772 0.6 0.61534114 0.078 

P08567 Pleckstrin  PLEK 0.77 0.6 0.61002491 0.47 

P12814 Alpha-actinin-1  ACTN1 0.768 0.7 0.6065492 0.53 

P15090 

Fatty acid-binding protein, 

adipocyte  FABP4 0.768 0.3 0.92576353 0.36 

Q16394 Exostosin-1  EXT1 0.765 0.8 0.59861347 0.58 

P24387 

Corticotropin-releasing factor-

binding protein  CRHBP 0.759 0.7 0.58609407 0.33 

P00390 

Glutathione reductase, 

mitochondrial  GSR 0.749 0.7 0.56068472 0.19 

P04406 

Glyceraldehyde-3-phosphate 

dehydrogenase  GAPDH 0.746 0.7 0.55085056 0.27 

P50552 

Vasodilator-stimulated 

phosphoprotein  VASP 0.746 0.1 0.55072217 0.16 

P04066 Tissue alpha-L-fucosidase  FUCA1 0.744 0.6 0.54571062 0.35 

Q96CN7 

Isochorismatase domain-containing 

protein 1  ISOC1 0.742 0.5 0.89783133 0.62 

P00338 L-lactate dehydrogenase A chain  LDHA 0.74 0.7 0.53310518 0.26 

Q04917 14-3-3 protein eta  YWHAH 0.74 0.7 0.58327636 0.66 

P27797 Calreticulin  CALR 0.739 0.7 0.53153453 0.67 

P18206 Vinculin  VCL 0.737 0.6 0.52799201 0.37 

A1L4H1 

Soluble scavenger receptor cysteine-

rich domain-containing protein 

SSC5D  SSC5D 0.733 0.8 0.51821418 0.76 
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P06733 Alpha-enolase  ENO1 0.724 0.4 0.49535944 0.14 

Q9UHG3 Prenylcysteine oxidase 1  PCYOX1 0.724 0.6 0.49535944 0.041 

P41226 

Ubiquitin-like modifier-activating 

enzyme 7  UBA7 0.712 0.1 0.85232222 0.36 

Q15942 Zyxin  ZYX 0.709 0.2 0.45060653 0.13 

Q8WZ75 Roundabout homolog 4  ROBO4 0.706 0.5 0.44228768 0.17 

P00488 Coagulation factor XIII A chain  F13A1 0.705 0.8 0.43958717 0.32 

P09960 Leukotriene A-4 hydrolase  LTA4H 0.705 0.7 0.43999829 0.57 

P04080 Cystatin-B  CSTB 0.701 0.7 0.84859405 0.7 

P07237 Protein disulfide-isomerase  P4HB 0.698 0.4 0.42213929 0.29 

Q9H4B7 Tubulin beta-1 chain  TUBB1 0.698 0.2 0.42170309 0.14 

Q9UJC5 

SH3 domain-binding glutamic acid-

rich-like protein 2  SH3BGRL2 0.689 0.3 0.85786557 0.47 

Q9Y696 

Chloride intracellular channel 

protein 4  CLIC4 0.687 0.2 0.59544863 0.24 

Q9Y490 Talin-1  TLN1 0.685 0.8 0.38029616 0.76 

P09972 Fructose-bisphosphate aldolase C  ALDOC 0.683 0.6 0.39240579 0.34 

P55072 

Transitional endoplasmic reticulum 

ATPase  VCP 0.669 0.3 0.33885529 0.3 

P02776 Platelet factor 4  PF4 0.666 0.6 0.61002491 0.67 

Q6IBS0 Twinfilin-2  TWF2 0.659 0.3 0.67525933 0.39 

P62993 

Growth factor receptor-bound 

protein 2  GRB2 0.658 0.7 0.78009507 0.81 

Q4LDE5 

Sushi, von Willebrand factor type A, 

EGF and pentraxin domain-

containing protein 1  SVEP1 0.653 0.7 0.44508596 0.73 

P11047 Laminin subunit gamma-1  LAMC1 0.645 0.4 0.69781554 0.34 

Q9Y4L1 Hypoxia up-regulated protein 1  HYOU1 0.641 0.4 0.27454849 0.34 

O00151 PDZ and LIM domain protein 1  PDLIM1 0.632 0.4 0.25357436 0.23 

P10599 Thioredoxin  TXN 0.619 0.7 0.27268199 0.54 

Q15084 Protein disulfide-isomerase A6  PDIA6 0.613 0.2 0.20888629 0.16 
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O75144 ICOS ligand 

ICOSLG; 

LOC10272399

6 0.61 0.4 0.20624972 0.26 

Q86UX7 Fermitin family homolog 3  FERMT3 0.603 0.5 0.19186621 0.3 

P07737 Profilin-1  PFN1 0.594 0.5 0.17733864 0.32 

P07900 Heat shock protein HSP 90-alpha  HSP90AA1 0.59 0.2 0.17068273 0.24 

O75368 

SH3 domain-binding glutamic acid-

rich-like protein  SH3BGRL 0.589 0.3 0.23173268 0.27 

P22314 

Ubiquitin-like modifier-activating 

enzyme 1  UBA1 0.572 0.8 0.18603507 0.71 

P30101 Protein disulfide-isomerase A3  PDIA3 0.571 0.5 0.13526359 0.26 

Q8IWV2 Contactin-4  CNTN4 0.556 0.8 0.11187858 0.75 

P61970 Nuclear transport factor 2  NUTF2 0.554 0.4 0.529576 0.55 

P01137 Transforming growth factor beta-1  TGFB1 0.551 0.2 0.24499433 0.23 

O60234 Glia maturation factor gamma  GMFG 0.545 0.3 0.49562623 0.38 

P47755 

F-actin-capping protein subunit 

alpha-2  CAPZA2 0.545 0.4 0.61806649 0.25 

P08519 Apolipoprotein(a)  LPA 0.543 0.6 0.0909234 0.37 

P07996 Thrombospondin-1  THBS1 0.536 0.5 0.08166281 0.24 

P14550 Alcohol dehydrogenase [NADP(+)]  AKR1A1 0.535 0.7 0.30687761 0.82 

P09486 SPARC  SPARC 0.529 0.5 0.07392471 0.36 

P12318 

Low affinity immunoglobulin 

gamma Fc region receptor II-a  FCGR2A 0.528 0.5 0.07382711 0.43 

P52907 

F-actin-capping protein subunit 

alpha-1  CAPZA1 0.528 0.3 0.2278709 0.17 

Q01518 

Adenylyl cyclase-associated protein 

1  CAP1 0.51 0.3 0.05354235 0.24 

P23284 

Peptidyl-prolyl cis-trans isomerase 

B  PPIB 0.502 0.6 0.04580394 0.31 

P07384 Calpain-1 catalytic subunit  CAPN1 0.501 0.2 0.04461278 0.21 
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P55056 Apolipoprotein C-IV  

APOC4; 

APOC4-

APOC2 0.501 0.7 0.04469192 0.49 

Q9HBW9 

Adhesion G protein-coupled 

receptor L4  

ELTD1; 

ADGRL4 0.498 0.2 0.12301082 0.23 

Q14019 Coactosin-like protein  COTL1 0.497 0.4 0.04187312 0.24 

O00602 Ficolin-1  FCN1 0.486 0.3 0.4606749 0.28 

P10768 S-formylglutathione hydrolase  ESD 0.48 0.2 0.02914401 0.078 

O95810 Caveolae-associated protein 2  

SDPR; 

CAVIN2 0.476 0.06 0.02663948 0.14 

O15143 

Actin-related protein 2/3 complex 

subunit 1B  ARPC1B 0.461 0.6 0.04146083 0.56 

P20908 Collagen alpha-1(V) chain  COL5A1 0.447 0.7 0.07131572 0.54 

P19021 

Peptidyl-glycine alpha-amidating 

monooxygenase  PAM 0.444 0.5 0.01319158 0.38 

Q3ZCW2 Galectin-related protein  LGALSL 0.431 0.7 0.12764282 0.77 

Q9Y5C1 Angiopoietin-related protein 3  ANGPTL3 0.43 0.7 0.00921395 0.56 

P14174 

Macrophage migration inhibitory 

factor  MIF 0.428 0.3 0.13684294 0.35 

P27348 14-3-3 protein theta  YWHAQ 0.39 0.8 0.28245865 0.73 

O15511 

Actin-related protein 2/3 complex 

subunit 5  ARPC5 0.388 0.4 0.25084048 0.46 

Q07960 Rho GTPase-activating protein 1  ARHGAP1 0.384 0.2 0.00399729 0.27 

O76013 Keratin, type I cuticular Ha6  KRT36 0.334 0.3 0.00133438 0.36 

P08758 Annexin A5  ANXA5 0.305 0.3 0.00088785 0.17 

Q15404 Ras suppressor protein 1  RSU1 0.298 0.6 3.2609E-05 0.54 

P07148 Fatty acid-binding protein, liver  FABP1 0.274 0.7 0.14598386 0.7 

O15144 

Actin-related protein 2/3 complex 

subunit 2  ARPC2 0.249 0.1 0.00514409 0.09 

P51452 

Dual specificity protein phosphatase 

3  DUSP3 0.229 0.4 0.09937377 0.53 

P30044 Peroxiredoxin-5, mitochondrial  PRDX5 0.219 0.2 7.1634E-07 0.22 
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P50453 Serpin B9  SERPINB9 0.145 0.2 0.01696295 0.36 

P55957 

BH3-interacting domain death 

agonist  BID 0.054 0.4 0.00011138 0.53 

 

Table 4.13. A total of 15 DEPs that were found to be commonly differentially expressed in age-matched clinical cross-sectional incipient AD (ADW4/CTRLW4) from Table 4.7 

and preclinical AD (ADW1/CTRLW1) protein lists Table 4.12. 

Accession Description 
Gene 

Symbol 

PD2.4_Ab

undance 

Ratio: 

(ADW4) / 

(CTRLW4

) 

Scaffold 

fold 

change  

(ADW4) / 

(CTRLW

4) 

PD2.4_

Abunda

nce 

Ratio: 

(ADW1) 

/ 

(CTRL

W1) 

Scaffol

d fold 

chang

e: 

(ADW

1) / 

(CTR

LW1) 

PD2.4_Ab

undance 

Ratio Adj. 

P-Value: 

(ADW4) / 

(CTRLW4

) 

Scaffol

d P-

Value: 

(ADW

4) / 

(CTR

LW4) 

PD2.4_Ab

undance 

Ratio Adj. 

P-Value: 

(ADW1) / 

(CTRLW1

) 

Scaffol

d P-

Value: 

(ADW

1) / 

(CTR

LW1) 

O15511 
Actin-related protein 2/3 

complex subunit 5  
ARPC5 0.374 0.7 0.388 0.4 0.0459 0.44 0.2508 0.46 

P00558 Phosphoglycerate kinase 1  PGK1 0.716 0.6 0.808 0.6 0.4812 0.068 0.6937 0.34 

P02787 Serotransferrin  TF 0.869 0.7 1.817 5.4 0.8416 0.54 0.1196 0.082 

P05062 
Fructose-bisphosphate 

aldolase B  
ALDOB 1.221 1.3 0.846 0.7 0.7317 0.45 0.7751 0.21 

P09486 SPARC  SPARC 0.675 0.4 0.529 0.5 0.3351 0.0089 0.0739 0.36 

P18206 Vinculin  VCL 0.779 0.6 0.737 0.6 0.6553 0.024 0.528 0.37 

P19021 
Peptidyl-glycine alpha-

amidating monooxygenase  
PAM 1.27 1.4 0.444 0.5 0.6553 0.59 0.0132 0.38 

P36222 Chitinase-3-like protein 1  CHI3L1 1.142 1.6 1.766 1.6 0.8396 0.18 0.1477 0.34 

P49721 
Proteasome subunit beta 

type-2  
PSMB2 1.503 8.7 1.543 1.4 0.6529 0.083 0.6647 0.79 

P55072 
Transitional endoplasmic 

reticulum ATPase  
VCP 0.704 0.5 0.669 0.3 0.4356 0.14 0.3389 0.3 

Q14697 
Neutral alpha-glucosidase 

AB  
GANAB 0.857 0.5 0.784 0.2 0.8194 0.17 0.6473 0.19 
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Q15257 
Serine/threonine-protein 

phosphatase 2A activator  

PPP2R4; 

PTPA 
0.863 0.6 3.762 1.6 0.854 0.4 5E-06 0.7 

Q15555 

Microtubule-associated 

protein RP/EB family 

member 2  

MAPRE

2 
0.598 0.3 0.856 0.3 0.3215 0.0086 0.8978 0.19 

Q3ZCW2 Galectin-related protein  
LGALS

L 
0.82 0.6 0.431 0.7 0.7595 0.15 0.1276 0.77 

Q96CN7 
Isochorismatase domain-

containing protein 1  
ISOC1 0.753 0.7 0.742 0.5 0.83 0.56 0.8978 0.62 
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4.4 Discussion: 

This study has shown that a rich abundance of age and disease-related proteomic changes are 

detectable in plasma, based on retrospective analysis of longitudinal data and cross-sectional 

analyses of clinically diagnosed cases. In combination with a method which provides the depth 

of plasma proteome coverage (Chapter 3)38, the study design has addressed the following 

questions: (1) differences in plasma proteomic profiles between normal ageing and ageing with 

progression to cognitive decline (MCI) or AD; (2) cross-sectional analysis of baseline data, 

when all subjects were clinically identified as cognitively normal, provides insight into the 

preclinical changes which precede subsequent progression to AD, and potentially provide early 

biomarkers; and (3) comparison of plasma at the point of progression to the clinically 

diagnosed onset of cognitive decline or AD, can provide potential plasma biomarkers to 

facilitate clinical diagnosis. I perceive two major obstacles in identifying plasma protein 

biomarkers for the common age-related neurodegenerative diseases: (1) the restricted current 

level of information regarding the plasma proteome longitudinal changes in normal vs diseased 

individuals, and (2) the even more limited knowledge of preclinical AD plasma proteome. I 

have begun to address both of these deficiencies in this work. 

 

4.4.1 Plasma proteome changes in ageing using a longitudinal analysis: 

Ageing is the primary factor associated with organ function decline, including age-related 

cognitive decline, and is a major risk factor for neurodegenerative diseases such as AD268. 

Consequently, it is common to use age-matched controls to study such disorders and diseases. 

However, the extent of change in the ageing plasma proteome, irrespective of disease, is less 

clear. Here I identified 71 proteins that were dysregulated during normal ageing, with the 

majority being increased. These proteins were identified in all three of our longitudinal groups 

(normal controls, MCI and AD, Table 4.2) and with a similar fold-change direction (Table 4.3). 

The Hippo signalling pathway was particularly enriched with ageing (Figure 4.10). This 

signalling pathway included DEPs of the 14-3-3 protein family (YWHAZ, YWHAH, 

YWHAE, YWHAB, YWHAQ, YWHAB) and actin Gamma 1 (ACTG1), which were all 

upregulated (Table 4.3). Recent evidence suggests that the Hippo signalling pathway is 

involved in neuroinflammation, neuronal cell differentiation, and neuronal death169. The 14-3-

3 protein family is highly expressed in the brain and influences many aspects of brain function 



MAS Cohort: ageing, MCI and AD dementia Chapter 4 

 

159 

 

through interactions with a diverse set of binding partners, including neural signalling, neuronal 

development, and neuroprotection170 well-studied protein family in AD CSF171,172. Our 

longitudinal analysis shows that altered plasma expression of the 14-3-3 protein family is an 

age-related change, being observed in all three longitudinal analysis groups (cognitively 

normal controls, MCI and AD), so it may have functional implications for progression to MCI 

and/or AD since ageing is the major risk factor for these conditions. However, as the hippo 

family members are not unique to AD (Table 4.3, Figure 4.4), they are less likely to be valuable 

biomarkers.  

 

 

Figure 4.10: Schematic model of 

the core Hippo pathway in 

mammals.  Several upstream stimuli 

transduce signals that stimulate the 

MST1/2 kinases with the scaffolding 

protein SAV1 to phosphorylate the 

LATS1/2 kinases and their 

regulatory subunit MOB1A/B. The 

activated LATS1/2-MOB1A/B 

complex phosphorylates YAP/TAZ, 

resulting in cytoplasmic retention 

by 14−3−3 protein binding and β-

TRCP-mediated polyubiquitination 

and proteasomal degradation of 

YAP/TAZ. Unphosphorylated 

YAP/TAZ shuttle between cytoplasm 

and nucleus. The nucleus interacts 

mainly with TEAD transcription 

factors to induce target gene 

transcription. In the absence of 

nuclear YAP/TAZ, TEAD interacts 

with VGLL4, thereby repressing 

target gene transcription. This 

figure was adopted from Dana 

Elster and Björnvon Eyss 2020269.  

 

 

 

 

 

Damaged and misfolded proteins accumulate during the ageing process, affecting cell function 

and tissue homoeostasis. Cellular clearance processes such as the proteasome are a critical 

component of the proteostasis network, involved in the degradation and recycling of damaged 

proteins. Proteasome activity declines with age, and dysfunctional proteasomes are related to 

late-onset diseases270. I identified five dysregulated proteasome members, all of which were 
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upregulated in plasma: PSMA4, PSME2, PSMA2, PSMA5, and PSMB8, suggesting that 

intracellular protein turnover is compromised with ageing. Other protein families of which 

multiple members were identified in our longitudinal ageing groups include actin-related 

protein (6 DEPs), chloride intracellular channel protein (2 DEPs), glutathione S-transferase (2 

DEPs), L-lactate dehydrogenase (2 DEPs), peptidyl-prolyl cis-trans isomerase (2 DEPs), 

protein S100 (2 DEPs), and rho GDP-dissociation inhibitor (2 DEPs) (Table 4.2 and Table 4.3). 

Since most of these are intracellular proteins, their presence in plasma is likely a reflection of 

cellular senescence, increased fragility and cell death with ageing. Therefore, the functions they 

sub-serve are likely compromised with ageing and may predispose to disease progression. 

However, since they were also present in the cognitively normal ageing group, these changes 

are insufficient on their own to explain progression to cognitive disorder or neurodegenerative 

disease. Changes to many of these proteins have previously been attributed to associations with 

either MCI and/or AD271-273. The current work demonstrates the need for particular care in age 

matching in case-control studies, especially biomarker studies. 

 

A variety of other age-related protein changes were observed in common across all three 

longitudinal analysis groups (normal controls, MCI and AD), including the HIF-1 signalling 

pathway (Table 4.3) and several proteins abundant in the CNS (NCAM1, YWHA family, PKM, 

NME2, MAPRE1) indicating that age-related changes within the CNS can be detected in 

plasma, with techniques which allow sufficient depth of proteome coverage. Previously, 

studies showed that HIF-1 generates a deficit in mitochondrial biogenesis during the ageing 

process impairing energy-dependent cellular functions such as cell and tissue repair274. I have 

identified a list of markers such as TIMP1, GAPDH, ENO1, PGK1, LDHB, and LDHA that 

can aid in the understanding of mitochondrial dysregulation in ageing (Table 4.3). In addition, 

a HIF-1 signalling pathway is known to both promote and limit longevity via pathways that are 

mechanistically distinct using hypoxic response transcription factor HIF-1275,276. Validation of 

these DEPs in large sample size cohorts might improve our understanding of human ageing. 

Such broad-ranging pathway changes in ageing may also help explain why ageing is the single 

major risk factor for a wide variety of diseases, including age-related neurodegenerative 

diseases such as dementia. This wide range of pathways impacted by the ageing process likely 

overlaps with many disease processes, making ageing an accelerant if not a causative risk factor 

for cognitive decline and/or disease. 
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4.4.2 Changes in the plasma proteome associated with progression to incipient AD 

or MCI over 6 years: 

To identify MCI and AD specific changes in the longitudinal analysis groups, I filtered the DEPs 

list for age-independent protein changes, which were unique to either AD or MCI, but not 

similarly changed in cognitively normal ageing (Table 4.4 and 4.5). A characteristic of AD 

patients that brain imaging techniques can detect is impaired glucose uptake in brain regions with 

neuritic plaques277-279. Numerous dementia probable AD-specific DEPs involved in metabolism 

(e.g., APOD, ALDOB, MAN2A2, GPX3, HPRT1, ALDH1A1, AMY1A, MGAT1, and 

IGFBP5) were elevated in plasma in our investigation, reflecting impairment of the cellular 

metabolic processes in which these proteins partake.  

 

APOD is a glial-expressed lipid transport protein of the lipocalin family that has been shown to 

protect against oxidative stress280. Our longitudinal data show that increased APOD is observed 

in MCI and AD plasma, but not in cognitively normal ageing (Tables 4.4 and 4.5). This 

observation is consistent with other published work, which shows elevated APOD in AD, 

Parkinson’s disease, Schizophrenia, Stroke and Bipolar disorder280,281,282. Increased plasma 

IGFBP5 also appears to be related to cognitive decline since older adults with depression lose 

cognitive abilities faster when they have higher IGFBP-5 levels283. HPRT1 was recently 

identified as one of the most strongly validated metabolic proteins, exhibiting a substantial 

increase in AD CSF cohorts, demonstrating a direct link between energy production and synaptic 

signalling at the neuronal membrane171,284. Another metabolic protein identified is ALDH1A1, a 

multifunctional enzyme with dehydrogenase, esterase, and antioxidant activities and critical for 

normal brain homeostasis, which was upregulated in AD downregulated in MCI in our data. A 

recent study shows neurons may upregulate ALDH1A1 activity to compensate for oxidative 

stress-induced damage in the brain285. I am proposing metabolic abnormalities, which can be 

identified in plasma, as a critical component of longitudinal AD aetiology, a better understanding 

of which might provide novel metabolic targets for therapeutic development.  

 

In addition to metabolism, a large group of proteins was associated with homeostasis in AD and 

MCI. Homeostasis related proteins were upregulated in MCI but downregulated in AD. A recent 

study suggested that firing instability and poor synaptic plasticity during the early stages of AD 

initiate a vicious loop that results in integrated homeostatic network (IHN) dysregulation286. 

According to this idea, the collapse of the IHN is the primary factor driving the transition from 
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early memory deficits to neurodegeneration287. Homeostatic proteins which were downregulated 

in AD are COL1A1, SELL, ENDOD1, TF, SERPINA1. Decreased level of TF in AD plasma 

and brain samples has been reported previously288,289. Consistent with these early reports, I found 

significant downregulation of TF during longitudinal progression to AD in our study.  

 

In MCI, several unique homeostasis markers were differentially expressed, including 

upregulation of RAB27B and PPBP, which may participate in the pathology underlying MCI. 

RAB27a and RAB27b are involved in the docking of MVE at the plasma membrane290. Previous 

studies have found that the upregulated expression of RAB27 correlated with antemortem 

indicators of cognitive deterioration in MCI and AD brains290-292. In our data, RAB27B was 

elevated in MCI but did not change in AD, which may imply endosomal dysfunction as an early 

change detected in MCI, which may contribute to progression to AD in later stages of life. 

Alternatively, it may also be a change specific to MCI, and studies of longer duration may help 

decipher what changes are associated with stable MCI vs progression to AD. 

 

It is believed that the extracellular matrix contains collagens, which are essential in axonal 

guidance, synaptogenesis, cell adhesion, the formation of brain architecture and neural 

maturation293-295. A gene from the college family, Col25a1, was overexpressed in neurons of 

transgenic mice leading to AD-like brain pathology296. In our data, COL1A1 was upregulated in 

longitudinal MCI progression but downregulated in AD. Such differences may point to 

mechanisms that help limit the level of impairment and avoid progression to greater levels of 

cognitive impairment.  

 

Moreover, SERPINA1 is emerging as a key neuroinflammation modulator297, also reported being 

released from the brain tissue to the CSF298. Higher CSF levels of SERPINA1 have been linked 

to the clinical diagnosis of AD299. Here I found that SERPINA1 was upregulated in MCI and also 

in preclinical AD but downregulated in clinical AD (Figure 4.9B), suggesting that it may be an 

early marker of synaptic loss particularly evident in plasma at preclinical stages of dementia, at 

a time when much damage is in active progress, and plateauing/declining in parallel with the 

onset of clinical symptoms. 
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4.4.3 Proteomic changes in clinically diagnosed AD and MCI relative to their age-

matched cognitively normal controls (potential clinical diagnostic markers): 

A total of 70 and 89 DEPs were identified in a cross-sectional analysis of incipient AD 

(ADW4/CRTLW4) and incipient MCI (MCIW4/CRTLW4), respectively, indicating that a potentially 

rich biomarker signature for AD and MCI is available in plasma.   

 

Of the 70 cross-sectional AD-associated DEPs, 15 were also identified in longitudinal AD analysis 

(Table 4.10), of which 11 had a consistent direction of expression change. These may be the most robust 

biomarker candidates as they change consistently in longitudinal and cross-sectionally dementia, 

probable relative to their age-matched controls (Table 4.10). Of these, 10 DEPs (TF, VCP, PSMB2, 

PA2G4, PAM, MAN2A2, TNXB, FAM3C, ALDOB, and QDPR) were enriched with extracellular 

exosome GO terms in the STRING analysis. At an early stage of AD, a rise in the protein levels of total 

and phosphorylated tau in exosomes has been found in the CSF300,301. Another finding implies that 

exosomes may be the primary mechanism controlling the spread of Aβ and tau302. Our findings are 

consistent with the published literature, which indicates that exosome dysregulation is a key event in 

AD patients compared to their age-matched healthy controls301. In addition to homeostasis and 

metabolic disruption, neutrophil degranulation, protein binding, and transport were the most enriched 

pathways in incipient AD-related DEPs in cross-sectional analysis. Neutrophil activation and 

accompanying oxidative stress have been linked to AD pathogenesis303. It is noteworthy that our study 

identified brain-derived proteins such as MAN2A2, PAM, TF, QDPR, FAM3C, which have previously 

been reported to be dysregulated in AD CSF and brain304.  

 

There were 18 DEPs common to both MCI and AD, which may be considered potential shared 

biomarkers of cognitive change, including FAM3C, TF, CLIC1, CHI3L1 PRDX4 and others (Figure 

4.7D and E), and possibly reflecting the underlying disease process. FAM3C is an interleukin-like 

protein (also called ILEI) with a proposed role as a metabolic regulator305. FAM3C ameliorates Aβ 

pathology by reducing Aβ levels306, has been suggested as a surrogate biomarker of Aβ in the brain307 

and FAM3C levels are lower in the AD brain308. Its normal expression level is exceptionally high in the 

gut, thyroid and brain (https://www.ncbi.nlm.nih.gov/gene/10447). Previous work has reported lower 

levels of CSF FAM3C in AD and MCI groups which suggested this may result in a build-up of Aβ in 

the brain and eventual development of AD308. I observed a higher level of FAM3C in plasma samples 

of MCI and dementia; probable AD compared to respective age-matched controls suggests either loss 

from the CNS or a homeostatic/compensatory increase in response to loss in an organ system/s.  

 

https://www.ncbi.nlm.nih.gov/gene/10447
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The protein CHI3L1 (also known as YKL-40) is secreted by activated microglia and reactive 

astrocytes309 and is thought to have a role in inflammation and tissue remodelling, particularly 

angiogenesis310. In the current work, CHI3L1 was increased in both MCI and AD plasma (Figure 4.7E), 

consistent with reported observations of higher CHI3L1 levels in AD than in healthy controls or MCI 

patients311, and also of other neurodegenerative diseases312. In addition, several studies have reported 

that CHI3L1, an astrocyte-derived protein, is increased in AD CSF and has been suggested to be a 

marker for progression from MCI to AD21,313.  

 

Serotransferrin (TF) decreased in incipient dementia and probable AD while increased in MCI289. 

Transferrin (Tf) is an important iron-binding protein that is thought to have a critical function in iron 

ion (Fe) absorption via the transferrin receptor (TfR). Elevated Fe levels in AD brains have been 

reported and linked to amyloid plaque formation314. 

 

4.4.4 Potential early disease markers; preclinical changes in AD  

Preclinical AD, defined as a stage of neurodegeneration occurring before the onset of clinical 

symptoms, is likely to be the more effective time point to apply potentially disease-modifying 

interventions in AD142,143. A total of 160 DEPs of preclinical AD (ADW1/CTRLW1) were 

identified (Figure 4.9), which were a considerably larger number than the 71 DEPs identified in 

incipient AD (Figure 4.8). The considerably larger pool of preclinical AD-associated DEPs may in 

part be evidence of pathology in progress, in addition to providing several putative early 

biomarkers. Reasoning that the most robust biomarkers may be those that continue to be observed 

with clinical disease onset, 15 DEPs were shared with clinical AD (ADW4/CTRLW4) (Figure 

4.9C, 4.9D and Table 4.13). Furthermore, of these 15 DEPs, 8 were unique to preclinical and 

clinical AD but not identified in clinical MCI (MCIW4/CTRLW4). These 8 proteins were PGK1, 

ALDOB, VCL, PAM, PSMB2, VCP, MAPRE2, and ISOC1, and may be specific to AD-related 

pathology, rather than just associated with cognitive decline per se. Interestingly, glycolysis and 

gluconeogenesis presented as top GO terms with significant enrichment in preclinical and clinical 

AD plasma. This concurs with the presence of three glycolytic proteins from our 8-protein 

signature: PGK1, VCP and ALDOB. Numerous studies have demonstrated dysregulation of 

glucose metabolism in the brain, which has long been recognised as an apparent anomaly that 

commences during the preclinical stage of AD315,316,317 and remains a feature with incipient AD. 

Apart from the well-known CSF AD biomarker (CHI3L1), I propose a list of novel markers, 

including PSMB2, PAM, ALDOB, TF, MAPRE2, VCP, which may be potential preclinical 

biomarkers for the identification of AD, being dysregulated in all three AD comparison groups, 

i.e., longitudinal (ADW4/ADW1), incipient AD (ADW4/CTRLW4) and preclinical AD 
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(ADW1/CTRLW1). That they are all representative of different aspects of AD pathology (PSMB2, 

proteasomal turnover of dysfunctional proteins; PAM, signalling peptide synthesis, ALDOB, 

glycolysis and gluconeogenesis metabolic pathways; TF, iron-binding and transport; MAPRE2, a 

microtubule-associated protein with a possible role in signal transduction; VCP, segregation of 

proteins for degradation by the proteasome) may offer a specificity advantage, since AD is a 

complex multifactorial disease with dysfunction of multiple cellular pathways. It is of note that of 

these 6 proteins, the only DEP with a consistent fold-change (increased) across all three groups is 

PSMB2.     

 

4.4.5 Mechanisms of AD  

MCI is often considered a risk factor and/or prodromal stage of AD318, so it was of note that in the 

comparisons of AD and MCI, only approximately 18% (19 proteins) and 13% (18 proteins) of 

DEPs were common to both AD and MCI in the longitudinal and cross-sectional analyses. In this 

context, it is of interest that by far most DEPs identified in AD and MCI are specific to each 

condition rather than shared.   

 

Another prevalent hypothesis is that dysfunction of the cytoskeleton and microtubule system may 

contribute to AD pathogenesis319,320. MAPRE2, a microtubule-associated protein, and VCL, a 

membrane-cytoskeletal protein, are involved in microtubule polymerization, cell-cell and cell-

matrix junctions. A recent study suggested that MAPRE2 is involved in cellular migration of 

cranial neural crest cells, among others, via its involvement in focal adhesion dynamics321, although 

no direct association between MAPRE2 and AD progression has been established previously.  

 

Dysregulation of phosphorylation in AD is commonly observed322, so it is interesting that several 

proteins in our preclinical biomarker list are directly or indirectly involved in phosphorylation 

(PGK1, GANAB, PPP2R4). Several studies have reported that GANAB and PPP2R4 are 

dysregulated in AD CSF and brain323,324. Most of the brain Ser/Thr phosphatase activity involves 

PP2A family enzymes. The dysfunction of PPP2R4 has been linked to tau hyperphosphorylation, 

amyloidogenesis and synaptic deficits that are pathological hallmarks of AD324,325. Furthermore, 

SPARC and ARPC5 are proteins involved in regulating cell-cell interactions, actin polymerisation 

and neural plasticity, respectively. It has been reported that chronic stress significantly increased 

the level of ARPC5 in the hippocampus, implying that chronic stress-induced alterations in 

hippocampal proteins are related to synaptic plasticity326.  
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4.4.6 Picking candidate biomarkers specific to incipient MCI and AD and 

preclinical AD 

Proteomic expression change was seen in a surprisingly large number of plasma proteins in 

normal ageing over the 6 year period of this study (71 DEPs, Table 4.2). However, even after 

these were excluded from the MCI and AD longitudinal analyses, I was still left with long lists 

of proteins (66 and 60 MCI and AD specific DEPs, respectively), and similarly large numbers in 

the cross-sectional analyses (89 and 70 MCI and AD specific DEPs respectively). Such 

abundance presents a dilemma as to which DEPs might be ideal biomarker candidates. One 

approach is to select potential candidates based on consistency of fold-change in both 

longitudinal and cross-sectional analyses for each incipient AD (Table 4.10) and MCI (Table 

4.11) and preclinical AD groups (Figure 4.9D and Table 4.13). These are much shorter lists but 

are likely much stronger candidates for future validation work. It is of note that most DEPs in the 

incipient MCI and AD groups, are upregulated (~ 66% each). In contrast, DEPs with consistent 

fold changes in the preclinical and incipient AD groups are mostly downregulated, with only 2 

DEPS (< 20%) upregulated, these two being the cell-matrix protein CH13L1 and the proteasome 

20S core protein PSMB2.  

4.5 Conclusion 

The in-depth plasma proteomics analysis, in combination with longitudinal and cross-sectional 

analyses of an older age cohorts, ageing with normal cognition or progressing to MCI or AD. 

These findings revealed changes common to ageing regardless of diagnosis, and molecular 

similarities and differences between AD and MCI, as well as some putative dementia specific 

plasma biomarkers for clinical and preclinical AD. The protein changes are consistent across 

two independent search engines, paving the path for future research on ageing and AD dementia 

biomarker identification. The considerably larger pool of preclinical AD associated 

differentially expressed proteins may in part be evidence of pathology in progress, in addition 

to providing a large pool of putative early biomarkers. Apart from the well know CSF AD 

biomarker (CHI3L1) we propose a list of novel markers, including PSMB2, PAM, ALDOB, 

TF, MAPRE2 which may be potential preclinical biomarkers for the identification of AD 

dementia.
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5.1 Introduction:     

One of the barriers to developing effective therapies for Alzheimer's disease (AD), the most 

common cause of dementia, lies in the lack of a comprehensive understanding of the brain 

mechanisms leading to neurodegeneration. One key knowledge gap in understanding how 

genetic risk factors contribute to disease pathogenesis. There are numerous genetic risk factors 

for developing sporadic AD, the strongest of which is the apolipoprotein E epsilon 4 allele 

inheritance (APOE4)13,148-150. Three alleles, i.e., APOE2, APOE3, and APOE4, result in six 

possible genotypes (APOE 2/2, 2/3, 3/3, 2/4, 3/4, and 4/4). These three polymorphic alleles, 

i.e., ε2, ε3, and ε4, have a worldwide frequency of 8.4%, 77.9%, and 13.7%, respectively13,14. 

Recent studies reported that approximately 65% of individuals with late-onset familial and 

sporadic AD bear the APOE4 allele4. One copy of APOE4 is associated with a threefold 

increase in disease risk, while two copies are associated with a more than tenfold increase in 

risk15. 

 

Emerging data suggest that APOE4 is involved in several functions, including metabolism, 

neuroinflammation, impaired amyloid clearance, transport, synaptogenesis, and glucose, lipid, 

and cholesterol metabolism in the brain327,328 329. In animal and cellular models, APOE4 has 

been linked to decreased cellular plasticity170. In addition, APOE plays a critical role in lipid 

transport and cholesterol homeostasis in the brain, as it does peripherally 13,151. In the CNS, 

APOE is mostly expressed in astrocytes, and it facilitates the transportation of cholesterol to 

neurons by binding to LDLR family members, known as APOE receptors. APOE4 has been 

found to be hypolipidated and less effective at inducing cholesterol efflux than APOE3, 

implying that the pathological effects of APOE may be associated with lipid 

metabolism149. However, approximately 25%–40% of patients with AD do not carry the 

APOE4 allele, and the pathophysiological mechanisms underlying AD are less evident in 

these individuals13,152.  

 

Unbiased proteomics analysis permits the simultaneous evaluation of many molecular 

processes in patients. To explore this, several research studies have used a CSF proteomics 

technique and described protein signatures linked with AD across the cognitive range330,331. 

Proteomics investigations on readily available fluids such as serum/plasma, on the other hand, 

are underutilized. To gain a better understanding of how APOE genotypes may influence AD 

pathology, I used a plasma proteomic approach to test the hypothesis that protein signatures 
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can be detected that show APOE genotype-dependent associations with AD. The main 

objective of this study was to understand better the changes in plasma that may contribute to 

disease pathogenesis in AD and how APOE3 and APOE4 contribute to biomarker profiles in 

AD. This study included AD and cognitively normal age-matched control carriers of the 

APOE4 allele and AD and control homozygous APOE3 carriers. Furthermore, all AD 

(whether 3 or 4) were Pittsburgh compound B (PiB) positron emission tomography (PET) 

positive (high or very high), whereas all controls (whether 3 or 4) were PiB PET negative.  

 

5.2 Materials and Methods:   

5.2.1 Cohort and samples    

Plasma samples were obtained from the Australian Imaging, Biomarker & Lifestyle Flagship 

Study of Ageing (AIBL) participants aged 70-90 years332. The University of Melbourne Human 

Research Ethics Committee approved the collection of the AIBL cohort, while the UNSW 

Human Research Ethics Committee approved the current study. All work complied with the 

Declaration of Helsinki guidelines.  

 

In total, I profiled 40 human plasma samples using label-free proteomics in the following four 

groups: 1. APOE ε4/ε3 carriers without AD are denoted as CTRLE4, 2.  APOE ε4/ε4 carriers 

with AD symptoms denoted as ADE4 3. APOE ε3/ε3 carriers without AD denoted as CTRLE3 

and 4. APOE ε3/ε3 carriers with AD symptoms are denoted as ADE3. 

 

5.2.2 Depletion of high abundant proteins using Human 14 (Hu14) immunoaffinity 

Columns:  

The protocol for removing plasma high abundance proteins followed by fractionating the low 

abundance proteins was adapted from a previously published approach38. The top 14 high-

abundance plasma proteins (albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, 

fibrinogen, α -2-macroglobulin, α -1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein 

AII, complement C3, and transthyretin) were depleted using an Hu14 column (4.6 x 100 mm, 

Agilent). The plasma (50 µL) was diluted with 150 µL of buffer A (1:4 dilutions, as 

recommended by Agilent Technologies), and then filtered to remove particulates using a 0.45 
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μm spin filter (Spin-X centrifuge tube filter, 0.45 μm Cellulose Acetate, Merck, Germany). 

Samples were then injected (100 µL) onto the Hu14 column. Chromatography and fraction 

collection was performed on an Agilent 1290 UPLC system (Agilent, Santa Clara, CA) with 

Hu14 buffers A and B purchased from Agilent (Santa Clara, CA), and manufacturer's 

instructions followed for protein binding and elution (Agilent, Santa Clara, CA). The low 

abundance protein fraction was further fractionated by 1D SDS PAGE and analyzed using LC-

MS/MS. Participant demographics are shown in Table 5.1. Each sample consisted of ten SDS 

PAGE fractions, so a total of 400 LC-MSMS runs were performed to ensure adequate coverage 

of the plasma proteome.  

5.2.3 Fractionation of low abundance proteins using 1D-SDS PAGE   

I followed a previously published procedure for SDS-PAGE, band cutting, trypsin digestion, 

sample preparation, and mass spectrometric analysis38. Equal amounts of total protein (50 µg) 

from the HU14 depleted plasma were filtered using Amicon ultra 3kDa centrifugal filter units 

(MERCK, New Jersey, USA), dried in speed vac (ThermoFisher, Massachusetts, USA), and 

reconstituted to a final volume of 20 µL by adding 5 µL LDS sample buffer Invitrogen 

NuPAGE (ThermoFisher, Massachusetts, USA), 2 µL reducing agent Invitrogen NuPAGE 

(ThermoFisher, Massachusetts, USA), and 13 µL deionized water (MilliQ). After briefly 

heating samples (10 minutes, 70°C), they were separated by 1D SDS/PAGE using Invitrogen 

NuPAGE 4-12% Bis-Tris midi gels (ThermoFisher Scientific, Massachusetts, USA) and 

Invitrogen MES running buffer using the manufacturer's instructions (ThermoFisher Scientific, 

MA, USA). The gel was then stained using colloidal coomassie G250 (Figure 5.2ii). The 

protein lanes were cut into gel bits by destaining using a 24-band lane cutting blade. The gel 

bands were concatenated into ten vials for in-gel trypsin digestion, peptide recovery, and label-

free LCMSMS quantification. A total of 10 biological replicates (subjects) were used per 

group, i.e., ADE4, CTRLE4, ADE3, CTRLE3. 

5.2.4 Computational Analysis   

Two search engines were used to analyze the raw files, including ProteomeDiscoverer v2.4 

(Thermo Fisher Scientific, Waltham, MA) and Scaffold Q+ software v 4.11.0 (Proteome 

Software, Portland, OR). A minimum of two unique peptides per protein were prerequisites for 

protein identification and quantitation for both data analysis software. In conjunction with the 

reversed decoy and frequent contaminant sequences, all search engines used the UniProt Homo 
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sapiens (human) database for MS and MS/MS spectral mapping. Five parts per million (5ppm) 

mass tolerance was used to match peaks to theoretical ion series. The false discovery rate (FDR) 

was set to 1% to ensure that only highly confident protein identifications were made. Trypsin 

was chosen as the specific enzyme, with a maximum of two missed cleavages. Variable 

acetylation at the N-terminus of proteins, methionine oxidation, and fixed 

carbamidomethylation of cysteines was used for all database searches. All parameters were 

kept consistent between the two search engines. The software used enabled the simultaneous 

application of two distinct approaches for label-free quantification: peak area integration 

(PD2.4) and spectral counting (Scaffold).  

 

Each AD group required independent proteomics data processing using the PD2.4 and Scaffold 

search engines. In Figure 5.2i, scatter plots and regression analysis comparing PD2.4 versus 

scaffold fold-change are displayed. To identify proteins with significant expression differences 

between groups, I used the following inclusion criteria: proteins quantified in >5 individuals, 

proteins identified with a minimum of two peptides per protein, and consistent direction of 

protein fold change across two bioinformatics platforms using orthogonal quantification 

approaches (peak area ratio with PD2.4 and spectral counting with Scaffold) with a fold change 

of at least 20% (≤0.08 and ≥ 1.2) in both search engines were selected for the analysis.  

5.2.5 Bioinformatics Analysis  

Bioinformatics analyses were performed using RStudio version 1.2.5033 and R version 3.6.3 

to create heatmaps and volcano plots, using the heatmap function and ggplot2 package. Gene 

ontology (GO) and enrichment plot analysis were performed using Bioconductor's GOstats and 

DOSE package. Results from the gene ontology analysis were only studied if more than two 

genes from the experimental data set were included with a particular term. Volcano plot 

analysis was performed using the Enhanced Volcano package from Bioconductor333. Venn 

diagrams were plotted using Venny 2.114. I used differentially expressed proteins (DEPs) to 

compare biological processes and pathways affected in AD versus control using GO 

enrichment analysis on the STRING (v11.0) explored gene interaction and co-expression 

patterns for differentially expressed genes (DEGs).  
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5.3 Results:  

5.3.1 Sample characteristics by APOE3 and APOE4 genotype 

I profiled 40 human plasma samples using label-free proteomics in the following four groups: 

(1) APOE ε4/ε3 carriers, cognitively normal controls with negative PiB PET denoted as 

CTRLE4 (2) APOE ε4/ε4 carriers with AD symptoms and positive PiB PET denoted as ADE4 

(3) APOE ε3/ε3 carriers, cognitively normal controls with negative PiB PET denoted as 

CTRLE3 (4) APOE ε3/ε3 carriers with AD symptoms and positive PiB PET denoted as ADE3. 

I identified 1,055 proteins (false discovery rate <1%) with 23,242 total peptides using Proteome 

Discoverer 2.4 (PD2.4) search engine and 800 proteins using Scaffold. More than 700 

identified proteins were common in both software techniques.    

 

An overview of the study populations and proteomic workflow is shown in Figure 5.1A. Box 

plots show the similar distribution and protein abundance variation across all 40 plasma 

samples (Figure 5.1B). The overall similarity of low abundance proteins across samples is also 

evident by SDS PAGE (Figure 5.2ii). Unsupervised hierarchical clustering analysis (HCA) of 

grouped abundances (data from PD2.4 software processing) is presented in Figure 5.1C. It 

shows that control and AD samples of both APOEε3 and APOEε4 carriers cluster together more 

closely based on diagnosis sample type (i.e., control vs. AD) rather than APOE allele type. 

Nevertheless, distinct proteomic profiles are observed in each of the four groups since all heat 

maps are quite distinct (Figure 5.1C). The scatter plot depicting AD and CTRL data points 

analyzed on both PD2.4 and Scaffold is shown in Figure 5.1D. The detailed scatter plots and 

density plots were plotted using the complete list of proteins from both the search engines in 

Figure 5.2i. In Figure 5.2ii, the scatter plots show only the differentially expressed proteins 

(DEPs) using all the analyses, i.e., A. ADE3/CTRLE3, B. ADE4/CTRLE3, C. ADE4/ADE3, 

D. CTRLE4/CTRLE3, and E. ADE4/CTRLE4. The DEPs with a similar direction of change 

using both orthogonal quantification techniques, PD2.4 peak area ratio, and scaffold spectral 

counting are shown in Figure 5.1E. The bar graph shows the total number of proteins 

upregulated and downregulated in five comparisons, i.e., ADE3/CTRLE3, ADE4/CTRLE3, 

CTRLE4/CTRLE, ADE4/CTRLE4, and ADE4/ADE3 (Figure 5.1E).  
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Table 5.1: Demographics of the participants.  

Total participants Control 

APOEε3 

Control 

APOEε4 

AD 

APOEε3 

AD 

APOEε4 

Kruskal-

Wallis statistic 

 

Kruskal-Wallis 

P value 

Total participants in each wave 10 10 10 10 NA NA 

Age in years mean±SD 

(CV%) 

72.40±5.0 

(6.9%) 

72.10±6.2 

(8.6%) 

70.50±5.6 

(8.03%) 

70.70±6.5 

(9.28%) 

0.42 0.93 

Education (years) 12.90±3.2 

(24.91%) 

14.80±2.3 

(15.86%) 

11.60±3.1 

(27.02%) 

12.70±2.2 

(17.43%) 

7.47 0.05 

Sex (n) F=5, M=5 F=6, M=4 F=6, M=4 F=5, M=5 NA NA 

APOE status E3/3 E3/4 E3/3 E3/4 NA NA 

MMSE 

mean±SD (CV%) 

29.00±1.0 

(3.63%) 

29.50±0.5 

(1.78%) 

19.50±4.9 

(25.5%) 

21.40±7.6 

(35.8%) 

30.51 0.00 

Hypertension in number of 

participants (%) 

50% 40% 60% 30% NA NA 

Diabetes in number of participants 

(%) 

10% 10% 0% 10% NA NA 

Cholesterol (mmol/L) 

mean±SD (CV%) 

5.29±1.2 

(22.81%) 

5.45±1.5 

(27.83%) 

5.65±1.0 

(18.34%) 

5.63±1.1 

(20.83%) 

0.53 0.91 

Triglyceride (mmol/L) 

mean±SD (CV%) 

1.02±0.2 

(26.06%) 

1.43±0.52 

(36.72%) 

1.23±0.50 

(40.50%) 

1.63±1.45 

(89.25%) 

3.96 0.26 

HDL-Chol (mmol/L) 

mean±SD (CV%) 

1.72±0.53 

(31.03%) 

1.52±0.48 

(32.07%) 

1.67±0.42 

(25.10%) 

1.47±0.37 

(25.69%) 

0.61 1.81 

LDL-Chol (mmol/L) 

mean±SD (CV%) 

3.09±0.93 

(30.38%) 

3.27±1.21 

(37.06%) 

3.41±0.94 

(27.64%) 

3.40±1.20 

(35.48%) 

0.65 0.88 

Urea (mmol/L) 

mean±SD 

(CV%) 

6.40±1.17 

(18.43%) 

5.98±8.90 

(21.89%) 

5.36±0.92 

(17.18%) 

6.27±2.09 

(33.14%) 

3.69 0.29 

SD= standard deviation; cv= coefficient of variations  



AIBL Cohort: APOEε3 and APOEε4 proteome Chapter 5 

174 

 

Figure 5.1: Workflow of plasma proteome profiling and comparison of APOEε3 and APOEε4 genotype. A. 

Overview of the study populations and schematic proteomic workflow. Dark and light shades represent male and 

female subjects, respectively. The flow diagram outlines steps of sample preparation through to data acquisition. 

B. Box-and-whisker plots of abundance values of all 40 individual samples. The small horizontal line within each 

box denotes the median value, and the upper and lower ranges (whiskers) indicate the 5 and 95 percentiles of the 

abundance values, respectively (output from ProteomeDiscoverer 2.4 software). C. Hierarchical clustering 

analysis (HCA) of the whole proteome of 40 individuals (10 individuals in each category, i.e., ADE3, control E3, 

ADE4, and control E4 (output from ProteomeDiscoverer 2.4 software). D. Scatter plot depicting the positioning 

of all AD and CTRL data points analysed on both PD2.4 and Scaffold. E. Global analyses of proteomic changes 

in longitudinal groups. Bar graph showing the total number of proteins upregulated (pink) and downregulated 

(blue) in ADE3/CTRLE3, ADE4/CTRLE4, CTRLE4/CTRLE3, ADE4/CTRLE3, ADE4/ADE3 and comparison 

groups. The numbers at the top of each bar indicate the number of differentially expressed proteins (DEPs) in 

that category. This data was based on the criteria for DEP selection outlined in the method (i.e., ≥20% fold-

change, the consistent direction of fold change in two orthogonal quantification methods, change identified in >5 

individuals per group). 
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Figure 5.2i: Scatter plots 

comparing PD2.4 versus 

scaffold fold-change are 

displayed. Density plots to 

compare the data points between 

APOE genotypes and respective 

controls.  Each dot represents 

the abundance ratio of each 

protein, and the colour shows the 

dot density (panel A-D). Scatter 

plots were plotted using only 

DEPs from each comparison. E. 

134 DEPs from ADE3/CTRLE3 

(Table 5.2), F. 51 DEPs from 

ADE4/CTRLE3 (Table 5.2), G. 

93 DEPs from ADE4/ADE3 

(Table 5.2), H. 104 DEPs from 

CTRLE4/CTRLE3 (Table 5.2), I. 

71 DEPs from ADE4/CTRLE4 

(Table 5.2)  
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Figure 5.2ii: Images of NuPAGE LDS gels of depleted plasma containing low abundant plasma proteins (LAP), 

the flow-through from the HU14 column. Each gel lane contained equal protein loading (50 ug total proteins 

were loaded per gel lane). I have used 10 LAP samples from each sample A3 denotes ADE3, A4 denotes ADE4, 

C3 denotes control E3, and C4 denotes control E4.  

 

5.3.2 Overall plasma proteome changes in AD vs controls in APOE3 carriers: 

A heatmap of the total of 134 proteins that were differentially expressed (95 upregulated and 39 

downregulated) in ADE3 relative to E3 controls (ADE3/CTRLE3) is shown in two panels 

(Figure 5.3Ai and 5.3Aii) for better visibility of the protein acronyms and fold changes. The 

DEPs with the highest fold change in the ADE3/CTRLE3 group are shown in a volcano plot, 

using the PD2.4 abundance ratios (Figure 5.3B), with the complete list of DEPs shown in Table 

5.2 and Table 5.3. A subset of 65 DEPs (48 upregulated and 17 downregulated) was unique to 

the ADE3/CTRLE3 group and did not exhibit differential expression in other comparison 

groups, including ADE4/ADE3, ADE4/CTRLE4, or CTRLE4/CTRLE3 comparisons (Figure 

5.4 and Table 5.2).   

These unique DEPs were further manually categorized, based on gene ontology, to various 

biological activities, using data from the PD2.4 analyses (Figure 5.4E-H). A more detailed GO 

enrichment analysis using STRING software was also performed. The three groups with the 

most significant proportion of DEPs included metabolism (38%), protein binding (11%), and 
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formation of the cornified envelope (9%) (Figure 5.4F). Interestingly, from this list, two DEPs, 

serum amyloid P-component (APCs) and lactotransferrin (LTF), have been linked to the 

formation of amyloid fibrils334. Two other DEPs were linked to Alzheimer's disease 

pathway335,336: peroxiredoxin-2 (PRDX2) and extracellular superoxide dismutase (SOD3). 

Other pathways implicated in neurodegenerative disease included; MAPK activation (6 DEPs; 

Actin cytoplasmic 1 (ACTB), Annexin A1 (ANXA1), voltage-dependent calcium channel 

subunit alpha-2/delta-1 (CACNA2D1), and 14-3-3 protein beta/alpha (YWHAB), Fibronectin 

(FN1), and Proteasome subunit alpha type-4 (PSMA4) and HIF1 signalling pathways (5 DEPs; 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), insulin-like growth factor-binding 

protein 2 (IGFBP2), phosphoglycerate kinase 1 (PGK1), transferrin receptor protein 1 (TFRC), 

and metalloproteinase inhibitor 1 (TIMP1), (Figure 5.4F and Table 5.3). Previous studies have 

demonstrated the role of HIF1 signalling in neurodegenerative disease337,338. Given that 

APOE3 is the most common population variant, these DEPs may provide insights into the 

underlying processes related to AD, but not due to the presence of the APOE4 variant.  
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Figure 5.3: Global analyses of proteomic changes in ADE3/CTRLE3 and ADE4/CTRLE4 analysis.  

 

Ai and ii. Heatmap showing a total of 134 proteins differentially expressed, including 95 upregulated and 39 

downregulated DEPs in ADE3 relative to E3 controls based on the ADE3/CTRLE3. The heatmap is given in two 

panels (with Ai and Aii continuing one after the other) to make protein acronyms and fold changes legible. 

Expression changes of the same proteins in the ADE4/CTRLE4 group are shown alongside for comparison. B. 

Volcano plot of DEPs in the ADE3/CTRLE3 group, using the abundance ratios from PD2.4, which had at least a 

20% fold change, the consistent direction of fold-change across the two software platforms (Scaffold and PD2.4), 

and were identified in 50% or more of subjects. To avoid crowding, I have highlighted only a few DEPs, with a 

complete list of DEPs shown in the heatmap and shown with greater detail in Table 5.2 and 5.3. C. Heatmap 

showing a total of 71 proteins differentially expressed, including 37 upregulated and 34 downregulated, in ADE4 

relative to E4 controls based on the ADE4/CTRLE4. Expression change of the same proteins in the 

ADE3/CTRLE3 group are shown alongside for comparison.  D. Volcano plot of DEPs in ADE4/CTRLE4 was 

created using the abundance ratios from PD2.4, which had at least a 20% fold change, the consistent direction 

of fold-change across the two software platforms (Scaffold and PD2.4), and were identified in 50% or more of 

subjects. To avoid crowding, I have highlighted only a few DEPs, a complete list of DEPs shown in the heatmap, 

and Table 5.2. E. Heatmap showing a total of 51 proteins differentially expressed, including 25 upregulated and 

26 downregulated DEPs in ADE4 relative to E3 controls based on the ADE4/CTRLE3 data shown in Table 5.2. 

The F. Volcano plot of DEPs in ADE4/CTRLE3, using the abundance ratios from PD2.4, which had at least a 

20% fold change, the consistent fold-change direction across the two software platforms (Scaffold and PD2.4), 

and were identified in 50% or more of subjects. To avoid crowding, I have highlighted only a few DEPs, with the 

complete list of DEPs shown in the heat map and shown in greater detail in Table 5.2 and G. Heatmap showing a 

total of 104 proteins differentially expressed, including 48 upregulated and 56 downregulated in control E4 

relative to E3 controls based on the CTRLE4/CTRLE3 data shown in Table 5.2. The heatmap is split into two 

panels (Gi and Gii) to make protein acronyms and fold changes legible. The H. Volcano plot of DEPs in 

CTRLE4/CTRLE3 using the abundance ratios from PD2.4, which had at least a 20% fold change, the consistent 

fold-change direction across the two software platforms (Scaffold and PD2.4), and were identified in 50% or 

more of subjects. To avoid crowding, I have highlighted only a few DEPs, with a complete list of DEPs shown in 

the heat map and more detail in Table 5.2. 
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Table 5.2. The final list of differentially expressed proteins (DEPs) in all the comparisons analysed. This list 

contains DEPs those quantified in >5 individuals, proteins identified with a minimum of two peptides/protein, the 

consistent direction of protein fold change across two bioinformatics platforms with orthogonal quantification 

approaches (peak area ratio with PD2.4 and spectral counting with Scaffold) with a fold change of at least 20% 

(≤0.08 and ≥ 1.2) in both search engines. 

Comparisons analysed Protein Gene Symbol 

A list of 71 DEPs were 

identified in ADE4 relative 

to control E4  

Total protein number = 71 (37 Upregulated, 34 Downregulated) 

VSIG4, IGLV3-19, APOM, TTR, ORM1, APOD, APOA1, S100A8, 

IGHG3, SERPINA1, PKM, IGJ;JCHAIN, MB, PROCR, 

HBA2;HBA1, BPGM, B2M, CA1, HBB, APOF, HRG, ALB, LPA, 

ART3, B3GNT8, MBL2, LCN2, ALAD, MANBA, INHBC, CFB, 

PTGDS, PLA2G7, GPI, NRCAM, C3, CPA1, THBS4, TLN1, 

FCGBP, ADAMTSL2, COLEC10, GPR116;ADGRF5, ANPEP, 

VWF, FERMT3, FCRL5, CLIC1, DSP, LTA4H, ENPEP, DPEP2, 

ARHGDIB, THBS1, COL6A1, MSN, H6PD, VCP, LYVE1, 

GPNMB, SERPINA11, HSP90AA1, TRHDE, GPT, PAM, TIE1, 

PLXDC2, PZP, MAPRE2, MET, CDHR2 
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A list of 105 DEPs, 

identified in control E4 

relative to control E3 

Total protein number = 105 (48 Upregulated, 57 Downregulated) 

YWHAE, PPIB, PDLIM1, CNTFR, CLIC1, THBS1, WDR1, OGN, 

ALDOB, CORO1A, PZP, FTL, GSTP1, TLN1, ARPC4, GP5, CES1, 

LMAN2, CALR, FLNA, TRHDE, GSS, PLEK, MYH9, C1QTNF3, 

PODXL, CETP, FERMT3, ENO1, ACTN1, MSN, MDH1, 

TALDO1, GOT1, CHIT1, CD93, NOTCH2, LDHB, EXT2, 

SH3BGRL3, ICAM1, GPNMB, ENPEP, TGFBR3, VCL, MPO, 

FAH, NRP2, CD5L, B2M, PLXNB1, RBP4, TIMP2, HRNR, ACE, 

DSP, LPA, NAGLU, AZGP1, IGHA1, APOM, APOL1, IGKV2-30, 

CLSTN1, PTGDS, IGFBP6, PROCR, KPRP, HBA2;HBA1, HP, 

CNTN3, KRT1, C3, ANXA2, APOA2, MBL2, FLG, TF, CST3, 

IGHM, KRT82, MANBA, APOC1, APOC3, IGFBP7, KRT9, 

IGHV2-26, , KRT14, SERPINA1, ALB, DSG1, TTR, IGHG3, 

ERAP1, KRT16, APOD, IGHG2, CTSZ, IGHG4, IGLC3, APOA1, 

IGKV3D-11, IGKC 

 

A list of total 134 DEPs 

were identified in ADE3 

relative to control E3 

Total protein number = 89 (95 Upregulated, 39 Downregulated) 

ACTB, YWHAE, PPIB, CLIC1, MB, FTL, OGN, PLEK, CORO1A, 

ANXA1, ARPC4, CHI3L1, PDLIM1, NIF3L1, IDH1, RARRES2, 

PRDX6, WDR1, DCD, THBS1, AXL, ISLR, TALDO1, TIMP1, 

ENO1, GDI2, BLVRB, GSTO1, TLN1, BLMH, CETP, CTSB, 

CHL1, ACTN1, IGFBP2, PKM, CR2, SOD3, PRDX2, PNP, CD44, 

PGD, PODXL, LUM, S100A8, MPO, TFRC, GP5, FERMT3, 

LMAN2, LRG1, GAPDH, VSIG4, PGK1, LCAT, NEO1, FCGR3A, 

CHIT1, LTF, F7, LAMP1, LDHB, CSF1R, MYH1, PEBP4, VCL, 

GPR116;ADGRF5, VWF, DPEP2, PTPRJ, CALR, CFHR5, 

SERPINA1, NOTCH2, PZP, ADAMTSL2, CTSS, CDH1, FCGBP, 

CKM, NCAM1, C4B;C4B_2;LOC100293534, GPI, TNC, TPM4, 

FN1, SEPP1;SELENOP, CAT, AMBP, VCAM1, LOR, HRG, CPQ, 

ITGB1, MYH9, APOA1, COL6A3, SERPINA10, B4GALT1, 

SMPDL3A, APOF, PSMA4, CACNA2D1, UMOD, IGF2, TIMP2, 

LPA, APCS, KRT9, PTPRF, NAGLU, JUP, VNN1, APOD, 

FAM20C, EXT1, ERAP2, APOA2, IGHG2, CRP, KRT17, LAMB1, 

IGLC3, DSP, KRT16, IGHG4, YWHAB, FLG, PAM, 

DEFA1;DEFA1B, DSG1, IGHM, APOC3, KRT78 

A list of 51 DEPs, identified 

in AD E4 relative to 

control E3 

Total protein number = 51 (25 Upregulated, 26 Downregulated) 

PLEK, CTSS, CORO1A, PROCR, CLIC1, HRG, CETP, INHBC, 

FAH, THBS1, PLA2G7, WDR1, FUCA2, FLNA, TGFBR3, GOT1, 

LAMP1, CALR, DBH, PGD, GP5, LTF, CAT, MYH9, BLVRB, 

CNTN4, CNTN1, PTPRF, FLG, CNTN3, NEO1, ACE, KRT1, 

ERAP2, KRT9, HRNR, TF, COL6A1, MAN2A1, JUP, IGHG2, 

H6PD, MRC1, POSTN, KPRP, LAMB1, KRT16, IGHG4, ERAP1, 

TLN1, DSG1 

A list of 93 DEPs, identified 

in ADE4 relative to ADE3 

Total protein number = 93 (31 Upregulated, 62 Downregulated) 

APOM, CRP, ELTD1;ADGRL4, SELENBP1, TTR, LPA, PON1, 

PON3, CD93, ART3, B3GNT8, C1QTNF3, B4GALT1, BPGM, 

DBH, FCN3, ALDOC, CALR, B2M, VNN1, IGHG3, HBA2;HBA1, 

ADAMTSL4, NAGLU, PLA2G7, C1QB, CNDP1, HEG1, 

PKHD1L1, APOF, LTA4H, ERAP1, ALDOA, FCRL5, TIMP1, 

SOD3, CD109, CHI3L1, ALAD, IGFBP7, BLMH, VCAM1, 
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Table 5.3: This table shows the unique 65 DEPs identified in ADE3 relative to control E3. These DEPs did not 

clear the above criteria in ADE4/CTRLE4, CTRLE4/CTRLE3 and ADE4/CTRLE3 groups, so they are considered 

the DEPs unique the ADE3/CTRLE3 group. 

Accession Description 
Gene 

Symbol 

PD2.4_ADE

3/CTRLE3 

Scaffold_A

DE3/CTRL

E3 

PD2.4_Adj. 

P-

Value:ADE3

/CTRLE3 

Scaffold_T-

Test (p-

value): 

ADE3/CTR

LE3 

P60709 

Actin, 

cytoplasmic 1  ACTB 3.285 1.5 0.08755265 0.43 

P04083 Annexin A1  ANXA1 2.394 7 0.311744894 0.24 

P36222 

Chitinase-3-

like protein 1  CHI3L1 2.318 2.1 0.346965541 0.33 

Q9GZT8 

NIF3-like 

protein 1  NIF3L1 2.297 1.3 0.354832127 0.87 

O75874 

Isocitrate 

dehydrogenase 

[NADP] 

cytoplasmic  IDH1 2.267 1.4 0.370922353 0.73 

Q99969 

Retinoic acid 

receptor 

responder 

protein 2  

RARRES

2 2.26 1.2 0.374773731 0.78 

P30041 

Peroxiredoxin-

6  PRDX6 2.211 1.7 0.406547747 0.42 

P81605 Dermcidin  DCD 2.173 1.8 0.428967303 0.7 

P30530 

Tyrosine-

protein kinase 

receptor UF AXL 2.133 3.4 0.45629486 0.26 

O14498 

Immunoglobul

in superfamily 

containing 

leucine-rich 

repeat protein  ISLR 2.107 1.4 0.467581024 0.47 

P01033 

Metalloprotein

ase inhibitor 1  TIMP1 1.931 1.2 0.573462796 0.76 

P50395 

Rab GDP 

dissociation 

inhibitor beta  GDI2 1.887 3.5 0.599785554 0.11 

P78417 

Glutathione S-

transferase 

omega-1  GSTO1 1.878 1.3 0.606067261 0.69 

Q13867 

Bleomycin 

hydrolase  BLMH 1.788 1.2 0.674221443 0.85 

IGFBP2, CPA1, COL6A1, MRC1, ISLR, P4HB, L1CAM, 

B3GNT1;B4GAT1, VCL, TLN1, THBS1, CKM, SPP2, FCGBP, 

ADAMTSL2, CD163, H6PD, CD44, CFHR2, GPNMB, ENO1, 

ARHGDIB, ICAM2, DPEP2, VWF, CAPN1, KPRP, A2M, CAP1, 

AXL, PGD, SERPINA11, MET, LILRA2, SMPDL3A, PZP, WDR1, 

TALDO1, NEO1, GANAB, MAN2A2, GSTP1, MB, WARS, CR2, 

TUBB1, CLIC1, ILK, PKM, ANXA1, STATH 
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P07858 Cathepsin B  CTSB 1.762 1.4 0.686666057 0.82 

O00533 

Neural cell 

adhesion 

molecule L1-

like protein  CHL1 1.741 1.2 0.701619316 0.38 

P18065 

Insulin-like 

growth factor-

binding protein 

2  IGFBP2 1.713 1.6 0.714769493 0.1 

P20023 

Complement 

receptor type 2  CR2 1.702 2.7 0.723907693 0.24 

P08294 

Extracellular 

superoxide 

dismutase [Cu-

Zn]  SOD3 1.669 1.4 0.75310847 0.33 

P32119 

Peroxiredoxin-

2  PRDX2 1.64 1.3 0.776985738 0.33 

P00491 

Purine 

nucleoside 

phosphorylase  PNP 1.609 3 0.800606466 0.2 

P16070 CD44 antigen  CD44 1.549 1.3 0.846542904 0.33 

P51884 Lumican  LUM 1.509 1.2 0.873405528 0.21 

P02786 

Transferrin 

receptor 

protein 1  TFRC 1.468 4 0.90682001 0.25 

P02750 

Leucine-rich 

alpha-2-

glycoprotein  LRG1 1.44 1.2 0.919863933 0.33 

P04406 

Glyceraldehyd

e-3-phosphate 

dehydrogenase  GAPDH 1.44 1.3 0.919863933 0.68 

P00558 

Phosphoglycer

ate kinase 1  PGK1 1.437 2.1 0.922586203 0.23 

P04180 

Phosphatidylc

holine-sterol 

acyltransferase  LCAT 1.436 1.2 0.924440947 0.55 

P08637 

Low affinity 

immunoglobul

in gamma Fc 

region receptor 

III-A  FCGR3A 1.411 1.2 0.942130326 0.52 

P08709 

Coagulation 

factor VII  F7 1.393 1.2 0.953814063 0.13 

P07333 

Macrophage 

colony-

stimulating 

factor 1 

receptor  CSF1R 1.375 1.6 0.962231806 0.0085 

P12882 Myosin-1  MYH1 1.353 2 0.979750564 0.31 

Q96S96 

Phosphatidylet

hanolamine-

binding protein 

4  PEBP4 1.352 1.3 0.979750564 0.62 
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Q12913 

Receptor-type 

tyrosine-

protein 

phosphatase 

eta  PTPRJ 1.317 1.7 0.989674877 0.072 

Q9BXR6 

Complement 

factor H-

related protein 

5  CFHR5 1.307 1.3 0.989674877 0.43 

P12830 Cadherin-1  CDH1 1.264 1.5 0.989674877 0.44 

P06732 

Creatine 

kinase M-type  CKM 1.246 3.7 0.989674877 0.49 

P13591 

Neural cell 

adhesion 

molecule 1  NCAM1 1.246 1.5 0.989674877 0.087 

P0C0L5 

Complement 

C4-B  

C4B; 

C4B_2; 

LOC1002

93534 1.244 1.3 0.989674877 0.034 

P24821 Tenascin  TNC 1.24 1.5 0.989674877 0.2 

P67936 

Tropomyosin 

alpha-4 chain  TPM4 1.239 4.2 0.989674877 0.18 

P02751 Fibronectin  FN1 1.229 1.3 0.989674877 0.095 

P49908 

Selenoprotein 

P  

SEPP1; 

SELENO

P 1.229 1.2 0.989674877 0.21 

P02760 Protein AMBP  AMBP 1.214 1.2 0.989674877 0.0057 

P19320 

Vascular cell 

adhesion 

protein 1  VCAM1 1.213 1.7 0.989674877 0.031 

P23490 Loricrin  LOR 1.207 1.2 0.989674877 0.9 

Q9Y646 

Carboxypeptid

ase Q  CPQ 1.203 1.8 0.989674877 0.34 

P05556 Integrin beta-1  ITGB1 1.202 1.5 0.989674877 0.4 

P12111 

Collagen 

alpha-3 (VI) 

chain  COL6A3 0.789 0.8 0.90682001 0.36 

Q9UK55 

Protein Z-

dependent 

protease 

inhibitor  

SERPINA

10 0.769 0.8 0.876762236 0.27 

P15291 

Beta-1,4-

galactosyltrans

ferase 1  

B4GALT

1 0.766 0.3 0.868634975 0.38 

Q92484 

Acid 

sphingomyelin

ase-like 

phosphodiester

ase 3a  

SMPDL3

A 0.762 0.5 0.862319392 0.64 

P25789 

Proteasome 

subunit alpha 

type-4  PSMA4 0.755 0.8 0.850729325 0.86 
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P54289 

Voltage-

dependent 

calcium 

channel 

subunit alpha-

2/delta-1  

CACNA2

D1 0.755 0.7 0.850729325 0.36 

P07911 Uromodulin  UMOD 0.751 0.7 0.850729325 0.8 

P01344 

Insulin-like 

growth factor 

II  IGF2 0.747 0.6 0.845985558 0.59 

P02743 

Serum amyloid 

P-component  APCS 0.735 0.8 0.830352661 0.046 

O95497 Pantetheinase  VNN1 0.706 0.5 0.776100017 0.2 

Q8IXL6 

Extracellular 

serine/threonin

e protein 

kinase 

FAM20C  FAM20C 0.698 0.5 0.7601127 0.68 

Q16394 Exostosin-1  EXT1 0.693 0.6 0.750519635 0.49 

P02741 

C-reactive 

protein  CRP 0.628 0.6 0.62990742 0.25 

Q04695 

Keratin, type I 

cytoskeletal 17  KRT17 0.628 0.4 0.62990742 0.61 

P31946 

14-3-3 protein 

beta/alpha  YWHAB 0.57 0.6 0.519452427 0.63 

P59665 

Neutrophil 

defensin 1  

DEFA1; 

DEFA1B 0.548 0.6 0.466403168 0.69 

Q8N1N4 

Keratin, type II 

cytoskeletal 78  KRT78 0.317 0.2 0.049320171 0.41 

 

5.3.3 Proteome changes seen in APOE4 carriers: 

The 71 DEPs observed in APOE4 carriers (ADE4/CTRLE4) included 37 upregulated and 34 

downregulated DEPs in ADE4 relative to E4 controls (Table 5.2, Figure 5.1E, and 5.3C). The 

DEPs in ADE4/CTRLE4 are shown in volcano plot format (Figure 5.3D). A complete list of 

DEPs in APOE4 carriers (ADE4/CTRLE4) is presented in Table 5.2. Further, GO analysis 

using STRING was performed to obtain the detailed GO enrichment shown in Figure 5.6.  

 

When comparing ADE4 to control E3, a total of 51 DEPs were identified, including 25 

upregulated and 26 downregulated proteins (Figure 5.1E, Table 5.2), which are also shown in 

the heatmap (Figure 5.3E) and a volcano plot (Figure 5.3F). A complete list of DEPs for the 

ADE4/CTRLE3 comparison is presented in Table 5.2. GO analysis revealed that metabolism 

(19%), signalling (15%), phagosome (12%), platelet degranulation (12%), and platelet 

degranulation (10%) were the functional groups containing most ADE4/CTRLE3 DEPs 
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(Figure 3H). Other GO enrichments include amyloid fibril formation (LTF), apoptosis (DSG1), 

LDL remodelling (CETP), brain-derived neurotrophic factor signalling pathway (PTPRF) 

(Figure 5.4H).  

 

While there were some shared DEPs with ADE3/CTRLE3 and ADE4/CTRLE4, I found 29 

DEPs (13 upregulated and 16 downregulated) that were uniquely dysregulated in 

ADE4/CTRLE4 (Figure 5.4D and Table 5.2 and Table 5.4). These AD-related DEPs specific 

to E4 carriers were manually categorized based on gene ontology, with the majority involved 

in metabolism (34%), protein binding (21%), and signalling (18%). Other enriched categories 

in ADE4/CTRLE4 included complement cascade, PI3K-Akt pathway, post-translational 

modifications (PTMs), protein digestion, and protease inhibitors (Figure 5.4G). The PI3K-Akt 

pathway, which includes heat shock protein HSP 90-alpha (HSP90AA1), collagen alpha-1(VI) 

chain (COL6A1), and thrombospondin-4 (THBS4), was one of the distinct pathways 

dysregulated. Other DEPs included rho GDP-dissociation inhibitor 2 (ARHGDIB) involved in 

rho GTPase signalling, tyrosine-protein kinase receptor Tie-1 (TIE1) in Rac1/Pak1/p38/MMP-

2 pathway, neutrophil gelatinase-associated lipocalin (LCN2) in interleukin-4 and 13 

signallings, and lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) in 

hyaluronan uptake and degradation (Figure 5.4G and Table 5.4).  

To explore the role of the APOE allele in AD, both ADE4 and ADE3 groups were expressed 

relative to CTRLE3 (Figure 5.5D). Most of the DEPs in these two comparisons were unique to 

each group (18 in ADE4/CTRLE3 and 87 in ADE3/CTRLE3; Figure 5.5A), while 28 DEPs 

were shared, of which the majority (26 DEPs) varied in a similar direction of fold change 

(Figure 5.5D, Table 5.6). The majority of these DEPs were involved in metabolism (19%), 

signalling (15%), platelet degranulation (12%), phagosome (12%), and PTM (10%) (Figure 

5.4H).  
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Figure 5.4: Venn diagram of overlapping and unique DEPs in four groups; CTRLE4/CTRLE3, ADE3/CTRLE3, 

ADE4/CTRLE3, ADE4/CTRLE4, with DEPs unique to each group displayed on the periphery, as follows; A. 34 

DEPs unique to the CTRLE4/CTRLE3 group, comprising 12 upregulated and 22 downregulated, in control E4 

relative to control E3 (greater detail of the complete list of DEPs identified in the CTRLE4/CTRLE3 group is 

shown in Table 5.8). This list contains proteins associated with protection against cognitive decline and 

neuropathology in APOE4 carriers who remain cognitively normal. B. 65 DEPs (48 upregulated and 17 

downregulated) were unique to ADE3/CTRLE3 (complete DEP list and more detail can be found in Table 5.3). 

These are DEPs observed in AD subjects who do not carry an APOE4 allele, so protein expression changes are 

associated with AD but unrelated to the E4 allele. C. 7 DEPs (2 upregulated and 5 downregulated), unique to the 

ADE4/CTRLE3 group (complete DEP list and more detail can be found in Table 5.5). These DEPs may reflect 

the contribution of the E4 allele to AD since the ADE3/CTRLE3 group does not share them. D. 29 DEPs (13 were 

upregulated and 16 downregulated) that were explicitly dysregulated in the ADE4/CTRLE4 group this list 

represents an experimental correction for the presence of the E4 allele by using normal controls which are 

heterozygous carriers of the E4 allele (complete DEP list and more detail can be found in Table 5.4). Pie charts 

categorizing all the unique DEPs in each group into their biological processes and molecular pathways based on 

gene ontology (GO) E. ADE3/CTRLE3, F. CTRLE4/CTRLE3, G. ADE4/CTRLE4, H. ADE4/CTRLE3.  
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Table 5.4. This table contains the list of 29 unique DEPs identified in ADE4 relative to control E4. These DEPs did not clear the above criteria in ADE4/CTRLE3, 

ADE3/CTRLE3 and CTRLE4/CTRLE3 groups, so they are considered the DEPs unique the ADE4/CTRLE4 group.  

Accession Description Gene Symbol 
PD2.4_ADE4/

CTRLE4 

Scaffold_ADE4

/CTRLE4 

PD2.4_Abundance 

Ratio Adj. P-

Value:ADE4/CTRLE

4 

Scaffold_T-Test (p-

value): 

ADE4/CTRLE4 

P01714 

Immunoglobulin lambda 

variable 3-19  IGLV3-19 2.813 1.6 0.17 0.76 

P02763 Alpha-1-acid glycoprotein 1  ORM1 2.232 1.9 0.91 0.46 

P01591 Immunoglobulin J chain  IGJ; JCHAIN 1.912 2.1 0.1 0.37 

P07738 Bisphosphoglycerate mutase  BPGM 1.692 1.2 0.49 0.86 

P00915 Carbonic anhydrase 1  CA1 1.616 1.2 0.98 0.34 

P68871 Hemoglobin subunit beta  HBB 1.607 1.5 0.34 0.49 

Q13508 Ecto-ADP-ribosyltransferase 3  ART3 1.409 1.2 0.49 0.9 

Q7Z7M8 

UDP-GlcNAc:betaGal beta-

1,3-N-

acetylglucosaminyltransferase 

8  B3GNT8 1.406 4.8 0.59 0.082 

P80188 

Neutrophil gelatinase-

associated lipocalin  LCN2 1.386 1.2 1 0.75 

P13716 

Delta-aminolevulinic acid 

dehydratase  ALAD 1.317 1.8 0.15 0.61 

P00751 Complement factor B  CFB 1.297 1.2 0.17 0.0098 

Q92823 

Neuronal cell adhesion 

molecule  NRCAM 1.222 1.3 0.9 0.64 

P15085 Carboxypeptidase A1  CPA1 1.204 1.2 0.92 0.89 

P35443 Thrombospondin-4  THBS4 0.795 0.8 0.87 0.44 

Q9Y6Z7 Collectin-10  COLEC10 0.787 0.6 0.12 0.57 

P15144 Aminopeptidase N  ANPEP 0.763 0.8 0.22 0.37 

Q96RD9 Fc receptor-like protein 5  FCRL5 0.753 0.5 0.94 0.69 
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P09960 Leukotriene A-4 hydrolase  LTA4H 0.747 0.5 0.42 0.37 

P52566 

Rho GDP-dissociation inhibitor 

2  ARHGDIB 0.718 0.1 0.037 0.13 

P55072 

Transitional endoplasmic 

reticulum ATPase  VCP 0.695 0.5 0.079 0.51 

Q9Y5Y7 

Lymphatic vessel endothelial 

hyaluronic acid receptor 1  LYVE1 0.644 0.8 0.68 0.49 

Q86U17 Serpin A11  SERPINA11 0.614 0.7 0.64 0.21 

P24298 Alanine aminotransferase 1  GPT 0.546 0.3 1 0.38 

P35590 

Tyrosine-protein kinase 

receptor Tie-1  TIE1 0.527 0.4 0.23 0.12 

Q6UX71 

Plexin domain-containing 

protein 2  PLXDC2 0.514 0.7 0.82 0.42 

Q15555 

Microtubule-associated protein 

RP/EB family member 2  MAPRE2 0.502 0.8 0.33 0.87 

P08581 

Hepatocyte growth factor 

receptor  MET 0.474 0.3 0.37 0.21 

Q9BYE9 

Cadherin-related family 

member 2  CDHR2 0.256 0.1 0.068 0.27 

P07900 

Heat shock protein HSP 90-

alpha  HSP90AA1 0.591 0.4 0.22 0.61 

 

 

Table 5.5. This table contains the list of 7 unique DEPs were identified in ADE4 relative to control E3. These DEPs did not clear the above criteria in ADE3/CTRLE3 or 

ADE4/CTRLE4 groups 

Accession Description 
Gene 

Symbol 

Abundance 

Ratio: 

(ADE4)/(CTRL

E3) 

Scaffold fold 

change_(ADE4)/(

CTRLE3)  

PD2.4_Abundance 

Ratio Adj. P-

Value:ADE4/CTR

LE3 

Scaffold_T-Test 

(p-value): 

ADE4/CTRLE3 

Q9BTY2 Plasma alpha-L-fucosidase  FUCA2 1.425 1.7 0.17 0.0098 

P09172 Dopamine beta-hydroxylase  DBH 1.298 1.7 0.9 0.64 

Q8IWV2 Contactin-4  CNTN4 0.790 0.8 0.92 0.89 
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Q12860 Contactin-1  CNTN1 0.787 0.7 0.87 0.44 

Q15063 Periostin  POSTN 0.631 0.7 0.12 0.57 

P22897 
Macrophage mannose 

receptor 1  
MRC1 0.659 0.7 

0.22 0.37 

Q16706 Alpha-mannosidase 2  MAN2A1 0.758 0.5 0.94 0.69 

 

Table 5.6. This table contains the list of 28 DEPs were identified commonly in ADE3/CTRLE3 and ADE4/CTRLE3. 

Accessio

n 
Description 

Gene 

Symbol 

Abundance 

Ratio: 

(ADE3)/(CTRL

E3) 

Scaffold fold 

change_(AD

E3)/(CTRL

E3)  

Abundance 

Ratio: 

(ADE4)/(CTRLE

4) 

Scaffold fold 

change_(AD

E4)/(CTRL

E4)  

Abundance 

Ratio: 

(ADE4)/(CTRL

E3) 

Scaffold fold 

change_(ADE4

)/(CTRLE3)  

P35579 Myosin-9  MYH9 1.202 100 0.808 0.4 1.214 20.0 

P40197 
Platelet glycoprotein 

V  
GP5 1.456 4.6 0.962 1.7 1.243 7.0 

O75083 
WD repeat-

containing protein 1  
WDR1 2.194 16 0.787 1.2 1.491 6.0 

P08567 Pleckstrin  PLEK 2.438 6.8 1.456 1 2.015 4.7 

P52209 

6-phosphogluconate 

dehydrogenase, 

decarboxylating  

PGD 1.529 5.9 1.863 0.8 1.263 4.0 

P25774 Cathepsin S  CTSS 1.268 2.2 1.419 0.4 1.922 3.3 

P11597 
Cholesteryl ester 

transfer protein  
CETP 1.784 3.2 0.8 1 1.607 3.2 

P31146 Coronin-1A  CORO1A 2.432 11 1.352 0.3 1.776 2.0 

P11279 

Lysosome-associated 

membrane 

glycoprotein 1  

LAMP1 1.379 2.5 1.041 1 1.349 1.8 

P02788 Lactotransferrin  LTF 1.395 7.4 1.005 1.1 1.227 1.7 

P04040 Catalase  CAT 1.215 1.5 0.997 1.2 1.214 1.4 

P30043 
Flavin reductase 

(NADPH)  
BLVRB 1.882 1.3 1.679 0.8 1.211 1.3 

P27797 Calreticulin  CALR 1.31 1.4 0.829 0.6 1.307 1.3 
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Q92859 Neogenin  NEO1 1.431 1.2 0.887 0.8 0.781 0.8 

Q6P179 

Endoplasmic 

reticulum 

aminopeptidase 2  

ERAP2 0.679 0.7 0.87 0.9 0.773 0.7 

P10586 

Receptor-type 

tyrosine-protein 

phosphatase F  

PTPRF 0.732 0.8 1.08 0.7 0.784 0.7 

P07942 
Laminin subunit beta-

1  
LAMB1 0.615 0.7 0.88 0.5 0.589 0.6 

P01859 

Immunoglobulin 

heavy constant 

gamma 2  

IGHG2 0.667 0.3 1.245 1.1 0.733 0.5 

P01861 

Immunoglobulin 

heavy constant 

gamma 4  

IGHG4 0.586 0.3 1.151 1.1 0.570 0.5 

P08779 
Keratin, type I 

cytoskeletal 16  
KRT16 0.592 0.3 0.941 1.2 0.581 0.5 

P35527 
Keratin, type I 

cytoskeletal 9  
KRT9 0.733 0.6 1.114 0.8 0.766 0.5 

Q02413 Desmoglein-1  DSG1 0.471 0.5 0.69 1.1 0.493 0.4 

P20930 Filaggrin  FLG 0.556 0.5 0.937 0.7 0.783 0.3 

P14923 Junction plakoglobin  JUP 0.709 0.3 1.319 0.2 0.754 0.1 

P07996 Thrombospondin-1  THBS1 2.142 5 0.715 0.5 1.495 2.3 

O00299 
Chloride intracellular 

channel protein 1  
CLIC1 2.835 6.2 0.752 0.2 1.638 1.3 

P04196 
Histidine-rich 

glycoprotein  
HRG 1.203 1.3 1.489 1.3 1.608 1.2 

Q9Y490 Talin-1  TLN1 1.857 3.1 0.795 0.5 0.500 0.4 
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Table 5.7. This table contains the list of 9 DEPs which were identified commonly in ADE4/CTRLE4 and ADE4/CTRLE3. 

Accession Description 
Gene 

Symbol 

Abundance 

Ratio: 

(ADE3)/(CTRLE

3) 

Scaffold fold 

change_(AD

E3)/(CTRL

E3)  

Abundance 

Ratio: 

(ADE4)/(CTRLE

4) 

Scaffold 

fold 

change_(A

DE4)/(CT

RLE4)  

Abundance 

Ratio: 

(ADE4)/(CTRLE

3) 

Scaffold 

fold 

change_(A

DE4)/(CTR

LE3)  

P07996 
Thrombospondin-

1  
THBS1 2.142 5 0.715 0.5 1.495 2.3 

Q13093 

Platelet-activating 

factor 

acetylhydrolase  

PLA2G7 1.277 0.9 1.237 1.2 1.493 1.4 

Q9UNN8 
Endothelial 

protein C receptor  
PROCR 1.163 1.7 1.834 1.6 1.756 1.3 

O00299 

Chloride 

intracellular 

channel protein 1  

CLIC1 2.835 6.2 0.752 0.2 1.638 1.3 

P55103 
Inhibin beta C 

chain  
INHBC 1.231 0 1.311 1.7 1.579 1.3 

P04196 
Histidine-rich 

glycoprotein  
HRG 1.203 1.3 1.489 1.3 1.608 1.2 

O95479 

GDH/6PGL 

endoplasmic 

bifunctional 

protein  

H6PD 1.066 1.1 0.698 0.8 0.723 0.6 

P12109 
Collagen alpha-

1(VI) chain  
COL6A1 0.996 0.9 0.706 0.8 0.764 0.6 

Q9Y490 Talin-1  TLN1 1.857 3.1 0.795 0.5 0.500 0.4 
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5.3.4 Changes common to both APOE genotypes in AD (AD risk factors independent 

of APOE allele):  

DEPs common to both ADE4/CTRLE4 and ADE3/CTRLE3 groups might indicate AD 

pathology independent of APOE genotypes. The majority of DEPs were specific to each group 

(43 in ADE4/CTRLE4 and 87 in ADE3/CTRLE3; Figure 5.5A), while 23 DEPs were common 

to the ADE4 and ADE3 groups relative to their controls, as indicated in the Venn diagram 

(Figure 5.5A), scatter plot (Figure 5.5B) and heatmap (Figure 5.5C). Interestingly, only 9/23 

DEPs were dysregulated in the same direction in both AD groups (7 elevated in the top right 

quadrant and 2 downregulated in the bottom left, Figure 5.5B), whereas 14/23 DEPs were 

dysregulated in opposite directions. The top left quadrant of Figure 5.5B shows 4/23 proteins 

that were elevated in ADE4/CTRLE4 but downregulated in ADE3/CTRLE3. Additionally, 

10/23 proteins are shown in the bottom right, indicating downregulated proteins in 

ADE4/CTRLE4 but were increased in ADE3/CTRLE3. These 23 DEPs were classified into 

six GO-based functional groups, including metabolism and protein binding, each containing 5 

DEPs (Figure 5.5E). Lipoprotein binding and cell adhesion contained 4 DEPs each. Metal ion 

binding and inflammation contained 3 and 4 DEPs, respectively. Some GO terms were 

upregulated in both AD groups, such as innate immune system, glycolysis/gluconeogenesis, 

myelin sheet, and the complement cascade. On the other hand, some GO terms such as lipid 

transport, lipid metabolism, lipoprotein metabolic process, cholesterol efflux, and focal 

adhesion were downregulated in ADE3/CTRLE3 and upregulated in ADE4/CTRLE4. The GO 

terms contain DEPs of a similar direction of fold change in both groups, suggesting disrupted 

pathways in AD, irrespective of APOE genotype.  

 

Further, I identified 28 DEPs common in ADE4/CTRLE3 and ADE3/CTRLE3 (Figure 5.5A 

and Table 5.6) were plotted using a scatter plot to show the direction of fold change in common 

DEPs (Figure 5.5Bii). 16/28 DEPs were upregulated in both ADE4/CTRLE3 and 

ADE3/CTRLE3, whereas 10/28 downregulated in both the AD groups. Only 2 DEPs were 

dysregulated in the opposite direction, i.e., NEO1 and TLN1 were upregulated in 

ADE3/CTRLE3 whereas downregulated in ADE4/CTRLE3 (Figure 5.5Bii and 5.5D, Table 

5.6). Next, I performed a heatmap using these 28 DEPs showing the PD2.4 abundance ratio 

and scaffold fold change of each protein in both AD groups (Figure 5.5D). These common 

DEPs were further summarized into their functional categories (Figure 5.5F and Table 5.6).  
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Figure 5.5: This contains common changes in ADE4 and ADE3 that might indicate the AD pathology irrespective 

of the presence of specific APOE genotypes. A. Venn diagram showing 23 DEPs common between the 

ADE4/CTRLE4 and ADE3/CTRLE3 groups and 28 DEPs common in ADE4/CTRLE3 and ADE3/CTRLE3. B(i). 

The scatter plot shows the direction of common DEPs in ADE4/CTRLE4 and ADE3/CTRLE3 groups. B(ii). The 

scatter plot shows the direction of common DEPs in ADE4/CTRLE3 and ADE3/CTRLE3 groups. These are the 

DEPs that vary in AD, independently of APOE allele status C. Heatmap using these 23 DEPs showing the PD2.4 

abundance ratio and scaffold fold change of each DEPs in ADE4/CTRLE4 and ADE3/CTRLE3 groups. D. 

Heatmap using these 28 DEPs showing the PD2.4 abundance ratio and scaffold fold change of each DEPs in 

ADE4/CTRLE3 and ADE3/CTRLE3 groups. E. 23 common DEPs were broadly categorised into their biological 

process based on STRING software. F. 28 common DEPs were broadly categorised into their biological process 

based on STRING software. 

 

 

5.3.5 Proteins linked to APOE4 genotype in controls: 

A total of 105 proteins were differentially expressed, including 48 upregulated and 56 

downregulated proteins (Figure 5.1E) in control E4 relative to control E3 (CTRLE4/CTRLE3) 

are shown in the heatmap Figure 5.3Gi and 5.3Gii and Table 2.2. In addition, the DEPs in 

CTRLE4/CTRLE3 are shown in volcano plot format (Figure 5.3H). 
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After removing the DEPs common to both AD groups, 34 DEPs unique to CTRLE4/CTRLE3 

remained, comprising 12 upregulated and 22 downregulated DEPs (Figure 5.4A and Table 5.8) 

(Venn diagram). This list of 34 DEPs may provide insight into potential protective mechanisms 

that prevented these age-matched controls from progressing to AD. These DEPs, unique to 

control E4 carriers, are involved in VLDL clearance (Apolipoprotein C-I, APOC1), lipid 

synthesis (CD5 antigen-like, CD5L), homeostasis (Complement C1q tumour necrosis factor-

related protein 3, C1QTNF3 and SH3 domain-binding glutamic acid-rich-like protein 3 

SH3BGRL3), which are essential in maintaining cell integrity. Additional DEPs, unique to 

control E4 carriers, include Fructose-bisphosphate aldolase B (ALDOB), which is associated 

with gluconeogenesis; signalling pathways neuropilin-2 (NRP2) and insulin-like growth 

factor-binding protein 7 (IGFBP7) were downregulated in the VEGFA-VEGFA2 signalling 

pathway while Annexin A2 (ANXA2) and ciliary neurotrophic factor receptor subunit alpha 

(CNTFR) are involved in Jak-STAT signalling (Figure 5.4A). As was the case with 

ADE4/CTRLE4 and ADE3/CTRLE3, metabolism and protein binding represent biological 

processes with the most significant proportion of DEPs accounting (Figure 5.4E).  
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Table 5.8. This table contains the list of 34 unique DEPs were identified in control E4 relative to control E3. These DEPs did not meet the above criteria in the ADE3/CTRLE3, 

ADE4/CTRLE3 and ADE4/CTRLE4 groups, so they are considered the DEPs unique the CTRLE4/CTRLE3 group. 

Accessio

n 
Description 

Gene 

Symbol 

PD2.4_CTRLE4

/CTRLE3 

 

Scaffold_CTRLE4

/CTRLE3) 

PD2.4_Abundan

ce Ratio Adj. P-

Value:CTRLE4/

CTRLE3 

Scaffold_T-Test 

(p-

value)_CTRLE4

/CTRLE3 

A0A0A0

MRZ8  

Immunoglobulin kappa variable 3D-

11  

IGKV3

D-11 0.48 0.09 
0.01 0.10 

A0A0B4J

1X5  

Immunoglobulin heavy variable 2-

26  

IGHV2

-26 0.643 0.18 
0.39 0.16 

O14791 Apolipoprotein L1  APOL1 0.766 0.82 0.53 0.69 

O43157 Plexin-B1  

PLXN

B1 0.802 0.78 
0.62 0.58 

O43866 CD5 antigen-like  CD5L 0.807 0.68 0.63 0.20 

O60462 Neuropilin-2  NRP2 0.808 0.18 0.64 0.11 

O94985 Calsyntenin-1  

CLSTN

1 0.763 0.33 
0.53 0.23 

P00738  Haptoglobin  HP 0.743 0.58 0.47 0.44 

P01034 Cystatin-C  CST3 0.708 0.71 0.37 0.45 

P01834  Immunoglobulin kappa constant  IGKC 0.45 0.34 0.00 0.03 

P01876  

Immunoglobulin heavy constant 

alpha 1  IGHA1 0.769 0.36 
0.54 0.01 

P02533 Keratin, type I cytoskeletal 14  KRT14 0.633 0.66 0.17 0.23 

P02654 Apolipoprotein C-I  APOC1 0.678 0.15 0.39 0.16 

P02753 Retinol-binding protein 4  RBP4 0.801 0.75 0.62 0.03 

P05062 Fructose-bisphosphate aldolase B  

ALDO

B 1.729 2.08 
0.15 0.17 

P05362 Intercellular adhesion molecule 1  ICAM1 1.234 1.27 0.79 0.61 

P06310  

Immunoglobulin kappa variable 2-

30  

IGKV2

-30 0.764 0.10 
0.70 0.13 
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P07355  Annexin A2  

ANXA

2 0.732 0.50 
0.63 0.59 

P09211 Glutathione S-transferase P  GSTP1 1.64 3.80 0.21 0.09 

P0DOX3  Immunoglobulin delta heavy chain    1.307 1.89 0.75 0.40 

P0DOX5  

Immunoglobulin gamma-1 heavy 

chain    0.64 0.45 
0.19 0.06 

P23141  Liver carboxylesterase 1  CES1 1.576 2.00 0.51 0.56 

P24592 

Insulin-like growth factor-binding 

protein 6  

IGFBP

6 0.758 0.81 
0.51 0.72 

P25311 Zinc-alpha-2-glycoprotein  AZGP1 0.772 0.84 0.55 0.41 

P26992 

Ciliary neurotrophic factor receptor 

subunit alpha  CNTFR 2.364 2.00 
0.01 0.56 

P40925 Malate dehydrogenase, cytoplasmic  MDH1 1.314 1.33 0.65 0.72 

P48637 Glutathione synthetase  GSS 1.486 1.35 0.40 0.52 

Q16270 

Insulin-like growth factor-binding 

protein 7  

IGFBP

7 0.658 0.81 
0.23 0.73 

Q93063 Exostosin-2  EXT2 1.238 4.50 0.78 0.36 

Q9BXJ4 

Complement C1q tumor necrosis 

factor-related protein 3  

C1QTN

F3 1.421 1.35 
0.50 0.66 

Q9H299 

SH3 domain-binding glutamic acid-

rich-like protein 3  

SH3BG

RL3 1.237 2.00 
0.80 0.56 

Q9NPY3 

Complement component C1q 

receptor  CD93 1.279 1.21 
0.71 0.68 

Q9NSB4 Keratin, type II cuticular Hb2  KRT82 0.7 2.33 0.35 0.61 

Q9UBR2 Cathepsin Z  CTSZ 0.547 0.57 0.05 0.12 
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Figure 5.6: Gene ontology enrichments common to the ADE3/CTRLE3 and ADE4/CTRLE4 groups to understand 

the significantly dysregulated pathways. STRING software was used for enrichment analysis, and the data used 

in the graphical displays were prepared manually sorting from PD2.4 analyses. A. biological processes, B. 

molecular function, C. cellular components, and D. KEGG pathways. This figure presents a complete list of GO 

term enrichments, using DEPs commonly identified in both AD groups. These pathways were identified using the 

list of DEPs common to both ADE4 and ADE3 groups, suggesting that these pathways are disrupted in AD 

irrespective of the genotype. SampleGroup: Red circle- GO upregulated in ADE4; Blue plus- GO downregulated 

in ADE4; Green square- GO upregulated in ADE3; Yellow triangle- GO downregulated in ADE3. Count: The 

size of the symbols represents the number of DEPs involved in each GO enrichment term.  
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5.4 Discussion:  

In this study, both APOE3 and APOE4 carriers with PiB PET imaging confirmed AD was 

shown to have a large number of protein expression changes in plasma, with functions 

including complement cascade, glycolysis, metabolism, plasma lipoprotein assembly, 

remodelling, and clearance. In addition, several proteins were dysregulated in the presence of 

the APOE4 genotype relative to APOE3 in both AD and control groups. This suggests that 

while some pathways are dysregulated by APOE4, there are shared mechanisms toward 

developing AD independent of the APOE genotype. Furthermore, DEPs unique to 4 carriers 

in the control group suggests potential mechanisms to protect from progression to AD.   

 

5.4.1 Plasma level of apolipoproteins and APOE genotype: 

Apolipoproteins are among the most abundant proteins in the brain, with functions relating to 

cholesterol and lipid transport, and are critical for distributing and recycling lipids in the 

brain339. Differentially expressed apolipoproteins identified in the current study include 

APOA1, APOA2, APOC1, APOC3, APOD, and APOF, which were downregulated in 

ADE3/CTRLE3 while APOM, APOA1, APOD, and APOF were upregulated in 

ADE4/CTRLE4, and APOB, APOE, APOM, APOD, APOC were upregulated in 

ADE4/CTRLE3. Conversely, APOD, APOM, and APOA1 were downregulated in the 

CTRLE4/CTRLE3 group, suggesting a potentially protective effect since these same proteins 

are upregulated in ADE4. Notably, the level of APOF was unaffected in CTRLE4/CTRLE3, 

and several other apolipoproteins were downregulated in the CTRLE4/CTRLE3 group, 

including apolipoproteins LPA, APOL1, APOA2, APOC1, and APOC3. These opposing 

directions of apolipoproteins expression change in ADE4 and CTRLE4 groups suggest that 

rather than APOE4 producing a similar "toxic effect" in both controls and AD. The response 

of control vs. AD subjects to the presence of the APOE4 allele is qualitatively different and 

may be the basis of protection from disease progression in CTRLE4, while the ADE4 group 

succumbs to pathology. A variety of other proteins also have opposite fold change directions 

in the CTRLE4/CTRLE3 group compared with the ADE4/ADE3 and/or the ADE4/CTRLE4 

groups. This divergent response of controls and AD subjects to the presence of the APOE4 

allele explains the paradoxically higher number of DEPs in the E4 "corrected" ADE4/CTRLE4 

group (71 DEPs) than in the ADE4/CTRLE3 group (51 DEPs), Figures 5.1 and 5.5. 
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Surprisingly, by far the most extended list of DEPs was in the ADE3/CTRLE3 group (134 

DEPs). 

 

That APOC3 was downregulated in ADE3/CTRLE3 and upregulated in ADE4/CTRLE3 

suggests that APOC3 may be influenced by the presence of the APOE4 allele. Previous work 

has linked higher APOC3 levels in HDL to an increased risk of coronary heart disease and 

diabetes, both of which are known risk factors for dementia340,341. Higher APOE levels in HDL 

lacking APOC3 in an elderly population were related to better cognitive function and a lower 

risk of AD dementia342. In this context, it is of note that the lipid-binding affinity of APOE4 

is higher than those of APOE2 and APOE322,23, a property that likely accounts for the 

tendency of APOE4 to associate with VLDL, while the E2 and E3 alleles related to HDL. 

Such a redistribution of lipoprotein particle composition may also affect expression, half-life, 

or distribution of other apolipoproteins in APOE4 carriers. APOA1 is the principal structural 

apolipoprotein found in all HDL detectable in the blood. According to Koch et al. 2020, the 

presence of APOA1 in HDL does not affect the cognitive function or dementia risk, regardless 

of the presence of APOC3 or APOC3 in HDL343. In the current work, APOA1 was lower in 

ADE3/CTRLE3 but higher in ADE4/CTRLE4, suggestive of an AD-related association. 

Upregulation of these apolipoproteins in ADE4 may represent a homeostatic response to 

compensate for the deleterious APOE4 allele. The functional groups involved in lipid 

transport, lipid metabolism, and cholesterol efflux were upregulated in ADE4, whereas all were 

downregulated in ADE3. Studies have suggested that cholesterol levels in the brain correlate 

positively with the severity of AD344. Elevated lipid metabolism and cholesterol efflux may be 

a homeostatic response facilitating cholesterol clearance in the ADE4 group344.  

 

A gene ontology category enriched in all AD vs. control comparisons was metabolic changes 

(Figure 5.4E-H). Both ADE3 and ADE4 showed upregulation of glycolysis/gluconeogenesis-

associated proteins such as glycophosphatidylinositol (GPI) and pyruvate kinase muscle 

(PKM). PKM catalyzes the transfer of phosphoryl groups from phosphoenolpyruvate to ADP 

generating ATP and pyruvate345. Various studies have reported that increased levels of PKM 

in AD CSF may indicate compensation for mitochondrial dysfunction346,347. In this study, GPI 

and PKM were differentially expressed in both ADE3/CTRLE3 and ADE4/CTRLE4. This 

suggests an APOE allele independent effect, especially as differential expression of these two 

proteins was not identified in the ADE4/CTRLE3 and CTRLE4/CTRLE3 groups. Several 
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metabolism-related DEPs were unique to ADE3, including upregulation of 6-

phosphogluconate dehydrogenase (PGD), peroxiredoxin-6 (PRDX6), isocitrate 

dehydrogenase, NADP (IDH1) were involved in glutathione metabolism (GSH). Not only is 

GSH crucial for antioxidant defence in the central nervous system, but it also plays a critical 

function in preserving the integrity of the blood-brain barrier348. As a result, alterations in GSH 

metabolism may have a greater impact on neurons than on other cell types349. However, clinical 

research examining the usefulness of boosting antioxidant activity in protecting or restoring 

cognitive functions in humans, both healthy individuals and clinical AD patients, has generally 

reported modest efficacy350. Even overexpression of the proteins involved in GHS metabolism 

may be insufficient to prevent/stop the damage caused by AD pathogenesis. 

 

In the ADE4/CTRLE4 group, DEPs were identified, which were previously reported to be 

differentially expressed in the CSF of AD patients, including bisphosphoglycerate mutase 

(BPGM) carbonic anhydrase 1 (CA1) activity increased. In contrast, GHS metabolic protein, 

i.e., aminopeptidase N (ANPEP) activity, decreased in ADE4/CTRLE4351. BPGM regulates 

the 2,3-BPG content in erythrocytes and is a critical regulator of RBC oxygen supply. Increased 

expression of BPGM in ADE4 implies that RBC energy enzymes are adapted to AD-related 

changes. Activation of the 2,3-DPG cycle results in an increase in Hb affinity for oxygen, 

favouring tissue hypoxia351.  

 

A total of 9 DEPs were identified in ADE4 compared to both control E3 and E4 suggestive of 

AD-related change in E4 carriers, maintained even after partial correction using E4 controls. 

This list includes upregulation of glucose-6-phosphate dehydrogenase (G6PD/H6PD) and 

platelet-activating factor acetyl-hydrolase (PLA2G7). G6PD and complementing antioxidant 

systems play critical roles in detoxifying reactive oxygen species (ROS). Therefore the 

concentration of G6PD is crucial in the antioxidant defence mechanism352. A recent study by 

Evlice et al. 2017 reported upregulation of serum G6PD in AD APOE3 carriers compared to 

healthy controls that might protect oxidative stress353. The downregulation of G6PD in ADE4 

as compared to both control E3 and E4 carriers in the current data suggests APOE4 allele-

related compromise of metabolisms/antioxidant defence in AD.  

 

Several markers related to inflammation were identified in both AD groups, including 

increased S100A8 expression, with the fold change being twice as large in ADE4/CTRLE4 as 
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in ADE3/CTRLE3. Chloride intracellular channel 1 (CLIC1) is another marker of 

inflammation that was found to be upregulated in ADE4/CTRLE3 and ADE3/CTRLE3 but 

downregulated in ADE4/CTRLE4, suggestive of an APOE4 allele related to change. CLIC1 

protein accumulates in peripheral blood mononuclear cells (PBMCs) and is significantly 

increased in the chronic inflammatory state of the CNS in neurodegenerative disease. Confocal 

microscopy examination and electrophysiological studies demonstrate the presence of 

transmembrane CLIC1 in PBMCs from Alzheimer's disease (AD) patients354. This enables the 

use of blood tests and other conventional technologies to distinguish between healthy persons 

and those who are undergoing neurodegenerative processes. 

 

I found upregulation of NEO1 and NCAM1 in ADE3 carriers but no change in ADE4 compared 

to their respective controls. Neuronal damage markers such as Hepatocyte growth factor 

receptor (MET) decreased in ADE4/CTRLE4 but was not differentially expressed in 

ADE3/CTRLE3. The protein CHI3L1 (also called YKL40) is a well-studied CSF protein 

associated with reactive astrocytes, and in the current work was higher in ADE3/CTRLE3 but 

unchanged in ADE4/CTRLE3 and ADE4/CTRLE4355.  

 

5.4.2 AD plasma proteomics in APOE3 and APOE4 carriers: 

 

The APOE4 allele is the most explored and familiar genetic risk factor for late-onset AD13, 

increasing the risk of AD, as well as the severity and heterogeneity of the pathology356-358. 

However, it is neither an essential nor a sufficient factor for progression to AD since non-

carriers of the E4 allele also succumb to AD, while many E4 carriers do not progress to AD. 

Therefore, comparing AD E3 and E4 carriers with their respective E3 and E4 controls may 

provide insight into APOE allele independent proteomic associations with AD, while the same 

comparison using E3 controls only may provide insight into the specific contribution of the 

APOE4 allele to the AD plasma proteome. Though it should be noted that experimental 

correction with normal controls who are carriers of the E3 and E4 alleles may not be perfect, 

since (1) the effects of APOE alleles may play out differently in AD vs normal controls, and 

(2) the E4 controls, in this case, were all heterozygous, while the AD E4 carriers were all 

homozygous. 
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The proteins PRDX2 and SOD3 are antioxidant proteins directly linked to Alzheimer’s disease 

pathway335,336 and were uniquely upregulated in ADE3 compared to control E3. PRDX2, 

prevalent in erythrocytes, has been demonstrated to play a critical function in protecting 

erythrocytes from oxidative stress by scavenging ROS and contributing to cell signalling359. 

Studies have suggested that PRDX2 exists in a more oxidised state in the AD brain than 

controls360. Prx expression is increased, and the ability to retain Prxs at a decreased level is part 

of a unique neuroprotective process that occurs in response to Aβ build-up360. Favirn et al., 

2013, investigated some consistently overexpressed genes in Aβ Drosophila (fruitflies) AD 

models and identified SOD3 as an Aβ toxicity modifier. They suggested that imbalance of this 

enzyme may result in an elevated level of the strong oxidant H2O2 in Aβ flies, hence 

contributing to AD pathology361. The PI3K-Akt signalling pathway component collagen alpha-

1(VI) (COL6A1) was decreased in ADE4 when compared to E3 and E4 controls, whereas 

THBS1 was decreased in ADE4/CTRLE3 and increased in ADE4 when compared E4 controls. 

Reducing collagen VI increased Aβ neurotoxicity but treating neurones with soluble collagen 

VI inhibited the attachment of Aβ oligomers with neurones, increased Aβ aggregation, and 

avoided neurotoxicity362. Collagen VI is identified as a critical component of the neural damage 

response, and its neuroprotective potential has been demonstrated362. The downregulation of 

these proteins uniquely in ADE4 individuals might explain the severity of the disease in 

APOE4 carriers. 

 

The complement system is a major part of the innate immune system, and its classical activation 

pathway can be directly triggered by amyloid aggregates363,364. The involvement of different 

complement proteins in different cognitive stages suggests that triggers of the complement 

system may exist that are dependent on the degree of neuronal injury and/or amyloid fibril 

production. Previous studies have demonstrated upregulation of components of the 

complement system in the AD brain and the influence of the complement cascade in synapse 

dysfunction and loss in a mouse model of tauopathy365,366. Upregulation of CFB, IGLV3-19 

and downregulation of COLEC10 were uniquely identified in ADE4/CTRLE4. Comparing 

ADE4 with control E3 and E4, endothelial protein C receptor (PROCR) was found to be 

upregulated in both comparisons. Previous studies investigating complement-related protein 

concentrations in CSF reported divergent results with higher concentrations in AD-type 

dementia patients367-369. Notably, neuroinflammation is more severe in APOE4 carriers and in 

related animal model studies370, including co-localization of APOE with microglia in the brain, 
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implying that APOE plays a role in the innate immune response in AD brain149. Future research 

should focus on longitudinal changes in complement levels that occur during the development 

of AD and the effect of the APOE genotype on these processes.  

 

5.4.3 Differential protein expression in normal controls carrying APOE3 and  

alleles:  

While the APOE4 allele is a well-known risk factor for AD, not all who carry this allele 

progress to AD, comparing the plasma proteomes of E4 and E3 carriers in normal controls may 

provide some insight into factors that provide protection from progression to AD despite the 

presence of the E4 allele. There were 14 DEPs in CTRLE4/CTRLE3 involved in metabolism, 

showing that dysregulation of metabolism may be a general mechanism of aging rather than a 

feature of AD. Glycolysis is required for a range of brain functions, including energy 

production, synaptic transmission, and redox balance. In both preclinical and clinical AD 

patients, decreased glycolytic flux has been demonstrated to correlate with the severity of 

amyloid and tau pathology315. Upregulation of glycolysis/gluconeogenesis-related proteins, 

i.e., ALDOB and GOT1 in control E4 compared to control E3, might suggest the protective 

mechanism increasing the glycolysis metabolism. These metabolic changes may act as a risk 

indication rather than an independent risk factor. However, specific metabolism markers such 

as GPI and PKM may help distinguish AD from age-matched controls. A better knowledge of 

the link between AD and metabolism, as well as how this relationship is modulated by 

APOE4, will also be necessary. 

 

On the other hand, ALDOB and GOT1 might provide insights into age-matched controls' 

protective mechanisms. VLDL clearance, VEGFA signalling, and JAK-STAT pathways were 

all uniquely enriched in the case of CTRLE4/CTRLE3. Both NRP2 and IGFBP7 were 

downregulated in the CTRLE4/CTRLE3 group, and both are involved in VEGFA signalling. 

Despite the complexity and mixed evidence of VEGF associations with AD, there is growing 

evidence that VEGF may have a neuroprotective role371. The VLDL clearance pathway 

involving APOC1 was differentially expressed in CTRLE4/CTRLE3. APOC1 is 

predominantly expressed in the liver and is activated during the differentiation of monocytes 

into macrophages required for HDL and VLDL metabolism. APOC1 has been implicated in 

various malignancies, and other research points to a link between APOC1 and human 
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longevity372,373. Given the discrepancy of research findings, it is critical to discover the role of 

these pathways in human longevity and healthy aging. 

4.5 Conclusion 

This study performed an in-depth proteome analysis to identify plasma proteome signatures 

associated with APOE3 and APOE4. In late-onset AD, the APOE4 allele is the most well-

known genetic risk factor. However, non-carriers of the E4 allele also succumb to AD, but 

many E4 carriers do not. We identified a high number of protein expression alterations in 

plasma which were found uniquely in APOE3 and APOE4 carriers. Interestingly, several 

proteins were also dysregulated in the presence of both APOE3 and APOE4 genotypes 

depicting the involvement of these proteins in the pathogenesis of AD regardless of the APOE 

genotypes. Furthermore, our findings also identified some proteins previously discovered in 

AD CSF and brain proteomics signatures that could provide clinically meaningful information. 
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6.1 Discussion and conclusions: 

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease characterised by 

various cellular and molecular processes dysregulation. Most studies focus on Aβ and tau, 

which are the primary components of amyloid plaques and neurofibrillary tangles, respectively. 

However, the search for a disease-modifying medication has yet to yield clinically meaningful 

results, and it is becoming increasingly apparent that dementia involves a plethora of other 

pathological changes across various pathways. Proteomic investigations based on mass 

spectrometry (MS) provide an efficient and comprehensive method for examining hundreds of 

proteins quantitatively simultaneously, utilising small amounts of biofluids. Previous 

proteomics studies have led to the discovery and identification of thousands of potential 

biomarkers for cancer and other diseases374,375.  

 

In chapter 2, the meta-analysis suggested a relative paucity of additional biomarkers and low 

numbers of reported studies in AD was notable, in particular, those using MS-based 

proteomics. Apart from core biomarkers (Aβ and tau), only a handful of additional markers of 

neurodegeneration and inflammation, such as CSF NfL, IgG, and IL-6, were replicated in 

previous studies. I showed that the range of biomarkers studied had been heavily focused on 

CSF, but for establishing promising blood tests, more research is needed before any of these 

could complement CSF or imaging tests for non-invasive testing. Human blood is an often-

used clinical sample for diagnostic analysis because it is less invasive, currently in routine 

clinical usage, and comes into direct contact with damaged organs/tissues, frequently reflecting 

the downstream effects of disease processes. Therefore, I argued in this chapter that an in-depth 

investigation of the plasma proteome might reveal additional possible markers that might be 

used and tested for their utility in clinical AD diagnosis. However, plasma proteomics has 

historically been limited by the lack of throughput and sensitivity, owing mainly to the 

complexity of the plasma proteome estimated to be between 9 and 13 orders of magnitude 

between the lowest and highest abundance protein. 

 

Chapter 3 began with the attempt to overcome this dynamic range limitation by comparatively 

evaluating several fractionation approaches that might facilitate greater plasma proteome 

coverage and identify tissue-specific proteins, while remaining compatible with the greater 

sample throughput required by clinical research. In chapter 3, I evaluated eight relatively 

simple prefractionation methods for plasma high-abundance protein depletion and low-
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abundance protein enrichment to significantly increase the coverage of the typical plasma 

proteome. Using a two-step approach, (1) I compared high-abundance protein depletion 

(immunoaffinity columns; Hu6, Hu14) and low-abundance protein enrichment (ProteoMiner 

combinatorial peptide ligands), followed by (2) further fractionation of the low-abundance 

proteins using chromatographic and electrophoretic approaches (C18 column and one-

dimensional (1D) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE), 

respectively). A total of 4385 proteins were identified with high confidence using LC-MS/MS 

(data-dependent analysis) and database searching with MaxQuant and Trans-Proteomic 

Pipeline. Of the total 4385, 3064 (almost 70%) proteins were common across all methods, and 

high correlations were seen for all within-method technical replicates, as well as reasonable 

correlations for between-method technical duplicates. Along with great coverage, our plasma 

proteomics data revealed proteins from 51 organs/tissues systems of the human body using the 

human protein atlas software, demonstrating that plasma functions as a fluid that reflects the 

unique protein fingerprints of each organ. The work presented here illustrates that more 

straightforward and faster procedures can achieve comparable levels of proteome coverage. 

Furthermore, these approaches are accessible to the majority of basic biochemistry laboratories. 

 

Several possible biomarkers were discovered in our data that are typically present in plasma at 

ng/mL levels, including superoxide dismutase (SOD2), ribonuclease 4 (RAB4), 72 kDa type 

IV collagenase matrix metallopeptidase 2 (MMP2), and serpin (SERPIN) proteins. These 

proteins have been implicated in disease, including RAB4, which protects neurones from 

degeneration in amyotrophic lateral sclerosis (ALS) by increasing neurofilament production 

and protects mouse embryonic cortical neurones from hypothermia-induced degeneration. 

Another protein identified in our data collection is matrix metallopeptidase 2 (MMP2). This 

enzyme is implicated in vascular remodelling, neural progenitor cell migration, and tumour 

invasion. In addition, I detected many low-abundance plasma proteins, including macrophage 

colony-stimulating factor 1 (200 pg/mL), P-selectin (120 pg/mL), platelet-derived growth 

factor receptor (3 pg/mL), and leptin (4.7 ng/mL), several of which have been previously 

reported. 

 

Our results also demonstrated the reproducibility of these prefractionation techniques and 

confirmed that gel-based procedures can be used in place of expensive and time-consuming 

chromatographic column separation, considerably shortening the time required for analysis and 

cost-effectiveness. Consequently, I observe that all eight methods perform well in identifying 
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high numbers of proteins and achieving comparable protein identifications to the maximum 

proteome identified in human plasma. Furthermore, my findings expanded the repository of 

plasma proteome, which is not limited to specific diseases but may be used to investigate any 

pathophysiological situation in plasma. In other words, it is possible to conduct a targeted 

proteomics experiment and begin validating the proteins using this spectrum library. In 

conclusion, this chapter has demonstrated that various methodologies allow for customization 

of workflows based on project-specific requirements, such as whether qualitative or 

quantitative information is required, the size of the project in terms of sample numbers, and the 

availability of specific laboratory resources.  

 

Our meta-analysis (chapter 2) demonstrated that only a few proteomics studies had been 

established to dissect molecular pathways of mild cognitive impairment (MCI) and dementia 

pathology, especially in longitudinal cohorts. Longitudinal data serve an important role in 

understanding the pathological changes in AD, as some studies suggest AD pathology might 

start 15-20 years prior to symptom onset180,376. After successfully covering the in-depth plasma 

proteome (chapter 3), the major focus of chapter 4 was to provide insights into the differential 

expression (up and down-regulation) of proteins that are affected in normal ageing, MCI and 

AD in both longitudinal and cross-sectional analyses. In chapter 4, I selected and applied the 

method described in the chapter 3, using a two-step plasma fractionation approach; HU14 

removal of high abundance plasma proteins, followed by parallel 1D SDS/PAGE of the low 

abundance protein fractions for the proteome profiling of clinical samples.  

 

I have begun to address two major obstacles in identifying plasma protein biomarkers for the 

common age-related neurodegenerative diseases in this work: (1) the restricted current level of 

information regarding the longitudinal changes in the plasma proteome in normal vs diseased 

individuals, and (2) the even more limited knowledge of the preclinical AD plasma proteome. 

In chapter 4, plasma samples were analysed from participants with plasma samples from two 

time-points; baseline (Wave 1) and 6 years period of follow up (Wave 4), with 11 participants 

remaining normal, and the remainder progressing to mild cognitive impairment (MCI) and AD 

(n=11 each) from the Sydney Memory and Ageing Study (MAS) cohort. Extensive longitudinal 

and cross-sectional proteomics data was obtained to facilitate several hypothesis-driven studies 

of AD to attempt to fill knowledge gaps regarding the progression of AD. Expression changes 

were observed in a surprisingly large number of plasma proteins (71 DEPs) in normal ageing 

(6 years follow up period). The 71 DEPs identified were involved in three major functional 
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groups, with the highest number of age-related DEPs being in cell signalling (35%), 

cytoskeleton and microtubules function (17%), and metabolism (15%). Several other 

categories represented ≤8% of total DEPs each. The Hippo signalling pathway was particularly 

enriched with ageing. This signalling pathway included DEPs of the 14-3-3 protein family 

(YWHAZ, YWHAH, YWHAE, YWHAB, YWHAQ, YWHAB) and actin Gamma 1 

(ACTG1), which were all upregulated in the longitudinal data. The 14-3-3 protein family is 

highly expressed in the brain and influences many aspects of brain function through 

interactions with a diverse set of binding partners involved in neural signalling, neuronal 

development, and neuroprotection170, and is a well-studied protein family in AD CSF171,172. 

Longitudinal analysis shows that altered plasma expression of the 14-3-3 protein family is an 

age-related change, being observed in all three longitudinal analysis groups (cognitively 

normal controls, MCI and AD), so it may have functional implications for progression to MCI 

and/or AD since ageing is the major risk factor for these conditions268.  

 

After excluding ageing-related proteins (71 DEPs) in the longitudinal analysis of MCI and AD, 

I identified a long list of DEPs (66 and 60 DEPs specific to MCI and AD, respectively), with 

similarly significant numbers in the cross-sectional analyses (89 and 70 MCI and AD specific 

DEPs respectively). Such a high number of DEPs raises the question of which DEPs might be 

suitable biomarker candidates. To choose a potential list of biomarkers, I applied two strategies 

as follows:  

 

1. To select only those proteins with robust expression change between groups, I used the 

following inclusion criteria: proteins quantified in >6 individuals, proteins identified with a 

minimum of two peptides per protein, a consistent direction of protein fold change across two 

bioinformatics platforms with orthogonal quantification approaches (peak area ratio with 

PD2.4 and spectral counting with Scaffold) with a fold change of at least 20% (≤0.08 and ≥ 

1.2) in both search engines. These are orthogonal approaches, each with specific advantages 

and disadvantages265,266, so I reasoned that the most reliable changes should be consistent 

across both search engines, i.e., PD2.4 and Scaffold. 

 

2. A list of proteins was selected based on the consistency of fold-change in longitudinal 

and cross-sectional analyses for AD and MCI groups.  

I identified 16 and 15 common DEPs in longitudinal and cross-sectional MCI and AD, 

respectively. Of the 15, S100A7, PAM, ALDOB, FAM3C, VCP, and TF are some potential 
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markers of dementia and probable AD reported in the previous literature as they are related to 

AD pathology. Of these proteins, FAM3C and MAN2A2 are involved in metabolism; ALDOB 

and VCP in glycolysis; PAM in the post-translational modification; and S100A7 and TF in the 

immune system. A noteworthy feature of our study is the identification of brain-derived 

proteins such as MAN2A2, PAM, TF, QDPR, FAM3C, which have previously been reported 

to be dysregulated in AD CSF and brain304. 

 

In MCI, LTF, PSME1, HSPA4, COL5A1, ASGR2, and PPP1R7 comprise a significantly 

shorter list, but they contain considerably more promising candidates for further validation 

work. MCI is frequently regarded as a risk factor for and/or prodromal stage of AD (thus, it 

was noteworthy that in longitudinal and cross-sectional analyses, only roughly 18% (19 

proteins) and 13% (18 proteins) of DEPs were common to both AD, and MCI, respectively. In 

this respect, it is worth noting that the overwhelming majority of DEPs found in AD, and MCI 

are condition-specific rather than shared. 

 

As stated previously, the preclinical stage of neurodegeneration is an appealing target for 

disease-modifying intervention in AD142,143. The considerably larger pool of preclinical AD-

associated DEPs may in part be evidence of pathology in progress, in addition to providing a 

large pool of putative early biomarkers (ADW1/CTRLW1). With the reasoning that the most 

robust biomarkers may continue to be observed with clinical disease onset, 15 DEPs were 

shared with clinical AD (ADW4/CTRLW4). Apart from the well-known CSF AD biomarker 

(CHI3L1), I propose a list of novel markers, including PSMB2, PAM, ALDOB, TF, MAPRE2, 

and VCP, which may be possible AD preclinical biomarkers, being dysregulated in all three 

AD comparison groups, i.e., longitudinal (ADW4/ADW1), incipient AD (ADW4/CTRLW4) 

and preclinical AD (ADW1/CTRLW1). These DEPs are involved in metabolism, glycolysis, 

immune system, and proteasome, dysregulated in preclinical AD stage. 

 

An interesting finding is that most DEPs are upregulated (~66 % each) in the incipient MCI 

and AD groups. In contrast, DEPs with consistent fold changes are predominantly 

downregulated in the preclinical and incipient AD groups, with only two DEPs (< 20%) being 

upregulated. Interestingly, glycolysis and gluconeogenesis presented as top GO terms with 

significant enrichment in preclinical and clinical AD plasma in this unbiased analysis. This 

concurs with three glycolytic proteins from our 8-protein signature being PGK1, VCP and 

ALDOB. Various studies have demonstrated that dysregulation of glucose metabolism in the 
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brain is a prominent abnormality during the preclinical stage of AD315,316,317. This suggests that 

the glycolysis-related protein dysfunction associated with AD may result in bioenergetic and 

biosynthetic disturbances, disrupting metabolic and synaptic homoeostasis and resulting in 

abnormal protein deposition and progression to dementia.  

 

In chapter 2, the meta-analysis showed that apart from environmental and lifestyle effects, 

genetic variation of the apolipoprotein E (APOE) gene plays a significant role in AD risk and 

progression. However, the impact of genetic variation is poorly understood from a mechanistic 

perspective. Recent studies have reported that approximately 65% of individuals with late-

onset familial and sporadic AD bear the APOE4 allele4. One copy of APOE4 is associated 

with a threefold increase in the disease risk, while two copies are associated with a more than 

tenfold increase in risk15. Previous studies indicate a dose-dependent effect of APOE4 on CSF 

Aβ42 level in LOAD. However, insufficient studies were available to explore the difference 

between APOE3 and APOE4 dose effects on AD plasma proteome. 

 

In chapter 5, the relationships between the plasma proteome, APOE genotypes and AD 

pathology were studied. Therefore, I have profiled an in-depth plasma proteome to understand 

the impact of APOE3 and ε4 carriage in AD dementia (verified with PiB PET neuropathology 

imaging) relative to APOEε3 and ε4 control carriers with normal cognition. In turn, I identified 

23 DEPs, including S100A8, PAM, CLIC1, APOD and APOA1, commonly dysregulated in 

the presence of APOE3 and APOE4 relative to their respective controls. These DEPs may be 

involved in developing AD independent of the APOE genotype. The common 23 DEPs 

involved molecular pathways such as metabolism, inflammation and plasma lipoprotein 

assembly, remodelling, and clearance that are shared mechanisms toward AD development. 

This chapter shows 65 DEPs (48 upregulated and 17 downregulated) proteins that were 

dysregulated exclusively in AD APOE3 relative to control APOE3 (Table 5.2). Only 29 

DEPs (13 were upregulated and 16 downregulated) were dysregulated exclusively in AD 

APOE4 relative to control APOE4. The DEPs were manually categorized using the PD2.4 

analyses; most proteins are involved in metabolism (34%), protein binding (21%) and 

signalling (18%). Other enriched categories were complement cascade, PI3K-Akt pathway, 

post-translational modification (PTM), protein digestion and protease inhibition. The PI3K-

Akt pathway, which includes heat shock protein HSP 90-alpha (HSP90AA1), collagen alpha-
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1(VI) chain (COL6A1), and thrombospondin-4 (THBS4), was one of the distinct pathways 

dysregulated. 

 

Seven proteins were upregulated, including FUCA2 and DBH, whereas there was 

downregulation of CNTN4, CNTN1, MAN2A1, MRC1 and POSTN in the AD APOE4 

relative to control APOE3. As these proteins are uniquely expressed in APOE4 +ve 

individuals, they most likely reflect the effects of the APOE4 allele on AD.  

 

Next, I identified 44 DEPs in both AD APOE3 and AD APOE4, replicated in our previous 

cross sectional and longitudinal AD MAS cohort from chapter 4 (Table 6.1). Plasma proteins 

that had changed in the same direction in all four AD comparisons included myoglobin 

(MB), mannose-binding protein (MBL2), prostaglandin-H2 D-isomerase (PTGDS), and 

phosphatidylethanolamine-binding protein 4 (PEBP4). In addition, proteins replicated in age-

matched AD and control group (cross-sectional AD) and APOE4 included upregulation of 

apolipoprotein M (APOM), apolipoprotein A-I (APOA1), and downregulation of transitional 

endoplasmic reticulum ATPase (VCP), microtubule-associated protein RP/EB family member 

2 (MAPRE2), fermitin family homolog 3 (FERMT3) and others. Tenascin (TNC), chitinase-3-

like protein 1 (CHI3L1) were upregulated, while junction plakoglobin (JUP), Immunoglobulin 

heavy constant mu (IGHM) were downregulated in both AD APOE3 and cross-sectional AD 

replication cohorts.  
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Table 6.1. This table contains the list of 44 DEPs common between AD APOE3 and AD APOE4 (AIBL cohort) and cross sectional and longitudinal AD (MAS cohort). 

Accession Description 
Gene 

Symbol 

PD2.4_Ab

undance 

Ratio: 

(AD, E3) / 

(CTRL, 

E3) 

Scaffold_Fold 

Change by 

Category_AD

E3CTRLE3 

PD2.4_Abu

ndance 

Ratio: (AD, 

E4) / 

(CTRL, E4) 

Scaffold_F

old Change 

by 

Category_

ADE4CTR

LE4 

PD2.4_Ab

undance 

Ratio: 

(ADW4) / 

(ADW1) 

PD2.4 

Scaffold_Fol

d change 

(ADW4) / 

(ADW1)_ 

Scaffold 

PD2.4_Abu

ndance 

Ratio: 

(ADW4) / 

(CTRLW4) 

Scaffold 

fold change  

(ADW4) / 

(CTRLW4) 

O95445 Apolipoprotein M APOM 0.968 0.7 2.457 2.3 1.476 1.3 1.506 1.4 

P01024 Complement C3 C3 0.818 0.7 1.211 1.4 0.803 0.7 1.022 1 

P01861 

Immunoglobulin 

heavy constant 

gamma 4 

IGHG4 0.586 0.3 1.151 1.1 0.757 0.2 0.597 3.3 

P01871 
Immunoglobulin 

heavy constant mu 
IGHM 0.461 0.5 0.883 1.2 0.827 0.8 0.597 0.6 

P02144 Myoglobin MB 2.757 1.8 1.864 1.8 1.244 0.9 2.961 3.5 

P02647 Apolipoprotein A-I APOA1 0.792 0.4 1.987 1.4 1.355 1.4 1.49 1.2 

P04083 Annexin A1 ANXA1 2.394 7 4.754 0.8 1.398 3.9 0.745 0.7 

P04406 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

GAPDH 1.44 1.3 1.512 0.6 1.536 2.2 0.952 0.8 

P05090 Apolipoprotein D APOD 0.699 0.8 2.179 1.5 1.247 1.1 1.384 1.4 

P05164 Myeloperoxidase MPO 1.485 4.7 1.042 0 1.573 1.3 2.039 3.3 

P06733 Alpha-enolase ENO1 1.89 3.5 1.168 0.4 1.27 2.7 0.652 0.7 

P06744 
Glucose-6-phosphate 

isomerase 
GPI 1.242 1.7 1.235 2.1 1.215 2 0.778 0.4 

P07996 Thrombospondin-1 THBS1 2.142 5 0.715 0.5 1.187 2.2 0.713 0.6 

P08294 

Extracellular 

superoxide dismutase 

[Cu-Zn] 

SOD3 1.669 1.4 1.083 0.8 1.462 1.2 1.078 1 

P08519 Apolipoprotein(a) LPA 0.74 0.6 1.447 1.6 1.15 0.8 0.54 0.5 

P08567 Pleckstrin PLEK 2.438 6.8 1.456 1 1.123 2.3 0.667 0.7 
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P11226 
Mannose-binding 

protein C 
MBL2 1.182 1.2 1.398 1.2 1.215 1.3 1.456 1.4 

P12814 Alpha-actinin-1 ACTN1 1.726 5.2 0.949 1.1 1.207 2.1 0.643 0.6 

P14618 Pyruvate kinase PKM PKM 1.706 4.3 1.925 1.2 1.442 3.2 0.49 0.5 

P14923 Junction plakoglobin JUP 0.709 0.3 1.319 0.2 0.737 0.3 0.689 0.4 

P15085 Carboxypeptidase A1 CPA1 3.117 0.9 1.204 1.2 1.125 1.7 0.812 0.9 

P18206 Vinculin VCL 1.348 1.9 0.801 0.5 1.501 1.6 0.779 0.6 

P23284 
Peptidyl-prolyl cis-

trans isomerase B 
PPIB 3.097 1.5 1.011 0.2 1.536 3.4 1.142 0.9 

P24821 Tenascin TNC 1.24 1.5 1.065 1 1.21 0.9 1.481 1.3 

P25774 Cathepsin S CTSS 1.268 2.2 1.419 0.4 0.877 0.8 1.299 1.1 

P26038 Moesin MSN 1.008 1.8 0.704 0.7 1.307 1.7 0.674 0.7 

P27797 Calreticulin CALR 1.31 1.4 0.829 0.6 1.485 2.3 0.928 0.9 

P30043 
Flavin reductase 

(NADPH)  
BLVRB 1.882 1.3 1.679 0.8 0.927 1 1.917 2.1 

P31146 Coronin-1A  CORO1A 2.432 11 1.352 0.3 1.298 5.6 0.664 0.6 

P36222 
Chitinase-3-like 

protein 1  
CHI3L1 2.318 2.1 1.363 0.6 0.675 1.2 1.242 1.6 

P41222 
Prostaglandin-H2 D-

isomerase  
PTGDS 1.259 0.9 1.257 1.5 1.29 1.4 1.65 1.5 

P52209 

6-phosphogluconate 

dehydrogenase, 

decarboxylating  

PGD 1.529 5.9 1.863 0.8 1.237 2.1 0.765 0.7 

P55072 

Transitional 

endoplasmic 

reticulum ATPase  

VCP 1.213 INF 0.695 0.5 1.347 1.8 0.704 0.5 

P55103 Inhibin beta C chain  INHBC 1.231 0 1.311 1.7 1.254 1.8 1.533 1.3 

P61981 
14-3-3 protein 

gamma  
YWHAG 1.621 INF 0.502   1.452 2.5 0.849 0.9 

P80188 

Neutrophil 

gelatinase-associated 

lipocalin  

LCN2 2.625 1 1.386 1.2 1.555 1.3 1.648 1.2 
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P81605 Dermcidin  DCD 2.173 1.8 1.321 INF 0.395 0.6 0.787 0.6 

Q12907 

Vesicular integral-

membrane protein 

VIP36  

LMAN2 1.447 2.8 1.292 0.2 1.212 2 0.991 1.5 

Q15555 

Microtubule-

associated protein 

RP/EB family 

member 2  

MAPRE2 1.753 INF 0.502 0.8 1.639 3.7 0.598 0.3 

Q86UX7 
Fermitin family 

homolog 3  
FERMT3 1.448 4.7 0.76 0.7 1.338 3.2 0.758 0.6 

Q96S96 

Phosphatidylethanola

mine-binding protein 

4  

PEBP4 1.352 1.3 1.48 1 1.37 1.2 1.061 1.2 

Q9H299 

SH3 domain-binding 

glutamic acid-rich-

like protein 3  

SH3BGR

L3 
3.244 1.3 0.266 0 1.77 2.5 1.279 1.1 

Q9Y490 Talin-1  TLN1 1.857 3.1 0.795 0.5 1.503 2.3 0.659 0.8 
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While these findings require confirmation in additional independent disease cohorts, this 

investigation has identified candidate proteins that can be used to identify individuals at risk of 

cognitive decline and eventually developing dementia. The findings shed light on a set of markers 

not previously associated with MCI or AD, and point the way forwards for study of the biological 

pathways that may be targeted for therapies to reduce the progression of cognitive decline. 

Interestingly, global proteomics analysis revealed molecular similarities and differences at different 

stages of dementia. The extensive longitudinal and cross-sectional data facilitate several AD 

hypothesis-driven studies, elucidating knowledge gaps between preclinical and clinical stages of the 

illness. Numerous possible indicators that alter in a similar direction to prior CSF and brain samples 

improve our mechanistic understanding of AD aetiology and encourage the development of novel 

strategies for diagnosing and treating this debilitating disease. Blood-based biomarkers have the 

potential advantage of being more accessible than practically any other body fluid, and blood-based 

diagnostics lend themselves to high-throughput and low-cost assessments. Plasma proteomics can 

now detect proteins derived from the brain and generate consistent protein signatures across many 

independent search engines, paving the path for future research on biomarker identification in 

neurodegenerative disorders. Additionally, I expect that the approach outlined here would identify 

additional clinically and etiologically significant plasma biomarkers. 

6.2 Limitations: 

The work presented in this thesis has a number of limitations: 1). The overall sample number was 

relatively modest, reducing the power of the analysis. 2). A relative quantification approach was used, 

so absolute level of expression change requires use of targeted approaches 3). Only two independent 

replication cohorts were used. 4). Individuals with AD were all homozygous APOE ε4/4 carriers, 

whereas age-matched controls were heterozygous APOE ε3/4 carriers. These limitations were 

discussed in greater detail in the respective chapters. Therefore, the work should be regarded as 

exploratory, and additional research into the relevance of these proteins is warranted in prospective 

studies of dementia-free individuals, preferably beginning in mid-life and followed up until the 

development of dementia.  

6.3 Future studies 

Even though it is now possible to identify over 4500 proteins in plasma using advanced LC-MS/MS and 

data analytics, these approaches generally rely on complex workflows that include depletion, protein 

fractionation, peptide fractionation, and isobaric labelling coupled to LC-MS/MS, which is time-

consuming (days to weeks) and forces a trade-off between depth of protein coverage and sample 

throughput. These constraints impede the development of novel protein-based disease biomarkers and act 
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as roadblocks to the widespread adoption of proteogenomics and the annotation of genomic variations by 

proteins in the future.  

 

In concept, mass spectrometry (MS)-based proteomics is ideally suited for doing effective protein 

biomarker discovery investigations with large enough sample cohorts. Over the past many years, the 

technical capability of mass spectrometry-based proteomics has increased dramatically. Currently, the MS 

biomarker discovery technique offers a number of important characteristics that might make it the best 

platform for protein biomarker discovery. These characteristics include high specificity, extensive protein 

coverage, and the accessibility of PTMs. The use of data-dependent acquisition (DDA) mode also results 

in sparse datasets with an irreproducible sampling of the peptides in the sample, making statistical analysis 

more complex and the power of high sample numbers reduced. Identifying proteins in large clinical 

cohorts as quickly and consistently as possible is a crucial objective for clinical proteomics. As proteomics 

pipelines develop in terms of throughput and depth, at least two strategies are being pursued: (1) 

employing advanced acquisition modes, such as BoxCar or scanning SWATH; or state-of-the-art LC/MS 

setups, such as ion mobility-enabled PASEF; and (2) improving sample preparation, either by enriching 

low-abundant proteins or by using more sophisticated data processing pipelines that leverage additional 

information across and within samples; and (3) improving sample preparation. These two tactics are often 

used in conjunction with one another to improve performance. Approaches that improve proteome 

coverage via sample preparation (Strategy 2) often result in a more complicated and less scalable 

procedure, despite advancements in, and especially when paired with, sample preparation automation. 

 

As the throughput, depth, and robustness of mass spectrometry (MS)-based proteomics continue to 

improve, I anticipate that it will be more extensively used in routine clinical practice. For example, MS-

based proteomics will be used to evaluate biomarker panels rather than single markers since it takes 

advantage of the fact that it is intrinsically multiplexed and allows for a more thorough characterization 

of clinical situations than single markers. In addition, these biomarker panels might be regularly 

supplemented with high-quality marker panels, such as those described here, to aid in the development of 

biomarker-guided choices in patients with clinical AD. 

 

In summary, this thesis has provided a wealth of data for further study and the generation of hypotheses. 

I have added substantial new knowledge on proteins and pathways involved in AD pathogenesis from a 

broad to specific biomarkers perspective. Future studies of the reported pathways could elucidate the 

involvement of specific proteins in MCI and dementia due to AD. The next step is to choose a targeted 

biomarker from 44 common DEPs in MAS and AIBL cohorts (Table 6.1) to be confirmed as an AD 

biomarker using targeted proteomics on the Dominantly Inherited Alzheimer Network (DIAN) cohort. As 

this work is exploratory, additional research into the relevance of these proteins should be carried out in 

prospective studies of dementia-free persons in midlife with long-term follow-up to incident dementia.  
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Abstract.
Background: Numerous studies have reported on cerebrospinal fluid (CSF) and blood biomarkers of Alzheimer’s disease
(AD); however, to date, none has compared biomarker patterns across the early-onset subtypes, i.e., early onset sporadic AD
(EOsAD) and autosomal dominant AD (ADAD), qualitatively and quantitatively.
Objective: To compare the fluid biomarker patterns in early-onset subtypes of AD; EOsAD and ADAD.
Methods: Six scientific databases were searched for peer-reviewed research publications. The total number of individuals
used in all the meta-analysis were 2,427, comprised of 1,337 patients and 1,090 controls.
Results: In the subset of EOsAD cases without APP, PSEN1/PSEN2 mutations, CSF A�42 and tau levels were higher when
compared to the EOsAD group as a whole. Prevalence of the APOE �4 allele was more elevated in EOsAD relative to controls,
and not significantly elevated in ADAD cases.
Conclusion: Established CSF biomarkers confirmed quantitative differences between variants of EOAD. EOsAD is enriched
with APOE �4, but the level is not higher than generally reported in late-onset AD. The results prompt further exploration
of the etiopathogenesis of EOsAD, which accounts for ∼4–10% of all AD cases, but the reasons for the early onset remain
poorly understood.

Keywords: Amyloid-�42, APOE �4, APP/PSEN, early onset Alzheimer’s disease, neurodegeneration biomarkers, tau

INTRODUCTION

Despite intensive research over the last two
decades, no reliable treatment exists to reverse or
impede the onset and progression of Alzheimer’s dis-
ease (AD), which is usually sub-categorized into two
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atry, UNSW Medicine, UNSW, Sydney, NSW, 2052, Australia.
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subtypes based on the age of onset: early onset AD
(EOAD) and late-onset AD (LOAD), with age 65
years as the generally accepted cut-off [1]. EOAD
accounts for only 5%–10% of all AD cases [2],
with <1% being attributed to autosomal dominant
AD (ADAD), caused by mutations in one of three
genes: amyloid precursor protein (APP), presenilin
1 (PSEN1), and presenilin 2 (PSEN2). ADAD cases
have 100% penetrance of a known genetic muta-
tion, with predictable age of symptom onset, and
therefore presymptomatic individuals can be studied
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several years before symptom onset. ADAD cases
generally represent a “purer” version of AD with
fewer concomitant pathologies and hence confound-
ing variables [3]. Whereas, early onset sporadic
AD (EOsAD) is rarely studied in its own right
and is, therefore, a particularly important subset as
it presents an opportunity to either discover new
lifestyle risk factors or explore novel mutations
responsible for the earlier age of onset. Genetic vari-
ations, in particular that of the Apolipoprotein E
(APOE) gene, play a significant role in LOAD but are
poorly understood in EOsAD. ADAD and EOsAD
can be similar pathologically and phenotypically,
with the primary distinction being the presence of
autosomal dominant mutation in the former and pos-
sibly risk genes and environmental/lifestyle factors
in the latter. However, there are several reasons why
biomarkers may differ for the two disorders: 1) That
they are pathologically similar does not imply that the
pathology is exactly the same. Considering the dif-
ference in etiology, it is possible that there are subtle
differences in the pathology, e.g., the relative amyloid
and tau burden, the degree of inflammation, oxida-
tive stress, and synaptic loss, which may be reflected
in quantitative differences in biomarkers; 2) There
are good reasons to believe that over-production of
amyloid-�42 is an earlier and defining feature of
ADAD pathophysiology, but one could argue that
this may not be the central disturbance in EOsAD,
which would be reflected in the biomarkers, in par-
ticular A� levels; and 3) The rate of development and
progression of pathology is different in the two dis-
orders such that at a particular stage of the disease
(as identified by cognitive deficits), the biomarkers
may differ quantitatively. We therefore started with
the hypothesis that the biomarkers would be differ-
ent. However, had we set up a null hypothesis, i.e.,
there would be no difference in the biomarkers for the
two disorders at the similar levels of cognitive deficit,
our methodology or conclusions would not have been
different.

The failure of numerous clinical trials suggests that
a focus on presymptomatic biomarkers with a view
to prevention may be a better option than treatment
once pathology has significantly progressed.

Absence of comparative studies reporting patho-
logical and phenotypical difference/s in ADAD and
EOsAD makes it difficult to know whether there
are qualitatively or quantitatively similar or differ-
ent biomarker patterns in these genetically different
AD subtypes. We therefore performed a systematic
review and meta-analysis on variants of EOAD to

examine the shared as well as unique factors that
influence subtypes of EOAD.

METHODS

Search strategy

This systematic review and meta-analysis followed
Preferred Reporting Items in PRISMA guidelines [4]
and Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [5].
Literature searches were performed for papers pub-
lished between January 1, 1988, and June 1, 2019,
using six major scientific databases: Medline Ovid,
PubMed, EMBASE, PsycINFO, Web of Science, and
Scopus (Fig. 1, Supplementary Tables 2 and 3).

Data extraction

Inclusion/Exclusion criteria
Included in the review were papers reporting on

quantified biomarkers (proteins/peptides) in cere-
brospinal fluid (CSF) and/or blood (serum or plasma)
in patients with EOsAD or ADAD and correspond-
ing controls. These searches included combinations
of the following Boolean terms: [blood OR serum
OR plasma OR cerebrospinal fluid OR CSF] AND
[autosomal dominant OR dominant inheritance OR
early onset OR young-onset Alzheimer’s disease]
and were run in all six databases. Exclusion criteria
were: 1) studies purely on LOAD or on any AD sub-
type with biomarker data on tissues other than blood,
serum, plasma, or CSF, studies reporting purely on
non-protein biomarkers such as mRNA (Q-PCR) or
studies which use non-quantitative observations (e.g.,
SDS-PAGE without identifying or quantifying spe-
cific protein changes); 2) studies purely on animal
models, cell culture techniques, immunohistochem-
istry, genotyping, imaging (PET, FDG), laboratory
tests such as blood cell counts, and identification
of biomarkers from cellular blood fractions such
as peripheral blood cells; 3) articles reporting data
following treatment, therapy, intervention, toxicol-
ogy or human in vivo challenge studies, with either
endogenous or synthetic/pharmaceutical compounds
and without baseline data, and 4) studies on diseases
with early onset dementia as a component of the phe-
notype but of predominantly different etiology (e.g.,
vascular). Given the limited volume of literature on
this topic, no studies were excluded based on cohort
size and case studies were included in the systematic
review, though not in the meta-analysis. However,
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Fig. 1. Flow chart depicting the selection process of records found using six scientific databases and elimination of non-relevant articles.

only cross-sectional studies were available in suffi-
cient numbers to allow meta-analysis.

The meta-analysis included 34 studies, 20 for
EOsAD and 14 for ADAD (which included both
symptomatic and asymptomatic mutation carriers,
sMC and aMC, respectively). By definition, the
EOsAD individuals received a clinical diagnosis of
AD with onset before 65 years, and the majority of
them had no family history of EOAD. Genetic test-
ing was generally not performed to eliminate APP,
PSEN1, and PSEN2 mutations; however, in 4 of the
20 EOsAD studies, genetic testing was indeed car-
ried out, and meta-analyses were also performed on
these separately. The ADAD individuals had a similar
age of onset, a positive family history of ADAD, and
carried pathogenic mutation/s to one of the following
genes: APP, PSEN1, and PSEN2. Across all studies,
biomarker level changes were expressed as standard-
ized mean differences (SMD), calculated relative to
levels in cognitively healthy age-matched controls.

Five articles identified as meeting inclusion criteria
were published on participants from the Dominantly
Inherited Alzheimer’s Network (DIAN) cohort. After
discussion with DIAN authors, and in order to avoid
duplication of data on the same participants, we
included only the most recently published DIAN
article [6], excluding the previous four from the
meta-analysis where the biomarker data was dupli-
cated [7–10]. For articles with insufficient data,
or data presented in an inaccessible manner, we
emailed authors requesting additional information.
The majority either did not respond or no longer had
access to data. One author provided data which is
included in our analyses [11].

While we did not use assay type as a selec-
tion criterion (either inclusion or exclusion) for
the studies reported here. However, the majority
(>95%) of studies used commercial kits which
have been manufacturer validated. In particular, of
the 27 studies which reported assaying A� and/or
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tau variants, 26 used the Innogenetics (Fujireibo-
Europe) xMAP technology-based ELISA kits
(Supplementary Tables 2 and 3). This fortuitous
“standardization” is likely to minimize inter-
laboratory variation for the meta-analysis results of
A� and tau variants reported here.

Meta-analyses

Meta-analyses were conducted using the proce-
dure, metan, within the statistical program Stata,
version 15.0, using the random-effects model and
the inverse-variance weighting of studies. The type-
one error rate was set at 0.05. Meta-analyses were
performed if there were at least two independent
published studies on a biomarker, but in most cases
included 3–13 studies.

For studies with continuous biomarker level as the
outcome variable, data input into the statistical pro-
gram were the number of cases, means and standard
deviations (SDs) of the biomarker for each of the
AD groups and their corresponding control groups.
The output of this program expresses the levels of
biomarkers as the SMDs, equal to the difference in
concentrations between the particular AD group and
its control group, divided by the pooled SDs.

For studies with a binary outcome measure (such
as �4 carrier status), data input were the natural loga-
rithms of the odds ratios (log ORs) and their standard
errors. These were calculated as follows. If a and b
are the number of �4 carriers in the AD and control
groups respectively, and c and d are the correspond-
ing numbers of non-carriers in those groups, then the
odds ratio is given by OR = a*d/b*c. The standard
errors of each log OR are calculated as the square
root of (1/a + 1/b + 1/c + 1/d).

The random-effects model was used for all of the
meta-analyses based on the assumption that each
study produces estimates of the true effects for that
particular study population, but that the study popula-
tions vary across individual studies due to differences
in populations, study design, and assay platforms
[12]. The pooled effect sizes produced by meta-
analyses using the random-effects model are the
estimates of the mean effect sizes for all potential
studies satisfying the selection criteria of the review.
Publication bias was assessed using the Stata com-
mand metabias, which was employed to produce
funnel plots and to perform the Egger’s test to check
for bias, for meta-analyses comprising ≥8 studies.
For meta-analyses comprising fewer individual stud-
ies, it was not possible to draw reliable conclusions

either from the visual inspection of the funnel plots
or from the Egger’s test [13]. Comparison of pooled
effects from pairs of meta-analyses was achieved
using the Stata procedure, metareg.

Two articles [14, 15] presented data as median
and range, and in these cases, we substituted median
for mean and derived SD from range using the fol-
lowing approach: Range/4 (if n < 70) or Range/6 (if
n > 70) [16]. For two articles, mean and SD values
were estimated from bar graphs [9, 17]. Two arti-
cles reported serum neurofilament light chain (NfL)
in ADAD individuals [18, 19], although, for one of
them [18], we could not get access to the data and
were therefore unable to perform a meta-analysis on
serum NfL. A significant share of the ADAD data
came from two large cohorts: the DIAN cohort and
the Alzheimer’s Prevention Initiative (API) cohort
representing a large pedigree living in the state of
Antioquia in Colombia, South America. The DIAN
cohort includes carrier and non-carrier (NC) family
members with various ADAD mutations, while the
Colombian kindred likely descended from a single
individual and carried the E280A mutation in the
PSEN1 gene.

Data availability statement

Data are available to qualified investigators on
request to the corresponding author. Data will be
shared at the request of other investigators for pur-
poses of replicating procedures and results.

RESULTS

Protein/peptide biomarkers

Early onset Alzheimer’s disease (EOAD)
We identified 34 eligible published studies on

EOAD, comprising 20 studies on EOsAD and 14
on ADAD. The results for established biomarkers
(A�42, T-tau, and P-tau) were as follows: All vari-
ants of EOAD had lower CSF A�42 and higher
CSF T-tau and P-tau (Table 1, Figs. 2–4), rel-
ative to their respective comparison groups. The
majority of EOAD biomarkers were identified
in CSF, and few studies of blood biomark-
ers were replicated frequently enough to allow
meta-analysis.

In addition to established biomarkers, quantita-
tive data on several biomarkers of neurodegeneration
and inflammation were reported in 2 to 4 studies
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Table 1
A) Pooled standardized mean difference (pooled SMD), I-squared (I2), and significance (p) are shown with p ≤ 0.05 accepted as statistically
significant. B) Meta-analysis of APOE �4 carriers in early onset AD pooled odds ratio (pooled OR), I-squared (I2), and significance (p)
are shown with p ≤ 0.05 accepted as statistically significant (random effects model is represented in the tables). Meta-analysis of CSF and

serum/plasma biomarkers of EOsAD and ADAD

A Biomarker No. of EOAD Controls Meta-Analysis
independent (total (total Random

studies numbers) numbers) effects model

(i): Early onset sporadic CSF A�42 8 266 211 Pooled SMD = –1.83,
AD (EOsAD) p < 0.001,

I2 = 80.9%
CSF T-tau 10 362 247 Pooled SMD = 1.24,

p < 0.001,
I2 = 80.6%

CSF P-tau 13 375 321 Pooled SMD = 1.39,
p < 0.001,
I2 = 90%

CSF P-tau181 &199 4 128 142 Pooled SMD = 1.17,
p = 0.018,
I2 = 92.2%

CSF P-tau181 3 95 102 Pooled SMD = 0.80,
p = 0.11,
I2 = 90.5%

CSF NfL 2 72 59 Pooled SMD = 1.42,
p < 0.001,
I2 = 0.0%

CSF IL6 2 17 39 Pooled SMD = –3.56,
p < 0.385,
I2 = 95.2%

CSF IgG 4 63 62 Pooled SMD = –0.33,
p = 0.075,
I2 = 0.0%

CSF albumin 3 52 39 Pooled SMD = –0.94,
p = 0.241,
I2 = 90.9%

Serum/Plasma albumin 3 52 39 Pooled SMD = 1.66,
p = 0.351,
I2 = 96.8%

Serum/Plasma IgG 4 63 62 Pooled SMD = 1.8,
p = 0.037,
I2 = 93.1%

(ii): EOsAD with absence CSF A�42 4 136 112 Pooled SMD = –2.18,
of AD mutations p < 0.001,
confirmed I2 = 0.0%

CSF T-tau 3 103 91 Pooled SMD = 1.66,
p < 0.001,
I2 = 85.5%

CSF P-tau 4 136 117 Pooled SMD = 1.45,
p < 0.001,
I2 = 77.7%

(iii): EOsAD with no CSF A�42 4 130 99 Pooled SMD = –1.45,
genetic testing reported p < 0.001,

I2 = 87.5%
CSF T-tau 7 259 156 Pooled SMD = 1.05,

p < 0.001,
I2 = 78.1%

CSF P-tau 8 206 164 Pooled SMD = 1.24,
p < 0.001,
I2 = 91.7%

(iv): ADAD All MCs CSF A�42 12 480 441 Pooled SMD = –2.11,
p < 0.001,
I2 = 94.0%

(Continued)
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Table 1
(Continued)

A Biomarker No. of EOAD Controls Meta-Analysis
independent (total (total Random

studies numbers) numbers) effects model

sMCs CSF A�42 10 303 344 Pooled SMD = –2.36,
p < 0.001,
I2 = 95.3%

aMCs CSF A�42 3 81 90 Pooled SMD = –1.64,
p = 0.055,
I2 = 91.8%

All MCs CSF A�40 3 81 120 Pooled SMD = –0.81,
p = 0.044,
I2 = 79.4%

All MCs CSF T-tau 10 318 288 Pooled SMD = 1.53,
p < 0.001,
I2 = 83.5%

sMCs CSF T-tau 3 16 44 Pooled SMD = 2.97,
p < 0.001,
I2 = 23.5%

aMCs CSF T-tau 5 41 55 Pooled SMD = 1.67,
p = 0.003,
I2 = 75.9%

All MCs CSF P-tau 5 283 267 Pooled SMD = 1.63,
p < 0.001,
I2 = 75.6%

All MCs Plasma A�42 2 164 115 Pooled SMD = 0.69,
p < 0.001,
I2 = 52.5%

B Biomarker No. of Patients Controls Odds Ratio
independent APOE �4+ APOE �4+

studies Patients APOE �4– Controls APOE �4–
(%enrichment)∗ (%enrichment)∗

EOsAD APOE �4 4 60 35 Pooled OR = 1.72
81 83 p = 0.044,

(43%) (30%) I2 = 0.0%
ADAD APOE �4 3 17 25 Pooled OR = 1.08,

43 62 p = 0.838,
(28%) (29%) I2 = 0.0%

∗LOAD meta-analyses report APOE �4 allele enrichment in the 13.7% – 40% range. (i) Early onset sporadic AD (EOsAD); defined as the
age of onset <65 years and no family history of AD. (ii) EOsAD with the absence of APP, pSEN1, or PSEN2 mutations confirmed by genetic
testing. (iii) EOsAD with no genetic testing reported (diagnosis based only on the absence of family history). (iv) Autosomal dominant AD
(ADAD); EOAD with the carrier of at least one of APP, PSEN1, or PSEN2 mutations confirmed by genetic testing.

each (Table 1). These were CSF NfL, IL-6, IgG,
albumin, serum albumin, and IgG (Table 1, Fig. 2). Of
these non-classical biomarkers (i.e., protein/peptide
biomarkers other than A�42, T-tau, and P-tau), the
only statistically significant results were for CSF
NfL (pooled SMD = 1.42) and serum/plasma IgG
(pooled SMD = 1.80) in the subset of all those with
EOsAD.

Most of the meta-analyses had high levels of
heterogeneity (I2 > 75%), reflecting a large amount
of scatter around the pooled SMD axis. However,
the direction of change, if not its degree, was
consistent in >80% of established biomarker stud-
ies. Methodological differences across studies likely
accounted for this heterogeneity, and therefore the

random-effects model assumptions were the most
appropriate [12].

Since this model permits small studies to con-
tribute to outcomes, we explored such publication
bias using funnel plots and Egger’s test. Funnel plots
of 5 biomarkers were performed as they had 8 or
more individual studies each (Fig. 5). Although visual
inspection of the funnel plots did not give the impres-
sion of perfect symmetry around the vertical axis, the
results from Egger’s test implied that there was no sta-
tistically significant systematic relationship between
the results of each study and its size.

Comparisons of meta-analysis results of estab-
lished CSF biomarkers were performed between pairs
of patient groups versus controls to examine whether
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Fig. 2. (Continued)

classical biomarker profiles of EOsAD and subsets of
EOsAD are significantly different to those of ADAD
(Supplementary Table 1). All the results of the meta-

regression analyses were not significant, except for
T-tau in EOsAD versus sMCs of ADAD, suggest-
ing that the classical biomarker profile of EOsAD is
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Fig. 2. Forest plots of early onset sporadic Alzheimer’s disease patients versus controls. A) CSF A�42, SDM p < 0.001; B) CSF t-tau, SMD
p < 0.001; C) CSF p-tau, SMD p < 0.001; D) CSF NfL, SMD p < 0.001; E) serum/plasma IgG, SMD p = 0.037; F) CSF P-tau181&199, SMD
p = 0.018; G) CSF P-tau181 SMD p = 0.011; H) CSF albumin, SMD p = 0.241; I) CSF IL-6, SMD p = 0.385; J) CSF IgG, SMD p = 0.075; K)
serum albumin, SMD p = 0.351. *values estimated from bar graph. p value represents the statistical significance of SMD test. References
for the manuscripts represented in these forest plots are shown in the supplementary section where the full list of manuscripts used for
meta-analysis appear in Supplementary Tables 2 and 3. Ikeda et al, 2013 [50] appears twice in panel C and F (Ikeda et al 2013 and Ikeda et
al 2013∗) as this study analyzed two different isoforms of P-tau, i.e., P-tau181 and P-tau199, respectively. #Ikeda et al 2013- detected level of
tau199 biomarker in panel C and F.
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Fig. 3. Forest plots of early onset sporadic Alzheimer’s disease patients (tested negative for APP/PSEN mutation carriers) versus normal
control individuals. A) CSF A�42 (pg/ml); B) CSF t-tau (pg/ml); C) CSF p-tau (pg/ml) and early onset sporadic Alzheimer’s disease patients
(no APP/PSEN mutation test has been performed) versus normal control individuals; D) CSF A�42 (pg/ml); E) CSF t-tau (pg/ml); F) CSF
p-tau (pg/ml). *values estimated from bar graph.

not significantly different to the ADAD even though
the majority of EOsAD individuals have no family
history of early onset AD, and some articles on
EOsAD have even eliminated the possibility of APP,
PSEN1, or PSEN2 spontaneous mutation/s by genetic
testing.

Early onset sporadic Alzheimer’s disease
(EOsAD)

The 20 EOsAD studies collectively included 11
biomarkers (Table 1(i), and Fig. 2) which had been
assayed in at least two independent studies (majority
>3) and on which meta-analyses could be performed.
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Fig. 4. (Continued)

Significantly lower CSF levels of A�42 and higher
levels of T-tau, P-tau and specific variants of P-tau:
P-tau181 and 199 were observed in EOsAD versus
control (Table 1(i), Fig. 2). Additional CSF biomark-
ers, with sufficient numbers of articles (≥2 articles)

to allow meta-analysis, included NfL, IgG, IL6, and
albumin (Table 1(i), Fig. 2), of which only NfL had a
significantly higher level, while the others had no sig-
nificant difference relative to controls. In serum, only
albumin and IgG were assayed in sufficient numbers
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Fig. 4. Forest plots of autosomal dominant Alzheimer’s disease patients versus normal control individuals. A) CSF A�42 asymptomatic
mutation carriers, SMD p < 0.001; B) CSF A�42 symptomatic mutation carriers, SMD p < 0.001; C) CSF t-tau asymptomatic mutation
carriers, SMD p = 0.003; D) CSF t-tau symptomatic mutation carriers, SMD p < 0.001; E) CSF A�42 all mutation carriers, SMD p < 0.001; F)
CSF T-tau all mutation carriers, SMD p < 0.001; G) CSF P-tau all mutation carriers, SMD p < 0.001; H) CSF A�40 all mutation carriers, SMD
p < 0.044; I) Plasma A�42 all mutation carriers, SMD p < 0.001; APOE �4 allele enrichment in (J) early onset sporadic Alzheimer’s disease,
SMD p = 0.044; K) autosomal dominant Alzheimer’s disease patients relative to their normal controls SMD p = 0.838. *values estimated
from bar graph. Fagan et al., 2014 [8] appears twice in panel I (Fagan et al 2014 and Fagan et al 2014∗) as this study analyzed A�42 in
symptomatic mutation carriers and asymptomatic mutation carriers respectively. Ikeda et al., 2013 [50] appears twice in panel G (Ikeda et
al 2013 and Ikeda et al 2013∗) as this study analyzed two different isoforms of P-tau, i.e., P-tau181 and P-tau199, respectively.

of studies to allow meta-analysis and only IgG had
a statistically significant result (Table 1(i), Fig. 2E),
being increased in AD relative to controls.

Of the 20 studies on EOsAD, a subset of 4 was
identified in which APP, PSEN1, or PSEN2 gene
mutations had definitively been ruled out by genetic
testing (Table 1(ii), Fig. 3A–C). A separate subset of
16 studies did not report confirmation of the absence
of these mutations by genetic testing (Table 1(iii),

Fig. 3D–F). Meta-analyses were performed sepa-
rately on these two sets of studies. As shown in
Table 1, pooled SMD values for A�42 were lower
in the group in which the absence of mutations
had been confirmed by genetic testing, while those
for both T-tau and P-tau were higher in this group.
However, none of these differences were statistically
significant when examined using the Stata procedure,
metareg.
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Fig. 5. Funnel plots and Egger’s test for publication bias were performed on all meta-analyses which included 8–13 individual studies. For
meta-analyses comprising fewer individual studies it is harder to make conclusions about distribution around the SMD axis, and the p-value
from the Egger’s test is unreliable, so funnel plots are not included for meta-analyses with lower study numbers.

Autosomal dominant Alzheimer’s disease
(ADAD)

Individuals with a family history of AD and who
also carry an AD-related mutation (APP/PSEN) are
by definition autosomal dominant and may be iden-
tified at the aMC stage or at the sMC stage. To

maximize statistical power, we initially performed
a meta-analysis on all mutation carriers (all MCs),
regardless of stage and subsequently stratified by
symptom status (aMCs or sMCs) (Table 1(iv), Fig. 4).
AD versus control comparisons for the established
biomarkers were all statistically significant in all
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MCs, with lower CSF A�42 and A�40, higher CSF
T-tau, and P-tau and higher plasma A�42 for AD
(Table 1, Fig. 4). Following stratification by symptom
status, CSF A�42 and T-tau were significantly lower
and higher respectively, in sMCs versus controls
(Table 1(iv), Fig. 4B, D). In aMCs, CSF A�42 also
trended downwards, but pooled SMD was not as low
as in symptomatic carriers and did not reach statistical
significance (Table 1(iv), Fig. 4A). Level of T-tau sig-
nificantly increased in aMCs; however, pooled SMD
was not as high as in sMCs and results were not statis-
tically significant (Table 1(iv), Fig. 4C). No replicate
studies of other biomarkers of AD pathology were
reported in ADAD cohorts.

APOE genotype status

APOE �4 allele enrichment in EOAD groups
A significantly higher proportion of EOsAD par-

ticipants were carriers of the APOE �4 allele relative
to their controls (Table 1B, Fig. 4J). There was no sig-
nificant difference in APOE �4 prevalence between
ADAD and controls (Table 1B, Fig. 4K).

DISCUSSION

We performed a comprehensive meta-analytic
review of all currently available protein/peptide CSF
and blood biomarkers of early onset AD subtypes
and explored these early onset AD phenotypes in
the context of quantified biomarkers. We found that
the hallmark proteins (A� and tau) showed similar
patterns in the CSF, both qualitatively and quan-
titatively between EOsAD and ADAD, which was
unanticipated since the expression of pathology, as
reflected in classical biomarkers, might be expected
to be less in the EOsAD group, which had no fam-
ily history of EOAD. Instead, we found that a small
proportion even had APP and PSEN mutations ruled
out by genetic testing. This outcome suggests that
an ADAD-like phenotype without the accompanying
genotype, occurs in EOsAD, a group which repre-
sents the majority of early onset cases, but which
have received surprisingly little attention to date.
Other potential emerging markers of neurodegenera-
tion and inflammation, including CSF NfL, IgG, and
IL-6, were reported in EOsAD. However, the relative
paucity of additional biomarkers and low numbers
of reported studies was notable, particularly for the
relatively accessible serum/plasma sample type.

A� peptide is a hallmark of AD, whose com-
plex lifecycle not only produces a plethora of chain

length variants such as A�38, A�40, A�42, and A�43
[20], but also multimeric aggregate structures such as
oligomers, fibrils, and plaque [21]. Of these, the 42-
amino-acid peptide (A�42) is the most studied variant
due to its enhanced tendency to aggregate [22]. This
process, known as the sink model, results in lower
levels of soluble A�42 as plaque/insoluble levels
increase [23]. Our meta-analysis results, which show
a drop in CSF A�42 in all EOAD variants (Table 1),
are consistent with this model. These observations are
consistent with previous meta-analytic data on LOAD
CSF A�42 [24]. Interestingly, the lowest pooled SMD
(highest drop in A�42) was for ADAD symptomatic
mutation carriers (sMCs) and the EOsAD subset with
no APP, PSEN1, or PSEN2 mutations. The decreased
level of CSF A�42 in ADAD aMCs was almost
equal to EOsAD and suggested an EOsAD etiol-
ogy similar to ADAD. There were few studies of
other CSF A� peptides in the context of EOAD.
However, a significant reduction in the level of
A�43 in EOAD patients relative to controls has been
reported [25].

Tau is one of the most abundant proteins in neurons
with a role in stabilizing the structure of microtubules
[26]. In AD, tau is hyperphosphorylated, dissociated
from microtubules, and can be detected in CSF at an
increased level relative to healthy controls [27]. Our
meta-analyses showed a significant increase in both
variants of tau (T-tau and P-tau) in all subtypes of
EOAD. The pooled SMD of T-tau was significantly
higher in ADAD sMCs as compared to EOsAD,
likely reflecting a higher degree of neuronal dam-
age in ADAD as compared to the EOsAD variant.
The EOsAD subset with confirmed absence of APP,
PSEN1/PSEN2 mutations, had higher levels of both
tau variants than the full EOsAD group. While the
significance of this is not entirely clear, it suggests
the possibility that the EOsAD group has mixed
etiologies. Tau can be phosphorylated on various
sites; however, most assays report phosphorylation
of thr181 and ser199 specific epitopes because of the
higher diagnostic accuracy of these epitopes to dif-
ferentiate AD from healthy controls [28]. While our
meta-analysis results confirm that these two specific
epitopes discriminate between control and AD partic-
ipants, neither the SMD nor the p-values were higher
than for the general P-tau measure, suggesting little
advantage in using these specific phospho-epitopes.
In LOAD, several studies have reported other tau
epitopes; thr231 was detected before the formation
of paired helical filaments [28], whereas thr181 and
ser199 were considered late events in AD [29].
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According to some models, neurodegeneration is
more closely linked to symptomatology as compared
to A� pathology [30]. A handful of additional neu-
rodegeneration and inflammation markers, including
NfL, albumin, IL-6, and IgG that we identified as
suitable for meta-analysis, were reported in only 2
to 4 studies each. Of these, CSF NfL was signifi-
cantly upregulated in EOAD cases when compared to
healthy controls. NfL is the light chain protein of neu-
rofilament, which makes up neurofilament bundles
with counterparts that determine the axonal caliber
and conduction velocity [24]. NfL is an integral com-
ponent of synapses and loss of synapses may account
for the increasing level of NfL in blood and CSF [31,
32].

Furthermore, recent studies have established a cor-
relation between blood and CSF NfL in late-onset
AD [33], making it a potentially useful biomarker
for neuronal apoptosis. Like tau, NfL is associated
with the neuronal cytoskeleton, and interestingly, we
found a similar increase in the pooled SMD of CSF
NfL in EOsAD relative to controls (Supplementary
Table 1). These findings relating to CSF levels of NfL
in EOsAD suggest that additional studies in both CSF
and serum/plasma are warranted, since an additional
potential biomarker has been identified, even within
this narrow range of replicated markers. There are
several other well studied markers of neurodegenera-
tion such as sTREM2, VILIP-1, and NfH, reported in
LOAD [34, 35] which have not, as yet, been explored
in EOsAD and ADAD.

A particularly notable feature of our EOAD
meta-analysis was the lack of replicated data on
blood biomarkers. Blood biomarker studies are more
prevalent in LOAD [24, 36], whereas the EOAD
biomarkers were assayed almost exclusively in CSF
(Table 1). This may be a reflection of clinical prac-
tice, whereby CSF may be collected more often in
EOAD cases, and less frequently in LOAD. Assay
of CSF A� and tau for the diagnostic evaluation
of dementia has recently been recommended by an
international consensus group [37], but the invasive
nature of a spinal tap makes it unlikely that it will
be taken up widely [38]. For plasma A�42, a com-
prehensive meta-analysis was performed reporting
a significant decrease in plasma A�42 in clinically
diagnosed LOAD cases [36].

In contrast, our meta-analysis of ADAD (all MCs)
shows a significant increase in plasma A�42, likely
reflecting the higher peptide level in the plasma due
to increased expression of A�42 or cleavage of APP
at this earlier age group, in-line with the A� sink

model. Previous studies have reported that an increase
in plasma level of A�42 correlates with the risk of AD
development. With disease progression, the reduc-
tion of A�42 level over time has been recorded in
plasma, reflecting deposition in plaque [39, 40]. In
this younger cohort, clearance to plasma may be more
efficient. There were insufficient studies on plasma
A�42 in EOsAD, so a meta-analysis was not possible.
Our meta-analysis on EOAD identified several stud-
ies reporting serum/plasma albumin and IgG in which
a significant increase of IgG was observed (Table 1).
These observations reflect findings in previous stud-
ies that show increased levels of both inflammation
mediating proteins and pro-inflammatory IgG, which
enhance the inflammatory activity in blood and repre-
sent a high-risk factor for AD [41]. In ADAD, serum
NfL is emerging as a promising biomarker in the lit-
erature, but we could not perform a meta-analysis on
NfL due to an insufficient number of studies. A longi-
tudinal study, however, reported that an elevated level
of NfL could differentiate mutation carriers from
non-mutation carriers much earlier as compared with
absolute NfL levels assayed in cross-sectional studies
[18].

Interestingly, discovery-based approaches have the
potential to quantify 100s–1000s of proteins, and
while the majority are unlikely to be significantly
changed in AD, the few that do change may provide
not only critical diagnostic tools but also an insight
into disease mechanisms. Plasma protein profiling
of symptomatic and asymptomatic ADAD patients
from the DIAN cohort reported significant differen-
tial expression of seven and sixteen proteins in aMC
and sMC, respectively. These proteins included com-
plement and inflammation family members which
are known to exacerbate the pathogenic processes of
AD [42]. Promisingly, an essential role for comple-
ment proteins in neuronal pruning, has recently been
identified [43, 44].

The APOE �4 allele is the strongest genetic risk
factor for LOAD [46]. In LOAD, APOE �4 is asso-
ciated with increased A� levels and risk of A�
accumulation at an earlier age, thereby accelerating
the clinical onset of AD [45]. Furthermore, 50% of
APOE �4 homozygous carriers have diagnosed AD
by 70 years of age [46]. Less is known about APOE
�4 allele carrier enrichment in EOAD. We identified
significant enhancement in the level of the APOE
�4 allele in EOsAD as compared to healthy con-
trols: 43% and 30% respectively. By contrast, the
ADAD group had a similar level of APOE �4 allele
expression as compared to healthy controls; 28% and
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29% respectively, indicating no significant difference
(Table 1B). The level of reported APOE �4 allele
enrichment in LOAD as compared to controls was in
the range of 13.7–40% [47, 48]. Our meta-analysis
shows EOsAD APOE �4 allele enrichment within
the range of that reported for LOAD, and therefore
enrichment of this allele does not account for the
earlier age of onset of EOsAD relative to LOAD.
Previous studies indicate a dose-dependent effect of
APOE �4 on CSF A�42 level in LOAD [49]; however
insufficient study numbers were available to explore
an APOE �4 dose effect for EOAD. EOsAD cohorts
may represent an opportunity to explore novel genetic
and lifestyle risk factors responsible for the earlier
onset of symptoms in EOsAD.

Limitations

Some of the limitations of this study include the
lack of longitudinal data, small sample size cohorts,
and fewer studies which include analysis of plasma
samples. For ADAD studies, the majority of the meta-
analyses were based on two cohorts: DIAN and the
Colombian Alzheimer’s Prevention Initiative. Con-
siderable heterogeneity was observed across studies,
which was probably due to variation in study charac-
teristics. We managed this in part by using a random
effects model. Only 5 out of our 28 meta-analyses
had sufficient study numbers to allow assessment of
publication bias. The majority of EOsAD studies (16
out of 20) did not perform genetic analyses to elimi-
nate APP/PSEN gene mutations and relied purely on
the absence of family history. Interestingly, those 4
EOsAD studies in which APP/PSEN gene mutations
were eliminated had lower levels of A�42 and higher
levels of all tau variants, suggesting an ADAD-like
phenotype without the ADAD genotype, indicat-
ing that investigation of additional “non-classical”
drivers of EOsAD is warranted. Furthermore, study
numbers of particular biomarkers (i.e., CSF IL-6,
IgG, and albumin) are low, so in some cases insignif-
icant results could be a reflection of insufficient
numbers of published studies, again reinforcing the
need for additional biomarker work, particularly for
genetically well-characterized EOsAD.

Conclusions

Our meta-analysis of established biomarkers has
confirmed the quantitative difference between three
variants of EOAD versus corresponding control
groups. CSF NfL and IgG were statistically sig-

nificant and emerging as potential markers of
neurodegeneration and inflammation to differentiate
EOsAD from healthy individuals. EOsAD is a rel-
atively neglected AD subtype of unknown etiology
and therefore represents an opportunity to explore as
yet unidentified genetic and/or lifestyle factors that
contribute to earlier AD onset. To date, the range
of biomarkers studied have been heavily focused
on CSF, but for establishing promising blood tests,
more research is needed before any of these could
replace CSF or imaging tests. Generally, EOAD
biomarker research is limited to the peptides consid-
ered to be hallmarks of AD pathophysiology whereas
screening a broader spectrum of analytes (e.g., pro-
teomic profiling, lipids, RNA, metabolites) together
with longitudinal analysis is necessary to track the
progress of disease pathology. Studies we included
for meta-analysis were based on a dichotomization on
age. However, studying age as a continuous variable
in cohorts might provide insight into the trajectory
of biomarker change with age and stage of dis-
ease. Similarly, a longitudinal study design would
offer greater statistical power to identify biomarker
changes over time. These are important considera-
tions for the planning and design of new studies.
Understanding pathophysiology and identification of
additional preclinical biomarkers can be facilitated
using discovery-based “omics” approaches.
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Barro C, Gräber S, Kuder-Buletta E, LaFougere C,
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[35] Suárez-Calvet M, Kleinberger G, Caballero MÁ, Brendel
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ABSTRACT: Human plasma is one of the most widely used tissues in
clinical analysis, and plasma-based biomarkers are used for monitoring
patient health status and/or response to medical treatment to avoid
unnecessary invasive biopsy. Data-driven plasma proteomics has suffered
from a lack of throughput and detection sensitivity, largely due to the
complexity of the plasma proteome and in particular the enormous
quantitative dynamic range, estimated to be between 9 and 13 orders of
magnitude between the lowest and the highest abundance protein. A major
challenge is to identify workflows that can achieve depth of plasma
proteome coverage while minimizing the complexity of the sample workup
and maximizing the sample throughput. In this study, we have performed
intensive depletion of high-abundant plasma proteins or enrichment of low-
abundant proteins using the Agilent multiple affinity removal liquid
chromatography (LC) columnHuman 6 (Hu6), the Agilent multiple affinity removal LC columnHuman 14 (Hu14), and
ProteoMiner followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE) and C18 prefractionation
techniques. We compared the performance of each of these fractionation approaches to identify the method that satisfies
requirements for analysis of clinical samples and to include good plasma proteome coverage in combination with reasonable sample
output. In this study, we report that one-dimensional (1D) gel-based prefractionation allows parallel sample processing and no loss
of proteome coverage, compared with serial chromatographic separation, and significantly accelerates analysis time, particularly
important for large clinical projects. Furthermore, we show that a variety of methodologies can achieve similarly high plasma
proteome coverage, allowing flexibility in method selection based on project-specific needs. These considerations are important in
the effort to accelerate plasma proteomics research so as to provide efficient, reliable, and accurate diagnoses, population-based
health screening, clinical research studies, and other clinical work.

KEYWORDS: plasma, proteome, label-free quantitation, biomarkers, prefractionation techniques, mass spectrometry, chromatography,
electrophoresis

■ INTRODUCTION

Human blood, plasma, and serum are clinical samples
commonly used for diagnostic analyses as they are minimally
invasive sample types, already in routine clinical use, and are in
direct contact with damaged tissues and therefore frequently
reflect downstream effects of disease processes.1−3 These
sample types contain a diversity of analytes, such as
metabolites, lipids, and proteins/peptides, of which proteins/
peptides are commonly used as biomarkers, since arguably,
they represent the full diversity of cellular machinery, are the
drivers of all biochemical pathways, and are the functional
counterpart to the genome. Consequently, they are the most
direct and specific targets of cellular and physiological
homeostases or change. Immune assays, such as enzyme-
linked immunosorbent assay (ELISA), are commonly used for
quantitative analysis of individual proteins for disease
diagnosis. However, they are inherently targeted approaches,
which are useful for aiding diagnosis of diseases where the

pathophysiology is understood, but are of limited use for
discovery-based/data-driven investigations, even when used in
multiplexed assays.4 Furthermore, antibody-based approaches
frequently lack specificity for proteins and/or their isoforms.
Consequently, mass spectrometry (MS)-based technology is
not only the golden standard for targeted quantification but
also the only approach that allows unbiased, data-driven
investigations. In clinical research, mass spectrometry is,
therefore, a method of choice for both absolute and relative
quantification of proteomic expression changes, exploration of
disease mechanisms, and biomarker discovery in plasma.5
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However, the extended dynamic range of protein abundance in
plasma, reported to range between 9 and 13 orders of
magnitude, makes MS-based plasma proteomics extremely
challenging.6,7

Over the last 3 decades, proteomics technologies have
evolved and improved, so that identification of hundreds to
thousands of proteins in various tissue samples is now routine.
Nonetheless, relatively few biomarkers identified by proteo-
mics techniques have progressed to use in clinical practice.8−10

This is in part due to the lack of robust, reproducible, and
high-throughput proteomics workflows to determine and
validate potential biomarkers in large cohorts.
Some low-abundance proteins (LAPs) may be transient in

plasma as a result of variations in the disease state, temporary
tissue damage, specific diet, and other environmental factors
and may remain undetected. Furthermore, the overwhelming
presence of high-abundance proteins (HAPs), which represent
>99% of the total plasma protein mass,11 can obscure lower
abundance components from detection by mass spectrometry.
Plasma prefractionation methods therefore play a crucial role
in overcoming the complexity of plasma samples, providing the
opportunity to identify low-abundance proteins.12 More
importantly, tissue-specific proteins, which are more likely to
be clinically relevant, are likely to be of medium to low
abundance and therefore are more likely to be identified in
fractionated plasma. Various standard plasma prefractionation
approaches have been reported in the literature, including
affinity enrichment, immunodepletion, and a variety of
chromatographic and electrophoretic fractionation techniques.
In general, the greater the plasma proteome coverage, the more
complex and time-consuming the prefractionation work-
flow,13−28 making most methods impractical for large clinical
studies.
The objective of this study was to identify a fractionation

strategy that would provide good plasma proteome coverage
and identify tissue-specific proteins while being compatible
with the higher sample throughput required of many clinical
studies. Using a two-step approach, we (1) compared high-
abundance protein depletion (immunoaffinity columns; Hu6,
Hu14) and low-abundance protein enrichment (ProteoMiner
combinatorial peptide ligands), followed by (2) further
fractionation of the low-abundance proteins using chromato-
graphic and electrophoretic approaches (C18 column and one-
dimensional (1D) sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS PAGE), respectively).

■ EXPERIMENTAL SECTION

Experimental Procedures

To optimize the plasma fractionation methodology, whole
blood was collected by venipuncture from two healthy
volunteers, one male and one female, within the 35−55 year
age range. A single pooled sample was used to compare
workflows and to avoid confounding the method comparisons
by biological variation. Blood was collected into ethyl-
enediaminetetraacetic acid (EDTA)-containing tubes and
centrifuged (2000g, 20 min, 4 °C), and the plasma was
transferred and pooled into a clean 15 mL polypropylene tube.
To minimize freeze−thaw cycles, plasma aliquots were
prepared (250−500 μL) and stored at −80 °C until required.
The UNSW Human Research Ethics Committee approved a
protocol for blood collection. The blood samples used here

were collected from volunteers, and both subjects gave written
informed consent.

Depletion of High-Abundant Proteins Using
Immunoaffinity-Based Columns: Human 6 (HU6) and
Human 14 (HU14) Columns

We started our experiments with a total volume of 900 μL of
plasma, which was divided equally into three vials (each 300
μL), one for each of the three prefractionation techniques
(Hu6, Hu14, and ProteoMiner). Depletion of 300 μL of crude
plasma using antibody-based immunoaffinity columns HU6
(4.6 × 50 mm2, Agilent, CA) and HU14 (4.6 × 100 mm2,
Agilent, CA) was achieved as follows: Plasma preparation for
the HU6 column: 300 μL of plasma was diluted with 1200 μL
of buffer A (1:5 dilution, as recommended by Agilent
Technologies), and each injection was 100 μL on the HU6
column (composed of 20 μL of plasma + 80 μL of buffer A).
This step eliminates approximately 85−90% of the total plasma
protein by binding the six high-abundance plasma proteins
(albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin).
Plasma preparation for the Hu14 column: 300 μL of plasma was
diluted with 900 μL of buffer A (1:4 dilution, as recommended
by Agilent Technologies), and each injection was 120 μL on
the HU14 column (composed of 30 μL of plasma + 90 μL of
buffer A). This step eliminates approximately 94% of the total
plasma protein and contains antibodies to the following 14
high-abundance plasma proteins (albumin, IgG, antitrypsin,
IgA, transferrin, haptoglobin, fibrinogen, α-2-macroglobulin, α-
1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein
AII, complement C3, and transthyretin). Plasma was diluted
and filtered using spin filters (Corning Costar Spin-X
centrifuge tube filter, 0.45 μm cellulose acetate, Merck,
Germany) before chromatography to remove any particulates.
Chromatography and fraction collection were performed on an
Agilent 1290 ultrahigh-performance liquid chromatography
(UHPLC) system (Agilent, Santa Clara, CA). Binding buffer
(A) and elution buffer (B) were commercial proprietary
products, and the liquid chromatography (LC) methods used
were based on the manufacturer’s instructions (Agilent, Santa
Clara, CA). Highly abundant proteins were retained on the
columns while buffer A was in use, and the flowthrough
proteins represented the low-abundance protein fraction. The
high-abundance proteins were then eluted with buffer B. Only
the low-abundance protein fractions were processed for further
fractionation and LC-tandem mass spectrometry (MS/MS)
analysis.

Enrichment of Low-Abundant Proteins Using Bead-Based
Depletion

We sought to compare high-abundance protein depletion
against a low-abundance protein enrichment approach using
beads bound to complex mixtures of combinatorial peptide
ligands (ProteoMiner beads; Bio-Rad, Berkeley, CA). The
ProteoMiner bead preparation consisted of 500 μL of bead
slurry (20% beads in aqueous ethanol, 20% v/v), resulting in
100 μL of settled bead volume. Plasma (300 μL) was used for
depletion, with the manufacturer manual recommending 200
μL of plasma sample with a protein concentration of 70 mg/
mL. The beads and plasma mixture was incubated for 2 h at
ambient temperature on a rotation platform. The sample was
then centrifuged (1000g, 1 min, ambient temperature), and the
flowthrough fraction containing the unbound proteins was
collected for further analysis. Based on the manufacturer’s
protocol, we performed three washing steps using a wash
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buffer, discarding the solution from each wash step. Therefore,
the unbound fraction does not include any proteins that may
have been present in the wash steps. This approach reduces the
dynamic range of plasma proteins since low- and high-
abundance proteins have a similar chance of being bound to
their respective ligands, which are distributed in similar
proportions. Excess high-abundance proteins are washed
away once they reach their ligand saturation point, whereas
low-abundance proteins may never saturate their ligand and
are enriched within the sample. Both bound and unbound
(flowthrough) samples were further fractionated (C18 or SDS
PAGE) and analyzed by LC-MS/MS.
Depleted plasma proteins from the above approaches were

concentrated and buffer-exchanged to 50 mM ammonium
bicarbonate back to the original volume (300 μL) using
Amicon 3 kDa concentrators (Millipore, Billerica, MA).
Protein concentrations of depleted plasma were determined
by use of a nanoliter-scale spectrophotometer (DeNovix DS-
11+, POCD, Sydney, Australia) used in the microvolume
mode with 2 μL of each 3 kDa concentrated sample, 280 nm
wavelength, and using the extinction coefficient of bovine
serum albumin (BSA) (E1% (g/100 mL) = 6.67). Following
absorbance reading, the samples were retrieved from the
DeNovix sample surface to minimize total protein loss. The
step was repeated three times, and mean values were used as
the final sample concentration. To compare the protein profiles
across all methods, 50 μg of concentrated plasma from all
methods was used as the starting point for further fractionation
approaches. All subsequent fractionations were each performed
in duplicate, providing two technical replicates for each
fractionation approach. In this way, the depleted plasma
samples from each of the Hu6, Hu14, ProteoMiner bound
(PB), and ProteoMiner unbound (PUB) steps (outlined
above) were fractionated in duplicate by each of the 1D-SDS
PAGE and C18 methods (explained below). Therefore, each
step generated 24 fractions × 2, and all were analyzed
separately by LC-MS/MS using all eight prefractionation
methods, each using an identical pooled aliquot of depleted
plasma.

Electrophoretic Fractionation of Low-Abundance Proteins
Using 1D-SDS PAGE

Equal amounts of protein samples from crude and depleted
plasma (50 μg), obtained from low- and high-abundant
fractions of HU6, HU14, ProteoMiner bound (PB), and
ProteoMiner unbound (PUB) methods, were prepared in
duplicate and diluted in 5 μL of LDS sample buffer (4×
NuPAGE, Invitrogen), 2 μL of reducing agent (10× NuPAGE,
Invitrogen), and deionized water to make a final volume of 20
μL. Samples were heated for 10 min at 70 °C, and proteins
were separated on NuPAGE 4−12% Bis−Tris midi gels
(Invitrogen) using 1× SDS PAGE running buffer and the
following electrophoretic parameters: voltage 200 V, current
200I for 54 min (NuPAGE, Invitrogen). Gels were then
stained29 (colloidal coomassie G250). After destaining, the
separated protein lanes were cut into 24 equal-sized gel bands
using a gel cutter tool with a 24-lane blade (Gel Company Inc.,
CA) and placed into 24 vials for in-gel trypsin digestion.

In-Gel Trypsin Digestion

In-gel digestion was performed by adaptation of previously
published approaches.30 Prior to performing in-gel digestion,
excised gel bands (duplicate gel lanes/depletion method) were
destained by incubating in 100 mM ammonium bicarbonate/

acetonitrile (1:1, 200 μL) overnight at room temperature.
Proteins were then reduced in an aqueous solution of 100 mM
ammonium bicarbonate containing 100 mM dithiothreitol
(DTT) (100 μL) and incubated at 37 °C for 1 h. Proteins were
alkylated using 20 μL of 200 mM iodoacetamide (IAA) and
incubated at 37 °C for 30 min. The reduction/alkylation
solution was decanted, and the gel bits were further washed
using 100% acetonitrile to remove DTT and IAA reagents.
Tryptic digestion (Promega, sequence-grade modified trypsin)
was performed (10 ng/2 μL) in 100 μL of 10 mM ammonium
bicarbonate at 37 °C for ∼18 h. Formic acid (0.1%, 20 μL) was
added and incubated at ambient temperature (10 min)
followed by addition of 100% acetonitrile (50 μL). The
extracted peptide solution was transferred to LC vials (Agilent
Technologies) and dried using a centrifugal evaporator
(SpeedVac, Thermo Fisher Scientific). Peptides were redis-
solved in 5 μL of 0.1% heptafluorobutyric acid containing 1%
formic acid and were then ready for LC-MS/MS analysis.

In-Solution Protein Digestion

For chromatographic peptide fractionation, proteins were
digested in situ using 50 μg of the initial protein sample
from all depletion methods in duplicate. Proteins were reduced
by adding 2 μL of tris-(2-carboxyethyl)phosphine (TCEP) and
incubated for 60 min at 60 °C. Proteins were further alkylated
using 1 μL of 200 mM iodoacetamide (37 mg IAA/mL),
vortexed, spun briefly, and incubated at ambient temperature
for 10 min. The sample pH was checked and adjusted to pH
7−9 if necessary; then, trypsin was added (4.4 μg/10 μL)
(Promega, sequence-grade modified trypsin) and incubated at
37 °C for ∼16 h. The extracted peptide solution was
transferred to LC vials (Agilent Technologies) and dried
using a centrifugal evaporator (SpeedVac, Thermo Fisher
Scientific). Peptides were redissolved in 5 μL of 0.1%
heptafluorobutyric acid containing 1% formic acid and were
then ready for LC-MS/MS analysis.31

Chromatographic Fractionation of Low-Abundance
Proteins Using a C18 Column (ZORBAX Extended-C18)

Chromatographic separation of tryptic peptides was achieved
using a binary gradient; buffer A consisted of 20 mM
ammonium formate containing 2% acetonitrile (pH 10) and
buffer B consisted of 20 mM ammonium formate containing
90% acetonitrile (pH 10). The 64.5 min gradient was started
with a 5 min isocratic step of 100% buffer A, followed by
several gradient steps: 0−15% buffer B in 8 min; 15−28.5%
buffer B in 33 min; 28.5−34% buffer B in 5.5 min; 34−60%
buffer B in 13 min. Peptide fractions were collected at 0.6 min
time intervals, resulting in a total of 84 fractions. These were
then concatenated by pooling equally spaced early, mid-, and
late fractions, and the pattern was repeated to a final number of
24 peptide fractions. The concatenation resulted in fractions
consisting of peptides across the full chromatographic
timespan. The fractions were dried by vacuum centrifugation
(SpeedVac, Thermo Fisher Scientific), resuspended in 1%
formic acid containing 0.1% heptaflurobutyric acid (HFBA),
and were ready for LC-MS/MS.

Mass Spectrometry

Technical duplicates of each sample were analyzed using a Q-
Exactive Plus mass spectrometer (Thermo Electron, Bremen,
Germany) using an adaptation of a previously published
work.32 Peptide separation was carried out using a nano-LC,
Dionex UltiMate 3000 high-performance liquid chromatog-
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raphy (HPLC) system (Thermo Scientific, Waltham),
equipped with an autosampler (Dionex, Amsterdam, the
Netherlands). Peptides (∼2 μg on-column) were initially
captured onto a C18 cartridge (Acclaim PepMap 100, 5 μm
100 Å, Thermo Scientific Dionex, Waltham), switching to a
capillary column (25 cm length, 350 μm o.d., 75 μm i.d.)
containing reverse-phase packing (C18, Reprosil-Pur, 1.9 μm,
200 Å, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany),
placed within a column heater (45 °C, Sonation GmbH,
Germany). Peptide elution involved a 60 min run time and a
binary gradient of 0−45% buffer B at 200 nL/min. The binary
buffers consisted of buffer A (H2O/CH3CN of 98:2 containing
0.1% formic acid) and buffer B (H2O/CH3CN of 20:80
containing 0.1% formic acid). Mass spectrometer settings were
as follows: ion spray voltage 2000 V, capillary temperature
275−300 °C, positive ion mode. The method is a shotgun
sequencing approach, using data-dependent acquisition
(DDA), with a survey scan acquired (m/z 375−1750) and
up to 10 multiply charged ions (charge state ≥2+) isolated for
MSMS fragmentation (intensity threshold of 8.0 × 104, with
nitrogen as the higher-energy collisional dissociation (HCD)
gas). The auto MS/MS acquisition consisted of 10 scans per
duty cycle, an MS resolution of 30 000, and an MSMS
resolution of 70 000.

Computational Analysis

Initially, the data processing of the raw files was performed on
MaxQuant (version 1.6.10.43)33 using the Andromeda search
engine.34 For profiling and quantitation, we used the filter of
≥2 unique peptides per protein. The UniProt Homo sapiens
database (Proteome ID UP000005640, SwissProt, and
TrEMBL) was used, in combination with reverse decoy
protein sequences (used for protein identification false
discovery rate (FDR) estimation) and frequent contaminant
sequences. The default values of precursor mass tolerance
(±0.07 Da) for the first search and (±0.006 Da) for the main
search were applied. Mass tolerance for matching peaks to
theoretical MSMS ion series was 5 ppm. The protein
identification FDR was set to <1% to ensure only high-
confidence identifications for the peptide to spectra match,
protein, and site decoy fractions. Enzyme specificity was set to
trypsin, with a maximum of two missed cleavages. Searches
included variable modifications of protein N-terminal
acetylation, methionine oxidation, pyroGlu, and pyroGln and
fixed modification of carbamidomethylation of cysteines. The
search tolerance used for both peptide precursor match and
fragment ions was 20 ppm. The search tolerance used for both
peptide precursor match and fragment ions was 20 ppm, and
only those peptides of more than six amino acid residues in
length were used. Peptide spectral matches (PSMs), peptides,
and protein were all selected based on the false discovery rate
(FDR) of less than 0.01 based on a reversed-sequence decoy
database. Furthermore, following filtering with these criteria,
only peptides with ≥2 PSM were selected, and only proteins
identified with a minimum of two unique peptides were
included. To validate and transfer identifications across
adjacent fractions and across technical replicates, the “match
between runs” (MBR) option in MaxQuant was enabled, with
a retention time window of 0.7 min and an alignment time
window of 20 min. The full parameter set for the MaxQuant
analysis is shown in Table S6.
All of the commonly identified proteins in all methods were

quantified for peak area abundance within the MaxQuant

environment using the MaxLFQ (label-free quantification)
algorithm.35 The MaxLFQ algorithm combines the measured
intensities from all matched peptides combined into proteins
for final abundance data.36 Finally, the MaxLFQ values
obtained from MaxQuant for each protein were statically
analyzed in the Perseus environment. This workflow of
Andromeda to MBR to MaxLFQ followed with Perseus is
frequently used in studies using data-dependent quantitative
proteomics.37

All of the raw files were also processed through the Trans-
Proteomic Pipeline (TPP) version 5.1.0 released on 2017-11-
03 using an adaptation of previously published works.38,39 This
software takes into account additional factors, including the
number of sibling experiments identifying the same peptide
ions, the number of replicate ion identifications, sibling ions,
and sibling modification states. TPP uses the iProphet
algorithm to determine the false discovery rate (FDR) for
protein identification. To perform the TPP analysis, the LC-
MS/MS raw files were first converted to open format mzML
files using the MSconvertGUI with the default parameters. The
Uniprot database and sequence input were similar to the
MaxQuant search. The 384 LC-MS/MS raw files were
processed using three search engines: X! Tandem (with the
k-score plug-in),40 Mascot, and Comet, with all parameters
kept similar. The PeptideProphet and ProteinProphet
algorithms were employed to compute the probability scores
for peptide and protein identification. The accurate mass
model in PeptideProphet was used for high-confidence peptide
identifications41 as well as a requirement that each protein be
identified with a minimum of two peptides, each with a peptide
probability score >99%. All three search engine results were
merged and validated using iProphet.42 An iProphet
probability of >0.99 was used as the cutoff for final protein
identification.43 The total sum mapping resulted in the
identification of 10 million spectra, but we used only the
common peptides representing only the highest confidence
data and without a search engine bias.40−44 Prior to further
data processing of our confidently identified protein lists,
contaminant proteins and a few remnant isoforms (mainly
resulting from unreviewed UniProt TrEMBL data) were
removed manually. The full list of manually removed proteins
is shown in Tables S1−S4.
Density and Multiscatter Plots

All analyses were performed using a combination of MS Excel
(https://www.microsoft.com/en-us/microsoft-365/excel), R-
language (https://www.r-project.org/about.html) and Perseus
(https://maxquant.net/perseus/) platforms. For density scat-
ter plots and multiscatter plot gplots and ggplot2, packages in
R were employed. Correlation was assessed for replicate LFQ
intensities using the Pearson correlation coefficient scatter
plots prepared by combining all of the experiments and
calculating the Pearson correlation of the expression data
across methods.

Hierarchical Clustering Analysis (HCA)

Pairwise comparison of sample distance and similarity analysis
was performed using hierarchical clustering analysis (HCA).
The k means clustering method was used for all protein LFQ
intensities and was performed using the Heatmap package in
R. The “one minus Pearson correlation coefficient” with the
average linkage method was employed. Box plots were
prepared using the ggplot2 package in R.
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Volcano Plot and Principal Component Analysis (PCA)

To compare depletion and fractionation approaches with the
aim of identifying any significant protein fold change across
methods, we used volcano plots and principal component
analysis (PCA). Two-sided Student’s t-test for p-value
calculation was used for the volcano plot. The test parameter
includes the minimum number of nine valid values in the total
mode (all groups per row). Correction for multiple testing was
performed using the Benjamini−Hochberg correction, with an
FDR of less than 0.05 accepted as significant. We used the
KEGG database for pathway annotation of the whole plasma
proteome, using all 28 pairwise method comparisons,
encompassing all 3064 proteins, which overlapped across
methods. Significant differences in protein recovery/identi-
fication across methods were accepted with a −Log P value
>2.5, and these were represented on volcano plots by
differential coloring (yellow dots). The PCA analysis (plotted
in the Perseus environment) was used to determine whether
the separation methods and technical replicates would be
differentiated globally.

Human Protein Atlas Mapping

We used data in the Human Protein Atlas database (https://
www.proteinatlas.org/) together with the 3064 confidently
identified proteins in our plasma proteome, which also
overlapped across methods, to determine the tissue specificity
of each protein. Confidently identified proteins were manually
curated against the Protein Atlas lists, identifying the tissue

expression level across the 51 tissues and/or tissue fractions
reported in The Human Protein Atlas. This was done to
establish the level of tissue specificity of each of the plasma
proteins we identified. The data was collated to represent
proteins specific to each of the 11 human organ systems
(digestive, circulatory, integumentary, nervous, urinary, skel-
etal, lymphatic, respiratory, muscular, endocrine, and repro-
ductive).

■ RESULTS

Comparative Proteomic Data Provided by Plasma
Depletion and Separation Workflow

The two-step plasma fractionation approaches that we
implemented in this study (Figure 1) resulted in eight sample
types (Figure 1B), each with 24 fractions and 2 technical
replicates, which were analyzed by LC-MS/MS, and resulted in
384 raw files and a total of 2 890 105 spectra (Table 1), of
which approximately 25% were assigned to peptides following
processing with search engines. All raw data files have been
up l o a d ed t o P r o t e omeXch an g e ( h t t p : / /www .
proteomexchange.org/) with the identifier PXD02246. Com-
parison of the high-abundance protein fraction and the
depleted plasma SDS PAGE profiles showed that substantial
amounts of the higher-abundance proteins were extracted into
the Hu6, Hu14, and PUB fractions, and the low-abundant
protein fractions showed a much more complex banding
pattern, in comparison to undepleted plasma (Figure S1).
Using bioinformatics computational analysis in MaxQuant

Figure 1. Schematic representation: workflow used for method optimization of plasma fractionation and proteomics analysis. (A) Fractionation
approaches, (B) LC-MS/MS analysis and data processing. (C) Computational analysis.
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search engine Andromeda (Tables S1−S4) and the Trans
Proteomics Pipeline (TPP) search engines Mascot, Comet,
and XTandem (Table S5), we found that the commonly
mapped transitions from all four search engines (Andromeda,
Mascot, Comet, XTandem) resulted in the identification of
3597 high-confidence proteins (Table 1). A schematic
representation of the workflows used for method development
is shown in Figure 1, and results of the total protein numbers
are summarized in Table 1 (Tables S1−S4 show the protein
lists per specific depletion strategy).
The highest number of total proteins (4219) was identified

with HU6 depletion SDS PAGE fractionation, and a similar
number of proteins (4190) was identified with the HU14
depletion SDS PAGE fractionation approach (Table 1). The
lowest number of proteins (3254) was identified in the PB low-
abundance protein enrichment SDS PAGE fractionation
method (Table 1). Of the ∼4385 total proteins confidently
identified, the majority are common to all methods, i.e., 3064,
representing ∼70% overlap across methods (Figure 2A), while
2664 and 2705 were in common across SDS PAGE and C18
fractionation techniques, respectively (Figure 2B,C). The
detailed information for all of the identified LFQ intensities
of 4385 proteins that were extracted and used for downstream
analysis is shown in Tables S1−S4, representing the data for
each depletion strategy, separately.

Technical Performance across Workflows

Technical replicates were highly correlated across all eight
methods, with an average Pearson correlation coefficient of r =
0.90, and density scatter plots of technical replicates are shown
in Figure 3. While the within-method technical replicate
correlations are high, the cross-method correlations are lower.
The detailed analysis is provided in the multiscatter correlation
plot (Figure S2).
Box plots showing the distribution and variations of the LFQ

intensities in all 16 analyses (8 methods, each with 2 technical
replicates) are shown in Figure 4A. The line within the box
denotes the median value, and the upper and lower ranges of
the box indicate the 5 and 95 percentiles of the intensities,
respectively. The dots above the box plots are outliers.
Hierarchical clustering analysis (HCA) of the 16 analyses
resulted in the formation of the eight clusters, with associated
technical replicates grouped most closely, as shown in Figure
4B. Dendrogram-based hierarchical relationship (Figure 4B)
and similarity matrix analyses (Figure 4C) show the close
association of protein expression data between the following
method pairs: HU6-SDS PAGE and HU14-SDS PAGE, HU6-
SDS PAGE and PB-SDS PAGE, HU6-SDS PAGE and PUB-
SDS PAGE, HU14-SDS PAGE and PB-SDS PAGE, and PB-
SDS PAGE and PB C18.

Table 1. MaxQuant Outcomesa

workflow

peptide
fractionation
approach

number of
fractions

technical
replicate

total number of
queries spectra

assigned
spectra

total
peptides

total proteins per
fractionation
approach

total
proteins

common
proteins

HU6 (high-abundance protein
removal)

SDS 24
fractions

T1 279 069 90 752 13 132 4209 3766 3064
T2 282 075 82 494 12 355 4182
T1T2 561 144 173 766 15 080 4219

C18 24
fractions

T1 111 445 27 656 8238 3696
T2 148 551 31 216 8099 3652
T1T2 259 996 59 226 10 950 3680

HU14 (high-abundance protein
removal)

SDS 24
fractions

T1 217 542 54 719 11 536 4186 3792
T2 184 648 57 803 12 139 4125
T1T2 391 084 118 476 14 971 4190

C18 24
fractions

T1 103 220 26 985 8068 3819
T2 107 281 22 359 6241 3916
T1T2 210 501 49 816 9944 4010

ProteoMiner bound (low-
abundance protein
enrichment)

SDS 24
fractions

T1 233 641 73 377 9949 2813 3470
T2 217 027 61 341 9164 2974
T1T2 450 668 134 718 11 239 3254

C18 24
fractions

T1 94 606 19 451 5567 3406
T2 90 944 23 686 7064 3812
T1T2 185 550 43 645 8663 3825

ProteoMiner unbound (low-
abundance protein
enrichment)

SDS 24
fractions

T1 177 590 45 221 7774 4191 3682
T2 204 826 49 603 7858 3840
T1T2 382 416 95 521 9867 4198

C18 24
fractions

T1 217 538 47 400 6507 4009
T2 220 102 51 204 7820 4191
T1T2 437 640 99 296 9523 4211

aEquivalent amounts of total plasma low-abundance proteins (50 μg) were prepared by three different methods of eliminating high-abundance
protein components (Hu6, Hu14, and ProteoMiner) and two fractionation approaches (SDS and C18). Two technical replicates were acquired per
sample (T1 and T2, with T1T2 representing a database search with combined technical replicates). Summarized data on numbers of spectra,
peptides, and proteins acquired and identified are shown, including the total number of query spectra (all LC-MS/MS spectra acquired, including
background and peptide signals), assigned spectra (these are the spectra for which a protein database match was identified), and identified peptides
(these are the unique plus razor peptides identified). They are fewer than the assigned spectra because frequently multiple spectra for the same
peptide are acquired due to the chromatographic peak width often exceeding the delay time set before the same mass precursor is again subject to
LC-MS/MS, total proteins (the proteins identified for each fractionation approach and each workflow), and the common proteins (proteins that
overlap across all workflows).
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Comparison of Different Prefractionation and Separation
Techniques

We then compared the LFQ intensities merging the technical
replicates to compare the C18 and SDS PAGE separation
techniques (Figure 5). In the cases of the Hu6 and Hu14
depletion approaches, the profile of relative peak intensities
(LFQ intensity) is shifted slightly to the right for the SDS
PAGE relative to the C18 fractionation methods, indicating a
greater peak intensity in the SDS PAGE methods. This
observation is also recapitulated in Table 1, which shows
higher numbers of spectra, peptides, and proteins for most
SDS PAGE methods compared with C18 methods. Almost
equal LFQ intensities were observed in the PB and PUB
fractions, indicating that a substantial number of proteins was
present in both fractions. The density overlay also shows
similar signal intensities of proteome, indicating that both the
number and intensity of proteins substantially overlap in the
PB and PUB fractions.

Principal Component Analysis (PCA)

PCA was performed to explore the degree of differentiation or
similarity between technical replicates and across methods.
The first and second principal components explained 47.8 and
12.9% of data variability, respectively (Figure 6A). The PCA
results show that the technical replicates cluster together as
might be expected, and all methods are discriminated from one
another (Figure 6A). However, closer positioning of specific
methods on the PCA plot is observed, particularly in the
principal component 1 (PC1) dimension, for the following
method pairs: HU6-SDS PAGE and HU14-SDS PAGE, HU6
C18 and HU14 C18, and PB C18 and PUB C18 (Figure 6A).
When we ranked proteins based on the PC1 score, a sigmoidal-
shaped plot was obtained (Figure 6B), with a long flat section
extending across the majority of proteins (ca. protein rank
200−3500). This indicates that variability across methods was
constant for the majority of proteins, while a few proteins had
extremely low variability across methods (curve tail facing

Figure 2. (A) Venn diagram showing the protein overlap across all depletion methods together (HU6, HU14, PB, and PUB) for all proteins
identified with unique Uniprot accession numbers. (B) Method comparison of proteins with unique Uniprot accession numbers using the C18
fractionation approach. (C) Method comparison of proteins with unique Uniprot accession numbers using the SDS PAGE fractionation approach.
(D) Venn diagram showing protein overlap across all depletion methods together (HU6, HU14, PB, and PUB) for proteins with both unique
Uniprot accession numbers and gene symbols. (E) Comparison of proteins identified with both unique Uniprot accession numbers and gene
symbols using the C18 fractionation approach. (F) Comparison of proteins identified with both unique Uniprot accession numbers and gene
symbols using SDS PAGE fractionation.
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upward on the far right), and a few proteins had higher
variability across methods (curve tail facing downward on the
far left). Members of two large families of proteins,
apolipoproteins and the serpin proteases, are marked on the
PC1 plot (Figure 6B), and we note that the level of PC1
variability across methods seems to be a function of protein
concentration: the higher concentration plasma proteins
(APOA2, APOC4-APOC2, APOC1, SERPINA1, SERPINF2,
SERPINA6) are detected at the higher rank (right side of the
curve) and the lower concentration plasma proteins
(SERPINB1, SERPINE1, SERPINA10) appear in the lower
rank (left side of the curve) in Figure 6B. We also ranked
proteins for each depletion method based on their LFQ
intensities together and separately (Figure 7) and annotated
the plots with nine proteins whose protein concentration in
plasma is known. This concentration range spans from low pg/
mL to low mg/mL, representing ≥9 orders of magnitude of
concentration. These proteins were identified in all eight
individual workflows and were similarly distributed across the
rank plots. Further, we compared the top 100 highest
abundance plasma dynamic range of proteins in all depletion
methods using Venn diagrams to find the number of
overlapping proteins in C18 and SDS PAGE, and we found
≥70% protein overlap except for HU14, which showed 57%
(Figure S3).

Volcano Plot Analysis

To evaluate possible systematic bias across methods tested, we
performed a volcano plot analysis for all combinations of
methods, resulting in a total of 28 plots (Figure 8). We
compared all of the methods to identify the variations in the
statistically significant proteins using common proteins across
methods. Using the 3064 proteins common across methods
(Figure 2A), the UniProt-based KEGG pathways identified a
total of 39 proteins, which were significantly differentially
abundant across methods (Figure 8), representing ∼1% of the
full plasma proteome identified here. This small overall
difference across methods is not too surprising given that an
identical sample was analyzed across workflows and indicates

that significant quantitative differences attributable to the
different sample workup methods are minimal. Furthermore,
this number can be taken as a quasi-indicator of the protein
quantification false discovery rate, and at ∼1%, it is
encouragingly low. One of these proteins is complement C3,
a protein depleted using the Hu14 column, and it is of interest
that this is picked up as one of the 39 differentially expressed
proteins since the difference in this case is likely real and
attributable to the method used.

Human Protein Atlas-Based Tissue Annotation

To attempt an analysis of the likely tissue origins of the plasma
proteins identified in our workflows, we searched for tissue
specificity of our total 3064 commonly identified high-
confidence proteins within the Human Protein Atlas (HPA)
(https://www.proteinatlas.org/).45−47 We provide a list of 51
organs/tissues in which our 3064 HPA curated proteins can be
found in Table S8. To obtain a global overview of the origin of
our protein list, by specificity to organ systems, the 3064
proteins were collapsed into the 11 main organ systems of the
human body (Figure 9A). Next, we sought to map brain-
specific proteins using the human brain protein atlas. The
analysis mapped an average of 1430 of our detected proteins,
and their distribution in 10 subregions of the brain is shown in
Figure 9B. There was an average of 14 region-specific proteins,
while minimum protein numbers were found in the thalamus
(1) and midbrain (2) and maximum were in the pons and
medulla (39) and basal ganglia (28). Identification of tissue-
specific proteins in our plasma proteome data set reflects its
high potential for peripheral tissue and brain-specific
biomarker identification in altered physiological conditions or
in response to disease.

■ DISCUSSION

The eight methods of plasma high-abundance protein
depletion and low-abundance protein enrichment evaluated
in this study allow considerable enhancement of typical plasma
proteome coverage, with a total number of 4385 proteins
identified with high confidence using LC-MS/MS (data-

Figure 3. Density scatter plots of technical replicates for each of the eight methods, with a density color scale showing areas of higher and lower
data density (blue and green, respectively). Pearson correlation results are indicated as r values on each plot.
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dependent analysis) and database searching with MaxQuant
and Trans-Proteomic Pipeline. Plasma is arguably one of the
most challenging sample types for this kind of analysis, and we
have demonstrated here that good proteome coverage can be
achieved even on this quantitatively and qualitatively complex
proteome if appropriate sample processing approaches are
applied. Our results compare well with other reported work,
which has aimed to maximize plasma proteome cover-
age.16−28,48,49

The human genome project has identified approximately
30 000 human genes (https://www.genome.gov/human-
genome-project), while the human proteome draft article
reported the identification of 17 294 proteins in total using
mass spectrometry.50 In our analysis, we identified a total of
4385 confidently identified proteins across all workflows,
representing 3766, 3792, 3470, and 3682 proteins in the HU6,
HU14, PB, and PUB workflows, respectively. Therefore, our
estimate of the human proteome coverage, as a percentage of
the 17 294 proteins reported by Kim et al.,50 is as follows: total
= 25.52%, HU6 = 21.78%, HU14 = 21.93%, PB = 20.06%, and

PUB = 21.29%. The average coverage we identified is 21.27%
with standard error of the mean (SEM) = 0.42%.
Of the 4385 total proteins identified, 3064 (ca. 70%) overlap

across methods, and excellent correlations are observed for all
within-method technical replicates, and even reasonable
correlations for across-method technical replicates were
obtained. Consequently, we observe that all eight methods
performed well in facilitating identification of high numbers of
proteins, and all achieve comparable protein identifications to
the highest of recent reports detailed in Table 2.16−28 A recent
literature review observed that of ∼180 plasma proteomics
studies (conducted during 2005−2017), only 50% reported
identification of 500 of the most abundant plasma proteins,
following reanalysis of data sets using PeptideAtlas.51 This is
likely a reflection of the enthusiasm for minimal sample
processing since most approaches perform at most a single-step
fractionation, usually focused on removal of one or more of the
highest abundance proteins.
For initial fractionation, both high-abundance protein

removal (Hu6, Hu14) and low-abundance protein enrichment
(ProteoMiner beads) perform well in reducing the plasma

Figure 4. (A) Box-dot plots of LFQ intensity of all 16 experimental runs. The line within the box denotes the median value, and the upper and
lower ranges of the box indicate the 5 and 95 percentiles of the intensities, respectively. The dots above the box plots are outliers. (B) Hierarchical
cluster analysis and heat map for the 3064 proteins common to all methods. The k means algorithm was used to identify protein clusters. (C) The
similarity matrix and heat map were constructed using the Pearson correlation values of the 16 methods, clustered based on the k means algorithm.
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protein dynamic concentration range. One advantage of high-
abundance protein removal over low-abundance protein
enrichment is that the antibody-based immunoaffinity
chromatographic techniques (Hu6 and Hu14) are highly
effective in the specific removal of the highest abundance
proteins, with minimal nonspecific loss of other proteins.52 By
comparison, the bead-based (ProteoMiner) method enriches

the lower abundance proteins but also loses much of the
proteome to the “unbound” fraction (i.e., bead saturation),
which risks loss of quantitative data (unless both the bound
and unbound fractions are analyzed), thereby increasing the
time and complexity for discovery-based quantitative projects.
Previous studies have also shown the presence of almost equal
numbers of proteins in bound and unbound fractions, and a

Figure 5. Juxtaposed LFQ intensities for pairwise comparison of C18 vs SDS PAGE fractionation using the following initial depletion approaches:
(A) HU6, (B) HU14, (C) ProteoMiner bound (PB), and (D) ProteoMiner unbound (PUB).

Figure 6. Principal component analysis: (A) two-dimensional (2D) principal component analysis using the first two principal components. (B)
One-dimensional classification of all of the proteins identified in protein rank order based on the first principal component. The long flat section in
the sigmoidal-shaped plot indicates that the variability across methods was constant for the majority of proteins. The level of PC1 variability across
methods seems to be a function of protein concentration, with higher concentration plasma proteins, such as the majority of apolipoproteins,
detected at the higher rank (right side of the curve) and lower concentration plasma proteins (SERPINB1, SERPINA5) appearing in the lower rank
(left side of the curve). The apolipoproteins are annotated in red, and the SERPIN family proteins are annotated in purple.
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large overlap (91% identified proteins) was found between
crude samples and depleted unbound fractions. Our data
support these observations.53 The fact that we identified such a
high number of bound proteins is mainly due to the extensive
fractionation strategies we applied post low-abundance protein
enrichment. Most proteomics studies that have employed the
ProteoMiner kit with no additional fractionation report
identification of ∼500−1000 proteins.16,19,20,54

While analyzing the ProteoMiner unbound fractions
(flowthrough), we identified 3682 total proteins in the
flowthrough, indicating that the fractionation facilitated
identification of increased numbers of proteins but also

demonstrated bead saturation of a very large number of
proteins, which would be problematic for subsequent
quantitative work. To overcome this quantification issue, it is
possible that the proteins uniquely expressed in the bound
fraction, but not present in the unbound fraction, could be
compared in a relative quantification approach since these are
not saturated. Then, the saturated proteins within the unbound
fraction could be quantified separately, and in this case, the
depletion via the bound fraction may even enhance
quantitative differences in case vs control comparisons.
However, this would add complexity to the methodology,

Figure 7. Protein rank abundance plot based on LFQ intensities. (A) All experiments together, (B) the four SDS PAGE methods, (C) the four C18
fractionation methods, and individual fractionation methods (D) HU6 C18, (E) HU6-SDS PAGE, (F) HU14 C18, (G) HU14-SDS PAGE, (H)
PB C18, (I) PB-SDS PAGE, (J) PUB C18, and (K) PUB-SDS PAGE are presented in plots separately. The x-axis of the plot describes the protein
rank, while the y-axis denotes Log 2 transformed LFQ intensities. Nine proteins whose protein concentration has previously been identified in the
literature are marked on the plots, and their concentrations are reported in the table at the top right.
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double the analysis time, and increase the cost since both
fractions would need to be prepared and assayed.
In the second phase separations (C18 vs SDS PAGE),

higher overall LFQ intensities, and in most cases also peak
counts, were achieved in the Hu6 and Hu14 depleted samples,
with the methods that included SDS PAGE fractionation. We
are unclear why this should be; however, it is possible that the
LC fractionation dilutes the peptide fractions, so peptide losses
are likely to be greater as the diluted peptides bind
nonspecifically to tube surfaces. By contrast, SDS PAGE
does not dilute the sample and in fact traps and concentrates
proteins within gel bands until they are liberated during in-gel
tryptic digest. Throughout these steps, the sample volumes are
minimal, providing fewer opportunities for nonspecific binding.
It is likely that these problems with the C18 fractionation
might be overcome using higher protein concentrations to start
with and/or low protein binding tubes. Here, we used a
starting amount of 50 μg of low-abundance plasma proteins for
all methods to enable a direct comparison of the eight
workflows. The amount of protein used reflects a level of low-
abundance protein that can easily be recovered from a 50−100
μL aliquot of plasma. This is an important consideration for
clinical and biobank samples, where plasma from population-
based studies can be limited and in demand for a broad range
of studies. Procedures that result in minimal sample loss are
important in this context. Apart from minimizing the sample
volume required while maximizing the data output, sample
throughput is another important consideration if clinical

studies are to be completed in a reasonable timeframe. A
further advantage of SDS PAGE is that it is inherently a higher
throughput method than C18 LC because tens to thousands of
samples can easily be run in parallel during the 1 h gel run time
and in a relatively cost-effective manner since the equipment
for SDS PAGE is considerably less costly than HPLC
equipment. The C18 approach allows only serial separation,
thereby greatly increasing the sample preparation time in direct
proportion to the number of samples. Furthermore, equipment
and running costs are considerably lower for SDS PAGE than
for HPLC. Our observations are supported by other published
work demonstrating a throughput advantage of gel-based
separation vs LC fractionation.55

The identification and quantification of over 10 000 proteins
in samples like tissue and cell lines are possible without
extensive prefractionation.56 This is true because while cellular
proteomes are complex in terms of numbers of proteins, their
concentration range is much less so (likely 103−104).57 By
contrast, the concentration range of plasma proteins has been
reported to be as high as 1013,48 with just a handful of proteins
representing >80% of the total protein content, while
thousands of proteins are represented within the remaining
<20% fraction. Consequently, to achieve protein coverage of
the medium-/low-abundance proteins in plasma, particularly
the lower abundance tissue-specific proteins that may reflect
disease-specific change, plasma fractionation is unavoidable.
Keshishian et al.28 demonstrated this point by fractionating
plasma and reported identification of ∼5000 proteins from 16

Figure 8. Volcano plot analysis: volcano plot showing significantly differentially abundant proteins in 28 comparisons of the tested methods. The
plots show the difference of LFQ intensities between method pairs (x-axis) vs the −log10 p-values (y-axis) for each protein. The plots were based on
n = 3064 proteins, and the horizontal bar in each plot represents −Log p value 2.5 (i.e., ca. p = 0.005).
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plasma samples using high-pH reversed-phase separation in
combination with iTRAQ four-plex labeling. This work
represents one of the most comprehensive single-study plasma
proteomics profiling projects to date, utilizing a three-step
procedure of fractionation, including (1) depletion of the top
14 HAPs (IgY14 LC20 column), (2) removal of the next
∼50−100 moderate abundant proteins (MAPs) using a Sigma-
Aldrich Supermix LC10 column, and (3) tryptic digestion of
the remaining proteins and fractionating by C18 HPLC (28).
This powerful approach was an excellent demonstration of the
effectiveness of fractionation to yield high coverage of the
plasma proteome. However, the methodology is also complex,
expensive, time-consuming, and unlikely to be practical for
many clinical projects, thereby restricting the general utility
and replication of results in other laboratories. Consequently,
cost-effective and easily accessible plasma proteomics analysis
remains a challenge.
The work we present here demonstrates that simpler and

faster approaches, accessible to most general biochemistry
laboratories, can yield similarly high proteome coverage. Some
examples of potential biomarkers that are usually present in
plasma at ng/mL concentrations were identified in our data,
including superoxide dismutase (SOD2), ribonuclease 4
(RAB4), 72 kDa type IV collagenase (matrix metallopeptidase
2 (MMP2)), and α-1-antitrypsin (SERPIN) proteins. Among
these are some proteins with a role in disease, such as RAB4,
which protects neurons from degeneration in amyotrophic
lateral sclerosis (ALS) by stimulating neurofilament formation
and protects hypothermia-induced degeneration in mouse
embryonic cortical neurons.58 Another protein identified in
our data set is matrix metallopeptidase 2 (MMP2), which is
involved in remodeling of vasculature, neural progenitor cell
migration, and tumor invasion.59 Some of the lowest low-

abundant plasma proteins that we identified include macro-
phage colony-stimulating factor 1 (200 pg/mL), P-selectin
(120 pg/mL), platelet-derived growth factor receptor β (3 pg/
mL), and leptin (4.7 ng/mL), some of which have also
previously been reported.60

It is evident from our study that a variety of different
approaches can achieve depth of plasma proteome coverage
(61). Two critical points appear to be (a) removal of the
relatively few highest abundant proteins that represent >60−
80% of the plasma total protein and (b) fractionation of the
remaining medium-to-low-abundance protein fraction. Based
on the eight methods we evaluated, we suggest the following:
(1) with a view to subsequent quantification, high-abundance
protein removal is preferable to low-abundance peptide
enrichment to avoid the bead saturation problem; and (2)
for high throughput where analysis of high numbers of clinical
samples is required (tens to thousands), SDS PAGE is a faster
approach than C18 as a secondary fractionation approach.
Consequently, of the variety of methods evaluated here, the
HU6-SDS PAGE and HU14-SDS PAGE approaches best
satisfy all requirements, including narrowing the dynamic
concentration range and the resultant depth of proteome
coverage, retaining quantitative characteristics of the sample,
and relatively simple, cost-effective, and time-efficient work-
flow. There is no doubt that plasma proteomics can provide
high-confidence diagnostic tools for better stratification and
monitoring of patient response to treatment.4,5,28,61

■ CONCLUSIONS
In this study, we demonstrate that a variety of relatively simple
prefractionation techniques can achieve depth of plasma
proteome coverage. The results provide a clear demonstration
of the reproducibility of these prefractionation techniques and

Figure 9. (A) Proteins identified in the plasma proteome, representative of the 11 main organ systems: nervous system (brain spinal cord, sensory
organs), digestive system (mouth, oral mucosa, salivary gland, esophagus, intestine, stomach, colon, duodenum, gall bladder), muscular system
(heart, skeletal, smooth), skeletal system (bone, cartilage, ligaments, tendons), integumentary system (skin, hair, nails, breasts, soft tissue, adipose
tissue), reproductive system (ovaries, testis, vagina, uterus, cervix, endometrium, epididymis, fallopian tube, prostate, seminal vesicle), urinary
system (kidneys, bladder), circulatory system (liver, blood, blood vessels, bone marrow), endocrine system (pituitary, thyroid, parathyroid, adrenal,
pancreas), lymphatic system (lymph nodes, spleen, thymus, appendix, tonsil), and respiratory system (lungs, nasopharynx). Each of the proteins in
our combined data set (either 3064 or 4385 proteins) was manually checked against the Human Protein Atlas (HPA) (https://www.proteinatlas.
org/) to determine which proteins are the most abundantly expressed in 51 different organs (see Table S8 for a detailed breakdown of the protein
numbers mapped to 51 specific organs). (B) Similarly, proteins from our plasma proteome were mapped to brain-specific subregions using Human
Brain Atlas (https://www.proteinatlas.org/humanproteome/brain). The regionally enriched proteins that were identified in our plasma proteome
are reported.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00670
J. Proteome Res. 2021, 20, 1261−1279

1273

https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670?fig=fig9&ref=pdf
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.0c00670/suppl_file/pr0c00670_si_001.pdf
https://www.proteinatlas.org/humanproteome/brain
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00670?fig=fig9&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00670?ref=pdf


T
ab
le

2.
M
as
s-
Sp

ec
tr
om

et
ry
-B
as
ed

P
la
sm

a
P
ro
te
om

ic
St
ud

ie
s
A
llo

w
in
g
C
om

pa
ri
so
n
of

M
et
ho

do
lo
gy
,
R
un

T
im

e,
an
d
N
um

be
rs

of
P
ro
te
in
s
Id
en
ti
fi
ed
a

tit
le
of

th
e
st
ud
y

de
pl
et
io
n
st
ra
te
gy

m
as
s
sp
ec
tr
om

et
ry

pl
at
fo
rm

,d
at
a

an
al
ys
is
so
ftw

ar
e
da
ta
ba
se
/s

us
ed

nu
m
be
r
of

fr
ac
tio

ns
/s
am

pl
es

×
ru
n

tim
e
fo
r
ea
ch

fr
ac
tio

n/
sa
m
pl
e
(m

in
)

to
ta
l
ru
n
tim

e
(m

in
)

to
ta
l
nu
m
be
r
of

pr
ot
ei
ns

PR
ID

E
ac
ce
s-

si
on

A
ffi
ni
ty

C
ap
tu
re

En
ri
ch
m
en
t
ve
rs
us

A
ffi
ni
ty

D
ep
le
tio

n:
A
C
om

pa
ri
so
n
of

St
ra
te
gi
es

fo
r

In
cr
ea
si
ng

C
ov
er
ag
e
of

Lo
w
-A
bu
nd
an
t

H
um

an
Pl
as
m
a
Pr
ot
ei
ns

(r
ef

16
)

af
fin
ity
-b
as
ed

pr
ob
es

ba
se
d
on

ag
ar
os
e-
im
m
ob
ili
ze
d

be
nz
am

id
in
e
(A

B
A
),
O
-p
ho
sp
ho
-L
-t
yr
os
in
e
(p
T
Y
R
),

8-
am

in
o-
he
xy
l-c
A
M
P
(c
A
M
P)
,o

r
8-
am

in
o-
he
xy
l-A

T
P

(A
T
P)

H
U
14

(A
gi
le
nt

T
ec
hn
ol
og
ie
s)

O
rb
itr
ap

Ex
pl
or
is
48
0
m
as
s
sp
ec
-

tr
om

et
er

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c,

B
re
m
en
,G

er
m
an
y)

10
0
×
76

76
00

to
ta
l
pr
ot
ei
ns

=
11
65

PX
D
02
07
27

Pr
ot
eo
m
e
D
is
co
ve
re
r
2.
4.
0.
30
5

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c,
B
re
m
en
,

G
er
m
an
y)

H
U
14

=
42
2;

Pr
ot
eo
M
in
er

=
59
0;

A
B
A
=5

98
;

A
T
P
=
44
9;

cA
M
P
=
43
6;

pT
Y
R
=
40
4

U
ni
Pr
ot
/S
w
is
sP
ro
t
hu
m
an

da
ta
ba
se

(J
an
ua
ry

20
19
)

In
-D
ep
th

Pl
as
m
a
Pr
ot
eo
m
ic
s
R
ev
ea
ls
In
cr
ea
se

in
C
ir
cu
la
tin

g
PD

-1
du
ri
ng

A
nt
i-P

D
-1

Im
m
un
ot
he
ra
py

in
Pa
tie
nt
s
w
ith

M
et
as
ta
tic

C
ut
an
eo
us

M
el
an
om

a
(r
ef

17
)

H
U
14

A
gi
le
nt

T
ec
hn
ol
og
ie
s

Q
-E
xa
ct
iv
e
m
as
s
sp
ec
tr
om

et
er

(T
he
r-

m
o
Fi
sh
er

Sc
ie
nt
ifi
c,
B
re
m
en
,G

er
-

m
an
y)

72
×
50

36
00

19
17

PX
D
01
72
01

G
al
ax
y-
P
pr
oj
ec
t,
in
cl
ud
in
g
M
SG

F+
(v
10
07
2)

an
dP

er
co
la
to
r
(v
2.
10
),

Sp
ec
tr
um

A
I
pi
pe
lin
e

hu
m
an

pr
ot
ei
n
su
bs
et

of
EN

-
SE

M
B
L8

0

B
lo
od

Pl
as
m
a
Pr
ot
eo
m
ic
M
od
ul
at
io
n
In
du
ce
d

by
O
la
nz
ap
in
e
an
d
R
is
pe
ri
do
ne

in
Sc
hi
zo
-

ph
re
ni
a
Pa
tie
nt
s
(r
ef

18
)

H
U
14

A
gi
le
nt

T
ec
hn
ol
og
ie
s

Sy
na
pt

G
2-
Si

m
as
s
sp
ec
tr
om

et
er

(W
at
er
s
C
or
po
ra
tio

n)
pa
tie
nt
s
gr
ou
p
A

14
×
39

pa
tie
nt
s

gr
ou
p
A
=
54
6

pa
tie
nt
s
gr
ou
p
A
=
31
9

PX
D
01
50
49

Pr
og
en
es
is
Q
I
fo
r
Pr
ot
eo
m
ic
s
(Q

IP
)

so
ftw

ar
e
pa
ck
ag
e
w
ith

A
pe
x3
D
,

Pe
pt
id
e
3D

,a
nd

Io
n
A
cc
ou
nt
in
g

In
fo
rm

at
ic
s
(W

at
er
s
C
or
po
ra
tio

n)

pa
tie
nt
s
gr
ou
p
B

40
×
39

pa
tie
nt
s

gr
ou
p
B
=
15
60

pa
tie
nt
s
gr
ou
p
B
=
25
1

U
ni
Pr
ot

hu
m
an

da
ta
ba
se

(J
an
ua
ry

20
19
)

A
ge
-D
ep
en
de
nt

C
ha
ng
es

in
th
e
Pl
as
m
a

Pr
ot
eo
m
e
of

H
ea
lth

y
A
du
lts

(r
ef

19
)

Pr
ot
eo
M
in
er

(B
io
-R
ad

La
bo
ra
to
ri
es
,H

er
cu
le
s,
C
A
)

O
rb
itr
ap

fu
si
on

lu
m
os

(T
he
rm

o
Fi
sh
er
)

18
×
90

16
20

10
69

PX
D
01
61
99

M
ax
Q
ua
nt

se
ar
ch

en
gi
ne

U
ni
Pr
ot

hu
m
an

da
ta
ba
se

G
ly
co
-C
PL

L:
A
n
In
te
gr
at
ed

M
et
ho
d
fo
r
In
-

D
ep
th

an
d
C
om

pr
eh
en
si
ve

N
-G
ly
co
pr
o-

te
om

e
Pr
of
ili
ng

of
H
um

an
Pl
as
m
a
(r
ef

20
)

Pr
ot
eo
M
in
er

co
lu
m
n
(B
io
-R
ad

La
bo
ra
to
ri
es
,H

er
cu
le
s,

C
A
)

O
rb
itr
ap

Fu
si
on

Lu
m
os

m
as
s
sp
ec
-

tr
om

et
er

(T
he
rm

o
Fi
sh
er
)

6
×
78

46
8

he
al
th
y
co
nt
ro
l
=
56
7

PX
D
01
64
28

M
ax
Q
ua
nt

se
ar
ch

en
gi
ne

pa
tie
nt
s
=
53
7

U
ni
pr
ot

hu
m
an

da
ta
ba
se

(v
er
si
on

20
15
_0

3)

Id
en
tif
ic
at
io
n
of

Po
te
nt
ia
lP

la
sm

a
B
io
m
ar
ke
rs

fo
r
A
bd
om

in
al
A
or
tic

A
ne
ur
ys
m

U
si
ng

T
an
de
m

M
as
s
T
ag

Q
ua
nt
ita
tiv
e
Pr
ot
eo
m
ic
s

(r
ef

21
)

T
O
P
12

de
pl
et
io
n
ki
t
(P
ie
rc
e,
T
he
rm

o
Fi
sh
er
)

Q
-E
xa
ct
iv
e
m
as
s
sp
ec
tr
om

et
er

(T
he
r-

m
o
Fi
sh
er
)

27
×
90

24
30

16
9

PX
D
01
13
09

M
as
co
t
se
ar
ch

en
gi
ne

ve
rs
io
n
2.
3

(M
at
ri
x
Sc
ie
nc
e
LT

D
.,
Lo

nd
on
,

U
K
)

U
ni
Pr
ot
K
B
/T

re
m
bl

hu
m
an

da
ta
ba
se

(D
ec
em

be
r
20
19
)

Pr
ot
eo
m
es

of
Pa
ir
ed

H
um

an
C
er
eb
ro
sp
in
al

Fl
ui
d
an
d
Pl
as
m
a:
R
el
at
io
n
to

B
lo
od
−
B
ra
in

H
U
14

A
gi
le
nt

T
ec
hn
ol
og
ie
s

U
lti
m
at
e
30
00

R
SL

C
na
no
sy
st
em

(T
he
rm

o
Sc
ie
nt
ifi
c)

12
0
×
15
0

18
00
0

42
2

PX
D
00
95
89

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00670
J. Proteome Res. 2021, 20, 1261−1279

1274

pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00670?ref=pdf


T
ab
le

2.
co
nt
in
ue
d

tit
le
of

th
e
st
ud
y

de
pl
et
io
n
st
ra
te
gy

m
as
s
sp
ec
tr
om

et
ry

pl
at
fo
rm

,d
at
a

an
al
ys
is
so
ftw

ar
e
da
ta
ba
se
/s

us
ed

nu
m
be
r
of

fr
ac
tio

ns
/s
am

pl
es

×
ru
n

tim
e
fo
r
ea
ch

fr
ac
tio

n/
sa
m
pl
e
(m

in
)

to
ta
l
ru
n
tim

e
(m

in
)

to
ta
l
nu
m
be
r
of

pr
ot
ei
ns

PR
ID

E
ac
ce
s-

si
on

B
ar
ri
er

Pe
rm

ea
bi
lit
y
in

O
ld
er

A
du
lts

(r
ef

22
)

Pr
ot
eo
m
e
D
is
co
ve
re
r
(v
er
si
on

1.
4,

T
he
rm

o
Sc
ie
nt
ifi
c)

U
ni
Pr
ot
K
B
/S
w
is
sP
ro
t
hu
m
an

da
ta
-

ba
se

(D
ec
em

be
r
20
14
)

Pl
as
m
a
Pr
ot
eo
m
e
Pr
of
ile
s
of

St
ab
le
C
A
D

Pa
tie
nt
s
St
ra
tif
ie
d
A
cc
or
di
ng

to
T
ot
al
A
po

C
-I
II
Le
ve
ls
(r
ef

23
)

hy
br
id

SP
E(
R
)p
ho
sp
ho
lip
id
,a
n
R
P-
C
4
ca
rt
ri
dg
e
fo
r

so
lid

ph
as
e
ex
tr
ac
tio

n
(S
PE

)
56
00
+
T
ri
pl
eT

O
F
m
as
s
sp
ec
tr
om

et
er

sy
st
em

(A
B
Sc
ie
x,
C
on
co
rd
,C

an
a-

da
)

52
×
17

88
4

18
8

PX
D
00
59
73

M
as
co
t
v.
2.
4
(M

at
ri
x
Sc
ie
nc
e
In
c.
,

B
os
to
n,

M
A
)
an
d
Pr
ot
ei
n
Pi
lo
t

so
ftw

ar
e
v.
4.
2
(A

B
SC

IE
X
,C

on
-

co
rd
,C

an
ad
a)

U
ni
Pr
ot

Sw
is
sP
ro
t
hu
m
an

da
ta
ba
se

(J
ul
y
20
15
)

T
em

po
ra
l
Ex
pr
es
si
on

Pr
of
ili
ng

of
Pl
as
m
a

Pr
ot
ei
ns

R
ev
ea
ls
O
xi
da
tiv
e
St
re
ss

in
Ea
rly

St
ag
es

of
T
yp
e
1
D
ia
be
te
s
Pr
og
re
ss
io
n
(r
ef

24
)

H
U
14

A
gi
le
nt

T
ec
hn
ol
og
ie
s

Q
-E
xa
ct
iv
e
H
F
m
as
s
sp
ec
tr
om

et
er

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c)

21
×
12
0

25
20

22
35

PX
D
00
78
84

M
ax
Q
ua
nt

so
ftw

ar
e
(v
1.
5.
3.
30
)

Sw
is
sP
ro
t
hu
m
an

da
ta
ba
se

(F
eb
ru
ar
y

20
16
)

D
is
co
ve
ry

of
a
Po

te
nt
ia
l
Pl
as
m
a
Pr
ot
ei
n

B
io
m
ar
ke
r
Pa
ne
l
fo
r
A
cu
te
-o
n-
C
hr
on
ic

Li
ve
r
Fa
ilu
re

In
du
ce
d
by

H
ep
at
iti
s
B
V
ir
us

(r
ef

25
)

H
U
14

A
gi
le
nt

T
ec
hn
ol
og
ie
s

na
no
-E
SI

O
rb
itr
ap

El
ite

m
as
s
sp
ec
-

tr
om

et
er

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c)

14
×
90

12
60

42
7

PX
D
00
79
75

M
ax
Q
ua
nt

se
ar
ch

en
gi
ne

(v
1.
5.
1.
0)

U
ni
Pr
ot
/S
w
is
sP
ro
t
hu
m
an

da
ta
ba
se

(I
PI
.h
um

an
.v
3.
87
)

Pr
ot
eo
m
ic
s
R
ev
ea
ls
th
e
Ef
fe
ct
s
of

Su
st
ai
ne
d

W
ei
gh
t
Lo

ss
on

th
e
H
um

an
Pl
as
m
a

Pr
ot
eo
m
e
(r
ef

26
)

H
U
6
A
gi
le
nt

T
ec
hn
ol
og
ie
s
fo
llo
w
ed

by
th
e
Pr
ot
eo
-

Pr
ep
20

pl
as
m
a
im
m
un
od
ep
le
tio

n
ki
t

Q
-E
xa
ct
iv
e
H
F
O
rb
itr
ap

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c)

52
×
45

23
40

12
94

PX
D
00
42
42

M
ax
Q
ua
nt

se
ar
ch

en
gi
ne

(v
1.
5.
3.
23
)

U
ni
pr
ot

FA
ST

A
hu
m
an

da
ta
ba
se

(J
un
e
20
15
)

Pl
as
m
a
Pr
ot
eo
m
e
Pr
of
ili
ng

R
ev
ea
ls
D
yn
am

ic
s

of
In
fla
m
m
at
or
y
an
d
Li
pi
d
H
om

eo
st
as
is

M
ar
ke
rs

af
te
r
R
ou
x-
En

-Y
G
as
tr
ic
B
yp
as
s

Su
rg
er
y
(r
ef

27
)

H
ig
h
Se
le
ct

T
op
14

A
bu
nd
an
t
Pr
ot
ei
n
D
ep
le
tio

n
M
id
i

Sp
in

C
ol
um

n
Q
-E
xa
ct
iv
e
H
F
O
rb
itr
ap

(T
he
rm

o
Fi
sh
er

Sc
ie
nt
ifi
c)

24
×
45

10
80

19
28

PX
D
00
93
48

M
ul
tip

le
A
ffi
ni
ty

R
em

ov
al
Sp
in

C
ar
tr
id
ge

H
um

an
6

M
ax
Q
ua
nt

se
ar
ch

en
gi
ne

(v
1.
5.
3.
23
)

27

U
ni
pr
ot

FA
ST

A
hu
m
an

da
ta
ba
se

(2
01
1)

M
ul
tip

le
xe
d,

Q
ua
nt
ita
tiv
e
W
or
kf
lo
w
fo
r
Se
n-

si
tiv
eB
io
m
ar
ke
r
D
is
co
ve
ry

in
Pl
as
m
a
Y
ie
ld
s

N
ov
el
C
an
di
da
te
s
fo
r
Ea
rly

M
yo
ca
rd
ia
l

In
ju
ry

(r
ef

28
)

Ig
Y
14

LC
20

fo
llo
w
ed

by
a
Su
pe
rm

ix
LC

10
co
lu
m
n

Q
-E
xa
ct
iv
e
m
as
s
sp
ec
tr
om

et
er

(T
he
r-

m
o
Fi
sh
er

Sc
ie
nt
ifi
c)

30
×
17
2

51
60

46
41

no
t
su
bm

itt
ed

Sp
ec
tr
um

M
ill

M
S
Pr
ot
eo
m
ic
s
W
or
k-

be
nc
h
so
ftw

ar
e
pa
ck
ag
e
v.
4.
2
β

(A
gi
le
nt

T
ec
hn
ol
og
ie
s)

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00670
J. Proteome Res. 2021, 20, 1261−1279

1275

pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00670?ref=pdf


T
ab
le

2.
co
nt
in
ue
d

tit
le
of

th
e
st
ud
y

de
pl
et
io
n
st
ra
te
gy

m
as
s
sp
ec
tr
om

et
ry

pl
at
fo
rm

,d
at
a

an
al
ys
is
so
ftw

ar
e
da
ta
ba
se
/s

us
ed

nu
m
be
r
of

fr
ac
tio

ns
/s
am

pl
es

×
ru
n

tim
e
fo
r
ea
ch

fr
ac
tio

n/
sa
m
pl
e
(m

in
)

to
ta
l
ru
n
tim

e
(m

in
)

to
ta
l
nu
m
be
r
of

pr
ot
ei
ns

PR
ID

E
ac
ce
s-

si
on

U
ni
pr
ot

hu
m
an

da
ta
ba
se

(2
01
4)

cu
rr
en
t
st
ud
y

1.
H
u6

C
18

Q
-E
xa
ct
iv
e
pl
us

m
as
s
sp
ec
tr
om

et
er

(T
he
rm

o
El
ec
tr
on
,B

re
m
en
,G

er
-

m
an
y)
,M

ax
Q
ua
nt

an
d
T
PP

da
ta

an
al
ys
is

24
×
60

14
40

1.
33
64

PX
D
02
24
6

2.
H
u6
-S
D
S
PA

G
E

M
ax
Q
ua
nt

(v
er
si
on

1.
6.
10
.4
3)

an
d

th
e
T
ra
ns
-P
ro
te
om

ic
Pi
pe
lin
e

(T
PP

)
ve
rs
io
n
5.
1.
0
(N

ov
em

be
r

20
17
)

(e
qu
al
ru
n
tim

e
fo
r
al
l

ei
gh
t
m
et
ho
ds

co
m
bi
-

na
tio

n
te
st
ed
)

2.
37
52

3.
H
u1
4
C
18

U
ni
Pr
ot

(S
w
is
sP
ro
t
an
d
T
rE
M
B
L)

(2
02
0)

3.
37
78

4.
H
u1
4-
SD

S
PA

G
E

4.
35
08

5.
PB

C
18

5.
34
21

6.
PB

-S
D
S
PA

G
E

6.
31
57

7.
PU

B
C
18

7.
36
63

8.
PU

B
-S
D
S
PA

G
E

8.
38
13

(p
ro
te
in
s
id
en
tif
ie
d
in

al
l

ei
gh
t
m
et
ho
ds

co
m
bi
-

na
tio

n)
a
T
he

st
ud
ie
s
w
er
e
co
m
pa
re
d
us
in
g
m
as
s
sp
ec
tr
om

et
er

ru
n
tim

e
fo
r
de
te
rm

in
in
g
th
e
de
pt
h
of

pr
ot
eo
m
e
co
ve
ra
ge
.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00670
J. Proteome Res. 2021, 20, 1261−1279

1276

pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00670?ref=pdf


show that gel-based approaches can be an alternative to
expensive and time-consuming chromatographic separation,
thereby significantly accelerating the analysis time. It is
encouraging that a variety of methodologies can achieve
similarly high proteome coverage, which allows flexibility of
choice depending on project-specific needs, such as whether
qualitative or quantitative information is sought, size of the
project in terms of sample numbers, availability of specific lab
resources, etc. These considerations are important in the effort
to accelerate plasma proteomics research so as to provide
efficient, reliable, and accurate diagnoses for the population as
a whole.
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51 specific organs separately from the Human Protein
Atlas (HPA) (https://www.proteinatlas.org/) (Table
S8) (XLSX)
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