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Study of the Variation of Air-Gap Permeance 

Due to the Displacement of Opposed Teeth 

With Specific Boundary Configurations.

SUMMARY

The thesis contains the results of a study of air-gap 

permeance when opposed teeth are displaced relative to each other.

The study includes the adoption and extension of a substitute angle 

method invented by Dr. R. Pohl, which is applied to teeth of tri

angular, trapezoidal and rectangular sections. Various approximations 

to the circular shape have been examined. Where confirmation was not 

available from theoretical analysis experimental results were obtained. 

Though the method is designed for rapid assessment of permeance of any 

shape with simple equations a selected number of tables have been 

calculated from the basic empirical equations. A fairly comprehensive 

bibliography of field problems is included.
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SECTION 1. REVIEW OF PAST WORK

1*1 Introduction.

The author was introduced to the study of this particular 

work by Mr. G. F. Freeman who, in 1925> did an excellent analysis 

of a phonic motor. ^

It was originally intended that this study be directed 

towards the theoretical aspects of a new type of phonic motor, but 

as usually occurs, many of the problems encountered were not adequately 

covered by published literature. In addition it was found that there 

was no collected information on small motors. However a study of the 

problems common to most small motors (and many large ones) showed that 

the air gap is the place where most reasoned "guessing" takes place. 

This, of course, was realised very early in the development of 

electrical machines and led Mr. F. W. Carter to spend many fruitful
pyears on this subject. Prior to 1900 , F. W. Carter presented some

remarkable solutions on air gap problems associated with teeth which, 

having stood the test of time, were republished in the I.E.E. Journal 

in 1926 3. Most present day machine designers use Carter’s results 

in one form or the other and new research results are inevitably 

compared with his figures.

From the foregoing remarks, it would appear that Carter’s 

results are the only solutions to air gap problems. This is far 

from true. However it is true to say that Carter*3 results are 

expressed in a general form which enable designers to obtain a ready 

figure for air gap permeance of almost any type of machine. In the 

case of machines depending on the change of reluctance with position,
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Carter*s method does not help beyond giving a figure for the mean 

permeance, but the result can be extended to cater for opposed slots.

on the problem, but for most air gap problems there are three methods 

of approach :

(a) normal boundary with idealised solution ,
(b) idealised boundary with rigorous solution 

or (c) normal boundary with rigorous solution.

Carter’s solutions are of the class (b) type, and there

have been many others of both class (a) and (b), but only a few of

the simpler type of problems have been solved by class (c). In

this thesis attention is given to problems solvable by class (a).

To separate the air gap from the rest of the machine is

wrong in principle since there are so many other factors which can

affect the result. Notable among these is the effect of saturation

in the teeth, which in the case of a class (b) solution would

invalidate the result by changing the effective shape of the boundary.

Incidentally, the first recorded solution of the problem

of an air gap bounded by a continuous equipotential plane and a slotted
25plane was given by Potier in his study of the electrometer.

1.2 Resum& of Carter’s Slot Solution.

The method of solution adopted depends to a large extent

The slot considered by Carter was idealised in its boundaries

and took the form of an

gap of length ”g” and an

infinitely deep slot of width

infinitely wide parallel air —oC

"s”. The boundaries of this
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slot are magnetic equipotentials. The results for the permeance 

of the slot are expressed in the form of K = f(s/g) where K is the 

fraction of _s to be subtracted from the slot width such that the 

flux distribution over the revised tooth width may be considered 

uniform. Most textbooks give this function in the form of a 

graph (a) for open slots and (b) for semi-closed slots. This 

latter modification was suggested by Professor Miles Walker.

Coe and Taylor 4 have studied independently the effect of 

a shallow slot on Carter’s result for a limited range of values 

applicable mainly to turbo-alternators and other machines with 

large air-gaps. They have shown for the cases considered that, 

provided the depth of slot is made slightly greater than the width 

of slot, the error involved is small. Apparently Hadamard 4 

studied this problem first in 1909 though the author has not read 

the paper.

In the design of large machines s/g does not usually exceed 

12, but for smaller machines, e.g., phonic motors and inductor 

alternators much larger values are encountered. Values up to and 

greater than 50 are not uncommon. Physically this figure means 

that where £» would not be much larger than 50-60$ of the periphery,

£ would be extremely small and, consequently, magnitudes of the total 

reluctance change for opposed slots would be very high. Carter’s 

solution does not take into account the manner in which this 

reluctance changes and for small values of s/g it is not very 

important, except in relation to the high frequency fields produced 

and the consequent tooth losses.
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Two examples are given below to show the normal manner 

of applying Carter’s co-efficient to the design of large machines. 

Additional applications include the shaping and width selection of 

salient poles to produce a particular distribution of flux in the 

air gap. This and similar applications are given in most textbooks 

on machine design.

1.2.1 Application of Carter’s Co-efficient to Machine Design^, (d.c.) 

Consider the two limiting 

cases of flux distribution :

(a) All flux confined to the teeth.

The numeric permeance would 

then be
p * Vg .

(b) Flux uniformly distributed over 

the tooth and slot. The per

meance would then be
s + tp = -----
8

Evidently the actual distribution lies somewhere between 

these extremes and may be represented as s
"t# *4* 03p » ----------- where c is Carter's co-efficient.
8

In the estimation of the increase of reluctance due to 

slotting in a d.c. machine, it is usual to assume a value for the 

slotting factor Kg in order to obtain a value for g.

(S+t)
. ././//j./z./Z/J/. / //// " //////////<
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As an example, consider the case of a 750-kW., d.c. 
generator with dimensions as follows :
(s+t) = 3*19 cm,; s * 1,1 cm.; atg = 5500$ no. of ducts n = 6; 

width of ducts d = 0.9 cm.; core length = 35*3 cm..

For a first estimation of assume Kg to be 1.15 which 

gives g = 0.632 cm. or approximately 0.25" (==0.635 cm.). With

this value of £, Kg can now be evaluated and a revised figure for 

atg obtained.

How’ Kg = reluctance of smooth Jp “ Kg' 2 Kg 

where Kg’ is for slots and Kg” for ventilation ducts and are given 
respectively by s

Kg* (3 + -0 . Kfi.H(s + t) - C's ’ L - CH dn
When s/g = 1.1/Q635 * 1*73, Carter’s co-efficient for slots 

C* =0.25 and when ^/g =1.42, C” = 0.24.
Hence,

Kg’

Kg”

1.1__________
3.19 - 0.25 x 1.1

35.3______________
35.3 - 0.29 x 0.9 x 6

1.095

1.038

Therefore, Kg - 1.135*

This is close to the assumed value and gives the revised 

value for atg as 5450. An alternative approximation to Kg, which 

is more accurate is Kg = Kg^ + Kg2 — 1.

It will be noticed that the total increase in reluctance 

is approximately 13*5^ and though precise analysis is not necessary, 

must still be considered in the design of a machine of this type.
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1.2.2 Application to the Design of an Induction Motor.^

In an induction motor both sides of the air gap are 

slotted and special treatment is necessary in the application of 

Carter’s results. For the purposes of estimation the rotor face 

is assumed to be an equipotential surface when calculating Kgx for 

the stator. Similarly the stator face is considered to be an 

equipotential when calculating Kg2 for the rotor. The resultant 

value of Kg is then Kg^ x Kg2»

In a particular case of a 5 h.p. motor, g * 0*45 nm.$ 

s = 1 mm.; si + tl = 1.612 cm.; s2 + t2 = 1.523 cm.; thus -

Kgl ■
1.612 = 1.150l.£>12 - 0.68 x 0.3

1*523 = 1.025hg2 - 1.523 - 0.37 x 0.3

where Cq = 0.68 for sq/g and C2 = 0.37 for S2/g» using the curves 

for semi-closed slots, hence the value of Kg is 1,175*

Corrections for the ducts are as in 1.2.1 except where 

the stator and rotor slots coincide, in which case the equipotential 

is assumed to be the centre of the air gap, i.e., the value of C is 

found for 2s/p.*

1.3 The Lemmas of Forbes.^

The lemmas mentioned below formed some of the earliest of 

simple theorems applicable to varied magnetic circuits, Modifications 

of these lemmas are used in this paper, so they are mentioned here for 

both completeness and interest. The theorems assume that the flux 

follows paths of straight lines and circular arcs.
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1*3.1 The First Lemma.

Between two opposed, parallel

and nearly equal surfaces the permeance

in air is equal to the mean of the areas

of the two surfaces divided by the distance

separating them, viz. - 
i AB + CDL1 - i --gjT- *a _ ,

In the symbols of this paper EP = g; AB = t^; CD = t2 and 

j-(AB + CD) * t. Hence for a = 1 unit the permeance is t/g*

1*3*2 The Second Lemma.

1.3*2.1 First Case.

If the two surfaces are situated in the same plane and if 

their distance apart is not greater than a certain value, then *—

L2 a loge T2 

* *1
where r2 = OA and r^ = OB.

This is easily verified since on 

considering the cylinder of flux dr, 

whose path length is Ttr, the

permeance becomes 
fr2 drp= L TTF JL l°^e £2 for length*TT ri



1.3.2.2 Second Case,

Where the distance separating the two surfaces is greater

than a certain amount

,, a losrQ 7C (AB) + 2(0A) 
3 ’ Tt 2(0A) FICB. 1.3.2.2.

The path length, consisting of straight lines and circular arcs, is 

2(0A) + T(t and therefore the permeance

P
r AB

j 0
dr

2(0A) + Vr
1 loge 7t AB + 2(0A) per unit length. 

IX 2(0A)

1.3*3* Comments on the Practicability of the Lemmas.

The first lemma assumes that all the flux lines are 

uniformly spaced, of equal length and normal to the two surfaces.

Jn addition, it is assumed that the side regions do not affect the 

distribution of flux. Both of these assumptions are entirely 

incorrect except for cases in which the (mean area)/EF is very large.
QCramp and Calderwood have shown , using Maxwell's result for a 

parallel plate capacitor, that instead of Forbete formula we have for 

the permeance

p = il x+^S !b+^-) •

Where g <$c x or b.
8In the same paper , a revised formula is developed which 

takes account of the flux linking the vertical faces :

p - Mx^t1-^)) . I fx+
si Tt ) S i TV )

which is stated to be accurate for g < x or b but inaccurate when 

2x/g or 2b/g approaches unity.
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The first case of the second lemma is intended to meet 

those problems in which the gap between the surfaces is relatively 

short and the second case for longer gaps. The second case is 

nothing like the distribution but the first case is nearer the truth 

when r^ r2*

1*3*4 Dr# Pohl’s Application of Forbe*s theorems to Flux Leakage.^

Er. Pohl has applied the lemmas of Forbes to calculate the 

flux leakage of various pole sections and has expressed the results in 

a most convenient form for the designer. For square and rectangular 

poles the second lemma is used without modification. For round poles 

and pole shoes the flux issuing from the ends is assumed to follow an 

involute to a circle. The result is arrived at as follows i 

The path length -

= ■— + arc of involute

9 _t °<_2
m 2 + 2 2

FIG. I.3.4-.

Hence, the permeance 
r7rt

These results are useful if not very accurate in their original form,
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1.3*5* Arnold1s Method for Circular Poles,^
Arnold replaces the circular pole by a square core of

cross-section equal to that of the circular pole* Forbe*s first and 

second lemmas are then applied to the resulting square.

Area of circle

Area of square

FIG. 1.3.5.
The permeance is then

2b/(s + t) HX 2b/(s + t)
2 (l - 2b)/(s + t)1 - 2b/(s + t)

This result has been used in several ways but provides only

approximate answers.

1*3*6. The Methods of Douglas.^

An early method suggested by Douglas assumed that the flux

distribution was sinusoidal. The sine curves were suitably chosen
12and have since been proved to be very nearly correct.

A later method using conjugate functions in a similar 

manner to Hague (l.3*7*) gives the permeance for round poles as

o-rr cot^( TC r/4a) + coth^ ( Tt r/4a) _______ ,
^ ~ coth^( Tt r/4aTlogcot( Tt r/4a) + cot^( TT r/4a)logcoth( HT r/4a)

.... 1.3*6*
where r = V2 and a = (t + s)/2.

This is an exact result for the leakage permeance of round poles, or 

move precisely between the pole and its interpolar planes, the planes 

extending to infinity*



1.3*7* Hague*s Method 12

/ 1 n

Hague has developed a formula for almost circular poles 

and depending upon the axis of the ellipse, is slightly over or 

slightly under the exact result. In any case the average of the two 

methods is exact.

In producing this result Hague drew comparisons between the 

methods so far mentioned. The following comments by Hague are those 

appropriate to this work :

(a) Arnold’s method gives a better result than Pohl's in

this case,

(b) both are particularly in error over the working range

of r/a * t/(t + <3 ),

(c) that Douglas’ sine method is very nearly correct but

involves graphical integration, 

and, (d) the average of Hague’s two methods is exact.

A comparative table for r/a = 0.577 is included below and is taken 
from Hague’s paper.

Table 1.3*7

Method Perm, for Leakage flux approx, flux
r/a 0.577 Perp. Mlines true

Arnold 6.70 0.391 0.827
Pohl 6.09 0.356 0.753
Pohl 2 8.09 0.472 0*999
Doug.1 s sine 7*75 0.482 0*957
Doug.’s exact 8.10 0.473 1.000

Hague 8.80 0.514 1.086
7*40 0.432 0.914
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Pohl's method does not show up very well in this comparison

but other factors can be taken into account to give a better agreement. 
The (Pohl + 2) figure may have seme merit in the case of circular pole 
leakage but it is not much use in proximity cases such as are met with 
in phonic and similar machines. However Pohl has suggested and inves

tigated a new treatment which is directly applicable to the present study 
1.4 Pohl’s treatment of the Pulsating Field Machine.13

The part of the paper of interest in connection with this work 

is the method used to determine the pulsating permeance. The method is 
called a "substitute angle” method and leads, for a rectangular slot, to 
equations similar to those developed in Section 2 of this paper for a 

trapezoidal slot.

to the law of least reluctance are replaced by straight lines and arcs of 
a circle. This is, of course, a cireot application of Forbe’s lemmas 
together with an extension of Pohl's method of leakage calculation. The 
main difference lies in the estimation of path length.

Consider the case of a 
rectangular slot and the flux
idealised into lines and circular H-----t+S----- •-]/ rrn !arcs. The permeance/cm. of active ;

The paths of lines of force which are normally curved according

length

= 2
J

s/2

o
g +

dr 21og_g + /fls/2
(3 g

and C' = 1 - (4.6/Z9 )log(o(l + £ s/2z)
s/g • • • • * 1.4.1
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Here /3 represents a fictitious length that the lines of flux travel into 

the slot. The actual value of to agree with the true result for this 

type of slot is found by solving 1.4.1 for C' = C where C is Garter's 

coefficient.

Now expressed in similar terms Garter’s coefficient is

G = J; (tan 1 (9/2g) - 2.31ogi0 (l + (s/2g)2) )
( s/ig

) ........ 1.4.2

hence to obtain agreement between the two results yS was found to vary 

between 1.0 and 1.1 for 1$ accuracy, or more precisely for s/g ^ 10

j8 = 1.0 and s/g between 10 and 100, f3 = 1.1. Apparently this 

accuracy is related to the value of permeance, since the value of C’ 

is not within Vfo of G.

It is also stated that when the sides of the slots form with 

the periphery an angle smaller than 90°, jj can be correspondingly 

reduced for similar accuracy. The comments which occurred to the author 

when reading this paper were :

(a) the result is compared with Carter's figure in one static

case only and it is not known if there is harmonic agree

ment over the range of movement of the rotor,

(b) the equations produced are very easy to use and enable the

peimeance to be calculated for any position of the rotor,

(c) no proof or justification is given to support the statement

that trapezoidal slots may be treated by the same method,

(d) though the equations enable some deductions to be made on

tooth shapes no mention has been made of ideal shapes or

even the comparison of various shapes
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and, (e^ the result has been determined for the single-sided 
slot only,

1,5 Flux Pulsations and Tooth Losses.
There is a great deal of literature on this subject which has 

diverged somewhat from reluctance calculation of air gaps. This is 
reasonable since on the one hand the interest is centred around the 
ampere-turns required to establish the air-gap flux, and on the other 

the effect of the changes in the air-gap permeance on the waveform and 
tooth losses. The relationship between slotting and the waveform is 
not so easily separated into the pure effect of air-gap permeance ohange 
and other effects, e.g., saturation effects in the iron. In many cases 

author's have stated that the largest factor is not the change in air- 
gap permeance.

However since this subject is not exactly compatible with the 
subject of pulsating field machines where a large change for a given 
mean is required, only those aspects relative to the air-gap permeance 
will be commented upon. Additional information may be obtained from 
the references in Section 7»

1.5.1 Pulsation losses in the teeth are difficult to determine since high 
frequency pulsations of the flux in any tooth in one member are caused by 
the relative motion of that tooth with respect to the slot openings in 
the other member. These pulsations penetrate throughout the whole of 
the tooth with small magnitude but high frequency. The slot openings

are also responsible for a further loss which occurs in a thin layer of 
the material of the teeth near the air-gap and particularly in the tips 

of the teeth. This is due to high frequency variations of density, of
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wide amplitude, but the depth to which they penetrate is small and the 

amount of material affected is not great, ^

15In a recent paper by Professor H. Bondi and K. C, Mukherji 

classical electromagnetic theory is used to investigate the mode of 

penetration of tooth ripple flux into smooth laminated pole shoes 

without making any assumption as to the thickness of the laminations 

employed. It is also shown that only a fraction of the total loss can 

be called a pole-face loss. However the complete analysis is not of 

direct interest here since we are not directly concerned with the cause 

of tooth ripple and not so much its effect. A supporting paper by 

Professor G-reig and Mukherji ^ gives a series of results on practical 

investigations into this subjeot.

l61.5.2 In making a preliminary study of tooth pulsations Dr. Chapman 

supposes that if the flux in a stator tooth were 0coswt with a smooth 

rotor and that the effect of rotor slot openings causes a permeance 

fluctuation of 10$ then the flux variation can be expressed by :

0ooswt [ 1 ♦ ^3in24Wt{ = 0 joopwt + A (8in2>t + si"25wt) )

Furthermore, if the E.M.F. in a search coil were 2Esinwt for

a smooth rotor, it would be -

2E(sinwt + |2c°s2>t + j£cos25wt)

for a slotted rotor. This would give a ratio of eddy current losses 

in the tooth as -

1 + ( & )2 + ( 2S P
( 40 ) ( 40 ) 1.72,

i.e., an increase of 72$. It is not clear from Dr. Chapman's writing

where this expression was derived from, though it would seem to have
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been developed from some practical measurements on machines using 

search coils and oscillographs.

An analysis of more interest in the present study is 

Dr. Chapman’s determination of tooth pulsations. His basic method is 

to assume that the effective stator slot width (Cw0) is projected 

radially onto the rotor, giving a variable total width of effective 

rotor slot included within this projection, depending on the relative 

positions of the two members. In addition, since effective slot widths 

have been used, it is assumed that the air gap permeance is proportional 

to the width of the tooth, less the total width of the effective openings.

FIG. I. 5. 2.1. ti ^ ti

At the commencement of the passage the rotor slot B is in line with the 

stator slot A, at x. It increases uniformly until the rotor has moved 

through a distance s2, when the slot is entirely under the tooth. This 

is represented by (ab). Until the leading edge of the tooth cones 

opposite to the leading edge of the slot there is no further change until 

the back edge of slot B passes the leading edge of tooth B, when the 

influence of B on A then ceases. The negative ordinates of (abed) 

represent the amount to be added (algebraically) to the width of the 

tooth, to obtain a length proportional to the permeance in the air-gap
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opposite this tooth, for this tooth only. A second slot comes into 

effect when the rotor has moved a distance of (S2 + ^2), If ^1 ^ ^2 

the effect of a second slot occurs before the first slot is finished.

tl > t2FIG. 1.5.2.2.

t t sAn interesting case is one where 1 = 2 + 2 which shows

that with the assumptions made there will be no permeance pulsations.

--------- — ---------- — —

k /
tl

V / FIG. 1.5.2.3. ti * ti + Sz

This is, of course, fallacious, though since the method is very easy to 

use and apply results will be compared with other methods in a later 

section of this work. In all cases, is the average effective tooth 

width and is approximately equal to the stator tooth pitoh divided by 

Garter's coefficient G.

1.6 Walker's Method.^

In his analysis, Dr. Walker assumes that the iron of the stator 

and rotor teeth are infinitely permeable, so that the exciting MMF across 

the air-gap is uniform. Due to the presence of slots, however, the
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reluctance of the air-gap is variable being a maximum at the centre 

of a rotor slot and a minimum at the centre of a rotor tooth. Using 

Garter’s result for rectangular slots^ he obtains an expression for the 

flux density in the air-gap as

B = B max K + 1 1,6,1.VaK^ 2} ][K + J
and,

x 9 r „ ,-i ,2K +/i , „ ,-l ,2K-1+y3 ,,
1 = 5f7 [ Cosh {~Y~] - Cosh

± [ Sd-H, *,,,,, 1.6,2,

Where s = width of rotor slot, t = width of rotor tooth, g = length of

air-gap over rotor tooth,
2f3 = (9/gr + 2, r

8 = + ’A
- 7 (3/g) 2 a

- g

and

yivg) + 4

K = a parameter corresponding to values of x, where x is a spaoe co

ordinate measured along a rotor slot pitoh from the axis of a slot such

that [0< x (s + t)/2 J .
For a given value of s/g, a spaoe distribution curve of flux 

density across a rotor slot pitch can be calculated. Such a curve 

calculated for the elementary Garter space is reproduced in Fig. 1.6.1.
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/:: t;: d-r: afFHuTTI FTF 
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To obtain the variation of alternating flux in time and thenoe the ewf 

wave shape, it is necessary to take the B ordinates spaced 180° from 

Fig. 1.6.1 at various points along a rotor slot pitch and plot the 

values against time or electrical angle as shown in Fig. 1.6.2. This 

result is difficult to calculate in this form and gives no more information 

than the Carter result. In applying the method to opposed teeth the same 

limitations exist as in Carter's method. However for single-sided slots 

it is possible to obtain a value for the flux distribution over the armature 

surface and thence the induced e.m.f.

The curve shown in Fig. 1.6.1. represents the conditions which 

exist in the teeth-out-of-line position of a system slotted on both sides 

with t ^ s.

When the machine is built with the stator slots embedded so

that the rotor views a smooth stator, it is necessary to shape the rotor 

pole faces to produce a sinusoidal flux wave. Hancock^ and Walker^



“20-

have produced results for this shaping as follows :

B = Cos Nj»g9 .............. .. 1,6.3.

where Bq is a constant. The result is achieved by the use of 

conjugate functions and leads to the shape of the rotor surface given by

ny + A^sinh nynx = nyQ + A sinh nyQ .........  1.6.4.

where A' = Bq/^n '> n = ^rs/p J

y, yQ as given in Fig. 1.6.3.

It is stated in the paper that if for any reasons shapes other than 

that given in Fig. 1.6.3 are used, the fundamental curve may be obtained 

by flux plotting.

1M& ;
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1.7. General Observations.

In the foregoing dissertation selected from a wide range of 

published literature, it is evident that only a few attempts have been 
made to analyse slotted systems in a manner of interest to this paper.
Dr. Chapman assumes a linear ohange of permeance with position which 
produces a trapezoidal permeance wave. As the width of the slots, have 

been adjusted to agree with Carter’s result the accuracy is reasonable 
throughout a range of x. However the method of considering both stator 
and rotor as independent entities is not strictly correct, but it i3 not 
important in this instance since extreme accuracy is not intended. ^he
author considers this simple method to be one of the mo3t valuable methods 
for all types of slotting of rectangular section where an approximate result 
is required.

Dr. Walker’s method is a closer approximation to the truth in 
the oases where t s but to arrive at a result for a given machine 
requires a considerable amount of effort and cross plotting. It would 
appear desirable to have previous results worked out by this method for 
it to be of practical value, though it is doubtful if the greater accuracy 
obtainable over the previous method is worth the additional effort.

Both of the former methods are only applicable to rectangular 
slots since they are based on Garter’s result. Hancock’s method is only 
applicable to one specific configuration of rotor tooth designed to produce 

a sinusoidal wave for a given problem. Evidently, the method of flux 
plotting is the only other way that the flux distribution for other shapes
can be determined
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The method suggested by Dr. Pohl adds considerably to the 

simple empirical methods of analysing air-gap permeance. As presented 

by Dr. Pohl, it is based on the same assumption as Dr. Chapman’s method, 

i.e., adjusted to agree with Carter’s result in one case only, the point 

of minimum reluctance and when t^5> s. The flux lines having been 

idealised into straight lines and circular arcs it is necessary to restrict 

the path length to obtain an accurate result. Dr. Pohl quotes only two 

values of for the substitute angle applicable to rectangular slots.

It is necessary to investigate the accuracy of these statements in 

relation to the out-of-line position and throughout the motion of the rotor. 

Since the parameter {3 is empirical the value to give accurate correspondence 

of peraeance under all conditions will not be constant. However this is 

no drawback to the method provided for a given configuration and range of 

movement of the rotor a particular value of A can be used to provide 

reasonable accuracy.

In the following pages Dr. Pohl’s method has been used to develop 

equations for triaig'-.lar and trapezoidal teeth, with various other methods, 

used to determine suitable values for the independent parameter *

Circular teeth have been considered in some detail for a number of reasons;

(a) The rotor shape developed by Hancock and Walker, for the single

sided case is nearly circular and pointed to the fact that a 

circular shape may be best for sinusoidal (or nearly) flux 

distribution.

(b) An exact result for circular poles is available in several

forms which enables a direct comparison to be made of the 

circular shape and other shapes equivalent to a circle.
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Though this exact result is available it is possible to 

show that the substitute angle method provides an easy 

accurate means of obtaining the flux leakage between 

circular poles.

(c) No literature was found referring to the permeance of

circular teeth, though considerable attention has been 

given to the problem of flux leakage.

No literature erf any kind has been located on the question of 

triangular or trapezoidal teeth except the mention by Dr. Pohl that the 

method could be applied by suitable adjustment of /3 .

It is to be hoped that the following pages add in some measure 

to the knowledge of air-gap permeance which has occupied the minds of so 

many distinguished men during the last eight or more decades.
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SECTION 2.

Triangular and Trapezoidal Teeth - Method A.

2.1 Assumptions.
2.1.1. Eor this investigation the teeth are assumed to be of 

infinite permeability, i.e, saturation neglected. In the oase of 

triangular teeth this would not be valid since for seme relative 

positions of stator and rotor there would be considerable bunching at 

the tips, which would be equivalent to the trapezoidal tooth with small 

t. However a truly sharp triangular tooth would not be obtained in 

practioe but would be slightly rounded.

2.1.2. All cases considered in this section will neglect the 

effect of end leakage, but for a reasonable ratio of core length to slot

pitch the effect is fairly constant and contributes little to the oscil

lating permeance. Where short cores are concerned, as in the oase of 

phonic and similar type motors, the end effect is of importance. This 

effect will be treated briefly in Section 4.

2.1.3. The flux lines will be assumed to follow simple geometric 

shapes for the sake of simplicity of solution. The equations will be 

developed such that there is a uniform flux throughout the air-gap.

2.2 Triangular Section Slots.

The basic geometric constants used in this investigation are as

follows :

g = length of air-gap.

O(p- angle of elevation of slot side to the plane of the gap;

0(e the exact substitute angle; CX the approximate 

substitute angle.
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s = total gap opening at the plane of the gap. For circular 

teeth £ is taken to mean the width at the base of the 

tooth (see Section 3).

x = relative displacement of (say) the lower member with respect 

to the upper. Hence for x = 3//2, 9 ='7C' for triangular 

teeth and for x = (s + t)/2 9 = nX for trapezoidal teeth,

t = width of tooth at plane of gap.

Py = ^.he geometric permeanoe per unit length at x.

Where other constants are used they are explained as they occur in the text. 

2.2.1. Teeth in Line.

The flux path consists of a 

straight portion crossing the air-gap 

plus two circular arcs. Hence the 

magnetic path length = g + 2<xr with 

an area of dr per unit length of core.

dr.\ dp 

and p

g + 20<r 
dr

g + 2 <xr
= 1 loge(g+20<r ) .

&
Where 2 is for both identical haIves) 
thus with limits /2 and 0 and x = o, 

„ = I log„(l + 2.2.1.

As g —► o p0 OC , hence the expression may not be used for

the rectangles formed by g = o, but p —^ /g as OC —o.
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2*2.2. Teeth Out of Line.

For this condition the path

length

l = E + f*

and, henoe

,s/2

s/2= 2 g + V2

■/g
1 + 0< s/2g 2.2.2

2.2.3. General Position x.

For this oase three kinds of

flux path occur, each of which have

three sections as before. As the plot

s ^is symmetrical beyond 'Z i.e.,

p(x <9/2) is mirrored for x /> s/2, only

one equation is required.

2.2.3.1. Area A.

The path length being (g +o(x) gives 

x

g + (XX g + <X* 2.2.3.1.

2.2.3*2. Area B.

The path length = (g + 2o(r - <Xx) resulting in

J
x

g + 20c r - cx x
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X log (l +0((3-x)/g ) 
' + « x/g )CX ' (1 

for both areas,

2.2.3»3. Area 0,

The path length = g + Q?(s-x).

S/ 2 + X
.*. pox =

2. 2.3.2.

g + CX (s-x) g + O' (s-x ------2.2,3.3.

s/2

2.2,3.4. Combined General Case.

Combining the three areas, the total permeance for x where 

o ^ x ^ 8/2 we obtain

X X 1 log C + CX(s-x) on*
g + CX x g + CX (s-x; CX g + CX x

To check, put x = o and 8/2 in 2.2,3* and p reduces to 2.2,1. and 2.2.2. 

respectively. This equation is seen to be homogeneous in s and g where 

x is expressed as a fraction of s. This expression may be differentiated 

to obtain the differential pemeance, a function much used,

2.3. Trapezoidal Teeth.

The treatment for trapezoidal teeth is precisely the same as 

for the triangular shape where

t2X = tl'f = t *

*’ - = tz f - ° ■

Where t, ^ and are the root widths of the stator and rotor teeth
V

'Ip ana w2p
respectively. However where either or both members have t^p and/or 

tgp ^ O the equations developed herein will still apply provided 

t^j or t^p S(l-C0SCX ), but it may be necessary to

different value of 0(

use a



2.3.1. Teeth in Line.

The permeance here differs 

from 2.2.1. only by the addition of 

t/g hence

t 1 log (1 + C<s) ------ 2.3.1.p = — + — °es -----
o g o< g

2.3.2. Teeth Out of Line.

For the two areas in this

position,

v2

P = 4a
g + 0<(s/2 “ r)

k loS« 1 + 3//2
1 + C* (s-t)/2g

and,

pb = 2

»/2

V2

dr _ (a-t)/g
g + (Ctf/2)(s-t) " T +<x (s-t)/2g

FIG. 2.3.2.

resulting in,

Ps/2 = 2g + 0((s-t)
2(s~t)__________  + 4 log 2g + Q< s

0( 2g + CX (s-t)
2.3.2.

In 2.3.2. as t —^ o ps/2 -P- 2.2.2. which is correct.

By inspection 2.3.2. will be seen to be valid for t ^ s.

-A
* 
k
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i—[ —*- —I —l c b j a b ;; c d i

2.3«3» General Pogition x (t ^ 9 ^2).

Kxamination of Figure 2.3.3- 

reveals that several sets of equations 

are required, depending on the ratio Vs.

Furthermore for a given Vs, several 

equations are required to specify a ccmplete 

half cycle. The three categories of the 

ratio Vs are

(i) o ^ t ^ V2 5

(ii) s/2 ^ t ^ s, and

(iii) t s.

Category (i) is treated here, (ii) and (iii) in subsequent paragraphs 

2.3.3.1* px for o ^ x ^ t.

By the method of 2.2. the four areas produce permeance 

equations as follows :

t-x ,
P = -----xa g

FIG 23.3.

pxb = 2 g + cx r
2 log (1 + <Xx/g) ;

s+t
2

p =2^yc

♦ v2

dr_______ _ log 1 + C<(s-y)/g
g+2 CXr- 0< (y+t) 6 FT 0( y/g

+ y

pyd = g + 0( (s+t/2 - r) + 0((r-y+t/2)

3 + t 
2
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S^fiL
1+ C< (s-x)/g

Combining these we obtain for o ^ x ^ a/2

p t-x 2 log (1+ (Xx) + 1 log g + (X(s-x)
= g « g « g + o< x

+ ivfer................ 2-3*5*1*

When t = x =o, Px (2.j5»3*l*) —► 2.2.1; when x = o Px —► 2.3.I.* 

which is correct.

2.3.3.2, px for t < y ^ S//2.

The four areas for this case 

are shown in Figure 2. 3«3*2. and produce 

permeance as follows :

dr ______(x-t) .
g + o((x-t) " g +~0<(x-t) '

?xb

t
x+t

2 log g + <XX

FIG. 2.33.2.

g + (X(r-t) (X ' g + (X(x-t) >

?/ 2
g + 2r<X - o(x

I loSe g + <X(s-x) . 
CX e g + 0( x ’

and,
s+t
r2

V 2

g + 0< (B/2 -x) ” g + D<(3“X)

which on combining give for t ^ x ^ 3/2
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D _ 2 log g + 0( x (x-t) x
* ex " g + o( (x-t) g + <X(x-t) g + CX(s-x)

I I°g(3 g + C< (3-x)
c< g + 0< X 2.3.3.2.

At the point of discontinuity where x = t, 

Pt (2.3.3.2.) = Pt (2.3.3.1.).

2.3.3.3. px for s/2 ^ x ^ 3J_Z + t.

The limit in this case need only be 
s+1taken to ~~ as the curve is symmetrical up

to (S/2 + t). The four areas produce

permeance as follows : 

t+s/2

= 2 - - - dr .
g + o< (r-t)

2 gH QC(s/2) ,
<X g + Of (x-t)

x+t 
r

_____ dr
g + 0( ( s+t-r)

t+s/2

2 loge g + (Xs/g , 
C< g + 0<(s-x)

and

s
r

X-t
g + (X(s-x) " g + <X(a-x)

g + (XCx-tT
x-t

g + CX(x-t)

t
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The result for S/2 ^ x ^ (9/2 + t) is therefore
_ 2 log g + P(s/2 2 log g + 0(s/2

o< g + o< (x-t) o< g + o< (s-x)
o_v r v—4- ^ ---- 2.3.3.3.+ g + 0<(s-x) + g + 0<(x-t)

3/2 (2.3.3.3.)

Ps+t (2.3.3.3.) 
2

P„. (2.3.3.I.) .
/ 2

V2 (2,3*2*} •

rxo

and,

2 log 1 + CXs/2g 
0( "" 1 + C<(s-x)/g

(s-x) . 
g + 0((s-x)

2,3*4. General Position x (s/2 t ^ s). 
For the in line or maximum

permeance 2.3,1, applies. Equation
2.3.2. only applies to cases where
t s but needs modification beyond
this region. Examination of Figure
2.3.4.1. reveals that 2.3.3.1. applies
for o< x s/2* Beyond this a
separate set is required. If t ^ s
the first discontinuity occurs at
x = s/£> the seoond at x = s.
2.3.4.1. py for g/2 ^ x < t.

Four areas in this region
produce permeances as follows : 

t-xp = -- >xa g
d - 2 log (1 + °< a) ,Pxb “ oc e 2g

FIG 2 3 4 I.
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The combined permeance for s/2 < x ^ t 

is thus

-* ■ if.!10*"11* j
(g~y)g + cX(s-x) 2.3.4.I.

which agrees with 2.3.3.1. at x s s/2.

2.3*5. General Position x (t ^ s).
As mentioned previously 2.3.1. applies to the poles in line

position, 2.3*3.1. up to x = s/2 and 2.3.4.1. up to x = s. Beyond

this a new equation is required. However this is seen to be constant

as follows :
t-x
g

2 log (1 + 0( s) 
OC 2g

2 log (1 + ota/2g ) _ JjL
ol x + oc(s-x)/g pxd 1 +

-x)/g
CX(s-x)/g

which on combining give :

P - it l°ge + a3'/2^ + (trs.) _____  2 3 5 1px " OC 2g + g ^0.5.1.

which is constant and equal to 2.3.4.1. when x = s.

2.4. Summary.
The equations developed in this section have been given in 

full for the various configurations for convenience. These are 

summarised in the following and nominated with their original eqaation 

number.

2.4.1.

Px =

2.4.2.

Triangular Teeth,
X x l log g + cx(s-x)

g + <Xx g + (X (s-x) o< g + O<?c
for o ^ x ^ s/2.

Trapezoidal Teeth.

2.2.3.

(i) o ^ t ^ a/i
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pX
s t-x 2 log g 4- o(y 1 log g + cX(s-x) X_______

g <X g ’’’ g + CXy g + cX(s-x)

for o < x < s/2.

log g + °^x , (x-t) x 1 log g + cX(a-x)
g + cx(x-t) g + C<(x-t) g + CX(s-x) + 0( g + 0< y

for t ^ y ^ s/2,
2.3.3.2,

Px S 2 log g + (Xs/2 2 log g 4- 0(3/2 (s-x) (x-t)
CX g + (X(x-t) (X g + CX(s-x) g + CX(s-x) g + 0<(x-t)

--------- 2.3.3.3.
for s/2 x (s/2 + t) #

(ii) s/2 ^ t ^ s.

n - *1* + £ loSP £ + <* x , I l°gp £ + ^(g~x) . x
Px ~ g CX g Ctf g + <Xx g + CX(s-x)

--------- 2.3.3.1.
for o ^ x ^ s/2.

D _ llE + £ log CX sv 2 log ,1 + <Xs/2g \ (s-x)
PX ” g (X 2g ' (X U + 0<(s-x)/g g + C< (s-x)

--------- 2.3.4.1.
for 9/2 x (t+s)/2.

(iii) t ^ a.

p _ ±2 + 2 log g+.(X,y i log &„,^.CX.(aZx}. ___ x . . .
Px ” g + (X eg +o( 6 g + CXx g + CX(9-x)

--------- 2.3.3.1.
for o ;<C x ^ s/2.

D _ Jil* + 2 log /. (Xsx 2 log fl + CXs/2g \ (g-x)
Px g <X v ' 2g o( w V1 + oi(s-xVg g + CX(s-x)

--------- 2.3.4.1.
for s/2 x ^ s ,

P = £ l°ge (1 + Ki) +   2.3.5.I.
X cX 2g 7 g

for s x ^ (s+t)/2



-35-

2.4.3* Permeance Tables.
A number of tables have been calculated from the foregoing 

equations for values of s and t given in the following table. The 

value of g is taken as unity and the numbers represent the table 

numbers in Appendix 3»

The tables are given in two sections with the same number.

The first section (A.3«l) gives the value of p^ calculated directly 

from the foregoing equations appropriate to the ratio t/s. It will 

be appreciated that though several different equations may be required 

to specify the permeance between x = o and (s+t)/2 they are continuous 

surves. Hence, to use the curves, it is not necessary to refer to 

the equations, unless extensions beyond the range covered are required.

Consider, for example, an air-gap slotted on both sides, with 

rectangular slots arranged suoh that s/g = 20 and t/g = 10. From the 

chart it is evident that table 23 gives the permeance variation, with 

position. Assuming that the substitute angle is =1.0 for this

shape of slot, then we obtain
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x o 0.l(s+t) 0.2(s+t) 0.3(s+t) 0.4(s+t) 0.5(s+t)

px 13.0445 U.4433 9.0540 6.5375 4.5555 4.0912
where x is the displacement of one tooth with respect to the other, as 
a fraction of the slot pitch (s+t). Hence, at x = o, Px = 13.0445 
is the maximum or in-line permeance and x = 0.5(s+t) is the minimum 
or out-of-line permeance.

To calculate these values independently we see first that 

t = s/2, so that we may use equations 2.4.2.(i) or 2.4*2.(ii).
In all cases the ourves are symmetrical, i.e., the second 

half of the wave between 0.5(s+t) and (s+t) is the mirror image of 
the first half between 0 and 0.5(s+t). To obtain an analysis of this 
permeance wave, any number of methods may be used, a typical standard 
method being given in Appendix 1. However, for convenience the second 
half of table 23 (A.3*2) contains an analysis of this permeance wave 
as follows •

ao bl b2 b3 b4 b5
8.0316 4.3307 0.3592 0.1249 0.1770 0.0210

Hence for this particular slotting arrangement the permeance variation 
with position may be represented by :

p^ = 8.0316 + 4.3307 cos 9 + 0.3592 cos 29+ 0.1249 cos 3 0
+ 0.1770 cos 40+ 0.0210 cos 5 0 --

The differential permeance is then simply :

8 Px
■ ■ y- = 4.3307 sin 9 + 0.7184 sin 2 9 + 0.3747 sin 3 0a 9

+ 0.7080 sin 4 0 + 0.1050 sin 5 0 ---

Where 9 may be equal to wt
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It must be remembered that in all cases considered in this 

work the permeance p referred to is the geometric permeance and that 

when using this figure for magnetic calculations it must be multiplied 

by = 4 TC* *10 7 (for rationalised MKS units).

It will be appreciated that it is not possible to specify a 

unique substitute angle for all configurations as 0< will vary with 

all parameters. It will be shown however, that a reasonable 

approximation to the permeance variation can be obtained by using a 

constant value of <X for a particular configuration.
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SECTION 3.

CONSIDERATION OF CIRCULAR AND OTHER TEETH.

3*1. General.
In the following paragraphs methods are given for :

(a) External Circular Teeth,
(h) Internal " "
(c) Elliptic Teeth.

The preferred methods used will be based on and related to the

equations in Section 2. Other methods for comparative purposes

are given where such are feasible.

3.2. External Circular Teeth.
Pour methods are given here, the first of which is an

extension of Dr. Arnold's equivalent square applied in two ways,

(i) with equations developed in Section 2 and (ii) applied to

Dr. Chapman’s method. The second method, an equivalent trapezoid

applied directly to the equations in Section 2. Finally, an

extension of Dr. Pohl's involute method is included for academic

interest only.

3.2.1. Equivalent Square.
Consider a circle diameter t and a square of side 2b,

then from 1.3.5*

Area of circle ir t2
4

Area of square = 4b^

which on equating gives b = —JtC = — • This value of t' together

with a revised value of s' may be applied to the equations in Section 2 

or to the method of Dr. Chapman from Section 1.
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3.2.1.1. Method 1.

From 3.2.1. the original

tooth pitch

(s + t) = (s' + t*)

where t' = t' x v'vF' /2. Hence

from 2.3.1. for the poles-in-line position

t' 1 log (1 + 0< s' )P = — + — N ------- ;------'o g (X g*

FIG 3.2.1.1.

------  3.2.1.1.

Here CX is to he adjusted as for rectangular slots in Section 5* 

The revised value of the air gap g* is g + (t' - t).

For the poles out of line 2.3.2. applies where t' ^ s' 

and 2.3.5*1. for t' ^ s'. The equations for displacement are

chosen from Section 2 according to the ratio t'/s'.

3.2.1.2. Method 2.

For a particular ratio of s'/g' from 3.2.1. a revised value 

oft',t"(t"^> t')is obtained from Figure A.3.1. in Appendix 3. 

The final constants are then t' ', s'' ( s'' = (s'+t') - t" = (s+t) - 

s1' ) and g',

The in-line permeance is given by t''/g', decreasing

t'' - s' *linearly to the out-of-line permeance of ----- —------- •

3.2.2. Equivalent Trapezoid.

A trapezoid may be fitted more accurately to the circular

shape than the square of Arnold. The trapezoid may be fitted to the 

semi-circle in two ways, (i) by sitting the trapezoid on t and taking 

equal areas, or (ii) taking the average of the incribing and circum

scribing hexagons.

3.2.2.1. Method 1.

With the air-gap length g preserved
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Area of semi-circle 7tIT sz

2 2

from which t’ = t(-?J---l). The

corresponding value of equivalent

physical 0< P )

= tan -1 t/2 = 1>g6o>
Ct-f/2)

The value of s' is, as before - (s+t-t*), hence the 

equations in Section 2 may now he applied directly.

FIG . 3.2.2. I.
3.2.2.2. Method 2.

From Figure 3*2.2.2.



-41-

In method 1, t’ is 0.571t thus methcd 2 gives a reduction 

in t* of nearly 6$. Prom Figure 3*2,2.2., t1' =/3t' which gives 

g* =(t-fg-t,,)« The equations in Section 2 may now he applied 

with t', g*, s' =(s+t-t) and (equivalent) = ^/3 .

3.2.3* Involute Method.
This method is based on that of Dr. Pohl who applied it to 

the leakage permeance between circular poles. The flux path is assumec 

to consist of straight portions crossing the gap plus arcs of involutes 

to the tooth profile. As will be seen, the result is fairly simple foi 

a single calculation of the in-line position, bat where a displacement 

is involved the equation becomes untidy, with awkward terms. As an 

empirical solution, it is therefore not recommended for general use. 

Moreover, when Vs is other than a fixed ratio special treatment is 

necessary.

3.2,3.1. Poles in Line.

As a special case consider a tooth whose dimensions are 

restricted to s = t (*Tt /2 - l) this will enable the gap to be 

completely occupied with flux. Below this ratio the integral can 

only be taken to (s +■ t)/2, above this ratio the result is dependent 

on (a) the depth of slot and (b) the depth of straight tooth flank 

beneath the circular tooth end.

The path length

e + 2t . o(2

s+t
"2
r

J
S +

S +

dr
T7?
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, 2 r 2 rwhen —t— = x , x =t ’ * ^ " VVa ’
and g = a2; then for (s + t) SltJi

S+t
r2

J
2 , 2 a + x

2t tan -lis±tl
g 2gt ----- 3.2.1. (a)

Also, when s = t -- l), i.e. 9

3.2.1. (b)

3.2.3.2. Poles Out of Line.
S“f*1The special case of —^ 

The path length

= g + + ^2

TTt is shown in Figure 3.2.3.2,

g +1- «£ + ±.£i2 2 /» * (J'-oc)

t (2L..)2 + t ( oc 2 «2L) _UT 1
4 ( 4 ) + 2 ( w 4 )

“ [e + + I ( W - "F-]2.
How with r = /2, then

/? . „+ (j2SL)2t + i. (2 )2e-g+(8) + 2 (t ^F) .
The permeance is then (for both identical areas)

Ot t

FIG. 3.2.3.2.

3/2
/ /j7Tt \ t /2r 7^ \2(g + (-nr) *) + 2 (T ‘ 8 }2
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Putting a2 = i £gt + (-^-)2 | and |r - jTT t ; 2= x

2 2 a + x
t . -lx — tan — ,= a a 7s/2 = t

which on reverting to t and inserting the limits

s/2

where ©

h- -* 1 e + tan -1 -2C-© pan T3~e) 3.2.2.

I----zt-----/---r ' — and s is implicit.Vs+hrj2*
3.2.3.3. Poles Displaced. 0 < x < (s+t)/2 and s = t/-^--- 1\

Three areas are involved here with produce permeances as shown 

in Pig. 3.2.3.3* Area A is of the previous type which produces :

tan
7t t

-1 r - 16
i (gt +

© tan 1 ©)+ tan "1 Q-1

where 3 = fJ % |gt + t)*1 j

and, ©
g +

For area B the path length 

= g + C1 + i2

i °<i2g + 2 . 2 t CX 2‘
+ 2 # T

(XNow —— = r and (r - x)

. t<Xi

FIG. 3.2.3.3

tCX2
2

t#2 
2 9

(X0 = 1 (t«l _- x = -=-“=■ and ----d t ( 2 :j= <V t >
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. *. the path length » g + * + |- | ^ 1 -

— (2r _ 2x)2 
2 (t t )

t /2\2 2g +£ . r +

s + 2 f 2 _ (1 - 2x)2l 2 ( . 1 - 2x)2t L 2 J +1 (r + —ri

Hence

f U2+^2).

7T t
2t . -1 jjj
T tan A

r

-j r = o

where ~ (2 (1 - 2x
(X ’(“2 r it + S

and i> = (r + —o——')
Area C is similar to 3*2.3*2. thus

p = 9 tan /£ —-E— 9*xc O 16

m t

(7ftJ ( 4 - x

The resulting permeance is thus

P = P + p , + px -*xa xb -^xc 3.2.3.3.

3*3. Internal Circular Teeth.

Where the tooth consists of 

a straight flank plus a circular end at 

the root of the tooth the method of 

Section 2 may be applied directly subject 

to the limitations of depth and tooth 

width for rectangular teeth.

Ay
U

v

t-*J- -5

-i

cc
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When s ^ d ^ o any of 

the methods for external circular

teeth may be applied, consider (a) the 

equivalent square and (b) the equiva

lent trapezoid* It will be noted 

that the third method used for 

external circular teeth would become 

evolutes when applied to internal teeth, 

No results will be given for d < o as 

special treatment is required.

3*3*1. Equivalent Square.

The area of the slot 

= sd + '7T/ s !q 

= s' (d + °/2)

i.e., s'

The revised t' = (s+t) - s' and the

_ (d +7Ts/8' s (d-+«/2 :
equations of Section 2 may then be

h---- 5

|-*--- 1/—--- s/—*-| •

Fig. 33.i
applied directly with the limitation 

that (d + / 2) ^ s', which is not

significant. In addition where ^/s 1

the value if permeance is almost identical 

with Carter's result. Alternatively, s" 

and t** may be found from Carter's curves 

using s’/g> ^rom which the in-line permeance 

becomes t''/g, decreasing linearly to

(t' ' sM)/g. Obviously for s'' ^ t" this result is not valid. 

Consideration of the accuracy of this method is given in Section 5*



3*3*2. Equivalent Trapezoid

The equivalent trapezoid is 

not much use where any d. exists as the 

shape is too near that of rectangular 

teeth. Therefore from the reasoning 

in 3.2.2,2* and Figure 3*3*2. and 'with 

d = o,

s” ■ §!1 + yri - °-539S 
s' = fi1 + vV) - U0783

Hence, the equations, in Section 2, may now be applied with t’, s*, g 

and Otp = 'IT'/?, as the equivalent physical angle.

3*4* Elliptic and Other Shaped Teeth.

As any shape can be replaced by an equivalent square or 

equivalent trapezoid, there is no limit to the type of tooth which may 

be treated by the method of Section 2. However, where more precise 

results are required resort must be had to the more analytical methods. 

Where possible, equivalent slots and teeth have been treated analytically 

so that precise constants could be determined. For the empirical 

application here internal and external elliptic teeth are treated where 

the profile is not greater than a semi-axis.

3*4*1* External Elliptic Teeth.

An approximately equivalent trap

ezoid may be fitted to elliptic teeth as 

follows :

Draw CD // AB and tangent to the 

ellipse at P.

-*- ■ *■

fjq. 3.3.2.
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Draw EF such that EA is f- AC. 

Hence,
BF = BE = t’/2 

and /B AO = C>( = tan d a.

The value of s’ is, as 

before, equal to(s+t-t*), and 

by using g the equations may be 

applied directly from Section 2*

An equivalent rectangle 

may be fitted by area, e.g., 

area of quadrant 

= ab

= a* X b* •

Divide a’b’ in the ratio

a1 a
b* b

then b» = and a' = f/7X = l'/2.

The revised value of gap length g' 

is given by (2b + g) - 2b’ and the 

value of s' = (a -4- s) - a’, s’, t* 

and g1 may now be applied to the 

equations in Section 2.

3*4*2* Internal Elliptic Teeth*

Where the ratio of the 

semi-major axis to the minor axis, i.e. 

d/s > 1, it is not worth taking an 

equivalent shape for the slot, but the 

equations of Section 2 may be applied

Ftg 3.4..2.

/
/
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as for rectangular teeth.

If this ratio is < 1, an 

equivalent square is best fitted as 

follows -

From 3»4*1* and Figure 3.4*2. s’ =

S and t* =(s + t)-s'. As 

g remains the same s’, t' and g may 

now be applied as for rectangular 

teeth.

If more correct shaping 

is required an equivalent trapezoid 

may be fitted as in 3»4»1«»
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SECTION 4. 

MISCELLANY.

4.1. Method B for Triangular and Trapezoidal Teeth.

In method A the flux is assumed to cross the air-gap at 

right angles. For the method given here the flux lines are assumed 

to be circular with a turning point at the centre of the air-gap.

Two additional factors P and H will thus appear in the equations and 

though the results will be simple they are no more simple than method 

A, Moreover the value of permeance calculated in section 5 will be much 

lower than method A and requires more correction. The result for tri

angular teeth and a result for trapezoidal teeth are included here for 

comparative purposes only. Fran Fig. 4.1.

tan 0(

sinCX

P = *1 cote* ,

H = ^ oosecO<,

Hence for triangular teeth in line

~ 1 log + ®/2 oot 0<
Po = £ e g/2 oosec o<

1 log (cosex + S/g sin CX ) .... 4.1.1.
R 6

For the out-of-line position
„ 1 - 2H
Ps/2 = OCK, «...» 4*1.2.

FIS.4; K

where = 9/ 2 + 2P •

For the general position x, based on three areas

x + 2 (P-H) l log g oot PC. + s—x x_______  .
px ” 2 (X (x+2P; <X g coseco< + x 4 CX (s+2 P-x)
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For trapezoidal teeth with t ^ '2,
t 1 log (cos CX + S/g sin (X ) p = — + n °e v e*o g (X

n 2 /. 2Hx _4 log^ K3
Ps/2” 0( 1 ~ K2' Ctf K3 -ext

••••• 4*1*4*

.... 4*1*5*

where K2 = (S/2 - t + 2P) and = CX(s+2P) + g. 
When 0 x t,

Px
t-x 2 log g + 2 CX (x+P) 1 log s-x + 2P
g+0( g + 2CX H CX 6 2H - x

+ C<(s-x + 2P) • • • • • 4.1.0.

When t ^ x S/^2,
2 log g + 20<(x + P) 1 log s-x + 2P

Px = CX g + 2 0< (x+P- t) 5 e 2H - x

+ CX(s-x + 2P)
When S//2 ^ x ,

N S+2Pn _ (x-t) + 2(P-H) 2 log (1 + ** g )
px “ C<(x-t + 2P) o( 1 + 2 <X( x-t+P)

g
2 log g + <X(s+2P) s + 2(P-H) - x

+ 0( 6 g + 2 CX (s-x+p) + 0^( s—3r + 2P) 4*1*8.

4*2. Application of Bipolar Transformation to External Circular Teeth.
A suitable transformation for this boundary configuration is 

the bilinear transformation which converts the Z-plane into a parallel 
strip in the W-plane.

Consider the function

f(Z) = Xog^!^ .... 4.2.I.I.

= log (Z-a) - log (Z+a).
Let (Z-a) = r^e^l and (Z+a) = e;^2 ...... 4.2.1.2.
where ri and r2 are measured from two new origins 0^ and O2, distant 

+a from the original origin 0 (Fig. 4*2.1.!.).
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y

Henoe f(z) becanes, 
f(Z) = logjl + i («! - e2) ••••• 4*2.1.3.

The equations for a conformal transformation are therefore

v = v

u(x,y) = loge _1 ,
r2 )) 4.c.1.4*

r(x,y) = (©i - e2)
which satisfy the Cauohy-Riemann conditions.
When __ = k, a constant, then u is constant and r^2 = k2 r22.

r2
From Fig. 4.2.1.1.

2 / \2 2 *1* = (x - a) + y

Hence,

/ x2 2(x + a) + y .

/ \ 2 2.2/ \ 2 2x(x - a) + y = k (x + a) + y )
2 2 2 /l + k2 x „x + y + a - 2ax = 0 ..... 4*2.1*3*

This is the equation of a circle with centre on the x axis through 

Oi 02, The curves of constant u are thus two families of circles

with centres on the x-axis
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Let f = then,

2 2 2 . . x + y + a - 2a fx = o. • •••• 4.2*1»6»

Therefore at y = o,

x„ = a a (f - V f2 - 1 ) and,

xfa = a(f + \j f2 - 1 )

which are the vertical intercepts on the x-axis.

The distance x^. from the origin 0 to the centre k of the circle

becomes,

a(f + V - 1 ) + a(f= i - Vf2 - 1
af (l_+ k2)

k?) • ••••• 4.2.1.7.

The corresponding radius of the circle, 

\ - xa) = 8
( 2k 1 . „ . o
^ ^ ..... tf.<£.-L.O.

In addition the locus of points corresponding to constant 

differences (©^ - 02) = CX are portions of circles which pass through

the poles 0^ and O2 and whose centres lie on the y axis, which is the 

perpendicular bisector of the pole distance O]^. The distance y^ 

from the origin to the oentre G of the circle corresponding to 

©^ - ©2 = CX is given by

3^ = a cot OC ..... 4*2.1.
and, R(x = a cosec ex . .... 4.2.1.10.

The entire xy plane is transformed into a narrow strip 2Tf 

units in width and of infinite length, the x-axis being the limiting

+7f • In the transformed infinite 

strip, the circle for which CX approaches + it gives the upper boundary 

V = it and the circle for which CX approaches -It gives the lower

boundary V = -'Tt*

circles for which ©^ - ©^
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The y-axis represents the circle whose centre is at 

infinity on the x-axis. For this circle r^/^ = 1 and u = o,

thus the y-axis is transformed into the V-axis.

Vi-

FI6. ■4.2.1.2. W-P'«nfc

When particular values are inserted in these expressions 

the transformation in the w-plane becomes long and thin. When g is 

small and as the y axis is an equipotential, a fairly close approxi

mation to the true result would be obtained by taking a mean length 

and a uniform distribution.

The same transformation may be used when the teeth are dis

placed with respect to each other.

A revised value of g, g* is used for 

the V-axis and is given by (Fig,

4.2.1.3.)
(t+g*) = v* + (t+g)2,

where the line of symmetry is now a 

line perpendicular to the line 

joining the centres of the two teeth.
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An alternative method would be a simple logarithmic 

transformation of one tooth shape but the boundary conditions 

would be more difficult to meet.

4.3. Extension of Hague's method to Cater for Opposed Circular 
Teeth,

Consider the flow due to a number of Equal Equidistant 

Sources along the y-axis, The ocmplex potential w is given by

W = C log sinh .ce a . ----- 4.3.1.

To obtain velocity and stream functions, differentiate 

4.3.1* with respect to Z, then,

w = & (c logoi’* ^
C1 coth JLk

This represents a series of doublets located at points (0, 0),

(0, + a), (0, + 2a). Substituting Z = x + iy and separating w 

into real and imagineiy parts 0 and 0 we obtain,

sinh 2 X/a )
0 = G

0 =-0'

cosh, 2^X/a-cos^ ^^a

sin 2 ^ VS a

))
) ----- 4.3.2.))cosh 2 Tf x/a - cos 2 7t y/a 

Superposing on the flow pattern of 4.3*2. a uniform flow U 

in the negative x-direction

W = Uz; 0 = Ux; 0 = Uy, then,

0 = TT r, _______ sinh 2*T( x/a )
cosh 27tx/a - cos2Tty/a }) )
cosh 27f x/a - cos 2Tty/a ^

2^y4 4.3.3.
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oogh

The streamline corresponding to = 0 can be shown to be

g'n' x . 27T y 27t C1 _ ,2jX v3 CJ_ £ f -
a a aU 'a U (3 *

which is the equation of an oval with origin as centre.

The x-semidiameter is given by y = o, viz.,

oosh12ij! _ x . 2^01
a aU .

The y-semidiameter is obtained by setting x = o, thus
C»
Uy ai - oos izti = £1. 3in Z3U.

y tan 71 y cf
u

By putting G’ = Tf b^U/a and with b < a

sinh J2LZ ^ * , tan ^ -*ra " a a ’a

then both semidiameters can be seen to be approximately equal to b. 

4.4* Fourier Method for Triangular Teeth at g = o and x = o.

Consider a thin plate bounded by x = o, x = a, y = a in 

which the potential field must satisfy :

0 c) S’
<5 2 £ -2

= O
x cy y

for which the arbitrary boundary potentials are :

V = @ y = a,

V = V2 @ y = o,

V = @ x = a,

and, V @ x = o.

V and ?£ are functions of y and x respect

ively. This problem can be solved easily 

by adding together four solutions correspond

ing to the four less arbitrary sets of boundary

Fig. <4.
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conditions as follows :

V = VI at y = a ) V
V = 0 at y = o j V
V = 0 at x = a ) V
V = 0 at x = o ' V

V = 0 at y = a ) V
V = 0 at y = o ^ ^ V
V = V, at y = a ) V
V = 0 at x = o ' V

This is permissable since the differential 

and linear.

Consider the case represented by 

product solutions

X = C^coSyW x + O^sinjux

apply, and the constants are as follows, 

at x = o and a, = o and yic = n7l\/a, n = 

If V is also to vanish at y = o, 

general solution XI becomes

n c 1

Finally, for this to satisfy the

= 0 at y = a )
= V2 at y = o | ̂
= 0 at x = a )
= 0 at x = o ^

= 0 at y = a )
= 0 at y = o ^
= 0 at x = a )
= ^ at x = o ^

equation is both homogeneous

(l). Here the primitive

Since both X and Y vanish 

If 2, 3.
then C, = - C. and the 

j 4

remaining condition in (l)

above, the Cn must be the undetermined amplitudes of the Fourier sine-

series expansion 
O0

V1 2 C sinh nTt n sin n nX 
a x,

n = 1

which are given as

2C sinh n'H' n
2
a sin n 7t 

a x dx *
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The complete solution corresponding to the particular set

of boundary conditions (l) are determined as
~ ' sinhC1^ /a)y . n7t x ' 8 

sinh n’ri a'w • l S V. sin — x dx . 1 a
n = 1

o

Alternate solutions for the three remaining sets of boundary 

conditions 2, 3> and 4 can be written down directly by simply rotating 

co-ordinates in the above solution. Thus,

sinh n7t (a-y)/
(2) " a sinh nTt

n = 1

a . nT\ x/. sm /a . Tr . n'Tt x/ , am / a dx,
J

(3)
2 V ?i.nh.r‘.!l¥* • sin n-rf 7/, . sin Va dy,
a Z__ ? sinh nyf 0

n = 1

oO

sinh n 7f
2 V sinh n7f(a-x)/a . nTty/

v(4) - i ------------ sln
n s 1

Hence,

V = V

7^ sin r* n 'a dy.

(1) + v(2) + v(3) + V(4).

For the boundary conditions in this problem 7^ 2 ~ ^2 ~ ^ 

and Tll = = 100, the problem thus consists of only,

For the integral in we have :

C a
\ 100 sin ^2lL , 100ax dx = —t~tn Tr

nTt x- cos —‘------a
' o *

0 n even, »
200a

n'TT

Hence we have : 

400

, n odd 1, 3 etc.

sinh
n 7T y QQ n 7i y

V - a sin n /\ x + 400 > sinh a sin (rf7( y)
ft n sinh niX a r7t Z j n sinh ( \

i i v '



a800 X"7 sinh
sinh nTT

This is the complete equation of potential in the square region
and since the square is symmetrical also represents the flow. The square 

being quadrisymmetrical needs potential values in one quadrant only. For 
a similar method using polar co-ordinates see 4.6.
4*5* Pulsating Permeance for Short Cores.

affect the pulsating permeance. If d^ is large in comparison with a the 
additional static permeance will not be large and of minor importance. 
However leakage beyond about 2d could be neglected. A factor of more 

interest to this work is the effect of leakage over the end of the tooth. 

4.5*1. Image Area Method.

between the areas which overlap. No movement of flux lines occurs in
this method but results in a permeance which is a maximum when the poles
are in line and a minimum when the poles are out of line.
4.5*2. Poles in Line.

The area of the flux
Dath is constant and eaual to

Beneath the tooth depth some leakage will occur which does not

Flux is assumed to traverse the space from one tooth to another
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The area = ■§■ * 7? *^*S/2,
and the permeance

d %
5 + 2g

3 s

x 2

-s^ 20TT for 8 ^ d*
4.5*4. G-eneral Position x.

For the LH area,
f xd 2d 2x path = zrr + y - -

area = i (s-x) (a) (l - 7);9

d(s - x)2/2s
2 Tf(*| + 26 2xd

3 s ) + 2g

For the HH area,

path = (d - ~ + | . ~) + 2g;

area =

• P

x2d/
x2d/2£

a'b' ' 27T(a - z! + 2/3 £2) + 2gS S
The combined permeance is

Px “ ^ab + ^s’b* ...... 4.4.1*3*

It is easily seen how this method may be extended to trapezoidal

teeth, but is slightly more complex for semi-circular teeth. However no

further work is intended here on end conditions. Other methods may be

developed using the whole of the tooth face, and there is no reason why

a substitute angle could not be applied to all end conditions.

4.6. Application of Fourier Method to Internal Circular Teeth at g - o.
This method is adapted directly from Zworykin p.370 (ref. 7.3*82)

and is similar to the method used for a square slot 4*3* • The solution
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enables plots to be made of the potential distribution in a circle. 

The permeance can thus be deduced for large values of S/g, quite 

accurately enough for practical purposes.

Separation of variables can be used in the solution of the 

two-dimensional Laplace Equation in polar co-ordinates. When it is 

assumed that the potential function can be separated as follows :

0 (r,©) = f(r). g(©)

then the general solution can be expressed as the summation

0 (r,0) = + B^/VO (sin k© + D^cosk ©)

where k is the separation parameter.

With the potential distribution on a circular cylinder known

the distribution reduces to
00

0 (r,©) = (~)n (an sin n© + bncoon©)
n = o

where,

1
7t

1
Z'n

0 (R,©) sin n© d©,
o

r 27^

o
21\

and, b = _ —.

0 (R,©) d©

0 (R,©) oos n © d ©, n o.

Hence R is the radius of the cylinder and 0 (R,©) the potential 

distribution on the surface of this cylinder.

For the case of two semicylinders of radius R at potentials

of V and -V respectively, the co-efficients are :
~ ,2nXfit

1 V sin n © d © + i.
IX

(-V) sin n © d ©
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J- (n odd), nTt 0 (n even)

and, b
• v or

V cos n 9 d 9 + —
if

2rrf
(-V) cos n 9 d 9 = 0.

J

The solution becomes therefore,
00

1 2k-l
(0r,9) = ~f 2k"-"T (|) sin (2k“1) 9 .......... 4.6.1.

k = 1

A plot of this potential distribution is given in Fig. 4.6.1.

-♦V

4.7. Application of Schwarz - Christoffel Transformation to 
Trapezoidal Teeth.

Conformal transformation of tooth shapes with CX 90° prove 

to be almost unworkable in the forms required for trapezoidal teeth and 

will not be attempted in this work. Carter^ encountered this problem 

on several occasions in his air-gap calculations. His approach was to 

choose an equipotential line which most nearly fitted the shape of the 

pole shoe, where the equipotential lines resulted from the distribution
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between rectilinear planes.

A similar method may be applied to trapezoidal teeth using a

21transformation given by Schofield in a heat flow problem.

The Z-plane area to be transformed to the W-plane area via an 

intermediate t-plane is shewn in Fig. 4.7.1. where the dimensions

Cf

restricted to o in ^ £ and B/e = Otf

+(
/-fo0 i 1 h ------ 7sI o h ----- ±jJ11 t E t -<?\

i m
V- 00 1 f 4 /

-ay

-2- Inland

: 1 ■f i \
\
1

\-0O 1 _ _ _ _ _ _ 5_ _ _ _ _
1

E'
W- jolcinc

Fig. .7.1.

For the transformation to the t-plane from the Z and W planes we have :

ff = Pt + a)-1 .......... 4.7.1.

f~ = « (t-1)"1 ........... 4-7.2.

If K, E' and OG, O’G' are the respective origins and real axes we have 

on integration and evaluation of the constants :

W = ;4loge(l-t)

Z = loged-t) + ~y- loge(1+i)

4-7.3.

• ••••• 4*7* 4.
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where a = m/( -£ -m) .

Henoe,

and,

BO - V [>».(>-*'],,, ..... 4.7*5

BO
= 1

t =

m ,
- Tf 8 ,

00
..... 4. 7.6

E*0 ’ ■ " 4 [ l°8eh-t^J ,
t = 1

..... 4*7*7

E’C* " $ [IOge^
t = 00 ..... 4*7*6

x = O’E’ + E’G* - EG - BO [-£/(■£ -m)J

=
-£m , ^
(€-m)7T * ioge n

m log / m x- + -j &e ----)i 7T t -m

ii

**50

1_ / m log
Tf -£-mj

. ra log. m
m * £ "6 -£ -m I- ••••• ^.7.9

For calculating the complete distribution _t must be eliminated from 

equations 4*7.3* and 4*7.4.» so that the co-ordinates (x+iy) of the 

Z-plane may be obtained in terms of those (u+ iv) of the w-plane. 

Now from 4*7.3.
uTf/^

t = i - 6

While from 4.7.3* and 4.7*4.

(x + iy) = (u + iv)

cos (vTf/^) + i sin (v7t/^) ^ .......... 4*7.10

nff
, log 
+ TT

] + (^^n) { 1 “ <£~^~(cos ^7 + i sin ~jr-)j
m

..... 4.7.11

Hence,

x -m m. u +

(L -m

2 2 A + B

e • v + -rr

2W l°8e [

tan*"1 (B/a)

] •.... 4*7.12 

........ 4.7.13
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where

and, B

u7^
L-{ £ -m) <L______cog(v7( //)

m
-(-£-m) (L ^ 3in(v7{//3

• • • • • 4 • 7 • •

• •••• 4*7*15*

Fran equations 4*7.12 to 4*7*15 the co-ordinates of the points of 

intersection of the equipotentials with the flow lines may be calculated. 

The nearest equipotential lines to the trapezoidal shapes may be used to 

determine the permeance for a given physical 0( .
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SHCITION 5 .

PRACTICAL CONSIDERATIONS - RECTANGULAR TRIANGULAR 

ATiD TRAPEZOIDAL TEETH.

5*1. Rectangular Slots.
l6In a recent paper by Dr. Liebmann some practical results 

on rectangular slots were given. These results were obtained by 

considering the slot as a resistance network and solving for permeance 

by an analogue method.

The terminology is somewhat different from that used in this 

paper, but it must be noted that his generalisations lead to fewer 

diagrams for a given range of values. Dr. Liebmann’s dimensions are 

shown in brackets, his useful generalisations are

s
T

X

s— =
g

s + t

X

I

(f)
(f)

$

5.1.1* Description of the Method.

The expressions S, 'X , are ohosen as relative

dimensions of width, pitch and displacement.

The change of air-gap flux is assumed to be independent of the 

relative slot pitch V , provided that 'T' ^ 2 ( S' + 2). This

i9 confirmed to some extent by his experimental results. To interpret 

this in the terms of the present paper

T > 2 ( s *2)
i.e,,

> 2(— + 2)
gg
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or s + t ^ 2s + i+g 
or t ^ (s + 4g).

It is not clear where this limit was derived from but t = (s + 4g) 

represents the minimum value of t for which Garter's result for a 
deep slot is valid. However equations have been developed to cover 
these conditions so a full comparison will be possible.

Models were established for various ^ and for different 
S . It was then necessary to measure the total resistance R between 

the two conductors outlining the shapes of the model since P(A ) ^
Values of ^P/d were obtained by numerical differentiation.

5.1.2. Abstracted Results.

0.917
0.933

These results were scaled from a graph in the 1EE Journal
The values of A quoted is for a value of T = 20, which is readily 
convertible to any other value of T , subject to the earlier mentioned 
restriction that ~X ^ 2( S + 2). In the terms of this paper

the conversion to other 'X is

P-r = (l ~ 20 s + t ^ " p20^*
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It will be noted that this expression remains positive only for

20 —"f"■■ = 1, i.e., for - ■* * = 20s + t g

which is the limiting maximum.

5.1.3. Comparison of Methods.

In the following, comparisons are made between the results

of Dr. Liebmann and the other methods so far suggested.

The methods to be compared are as follows :

1. Method A,

Exactly as derived in Section 2.

2. Method P.

Method of Pohl with <X adjusted td agree with Carter.

3. Method B.

As derived in Section 4*

4* Method BP.

Method B with Oi adjusted, as in 2.

5. Method C.

Dr. Chapman’s result from Section 1.

Comparisons will be made for each method at the maximum and 

the minimum permeance position and then over a range of x for the 

case of T=20; g = 1; s = 5, so that t = 20-5 = 15 > 5 + 4.

5*1*3*1. Comparison of Maximum and Minimum Permance Values.

Maximum Permeance.

For method A from 2.3.1* we have with cx = ^ /2 •

A.

The equation for method B is obtained from 4.1.4*1. with o( = ^ /2

1 2 loge(s/g)
g

In the case of method P, cx = 1.0 in 2.3*1*, that is 

t
| ♦ loge (1 + s/g) • • • • »

B.

P.
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Method BP requires a special value of CX to obtain conformity with 

Carter’s result. It is sufficient here to adjust CX to agree with 

P at the in-line position. A value of CX = 0.8 agrees with P for 

o( = 1.0 within 0.12$, thus

PG = ~ + Q^r loge (cos 0.8° 4- ~ sin 0.8° ) ..... BP.

It is necessary to use Carter's results for method C, hence, 

for convenience a plot of this is included in Appendix 2. For this 

* ^ = 20; therefore from Pig. A.2.1. curve B for S/g = 10case
g

C = 0.67. Hence t = 15 + 0.33 x 5 = 16.65, = 3*33> and the

relative permeance = 16.65/20 = O.8325. This figure is the exact 

value for this type of slotting.

Minimum Permeance.

V2

Prom 2.3.5.1. with (X = ^/2 and 1.0 respectively we have

t - s 8
nXg + ,£i°ge(i +

V.
- ~ S + 4 log. (1 + b^2g)

g e

A.

P.

For methods B and BP the permeance is given by : 

t - s 2 log G/2 + CX(3/2 -k P)
‘ ®/2 " g * 0( ® g/2 + H

where for method B, 0( = ^/2; P = 0 and H = g/2. For method BP,

(X = 0.8; P = g/2 cosec 0.8°.

With Dr. Chapman's method it is only necessary to determine

the amount of overlap. For this case the overlap is 16.65 - 3*35 = 13.30

and the relative permeance 13.30/20 = O.665.

Table 5.1.3.1.1.

MAXIMUM PERMEANCE

Method A B P BP c L

Rel.Perm, 
$ Diff.

0.819

-1.92

0.801

-4.08

0.840

4-0.6

0.842

4-0.84

0.8325

-0.3

0.835
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Table 5.1,3.1.1. (Contd.)

MINIMUM PERMEANCE

Method A B P BP C L

Eel. Perm.

% Diff. 
from L

0.703

-6.75

0.5805

-23.1

0.751

-0.4

0.6250

-17.1

O.665

-12%

0.754

Points of interest in this comparison are :

(a) Method P is very powerful and maintains the accuracy claimed

by the author, for the conditions of this problem,

(b) Method A accuracy is quite good but the method is only useful

in its relation to method P,

(c) The slope of methods B and BP are far too different from that of

method L to be of any use in the present application. It 

must be noted that the permeance is reduced mainly by the 

reduction of flux penetration into the slot and even though o( 

is varied, the slope is still not sufficiently improved. No 

further mention will be made of these methods.

(d) Most surprising is the accuracy and simplicity of method C,

the only drawback is that Carter1s curve must be referred to, 

before it is applied; though this is no deterrent since the 

curve is so well known,

5.1»3*2. Comparison of Permeance with Displacement of Rotor.

Methods A and P are calculated from equations in 2.3.3* with 

o( = ft/2 and 1.0 respectively. For Dr. Chapman’s method the 

permeance decreases linearly to the minimum value at x = s', where s’ 

is the reduced value of the slot opening.
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Table 5.1.3.2.

r = 20; s = 5; g = i; s = 5? t = 15 .
X 0 0.5 1.0 2.0 3.0 4.0 4.5 5.0
A 0.819 0.8X3 0.800 0.768 0.737 0.712 0.705 0.703
P 0.840 0.835 0.825 0.799 0.774 0.756 0.752 0.751
L 0.835 0.832 0.824 0.802 0.782 0.762 0.755 0.754

% Diff.
P to L 0.6 0.36 0.12 0.37 1.02 0.79 1.0 0.4

The above figures are plotted in "Pig. 5.1*3.2. and show the accuraoy 
which is maintained by method P over the whole range.
5.1.4. Comparison of Carter’s Result with Method P.

In previous paragraphs some practical results have verified 
the overall accuracy of method P in a practical case where Vs = 3*0. 
Furthermore this accuracy is maintained throughout the range of movement 
of the rotor. Though a nominal value of = 1.0 was used in the
calculations it does not follow that it is the correct value to use in 
all cases, nor indeed in the case studied. The value of CX is not very 
oritioal in this problem since the contribution to the permeance by the 
term involving oi is only a small fraction of the total. Dr. Liebmann 
shows that his results are lower than the figures obtained by an independent 
calculation due to a systematic error in the method of measurement.

In using Carter’s result, it is assumed that enough t exists 
for the flux distribution to be uniform in the t-region when the slots 
are either remote or opposed. This departure from linearity and the 
slot fringing flux is taken care of in the coefficient C. In the 
following paragraphs a value CXg is calculated for exact correspondence 

between Carter’s coefficient C and an equivalent coefficient C from
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method P. This is not an original calculation but is given as a check 

on the constant’s suggested by Dr. Pohl. It would appear from 

Dr. Pohl’s writing that no account has been taken of the variation of 

G either when the slots are opposed or when they are of finite depth.

In induction motors and similar type machines with rectangular slots, 

the ratio s/a is much smaller than unity, in which case G is not very 

much different to the normal value of G for s/a = o, but for inductor 
and phonic machines s/d may approach unity, suggesting a reduction in 

the value of o( for a given Ctfp.

5.1.4.1. Minimum Permeance for the Single-Sided Slot.
From equation 1.4.2. Carter*s coefficient

2__
'TX

-1/ Sv 1tan (—) - —7—2S s/g I°g. n + (I:)2 ] 5.1.4.1.1.'e l ~ '2gJ

which enables the permeance to be calculated for the out-of-line 

position when ^/s is large enough for the distribution to be considered 

uniform in the t-region. Similarly from Fig. 1.4. and equation 1.4.1. 

the equivalent coefficient G’ for method P is

C* = 1 - --- -7--- . log_(l + tH1) .... 5*1.4.1.2.8/2g • l0ge(l + 2T}

In the two groups 0 <. s/g ^ 10 and 10 s/g 100, Dr. Pohl 

states that the values of c< required to obtain agreement between C and 

G' within an accuracy of \c/o are 1.0 and 1.1, respectively. Calculations 

for these values are given in table 5*1.4.1.1. together with a value 

that gives exact agreement for a range of s/g up to 90.

It is evident that for 0 <. s/g 10, CX = 1.0 is not within 

the stated by Dr. Pohl but varies between +26% at s/g = 1.0 to -3.6/>

at s/c = 10. However due to the large value of t necessary, = 1.0
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will almost certainly give a value of p within 1For the higher 

range of S/g the value of 0( = 1.1 is not nearly good enough.

Table 5.1.4.1.1.

V. . l 2 3 4 6 8 10 12 14

c 0.153 0.279 0.371 0.449 0.551 0.619 0,666 0.703 0.733
O’ CX = l.o 0.189 0.307 0.389 0.450 0.538 0.598 0.642 0.676 0.704

(Xe 0.750 0.85 0.92 1.0 1.06 1.10 1.13 1.17 1.20

3/g 10 20 30 40 50 60 70 80 90

c 0.666 0.789 0.843 0.874 0.892 0.906 0.917 0.925 0.931
C* 0(= 1.0 0.642 0.760 0.815 O.848 0.870 0.885 0.898 0.907 0.915

o & II h-
>

• 0. 660 0.774 0.827 0.858 0.878 0.893 0.903 0.914 0.921

o 9. ii h-
>

• ro O.676 0.786 0.836 0.866 0.886 0.900 0.911 0.919 0.926
cXe

:
1.13 1.22 1.27 1.31 1.31 1.31 1.32 1.32 1.32

A plot of C verous s/g is given in Fig. 5.1.4.1.1. with the approximations 

suggested by the author and by Dr. Pohl indicated. A plot of versus

s/g is given in Fig. 5«1*4.1.2. The limit of accuracy of the results 

given here is- dependent on the ratio Vs which will be discussed in

later paragraphs.

5.1.4*2. Maximum Permeance or Opposed Slots.
When both members of the machine are slotted and opposing,

Carter shows^ that the amount of periphery w to be annulled to allow

for the slots is

w = ff ^ Sl+S2 tan'1 Sl+S2 + SX“S2 t.-T1 Sl-S2tan
g g g

-1 i°ge 1 + (Sl+S2)2 ] l + (3l-S2)2]jL 2g J 1* 2g JJ • •••• 5*1*4.2.1.

Where S-j and Sg are the respective widths of the slot openings. The 

amounts to be annulled, W^, and Wg, for each slot, are given by equation 

5.1.4.2.1. with i^and put zero in turn. When the slots are remote
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from each other (as in 5*1*4*1*) W]_ + W2 is the amount that must be 

annulled. Hence equation 5«1*4*1*1* is obtained by putting = S 

and S2 * 0, For our case, where = S2, we obtain

C “ W (tan_1 i ' * loge [ 1 + (|)2J • • • • • 5.1.4.2.2.

Most designers use one of the approximations suggested by Carter to 

determine the air-gap permeance, viz,, k = k^ x k2 (as in 1,2,2,) or 

more accurately k = k^ + k2 - 1# We are not concerned with these 

approximations but with the best value of C< for the in-line condition. 

Since equations 5*1»4*2.2. and 5*1*4*1«1* are both homogeneous 

in (s/g) the value of (X required to satisfy 5*1«4*2.2. is given by 

that satisfying 5*1*4»1*1* in 2s/g. The values of are plotted in

Fig. 5.1,4.1.2. and show the further inaccuracy of the constants suggested 

by Dr. Pohl.

The values suggested by the author for a ratio s/t = 0 are 

for 0 ^ s/g 10 that CX « 0.70 + 0.06 s/g and for 10 3/g ^

100, (X m 1,30. As mentioned previously these figures will apply 

to some values of 3/t 0 which will be studied separately.

5.1,4*3# Minimum Ratio /g for Successive Slots.

In a few cases plotted by the author and from the plots 
19given by Dr. Liebmann a reasonable approximation to the minimum 

value of Vg that can be sustained without modification of C is
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t g, provided, that the slots are on one side of the air-gap 

only. If slots are on both sides of the air-gap this approximation 

is only valid for the in-line position. For the out-of-line 

position the approximation would be t ^ (s + 2g) with both members 

slotted.

In a calculation by Gibbs ^ agreement to 3 significant 

figures is obtained when S/s * 0.18 and Vs = 0.78, from which

"k/g » 4*32,9. This is by no means the minimum limit to this

ratio, as a calculation given by Carter ^ shows that for 2^/s = 1.0

and Vs ° 1*0, i*e., Vg = 2.0 the value of C is 0.279> whilst 

from the transformation with s/t = 0, C = 0.276. This indicates 

that * 2.0 is almost the limiting ratio, though the error in

the estimation of C is seen to be about 1$ which when converted into 

p would be considerably less.

Coe and Taylor ^ have taken this problem further and cal

culated gap coefficients for values of s/g up to 3*0 for various ratios 

of s/t between 0.25 and infinity. They state that the gap 

coefficient given by Carter is less than 0.5$ (negative) in error for 

values of s/t 3 and 3/g <C 2.5 with somewhat larger errors for

larger ratios. Examining the limiting values of this statement in 

some detail we find the gap coefficient Kg to be 1.397 for 

3 / g = 3*0 and 3 /1 3*0 which results in a
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coefficient C of 0.380, the Garter coefficient, from table 5.1.4. 

for /t = 0, being 0.371. Evidently the author's approximation lies 

between the other two and would provide quite good accuracy. It would 

be useful to extend Coe and Taylor's results to values of 3/t ^ 0.5 

and /g ^ 100, to cover the complete range of interest to this work, 

but it is sufficient here to have established the limit of accuracy of 

Garter's result in relation to the substitute angle method. Further 

comments for t = 0 will be given in 5*1.4*5*

5.1.4.4. Slots of Finite Depth.

As mentioned in 1.2., provided the slot depth is not less 

than the slot width Carter's result is not materially affected by finite 

depths. For completeness, a comparison is made here of the variation 

of C with *Vs for values of 3/g = 2.5 and 5*0 as calculated from Coe and 

Taylor's results.

Table 5.1.4.4.1.

s/g
d//9 0.1 0.2 0.3 0.5 0.6 0.75 00

2.5 C
CX E

0.169
0.35

0.252
0.59

0.291
0.74

0.315
0.84

0.329
0.90

0.339
0.94

0.343
0.96

5.0 C
CX E

0.288
0.36

O.4O4
0.64

0.455
0.81

0.479
0.91

0.494
0.98

0.501
1.01

0.508
1.04

A value of the exact substitute angle (Y E is calculated and

recorded in table 5.1.4.4.1.. Sane care has been taken to scale the

above results from Coe and Taylor's paper but they cannot be relied upon 

beyond the first two digits, which is sufficient for the comparison made

here Due to the limited range of these figures it is not possible to
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make oonorete deductions. However the values of CV for /s ^ 1.0 

are not materially different from those given when ^/s = 00 ,

5.1.4*5» Special Case of t = o.

In previous paragraphs an approximate limit has been deteimined 

for the ratio Vg and S/g where the Garter method may be applied. If 

the tooth width is infinitely thin the problem becomes the limiting case 

for (a) slots of rectangular section varying t and (b) slots of tri

angular section varying CX . If Carter's result is applied directly to 

a problem with a slot infinitely deep but with enough t for the slot 

flux to become uniform, then the permeance variation becomes a linear 

function of t, down to the limit of proportionality discussed in 5»i*4*3»

It can be shown by an elliptic transformation that when the 

medium between two parallel planes distance € apart, is disturbed by the 

addition of a tooth, infinitely thin and of length (6-g), perpendicular 

to and at the same potential as one plane, that the resulting distribution 

is equivalent to adding a length 2X to the original dimensions for each 

tooth, where

X = logeooseo(^-^f-) .... 5.1-4.5.1*

This result is true for one tooth in an infinitely long air-gap whereas 

for successive teeth is less than 1$ in error when the semi-tooth pitch 

is slightly more than £ , where €-6 (the slot depth) + g.

For a comparison here, consider the ratio B/d - 1.0 so that 

(a) the effect of slot depth does not materially affect G and (b) the 

slot width is wide enough for 5»1*4»5*1» to be accurate. The comparison 

will be made for a slot on one side of the air-gap only, but from previous 

work the method of accounting for opposed slots will be the same.
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In table 5.I.4.5. a comparison is made of C, pQ, and C, p^' where G 

is the Carter coefficient and po, the corresponding permeance, assum

ing that t = o* The values of O' and p0' are obtained from the 

following :

(1 - Po'/3/g), Po- 2 x +s
g" " £

Consider as an example the case of 3/g = 10, i.e., s = 

£ = (d + g) = 11.0. Prom equation 5*1.4.5*1.>

X = ^3 log.oo.eo A- = 2 x 11 I

5.1.4.5.2.

d = 10 and

= 13.652.
Hence, ^ = £,*-^^-12 = 3.391.

0o' = (1 - = 0.6609
Prom table 5.1.4.XJL. we have for 9/g = 10, C = 0.666, and the corres

ponding pc = s/g(l - C1) = 3.34. It is surprising that such accuracy 

is given by Carter's result but evidently while any t exists the result 

is only approximate and in the absence of t the fringe rearranges 

itself and improves the accuracy, the differences being 0.76$ in C 

and 1.47$ in pQ. These figures are considered in the same range as 

for table 5.1.4.1.1. To return to the original work of the thesis 

we now require the value of 0( ^ corresponding to pQ' which is 

calculated (for the single slot) from equation 1.4.1. and gives for 

s/g = 10, O^E1 = 1.11 which differs by 1.8$ from 0(g associated

with Po



Table 5.1.4.5.

8/g 4 10 20 40 60 80 100

0 0.449 0.666 0.789 0.874 0.906 0.925 0.931

c* 0.426 0.661 0.783 0.870 0.906 0.925 0.937

Po 2.20 . 3.34 4.22 5.04 5.64 6.00 6.90

Pc? 2.30 3.39 4.35 5.21 5.64 6.00 6.30

OC E 1.00 1.13 1.22 1.31 1.31 1.32 1.32

tXg
1

0.89 1.11 1.17 1.25 1.31 1.32 1.34

These results are plotted in Fig. 5.I.5.4.I. and show that there is 

almost no difference between the result for deep slots and large t 

and shallow slots with no 1b. The case plotted here for no Jb was 

with 9/d = 1.0 which is outside the specified range of accuracy of 

equation 5.1.4«5.1»j but it can be shown that the variation is not 

significant; e.g., s/g = 20, s = 20, g = 1, = 11 gives Po' = 4.30

and C' = 0.785 which differ by ^ in C and 1% in Po’ from those in 

table 5*1.4.5*• That these results are not conclusive would be 

because the separate effects of fringing in the t-region and slot 

depth are self compensating. From table 5*1.4.4.1. for *Vs = 00 

and 3/g = 2.5 and 5.0, G is 0.343 and O.5O8 respectively when t = o. 

These are plotted in Fig. 5*1.5.4.1. and lie a little above the curve 

for 3/t = o, but the difference could reduce for higher values of 9/g 

though this needs to be proved.
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To cheok this last statement we will take the ease of 

s/g = 20, Vs = o and 9/d = o. Prom Coe and Taylor’s paper the gap

coefficient

£1 S
0o 1
g X Bm

where
Bm &ax 2£ # KllX S Ki

5.1.5.4.3.
g o

and is the first complete elliptic integral to modulus

k^ = sncy = tank ----  5* 1.5*4*4.

Prom these we obtain Kg = s/2g.^Vk*^ and since Kg = l/(l-C),

G = (Kg-l)Ag.
Without access to tables of elliptic functions K may be

oomputed from k' as K’ from k by the following :
T . KLet, w / ( j.'t)

<z q’
1 1 - Vk 2 ,1-V“k,5

= 21+ Vk * i5 + Vk' +

log a.log a ’ = Tf ,

= 0(0,q') = 1 + 2q' + 2q’^ +

K =-■£-. log q<.

))
*)))))))))

5.1.5.4.5.
How either k or k* is greater than 0.7> and hence either q or q* may 

be obtained to five places with only one term in its expansion and with 

a relative error of only about 0.01$. Moreover either q or q' will be 

less than l/20 and a single tern l+2q or l+2q'gives K or K‘ to four 

places.
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First let us check the method by a known result, With

s/g = 5.0, tank S'rt/s = 0,556895 = ; V^x = 0.746257 and q1 = 0.0726504.

Hence K'x = 2.06047 and Kx = 1.71576. Now Kx/K*x = 0.83275 and (s/2g)x

(Kx/K'x) = 2.08187 = Kg, and therefore C = 0.51967* This agrees with

the value obtained by Ooe and Taylor by onottvtr fottftod rncr s = QO

and /g = 5.0, so we will now use it to extend the range to /g = 20.

For our example gTt/s = 0.157079 from which k^ = tanh ®^/s =

0.155801 and k*x = Vl-kx2 = 0.9877884, also ^/k^ = 0.3947164, giving

, _ 1 0.6052836 2 ,0.6052836x5
q = 2 * 1.3947164 + “£5* ll.3947164J + ““

= \ (0.4339823) + ^ (0.4339823)5 + ........

= 0.21699U + 0.0009621437 + ........ ..

= 0.2179532.

Hence,

= 1 + 2(0.2179532) + 2(0.2179332)^ + ...

= 1.4359064 + 0.004513186 + ........

= 1.4404196,

from which 

K’l = 1.037404 and K'x = 3*25910.

Therefore Kx = - LjL # Xog q*

= -(1.037404) (- 1.523719)

= 1.580712,

and > = ]‘.2&W “ °*2*R5°l5-
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Hence Kg = 4*85015 and G = 0.793816. This value of G is a little 
higher than the value for a shallow slot and verifies the statement 

made previously.
It is possible to develop an approximate formula from the 

above treatment as follows :

ki = tanh 4=

for s/g > 10
. , 1 1 - Vg7T/S

* • 1 “2*1+ /g7f/s. ’

V tt i + i .
i + Vs Ttys

(1 gT</s)2
and

Hence
K'l

2 ,11- Jz'K/s
(1 + V S7f/s')2 • iOSe 2 • 1 + VS7X/s

1
r7t log (i + Jin/a) - ipg (i - JzrtJs)

giving
Rg = ^ • 7g f loge(l + T^Vs) - loge(l -

... 5*1.4*5*6.
Tracing this approximation through for the previous case of 

s/g = 20 we obtain the following results, with the exact figures in

brackets :

kl = 0.157079 (0.155801),

q' 0.216127 (0.217953),

K'l/tf - 1.03740 (1.05740),

K1 1.58918 (1.58071),
Kg = 4.87614 (4.85015),
C = 0.79492 (0.793816).
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5.1.4.6. Out-of-Line Permeance t = o.

A useful extension of these results would be to obtain the

value of when the teeth are out-of-line. The author does not

intend to pursue this aspeot on an analytical basis, but a trans

formation could be used similar to that given by Moulton (Froc. Lond. 

Math. Soc. Vol. Ill, p.loO for the resistance of plane sheets.

The basic result in equation 5.1.4*5.applies to a single 

slot inasemi-infinite plane, hence provided - opposed teeth out-of-line 

are positioned suoh that the effect of one on the other is negligible, 

then we have a result for the limiting case of out-of-line permeance. 

Consider, for example, the case of /g = 20, g = 1.0 which gives c = 9

when s = 2(£+g), (say). From equation 5»1*4.5«1. we obtain
,r 2 x 9 i 5 x , ,—,X = logecosec Y = 1.527.

The permeance per tooth is then 2.561 or 5.122 for the two teeth.

For the in-line condition, we obtain X = 13.98 and p = 5*329, i.e., 

a change of 0.207. The in-line permeance is not the same as in 

table 5.1.4.5. due to the difference in the ratio ^/s; it will be 

appreciated though, that if ^/s had been the same then we would obtain 

the permeance for 23/g (i.e. 40 ) from table 5.1»4»5« The values of 

^E for these two conditions are obtained from equations 2.2.1. and 

2.2.2. for the in-line and out-of-line positions respectively. As 

has been mentioned previously the results in this section represent the 

limiting conditions for triangular and trapezoidal teeth.
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5.2. Triangular Teeth,

No published results are available for triangular teeth and

the only analytical solutions obtained are those for CY p = 'Tt/2
as discussed in 5*1* Hence with the limits established for p = 7T/2
the values for &p <T are here determined by other methods. No

doubt the best method to use is relaxation^but the few plots calculated

by the author proved very tedious. Douglas^ had considerable success

with the method of potential distribution using a thin metal plate and
26Moore had similar success using graphical flux plotting. The author 

uses the method of resistance measurement on Teledeltos paper as 

described in 6.4 for teeth out-of-line and a graphical method for the 
in-line condition.

5*2*1. The Single Sided Slot.
Using the method of curvilinear squares a number of pemeance 

values have been obtained for a single tooth opposite an equipotential 

plane for various values of the parameter CXp. Several plots were used 

for each permeance value as an independent check, one of which is re

produced in Pig. 5*2.1.3. for <Yp = <TX/4 and 9/g = 20. The permeance

values are recorded in table 5*2.1.1. and Pig. 5*2.1*1. In this table 

cYp is the angle that the slot side makes with the plane of the air-gap 

and p 1 is the permeance for one complete slot, g being the distance 

between the tooth and the equipotential plane.

Two values of pj are available as the extreme limits, when 

0< = o and 'rt/2. The plots mentioned above provide values of p * 

between these extremes. Obviously when Ctfp = o, p's /g, and when 

(X) = 2, p * is approximately as given in table 5* 1*4*5* Port o
9 /precise accuracy at the limiting condition, /d = o, equations 5*1*5*4.3 - 5
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are required, but for results within 0.1/&, equation 5.1.5*4.1. is 

satisfactory,
An equivalent Garter coefficient G’ has been calculated as 

before where C* = 1 — Po* (S/g) and an exact value of CX , Q( E*, to 

obtain agreement between the permeance Po' in table 5*2.1,1. and that 

obtained from equation 1.4.1.

In Pig, 5.2,1.1.(a), Po* is plotted against °(p for various 

values of S/g and it is evident that when <X p “TC/4 the values are

nearly equal to those for ^p = ,7"T/2. The above values have been

replotted against 9/g for constant values of (Xp in Pig. 5.2.1.1.(b).
Table 5.2,2,1,

s/g = 4.0
cyP 0 0.245 O.464 0.785 - - 7T/2
CXg» 0 0.147 0.365 0.365 - - 0.89

P * 4.0 3.5 3.0 3.0 - - 2.3
C’ 0 0.125 0.25 0.25 - - 0.426

3/g ■= 10.0

cXp 0 0.197 0.380 0.540 0.675 0.785 -rx / 2

(XE» 0 0.194 0.310 0.500 0.637 0.637 1.11

p *^0 10.0 7.0 6.0 5.0 4.5 4.5 3.4

O' 0 0.30 0.40 0.50 0.55 0.55 0.661

% ■= 20.0

cXp 0 0.100 0.197 0.380 0.540 0.675 'n/z

0(e' 0 0.085 0.22 0.4U 0.52 0.60 1.17

Pc' 20.0 14.5 10.5 8.0 7.0 6.5 4.4
C' 0 0.275 0.475 0.600 0.650 0.675 0.783

% >= 40.0

CXp 0 0.05 0.148 0.245 0.390 0.643 Of/ 2

Xe' 0 0.053 0.125 0.260 0.380 0.654 1.25

Po 40.0 27.3 20.0 14.0 11.3 7.9 5.2

c* 0 0.317 0.500 0.650 0.718 0.803 0.870
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Values of CXE’ are plotted in Pig. 5*2.1.2. for the several values of 

s/g in table 5*2.1.!. and in each case these values lie slightly above 

the line between the (X = o and ol = VT/2 points. With flux plotting 

of the nature used here the permeance would, if anything, be under

estimated, so that the values of 0(e would be slightly higher than the 

true values. It is not possible to give a maximum error because a 

number of different scales and equipotential lines were used to check 

each plot. However consider one case for <Xp = T{/4 and s/g = 20.

The gap space (Pig. 5*2.1.3*) was separated into four layers 

by three equipotential lines, providing 12 tubes for the half slot.

The estimated maximum error from this plot is half a tube. The limits 

of Po for the whole slot would therefore be 6.0 to 6.25. When p = 6.0, 

= 0.69 and when p = 6.25, ^ E = O.64. This latter figure is 

closer to the straight line approximation ( CX = 2 CXp W7T ) but in 

all cases it will be noted that they lie above this line. Hence an 

approximation for <X, more consistent with the results obtained, is

« = 1.5«K(l- -1.9<Xp/tT ) .......... 5.2.1.1.

Por the example above 0(p = ^/k and from table 5*1*4*5* = 1.17,

yielding 0C = 0.66.

5.2.2. Opposed Teeth in Line,

The case of single slots has been treated in 5*2.1. and shows 

that an approximate substitute angle 0( may be determined from equation 

5*2.1.1.. Por opposed teeth the value of ^E is obtained from table

5*1*4.5* or equation 5*1.4.5*6. for 2s/g as before. When s/g 20,

CX E = 1.31 will suffice.
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The values of CX determined from the above are applicable

to equation 2.2.1. Before accepting the remaining equations for

various values of x it is necessary to study the permeance for x = s/2.

5.2.3. Opposed Teeth Out-of-Line.
Using the method described in 6.2+ a number of permeance values

have been obtained for ^p = 'rV4. The results are given in table 5.2.3*1.

in terms of R the actual measured resistance. The teledeltos paper used

was 6" wide with a specific resistance of 319 ohm/inch/6" with a measured

thermal resistance of 300 ohm (see Pig. 6.4.1.). The permeance p is for

the whole slot pitch and is plotted in terns of g in Pig. 5.2.3*1.(a) and

s/g in Pig. 5.2.3.1.(b). Consider example 3 in table 5.2.3.1.,

Table 5.2.3.1.

0.810

2x6 resistancemeasured

2045 ohms and the equivalent resistance for the half slot 2045 ~ 300 =
1745 ohms and the permeance p = 2 x 319 x 6/1745 = 2.19 for the whole 

slot. Prom equation 2.2.2. when 3/g = L2 and p = 2.19, &E = (S/g - p)/

P 3/ 2g = 0.747. 7rom Pig. 5.2.1.1. values of $E for the in-line
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position are obtained and are plotted, together with those fran 

table in Fig. 5»2.3*2.. It will be noticed that there is

sane divergence between the in and out-of-line values though the 

divergence is not serious above S/g = 10. The best value of 0( for 

use with equation 2^.3 is approximately as given by equation 5*2.1.1. 

bvt a better value for the exponent is 1,8 (X p/ft so that for 

(yp = 'TC/b, (X = 0.7 as shown in Fig. 5,2.3.2.,

In dealing with trapezoidal teeth the value of & beoomes 

less critical as t increases.

5*3* Trapezoidal Teeth.

It is evident that results for trapezoidal teeth will be 

intermediate between those for rectangular and triangular teeth for 

the same ratios /d and /g. There are two limiting conditions for 

trapezoidal teeth, one for = o and the other for CXp= TC/2.

Obviously when 0(p = o, 2.2.1 —*■ v “+sVg (by differentiation of 

numerator and denominator) and when O^p = '7^/2, = (0.70 + 0.06 S/g)

for S/g K. 10 and 1.30 for 9/g 10. Hence^E will decrease from the

<7y2 value to zero in sane manner as —► o. A study is made in 

the following to determine the best value of 0( for use with the 

equations of section 2.

5.3.1. Practical Determination of Permeanoe.

As mentioned previously we have two check points, one for

&p = o and the other for O^p - Tt/2. Assuming that t ^ (s+4g) for

the single-sided slot and /d~^ o, then the value of C from Fig. 5*1»4.1»1 

applies to ^p = '7fy2 and when 0(p = o, p = (s+t)/g. Intermediate

values have been determined by graphical flux plotting for three values 

of S/g. In each case the air-space nas been divided by three equipo- 

tential lines. The estimated error is +0.5 flux tube for the half-
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Table 5.3.1.1.

% Vs = 0.20

10 po 12.0 4.0 8.0 7.0 6.5 - 5.34

o( p 0.0 0.197 0.380 0.540 •7T/4 - T\/2

20 Po 24.0 17.5 16.0 14.0 13.0 11.5 8.22

D( p 0.0 0.100 0.197 0.291 0.380 0.54 7X/2

32
Po 38.4 21.70 17.50 15.90 14.64 12.91 11.28

0.0 0,124 0.303 0.464 0.602 0.752 "7T/2

section, or +0,25 in terms of permeance. Table 5.3.I.2. has been

calculated similar to and for comparison with the results for tri

angular teeth.

Table 5.3.1.2.

9//g 0( p 0 0.1 0.197 0.291 0.380 0.540 0.7854 1.571

20 Ps 20.0 13.5 12.0 10.0 9.0 7.5 6.0. 4.22
20 C* 0.0 0.325 0.400 0.500 0.550 0.625 0.700 0.789
20 cxE 0.0 0.110 0.159 0.251 0.318 0.459 0.689 1.22

10 Ps 10.0 - 7.0 - 6.0 5.0 4.5 3.34
10 C’ 0.0 - 0.300 - 0.400 0.500 0.550 0.666

10 o(E 0.0 — 0.190 — 0.310 0.502 0.655 1.13

Comparing the values in table 5.3.1.2. with those in table 5.2.2.1. it 

is evident that any differences in (Xg and C’ are within the limits of

experimental error for the method used. Hence it is not possible to 

specify a separate theory for triangular and trapezoidal teeth. The 

values of 0(g from table 5.3.1.2. are plotted in Pig. 5.2.1.2. and show 

that the linear approximation is better due mainly to the higher value 

of when 0(p = 7T/2. As in the case of rectangular slots the

result is acourate provided t^ (s+4g) for successive teeth and d(the 

slot depth) > s. The slot depth does not need to be considered

separately since the infinite depth sin* ^ah slot is the natural limit as
^/2.
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5*3*2. Opposed Teeth.

When the teeth are opposed and in-line the value for ^ E 

is obtained from table 5*1*4*1.1. for 29/g provided that t ^ 4g. If 

o < t < 4g, C^E may be obtained approximately fran table 5.1.4.5* 

for 2S/g*

When the teeth are out-of-line and suoh that t ^ (s+4g) the 

value of &E is approximately the same as for the in-line condition.

The approximation illustrated in Fig. 5*1.4.1.2. will thus provide the 

value of C<E for any position x. Hence the value of CK for use with 

the equations of section 2 when t^(s+4g) are :

<*E = 0.70 + 0.06s/g (Vg < 10),

°^e = i.50 C/e > io),

cx = 1.5 cx e (i- a'1"' ^p/7t).

When (s+2tg) t o a better value of the exponent is 1.8 (X p/<7t .

5*3*3* Permeance of Approximate Trapezoids.

To obtain some fairly accurate results for comparative

purposes the method set out in 4*7 is used. Two plots are given,

Fig* 5*3*3*l.(a) taken fran Schofield's paper for m/£ = 3/4 and

Pig. 5*3«3*2.(b) as calculated fran equations 4.7.12. to 4*7.15. for

m/£ = 7/8. Straight lines placed accurately on the equipotential

lines produce a number of shapes approximating to trapezoids. Pull

details of the sections available from Pig. 5*3*3*1.(a) are given in

Fig. 5*3*3*2. together with the permeance p for the complete single slot.

Calculations from plots £a) and (b) are given in tables 5*3*3*1

and 5.3.3*2. respectively.
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Table 5.5.3.1.

Vxg 42.0 33.7 26.0 21.0 16.9 12.9 13.1 10.3 7.6

Vs 0.432 0.462 0.302 0.544 0.432 0.255 0.723 0.646 0.523

Vg 8.86 8.86 8.86 4.43 4.43 4.43 3.09 3.09 3.09

Ps 15.14 X3J4 11.14 7.57 6.57 5.57 4.91 4.25 3.57

(X p 0.235 0.235 0.235 0.549 0.549 0.549 0.982 0.982 0.982

& E 0.235 0.253 0.270 O.465 0.502 0.554 0.702 0.740 0.770
C'

/

* ij

1

0.279 0.220 0.141 0.279 0.221 0.136 0.250 0.173 0.066

Consider the first example in table 5.3*3.1, s/g = 294/7 = 42.0. The 

contribution by the t-region is 62/7 = 8.84 so that the equivalent slot 

penneance, = 24 - 8.86 = 15.14. Prom equation 1.4.1

PS = |log<s(l + c' = 1 - Ps/(s/2g); .......... 5.3.3.1.

Where C* is the equivalent Carter coefficient. For this example, 

ps = 15.16, = 0.235 and C' = 0.279. Since the slot has sane w

at its base the previous results will underestimate the permeance, 

since from equation 5.2.1.1. with C<£ = 1.31 (for S/g = 42.0),

(X = 0.259 or 0.249 with 1.8 in the exponent. This type of slot is

outside the scope of this thesis and will not be considered further.

A wide range of plots similar to Pig. 5*3.3.1.(a) and (b) is required 

to enable overall deductions to be made on the effect of w. No doubt 

the equations of Section 2 could be varied to include w but the number 

of discontinuities would increase. A preferable method would be the 

determination of approximations similar to those given in this work 

for triangular slots. A suggested method is to determine a transfer 

constant k, where k = ^Jl/CXE. A plot of this constant for the previous
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Table 5.5.5.2,

7g 62.4 48.0 34.0 22.0 29.4 22.5 15.4 20.8 15.1

Vs 0.397 0.217 0 0 0.510 0.354 0.062 0.600 0.449

Vg 9.6 9.6 9.6 9.6 5.0 5.0 5.0 3.07 3.07

Ps 14.4 12.4 10.4 8.4 7.0 6.0 5.0 7.13 5.33

D( p 0.334 0.334 0.334 0.350 0.690 0.690 0.690 0.977 0.977

°<E 0-334 0 362 °’386

16 O’bdO o-7So 0.522 0.690

C* 0.537 0.483 0.389 0.237 0.523 0.462 0.351 0.314 0.291

results is given in Pig. 5.3.3.3. The value 0(g is the exact 

substitute angle for & p = /Tf/2. Before commencing this it will

be necessary to extend the results of Coe and Taylor for shallow 

slots to obtain new values for 0(e for large t.
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SECTION 6.

PRACTICAL CONSIDERATIONS CIRCULAR TEETH.

6.1. General.

Any of the methods discussed in Section 3 may he applied 

to the circular tooth provided due allowance is made for any w which 

may exist at the base of the slot, particularly when ^/s is small.

Only a few of the latter types of problem have been studied in Section 

5 so confirmation of the methods used will be obtained from practical 

considerations.

Douglas* solution forms a limiting case for opposed circular 

teeth as well as providing an exact figure for the leakage permeance 

of circular poles. For example consider two parallel equipotential 

planes separated by a distance (t + g) and extending to some large 

distance (s + t). The permeance is (s + t)/(t + g) due to the 

rectilineal distribution of flux. If we now interpose two opposed 

semicircular equipotential teeth of diameter t and separated by a 

distance g, the permeance is greater than (s + t)/(t + g). The 

limiting condition occurs when potential is removed from the s portion 

so that flux originates on one semicircular tooth and terminates on 

the other, the limiting flux line being the parallel planes extending 

to infinity. The permeance in this latter case is obtained from 

Douglas’ equation. It will be shown later how this result can be 

useful in estimating the accuracy of the experimental results.
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A few cases only will be studied in this section, the 

first being the application of the substitute angle method to the 

leakage permeance of circular poles. Secondly some cases of 

opposed and displaced circular teeth will be studied in relation 

to the result for trapezoidal teeth from Section 5»

6.2. Circular Pole Leakage the Problem of Douglas and Hague.

Circular pole leakage does not fall into the same category 

of problems for which the substitue angle method was intended.

However the equivalent trapezoid of 3*2#2. provides a simple solution 

to the problem. It will be shown that a substitute angle of 0.5 

enables almost exact agreement to be obtained with Douglas* result 

when V(t + g) > 0.6. Evidently equally good agreement could 

be obtained with a smaller value of (X when */(t + g) 0*6. 

Considering the limiting condition of the evolute method (say) viz., 

^/s ■ l/( /2-l) we obtain from 3*2.2.2.

* t* cos 3o° * -g ( n/~3 + ),
Hence,

S' (t + g) - 2t" * ~ 2 s/3 + 6*

The equivalent permeance p0 is therefore

s' + cX loe® (1 +
2CX 

S' ’
• • • « • 6.2.1.

A table (6.2.l) has been calculated for t/(t + g) varying from 0.6 

to 0*99 from equation 6.2.1. It will be appreciated that the normal 

ratio s/g has no meaning in this instance even though a value is

implicit in equation 6.2.1..
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Table 6.2.1.

V(t+g) 0.6 0.8 0.9 0.94 o.97 0.98 0.99
t» 0.808 2.156 4.851 8.450 17.40 26.41 53.30

Po 1.838 3.697 5.874 7.370 9.20 10.07 10.94

Table 6*2,2 has been calculated from Douglas* equation (1.3.6) and 
the results plotted in Fig. 6.2.1.1.

Table 6.2.2.

V(t+g) 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Po 0.61742 0.84873 1.08735 1.36008 1.69344 2.12964 2.75190
V(t+g) 0.80 0.85 0.90 0.91 0.92 0.93 0.94
Po 3.75903 4.56144 5.77887 6.10346 6.46654 6.87555 7.33995
V(t+g) O.946I 0.95 O.96 0.97 0.9722 0.98 0.99
Po 7.65555 7.87205 8.48803 9.20970 9-38543 10.0671 11.1030

Comparative results for the equivalent square with CX = 1.0 and for 
the equivalent trapezoid with (X = TT/3 have been included in 
Fig. 6.2.1.1.. Both of these methods can be made accurate by reduction 
of OC , but the author has chosen the second of these with Of’ *0.5*
6#3. Opposed Teeth in Line.

Provided the results for trapezoidal teeth are accepted, 
the equivalent trapezoid of 3/? will enable approximate values to be 

computed for opposed circular teeth in line. The author has compared 
these predictions with (a) resistance measurements on a scale modfcl 

and (b) flux plotting on transformed models. The latter method was 
introduced because of marked variation between the results for the 
equivalent trapezoid and those for (a). The results for method (a)
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were assumed tobelow for two main reasons, the first due to the 

thermal emf at the circular boundary causing a higher resistance than 

recorded, i.e*, a smaller permeance,and the second due to the high 

current density near the centre-line of the opposing teeth. This

latter effect is not expected to be large and could even cause a 

negative effect.

From 5*2.2., for trapezoidal teeth, the substitute angle 

for opposed teeth may be calculated approximately from

CX - 1.5 (1 - g‘1,80(p/T() .... 6.3.1.

where CXg is the exact substitute angle for rectangular teeth and 

Wp is the physical elevation of the tooth side. For the equivalent 

trapezoid & p * 'n/3, so that

CX « 1.5We (1 ” £~°*6) = 0.677 0<e ..... 6.3.2.

The value of (Xjj corresponding to particular values of 

s'/g' (a-8 defined for trapezoidal teeth) are obtained from Fig. 5* 1.4.1.2, 

curve A. The approximate result for rectangular teeth taking account 

of out-of-line permeance will produce slightly different values for CXg 

( CX E) as follows :

for s'/g* < 10, ^ = 0.7 + 0.06 3/g , )

s'/g* > 10, CX|j = 1.30 . )
6.3.3.

The above values of CX are recorded in table 6.3.1* where CXe is 

from Fig. 5*1.4.1*2.$ CX jj from 6.3.3.; CX from 6*3.2. for 0( g 

and o(' from CX -g*.
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Table 6.3*1*

s’ /
/fir* 5 10 15 20 25 > 25
& E 1*13 1.24 1.29 1.31 1.31 1.31

ol 0.764 0.839 0.872 O.887 0.887 O.887

a i* 1.0 1.30 1.30 1.30 1.30 1.30

ex' 0.677l
0.880 0.880 0.880 0.880 0.880

The ratio s*/g’ as given in table 6.3*1* must not be

confused with the s/g ratio for circular teeth,which is defined 

with respect to the tooth diameter and the gap between the teeth.

For the s/t ratio considered here variation of g or g’ causes much 

smaller change in the s’/g* ratio than 9/g.

Due to the finite slot depth inherent with this config

uration the true permeance could be a little higher than that 

predicted by the equivalent trapezoid, but will almost certainly be 

compensated for by the variation from the tfue circular shape.

6.4* Practical Determination of Permeance.

Numerous methods were tried to determine the value of 

permeance. The method persevered with here was the measure of total 

resistance with fixed boundaries of brass on Teledeltos conducting 

paper.
The paper was calibrated using aluminium boundaries under 

a 7 lb. weight per 6” of boundary length. The measures of total 

resistance are given in Fig. 6.4*1* for a parallel strip 6” wide with 

various distances € inches separating the boundaries. In drawing

in the equivalent linear resistance there is seen to be considerable
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thermal e.m.f. at the boundaries corresponding to about 300 ohms. 

Numerous methods were tried to reduce this resistance; brass under 

considerable pressure was found to produce almost negligible e.m.f,. 

Incidentally, the graph for aluminium was taken with d.c. and the one 

for brass with a,c#. Resistance was measured on a comparative basis 

with a V}> decade box. Greater accuracy was not considered necessary 

since slight variations in boundary pressure could produce inaccuracies 

up to approximately +3$*

6.4*1* Normally Shaped Models.

The results obtained from direct measurement on the models 

are given in table 6.4.!• for Vs * 1*75 (circular) and ^/s = 0.4 

(circular). The s/g ratio given in this table is the circular ratio; 

the ratio s*/g* is, as mentioned previously, the equivalent ratio for 

trapezoidal teeth. The results are plotted in Pig. 6.4.2..

Consider, for example, s/g = 35*1 and Vs = 1*75* The measured 

resistance was 221 ohms with no corrections for thermal e.m.f..

Hence, Po * 1914/221 * 8.7 for the quarter section (as measured) which 

is the same as for the whole section. For this case t = 6.92M and 

s = 3*95M> so that t* * 0.539 * 6.92 - 3*73, s' ■ 2x3*73 = 7*46 and 

tH = t* cos Q = 0.866 X 3*73 = 3*23. Therefore g’ = (t+g - 2t")

= 7.032 - 6.46 = 0.57 and 3*/g* s 7*46/057 = 13*05. The remaining 

values are given in table 6.4*1* together with ^o* calculated from 

the equivalent value of CX from table 6.3*1* or Pig. 6.3*1*
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Table 6.4.1.

Vs = 1.75; t = 6.92"; s * 3.95”

8 4.08 3.08 2.08 1.08 0.88 0.68 0.48 0.28 0.16 0.112 0.08

S/8
0.968 1.281 1.897 3.66 4.49 5.81 8.23 14.10 24.7 35.10 40

% 1.64 2.10 2.93 4.83 5.57 6.53 7.93 iai iao 130 13*8

R 1172 966 788 630 441 413 378 313 233 221 213

4 1.63 1.98 2.43 3.04 4.34 4.63 5.06 6.12 8.2 8.7 9.0

Po* - - - 4.45 4.94 5.66 6.79 7.72 8.89 9*44 9*47

t/s = 0.4; t = 6*72"$ s = 16.92”

8 5.08 3.08 2.08 1.08 - 0.68 - 0.28 - - -

s/g 3.33 5.49 8.13 15.65 - 24.85 - ffl.3 - - -

s’/g- 3-64 S(ol 7-9/ i3id - n-7o - ■2 7-^o - - -

R 892 679 550 434 - 351 - 277 - - -
Po 2.15 2.82 3.48 4.41 - 5.46 - 6.92 - - -

In all cases (for ^/s = 1*75) is seen to be both erratic and low,
so a few transformed models will be studied to obtain greater 
accuracy*
6*4*2. Measurement on Transformed Models*

Using the method of 4.2* transformed areas are determined

for various ^/(t+g). Models corresponding to different values of

s/g can then be derived. The case for t = 20 and g = 1.0 is given

in detail below
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From Fig. 6.4*2.1. and 4*2. the distance from the 

centre fitting a circle to the nearest pole is

to = ——|« 7.298435,

where H = t+g = 21.0 and R • ^ <= 10.0. For the circle fitting the 

left tooth

, rl , H - R - h
u = loee — " loge -R-, r

= loge 1.370156 = 0.3149250.

In addition a = (H-2b)/2 * 3.201562. Dividing the semi-gap into 

nine equal parts we obtain

Su = 9*214221 = 0.0349917.

For the square network Su = Sir = (©i-©9) = (X * 0.0349917 

radian = 2°.0t.17”.6.. Hence values of and R^ may now be 

calculated. Values of are tabulated in Table 6.4.2.1., R^ may 

be constructed.

These results are plotted in Fig. 6.4*2.1. together with 

circles of radius R ^ « cosec cx and centre y^ « acoto< .

Preliminary resistance measurements taken on the transformed 

model (Fig. 6.4.2.2.) produced for Vs = 1*75> Po = 8.425 and with the 

free edge method of Douglas, 8.36 for Vs s 1*75 and- 8.06 for Vs = 5*0.

A more precise measurement of the Douglas result with Vs * 0, produced 

the following for the transformed area t

t = 20; g = 1.0; R = 2125 ohms for the section of 6.4.2.2. 

from 0o< to 19<X • With the paper calibrated at 1914 ohm inches per 

inch po* = 1914/2125 = 0.90. For the ren^Lncter of the parallel strip 

Po» = (89-19)/9 = 7.77 and Po = Po* + Po" = 8.67. The value of
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VC^+g) here is 20/21 » 0.9523 which from Pig. 6.2.1.1. gives

Po » 8.4. The estimated maximum error from practical considerations

is about yfi which agrees very well with Douglas’ result.

Table 6.4.2.1.

Section u e * *

1 0 1.00 -

2 0.0349917 1.03561 91.837
3 0.0699833 1.07250 45.821

4 0.1049750 1.11100 30.610

5 0.1399667 1.15024 23.023
6 0.1749583 1.19120 18.485

7 0.2099500 1.233616 15.623
8 0.2449417 1.27754 13.331

9 0.2799333 1.32304 11.734
10 0.314925 1.370156 10.500

An additional model for larger VC^+g) has been calculated for a 
different number of sections. The details of the second model are 
given in Table 6.4.2.2..

Table 6.4*2.2.

t = 30.0; g « 1.0;

a =* 3.90512455 (X

D = 11.5948755; H - 31°0;

- 2°.271.31".7

Section u fc2

1 0.0 1.00 1.00 -

2 0.0429144 1.043849 1.089620 91.055
3 0.0858288 1.089620 1.187272 45.611

4 0.1287432 1.127398 1.293675 30.430

5 0.1716577 1.187272 1.409613 22.970
6 0.2145721 1.239331 1.535942 18.478

7 0.2574865 1.293675 1.673594 15.500



— 119-
The details were plotted similar to Fig. 6.4.2.1. and

6.4*2.2.. The transformed shapes were compared and found to agree.

The results from these two models are recorded in Fig. 6.4.2. and

agree very well with the results from the equivalent trapezoid.

6.5* Extension of Hague*3 Method.
It is possible (though not necessary here) to extend Hague*s

result as shown in 4*3*3••

An equipotential flow pattern is plotted in Fig. 6.5.1. 

from equation 4*3*3* for the case of ^/(t+g) = 0.5* The pattern 

produced is within 1% of circularity and^few values extracted from 

this plot are given in Table 6.5*1*• These figures can be 

approximately extended by assuming linear flow beyond that shown in 

the figure.

Table 6.5*1*

t 1.5 1*5 1.5 1.5
V(t+g) 0.5 0*5 0.61 0.61

s 1.5 2.28 1*5 2.28

Vs 1.0 O.658 1.0 0.658
8/
1 s 1.0 0.76 0.782 1.19
Po 1.5 1*75 2.0 2.33

6.6. Out-of-Line Permeance.

In 6.4* good agreement was found between tie in-line permeance 
and that predicted from the result for trapezoidal teeth. It is 

necessary to determine if the same assumptions apply to out-of-line 

teeth. By the method discussed in section 4> a bilinear transformation 

is applied to the case of s/g = 20; t = 35*10? which yields the
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following s

s = 20; g = 1*0; t = 35*10; g' = 10.311;

R = 17.55; b = 8.292; U = 0.7488; a = 14.413;

Su = = 0.14976° = CX = 8°4’5".

Values of x^. are given in table 6.6.1. and the area plot in Pig. 6.6.2. 

The transformed area (Pig. 6.6.3) yields are approximate permeance of 

( T( ;§\y -6)/l0 = 1.5 for each half. For both halves p === 3.0. A 

resistance measurement on the transformed area of Pig. 6.6.3. produced a 

resistance of 2330 ohms or 0.825 for the quarter section, i.e., p = 3.30

which is close to the independent assessment above.

Table 6.6.1.

Section u k k2

1 0.0 1.00 1.00 -

2 0.14977 1.1616 1.3493 96.895
3 0.29955 1.3492 1.8204 49.530

4 0.44932 1.5672 2.4559 34.210

5 0.599096 1.8204 3.3139 26.870

6 O.7488O 2.1145 4.4715 22.705

In comparing the results from the equivalent trapezoid the

equations are

P t1 - s’ 

g* + Jl. loge (1 + CX s* \ 
2 g’ '

for the equivalent square, and,

s' - t1 4 log g' + (Xsf/2
s' + a(s'-t')/2 + « e g' + <xis'-t*y2

for the equivalent trapezoid. Figures for the equivalent square and 

the involute method are given in Table 6.6.2.
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Table 6,6.2.

Equivalent Square g = 1.0

s/g 5 10 15 20 25 30 35 40
p CX * 1.0 4.48 5*57 5*95 6.25 6.39 6.57 6.66 6.80

Involute
P 2.42 3.48 4.07 4.46 4.73 | 4.93 5.06 5*19

Doug]Las Approximation
P 3.0 3.28 3*35 3.38 3.40 3.45 3.48 3.49

The Douglas approximation given in table 6.6.2. is a purely empirical 

result expressed in terms of S/g for a given ratio Vs. The permeance 

is obtained from Douglas1 result for the corresponding ratio t/(t+g).

For the equivalent trapezoid with s/g - 20; t = 35*10; 1*0,

we obtain t* = 0.539 x 35*1 * 18.95; s’ = 37*90; t" = 0.866 x 18.95 = 

16.4; g’ = 36.10 - 32.8 = 3*3; s’/gf ■ 11.48. From Fig. 5.2.3.2. for 

<Xp - 7Y/4, (X is approximately 0.75 from which for CX p * '7T/3,

CX is approximately 1.0. Hence p * 3*693, which compares favourably 

with the result obtained from the measurement on the transformed model.

Hence the equivalent trapezoid will give a good approximation 

to the permeance of opposed circular teeth, but further adjustment is 

necessary for the other methods. From table 6.3*1. 0( = 0.88 is

required for teeth in line when 3/g >10 and for teeth out-of-line 

CX =1.0 throughout a wide range of /g.
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SECTION 8.

SUMMARY ANN CONCLUSIONS.

8.1. General.
In writing conclusions to the task that has occupied the author 

for several years it is comforting to know that the subject matter is still 

alive after about 80 years of contributions.

The general theme of the thesis was to obtain values of permeance 

as teeth of various trapezoidal shapes were moved with respect to each 

other. In order to apply a uniform method to all shapes which did not 

involve frequent recourse to higher mathematics, the substitute angle 

method invented by Dr. Pohl-was adopted. Basically, the method assumes 

that all slots are of triangular section and the flux lines idealised into 

straight lines and circular arcs. The substitute angle is the angle that 

the side of the fictitious triangular slot makes with the plane of the 

air-gap. Every different type of slot and tooth shape requires a 

different value of the substitute angle to produce the same permeance; 

furthermore this value of angle is also a function of both the (slot 

opening)/(gap length) and the degree of displacement. Hence, though a 

uniform method of treatment can be adopted, it is not possible to 

express the results in terms of a unique substitute angle. However it 

has been shown that most shapes met with in practical applications are 

amenable to approximate treatment by means of a substitute angle 

determined from the shape and the ratio of the opening to the gap length, 

this value being held constant throughout the range of movement of the 

opposed teeth.

This thesis has been largely devoted to determining the values

of this substitute angle
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8.2. Discussion of the Sections.
Section 1 contains a comprehensive survey of existing knowledge

related to the present study and in particular to the permeance of air- 

gaps.

The survey reveals that the subject virtually begins with the 

lemmas of Forbes in 1886 and followed nearly 20 years later by the work 

of Carter. Carter probably took his lead from Potier's solution of a 

slotted armature problem in 1889• Carter*s work has never really been

superceded though many distinguished men, for example, Hadamard 1909, 

Douglas 1915 and. 1924> Coe and Taylor 1928, Cockcroft 1928, Miles Walker 

1915> have added a few refinements throughout the years. All results 

published to date apply only to rectangular teeth and slots, plus a few 

special configurations. Dr. Pohl is the only person who has suggested 

a method for the empirical solution of problems of other than rectangular 

shape, but gives no details of any investigation into this subject. No 

analytical results exist for slots or teeth of trapezoidal section, due 

mainly to the difficulty of solving the complex elliptic integrals that 

arise. Even the solution of the integrals would only be the first stage 

of a problem involving much laborious algebra and arithmetic. A work 

published in recent years (Handbook of Elliptic Integrals for Engineers 

and Physicists, published by Springer, New York, 1954) will certainly 

assist with the solution of some of the foregoing problems since it 

contains tabulated solutions to about 3000 elliptic integrals. However 

a study of this work reveals that only a few special cases of interest to 

this work have been covered.

Little use has been made by the author of the many numerical 

methods available for the solution of problems associated with trapezoidal
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teeth. The author is aware of a method, developed by Mr. G. F. Freeman, 

of using relaxation in the vicinity of a corner of any angle. This 

method is, as yet, unpublished, is not used by the author and has not 

been seen anywhere else in print.

Section 2 contains an orderly development of the equations for 

use with the substitute angle method as applied to slots of triangular 

section. From these equations a number of tables have been calculated 

for a number of values of s, t and g, and for 6 values of the substitute 

angle. Due to the amount of computational work associated with the calcula

tion of these tables only a limited range has been provided. This range 

may easily be extended by direct calculation from the equations in Section 2. 

An example of the use of the tables is included in the summary of Section 2.

In Section 3 a number of empirical methods have been suggested by 

the author for the application of the substitute angle method to teeth and 

slots of circular or elliptic shape. No scientific reasoning has been 

applied in developing these methods, only simplicity, since if an empirical 

method becomes complicated, its value is lost. The value of some of them 

is discussed in Section 6.

Section 4 contains a collection of solutions to miscellaneous 

problems associated with this work, some of which have been used in other 

sections. Among these solutions is a method that the author considered 

may be an alternative to the substitute angle method, but it proved neither 

more accurate nor simpler. An empirical method is suggested for the 

solution of the problem of the leakage flux associated with tie ends of 

the core. The pulsating permeance from this cause can become significant

when the core is short and there is no reason why a substitute angle should
not be used
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Section 5 is devoted to a special study of the permeance of 

teeth of rectangular, triangular and trapezoidal section and the 

determination of the appropriate values of the substitute angle.

As the rectangular tooth represents the limiting shape for the 

other two they have been studied as separate entities. The first part 

of Section 5 includes a comparison of some accurate results published by 

Dr. Liebmann with a number of other methods, including the substitute 

angle method in the form suggested by Dr. Pohl. This comparison provided 

full justification for further investigation of the substitute angle 

method. On comparing the substitute angle method directly with Carter’s 

result an error in Dr. Pohl’s assumptions was immediately apparent. The 

value of the substitute angle determined by Dr. Pohl was to obtain 

approximate equality with Carter’s coefficient for a single slot and, 

when the same substitute angle is used for opposed teeth, it applies to 

the permeance of twice s/g. The author has suggested a new value for 

the substitute angle approximation and has extended the study to examine 

the limits of its application to successive slots with varying t and d.

A special study has been made of the case where t is zero with both small 

and infinite slot depth; formulae have been given for each case. No 

analytical study has been made of the teeth out-of-line position except 

where the tooth width is greater than the slot width plus four times the gap 

length. Values of the exact substitute angle have been determined for each 

case studied here.

With triangular teeth, analytical results were available for the 

limiting values of slot angle, intermediate values being obtained by means

of graphical flux plotting. Practical resistance measurement was used to
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determine intermediate values of permeance with the teeth-out-of-line 

position, for one value of the slot angle.

Curves have been calculated relating the exact value of the 

substitute angle to the (slot opening)/(gap length) for both the in 

and out-of-line positions. An empirical formula is given which enables 

a substitute angle to be calculated for any value of slot angle. No 

results have been studied for other than a triangular slot, but provided 

the slot depth is a little greater than the slot width the error, with 

some w present, is not significant.

It was expected that results for trapezoidal teeth would be 

similar to those for triangular teeth, so a few curves were determined 

by means of graphical flux plotting. Within the limits of accuracy of 

the experimental method used, it was not found possible to completely 

separate the results for triangular and trapezoidal teeth, but the error 

is not serious and becomes much less as t increases.

To obtain some independent results for approximate trapezoids 

a conformal transformation of a rectilineal shape was used. Values of 

the substitute angle were determined for each case and where appropriate 

the results have been compared with the previous results. That they 

are not all compatible is due to the fact that some w exists at the base 

of these approximate shapes, which has not been catered for in the 

assumptions made.

Section 6 deals with two aspects of circular shapes, the flux 

leakage between isolated opposed circular poles (or teeth) and the 

permeance of opposed circular teeth,successive teeth being connected by 

equipotential planes. An analytical result available for the former

case enabled an exact comparison to be made with the substitute angle method,
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A sufficient range of values of the parameter t/(t+g) was studied to 
show that good agreement is obtainable. For opposed circular teeth, 

two methods were used to determine the permeance; the first, giving 

doubtful results, was the direct measure of resistance from the normal 

boundary configuration, the second made use of a transformation and flux 

plotting. The results were compared with those predicted from the 

equivalent shapes suggested in Section 4* but the equivalent trapezoid 

is favoured by the author. The transformation method was extended to the case 

of teeth out-of-line and reasonable agreement was obtained between the 

measured results and those obtained from the equivalent trapezoid.

Differences here are attributable to experimental errors for both results, 

due to the existence of some w in the equivalent trapezoid and to the 

variation from the circular shape. No separate empirical relationship 

has been stated for the application of the substitute angle method to 

circular teeth, since, having shown that the equivalent trapezoid is compat

ible (approximately) with the result predicted from the trapezoidal tooth, 

then the result for the latter type of tooth will be applicable. A plot 

has been calculated for the circular shape using a modification of Hague's 

method, but they apply to only low values of s/g and do not have much 

bearing on the range of interest to this work.

A fairly comprehensive bibliography, though not large by modern 

standards, has been included in Section 7*

8.3. Results of the Substitute Angle Approximation.
The title of the author's thesis stated specifically that the

study was to be directed towards the determination of permeance when teeth 

of a specified boundary configuration were displaced with respect to each



other. A number of other related results have been determined which 

do not fall into the above category, these will not be mentioned here.

Stated explicitly, the substitute angle method means that 

wherever a permeance has to be determined, the flux lines may be assumed 

to follow straight lines crossing the air-gap and circular arcs within 

the slot. The extent of penetration of these flux lines into the slot 

is generally smaller than if they were continued to the tooth wall, in 

fact they penetrate to an angular extent of Of , where Of is the 

substitute angle.

The substitute angle for a given trapezoidal shape is a function 

of numerous parameters which prevents the specification of a unique value 

for a given slot. The variation of the substitute angle with some of 

these parameters is so small, however, that it can be determined from a 

few simple formulae, which are easy to remember and sufficiently accurate 

for most practical purposes. Alternatively more precise results may be 

obtained from the graphs included in the work.

To simplify the results the author has taken the exact substitute 

angle for rectangular teeth, as the transfer constant for teeth of

other shape.

Opposed Rectangular Teeth

#E * 0.70 + 0.06 a/g, for a/g < 10.

°<E = 1.30, for a/g ^ 10.

Where CX p, the slot angle, is *T(/2 and ^E is the substitute angle.

These results apply particularly to the cases where d ,> s and t ^ (s+4g) 

but where precise accuracy is not required, provided d s, t may be any

value
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Opposed Trapezoidal Teeth*

CX = 1.5 V CX E (1 - ^
Where 0<p, the slot angle, <C. 'TX/2 and (X E is the angle corresponding 

to CXp = '7rt/2, for a given s/g.
For greater accuracy a better value of CXE may be obtained 

from the equations discussed in Section 5 for particular slot configurations,

8,4* Suggestions for Further Work.
The aim of this work was to provide simple formulae that could be

applied to teeth of any shape. The generality of the method adopted by 

the author is restricted mainly by the shape of the fictitious slot. If 

this were trapezoidal the equations required to express a particular 

permeance would be more numerous, though if tedium is not a factor, no more 

difficult. As indicated in 8.3* the author has achieved a reasonably 
uniform method for all shapes but the results indicate that there may be a 

more general method. To amplify this, all results obtained by the author 

have been plotted in Fig. 5*3*3*3. in terms of C{ p, the physical slot 
angle, and k a transfer constant. This constant is defined such that 

k » (Xj/ C* E, where 0( J is the exact substitute angle required to agree 

with the measurements and is the exact substitute angle required for

a given s/g when (Xp = '7T/2. The results are seen to be almost wholly

within the field given by

k - -nid - e.-2<*p/* )

and k = —jr-* cX p.

The spread of this field could be due to the experimental methods used, 

in which case a unique curve might be obtainable.

It would seem from the author's reading that experimental results, 

no matter how good, are eventually replaced by an analytical result. In



this subject there are a wealth of problems requiring an analytical 

solution. Some years ago the thought occurred to the author that 

opposed teeth of any shape could be represented by two Fourier Series 

F^ and F2> where F^ represents the upper boundary and F2 the lower 

boundary. The field between the two boundaries would be determinable 

as some function of F-^ and F2. Now it has been shown in recent years 

that a Fourier series is sumraable to its constant terra by a matrix trans

formation. Hence the original configuration could be transformed to a 

series of parallel lines representing an orthogonal distribution. Provided 

then that the matrix was reversible the lines of equipotential (say) in the 

transformed plane could be transformed back to the original plane and would 

be expressed as a Fourier series. This method was discussed with 

Dr. Jackson, a specialist in infinite matrices, and he indicated that a 

k or ^ infinite skew matrix might be applicable, but would contain, in any 

case, an infinite number of series with complex terms. To take this 

subject further is beyond the capacity of the author.

No study has been made of the cases, which are numerous in 

practice, where the number of rotor teeth differ from the number of 

stator teeth. The substitute angle method can be applied exactly as 

indicated in Section 2, but more discontinuities will be introduced.

No doubt the substitute angle for a given ^p will be the same as 

obtained in this thesis.
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APPENDIX 1,

HARMONIC ANALYSIS BY SELECTED

ORDINATES,



-/57-

APPENDIX 1,

Harmonic Analysis by Selected Ordinates,

The method of harmonic analysis used in Appendix 3 was based 

on the method of selected ordinates using ordinates at l/lOth intervals 

of pole pitch. The tables mentioned were calculated on Utecom, but 

the following is the general method.

Al.l. Consider a complex wave of periodic interval 27Y radians.

Erect k ordinates at intervals of 2 T( /k radians and measure

the heights of these ordinates as yQ, y^, y^ --- yk_^

These figures enable an approximate analysis of the wave 

shape to be determined, the larger the value of k the more 

accurate the analysis.

The order n of the highest harmonic that can be determined 

with reasonable accuracy by means of a k-ordinate analysis is 

given by n = (k-2)/2.

A1.2. The general expansion of a periodic function (single-valued)

y * f(t) having a period 2'7T , may be expressed in the form t

y ■ aQ + a^*sin(wt + ^) + a2*sin(2wt + + a^*sin(3wt + 0^) ---

* aQ + a^sinwt + a^si^wt + a^sin3wt --

+ b^coswt + b2COs2wt + b^cos3wt --- •

By integration,

a 2 rX yd(wt) -----Al.l

n 7r

bn * 7T

J

o

27T

o
2TC

ysin(nwt)d( wt)-----A1.2

ycos(nwt)d(wt) A1.3
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The coefficient a0 is seen to be the mean value between 0 and 2T\ 
of the curve, therefore -

ao “ (y0 + yi + y2 + ----- yk_! )

S 1
k A1.4.

m » o
The coefficient is twice the mean value between 0 and 27T 

therefore -
■ 2x average ordinate of ysin(nwt)

2* r* x sum of k ordinatesk
2

= k (y^sin2ft On y, sin27T ln sin27T2n y, , sin 27t(k-l)n)
k k k k

m * k-1
2

= k \ 1 y sin(mn27T ) A1.5*
/ ui .—u k
m = o

Similarly,
m * k-1

bn “ f y7 ymcos(n>n2TS_) A1.6.k ----------
m * o
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APPENDIX 2«

CURVES FOR RECTANGULAR

SLOTS.
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APPENDIX 3.

TABLE OP PERMEANCE VARIATION

AND

ITS HARMONIC CONTENT
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APPENDIX 3*

Tables of Permeance Variation and the Harmonic
Content.

A.3# General*
The equations developed in Section 2 and summarised in 2*4. 

provide permeance values for a range of trapezoidal shapes* The 

calculated permeance from these equations represents the true permeance 

of that shape if the exact value CXg is used for every position* It 

has been shown that good approximation to the true permeance may be 

obtained by assuming that (X is constant throughout the range of 

movement of one member with respect to the other but whose value is 

determined by the configuration of the teeth.

A number of empirical methods have been suggested for 

obtaining an approximate value for CX in most cases met with in 

practice and are summarised in Section 8.

Prom the equations in Section 2*4* numeric permeance values 

for a number of values of s and t have been calculated* These values 

have been calculated for displacements in multiples of VlOth the tooth 

pitch (s+t), i.e., 6 values of x, representing the total variation from 

maximum to minimum permeance* Six constant values of 0( have been chosen, 

from 0*25 to 1*5 in intervals of 0*25* The chart given below indicates

the table number in which the permeance calculation may be found for a 

given s and t, g being, of course, unity. Where the table does not 

cover the range of s and t required additional values may be computed 

from the equations in Section 2.

An additional set of tables has been computed from the

permeance tables in A.3.1. and given an harmonic analysis of the wave
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up to the fifth harmonic, such that

p = aQ + b^cosO + b2cos20 + b^ cos 3©

+ b^ cos 4© + b^ cos 5®

These are given the same table number as the permeance values but are 

set out in A.3*2. Hence, the chart below applies to both permeance 

variation (A.3*l) and harmonic analysis (A.3.2.).

CHART OF TABLE NUMBERS.



A. 3.1. Permeance Variation

S B 55 S * 1.0} t = 0 1
x 0 0.1(s+t) 0.2(s+t) 0.3(s+t) 0.4(s+t) 0»5(s+t)

a* 0*25 3.2437 3.2237 3.1800 3.1315 3.0928 3.0769
0,50 2.5055 2.4649 2.3863 2.3066 2.2463 2.2222
0.75 2.0775 2.0212 1.9237 1.8318 1.7652 1.7391
1.00 1.7918 1.7235 1.6163 1.5211 1.4543 1.4286
1.25 1.5848 1.5074 1.3958 1.3014 1.2368 1.2121
1.50 1.4267 1.3423 1.2293 1.1375 ^ 1.0759 1.0526

s = 10 5 e = 1.0} t - 0 2

cx- 0.25 5.0111 4.9297 4.7726 4.6131 4.4926 4*4444
0.50 3.5835 3.4471 3.2326 3.0422 2.9087 2.8571
0.75 2.8534 2.6846 2.4586 2.2750 2.1519 2.1053
1.00 2.3979 2.2094 1.9875 1.8181 1.7079 1.6667
1.25 2.0822 1.8818 1.6694 1.5146 1.4159 1.3793
1.50 1.8484 1.6409 1.4396 1.2981 1.2092 1.1765

S . 20 » em 1.0; t = 0 3
0(= 0.25 7.1670 6.8941 6.4652 6.0&45 5.8174 5.7143

0.50 4.7958 4.4189 3.9750 3.6363 3.4158 3.3333
0.75 3.6968 3.2817 2.8792 2.5961 2.4184 2.3529
1.00 3.0445 2.6178 2.2591 2.0193 1.8720 1.8182
1.25 2.6065 2.1799 1.8594 1.6524 1.5270 1.4815
1.50 2.2893 1.8687 1.5801 1.3984 1.2894 1.2500

S = 30} g « 1.0} t = 0 4
o( = 0.25 8.5603 8.0537 7.3756 6.8249 6.455^ 6.3158

0.50 5.5452 4.9226 4.3183 3.8942 3.6276 3.5294
0.75 4.2093 3.5679 3.0596 2.7262 2.5230 2.4490
1.00 3.4340 2.8031 2.3701 2.0975 1.9341 1.8750
1.25 2.9205 2.3099 1.9346 1.7046 1.5682 1.5190
1.50 2.5524 1.9650 1.6344 1.4357 1.3187 1.2766

s * 50 5 S “ 1.0} t * 0 5
0(= 0.25 10.4108 9.4O88 8.3468 7.5728 7.0795 6.8966

0.50 6.5162 5.4498 4.6484 4.1309 3.8176 3.7037
0.75 4.8675 3.8499 3.2243 2.8410 2.6136 2.5316
1.00 3.9318 2.9789 2.4687 2.1651 1.9870 1.9231
1.25 3.3208 2.4301 2.0001 1.7490 1.6028 1.5504
1.50 2.8872 2.0524 1.6811 1.4671 1.3430 1.2987

S = 75 f e = 1.0} t = 0 6
0(= 0*25 11.9326 10.3377 8.9532 8.0175 7.4402 7.2289

0.50 7.3013 5.7748 4.8364 4.2615 3.9204 3.7925
0.75 5.3966 4.0149 3.3147 2.9024 2.6615 2.5751
1.00 4.3307 3.0786 2.5217 2.2007 2.0146 1.9481
1.25 3.6410 2.4969 2.0349 1.7722 1.6207 1.5666
1.50 3.1545 2.1002 1.7057 1.4834 1.3556 1.3100
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S - 100; g = 1.0$ t = 0 7
X 0 0.l(s+t) 0.2(s+t) 0.3(s+t) 0.4(s+t) 0.5(s+t)

CX“ 0.25 13.0324 10*6996 9.2968 8.2619 7.6351 7.4074
0.50 7.8636 5.9578 4.9373 4.3302 3.9740 3.8462
0.75 5.7743 4.1048 3.3622 2.9343 2.6861 2.5974
1.00 4.6151 3.1319 2.5492 2.2190 2.0286 1.9608
1.25 3.8690 2.5321 2.0529 1.7841 1.6298 1.5748
1.50 3.3449 2.1252 1.7183 1.4917 1.3620 1.3158
s - 5' g = 1.0$ t = 1.0 8

o< * 0.25 4.2437 4.2125 4.1363 4.0455 3.9739 3.9473
0.50 3.5055 3.4385 3.2838 3.1126 2.9872 2.9423
0.75 3.0775 2.9798 2.7661 2.5470 2.3975 2.3454
1.00 2.7918 2.6675 2.4091 2.1621 2.0038 1.9499
1.25 2.5848 2.4374 2.1441 1.8814 1.7218 1.6686
1.50 2.4267 2.2589 1.9376 1.6668 1.5097 1.4583
S = 10$ go» 1.0$ t = 1.0 9

0< * 0.25 6.0111 5.8966 5.6502 5.4020 5.2193 5.1498
0.50 4.5835 4.3697 3.9813 3.6560 3.4404 3.3621
0.75 3.8534 3.5629 3.1062 2.7738 2.5684 2.4957
1.00 3.3979 3.0459 2.5564 2.2375 2.0496 1.9844
1.25 3.0822 2.6794 2.1759 1.8760 1.7054 1.6470
1.50 2.8484 2.4028 1.8958 1.6155 1.4603 1.4076
S * 20$ g m 1.0$ t = 1.0 10

cx ■ 0.25 8.1670 7.7915 7.1929 6.6660 4.3413 3.2115
0.50 5.7958 5.1985 4.5155 4.0429 3.7507 3.6448
0.75 4.6968 3.9639 3.3066 2.9022 2.6638 2.5791
1.00 4.0445 3.2216 2.6118 2.2645 2.0656 1.9956
1.25 3.6065 2.7206 2.1594 I.8568 1.6868 1.6274
1.50 3.2893 2.3577 1.8411 1.5736 1.4254 1.3739
s * 36$ g = 1.0$ t * 1.0 11

o< * 0.25 9.5603 8.8754 7.9890 7.3067 6.6623 6.6970
0.50 6.5452 5.5811 4.7378 4.1968 3.8713 3.7540
0.75 5.2093 4.1121 3.3764 2.9464 2.6967 2.6079
1.00 4.4340 3.2653 2.6245 2.2705 2.0690 1.9980
1.25 3.9205 2.7112 2.1471 1.8470 1.6784 1.6192
1.50 3.5524 2.3193 1.8168 1.5567 1.4119 1.3612
s * 50$ g * 1.0$ t = 1.0 12

OU 0.25 11.4108 10.0992 8.8092 7.9156 7.3594 7.1555
0.50 7.5162 5.9448 4.9359 4.3307 3.9751 3.8477
0.75 5.8675 4.2333 3.4325 2.9818 2.7232 2.6313
1.00 4.9318 3.2913 2.6318 2.2738 2.0790 1.9992
1.25 4.3208 2.6935 2.1342 1.8380 1.6708 1.6120
1.50 3.8871 2.2800 1.7949 1.5418 1.4003 1.3505
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s = 5 5 S * 1.0} i * 2.0 13
X 0 Q.l^s+t 6.2{8+t) 0.3(s+t) 0.41s+t) 0.5(s+t)

oC * 0.25 5.2437 5.2023 5.1047 4.9863 4.6895 4.8547
0,50 4.5055 4.4172 4.2205 3.9851 3.7929 3.7248
0.75 4.0775 3.9497 3.6799 3.3631 3.1103 3.0239
1.00 3.7918 3.6304 3.3059 2.9311 2.6411 2.5459
1.25 3.5848 3.3946 3.0276 2.6100 2.2974 2.1987
1.50 3.4267 3.2113 2.8105 2.3599 20.342 1.9350
S a 10} g =■ 1.0} t = 2.0 14

« - 0.25 7.0111 6.8771 6.5676 6.2252 5.9745 6.8845
0.50 5.5835 5.3350 4.8182 4.3243 4.0075 3.8999
0.75 4.8534 4.5179 3.8752 3.3337 3.0195 2.9165
1.00 4.3979 3.9933 3.2674 2.7184 2.4234 2.3293
1.25 4.0821 3.6210 2.8366 2.2971 2.0243 1.9389

_____ !i50 3.8484 3.3397 2.5127 1.9899 1.7383 1.6606
S a 20} g = 1.0} t = 2.0 15

cx = 0.25 9.1670 8.7393 7.9626 7.31197 6.8809 6.7242
0.50 6.7958 6.0917 5.H29 4.4751 4.0993 3.9688
0.75 5.6968 4.8056 3.7916 3.2310 2.9206 2.8152
1.00 5.0445 4.0161 3.0192 2.5296 2.2687 2.1812
1.25 4.6065 3.4720 2.5103 2.0789 1.8547 1.7803

_____ 1^0 4.2893 3.0701 2.1491 1.7646 1.5686 1.5039
S a 30} g * 1.0} t « 2.0 16

D< = O.25 10.5603 9.7558 8.6354 7.8050 7.2785 7.0873
0.50 7.5452 6.3377 5.1915 4.5136 4.1221 3.9850
0.75 6.2093 4.7690 3.7244 3.1781 2.8759 2.7717
1.00 5*4240 3.8438 2.9064 2.4530 2.2084 2.1248
1*25 4.9205 3.2270 2.3838 1.9975 1.7925 1.7227
1.50 4.5524 2.7843 2.0209 1.6848 1.5084 1.4486
S a 50} g a 1.0} t a 20 17

* = 0.25 12.4108 10.8391 9.2914 8.2671 7.6438 7.4186
0.50 8.5162 6.4983 5.2398 4.5366 4.1356 3.9942
0.75 6.8675 4.6722 3.6538 3.1273 2.8349 2.7328
1.00 5.9318 3.6541 2.8057 2.3863 2.1566 2.0769
1.25 5.3208 3.0025 2.2774 1.9292 1.7403 1.6749
1.50 4.8872 2.5490 1.9167 1.6191 1.4597 1.4033
S * 10} g = 1.0} t = 3.0 18

0( a 0,25 8.0111 7.8563 7.5047 7.0830 6.7624 6.6505
0.50 6.5835 6.2987 5.7141 5.0584 4.6186 4.4748
0.75 5.8534 5.4712 4.7453 3.9756 3.5155 3.3726
1.00 5.3979 4.9391 4.1187 3.2886 2.8401 2.7063
1.25 5.0822 4.5611 3.6730 2.8100 2.3833 2.2599
1.50 4.8484 4.2755 3.3365 2.4558 2.0535 1.9400



-'68-

s * 10$ g * 1.0$ t * 4*0 19 !
X 0 O.lCs+t) 0.2Cs+t) 0.3(a+t) 0.4(s+t) 0#5(s+t)

£X ■ 0.25 9.0111 8.8345 6.4410 7.9702 7.5857 7.4496
0.50 7.5835 7.2608 6.6117 5.8623 5.2822 5.0918
0.75 6.8534 6.4227 5.6211 4.7199 4.0684 3.8701
1.00 6.3979 5.8831 4.9806 3.9853 3.3134 3.1219
1.25 6.0822 5.4995 4.5253 3.4663 2.7968 2.6163
1.50 5.8484 5.2096 4.1818 3.0770 2.4205 _ 2.2518
S = 20$ g a- 1.0$ t « 4.0 20

<x* 0.25 11.1670 10.6701 9.6364 8.6386 8.0151 7.7997
0.50 8.7958 7.9866 6.5348 5.4368 4.8469 4.6586
0.75 7.6968 6.6795 5.0254 3.9799 3.4766 3.3212
1.00 7.0445 5.8760 4.1080 3.1423 2.7109 2.5805
1.25 6.6065 5.3218 3.4843 2.5971 2.2218 2.1099
1.50 6.2893 4.9120 3.0299 2.2135 1.8823 1.7845
S = 20$ g = 1.0: t = 6.0 21

c<= 0.25 13.1670 12.5975 11.4283 10.1169 9.2373 8.9495
0.50 10.7958 9.8781 8.2374 6.5772 5.6802 5.4126
0.75 9.6968 8.5510 6.6730 4.9116 4.1070 3.8799
1.00 9.0445 7.7346 5.7137 3.9295 3.2176 3.0238
1.25 8.6O65 7.1715 5.0550 3.2784 2.6452 2.4772
1.50 8.2893 6.7551 4.5701 2.8140 2.2459 2.0980
S = 20$ g >« 1.0$ t = 8.0 22

c>( = 0.25 15.1670 14.5216 13.2235 11.7245 10.5645 10.1836
0.50 12.7958 11.7661 9.9612 7.9705 6.6268 6.2437
0.75 11.6968 10.4192 8.3636 6.1540 4.84IO 4.5035
1.00 11.0445 9.5903 7.3851 5.0538 3.8165 3.5222
1.25 10.6065 9.0185 6.7138 4.3064 3.1510 2.8922
1.50 10.2893 8.5958 6.1533 3.7616 2.6835 2.4533
S = 20$ g a« 1.0$ t = 10.0 23

D< = 0.25 17.1670 16.4428 15.0148 13.4016 12.0116 11.5138
0.50 14.7958 13.6510 11.6815 9.5377 7.7237 7.1691
0.75 13.6968 12.2844 10.0512 7.6694 5.7240 5.2088
1.00 13.0445 11.4433 9.0540 6.5375 4.5555 4.0912
1.25 12.6065 10.8632 8.3706 5.7676 3.7863 3.3687
1.50 12.2893 10.4345 7.8685 5.2052 3.2406 2.8632
S - l>5 S =* 1.0$ t *= 3.0 24

0( * O.25 6.^437 6.1909 6.0715 5.9377 5.8371 5.7978
0.50 5.5055 5.3938 5.1547 4.8862 4.6680 4.5771
0.75 5.0775 4.9169 4.5912 4.2288 3.9210 3.7905
1.00 4.7918 4.5903 4.2008 3.7714 3.3967 3.2385
1.25 4.5848 4.3486 3.9102 3.4313 3.0056 2.8285
1.50 4.4267 4.1605 3.6837 3.1666 2.7011 2.5116



- f69-

S = 10j g ■= 1.0; t = 6.0 25
X 0 o.i(s+t; 0.2(s+t) 0.3(s+t) 0.4(s+t) 0.5(s+t)

(X- 0.25 11.0111 10.7876 10.3093 9.7724 9.3360 9.1541
0.50 9.5835 9.1806 8.4015 7.5428 6.7934 6.4770
0.75 8.8534 8.3210 7.3673 6.3333 5*4022 5.0232
1.00 8.3979 7.7664 6.6995 5.5566 4.5103 4.1059
1.25 8.0822 7.3719 6.2254 5.0086 3.8841 3.4732
1.50 7.8484 7.0735 5.8682 4.5980 3.4176 3.0101
s * 15$ g sB l.Oj t =s 9*0 26

o(= 0.25 15.2326 14.7508 13.7737 12.6864 11.7630 11.3716
0.50 13.2801 12.4814 11.0510 9.5000 8.1034 7.5348
0.75 12.3407 11.3313 9.6664 7.8918 6.2584 5.6445
1.00 11.7726 10.6103 8.8023 6.8971 5.1264 4.5151
1.25 11.3865 10.1070 8.2026 6.2118 4.3540 3.7632
1.50 11.1047 9.7318 7.7580 5.7067 3.7904 3.2263
S = 20} g *. 1.0; t * 12.0 27

<X« 0.25 19.1670 18.3612 16.^030 15.O855 13.5868 12.9539
0.50 16.7958 15.5329 13.3989 11.1132 9.0206 8.2118
0.75 15.6968 14.1471 11.7365 9.1961 6.8352 6.0201
1.00 15.0445 13.2941 10.7209 8.0366 5.5302 4.7538
1.25 14.6065 12.7058 10.0256 7.2489 4.6554 3.9283
1.50 14.2893 12.2712 9.5152 6.6742 4.0253 3.3473
s * 30; g ** 1.0; t - 15.O 28

o<* 0.25 23.5603 22.1176 19.4849 16.5743 14.0773 13.2509
0.50 20.5452 18.4267 15.0768 11.5041 8.5860 7.8133
0.75 19.2093 16.6941 13.0254 9.1795 6.2026 5.5424
1.00 18.4340 15.6517 11.8027 7.8078 4.8609 4.2948
1.25 17.9205 14.9437 10.9787 6.8901 3.9985 3.5058
1.50 17.5524 14.4264 10.3805 6.2275 3.3968 2,9618
s * 40; g ■ 1.0; t » 20.0 29

CX« 0.25 29.5916 27.3019 23.3^29 19.0754 15.4475 14.3382
0.50 26.0890 22.8867 18.1079 13.0750 9.1109 8.1824
0.75 24.5786 20.8689 15.7370 10.4104 6.4813 5.7264
1.00 23.7136 19.6727 14.3460 8.8625 5.0340 4.4047
1.25 23.1455 18.8682 13.4182 7.8371 4.1164 3.5788
1.50 22.7406 18.2846 12.7495 7.1018 3.4823 3.0137



- / 70 —

A•32 Harmonic Content of Permeance.

s = 5 ? 8 * 10; t B 0 1
0( ao bi b2 *3

6
5

0.25 3.1576 0.0817 0.0024 0.0015 0.0003 0.0001
0.50 2.3535 0.1372 0.0093 0.0039 0.0011 0.0006
0.75 1.8899 0.1618 0.0161 0.0063 0.0022 0.0010
1.00 I.585O 0.1715 0.0216 0.0086 0.0035 0.0015
1.25 1.3670 0.1738 0.0258 0.0105 0.0048 0.0020
1.50 1.2048 0.1723 0.0289 0.0122 0.0059 0.0025
S - 10} g » 1.0; t as 0 2
0.25 4.7071 0.2745 O.OI85 0.0077 0.00021 0.0010
0.50 3.1701 0.3430 0.0432 0.0172 0.0070 0.0030
0.75 2.4099 0.3430 0.0560 0.0242 0.0116 0.0050
1.00 1.9510 0.3294 O.O656 0.0294 0.0156 O.OO67
1.25 1.6424 0.3104 O.O696 0.0329 0.0187 0.0081
1.50 1.4200 0.2915 0.0713 0.0352 0.0210 0.0092
S = 20; g = 1.0; t * 0 3
0.25 6.3403 0.6860 O.O864 0.0343 0.0139 0.0060
0.50 3.9020 O.658O 0.1312 O.O589 0.0313 0.0134
0.75 2.8400 0.5831 0.1425 0.0704 0.0421 0.0183
1.00 2.2398 0.5162 0.1430 0.0755 O.O484 0.0214
1.25 1.8525 O.46I8 0.1394 0.0773 0.0521 0.0233
1.50 1.5812 0.4178 0.1344 0.0774 0.0540 0.0244
S = 3<5; g ■ 1.0; 1» — 0 4
0.25 7.2295 1.0341 0.1732 0.0731 0.6352 0.0150
0.50 4.2600 0.8747 0.2140 0.1057 0.0632 0.0275
0.75 3.0411 0.7314 0.2122 0.1151 0.0758 0.0337
1.00 2.3718 0.6266 0.2016 0.1162 0.0810 0.0366
1.25 1.9473 O.5488 0.1896 0.1142 0.0827 0.0381

S * 50} g = 1.0; t * 0 5
O.25 8.2122 1.5522 0.3479 0.1645 0.0935 0.0403
O.50 4.6312 1.1546 0.3485 0.1933 0.1302 0.0582
0.75 3.2456 0.9146 0.3160 0.1903 0.1379 O.O630
1.00 2.5054 0.7603 0.2853 0.1809 0.1367 0.0632
1.25 2.0435 O.6529 0.2594 0.1706 0.1326 0.0618
1.50 1.7273 0.5737 0.2381 0.1607 0.1276 0.0597



\~7 ! —

S = 'j 5; g = 1.0; t = 0 6
cx a0 *i b2 b3 b4 b5
0.25 8.6658 1.9939 0.5380 0.2798 0.1770 0.0780
0.50 4.8685 1.3719 0.4740 0.2855 0.2069 0.0945
0.75 3.3758 1.0532 0.4076 0.2635 0.2023 0.0939
1.00 2.5909 O.86O5 0.3572 0.2411 0.1913 0.0896
1.25 2.1056 0.7308 0.3184 0.2216 0.1796 0.0847
1.50 1.7754 0.6373 0.2880 0.2049 0.1688 0.0800

S = 100} g = 1.0; t = 0 7
0.25 9.2626 2.3093 0.6960 0.3866 0.2604 O.H65
0.50 5.0107 1.5205 0.5706 0.3618 0.2735 0.1264
0.75 3.4546 1.1474 0.4762 0.3215 0.2551 0.1195
1.00 2.6433 O.9287 0.4100 0.2876 0.2346 0.1108
1.25 2.1441 0.7841 0.3615 0.2603 0.2162 0.1027
1.50 1.8054 0.6808 0.3243 0.2381 0.2004 O.O956

S = 5 $ g = 1.0; t * 1.0 8
0.25 4.0926 0.1477 0.0024 0.0004 0.0004 0.0000
0.50 3.0091 0.6798 0.3860 O.4OI4 0.3993 0.2003
0.75 2.6803 0.3619 0.0299 0.0035 0.0012 0.0006
1.00 2.3226 0.4137 0.0465 O.OO64 0.0017 0.0008
1.25 2.0622 0.4472 0.0621 0.0028 0.0023 0.0010
1.50 1.7631 0.6696 0.1236 0.2134 0.1970 0.1011

s = 10} g = 1.0; t * 1.0 9
0.25 5.5497 0.4220 0.0296 0.0082 0.0011 0.0002
0.50 3.8839 0.5852 0.0830 0.0241 0.0057 0.0014
0.75 3.0371 0.6344 0.1249 0.0411 0.0125 0.0033
1.00 2.5161 0.6444 0.1549 O.O564 0.0201 O.OO59
1.25 2.1602 0.6392 0.1766 O.O696 0.0278 0.0087
1.50 1.9004 0.6278 0.1925 0.0810 0.0350 0.0116

S * 20; g = 1.0; t = 1.0 10
0.25 7.0401 0.9230 0.1313 0.0478 0.0178 O.OO69
0.50 4.4455 0.9572 0.2247 0.0983 0.0500 0.0200
0.75 3.2948 0.8942 0.2652 0.1319 0.0779 0.0326
1.00 2.6366 0.8268 0.2836 0.1545 O.O998 0.0431
1.25 2.2080 0.7678 0.2919 0.1701 0.1170 0.0516
1.50 1.9058 0.7178 0.2953 0.1813 0.1305 O.O586



->72-

s . ;JO} g ** 1.0} t = 1.0 11
OC a

0 T- b2 b3 b4 *5
0.25 7.6323 I.3064 0.2469 0.1030 0.0493 0.0201
0.50 4.7072 1.1785 0.3369 0.1718 0.1053 0.0453
0.75 3.4080 1.0314 0.3590 0.2061 0.1417 0.0630
1.00 2.6890 0.9181 0.3617 0.2247 0.1651 0.0751
1.25 2.2306 0.8315 0.3581 0.2355 0.1811 0.0835
1.50 1.9122 O.764O 0.3523 0.2419 0.1923 O.O896

s * 50$ e a• 1.0} t = 1.0 12
0.25 8.6932 1.8481 0.4590 0.2233 0.1308 O.O562
0.50 4.9736 1.4459 0.5002 0.2944 0.2080 0.0939
0.75 3.5240 1.1917 0.4839 0.3148 0.2415 0.1117
1.00 2.7466 1.0257 0.4615 0.3199 0.2573 0.1207
1.25 2.2604 0.9093 0.4408 0.3194 0.2652 0.1256
1.50 1.9271 0.8233 0.4227 0.3167 0.2690 0.1283

S = 5; e * 1.0} t * 2.0 13
0.25 5.0463 0.1936 0.0016 0.0009 0.0012 0.0000
0.50 4.1061 0.3873 0.0055 0.0028 0.0035 0.0002
0.75 3.5307 0.5215 0.0138 0.0044 0.0062 0.0008
1.00 3.1354 0.6156 0.0244 O.OO56 O.OO89 0.0016
1.25 2.8442 0.6838 0.0359 O.OO64 0.0116 0.0027
1.50 2.6193 0.7349 0.0475 0.0070 0.0140 0.0039

S «= 10} g= 1.0} t = 2.0 14
0.25 6.0183 1.3597 0.7721 0.8029 0.7985 0.4006
0.50 4.6453 0.8274 0.0929 0.0128 0.0034 0.0016
0.75 3.5262 1.3392 0.2472 0.4269 0.3941 0.2023
1.00 3.1531 O.9895 0.2016 0.0420 0.0088 0.0027
1.25 2.7578 1.0120 0.2407 0.0567 0.0119 0.0029
1.50 2.4670 1.0204 0.2724 0.0704 0.0151 0.0030

S « 20} g = 1.0} t «= 2.0 15
0.25 7.7680 1.1704 0.1660 0.0483 0.0114 0.0027
0.50 5.0322 1.2889 0.3099 0.1127 0.0401 0.0117
0.75 3.8009 1.2556 0.3849 0.1619 0.0701 0.0232
1.00 3.0892 1.1986 0.4263 0,1982 0.0973 0.0347
1.25 2.6218 1.1419 0.4507 0.2257 0.1208 0.0454
1.50 2.2897 1.0905 0.4655 0.2471 0.1412 0.0551



-n 3-

S = 30 ; g = 1.0; t =1.0 16

cy a0 bi b2 b3 b4 b5
0.25 8.4597 1.5988 0.3148 0.1197 0.0493 0.0179
0.50 5.1859 1.5128 0.4583 0.2188 0.1207 0.0484
0.75 3.8075 1.3677 0.5075 0.2767 0.1754 0.0744
1.00 3.0381 1.2470 0.5255 0.3129 0.2157 0.0945
1.25 2.5445 1.1516 0.5312 0.3372 0.2459 0.1101
1.50 2.1997 1.0752 0.5317 0.3543 0.2691 0.1224

s = 5C ; g = 1.0; t =2.0 17
0.25 9.1911 2.1590 O.5685 0.2720 0.1551 0.0650
0.50 5.3330 1.7559 O.6528 0.3848 0.2693 0.1203
0.75 3.8176 1.4866 0.6536 0.4294 0.3289 0.1513
1.00 3.0014 1.3074 0.6398 0.4501 0.3631 0.1698
1.25 2.4894 1.1806 0.6241 O.4605 0.3844 0.1818
1.50 2.1377 1.0863 0.6093 0.4657 0.3983 0.1898

S = 1C 5 g = 1.0;

0.it

+3 18

0.25 7.3073 0.6783 0.0186 0.0004 0.0047 0.0016
0.50 5.4438 I.0465 0.0751 0.0019 0.0103 0.0060
0.75 4.4640 1.2242 0.1338 0.0053 0.0150 0.0109
1.00 3.8476 1.3201 0.1853 0.0103 0.0190 O.OI54
1.25 3.4196 1.3758 0.2288 O.OI59 0.0223 0.0193
1.50 3.1030 1.4095 0.2655 0.0220 0.0255 0.0226

S = 1C 5 g = 1.0; t =4.0 19
0.25 8.2123 0.7745 0.0110 O.OO56 0.0070 0.0005
0.50 6.2709 1.2313 0.0488 0.0113 0.0179 0.0033
0.75 5.2387 1.4699 0.0951 0.0141 0.0279 0.0077
1.00 4.5844 I.6098 0.1393 0.0155 0.0361 0.0127
1.25 4.1274 I.6987 0.1790 O.OI64 0.0428 0.0178
1.50 3.7877 1.7584 0.2141 0.0171 0.0481 0.0227

S = 20 » g = 1.0; t =4*0 20

0.25 9.2906 1.6547 0.1858 0.0256 0.0069 0.0032
0.50 6.3064 1.9792 0.4031 O.O84O 0.0176 O.OO53
0.75 4.9340 2.0408 0.5448 0.1408 0.0302 0.0061
1.00 4.1298 2.0364 0.6402 0.1891 0.0424 0.0066
1.25 3.5965 2.0121 0.7078 0.2291 0.0538 0.0071
1.50 3.2149 1.9823 0.7577 0.2623 0.0642 0.0078



-H4-

S = 20; g *= 1.0} t = 6.0 21

T" ES2 b3 b4 _B5
0.25 10.8875 2.0929 0.1501 0.0038 0.0206 0.0120
0.50 7.6953 2.6403 0.3707 0.0206 0.0381 0.0308
0.75 6.2061 2.8191 0.53H 0.0441 0.0511 0.0452
1.00 5.3258 2.8864 0.6469 O.O684 0.0615 0.0555
1.25 4.7382 2.9102 0.7334 0.0914 0.0700 0.0629
1.50 4.3157 2.9145 0.8006 0.1126 0.0774 O.O685

S = 20; g ** 1.0} t = 8.0 22

0.25 12.5418 2.4625 0.0976 0.0223 0.0358 0.0066
0.50 9.1688 3.2196 0.2786 0.0310 0.0723 0.0254
0.75 7.5755 3.5169 0.4283 0.0341 0.0963 0.0455
1.00 6.6257 3.6610 0.5452 0.0364 0.1123 0.0637
1.25 5.9877 3.7392 0.6377 0-0385 0.1237 0.0793
1.50 5.5131 3.7800 0.7140 0.0403 0.1340 O.O915

S = 20; g -« 1.0} t = 10.0 23

0.25 14.2410 2.7640 0.0580 0.0610 0.0410 0.0010
0.50 10.7152 3.7084 0.1684 0.0990 O.O988 0.0060
0.75 9.0363 4.1150 0.2726 0.1159 0.1438 0.0131
1.00 8.0316 4.3307 0.3592 0.1249 0.1770 0.0210
1.25 7.3550 4.4594 0.4306 0.1304 0.2019 0.0289
1.50 6.8649 4.5424 0.4901 0.1342 0.2211 0.0365

s * 5 ; g * 1.0} t = 3.0 24

0.25 6.0115 0.2202 0.0088 0.0021 0,0004 0.0006
0.50 5.0287 0.4538 0.0109 0.0091 0.0016 0.0013
0.75 4.4183 0.6245 0.0118 0.0170 0.0038 0.0020
1.00 4.4183 0.6245 0.0118 0.0241 0.0068 0.0025
1.25 3.6804 0.8451 0.0159 0.0303 0.0103 0.0028
1.50 3.4361 0.9191 0.0190 0.0353 0.0140 0.0031

s = 10} g = 1.0} t = 6*0 25

0.25 10.0575 0.9075 0.0218 0.0182 0.0031 0.0027
0.50 7.9895 1.5000 0.0269 O.O483 0.0136 0.0050
0.75 6.8724 1.8384 0.0380 0.0707 0.0279 0.0061
1.00 6.1569 2.0534 0.0521 0.0861 0.0428 O.OO65
1.25 5.6534 2.2008 O.O669 O.O969 0.0572 0.0067
1.50 5.2773 2.3077 0.0815 0.1047 0.0704 0.0061



S = 15; g «* 1.0; C
+- II VO . O 26

(X a0 \ b2 b3 b4 b5

0.25 13*2551 1.8734 0.0354 0.0510 0.0114 0.0060
0*50 10.3086 2.7575 0.0570 0.1060 0.0419 0.0091
0.75 8.8281 3.2001 0.0893 0.1379 0.0752 O.OO99
1.00 7.9159 3.4616 0.1223 0.1571 0.1055 0.0100
1.25 7.2900 3.6325 0.1528 0.1693 0.1319 0.0099
1.50 6.8304 3.7519 0.1803 0.1774 0.1547 0.0098

S = 20; g = 1.0; t = 12.0 27

0.25 15.9790 3.0000 0.0540 O.096O 0.0270 0.0100
0.50 12.3130 4.1060 0.1040 0.1730 0.0860 0.0130
0.75 IO.5546 4.6154 0.1630 0.2094 0.1408 0.0134
1.00 9.4961 4.9024 0.2165 O.2298 0.1865 0.0132
1.25 8.7806 5.0840 0.2627 0.2420 0.2240 0.0131
1.50 8.2608 5.2080 0.3027 O.2498 O.2548 0.0132

s = 30; g = 1.0; t = 15.0 28

0.25 18.1310 5.0230 0.1670 0.1260 0.1060 0.0050
0.50 13.5540 6.1720 0.4090 0.1740 0.2160 0.0190
0.75 11.4950 6•6O4O 0.5950 0.1920 0.2860 0.0380
1.00 10.2970 6.8140 0.7350 0.2010 0.3320 0.0540
1.25 9.5040 6.9300 0.8440 0.2070 0.3640 0.0700
1.50 8.9370 7.0010 0.9310 0.2110 0.3880 0.0830

s = 40$ g = 1.0; t » 20.0 29

0.25 21.4300 7.4160 0.3370 O.I98O O.I98O 0.0120
0.50 16.0620 8.6610 0.7190 0.2500 0.3540 0.0420
0.75 13.7290 9.0840 O.98OO 0.2680 0.4430 0.0730
1.00 12.3940 9.2770 1.1670 0.2780 0.4970 0.1000
1.25 11.5200 9.3770 1.3070 0.284 0.5340 0.1220
1.50 10.8980 9.4330 1.4180 0.2880 O.56OO 0.1420


	Title Page : STUDY OP THE VARIATION OP AIR-GAP PERMEANCE DUE TO THE DISPLACEMENT OF OPPOSED TEETH WITH SPECIFIC BOUNDARY CONFIGURATIONS
	SUMMARY
	CONTENTS

	SECTION 1. REVIEW OF PAST WORK
	SECTION 2. TRIANGULAR AND TRAPEZOIDAL TEETH - METHOD A
	SECTION 3. CONSIDERATION OF CIRCULAR AND OTHER TEETH
	SECTION 4. MISCELLANY
	SECTION 5. PRACTICAL CONSIDERATIONS - RECTANGULAR TRIANGULAR AND TRAPEZOIDAL TEETH
	SECTION 6. PRACTICAL CONSIDERATIONS CIRCULAR TEETH
	SECTION 7. BIBLIOGRAPHY
	SECTION 8. SUMMARY AND CONCLUSIONS
	APPENDICES 



