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PREFACE 

The work described in this report was undertaken in the Hydrology 
Section of the School of Civil Engineering, The University of New South 
Wales, between November 1968 and August 1972„ Funds were provided by 
the Australian Water Resources Council under a grant from the AoW„RoCo 
Water Research Fund, and this generous support is gratefully acknowledged. 
This study was one of the four analysis components of A^W^RoCo Research 
Project 68/1, "Hydrology of Small Rural Catchments"« It also formed a 
continuation of the research on mathematical models of the rainfall-
runoff process in which the School of Civil Engineering has been active 
over a number of years» 

From the commencement of the project to February 1970, the work 
was carried out by Mr„ F.C» Bell under the supervision of Professor 
EoMc Laurenson. From March 1970, the work was carried out by Mrc PoRo 
Johnston under the supervision of Associate Professor D«H. Pilgrim. 
The work described in this report relates primarily to the latter period, 
as the earlier work was of a preliminary nature» 

H.R» VALLENTINE, 
Professor and Head̂ , 
School of Civil Engineering, 



SUMMARY 

A detailed study on the optimisation of the parameter 
values of the Boughton daily rainfall-runoff model has been carried 
out for a number of small catchments„ The optimum values of the 
parameters were sought using the Steepest Descent, Simplex and 
Davidon optimising methods» It had been intended to correlate 
these optimum parameter values with measurable catchment 
characteristics o 

Rapid initial reductions in the values of the objective 
function were readily achieved and the solutions approached 
apparent optimum points on the response surface» However^ several 
of these points were found for each catchment and there were large 
differences in the parameter values between the pointso This type 
of problem has also been encountered in previously reported 
optimisation studies for rainfall-runoff modelso It was found that 
further improvements in the objective function could usually be 
achieved by using another of the search techniques or by numerical 
trials, and in this way, downhill paths on the response surface 
were found from the apparently optimum points» This work was 
pursued for one of the catchments until the paths appeared tc be 
converging, but coincidence at a true optimum could not be achieved. 
A number of somewhat different sets of parameter values which appealed 
to lie in a flat "valley" area of the response surface were obtained, 
and these sets gave equally good fits to the observed runoff data» 

An algebraic analysis of the operation of the model and of 
the effect on the objective function of changes in some individual 
parameter values led to important findings on some of the problems 
encounteredo 

It is probable that the findings from the numerical and 
algebraic analyses would be applicable to all rainfall-runoff models. 



ACKNOWLEDGEMENTS 

Initial work in the study was carried cut by F-C. Bell 
under the supervision of Professor E.M, Laurensono This work 
included the selection of the Boughton model for use in the project^ 
the selection cf the objective function to be used for optimiiatic-n. 
and some preliminary optimisation work using the steepest de^.^n. 
methodo 

Mr^ McKo Smith, Research Forester, Forestry Commission of 
NoS.Wi assisted the study by providing rainfall^ runoffj evaporation 
and soil moisture data for the Lidsdaie No.. 2 catchment, and also made 
several helpful suggestions. 

Mr= Do Doran, Professional Officer, The University of New 
South Wales, assisted in integrating the modified infiltration function 
and in extracting some runoff data for the Lidsdaie No. 2 :atchment. 

Thanks are also due tc the Reference Panel cf A-W=R.C= 
Research Project 68/1 for helpful suggestions and advice during the 
course of the project» Mr, DoT= Walsh was chairman of the Panel. 
Professor T=Go Chapman provided helpful suggestions relating tc optimising 
methodsc The project leader, Mrc JcA.H, Brown of the Snowy Mountains 
Engineering Corporation, and Mrc J.A. Shaw of the A.W.R.C Secretariat 
also assisted the study^ 

The financial assistance cf the Australian Water Resources Counc: 
is gratefully acknowledged. 



TABLE OF CONTENTS 

Page No 

1. INTRODUCTION 1 
2, MATHEMATICAL MODELS OF THE RAINFALL-RUNOFF PROCESS 3 
3» THE MODEL USED IN THIS PROJECT 8 
4o FINDING THE OPTIMUM PARAMETER VALUES 14 

4ol Direct Search Methods 18 
4.2 Descent Methods 22 
4o3 Problems in Implementing the Search Methods 25 

5„ SEARCH FOR OPTIMUM PARAMETER VALUES FOR THE POKOLBIN 27 
CATCHMENTS 

6„ CHANGES INTRODUCED INTO THE BOUGHTON MODEL CALCULATIONS 35 
6.1 Evapotranspiration Calculations 36 
6.2 Infiltration Calculations 40 

7e SEARCH FOR OPTIMUM PARAMETER VALUES FOR LIDSDALE 45 
No. 2 CATCHMENT 
7.1 Outline Description of the Search 46 
7o2 The Investigations Undertaken During the Search 52 
7.3 Discussion of the Parameter Values Obtained 86 

from the Search 
8. ALGEBRAIC ANALYSIS OF THE MODEL 96 

801 Analysis of Individual Stores 
802 Combination of the Individual Stores 112 
8c3 An Elementary Equation for the Output from 112 

the Model 
8=4 Significant Findings from the Analysis 116 

9» COMMENTS ON CHOOSING AND EVALUATING THE OBJECTIVE 119 
FUNCTION 

9ol The Time Periods Used in the Objective Function 119 
9e2 Forming the Objective Function from the 124 

Deviations 
9.3 Transforming the Observed and Calculated Flows 127 
9c4 The Objective Function Used in this Project 131 



Page N' 

10. SUMMARY, RECOMMENDATIONS AND CONCLUSION 
10 A Features of the Model 
1002 Features of the Optimisation Problem 
1003 Performance of the Model with Near-optimum 

Parameter Values 
10«4 Algebraic Analysis 
10.5 Data 
10.6 Recommendations 
10.7 Conclusion 

REFERENCES 
APPENDICES 
Alo DESCRIPTIONS OF OPTIMISING METHODS 

Al.l The Simplex Method of Neider and Mead 
A1.2 The Davidon Method 

A2. THE STEEPEST DESCENT DIRECTION AT A POINT ON THE RESPONSE 
SURFACE AND THE SCALING OF THE PARAMETERS 

A2.1 Method 1 
A2.2 Method 2 
A2.3 Method 3 
A2.4 Method 4 
A2.5 Method 5 
A2.6 The Effect of Discontinuities on the Response Surface 
A2o7 Scaling the Parameters 

A3o CATCHMENT DESCRIPTIONS 
A3.1 Pokolbin Catchments 
A3,2 Lidsdale No. 2 Catchment 

A4o INTEGRATION OF THE EVAPOTRANSPIRATION AND INFILTRATION 
FUNCTIONS 

A4ol Evapotranspiration Function 
A4.2 Infiltration Function 

132 

13-5 

136 

141 

141 

142 

145 

148 

149 

153 
153 
159 

165 

166 

1^0 
1'2 
1^4 
1^6 
177 
1^7 
180 
180 
187 
193 

193 
194 



1. 

1. INTRODUCTION 

The study described in this report is part of the Australian 
Water Resources Council Research Project 68/1, "Hydrology of Small Rural 
Catchments", which was commenced in November, 1968. The aims of this 
project were to catalogue all gauged rural catchments in Australia with 
an area of less than 10 square miles, to process the streamflow, rain-
fall and other records from these catchments into computer compatible 
form, and to commence analysis of the records. The project is described 
in a four volume report (Australian Water Resources Council, 1971), The 
analysis phase of the project consisted of four parts, two relating to 
flood estimation and the other two relating to methods of yield estima-
tion. The study reported herein was Part (d), originally titled "Yield 
Estimation Using a Rainfall-Runoff Process Model Approach". In the 
remainder of this report, the word "project" will refer to Part (d) of 
A.WoR.C. Research Project 68/1. 

This project, as well as the other three analysis projects, 
was envisaged as only a commencement of analysis of the compiled data, 
and as having an important function in testing and providing feed-back 
for the data compilation and transfer procedures. 

The original proposal for this project envisaged four parts= 
The first two were of a preliminary nature and comprised graphical 
summaries of data and low-flow frequency analyses. Little work was 
carried out on these aspects. The third and major aspect comprised 
selection of an appropriate model of the rainfall-runoff process, 
determination of optimum model parameters for about 80% of the catch-
ments for which records were available, correlation of the parameter 
values with catchment characteristics, and testing of these relation-
ships with the remaining catchments. The fourth part was a tentative 
proposal and was dependent on the successful completion of the third 
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part It involved investigating the possibility of developing direct 
relationships between runoff characteristics and physical and climatic 
characteristics of catchments, thus eliminating the use of a model in 
a design procedure for the estimation of catchment yield. Data availa-
bility and the need for practical usefulness of results restricted the 
choice of a model to one using rainfall-runoff data at time intervals of 
not less than one day. The Boughton model was selected for use in the 
projects 

As the project progressed beyond its initial phase, it became 
obvious that the proposed objectives could not be mete Many difficul-
ties were encountered in the searches for optimum values of the model 
parameterso It was recognised that any attempts to relate model 
parameters to catchment conditions, or to use a model for synthesising 
data, would be pointless if the derived parameter values were not truly 
optim-um. Further funds were provided by the Australian Water Resources 
Council for extension of this project, and in this extra time, the work 
was concentrated on the problem of obtaining optimum parameter values» 

While the original aims of the project were not achieved, 
many of the practical difficulties which can be expected in implementing 
the optimising procedures and in searching for the optimum parameter 
values have been identified^ Also, insight into such questions as the 
effect of the chosen objective function and the nature of the response 
surface has been gainedc. Considerable interest has been shown in 
deterministic models of the rainfall-runoff process over the last decade 
and the development and application of several types of models have 
been reported. While these models vary in the degree of their sophisti-
cation in attempting to simulate physical processes, they all depend 
on the derivation of optimum parameter values for usefulness in appli-
cation. The findings of this project indicate that such values have 
not been found for many of these models and that more attention should 
be given TJ the problem of optimisation in the futureo 



2„ MATHEMATICAL MODELS OF THE RAINFALL-RUNOFF PROCESS 

Mathematical models of the rainfall-runoff process usually 
consist of a number of stores which, conceptually, represent the 
moisture-holding capacity of the vegetation and soil of the catchment» 
The movement of water onto, within, and out of the catchment is re-
produced in these models by making transfers of water into, between^ 
and out of the stores according to the rainfall and evaporation data 
and known or assumed functions to represent such physical processes 
as infiltration and évapotranspiration» Overflow from the system of 
stores is regarded as modelled runoff and should, theoretically, 
correspond to the observed runoff from the catchment » Spatial vari-
ation of the processes and moisture storage on the catchment is not 
generally taken into account» Average or "lumped" values are usually 
used for these components in most models» Examples of rainfall-runoff 
models are the Stanford Watershed Model (Crawford and Linsley, 1966), 
the Boughton Model (Boughton, 1965, 1966), and a model being used in the 
Representative Basins Project of the Australian Water Resources 
Council (A»W,R.C., 1969)» These models are potentially useful for 
synthesising runoff data from observed rainfall and evaporation data, 
for generating very long sequences of flow using synthetic rainfall 
and evaporation data, and for estimating catchment wetness in flood 
forecasting schemes. 

Some constants in the functions used to represent the physical 
processes, and the capacities of the stores, are parameters of the model 
and must be assigned fixed numerical values before the model may be used 
to estimate the runoff for any particular catchment» The numerical 
values vary for different catchments because of different vegetation, 
soil types and soil depths, and for models which truly represent the 
physical process, these values would ideally be estimated from measure-
ments of the appropriate physical variables» 



For catchments where there is a period of concurrent rainfall, 
evaporation and runoff records, the usual method of finding the appro-
priate parameter values is to operate the model with estimates of these 
values, compare the modelled and observed runoff, and make changes to 
the parameter values so as to obtain the best agreement between modelled 
and observed runoff records, The values which give this agreement are 
defined as the optimum parameter values» 

The term "best agreement" must be defined in a quantitative 
way. It is necessary to choose some feature of the observed runoff 
record which is to be reproduced as closely as possible by the model. 
Features such as the runoff volumes in certain time periods or the peak 
flows are often selected. A numerical measure of the fit of the modelled 
runoff to the observed runoff may then be formed using some function of 
the differences between the modelled and observed values for the selected 
feature. An example is the sum of squares of the differences between 
the modelled and observed monthly runoff volumes. The measure of fit 
is known as an objective function, and the optimum parameter values 
are those which give a minimum value of this function, i.e., those 
which give the best fit in terms of the chosen objective. 

For a given catchment, the value of the objective function is 
dependent only on the values assigned to the parameters. If there are 
n parameters and these are represented by n of the co-ordinates of an 
w-dimensional co-ordinate system (where m = n + 1), and the remaining 
co-ordinate represents the objective function, then this function forms 
a surface in the /??-dimensional space known as a response surface. The 
co-ordinates of a point on this surface are n parameter values and the 
value of the objective function obtained when the model is operated with 
these values. The lowest point on the surface is where the objective 
function is a minimum and the corresponding parameter values are regarded 
as the optimum parameter values. The lowest point is known as the 
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global minimum. There may be other points on the surface which are lower 
than all others in their immediate vicinity (but not lower than the 
global minimum). Such points are known as secondary minima. 

A typical response surface where n = 2 is illustrated in 
Fig. 2.1 
by a contour map in the x 

The parameters are x^ and x^ and the surface is represented 
- X plane. Where n is greater than 2 the 

1 2 
concept of a response surface is retained even though the sur-
face cannot be represented visually. 

global/ 
mi nimum 

secondar}' 
mini i?,um 

parameter x 

FIGURE :.l 
CONTOUR MAP OF A RHSPONSH SURFACE 
FOR A FUNCTION OF TWO PARAMF.TFRS 
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The search for the set of optimum parameter values may be 
regarded as a search on the response surface for its lowest point. 
Techniques have been developed to conduct the search in a systematic 
way and these are known either as optimisation methods or simply as 
search techniques. 

An exact fit of the modelled runoff to the observed runoff 
(i,e,, objective function = 0) cannot be achieved, as 
(i) all models are simplifications of the complex processes which 

actually occur on the catchment and are therefore inadequate 
to reproduce these processes exactly, 

(ii) variations in catchment characteristics and moisture conditions 
are averaged both over the area of the catchment and within the 
time increments used for the model calculations, and 

(iii) errors, some of which are unavoidable, are always present in 
the data. 

Models may be refined to represent the physical process more 
closely, but this will normally involve 
(i) greater complexity^ 
(ii) an increased number of parameters, 
(iii) an increase in the computing time required to operate the model 

and search for the optimum parameter values, and 
(iv) more stringent requirements on the data, e^g., readings at more 

frequent time intervals and on a more dense areal networks 

If, for a given model, a set of optimum parameter values can 
be found for a particular catchment, it is desirable to verify these 
values and the validity of the model for the catchment by checking the 
model's ability to reproduce a period of observed runoff which was not 
used in the optimisation. 
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One of the main aims of this project was to obtain the optimum 
parameter values for the selected model on about 80% of the catchments 
included in the A.W.R.C. Research Project 68/1. The chosen objective 
function to be minimised for each catchment was the sum of squares of 
the differences between monthly observed and modelled runoff volumes. 
This function has been used frequently by other workers. Some compara-
tive optimisation runs using other functions were made by Mr. Bell in 
the early work of this project, but they did not indicate that any of 
these functions would be preferable. 



3. THE MODEL USED IN THIS PROJECT 

The Boughton Model (Boughton, 1965, 1966) was selected for use 
in this project. For practical usefulness, a model which uses daily data 
was required and the Boughton model is the most developed of these. It 
was thought desirable to continue previous work done with this model at 
The University of New South Waleso The model is illustrated in Fig, 
3ol, 

The Interception Store allows for water held on the surfaces 
of vegetation and also probably on surface litter. The topsoil layer 
of the catchment is assumed to have an unrestricted infiltration rate, 
and is represented by two moisture stores, the Upper Soil Store for the 
amount of water held in the topsoil between moisture levels corresponding 
to the sijiiplified concepts of wilting point and field capacity, and the 
Drainage Store for the water temporarily held in the topsoil between 
field capacity and saturation» The subsoil is assumed to be much 
denser than the topsoil and to have a much lower infiltration rate 
which governs the amount of infiltration loss during a storm« It is 
represented by one moisture store, the Lower Soil Store« The daily in-
filtration rate is given by a function which is greatest when the Lower 
Soil Store is empty and declines exponentially as the quantity in the 
store increases« Evaporation occurs at the potential rate from the 
Interception Store until this store is emptied, after which évapotrans-
piration depletes the contents of both the Upper and Lower Soil Stores« 

The model is operated as follows:-
(i) Rainfall first enters the Interception Store. If the capacity of 

this store is exceeded, it overflows into the Upper Soil Store, 
which in turn overflows into the Drainage Store« (The amount of 
water required to fill these stores on any day is the potential 
initial loss from that day's rainfall,) 
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Evapo-
transpiration 

A 
Evaporation 

Precipitation 

Interception Store 

Upper Soil Store 

Runoff 

Drainage Store 

\ 
Lower Soil Store 

Drainage to 
groundwater 

FIGURE 3.1 

STRUCTURE OF THE BOUGHTON MODEL 



10, 

(ii) When the Drainage Store contains water, infiltration into the 
Lower Soil Store occurs. The infiltration rate is determined 
from the equation 

F = FC ^ (FO - FC) e"^^^^^. (3.1) 

where F = daily infiltration rate 
FC = daily infiltration rate when the Lower Soil Store 

is full 
FO = daily infiltration rate when the Lower Soil Store 

is empty 
KF = empirical constant 
SS = amount of water currently held in the Lower Soil 

Storee 
(iii) If the rainfall is sufficient to cause overflow from the Drainage 

Store, surface runoff commences. The amount of runoff is found 
from the following empirical relation:-

Q = P - F tanh (3.2) 

where Q = amount of runoff 
P = that amount of the rainfall which overflows from 

the Drainage Store, i.e., rainfall less initial 
loss 

F = daily infiltration rate. 
(iv) Evaporation occurs at the potential rate from the Interception 

Store during and after rainfall until this store is empty. 
Evapotranspiration then takes place from both the Upper and 
Lower Soil Stores. The quantity taken from the Upper Soil Store 
is the lower of either 

(a) PV.E 
or (b) PV.EVPMAX=US/USMAX 
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while that taken from the Lower Soil Store is the lower of either 
(a) (1 - PV) . E 

or (b) (1 - PV) . EVPMAX.SS/SSMAX 
where PV = the fraction of the évapotranspiration 

taken from the Upper Soil Store 
E = the potential évapotranspiration rate 

EVPMAX = the maximum évapotranspiration rate when 
the soil moisture level is at field 
capacity 

US = the amount of water currently held in the 
Upper Soil Store 

USMAX = the capacity of the Upper Soil Store 
SS = the amount of water currently held in the 

Lower Soil Store 
SSMAX = the capacity of the Lower Soil Store. 

The functions above are explained in more detail in sub-section 
6 . 1 . 

(v) Depletion occurs from the Lower Soil Store to groundwater. 
Boughton allowed for this by applying a factor of 0.999 to the 
amount of water in the Lower Soil Store at the end of each day. 
The daily depletion quantity of water passes out of the system, 
as groundwater fluctuations or contributions to runoff are not 
included in the model. 

Calculations are made on a daily basis to determine the amounts 
of water transferred into and out of the various stores, the amounts of 
water currently held in the stores, and any runoff produced^ according 
to the above procedures. 

The model has nine parameters and the notation and units given 
below for these parameters are used throughout this report. 
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Moisture Stores 
VSMAX 
USMAX 
DSMAX 
SSMAX 

Capacity of the Interception Store (points) 
Capacity of the Upper Soil Store (points) 
Capacity of the Drainage Store (points) 
Capacity of the Lower Soil Store (points) 

Evapotranspiration function 
PV The fraction of évapotranspiration 

drawn from the Upper Soil Store 
EVPMAX The maximum possible évapotrans-

piration rate when the relevant soil 
store is fullo This is a property 
of the vegetation 

(no units) 

(points/day) 

Infiltration function 
FC The daily infiltration rate when the 

Lower Soil Store is full 
FO The daily infiltration rate when the 

Lower Soil Store is empty 
KF Empirical constant 

(points/day) 

(points/day) 
(no units) 

Listed below are some of the variables of the model which are 
referred to frequently. 

VS 
US 
DS 
SS 
E 

Contents of the Interception Store 
Contents of the Upper Soil Store 
Contents of the Drainage Store 
Contents of the Lower Soil Store 
Potential évapotranspiration 

(points) 
(points) 
(points) 
(points) 
(points/day) 

(One point equals 1/lOOth inch depth of water,) 
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Daily rainfall (averaged over the catchment area) and daily 
evaporation data are required to operate the model« Daily evaporation 
data are not available for many catchments, however, and it is often 
necessary to use average figures. The runoff quantities calculated by 
the model occur on days of rainfall only; no routing procedure is applied 
to the runoff, therefore recession curves do not appear in the calcula-
ted hydrograph.. 

The model attempts to reproduce the physical processes which 
occur in the catchment, but because of the use of daily data and a daily 
time period for calculations, complete representation of these processes 
is not possible. Variations in rainfall intensity during each day can 
not be taken into account. Only one infiltration rate is used on each 
day, and this rate is applied over the whole area of the catchment. 
The parameter values are average or "lumped" values for the whole of 
the catchment, and variations of catchment and moisture conditions over 
the area cannot be reproduced. No contribution to streamflow from 
groundwater depletion is allowed for and this would induce errors when 
using the model to compute the runoff from all but ephemeral streams. 
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FINDING THE OPTIMUM PARAMETER VALUES 

The use of optimising methods to search for the optimum param-
eter values of rainfall-runoff models has attracted increasing interest 
in recent years. Some of this work is summarised below:-

Authors 
Year 
of 

Publi-
cation 

Model Optimising 
Methods Catchments 

Lichty, 
Dawdy § 
Bergmann 

1968 U.S^GoS, Rosenbrock One in 
North Carolina 

Boughton 1968 Boughton Steepest Descent Five in 
New Zealand 

Dawdy ^ 
Bergmann 1969 U.S.GcS. Rosenbrock One in 

southern California 

Wood & 
Sutherland 1970 Stanford Steepest Descent Five in 

New Zealand 

Murray 1970 Modified 
Boughton Rosenbrock 

j 
Brenig, Wales | 

i 

Chapman 1970 
A.W^R.C, 

Representative 
Basins Project 

Simplex One in 
Central Australia 

Porter § 
McMahon 1970 Porter § 

McMahon 
Steepest Descent 

Univariate 
Two near Melbourne, 

Australia 

Ibbitt § 
0'Donne11 1971b Dawdy § 

0'Donne11 
9 methods 

(for comparison) Synthetic Record 

Ibbitt 1972 Dawdy ^ 
0'Donne11 Rosenbrock Synthetic Record 

with known eirors 
1 
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In all of the studies listed above, the optimising methods 
adjusted the initial estimates of the parameter values so that substan-
tial reductions were made to the objective functions. In most cases, 
however, it would not be possible to state that the global minimum of 
the response surface had been reached. Some of the authors state that 
it is possible to obtain similar low values of the objective function 
with quite different sets of parameter values (although some of the 
parameters may maintain a fairly constant value)= Two reasons for this 
are usually proposed:-

(i) Inter-dependence between parameters. This is present when a 
change in one parameter can be compensated for by changes in one 
or more of the other parameters. For a two-parameter model, the 
effect on the response surface of inter-dependence between the 
parameters is to produce an elongated, almost flat-bottomed 
valley as illustrated in Fig. 4.1. This concept of a valley 
in the response surface is extended to problems of higher dimen-
sionality (where the model has more parameters) even though the 
surface cannot be represented visually. Any combination of para-
meter values lying close to the bottom of such a valley will 
produce a near-optimum value of the objective function. The 
differences in individual parameter values between such combin-
ations can be quite large. 

The search techniques commonly in use will descend quite rapidly 
into a valley in the response surface from given starting points 
However, progress along the floor of the valley to the lowest 
point is then very slow. It should also be noted that, for a 
given starting point outside the valley, different search 
techniques will arrive at different points on the floor of the 
valley. 
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FIGURE 4 . 1 

TYP ICAL RESPONSE SURFACE 

FOR TWO INTER-DEPENDEXT 

PARAMETERS 

(ii) Indifference of the objective function to the value of parameter(s) 
This is present when the objective function is not affected by 
large changes to the value of a parameter (without compensating 
changes to other parameters)« The contours of the response 
surface are then parallel to the axis representing that particu-
lar parameter. If there is indifference to more than one param-
eter^ the contours are not necessarily parallel to any axis^ but 
they are very widely spaced^ giving a flat area in the response 
surface» Search techniques are generally not able to move off 
such flat areas. 

Indifference will occur when a parameter does not play a signifi-
cant part in calculating the output from the model. This could 
be due to the parameter being irrelevant to the physical process 
being modelled, and thus a redundant part of the model» Alterna-
timely, and of more practical concern, it is possible that the 
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particular set of data being used with the model is such that a 
physically significant parameter does not become active in the 
model calculations. The objective function would display 
apparent indifference to the parameter if these data were used 
for optimisation, but would not be indifferent if it were 
possible to use a set of data which did activate the parameter 
in question. 

There seems to be general agreement among those who have worked 
with rainfall-runoff models that inter-dependence between at least some 
of the parameters of such models exists. It seems probable that inter-
dependence and indifference occur in varying degrees over the response 
surface for these models. Ibbitt and O'Donnell (1971a) discuss these 
and other features of the response surface and their effect on the 
search for the optimum parameter values. 

An important aim of this project was to correlate the optimum 
parameter values of the selected model for a number of catchments with 
physical characteristics of the catchments (e.g., catchment area, slope, 
soil properties). With the likely presence of inter-dependence between 
parameters, the danger existed of attempting to correlate non-optimal 
parameter values (which, however, gave a near-optimal value of the 
objective function) with the catchment characteristics. The correct 
location of the global minimum of the response surface for each catch-
ment was essential for the successful outcome of the project, and most 
of the work performed was directed towards this goal» 

Optimising methods have received considerable attention from 
workers in the field of applied mathematics in the last ten years. 
Much of this activity has been reported in The Computer Journal, publish-
ed by The British Computer Society. A good reference on this work is 
Kowalik and Osborne (1968). New methods and modifications to old methods 
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are still being proposed^ and it appears that more efficient methods 
will be a-/ailable in the future than those in current use. The current 
methods may be divided into two categories; Direct Search methods and 
Descent methods o The general strategy behind the methods is outlined 
in the following two sections o The methods which were used in this 
project are described in greater detail, and inadequacies and problems 
encountered with the methods are discussed, 

4.1 DIRECT SEARCH METHODS 

These methods proceed from a starting point (or, for the 
Simplex method, a group of points) on the response surface and proceed 
by generating further trial points and moving towards those that progre-
ssively lower the objective function» They merely require the ability 
to compare the values of the objective function at different points on 
the response surface. They may be further subdivided into methods for 
finding the minimum of a function of a single variable, and methods for 
functions of more than one variable. 

4.1.1 Methods for Functions of a Single Variable 

These methods are a basic part of some of the Descent methods 
for functions of more than one variable, as they may be used to find the 
minimum along a particular direction in multi-dimensional space^ Several 
methods are described in Kowalik and Osborne (1968) sections 2,2 and 2o3. 
The particular method used within the Descent methods employed in this 
project is illustrated in Fig 4.2, 

Frcm the starting value of the variable x, equal sized steps 
are taken in the descent directiono (When moving axuiig a direction in 
mult1-dimensional space each step involves changing a number of variables 
Himultaneousi/.) At each step, the objective function is evaluated, and 
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the steps continue as long as the function continues to decrease. At the 
first step where the function begins to increase, it is assumed that the 
points X X and x (Fig. 4.2) bracket the minimum. In the initial 1 2 3 
stages of the project the point x was taken to be the minimum. For most 

2 of the work however, parabolic interpolation was used to predict the 
position of the minimum. If the function values at x , x and x are 

1 2 3 taken to be f , f and f , then the minimum is predicted to be at 1 2 3 

= X Ax f - f 
_ 3 1 

f - 2f + f 
- 3 2 1 

where Ax is the step size 

starting value 
of X response 

surface / > 

FIGURE 4.: 
LOCATING THE MINIMUM OF 
A FUNCTION OF A SINGLE 

VARIABLE 

1 2 

X > 

The objective function is evaluated at x' and if it is lower 
than at X , is taken to be the minimum. However, sometimes the function 

2 
value at x' is not lower than at x . This occurs when a parabola is 

2 
not a good approximation of the function as in Fig. 4.3. 

When this occurs, the function is evaluated at x'' equidistant 
from X and on the opposite side from x'. The position of the minimum 

2 
is then taken as either x or x'', whichever has the lower function 

2 
value. 
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response 
surface / parabola 

FIGURE 4.5 
LOCATING THE MINIMUM ivHEN 
PARABOLIC INTERPOLATION 

IS NOT SUCCESSFUL 

X X X 

4-1-2 Methods for Functions of More Than One Variable 

The various Direct Search methods for functions of more than 
one variable differ in the way in which they generate new trial points 
on the response surface for evaluation. Examples of these methods are 
those of Hooke and Jeeves (1961), Rosenbrock (I960); various Simplex 
methods- e.g.; Spendley et al. (1962)5 Nelder and Mead (1965)^ and a 
method developed from the Simplex methods by Peckham [1970)^ 

Two versions of the Simplex technique were used in the^work 
of this project: (The Simplex method in this context does not refer to 
the well-knowTi technique for solving linear programming problems ) A 
simplex is a set of n * I points in n-dimensional space. If the points 
are equidistant, the simplex is "regular". The vertices of an equi-
lateral triangle form a reg^alar simplex in two dimensional space, while 
those of a tetrahedron do so in three dimensional space. Each point in 
the simplex is specified by a set of parameter values and has an associ-
ated value cf the ob:ective function. If that point with the highest 
function value is reflected around the centroid cf the other p:ints, it 
would be =>'pected that the point so generated would be closer to the 
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minimum. This notion is the basis of the Simplex methods» 

Some work was done in this project with the method described 
by Spendley et alo (1962). This method uses a regular simplex and, 
theoretically, has advantages when trying to follow a valley in the 
response surface (see Beveridge and Schechter, 1970, pp. 367-383). 
However, the method proved disappointing in this aspect, and problems 
of cycling of the solution occurred, in spite of measures built into 
the method to prevent this. 

Extensive use was made of the method of Nelder and Mead (1965). 
This method incorporates provisions for the simplex to change its size 
and shape, contracting away from high areas and expanding towards lower 
areas. As the minimum is approached, the simplex shrinks until, ultima-
tely, the points become coincident at the minimum. However, the shrink-
ing of the simplex until the points become coincident is not a sufficient 
condition for concluding that the minimum has been reached. Many times 
during the work of this project it was found that further improvement 
could be made from such a point by using some other method or by numeri-
cal trials. The simplex appears to shrink to a point on the floor of a 
valley instead of moving down the valley. It is often claimed that the 
method of Nelder and Mead will find the global minimum of a function 
provided the starting simplex is large enough to span the area contain-
ing the minimum. The results obtained in this project indicate that 
this is not necessarily true. 

A full description of the method of Nelder and Mead is given 
in Appendix Al, as well as a possible reason why the method appears to 
be inefficient in moving along valleys in the response surface. 
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4.2 DESCENT METHODS 

It IS coiranonly observed that the Direct Search methods give an 
initially rapid reduction in î he objective function, but are slow in 
ultimate convergence. Results obtained with the Simplex methods in this 
project were in accordance with this experience. The Direct Search 
methods use only values of the objective function and make simple compar-
isons of these values. Most of the Descent methods make use of addit» 
ional information about the surface being searched and couid thus be 
expected to give more rapid ultimate convergence o Many of these methods 
require the slope of the surface in each co-ordinate direction (ioOo, 
the partial derivative of the objective function with respect to each 
parameter) at each iteration. Additionally^ the conjugate direction 
methods assume that, close to the optimum^ the surface may be approxi-
mated by a positive definite quadratic form. In general, the Descent 
methods search for the minimum by performing a sequence of one dimension-
al searches (as described in section 4clcl)c The methods differ in the 
means of choosing the directions over which these searches are conducted. 

4,2.1 Univariate Method (Relaxation) 

In this method the search directions are the co-ordinate 
directi ons, wh:̂  ch are searched repeatedly in cyclic order until no 
further improvement can be made» This method does not use any more in-
formation about the response surface than the Direct Search methods use^ 
Fig. 4.4 illustrates a case for a two parameter problem where this 
method wculd be very slow. If the sides of the valley were too steep 
and a large step size used, the method would stop at a non-optimum 
point as both +ve and -ve steps in each co-ordinate direction would lie 
higher up on the sides of the valley. 
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FIGURE 4.4 
DIFFICULT RFSPOXSE SURFAi:;. 
FOR THE U:nIVARÎATE METHOD 

4,2„2 Steepest Descent Method 

Here the search direction at each iteration is the direction 
of steepest slope from the current point, and is defined by the vector 
of partial derivatives at this point» The method has been extensively 
used, and was used in the early work of this project » However it was 
found that after several iterations, little:movement was made along the 
chosen search directions, and most of the computing effort was used in 
defining new search directions» Sometimes the method stopped at a 
point which was found to be non-optimal« These experiences suggest 
that the search was zig-=zagging along a valley floor in a similar way to 
that depicted for the univariate method in Fig. 4„4o Similar experiences 
have apparently been reported by others» Kowalik and Osborne suggest 
several possible reasons for the disappointing performance of the method.. 
The most significant reasons seem to be that the chosen search directions 
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get into a "cage", i e , a small number of search directions are used in 
cyclic fashion, and that, ultimately, the directions may become 
asymptotic to just two directions, so that the minimum is approached in 
a two dimensional sub-space. 

4o2 3 Conjugate Direction Methods 

Some of these methods require the partial derivatives of the 
function at each iteration and they all assume that in the area of the 
minimum, the function may be approximated by a positive definite quadra-
tic form. The significance of these methods is that, if the function is 
of this form, and is a function of n variables, then the minimum will be 
found in n iterations. In this case, the n search directions chosen are 
linearly independent, i e , no one direction may be expressed as a linear 
combination of the other directions. Therefore cycling through a small 
number of directions cannot occui. ivhere the function is not of the 
above form more iterations are required, but as the minimum is approached, 
the quadratic approximation improves, so the ultimate rate of convergence 
should be goodc The quadratic form which approximates the objective 
function need not be known explicitly.- (An example of the use of a 
quadratic form to approximate a function is the use of the parabola to 
approximate the one dimensional function in Fig. 4.2,^ Methods which do 
not requiie the partial derivatives of the function are those of Powell 
(1964) and, a modification of this method by Zangwill (1967 K Two methods 
which do require derivatives were used in this project. The method of 
Fletcher and Reeves (1964) was first used, but showed little improvement 
on the steepest descent method in some comparative runs fox one catch-
ment. A method originally proposed by Davidon (1959) and presented 
definitively by Fletcher and Powell (1963} (hereafter referred to as the 
Davidon method) was used for much of the work in the projecto This 
method is recommended by Kowalik and Osborne^ and is described 
Appendix A^ 
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4.3 PROBLEMS IN IMPLEMENTING THE SEARCH METHODS 

The problems discussed below can have a marked effect on the 
efficiency of the search methods. The measures taken in this project to 
deal with these problems are described in Appendix A2o 

403.1 Defining the Steepest Descent Direction 

The steepest descent direction at a point on the response sur-
face is found from the slope of the surface in each of the co-ordinate 
directions at that point« In many optimising problems these slopes must 
be found by numerical methods= A simple method was first employed in 
this project, but it was found necessary to improve on this, and five 
different methods were used during the progress of the work. These 
methods are described in Appendix A2 and the times at which they were 
used are indicated at the appropriate places in this report, 

403.2 Scaling the Parameters 

Scaling may be used to change the shape of the response sur-
face and alter such difficult features as long, flat-bottomed valleys= 
Scaling is achieved by transforming some of the parameters. 

An idea of the important influence of scaling on the efficiency 
of search methods may be obtained by comparing the steepest descent 
searches on the two surfaces represented by the contour maps illustrated 
in Fig. 4c5, Where the contours are circular, steepest descent will 
find the minimum in one iteration, but in other cases, the number of 
iterations depends on the degree of "elongation" of the contours and 
the required accuracy in locating the minimum point= 
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FIGURE 4.5 
THE INFLUENCE OF SCALING ON 

THE EFFICIENCY OF SEARCH METHODS 

The parameters should therefore be transformed in such a way 
that the new response surface has near-circular contours, but little 
guidance in this matter is offered in the current literatuie on opti= 
misation. The problem is discussed in more detail in Appendix k2. 
Some attempt at improving the shape of the response surface was made 
in the work with Lidsdale No. 2 catchment described in Section 7c 
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5c SEARCH FOR OPTIMUM PARAMETER VALUES FOR THE PQKOLBIN CATCHMENTS 

These four adjacent catchments are in the Pololbin area, loca-
ted several miles north west of the town of Cessnock in the Hunter Valley, 
New South Wales, They were among the first for which concurrent rain-
fall and runoff records were received under the data compilation and 
transfer section of A.WoRoC, Research Project 68/1= The areas and periods 
of data used for optimisation are as follows:-

Catchment Area 
(acres) Rainfall Data Runoff Data 

First Ck 
(Site 1) 3500 ( 

'1-1-1964 to 31-12-
1-4-1965 to 31-10-

1964Ì 
1968j 27-10-•1963 to 12-5-1969 

Middle Cke 
(Site 2) 1900 ditto 13-12-•1963 to 13-5- 1969 

-Deep.ekc 
(Site 5) 6300 ditto 13-11--1963 to 13-5-1969 

Deep 
(Site 4) 1180 ditto 13-11--1963 to 13-5-1969 

Maps and descriptions of the catchments, including soil survey informa-̂  
tion, are presented in Appendix A3c 

The rainfall data available when work commenced with these 
catchments were daily falls at ten stations on and near the catchments-. 
Average catchment rainfalls for the four catchments were estimated from 
these records by Thiessen weighting using all available records at any 
given time. (The individual station records were not all concurrent and 
the average length of record was about three years =) 

Evaporation data were obtained from maps of mean monthly eva-
poration issued by the Commonwealth Bureau of Meteorology and converted 
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to potential évapotranspiration by applying pan factors which were obtain-

ed from the work of Penman and used by Boughton (1965). The factors 

were : -

0.8 NoVo , DeCo Jan,, Feb. 

0.7 Mar., Apr., Sept.^ Oct. 

0=6 May, June, July, Aug. 

The mean monthly figures were then divided by the number of days in the 

month to obtain average daily potential évapotranspiration. 

Ideally^ the daily potential évapotranspiration data would be 

estimated by an energy balance method using meteorological data or, 

alternatively, from daily observations of pan evaporation. Such data 

would rarely be available^ particularly for catchments of the size 

included in this project, A compromise is the use of observed total 

monthly pan evaporation data to derive average daily figures. Recoids 

were sought from pans at Stockyard Ck„, about 15 miles south west, and 

Tocal, about 20 miles north east of the catchments, but were only avail-

able for a few months concurrent with the rainfall and runoff data and 

were of poor quality. 

The runoff data provided were average daily flows in cu.fto/sec, 

There were a few missing periods of several days in the records. 

The Steepest Descent and Simplex [Nelder and Mead) methods 

were used to search for the optimum parameter values of the Boughton 

model for these catchments. Each time the methods call for a run of 

the data through the model (i„e., for each set of trial parameter 

values) it is necessary to assume starting values for the quantities of 

water in the various moisture storeso For the Pokolbin catchments it 

was assum.ed that the Interception Store was initially empty and that 
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the other stores were initially half full. The squares of deviations 
between observed and calculated monthly runoff quantities for the first 
six months of model operation were not added into the objective function 
to allow for bias in the output of the model caused by differences 
between the assumed and actual (but unknown) initial quantities in the 
stores. The use of the above initial storage quantities and of a 
"warm-up" period of six months is now thought to be inappropriate, and 
is further discussed in Section 8» 

When a period of missing record was encountered in the runoff 
data, operation of the model continued but any calculated runoff in that 
period was not added into the monthly total when calculating the object-
ive function. A period of missing record in the rainfall data required 
operation of the model to cease. Operation was re-commenced with re-
initialised storage contents at the end of the period of missing record 
and a further "warm-up" period of six months was observed before further 
additions were made to the objective function» 

In the programme to apply the Steepest Descent method, the 
steepest descent directions were first defined by Method 1 described in 
Appendix A2. The minimum point on each descent direction was found by 
the procedure described in sub-section 4olol without using parabolic 
interpolation. 

In using the Simplex method, it was soon observed that after 
approximately fifty iterations the simplex had contracted so that there 
were only small differences between the points and that further reduc-
tion of the objective function was slow. However, it was found that 
significant further improvement could sometimes be obtained by continuing 
the search with the Steepest Descent method. The procedure of commencing 
the search with the Simplex method and continuing with the Steepest 
Descent method was therefore used frequently» 
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The general aim of this work for each catchment was to commence 

searches from several different sets of parameter values and, hopefully, 

to arrive by different routes at one set of values which could be 

regarded at least as a local optimum set of parameter values o Such a 

result would have indicated that the search techniques had been implemen-

ted correctly and that the response surfaces for the catchments were 

relatively easy ones on which to search for the minimum= However no two 

searches arrived at a common point for any of the catchmentso Sometimes 

the parameter values for a particular catchment arrived at by the search 

techniques were used to start the search for optimum parameter values 

for another catchment. Table 5c1 lists some of the points on the 

response surfaces which were found by this work for the four catchmentso 

TABLE 5ol 

POKOLBIN CATCHMENTS. POINTS ON RESPONSE SURFACES 

Point 

No, 

VSMAX 

(pts) 

USMAX 

(pts) 

DSMAX 

(pts) 

SSMAX 

(pts) 

EVPMAX 

(pts/ 

day) 

PV FC 

(pts/ 

day) 

FO 

(pts/ 

day) 

KF SUMSQS 

(pts2) 

First Creek (Site 1) 

1 3 164 24 711 60 0 ,8 3 674 0,005 736 

2 2 192 143 805 32c5 0,51 4 419 0,010 1189 

3 3.. 9 206 135 1264 35,3 0,44 4 736 0,011 805 

Middle Creek (Site > 2) 

1 3 155 24 706 60 0 ,9 3 667 0,005 7687 

2 2 178 153 873 30.5 0.52 3 ,8 403 0.012 726 

3 6 .3 119 149 1555 25,3 0,42 1 344 0.007 1950 

Deep Creek (Site 3) 

1 3 177 24 757 60.5 0,75 3 708 0.0042 187 

2 2 189 193 765 33.1 0,45 4 .5 408 0c009 185 

3 3 104 39 828 61,3 0 ,69 8 695 0.0038 352 

Deep Creek (Site 4) 

1 5 . 3 134 23= 3 1190 61.4 0,62 9.74 925 0,0018 580 
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Some other points at which either the objective function value 
was significantly higher than those above or the parameter values were 
considered to be extreme were obtained also» Points 1 and 3 for First 
Creek and points 1 and 2 for Deep Creek (Site 3) illustrate the state-
ment made earlier that different sets of parameter values may be found 
which give similar values of the objective function. 

The steepest descent searches stopped at the points shown in 
Table 5.1 when no improvements were possible along the descent direc-
tions chosen at those points. This implied that the directions were 
being defined erroneously and prompted a reappraisal of the method used 
to choose the descent directions. Some inadequacies in Method 1 for 
defining the steepest descent directions are described in Appendix A2c 
Method 2, which was designed to overcome these inadequacies, is also 
describedc The programme to apply the Steepest Descent search was 
modified to define the descent directions by Method 2» 

The point No, 1 for Middle Ck» (Site 2) listed in Table 5.1 
was then used as a starting point for this modified programme, with the 
following result:-

Point VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF SUMSQS 
Start 3o0 155 24 706 60 0,9 3 667 0.005 7687 

4.6 156 42 755 62.5 0.92 0 643 0.005 6383 Optimum 

Considerable computing effort was required to achieve this reduction in 
the objective function. The course of the optimisation was through 62 
changes in direction. Each new definition of the descent direction by 
Method 2 usually required an average of 14 runs through the Boughton 
modelo Sometimes two or three times this number of runs were required 
when smaller than usual parameter increments had to be used. Together 
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with the model runs involved in stepping along each direction, the total 
number of runs through the Boughton model was approximately 1500, with 
about years of daily data per run» 

A further modification was made to the programme so that, in 
stepping along each descent direction, the lowest point along the line 
was found using the parabolic fitting method described in sub-section 
4.1.1. Unfortunately this did not lead to any significant improvement 
on the above performance, but the modification was retained as it is, 
theoretically, an in^rovement on the earlier method. 

The starting point and the points at the bottom of the first 
nine descent directions of the search described above were then used as 
a starting simplex for the Simplex method. Using only 130 runs through 
the Boughton model, the objective function was reduced to a value of 
2936. The following changes in parameter values occurred:-

VSMAX USMAX DSMAX SSMAX EVPMAX P.V FC PO KF Sl^MSQS 
Start 3.0 155 24 706 60 0.9 3.0 667 0.005 7687 

Lowest point in Simplex after 130 model runs:-

3,5 175 94 1093 52 0.98 3.3 606 0.0055 2936 

Further alternate application of the Steepest Descent and the 
Simplex methods led to the following point:-

VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF SUMSQS 
3.8 180 96 1955 227 0.97 2.0 1578 0.0056 2757 

Little further reduction in the objective function occurred, 
but some of the parameter values changed quite markedly. Some form of 
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inter-action appears:to be present between the parameters SSMAX, EVPMAX 
and F0„ 

Theoretically, a more satisfactory measure of the fit of the 
calculated runoff to the observed runoff is the sum of the squares of 
the deviations between the calculated and observed totals for each 
runoff event (see Section 9)» Optimisation was therefore attempted using 
ancobjective function based on event deviations to see if the corres-
ponding response surface was an easier one on which to locate the minimum 
point„ This was done concurrently with some of the work described above» 

The Steepest Descent programme (with Method 1 described in 
Appendix A2 to define the descent directions) was modified to evaluate 
the objective function using event deviationso The start and end of a 
runoff event may be defined in many ways, but for this application, the 
start was taken to be the first day on which a rise occurred in the 
observed runoff hydrograph, and this also marked the end of the previous 
event„ Thus, many events encompassed a long period of zero runoff at 
the end of the recession curve. 

The parameter values at points 1 and 2 for Middle Cko (Site 2) 
in Table 5„1 were used to start two searches for the minimum of the 
event-based objective function, with the following results 

Point VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF SUMSQS 
(over events} 

Point No„ 1 (SUMSQS over months was 7687) 
Start 3 155 24 706 60 0»9 3„0 667 0.005 7754 
End 3 155 24 713 60 0^89 3o0 666 0»005 7640 

Point NOo 2 (SUMSQS over months was 726) 
Start 2 178 153 873 30,5 0,52 3,8 403 0,012 846 
End 2 197 156 788 32 0,52 4,2 399 0,013 618 
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The end points of the above searches are. not significantly dif-
ferent from the start points, which themselves were the end points of 
searches where the objective function was summed over monthly deviationsc 
Also, there are only, small differences in the numerical values of the two 
objective functions for a given set of parameter valueso Inspection of 
the runoff record reveals that there are only several months which contain 
more than one runoff evento In each of these months there is no more 
than one event which contributes significantly to the objective func-
tions» Under these circumstances, the two functions are virtually the 
same and their response surfaces would be expected to be of very 
similar shapeo 

As unique sets of optimum parameter values could not readily 
be found for the Pokolbin catchments and as similar difficulties were 
expected for other catchments it became necessary to reconsider the 
aims of the projecto It was thought that the remaining time would best 
be spent in a concentrated search for the optimum parameter values for, 
if necessary, only one catchment. The aim was to find an efficient 
optimisation strategy which could then be used for other catchments« 
This work involved examining and introducing more efficient search 
methods and investigating such problems as parameter inter-dependence 
and the scaling of the parameters during optimisation» It has been 
necessary for greater clarity to describe this work in separate sections 
in the remainder of this report although many different aspects of the 
work were inter-related and were performed concurrently. 
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6. CHANGES INTRODUCED INTO THE BQUGHTON MODEL CALCULATIONS 

Changes were made in the évapotranspiration and infiltration 
calculations of the Boughton model. These were found to be desirable 
during the algebraic analysis of the model, described later in Section 8 

The évapotranspiration and infiltration functions in the 
Boughton model are used to find total daily amounts for these processes 
given the contents of the moisture stores at the start of the day„ 
Although only daily quantities are calculated in the changed calcula-
tions, the processes are regarded as continuous and the functions are 
used to relate instantaneous values of these processes to the soil store 
contents. As the processes influence the store contents and are at the 
same time functions of these contents, the daily totals used in the 
amended model calculations are found from expressions derived by inte-
grating the instantaneous functions over a period of one day. 

The changed calculations have the following advantages-:-

(i) they prevent the occasional unrealistic result such as 
"over-filling" of the Lower Soil Store during infiltration 
and "over-emptying" of the Upper Soil Store by évapotrans-
piration under some combinations of parameter values, and 

(ii) they allow the contents of the stores at a given time to 
be expressed more easily in terms of the model parameters 
and the data. 

The changed calculations were introduced before the work with 
Lidsdale No. 2 catchment described in Section 7. 
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6ol EVAPOTRANSPIRATION CALCULATIONS 

The évapotranspiration calculations in the Boughton model are 

based on the simplified concepts of fixed values for the field capacity 

and wilting point and it is assumed that the variations of these values 

from real conditions do not introduce major errors into the calculationso 

The model assumes that when the soil moisture level is at field capacity-

there is a limiting rate at which évapotranspiration (abbreviated to 

e/t in the discussion below) will occur from the catchment. This rate 

is a parameter of the model, EVPMAX. As the soil dries out, the limitiiig 

e/t rate decreases linearly to zero when the soil moisture level is at 

wilting point. On days when the potential e/t rate, determined by 

meteorological conditions, is less than the limiting rate at the current 

soil moisture level, e/t occurs at the potential rate. 

. EVPMAX, limiting e/t rate at field 
capac i t\-

EYPMAX X S/C 
E, Potential e/t rate 

WiIting 
point 

Field 
capacity 

Soil moisture level, S 

FIGURE 6.1 
THE EVAPOTRANSPIRATION FUNCTION-

USED IN THE BOUGHTON MODEL 

Referring to Fig. 6,1 then, the actual e/t loss, on a day when the pot-

ential loss is E, is determined from the lower of the two straight lines 
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at the current soil moisture level. The e/t function therefore consists 
of the two heavily drawn straight line segments. The height of the 
horizontal segment can change from day to day if daily potential e/t 
data are available. 

In algebraic terms, the actual e/t loss is determined as 

follows:-

if E < X EVPMAX then the e/t loss = E (6.1) 

if E > ̂  X EVPMAX then the e/t loss = § x EVPMAX (6.2) 

In the Boughton model the soil is represented by two stores. 
The e/t loss for each store is computed separately by the above method 
and then multiplied by PV for the Upper Soil Store and (1 - PV) for the 
Lower Soil Store, where the parameter PV is a fraction which would depend 
on the rooting of the vegetation. 

In algebraic terms, the actual e/t loss from each store is 
determined as follows:-

(a) Upper Soil Store 

i f E < M L y ™ then the e/t loss = PV x E (6.3J USMAX 

US X EVPMAX , / . US X EVPMAX 
if ^ - USMX ^^^^ ^^^ = ^ USMAX 

(6 c 4} 

(b) Lower Soil Store 

i£ E < ^^ L m v ^ ^ then the e/t loss = (1 - PV) x E (6,5) SSMAX 
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(6.6) 

The change which was introduced influences these calculations 

at the lower soil storage levels when the actual e/t is determined from 

the sloping segment of the e/t function. On this segment the e/t rate 

is a function of the current stored::contents and should decrease through 

the day as the contents are depleted« In effect, the e/t function illus-

trated in Figo 6.1 was regarded as giving an instantaneous e/t rate 

rather than a daily e/t quantity» The daily e/t quantity was found by 

integration« 

This change eliminated an unrealistic calculation which some-

times occurred when equation (6«4) was applied for the Upper Soil Store« 

When the estimated values of PV and EVPMAX were high and the estimated 

value of USMAX was low, then PV x EVPMAX/USMAX became greater than 1, 

and the e/t loss was then greater than the current contents, US« Thus, 

the store could be completely emptied in one day even though the rate 

of loss should have been restricted by low soil moisture and zero 

storage approached in an exponential manner« 

Qn the sloping segment of the e/t function, the e/t rate equals 

the rate of change in the soil storage level and is a function of this 

level« Using the symbols in Fig« 6«1, the governing equation is 

^ = ^ S (6.7) 

where k = - ^ ^ ^ ^ ^ (see equation 6« 2) 

The negative sign is included because S decreases with time« If this 

equation were applied for the Upper Soil Store, 
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S would be equal to US, 

PV X EVPMAX k would be equal to — USMAX 

Equation (6,7) is integrated in Appendix A4 for one day's e/t. 
The result is 

S = e^ • S . 1 0 

The subscripts ^ and 1 denote storage contents at the start and end of 
the day respectively. 

Applying this result to the two soil stores of the Boughton 
model, the amended e/t calculations are:-

(a) Upper Soil Store 

if E < ̂ ^ ncfJv^^ then US = US - PV x E, as before USMAX I 0 
(6.9) 

PV X EVPMAX 
^ ^ US X EVPMAX „e „c, " USMAX ,, if E > TTTrnr̂  then US = US x e (6,10) USMAX 1 0 

(b) Lower Soil Store 

if E < ^^ ^c^f^Z^^ then SS = SS - (1 - PV) x E, as before SSMAX 1 0 
(6.11) 

i f E . ^ l ^ , ^ thenSS = SS x e' SSMAX 1 0 

(1 - PV) X EVPMAX 

(6,12) 

. , ̂  US X EVPMAX - . J For the Upper Soil Store, if E > usmaX ^ period of 
f̂  days, it can be shown that 
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n X PV X EVPMAX 

us = us x e " ™ (6.13) 
n 0 

If E < ^^ f.nf^J^ at the start of a day, but the discontinuity in the 
USMAX 

e/t function is crossed during the day, then 

EVPMAX X (use + PV X E - USp) 

TTc Tier ' USMAX X E , .. US = use X e (6c14J X 

F V IISMAX 
where USC = and is the value of US at the discontinuityc 

EVPMAX 

Expressions similar to equations (6.13) and (6.14) may be found for the 

Lower Soil Store. 

The effect of the changed calculations is to reduce the loss 

from the soil stores in the lower range of store contents, but the over-

all effect on the operation of the model appears to be small, 

6.2 INFILTRATION CALCULATIONS 

In the original calculations of the Boughton model, the contents 

of the Drainage Store infiltrate into the Lower Soil Store at a daily 

rate given by 

F = FC + (FO - FC) . (equation 3.1) 

This rate is a potential rate which is only satisfied if the contents of 

the Drainage Store are sufficient. In addition, part of any overflow 

from the Drainage Store enters the Lower Soil Store, the actual amount 

being determined by a function of F. 

Several unsatisfactory effects are obtained when the above 

function for F is used. These are:-
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(i) F is a function of the contents of the Lower Soil Store, but not 
of the capacity of the store. The contents alone do not reflect 
the wetness of the soil, on which the infiltration rate depends. 
If the capacity of the Lower Soil Store was 500 pts and the coni 
tents 400 pts, the soil would be relatively wetter, and have a 
lower infiltration rate, than when the capacity was 1000 pts and 
the contents 400 pts. However the above function will give the 
same value for F in both cases. 

(ii) Infiltration can occur when the Lower Soil Store is full, result-
ing in "over-filling" of this storec When this occurs, the con-
tents are re-set to SSMAX and the amount of "over-fill" lost from 
the model. It seemed preferable that all water entering the 
model should be accounted for and that infiltration should reduce 
to zero as the contents approach SSMAX» 

(iii) Very large values of F are obtained when SS is low, and SS can 
therefore change markedly during one day» However it is assumed 
that infiltration goes on at the same rate during the day as the 
store fills. In a similar approach to that used for the évapo-
transpiration calculations, it was thought that_the instantaneous 
rate should decrease through the day as the contents increase 
and that the daily potential infiltration amount should be found 
by integration. 

A function for an instantaneous infiltration rate was sought 
where F depended on both SS and SSMAX, F approached zero as SS approached 
SSMAX, and which could be integrated to obtain an expression for the 
potential daily infiltration amount. 

Equation (3.1) was first regarded as giving an instantaneous 
rate instead of a daily infiltration quantityc The parameter FC, which 
frequently tended to zero in optimisation runs, was effectively set to 
zero by eliminating it from the equation, and SSMAX was introduced into 
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the exponent of e» The resulting equation was 

F = po.e'KF-SS/SSMAX (6.15) 

The numerical value of KF will now be different from the KF 

value in equation (3.1), As SS approaches zero, this function approaches 

FO, but as SS approaches SSMAX, the; function has a positive component, 
KF 

FO*e~ o A suitable function which eliminates this is 

F = po.e-'^f • S ^ ™ - FO.e-'^'' (6.16) 

However, this function proved too difficult to integrate and the function 

finally adopted was 

F = F O . e - ' ^ P - S S / ™ - FO.e-'^'' C6.17)_ 

This function approaches zero as SS approaches SSMAX, but approaches 
-KF 

F0(1 - e ) as SS approaches zerOo However the effect of this was 

expected to be small. Equations 3.1 and 6.15 to 6.17 incl. are plotted 

for comparison in Fig. 6„2„ 

As infiltration proceeds, the rate of change of storage in the 

Lower Soil Store ie equal to the infiltration rate, i.e., 

ffl = p = po.,-KF • SS/SSMAX . 

The change in SS over one day is the total amount of infiltra-

tion and must be found by integrating equation (6.18), 

Using F now to denote the potential daily infiltration amount 

rather than the instantaneous rate, the result of the integration, shown 

in Appendix A4, is 
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F = SSMAX (1 . in (1 . D . De^^^(^^/SSMAX - _ 

where D = e'™ ' " e'^'/SSMAX 
and SS = storage at the start of the day. 

SS 
(6.19) 

.equation 3. 1 

.equation 6 
^equation 6 

(total daily F) 
(instantaneous F) 
(instantaneous F) 
(instantaneous F) 

FIGURE 6.2 
COMPARISON OF INFILTRATION FUNCTIONS 

This F value is the potential daily infiltration amount and 
is only satisfied if the supply of moisture is maintained continuously 
throughout the day. Therintermittent nature of infiltration has its 
effect on the model calculations when the contents of the Drainage 
Store are insufficient to satisfy the F value derived above and also 
when this value is used in the equation to calculate runoff from the 
amount of water which overflows the Drainage Store, 
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Q = P - F tanh(P/F). (equation 3o2) 

IVhen the stored contents of the Lower Soil Store approach the 
capacity of the store an equilibrium state is reached where the inflow 
by infiltration from the Drainage Store equals the outflow to groundwater 
calculated by applying the subsoil depletion factor of 0^999= The store 
therefore never fills completely and a small flow through the store is 
always maintained despite the fact that the infiltration function was 
designed to approach zero as the store approached the full state and 
does not include a constant term which is independent of the soil mois-
ture levelc 

The changed calculations give a lower potential daily F and 
higher runoff at a given level of storagec However as low infiltration 
and high runoff for one event tend to give low soil storage and there-
fore high infiltration and low runoff for the next event, the nett 
effect of the changed calculations over a number of events is not 
clear» The changed calculations were introduced into the model during 
preliminary work with Lidsdale No= 2 catchment and gave significant 
improvement in the objective function. 
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7o SEARCH FOR OPTIMUM PARAMETER VALUES FOR LIPSDALE NOo 2 CATCHMENT 

After the work with the Pokolbin catchments described in: Sect-
ion 5, the Lidsdale No. 2 catchment was selected for the bulk of the 
optimisation work in this project for the following reasons:-

(i) pan evaporimeter records were available instead of average 
monthly evaporation data, enabling more accurate modelling 
of the drying of the catchment; 

(ii) soil moisture data were also available« Comparison of the 
contents of the soil stores of the model with these data 
could provide a check on the operation of the model; 
and 

(iv) the recording rain gauge and water level recorder charts 
for this catchment are held by The University of New South 
Wales and were readily available for scrutiny if required« 

The Lidsdale No» 2 catchment is one of a group of eleven catch-
ments in the Lidsdale State Forest, situated approximately eight miles 
west of Lithgow, New South Wales« The catchments are operated by The 
University of New South Wales with the assistance of the Forestry 
Commission of New South Wales« The No« 2 catchment has an area of 31«8 
acres and the vegetation is planted Radiata Pine forest« Mr« M« K« Smith 
of the Forestry Commission has described the catchment in greater detail, 
(Smith, 1972), and his description is quoted here in Appendix A3« 

Daily runoff figures and monthly evaporation figures were 
extracted from the records and made available by Mr, Smith« He also 
made available soil moisture data which he has been collecting and 
provided estimates based on physical considerations for the values of 
the parameters of the Boughton model for this catchment. This assistance 
is gratefully acknowledged« 
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The period of concurrent rainfall, evaporation and runoff data 

used for optimisation was from 17-10-1968 to 28-2-1971» 

During the progress of the search for optimum parameter values 

for this catchment, many aspects of the o|)timisation problem were inves-

tigated, and sometimes this work influenced the course of the search. 

In the following sub-sections the course of the search is outlined, the 

investigations which were undertaken are described, and the resulting 

parameter values are discussed« 

7,1 OUTLINE DESCRIPTION OF THE SEARCH 

The progress of the search is shown graphically in Fig„ 7olo 

Sets of parameter values and their corresponding values of the objective 

function are presented in the same way as for the rectangular co-

ordinates of a point in 9-dimensional space« The figures are always 

in the following order:-

VSMAX, USMAX, DSMAX, SSMAX, EVPMAX, PV, FO, KF, SUMSQS, 

At the start of the search, the steepest descent direction 

was being found invthe Davidon programme by Method 3 described in 

Appendix k2. Thajoughout the search the parameters were scaled to improve 

the shape of the response surface. This is also described in Appendix 

A2„ The parameter values quoted in Fig. 7ol, however^ are the equiva-

lent untransformed values, 

Two strands of the search started when the parameter values 

estimated from physical considerations were used as a starting point 

for the Simplex and Davidon methods. When run until little further 

change was occurring in the parameter values, these methods led to two 

different points. A third strand was started using the Davidon method 



Strand 1 
(Points No.1) 

i 

Si a rt 

•ilage 

Strand J 
(Points No.J) 

M.Smith's estimates 
10,30,35,750,30,0.25,500,3.75,38274 
T —^r 

49 Davidon it'ns. 

Strand 3 

(Po i nt s No. 3 ) 

J l 

5,61543! 

167 Simplex it'ns. 

then 150 Simplex it'ns. 

1 r32,3y,W,Tl3T, 58,1500,0. 172,5468] [ 6 ,102 ,125 ,1041). 15, 0. 76", 864,4. 224 ,^954 
T" 

185 Simplex it'ns. 
.. L • : i : . . 
6, 67,112,1247, 20,0.738.860.2.636.4513 

159 Simplex it'ns. 

15,0.637,1897,0. 043^4868_ 

KF shifted, then 18 Davidon it'ns. 
I 

Arbitrary point 

Irî J r 5 0 ^ , 0. 5,1000, 

40 Davidon it'ns. , 
22, 49, 91, 1 3 n , 41, 0.83, 993,3.344 ,4773 j 

230 Simplex it'ns. 

1^,18,139,1286,18.7,0.603,1900, 2.93.2484 
T 

9 Davidon it'ns. 
_± 

22, 22,208, 964, 54 0.541, 754,2.288,2262| 

12 Davidon it'ns. 

54 Simplex it'ns. 
only VSMAX, USMAX, PV vary 

7.8, 64,134,1269,18.55.0.726.886.1.052.3887 
1 

90 Simplex it'ns. 20 Davidon it'ns. 

23, 23,209, 960, 56,0.548, 754,2.308.2188! 
r 
8 Davidon it'ns. 

4 53. 4.139.1286.18.7.0.573,1900. 2.93,2301 60,1,134,1269,18.55,0.58,886,1.052,2317 

61,0,134,1269,18.55,0 .576,886,1.052,2306 33.6,12.6,209, 960, 56 ,0.511, 754,2.308,2066 

one point. 

60, 1,139,1269,18.47, 0.576, 886, 1.052.2318 
^ J 
320 Simplex it'ns. FO, KF 

held constant ± 

53.5,0.7,282,1114, 18.6, 0.513, 886_, 1.052,2106 

314 Simplex it'ns. 
all params. vary. 

Alternative 
KF = 3.7 gives 
SUMSQS = 1822 

Starting 
value of 
EVPMAX 

25 
30 
35 
40 
45 

44.6,6.2,512, 797,19.8,0.4595 ,1180,0.1275,1800 

the points below were each generated by one 
Simplex run of approx. 160 it'ns. using the 
above point as a start but with EVPMAX 
progressively moved away from 19.8 

48.9,6.1,567, 645, 24.9.0.4539.1195.0.0863.1791 
48.7,6.3,487, 731, 27.3,0.4731, 981.0.1359.1811 
48.1,6.4,515, 618, 36.6,0.4494, 983.0.1007.1785 
49.1,6.2,482, 679, 33.7.0.4632.1241.0,0900.1792 
49.9,6.4,466, 690, 34.9,0.4660,1166,0.1004,1796 

graphical opt'n of VSMAX, USMAX, EVPMAX. 
Davidon method made poor progress varying 
these parameters. I 

44 , 7.7,209, 960, 50,0.511, 754 ,2.308, 1977 

110 Simplex it'ns. 
only VSMAX, USMAX, EVPMAX, PV 

1 
vary 

44 , 9.5,219, 960,48.5,0.524, 754 ,2.308, 1954 

330 Simplex it'ns. 
all params. vary. 

35 ,14.7,328, 805,50.2,0.499, 485 ,2.174, 1879 

53 Simplex it'ns. 
only VSMAX, USMAX, PV vary 

Stage 8 43.7, 8.9,328, 805,50.2,0.490, 485.2.174 .1850 

370 Simplex it'ns. 
all params. vary. 

Stage 9 45.9, 8.4,299, 738, 123,0.480, 788 .3.246 .1815 

Note:- Parameter values are given in the following order:-
VSMAX, USMAX, DSMAX, SSMAX, EVPMAX, PV, FO, KF, SUMSQS 

FIGURE 7.1 

SEARCH FOR OPTIMUM PARAMETER VAUJFS 
EIDSDALE No. 2 CATCHMENT. 
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from an arbitrarily selected starting point. The three points obtained 
at the end of these searches are listed at Stage 1 in Fig, 7.1. 

Very large reductions in the objective function, from values 
of approximately 38,000 and 62,000 to values in the region of 5,000, were 
achieved by these optimising runs. As only very minor changes were 
occurring in the parameter values near the ends of the runs, and as the 
large differences in the parameter values between the points indicated 
that these points were widely separated on the response surface, it 
appeared that three distinct local minimum points had been approached. 
There seemed to be little possibility of making further significant 
improvements in the objective function. However it was felt that if 
interdependence existed between some of the parameters, giving long, 
relatively flat-bottomed valleys in the response surface, then the 
three points could merely be lying at different places on the flocr of 
such a valley. If this were so the possibility existed of moving the 
points along the floor of the valley to its lowest point, thus bringing 
the three widely separated points together and locating a real minimum 
point. This aim was pursued in the remainder of the search. The 
measures undertaken to further the search at the various stages indi-
cated in Fig. 7.1 were as follows 

Stage 1 For the parameter values at points 1 and 3, graphs 
of the total contents of the Upper Soil^ Drainage and Lower 
Soil Stores plotted against time were prepared and ccmpared 
with the soil moisture data. These indicated that the value 
of 260 pts. being used for the initial contents of the Lower 
Soil Store, i.e., at 17-10-1968, was too low, A value of 
600 pts. wasradopted. 

At about this time, Method 4 ("see Appendix A2'i 
was adopted for finding the steepest descent direction at 
each iteration of the Davidon method. 
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Stage 2 Suspected inter-action between parameters FO and 

KF was studied at about this time.. An alternative value for 

KF of 3.5 was substituted in point 1 before starting the 

Davidon method. 

Stage 5 Several suspected parameter inter-actions were 

investigated at this stage. The findings which significantly 

affected the course of the search were:-

(a) The objective function was relatively 

indifferent to a large range of combin-

ations of FO and KF values. 

(b) Bearing this in mind, and comparing the 

remaining parameters of points 1 and 2, 

only VSMAX, USMAX and PV showed signi-

ficantly different values. It was found 

graphically that -hese parameters could 

be optimised to the same values from their 

values at both of the points 1 and 2, 

thus bringing these two points together 

at an improved value of the objective 

function. Also, in^Drovement of point 

3 was possible by optimising only the 

above 3 parameters. 

It was therefore decided to operate the optimising 

methods holding all parameters except VSMAX, USMAX and PV 

constant. 

Stage 4 Application of the optimising methods with only 

VSMAX, USMAX and PV varying confirmed the conclusions above. 

As there were still minor differences in the parameter values 
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at points 1 and 2, a point was nominated as the place where 
strands 1 and 2 converged and this is listed at Stage 5„ 

It was found graphically that improvement of 
point 3 was possible by optimising VSMAX, USMAX and EVPMAX 
only. The Davidon method was operated from this point with 
the other parameters held constant» 

Method 5 (see Appendix A2) for finding the 
steepest descent direction in the Davidon method was adopted 
at this time. 

Stage 5 On strand 3, the Davidon method encountered 
difficulties in optimising VSMAX, USMAX and EVPMAX and these 
parameters were re-set using the graphical results from 
Stage 4„ 

After the sub-optimisation work in the previous 
stages it was decided to allow a greater number of para-
meters to vary during optimisation» As difficulties had been 
experienced with the Davidon method, the Simplex method was 
used for the remaining worko 

Stage 6 At this stage optimisation was continued with all 
of the parameters varying once againo 

Stage 7 These points were considered to be relatively 
close to each other on the response surface as 

(a) the differences in the VSMAX, USMAX 
and PV values could possibly be reduced 
by further optimisation varying these 
parameters only^ 
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(b) the indifference of the objective 
function to a large range of com-
binations of FO and KF noted above 
indicated that the differences 
between these parameters at this 
stage could be neglected, 
and 

(c) although the values of DSMAX were 
significantly different, in both 
cases the values were tending to 
become unusually high. 

The values of EVPMAX were still significantly 
different. It was suspected that a range of points could be 
found in which EVPMAX varied progressively between these two 
values. 

Stages 8 ^ 9 All these points appear to be lying along the 
floor of a valley in the region of the lowest point of the 
valley. It is not possible to identify a distinct minimum 
point. 

At the point where the objective function value 
is 1800, an alternative value of 3.7 was found for KF which 
gave a small rise in the value of the objective function 
to 1822. 

The sets of parameter values at Stages 8 and 9 appear to be 
spread along the floor of a valley in the response surface and are 
probably close to the lowest point in the valley. 
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7.2 THE INVESTIGATIONS UNDERTAKEN DURING THE SEARCH 

The investigations and actions taken at the various stages of 
the search are explained in greater detail in this sub-section. The aim 
of this work was to find downhill paths from the three widely separated 
points at Stage 1 with the hope that these paths would eventually con-
verge to the one minimum point. 

7.2.1 Use of the Soil Moisture Data 

The contents of the soil stores of the model were compared with 
the soil moisture data to see if the comparison would indicate any 
measures which could be taken to assist in the optimisation^ 

The soil moisture data provided by Mr. Smith were average 
figures from the readings at four sites whose locations are shown in 
Appendix A3. Soil moisture figures for each 10 inch interval of soil 
down to a depth of 80 inches and an additional S inch interval to 85 
inches were provided. Very small changes in soil moisture take place 
at this depth. The readings were at an average interval of eleven 
days, the shortest interval being 5 days and the longest, 35 days» 

Total soil moisture in the 85 inches metered depth is plotted 
in Fig. 7.2. Some adjustments to these data were considered to be 
justified for the purposes of this project. There were two types of 
inconsistency between the changes in soil moisture in some periods and 
the rainfall, runoff and evaporation data for those periods:-

(i) rises in soil moisture were sometimes greater than the rainfall, 
and 

(ii) the change in soil moisture sometimes required a loss of moisture 
at a significantly greater rate than the open water evaporation 
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raterànd, in a few additional cases, at a greater rate than the 
estimated potential évapotranspiration rate. 

The periods when these inconsistencies occurred are shown in Fig. 7.2. 
Errors in the data for any of the four variables (rainfall, runoff, 
evaporation and soil moisture) could have caused these inconsistencies, 
or the data may have been unrepresentative of the whole catchment« Some 
likely reasons for the data being unrepresentative of the catchment 
would be:-

(i) horizontal re-distribution of soil moisture, e.g., by interflow, 
and 

(ii) point rainfall data are not always good estimates of average 
catchment rainfall. 

It seemed unreasonable to compare modelled soil moisture 
figures with observed soil moisture data which were inconsistent with 
the rainfall and evaporation data used in the model. Accoajdingly, the 
soil moisture figures were adjusted to comply with the other data, the 
changes in most cases being merely sufficient to resolve the inconsisten-
cies. Greater adjustments could probably have been justified in many 
cases. The reconstituted data are also plotted in Fig. 7=2, where it 
is seen that the more extreme fluctuations in soil moisture have been 
smoothed out to some extent. 

The stores of the Boughton model which represent various com-
ponents of soil moisture are the Upper Soil, Drainage, and Lower Soil 
Stores. The calculated contents of these stores on the dates when the 
soil moisture measurements were taken were summed and the totals plotted 
for comparison with the soil moisture data. This was done using a 
number of different sets of parameter values, and the resulting graphs 
are shown in the figures listed below:-
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Figo 7„3; Graphs of modelled soil moisture with parameters 

values on ¿trands 1 and 3 at Stage 1» 

Fig. 7.4; Graphs of modelled soil moisture with parameter 

values on Strands 1 and 3 at Stage 3o 

Fig. 7o5; Graphs of modelled soil moisture with parameter 

values on Strands 1-2 and 3 at Stage 7. 

Comparison of these graphs with the adjusted soil moisture data, 

also plotted on the above figures, shows that¿the fit of the modelled to 

observed soil moisture improved as optimisation of the modelled runoff 

proceeded. The graphs in Fig. 7.3 show that the modelled soil moisture 

was too low for the first few months. This prompted the change in the 

assumed initial contents of the Lower Soil Store from 260 pts« to 600 

pts. The modelled soil moisture with near-optimum parameter values varies 

in the same way as the observed data, but the magnitude of the fluctuat-

ions is smaller. As the rainfall and soil moisture data are not always 

representative of average catchment values, the fit of the modelled to 

observed soil moisture appears to be reasonable. 



Legend:-

Original soil moisture data 

Rise in soil moisture > rainfall. 

Corresponding e/t rate > open water e/t rate. 

Corresponding e/t rate > estimated potential rate 

Adjusted soil moisture data. 
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FIGURE 7.2. GRAPHS OF ORIGINAL AND ADJUSTED SOIL MOISTURE DATA 
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Adjusted soil moisture graph (from Fig.7.2} overlaid in 
"best fit" position by eye. Difference between zero of 
adjusted soil moisture scale and zero of modelled 
soil moisture scale is probably due to unavailable 
moisture and to the measurement of soil moisture 
down to an arbitrary depth. 

X Modelled soil moisture, parameter values on Strand 1. 

o Modelled soil moisture, parameter values on Strand 3. 
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FIGURE 7.3 GRAPHS OF MODELLED SOIL MOISTURE WITH PARAMETER VALUES 
ON STRANDS 1 AND 3 AT STAGE 1 
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Adjusted soil moisture graph (from Fig.7.2) 
See note on Fig. 7.3. 

X Modelled soil moisture, parameter values OH Strand 1 

e Modelled soil moisture, parameter values on Strand 3 
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ON STRANDS 1 AND 3 AT STAGE 3 
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Adjusted soil moisture graph (from 
See note on Fig. 7.3. 
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FIGURE 7.5 GRAPHS OF MODELLED SOIL MOISTURE WITH PARAMETER VALUES 
ON STRANDS 1-2 AND 3 AT STAGE 7. 
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7o2o2 Numerical Studies of Parameter Inter-Dependence 

The possibility of inter-dependence was investigated numerica 

lly for a number of two-parameter and three-parameter combinations, as 

this could reveal opportunities to make large changes in some parameter 

values in circumstances where the resulting change in the objective 

function was small and where, consequently, progress of the optimising 

methods would be sloWe The results of these investigations for three 

of the combinations, FO-KF, VSMAX-USMAX-PV, and VSMAX-USMAX-EVPMAX, 

influenced the search for optimum parameter values and these results 

are presented below» In addition, results for the DSMAX-SSMAX combin-

ation support a conclusion reached in Section 8 and these results are 

also described below» 

(i) The Infiltration Parameters 

For easy reference, the relevant equations are:-

Equation 3ol, the original equation used by Boughton to 

give a potential daily infiltration amount, 

F = FC + (FO - FC) e"^^ ' ̂ ^ 

Equation 6»17, the equation for an instantaneous infil-

tration rate introduced in this project and described in 

sub-section 6^2, 

^^ -KF • SSZSSMAX -KF 
instantaneous F = FO«e - FO'e 

Equation 6„19, which is obtained when equation 6^17 is 

integrated over a time period of one day to find the 

potential daily infiltration amount allowing for the 
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change in SS through the. day. 

total daily F = SSMAX(1 + ̂  - InXI- D 

. D e ^ ^ ^ ^ ^ / ™ - - SS 

where 
V-p 

-FO • KF • e" /SSMAX D = e 

Equation 3.2, to calculate runoff from the amount of water, 
P, which overflows from the Drainage Store, 

p Q = P - F tanhC—) , and r 

Equation 6,11 and 6.12, to calculate évapotranspiration from 
the Lower Soil Store, 

SS = SS - (1 - PV) X E if E < SS X EVPMAX/SSMAX 
1 0 

SS = SS X e"^^ " ^^^ ^ EVPMAX/SSMAX 
1 b ^ ® 

if E > SS X EVPMAX/SSMAX, 

Interaction was suspected between the parameters FO and KF, 
and was first investigated using synthetic data in a single store which 
was similar to the Lower Soil Store of the Boughton model, and which is 
illustrated in Fig» 7.6. 

For every inflow P there is an outflow Q given by equation 
3c2, in which the F value is found from equation 6.19. The amount of 
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water which actually enters the store is P - Q. The contents of the 
store are depleted by évapotranspiration according to equations 6.11 
and 6„12 in which, for this case, PV = 0« Equations 3o2, 6,19, 6.11 
and 6.12 therefore constitute the mathematical model of this store, 
and the parameters of the model are SSMAX, EVPMAX, FO and KF. A 65-
day record of daily P values which contained ten rainfall events was 
made up for use with this model. 

e/t 
\ 

FIGURE T'.b 
SINGLE STORE MODEL FOR 

STUDY OF FO-KF INTER-DEPENDEX'CF 
P-Q 

Arbitrary values for the parameters of the model, the 
initial contents of the store, and the daily potential evaporation 
rate may be assigned and a record of Q values generated by processing 
the P data through the model. If different values are then assigned 
to the parameters FO and KF and the P data are:.again processed through 
the model, another record of Q values is obtained and the sum of 
squares of the differences between the two records may be evaluated. 
The FO-KF response surface may be plotted by evaluating the sum of 
squares in this way at each node of a grid of FO and KF values. The 
sum of squares will of courae be zero at the point where FO and KF 
are equal t© the original arbitrary values, and these values may be 
regarded as the optimum values. 



62 

This procedure was carried out for two sets o£ arbitrary 
values, and the two FO - KF response surfaces are shown in Figs» 7.7 
and 7„8 Strong inter-action between these parameters is evident in 
both cases and the surfaces are difficult ones on which to locate the 
minimum point using search techniques. As the infiltration rate, F, 
always approaches zero as SS approaches SSMAX, graphs of F versus SS 
(equation 6.17) for different values of FO and KF are very close to-
gether at high values of SS, but are more widely separated at lower 
values of SSc This probably accounts for the slightly lower degree 
of inter-dependence in Fig. 7o8, as the contents of the store were 
lower in this case o 

To examine the inter-action, graphs of equation 6ol7 were 
prepared for a number of combinations of FO and KF values which lie on 
the floor of the valley in Fig« 7o8o These graphs are shown in Fig» 7„9, 
All the curves are fairly close together at values of SS greater than 
about 400, but are readily distinguished from each other at lower 
values. As the model was operated in this case with low values of SS^ 
the indifference to the wide range of infiltration curves was rather 
surprising. Graphs of equation 6.19 (the total daily infiltration 
amount, derived from the instantaneous rate) were then prepared for the 
same combinationsoof FO and KF and are shown in Figo 7»10o These 
curves lie fairly close together over almost the entire range of SS 
values, and explain the indifference of the objective function to the 
corresponding range of FO and KF combinationsc 

As the equation originally used by Boughton, equation 3.1, 
was used as a basis for equation 6.17, and as the inter-action of FO 
and KF could not be explained using graphs of that equation, it appear-
ed that most of the inter-action may have been induced by the use of 
equation 6,19. It was thought desirable to check the amount of inter-
action present when the Boughton equation was used» The one-store 
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model was therefore operated using the original Boughton infiltration 
calculations and the response surfaces for FO and KF were plotted for 
two sets of parameter values« These are shown in Figs. 7.11 and 7 12 
The inter-action, although considerably less than for the former cases; 
is still quite strong and the surfaces are still difficult ones on 
which to locate the minimum pointc 

Another notable difference between Figs. 7,7 and 7c8 (prepared 
using the modified infiltration calculations) and Figs. 7=11 and 7 12 
(prepared using the original Boughton model infiltration calculations) 
is that, in the former,:cross sections of the response surface at con-
stant values of FO greater than about 750 have two minimum points Thus, 
when using the modified infiltration calculations, there is usually an 
alternative value of KF for given values of the other parameters. This 
feature of the FO-KF response surface seems to have been introduced by 
the second term in equation 6.17., through which the parameter KF, which 
formerly only influenced the shape of the infiltration curve, now al-:c 
influences the intercept of the curve with the SS = 0 axis 

After these studies with the one-store model, FO-KF response 
surfaces were plotted for the complete Boughton model, using both the 
modified infiltration calculations and Boughton^s original infilrratio: 
calculations. The other model parameter values were those obtained at 
point 2 in Stage 3 of the search for the optimum parameter values f :"? 
Lidsdale No. 2 catchment. The surfaces are plotted in Figs 7-13 and 
7,14, and they are of the same shape as those obtained with the one-
store modelo However, in the case of the modified infiltration calcu-
lations, the response surface is relatively flat and the valley in the 
surface is wide. Within the large area bounded by the 4350 ccntou-s^ 
the objective function varies by less than The function is there-
fore practically indifferent to a wide range of FO and KF combina:ioni 
The surface obtained when using Boughton's original infiltration cö/::-
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lations has a steep-sided but almost flat-bottomed valleyo There is a 
much lower degree of indifference to various combinations of FO and KF. 
However, in moving along the floor of the valley, the value of FO 
changes from about 900 pts/day to about 2000 pts/day and, with a slight 
accompanying change in the value of KF, the corresponding change in the 
objective function is less than 1%. Thus, strong inter-action is still 
present in this case. 

The above findings explain the actions taken relative to the 
FO and KF parameters at Stages 2, 3, 7 and 8 of the search. Thus, at 
each of the Stages 2 and 8 of the search, substitution of the alterna-
tive KF value was used to narrow the differences between the various 
points. At Stage 3 it was decided to neglect the parameters FO and KF 
in the following optimisation runs because of the indifference of the 
objective function to a wide range of combinations of these parameters. 
For the same reason, the differences between these parameters were 
ignored when, comparing the points at Stage 7. 

It is evident that the use of the modified infiltration calcu-
lations has induced greater inter-action between parameters which were 
already strongly inter-dependent. However, sound reasons were given 
for modifying the original infiltration calculations and as the nature 
of the inter-action between the parameters was now understood it was 
not considered necessary to revert to the original infiltration calcu-
lations. There are similarities between the modified infiltration 
function used in this project and the infiltration functions used in 
other rainfall-runoff models (including some which purport to use the 
Philip equation). Therefore it seems that inter-action between the 
infiltration parameters will be a problem for most rainfall-runoff 
models. 
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FIGURE 7,10 

GRAPHS OF EQUATION 6.19 FOR DIFFERENT 
FO-KF COMBINATIONS. 

total daily F = SSMAX (1 + ^ • In (1-D+De KF(SS/SSMAX-1) ̂  ̂  _ ^^ ^^ ̂ ^ ^ 

where D 

KP 
-FO.KF.e /SSMAX 

Curves are plotted for the same FO-KF combinations as 
the curves in Fig.7.9, i.e.:-
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(ii) The Parameters VSMAX, USMAX and PV 

At Stage 3 of the optimisation, it was noticed that the main 

differences between points 1 and 2 lay in the values of the above three 

parameters and it was felt that, if a three-way inter-action was 

present between these parameters, a path along the floor of a valley 

in the response surface could possibly be found: between the two points. 

Inter-action between VSMAX and USMAX was indicated by the algebraic 

analysis described later in Section 8. The response surface for these 

parameters was evaluated and is plotted in Fig. 7.15. The other 

parameters had their values for point 2 at Stage 3 of the search. 

Fairly strong inter-action between VSMAX and USMAX is indicated. The 

response surface for USMAX and PV was also plotted, and is shown in 

Fig. 7.16. Inter-action between these parameters is weaker. 

To investigate the possible three-way inter-action, the 

optimum value of VSMAX and the corresponding value of the objective 

function were found at each point of a grid of USMAX and PV values 

while the other parameters were held at their point 2 values. With 

these data, a surface was plotted from which the optimum values of 

VSMAX, USMAX and PV could be read for the fixed values of the other 

parameters. This surface is shown in Fig. 7.17, It is not a response 

surface, but a selection of points from the response surface, and is 

analogous to the line along the floor of a valley in a response sur-

face for two parameters. The positions of points 1 and 2 at Stage 3 

of the search are shown on this surface and it can be seen that 

optimisation of the three parameters from both of these points should 

lead to the one minimum point. The approximate path taken by the 

Davidon method from point 2 is indicated in the figure. 

A similar surface was plotted with the remaining parameters 

held at the point 3 values, and is shown in Fig. 7,18. The surface is 
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more compact in this case. The possibility of improvement in the values 

of VSMAX, USMAX and PV is also evident. 

Optimising runs were made in which only VSMAX, USMAX and PV 

were varied to confirm that the search methods could move to the minimum 

points of the surfaces plotted above. The runs were successful and they 

resulted in the movement between Stages 3 and 4 of the search. While 

improvements were made in the objective function values, it is more 

significant that relatively large changes occurred in the values of the 

parameters and thattthese resulted in the various points moving closer 

together. A similar optimising run from point 3 at Stage 7 of the 

search gave similar results. 
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(iii) The Parameters VSMAX, USMAX and EVPMAX 

A number of other three-parameter combinations were investi-
gated after the useful results described above were obtained. Of these 
combinations, that of VSMAX, USMAX and EVPMAX gave results which were 
useful in furthering the search„ By optimising the value of USMAX at 
each node on a grid of VSMAX and EVPMAX values, a surface similar to 
those described in the previous section was plotted for these three 
parameters. The remaining parameters were fixed at their values at 
point 3 of Stage 4 of the search. The surface is shown in Fig, 7.19, 
and indicates that some improvements in the objective function is 
possible by simultaneous adjustment of these three parametersc 

The Davidon method, however, proved ineffective in finding 
the minimum point when used to search from each of two different start-
ing points on the surface. The paths taken by the searches are shown 
in Fig. 7.19» At the end points of the searches, a number of itera-
tions took place in which the parameter changes were too small to be 
plotted and thecchange in the objective function was negligible= To 
ensure that the search method had been implemented correctly, the 
optimising programme was tested on the two-dimensional problem which 
was used by Box (1966) as a test function and was successful in loca-
ting the minimum of that function. The objective function was then 
evaluated at each node of a grid of VSMAX, USMAX and EVPMAX values 
surrounding the end point of the second search. When the grid spacing 
was O.OS, 0.002, 0.05 for VSMAX, USMAX and EVPMAX respectively, no 
point on the grid had a lower value of the objective function than the 
end point of the search, but when spacings of 0,005, 0c002, 0,005 were 
used, about one third of the surrounding points had lower valuesc This 
grid spacing is very fine compared to the normal step size which was 
used in finding the steepest descent direction and in moving along the 
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search directions, when the changes to each parameter were generally 
between 0,05 and 0»5o The following reasons may be advanced for the 
difficulties encountered with the Davidon method at this particular 
point of the search:-

(a) The steepest descent direction at this stage of the 
work was being found by Method 5, described in 
Appendix A2c This method assumes that the cross-
sections of the response surface in the co-ordinate 
directions at the current point may be approximated 
by parabolas. The presence of a discontinuity in 
the response surface near this point would invalidate 
the assumption. (The other methods used in this 
project would also be invalid in this situationo) 

(b) The step sizes used in defining the steepest descent 
direction may be too large for the parabolic assump-
tion to be valid, or the step size taken in the chosen 
descent direction may be too large, overstepping the 
minimum in this direction at the first move. 

Further work would be required to identify the cause of the 
problem. However, if the remedy required the use of smaller step sizes 
than those used in this project, it may also be necessary to use "double 
precision" arithmetic for computing parameter changes and evaluating 
the objective function, and because more steps would then be required 
in the descent directions, the computing time would be greatly increased, 

The values of VSMAX, USMAX and EVPMAX at the minimum point 
of the surface shown in Fig. 7.19 were substituted in point 3 result-
ing in the move to Stage 5 of the search for this point. Subsequently, 
the performance of the Simplex method on this surface was checked. 
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The method successfully located the minimum point of the surface after 
90 iterations from a starting simplex which included the point at which 
the Davidon method encountered difficulty. 

As it was suspected that a similar surface existed for the 
combined points 1 and 2 at Stage 5, a Simplex run was made with only 
VSMAX, USMAX and EVPMAX varying, but little change in these parameters 
or improvement of the objective function occurred. The parameters 
were probably already near the minimum of the surface in:this case. 
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(iv) Response Surface for DSMAX and SSMAX 

Of the two-parameter combinations which were investigated, 
the DSMAX-SSMAX combination proved to be of interest even though it 
did not affect the subsequent course of the search. The response 
surface for these parameters was evaluated and plotted with the 
remaining parameter values at point 1, Stage 3 of the searchj and is 
shown in Fig, 7o20= 

Further slight improvement in the objective function may be 
obtained by simultaneously reducing the value of SSMAX and increasing 
the value of DSMAX. These movements took niace during further dptiimisa-
tion. The degree of inter-action between the two parameters is not 
very strong, however, as a change in the scaling of one of the axes 
towards the scaling of the other by a factor of about 2 would substan-
tially eliminate the elongation in the contours= The main interest in 
this surface lies in the shape of the cross-sections which are shown 
in Fig, 7.21. For constant values of SSMAX, graphs of the objective 
function vs DSMAX have discontinuities and the segments between the 
discontinuities appear to be parabolic« This provides numerical support 
for the theoretical result derived later in Section 8, Similar dis-
continuities are not evident in the cross-sections at constant values 
of DSMAX, but this could be due to the small number of points used 
for plotting the graphse 
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7,3 DISCUSSION OF THE PARAMETER VALUES OBTAINED FROM^THE SEARCH 

Although a unique set of optimum parameter values was not 
found for the Lidsdale No. 2 catchment, the search was effective in 
changing the objective function from initial values of approximately 
38,000 and 62,000 to final values scattered around 1800c The points 
obtained at the end of the search appear to be spaced along the 
floor of a valley and are probably close to the lowest point in the 
valley= It is worthwhile considering the significance of the parameter 
values and the performance of the model with these valuesc The points 
are listed again in Table 7,1= 

NEAR-OPTIMU] 
TABLE 7el 

^ SETS OF PARAMETER VALUES FOR LIDSDALE NOe 2 CATCHMENT 
POINT 
NO. VSMAX USMAX DSMAX SSMAX EVPMAX PV FO KF SUMSQS 

44 = 6 
48 = 9 
48=7 
48.1 
49=1 
48.9 
43=7 
45 = 9 

6=2 

6 ,1 

6=3 
6.4 
6 = 2 

6 = 4 
8,9 
8,4 

512 
567 
487 
515 
482 
466 
328 
299 

797 
695 
731 
618 

679 
690 
805 
738 

19 = 8 
24 = 9 
27=3 
36 = 6 
33=7 
34=9 
50 = 2 
122 = 7 

0 = 460 
0 = 454 
0 = 473 
0 = 449 
0»463 
0 = 466 
0 = 490 
0 = 480 

1180 
1195 
981 
983 
1241 
1166 

485 
788 

0=1275 
0„0863 
0.1359 
0=1007 
0=0900 
0=1004 
2=174 
3 = 246 

1800 

1791 
1811 

1785 
1792 
1796 
1850 
1815 

It should be remembered that a value of about 3=7 may be substituted for 
KF in points 1 to 6 with little effect upon the value of the objective 
function. 

7=3=1 Variation of the Parameter EVPMAX 

The value of this parameter exhibits the greatest variati on 



between the above points. However, this does not imply that the object-
ive function is indifferent to the value of EVPMAX For points 1 and 8 
above, variation of the value of EVPMAX while the other parameters are 
held constant results in significant increases in the objective function 
as shown in Table 7.2c 

TABLE 7.2 
SENSITIVITY OF OBJECTIVE FUNCTION TO EVPMAX 

SENSITIVITY IVHEN OTHER 
PARAMETER VALUES ARE THOSE 
AT POINT NO. 1 OF TABLE 7 1 

SENSITIVITY m E N OTHER 
PARAMETER VALUES ARE THOSE 
AT POINT NO. 8 OF TABLE 7.i 

EVPMAX OBJECTIVE FUNCTION EVPMAX OBJECT 'IVE FUNCTION 

5 121,335 80 2,574 
10 42,811 90 2,160 
15 11,650 100 1,946 
19.8 1,800 110 1,847 
20 1,811 120 1,816 
25 4,720 122.7 1,815 
30 7,118 130 1,826 
35 9,420 140 1,859 
40 10,870 150 1,904 
60 14,432 160 1,955 
80 18,084 180 2,062 

Therefore, the large changes in EVPMAX between the points listed in 
Table 7.1 are being accompanied by compensating changes in the other 
parameters and some form of inter-action exists. As the values of 
VSMAX, USMAX and PV show little variation, and as the objective func-
tion is known to be indifferent to a wide range of FO and KF combina-
tions, the inter-action appears to be taking place between EVPMAX, DSMAX 
and SSMAX. Sub-optimisation with these three parameters may bring the 
points still closer together. 
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7c3,2 Significance of the Parameter Values 

The near-optimum values for some of the parameters are rather 
unexpected and for a few parameters the values even appear to be incon-
sistent with the intended purpose of those parameters in the modelc 

The capacity of the Interception Store, VSMAX, at almost half 
an inch, is considerably higher than values normally quoted for this 
store. Jones (1969), after an extensive survey of the literature on 
interception, recommended values between 1 and 10 pts, the higher 
figure being for two layer vegetation such as forest with appreciable 
grass= The value recommended by Crawford and Linsley (1966) for heavy 
forest was 20 pts» It is possible that moisture other than that re-
tained on the surfaces of vegetation evaporates at the potential rate 
and that, during optimisation, the capacity of the Interception Store 
is adjusted to include this amount of moisture« The vegetation on 
the Lidsdale NOo 2 catchment is pine forest with a matting of dead 
pine needles on the ground surface, and this matting probably acts in 
the same way as the Interception Storeo However this would probably 
not account fully for the higher value obtained for this catchmentc 
A consequence of the high value is that, in winter months when the 
potential evaporation rate is down to about 3-5 pts/day, a period of 
from 10 to 15 days elapses before the Interception Store is emptied 
and depletion of the soil stores by évapotranspiration commences. 
This result is unrealistiCc 

It is not possible to reconcile the low value obtained for 
the capacity of the Upper Soil Store, USMAX, with the very high value 
obtained for the capacity of the Drainage Store, DSMAX„ The Upper 
Soil Store is meant to represent the water held in the capillaries of 
the topsoil between wilting point and field capacity„ Using the very 
low value of 0.6 in/ft for the Available Water Capacity of the topsoii, 
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the value of approximately 6»5 points obtained for USMAX implies that 

the topsoil layer is no greater than Ik inches deep. As the Drainage 

Store is meant to represent the gravitational water in the same depth 

of topsoil between field capacity and saturation^ the values of 3 to 5 

inches obtained for DSMAX are clearly in conflict with the figures for 

USMAX, It is possible that these two stores are effectively operating 

as one combined store» If this is so then the physical interpretation 

of the parameter PV, the fraction of the évapotranspiration taken from 

the Upper Soil Store, becomes unclearo The values obtained for PV 

seem to be too high for the low values of USMAX. 

An alternative explanation for the high values of DSMA^ could 

be that the Drainage Store is merely acting as an artificial store to 

retain water which would otherwise appear as runoff and which would 

increase the value of the objective functiono 

The unexpected results indicate that, for this catchment^ 

the parameters do not have the physical significance which they were 

intended to have» If similar results were obtained for other catch-

ments, it is very unlikely that significant correlations between the 

parameter values and physical catchment characteristics could be found„ 

7o3„3 The Length of the Data Record and the Warm-Up Period 

Approximately 2 years and 4 months of data were used in 

optimising the parameter values» If a significantly longer period of 

data had been available the derived parameter values may have been 

quite different. In forcing the model to reproduce a much longer 

record, "black box" effects such as the tendency of the Drainage 

Store to act as an artificial store would probably be reduced^ The 

parametersv.'would then be expected to take on values which were more 

meaningful from physical considerationso 
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A conclusion reached in the next section of this report is 

that the operation of the model is not independent of the assumed 

initial store contents until the stores have been filled during a 

period of heavy rainfall« For some of the sets of parameter values 

derived for the Lidsdale No. 2 catchment the Lower Soil Store does 

not approach the full state until 4-6 months from the end of the data 

recordó The data record before this time should therefore have been 

contained in an extended warm-̂ up period or, alternatively, the initial 

contents of the Lower Soil Store could possibly have been regarded as 

a parameter. More meaningful parameter values may have been derived 

if one of these alternatives was adopted» 

7c3o4 The Lower Soil Store Depletion Factor 

Depletion of the contents of the Lower Soil Store to ground-

water was simulated in the Boughton model by applying a constant 

factor of 0,999 to the contents each day. With a typical figure of 

500 pts for the contents of the store the daily depletion quantity is 

0o5 pts and this would accumulate into a considerable quantity over 

the period of the data record» If the depletion factor were decreased 

to, say, 0o997 then the water extracted from the model in this way 

would be increased further» It is therefore possible that a small 

adjustment to this factor may have stopped the Drainage Store from 

acting as an artificial store and allowed the parameter DSMAX to take 

on a meaningful value» In future optimisation work the Lower Soil 

Store depletion factor should not be allocated a fixed value but should 

be regarded as another parameter to be optimised. 

7-5.5 Performance of the Model with the Near-Optimum Parameter Values 

Towards the end of the project, an extra year's data for the 

Lidsdale No» 2 catchment became available, and provided an opportunity 
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to check the ability of the model to reproduce a period of runoff data 
which was not used in the search for the optimum parameter values. The 
model was operated with the parameter values at points noSo 1 and 8 in 
Table 7.1 using the extended data record, i.e., for the period 17-10-1968 
to 28-2-1972o The calculated monthly runoff quantities are listed with 
the observed quantities and monthly rainfalls in Table 7.3 below, while 
similar figures on an event basis are presented in Table 7 A. 

The modelling of the monthly and event runoff quantities in 
the period which was used for optimisation could be considered as good 
for engineering purposes because the large runoff amounts, which contri-
bute most to the catchment yield, are well reproduced. This must be 
qualified by observing that the modelling of the flows in November 1970 
is not good and that, in general, small runoff events are not reproduced 
by the model.. In the extra one-year period the flows calculated by 
the model compare poorly with the observed flowsc There are large 
errors in both under- and over-estimation of the individual events by 
the model. For the whole of the period of data there are only minor 
differences between the flows calculated by the model with the differ-
ent sets of parameter values. 

The total modelled runoff quantity for September 1970 is 
very close to the observed value. However the..event data for this 
month show that the model badly under-estimates one event and over-
estimates two events in such a way that the errors almost balance when 
total quantities are calculated. Similar but less obvious examples of 
compensating errors occur in November 1969^ December 19^0 and February 
1971. It is unlikely that optimisation with an objective function based 
on event totals rather than monthly totals would achieve significantly 
better reproduction of individual events (see Section 9)- The main 
reason for the poor reproduction of some events is thought to be that 
the model cannot simulate tjie effect of different rainfall intensities 
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on : the amount of runoff« Given that the runoff amount varies with the 
intensity of the rainfall (other factors being held constant) then the 
model would be expected to give reasonable reproduction for rainfall 
events of average intensity, to under-estimate the runoff from falls of 
high intensity and to over-estimate the runoff from falls of low 
intensity. However it is not possible to attempt a correlation 
between rainfall intensities and over- or under-estimation of runoff 
quantities» This is because the incorrect estimation by the model of 
the runoff for an event is accompanied by an incorrect amount of water 
subsequently held in soil storage, and this also influences the calcu-
lated runoff for subsequent events. 

As there is apparently no way in which the effect of different 
rainfall intensities can be allowed for when using daily rainfall data 
in a daily time-period model, poor reproduction of some events by such 
models must always be expected. 
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TABLE 7.3 

MO DEL OUTPUT - MONTHLY FIGURES 

YEAR MONTH 
RAINFALL 
(POINTS) 

OBSERVED 
RUNOFF 
(POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE 
FOLLOWING SETS OF 
PARAMETER VALUES 
FROM TABLE 7.1:-

POINT 1 POINT 8 

1968 Oct. 81 0 0 0 

Nov. 111 0 0 0 

Dec. 393 0.2 0 0 

1969 Jan. 235 2.2 0 0 

Feb. 750 42.0 0 0 

Mar. 261 5.3 0 0 

END OF "WARM-UP" PERIOD 
1 1 

START OF PERIOD USED FOR 1 OPTIMISAT: [ON 

Apr. 240 6.4 0 0 

May- 217 0.3 0 0 

June 231 9.5 0 0 

July 117 0 : 0 0 

Aug. 365 11.4 0 0 

Sep. 197 6.8 0 0 

Oct. 270 0 : 0 0 

Nov. 422 49.9 50.2 49.5 

Dec. 313 50.8 46.9 47.2 

1970 Jan. 584 7.6 0 0 

Feb. 266 1.0 0 0 

Mar. 251 1.5 0 0 

Apr. 198 0 0 0 

May 210 2.0 0 0 

June 146 0 0 0 

July 14 0 0 0 

Aug. 189 0 0 0 
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TABLE 7.3 (conte) 

YEAR MONTH 
RAINFALL 
(POINTS) 

OBSERVED 
RUNOFF 
(POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE 
FOLLOWING SETS OF 
PARAMETER VALUES 
FROM TABLE 7.1:-

POINT 1 POINT 8 

1970 Septc 433 63.0 63.3 63.0 

cont. Oct, 233 22.8 26.9 26.3 

NoVc 410 32.9 0 0 

Dec. 322 83.5 72.6 72.8 

1971 Jan.- 513 58.4 72.3 73.3 

Feb. 540 264»0 264.3 264.4 

END OF PERIOD USED FOR OPTIMISATIC 
1 

)N 

START OF EXTRA PERIOD 
1 i 1 

MODELLED 

WITH NEAR-OPTIMUM PAR 
1 
AMETERS 

Mar, j 135 0 0 0 

Apr: 79 0 0 0 

May- 164 0 0 0 

June 51 0 0 0 

July 103 0 0 0 

Augc 319 0o4 0 0 

Septc 455 16.4 65.1 72.8 

Octc 31 0 0 0 

NoVo 245 0 0 0 

Dec, 774 129.9 6.9 25.9 

1972 Jan, 889 386.6 430 o 2 423.4 

Feb. 352 28.3 65 „9 66.7 



TABLE 7.4 
MODEL OUTPUT - EVENT FIGURES TABLE 7.4 cont. 

,VENT START 
DATE 

RAINFALL 
(POINTS) 

I OBSERVED 
I RUNOFF 
I (POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE 
FOLLOWING SETS OF 
PARAMETER VALUES 
FROM TABLE 7.1:-

EVENT 

POINT 1 POINT 8 

START 
DATE 

RAINFALL 
(POINTS) 

OBSERVED 
RUNOFF 
(POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE 
FOLLOWING SETS OF 
PARAMETER VALUES 
FROM TABLE 7.1:-

POINT 1 POINT 8 
4-

1 17-10- 68 0 0 0 0 10-10 3 0 : 0 0 
2 23-10 3 0 0 0 12-10 38 0 0 0 
5 25-10 78 0 0 0 14-10 41 0 0 0 
4 5-11 111 0 0 0 55 16-10-'69 40 0 0 0 
5 4-12- 68 154 : 0 0 0 26-10 84 0 ° 1 

0 
16-12 55 0 0 0 31-10 55 0 0 1 0 
24-12 144 j 0.2 0 0 4-11 20 0 0 i 0 
27-12 38 0 0 0 6-11 217 44.3 47.0 i 48.1 
29-12 2 0 i 0 0 60 12-ll-'69 24 0 0 0 

10 1- 1- 69 20 0 1 0 0 14-11 98 5.6 3.2 ! 1.5 
14- 1 93 0 ! 0 0 19-11 21 0 0 1 0 
18- 1 106 2.2 ! 0 1 0 22-11 3 0 0 1 0 
24- 1 16 0 0 0 29-11 11 0 0 i 0 
5- 2 155 1.0 i 0 0 65 3-12-'69 2 0 0 i 0 

15 9- 2-'69 489 41.0 1 0 0 12-12 282 50.8 46.9 47.2 
18- 2 1 0 0 0 23-12 29 0 0 i 0 
24- 2 20 0 0 0 1- l-'70 85 0 0 ! 0 
26- 2 85 0 0 0 7- 1 5 0 0 ! 0 
15- 3 8 0 0 0 i 70 10- l-'70 116 0 0 0 

20 17- 3- •69 128 5.3 0 0 1 17- 1 45 0 0 0 
22- 3 3 0 0 0 19- 1 91 1.2 0 0 
25- 3 127 0 1 0 0 22- 1 32 0 0 0 

END OF "WARM-UP" PERK 1 1 1 DD 
! 

1 75 
26- 1 
2- 2-'70 

210 
2 

6.4 
0 

0 
0 

0 
0 

? 
START OF PERIOD USED FOR OPT IMISATION 

I 

11- 2 
13- 2 

7 
132 

0 
0 

0 
0 

0 
0 

15- 4 232 6.4 0 0 ' 16- 2 57 1.0 0 0 
20- 4 3 0 0 0 ! 23- 2 39 0 0 0 

25 2- 5-'69 9 0 0 0 80 27- 2-'70 29 0 0 0 
4- 5 2 0 0 0 1- 3 15 0 0 0 
8- 5 2 ! 0 0 0 6- 3 i 25 0 0 0 
13- 5 23 i 0 0 0 16- 3 ! 21 0 0 0 
15- 5 71 0 0 0 1 20- 3 1 157 1.5 0 0 

30 28- 5- '69 112 0 0 0 1 85 23- 3-'70 ' 33 0 0 0 
3- 6 34 0 0 0 ! 10- 4 19 0 0 0 
10- 6 38 0 0 0 12- 4 30 0 0 0 
20- 6 157 9.5 0 0 23- 4 119 0 0 0 
3- 7 4 0 0 i 0 28- 4 i 30 0 0 0 

35 5- 7-'69 46 0 0 90 7- 5-'70 ; 21 0 0 0 
13- 7 6 0 0 ! 0 15- 5 1 174 2.0 0 0 
16- 7 18 0 0 0 21- 5 ! 3 0 0 0 
20- 7 43 0 0 0 ! 29- 5 12 0 0 0 
3- 8 20 i 0 0 0 i 1- 6 2 0 0 0 

40 13- 8- '69 179 S 5.7 0 0 i 95 3- 6-'70 2 0 0 0 
18- 8 16 0 0 0 ! 1 6- 6 43 0 0 0 
21- 8 32 0 0 0 11- 6 17 0 0 0 
25- 8 93 5.7 0 0 16- 6 37 0 0 0 
31- 8 85 6.8 0 ' 0 22- 6 45 0 0 0 

45 6- 9-'69 29 0 0 0 100 2- 7-'70 2 0 0 0 
9- 9 10 0 0 0 20- 7 1 12 0 0 0 
14- 9 55 0 0 0 2- 8 ' 56 0 0 0 
20- 9 9 0 0 0 i ! 11- 8 i 0 0 0 
22- 9 27 0 0 0 18- 8 23 0 0 0 

50 30- 9-•'69 14 0 0 0 105 24- 8-'70 35 0 0 0 
5-10 10 1 0 0 0 27- 8 

31- 8 
59 
5 

0 
; 0 

0 
0 

0 
0 



TABLE 7.4 cont. TABLE 7.4 cont. 

START 
DATE 

RAINFALL 
(POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE ! 

OBSERVED I FOLLOWING SETS OF i 
RUNOFF ' PARAMETER VALUES j 
(POINTS) FROM TABLE 7.1:- | 

POINT 1 ' POINT 8 ;! 

EVENT 
START 
DATE 

RAINFALL 
(POINTS) 

OBSERVED 
RUNOFF 
(POINTS) 

MODELLED RUNOFF 
(POINTS) WITH THE 
FOLLOWING SE'I'̂  OF 
PARAMETER VALUES 
FROM TABLE 7.1:-

POINT 1 POINT 8 

110 

115 

120 

125 

130 

135 

140 

145 

150 

155 

2- 9 135 52.0 0 0 160 28- 5- •71 60 0 0 0 
9- 9 67 1.9 0 0 6- 6 4 0 0 0 
13- 9- 70 21 0 0 0 

•1 
9- 6 9 0 0 Ü 

15- 9 52 1.5 0 0 1 15- 6 12 0 0 0 
22- 9 40 . 0 0 0 1 22- 6 2 0 0 0 
24- 9 47 0.8 21.42 20.7 : 165 27- 6-•'71 4 0 0 0 
27- 9 71 6.8 41.92 42.2 15- 7 98 0 0 0 
8-10- '70 2 ' 0 0 0 24- 7 2 0 0 0 

11-10 88 0.2 0 0 31- 7 62 0 0 0 

15-10 1 0 0 0 6- 8 136 0.4 0 (j 

19-10 15 0 0 0 170 11- 8-•'71 2 0 0 (J 

20-10 126 22,6 26.9 26.3 21- 8 77 0 0 0 

26-10- '70 1 0 0 0 26- 8 3 0 0 0 
6-11 59 0 0 0 30- 8 45 0 0 0 
8-11 51 0.3 0 0 10- 9 172 4.0 0 0 
10-11 12 0 0 0 175 15- 9- •71 39 0 0 0 
12-11 83 14.9 0 0 16- 9 103 7.5 18. 6 26. 5 

16-11- •70 34 0.1 0 0 1 21- 9 77 3.6 35. 7 35.8 

20-11 11 0 0 - -0 ' 25- 9 20 0 0 0 
25-11 160 17.6 0 0 26- 9 41 1.3 10. 8 10. 8 

6-12 17 0 0 0 180 8- 10-••71 3 0 0 0 

8-12 200 57.6 40.5 43.5 15- 10 10 0 0 0 
12-12- '70 29 8.2 0 0 21- 10 7 0 0 0 
19-12 82 2.0 0.9 0.1 23- 10 11 0 0 0 
22-12 2 0 0 0 7- 11 119 0 0 0 
24-12 18 0 0 0 185 14- li--•71 59 0 0 0 
28-12 155 15.8 31.2 29.2 18- li 2 0 0 0 
13- 1- '71 72 0 0 0 20- 11 16 0 0 0 
18- 1 108 0 0 0 29- 11 49 0 0 0 
24- 1 4 0 0 0 3- 12 11 0 0 0 
27- 1 6 0 0 0 190 6- 12-••71 150 0 0 0 
29- 1 198 5.3 0 0 8- 12 262 18.6 0 0 
31- 1- •71 125 53.0 72.3 73.3 15- 12 36 0 0 0 
1- 2 117 76.8 86.0 86.2 24- 12 17 0 0 0 
4- 2 153 83.3 94.5 94.8 25- 12 80 0.8 0 0 
9- 2 166 101.8 83.7 83.4 195 27- 12--•71 180 97.9 0 10.8 
17- 2 90 2.1 Í 0.1 0 28- 12 38 12.7 6. 9 15. 1 
24- 2- •71 12 0 ' 0 0 1- 1--•72 25 0 0 0 
27- 2 2 0 i 0 0 5- 1 116 37.9 8. 8 6.4 

END OF PERIOD USED FOR OPTIMISATION 
200 

13- 1 
- ̂ 72 

112 16.2 29. 3 27.2 
1 200 14- 1-- ̂ 72 183 11,1. 1 141. 5 141. 8 

START 
' 1 1 

OF EXTRA PERIOD MODELLED 
18-
23-
24-

1 
1 

42 
29 

•271 

13.7 
0 

140.2 

0 
0 

177. 

0 
0 

174.9 
WITH 

1 
NEAR-OPTIMUM PARAMETERS 

18-
23-
24-

i 
1 

42 
29 

•271 

13.7 
0 

140.2 

0 
0 

177. 5 

0 
0 

174.9 
3- 3 

1 
j 66 ! 0 0 0 27- 111 i 67.5 73. 1 73. 1 

17- 3 6 0 0 0 205 4- 2--•72 38 0.3 0 • 0 
21- 3 49 0 . 0 0 8- 2 4 0 0 0 
27- 3- '71 ; 13 0 ; 0 0 11- 2 32 0 0 0 
1- 4 18 0 0 0 14- 2 101 0 0 0 

14- 4 5 0 0 0 18-• 2 99 19.9 40. ,6 41.4 
18- 4 20 0 0 0 210 20-• 2--•72 53 8.1 25. ,3 25.3 
27- 4 36 0 : 0 ; 0 211 26-• 2--•72 25 0 0 0 
5- 5- •71 44 0 ! 1 0 0 

1 

9- 5 4 0 0 ; 0 Ñote:- Events consist of:-
13- 5 10 0 0 0 (i) those rainy days associated with each peak 
16- 5 4 ; 0 0 0 of the observed runoff hydrograph, and 
20- 5 62 ' 0 0 0 (ii) other groups of consecutive rainy days. 
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8. ALGEBRAIC ANALYSIS OF THE MODEL 

The ultimate aim of this analysis was to develop an explicit 
algebraic equation for the output of the model in terms of the input 
data and the model parameters. Such an equation is frequently available 
for the optimisation problems encountered in other fields of investi-
gation, and knowledge of the equation is helpful in solving the optimi-
sation problem for several reasonso 

(i) By combining this equation with the observed catchment output^ 
individual equations for each of the monthly (or event) devia-
tions between calculated and observedrrunoff may be writtenc 
If more equations are available than unknowns (the model para-
meters), as is usually the case, then the least squares 
techniques may be applied to solve the equations simultaneously 
for the parameter values» Thus, another set of methods becomes 
available for the solution of the optimisation problem. 

(ii) A single equation for the objective function in terms of the 
input and output data and of the model parameters can be 
written by summing the individual equations written under (i;" 
above. This equation could be used in several ways. 

(a) Explicit equations for the partial derivatives of the 
objective function with respect to each parameter could 
be obtained by simple differentiation. The steepest 
descent direction at any point on the response surface 
could then be found simply by substituting the parameter 
values of that point into these equations. Thus the 
difficulties encountered in the numerical definition of 
the steepest descent direction in this project would be 
eliminated, and the overhead in computer time caused by 
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the large number of runs through the model which are 

required would be considerably reduced, enabling more 

time to be spent in the actual search for the minimum» 

(b) Inter-dependencies between parameters would possibly be 

revealedo For example, if the parameters x and x 
1 2 

usually appeared together as (x 32. ax ) in various 
1 2 

terms of the equation, then linear inter-dependence 

between these parameters must be expectedo 

(iii) The equation would possibly indicate the likelihood of indiffer-

ence to any parameter, the effect on the output of the assumed 

initial store contents, and the required length of the "warm-up" 

periodo 

(iv) Knowledge of the form of the equation may assist in selecting 

the most appropriate search technique for finding the optimum 

model parameter valueso 

In addition to the above benefits it was thought possible that 

the analysis could reveal a direct analytical method of finding the 

optimum parameter values and eliminate the use of search techniqueso 

8.1 ANALYSIS OF INDIVIDUAL STORES 

The task of writing a comprehensive equation for the output 

from a mathematical model of the rainfall-runoff process is complicated 

by the number of conditional branches which may be taken during the 

operation of the model. Work was commenced by analysing a simple store, 

then progressed to each of the stores of the Boughton model considered 

in isolation. For this initial analysis it was assumed that the inflows 

and outflows for each of the stores were known, although this is not so 
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when the model is considered as a whole. The analysis for each store 
comprised two phases:-

(i) a method was sought for finding the capacity of the store from 
the input and output data, and 

(ii) a "model" of the store was constructed by re-arranging the 
equations from (i), expressing the output of the store in 
terms of the input data and the store capacity, considered 
now to be a variable. An objective function based on differ-
ences between observed and modelled output was set up and the 
effect on this function of changes in the store capacity was 
investigated. 

8,1.1 A Single Input-Output Event in a Simple Store 

The first physical system which was considered is as illustra-
ted in Figc 8c1. 

FI CURE 8. 1 
SINGLE INPUT-OUTPUT 

EVENT IN A SIMPLE STORE 

Given that the store is initially empty, that an amount of 
water P is poured into the store and an amount Q^ overflows, where 
Q^ > 0, then the capacity of the store is simply 
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C = P - Q 

Re -arranging this ec[uation, the fliatheinaticaliunod-el o£ the 

system is:-

Q^ = 0 if c' > P (Sola) 

= P - c' if c' < P (8,1b) 

where Q^ = output as calculated by the model 
P = input (data) f 
C = a parameter, the capacity of the container, 

whose optimum value is Co I 
We seek the value of C which produces the best fit of Q^ to 

Q^ by minimising the objective function 
I 

F = ^Qq ° ^c^^ ^^^^ respect to C » 

Substituting from equations 8,1a and b, 
! 

F = if C > P (function is constant) ^o 
I I 

(Q - P + C)^ ifC < P (function is parabolic) 

For the minimum of the parabolic section of the function. 
HP ' Hi- - = 2(0 - P + C ) - l = 0 
dc' 

c' = P - Q, 
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In general, the graph of F vs C is as shown in Fig. 8,2. The numbers 

shora are for the particular case where P = 15, Q^ = 5» 

30 . 

20 . 

10 . 

FIGURE 8.2 
GRAPH OF F vs C 
FOR SIMPLE STORE 

P = 15, Qq ^ 5 

optimum value 
of C' 

For the special case of an event with Q = 0 , the graph is as shown in 
f ° 

Fig, 8.3 and the optimum value of C is indeterminate= 

FIGURE 8.3 
GR.-\PH OF F vs C 
FOR SIMPLE STORE 

WHEN Q = 0 

As most rainfall-runoff models are built up with components 

similar to the simple system shown above, it should be reasonable to ex-

pect that features of the optimisation problem for this system will also 

apply for the more complicated models. The most significant features 

appear to be:-
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(i) the response surface has a discontinuity, and the objective func-
tion is indifferent to the parameter value on one side of this 
discontinuity. None of the optimising methods will find the 

» r 
optimum value of C if the initial estimate of C is too large 
tocthe extent that it is greater than P. 

(ii) the response surface is of positive definite quadratic form when 
C < P. This is significant when using the conjugate direction 
descent methods of optimisation. 

(iii) it is possible for the data record to be such that the optimum I 
value of C is indeterminate. This occurs for an event where 
Q = 0. 

The above analysis may be easily generalised for an event where 
the contents of the container before the event were not zero. Referring 
to Figure 8,4, the previous analysis is used to find the empty portion 
of the container, C , and the volume is then found from C = C^ + So 
The graph of the objective function is shifted by the amount S, as shown 
in Fig. 8.5. 

f _ . J 

Ci 
1 - - s , 

\ 

FIGURE 8.4 
SINGLE INPUT-OUTPUT EVENT IN 
A SIMPLE STORE WITH NON-ZERO 
INITIAL CONTENTS. 

FIGURE 8.5 
GR.̂ VPH OF OBJECTIVE FUNCTIGX 
FOR EVENT SHOWN IN FIG. 8.4 
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Of course^ if S is unknown, then C is indeterminate, and the most that 
can be said is that C ^ C o 

8»lo2 Interception Store 

The operation of this component of the Boughtcn model is 
similar to that of a simple container exposed to rainfall and evaporation, 
Given a record of the rainfall inputs P, the observed spills Q^, and 
potential evaporation data, is it possible to find the capacity, VSMAX 
of the container? 

From the work of the previous section^ the capacity can only 
be found from the results of an event for which the contents immediately 
prior to thecevent are known. It can be shown that if an event occurs 
for which QQ > 0 and P - Q^ < ET, where bT is the total potential evapor-
ation since the previous rainfall (or, for the first event in the data 
record, since the start of the record), then the container must have been 
empty prior to the event and its capacity may be calculated„ 

Proof : - Let VS^ contents after previous rainfall (or at 
start of data record) 

VS = contents immediately prior to event., 

VS is related to VS as follows 1 o 

VS - VS - ET if ET < VS (8„2a) 1 0 o ^ 
= 0 if ET > VS^ (8.2b) 

Using the result of the previous section, the unfilled 
portion of the container, VSMAX - VS^, is expressed in 
terms of the data for this event. 
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VSMAX - VS^ = P - Qq (8„3) 

For this event, P - Q < ET 

/o VSMAX - VS < ET 
1 

Substitute for VS^, assuming that 8»2(a) above is true 

VSMAX - VS + ET < ET o 

VSMAX - VS^ < 0 (8.4) 

But VSMAX is positive and VS^ < VSMAX, therefore equation 
8o4 cannot be true and equation 8»2a cannot hold for this 
eventc Therefore equation 8»2b is true, ioe.. 

VS = 0 
1 

Substituting in equation 8„3 above, 

VSMAX = P - Q o 

If there are a number of events in the data record for which 
Q^ > 0 and P - Q < ET, then they may each be solved for VSMAX» If 
errors are present in the P and Q^ data, the answers from the various 
events vill je. different - and- it "̂.s then necessary to adopt a best fit 
estimate of VSMAXe 

Using a similar approach to that used in the previous section 
the modelled output for a given event is 

f 
Q = 0 if C > P X ! f 

= P - C if C < P 
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where the optimum value of C is VSMAX, 

The objective is now to minimise 

k 
F = 

«o(i) -

where k is the number of events being solved for VSMAXc 

This function is a sum of functions which are each similar to 

the one shown in Fig. 8.2o However, each component function will have 

a different optimum point and different location of the discontinuity. 

The resulting response surface would appear as illustrated in Fig. 8o6c 

FIGURE 8.6 

GRAPH OF OBJECTIVE FUNCTION FOR THREE 

EVENTS IN THE INTERCEPTION STORE 

In general, there will be as many discontinuities in this 

function as the number of events used in the solution for VSMAXc Each 

segment of the curve is still parabolic, however. The minimum value of 

the objective function is no longer zerOo 
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If there were no gross errors in the P and Q^ data, then the 
minima of the component functions would lie fairly close together and 
the discontinuities in these functions would all lie to the right hand 
side of the minimum of the composite functiono In these circumstances, 

' = X '̂̂ oci) - "(i) ^ 

in the area of the minimumc 

I 

For the optimum C 

dF dc' 
= 0 

c' = i=l ^ f^i) - '̂ o(i)) 

i.e,, under the conditions stated: above, the optimum value of 
VSMAX is the arithmetic average of the values derived from each event. 
This result could be useful in a direct analytical method for finding the 
optimum parameter values of the model. 

S.l»3 Upper Soil Store 

This component of the Boughton model operates in a similar 
way to the Interception Store except that in the lower range of storage, 
drying out by évapotranspiration is restricted by a function of the 
current stored contents in such a way that the storage depletes in an 
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exponential manner, becoming zero only in infinite time„ 

Once again, the capacity is sought considering this store in 
and given a record of inputs 

and potential évapotranspiration data« 
isolation and given a record of inputs to the store P, overflows Q^, 

As this store never becomes empty, the data from a given event 
can only be used to find the empty portion of the store and the problem 
is similar to that shown in Figo 804o The empty portion of the store 
is equal to P - Q for a given event and the capacity is "o 

USMAX = P - Q^ + US (8c5} 

where US = the unknown contents of the store 
prior to the evento 

USMAX can only be found if US can be expressed in terms of 
USMAX, thus eliminating one of the unknowns from equation 8„5o 

It is possible to express US in terms of USMAX when it is known 
that the store has dried out from the full state until US is less than 
use, the value of storage at the discontinuity in the évapotranspiration 
function (see sub-section 601)» Furthermore, it is possible to identify 
those events for which the storage was less than USC immediately prior 
to the event and whose data may therefore be used to solve for USMAX. 

(i) Expression for US in Terms of USMAX 

When it is known that the store has dried out from the full 
state until US is less than USC, then (referring to equation 6.13) 

US = USC . e-"̂  • ' EVPMAX/USMAX ^̂ ^̂ ^ 
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where m = niimber of days since US was equal to USC, 

Now m = n - n c 

where n = number of days since US was equal to USMAX 
(i.e., since the previous event where Q^ > 0) 

and n = number of days to dry the store from USMAX 
down to USC. 

Now n = - use c PV • E 

where E = average daily potential évapotranspiration, 

Aie^ iicr E « USMAX 
= EVPMAX • 

USMAX - E - USMAX/EVPMAX 
\ PV • E 

USMAX (EVPMAX - E) 
PV • EVPMAX • E 

Substituting for USC and m in equation 8.6, 

USMAX (EVPMAX - E) PV - EVPMAX 
E - USMAX " PV • EVPMAX • E ' USMAX 

^^ " EVPMAX ' ® 
(8.7) 

Thus, given the parameters PV and EVPMAX and finding n and E 
from the data record, it should be possible to substitute the above 
expression for US into equation 8.5, 

USMAX = P - Q^ + US, 
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and solve for USMAX. This will only be valid when it is known that 
US < use and, for the preceding event, Q^ > 0. 

(ii) Events for which US < USC 

In a similar approach to that which was used for the Inter-
ception Store it can be shown that, if for a given event, Q^ > 0 
and P - Q^ < ETv where ET is the total potential évapotranspiration 
loss since the previous rainfall (or since the start of the data 
record), then US, the contents iiranediately prior to the events must 
have been less than USC„ 

Let US^ = contents after previous rainfall 

US = contents immediately prior to event 

US is related to US as follows: 1 ° 

US = US - ET if US > USC and ET à US - USC iS.Sa) 1 0 o o ~ ^ 

US^ < USC otherwise (8.8b] 

For an event satisfying the conditions that Q^ > 0 and P - Q^ < 
ETj equation (8»8a) can be eliminated in the same way as was done for 
the Interception Store, Therefore, under these conditions, US < USC and 
the data from those events which satisfy these conditions may be used to 
solve for USMAX. 

Summarising from (i) and (ii) above, USMAX may be found using 
the data from those events for which 

(a) Q^ > 0 and P - Q < ET and o o 

fb) Q^ > 0 for the preceding evento 
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For each such event, an estimate of USMAX is obtained by writing down 
equation (8„5), substituting for US from equation (807), and solving 
for USMAX„ 

The task of expressing the output from this store as a func-
tion of the input and the capacity, setting up an objective function 
involving the observed and calculated outputs, and graphing this func-
tion against the estimated value of USMAX has not been carried out for 
this store, 

8olo4 Drainage Store 

This component of the ĵ oughton model operates in a similar way 
to the Interception Store except that its contents are depleted by in-
filtration into the Lower Soil Store instead of by evaporationo As the 
potential infiltration rate is a function of the contents of the Lower 
Soil Store, the operation of that store governs the operation of the 
Drainage Storec However, if a record of potential infiltration rates, 
inflow quantities P, and overflows Q^ were available, the analysis for 
this store would be the same as for the Interception Store and the con-
clusions reached for that store would all apply. In particular, the 
objective function would contain discontinuities and parabolic segments0 
The investigation of the DSMAX-SSMAX parameter combination, described in 
sub-section 7o2o2, part (iv), provided numerical support for this con-
clusion, and this was illustrated in Fig» 7o21o 

8„1„5 Lower Soil Store 

This store is more complex in operation than the other storeso 
The inflows and outflows are as shown in Figo 8o7o 
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G - 0.001 X SS 

FIGURE 8.T 
OPERATION OF THE 
LOWER SOIL STORE 

The inflows to the store are restricted by a function of the 
current contents in such a way that the store can never overflow, (The 
infiltration function was described in sub-section 6.2«) The "overflow" 
for this store, then, is that portion of P which cannot enter the store, 
and there is always a positive Q^ for every event, P, regardless of the 
current store contents. 

Once again, the capacity of the store was sought from a record 
of the inflows P, outflows Q^, and potential évapotranspiration data. 
The flows D and G were ignored in order to simplify the problem initially 
It should be possible to modify the basic solution in order to allow for 
these flows. 

For each event, Q is related to P by equation (3.2), 

Q, P - F tanh , 

where F = F(SSMAX, SS, FO, KF) as defined by equation (6„19) 
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As P and Q^ are known for each event, F for each event may be 

found from equation (3,2). Given the parameters FO and KF, the equation 

(6,19) may be written for each event, the unknowns in each case being 

SSMAX and the contents prior to the event, SS. Thus, for any two con-

secutive events, two equations may be written in three unknowns, the 

contents prior to the first and second events, SS and SS , and the 
1 2 

capacity of the store, SSMAX. A third equation is 

SS = SS + (P - Q ) - evapo loss between the eventso 
2 1 o'1 ^ 

This equation cannot be written explicitly as the évapotranspiration 

calculations depend on whether soil moisture is restricting the évapo-

transpiration loss. However, the three equations can be solved in an 

iterative way as follows:-

(i) estimate a value of SSMAX. 

(ii) substitute in equation (6,19) and derive 

corresponding values of SS and SS^. 

(iii) starting from SS , perform the normal model 
1 ! 

évapotranspiration calculations and find SS 

prior to the second event. 
» 

(iv) if the estimate of SSMAX is correct, SS and 

SS should be equal. 
2 

(v) adjust estimate of SSMAX and repeat from (ii). 

(vi) continue iterations until the SSMAX is found 
I 

which gives SS = SS^. 

Allowance could be made for the D and G flows by incorporating 

them into the calculations at (iii) above. 

Each group of two consecutive events in the data record 

could be used to estimate the value of SSMAX in the way outlined 
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above» When a particular event is used as the second event in one group 
and also as the first event in the next group^ the value of SS^ (first 
group) should equal SS^ (second grpup)o However^ due to data errors, 
this would probably not occur. Further work is required to find a 
method for obtaining the best fit estimate of SSMAX which preserves 
consistency between SS valueso 

8.2 COMBINATION OF THE INDIVIDUAL STORES 

In the above analyses of the stores of the Boughton model it 
was assumed that the inflows and outflows for each store were knowno 
When the stores are considered in combination as the Boughton modelj only 
the inflow to the Interception Store and the "outflow" from the Lower 
Soil Store, i^ec, that portion of the outflow from the Drainage Store 
which does not enter the Lower Soil Store, are knownc It is also known 
that the inflow to a particular store equals the outflow from the next 
store aboveo Further work in which the top two stores are analysed in 
combination to express the output as a function of the two capacities 
followed by consideration of the top three stores, and so on, is 
required» 

8.3 AN ELEMENTARY EQUATION FOR THE OUTPUT FROM THE MODEL 

It is possible to write an equation for the output of the 
Boughton model on a day when it is known from the data that sufficient 
rainfall has occurred t o make the Drainage Store overflow and therefore 
to produce runoff from the model« In general the« output from any of 
the stores except the Lower Soil Store is given by 

Q^ - P - (C - S) if P > C - S (8e9a) 

= 0 if P < C = S (8,9b) 
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If the rainfall was insufficient to cause runoff, it is not known which 
alternative applies for any particular store. However, if runoff was 
produced, then all stores must have overflowed and equation (8.9a) applies 
in each case. 

The output is given by equation (3.2), 

P 

Q = Pg - F tanh , 

where P is the outflow from the Drainage Store 

and F = F(SSMAX, SS, FO, KF), as defined by equation (6.19). 
For the Interception Store, outflow = P - (VSMAX - VS) and this outflow 
is the inflow to the Upper Soil Store. 

For the Upper Soil Store, outflow = P - (VSMAX - VS) - (USMAX - US). 

Similarly, the outflow from the Drainage Store is 

P = P - iVSMAX - VS) - (USMAX - US) - (DSMAX - DS). e 

Substituting in equation (3.2), 

Q = P - (VSMAX - VS) - (USMAX - US) - (DSMAX - DS) 

, ,P - (VSMAX - VS) - (USMAX - US) - (DSMAX - DS). - F tanh ( — — p J 

(8.10) 

This equation is valid for each day when the rainfall is sufficient to 
overflow the Drainage Store and produce runoff. If it could be evaluated 
for these days, the monthly modelled runoff quantities could be found 
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simply as the sum of the runoff values on those days^ thereby elimina-
ting the present requirement to operate the model for every day in the 
period of record. 

However, before the equation can be evaluated, it is necessary 
to express the store contents, VS, US, DS and SS (SS appears in the 
function for F) in terms of the store capacities and the other model 
parameters. It should be possible to do this using the evaporation 
data and the number of days since the previous runoff-producing rain-
fall, when the three higher stores would have been filled. Thus, for 
the Interception Store, 

VS = VSMAX - nE if nE < VSMAX (Sdla) 

= 0 if nE > VSMAX (8.11b) 

where n = number of days since the store was filled 
E = average daily evaporation. 

When evaluating Q for a given day and an estimated value of 
VSMAX, equation (8 Ha^) would be adopted if nE (known from the data) was 
less than the estimated value of VSMAX. The second term of the equation 
for Q, equation (8.10), would therefore be 

VSMAX - VS = VSMAX - (VSMAX - nE) = nE, 

Otherwise this term would be 

VSMAX - VS = VSMAX - 0 = VSMAX. 

If equation (8,11a) were used for the Interception Store, then 
it is known that the Upper Soil Store is still full, i.e., US = USMAX« 
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(Evapotranspiration does not commence until the Interception Store has 
been emptiedo) In this case, the third term in equation (8.10) would 
be 

USMAX - US = USMAX - USMAX = 0„ 

Otherwise, when equation (8»lib) was used for the Interception Store, 
two possible alternative expressions for US are 

US = USMAX - (n - n^) • PV • E 

if (n - n^) • PV • E < USMAX - USC 

r 1 . PV • EVPMAX 
= USC . e"^^ " ̂ i " ' USMAX 

if (n - n^) USMAX - USC 

where n^ = time taken to empty the Interception Store 
VSMAX 

n, = time taken to empty the Upper Soil Store 
down to USC 

= (USMAX - USC)/(PV • E), and 
USC = E • USMAX/EVPMAX» 

It is thus seen that there are two alternatives for the second 
term of equation (8.10), depending on the estimated value of VSMAX, and 
three alternatives for the third term, depending on the estimated values 
of VSMAX, USMAX, PV and EVPMAXo The task of writing down similar expre-
ssions for DS and SS would be more complex than for VS and USc However 
if this were accomplished it seems that the task of finding an equation 
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for the output of the model in terms of the data and the model parameters 
would be substantially complete« For a given set of parameter values 
the equations for the daily Q values could be built up by including the 
appropriate terms from the available alternatives according to the 
simple comparative tests described above« The equations could then be 
evaluated and added together to give monthly total modelled outflow or 
event outflow as required« As only simple numerical comparisons are 
required when deciding which of the alternative terms will be included 
in the equations, both the writing and the evaluation of the equations 
could be performed by computer» It should also be possible to build up 
equations for the partial derivatives of the model output with respect 
to each parameter at the same time„ 

The use of such equations to find the output from the model 
is not simply an alternative to the present method of performing the 
daily model calculations through the entire length of the data record« 
The evaluation of the objective function for a given set of parameter 
values would be achieved simply by selecting the appropriate terms for 
the equations an.d substituting the parameter values into the equations« 
This should be faster than the present method« 

8^4 SIGNIFICANT FINDINGS FROM THE ANALYSIS 

While a general equation for the output of the Boughton model 
has not been derived, the procedure suggested above could enable a 
specific equation to be built up for a given set of data on a given 
catchment with a given set of parameter values« It is felt that further 
work along these lines would be very fruitful in the insight it might 
give to the solution of the optimising problem« Some reasons for this 
opinion were given at the start of this section« Three further points 
of interest arising from the above work are summarised below« 



117, 

(i) As the parameter values change during optimisation, they will 
undoubtedly cross the values at which the terms to be included 
in the equations for the daily Q values change to an alternative. 
Discontinuities in the objective function would be expected at 
these values, and the descent direction should be re-defined 
when a discontinuity is crossed» The use of the procedures 
outlined above would enable this to be done» 

(ii) The output from the model is a sum of equations which all have 
the same form as equation (8=10) aboveo This equation may be 
re-arranged as follows:-

Q = P - (VSMAX + USMAX + DSMAX) + (VS + US + DS) 
F tanh " ^^^^^ USMAX + DSMAX) (VS + US + ps)^ 

F 

If the store contents, VS, US and DS, were only weakly dependent 
on the parameters, or if they were usually near zero prior to most 
of the events, then strong interdependence between VSMAX, USMAX 
and DSMAX would be expected. This prompted some of the numerical 
investigations described in sub-section 1.1.2. Other inter-
dependencies may be revealed when the equation is written out in 
full. 

(iii) In writing the expressions for VS, US and DS in the equations for 
Q , it is necessary to make use of the fact that the relevant 
store was full immediately after the previous event. As the 
store contents are not known at the start of the period of 
record, the equation for Q on the first runoff day cannot be 
written. However the equation could be written for the next 
runoff day, and would be quite independent of any starting values 
assumed for VS, US and DS. Therefore, the length of the "warm-up" 
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period, as fax as the upper three stores of the model are con-
cerned , need only be long enough to exclude the first runoff 
day from the objective function and the initial values used for 
the contents of these stores have no effect on the subsequent 
operation of the modelc For the Lower Soil Store however, it 
appears that SS must be expressed in terms of the initial value 
until such time as this store approaches the full state as closely 
as possiblec This state can be identified when the flows D and 
G (see Fig. 8.7) become equal. This can usually only be achieved 
in a period of prolonged rainfall, and such a period may not 
occur for some years after the start of the data record, if at 
all. In such cases it may be necessary to make the initial 
value of SS a parameter of the model and select the length of 
the"warm-up"period to suit the other stores» However, if a 
prolonged period of rainfall (sufficient to fill the Lower Soil 
Store until equilibrium of the D and G flows were achieved) was 
present near the start of the data, the subsequent operation of 
the Lower Soil Store would be independent of the assumed initial 
contents and the"warm-up"period could be selected to exclude 
this first wet period from the objective function. 
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9c COMMENTS ON CHOOSING AND EVALUATING THE OBJECTIVE FUNCTION 

When attempting to model the yield o£ a catchment the devia-
tions between the total observed and total calculated runoff quantities 
within certain time periods provide an appropriate numerical measure of 
the performance of the modelc Choosing the objective function involves 
making decisions on (a) the time periods within which the deviations 
will be calculated and (b) the way in which the deviations will be mani-
pulated before being summed into a single numerical index. This section 
contains comments related to both these decisions^ In addition the 
effect of transforming the total calculated and observed runoff quantities 
before computing the deviations is discussedc 

9.1 THE TIME PERIODS USED IN THE OBJECTIVE FUNCTION 

The deviations may be calculated within fixed time periods such 
as days or monthsc Alternatively, variable periods which encompass the 
individual rainfall-runoff events may be used= 

9ol=l Fixed Time Periods 

When fixed time periods are used errors may be introduced 
because of the time lag between the generation of lunoff on the catch-
ment and its measurement at the outlet-. Most models calculate the 
amount of runoff at the time when it is generated and many do not repro-
duce the travel time to the catchment outlet. 

For example, the Boughton model calculates runoff in lumped 
quantities on days of rainfall only, and no routing procedure is used to 
distribute the calculated runoff and reproduce the shape of the observed 
runoff hydrograph. This must be allowed for when using a fixed time 
period such as a month in the objective function to avoid errors caused 
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by events such as that depicted in Fig= 9.1. 
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FIGURE 9.1 EVENT OVERLAPPING TWO FIXED TIME PERIODS. 

As there is no modelled runoff in July from this event, the 
observed runoff on 1, 2 and 3 July forms a constant component in the 
objective function which cannot be affected in any way by changes in the 
parameter values^ Optimisation will attempt to adjust the parameters 
in such a way that the model is forced to reproduce only the small amount 
of runoff which occurred on 30 June. This unsatisfactory result can be 
avoided simply by regarding the runoff in July as having occurred in 
June when evaluating the objective function. ThuSj in the runoff data 
supplied to the optimising programme, the figure for 30 June should be 
increased by the sum of the quantities on 1, 2 and 3 July and the figure 
for these days given as zero. 

This measure was adopted for the January-February 1971 data 
for Lidsdale No. 2 catchment, where an event occurred late in January 
followed by a second event on 1 February. The two hydrographs were 
separated and the February runoff from the January event was re-allocated 
to the data for 31 January, Mr. M. K, Smith of the Forestry Commission 
pointed out the need for this adjustment. 
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Errors can be introduced when a short time period is used for 
the objective function« For the Boughton model, operated with a daily 
time period, it is tempting to use the daily deviations between observed 
and calculated runoff in the objective function« However, the result 
will be as shown in Fig. 9«2« 

FIGURE 9.2 EFFECT OF USING SHORT TIME PERIODS 

The model will produce no calculated runoff at the times jndi-
cated by the shaded areas of the observed runoff hydrography The daily 
runoff amounts in these areas will therefore form a constant base figure 
in the objective function which is unaffected by changes in the para-
meters» Optimisation will attempt to minimise the deviations between 
the modelled runoff and theuunshaded areas of the observed runoff hydro-
graph, and the model will then be forced to reproduce a smaller amount 
of runoff than the amount actually produced by the catchment» In models 
which use a much shorter time period than one day for calculations, a 
similar effect will probably still be obtained if the same time period 
is used for evaluating the objective function. 

For all models, then, it appears that the time period used for 
evaluating the objective function should be substantially greater than 
that used in the model calculations and, where an event overlaps two 
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time periods, that judicious re-allocation of the observed runoff amounts 
between the two time periods should be made so that the model is not 
forced to produce from a given amount of rainfall a runoff quantity 
which is different from that produced by the catchmento 

9,1.2 Variable Time Periods (Events) 

The time periods may be selected to encompass the individual 
rainfall-runoff events. Intuitively, an objective function which is 
based on the deviations between observed and calculated total runoff 
quantities for each runoff event is preferred to a function which uses 
the deviations between the totals for fixed time periods such as a month« 
This is because several events may occur within the month and the indiv-
idual positive and negative deviations for these events may cancel out 
when the monthly deviation is calculated. However, some results obtained 
in this project indicate that the differences between the sets of para-
meter values which optimise the two different objective functions will 
be small. 

For catchments which rarely have more than one event in any 
month the two objective functions will be practically the same» This 
was so for Middle Ck„ (Site 2) at Pokolbin, as described in Section 5» 
Under these circumstances the optimum parameter values for the two 
objective functions would be expected to be very similare 

For the Lidsdale No. 2 catchment 10 of the 28 months of data 
contain more than one event. When the two-parameter response surfaces 
shown in Figs, 7,13, 7,15, 7,16 and 7,20 (for the objective function 
based on monthly deviations) were prepared for this catchment, as des^r 
cribed in sub-section 7,2,2, the objective function based on event dev-
iations was also evaluated at each node of the grids of parameter values 
to enable the response surfaces for this function to be plotted if 
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requiredo In addition to the grids o£ FO-KF, VSMAX-USMAX, USMAX-PV and 
DSMAX-SSMAX combinations evaluated to plot the above surfaces, the two 
objective functions were also evaluated on a grid of EVPMAX=VSMAX para-
meter valueso For all of the above parameter combinations^ comparison 
of the values of the two objective functions revealed that the two 
response surfaces were of the same shapeo The position of the valley 
floor for event deviations was almost always within one grid spacing 
of the valley floor for monthly deviations and never more than two grid 
spacings away. The grid spacings were of the order of 5 to 10 percent 
of the parameter values at the minimum points of the surfaceso 

It appears that the model cannot be forced into better repro-
duction of the observed runoff quantities simply by adopting event 
deviations instead of monthly deviations in the objective function., 
Where there are compensating errors in the calculated runoff quantities 
for events in the same month the numerical value of the objective func-
tion based on event deviations will simply be higher than for the func-
tion based on monthly deviations, but the minimum value of each function 
will occur at about the same parameter valueso It is probable that ihis 
conclusion would also be true for other models, including those which 
use a shorter time period than one day for calculations. 

There are some practical difficulties in using event deviations 
in the objective function» The start and end of an event may be defined 
in a number of ways and extra programming is required to evaluate ths 
deviations over eventso Because of these difficulties and the findings 
described above there does not appear to be an advantage in using event 
deviations rather than fixed time period deviations in the objective 
function« 
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9.2 FORMING THE OBJECTIVE FUNCTION FROM THE DEVIATIONS 

The deviations, or functions of the deviations, are usually 
added together according to the following general equation:-

F = I 
i=l 

Q - Q 
1 1 

J 

where Q = observed total runoff in time period i, 
i 

Q = calculated " 
1 

II M M M It 

k - number of time periods in the data record, 

and the vertical lines signify the absolute value 
of the enclosed expression. 

Different objective functions and response surfaces are obtained 
by selecting different values for the exponent, j. It is commonly 
asserted that if optimisation is performed for an objective function with 
j = 2 (i.e,, the objective function consists of the sum of squares of 
the deviations) or with some higher value^ then the optimum parameter 
values will bias the model output to give good reproduction of the large 
events and poor reproduction of the small events= Conversely, if j = 
it is asserted that the optimum parameter values will result in poor 
reproduction of the large events and good reproduction of the small 
events. These assertions iii5)ly that there will be significant differences 
between the parameter values which optimise the different objective 
functions. 

In sub-sections 8.Id and 8,1.2 the optimum parameter values 
for tne event in a simple store and for a number of events in the 
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Interception Store were derived analytically using objective functions 
in which j = 2o If these analyses are repeated using objective functions 
in which (a) j = 1, and (b) j = h, then the same answers will be obtained 
for the optimum parameter values as were obtained with j = 2, Figs 
8„2 and 8o6 from the above sub-sections are reproduced here in Figs. 9.3 
and 9o4 with the response surfaces for the other objective functions 
also shown» 

Assuming that the features of the response surfaces shown in 
these figures will also be present in the response surfaces for more 
complicated models, the figures show that:-

(i) Changing the exponent j in the objective function merely changes 
the vertical "scaling" of the response surface without altering 
the position of the minimum points This provides substantial 
evidence that the optimum parameter values and, consequently, 
the reproduction by the model of the large and small events, 
are independent of the particular function of the deviations 
which is minimised» 

(ii)̂  The use of j = % (and probably any value between zero and onej 
gives rise to a much more difficult response surface on which 
to locate the minimum than when j is greater than one» The 
surface is very unsatisfactory because 

(a) it is relatively flat, 
lb) it may have unwanted secondary minima at each-discontinuity -

and 
(c) for satisfactory operation of the descent methods, the sur-

face should be concave upwards in the area of the global 
minimum and the function and its partial derivatives should 
be continuous at the global minimumo This surface does r t 
meet these requirementsc 
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FIGURE 9.3. 

GRAPHS OF DIFFERENT 

OBJECTIVE FUNCTIONS 

FOR SIMPLE STORE 

OF FIG. 8.1. 

FIGURE 9.4. 

GRAPHS OF DIFFERENT OBJECTIVE FUNCTIONS 

THREE EVENTS IN THE INTERCEPTION STORE 

- 9 
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The conclusions above must be qualified by pointing out that, 

for the two stores analysed, the output was a linear function of the 

parameter value« The conclusions may not be valid where the model out-

put is a non-linear function of the parameter, and may thus not apply 

to, say, the infiltration parameters. However it appears that an 

objective function consisting of the sum of squares of the deviations 

is as good as or better than other functionsc 

9o3 TRANSFORMING THE OBSERVED AND CALCULATED FLOWS 

Different objective functions may be formed by transforming 

the observed and calculated total flows within each time period before 

calculating the deviations» For example, the objective function could 

be made up from the deviations between, say, the squares of the observed 

and calculated flows, or the logs of these flows. Using the sum of 

squares of these deviations, the general equation for the objective 

function would be:-

F = I - Q,^ 

where Q = observed total runoff in time period i , 

0 = calculated total runoff 

Ln 11 me period i , and 

k = number of time periods in the data recordó 
Some indication of the effect of using such an objective 

function may be obtained by repeating the analysis in sub-section 8ol.2 

for a number of events in the Interception Store» 
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In the area of the minimum of the objective function. 

I 
Q = P. - C 

where P^ = observed inflow in time period i, and 

t 
C = parameter representing theccapacity of the 

store, and with optimum value of Co 

F = I (Q̂ ^ - (P(i3 -
i=l ^̂ ^ 

Differentiating with respect to C :-

k dF 
dC 

I - (P..^ - c . - c • (-1) 
i=l °(i) ^̂ ^ 

The minimum value of the objective function F occurs at the 
! 

value of C which makes the above expression equal to zero. It seems 
I 

reasonable to expect that this value of C will be a function of j = 
Therefore the optimum value of the parameter depends on the particular 
transformation which is applied to the flows before calculating the 
deviations. 

This conclusion was checked numerically using synthetic data 
for three events. These data contained errors so that a single value 
of C could not satisfy the equation Q = P " C for each event and a 
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best fit estimate of C was required The data are shov,7i in Table 9 
which also shows the values of C which would satisfy the individual 
events: 

TABLE 9.1 
SYNTHETIC TEST DATA 

EVENT INFLOW 
P 

OUTFLOW 
Q 

VALUE OF C CONSISTENT 
WITH P 5- Q DATA 

1 15 5 10 
2 91 79 12 
3 39 31 8 

The best fit estimate of C would be expected to lie between I 
and 12 regardless of the chosen objective function. Tnree different 
objective functions were evaluated and graphed for values of C between 
8 and 12. Tne functions were:-

F1 = i CQf - (P. - C)^)-
i=l " 

F2 = ) (Q - (P̂  - C))^ 
i=l 

F3 = y (Q^ ' (p̂  - C}^}^ 
i = l ^ ^ 

The graphs of these functions are shown in Fig 9.5-, They 
confirm the conclusion reached above that the optimum value of the 
paraiaeter depends on the transformation applied to the observed and 
calculated flows-. Furthemiore, it appears that if the flows are 
squared the optimum parameter value will favour the reproduction of th^ 
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F5 F2 F1 

120,000 . 25. 0.4. 

100,000 20. 0.3. 

80,000 15. 0.2. 

60,000 . 10. 0. 1. 

40,000 _ 5. 0. 

FIGURE 9.5 

GRAPHS OF THREE OBJECTIVE FUNCTIONS 

USING TRANSFORMED FLOW VALUES 



large events while the reproduction of the small events will be favoured 
if a square root transformation is applied» 

In arriving at the above conclusions it was only necessary 
to assume errors in the input and output data. Therefore it is probable 
that the conclusions would apply for both "good" and "poor" rainfall-
runoff models whenever transformations of the observed and calculated 
flows are used in forming the objective function. 

9„4 THE OBJECTIVE FUNCTION USED IN THIS PROJECT 

The objective function chosen for use in this project was the 
sum of squares of the deviations between the monthly observed and calcu-
lated runoff amountso It was thought that some optimisation should be 
attempted using other objective functions but there was not sufficient 
time for this» The studies described in this section indicate that 
optimisation with other objective functions would not have been easiero 
It appears that there would have been no advantage in using much shorter 
time periods such as days for calculating the deviations,, If the square 
roots of the deviations had been used instead of the squares, the respopse 
surface would have been a more difficult one on which to locate the 
global minimumo 

No transformation was applied to the flows before calculaiing 
the deviations„ It appears that transformations may be used to produce 
optimum parameter values which bias the model output towards better 
reproduction of some events,. The significance of such parameter values 
should be the subject of further investigationo 
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10. SUMMARY, RECOMMENDATIONS AND CONCLUSION 

The main aims of the project were:-

(i) to select an appropriate model of the rainfall-
runoff process, 

(ii) to obtain optimum values for the parameters of 
the selected model for about 80% of the 
catchments in A.W,R,C„ Research Project 68/1 
for which records were available, 

(iii) to correlate the optimum parameter values with 
measurable catchment characteristics, and 

(iv) to test these relationships on the remaining 
catchments, 

The Boughton model was selected for use in the project as it was 
already well known and its use of daily data makes it widely applicable. 
The Steepest Descent, Simplex and Davidon methods were used to search for 
the optimum values of the parameters of this model for the four Pokolbin 
catchments and the Lidsdale No, 2 catchment» Many difficulties were 
encountered in these searches and an optimum set of parameter values was 
not found for any of the catchments« Consequently no work under (iii) 
and (iv) above was possible. 

Most of the project time was spent in examining the difficulties 
encountered when searching for the optimum model parameter values, and a 
useful understanding of many of these problems has been achieved. 
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Examination of previously published work on rainfall-runoff models 
indicates that similar problems have been encountered in these studies 
and that optimum parameter values have not generally been foundc It 
is therefore believed that the insights achieved in this project ha'̂ e 
wide applicability. 

Consequently, although the aims of the project were not 
achieved, the findings should be valuable in future studies aimed 
at the determination of optimum parameter values for rainfall-luncff 
models which use daily data and also for those which use data at 
shorter time intervals. The insights obtained and actions taken with 
respect to some features of the model and of the optimisation problem 
are summarised in the following sub-sections. 

10.1 FEATURES OF THE MODEL 

Most of the work discussed in this sub-section would not be 
peculiar to the Boughton model. Many rainfall-runoff models are 
built up with components and functions similar to those used in the 
Boughton model. Some of the difficulties described below could there-
fore be expected when working with other models. 

(i) Evapotranspirarion and Infiltration Functions 

In the original model calculations the daily amxunts for these 
processes were determined by functions of the relevant store contents 
at the start of the day. These calculations occasionally gave unrealistic 
results such as "over-filling" and "over-emptying" of some stoies. Also, 
it was thought that the infiltration amount should be related to the 
capacity of the relevant store as well as to the contents. The 
infiltration function was changed to accomplish this and then both functions 



were regarded as giving instantaneous values for the processes^ the daily 
amounts being found by integration The changes eliminated the unrealistic 
results and also assisted the algebraic analysis of the operation of 
the model 

ill) Initial Store Conjients and '-'Warm-up" Period 

The operation of the model was found to be independent of the 
assumed initial contents of the moisture stores after the first time when 
they overflowed For the Interception, Upper Soil and Drainage Stores this 
occurs during the first rainfall-runoff event where the calculated runoff 
by the model is not zero- For these three stores, then,the "warm-up" 
period need only encompass the first runoff-producing event, regardless of 
the assumed initial store contents The Lower Soil Store only fills during 
prolonged rainfall If suih a period occurs near the start of the data 
record then the "warm-up" pericd should encompass this eventc However, 
if the Lower Soil Store does not approach the full state for some years, it 
appears that the "warm-up" period shculd be selected for the upper three 
scores of the model and that the initial contents of the Lower Soil Store 
should be regarded as another parameter 

(111) Lower Soil Store Depletion Faitor 

A constant value of 0 999 was adopted for the factor throughout 
the work of this project This value was used by Boughton and other 
workers, Application cf the factor removes a relatively large amount of 
water from the model over the period cf the data record. Therefore, small 
changes to the value of the factor could be expected to have a marked 
influence on the amount of runoff calculated by the model and the depletion 
fccic: should be regarded as another model parameter to be optimisede 

'^lifter-action between Parameters and Indifference 
to Parameters 

Inter-acTion between parameters produces long, flat-bottomed 
valleys in the response surface^ and indifference to parameters creates 
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relatively flat areas on the response surfaceo Optimisation of such 
parameters is difficult because of the insensitivity of the objective 
function to large changes in the parameter values» In this project 
the algebraic analysis of the model revealed the possibility of inter-
action between the parameters VSMAX, USMAX and DSMAX, while numerical 
studies confirmed this and revealed inter-actions between VSMAX, 
USMAX and PV, and between VSMAX, USMAX and EVPMAX„ Numerical studies 
also revealed indifference of the objective function to a wide range 
of combinations of FO and KF values» The sets of parameter values 
obtained from the work with Lidsdale No„ 2 catchment indicate that inter-
action between EVPMAX and some other parameters, probably DSMAX and SSMAX, 
is presente Thus it appears that almost all of the parameters of the 
Boughton model take part in inter-actions and that it would be difficult 
to find the optimum values for the parameters» 

(v) Unexpected Parameter Values 

For the Lidsdale No, 2 catchment the near-optimum values 
obtained for some of the parameters indicated that they were not operat-
ing according to their intended function in the model» The values for 
VSMAX and DSMAX were higher than expected while that for USMAX was very 
low. The inconsistent values for USMAX and DSMAX throw doubt on the 
value for PVc Possible reasons for the unexpected values are inter-
action between parameters, the use of a short data record for optimis» 
ation, and the use of a fixed value for the Lower Soil Store depletion 
factor. If such unexpected and inconsistent optimum param^eter values 
were also obtained for other catchments it is most unlikely that the 
parameters could be correlated with measurable catchment characteristics» 
It may also then be necessary to review the structure of the model. 

Item (iii) above is specifically related to the Boughton models 
but the other items could be relevant for other models. 
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10.2 FEATURES OF THE OPTIMISATION PROBLEM 

Findings obtained from the project on these features may be 
further sub-divided into those related to the objective function, to 
the nature of the response surface, and to the implementation of the 
optimising methods. 

10,2.1 Objective Function 

(i) Time Periods 

There appears to be little advantage in using variable time 
periods which encompass individual rainfall-runoff events rather than 
fixed time periods such as months when calculating the deviations 
between the observed and modelled runoff volumes. Results obtained 
in this project indicated that there would only be small differences 
between the optimum parameter values for objective functions based 
on these different types of time periods» This may only be true for 
rainfall-runoff regimes similar to that of eastern New South Wales. 
The time period used in the objective function should be considerably 
longer than that used in the model calculations. For models which do 
not contain a runoff-routing procedure, runoff which was caused by 
rainfall in a preceding time period should be regarded as having 
occurred in that time period when calculating the deviations between 
the observed and modelled runoff„ 

(ii) The Form of the Objective Function 

The objective function is usually computed as the sum of the 
absolute values of the deviations raised to some power. It appears 
that the optimum parameter values do not depend on the power to which 
the deviations are raised, i,e„,the minimum values of the objective 
functions formed by using different powers all occur at the same 
parameter values. However, if the power is 0,5 (i.e. the objective 
function consists of the sum of square roots of the absolute values of 
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the deviations), and probably any value between zero and one, then the 

response surface will be a difficult one on which to locate the global 

minimum as it will be relatively flat and may contain a larger nuirber 

of secondary minima. It is preferable to use a power greater than one^ 

and an objective function consisting of the sum of squares of the 

deviations appears to be as good a? iny other. 

It is possible to transform the obser/ed and modelled runoff 

volumes before calculating the deviations The optimum parameter 

values will then be a function of the transformatione If the flows are 

raised to a power greater than one then the optimum parameter values 

will give better reproduction of the large events^ while use of a 

power between zero and one will tend to favour the small events 

The remarks above apply for both "good" and "poor" models 

of the rainfall-runoff process^ as they are only based on the assumption 

that there will be errors in the rainfall and runoff data 

10o2.2 The Nature of the Response Surface 

(i) Discontinuities 

Theoretical and numerical results obtained from the work 

indicate that discontinuities are present in the response surface for 

the Boughton model and are probably also present in the response 

surfaces for other models.- Discontinuities have an adverse effect on 

the performance of the descent methods of optimisation. Errors occur 

in the definition of the steepest descent direction from points which 

lie close to a discontinuity. In the conjugate gradient methods 

information about the response surface is gained at e«ch iteration 

and this is used in defining the next search direction. When a 

discontinuity is crossed the surface charges abruptly bvt "he ne^t 

search direction is still defined using the information gained about 



138. 

the old surfaceo The direct search optimisation methods, such as the 
Simplex method, do not appear to be adversely affected by the presence 
of discontinuities in the response surface» 

(ii) Flat-bottomed ValleysScaling the Parameters 

As mentioned previously, inter-dependence between the model 
parameters creates long, flat-bottomed valleys in the response surface 
which present difficulties to all optimisation methods. Large 
differences in the magnitudes of the parameter values also create a 
difficult response surface. Scaling of the parameters, i.e., optimising 
a transformed problem in which some of the parameters have been multiplied 
by chosen factors, may be used to obtain a surface in which the elongation 
of the contours has been reduced. However, the most satisfactory scaling 
for a particular problem is not obvious, and it may be necessary to 
experiment with the scaling during the course of the optimisation. 

10,2o5 The Optimising Methods 

(i) Apparent Optimum Points 

Many times when using the Simplex method in this project, the 
simplex of points on the response surface contracted until the points were 
almost coincident. This is normally interpreted as convergence to a local 
minimum point on the response surface. Similarly, the Descent methods 
often reached a state where practically no movement was made in the 
descent direction at each iteration and it appeared that a minimum had 
been approached. Further movement from such points was then found to be 
possible using a different optimising method,by numerical studies, or 
by sub-optimisation with only some of the parameters varying. Points 
obtained after apparent convergence of the optimising methods should not 
therefore be regarded as optima until attempts to further the optimisation 
have been made by the above procedures. 
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(ii) Defining the Steepest Descent Direction at a point 
on the Response Surface 

At each iteration of most of the Descent methods of optimisation, 
the steepest descent direction must be found from the current point on 
the response surfaceo This is done by finding the partial derivatives of 
the objective function with respect to each of the parameters When there 
are no explicit equations for the partial derivatives in terms of the 
model parameters J they must be found by numerical methods. This was a 
troublesome aspect of the work of this projecto Five different methods 
were used and it is thought that Method 5, which was used for much of 
the work with Lidsdale No. 2 catchment, is the only one which would 
define the steepest descent direction accurately in many situations, The 
method assumes that cross-sections of the response surface in each 
co-ordinate direction may be approximated by parabolasc Some results from 
the algebraic analysis carried out in the project indicate that the 
assumption could be valid for at least some of the parameters when using 
the same objective function as was used in this project, The assumpt:.Dn 
may not be valid when other objective functions are used„ Also, Method 5 
would be inaccurate if a discontinuity in the response surface was close 
to the point at which the steepest descent direction was being found, 

(iii) The Quadratic Assumption in ^le Conjugate Diiection 
Methods of Optimisation 

The Conjugate Direction methods assume that, in the area of the 
minimum, the response surface may be approximated by a positive-definite 
quadratic form. If this assumption is true then the ultimate rate of 
convergence achieved by the methods should be good. The algebraic 
analysis indicated that the assumption may be valid for the Boughton 
model when using the objective function used in this projecto If the 
assumption is not valid for areas away from the minimum, the methods 
should still be satisfactoryc It is considered that the difficulty 
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experienced with the Davidon method in this project and the fact that 
the method did not locate any local minima were due mainly to the 
presence of discontinuities, and the inadequacies in the methods for 
finding the steepest descent directions rather than to the response 
surface not being of quadratic form, 

(iv) The Difficulty of the Optimisation Problem and 
the Recommended Method 

The problem of finding the optimum values for the parameters 
of rainfall-runoff models is difficult, as 

(a) at this time, it is not possible to express 
the objective function or its partial 
derivatives as explicit functions of the 
model parameters, and 

(b) there are discontinuities in the objective 
function and inter-dependencies between 
parameters« 

These factors are not all present in many other optimisation problems. 
In verbal communication, workers in other fields (Electrical and 
Chemical Engineering) have considered this problem as difficult compared 
to those with which they were experiencedo 

The Simplex and Davidon methods were used for most of the 
optimisation work in this project» They are regarded by Kowalik and 
Osborne as the best of the Direct Search and Descent methods, respectively= 
Both methods appear to be adversely affected by inter-dependence between 
parameters, while the Davidon method appears to be more vulnerable 
to the effect of discontinuities. The Simplex method generally appeared 
to be more efficient and is recommended as the better method provided 
that contraction of the simplex is not regarded as convergence to 
a local minimumc 
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10,5 PERFORMANCE OF THE MODEL WITH NEAR-OPTIMUM PARAMETER VALUES 

A number of sets of parameter values which appear to be 
near-optimum were found for the Lidsdale NOo 2 catchmento The performance 
of the model W3.th the two most widely separated sets of values was 
investigated; The period of data was the same as that used for 
optimisation with the addition of a subsequent year of additional data» 
There were only minor differences between the outputs from the model with 
the different sets of parameters. The model gave good reproduction of the 
observed catchment runoff during the period which was used for optimisation. 
Although the model produced zero runoff for many of the small events ̂  the 
large events, which form the bulk of the catchment yield, were well 
reproducedc However the model output compares poorly with the observed 
catchment output in the additional one-year period» There are large errors 
in both under - and over - estimation of individual events by the model» 
This result indicates that the model may not be satisfactory for the 
synthesis of long periods of runoff data» 

The fact that the model gave similar outputs with different sets 
of parameter values indicates that difficulty would be experienced in 
attempting to correlate the parameter values with catchment characteristics^ 
while the poor reproduction by the model of the extra one-year period of 
data underlines the need to test the validity of a model and its parameter 
values on a period of data which was net used for optimisationc 

10.4 ALGEBRAIC ANALYSIS 

The algebraic analysis which was commenced in this project 
and is described in Section 8 can only be regarded as an elementary 
beginning to a full analysis of the operation of the model. However, it 
has- already been beneficial in indicating the likelihood of parameter 
iiTter-dependen^e and some of the features to be expected in the response 



surface^ e . g . , discontinuities^ It has also enabled a comparison of 
the different response surfaces which may be obtained with different 
objective functions to be made» 

It is thought that this type of analysis has not been 
attempted before and that i ts continuation could lead to the following 
important results : -

( i ) a fu l l understanding of the structure and 
operation of the model, 

( i i ) indications of inter-dependencies between parameters 
and of indifference to some ranges of parameter values, 

UiiJ i^nowledge of the location of discontinuities on 
the response surface, 

(iv) an explicit equation for the value of the objective 
function in terms of the data and of the model 
parameters and, by differentiating this equation, 
explic it equations for the partial derivatives of the 
objective function with respect to each parameter, and 

(v) ultimately, a direct analytical method for finding 
the optimum parameter valueso 

Continuation of this analysis is therefore considered to be of 
much importance in future research on rainfal l -runoff modelso 

10.5 DATA 

The following points relating to data should be considered 
in future work« 
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100501 Unrepresentative Data 

For many catchments of the size used in this project, the 
nearest rain gauge may be some miles away, while others may only have 
one gauge on the catchmento Therefore for many events the rainfall 
data from these gauges may be unrepresentative of the average 
catchment rainfall, and such data should not be used for optimisation» 
Two catchments which were under consideration for use in this project 
were eliminated when it was found that the runoff quantities for many 
events were greater than the amounts of rain which fell onto the 
catchment according to the rainfall data, 

100502 Evaporation Data 

The bulk of the precipitation onto catchments is removed 
again by évapotranspirationo It seems logical that this phase of the 
rainfall-runoff process must be modelled accurately to achieve good 
reproduction of the runoff quantities« To achieve this, estimates of 
potential evaporation and évapotranspiration are requiredj preferably 
for the same time intervals as those used in the model calculationsc 
Ideally these estimates are obtained by energy balance methods using 
climatic data. However, such data would rarely be available for 
catchments of less than ten square miles« Alternatively, observations 
of pan evaporation may be used, and these may be available for a 
greater number of catchments« Further optimisation woik with small 
rural catchments should be restricted to those for which good evapor-
ation data are available« 

10«5.3 Soil Moisture Data 

In this project soil moisture data were used to check the 
variation of the contents of the soil moisture stores in the model and 
to revise the estimate of the initial contents of the Lower Soil Store 
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intensive study of these data could lead to useful modifications 
of the modelo At present such data are only available for the 
Lidsdale catchments NoSo 2 and 6, and it would be useful to obtain 
similar data on other catchments. For the above two catchments, 
there are discrepancies and inconsistencies between the data records 
of rainfall, evaporation, runoff and soil moistureo These are most 
probably due to unrepresentativeness in both the rainfall and soil 
moisture data records« 

10o5.4 Longer Data Records 

The length of the Pokolbin data records used for optimisation 
was four years and seven months including two "warm-up" periods of 
six months each« For Lidsdale No» 2 catchment the length of the 
data record was two years and four months, including one "warm-up" 
period of six months» The tendency of some parameters to adopt 
unrealistic values during optimisation may be reduced if a much 
longer data record is usedo Optimisation of the model parameter values 
should be attempted for a catchment having concurrent rainfall, evapor-
ation and runoff data covering a period of, say, ten years or more« 

10o5„5 Effect of Data Errors 

It is thought that errors in the rainfall, evaporation and 
runoff data induce alterations in the shape of the response surface 
and move the position of its global minimum, these changes being 
relative to the surface which would be obtained with error-free data» 
The new surface would not necessarily be a more difficult one on 
which to search for the minimum, but the optimum parameter values 
for this surface would be different to those which would be obtained 
with error-free data (the true or correct values), and these true 
values could never be found. These conclusions are thought to be 
^alid for the response surface of all rainfall-runoff models, and are 
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supported by the results of Ibbitt (1972) and Dawdy and Bergmann (1969). 

Ibbitt, using synthetic data, found that when errors were 
present in the rainfall, evaporation or runoff data, the optimising 
method led to parameter values which were different to those obtained 
using error-free data» Dawdy and Bergmann found that increasing errors 
in rainfall data led to greater differences in the values of the model 
parameters« The errors used in these studies were of the same order of 
magnitude as for the errors likely to be present in even good quality 
hydrologie data, and were not simply gross errors» 

For any particular rainfall=runoff model, then, it is probable 
that data errors could lead to errors in the parameter values which 
are large enough to prevent correlation of these values with catchment 
characteristics. As errors are inevitable in hydrologie data, this 
problem is of practical importance and the effect of data errors requires 
further research. 

10.6 RECOMMENDATIONS 

The following practical recommendations are made for future work 
with rainfall-runoff models 

(i) Correlation of parameter values with catchment 
characteristics should not be attempted until 
true optimum values have been obtained. 

(ii) Optimisation should only be attempted for 
catchments which have a long period of concurrent 
rainfall, evaporation and runoff data. For catch-
ments in eastern New South Wales, the length of 
data record should preferably be about ten years 
or more. The evaporation data should preferably be 
at the same time intervals as used for the model 
calculations, and not at longer than monthly intervals. 
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(iii) A number of different starting points and 
more than one optimising method should be 
used in the search for optimum parameter 
values for any particular catchmentc The 
Simplex and Davidon optimising methods are 
satisfactory, the Simplex method being perhaps 
more efficient in the early stages of 
optimisation. New methods which may have been 
developed recently should also be investigated» 

(iv) A set of parameter values should not be accepted 
as the optimum values until a number of attempts 
to make further improvements to the objective 
function have been made, e„g„ by using another 
optimising method starting from this set of 
parameter values, or by numerical trials around 
the values, 

(v) The effect of scaling the parameters on the 
efficiency of optimisation needs further research, 
A strategy for imposing the most efficient scaling 
on the parameters for optimisation is required. 
Until this is obtained, frequent experimentation 
with the scaling during optimisation may be 
beneficial, 

(vi) Objective functions in which the deviations 
between the observed and calculated runoff 
quantities are raised to a power greater than one 
are preferred to those where the power lies between 
zero and one. The latter type of objective function 
gives a response surface which has the same location 
of the global minimum, but which is relatively flat 
and may contain a larger number of secondary minima. 
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(vii) The use of fixed time periods in the objective 
function instead of individual events appears 
to be satisfactory when there is only a small 
number of events (say 1 to 3) per time periodo 
The time period should be substantially 
longer than that used for the model calculations„ 

(viii)More research is required into the effect of 
data errors on the optimum parameter values. 

(ix) The algebraic analysis of the model which was 
commenced in this project should be pursued 
with the aim of writing an explicit equation for 
the model output in terms of the data and the 
parameters» 

(x) For the top three stores of the Boughton model, 
the "warm-up" period need only be long enough 
to include the first event which fills these 
stores regardless of their initial contents. If 
the Lower Soil Store approaches the full state 
during a prolonged wet period early in the data 
record5 then the "warm-up" period should include 
this wet period» Otherwise, the "warm-up" 
period should be chosen with regard ta the tcp 
three stores and the initial contents uf ^be 
Lower Soil Store regarded as a parameterc The 
"warm-up" period for other models should be 
selected on similar considerations. 

(xi) For the Boughton model, the Lower Soil Store 
depletion factor should be regarded as another 
parameter of the mode:: and an optimum value 5hou; j 
be sought for this factoro 
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10.7 CONCLUSION 

Rainfall-runoff models are potentially very useful hydrological 
tools= However, before they can be of general usefulness it is necessary 
that (a) the optimum values of the model parameters should be closely 
related to measurable physical properties of catchments, and (b) the 
accuracy with which a given model can synthesise the observed runoff 
from a catchment should be known. It is unlikely that any model can 
meet these conditions at this stage. Problems exist with regard to the 
models themselves, the methods used to search for the optimum values 
of their parameters, and their synthesis of catchment runoff in periods 
which were not used for optimisation. Those models which use short time 
periods (6 or 15 minSo) in their calculations would be expected to give 
the best reproduction of observed runoff quantities, but these models 
are still subject to the problems mentioned above and their more 
exacting data requirements lessen their widespread usefulnesse 

The complexities involved in deriving the optimum values for 
the parameters of rainfall-runoff models for a large number of catch-
ments and then correlating these values with physical catchment 
characteristics do not appear to have been fully appreciated in the past» 
Many of these difficulties have been identified in the work of this 
project and an understanding of some of them has been gainedc Further 
work along these lines will be necessary, leading ultimately to the 
derivation of- truly optimum parameter values for a given model and a 
number of catchments. During this time, existing models may be 
modified to incorporate recent findings in such fields as infiltration 
and the movement of water in the unsaturated soil zone. Only after 
this work will it be possible to make a judgement on the potential 
usefulness of these models. 
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APPENDIX Al, DESCRIPTIONS OF OPTIMISING METHODS 

Aid THE SIMPLEX METHOD OF NELDER AND MEAD 

When optimising a function of n parameters, a simplex of (n + 1) 
sets of parameter values is used. Each set of parameter values is referred 
to as a point. In each iteration, the method attempts to generate a new 
point which has a lower value of the objective function than at the two 
highest points and this new point replaces the highest point in the 
simplex. The features of the method will be illustrated with reference 
to a function of two parameters» The simplex for such a problem con-
sists of three points» 

Al.1,1 The Initial Simplex 

As the simplex is not necessarily regular at any iteration of 
the method there is no need for the simplex which is used at the start 
of the search to be regular» Usually, one point of the initial simplex 
is a set of estimates of the optimum parameter values» In this project 
the end point from a search by another method, or a set of parameter 
values estimated from physical considerations, was used as one point of 
the initial simplex» The other n points were generated by setting each 
parameter in turn to zero» (For some parameters a small positive value 
was used to avoid zerodivide errors.) For a two parameter problem, with 
initial parameter estimates of x' and x^, the starting simplex formed in 
this way would consist of the points 

f I I ' 
(x , X ), (0 , X ), and (x ,0) 

1 2 2 1 

and would be as shown in Fig, Al»!» 

After choosing the initial simplex, the objective function is 
evaluated at each point and the points with the highest, second highest 
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and lowest values of the objective function are identified. 

(0, x') 
2 

• fx', X' 
1 / 

(x' , 0 
i 

FIGURE A1.1 
TYPICAL IXITIAL SI'!' I.HX 

Al.l„2 Reflection 

Reflection is the basic step which is made at each iteration 

of the methodo The highest point of the simplex is reflected around 

the centroid.of all the other points and the objective function is 

evaluated at the reflected point (see Fig. A1.2). 

P* ^ 

h _ - FIGURh Al.. 
REFLFCTIOX 
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Denoting the highest point by P̂ ,̂ the centroid of the other points by P 
and the reflected point by P*, the co-ordinates of P* are given by 

P* = P + GtfP - P^) n 

where a, known as the reflection coefficient, is a positive constant 
which determines the distance F P* relative to the distance P, T . The h 
value 1 was used for a in this project. 

Depending on the value of the objective function at the reflec-
ted point P*, one of three alternative branches is taken to complete the 
iteration, 

(i) If the objective function at P* is lower than at all other 
points of the simplex then an expansion step is attempted, 

(ii) If the objective function at P* is higher than at the second 
highest point of the simplex then a contraction step is taken, 

(iii) When the objective function at P* lies between the values at 
the lowest and second highest points of the simplex the next 
iteration is commenced using a new simplex consisting of the 
point P* and all of the points in the old simplex except P̂ ,̂ 

A1 „1o 3 Expansion 

When the objective function value at P* is lower than atr.all 
other points of the simplex it is probable that the direction P* 
is favourable for further improvement, P* is then expanded to P** (see 
Figc Alo3) by the equation 

p** = p" + y(P* - P) 
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where y, the expansion coefficient, is greater than unity and is the ratio 
of the distance F P** to F P*. The value 2 was used for y in this project. 

FIGURE A1.3 
EXPANSION 

If the value of the objective function at P** is also lower than at all 
other points of the simplex then P̂ ^ is replaced by P** and a new itera-
tion is commencedo 

If the objective function at P** is higher than at the lowest 
point of the simplex, (a failed expansion) then P̂ ^ is replaced by P* and 
a new iteration is commenced. 

Alol«4 Contraction 

When the objective function value at P* is higher than at the 
second highest point of the simplex there is no advantage in replacing 
p^ by P* as a reflection back to P̂ ^ will occur in the next iteration« 
In these circumstances it is probable that the lower areas of the 
response surface lie within the area of the current simplex and that 
contraction of the simplex may be favourable. 

A new P is defined as the lower of either the old P^ or P* " h and the contracted point P** (see Fig, A1.4) is then found by 
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P** = P - 3(P - P^) 
n 

where 3, the contraction coefficient, lies between 0 and 1 and determines 

the ratio of the distance P** F to P^ In this project the value 0 .5 

was used for 3. 

FIGURE A1 . 4 
new Pu ' CONTRACTION 

I f the objective function at P** is lower than at P, then P, 
h n 

is replaced by P** and a new iteration is commenced 

I f the objective function at P** is higher than at P^ (a failed 

contraction) then all points of the simplex are moved half-way towards 

the lowest point and a new iteration is commenced« 

The expansion and contraction moves in the method of Nelder 

and Mead enable the simplex to adapt itself to the local shape of the 

response surface. As the minimum is approached the simplex contracts 

until there are only small differences between the points» 
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AloloS Behaviour of the Method in a Valley 

In this project it was found that, whenever the simplex con-
tracted until the points were almost coincident, further improvement of 
the objective function could be obtained by some other search techniqueo 
The points reached by the Simplex method were therefore not the required 
optima. 

Whenever a simplex spans a steep-sided valley in the response 
surface, it is probable that reflection of the highest point produces a 
point which lies high up on the opposite side of the valley» A contrac-
tion move would then take placeo As the range of downhill directions 
(along the valley) is very small compared to the range of uphill direc-
tions (across the valley), most iterations would result in a contraction 
of the simplex, which would then become so small that, when an expansion 
move down the valley did occur, the improvement would be very slight., 

In this project it was found that the early iterations of the 
Simplex method contained a number of expansion moves but that the later 
iterations contained few expansion moves and a large number of contrac-
tion moveso 

It therefore appears that the Simplex method led to points 
which lay on the floors of valleys in the response surfaces and was 
inefficient in moving along these valleys^ However it should be noted 
that such valleys provide difficulties for all optimising methods, and 
that, in general5 the Simplex method achieved more rapid initial 
reductions in the objective function than the other methods used in this 
proj ecto 
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Alo2 THE DAVIDON METHOD 

This method is one of a number based on the use of conjugate 
directions« Proposed originally by Davidon (1959), the method was 
presented definitively by Fletcher and Powell (1964) and is also 
described by Kowalik and Osborne (1968)„ These descriptions assume a 
knowledge of matrix notation for vectors and functions and of matrix 
manipulations. In this appendix the basis of the method is explained 
in more general terms., The method assumes that the response surface 
may be approximated by a quadratic form in the area of the minimum, 
although the equation of the quadratic function which best approximates 
the objective function is not required explicitly. The usual method of 
finding the minimum of a quadratic form is not applicable to finding 
the minimum of more general functions such as the objective function 
used in this project. Conjugate directions are the basis of a method 
which may be used to find the minimum of a quadratic form and which may 
also be extended to search for the minimum of more general functions. 
In the remainder of this appendix, the usual method of finding the 
minimum of a quadratic form is first considered. Conjugate directions 
are then defined and their use in minimising a quadratic form is 
explained» Finally the use of conjugate direction methods to search 
for the minimum of more general functions is described, 

Al.2,1 The Minimum of a Quadratic Form 

The general equation for a quadratic form in n variables, 
x^, x^, ,,, x^ ,,, x^, is:-

F = a x^ + 2a x x +2a x x + „,,, + 2a ̂ xx + b x + c 
1 1 1 12 1 2 13 1 3 1 ^ 1 1 1 

a x^ + 2a X X +,,,,+ 2a x x + b x + c 
22 2 23 2 3 2 « 2 2 2 2 

a x^ + b X + c nn n n n n 
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In particularJ for n = 1, 

F = ax^ + bx + c 

which is the general equation for a parabola» 

For n = 2, the general equation is 

F = a x^ + 2a x x + b x + c 
11 1 12 1 2 1 1 1 

+ a x^ + b x + c 
22 2 2 2 2 

while particular examples are 

F = xj + x^ (a paraboloid of revolution) 

and F = x^ - x^ (a hyperbolic paraboloid) 

The extreme values (maxima and minima) of quadratic forms may 
be either finite or infinite. Only those which have a finite minimum 
value (but which may have an infinite maximum value) would reasonably 
approximate the objective function used in this project. The location 
of the minimum value of such a quadratic form may be found by the 
usual methods of calculus» The function is differentiated with respect 
to each of the variables x^, i = 1, 2, »»» n. The partial derivatives 
are set equal to zero, giving n linear equations which are solved 
simultaneously for the required values of the variables x.„ 

In matrix notation the general equation for the quadratic form 
is 

T T F - X̂  A X + b X + c 
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where X is a column vector whose elements are the x.'s, ioec, 
% ' 

X = X 
1 

X 
2 

X n 

T X is the row vector obtained by transposing X 

A is an n X n matrix which contains the a..'s and which is 
symmetrical (i.e», â .̂  = » If A. is also positive-
definite, then the form will have a finite minimum value o 

T b is a row vector containing the b.'s« 'ly 

c is a constant. 

The inverse of the matrix A, ioO», the matrix , is used 
when solving the n simultaneous equations to locate the minimum of the 
quadratic form» 

This method is obviously not suitable for finding the minimum 
of functions such as the objective function used in this project, as the 
equation of the function is unknown« 

Al„2„2 Conjugate Directions 

Conjugate directions are the basis of an alternative method 
for locating the minimum of a quadratic form« The method does not 
require the inverse matrix A'^ to be computed, and may be extended to 
more general functions» 

A direction in n dimensional space may be represented by a 



162 

vector having components v , v .,» v^ in the co-ordinate directions x^, 
X X . In matrix notation, the direction may be represented by the 
2 n 
column vector 

V = 

V n 

Two directions U and V are said to be conjugate with respect 
to the positive-definite matrix A if 

T 
U A V = 0 

It can be shown that:-

(i) there exists at least one set of n independent vectors 
mutually conjugate with respect to A, 

(ii) it is possible to generate a set of n conjugate direc-
tions from a given starting direction, and 

(iii) the minimum of a quadratic form with positive-definite 
matrix A may be found from any given starting point by 
a descent search in which each of n conjugate directions 
is used as a descent direction only once. The order in 
which these directions is used is immaterial. 

The matrix A of the quadratic form is used in generating the 
n conjugate directions. In the descent search, the minimum must be found 
along each direction and this point used as the starting point for the 
search along the next direction. 
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Alo2.3 Optimising Methods Based on Conjugate Directions 

For general functions, no A matrix is available to generate 
the search directions. Optimising methods for general functions are 
required to generate search directions using such quantities as function 
values and partial derivatives at various points on the response sur-
face» Several methods exist which define search directions in this way 
and which were designed to produce conjugate search directions when 
used for the minimisation of a quadratic form. They are therefore 
able to minimise a quadratic form in n iterations without using explicitly 
the matrix A of the quadratic form» 

These methods may be used to search for the minimum of func-
tions such as the objective function used in this project. Assuming 
that the function may be approximated by a quadratic form in the area 
of the minimum, the methods would be expected to have a fast rate of 
ultimate convergence as they only require a finite number of iterations [YL) 
to minimise a quadratic form. The methods are described as being 
quadratically convergent and the Davidon method is one such méthode 

In the Davidon method a matrix H, an approximation of the in-
verse matrix A"^, is used in conjunction with the steepest descent dir-
ection at the current point to define the search direction= After loca-
ting the minimum along this direction the H matrix is revised before 
proceeding to the next iteration» For the first iteration the unit 
matrix 

I = 1 0 0 
0 1 0 
0 0 1 
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is used for H and the first search direction used is the steepest descent 
direction from the starting point. As the minimum is approached^ H 
approaches A"^ where A is the matrix of the quadratic form which approx-
imates the objective function. 
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APPENDIX A2. THE STEEPEST DESCENT DIRECTION AT A POINT 
ON THE RESPONSE SURFACE AND THE SCALING 

OF THE PARAMETERS 

The Descent Methods of optimisation require the steepest descent 
direction at the current point on the response surface to be found at 
the start of each iteration» This direction is simply the opposite of 
the steepest ascent or gradient direction and is sometimes referred to 
as the negative gradient directiono 

Let F be a function of n parameters x , x „00 x^, ice., 

F = x^, ... 

At any point P defined by a particular set of parameter values 
the gradient direction, denoted by grad F, is given by 

, ̂  . 9F . 8F . 3F . 8F grad F = 1 _ + 1 + . _ 1 _ . + 1 1 8x 0 8x ° ° ° ^ 8X7 ° ° ° n 9x 1 2 ^ ^ 

where i, is the unit vector in the direction of the x, axis k k 

This may be expressed more simply as 

grad F = VF 

where the operator V e i i ^ 
^ 1 2 2 n 

The gradient vector is therefore the sum of n component vectors 
The kth component vector is in the direction of the x^ axis and its 
magnitude .is equal to the partial derivative of F with respect to x^, 
i.e„, the slope of F in the x^ direction. 
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A movement away from P in the gradient direction is therefore 
made by adjusting the parameters simultaneously, the individual adjust-
ments being in proportion to the corresponding partial derivatives. 

The steepest descent direction is simply -VF and a movement 
away from P in this direction is made by making adjustments to each 
parameter which are equal in magnitude but opposite in sign to those 
required for a movement in the gradient direction» 

The steepest descent direction at any point is therefore found 
by evaluating the partial derivatives of the objective function with 
respect to each of the parameters and then multiplying them by -1. For 
the Boughton model there are no explicit equations for the objective 
function or its derivatives in terms of the parameter values, so the 
slopes in the x^ directions have to be found by numerical methods. Five 
different methods were used during the course of this project. The 
methods, their inadequacies, and the improvements which were made are 
described below» For all methods it is assumed that the value of the 
objective function for the current parameter values is already known. 

A2»1 METHOD 1 

This method is only correct in special circumstances, as shown 
later. It is described here because it was used in the optimisation for 
the Pokolbin catchments, in the early work of this project by Mr. F. 
Bell, and by Boughton (1968). The steps in the method are:-

(i) for each parameter in turn, increase the value of the 
parameter by a fixed percentage, operate the model to 
find the resulting change in the objective function, 
and then return the parameter to its original value. 
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One percent increases were used in this project and 
Boughton (1968) used 10% increases. 

(ii) for any parameter which caused the objective function 
to increase when its value was increased, assume that 
the change in the objective function will be of equal 
magnitude but opposite sign if that parameter is 
decreased by the same percentage» 

(iii) calculate the adjustments to be made simultaneously to 
all of the parameter values in order to take a step in 
the steepest descent directiono For the parameter 
which caused the greatest change (+ve or -ve) in the 
objective function, the adjustment is equal to the 
increment used in step (i)o For any other parameter 
the adjustment is a fraction of the increment used for 
that parameter in step (i), in proportion to the smaller 
change in the objective function. The adjustment for 
each parameter is in the direction necessary to reduce 
the objective function^ 

In algebraic terms, the kth. component of the steepest descent 
vector is defined as 

.AF^) 
ajsCAF ) * 100 ' ^k ^ max 

where AF^ is the change in the objective function caused by a 
y percent increase in the parameter AF^ is +ve if the 
objective function increased and vice versa» 
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AF is the AF, which has the greatest magnitude o max K 

This method could not define the steepest descent direction 
correctly in some situations even if it were theoretically correct» 
Figo A2ol illustrates the method for a two-parameter response surface, 
and Figo A2„2 illustrates a situation where the direction defined by the 
method is incorrect« The error is due to the assumption that a 1% 
decrease in the value of a parameter will induce a change in the object-
ive function of equal magnitude but opposite sign to the change caused 
by a 1% increase in the parameter value. Whenever it is found that the 
objective function is increased by a 1% increase in a parameter value 
it is necessary to also find the effect of a decrease in the parameter 
value and J if this causes the objective function to increase as well, 
the adjustment for that parameter must then be set to zerOo Figo A2o3 
illustrates a situation where 1% increases and decreases to the para-
meter values are too coarse to find the descent direction» It would be 
necessary to use smaller parameter changes to find the required direc-
tion at this point and prevent the search from stopping prematurely» 
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A2,2 METHOD 2 

This method was developed by modifying Method 1 to overcome 
the difficulties described above. The steps are:-

(i) as for Method 1, iceo, for each parameter in turn, 
increase the value of the parameter by a fixed per-
centage, operate the model to find the resulting 
change in the objective function, and then return 
the parameter to its original valueo 

(ii) for each parameter which caused the objective function 
to increase at step (i), reduce the value of the para-
meter by the same fixed percentage, operate the model 
to find the_resulting change in the objective function, 
and then return the parameter to its original value» 

(iii) calculate the adjustments to be made simultaneously 
to all of the parameter values in order to take a step 
in the steepest descent direction« If any parameter 
caused the objective function to increase at both of 
the steps (i) and (ii) the adjustment for that para-
meter is set to zerOo The adjustments for the other 
parameters are calculated in the same way as for 
Method lo 

(iv) if the adjustments are set to zero for all of the 
parameters, repeat steps (i) to (iii) using smaller 
percentage changes at steps (i) and (ii), and if 
necessary repeat the steps again with still smaller 
changes c 



In this project, 1% parameter changes were always used in the 
first attempt to find the descent direction at a given point. If 1% 
changes were too coarse, changes were tried, then 1/8 and 1/16 
percent changes. If a descent direction could not be defined using 
1/16% parameter changes the search was abandoned. 

In a general review of the optimising methods and their imple-
mentation which was undertaken after the work with the Pokolbin catchments 
it was found that Methods 1 and 2 are theoretically in error because 
they do not comply with the definition of the steepest descent direction 
given at the start of this appendix. By reference to the simple response 
surface shown in Fig. A2.4, the methods can be shown to be erroneous in 
all but special circumstances. 

FIGURH A2.4 
ILLUSTRATION THAT 1̂ETH0DS 
1 AND 2 ARE THEORETICALLY 

IN ERROR 

The steepest descent direction at all points on this surface is at 45* 
to the X axis. When either of Methods 1 or 2 are used to find this 

1 
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direction at, say, the points (10,1) and (1,10), they will define direc-

tions which are considerably different to the true steepest descent 

directiono The methods will only find the correct direction at points 

on the line x = x „ At other points, the error will increase as the 
1 2 

distance from this line increases» 

The parameter adjustments derived by methods 1 and 2 are not 

in proportion to the corresponding partial derivatives of the objective 

function» They are derived from gross changes in the objective function 

instead of changes per unit increment in the parameter values» Further-

more the gross changes are found for varying parameter increments which 

depend on the current parameter values» 

A2»3 METHOD 5 

For this method, fixed increments to each parameter were nomin-

ated for finding the change in the objective function instead of increments 

related to the current parameter values» The features of Method 2 which 

were designed to overcome difficult situations on the response surface 

were retained» The steps in the method are:-

(i) for each parameter in turn, increase the value of the 

parameter by the nominated fixed increment, operate 

the model to find the resulting change in the objective 

function, divide this change by the parameter increment, 

and return the parameter to its original value» 

(ii) for each parameter which caused theoobjective function 

to increase at step (i), reduce the value of the para-

meter by the same fixed increment and find the result-

ing change in the objective function» If the function 

also increases at this step, the slope is set to zero» 
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Otherwise find the slope as in step (i). 
Return the parameter to its original valueo 

(iii) the slopes of the objective function with respect to 
each parameter constitute the components of the steep-
est descent vector» If the slopes are set to zero for 
all of the parameters, repeat steps (i) and (ii) using 
smaller increments and if necessary repeat the steps 
again with still smaller incrementso In this project 
the increments were halved at each repetition of steps 
(i) and (ii) until increments l/16th the size of the 
original increments had been used, after which the 
search was abandoned« 

In algebraic terms the /cth component of the steepest descent 
vector is defined as 

-(AF/Ax^) 

provided AF is negative for either a +ve or -ve Ax^o Otherwise the ^th 
component is zero„ 

When this method of defining the steepest descent vector was 
adopted, scaling of the parameters was found to be necessary because of 
difficulties caused by the relative magnitudes of the parameter valueso 
Both scaling and the size of the parameter increments used in steps (i) 
and (ii) above are discussed later» 

In optimisation work using Method 3 it was found after several 
iterations of the search technique that most of the components of the 
steepest descent vector were being set to zero» Consequently only two 
or three of the parameters were being adjusted at each iteration» 
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This implied that the search had descended to points in a valley in the 
response surface so that, for most parameters, small +ve or -ve incre-
ments caused movements up the sides of the valley. Typical cross-
sections of the response surface at such a point would appear as in 
Fig. A2=5, 

current value 
of oarameter 

current value 
of parameter 

FIGURI: A2.5 
TÌTICAL CROSS-SECTIONS OF THE 

RESPONSE SURFACE 

For parameter x , Method 3 would be able to define a non-zero 
slope if the increment used were less than "a", but for parameter x a 
much smaller increment would be necessary, A weakness of the method is 
that if a non-zero component of the steepest descent vector is found using 
a given set of parameter increments, no attempt is made to define non-
zero components for the other parameters using smaller increments» 

A2.4 METHOD 4 

This method was designed to overcome the weakness in Method 3 
described above= The slope is found for each parameter by the procedure 
illustrated in Fig„ A2.6= The objective function is evaluated at each 
of the points 1 , 2 , 3 etc. until a point is found at which it is lower 
than at the current parameter value. The corresponding change in the 
objective function and increment size are then used to determine the 
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slope. In this project increments down to l/16th of the original 
increments were used before setting the slope to zerOo 

Ax/4 

A2L 

Ax/2 

/ 
5 3 

/ 
FIGURE A2.6 

ILLUSTRATION OF METHOD 4 

current value/ 
of parameter 

The above procedure is repeated for each parameter and the 
resulting slopes are the components of the steepest descent vector» If 
all the slopes are set to zero the search is abandoned» 

The slopes obtained by Methods 3 and 4 would often be poor 
approximations of the true slopes, as shown in Fig» A2o7c 

true slope 

Methods 3 ^ 4 
may give this 
s lope 

current value 
y^of parameter 

FIGURE A2.7 
METHODS 3 AND 4 MAY GIVE 
POOR APPROXIMATIONS OF 

TRUE SLOPE 
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The last method used in this project was designed to give 

better approximations of the slopes than those given by Method 4o 

A2„5 METHOD 5 

This method will give theoretically correct values for the 

slopes in each co-ordinate direction if the basic assumption of the method 

is valid» The slope for each parameter is found by assuming that the 

cross sections of the response surface in each of the co-ordinate direc-

tions may be approximated by parabolas» Sub-section 9.2 of this report 

indicates that this assumption is probably valid for the objective func-

tion used.in this project. 

cross-section 
of response 

surface 

current v a l u ^ 

of parameter 

FIGURE A2.8 
ILLUSTRATION OF METHOD 5 

As shown in Fig, A2«8, the objective function is evaluated 

on each side of the current parameter value and the slope estimated as 

F - F 
1 2 

2Ax 

The slopes found in this way for each parameter are taken as 

the components of the steepest descent vector. 
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This method requires two evaluations of the objective function 
to find the slope in each co-ordinate direction» Method 4 requires up 
to ten evaluations, the usual number being between four and eight. 
Method 5 would give better approximations of the slopes than Method 4 
if the parabolic assumption is valid. Therefore Method 5 represents 
a considerable improvement over the other methods used in this projecto 

A2.6 THE EFFECT OF DISCONTINUITIES IN THE RESPONSE SURFACE 

If a discontinuity were present in the response surface within 
the distance Ax of the current parameter value then the slope defined by 
Method 5 (or any of the other methods) would be incorrect. Discontinuit-
ies appear to be present in the response surfaces for the Boughton model 
(see sub-section 7.2o2(iv), 8.1.1, 8.1,2 and 8.4), These may have adver-
sely affected the efficiency of the descent methods of optimisation in 
this project. 

A2,7 SCALING THE PARAMETERS 

Scaling is necessary when there are large differences between 
the model parameter values. This may be demonstrated by considering the 
response surface for a two-parameter model in which the expected optimum 
value for parameter x lies in the range 500-1000 and the optimum value 
of X lies in the range 0-1, (The parameters SSMAX and PV of the 
Boughton model have such values,) If plotted to a natural scale the 
response surface would occupy the area shown in Fig, A2,9o A long, 
flat-bottomed valley in which the lowest point is difficult to locate 
would almost certainly be present in this response surface. At every 
point on the surface the steepest descent direction would be predominantly 
in either the +ve or -ve x direction, with only a very small component 

2 
in either of the x directions. This surface would be an extreme example 
of the surface with elongated contours shown in Fig, 4,5, 
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FIGURE A2.9 
TYPICAL AREA OF RESPONSE SURFACE 
WHEN PARAJMETERS ARE NOT SCALED 

A more satisfactory response surface having far less elongation 

in the contours would be obtained by optimising a transformed problem in 

which one of the parameters is scaled so that its expected optimum value 

lies within a range of about the same magnitude as that of the other 

parameter» Thus, the search for the optimum x and x values could be 
1 2 

transformed into a search for optimum x and x' values where 
1 2 

x' = X X 500. 
2 2 

The objective function value at any point on the x - x' response surface 
1 2 

is found by operating the model with parameter values of x and x«/500, 
1 2 

The steepest descent direction from a point on the new response surface 

will have a smaller x^ component than the steepest descent direction from 

the corresponding point on the old surface» This is because slopes in 

the x^ direction on the new surface are l/500th of the equivalent slope 

on the old surfaceo 

In this project the parameters were scaled for the optimisation 

runs for Lidsdale No« 2 catchment. Their transformed values were usually 

in the range of about 300-1200, A maximum increment size of 10 was used 
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for finding the slopes in each co-ordinate direction. 

Scaling may alternatively be used when the model parameters are 
of approximately the same magnitude but when inter-dependence between 
parameters gives rise to a long flat-bottomed valley, A change of scaling 
towards different magnitudes for the parameter values may then improve 
the shape of the response surface» 

As scaling may be used in different ways the most satisfactory 
scaling for models having more than two or three parameters is not 
obviouso The descent path from any particular set of parameter values 
is related to the scaling that has been imposed on the response surface 
(see Fig. 4,5). Frequent experimentation with the scaling of the para:-
meters during optimisation may therefore assist in locating the optimum 
point more rapidly« Further research work aimed at devising a systematic 
method of determining the best scaling for an optimisation problem is 
required. 
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APPENDIX A5o CATCHMENT DESCRIPTIONS 

A3.1 POKOLBIN CATCHMENTS 

The location of these catchments is shown in Fig« A3.1o Other 
descriptive material has been extracted from the Pokolbin Soil Survey 
Report contained in Volume 3 of the Final Report on AoWoRoC» Research 
Project 68/1 (Australian Water Resources Council, 1971)» The soil survey 
was conducted by the Soil Conservation Service, N„ScWc 

Figo A3.2 shows the Land Systems in the Pokolbin area and the 
location of the sites where the soils were;.inspected and sampled« 
Fig» A3o3 shows soils distribution in terms of great soils groups and 
Northcote codings (Northcote, 1965), Descriptions of the soils at 
each inspection site are contained in the Soil Survey Report but are 
not repeated in this Appendixc The descriptions of the Land Systems 
are quoted belowo 

Land Systems: 

Five land systems are represented in the Pokolbin area surveyed^ 
and the following general descriptions are drawn directly from "General 
Report on the Lands of the Hunter Valley" (C„ScI,R„Oo Land Research Series 
NOc 8). The descriptions are provided as a guide to land forms, geology, 
soils and vegetation, applicable in the Pokolbin area« 

KiHarney Land System 

Geology: Permian shale, sandstone, conglomerate. 

Undulating lowlands with shallow valleys, and a small proportion 
of terraced alluvium mainly associated with Deep CreekSoils are 
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variable, mainly podsolics (red and yellow). 

Vegetation: savannah woodland of box, gum and ironbark, mostly 
thinned or cleared. Shrubs rare» Ground cover of Themeda australis 
where protected, otherwise mainly wiry grasses such as Aristida and Dan-
thonia sppo, with some Medicago and Trifolxum spp^ 

Land Use: mostly grazing and vineyards, with a strong swing 
towards the latter usage at the present time. Some dairying» Consider-
able improved pasture in the Middle Creek Catchmento 

Glendower Land System 

Geology: Permian shale, sandstone, conglomerateo 

Moderately steep hills situated above the Killarney land system. 
Soils similar, but with areas of skeletal soils and "krasnozem" types 
(red friable clays), only generally shallow. 

Vegetation similar to Killarney. 

Land Use: a bigger proportion of grazing country with some 
uncleared timber. Vineyard development increasing. 

Hunter Land System 

Geology: quaternary alluvium. 

Mainly old river terraces associated with the main creeks - Deep 
Creek is the only one with any significant area. 
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Soils variable - mainly uniform Urn or U£ soils, sometimes with 
Gravel seams, immediately adjacent to the creek. Intergrading with 
Yellow Podsolic (Dy2 and 3) soils, away from the creek,' and higher up 
the catchment 0 

Vegetation: mostly cleared and under cultivation or grassland 
of Cynodon, Aristida and Paspalum species. Scattered Eucalyptus spp. 
with Casuarina spp, on creek banks« 

Land Use: mainly grazing with some small areas cultivated« 

Cranky Comer Land System 

Geology: Carboniferous lavas with some conglomerate and glacial 
beds = 

Steep massive mountains and ravines with soils variable. 
Skeletal soils widespread with some podsolics and shallow red friable 
clays„ Rock outcrops frequent« 

Vegetation: tall mixed woodland, mainly gums and ironbarks 
with medium dense shrubs below and sparse but leafy grasses« Some rain 
forest in ravines« 

Land Use: some grazing but mainly native timber« 

Ogilvie Land System 

Geology: Permian conglomerate, sandstone and shale. 

Steep hills and escarpments with mainly skeletal soils and 
shallow podsolicso 
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Vegetation: wet or dry sclerophyll forest with smaller non-
eucalypt trees frequent where sheltered; fairly dense mixed shrubs and 
dense ground cover of grasses and herbs. 

Land Use; occasional grazing but mainly native timber. 
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Great Soil Group 
Yellow Podsolic 
Red Podsolic 
Krasnozem 
Yellow Podsolic 
and Skeletal 

Northcote Commonest 
DY 2.31 - 2.41 
Dr 2.31 - 3.31 
Gn4.12 
Shallow Py 2 

40 chains 

Coding Range 
DY 2.31 - 3.42 
Dr 2.21 - 3.21 
Gn 4.11 - Gn 4.13 
Uml - Ucl 

Skeletal Soils 
Catchment boimdary 

Ucl. 41 

Fig. A3. 3 Pokolbin Area - Soils. 
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A3.2 LIDSDALE NO, 2 CATCHMENT 

The maps and description of this catchment are reproduced from 
Smith (1972). Fig. A3.4 shows the location of the Lidsdale State Forest, 
Fig= A3.5 shows the layout of the experimental catchments in the forest 
and Fig. A3,6 shows the No. 2 catchment with theilocation of the soil 
moisture measuring stations indicatede 

The following terms used in describing the catchment require 
definition:-

"Mean dominant height" is the average of the measured heights of the ten 
tallest trees per catchment. 

"Mean basal area" is a measure of tree density, and is the sum of the 
cross sectional areas of the tree trunks at 4'3" above ground 
level, e3q)ressed in square feet per acre. 

"Crown density index" is a measure of the projected area of the tree 
crowns, measured with an optical crownometer, 

"Channel characteristics" are specified by the percentage, in terms of 
length, within each of the following groups: 
Type I - entrenched channel with solid rock bottom^ 
Type II - entrenched channel with unconsolidated bottom. 
Type III - broad waterway with no significant entrenchment= 

Smith's description, which was based on information from Bell 
and Gatenby (1969), foilows. 

Area: 31=8 acres. 
Vegetation: The forest consists of planted Radiata Pine (Pinus radiata, 
D.Don) with a mean dominant height of 88 feet, mean basal area 133 square 
feet per acre and a crown density index of 63 per cent= The original 
forest stand of native Eucalypt, including Brittle Gum (Eucalyptus maculosa) 
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and Broadleaf Peppermint (E, dives) was felled and burnt prior to plant-
ing with Pinus radiata in 1935. Thinning, carried out between 1956 and 
1960, produced a total yield of approximately 9,000 super feet per acre» 
Topographic features: The general aspect is South-East, with an average 
catchment slope of 15 per cent, average channel slope 12 per cent, and 
channel characteristics of 30 per cent Type I, 40 per cent Type II and 
30 per cent Type IIIc 

Geology and Soils: The parent material is variable, with Permian conglom-
erate, sandstone and siltstone in the North-Western section of the catch-
ment, and a combination of both Permian and Devonian sediments in the 
remainder of the catchment o 

The profile is gritty to stoney to a depth of approximately 
70 inches, below which there is a fine compacted clay, relatively free 
of stones. The uppermost 50 inches of soil contains an estimated 
volume of 5 to 10 percent stone larger than 0c25 inches in diameter. 
This figure has been determined from mechanical soil analysis. The 50 
to 70 inch layer usually contains a lower percentage of stones than the 
0 to 50 inches soil strata. 

The A horizon of the soil is approximately 12 inches deep, 
grading through this depth from a dark grey to a pale grey loame The B 
horizon is a yellow mottled clayey soil of variable depth,.extending to 
a depth between 40 and 70 inches, with an estimated average depth of 50 
inches. Below the B horizon the soil grades into a fine compacted clay 
loam, extending to 90 inches at least. 

Under the Northcote System (Northcote, 1965, 1966), the soil 
derived from the Permian parent material is classified as Dy 3o41, a 
hard setting loamy soil with a mottled yellow subsoil. There is an 
acid reaction trend and the A horizon is bleached. 

2 
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The soil derived from the Devonian parent material is classified 
as Dy 2.61, a hard setting loamy soil with a yellow clayey subsoil, an 
acid reaction trend, an unbleached A^ horizon and an apedal subsoil. 
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Fig. A3. 4: Location of the Lidsdale State Forest. 
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Fig. A3. 5: Experimental Catchments Lidsdale State Forest, 
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Fig. A3.6r Principal Features, Catchraent No. 2. 
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APPENDIX A4. INTEGRATION OF THE EVAPOTRANSPIRATION 
AND INFILTRATION FUNCTIONS 

A4.1 EVAPOTRANSPIRATION FUNCTION 

At low levels of soil moisture S, where the e/t rate is a 
linear function of the moisture level, the governing equation was 

J c 
^ = kS (equation 6.7) 

The change in moisture level caused by e/t over a period of time is found 
by integrating this equation. 

^ = kS dt 

• dS . .. -g- = kdt 

J C 
= kt + B where B is the constant of integration, 

In S = kt + B 

^ kt + B kt ^B S = e = e • e 

Initially, when t = 0, let S = S^ 

then, S =: eO • e^ e® = S 
0 0 

c J^^ c S =-- e • S 
0 
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Now when t = 1, i=eo, after 1 day, let S = S^ 

S = e^ . S 
1 0 

A4,-2 INFILTRATION FUNCTION 

The assistance of Mr. D. Doran in integrating this function 

is gratefully acknowledged. 

The infiltration rate is the time rate of change of storage 

in the Lower Soil Store, ice.,. 

d(SS) ^^ -KF • SS/SSMAX ^^ -KF . , 
^^ ^ = FO=e ' - FOoe (equation 6,17) 

Substitute S = SS 

K = KF y (A4a) 

and C = SSMAX for greater clarity. 

T h e n § = FO.e-'^-S/'^ - FO.e-'^ 

= FO.e-^e-'^i^/^ - - 1) 

Inverting, 

= 1 . c^-US/C - 1) -1 
dS -K -FOoe 
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Integrating, 

t + A = 
EQ .e -K 

^^-KfS/C i) _ dS 

where A is the constant of integration. 

Let u 

du 

dS 

e -K(S/C - 1) 

e-^^S/^ - dS 

-C - D^-l ^^ 

-C -1 , K ^ du. 

Then 

t + A = -C 
FO • Ke -K 

(u - 1) ^ u ^ du 

t + A du 
u - 1 u 

where B = 

and R.H.S. = 

-e 
FO • Ke -K 

u du - (u - 1) du 
(u - 1) • u 

f du 
(u- 4) • u 
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( u - 1 ) ^ • u ^ d u , a s b e f o r e . 

t + A 
= I n ( u - 1 ) - l n ( u ) 

1 /-U - l ^ 
= I n ( — — ) u 

= I n ( 1 - u " ^ ) 

= i n ( 1 - e ^ ^ S / ^ - ( A 4 . 2 ) 

t + A 

= 1 - e 
K C S / C - 1 ) 

K ( S / C - 1 ) 
t + A 

= 1 - e 

t + A 

K ( S / C - 1 ) = I n ( 1 - e ® ) 

t + A 

\ S = ^ l n ( l - e ® ) + C 

F r o m e q u a t i o n A 4 „ 2 , A = B l n ( l - " 

A t t h e s t a r t o f t h e d a y , t = 0 a n d l e t S = S 

- t 

= B l n ( l - - 1 ) ^ 

S = ^ I n ( 1 - e 

t . B l n ( l - e ' ^ t y ^ -

B 
) + C 

= ^ i n ( 1 - e ^ / ^ l - e l ^ ^ V C " 1 ) ) ) , c 
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For S after one day (S ), put t = 1 (and substitute for B) 
1 

S^ = ^in (1 - e-P^ • . (1 - e^^^o/^ " ^b) . C 

Let D = ' 

Then S = ^ In (1 - D + De^^^O^^ " + C 1 ^ 

S is the storage after one day provided infiltration has 
proceeded at the potential rate throughout the day» The total infiltra-
tion amount for the day is 

FT = S - S 
1 0 

= C(1 1- i In (1 - D + De^^^o/^ " ^h) - S ^ 0 

Re-substituting from equations A4.1, and using F to denote the 
potential daily infiltration amount rather than the instantaneous rate 
as before, 

F = SSMAXCl . i . IB (1 - D . " - SS Kr 
KF -FO • KRe" /SSMAX where D = e 

and SS = storage at the start of the day. 




