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PREFACE

The work described in this report was undertaken in the Hydrology
Section of the School of Civil Engineering, The University of New South
Wales, between November 1968 and August 1972. Funds were provided by
the Australian Water Resources Council under a grant from the A.W.R.C.
Water Research Fund, and this generous support is gratefully acknowledged.
This study was one of the four analysis components of A.W.R.C. Research
Project 68/1, "Hydrology of Small Rural Catchments'. It also formed a
continuation of the research on mathematical models of the rainfall-
runoff process in which the School of Civil Engineering has been active

over a number of years.

From the commencement of the project to February 1970, the work
was carried out by Mr. F.C. Bell under the supervision of Professor
E.M. Laurenson. From March 1970, the work was carried out by Mr. P.R,
Johnston under the supervision of Associate Professor D.H. Pilgrim.
The work described in this report relates primarily to the latter period,

as the earlier work was of a preliminary nature.

H.R. VALLENTINE,
Professor and Head,
School of Civil Engineering.



SUMMARY

A detailed study on the optimisation of the parameter
values of the Boughton daily rainfall-runoff model has been zarried
out for a number of small catchments. The optimum values of the
parameters were sought using the Steepest Descent, Simplex and
Davidon optimising methods. It had been intended to correlate
these optimum parameter values with measurable catchment

characteristics.

Rapid initial reductions in the values of the objective
function were readily achieved and the solutions approached
apparent optimum points on the response surface. However, several
of these points were found for each catchment and there were large
differences in the parameter values between the points. This type
of problem has also been encountered in previously reported
optimisation studies for rainfall-runoff models. It was found that
further improvements in the objective function could usually be
achieved by using another of the search techniques or by numerical
trials, and in this way, downhill paths on the response surface
were found from the apparently optimum points. This work was
pursued for one of the catchments until the paths appeared tc be
converging, but coincidence at a true optimum could not be achieved.
A number of somewhat different sets of parameter values which appezred
to lie in a flat '"valley" area of the response surface were obtained.

and these sets gave equally good fits to the observed runcff dats.

An algebraic analysis of the operation of the mocdel and cf
the effect on the objective function of changes in some individuai
parameter values led to important findings on some of the problems

encountered.

It is probable that the findings from the numerical and

algebraic analyses would be applicable to all rainfall-runoff models.
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1. INTRODUCTION

The study described in this report is part of the Australian
Water Resources Council Research Project 68/1, '"Hydrology of Small Rural
Catchments'", which was commenced in November, 1968. The aims of this
project were to catalogue all gauged rural catchments in Australia with
an area of less than 10 square miles, to process the streamflow, rain-
fall and other records from these catchments into computer compatible
form, and to commence analysis of the records. The project is described
in a four volume report (Australian Water Resources Council, 1971). The
analysis phase of the project consisted of four parts, two relating to
flood estimation and the other two relating to methods of yield estima-
tion. The study reported herein was Part (d), originally titled "Yield
Estimation Using a Rainfall-Runoff Process Model Approach". In the
remainder of this report, the word 'project'" will refer to Part (d) of

A.W.R.C. Research Project 68/1.

This project, as well as the other three-analysis projects,
was envisaged as only a commencement of analysis of the compiled data,
and as having an important function in testing and providing feed-back

for the data compilation and transfer procedures.

The original proposal for this project envisaged four parts.
The first two were of a preliminary nature and comprised graphical
summaries of data and low-flow frequency analyses. Little work was
carried out on these aspects. The third and major aspect comprised
selection of an appropriate model of the rainfall-runoff process,
determination of optimum model parameters for about 80% of the catch-
ments for which records were available, correlation of the parameter
values with catchment characteristics, and testing of these relation-
ships with the remaining catchments. The fourth part was a tentative

proposal and was dependent on the successful completion of the third



part. It involved investigating the possibility of developing direct
relationships between runoff characteristics and physical and climatic
characteristics of catchments, thus eliminating the use of a model 1n

a design procedure for the estimation of catchment yield. Data availa-
bility and the need for practical usefulness of results restricted the
choice of a model to one using rainfall-runoff data at time intervals of

not less than-one day. The Boughton model was selected for use in the

project.

As the project progressed beyond its initial phase, it became
obvious that the proposed objectives could not be met. Many difficul-
ties were encountered in the searches for optimum values of the model
parameters. It was recognised that any attempts to relate model
parameters to catchment conditions, or to use a model for synthesising
data, would be pointless if the derived parameter values were not truly
optimum. Further funds were provided by the Australian Water Resources
Council for extension of this project, and in this extra time, the work

was concentrated on the problem of obtaining optimum parameter values.

While the original aims of the project were not achieved,
many of the practical difficulties which can be expected in implementing
the optimising procedures and in searching for the optimum parameter
values have been identified. Also, insight into such questions as the
effect of the chosen objective function and the nature of the response
surface has been gained. Considerable interest has been shown in
deterministic models of the rainfall-runoff process over the last decade
and the development and application of several types of models have
been reported. While these models vary in the degree of their sophisti-
cation in attempting to simulate physical processes, they all depend
on the derivation of optimum parameter values for usefulness in appli-
cation. The findings of this project indicate that such values have
not been found for many of these models and that more attention should

be given t3 the problem of optimisation in the future.



2. MATHEMATICAL MODELS OF THE RAINFALL-RUNOFF PROCESS

Mathematical models of the rainfall-runoff process usually
consist of a number of stores which, conceptually, represent the
moisture-holding capacity of the vegetation and soil of the catchment.
The movement of water onto, within, and out of the catchment is re-
produced in these models by making transfers of water into, between,
and out of the stores according to the rainfall and evaporation data
and known or assumed functions to represent such physical processes
as infiltration and evapotranspiration. Overflow from the system of
stores is regarded as modelled runoff and should, theoretically,
correspond to the observed runoff from the catchment. Spatial vari-
ation of the processes and moisture storage on the catchment is not
generally taken into account. Average or ''lumped" values are usually
used for these components in most models. Examples of rainfall-runoff
models are the Stanford Watershed Model (Crawford and Linsley, 1966),
the Boughton Model (Boughton, 1965, 1966), and a model being used in the
Representative Basins Project of the Australian Water Resources
Council (A.W.R.C., 1969). These models are potentially useful for
synthesising runcff data from observed rainfall and evaporation data,
for generating very long sequences of flow using synthetic rainfall
and evaporation data, and for estimating catchment wetness in flood

forecasting schemes.

Some constants in the functions used to represent the physical
processes, and the capacities of the stores, are parameters of the model
and must be assigned fixed numerical values before the mcdel may be used
to estimate the runoff for any particular catchment. The numerical
values vary for different catchments because of different vegetaticn,
soil types and soil depths, and for models which truly represent the
physical process, these values would ideally be estimated from measurs-

ments of the appropriate physical variables.



For catchments where there is a period of concurrent rainfall,
evaporation and runoff records, the usual method of finding the appro-
priate parameter values is to operate the model with estimates of these
values, compare the modelled and observed runoff, and make changes to
the parameter values so as to obtain the best agreement between modelled
and observed runoff records. The values which give this agreement are

defined as the optimum parameter values.

The term "best agreement' must be defined in a quantitative
way. It is necessary to choose some feature of the observed runoff
record which is to be reproduced as closely as possible by the model.
Features such as the runoff volumes in certain time periods or the peak
flows are often selected. A numerical measure of the fit of the modelled
runoff to the observed runoff may then be formed using some function of
the differences between the modelled and observed values for the selected
feature. An example is the sum of squares of the differences between
the modelled and observed monthly runoff volumes. The measure of fit
is known as an objective function, and the optimum parameter values
are those which give a minimum value of this function, i.e., those

which give the best fit in terms of the chosen objective.

For a given catchment, the value of the objective function is
dependent only on the values assigned to the parameters. If there are
n parameters and these are represented by n of the co-ordinates of an
m-dimensional co-ordinate system (where m = n + 1), and the remaining
co-ordinate represents the objective function, then this function fcrms
a surface in the m-dimensional space known as a response surface. The
co-ordinates of a point on this surface are n parameter values and the
value of the objective function obtained when the model is operated with
these values. The lowest point on the surface is where the objective
function is a minimum and the corresponding parameter values are regarded

as the optimum parameter values. The lowest point is known as the



global minimum. There may be other points on the surface which are lower
than all others in their immediate vicinity (but not lower than the

global minimum). Such points are known as secondary minima.

A typical response surface where n = 2 is illustrated in
Fig. 2.1 The parameters are x" and x” and the surface is represented
by a contour map in the x1 - X2 plane. Where n is greater than 2 the
concept of a response surface is retained even though the sur-

face cannot be represented visually.

secondar}”
mini 2un

g_l ol_aal/ parameter X
mi nimum
FIGURE :.1

CONTOUR MAP OF A RHSPONSH SURFACE
FOR A FUNCTION OF TWO PARAMF.TFRS



The search for the set of optimum parameter values may be
regarded as a search on the response surface for its lowest point.
Techniques have been developed to conduct the search in a systematic

way and these are known either as optimisation methods or simply as

search techniques.

An exact fit of the modelled runoff to the observed runoff

(i.e., objective function = 0) cannot be achieved, as

(1) all models are simplifications of the complex processes which
actually occur on the catchment and are therefore inadequate
to reproduce these processes exactly,

(ii) variations in catchment characteristics and moisture conditions
are averaged both over the area of the catchment and within the
time increments used for the model calculations, and

(iiz1) errors, some of which are unavoidable, are always present in

the data.

Models may be refined to represent the physical process more
closely, but this will normally involve
i) greater complexity,
(i1) an increased number of parameters,
-(111) an increase in the computing time required to operate the model
and search for the optimum parameter values, and
(iv) more stringent requirements on the data, e.g., readings at more

frequent time intervals and on a more dense areal network.

If, for a given model, a set of optimum parameter values can
be found for a particular catchment, it is desirable to verify these
values and the validity of the model for the catchment by checking the
model's ability to reproduce a period of observed runoff which was not

used in the optimisation.



One of the main aims of this project was to obtain the optimum
parameter values for the selected model on about 80% of the catchments
included in the A.W.R.C. Research Project 68/1. The chosen objective
function to be minimised for each catchment was the sum of squares of
the differences between monthly observed and modelled runoff volumes.
This function has been used frequently by other workers. Some compara-
tive optimisation runs using other functions were made by Mr. Bell in
the early work of this project. but they did not indicate that any of

these functions would be preferable.



3. THE MODEL USED IN THIS PROJECT

The Boughton Model (Boughton, 1965, 1966) was selected for use
in this project. For practical usefulness, a model which uses daily data
was required and the Boughton model is the most developed of these. It
was thought desirable to continue previous work done with this model at
The University of New South Wales. The model is illustrated in Fig.

3.1,

The Interception Store allows for water held on the surfaces
of vegetation and also probably on surface litter. The topsoil layer
of the catchment is assumed to have an unrestricted infiltration rate,
and is represented by two moisture stores, the Upper Soil Store for the
amount of water held in the topsoil between moisture levels corresponding
to the simplified concepts of wilting point and field capacity, and the
Drainage Store for the water temporarily held in the topsoil between
field capacity and saturation. The subsoil is assumed to be much
denser than the topsoil and to have a much lower infiltration rate
which governs the amount of infiltration loss during a storm. It is
represented by one moisture store, the Lower Soil Store. The daily in-
filtration rate is given by a function which is greatest when the Lower
Soil Store is empty and declines exponentially as the quantity in the
store increases. Evaporation occurs at the potential rate from the
Interception Store until this store is emptied, after which evapotrans-

piration depletes the contents of both the Upper and Lower Soil Stores.

The model is operated as follows:-

(1) Rainfall first enters the Interception Store. If the capacity of
this store is exceeded, it overflows into the Upper Soil Store,
which in turn overflows into the Drainage Store. (The amount of
water required to fill these stores on any day is the potential

initial loss from that day's rainfall.)



Evapo-

transpiration  Evaporation o
A Precipitation

Interception Store

Upper Soil Store

Runoff

Drainage Store

Lower Soil Store

Drainage to
groundwater

FIGURE 3.1
STRUCTURE OF THE BOUGHTON MODEL



(11)

(iii)

(iv)

10.

When the Drainage Store contains water, infiltration into the

Lower Soil Store occurs. The infiltration rate is determined

from the equation

F = FC+ (FO - FC) e NF*55, (3.1)
where F = daily infiltration rate

FC = daily infiltration rate when the Lower Soil Store
is full

FO = daily infiltration rate when the Lower Soil Store
is empty

KF = empirical constant

SS = amount of water currently held in the Lower Soil
Store.

If the rainfall is sufficient to cause overflow from the Drainage
Store, surface runoff commences. The amount of runoff is found

from the following empirical relation:-

Q = P-Ftamh (p) (3.2)

where Q amount of runoff
P = that amount of the rainfall which overflows from
the Drainage Store, i.e., rainfall less initial
loss
F = daily infiltration rate.
Evaporation occurs at the potential rate from the Interception
Store during and after rainfall until this store is empty.
Evapotranspiration then takes place from both the Upper and
Lower Soil Stores. The quantity taken from the Upper Soil Store
is the lower of either
(a) PV.E
or (b) PV.EVPMAX.US/USMAX



11.

while that taken from the Lower Soil Store is the lower of either
(a) (1 -PV) . E

or (b) (1 - PV) . EVPMAX.SS/SSMAX
where PV = the fraction of the evapotranspiration
taken from the Upper Soil Store
E = the potential evapotranspiration rate
EVPMAX = the maximum evapotranspiration rate when
the soil moisture level is at field
capacity
US = the amount of water currently held in the
Upper Soil Store
USMAX = the capacity of the Upper Soil Store
SS = the amount of water currently held in the
Lower Soil Store
SSMAX = the capacity of the Lower Soil Store.

The functions above are explained in more detail in sub-section
6.1.

) Depletion occurs from the Lower Soil Store to groundwater.
Boughton allowed for this by applying a factor of 0.999 to the
amount of water in the Lower Soil Store at the end of each day.
The daily depletion quantity of water passes out of the system,
as groundwater fluctuations or contributions to runoff are not

included in the model.

Calculations are made on a daily basis to determine the amounts
of water transferred into and out of the various stores, the amounts of
water currently held in the stores, and any runoff produced, according

to the above procedures.

The model has nine parameters and the notation and units given

below for these parameters are used throughout this report.
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Moisture Stores

VSMAX Capacity of the Interception Store
USMAX Capacity of the Upper Soil Store
DSMAX Capacity of the Drainage Store
SSMAX Capacity of the Lower Soil Store
Evapotranspiration function
PV The fraction of evapotranspiration
drawn from the Upper Soil Store
EVPMAX The maximum possible evapotrans-
piration rate when the relevant soil
store is full. This is a property
of the vegetation
Infiltration function
FC The daily infiltration rate when the
Lower Soil Store is full
FO The daily infiltration rate when the
Lower Soil Store is empty
KF Empirical constant

(points)
(points)
(points)
(points)

(no units)

(points/day)

(points/day)

(points/day)

(no units)

Listed below are some of the variables of the model which are

referred to frequently.

VS
Uus
DS
SS

E

Contents of the Interception Store
Contents of the Upper Soil Store
Contents of the Drainage Store
Contents of the Lower Soil Store

Potential evapotranspiration

(One point equals 1/100th inch depth of water.)

(points)
(points)
(points)
(points)

(points/day)
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Daily rainfall (averaged over the catchment area) and daily
evaporation data are required to operate.the model. Daily evaporation
data are not available for many catchments, however, and it is often
necessary to use average figures. The runoff quantities calculated by
the model occur on days of rainfall only; no routing procedure is applied

to the runoff, therefore recession curves do not appear in the calcula-

ted hydrograph.

The model attempts to reproduce the physical processes which
occur in the catchment, but because of the use of daily data and a daily
time period for calculations, complete representation of these processes
is not possible. Variations in rainfall intensity during each day can
not be taken into account. Only one infiltration rate is used on each
day, and this rate is applied over the whole area of the catchment.

The parameter values are average or ''lumped" values for the whole of
the catchment, and variations of catchment and moisture conditions over
the area cannot be reproduced. No contribution to streamflow from
groundwater depletion is allowed for and this would induce errors when

using the model to compute the runoff from all but ephemeral streams.



4.

FINDING THE OPTIMUM PARAMETER VALUES

The use of optimising methods to search for the optimum param-

erer values of rainfall-runoff models has attracted increasing interest

in recent years.

Some of this work is summarised belicw:-

Year
of Optimising Catch t
Authors Publi- Model Methods atchments
cation
Lichty .
i One in
Dawdy §& 1968 U.S.G.S. Rosenbrock North Carolina
Bergmann
Bought 1968 Bought Steepest Descent Five in
oughton oughton eep New Zealand
Dawdy § One in
Bergmann 1969 U.S.G.S. Rosenbrock southern Califorrisz
Wood & . Five in
Sutherland 1970 Stanford Steepest Descent New Zealand
5 Modified . S tec
Murray 970 Boughton Rosenbrock Brenig, Wezles
A.W,R.C,. .
Chapman 1970 | Representative Simplex One in
' . - Central Austraiiz
Basins Project
Porter §& 1970 Porter & Steepest Descent |Two near Melbourne,
McMahon i McMahen Univariate Asstralia
Ibbitt & Dawdy §& 9 methods .
1971 : ; : o)
0'Donnell b 0’ Donnell (for comparison) Synthetic Record
. Dawdy §& Synthetic Record
Ibbitt 1672
' O'Dennell Rosenbrack with known errors
J—
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In all of the studies listed above, the optimising methods
adjusted the initial estimates of the parameter values so that substan-
tial reductions were made to the objective functions. In most cases,
however, it would not be possible to state that the global minimum of
the response surface had been reached. Some of the authors state that
it is possible to obtain similar low values of the objective function
with quite different sets of parameter values (although some of the
parameters may maintain a fairly constant value). Two reasons for this

are usually proposed:-

(1) Inter-dependence between parameters. This is present when a

change in one parameter can be compensated for by changes in one
or more of the other parameters. For a two-parameter mecdel, the
effect on the response surface of inter-dependence between the
parameters is to produce an elongated, almost flat-bottomed
valley as illustrated in Fig. 4.1. This concept of a valley

in the response surface is extended to problems of higher dimen-
sionality (where the model has more parameters) even though the
surface cannot be represented visually. Any combination of para-
meter values lying close to the bottom of such a valley will
produce a near-optimum value of the objective function. The
differences in individual parameter values between such combin-

ations can be quite large.

The search techniques commonly in use will descend quite rapidly
into a valley in the response surface from given starting points.
However, progress along the floor of the valley to the lowest
point is then very slow. It should also be noted that, for a
given starting point outside the valley, different search
techniques will arrive at different points on the floor of the

valley.
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FIGURE 4.1
TYPICAL RESPONSE SURFACE
FOR TWO INTER-DEPENDEXT

PARAMETERS

(an Indifference of the objective function to the value of parameter(s)
This is present when the objective function is not affected by
large changes to the value of a parameter (without compensating
changes to other parameters)« The contours of the response
surface are then parallel to the axis representing that particu-
lar parameter. If there is indifference to more than one param-
eter™ the contours are not necessarily parallel to any axis™ but
they are very widely spaced™ giving a flat area in the response
surface» Search techniques are generally not able to move off

such flat areas.

Indifference will occur when a parameter does not play a signifi-
cant part in calculating the output from the model. This could

be due to the parameter being irrelevant to the physical process
being modelled, and thus a redundant part of the model» Alterna-

timely, and of more practical concern, it is possible that the
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particular set of data being used with the model is such that a
physically significant parameter does not become active in the
model calculations. The objective function would display
apparent indifference to the parameter if these data were used
for optimisation, but would not be indifferent if it were
possible to use a set of data which did activate the parameter

in question.

There seems to be general agreement among those who have worked
with rainfall-runoff models that inter-dependence between at least some
of the parameters of such models exists. It seems probable that inter-
dependence and indifference occur in varying degrees over the response
surface for these models. Ibbitt and O'Donnell (1971a) discuss these
and other features of the response surface and their effect on the

search for the optimum parameter values.

An important aim of this project was to correlate the optimum
parameter values of the selected model for a number of catchments with
physical characteristics of the catchments (e.g., catchment area, slope,
soil properties). With the likely presence of inter-dependence between
parameters, the danger existed of attempting to correlate non-optimal
parameter values (which, however, gave a near-optimal value of the
objective function) with the catchment characteristics. The correct
location of the global minimum of the response surface for each catch-
ment was essential for the successful outcome of the project, and most

of the work .performed was directed towards this goal.

Optimising methods have received considerable attention from
workers in the field of applied mathematics in the last ten years.
Much of this activity has been reported in The Computer Journal, publish-
ed by The British Computer Society. A good reference on this work is

Kowalik and Osborne (1968). New methods and modifications to old methods
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are st’11 being proposed, and it appears that more efficient methods
will be awailable in the future than those in current use. The current
methods may be divided into two categories; Direct Search methods and
Descent methods. The general strategy behind the methods is outlined
in the following twc sections. The methods which were used in this
project are described in greater detail, and inadequacies and problems

encountered with the methods are discussed.

4.1 DIRECT SEARCH METHODS

These methods proceed from a starting point (or, for the
Simplex method, a group of points) on the response surface and proceed
by generating further trial points and moving towards those that progre-
ssively lower the cbiective function. They merely require the ability
to compare the values of the cbjective function at different points on
the respense surface. They may be further subdivided intc methods for
finding the minimum of a function of a single variable, and methods for

functions of more than one variable.

4.1.1 Methods for Functions of a Single Variable

These method: are a basic part of some of the Descent methods
for functions of more than one variable, as they may be used to find the
minimum along a particular direction in multi-dimensional space. Several
methods are described in Kowalik and Osberne (1968) sections 2.2 and 2.3.
The particular method used within the Descent methods employed in this

preject is illustrated in Fig 4.2,

From the starting value of the variable x, equal sized steps
are taken in the descent direction. (When moving asuug a direction in
muiti-dimensional space each step involves changing a number of variables

simiitansousiv.) At each step, the objective function is evaluated, and
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the steps continue as long as the function continues to decrease. At the
first step where the function begins to increase, it is assumed that the

points X1 3( and x_ (Fig. 4.2) bracket the minimum. In the initial

3

stages of the project the point x was taken to be the minimum. For most
2

of the work however, parabolic interpolation was used to predict the

position of the minimum. If the function values at X , X and x are

taken to be fl,:f and fé, then the minimum is predic%édzto be a%

AX f -Ff
= X -3 1 where Ax is the step size
f -2F +F
-3 2 1
starting value
of X response
;urface
>
FIGURE 4.:
LOCATING THE MINIMUM OF
A FUNCTION OF A SINGLE
VARIABLE
1 2
X >

The objective function is evaluated at x" and if it is lower
than at X2, is taken to be the minimum. However, sometimes the function
value at x" is not lower than at x2- This occurs when a parabola is

not a good approximation of the function as in Fig. 4.3.

When this occurs, the function is evaluated at x"" equidistant
from X2 and on the opposite side from x*. The position of the minimum
is then taken as either x2 or x"", whichever has the lower function

value.
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response
\ syrface parabola
FIGURE 4.5
LOCATING THE MINIMUM
PARABOLIC INTERPOLAT
IS NOT SUCCESSFUL
X X X

4-1-2 Methods for Functions of More Than One Variable

The various Direct Search methods for functions of more than
one variable differ in the way in which they generate new trial points
on the response surface for evaluation. Examples of these methods are
those of Hooke and Jeeves (1961), Rosenbrock (1960); various Simplex
methods- e.g.; Spendley et al. (1962)5 Nelder and Mead (1965)" and a
method developed from the Simplex methods by Peckham [1970)"

Two versions of the Simplex technique were used in the”™work
of this project: (The Simplex method in this context does not refer to
the well-knowTi technique for solving linear programming problems ) A
simplex Is a set of n * | points in n-dimensional space. |If the points
are equidistant, the simplex is "regular”. The vertices of an equi-
lateral triangle form a regfalar simplex in two dimensional space, while
those of a tetrahedron do so in three dimensional space. Each point in
the simplex is specified by a set of parameter values and has an associ-
ated value cf the ob:ective function. |If that point with the highest
function value is reflected around the centroid cf the other p:ints, it

would be =>"pected that the point so generated would be closer to the

[\Va =\
10N
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minimum. This notion is the basis of the Simplex methods.

Some work was done in this project with the method described
by Spendley et al. (1962). This method uses a regular simplex and,
theoretically, has advantages when trying to follow a valley in the
response surface (see Beveridge and Schechter, 1970, pp. 367-383).
However, the method proved disappointing in this aspect, and problems
of cycling of the solution occurred, in spite of measures built into

the method to prevent this.

Extensive use was made of the method of Nelder and Mead (1965).
This method incorporates provisions for the simplex to change its size
and shape, contracting away from high areas and expanding towards lower
areas. As the minimum is approached, the simplex shrinks until, ultima-
tely, the points become coincident at the minimum. However, the shrink-
ing of the simplex until the points become coincident is not a sufficient
condition for concluding that the minimum has been reached. Many times
during the work of this project it was found that further improvement
could be made from such a point by using some other method or by numeri-
cal trials. The simplex appears to shrink to a point on the floor of a
valley instead of moving down the valley. It is often claimed that the
method of Nelder and Mead will find the global minimum of a function
provided the starting simplex is large enough to span the area contain-
ing the minimum. The results obtained in this project indicate that

this is not necessarily true.

A full description of the method of Nelder and Mead is given
in Appendix Al, as well as a possible reason why the method appears to

be inefficient in moving along valleys in the response surface.
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4.2 DESCENT METHODS

It 1s commenly observed that the Direct Search methods give an
initially rap:d reduction in fthe objective function, but are slow in
ultimate convergence. Results obtained with the Simplex methods in this
preject were in acccrdance with this experience. The Direct Search
methods use oniy values of the objective function and make simple cempar-
isons of theze values. Most of the Descent methods make use of addit-
ional information about the surface being searched and couid thus be
expected to give more rapid uitimate convergence. Many of these methods
require the slope of the surface 1in each co-crdinate direction (i.e.,
the partial derivative of the objective function with respect to each
parameter) at each iteration.. Additionally, the conjugate direction
methods assume that, close to the cptimum, the surface may be approxi-
mated by a positive definite quadratic form. In general, the Descent
methods search fer the minimum by performing a sequence of one dimension-
al searches (as described in section 4.1.1). The methods differ in the

means of choosing the directions over which these searches are conducted.

4.2.1 VUnivariate Method (Relaxation)

In this method the search directions are the cc-ordinate
directions, which are searched repeatedly in cyclic order until no
further improvement car be made. This method does not use any more in-
fermation sbout the response surface than the Direct Search methods use.
Fig. 4.4 illustrates a case for a two parameter problem where th:s
method wculd be very slow. 1f the sides of the valley were too steep
and a large step size used, the method would stop at a non-optimum
point as both +ve and -ve steps in each co-ordinate direction would iie

higher up on the sides of the valiey.
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FIGURE 4.4
DIFFICULT RFSPOXSE SURFAI:;.
FOR THE U:nIVARIATE METHOD

4,2,2 Steepest Descent Method

Here the search direction at each iteration is the direction
of steepest slope from the current point, and is defined by the vector
of partial derivatives at this point» The method has been extensively
used, and was used in the early work of this project» However it was
found that after several iterations, little:movement was made along the
chosen search directions, and most of the computing effort was used in
defining new search directions» Sometimes the method stopped at a
point which was found to be non-optimal« These experiences suggest
that the search was zig-=zagging along a valley floor in a similar way to
that depicted for the univariate method in Fig. 4,40 Similar experiences
have apparently been reported by others» Kowalik and Osborne suggest
several possible reasons for the disappointing performance of the method..

The most significant reasons seem to be that the chosen search directions



get into a "cage'". i e , a small number of search directions are used in
cyclic fashion, and that, ultimately, the directions may become
asymptotic to just two directions, so that the minimum is approached in

a two dimensional sub-spale.

4.2.3 Conjugate Direcrion Methods

Some of these methods require the partial derivatives of the
function at each iteratzon and they alli assume that in the ares of the
minimum, the function may be approximated by a poz:itive definite quadra-
tic form. The significance of these methods is that, 1f the function 1s
of this form, and is a function of n variables,., then the minimum will be
found in » i1terations. In this case, the »n search directions chosen are
linearly independent,; i €., no one direction may be expressed as a linear
combination of the other directicns. Therefore cycling through a smail
number of directions cannot cccur. Where the function zs nct of the
above form more iteratzons are required, but as the minimum 15 apprcached,
the quadratic approximation improves, so the ultimate rate of convergence
should be good. The quadratic fcrm which approximates the objective
function need n2t be known explicitly. (An example of the use of a
quadratic form to approximate a function is the use of the parabcla o
approximate the one dimensional function in Fig. 4.2.) Methods which do
not require the partial derivatives c¢f the function are those of Powel:
(1964) and a modification of this methcd by Zangwill (i967:. Two methods
which do require derivatives were used in this project. The method of
Fletcher and Reeves ({1964) was first used, but showed little improvement
on the steepest descent method in some comparative runs for one catch-
ment. A method originally proposed by Davidon (1959} and presented
definitively by Fletcher and Powell (1963, (hereafter referred to a:z the
Davidon method) was used for much of the work in the pro:ect. This
method 1s recommended by Kowalik and Osborne; and 1s de:cribed .n

Appendix A;.
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4.3 PROBLEMS IN IMPLEMENTING THE SEARCH METHODS

The problems discussed below can have a marked effect on the
efficiency of the search methods. The measures taken in this project to

deal with these problems are described in Appendix A2.

4.3.1 Defining the Steepest Descent Direction

The steepest descent direction at a point on the response sur-
face is found from the slope of the surface in each of the co-ordinate
directions at that point. In many optimising problems these slopes must
be found by numerica’l methods. A simple method was first employed in
this project, but it was found necessary to improve on this, and five
different methods were used during the progress of the work. These
methods are described in Appendix A2 and the times at which they were

used are indicated at the appropriate places in this report.

4,3.2 Scaling the Parameters

Scaling may be used to change the shape of the response sur-
face and alter such difficult features as long, flat-bottomed valleys.

Scaling is achieved by transforming some of the parameters.

An idea of the important influence of scaling on the efficiency
of search methods may be obtained by comparing the steepest descent
searches on the two surfaces represented by the contour maps illustrated
in Fig. 4.5. Where the contours are circular, steepest descent will
find the minimum in one iteration, but in other cases, the number of
iterations depends on the degree of '"elongation'" of the:-contours and

the required accuracy in locating the minimum point.
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FIGURE 4.5
THE INFLUENCE OF SCALING ON
THE EFFICIENCY OF SEARCH METHODS

The parameters should therefore be transformed in such a way
that the new response surface has near-circular contours, but little
guidance iIn this matter is offered in the current literatuie on opti=
misation. The problem is discussed in more detail in Appendix k2.
Some attempt at improving the shape of the response surface was made

in the work with Lidsdale No. 2 catchment described in Section 7c
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5. SEARCH FOR OPTIMUM PARAMETER VALUES FOR THE POKOLBIN CATCHMENTS

These four adjacent catchments are in the Pololbin area, loca-
ted several miles north west of the town of Cessnock in the Hunter Vailey,
New South Wales. They were among the first for which concurrent rain-
fall and runoff records were received under the data compilation and
transfer section of A.W.R.C. Research Project 68/1. The areas and periods

of data used for optimisation are as follows:-

Catchment Area Rainfall Data Runoff Data
(acres)

First .Ck {1-1-1964 to 31-12-1964

(stte 1) | 90 ‘{1-4-1965 to 31-10-1968} 27-10-1965 to 12-5-1969

Middle Ck- | 1909 ditto 13-12-1963 to 13-5-1969

(Site 2)

Deep. Ck. 6300 ditto 13-11-1963 to 13-5-1969

(Site 3)

Deep k. 1180 ditto 13-11-1963 to 13-5-1969

(Site 1)

Maps and descriptions of the catchments, including soil survey informa=

tion, are presented in Appendix A3.

The rainfall data available when work commenced with these
catchments were daily falls at ten stations on and near the catchments.
Average catchment rainfalls for the four catchments were estimated from
these records by Thiessen weighting using all available records at any
given time. (The individual station records were not all concurrent and

the average length of record was about three years.)

Evaporation data were obtained from maps of mean monthly eva-

poration issued by the Commonwealth Bureau of Meteorology and converted
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to potential evapotranspiration by applying pan factors which were obtain-
ed from the work of Penman and used by Boughton (1965). The factors

were: -

0.8 Nov., Dec., Jan., Feb.
0.7 Mar., Apr., Sept., Oct.
0.6 May, June, July, Aug.

The mean monthly figures were then divided by the number of days in the

month to obtain average daily potential evapotranspiration.

Ideally, the daily potential evapotranspiration data would be

estimated by an energy balance method using meteorological data or,
~alternatively, from daily observations of pan evaporation. Such data

would rarely be available, particularly for catchments of the size
included in this project. A compromise is the use of observed total
monthly pan evaporation data to derive average daily figures. Records
were sought from pans at Stockyard Ck., about 15 miles socuth west, and
Tocal, about 20 miles north east of the catchments, but were only avail-

able for a few months concurrent with the rainfall and runoff data and

were of poor quality.

The runoff data provided were average daily flows in cu.ft.;sec.

There were a few missing pericds of several days in the records.

The Steepest Descent and Simplex (Nelder and Mead) metheds
were used to search for the optimum parameter values of the Boughton
model for these catchments. Each time the methods call for a run of
the data through the model (i.e., for each set of trial parameter
values) it 1s necessary to assume starting values for the quantities of
water in the various moisture stores. For the Pokolbin catchments it

was assumed that the Interception Store was initially empty and thatr
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the other stores were initially half full. The squares of deviations
between observed and calculated monthly runoff quantities for the first
six months of model operation were not added into the objective function
to allow for bias in the output of the mddel caused by differences
between the assumed and actual (but unknown) initial quantities in the
stores. The use of the above initial storage quantities and of a
"warm-up'" period of six months is now thought to be inappropriate, and

is further discussed in Section 8.

When a period of missing record was encountered in the runoff
data, operation of the model continued but any calculated runoff in that
period was not added into the menthly total when calculating the object-
ive function. A period of missing record in the rainfall data required
operation of the model to cease. Operation was re-commenced with re-
initialised storage contents at the end of the period of missing record
and a further "warm-up" period of six months was observed before further

additions were made to the objective function.

In the programme to apply the Steepest Descent method, the
steepest descent directions were first defined by Method 1 described in
Appendix A2. The minimum point on ‘each descent direction was found by
‘the procedure described in sub-section 4.1.1 without using parabolic

interpolation.

In using the Simplex method, it was soon observed that after
approximately fifty iterations the simplex had contracted so that there
were only small differences between the points and that further reduc-
tion of the objective function was slow. However, it was found that
significant further improvement could sometimes be obtained by continuing
the search with the Steepest Descent method. The procedure of commencing
the search with the Simplex method and continuing with the Steepest

Descent method was therefore used frequently.
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The general aim of this work for each catchment was to commence
searches from several different sets of parameter values and, hopefully,
to arrive by different routes at one set of values which could be
regarded at least as a local optimum set of parameter values. Such a
result would have indicated that the search techniques had been implemen-
ted correctly and that the response surfaces for the catchments were
relatively easy ones on which to search for the minimum. However no two
searches arrived at a common point for any of the catchments. Sometimes
the parameter values for a particular catchment arrived at by the search
techniques were used to start the search for optimum parameter values
for another catchment. Table 5.1 lists some of the points on the

response surfaces which were found by this work for the four catchments.

TABLE 5.1
POKOLBIN CATCHMENTS. POINTS ON RESPONSE SURFACES
VSMAX USMAX DSMAX SSMAX EVPMAX PV  FC FO KF SUMSQS

P;”‘t pts/ _ @ts/ Bt/
o. (pts) (pts) (pts) (pts) day) day) day)
First Creek (Site 1)
1 3 164 24 711 60 0.8 3 674 0.005 736
2 2 192 143 805 32.5 0.51 4 419 0.010 1189
3 3.9 206 135 1264 35.3 0.44 4 736 0.011 805
Middle Creek (Site 2)
1 3 155 24 706 60 0.9 3 667 0.005 7687
2 2 178 153 873 30.5 0.52 3.8 403 0.012 726
3 6.3 119 149 1555 25.3 0.42 1 344 0.007 1950
Deep Creek (Site 3)
1 3 177 24 757 60.5 0.75 3 708 0.0042 187
2 2 189 193 765 33.1 0.45 4.5 408 0.009 . 185
3 3 104 39 828 61.3 0.69 8 695 0.0038 352

Deep Creek (Site 4)
1 5.3 134 23.3 1190 61.4 0.62 9.74 925 0.0018 580
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Some other points at which either the objective function value
was significantly higher than those above or the parameter values were
considered to be extreme were obtained also. Points 1 and 3 for First
Creek and points 1 and 2 for Deep Creek (Site 3) illustrate the state-
ment made earlier that different sets of parameter values may be found

which give similar values of the objective function.

The steepest descent searches stopped at the points shown in
Table 5.1 when no improvements were possible along the descent direc-
tions chosen at those points. This implied that the directions were
being defined erroneously and prompted a reappraisal of the method used
to choose the descent directions. Some inadequacies in Method 1 for
defining the steepest descent directions are described in Appendix A2.
Method 2, which was designed to overcome these inadequacies, is also
described. The programme to apply the Steepest Descent search was

modified to define the descent directions by Method 2.

The point No. 1 for Middle Ck. (Site 2) listed in Table 5.1
was then used as a starting point for this modified programme, with the

following result:-

Point VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF SUMSQS
Start 3.0 155 24 706 60 0.9 3 667 0.005 7687

New

Optimum 4.6 156 42 755 62.5 0.92 0 643 0.005 6383

Considerable computing effort was required to achieve this reduction in
the objective function. The course of the optimisation was through 62
changes in direction. Each new definition of the descent direction by
Method 2 usually required an average of 14 runs through the Boughton
model, Sometimes two or three times this number of runs were required

when smaller than usual parameter increments had to be used. Together
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with the model runs involved in stepping along each direction, the total
number of runs through the Boughton model was approximately 1500, with

about 4% years of daily data per run.

A further modification was made to the programme so that, in
stepping along each descent direction, the lowest point along the line
was found using the parabolic fitting method described in sub-section
4.1.1. Unfortunately this did not lead to any significant improvement
on the above performance, but the modification was retained as it is,

theoretically, an improvement on the earlier method.

The starting point and the points at the bottom of the first
nine descent directions of the search described above were then used as
a starting simplex for the Simplex method. Using only 130 runs through
the Boughton model, the objective function was reduced to a value of

2936. The following changes in parameter values occurred:-

VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF  SUMSQS
Start 3.0 155 24 706 60 0.9 3.0 667 0.005 7687

Lowest point in Simplex after 130 model runs:-
3.5 175 94 1093 52 0.98 3.3 606 0.0055 2936

Further alternate application of the Steepest Descent and the
Simplex methods led to the following point:-

VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF  SUMSQS
3.8 180 96 1955 227 0.97 2.0 1578 0.0056 2757

Little further reduction in the objective function occurred,

but some of the parameter values changed quite markedly. Some form of
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inter-action appears:to be present between the parameters SSMAX, EVPMAX
and FO.

Theoretically, a more satisfactory measure of the fit of the
calculated runoff to the observed runoff is the sum of the squares of
the deviations between the calculated and observed totals for each
runoff event (see Section 9). Optimisation was therefore attempted using
ancobjective function based on event deviations to see if the corres-
ponding response surface was an easier one on which to locate the minimum

point. This was done concurrently with some of the work described above.

The Steepest Descent programme (with Method 1 described in
Appendix AZ to define the descent directions) was modified to evaluate
the objective function using event deviations. The start and end of a
runoff event may be defined in many ways, but for this application, the
start was taken to be the first day on which a rise occurred in the
observed runoff hydrograph, and this also marked the end of the previous
event. Thus, many events encompassed a long period of zero runoff at

the end of the recession curve.

The parameter values at points 1 and 2 for Middle Ck. (Site 2)
in Table 5.1 were used to start two searches for the minimum of the

event-based objective function, with the following results:-

Point VSMAX USMAX DSMAX SSMAX EVPMAX PV FC FO KF SUMSQS
(over events)

Point No. 1 (SUMSQS over months was 7687)

Start 3 155 24 706 60 0.9 3.0 667 0.005 7754

End 3 155 24 713 60 0.89 3.0 666 0.005 7640

Point No. 2 (SUMSQS.over months was 726)
Start 2 178 153 873 30.5 0.52 3.8 403 0.012 846
End 2 197 156 788 32 0.52 4.2 399 0.013 618
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The end points of the above searches are: not significantly dif-
ferent from the start points, which themselves were the end points of
searches where the objective function was summed over monthly deviations.
Also, there are only.small differences in the numerical values of the two
objective functions for a given set of parameter values. Inspection of
the runoff record reveals that there are only several months which contain
more than one runoff event. In each of these months there is no more
than one event which contributes significantly to the objective func-
tions. Under these circumstances, the two functions are virtually the
same and their response surfaces would be expected to be of very

similar shape.

As unique sets of optimum parameter values could not readily
be found for the Pokolbin catchments and as similar difficulties were
expected for other catchments it became necessary to reconsider the
aims of the project. It was thought that the remaining time would best
be spent in a concentrated search for the optimum parameter values for,
if necessary, only one catchment. The aim was to find an efficient
optimisation strategy which could then be used for other catchments.
This work involved examining and introducing more efficient search
methods and investigating such problems as parameter inter-dependence
and the scaling of the parameters during optimisation. It has been
necessary for greater clarity to describe this work in separate sections
in the remainder of this report although many different aspects of the

work were inter-related and were performed concurrently.
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6. CHANGES INTRODUCED INTO THE BOUGHTON MODEL CALCULATIONS

Changes were made in the evapotranspiration and infiltration
calculations of the Boughton model. These were found to be desirable

during the algebraic analysis of the model, described later in Section 8.

The evapotranspiration and infiltration functions in the
Boughton model are used to find total daily amounts for these processes
given the contents of the moisture stores at the start of the day.
Although only daily quantities are calculated in the changed calcula-
tions, the processes are regarded as continuous and the functions are
used to relate instantaneous values of these processes to the soil store
contents. As the processes influence the store contents and are at the
same time functions of these contents, the daily totals used in the
amended model calculations are found from expressions derived by inte-

grating the instantaneous functions over a period of one day.

The changed calculations have the following advantages:

(1) they prevent the occasional unrealistic result such as
"over-filling" of the Lower Soil Store during infiltration
and "over-emptying'" of the Upper Soil Store by evapotrans-
piration under some combinations of parameter values, and

(ii) they allow the contents of the stores at a given time to
be expressed more easily in terms of the model parameters

and the data.

The changed calculations were introduced before the work with

Lidsdale No. 2 catchment described in Section 7.
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6ol EVAPOTRANSPIRATION CALCULATIONS

The évapotranspiration calculations in the Boughton model are
based on the simplified concepts of fixed values for the field capacity
and wilting point and it is assumed that the variations of these values
from real conditions do not introduce major errors into the calculationso
The model assumes that when the soil moisture level is at field capacity-
there is a limiting rate at which évapotranspiration (abbreviated to
e/t in the discussion below) will occur from the catchment. This rate
is a parameter of the model, EVPMAX. As the soil dries out, the limitiiig
e/t rate decreases linearly to zero when the soil moisture level is at
wilting point. On days when the potential e/t rate, determined by
meteorological conditions, is less than the limiting rate at the current
soil moisture level, e/t occurs at the potential rate.

. EVPMAX, [limiting e/t rate at field
capac i t
EYPMAX X S/C
E, Potential e/t rate

Wilting Field
point capacity

Soil moisture level, S

FIGURE 6.1
THE EVAPOTRANSPIRATION FUNCTION-
USED IN THE BOUGHTON MODEL

Referring to Fig. 6,1 then, the actual e/t loss, on a day when the pot-
ential loss is E, is determined from the lower of the two straight lines



37.

at the current soil moisture level. The e/t function therefore consists
of the two heavily drawn straight line segments. The height of the

horizontal segment can change from day to day if daily potential e/t
data are available.

In algebraic terms, the actual e/t loss is determined as
follows:-

if E < %x EVPMAX  then the e/t 1oss

= E (6.1)
if E > %x EVPMAX  then the e/t loss = %x EVPMAX 6.2)

In the Boughton model the soil is represented by two stores.
The e/t loss for each store is computed separately by the above method
and then multiplied by PV for the Upper Soil Store and (1 - PV) for the
Lower Soil Store, where the parameter PV is a fraction which would depend

on the rooting of the vegetation.

In algebraic terms, the actual e/t loss from each store is

determined as follows:-

(a) Upper Soil Store

if E < us ESSX§MAX then the e/t loss = PV x E (6.3)
. US x EVPMAX _ US x EVPMAX
if E 2 GSHAR then the e/t loss = PV x SR

' (6.4)

(b) Lower Soil Store

if E < S8 §S§X§MAX’ then the e/t loss

(1-PV) xE (6.5)
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SS x EVPMAX
if E =2 §§—§§5%§Mé§ then the e/t doss = (1 - PV) x SSMAX
(6.6)

The change which was introduced influences these calculations
at the lower soil storage levels when the actual e/t is determined from
the sloping segment of the e/t function. On this segment the e/t rate
is a function of the current stored.contents and should decrease through
the day as the contents are depleted. In effect, the e/t function illus-
trated in Fig. 6.1 was regarded as giving an instantaneous e/t rate
rather than a daily e/t quantity. The daily e/t quantity was found by

integration.

This change eliminated an unrealistic calculation which some-
times occurred when equation (6.4) was applied for the Upper Soil Store.
When the estimated values of PV and EVPMAX were high and the estimated
value of USMAX was low, then PV x EVPMAX/USMAX became greater than 1,
and the e/t loss was then greater than the current contents, US. Thus,
the store could be completely emptied in one day even though the rate
of loss should have been restricted by low soil moisture and zero

storage approached in an exponential manner.

On the sloping segment of the e/t function, the e/t rate equals
the rate of change in the soil storage level and is a function of this

level. Using the symbols in Fig. 6.1, the governing equation is

ds

x - kS ©-7
EVPMA

where k = - —-E—2S . (see equation 6.2)

The negative sign is included because S decreases with time. If this

equation were applied for the Upper Soil Store,
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S would be equal to US,

PV x EVPMAX

k would be equal to — GSMAX

Equation (6.7) is integrated in Appendix A4 for one day's e/t.

The result is
S = e + S . (6.8)

The subscripts 6 and 1 denote storage contents at the start and end of

the day respectively.

Applying this result to the two soil stores of the Boughton

model, the amended e/t calculations are:-

(a) Upper Soil Store

. US x EVPMAX _ _
if E < TSMAX then US1 = US0 PV x E, as before
(6.9)
PV x EVPMAX
US x EVPMAX B USMAX
i > = = 6.10
if E 2 TSMAX then US1 US0 X e ( )
(b) Lower Soil Store
. SS x EVPMAX
22 &S - 2 = - (1 - PV) x E, as before
if E < SSHAY then SS1 SSO ( ) a
(6.11)
(1 - PV) x EVPMAX
SS x EVPMAX - SSMAX
i = SS§ x e
if E =2 SSHAX then SS1 0
; (6.12)
. US x EVPMAX .
For the Upper Soil Store, if E > -__%§HKY——' for a period of

fy days, it can be shown that
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n x PV x EVPMAX

US. = US xe USMAX (6.13)
n 0
If E < y§_%§§%§ﬂé£ at the start of a day, but the discontinuity in the

e/t function is crossed during the day, then

EVPMAX x (USC + PV x E - USp)
- USMAX x E

US1 = USC x e (6.14)
E x USMAX . . ..
where USC “EVPMAY and is the value of US at the discontinuity.

Expressions similar to equations (6.13) and (6.14) may be found for the

Lower Soil Store.

The effect of the changed calculations is to reduce the loss
from the soil stores in the lower range of store zontents, but the over-

all effect on the operation of the model appears to be small.

6.2 INFILTRATION CALCULATIONS

In the original calculations of the Boughton model, the contents

of the Drainage Store infiltrate into the Lower Soil Store at a daily

rate given by

A -KF x
F = FC + (FO - FC) e XSS . (equation 3.1)

This rate is a potential rate which is only satisfied if the contents of
the Drainage Store are sufficient. In addition, part of any overflow

from the Drainage Store enters the Lower Soil Store, the actual amount

being determined by a function of F.

Several unsatisfactory effects are obtained when the above
function for F is used. These are:-
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(1) F is a function of the contents of the Lower Soil Store, but not
of the capacity of the store. The contents alone do not reflect
the wetness of the soil, on which the infiltration rate depends.
If the capacity of the Lower Soil Store was 500 pts and the cont
tents 400 pts, the soil would be relatively wetter, and have a
lower infiltration rate, than when the capacity was 1000 pts and
the contents 400 pts. However the above function will give the
same value for F in both cases.

(ii) Infiltration can occur when the Lower Soil Store is full, result-
ing in "over-filling" of this store. When this occurs, the con-
tents are re-set to SSMAX and the amount of "over-fill" lost from
the model. It seemed preferable that all water entering the
model should be accounted for and that infiltration should reduce
to zero as the contents approach SSMAX.

(iii) Very large values of F are obtained when SS is low, and SS can
therefore change markedly during one day. However it is assumed
that infiltration goes on at the same rate during the day as the
store fills. In a similar approach to that used for the evapo-
transpiration calculations, it was thought that._the instantaneous
rate should decrease through the day as the contents increase
and that the daily potential infiltration amount should be found

by integration.

A function for an instantaneous infiltration rate was: sought
where F depended on both SS and SSMAX, F approached zero as SS approached
SSMAX, and which could be integrated to obtain an expression for the

potential daily infiltration amount.

Equation (3.1) was first regarded as giving an instantaneous
rate instead of a daily infiltration quantity. The parameter FC, which
frequently tended to zero in optimisation runs, was effectively set to

zero by eliminating it from the equation, and SSMAX was introduced into
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the exponent of e. The resulting equation was

F = FO-e_KF . SS/SSMAX (6(15)

The numerical value of KF will now be different from the KF
value in equation (3.1). As SS approaches zero, this function approaches
FO, but as SS approaches SSMAX, the: function has a positive component,

Fo-e XF. A suitable function which eliminates this is

e—KF + SS/SSMAX  SS KF

—22 _ FOse

SSMAX (6.16)

F = FO-
However, this function proved too difficult to integrate and the function
finally adopted was

o-KF + SS/SSMAX _ . -KF (6.17)

F = FO.
This function approaches zero as SS approaches SSMAX, but approaches
FO(1 - e‘KF) as SS approaches zero. However the effect of this was
expected to be small. Equations 3.1 and 6.15 to 6.17 incl. are plotted

for comparison in Fig. 6.2,

As infiltration proceeds, the rate of change of storage in the

Lower Soil Store ie equal to the infiltration rate, i.e.,

d($S) _ & - go.

e—KF + SS/SSMAX -KF
dt -

FOse (6.18)

The change in SS over one day is the total amount of infiltra-

tion and must be found by integrating equation (6.18).

Using F now to denote the potential daily infiltration amount

rather than the instantaneous rate, the vesult of the integration, shown
in Appendix A4, is
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F = SSMAX (@ . in 1 . D . DeVN("VVY/SSMAX - _ SsS
(6.19)

where D = e"™ * " e" A" /SSMAX

and SS = storage at the start of the day.

.equation 3. 1 (total daily F)

-equation 6 (instantaneous F)

~equation 6 (instantaneous F)
(instantaneous F)

FIGURE 6.2
COMPARISON OF INFILTRATION FUNCTIONS

This F value is the potential daily infiltration amount and
is only satisfied 1T the supply of moisture is maintained continuously
throughout the day. Therintermittent nature of infiltration has its
effect on the model calculations when the contents of the Drainage
Store are insufficient to satisfy the F value derived above and also

when this value is used in the equation to calculate runoff from the

amount of water which overflows the Drainage Store,
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Q = P - F tanh(P/F). (equation 3.2)

When the stored contents of the Lower Soil Store approach the
capacity of the store an equilibrium state is reached where the inflow
by infiltration from the Drainage Store equals the outflow to groundwater
calculated by applying the subsoil depletion factor of 0.999. The store
therefore never fills completely and a small flow through the store is
always maintained despite the fact that the infiltration function was
designed to approach zero as the store approached the full state and
does not include a constant term which is independent of the soil mois-

ture level.

The changed calculations give a lower potential daily F and
higher runoff at a given level of storage. However as low infiltration
and high runoff for one event tend to give low soil storage and there-
fore high infiltration and low runoff for the next event, the nett
effect of the changed calculations over a number of events is not
clear. The changed calculations were introduced into the model during
preliminary work with Lidsdale No. 2 catchment and gave significant

improvement in the objective function.
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7. SEARCH FOR OPTIMUM PARAMETER VALUES FOR LIDSDALE NO. 2 CATCHMENT

After the work with the Pokolbin catchments described in: Sect-
ion 5, the Lidsdale No. 2 catchment was selected for the bulk of the

optimisation work in this project for the following reasons:-

(1) pan evaporimeter records were available instead of average
monthly evaporation data, enabling more accurate modelling
of the drying of the catchment;

(ii) soil moisture data were also available. Comparison of the
contents of the soil stores of the model with these data
could provide a check on the operation of the model;
and

(iv) the recording rain gauge and water level recorder charts
for this catchment are held by The University of New South

Wales and were readily available for scrutiny if required.

The Lidsdale No. 2 catchment is one of a group of eleven catch-
ments in the Lidsdale State Forest, situated approximately eight miles
west of Lithgow, New South Wales. The catchments are operated by The
University of New South Wales with the assistance of the Forestry
Commission of New South Wales, The No. 2 catchment has an area of 31.8
acres and the vegetation is planted Radiata Pine forest. Mr. M. K. Smith
of the Forestry Commission has described the catchment in greater detail,

(Smith, 1972), and his description is quoted here in Appendix A3.

Daily runoff figures and monthly evaporation figures were
extracted from the records and made available by Mr. Smith. He also
made available soil moisture data which he has been collecting and
provided estimates based on physical considerations for the values of
the parameters of the Boughton model for this catchment. This assistance

is gratefully acknowledged.
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The period of concurrent rainfall, evaporation and runoff data

used for optimisation was from 17-10-1968 to 28-2-1971.

During the progress of the search for optimum parameter values
for this catchment, many aspects of the optimisation problem were inves-
tigated, and sometimes this work influenced the course of the search.

In the following sub-sections the course of the search is cutlined, the
investigations which were undertaken are described, and the resulting

parameter values are discussed.

7.1 OUTLINE DESCRIPTION OF THE SEARCH

The progress of the search is shown graphically in Fig. 7.1.
Sets of parameter values and their corresponding values of the objective
function are presented in the same way as for the rectangular co-
ordinates of a point in 9-dimensional space. The figures are always

in the following order:-
VSMAX, USMAX, DSMAX, SSMAX, EVPMAX, PV, FO, KF, SUMSQS.

At the start of the search, the steepest descent direction
was being found incthe Davidon programme by Method 3 described in
Appendix A2. Thwoughout the search the parameters were scaled to improve
the shape of the response surface. This is also described in Appendix
Az. The parameter values quoted in Fig. 7.1, however, are the equiva-

lent untransformed values,

Two strands of the search started when the parameter values
estimated from physical considerations were used as a starting point
for the Simplex and Davidon methods. When run until little further
change was occurring in the parameter values, these methods led to two

different points. A third strand was started using the Davidon method



Strand 1 Strand J Strand 3
(Points No.1) (Points No.J) (Points No.3)
i Jl
M.Smith"s estimates Arbitrary point
Siart 10,30,35,750,30,0.25,500,3.75,38274 I rson 0.5.1000 5.61543!
- - T —/\r 7 I ] ’
167 Simplex it"ns. 49 Davidon it"ns. 40 Davidon 1it"ns.
then 150 Simplex it"ns.
=ilaeg 1 r32,3y,W,TI3T, 58,1500,0. 172,5468] [ 6,102 ,125,1041). 15, 0.76", 864,4. 224 ,"954 ,
n - T -
159 Simplex 1it"ns. 185 Simplex itns. 22, 49, 91,13n, 41, 0.83, 993,3.344 ,4773]
15,0.637,1897,0. 043"4868_ G,L 67,.112,1247"I 20,0.738-.8-60-.2.636.4513 22, 22,208, QSQ, SiBﬂ'QXSZiIt,'”$54,2.288,2262|
KF shifted, then 18 Davidon it"ns. 9 Davidon it"ns. 12 Davidon it"ns.
; +
1~,18,139,1286,18.7,0.603,1900, 2.93.2484 7.8, 64,134,1269,18.55.0.726.886.1.052.3887 23, 23,209, 960, 56,0.548, 754,2.308.2188!
i, _— ) 1 . . .
54 Simplex it"ns. 90 Simplex it"ns. 20 Davidon it"ns. 8rDavidon it'ns.

only VSMAX, USMAX, PV vary

4 53. 4.139.1286.18.7.0.573,1900. 2.93,2301 60,1,134,1269,18.55,0.58,886,1.052,2317

61,0,134,1269,18.55,0 .576,886,1.052,2306
one point.

60, 1,139,1269,18.47, 0.576, 886, 1.052.2318

J
320 Simplex it*ns. FO, KF
held constant

53.5,0.7,282,1114, 18.6, 0.513, 886_, 1.052,2106

314 Simplex 1it"ns.
all params. vary.

44.6,6.2,512, 797,19.8,0.4595 ,1180,0.1275,1800

the points below were each generated by one
Simplex run of approx. 160 it°ns. using the
above point as a start but with EVPMAX
progressively moved away from 19.8

Alternative
KF = 3.7 gives
SUMSQS = 1822

Starting
value of

EVPMAX
25 ,567, 645, 24.9.0.4539.1195.0.0863.1791

48.9,6.1
30 48.7,6.3,487, 731, 27.3,0.4731, 981.0.1359.1811
35 48.1,6.4,515, 618, 36.6,0.4494, 983.0.1007.1785
40 49.1,6.2,482, 679, 33.7.0.4632.1241.0,0900.1792
45 49.9,6.4,466, 690, 34.9,0.4660,1166,0.1004,1796

Note:- Parameter values are given in the following order:-
VSMAX, USMAX, DSMAX, SSMAX, EVPMAX, PV, FO, KF, SUMSQS

FIGURE 7.1

SEARCH FOR OPTIMUM PARAMETER VAUJFS
EIDSDALE No. 2 CATCHMENT.

33.6,12.6,209, 960, 56,0.511, 754,2.308,2066

graphical opt"n of VSMAX, USMAX, EVPMAX.
Davidon method made poor progress varying
these parameters. |

44, 7.7,209, 960, 50,0.511, 754,2.308, 1977

110 Simplex it"ns.
only VSMAX, USMAX,lEVPMAX, PV vary

44, 9.5,219, 960,48.5,0.524, 754,2.308, 1954

330 Simplex it"ns.
all params. vary.

35,14.7,328, 805,50.2,0.499, 485,2.174,1879

53 Simplex it"ns.
only VSMAX, USMAX, PV vary

Stage 8 43.7, 8.9,328, 805,50.2,0.490, 485.2.174 .1850

370 Simplex it"ns.
all params. vary.

Stage 9 45.9, 8.4,299, 738, 123,0.480, 788 .3.246 .1815
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from an arbitrarily selected starting point. The three points abtained

at the end of these searches are listed at Stage 1 in Fig. 7.1.

Very large reductions in the objective function, from vaiues
of approximately 38,000 and 62,000 to values in the region of 5,000, were
achieved by these optimising runs. As only very minor changes were
occurring in the parameter values near the ends of the runs, and as the
large differences in the parameter values between the points indicated
that these points were widely separated on the response surface, it
appeared that three distinct local minimum points had been approached.
There seemed to be little possibility of making further significant
improvements in the objective function. However it was felt that if
interdependence existed between some of the parameters, giving long,
relatively flat-bottomed valleys in the response surface, then the
three points could merely be lying at different places on the ficcr of
such a valley. If this were so the possibility existed of moving the
points along the floor of the valley to its lowest point, thus bringing
the three widely separated points together and locating a real minimum
point. This aim was pursued in the remainder of the search. Ths
measures undertaken to further the search at the various stages indi-

cated in Fig. 7.1 were as follows:-

Stage 1 For the parameter values at points 1 and 3, graphs
of the total contents of the Upper Soil, Drainage and Lower
Soil Stores plotted against time were prepared and ccmpared
with the soil moisture data. These indicated that the value
of 260 pts. being used for the initial contents of the Lower
Soil Store, i.e., at 17-10-1968, was too low. A value of

600 pts. was:cadopted.

At about this time, Method 4 (see Appendix AZ:

was adopted for finding the steepest descent direction at

each iteration of the Daviden method.
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Stage 2 Suspected inter-action between parameters FO and
KF was studied at about this time. An alternative value for
KF of 3.5 was substituted in point 1 before starting the

Davidon method.

Stage 3 Several suspected parameter inter-actions were
investigated at this stage. The findings which significantly

affected the course of the search were:-

(a) The objective function was relatively
indifferent to a large range of combin-
ations of FO and KF values.

(b) Bearing this in mind, and comparing the
remaining parameters of points 1 and 2,
only VSMAX, USMAX and PV showed signi-
ficantly different values. It was found
graphically that “hese parameters could
be optimised to the same values from their
values at both of the points 1 and 2,
thus bringing these two points together
at an improved value of the objective
function. Also, improvement of point
3 was possible by optimising only the

above 3 parameters.

It was therefore decided to operate the optimising
methods holding all parameters except VSMAX, USMAX and PV

constant.

Stage 4 Application of the optimising methods with only
VSMAX, USMAX and PV varying confirmed the conclusions above.

As there were still minor differences in the parameter values
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at points 1 and 2, a point was nominated as the place where

strands 1 and 2 converged and this is listed at Stage 5.

It was found graphically that improvement of
point 3 was possible by optimising VSMAX, USMAX and EVPMAX
only. The Davidon method was operated from this point with

the other parameters held constant.

Method 5 (see Appendix A2) for finding the
steepest descent direction in the Davidon method was adopted

at this time.

Stage 5 On strand 3, the Davidon method encountered
difficulties in optimising VSMAX, USMAX and EVPMAX and these
parameters were re-set using the graphical results from

Stage 4.

After the sub-optimisation work in the previous
stages it was decided to allow a greater number of para-
meters to vary during optimisation. As difficulties had been
experienced with the Davidon method, the Simplex method was

used for the remaining work.

Stage 6 At this stage optimisation was continued with all

of the parameters varying once again.

Stage 7 These points were considered to be relatively
close to each other on the response surface as
(a) the differences in the VSMAX, USMAX
and PV values could possibly be reduced
by further optimisation varying these

parameters only,
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(b) the indifference of the objective
function to a large range of com-
binations of FO and KF noted above
indicated that the differences
between these parameters at this
stage could be neglected,
and

(c) although the values of DSMAX were
significantly different, in both
cases the values were tending to

become unusually high.

The values of EVPMAX were still significantly
different. It was suspected that a range of points could be
found in which EVPMAX varied progressively between these two

values.

Stages 8 § 9 All these points appear to be lying along the

floor of a valley in the region of the lowest point of the
valley. It is not possible to identify a distinct minimum

point.

At the point where the objective function value
is 1800, an alternative value of 3.7 was found for KF which
gave a small rise in the value of the objective function

to 1822.

The sets of parameter values at Stages 8 and 9 appear to be
spread along the floor of a valley in the response surface and are

probably close to the lowest point in the valley.
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7.2 THE INVESTIGATIONS UNDERTAKEN DURING THE SEARCH

The investigations and actions taken at the various stages of
the search are explained in greater detail in this sub-section. The aim
of this work was to find downhill paths from the three widely separated
points at Stage 1 with the hope that these paths would eventually con-

verge to the one minimum point.

7.2.1 Use of the Soil Moisture Data

The contents of the soil stores of the model were compared with
the soil moisture data to see if the comparison would indicate any

measures which could be taken to assist in the optimisation.

The soil moisture data provided by Mr. Smith were average
figures from the readings at four sites whose locations are shown in
Appendix A3. Soil moisture figures for each 10 inch interval of soil
down to a depth of 80 inches and an additional 5 inch interval to 85
inches were provided. Very small changes in soil moisture take place
at this depth. The readings were at an average interval of eleven

days, the shortest interval being 5 days and the longest, 35 days.

Total soil moisture in the 85 inches metered depth is plotted
in Fig. 7.2. Some adjustments to these data were considered to be
justified for the purposes of this project. There were two types of
inconsistency between the changes in soil moisture in some periods and

the rainfall, runoff and evaporation data for those periods:-

(1) rises in soil moisture were sometimes greater than the rainfall,
and

(ii) the change in soil moisture sometimes required a loss of moistur

at a significantly greater rate than the open water evaporation
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ratecand, in a few additional cases, at a greater rate than the

estimated potential evapotranspiration rate.

The periods when these inconsistencies occurred are shown in Fig. 7.2.
Errors in the data for any of the four variables (rainfall, runoff,
evaporation and soil moisture) could have caused these inconsistencies,
or the data may have been unrepresentative of the whole catchment. Some

likely reasons for the data being unrepresentative of the catchment

would be:-
(i) horizontal re-distribution of soil moisture, e.g., by interflow,
' and

(ii) point rainfall data are not always good estimates of average

catchment rainfall.

It seemed unreasonable to compare modelled soil moisture
figures with observed soil moisture data which were inconsistent with
the rainfall and evaporation data used in the model. Accowrdingly, the
soil moisture figures were adjusted to comply with the other data, the
changes in most cases being merely sufficient to resolve the inconsisten-
cies. Greater adjustments could probably have been justified in many
cases. The reconstituted data are also plotted in Fig. 7.2, where it
is seen that the more extreme fluctuations in soil moisture have been

smoothed out to some extent.

The stores of the Boughton model which represent various com-
ponents of soil moisture are the Upper Soil, Drainage, and Lower Soil
Stores. The calculated contents of these stores on the dates when the
soil moisture measurements were taken were summed and the totals plotted
for comparison with the soil moisture data. This was done using a
number of different sets of parameter values, and the resulting graphs

are shown in the figures listed below:-
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Fig. 7.3;  Graphs of modelled soil moisture with parameters
values on strands 1 and 3 at Stage 1.

Fig. 7.4; Graphs of modelled soil moisture with parameter
values on Strands 1 and 3 at Stage 3.

Fig. 7.5; Graphs of modelled soil moisture with parameter

values on Strands 1-2 and 3 at Stage 7.

Comparison of these graphs with the adjusted soil moisture data,
also plotted on the above figurés, shows thati:the fit of the modelled to
observed soil moisture improved as optimisation of the modelled runoff
proceeded. The graphs in Fig. 7.3 show that the modelled soil moisture
was too low for the first few months. This prompted the change in the
assumed initial contents of the Lower Soil Store from 260 pts. to 600
pts. The modelled soil moisture with near-optimum parameter values varies
in the same way as the observed data, but the magnitude of the fluctuat-
ions is smaller. As the rainfall and soil moisture data are not always
representative of average catchment values, the fit of the modelled to

observed soil moisture appears to be reasonable.



Legend: -
Original soil moisture data
Rise in soil moisture > rainfall.
Corresponding e/t rate > open water e/t rate.
Corresponding e/t rate > estimated potential rate

Adjusted soil moisture data.

i 1 1 _H 11— -1 1—1 h H h H h
M A M J S0 N D t M A M J J SO N D J i

1969 1970 1971
FIGURE 7.2. GRAPHS OF ORIGINAL AND ADJUSTED SOIL MOISTURE DATA
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6 Adjusted soil moisture graph (from Fig.7.2} overlaid in
"best fit" position by eye. Difference between zero of
adjusted soil moisture scale and zero of modelled
soil moisture scale is probably due to unavailable
moisture and to the measurement of soil moisture
down to an arbitrary depth.

16 X Modelled soil moisture, parameter values on Strand 1.

0 Modelled soil moisture, parameter values on Strand 3.

Modelled soil moisture is sum of contents of Upper Soil, Drainage and Lower Soil Stores

I\ -H 1 < H h + -l 1 H - . A
0O N DJ F M A M JI J A 0 N MoA J J AS oN b 5T
1968 1969 1970 1971

FIGURE 7.3  GRAPHS OF MODELLED SOIL MOISTURE WITH PARAMETER VALUES
ON STRANDS 1 AND 3 AT STAGE 1
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Adjusted soil moisture graph (from Fig.7.2)

See note on Fig. 7.3.

X  Modelled soil moisture, parameter values OH Strand 1

e Modelled soil moisture,

Modelled soil moisture is sum of contents of Upper Soil,

+ 1
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FIGURE 7.4
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Adjusted soil moisture graph (from 00

See note on Fig. 7.3.
_e18 Modelled soil moisture, parameter values on Strand 1-2.

Modelled soil moisture, parameter values on Strand 3.

16
Modelled soil moisture is sum of contents of Upper Soil, Drainage and Lower Soil Stores
-H 1 -H f i - I I -l h H H H h
0 N » J F MoA J J A SO N DI J F AM J J A SO N DI J F
1968 1969 1970 1971

FIGURE 7.5 GRAPHS OF MODELLED SOIL MOISTURE WITH PARAMETER VALUES
ON STRANDS 1-2 AND 3 AT STAGE 7.
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7.2.2 Numerical Studies of Parameter Inter-Dependence

The possibility of inter-dependence was investigated numericz-
1ly for a number of two-parameter and three-parameter combinations, as
this could reveal opportunities to make large changes in some parameter
values in circumstances where the resulting change in the objective
function was small and where, consequently, progress of the optimising
methods would be slow. The results of these investigations for three
of the combinations, FO-KF, VSMAX-USMAX-PV, and VSMAX-USMAX-EVPMAX,
influenced the search for optimum parameter values and these results
are presented below. In addition, results for the DSMAX-SSMAX combin-
ation support a conclusion reached in Section 8 and these results are

also described below.

(i) The Infiltration Parameters

For easy reference, the relevant equations are:-

Equation 3.1, the original equation used by Boughton to
give a potential daily infiltration amount,

F = FC+ (FO - FC) e XF*59

Equation 6.17, the equation for an instantaneous infil-
tration rate introduced in this project and described in
sub-section 6.2,

oKF < SSZSSMAX _ o, -KF

instantaneous F = FO-
Equation 6.19, which is obtained when equation 6.17 1s
integrated over a time period of one day to find the

potential daily infiltration amount allowing for the
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change in SS through the. day,

total daily F = SSMAX(1 + f%--lnLI—-~D
. DeKF(SS/SSMAX - 1))) _ ss

where

-KF
D = e-FO KF - e  /SSMAX

Equation 3.2, to calculate runoff from the amount of water,

P, which overflows from the Drainage Store,
P
Q = P-F tanh(ﬁa , and

Equation 6.11 and 6.12, to calculate evapotranspiration from

the Lower Soil Store,

SS
1

SS0 - (1 -PV)y xE if E < SS x EVPMAX/SSMAX

ss « o~ (1 = PV) x EVPMAX/SSMAX

SS
1 0

if E 2 SS x EVPMAX/SSMAX.

Interaction was suspected between the parameters FO and KF,
and was first investigated using synthetic data in a single store which

was similar to the Lower Soil Store of the Boughton model, and which is

illustrated in Fig. 7.6.

For every inflow P there is an outflow Q given by equation

3.2, in which the F value is found from equation 6.19. The amount of
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water which actually enters the store is P - Q. The contents of the
store are depleted by évapotranspiration according to equations 6.11
and 6,,12 in which, for this case, PV = O« Equations 302, 6,19, 6.11
and 6.12 therefore constitute the mathematical model of this store,

and the parameters of the model are SSMAX, EVPMAX, FO and KF. A 65-
day record of daily P values which contained ten rainfall events was

made up for use with this model.

FIGURE T .b
e/t SINGLE STORE MODEL FOR
\ STUDY OF FO-KF INTER-DEPENDEX*CF

P-Q

Arbitrary values for the parameters of the model, the
initial contents of the store, and the daily potential evaporation
rate may be assigned and a record of Q values generated by processing
the P data through the model. If different values are then assigned
to the parameters FO and KF and the P data are:.again processed through
the model, another record of Q values is obtained and the sum of
squares of the differences between the two records may be evaluated.
The FO-KF response surface may be plotted by evaluating the sum of
squares in this way at each node of a grid of FO and KF values. The
sum of squares will of courae be zero at the point where FO and KF
are equal t© the original arbitrary values, and these values may be

regarded as the optimum values.
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This procedure was carried out for two sets of arbitrary
values, and the two FO - KF response surfaces are shown in Figs. 7.7
and 7.8 Strong inter-action between these parameters is evident in
both cases and the surfaces are difficult ones on which to locate the
minimum point using search techniques. As the infiltration rate, F,
always approaches zero as SS approaches SSMAX, graphs of F versus SS
(equation 6.17) for different values of FO and KF are very close to-
gether at high values of SS, but are more widely separated at lower
values of SS. This probably accounts for the slightly lower degree
of inter-dependence in Fig. 7.8, as the contents of the store were

lower in this case.

To examine the inter-action, graphs of equation 6.17 were
prepared for a number of combinations of FO and KF values which lie on
the floor of the valley in Fig. 7.8. These graphs are shown in Fig. 7.9.
All the curves are fairly close together at values of SS greater than
about 400, but are readily distinguished from each other at lower
values. As the model was operated in this case with low values of SS,
the indifference to the wide range of infiltration curves was rather
surprising. Graphs of equation 6.19 (the total daily infiltration
amount, derived from the instantaneous rate) were then prepared for the
same combinationsocf FO and KF and are shown in Fig. 7.10. These
curves lie fairly clese together over almost the entire range of SS
values, and explain the indifference of the objective function to the

corresponding range of FO and KF combinations.

As the equation originally used by Boughton, equation 3.1,
was used as a basis for equation 6.17, and as the inter-action of FO
and KF could not be explained using graphs of that equation, it appear-
ed that most of the inter-action may have been induced by the use of
equation 6.19. It was thought desirable to check the amount of inter-

action present when the Boughton equation was used. The one-store
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model was therefore operated using the original Beoughton infiltrat:iorn
calculations and the response surfaces for FO and KF were plotted for
two sets of parameter values. These are shown in Figs. 7.11 and 7. 12
The inter-action, although ccnsiderably less than fcr the former cases,
is still quite strong and the surfaces are still difficult ones on

which to locate the minimum point.

Another notable difference between Figs. 7.7 and 7.8 {prepsved
using the modified infiltration calculations} and Figs. 7.11 and 7 12
(prepared using the original Boughton model infiltration calculations)
is that, in the former, _cross sections of the response surface at con-
stant values of FO greater than about 750 have two minimum points. Thus,
when using the modified infiltration calculations, there is usually an
alternative value of KF for given values of the other parameters. This
feature of the FO-KF response surface seems to have been introduced by
the second term in equation 6.17, through which the parameter KF, wh.ch
formerly only influenced the shape of the infiltration curve, now a:i:o

influences the intercept of the curve with the SS = 0 axis.

After these studies with the one-store medel, FO-KF response
surfaces were plotted “or the complete Boughton medel, using both the
modified infiltration calculations and Boughton's original infiltrat:ion
calculations. The other model parameter values were those chbtained at
point 2 in Stage 3 of the search fer the optimum parameter values fix
Lidsdale No. 2 catchment. The surfaces are plotted in Figs. 7.13 and
7.14, and they are of the same shape as those cbtained with the cne-
store model. However, in the case of the modified iInfiltration calicu-
lations, the response surface is relatively flat and the valiey in the
surface is wide. Within the large area bounded by the 4350 ccntours,
the objective function varies by less than 2%%. The function is there-
fore practically indifferent to a wide range of FO and KF combinaliuns

3 ] 101 infiltraticon cs° -
The surface obtained when using Boughton's original infiltraticon C2'7u
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lations has a steep-sided but almost flat-bottomed valley. There is a
much lower degree of indifference to various combinations of FO and KF.
However, in moving along the floor of the valley, the value of FO

changes from about 900 pts/day to about 2000 pts/day and, with a slight
accompanying change in the value of KF, the corresponding change in the
objective function is less than 1%. Thus, strong inter-action is still

present in this case.

The above findings explain the actions taken relative to the
FO and KF parameters at Stages 2, 3, 7 and 8 of the search. Thus, at
each of the Stages 2 and 8 of the search, substitution of the alterna-
tive KF value was used to narrow the differences between the various
points. At Stage 3 it was decided to neglect the parameters FO and KF
in the following optimisation runs because of the indifference of the
objective function to a wide range of combinations of these parameters.
For the same reason, the differences between these parameters were

ignored when.comparing the points at Stage 7.

It is evident that the use of the modified infiltration calcu-
lations has induced greater inter-action between parameters which were
already strongly inter-dependent. However, sound reasons were given
for modifying the original infiltration calculations and as the nature
of the inter-acticn between the parameters was now understood it was
not considered necessary to revert to the original infiltration calcu-
lations. There are similarities between the modified infiltration
function used in this project and the infiltration functions used in
other rainfall-runoff models (including some which purport to use the
Philip equation). Therefore it seems that inter-action between the

infiltration parameters will be a problem for most rainfall-runoff
models.
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(ii) The Parameters VSMAX, USMAX and PV

At Stage 3 of the optimisation, it was noticed that the main
differences between points 1 and 2 lay in the values of the above three
parameters and it was felt that, if a three-way inter-action was
present between these parameters, a path along the floor of a valley
in the response surface could possibly be found. between the two points.
Inter-action between VSMAX and USMAX was indicated by the algebraic
analysis described later in Section 8. The response surface for these
parameters was evaluated and is plotted in Fig. 7.15. The other
parameters had their values for point 2 at Stage 3 of the search.
Fairly strong inter-action between VSMAX and USMAX is indicated. The
response surface for USMAX and PV was also plotted, and is shown in

Fig. 7.16. Inter-action between these parameters is weaker.

To investigate the possible three-way inter-action, the
optimum value of VSMAX and the corresponding value of the objective
function were found at each point of a grid of USMAX and PV values
while the other parameters were held at their point 2 values. With
these data, a surface was plotted from which the optimum values of
VSMAX, USMAX and PV could be read for the fixed values of the other
parameters. This surface is shown in Fig. 7.17. It is not a response
surface, but a selection of points from the response surface, and is
analogous to the line along the floor of a valley in a response sur-
face for two parameters. The positions of points 1 and 2 at Stage 3
of the search are shown on this surface and it can be seen that
optimisation of the three parameters from both of these points should
lead to the one minimum point. The approximate path taken by the

Davidon method from point 2 is indicated in the figure.

A similar surface was plotted with the remaining parameters

held at the point 3 values, and is shown in Fig. 7.18. The surface is
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more compact in this case. The possibility of improvement in the values
of VSMAX, USMAX and PV is also evident.

Optimising runs were made in which only VSMAX, USMAX and PV
were varied to confirm that the search methods could move to the minimum
points of the surfaces plotted above. The runs were successful and they
resulted in the movement between Stages 3 and 4 of the search. While
improvements were made in the objective function values, it is more
significant that relatively large changes occurred in the values of the
parameters and thatithese resulted in the various points moving closer

together. A similar optimising run from point 3 at Stage 7 of the

search gave similar results.
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(iii) The Parameters VSMAX, USMAX and EVPMAX

A number of other three-parameter combinations were investi-
gated after the useful results described above were obtained. Of these
combinations, that of VSMAX, USMAX and EVPMAX gave results which were
useful in furthering the search. By optimising the value of USMAX at
each node on a grid of VSMAX and EVPMAX values, a surface similar to
those described in the previous section was plotted for these three
parameters. The remaining parameters were fixed at their values at
point 3 of Stage 4 of the search. The surface is shown in Fig. 7.19,
and indicates that some improvements in the objective function is

possible by simultaneous adjustment of these three parameters.

The Davidon method, however, proved ineffective in finding
the minimum point when used to search from each of two different start-
ing points on the surface. The paths taken by the searches are shown
in Fig. 7.19. At the end points of the searches, a number of itera-
tions took place in which the parameter changes were too small to be
plotted and thecchange in the objective function was negligible. To
ensure that the search method had been implemented correctly, the
optimising programme was tested on the two-dimensional preblem which
was used by Box (1966) as a test function and was successful in loca-
ting the minimum of that function. The objective function was then
evaluated at each node of a grid of VSMAX, USMAX and EVPMAX values
surrounding the end point of the second search. When the grid spacing
was 0.05, 0.002, 0.05 for VSMAX, USMAX and EVPMAX respectively, no
point on the grid had a lower value of the objective function than the
end point of the search, but when spacings of 0.005, 0.002, 0.005 were
used, about one third of the surrounding points had lower values. This
grid spacing is very fine compared to the normal step size which was

used in finding the steepest descent direction and in moving alcng the
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search directions, when the changes to each parameter were generally
between 0.05 and 0.5. The following reasons may be advanced for the
difficulties encountered with the Davidon method at this particular

point of the search:-

(a) The steepest descent direction at this stage of the
work was being found by Method 5, described in
Appendix A2. This method assumes that the cross-
sections of the response surface in the co-ordinate
directions at the current point may be approximated
by parabolas. The presence of a discontinuity in
the response surface near this point would invalidate
the assumption. (The other methods used in this

project would also be invalid in this situation.)

(b) The step sizes used in defining the steepest descent
direction may be too large for the parabolic assump-
tion to be valid, or the step size taken in the chosen
descent direction may be too large, overstepping the

minimum in this direction at the first move.

Further work would be required to identify the cause of the
problem. However, if the remedy required the use of smaller step sizes
than those used in this project, it may also be necessary to use ''double
precision' arithmetic for computing parameter changes and evaluating
the objective function, and because more steps would then be required

in the descent directions, the computing time would be greatly increased.

The values of VSMAX, USMAX and EVPMAX at the minimum point
of the surface shown in Fig. 7.19 were substituted in point 3 result-
ing in the move to Stage 5 of the search for this point. Subsequently,

the performance of the Simplex method on this surface was checked.
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The method successfully located the minimum point of the surface after

90 iterations from a starting simplex which included the point at which

the Davidon method encountered difficulty.

As it was suspected that a similar surface existed for the
combined points 1 and 2 at Stage 5, a Simplex run was made with only
VSMAX, USMAX and EVPMAX varying, but little change in these parameters
or improvement of the objective function occurred. The parameters

were probably already near the minimum of the surface in:this case.
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(iv) Response Surface for DSMAX and SSMAX

Of the two-parameter combinations which were investigated,
the DSMAX-SSMAX combination proved to be of interest even though it
did not affect the subsequent course of the search. The response
surface for these parameters was evaluated and plotted with the

remaining parameter values at point 1, Stage 3 of the search, and is

shown in Fig. 7.20.

Further slight improvement in the objective function may be
obtained by simultaneously reducing the value of SSMAX and increasing
the value of DSMAX. These movements took oltace during further optimisa-
tion. The degree of inter-action between the two parameters is not
very strong, however, as a change in the scaling of one of the axes
towards the scaling of the other by a factor of about 2 would substan-
tially eliminate the elongation in the contours. The main interest in
this surface lies in the shape of the cross-sections which are shown
in Fig. 7.21. For constant values of SSMAX, graphs of the objective
function vs DSMAX have discontinuities and the segments between the
discontinuities appear to be parabolic. This provides numerical support
for the theoretical result derived later in Section 8. Similar dis-
continuities are not evident in the cross-sections at constant values
of DSMAX, but this could be due to the small number of points used
for plotting the graphs.
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7.% DISCUSSION OF THE PARAMETER VALUES OBTAINED FROM.THE SEARCH

Although a unique set of optimum parameter values was not
found for the Lidsdale No. 2 catchment, the search was effective in
changing the objective function from initial values of approximately
38,000 and 62,000 to final values scattered around 1800. The points
obtained at the end of the search appear to be spaced along the
floor of a valley and are probably close to the lowest point in the
valley. It is worthwhile considering the significance of the parameter
values and the performance of the model with these values. The points

are listed again in Table 7.1.

TABLE 7.1
NEAR-OPTIMUM SETS OF PARAMETER VALUES FOR LIDSDALE NO. 2 CATCHMENT
Pgé?T VSMAX | USMAX | DSMAX | SSMAX | EVPMAX PV FO KF SUMSQS
1 44.6 6.2 512 797 19.8 10.460 | 1180 | 0.1275 1800
2 48.9 6.1 567 695 24.9 0.454 | 1195 | 0.0863 | 1791
3 48.7 6.3 487 731 27.3 10.473 | 981 10.1359 1811
4 48.1 6.4 515 618 36.6 10.449 983 [ 0.1007 | 1785
5 49.1 6.2 482 679 33.7 10.463 11241 | 0.0900 1792
6 48.9 6.4 466 690 34.9 0.466 | 1166 | 0.1004 1796
7 43.7 8.9 328 805 50.2 0.490 485 1 2.174 1850
8 45.9 8.4 299 738 122.7 10.480 788 | 3.246 1815

It should be remembered that a value of about 3.7 may be substituted for

KF in points 1 to 6 with little effect upon the value of the objective
function.

7.3.1 Variation of the Parameter EVPMAX

The value of this parameter exhibits the greatest variation



between the above points. However, this does not imply that the cbject-
ive function is indifferent to the value of EVPMAX  For points 1 and 8
above, variation of the value of EVPMAX whiie the other parameters are
held constant results in significant increases in the objective function

as shown in Table 7.2.

TABLE 7.2
SENSITIVITY OF OBJECTIVE FUNCTION TO EVPMAX
SENSITIVITY WHEN OTHER SENSITIVITY WHEN OTHER
PARAMETER VALUES ARE THOSE | PARAMETER VALUES ARE THOSE
AT POINT NO. 1 OF TABLE 7.1 | AT POINT NO. 8 OF TABLE 7.1
EVPMAX | OBJECTIVE FUNCTION EVPMAngOBJECTIVE FUNCTION
5 121,335 80 2,574
10 42,811 90 2,160
15 11,650 100 1,946
19.8 1,800 110 1,847
20 1,811 120 1,816
25 4,720 122.7 1,815
30 7,118 130 1,826
35 9,420 140 1,859
40 10,870 150 1,904
60 14,432 160 1,955
80 18,084 180 2,062
Therefore, the large changes in EVPMAX between the points listed in

Table 7.1 are being accompanied by compensating changes in the other
parameters and some form of inter-action exists. As the wvalues of
VSMAX, USMAX and PV show little variation, and as the cbjective func-
tion is known to be indifferent to a wide range of FO and KF combina-
tions, the inter-actiocn appears to be taking place between EVPMAX, DSMAX
and SSMAX. Sub-optimisation with these three parameters may bring the

points still closer together.
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7.3.2 Significance of the Parameter Values

The near-optimum values for some of the parameters are rather
unexpected and for a few parameters the values even appear to be incon-

sistent with the intended purpose of those parameters in the model.

The capacity of the Interception Store, VSMAX, at almost half
an inch, is considerably higher than values normally quoted for this
store. Jones (1969), after an extensive survey of the literature on
interception, recommended values between 1 and 10 pts, the higher
figure being for two layer vegetation such as forest with appreciable
grass. The value recommended by Crawford and Linsley (1966) for heavy
forest was 20 pts. It is possible that moisture other than that re-
tained on the surfaces of vegetation evaporates at the potential rate
and that, during optimisation, the capacity of the Interception Store
is adjusted to include this amount of moisture. The vegetation on
the Lidsdale No. 2 catchment is pine forest with a matting of dead
pine needles on the ground surface, and this matting probably acts in
the same way as the Interception Store. However this would probably
not account fully for the higher value obtained for this catchment.

A consequence of the high value is that, in winter months when the
potential evaporation rate is down to about 3-5 pts/day, a period of
from 10 to 15 days elapses before the Interception Store is emptied

and depletion of the soil stores by evapotranspiration commences.

This result is unrealistic.

It is not possible to reconcile the low value obtained for
the capacity of the Upper Soil Store, USMAX, with the very high value
obtained for the capacity of the Drainage Store, DSMAX. The Upper
Soil Store is meant to represent the water held in the capillaries of
the topsoil between wilting point and field capacity. Using the very
low value of 0.6 in/ft for the Available Water Capacity of the topsoii,
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the value of approximately 6.5 points obtained for USMAX implies that

the topsoil layer is no greater than 1% inches deep. As the Drainage

Store is meant to represent the gravitational water in the same depth

of topsoil between field capacity and saturation, the values of 3 to 5
inches obtained for DSMAX are clearly in conflict with the figures for
USMAX. It is possible that these two stores are effectively operating
as one combined store. If this is so then the physical interpretation
of the parameter PV, the fraction of the evapotranspiration taken from
the Upper Soil Store, becomes unclear. The values obtained for PV

seem to be too high for the low values of USMAX.

An alternative explanation for the high values of DSMAX could
be that the Drainage Store is merely acting as an artificial store to
retain water which would otherwise appear as runoff and which would

increase the value of the objective function.

The unexpected results indicate that, for this catchment,
the parameters do not have the physical significance which they were
intended to have. If similar results were obtained for other catck-
ments, it is very unlikely that significant correlations between the

parameter values and physical catchment characteristics could be found.

7.3.3 The Length of the Data Record and the Warm-Up Period

Approximately 2 years and 4 months of data were used in
optimising the parameter values. If a significantly longer pericd of
data had been available the derived parameter values may have been
quite different. In forcing the model to reproduce a much longer
record, '"black box" effects such as the tendency of the Drainage
Store to act as an artificial store would probably be reduced. The
parametersiwould then be expected to take on values which were more

meaningful from physical considerations.
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A conclusion reached in the next section of this report is
that the operation of the model is not independent of the assumed
initial store contents until the stores have been filled during a
period of heavy rainfall. For some of the sets of parameter values
derived for the Lidsdale No. 2 catchment the Lower Soil Store does
not approach the full state until 4-6 months from the end of the data
record. The data record before this time should therefore have been
contained in an extended warm~up period or, alternatively, the initial
contents of the Lower Soil Store could possibly have been regarded as
a parameter. More meaningful parameter values may have been derived

if one of these alternatives was adopted.

7.3.4 The Lower Soil Store Depletion Factor

Depletion of the contents of the Lower Soil Store to ground-
water was simulated in the Boughton model by applying a constant
factor of 0.999 to the contents each day. With a typical figure of
500 pts for the contents of the store the daily depletion quantity is
0.5 pts and this would accumulate into a considerable quantity over
the period of the data record. If the depletion factor were decreased
to, say, 0.997 then the water extracted from the model in this way
would be increased further. It is therefore possible that a small
adjustment to this factor may have stopped the Drainage Store from
acting as an artificial store and allowed the parameter DSMAX to take
on a meaningful value. In future optimisation work the Lower Soil
Store depletion factor should not be allocated a fixed value but should

be regarded as another parameter to be optimised.

7.3.5 Performance of the Model with the Near-Optimum Parameter Values

Towards the end of the project, an extra year's data for the

Lidsdale No. 2 catchment became available, and provided an opportunity
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to check the ability of the model to reproduce a period of runoff data
which was not used in the search for the optimum parameter values. The
model was operated with the parameter values at points nos. 1 and 8 in
Table 7.1 using the extended data record, i.e., for the period 17-10-1968
to 28-2-1972. The calculated monthly runoff quantities are listed with
the observed quantities and monthly rainfalls in Table 7.3 below, while

similar figures on an event basis are presented in Table 7.4.

The modelling of the monthly and event runoff quantities in
the period which was used for optimisation could be considered as good
for engineering purposes because the large runoff amounts, which contri-
bute most to the catchment yield, are well reproduced. This must be
qualified by observing that the modelling of the flows in November 1970
is not good and that, in general, small runcff events are not reproduced
by the model. In the extra one-year period the flows calculated by
the model compare poorly with the cbserved flows. There are large
errors in both under- and cver-estimation of the individual events by
the model. For the whole of the period of data there are only minor
differences between the flows calculated by the model with the differ-

ent sets of parameter values.

The total modelled runoff quantity for September 1970 is
very close to the observed value. However the.event data for this
month show that the model badly under-estimates one event and over-
estimates two events in such a way that the errors almost balance when
total quantities are calculated. Similar but less obvious examples of
compensating errors occur in November 1969, December 1970 and February
1971. It is unlikely that optimisation with an objective function based
on event totals rather than monthly totals would achieve significantly
better reproduction of individual events (see Section 9). The main
reason for the poor reproduction of some events is thought to be that

the model cannot simulate the effect of different rainfall intensities
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on.the amount of runoff. Given that the runoff amount varies with the
intensity of the rainfall (other factors being held constant) then the
model would be expected to give reasonable reproduction for rainfall
events of average intensity, to under-estimate the runoff from falls of
high intensity and to over-estimate the runoff from falls of low
intensity. However it is not possible to attempt a correlation

between rainfall intensities and over- or under-estimation of runoff
quantities. This is because the incorrect estimation by the model of
the runoff for an event is accompanied by an incorrect amount of water
subsequently held in soil storage, and this also influences the calcu-

lated runoff for subsequent events.

As there is apparently no way in which the effect of different
rainfall intensities can be allowed for when using daily rainfall data

in a daily time-period model, poor reproduction of some events by such
models must always be expected.
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TABLE 7.3
MODEL OUTPUT - MONTHLY FIGURES
MODELLED RUNOFF
(POINTS) WITH THE
e | wovrs | FATIEALL | BSERVED | FeLiontic S o
(POINTS) | FROM TABLE 7.1:-
POINT 1 | POINT 8
1968 | Oct. 81 0 0 0
Nov. 111 0 0 0
Dec. 393 0.2 0 0
1969 | Jan. 235 2.2 0 0
Feb. 750 42.0 0 0
Mar. 261 5.3 0 0
- 'END'OF‘"PARM;UP" PFRIOD
START OF PERIOD USED FOR OPTIMISATION
Apr. 240 6.4 0 0
May 217 0.0 0 0
June 231 9.5 0 0
July 117 0.: 0 0
Aug. 365 11.4 0 0
Sep. 197 6.8 0 0
Oct. 270 0 0 0
Nov. 422 49.9 50.2 49.5
Dec. 313 50.8 46.9 47.2
1970 | Jan. 584 7.6 0 0
Feb. 266 1.0 0 0
Mar. 251 1.5 0 0
Apr. 198 0 0 0
May 210 2.0 0 0
June 146 0 0 0
July 14 0 0 0
Aug. | 189 0 0 0




TABLE 7.3 (cont.)
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MODELLED RUNOFF
(POINTS) WITH THE
o s | e, | CSERLED | LN S O
(POINTS) | FROM TABLE 7.1:~
POINT 1 | POINT 8
1970 | Sept. 433 63.0 63.3 63.0
cont. | Oct. 233 22.8 26.9 26.3
Nov. 410 32.9 0 0
Dec. 322 83.5 72.6 72.8
1971 | Jan. 513 58.4 72.3 73.3
Feb. 540 264.0 264.3 264.4
END PF PERIOD PSED FOR OFTIMISATION
ST%RT OF EXT%A PERIOD kODELLED
WITH NEAR-OPTIMUM PARAMETERS
Mar. 135 0 0 0
Apr. 79 0 0 0
May 164 0 0 0
June 51 0 0 0
July 103 0 0 0
Aug. 319 0. 0 0
Sept. 455 16.4 65.1 72.8
Oct. 31 0 0 0
Nov. 245 0 0 0
Dec. 774 129.9 6.9 25.9
1972 | Jan. 889 386.6 430.2 423.4
Feb. 352 28.3 65.9 66.7




TABLE 7.4
MODEL OUTPUT - EVENT FIGURES

TABLE 7.4 cont.

| ,
f ! MODELLED RUNOFF [ MODELLED RUNOFF
j (POINTS) WITH THE (POINTS) WITH THE
| OBSERVED | FOLLOWING SETS OF OBSERVED | FOLLOWING SETS OF
VENT g{?gT %ﬁé?;?ég " RUNOFF | PARAMETER VALUES 'EVENT SXQET %Qé?ﬁ#;? RUNOFF | PARAMETER VALUES
| (POINTS) | FROM TABLE 7.1:- (POINTS) | FROM TABLE 7.1:-
)  POINT 1 | POINT 8 | i ! POINT 1 | POINT 8
i ! | !
1 17-10-'68 0 0 0 0 10-10 3 ? 0 : 0 0
2 23-10 3 0 0 0 ' 12-10 38 0 0 0
3 25-10 78 0 2 0 0 14-10 41 0 0 ; 0
4 5-11 111 0 ‘ 0 0 55 | 16-10-'69 40 0 o = 0
5 4-12-'68 154 Yoo 0 0 26-10 84 0 0 i 0
16-12 55 -0 Lo 0 31-10 55 0 0 L0
24-12 144 | 0.2 | 0 0 4-11 20 0 0 ! 0
27-12 3 j 0 {0 0 6-11 217 44.3 47.0 | 48.1
29-12 2 (0 P00 0 . 60 |12-11-'69 24 0 0 ; 0
10 1- 1-'69 20 0 oo 0 i 14-11 98 5.6 3.2 1.5
14- 1 93 | 0 0 0 19-11 21 0 0 | 0
18- 1 106 2.2 1 o0 0 22-11 3 0 0 a 0
24- 1 16 oo 0 0 29-11 11 0 0 ; 0
5- 2 155 1 1.0 ¢ 0 0 . 65 3-12-169 2 0 0 i 0
15 9- 2-'69 489 o410 00 0 ' 12-12 282 50.8 46.9 ° 47.2
18- 2 1 i 0 0 0 23-12 29 0 0 i 0
24- 2 20 0 0 0 1- 1-'70 85 oo 0 ; 0
26- 2 85 0 0 0 ; 7- 1 5 S0 0 ! 0
15- 3 8 0 0 0 {70 |10- 1-'70 116 ;0 0 , 0
20 17- 3-'69 128 5.3 0 0 | 17- 1 45 0 0 : 0
22- 3 3 0 0 0 ' 19- 1 91 1.2 0 0
25- 3 127 0 0 4 0 22- 1 32 0 0 0
" " ! 26- 1 210 6.4 0 0
EFD OF WA%r-UP PERI?D — o 2.170 ) ) 0 i 0
! o ' 11- 2 7 0 0 ' 0
START OF PERIOD USED FOR OPTIMISATION | 13- 2 132 0 0 0
15- 4 232 6.4 0 0 ' 16- 2 57 1.0 0 0
20- 4 3 0 0 0 23- 2 39 0 0 0
25 2- 5-'69 9 0 0 0 80 |27- 2-'70 29 0 0 0
4- 5 2 0 0 0 1- 3 15 0 0 0
8- 5 2 | o 0 0 6- 3 25 0 0 0
13- 5 23 10 0 0 16- 3 21 0 0 0
15- 5 71 .0 0 0 20- 3 157 1.5 0 0
30 28- 5-'69 112 0 0 0 85 | 23- 3-'70 ' 33 0 0 0
3- 6 34 0 0 0 | 10- 4 19 0 0 0
10- 6 38 0 0 0 - 12- 4 .30 0 0 0
20- 6 157 9.5 0 | 0 23- 4 P119 0 0 0
3- 7 4 0 0 : 0 28- 4 P30 0 0 0
35 5- 7-'69 46 0 0 i 0 90 7- 5-'70 , 21 0 0 0
13- 7 6 r0 0 z 0 15- 5 | 174 2.0 0 0
16- 7 18 0 0 0 21- 5 : 3 0 0 0
20- 7 43 | 0 0 0 ! 29- 5 12 0 0 0
3-8 20 0 0 0 ; t1- 6 2 0 0 0
40 13- 8-'69 179 i 5.7 0 0 } 95 3- 6-'70 2 0 0 0
18- 8 16 ? 0 0 0 i 6- 6 43 0 0 0
21- 8 32 0 0 0 l 11- 6 17 0 0 0
25- 8 93 5.7 0 .0 ! 16- 6 37 0 0 0
31- 8 85 6.8 0 0 ; 22- 6 45 0 0 0
45 6- 9-'69 29 0 0 0 100 2- 7-'70 . 2 0 0 0
9- 9 10 0 0 0 ' 20- 7 .12 0 0 0
14- 9 55 0 0 0 : 2- 8 : 56 0 0 0
20- 9 9 0 0 o | 11- 8 L1 0 0 0
22- 9 27 0 0 0 18- 8 23 0 0 0
50  30- 9-'69 14 0 0 0 105 | 24- 8-'70 ' 35 0 0 0
5-10 10 ;0 0 .0 5 27- 8 i 59 0 0 0
] 5 0 0 0
)

31- 8




TABLE 7.4 cont.

TABLE 7.4 cont.

{47 { MODELLED RUNOFF ] T { 1 MODELLED RUNOFF
' ! " (POINTS) WITH THE ; , . (POINTS) WITH THE
\ OBSERVED | FOLLOWING SETS OF | . : - OBSERVED FOLLOWING SET1S OF
EVENT giﬁgT %ﬁé?;?;; RUNOFE | PARAMETER VALUES %EVENT | SK?ET %ﬁé?;?é; RUNOFF  PARAMETER VALUES
(POINTS) FROM TABLE 7.1:- | (POINTS) FROM TABLE 7.1:-
POINT 1 | POINT 8 ] POINT 1  POINT 8
+ ¥ m 3 T
2- 9 135 52.0 0 ‘ 0 160  28- 5-'71 60 0 0 0
9- 9 67 1.9 0 0 6- 6 4 0 0 0
110 13- 9-'70 21 0 0 o . 9-6 9 0 0 0
15- 9 52 1.5 0 0 : 15- 6 12 0 0 0
22- 9 40 0 0 0 ; 22- 6 2 0 0 0
24- 9 o 47 0.8 21.42 20.7 . 165 27- 6-'71 4 0 0 0
27- 9 71 6.8 41.92 42.2 - 15- 7 98 0 0 0
115 8-10-'70 2 0 0 0 - 24- 7 2 0 0 0
11-10 88 0.2 0 0 31- 7 62 0 0 0
15-10 1 0 0 0 6- 8 136 0.4 0 0
19-10 15 0 0 0 170 11- 8-'71 2 0 0 0
20-10 126 22.6 26.9 26.3 21- 8 77 0 0 0
120 26-10-'70 1 0 0 0 26- 8 3 0 0 0
6-11 59 0 0 0 30- 8 45 0 0 0
8-11 51 0.3 0 0 10- 9 172 4.0 0 0
10-11 12 0 0 0 175 15- 9-'71 39 0 0 0
12-11 83 14.9 0 0 } 16- 9 103 7.5 18.6 26.53
125  16-11-'70 34 0.1 0 0o 21- 9 77 3.6 35.7 35.8
20-11 11 0 0 -0 25- 9 20 0 0 0
25-11 160 17.6 0 0 26- 9 41 1.3 10.8 10.8
6-12 17 0 0 0 180 8-10-'71 3 0 0 0
8-12 200 57.6 40.5 43.5 15-10 10 0 0 0
130 12-12-'70 29 8.2 0 0 21-10 7 0 0 0
19-12 82 2.0 0.9 0.1 23-10 11 0 0 0
22-12 2 0 0 0 7-11 119 0 0 0
24-12 18 0 0 0 185  14-11-'71 59 0 0 0
28-12 155 15.8 31.2 29.2 18-11 2 0 0 0
135 13- 1-'71 72 0 0 0 20-11 16 0 0 0
18- 1 108 0 0 0 29-11 49 0 0 0
24- 1 4 0 0 0 3-12 11 0 0 0
27- 1 6 0 0 0 190 6-12-'71 150 0 0 0
29- 1 198 5.3 0 0 8-12 262 18.6 0 0
140 31- 1-'71 125 53.0 72.3 73.3 15-12 36 0 0 0
1- 2 117 76.8 86.0 86.2 24-12 17 0 0 0
4- 2 153 83.3 94.5 94.8 25-12 80 0.8 0 0
9- 2 166 101.8 83.7 83.4 195  27-12-'71 180 97.9 0 10.8
17- 2 90 2.1 ¢ 0.1 0 28-12 38 12.7 6.9 15.1
145  24- 2-'71 12 0 0 0 1- 1-'72 25 0 0 0
27- 2 2 0 |0 0 5- 1 116 37.9 8.8 6.4
13- 1 112 16.2 29.3 27.2
END OF PERIOD USED FOR OPT{FISATION , 200 14- 1-'72 183 111.1 141.5 141.8
; } ;
START OF EXTRA PERIOD MODELLED ;g: i ;5 13'7 8 8
WITHINEAR'OPTIrUM PARAMETERS 24- 1 271 140.2 177.5 174.9
3- 3 Co66 . .0 0 0 27- 1 111 67.5 73.1 73.1
17- 3 ; 6 0 0 0 205 4- 2-172 38 0.3 0 0
21- 3 C 49 0 .0 0 8- 2 4 0 0 0
10 27- 3-'71 : 13 0 L0 0 11- 2 32 0 0 0
1- 4 18 0 0 0 14- 2 101 0 0 0
14- 4 5 0 0 0 18- 2 99 19.9 40.6 41.4
18- 4 20 0 0 0 210 20~ 2-'72 53 8.1 25.3 25.3
27- 4 36 0 . 0 1 0 211 26- 2-'72 25 0 0 0
155 5- 5-'71 44 0 i 0 0 ' e L
9- § 4 , 0 i 0 : 0 Note:- Events consist of:-
13- 5§ 10 ‘ 0 ‘ 0 ! 0 (1) those rainy days associated with each peak
16- § 4 ; 0 ' 0 ’ 0 of the observed runoff hydrograph, and
20- § 62 ! 0 . 0 0 (i1) other groups of consecutive rainy days.

Each event encompasses subsequent dry days.
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8. ALGEBRAIC ANALYSIS OF THE MODEL

The ultimate aim of this analysis was to develop an explicit
algebraic equation for the output of the model in terms of the input
data and the model parameters. Such an equation is frequently available
for the optimisation problems encountered in other fields of investi-
gation, and knowledge of the equation is helpful in solving the optimi-

sation problem for several reasons.

(1) By combining this equation with the observed catchment output,
individual equations for each of the monthly (or event) devia-
tions between calculated and observed:runoff may be written.

If more equations are available than unknowns (the model para-
meters), as is usually the case, then the least squares
techniques may be applied to solve the equations simultanecusly
for the parameter values. Thus, another set of methods bscomes

available for the solution of the optimisation problem.

(i) A single equation for the objective functicn in terms of the
input and output data and of the model parameters can be
written by summing the individual equations written under (i’

above. This equation could be used in several ways.

(a) Explicit equations for the partial derivatives of the
objective function with respect to each parameter could
be obtained by simple differentiation. The steepest
descent direction at any point on the response surface
could then be found simply by substituting the parameter
values of that point into these equations. Thus the
difficulties encountered in the numerical definition of
the steepest descent direction in this project would be

eliminated, and the overhead in computer time caused by
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the large number of runs through the model which are
required would be considerably reduced, enabling more

time to be spent in the actual search for the minimum.

(b) Inter-dependencies between parameters would possibly be
revealed. For example, if the parameters x and x

1 2
usually appeared together as (x '® ax ) in various
1 2

terms of the equation, then linear inter-dependence

between these parameters must be expected.

(1i1) The equation would possibly indicate the likelihood of indiffer-
ence to any parameter, the effect on the output of the assumed
initial store contents, and the required length of the "warm-up"

period.

(iv) Knowledge of the form of the equation may assist in selecting
the most appropriate search technique for finding the optimum

model parameter values.

In addition to the above benefits it was thought possible that
the analysis could reveal a direct analytical method of finding the

optimum parameter values and eliminate the use of search techniques.

8.1 ANALYSIS OF INDIVIDUAL STORES

The task of writing a comprehensive equation for the output
from a mathematical model of the rainfall-runoff process is complicated
by the number of conditional branches which may be taken during the
operation of the model. Work was commenced by analysing a simple store,
then progressed to each of the stores of the Boughton model considered
in isolation. For this initial analysis it was assumed that the inflows

and outflows for each of the stcres were known, although this is not se
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when the model is considered as a whole. The analysis for each store

comprised two phases:-

) a method was sought for finding the capacity of the store from
the input and output data, and

(i1) a "model"™ of the store was constructed by re-arranging the
equations from (i), expressing the output of the store in
terms of the input data and the store capacity, considered
now to be a variable. An objective function based on differ-
ences between observed and modelled output was set up and the

effect on this function of changes in the store capacity was
investigated.

8,1.1 A Single Input-Output Event in a Simple Store

The Tirst physical system which was considered is as illustra-
ted in Figc 8cl.

FI CURE 8. 1
SINGLE INPUT-OUTPUT
EVENT IN A SIMPLE STORE

Given that the store is initially empty, that an amount of
water P is poured into the store and an amount Q™ overflows, where

Q™ > 0, then the capacity of the store is simply
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C = P-Q

Re-arranging this equation, the mathematical.model of the

system is:-

1
Qc = 0 ifC 2P (8.1a)
1 1
= P -C if C <P (8.1b)
where Qc = output as calculated by the model
P = input (data)
1
C = a parameter, the capacity of the container,

whose optimum value is C.

1
We seek the value of € which produces the best fit of Qc to

Q, by minimising the objective function
1
F = (Q - Qc)2 with respect to C .

Substituting from equations 8.la and b,

F = Q2 ifCc =zv (function is constant)
(0]
1]
= (Q -P + c')2 if C <P (function is parabolic)
(0]

For the minimum of the parabolic section of the function,

1}
[

— - = 2(QO-P+C')'1

\

C = P-Q
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In general, the graph of F vs C 1s as shown in Fig. 8,2. The numbers

shora are for the particular case where P = 15, Q" = 5

30.

20 . FIGURE 8.2
GRAPH OF F vs C

FOR SIMPLE STORE
10 .

P=1504 *5

optimum value
of C*

For the special case of an event with Q =0, the graph is as shown in

o

f
Fig, 8.3 and the optimum value of C is indeterminate=

FIGURE 8.3
R-\PH OF Fvs C
FOR SIMPLE STORE

WHEN Q =0

As most rainfall-runoff models are built up with components
similar to the simple system shown above, it should be reasonable to ex-
pect that features of the optimisation problem for this system will also
apply for the more complicated models. The most significant features
appear to be:-



101»

) the response surface has a discontinuity, and the objective func-
tion is indifferent to the parameter value on one side of this

discontinuity. None of the optimising methods will find the
» r

optimum value of C 1if the initial estimate of C 1is too large
tocthe extent that it is greater than P.

(ii) the response surface is of positive definite quadratic form when
C < P. This is significant when using the conjugate direction
descent methods of optimisation.

(iii) it is possiple for the data record to be such that the optimum

value of C is iIndeterminate. This occurs for an event where

Q =o0.

The above analysis may be easily generalised for an event where
the contents of the container before the event were not zero. Referring
to Figure 8,4, the previous analysis is used to find the empty portion
of the container, C , and the volume is then found from C = CN + So

The graph of the objective function is shifted by the amount S, as shown
in Fig. 8.5.

1 - -s,

FIGURE 8.4 FIGURE 8.5
SINGLE INPUT-OUTPUT EVENT IN RAPH OF OBJECTIVE FUNCTIGX
A SIMPLE STORE WITH NON-ZERO FOR EVENT SHOWN IN FIG. 8.4

INITIAL CONTENTS.



Of course, if S is unknown, then C is indeterminate, and the most that

can be said is that C 2 C .

Y
¢

8.1.2 Interception Store

The operation of this component of the Boughton model is
similar to that of a simple container exposed to rainfall and evaporation.
Given a record of the rainfall inputs P, the observed spills Qo’ and
potential evaporation data, is it possible to find the capacity, VSMAX

of the container?

From the work of the previous section, the capacity can only
be found from the results of an event for which the contents immediately
pricr to thecevent are known. It can be shown that if an event cccurs
for which Q0 >0 and P - Qo < ET, where ET is the total potential evapor-
ation since the previous rainfall {or, for the first event in the data
record, since the start of the record), then the container must have been

empty prior to the event and its capacity may be calculated.

Proof:- Let VSO = contents after previous rainfall (or at
start of data record)
VS = contents immediately prior to event.

1

VS is related to VS0 as follows:-

VS

VS_ - ET if ET
1 ° :

iA
LAY

VS0 (8.2a)

= 0 if ET

W

VS (8.2b)

Using the result of the previous section, the unfilled
portion of the container, VSMAX - VS, is expressed in
1

terms of the data for this event.
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VSMAX - = -
VS, P-Q (8.3)

For this event, P - QO < ET
VSMAX - VS1 < ET

Substitute for VSl’ assuming that 8.2(a) above is true.

VSMAX - VS_ + ET < ET
VSMAX - VS_ < 0 (8.4)

But VSMAX is positive and VSO < VSMAX, therefore equation
8.4 cannot be true and equation 8.2a cannot hold for this

event. Therefore equation 8.2b is true, i.e.,

Substituting in equation 8.3 above,
VSMAX = P - QO°

If there are a number of events in the data record for which
Q0 >0 and P - Qo < ET, then they may each be solved for VSMAX. If

errors are present in the P and QO data, the answers from the various
events vill se. lifferent. and it is then necessary to adopt a Dést fit
€stimate of VSMAX.

Using a similar approach to that used in the previous section,

the modelled output for a given event is

1

Q = 0 ifC 2P
]

P-C if C < P
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where the optimum value of C 1s VSMAX,

The objective 1s now to minimise

k
«o(i) -

where k is the number of events being solved for VSMAXc

This function is a sum of functions which are each similar to

the one shown in Fig. 8.20 However, each component function will have

a different optimum point and different location of the discontinuity.
The resulting response surface would appear as illustrated in Fig. 8o6c

FIGURE 8.6
GRAPH OF OBJECTIVE FUNCTION FOR THREE
EVENTS IN THE INTERCEPTION STORE

In general, there will be as many discontinuities

in this
function as the number of events used in the solution for VSMAXc Each
segment of the curve is still parabolic, however.

The minimum value of
the objective function is no longer zerOo
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If there were no gross errors in the P and Qo data, then the
minima of the component functions would lie fairly close together and
the discontinuities in these functions would all lie to the right hand
side of the minimum of the composite function. In these circumstances,

1
P + C )2

: ; Qo) ™ P

e~

i
in the area of the minimum.

1
For the optimum C

Kk
dF ) LI )
-;C—, = 1212(%(1) Piy C) -1 0
. k
k= L By - Q)
K

k

i.e., under the conditions stated: above, the optimum value of
VSMAX is the arithmetic average of the values derived from each event.
This result could be useful in a direct analytical method for finding the

optimum parameter values of the model.

8.1.3 Upper Soil Store

This component of the Boughton model operates in a similar
way to the Interception Store except that in the lower range of storage,
drying out by evapotranspiration is restricted by a function of the

current stored contents in such a way that the storage depletes in an
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exponential manner, becoming zero only in infinite time.

Once again, the capacity is sought considering this store in
isolation and given a record of inputs to the store P, overflows Qo’

and potential evapotranspiration data.

As this store never becomes empty, the data from a given event
can only be used to find the empty portion of the store and the problem
is similar to that shown in Fig. 8.4. The empty portion of the store

is equal to P - Qo for a given event and the capacity is.
USMAX = P - Q0 + US (8.5)

where US = the unknown contents of the store

prior to the event.

USMAX can only be found if US can be expressed in terms of

USMAX, thus eliminating one of the unknowns from equation 8.5.

It is possible to express US in terms of USMAX when it is known
that the store has dried out from the full state until US is less than
USC, the value of storage at the discontinuity in the evapotranspiration
function (see sub-section 6.1). Furthermore, it is possible to identify
those events for which the storage was less than USC immediately prior

to the event and whose data may therefore be used to solve for USMAX.

(1) Expression for US in Terms of USMAX

When it is known that the store has dried out from the full

state until US is less than USC, then (referring to equation 6.13]

US = USC - & ™ ° PV - EVPMAX/USMAX (8.6)
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where m = number of days since US was equal to USC.
Nowm = n -n

c
where n =

number of days since US was equal to USMAX

(i.e., since the previous event where QO > 0)

and n, = number of days to dry the store from USMAX
down to USC.
_ USMAX - USC
Now n. = Vo
where E = average daily potential evapotranspiration,

n _ USMAX - E < USMAX/EVPMAX
c PV « E

USMAX (EVPMAX - E)
PV - EVPMAX - E

Substituting for USC and @ in equation 8.6,

USMAX (EVPMAX - E)) _ PV - EVPMAX
E - USMAX -0 - ST EVRMAX - E “USMAX
“EVPMAX

Us
(8.7)

Thus, given the parameters PV and EVPMAX and finding n and E
from the data record, it should be possible to substitute the above

expression for US into equation 8.5,

USMAX = P - Q  + US,
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and solve for USMAX. This will only be valid when it is known that
US « USC and, for the preceding event, Q, > 0.

(i1) Events for which US < USC

In a similar approach to that which was used for the Inter-
ception Store it can be shown that, if for a given event, Qo >0
and P - QO < ETy, where ET is the total potential evapotranspiration
loss since the previous rainfall (or since the start of the data
record), then US, the contents immediately prior to the event, must

have been less than USC.

Let US0 contents after previous rainfall

US

: contents immediately prior to event
1

US1 is related to USO as follows:

us = USO - ET if US0 > USC and ET < USO - USC {8.8a)

5
£

Us_ < USC otherwise (8.8b)

For an event satisfying the conditions that Qo >0 and P - Q0 <
ET, equation (8.8a) can be eliminated in the same way as was done for
the Interception Store. Therefore, under these conditions, US < USC and

the data from those events which satisfy these conditions may be used to
solve for USMAX,

Summarising from (i) and (ii) above, USMAX may be found using

the data from those events for which

(a) QO >0 and P - QO < ET and

(b} Q, > 0 for the preceding event.
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For each such event, an estimate of USMAX is obtained by writing down

equation (8.5), substituting for US from equation (8.7), and solving
for USMAX.

The task of expressing the output from this store as a func-
tion of the input and the capacity, setting up an objective function
involving the observed and calculated outputs, and graphing this func-

tion against the estimated value of USMAX has not been carried out for

this store.

8.1.4 Drainage Store

This component of the Boughton model operates in a similar way
to the Interception Store except that its contents are depleted by in-
filtration into the Lower Soil Store instead of by evaporation. As the
potential infiltration rate is a function of the contents of the Lower
Soil Store, the opemation of that store governs the operation of the
Drainage Store. However, if a record of potential infiltration rates,
inflow quantities P, and overflows Qo were available, the analysis for
this store would be the same as for the Interception Store and the con-
clusions reached for that store would all apply. In particular, the
objective function would contain discontinuities and parabolic segments.
The investigation of the DSMAX-SSMAX parameter combination, described in
sub-section 7.2.2, part (iv), provided numerical support for this con-

clusion, and this was illustrated in Fig. 7.21.

8.1.5 Lower Soil Store

This store is more complex in operation than the other stores.

The inflows and outflows are as shown in Fig. 8.7.
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Drainage i

Store 1 N
Y Ae t FIGURE 8.T
D pP-Q. OPERATION OF THE
LOWER SOIL STORE
& 9
s G - 0.001 X SS

The inflows to the store are restricted by a function of the
current contents in such a way that the store can never overflow, (The
infiltration function was described iIn sub-section 6.2«) The "overflow"
for this store, then, is that portion of P which cannot enter the store,
and there is always a positive Q" for every event, P, regardless of the
current store contents.

Once again, the capacity of the store was sought from a record
of the inflows P, outflows Q”, and potential évapotranspiration data.
The flows D and G were ignored in order to simplify the problem initially

It should be possible to modify the basic solution in order to allow for
these flows.

For each event, Q 1is related to P by equation (3.2),

0, P - F tanh ,

where F = F(SSMAX, SS, FO, KF) as defined by equation (6,,19)
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As P and QO are known for each event, F for each event may be
found from equation (3.2). Given the parameters FO and KF, the equation
(6.19) may be written for each event, the unknowns in each case being
SSMAX and the contents prior to the event, SS. Thus, for any two con-
secutive events, two equations may be written in three unknowns, the
contents prior to the first and second events, SSl and SSZ, and the

capacity of the store, SSMAX. A third equation is
882 = SS1 + (P - Qo) - evap. loss between the events.
1

This equation cannot be written explicitly as the evapotranspiration
calculations depend on whether soil moisture is restricting the evapo-
transpiration loss. However, the three equations can be solved in an

iterative way as follows:-

1) estimate a value of SSMAX.
(i) substitute in equation (6.19) and derive
corresponding values of SS and SS .

1 2
(iii) starting from SSl, perform the normal model

evapotranspiration calculations and find SS'
prior to the second event.
" (v) if the estimate of SSMAX is correct, SS‘ and
SS should be equal.
(v) ad?ust estimate of SSMAX and repeat from (ii).
(vi) continue iterations until the SSMAX is found

1
which gives SS = SS2°

Allowance could be made for the D and G flows by incorporating

them into the calculations at (iii) above.

Each group of two consecutive events in the data record

could be used to estimate the value of SSMAX in the way outlined
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above. When a particular event is used as the second event in one group
and also as the first event in the next group, the value of 882 (first
group) should equal SS_ (second group). However, due to data errors,
this would probably not occur. Further work is required toc find a
method for obtaining the best fit estimate of SSMAX which preserves

consistency between SS values.

8.2 COMBINATION OF THE INDIVIDUAL STORES

In the above analyses of the stores of the Boughton model it
was assumed that the inflows and outflows for each store were known.
When the stores are considered in combination as the Boughton model, only
the inflow to the Interception Store and the "outflow' from the Lower
Soil Store, i.e., that portion of the outflow from the Drainage Store
which does not enter the Lower Soil Store, are known. It is also known
that the inflow to a particular store equals the outflow from the next
store above. Further work in which the top two stores are analysed in
combination to express the output as a function of the two capacities,

followed by consideration of the top three stores, and so on, is

required.

8.3 AN ELEMENTARY EQUATION FOR THE OUTPUT FROM THE MODEL

It is possible to write an equation for the output of the
Boughton model on a day when it is known from the data that sufficient
rainfall has occurred to make the Drainage Store overflcw and therefore
tc produce runoff from the model. In general the.cutput from any of

the stores except the Lower Soil Store is given by

Q = P - (C-8) if P>C-S8 (8.9a)

= 0 if P<C-S ‘8.9b}
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If the rainfall was insufficient to cause runoff, it is not known which
alternative applies for any particular store. However, if runoff was
‘produced, then all stores must have overflowed and equation (8.9a) applies

in each case.

The output is given by equation (3.2),

P
= - <
Q Pe F tanh ( F) s
where Pe is the outflow from the Drainage Store

and F = F(SSMAX, SS, FO, KF), as defined by equation (6.19).

For the Interception Store, outflow = P - (VSMAX - VS) and this outflow
is the inflow to the Upper Soil Store.

. For the Upper Soil Store, outflow = P - (VSMAX - VS) - (USMAX - US).

Similarly, the outflow from the Drainage Store is

Pe = P - {VSMAX - VS) - (USMAX - US) - (DSMAX - DS).

Substituting in equation (3.2),

Q = P - (VSMAX - VS) - (USMAX - US) - (DSMAX - DS)

- - VS) - (USMAX - US) - (DSMAX - DS
_ F tanh (P (VSMAX - VS) - (Us ) - ( )]

(8.10)

This equation is valid for each day when the rainfall is sufficient to
overflow the Drainage Store and produce runoff. If it could be evaluated

for these days, the monthly modelléd runoff quantities could be found
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simply as the sum of the runoff values on those days, thereby elimina-
ting the present requirement to operate the model for every day in the

period of record.

However, before the equation can be evaluated, it is necessary
to express the store contents, VS, US, DS and SS (SS appears in the
function for F) in terms of the store capacities and the other model
parameters. It should be possible to do this using the evaporation
data and the number of days since the previous runoff-producing rain-
fall, when the three higher stores would have been filled. Thus, for

the Interception Store,

VS = VSMAX - nE if nE < VSMAX (8.11a)
= 0 if nE = VSMAX (8.11b)
where n = number of days since the store was filled

tT1
n

average daily evaporation.

When evaluating Q for a given day and an estimated value of
VSMAX, equation (8 11a) would be adopted if nE (known from the data) was
less than the estimated value of VSMAX. The second term of the equation
for Q, equation (8.10), would therefore be

VSMAX - US = VSMAX - (VSMAX - nE} = nE.
Otherwise this term would be

VSMAX - VS = VSMAX - 0 = VSMAX.

1f equation (8.11a) were used for the Interception Store, then

1t is kncwn that the Upper Soil Store is still full, i.e., US = USMAX.
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(Evapotranspiration does not commence until the Interception Store has

been emptied.) In this case, the third term in equation (8.10) would
be

USMAX - US = USMAX - USMAX = 0.

Otherwise, when equation (8.11b) was used for the Interception Store,

two possible alternative expressions for US are

us = USMAX - (n - ni) « PV « E
if (n-n) + PV« E < USMAX - USC
- n, -n,) - BV EVPMAX
= USC - e i j USMAX
if (n—ni)°PV’E2USMAX-USC
where n, = time taken to empty the Interception Store -
VSMAX
= E Py
nj = time taken to empty the Upper Soil Store
down to USC

= (USMAX - USC)/(PV * E), and

USC E < USMAX/EVPMAX.

It is thus seen that there are two alternatives for the second
term of equation (8.10), depending on the estimated value of VSMAX, and
three alternatives for the third term, depending on the estimated values
of VSMAX, USMAX, PV and EVPMAX. The task of writing down similar expre-
ssions for DS and SS would be more complex than for VS and US. However

if this were accomplished it seems that the task of finding an equation
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for the cutput of the model in terms of the data and the model parameters
would be substantially complete. For a given set of parameter values
the equations for the daily Q values could be built up by including the
appropriate terms from the available alternatives according to the
simple comparative tests described above. The equations could then be
evaluated and added tcgether to give monthly total modelled outflow or
event outflow as required. As only simple numerical comparisons are
required when deciding which of the alternative terms will be included
in the equations, both the writing and the evaluation of the equations
could be performed by computer. It should also be possible to build up
equations for the partial derivatives of the model output with respect

to each parameter at the same time.

The use of such equations to find the output from the model
1s not simply an alternative to the present method of performing the
daily model calculations through the entire length of the data record.
The evaluation of the objective function for a given set of parameter
values would be achieved simply by selecting the appropriate terms for
the equations and substituting the parameter values into the equations.

This should be faster than the present method.

8.4 SIGNIFICANT FINDINGS FROM THE ANALYSIS

While a general equation for the output of the Boughton model
has not been derived, the procedure suggested above could enabie a
specific equation tc be buiit up for a given set of data on a given
catchment with a given set of parameter values. It is felt that further
work along these lines would be very fruitful in the insight it might
give to the solution of the optimising problem. Some reasons for this
opinion were given at the start of this section. Three further points

of interest arising from the above work are summarised below.
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As the parameter values change during optimisation, they will
undoubtedly cross the values at which the terms to be included
in the equations for the daily Q values change to an alternative.
Discontinuities in the objective function would be expected at
these values, and the descent direction should be re-defined
when a discontinuity is crossed. The use of the procedures

outlined above would enable this to be done.

The output from the model is a sum of equations which all have
the same form as equation (8.10) above. This equation may be

re-arranged as follows:-

Q = P - (VSMAX + USMAX + DSMAX) + (VS + US + DS)
_ F tanh (P-_(VSMAX + USMAX « [FJSMAX) + (VS + US + DS),

If the store contents, VS, US and DS, were only weakly dependent
on the parameters, or if they were usually near zero prior to most
of the events, then strong interdependence between VSMAX, USMAX
and DSMAX would be expected. This prompted some of the numerical
investigations described in sub-seection 7.2.2. Other inter-
dependencies may be revealed when the equation is written out in
full.

In writing the expressions for VS, US and DS in the equations for
Q . it is necessary to make mse of the fact that the relevant
store was full immediately after the previous event. As the
store contents are not known at the start of the period of
record, the equation for Q on the first runoff day cannot be

written. However the equation could be written for the next

runoff day, and would be quite independent of any starting values

assumed for VS, US and DS. Therefore, the length of the 'warm-up"
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period, as far as the upper three stores of the model are con-
cerned, need only be long enough to exclude the first runoff

day from the objective function and the initial values used for
the contents of these stores have no effect on the subsequent
operation of the model. For the Lower Soil Store however, it
appears that SS must be expressed in terms of the initial value
until such time as this store approaches the full state as closely
as possible. This state can be identified when the flows D and
-G (see Fig. 8.7) become equal. This can usually only be achieved
in a period of prolonged rainfall, and such a period'may not
occur for some years after the start of the data record, if at
all. In such cases it may be necessary to make the initial

value of SS a parameter of the model and select the length of
the''warm-up''period to suit the other stores. However, if a
prolonged period of rainfall (sufficient to fill the Lower Soil
Store until equilibrium of the D and G flows were achieved) was
present near the start of the data, the subsequent operation of
the Lower Soil Store would be independent of the assumed initial
contents and the''warm-up''period could be selected to exclude

this first wet period from the objective function.
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9. COMMENTS ON CHOOSING AND EVALUATING THE OBJECTIVE FUNCTION

When attempting to mecdel the yield of a catchment the deviz-
tions between the total observed and total calculated runoff quantit:zes
within certain time periods provide an appropriate numerical measure of
the performance of the model. Choosing the sbjective function invclres
making decisions on (a} the time periods within which the deviations
will be calculated and (b) the way in which the deviations will be mani-
pulated before being summed inte a single numerical index. This section
contains comments related to both these decisions. In addition the
effect of transforming the total calculated and observed runoff quantities

before computing the deviations is discussed.

9.1 THE TIME PERIODS USED IN THE OBJECTIVE FUNCTION

The deviations may be calculated within fixed time periocds such
as days or months. Alternatively, variable periods which encompass the

individual rainfall-runoff events may be used.

9.1.1 Fixed Time Periods

When fixed time periods are used errors may be introduced
because of the time lag between the genevaticn of runoff on the catch-
ment and its measurement at the outlet. Most models caiculate the
amcunt of runoff at the time when it is generated and many do not repro-

duce the travel time to the catchment outlet.

For example, the Boughton model calculates runoff in iumped
quantities on days of rainfall only, and no routing procedure 1is used to
distribute the calculated runoff and reproduce the shape of the obser.ed
runoff hydrograph. This must be allowed for when using a tixed time

period such as a menth in the objective function to avoid erxors caused



120.

by events such as that depicted in Fig= 9.1.
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FIGURE 9.1 EVENT OVERLAPPING TWO FIXED TIME PERIODS.

As there is no modelled runoff in July from this event, the
observed runoff on 1, 2 and 3 July forms a constant component in the
objective function which cannot be affected in any way by changes in the
parameter values™ Optimisation will attempt to adjust the parameters
in such a way that the model is forced to reproduce only the small amount
of runoff which occurred on 30 June. This unsatisfactory result can be
avoided simply by regarding the runoff in July as having occurred in
June when evaluating the objective function. ThuSj in the runoff data
supplied to the optimising programme, the figure for 30 June should be
increased by the sum of the quantities on 1, 2 and 3 July and the figure

for these days given as zero.

This measure was adopted for the January-February 1971 data
for Lidsdale No. 2 catchment, where an event occurred late in January
followed by a second event on 1 February. The two hydrographs were
separated and the February runoff from the January event was re-allocated
to the data for 31 January, Mr. M. K, Smith of the Forestry Commission
pointed out the need for this adjustment.
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Errors can be introduced when a short time period is used for
the objective function« For the Boughton model, operated with a daily
time period, it is tempting to use the daily deviations between observed
and calculated runoff in the objective function« However, the result

will be as shown in Fig. 9«2«

FIGURE 9.2 EFFECT OF USING SHORT TIME PERIODS

The model will produce no calculated runoff at the times jndi-
cated by the shaded areas of the observed runoff hydrography The daily
runoff amounts in these areas will therefore form a constant base figure
in the objective Tfunction which is unaffected by changes in the para-
meters» Optimisation will attempt to minimise the deviations between
the modelled runoff and theuunshaded areas of the observed runoff hydro-
graph, and the model will then be forced to reproduce a smaller amount
of runoff than the amount actually produced by the catchment» In models
which use a much shorter time period than one day for calculations, a
similar effect will probably still be obtained if the same time period

is used for evaluating the objective function.

For all models, then, it appears that the time period used for
evaluating the objective function should be substantially greater than

that used in the model calculations and, where an event overlaps two
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time periods, that judicious re-allocation of the observed runoff amounts
between the two time periods should be made so that the model is not
forced to produce from a given amount of rainfall a runoff quantity

which is different from that produced by the catchment.

9.1.2 Variable Time Periods (Events)

The time periods may be selected to encompass the individual
rainfall-runoff events. Intuitively, an objective function which is
based on the deviations between observed and calculated total runoff
quantities for each runoff event is preferred to a function which uses
the deviations between the totals for fixed time periods such as a month.
This is because several events may occur within the month and the indiv-
idual positive and negative deviations for these events may cancel out
when the monthly deviation is calculated. However, some results obtained
in this project indicate that the differences between the sets of para-

meter values which optimise the two different objective functions will

be small.

For catchments which rarely have more than one event in any
month the two objective functions will be practically the same. This
was so for Middle Ck. (Site 2) at Pokolbin, as described in Section 5.
Under these circumstances the optimum parameter values for the two

objective functions would be expected to be very similar.

For the Lidsdale No. 2 catchment 10 of the 28 months of data
contain more than one event. When the two-parameter response surfaces
shown in Figs. 7.13, 7.15, 7.16 and 7.20 (for the objective function
based on monthly deviations) were prepared for this catchment, as deser
cribed in sub-section 7.2.2, the objective function based on event dev-
iations was also evaluated at each node of the grids of parameter values

to enable the response surfaces for this function to be plotted if



required. In addition to the grids of FO-KF, VSMAX-USMAX, USMAX-PV and
DSMAX-SSMAX combinations evaluated to plot the above surfaces, the two
objective functions were also evaluated on a grid of EVPMAX-VSMAX para-
meter values. Fer all of the above parameter combinations, comparisen
of the values of the two objective functions revealed that the twe
response surfaces were of the same shape. The position of the valley
floor for event deviations was almost always within one grid spacing

of the valley floor for monthly deviations and never more than two grid
spacings away. The grid spacings were of the order of 5 to 10 percent

of the parameter values at the minimum points of the surfaces.

It appears that the model cannot be forced intc better repro-
duction of the observed runoff quantities simply by adopting event
deviations instead of monthly deviations in the objective function.
Where there are compensating errors in the calculated runoff quantities
for events in the same month the numerical value of the objective func-
tion based on event deviations will simply be higher than for the funcz-
tion based on monthly deviations, but the minimum value of each function
will occur at about the same parameter values. It is probable that rthis
conclusion would also be true for other models, including those which

use a shorter time period than one day for calculations.

There are some practical difficulties in using event deviations
in the objective function. The start and end of an event may be defined
in a number of ways and extra programming is required to evaluate vhe
deviations over events. Because of these difficulties and the finding
described above there does not appear to be an advantage ir using event
deviations rather than fixed time period deviations in the objective

function.
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9.2 FORMING THE OBJECTIVE.FUNCTION FROM THE DEVIATIONS

The deviations, or functions of the deviations, are usually

added together according to the following general equation:-

§ )
A
i=1 i i
where QO = observed total runoff in time period i,
1
QC - Calculated "n " " " " H,
i
k = number of time periods in the data record,

and the vertical lines signify the absolute value

of the enclosed expression.

Different objective functions and response surfaces are obtained
by selecting different values for the exponent, j. It is commonly
asserted that if optimisation is performed for an objective function with
J =2 (i.e., the objective function consists of the sum of squares of
the deviations) or with some higher value, then the optimum parameter
values will bias the model output to give good reproduction of the large
events and poor reproduction of the small events. Conversely, if j = %
it is asserted that the optimum parameter values will result in poor
reproduction of the large events and good reproduction of the small
events. These assertions imply that there will be significant differences

between the parameter values which optimise the different objective
functions.

In sub-sections 8.1.1 and 8.1.2 the optimum parameter values

for one event in a simple store and for a number of events in the
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Interception Store were derived analytically using objective functions

in which j = 2. If these analyses are repeated using objective functions
in which (a) j = 1, and (b) j = %, then the same answers will be obtained
for the optimum parameter values as were obtained with j = 2. Figs

8.2 and 8.6 from the above sub-sections are reproduced here in Figs. 9.3

and 9.4 with the response surfaces for the other objective functions

also shown.

Assuming that the features of the response surfaces shown in
these figures will also be present in the response surfaces for more

complicated models, the figures show that:-

(1) Changing the exponent j in the objective function merely changes
the vertical "scaling'" of the response surface without altering
the position of the minimum point. This provides substantial
evidence that the optimum parameter values and, consequently,
the reproduction by the model of the large and small events,
are independent of the particular function of the deviations

which is minimised.

(iil: The use of j = % (and probably any value between zero and cnej
gives rise to a much more difficult response surface on which
to locate the minimum than when j is greater than one. The

surface is very unsatisfactory because

(a) it is relatively flat,

Ib) it may have unwanted secondary minima at each-discontinuit; .
and

(c) for satisfactory operation of the descent methods, the su:-
face should be concave upwards in the area of the global
minimum and the function and its partial derivatives shouid

be continuous at the global minimum. This surface dce: r-»

meet these requirements.
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FIGURE 9.3.

GRAPHS OF DIFFERENT
OBJECTIVE FUNCTIONS
FOR SIMPLE STORE

OF FIG. 8.1.

FIGURE 9.4.

GRAPHS OF DIFFERENT OBJECTIVE FUNCTIONS
THREE EVENTS IN THE INTERCEPTION STORE

-9
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The conclusions above must be qualified by pointing out that,
for the two stores analysed, the output was a linear function of the
parameter value. The conclusions may not be valid where the model out-
put is a non-linear function of the parameter, and may thus not apply
to, say, the infiltration parameters. However it appears that an
objective function consisting of the sum of squares of the deviaticns

is as good as or better than other functions.

9.3 TRANSFORMING THE OBSERVED AND CALCULATED FLOWS

Different objective functions may be formed by transforming
the observed and calculated total flows within each time period before
calculating the deviations. For example, the objective function could
be made up from the deviations between, say, the squares of the observed
and calculated flows, or the logs of these flows. Using the sum of
squares of these deviations, the general equation for the objective
function would be:-

k

F= ) @J -q7 )
i=1 °@) ‘@)

where QO = observed total runoff in time period i,
(1)
Qc = calculated total runoff in time period i, and
(1)
k = number of time periods in the data record.

Some indication of the effect of using such an objective
function may be obtained by repeating the analysis in sub-section 8.1.2

for a number of events in the Interception Store.
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In the area of the minimum of the objective function,

where P, observed inflow in time period i, and

1
C = parameter representing theccapacity of the

store, and with optimum value of C.

K . o
Fo= Q' -y, -cHN?
iZ1 ° (i) (1)

1
Differentiating with respect to C :-

k
dF j 'J '-
L 2(Q°1i) - By - C)) Gy, - )T D
k J 1 J 1 J
= i - - . - - -1

The minimum value of the objective function F occurs at the
value of C which makes the above expression equal to zero. It seems
reasonable to expect that this value of C' will be a function of j.
Therefore the optimum value of the parameter depends on the particular

transformation which is applied to the flows before calculating the
deviations.

This conclusion was checked numerically using synthetic data

for three events. These data contained errors so that a single value
1 1
of C could not satisfy the equation Q = P = C  for each event and a



129.

1
best fit estimate of C was required The data are shown in Table 9
which also shows the values of C which would satisfy the individual

events.

TABLE 9.1
SYNTHETIC TEST DATA

EVENT INFLOW OUTFLOW VALUE OF C CONSISTENT
P Q WITH P & Q DATA
1 15 5 10
2 91 79 12
3 39 31 8

3

The best fit estimate of C would be expected to lie between 8

and 12 regardless of the chosen objective function. Three different
objective functions were evaluated and graphed for values of C between

8 and 12. The functions were:-

3y Y
F1 = ) (Q*- (P, - O)%=

R i 1

i=1

3 .

| ~
2 = (Qi - (P - C))+

i=1

3 . .

— . - NS

F3 = . @ -(@® -0

1=1

The graphs of these functions are shown in Fig- 9.5. They
confirm the conclusion reached above that the optimum value of the
parameter depends on the transformation applied to the cbserved and
calculated flows. Furthermecre, it appears that if the flows are

squared the optimum parameter value will favour the reproducticn of th

o
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large events while the reproduction of the small events will be favoured

if a square root transformation is applied.

In arriving at the above conclusions it was only necessary
to assume errors in the input and output data. Therefore it is probable
that the conclusions would apply for both 'good" and "poor' rainfail-
runoff models whenever transformations of the observed and calculated

flows are used in forming the objective function.

9.4 THE OBJECTIVE FUNCTION USED IN THIS PROJECT

The objective function chosen for use in this project was the
sum of squares of the deviations between the monthly observed and calcu-
lated runoff amounts. It was thought that some optimisation should be
attempted using other objective functions but there was not sufficient
time for this. The studies described in this section indicate that
optimisation with other objective functions would not have been eas:er.

It appears that there would have been no advantage in using much shorter
time periods such as days for calculating the deviations. If the square
roots of the deviations had been used instead of the squares, the response
surface would have been a more difficult one on which to locate the

global minimum.

No transformation was applied to the flows before calculating
the deviations. It appears that transformations may be used to prcduce
optimum parameter values which bias the model output towards better
reproduction of some events. The significance of such parameter values

should be the subject of further investigation.
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10. SUMMARY, RECOMMENDATIONS AND CONCLUSION

The main aims of the project were:-

(i) to select an appropriate model of the rainfall-

runoff process,

(ii) to obtain optimum values for the parameters of
the selected model for about 80% of the
catchments in A.W.R.C. Research Project 68/1

for which records were available,

(iii) to correlate the optimum parameter values with

measurable catchment characteristics, and

(iv) to test these relationships on the remaining

catchments.

The Boughton model was selected for use in the project as it was
already well known and its use of daily data makes it widely applicable.
The Steepest Descent, Simplex and Davidon methods were used to search for
the optimum values of the parameters of this model for the four Pokolbin
catchments and the Lidsdale No. 2 catchment. Many difficulties were
encountered in these searches and an optimum set of parameter values was

not found for any of the catchments. Consequently no work under (iii)

and (iv) above was possible,

Most of the project time was spent in examining the difficulties
encountered when searching for the optimum model parameter values, and a

useful understanding of many of these problems has been achieved.



Examination of previously published work on rainfall-runsoff models
indicates that similar problems have been encountered in these studies
and that optimum parameter values have not generally been found. It
is therefore believed that the insights achieved in this project hawe

wide applicability.

Consequently, although the aims of the project were not
achieved, the findings should be valuable in future studies z:med
at the determination cf optimum parameter values for rainfsll-runcff
models which use daily data and also for thecse which use data at
shorter time intervals., The insights obtained and actions taken with
respect to some features of the model and of the optimisation problem

are summarised in the following sub-sections,

10.1  FEATURES OF THE MODEL

Most of the work discussed in this sub-section would not be
peculiar to the Boughton model. Many rainfall-runoff mcdels are
built up with components and functions similar to those used in the
Boughton model. Some of the difficulties described beliow could there-

fore be expected when working with other models.

(i) Evapotranspiration and Infiltration Functicns

In the original model calculations the daily amcunts for these
processes were determined by functicns of the relevant store contents
at the start of the day. These calculations occasionally gave unrealistic
results such as "over-filling" and "over-emptying' of some stores. Also,
it was thought that the infiltration amount should be related to the
capacity of the relevant store as well as to the contents. The

infiltration function was changed to accomplish this and then both func*tions



were regarded zs giving instantaneous values for the processes, the daily
amounts bsing fourd by integration  The changes eliminated the unrealistic
rezults and also assisted the algebraic aralysis of the cperation of

the mcdel

fi=) In:ti3! Store Contents and "Warm-up" Period

The operaticn of the model was found to be independent of the
azsumed “nitizl contents of the moisture stores after the first time when
they crerflowed. Fecr the Interception, Upper Soil and Drainage Stores this
cccurs during the first rainfali-runcff event where the calculated runoff
by the model iz nct zers. For these three stores, then, the "warm-up"
period need only encompas:s the first runoff-producing event, regardless of
the assumed initial store contents. The Lower Scil Store only fills during
prclonged rainfall If suth a periced cccurs near the start of the data
recozd then the "warm-up" pericd should encompass this event. However,
if the Lower Soil Store dces not approach the full state for some years, it
appears that the 'warm-up' pericd shculd be selected for the upper three
stores of the mede® and that the initial contents of the Lower Soil Store

should be regarded as another parameter

112} Lcwer Soii Store Deplerion Fatworx

A constant value of 0 999 was adopted for the factor throughout
the work of this project. This value was used by Beoughton and other
workers, App:ication of the fattor removes a relatively large amount of
water from the model over the pericd cf the data record. Therefore, small
changes to the value of the factor <culd be expected tc have a marked

influence on the amourt of runoff caiculated by the medel and the depletion

Fzcigy should be regarded as znother model parameter to be optimised.
[ RTRY PR . - .
1y} Intev-acticon betweer Parameters and Indifference
to Parsmeters
Inter-scricn between paramsters produces long, flat-bottomed
~1 o c
alleys 1n the resporse surface, 3znd indifference Lo parameters creates
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relatively flat areas on the response surface, Optimisation of such
parameters is difficult because of the insensitivity of the objective
function to large changes in the parameter values. In this project

the algebraic analysis of the model revealed the possibility of inter-
action between the parameters VSMAX, USMAX and DSMAX, while numerical
studies confirmed this and revealed inter-actions between VSMAX,

USMAX and PV, and between VSMAX, USMAX and EVPMAX. Numerical studies
also revealed indifference of the objective function to a wide range

of combinations of FO and KF values. The sets of parameter values
obtained from the work with Lidsdale No. 2 catchment indicate that inter-
action between EVPMAX and some other parameters, probably DSMAX and SSMAX,
is present. Thus it appears that almost all of the parameters of the
Boughton model take part in inter-actions and that it would be difficult

to find the optimum values for the parameters,

(v)  Unexpected Parameter Values

For the Lidsdale No. 2 catchment the near-optimum values
obtained for some of the parameters indicated that they were not operat-
ing according to their intended function in the model. The values for
VSMAX and DSMAX were higher than expected while that for USMAX was very
low. The inconsistent values for USMAX and DSMAX throw doubt on the
value for PV. Possible reasons for the unexpected values are inter-
action between parameters, the use of a short data record for cptimis-
ation, and the use of a fixed value for the Lower Soil Store depletion
factor. If such unexpected and inconsistent optimum parameter values
were also obtained for other catchments it is most unlikely that the
parameters could be correlated with measurable catchment characteristics.

It may also then be necessary to review the structure of the model,

Item (iii) above is specifically related to the Boughton model,

but the other items could be relevant for other models.
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10.2  FEATURES OF THE OPTIMISATION PROBLEM

Findings obtained from the project on these features may be
further sub-divided into those related to the objective function, to
the nature of the response surface, and to the implementation of the

optimising methods.

10.2.1 Objective Function

(1) Time Periods

There appears to be little advantage in using variable time
periods which encompass individual rainfall-runoff events rather than
fixed time periods such as months when calculating the deviations
between the observed and modelled runoff volumes. Results obtained
in this project indicated that there would only be small differences
between the optimum parameter values for objective functions based
on these different types of time periods. This may only be true for
rainfall-runoff regimes similar to that of eastern New South Wales.
The time period used in the objective function should be considerably
longer than that used in the model calculations. For models which do
not contain a runoff-rcuting procedure, runoff which was caused by
rainfall in a preceding time period should be regarded as having

occurred in that time period when calculating the deviations between

the observed and modelled runoff.

(ii) The Form of the Objective Function

The objective function is usually computed as the sum of the
absclute values of the deviations raised to some power. It appears
that the optimum parameter values do not depend on the power to which
the deviations are raised, i.e.,the minimum values of the objective
functions formed by using different powers all occur at the same
parameter values. However, if the power is 0.5 (i.e. the objective

function consists of the sum of square roots of the absolute values of



the deviations), and probably any value between zerc and cne. then the
response surface will be a difficult one on which to l:cate the giobal
ber

Ao e

minimum as it will be relatively flat and may contain 2 larger n:
of secondary minima. It is preferable to use a power greater than one,
and an- objective function consisting of the sum of squares of the

deviations appears to be as good zs ary other.

It is possible to transform the obser.ed and modelled runcff
volumes before calculating the deviations. The optimum parameter
values will then be a function of the transformation. If the flows are
raised to a power greater than one then the optimum parameter values
will give better reproduction of the large events, while use of a

power between zerc and one willi tend tc favour the smail events.
The remarks above apply for both ''gcod" and ''pcor' medels
of the rainfall-runoff process, as they are only based on the assumption

that there will be errors in the raznfall and runcff data

10.2.2 The Nature cof the Response Surface

(1) Discontinuities

Theoretical and numevicsi results obtained from the work
indicate that discontinuities are present in the response surface fox
the Boughton mcdel and are probably also present in the response
surfaces for other models. Discontinuities have an ad.evse effect on
the performance of the descent methcds ¢f cptimisaricr. Evrors occur
in the definition of the steepest descent direction from points whizh
lie close to a discontinuity. In the conjugate gradient me*hads
information about the response surface is gained at ¢sch iteration
and this is used in defining the next search direction. Whern a
discontinuity is crossed the surface charges abruptl, hut the next

search directicn is still defined using the informaticn ga.ned sbout
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the old surface. The direct search optimisation methods, such as the
Simplex method, do not appear to be adversely affected by the presence

of discontinuities in the response surface.

(ii) Flat-bottomed Valleys - Scaling the Parameters

As mentioned previously, inter-dependence between the model
parameters creates long, flat-bottomed valleys in the response surface
which present difficulties to all optimisation methods. Large
differences in the magnitudes of the parameter values also create a
difficult response surface. Scaling of the parameters, i.e., optimising
- a transformed problem in which some of the parameters have been multiplied
by chosen factors, may be used to obtain a surface in which the elongation
of the contours has been reduced. However, the most satisfactory scaling
for a particular problem is not obvious, and it may be necessary to

experiment with the scaling during the course of the optimisation.

10.2.3 The Optimising Methods

(1) Apparent Optimum Points

Many times when using the Simplex method in this project, the
simplex of points on the response surface contracted until the points were
almost coincident. This is normally interpreted as convergence to a local
minimum point on the response surface. Similarly, the Descent methods
often reached a state where practically no movement was made in the
descent direction at each iteration and it appeared that a minimum had
been approached. Further movement from such points was then found to be
possible using a different optimising method, by numerical studies, or
by sub-optimisation with only some of the parameters varying. Points
obtained after apparent convergence of the optimising methods should not

therefore be regarded as optima until attempts to further the optimisation
have been made by the above procedures,
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(ii) Defining the Steepest Descent Directicn at a point

on the Response Surface

At each iteration of most of the Descent methods of optimisation,
the steepest descent direction must be found from the currenrt point on
the response surface. This is done by finding the partial devivstives of
the objective function with respect to each of the parameters. When there
are no explicit equations for the partial derivatives in terms of the
model parameters, they must be found by numerical methods. This was a
troublesome aspect of the work of this project. Five different methods
were used and it is thought that Method 5, which was used for much of
the work with Lidsdale No. 2 catchment, is the only cne which would
define the steepest descent direction accurately in many szituations. The
method assumes that cross-sections of the response surface in eac
co-ordinate direction may be approximated by parabclas. Scme results from
the algebraic analysis carried out in the project indicate that the
assumption could be valid for at least some of the parameters when using
the same objective function as was used in this project. The assumption
may not be valid when other objective functions are used. Also, Methcd 5
would be inaccurate if a discontinuity in the respcnse :urface was close

to the point at which the steepest descent direction was being found,

{i1i)  The Quadratic Assumption in the Conjugate Dizecticn

Methods of Optimisation

The Conjugate Direction methods assume that, in the arsa of the

»

o
€

minimum, the response surface may be approximated by a positive-definite

I's

quadratic form. If this assumption is true then the ultimate rate c<f
convergence achieved by the methods should be gocd. The algebrzic

analysis indicated that the assumption may be valid for the Boughton
model when using the objective function used in this project. If the
assumption is not valid for areas away from the minimrm, *he methcds

should still be satisfactory. It is considered that the difficulty
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experienced with the Davidon method in this project and the fact that
the method did not locate any local minima were due mainly to the
presence of discontinuities. and the inadequacies in the methods for
finding the steepest descent directions rather than to the response

surface not being of quadratic form.

(iv) The Difficulty of the Optimisation Problem and
the Recommended Method

The problem of finding the optimum values for the parameters
of rainfall-runoff models is difficult, as
(a) at this time, it is not possible to express
the objective function or its partial
derivatives as explicit functions of the

model parameters, and

(b) there are discontinuities in the objective
function and inter-dependencies between
parameters.
These factors are not all present in many other optimisation problems.
In verbal communication, workers in other fields (Electrical and
Chemical Engineering) have considered this problem as difficult compared

to those with which they were experienced.

The Simplex and Davidon methods were used for most of the
optimisation work in this project. They are regarded by Kowalik and
Osberne as the best of the Direct Search and Descent methods, respectively.
Both methods appear to be adversely affected by inter-dependence between
parameters, while the Davidon method appears to be more vulnerable
to the effect of discontinuities. The Simplex method generally appeared
to be more efficient and is recommended as the better method provided

that contraction of the simplex is not regarded as convergence to
a local minimum.
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10.3 PERFORMANCE OF THE MODEL WITH NEAR-OPTIMUM PARAMETER VALUES

A number of sets of parameter values which appear to be
near-optimum were found for the Lidsdale No. 2 catchment. The performance
of the model with the two most widely separated sets of values was
investigated: ~The period of data was the same as that used for
optimisation with the addition of a subsequent year of additicnal data.
There were only minor differences between the outputs from the model with
the different sets of parameters. The model gave good reproduction of the
cbserved catchment runoff during the period which was used for optimisation.
Although the model procduced zero runoff for many of the small events, the
large events, which form the bulk of the catchment yield, were well
reproduced. However the model output compares poorly with the observed
catchment output in the additional one-year period. There are large errocrs
in both under - and over - estimation of individual events by the model.
This resuit indicates that the model may not be satisfactory for the

synthesis of long pericds of runoff data,

The fact that the model gave similar outputs with different sets
of parameter values indicates that difficulty would be experienced in
attempting tc correlate the parameter values with catchment characteristics,
while the poor reproduction by the model of the extra one-year period of
dsta underiines the need tc test the vaiidity of a model and its parameter

values on a period of data which was nct used for optimisation.

10.4 ALGEBRAIC ANALYSIS

The algebraic analysis which was commenced in this proiect
and is dezcribed in Section 8 can only be regarded as an elementary
beginning to & full snalysis of the operation of the model. However, it
has. already been beneficial in indicating the likelihocd of parameter

irter-dependenze and some of the fearures to be expected in the response
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surface, e.g., discontinuities. It has also enabled a comparison of
the different response surfaces which may be obtained with different

objective functions to be made.

It is thought that this type of analysis has not been
attempted before and that its continuation could lead to the following

important results:-

(i) a full understanding of the structure and

operation of the model,

(i1} 1indications of inter-dependencies between parameters

and of indifference to some ranges of parameter values,

1111) snowledge of the location of discontinuities on

the response surface,

(iv) an explicit equation for the value of the objective
function in terms of the data and of the model
parameters and, by differentiating this equation,
explicit equations for the partial derivatives of the

cbjective function with respect to each parameter, and

(v) ultimately, a direct analytical method for finding

the optimum parameter values.

Continuation of this analysis is therefore considered to be of

much importance in future research on rainfall-runoff models.
10.5 DATA

The following points relating to data should be considered
in future work.



10.5.1 Unrepresentative Data

For many catchments of the size used in this project, the
nearest rain gauge may be some miles away, while others may only have
one gauge on the catchment. Therefore for many events the rainfall
data from these gauges may be unrepresentative of the average
catchment rainfall, and such data should not be used for optimisation.
Two catchments which were under consideration for use in this project
were eliminated when it was found that the runoff quantities for many
events were greater than the amounts of rain which fell onto the

catchment according to the rainfall data.

10.5.2  Evaporation Data

The bulk of the precipitation onto catchments is removed
again by evapotranspiration. It seems logical that this phase of the
rainfall-runoff process must be modelled accurately to achieve good
reproduction of the runoff quantities. To achieve this, estimates of
potential evaporation and evapotranspiration are required, preferzbly
for the same time intervals as those used in the model calculations.
Ideally these estimates are obtained by energy balance methods using
climatic data. However, such data would rarely be available for
catchments of less than ten square miles. Alternatively, observaticns
of pan evaporation may be used, and these may be available for a
greater number of catchments. Further optimisation work with small
rural catchments should be restricted to those for which good evapor-

ation data are available.

10.5.3 Soil Moisture Data

In this project soil moisture data were used to check the
variation of the contents of the soil moisture stores in the model and

to revise the estimate of the initial contents of the Lower Soil Store.



144,

More intensive study of these data could lead to useful modifications
of the model. At present such data are only available for the
Lidsdale catchments Nos. 2 and 6, and it would be useful to obtain
similar data on other catchments. For the above two catchments,
there are discrepancies and inconsistencies between the data records
=f rainfall, evaporation, runoff and soil moisture. These are most
prcbably due to unrepresentativeness in both the rainfall and soil

moisture data records.

10.5.4  Longer Data Records

The length of the Pokolbin data records used for optimisation
was four years and seven months including two "warm-up' periods of
six months each. For Lidsdale No. 2 catchment the length of the
data record was two years and four months, including one '"warm-up"
period of six months. The tendency of some parameters to adopt
unrealistic values during optimisation may be reduced if a much
longer data record is used. Optimisation of the model parameter values
should be attempted for a catchment having concurrent rainfall, evapor-

ation and runoff data covering a period of, say, ten years or more.

10.5.5 Effect of Data Errors

It 1s thought that errors in the rainfall, evaporation and
7unoff data induce alterations in the shape of the response surface
and move the position of its global minimum, these changes being
relative to the surface which would be obtained with error-free data.
The new surface would not necessarily be a more difficult one on
which to search for the minimum, but the optimum parameter values
for this surface would be different to those which would be obtained
with error-free data (the true or correct values), and these true

ral r 1 . .
values could never be found. These conclusions are thought to be

valid for the response surface of all rainfall-runoff models, and are
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supported by the results of Ibbitt (1972) and Dawdy and Bergmann (1969).

Ibbitt, using synthetic data, found that when errors were
present in the rainfall, evaporation or runoff data, the optimising
method led to parameter values which were different to those obtained
using error-free data. Dawdy and Bergmann found that increasing errors
in rainfall data led to greater differences in the values of the model
parameters. The errors used in these studies were of the same order of
magnitude as for the errors likely to be present in even good quality

hydrologic data, and were not simply gross errors.

For any particular rainfall-runoff model, then, it is probable
that data errors could lead to errors in the parameter values which
are large enough to prevent correlation of these values with catchment
characteristics. As errors are inevitable in hydrologic data, this
problem is of practical importance and the effect of data errors requires

further research.

10.6 RECOMMENDATIONS

The following practical recommendations are made for future work

with rainfall-runoff models:-

(1) Correlation of parameter values with catchment
characteristics should not be attempted until

true optimum values have been obtained.

(ii) Optimisation should only be attempted for
catchments which have a long period of concurrent
rainfall, evaporation and runoff data. For catch-
ments in eastern New South Wales, the length of
data record should preferably be about ten years
or more. The evaporation data should preferably be
at the same time intervals as used for the model

calculations, and not at longer than monthly intervals.



(iii)

(iv)

(v)

(vi)
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A number of different starting points and
more than one optimising method should be
used in the search for optimum parameter
values for any particular catchment. The
Simplex and Davidon optimising methods are
satisfactory, the Simplex method being perhaps
more efficient in the early stages of
optimisation. New methods which may have been

developed recently should also be investigated.

A set of parameter values should not be accepted
as the optimum values until a number of attempts
to make further improvements to the objective
function have been made, e.g. by using another
optimising method starting from this set of
parameter values, or by numerical trials around

the values.

The effect of scaling the parameters on the
efficiency of optimisation needs further research.
A strategy for imposing the most efficient scaling
on the parameters for optimisation is required.
Until this is obtained, frequent experimentation

with the scaling during optimisation may be
beneficial.

Objective functions in which the deviations

between the observed and calculated runoff
quantities are raised to a power greater than one
are preferred to those where the power lies between
zero and one. The latter type of objective function
gives a response surface which has the same location
of the global minimum, but which is relatively flat

and may contain a larger number of secondary minima.
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(vii) The use of fixed time periods in the objective
function instead of individual events appears
to be satisfactory when there is only a small
number of events (say 1 to 3) per time period.
The time period should be substantially

longer than that used for the model calculations.

(viii)More research is required into the effect of

data errors on the optimum parameter values.

(ix) The algebraic analysis of the model which was
commenced in this project should be pursued
with the aim of writing an explicit equation for
the model output in terms of the data and the

parameters.

(x) For the top three stores of the Boughton model,
the "warm-up' period need only be long enough
to include the first event which fills these
stores regardless of their initial contents. If
the Lower Soil Store approaches the fuil state
during a prolonged wet period early in the data
record, then the "warm-up'" period should include
this wet period. Otherwise, the "warm-up"
period should be chosen with regard t2 the top
three stores and the initial contents uf the
Lower Soil Store regarded as a parameter. The
"warm-up' period for cther models should be

selected on similar considerations.

(xi) For the Boughton model. the Lower Soil Store
depletion factor should be regavdeq as snother
parameter of the mcde and an oprimum Vaive £ au’ 3

be sought for this factor.



148.

10.7  CONCLUSION

Rainfall-runoff models are potentially very useful hydrological
tools. However, before they can be of general usefulness it is necessary
that (a) the optimum values of the model parameters should be closely
related to measurable physical properties of catchments, and (b) the
accuracy with which a given model can synthesise the observed runoff
from a catchment should be known. It is unlikely that any model can
meet these conditions at this stage. Problems exist with regard to the
models themselves, the methods used to search for the optimum values
of their parameters, and their synthesis of catchment runoff in periods
which were not used for optimisation. Those models which use short time
periods (6 or 15 mins.) in their calculations would be expected to give
the best reproduction of observed runoff quantities, but these models
are still subject to the problems mentioned above and their more

exacting data requirements lessen their widespread usefulness.

The complexities involved in deriving the optimum values for
the parameters of rainfall-runoff models for a large number of catch-
ments and then correlating these values with physical catchment
characteristics do not appear to have been fully appreciated in the past.
Many of these difficulties have been identified in the work of this
project and an understanding of some of them has been gained. Further
work along these lines will be necessary, leading ultimately to the
derivation of- truly optimum parameter values for a given model and a
number of catchments. During this time, existing models may be
modified to incorporate recent findings in such fields as infiltration
and the movement of water in the unsaturated soil zone. Only after

this work will it be possible to make a judgement on the potential
usefulness of these models.
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APPENDIX Al. DESCRIPTIONS-OF OPTIMISING METHODS

Al.1 THE SIMPLEX METHOD OF NELDER AND MEAD

When optimising a function of » parameters, a simplex of (n + 1)
sets of parameter values is used. Each set of parameter values is referred
to as a point. In each iteration, the method attempts to generate a new
point which has a lower value of the objective function than at the two
highest points and this new point replaces the highest point in the
simplex. The features of the method will be illustrated with reference
to a function of two parameters. The simplex for such a problem con-

sists of three points.

Al.1.1 The Initial Simplex

As the simplex is not necessarily regular at any iteration of
the method there is no need for the simplex which is used at the start
of the search to be regular. Usually, one point of the initial simplex
is a set of estimates of the optimum parameter values. In this project
the end point from a search by another method, or a set of parameter
values estimated from physical considerations, was used as one point of
the initial simplex. The other n points were generated by setting each
parameter in turn to zero. (For some parameters a small positiVe value
was used to avoid zerodivide errors.) For a two parameter problem, with
initial parameter estimates of x; and x;, the starting simplex formed in

this way would consist of the points.
1] 1 1 1
(x. , x), (0, x), and (x , 0)
1 2 2 1
and would be ‘as shown in Fig. Al.1l.

After choosing the initial simplex, the objective function is

evaluated at each point and the points with the highest, second highest
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and lowest values of the objective function are identified.

FIGURE Al.1
TYPICAL IXITIAL SI'!" LKX

Al_1,,2 Reflection

Reflection is the basic step which is made at each iteration
of the methodo The highest point of the simplex is reflected around
the centroid.of all the other points and the objective function is
evaluated at the reflected point (see Fig. Al.2).

P*/\

h o - FIGURh Al..
REFLFCT10X
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Denoting the highest point by Ph’ the centroid of the other points by P

and the reflected point by P*, the co-ordinates of P* are given by
P* = F+a(F-Ph)

where a, known as the reflection coefficient, is a positive constant
which determines the distance P P* relative to the distance P, P. The

h
value 1 was used for a in this project.

Depending on the value of the objective function at the reflec-

ted point P*, one of three alternative branches is taken to complete the
iteration.

(1) If the objective function at P* is lower than at all other

points of the simplex then an expansion step is attempted.

(ii) If the objective function at P* is higher than at the second

highest point of the simplex then a contraction step is taken.

(iii) When the objective function at P* lies between the values at
the lowest and second highest points of the simplex the next
iteration is commenced using a new simplex consisting of the

point P* and all of the points in the old simplex except Ph°

Al.1.3 Eggansion

When the objective function value at P* is lower than atcall
other points of the simplex it is probable that the direction P, - P*
is favourable for further improvement. P* is then expanded to P** (see

Fig. Al.3) by the equation

P** = P + y(P* - P)
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where y, the expansion coefficient, is greater than unity and is the ratio

of the distance F P** to F P*. The value 2 was used for y in this project.

FIGURE Al1.3
EXPANSION

IT the value of the objective function at P** is also lower than at all
other points of the simplex then P* is replaced by P** and a new itera-
tion is commencedo

If the objective function at P** is higher than at the lowest
point of the simplex, (a failed expansion) then P* is replaced by P* and
a new iteration iIs commenced.

Alol«4 Contraction

When the objective function value at P* is higher than at the
second highest point of the simplex there is no advantage in replacing
pN by P* as a reflection back to P*will occur in the next iteration«
In these circumstances it is probable that the lower areas of the
response surface lie within the area of the current simplex and that

contraction of the simplex may be favourable.

A new P 1is defined as the lower of either the old P* or P*
and the contracted point P** (see Fig, Al.4) is then found by
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p** = P - 3(P - P")
n
where 3, the contraction coefficient, lies between 0 and 1 and determines
the ratio of the distance P** F to P" In this project the value 0.5

was used for 3.

FIGURE A1l.4
new Pu ' CONTRACTION

If the objective function at P** is lower than at Ph then P,
n

is replaced by P** and a new iteration is commenced

If the objective function at P** is higher than at P* (a failed
contraction) then all points of the simplex are moved half-way towards

the lowest point and a new iteration is commenced«

The expansion and contraction moves in the method of Nelder
and Mead enable the simplex to adapt itself to the local shape of the
response surface. As the minimum is approached the simplex contracts

until there are only small differences between the points»
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Al.1.5 Behaviour of the Method in a Valley

In this project it was found that, whenever the simplex con-
tracted until the points were almost coincident, further improvement of
the objective function could be obtained by some other search technique.
The points reached by the Simplex method were therefore not the required

optima.

Whenever a simplex spans a steep-sided valley in the response
surface, it is probable that refdection of the highest point produces a
point which lies high up on the opposite side of the valley. A contrac-
tion move would then take place. As the range of downhill directions
(along the valley) is very small compared to the range of uphill direc-
tions (across the valley), most iterations would result in a contraction
of the_simplex, which would then become so small that, when an expansion

move down the valley did occur, the improvement would be very slight.

In this project it was found that the early iterations of the
Simplex method contained a number of expansion moves but that the later

iterations contained few expansion moves and a large number of contrac-
tion moves.

It therefore appears that the Simplex method led to points
which lay on the floors of valleys in the response surfaces and was
inefficient in moving along these valleys, However it should be noted
that such valleys provide difficulties for all optimising methods. and
that, in general, the Simplex method achieved more rapid initial

reductions in the objective function than the other methods used in this
project.
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Al.2 THE DAVIDON METHOD

This method is one of a number based on the use of conjugate
directions. Proposed originally by Davidon (1959), the method was
presented definitively by Fletcher and Powell (1964) and is also
described by Kowalik and Osborne (1968). These descriptions assume a
knowledge of matrix notation for vectors and functions and of matrix
manipulations. In this appendix the basis of the method is explained
in more general terms. The method assumes that the response surface
may be approximated by a quadratic form in the area of the minimum,
although the equation of the quadratic function which best approximates
the objective function is not required explicitly. The usual method of
finding the minimum of a quadratic form is not applicable to finding
the minimum of more general functions such as the objective function
used in this project. Conjugate directions are the basis of a method
which may be used to find the minimum of a quadratic form and which may
also be extended to search for the minimum of more general functions.
In the remainder of this appendix, the usual method of finding the
minimum of a quadratic form is first considered. Conjugate directions
are then defined and their use in minimising a quadratic form is
explained. Finally the use of conjugate direction methods to search

for the minimum of more general functions is described.

Al.2.1 The Minimum of a Quadratic Form

The general equation for a quadratic form in »n variables,

xl, x2, coo Xgoeoe X, is:-
F = allxi + 2a12x1x2 + 2a13x1x3 ol * 2a1nx1xn + bix1 e
+ a x2 +23 XX + ....+2a XX +bx +c
22 2 23 2 3 2n a2 n 2 2 2
. e ..
+ a x? +bx +¢
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In particular, for n = 1,

2 +bx+c

F = ax

which is the general equation for a parabola.

For n = 2, the general equation is

F = a x2+2a x x +b x +¢
111 12 1 2 11 1

+a x? +b X + ¢

20 2 2 T2 2

while particular examples are

F = x? + xi (a paraboloid of revolution)
and F = x% - x2 (a hyperbolic paraboloid)

The extreme values (maxima and minima) of quadratic forms may
be either finite or infinite. Only those which have a finite minimum
value (but which may have an infinite maximum value) would reasonably
approximate the objective function used in this project. The location
of the minimum value of such a quadratic form may be found by the
usual methods of calculus. The function is differentiated with respect
to each of the variables X 2 =1, 2, ... n. The partial derivatives
are set equal to zero, giving n linear equations which are solved

simultaneously for the required values of the variables x

30
>
.

In matrix notation the general equation for the quadratic form
is

F = xTAx+bTx+c
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where X 1is a column vector whose elements are the x.'s, i.e.,
7

X" is the row vector obtained by transposing X

A is an 7 x »n matrix which contains the aii's and which is
symmetrical (i.e., ajk = akj)° If A is also positive-

definite, then the form will have a finite minimum value.
is a row vector containing the bi'sn

c is a constant.

The inverse of the matrix A, i.e., the matrix A"l is used
when solving the n simultaneous equations to locate the minimum of the

quadratic form.
This method is obviously not suitable for finding the minimum
of functions such as the objective function used in this project, as the

equation of the function is unknown.

Al.2.2 Conjugate Directions

Conjugate directions are the basis of an alternative method
for locating the minimum of a quadratic form. The method does not
require the inverse matrix A™! to be computed, and may be extended to
more general functions.

A direction in » dimensional space may be represented by a
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vector having components v , v ... Vv, in the co-ordinate directions xl,
1 2

X oo X In matrix notation, the direction may be represented by the
2

column vector

<
1]
< <l

=

Two directions U and V are said to be conjugate with respect
to the positive-definite matrix A if

WAV = 0

It can be shown that:-

(1) there exists at least one set of n independent vectors

mutually conjugate with respect to A,

(ii) it is possible to generate a set of n conjugate direc=
tions from a given starting direction, and

(iii) the minimum of a quadratic form with positive-definite

matrix A may be found from any given starting point by

a descent search in which each of n conjugate directions

1s used as a descent direction only once. The order in

which these directions is used is immaterial.

The matrix A of the quadratic form is

used in generating the
n conjugate directions.

In the descent search, the minimum must be found
along each direction and this point used as the

starting point for the
search along the next direction.
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Al1.2.3 Optimising Methods Based on Conjugate Directions

For general functions, no A matrix is available to generate
the search directions. Optimising methods for general functions are
required to generate search directions using such qﬁantities as function
values and partial derivatives at various points on the response sur-
face. Several methods exist which define search directions in this way
and which were designed to produce conjugate search directions when
used for the minimisation of a quadratic form. They are therefore
able to minimise a quadratic form in »n iterations without using explicitly

the matrix A of the quadratic form.

These methods may be used to search for the minimum of func-
tions such as the objective function used in this project. Assuming
that the function may be approximated by a quadratic form in the area
of the minimum, the methods would be expected to have a fast rate of
ultimate convergence as they only require a finite number of iterations (n)
to minimise a quadratic form. The methods are described as being

quadratically convergent and the Davidon method is one such method.

In the Davidon method a matrix H, an approximation of the in-
verse matrix A-l, is used in conjunction with the steepest descent dir-
ection at the current point to define the search direction. After loca-
ting the minimum along this direction the H matrix is revised before
proceeding to the next iteration. For the first iteration the unit

matrix

o o o

= O O

roac
[
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is used for H and the first search direction used is the steepest descent
direction from the starting point. As the minimum is approached, H
approaches A-l where A is the matrix of the quadratic form which approx-

imates the objective function.
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APPENDIX A2. THE STEEPEST DESCENT DIRECTION AT A POINT
ON THE RESPONSE SURFACE AND THE SCALING
OF THE PARAMETERS

The Descent Methods of optimisation require the steepest descent

direction at the current point on the response surface to be found at

the start of each iteration. This direction is simply the opposite of

the steepest ascent or gradient direction and is sometimes referred to
as the negative gradient direction.

Let F be a function of »n parameters xl, x2 ceo X

F = F(xl, x2, co Xn)°

At any point P defined by a particular set of parameter values
the gradient direction, denoted by grad F, is given by

. . . oF . JF
grad F = 1 3-Ii—-+ 1 oF cos ‘o

aX 9X
! 1 2 2

where ik is the unit vector in the direction of the X, axis.
This may be expressed more simply as
grad F = VF

. . s 3
where the operator V = 11 < et Tt L 3x -
1 2 72 n

The gradient vector is therefore the sum of n component vectors.
The kth component vector is in the direction of the X, axis and its
magnitude is equal to the partial derivative of F with respect to Xgs

i.e., the slope of F in the X direction.
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A movement away from P in the gradient direction is therefore
made by adjusting the parameters simultaneously, the individual adjust=

ments being in proportion to the corresponding partial derivatives.

The steepest descent direction is simply -VF and a movement
away from P in this direction is made by making adjustments to each
parameter which are equal in magnitude but opposite in sign to those

required for a movement in the gradient direction.

The steepest descent direction at any point is therefore found
by evaluating the partial derivatives of the objective function with
respect to each of the parameters and then multiplying them by -1. For
the Boughton model there are no explicit equations for the objective
function or its derivatives in terms of the parameter values, so the
slopes in the X directions have to be found by numerical methods. Five
different methods were used during the course of this project. The
methods, their inadequacies, and the improvements which were made are
described below. For all methods it is assumed that the value of the

objective function for the current parameter values is already known.

A2.1 METHOD 1

This method is only correct in special circumstances, as shown
later. It is described here because it was used in the optimisation for
the Pokolbin catchments, in the early work of this project by Mr. F.

Bell, and by Boughton (1968). The steps in the method are:-

(1) for each parameter in turn, increase the value of the.
parameter by a fixed percentage, operate the model to
find the resulting change in the objective function,

and then return the parameter to its original value.
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One percent increases were used in this project and

Boughton (1968) used 10% increases.

(iid) for any parameter which caused the objective function
to increase when its value was increased, assume that
the change in the objective function will be of equal
magnitude but opposite sign if that parameter is

decreased by the same percentage.

(iii) calculate the adjustments to be made simultaneously to
all of the parameter values in order to take a step in
the steepest descent direction. For the parameter
which caused the greatest change (+ve or -ve) in the
objective function, the adjustment is equal to the
increment used in step (i). For any other parameter
the adjustment is a fraction of the increment used for
that parameter in step (i), in proportion to the smaller
change in the objective function. The adjustment for
each parameter is in the direction necessary to reduce

the objective function.

In algebraic terms, the kth component of the steepest descent

vector is defined as

ws (AF__) 100 %
max

where AFk is the change in the objective function caused by a
y percent increase in the parameter X . AFk is +ve if the

objective function increased and vice versa.
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AFmax is the AFk which has the greatest magnitude.
This method could not define the steepest descent direction
correctly in some situations even if it were theoretically correct.
Fig. A2.1 illustrates the method for a two-parameter response surface,
and Fig. A2.2 illustrates a situation where the direction defined by the
method is incorrect. The error is due to the assumption that a 1%
decrease in the value of a parameter will induce a change in the object-
ive function of equal magnitude but opposite sign to the change caused
by a 1% increase in the parameter value. Whenever it is found that the
objective function is increased by a 1% increase in a parameter value
it is necessary to also find the effect of a decrease in the parameter
value and, if this causes the objective function to increase as well,
the adjustment for that parameter must then be set to zero. Fig. A2.3
illustrates a situation where 1% increases and decreases to the para-
meter values are too coarse to find the descent direction. It would be
necessary to use smaller parameter changes to find the required direc-

tion at this point and prevent the search from stopping prematurely.
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steepest
descent
di rect ion

steepest
descent

direction

directio
chosen by
Method 1

FIGURE A2.2
SITUATION WHERE METHOD 1
IS IN ERROR

FIGURE A2.1
METHOD 1 ILLUSTRATED
FOR TWO-PARAMETER
RESPONSE SURFACE

FIGURE A2.3
SITUATION WHERE METHOD 1
FAILS
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A2.2 METHOD 2

This method was developed by modifying Method 1 to overcome

the difficulties described above. The steps are:-

(1) as for Method 1, i.e., for each parameter in turn,
increase the value of the parameter by a fixed per-
centage, operate the model to find the resulting
change in the objective function, and then return

the parameter to its original value.

(ii) for each parameter which caused the objective function
to increase at step (i), reduce the value of the para-
meter by the same fixed percentage, operate the model
to find the.resulting change in the objective function,

and then return the parameter to its original value.

(1ii) calculate the adjustments to be made simultaneously
to all of the parameter values in order to take a step
in the steepest descent direction. If any parameter
caused the objective function to increase at both of
the steps (i) and (ii) the adjustment for that para-
meter is set to zero. The adjustments for the other

parameters are calculated in the same way as for
Method 1.

(iv)  if the adjustments are set to zero for all of the
parameters, repeat steps (i) to (iii) using smaller
percentage changes at steps (i) and (ii), and if

necessary repeat the steps again with still smaller

changes.



In this project, 1% parameter changes were always used in the
first attempt to find the descent direction at a given point. |If 1%
changes were too coarse, changes were tried, then 1/8 and 1/16
percent changes. |If a descent direction could not be defined using

1/16% parameter changes the search was abandoned.

In a general review of the optimising methods and their imple-
mentation which was undertaken after the work with the Pokolbin catchments
it was found that Methods 1 and 2 are theoretically in error because
they do not comply with the definition of the steepest descent direction
given at the start of this appendix. By reference to the simple response
surface shown in Fig. A2.4, the methods can be shown to be erroneous iIn

all but special circumstances.

FIGURH A2.4
ILLUSTRATION THAT “ETHODS
1 AND 2 ARE THEORETICALLY

IN ERROR

The steepest descent direction at all points on this surface is at 45*

to the X axis. When either of Methods 1 or 2 are used to find this
1
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direction at, say, the points (10,1) and (1,10), they will define direc-
tions which are considerably different to the true steepest descent
direction. The methods will only find the correct direction at points
on the line x1 = xza At other points, the error will increase as the

distance from this line increases.

The parameter adjustments derived by methods.1 and 2 are not
in proportion to the corresponding partial derivatives of the objective
function. They are derived from gross changes in the objective function
instead of changes per unit increment in the parameter values. Further-
more the gross changes are found for varying parameter increments which

depend on the current parameter values.

A2.3 METHOD 3

For this method, fixed increments to each parameter were nomin-
ated for finding the change in the objective function instead of increments
related to the current parameter values. The features of Method 2 which
were designed to overcome difficult situations on the response surface

were retained. The steps in the method are:-

(1) for each parameter in turn, increase the value of the
parameter by the nominated fixed increment, operate
the model to find the resulting change in the objective
function, divide this change by the parameter increment,

and return the parameter to its original value.

(ii)  for each parameter which caused theoobjective function
to increase at step (i), reduce the value of the para-
meter by the same fixed increment and find the result-
ing change in the objective function. If the function

also increases at this step, the slope is set to zero.
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Otherwise find the slope as in step (i).

Return the parameter to its original value.

(1ii) the slopes of the objective function with respect to
each parameter constitute the components of the steep-
est descent vector. If the slopes are set to zero for
all of the parameters, repeat steps (i) and (ii) using
smaller increments and if necessary repeat the steps
again with still smaller increments. In this project
the increments were halved at each repetition of steps
(1) and (ii) until increments 1/16th the size of the
original increments had been used, after which the

search was abandoned.

In algebraic terms the kth component of the steepest descent

vector is defined as

-(AF/Axk)

provided AF is negative for either a +ve or -ve Axko Otherwise the kth

component is zero.

When this method of defining the steepest descent vector was
adopted, scaling of the parameters was found to be necessary because of
difficulties caused by the relative magnitudes of the parameter values.
Both scaling and the size of the parameter increments used in steps (i)

and (ii) above are discussed later.

In optimisation work using Method 3 it was found after several
iterations of the search technique that most of the components of the
steepest descent vector were being set to zero. Consequently only two

or three of the parameters were being adjusted at each iteration.
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This implied that the search had descended to points in a valley in the
response surface so that, for most parameters, small +ve or -ve incre-
ments caused movements up the sides of the valley. Typical cross-
sections of the response surface at such a point would appear as in
Fig. A2=5,

current value current value
of varameter of parameter

FIGURI: A2.5
TITICAL CROSS-SECTIONS OF THE
RESPONSE SURFACE

For parameter x , Method 3 would be able to define a non-zero
slope if the increment used were less than "a'", but for parameter x a
much smaller increment would be necessary, A weakness of the method is
that 1T a non-zero component of the steepest descent vector is found using
a given set of parameter increments, no attempt is made to define non-

zero components for the other parameters using smaller increments»

A2_.4 METHOD 4

This method was designed to overcome the weakness in Method 3
described above= The slope is found for each parameter by the procedure
illustrated in Fig,, A2.6= The objective function is evaluated at each
of the points 1,2,3 etc. until a point is found at which it is lower
than at the current parameter value. The corresponding change in the

objective function and increment size are then used to determine the
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slope. In this project increments down to 1/16th of the original

increments were used before setting the slope to zerOo

A2L /

Ax/?2
FIGURE A2.6
Ax/4 ILLUSTRATION OF METHOD 4
5 3

current value/
of parameter

The above procedure is repeated for each parameter and the
resulting slopes are the components of the steepest descent vector» If

all the slopes are set to zero the search is abandoned»

The slopes obtained by Methods 3 and 4 would often be poor

approximations of the true slopes, as shown in Fig» A207c

true slope

FIGURE A2.7
Methods 3 "4 METHODS 3 AND 4 MAY GIVE
may give this POOR APPROXIMATIONS OF
s lope TRUE SLOPE

current value
y~of parameter
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The last method used in this project was designed to give

better approximations of the slopes than those given by Method 4o

A2,,5 METHOD 5

This method will give theoretically correct values for the
slopes in each co-ordinate direction if the basic assumption of the method
is valid» The slope for each parameter is found by assuming that the
cross sections of the response surface in each of the co-ordinate direc-
tions may be approximated by parabolas» Sub-section 9.2 of this report
indicates that this assumption is probably valid for the objective func-

tion used.in this project.

cross-sectiony
of response

surface

FIGURE A2.8
ILLUSTRATION OF METHOD 5

current valu”
of parameter

As shown in Fig, A2«8, the objective function is evaluated

on each side of the current parameter value and the slope estimated as

The slopes found in this way for each parameter are taken as
the components of the steepest descent vector.
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This method requires two evaluations of the objective function
to find the slope in each co-ordinate direction. Method 4 requires up
to ten evaluations, the usual number being between four and eight.
Method 5 would give better approximations of the slopes than Method 4
if the parabolic assumption is valid. Therefore Method 5 represents

a considerable improvement over the other methods uséd in this project.

A2.6 THE EFFECT OF DISCONTINUITIES IN THE RESPONSE SURFACE

If a discontinuity were present in the response surface within
the distance Ax of the current parameter value then the slope defined by
Method 5 (or any of the other methods) would be incorrect. Discontinuit-
ies appear .to be present in the response surfaces for the Boughton model
(see sub-section 7.2.2(iv), 8.1.1, 8.1.2 and 8.4). These may have adver-
sely affected the efficiency of the descent methods of optimisation in

this project.

A2.7 SCALING THE PARAMETERS

Scaling is necessary when there are large differences between
the model parameter values. This may be demonstrated by considering the
response surface for a two-parameter model in which the expected optimum
value for parameter x1 lies in the range 500-1000 and the optimum value
of x2 lies in the range 0-1. (The parameters SSMAX and PV of the
Boughton model have such values.) If plotted to a natural scale the
response surface would occupy the area shown in Fig. A2.9. A long,
flat-bottomed valley in which the lowest point is difficult to locate
would almost certainly be present in this response surface. At every
point on the surface the steepest descent direction would be predominantly
in either the +ve or -ve x direction, with only a very small component
in either of the x directions° This surface would be an extreme example

1 . .
of the surface with elongated contours shown in Fig. 4.5.
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FIGURE A2.9
TYPICAL AREA OF RESPONSE SURFACE
WHEN PARAJMETERS ARE NOT SCALED

A more satisfactory response surface having far less elongation
in the contours would be obtained by optimising a transformed problem in
which one of the parameters is scaled so that its expected optimum value
lies within a range of about the same magnitude as that of the other
parameter» Thus, the search for the optimum x and x values could be

) . 1 2
transformed into a search for optimum x and x° values where
1 2

x" = x_ x 500.
2 2
The objective function value at any point on the x - x" response surface

is found by operating the model with parameter valdes of x and x«/500,
1 2
The steepest descent direction from a point on the new response surface

will have a smaller x” component than the steepest descent direction from
the corresponding point on the old surface» This is because slopes in
the x” direction on the new surface are 1/500th of the equivalent slope
on the old surfaceo

In this project the parameters were scaled for the optimisation
runs for Lidsdale No« 2 catchment. Their transformed values were usually
in the range of about 300-1200, A maximum increment size of 10 was used
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for finding the slopes in each co-ordinate direction.

Scaling may alternatively be used when the model parameters are
of approximately the same magnitude but when inter-dependence between
parameters gives rise to a long flat-bottomed valley. A change of scaling

towards different magnitudes for the parameter values may then improve

the shape of the response surface.

As scaling may be used in different ways the most satisfactory
scaling for models having more than two or three parameters is not
obvious. The descent path from any particular set of parameter values
is related to the scaling that has been imposed on the response surface
(see Fig. 4.5). Frequent experimentation with the scaling of the para=
meters during optimisation may therefore assist in locating the optimum
point more rapidly. Further research work aimed at devising a systematic
method of determining the best scaling for an optimisation problem is

required.
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APPENDIX A3. CATCHMENT DESCRIPTIONS

A3.1 POKOLBIN CATCHMENTS

The location of these catchments is shown in Fig. A3.1. Other
descriptive material has been extracted from the Pokolbin Soil Survey
Report contained in Volume 3 of the Final Report on A.W.R.C. Research
Project 68/1 (Australian Water Resources Council, 1971). The soil survey

was conducted by the Soil Conservation Service, N.S.W.

Fig. A3.2 shows the Land Systems in the Pokolbin area and the
location of the sites where the soils were:.inspected and sampled.
Fig. A3.3 shows soils distribution in terms of great soils groups and
Northcote codings (Northcote, 1965). Descriptions of the soils at
each inspection site are contained in the Soil Survey Report but are

not repeated in this Appendix. The descriptions of the Land Systems
are quoted below.

Land Systems:

Five land systems are represented in the Pokolbin area surveyed,
and the following general descriptions are drawn directly from '"General
Report on the Lands of the Hunter Valley'" (C.S.I.R.0. Land Research Series
No. 8). The descriptions are provided as a guide to land forms, geology,

soils and vegetation, applicable in the Pokolbin area.

Killarney Land System

Geology: Permian shale, sandstone, conglomerate.

Undulating lowlands with shallow valleys, and a small proportion

of terraced alluvium mainly associated with Deep Creek. Soils are
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variable, mainly podsolics (red and yellow).

Vegetation: savannah woodland of box, gum and ironbark, mostly
thinned or cleared. Shrubs rare. Ground cover of Themeda australis
where protected, otherwise mainly wiry grasses such as Aristida and Dan-

thonia spp., with some Medicago and Trifolium spp.

Land Use: mostly grazing and vineyards, with a strong swing
towards the latter usage at the present time. Some dairying. Consider-

able improved pasture in the Middle Creek Catchment.

Glendower Land System

Geology: Permian shale, sandstone, conglomerate.

Moderately steep hills situated above the Killarney land system.
Soils similar, but with areas of skeletal soils and '"krasnozem' types
(red friable clays), only generally shallow.

Vegetation similar to Killarney.

Land Use: a bigger proportion of grazing country with some

uncleared timber. Vineyard development increasing.

Hunter Land System

Geology: quaternary alluvium.

Mainly old river terraces associated with the main creeks - Deep

Creek is the only one with any significant area.
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Soils variable - mainly uniform Um or Uf soils, sometimes with
Gravel seams, immediately adjacent to the creek. Intergrading with
Yellow Podsolic (Dy2 and 3) soils, away from the creek, and higher up

the catchment.

Vegetation: mostly cleared and under cultivation or grassland
of Cynodon, Aristida and Paspalum species. Scattered Eucalyptus spp.

with Casuarina spp. on creek banks.

Land Use: mainly grazing with some small areas cultivated.

Cranky Corner Land System

Geology: Carboniferous lavas with some conglomerate and glacial
beds.

Steep massive mountains and ravines with soils variable,

Skeletal soils widespread with some podsolics and shallow red friable

clays. Rock outcrops frequent.

Vegetation: tall mixed woodland, mainly gums and ironbarks

with medium dense shrubs below and sparse but leafy grasses. Some rain
forest in ravines,

Land Use: some grazing but mainly native timber.

Ogilvie Land System

Geology: Permian conglomerate, sandstone and shale.

Steep hills and escarpments with mainly skeletal soils and
shallow podsolics.
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Vegetation: wet or dry sclerophyll forest with smaller non-
eucalypt trees frequent where sheltered; fairly dense mixed shrubs and

dense ground cover of grasses and herbs.

Land Use: occasional grazing but mainly native timber.
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210063,- 67,-68,- 69

Pokolbin Area Legend:

Land Systems A - Killarney
Note: E - Glendower
Numbers refer to C - Hunter

soil inspection D - Cranky Corner
sites E - Oeilvie

0 j80 chains Fig.A3.2

Scale



Great Soil Group
Yellow Podsolic
Red Podsolic
Krasnozem

Yellow Podsolic
and Skeletal

Skeletal Soils

Catchment boimdary

DY 2.31 - 2.41
Dr 2.31 - 3.31
Gn4.12
Shallow Py 2

Ucl. 41

Fig.A3.3 Pokolbin Area -

Northcote Commonest

Soils.

40 chains

Coding Range

DY 2.31 - 3.42
Dr 2.21 - 3.21
Gn 4.11 - Gn 4.13
Uml - Ucl
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A3.2 LIDSDALE NO. 2 CATCHMENT

The maps and description of this catchment are reproduced from
Smith (1972). Fig. A3.4 shows the location of the Lidsdale State Forest,
Fig. A3.5 shows the layout of the experimental catchments in the forest
and Fig. A3.6 shows the No. 2 catchment with thellocation of the soil

moisture measuring stations indicated.

The following terms used in describing the catchment require

definition:-

'""Mean dominant height' is the average of the measured heights of the ten
tallest trees per catchment.

'"Mean basal area'" is a measure of tree density, and is the sum of the
cross sectional areas of the tree trunks at 4'3" above ground
level, expressed in square feet per acre.

"Crown density index" is a measure of the projected area of the tree
crowns, measured with an optical crownometer.

"Channel characteristics' are specified by the percentage, in terms of

length, within each of the following groups:

Type 1 - entrenched channel with solid rock bottom.
Type II - entrenched channel with unconsolidated bottom.
Type III - broad waterway with no significant entrenchment.

Smith's description, which was based on information from Bell

and Gatenby (1969), follows.

Area: 31.8 acres.

Vegetation: The forest consists of planted Radiata Pine (Pinus radiata,

D.Don) with a mean dominant height of 88 feet, mean basal area 133 square
feet per acre and a crown density index of 63 per cent. The original

forest stand of native Eucalypt, including Brittle Gum (Eucalyptus maculosa)
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and Broadleaf Peppermint (E. dives) was felled and burnt prior to plant-

ing with Pinus radiata in 1935. Thinning, carried out between 1956 and

1960, produced a total yield of approximately 9,000 super feet per acre.

Topographic features: The general aspect is South-East, with an average

catchment slope of 15 per cent, average channel slope 12 per cent, and
channel characteristics of 30 per cent Type I, 40 per cent Type II and
30 per cent Type III. '

Geology and Soils: The parent material is variable, with Permian congiom-

erate, sandstone and siltstone in the North-Western section of the catch-
ment, and a combination of both Permian and Devonian sediments in the

remainder of the catchment.

The profile is gritty to stoney to a depth of approximately
70 inches, below which there is a fine compacted clay, relatively free
of stones. The uppermost 50 inches of soil contains an estimated
volume of 5 to 10 percent stone larger than 0.25 inches in diameter.
This figure has been determined from mechanical soil analysis. The 50
to 70 inch layer usually contains a lower percentage of stones than the

0 to 50 i1nches soil strata.

The A horizon of the soil is approximately 12 inches deep,
grading through this depth from a dark grey to a pale grey loam. The B
horizon is a yellow mottled clayey soil of variable depth,,extending to
a depth between 40 and 70 inches, with an estimated average depth of 50
inches. Below the B horizon the soil grades into a fine compacted clay

loam, extending to 90 inches at least.

Under the Northcote System (Northcote, 1965, 1966), the soil
derived from the Permian parent material is classified as Dy 3.41, a
hard setting loamy soil with a mottled yellow subsoil. There is an

acid reaction trend and the A horizon is bleached.
2
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The soil derived from the Devonian parent material is classified
as Dy 2.61, a hard setting loamy soil with a yellow clayey subsoil, an

acid reaction trend, an unbleached A horizon and an apedal subsoil.
2
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Fig. A3.4: Location of the Lidsdale State Forest.
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Fig. A3. 5: Experimental Catchments Lidsdale State Forest,
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APPENDIX A4. INTEGRATION OF THE EVAPOTRANSPIRATION
AND INFILTRATION FUNCTIONS

A4.1 EVAPOTRANSPIRATION FUNCTION

At low levels of soil moisture S, where the e/t rate is a

linear function of the moisture level, the governing equation was

dsS

I kS (equation 6.7)

The change in moisture level caused by e/t over a period of time is found

by integrating this equation.

ds _
T - kS
ds _
5 = kdt
?Tf %?—’: kt + B where B is the constant of integration.
InS = kt + B
S = ekt +B _ _kt | eB

Initially, when t = 0, let S = S0

el .« e Joooe = S

then, S
0 0

S =: ektos
0
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Now when t = 1, i.e., after 1 day, let S = S1

A4 .2 INFILTRATION FUNCTION

The assistance of Mr. D. Doran in integrating this function

is gratefully acknowledged.

The infiltration rate is the time rate of change of storage

in the Lower Soil Store, i.e.,

d(gis) - Fo.o KF * SS/SSMAX _ .. -KF (equation 6.17)
Substitute S = S§S
K o= KF (A4.1)
and C = SSMAX for greater clarity.
Then %§' = F0.e™X S/ oK
t
= FO(e-K - S/C _ e—K)
= Fan-K(e-K(S/c - 1)
Inverting,
dt 1 -K(S/C - 1 -1
Iz T ——x - (e S/ ) o1

FO.e~
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Integrating,

t+A = 1-K LI S I A
EQ.e--”

where A is the constant of integration.

Let u o-K(s/C - 1)
du = -é_e-K(S/C - 1) ds
ds = '% e KG/C - 1Dy-1 4
_ -C -1
= < U du.
Then
t+A = -C . w-1ntul
FO + Ke~
t + A du ) .di.l_
B u-1 u
where B = _._.lg_iiz
FO * Ke
_ udu - (u-1) du
and R.H.S. = I R

du
(-1 ~uw
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= f (u - 1)—1 . u-1 du, as before.

t E A In(u - 1) - 1In(u)
_ u - 1,
= In ()
= 1n (1 - u'l)
- 1n (1 - eX(8/C - 1)y (A4.2)
t + A
< o B . 1. K-
t + A
. k-1 _ ;B
t + A
KGS/C-1) = In(1-e B )
t + A
s - %-ln(l e B ysc

eK(S/C - 1)

From equation A4.2, A = B 1n(1 - ) -t

At the start of the day, t = 0 and let S = S0
" A = B 1ln(l - K (So/C - 1))

t + B In(1 - eK(SO/C - 1))

In (1 - e B ) +C

wn
1]
=IO

i
= O

In (1 - eB1 - KGo/C - Dyy | ¢
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For S after one day (S ), put t = 1 (and substitute for B)
1

-K
e Sin (1 - e FO KO g L KES/C-Dyy L g
K
Let D = e-FO Ke 7/C
Then S1 = %-ln (1 -D + DeK(SO/C - 1)) + C

S 1is the storage after one day provided infiltration has
1
proceeded at the potential rate throughout the day. The total infiltra-

tion amount for the day is

FT = § - S
1 0
= C(1 + %?; In (1 - D + peX So/C - 1))) - SO

Re-substituting from equations A4.1, and using F to denote the

potential daily infiltration amount rather than the instantaneous rate

as before,
F = SSMAX(1 + f%.. In (1 - D+ DeKE(SS/SSMAX - 1)y oo
-KF
where D = e FO * KRe ™ /SSMAX
and SS = storage at the start of the day.





