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Abstract 

Mental wellbeing, a state of positive subjective experience and psychological 

functioning, is a key component of mental health. Despite this, little is known about how 

mental wellbeing is manifested in the brain, or how such neural associations covary with 

depression and anxiety symptoms. Thus, the aim of this thesis was to explore potential 

electrophysiological markers of wellbeing using electroencephalography (EEG) and event-

related potentials (ERPs). To facilitate further investigation into the association between 

electrophysiology and wellbeing, a positive psychology intervention was also developed.  

Following an introduction to the key topics, Chapter 2 examined the relationship 

between mental wellbeing and resting EEG power. This study identified a specific profile of 

resting EEG power that is associated with wellbeing, independent from depression and 

anxiety symptoms. Twin modelling clarified that this EEG profile shares a genetic correlation 

with mental wellbeing. Chapters 3 and 4 shift towards using ERPs to investigate how 

wellbeing and depression and anxiety symptoms are associated with emotional and cognitive 

processing. Chapter 3 reported that wellbeing was not significantly associated with emotion 

processing after accounting for depression and anxiety symptoms, which were significantly 

associated with alterations in emotion processing. In Chapter 4, no evidence was found for an 

association between wellbeing or depression and anxiety symptoms with cognitive ERPs, 

although associations with behavioural performance reported in previous studies were 

replicated. Finally, Chapter 5 reports on the effectiveness of an online positive psychology 

intervention which was found to significantly improve wellbeing, particularly subjective 

wellbeing. Although COVID-19 restrictions prevented the evaluation of causal links between 

wellbeing and EEG using this intervention, it is discussed for purposes of future research. 
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Together, this thesis provides one of the first investigations into the 

electrophysiological correlates of mental wellbeing. Resting EEG power was identified as the 

most promising avenue for future research aiming to establish endophenotype markers of 

mental wellbeing, with the task-related measures assessed here were not associated with 

wellbeing. A short and effective online intervention was developed that could be used to 

facilitate future investigations into the use of resting EEG as a predictor and marker of mental 

wellbeing.  
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Chapter 1: 

General Introduction 
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Historically, mental illness and mental wellbeing have been perceived as two ends of 

the same spectrum. This idea was challenged in the mid-twentieth century when Jahoda 

argued that the “absence of mental illness is not a sufficient indicator of mental health” 

(Jahoda, 1958, p. 15). Her stance aligned with the World Health Organization’s constitutional 

definition of health as, “a state of complete physical, mental, and social wellbeing and not 

merely the absence of disease or infirmity” (World Health Organization, 1946). Despite the 

significant growth in the field of positive psychology, the neurological difference between an 

absence of mental illness and the presence of mental wellbeing remains largely unknown. 

This contrasts with the mental illness literature where countless studies have demonstrated 

cognitive, neurological, and genetic risk factors associated with a wide range of mental 

illnesses. Thus, it remains the case that mental illness is much better understood than mental 

wellbeing.  

The primary aim of this thesis is to advance the current understanding of cognitive 

and neurological markers of mental wellbeing and how these relate to promoting wellbeing in 

the general population. Electroencephalography (EEG), which measures electrical activity 

from the scalp, is the primary tool of enquiry. EEG can reveal patterns in resting state brain 

activity, detect cognitive processes with high temporal sensitivity, and is known to be 

moderately to highly heritable (Anokhin et al., 2004; McLoughlin et al., 2014; Smit et al., 

2005, 2007). Compared to other neurological measures, EEG is cost-effective and reliable, 

and is becoming increasingly available to the general public in the form of gel-free, wearable 

systems currently geared towards biofeedback games (Duvinage et al., 2013; McKenzie et al., 

2017; Zabcikova, 2019). As such, EEG measures may provide a useful avenue of measuring 

and predicting mental wellbeing outcomes. The heritability of EEG makes it a viable 

candidate endophenotype: a physiological trait indicative of heritable risk (Gottesman & 
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Gould, 2003). However, to determine whether this avenue holds promise for predicting 

wellbeing, links between EEG measures and wellbeing must first be established.  

This thesis first describes new results from the TWIN-E study (Gatt et al., 2012) 

exploring the associations that resting EEG power, and event related potentials (ERPs) 

capturing emotional face processing, attention, working memory, and inhibition have with 

mental wellbeing. The nature of these associations is described in terms of genetic relative to 

environmental variance using a classical twin design. Finally, to facilitate further 

investigation into the relationship between EEG markers and mental wellbeing, a positive 

psychology intervention was developed and assessed in a randomised control trial. This trial 

demonstrated that aspects of wellbeing can be altered in as short a timeframe as six weeks. 

Such an intervention may be used in an experimental design to assess whether responses to 

positive psychology interventions (PPIs) can be predicted by EEG markers previously found 

to be associated with wellbeing. While such an experiment could not be conducted within the 

constraints of the ongoing COVID-19 pandemic, similar interventions could be used to assess 

whether resting EEG can predict treatment response, or if changes in wellbeing are reflected 

in resting EEG.  

1.1. Mental wellbeing, mental illness, and mental health 

What exactly is mental wellbeing, and how does it differ from mental illness and 

mental health? Historically, psychologists primarily concerned themselves with defining, 

understanding, and treating mental illness with the assumption that eliminating mental illness 

would is synonymous with improving mental health. Mental illnesses are health conditions 

that can impact how a person thinks, acts, and feels, and are defined today using a specified 

set of criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders 
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(American Psychiatric Association, 2013). It is frequently assumed that individuals who do 

not meet the criteria for a mental illness are mentally healthy. However, this would be 

inconsistent with modern definitions of health, which indicate that health is the presence of a 

positive state of wellbeing, not just the absence of illness (World Health Organization, 1946). 

Based on this definition, mental illness and mental wellbeing are distinct components that 

contribute to mental health. As such, an understanding of mental health is incomplete without 

an understanding of mental wellbeing. 

1.1.1. Definitions of mental wellbeing 

Definitions of mental wellbeing have been debated since the mid-twentieth century 

when the inadequacy of using the absence of mental illness to define mental health was first 

called out (Jahoda, 1958). Despite the various approaches to defining and measuring mental 

wellbeing, the most prominent perspectives are based on two ancient philosophies: hedonia, 

which focuses on the experience of pleasure and happiness, and eudaimonia, which focuses 

on self-actualisation and living life according to specific values. Hedonia was first 

popularised by the ancient Greek philosopher Aristippus, who believed that the meaning of 

life was to maximise pleasurable experiences (Ryan & Deci, 2001). This idea has informed 

modern conceptualisations of ‘subjective wellbeing’, where wellbeing is defined subjectively 

by each individual (Diener, 1984; Kahneman et al., 1999). Diener proposed that subjective 

wellbeing consists of an affective component, referring to subjective experiences of positive 

and negative affect, and a cognitive component, referring to a cognitive appraisal of one’s 

satisfaction with life (Diener, 1984). Although not free from criticism, this approach has been 

widely adopted within the field of positive psychology and is by far the most widely used 

approach to measuring wellbeing (Busseri & Sadava, 2011). 
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The next most prominent approach to defining and measuring mental wellbeing, 

referred to as ‘psychological wellbeing’, stems from Aristotle’s conceptualisation of 

eudaimonia in his work, Nicomachean Ethics. While some have interpreted Aristotle’s 

concept of eudaimonia as referring to the subjective experience of happiness (Bradburn, 

1969), this perspective is largely taken to be oversimplified. Rather, Aristotle’s use of the 

term eudaimonia referred to achieving one’s full potential by living a virtuous life, not one’s 

immediate subjective experience (Ryan & Deci, 2001; Ryff, 1989; Waterman, 1993). This 

interpretation of eudaimonia formed the basis of the Psychological Wellbeing Scale (Ryff, 

1989) which defines psychological wellbeing in terms of six components: self-acceptance, 

positive relations with others, autonomy, environmental mastery, purpose in life, and 

personal growth. Thus, while subjective wellbeing focuses on one’s affective experience and 

cognitive appraisal of one’s own life, psychological wellbeing focuses on a broader 

conceptualisation of positive psychological functioning and pre-defined values. 

Although the modern concept of psychological wellbeing was developed in 

opposition to subjective wellbeing, a growing body of evidence indicates that these constructs 

are linked, demonstrated by moderate to high correlations between common indices of each 

(Disabato et al., 2016; Keyes et al., 2002). Based on this, measures of composite wellbeing, a 

conceptualisation encapsulating both hedonic and eudaimonic conceptions of wellbeing, have 

increased in popularity (Cooke et al., 2016). One such measure includes the COMPAS-W 

wellbeing scale, which consists of six subscales indexing Composure under stress, Own-

worth, Mastery, Positivity, Achievement, and Satisfaction (Gatt et al., 2014). This scale was 

designed to provide an efficient measure of both subjective and psychological aspects of 

wellbeing, while also providing an overarching, composite wellbeing index from summing all 

items. Since its development, there has been growing support for hierarchical models of 
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wellbeing that construe general wellbeing as being made up of subjective and psychological 

wellbeing components (Disabato et al., 2016; Goodman et al., 2018). Measures such as the 

COMPAS-W provide an index of this overarching wellbeing construct. 

The COMPAS-W was selected as the primary outcome measure for this thesis 

because it simultaneously captures different components of wellbeing instead of focusing 

only on subjective wellbeing or psychological wellbeing, allowing for a more holistic 

operationalisation of wellbeing than alternatives. It has been previously validated within the 

TWIN-E sample against other mental health measures and has shown strong internal and test-

retest reliability over a 12-month period, indicating stability (Gatt et al., 2014). This is 

important for addressing the aims of this thesis in that a reliable and valid wellbeing measure 

is needed to identify stable electrophysiological markers of wellbeing.  

1.1.2. The dual factor model of mental health 

The development of wellbeing scales has facilitated further enquiry into the dual-

factor model of mental health, the theory that mental illness and mental wellbeing form two 

distinct components of mental health. If mental wellbeing and mental illness were to 

represent opposing ends of a mental health spectrum, then individuals scoring high on mental 

wellbeing would necessarily show few signs of mental illness and vice versa. While mental 

wellbeing and illness are inversely correlated with each other (Keyes, 2002; Koivumaa-

Honkanen et al., 2004; Routledge et al., 2016), a number of studies have demonstrated that 

wellbeing and mental illness symptoms can covary in unexpected ways (Greenspoon & 

Saklofske, 2001; Keyes, 2005; Routledge et al., 2016; Suldo & Shaffer, 2008). For instance, 

when combining measures of mental wellbeing and mental illness symptoms, individuals can 

be categorised into four groups: complete mental health, indicating high wellbeing but low 



25 

illness; a vulnerable or pure languishing group, indicating poor wellbeing and low illness; a 

symptomatic or ‘pure illness’ group, indicating high illness, but with moderate to high 

wellbeing; and a languishing with illness group, indicating high illness and low wellbeing 

(Keyes, 2005; Suldo & Shaffer, 2008). Of particular interest are those who experience 

moderate to high wellbeing despite mental illness, who make up approximately 13-16% of 

the population, and those who exhibit poor mental wellbeing in the absence of a mental 

illness, making up an additional 10-13% of the population (Keyes, 2005; Suldo & Shaffer, 

2008). A limitation of these findings is that they apply a categorical approach to defining 

mental wellbeing and illness, which assumes that there is a qualitative difference between 

those with high compared to low levels of mental illness and wellbeing (Conway et al., 

2021). Meta-analytic evidence suggests that such distinctions are uncommon in psychology, 

with most constructs being better captured by dimensional rather than categorical approaches 

to assessing mental health (Haslam et al., 2020). In this vein, studies using continuous 

measures of wellbeing find that about 30% of the variance between wellbeing and 

depression/anxiety symptoms is shared in opposing directions (Routledge et al., 2016). Thus, 

while mental wellbeing and mental illness are distinct constructs, they do appear to share 

some common variance, so it is worth acknowledging that the relationship between the two 

constructs is complex and difficult to tease apart empirically. 

1.2. Why promote mental wellbeing? 

Given that mental wellbeing is a component of mental health, promoting wellbeing is 

a necessary step towards improving mental health outcomes globally (World Health 

Organization, 1946). Mental wellbeing has inherent benefits, namely the experience of 

happiness that is widely sought out by the general public (Diener, 2000; Parks et al., 2012), 

and good mental wellbeing appears to protect against the negative effects of mental illness by 
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reducing susceptibility and promoting recovery (Grant et al., 2013; Iasiello et al., 2019; 

Keyes et al., 2002; Lamers et al., 2015). The effects of mental wellbeing promotion may also 

stem beyond mental health benefits; improvements in wellbeing have been associated with 

improved physical health, productivity, and income (Diener et al., 2017; Walsh et al., 2018).  

1.2.1. Mental wellbeing as a protective factor 

Various studies suggest that maintaining mental wellbeing during periods of stress 

and mental illness can mitigate their effects. Depressed individuals with at least moderate 

mental wellbeing reported significantly fewer days off work and significantly less limitation 

to their daily activities compared to depressed individuals with poor wellbeing (Keyes, 2002). 

A follow-up analysis of the same sample found that maintaining high wellbeing or improving 

wellbeing from low to moderate predicted recovery from mental illness over the next 10 

years (Iasiello et al., 2019). Prospective studies have also supported the notion that wellbeing 

can protect against the development of mental illness (Grant et al., 2013; Lamers et al., 2015). 

One study found that the increase in depressive symptoms over the course of a one-year 

medical internship was attenuated in students who had higher wellbeing at the start of the 

internship compared to those with poorer wellbeing (Grant et al., 2013). Another study found 

that in a community sample, higher wellbeing indicated reduced risk of mental illness onset 

over the next year, even after accounting for risk factors including baseline mental illness 

symptoms and family history (Lamers et al., 2015). These studies suggest that wellbeing 

promotion could be used as a means of reducing the burden of mental illness by mitigating 

symptoms, improving chances of recovery, and preventing initial onset. 
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1.2.2. Physical, economic, and productivity benefits 

In addition to the direct mental health benefits, a growing body of evidence indicates 

that wellbeing promotion has economic and physical health benefits (Diener et al., 2017; 

Kushlev et al., 2020; Walsh et al., 2018). For example, longitudinal studies have found that 

feelings of positive affect precede positive work outcomes including gaining and retaining 

employment (Côté et al., 2006; Haase et al., 2012; Luhmann et al., 2013), higher productivity 

(Miner & Glomb, 2010; Zelenski et al., 2008), and higher income (Binder & Coad, 2010; De 

Neve & Oswald, 2012; Diener & Seligman, 2002). Higher wellbeing has also been associated 

with better health-related outcomes including stronger immune function (Barak, 2006; S. 

Cohen et al., 2006) and improved cardiovascular health (Dockray & Steptoe, 2010; Howell et 

al., 2007; Tuck et al., 2017). Individuals with better wellbeing are also more likely to engage 

in positive health behaviours such as exercise and less likely to engage in negative health 

behaviours such as smoking (Boehm & Kubzansky, 2012; Kim et al., 2017; Sin, 2016). These 

health behaviours combined with improved immune and cardiovascular function may explain 

the observed association between higher subjective wellbeing and reduced risk of all-cause 

mortality and hospitalisation (Iwasa et al., 2006). 

1.3. Explaining genetic vs environmental variance in mental wellbeing 

 Understanding why people experience different levels of wellbeing is key to 

understanding how it can be altered through intervention. One way of considering the 

variance in wellbeing is through comparing heritable versus environmental sources of 

variance in the population. A large number of studies have applied this approach using the 

classical twin design, which compares trait similarity within monozygotic twins who share 

100% of their genetics, to that within dizygotic twins who share only 50% of their genetics 

on average (Verweij et al., 2012). Heritability can be inferred when monozygotic twins are 
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significantly more similar than dizygotic twins on a given trait. Studies applying this 

approach have estimated that wellbeing is moderately heritable and similar between 

subjective, psychological, and composite measures of wellbeing (Bartels et al., 2013; Keyes 

et al., 2010; Nes et al., 2008). A meta-analysis in 2015 estimated the heritability of subjective 

and psychological wellbeing at 32% and 36%, respectively (Bartels, 2015). The estimated 

heritability of the composite COMPAS-W wellbeing scale based on the TWIN-E sample was 

48% (Gatt et al., 2014). 

 Previous work has interpreted the heritable component of wellbeing to represent the 

degree to which wellbeing has a ‘set point’ (Lyubomirsky et al., 2005). Here, the set point 

refers to a relatively stable level of wellbeing that a person tends to maintain throughout their 

life via the homeostatic process of hedonic adaptation (Headey & Wearing, 1989; 

Lyubomirsky, 2010). Although the heritable component of wellbeing has been associated 

with stability over time (Jamshidi et al., 2020; Nes et al., 2006), the assumption that genetics 

determine phenotypic outcomes on the individual level is not empirically supported (Harden, 

2021; Visscher et al., 2008). A clear example of this can be seen when examining height. 

Despite estimates that heritable factors explain 80% of population variance in height, 

nutrition, disease, and socio-economic factors have also been demonstrated to have strong 

influences on height (Perkins, 2015). Thus, while heritable components of wellbeing might 

be associated with stability over time within a population, it does not indicate the degree to 

which an individual has the ability to change if appropriate interventions are in place. For 

instance, the heritability of resting EEG power is approximately 90% (Smit et al., 2005), yet 

neurofeedback interventions have successfully been used to alter EEG power through training 

(Kluetsch et al., 2014). Thus, the relationship between heritability and trait stability might 

indicate a lack of effective interventions, not that heritable trait components cannot be 
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changed. With the correct approach to intervention, environmental factors can be used to alter 

an individual’s wellbeing (and other psychological phenotypes) on the individual level. The 

sections below describe common approaches to wellbeing intervention and how consideration 

of genetic predisposition towards certain levels of wellbeing might be used to improve 

outcomes.  

1.4. Promoting wellbeing through positive psychology interventions 

Positive psychology interventions (PPIs) provide a promising avenue for realising the 

benefits of mental wellbeing. PPIs refer to a range of interventions designed to promote 

wellbeing by increasing positivity and resources to cope with stressful situations (Bolier et 

al., 2013; Sin & Lyubomirsky, 2009). Commonly used PPI activities include acts of kindness, 

mindfulness, goal setting, and gratitude, though a wide range of activities exist (Sin & 

Lyubomirsky, 2009). PPIs can include programs focused on a single activity (e.g., acts of 

kindness), or a mix of activities delivered over a period of weeks or months. Both single and 

multi-component PPIs have been found to be effective in improving wellbeing in meta-

analyses of randomised control trials with small to moderate effect sizes (Cohen’s d = 0.2 – 

0.4) (Bolier et al., 2013; Hendriks et al., 2020). However, these meta-analyses also revealed 

significant heterogeneity between studies indicating a need to better understand what makes 

PPIs most effective. Some investigations suggest that individual differences contribute to 

some of this heterogeneity and should be considered in intervention design (Lyubomirsky & 

Layous, 2013). 

PPIs are proposed to work by teaching individuals to mimic the behaviours of happy 

individuals, resulting in increased positive emotions, thoughts, and behaviours (Lyubomirsky 

& Layous, 2013). However, active engagement with PPIs is necessary to gain the most 
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benefit (Lyubomirsky et al., 2005). Because individuals are more likely to actively engage in 

tasks they enjoy and believe are effective, good person-activity fit is necessary to obtain the 

full benefits of PPIs (Lyubomirsky & Layous, 2013; Proyer et al., 2015). The variety 

provided within multi-component PPIs may improve person-activity fit by increasing the 

likelihood that participants will enjoy and engage with at least some of the interventions, 

which they may continue to use beyond the intervention period (Proyer et al., 2015; Sheldon 

et al., 2013). Task variety might also help to reduce hedonic adaptation, potentially 

contributing to longer-lasting effects in multi-component PPIs compared to single-component 

variations (Lyubomirsky, 2010; Sanders et al., 2019; Sheldon et al., 2013).  

Long-term improvements in wellbeing following participation in a PPI can be 

predicted by whether an individual initially responds well to the intervention in terms of 

symptom improvements; this is referred to as early reactivity (Cohn & Fredrickson, 2010; 

Proyer et al., 2015). This may be because individuals who experience positive effects early 

on are more likely to actively engage in the activity and continue practicing beyond the 

intervention period (Cohn & Fredrickson, 2010; Proyer et al., 2015). These individuals may 

have learned a stronger association between practising the intervention activities and 

improved mental wellbeing. However, it remains unclear why some individuals show early 

reactivity and others do not; when compared, these two groups did not differ in number of 

sessions attended or effort (Cohn & Fredrickson, 2010), and early reactivity itself is a better 

predictor of long-term outcomes than an individual’s enjoyment or belief in the effectiveness 

of the intervention (Proyer et al., 2015). It is possible that individual differences stemming 

from heritable neuropsychological factors might play a role in predicting early reactivity.  
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1.5. Using endophenotypes to improve positive psychology interventions 

 Given evidence that the effectiveness of PPIs is impacted by individual differences, it 

is worth investigating whether these individual differences stem from heritable 

psychophysiological factors. To this end, candidate endophenotypes might be useful in 

quantifying these factors. Endophenotypes are physiological traits that confer heritable risk 

for complex phenotypes (Gottesman & Gould, 2003). They were originally proposed as a 

means to facilitate the discovery of key molecular genetic variants contributing to 

psychopathology and other complex traits because they were perceived as providing a link 

between the genotype and phenotype (Gottesman & Gould, 2003; Iacono et al., 2017; 

McLoughlin et al., 2014). Although this goal has failed to materialise after decades of 

research, traits identified as candidate endophenotypes can still provide valuable insight into 

genetic predisposition towards certain psychological phenotypes (Iacono et al., 2017; Yoon et 

al., 2015). For example, Yoon et al. (2015) found that the P3 ERP component could be used 

to predict risk of externalising disorders over a 12-year period, indicating long-term 

predictive value of this candidate endophenotype. Thus, candidate endophenotypes may still 

provide useful in understanding mental health trajectories. They might also be used to 

investigate neural pathways to mental wellbeing and as targets for novel interventions. 

 A current challenge in identifying candidate endophenotypes for mental wellbeing is 

the lack of established electrophysiological correlates of wellbeing. Electrophysiological 

measures, namely EEG and ERPs are particularly valuable in the search for endophenotypes 

given their cost-effectiveness relative to other neural measures and their moderate to high 

heritability (Iacono et al., 2017; McLoughlin et al., 2014). So far, alpha asymmetry is the 

strongest electrophysiological correlate of mental wellbeing. Alpha asymmetry has been used 

in cognitive science as an index of positive and negative mood, or more precisely, an 
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indicator of approach versus withdrawal motivation (Harmon‐Jones & Gable, 2018). 

Typically, greater alpha power in the left compared to the right hemisphere is associated with 

negative moods and withdrawal motivation, while asymmetry towards the right hemisphere is 

associated with positive mood and approach motivation (Fingelkurts & Fingelkurts, 2015; 

Harmon‐Jones & Gable, 2018). In line with this, alpha asymmetry towards the right 

hemisphere has also been associated with greater wellbeing, positivity, and emotion 

regulation (Alessandri et al., 2015; Papousek et al., 2011; Urry et al., 2004). Changes in alpha 

asymmetry have even been observed to correlate with responsiveness to PPIs (Xu et al., 

2018). However, the potential of alpha asymmetry as a candidate endophenotype is limited 

due to its small to absent heritability of 0 to 0.27 (Anokhin et al., 2006). Therefore, the 

current thesis aims to explore alternative electrophysiological markers for wellbeing that 

could serve as candidate endophenotypes.   

1.6. The TWIN-E Study 

The current project is based on the TWIN-E study dataset, a longitudinal study 

investigating neural, cognitive, and behavioural correlates of mental wellbeing (Gatt et al., 

2012). The full sample consists of over 1600 Australian twins with no history of mental 

illness, between the ages of 18 and 65. From this sample, a subset of 450 participants 

participated in the EEG phase of the study, who form the sample analysed here. The EEG 

phase included resting EEG power and four ERP tasks relating to emotion and cognitive 

processing. Specifically, the tasks included emotion recognition, an auditory oddball 

paradigm, a go/no-go paradigm, and an n-back paradigm. The tasks were developed by Brain 

Resource as part of an international database collection system and have been standardised 

and broadly used across various healthy and clinical groups (Gordon et al., 2005; Williams et 

al., 2004, 2005). The aim of including these tasks in the TWIN-E study was to investigate 
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how markers of emotional and cognitive functioning markers used in clinical research 

translate to mental wellbeing, to better understand optimal functioning (Gatt et al., 2012). 

 The primary outcome measure for the TWIN-E study is the COMPAS-W wellbeing 

scale, specifically designed as a composite measure of subjective and psychological 

wellbeing (Gatt et al., 2014). The six subscales measure Composure, indicating one’s ability 

to cope under stress; Own-worth, indicating levels of self-esteem and autonomy; Mastery, 

indicating self-confidence and perceived control of one’s environment; Positivity, indicating 

optimism and positive outlook; Achievement, indicating goal striving; and Satisfaction, 

indicating one’s level of satisfaction with life, health, work, and relationships. The TWIN-E 

study also used the 42-item Depression, Anxiety, Stress Scale (DASS-42) to measure 

depression, anxiety, and stress symptoms within the sample (Lovibond & Lovibond, 1995). 

Previous work from the TWIN-E study assessed the overlap between COMPAS-W and 

DASS-42 scores, finding that they share 30% of their variance (Routledge et al., 2016). Thus, 

while they are distinct constructs, it is important to assess whether any identified wellbeing 

correlates are independent from or shared with non-clinical depression and anxiety 

symptoms. 

 The use of the twin design means that the TWIN-E study is particularly well-suited to 

identifying potential endophenotype markers of wellbeing. This is not only because the 

heritability of each electrophysiological correlate can be estimated, but because multivariate 

approaches can be used to assess whether the heritable (or environmental) components of 

each correlate drive each association. For an electrophysiological correlate of wellbeing to be 

considered a candidate endophenotype, its association with wellbeing should be driven by 

heritable components (Iacono et al., 2017). While resting EEG is known to be highly 

heritable with estimates as high as 0.90 (Smit et al., 2005), ERP heritability is more moderate 
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and variable between tasks. For instance, heritability estimates for early ERP components 

evoked by emotional face stimuli range from 0 to 0.64, and estimates may be emotion 

dependent (Anokhin et al., 2010; Shannon et al., 2013). In contrast, ERP components 

indexing attention, working memory, and inhibition, namely the P3 and N2 components, have 

more consistently been estimated to be moderately heritable across studies, with estimates 

typically ranging from 0.50 to 0.60 (Anokhin et al., 2004, 2017; Hall et al., 2006; Malone et 

al., 2014; Smit et al., 2007). Within the context of the TWIN-E study, it is possible to assess 

whether any associations between these tasks and wellbeing are due to shared heritable or 

environmental factors to clarify their potential as endophenotypes. 

The following sections outline how each of the electrophysiological TWIN-E study 

measures might be related to mental wellbeing, depression and anxiety symptoms based on 

the existing research.  

1.7. Resting EEG measures 

Resting state EEG is measured in the absence of any assigned task to capture 

spontaneous brain activity. Power quantifies the amount of activity in a given frequency 

range within a specified time period and is usually extracted from the data using pre-

determined frequency bands (M. X. Cohen, 2014). These bands usually include alpha (8–13 

Hz), beta (13–30 Hz), delta (0.5–4 Hz), and theta (4–8 Hz). Each frequency band is involved 

in various cognitive functions, however, there are some examples of cognitive functions that 

are more strongly associated with certain frequencies than others (Knyazev, 2007). For 

instance, alpha power is dominant in waking adults and is hypothesised to capture self-

referential processing (such as mind wandering about oneself or focusing on one’s internal 

state) and inhibitory processes, especially inhibition of external stimuli (Klimesch, 2012; 
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Knyazev, 2007, 2013). Beta power has also been observed to increase at rest, but is 

associated with focused attention, where focus is targeted towards one’s outward experience, 

rather than the inward focus associated with alpha power (Knyazev, 2013; Travis & Shear, 

2010). Theta power has been linked to task-oriented attention and learning processes 

(Cavanagh & Shackman, 2015). Delta power, which is most prominent during deep sleep, 

may also be involved in learning via motivational purposes when more apparent in waking 

states (Knyazev, 2012).  

1.6.1. Resting EEG in mental health 

As discussed above, the most common resting EEG measure used in the context of 

mental health is alpha asymmetry. Greater alpha power in the right relative to the left 

hemisphere is associated with subjective and psychological wellbeing (Alessandri et al., 

2015; Urry et al., 2004; Xu et al., 2018). While wellbeing studies have primarily focused on 

alpha asymmetry, studies from the broader mental health literature suggest that absolute 

resting EEG power may also be relevant. For instance, increases in alpha, beta, and theta 

power have been associated with the early stages of major depression, with alpha and theta 

power proposed to reflect decreased cortical activation implicated in depression and 

increased beta power reflecting associated anxiety symptoms (Grin-Yatsenko et al., 2009). 

Comparable studies associating absolute resting power with mental wellbeing, happiness, or 

life satisfaction have not yet been conducted to show whether specific patterns of resting 

EEG power are uniquely associated with mental illness and associated symptoms, or whether 

they may also reflect differences in wellbeing.  

Interactions between EEG power bands might provide more nuanced information 

about how EEG relates to different mental states. Some studies suggest that coupling or 
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decoupling of different frequency bands, indicating positive or negative correlations between 

frequencies within an individual, can provide information about anxiety and stress symptoms 

(Knyazev et al., 2006; Schutter & van Honk, 2005; van Peer, 2008). Specifically, individuals 

with low trait anxiety tended to show increased alpha-delta coupling compared to individuals 

with high trait anxiety who showed decoupling (Knyazev et al., 2006). In addition, within the 

same study, participants who received negative feedback following a stressful task showed 

increased delta-beta coupling afterwards, regardless of trait anxiety level (Knyazev et al., 

2006). Independent research has found that delta-beta coupling is positively correlated with 

salivary cortisol (Schutter & van Honk, 2005), and increases following experimental 

administration of cortisol in humans (van Peer, 2008). This research highlights the 

importance of considering the relationships between frequencies in clarifying how they relate 

to mental states. However, similar approaches remain to be tested with mental wellbeing. 

1.7. Event-related potentials 

In addition to resting EEG measures, task-related EEG measures called ERPs are 

another promising avenue for understanding heritable components of mental health 

(Gottesman & Gould, 2003; McLoughlin et al., 2014). ERPs are time-locked averages of 

EEG activity following the onset of a stimulus, such as an image or a sound (Woodman, 

2010). The resulting ERP waveform reflects cognitive events occurring at specific timepoints 

relative to stimulus onset, measured in amplitude rather than frequency. Early ERP 

components occurring in the first 100-200 msec generally reflect sensory processing while 

later components reflect more elaborative processes including decision making and 

performance monitoring (VanRullen & Thorpe, 2001; Woodman, 2010). The TWIN-E Study 

included four ERP tasks including emotional and cognitive tasks similar to those that have 

been previously linked to mental illness (Bernat et al., 2020; Breukelaar et al., 2020; Bruder 
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et al., 2011; Gatt et al., 2012; Y. Zhang et al., 2007). Some behavioural research has also 

found associations between similar working memory tasks with positive affective states, 

suggesting a potential relationship between these functions and mental wellbeing (Pe et al., 

2013; Storbeck & Maswood, 2016). 

1.7.1. Emotion-related event related potentials 

ERPs can provide useful insight into the early stages of emotion processing. Neural 

differentiation between different emotional facial expressions can be detected in ERPs from 

as early as 80 msec post-stimulus in the N1 and P1 components (Batty & Taylor, 2003; 

Carretié, 2014; Kiss & Eimer, 2008). ERPs can also detect subliminal face processing under 

backwards-masking paradigms that display an emotional expression for time periods too 

short to consciously perceive before masking with an alternative image (Liddell et al., 2005; 

Williams et al., 2004; Y. Zhang et al., 2007). Associations between mental health and 

emotional face processing have predominantly focused on mental illness, including 

depression and anxiety symptoms, with little focus on mental wellbeing. The studies that 

have been conducted in the realm of positive mood or wellbeing have mainly used 

behavioural methods without measuring ERPs. However, considering the behavioural 

associations previously reported between wellbeing and emotion processing, it would suggest 

that wellbeing would be similarly associated with the same tasks measured using ERPs 

during early processing of emotional faces. 

 Various ERP studies in clinical, subclinical, and at-risk populations have indicated 

that early stages of emotional face processing are altered in the presence of poor mental 

health (Chen et al., 2014; Dai et al., 2016; Dai & Feng, 2012; Hu et al., 2017; Jaworska et al., 

2010; Watters et al., 2018; Williams et al., 2007; D. Zhang et al., 2016). Many of these 
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studies support a mood-congruency bias whereby stimuli reflecting one’s current mood is 

processed more readily than mood-incongruent stimuli (Cavanagh & Geisler, 2006). In the 

earliest stages of visual processing captured by ERPs, patients with major depressive disorder 

(MDD) have been reported to show augmentation of the P1 component (Dai et al., 2016; D. 

Zhang et al., 2016), and occasionally a specific reduction in P1 amplitude in response to 

happy faces (Dai & Feng, 2012). An alteration of the N1 component in response to fearful 

faces has also been reported to be associated with depression and anxiety symptoms in 

unmasked and masked paradigms, respectively (Williams et al., 2007). The N170 and vertex 

positive potential (VPP) components that follow reflect face-specific processing (Batty & 

Taylor, 2003; Eimer, 2000) and are typically augmented in MDD patients for sad relative to 

happy or neutral faces, again supporting the mood congruency bias (Chen et al., 2014; D. 

Zhang et al., 2016). However, in some samples, especially subclinical groups, depression 

symptoms are associated with smaller amplitude differences between emotional expressions 

(Chen et al., 2014; Dai & Feng, 2012; Watters et al., 2018; Williams et al., 2007). This 

reduced differentiation has been suggested to reflect either less severe illness (e.g., Chen et 

al., 2014), or trait (rather than state) depression and anxiety (Watters et al., 2018). Similar 

patterns of reduced differentiation between emotions have been reported for the parietal P250 

component (Hu et al., 2017; Jaworska et al., 2012), which is sensitive to emotional stimuli 

including scenes and faces (daSilva et al., 2016; Eimer & Holmes, 2007). While these studies 

indicate that depression/anxiety symptoms impact the early stages of cognitive processing, an 

understanding of what healthy processing looks like in individuals with high wellbeing is 

lacking. 

 Despite a lack of ERP studies examining the relationship between mental wellbeing 

and emotion recognition, behavioural studies have examined the effect of positive mood on 
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emotion recognition. Unlike the mental illness literature, which has predominantly used the 

mood-congruency bias to explain alterations in emotion recognition within clinical groups, 

mood manipulation studies have suggested that in the context of positive mood, a mood 

incongruency bias drives the effects (Schmid & Schmid Mast, 2010). Using mood induction 

procedures, one study reported that while sad participants were worse than neutral-mood 

participants at identifying happy faces and better at recognising sad faces, happy individuals 

only differed from the neutral-mood group on recognising sad faces less accurately (Schmid 

& Schmid Mast, 2010). Another study compared mood and temperament effects on emotion 

recognition, finding that while being in a happy mood did not lead to better accuracy in 

identifying happy faces, being more extraverted did (Yi et al., 2016). It is possible that more 

stable constructs, such as extraversion and wellbeing, might elicit a stronger positivity bias 

than more variable mood states. This would be consistent with the finding from the full 

TWIN-E sample that mental wellbeing was associated with faster reaction times for 

recognising happy faces (Routledge et al., 2018). This positivity bias was also examined in a 

subsample of the TWIN-E study using fMRI. In this study, individuals with higher wellbeing 

showed greater activation in the inferior frontal gyrus, a region previously associated with 

emotion recognition and regulation, for happy relative to neutral faces (Park et al., 2021). It is 

therefore expected that evidence of a positivity bias might also be found in early ERPs. If so, 

it is important to investigate how this bias relates to the negativity bias found in association 

with depression and anxiety symptoms.   

1.7.2. Cognitive event-related potentials 

In addition to emotion processing, the TWIN-E study examined potential links 

between cognitive function and mental wellbeing, specifically, working memory, attention, 

and inhibition. An analysis of the TWIN-E study’s behavioural tasks revealed that wellbeing 
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was associated with improved working memory, inhibition, motor coordination, sustained 

attention, and cognitive flexibility (Routledge et al., 2017). This was in line with earlier 

research that found positive associations between wellbeing and global cognitive function 

(Llewellyn et al., 2008), working memory (Pe et al., 2013), and inhibition (Lee & Chao, 

2012). It is also conceptually consistent with the broader positive psychology literature that 

has associated positive mood with improved cognitive function, namely increased attentional 

scope (Fredrickson, 2001; Putkinen et al., 2017; Vanlessen et al., 2014), improved cognitive 

control and inhibition (Dreisbach & Goschke, 2004; Vanlessen et al., 2015, 2016), and better 

working memory (Gray, 2001; Storbeck & Maswood, 2016). Only a few of these studies 

have used ERP measures to investigate the association between positive mood and cognition, 

and none have used ERPs to investigate the association between wellbeing and cognition. For 

instance, the P3b component, which is largely indicated to reflect attention allocation and 

working memory (Polich, 2007), has been used to assess whether positive mood alters 

attention allocation in line with the theory that positive moods broaden attentional scope 

(Fredrickson, 2001; Putkinen et al., 2017; Vanlessen et al., 2014). Specifically, P3b 

amplitudes were found to be larger during an auditory oddball task when participants were 

also completing a secondary visuospatial task (Vanlessen et al., 2014), but reduced when the 

secondary task was auditory (Putkinen et al., 2017). However, it remains unclear how either 

wellbeing or positive moods might alter P3b amplitude within an oddball task with no 

competing distractors.  

 The mood induction approach used by the above studies is limited in that it does not 

account for the potential effect of trait-like characteristics which might vary between studies 

depending on the sample. This might be particularly relevant for interpreting P3b effects 

because the P3b has been identified as a candidate endophenotype for broad psychopathology 
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risk (Bernat et al., 2020; Malone et al., 2014). In the context of the broader literature, it is 

notable that reduced P3b amplitudes have been proposed to indicate both positive emotions 

and psychopathology risk (Bernat et al., 2020; Putkinen et al., 2017). This highlights the need 

to clarify the contexts in which P3b amplitude is related to mental wellbeing and mental 

illness. One difference between positive mood studies and psychopathology studies is that the 

psychopathology literature tends to use simple two- or three-tone oddball tasks (Bernat et al., 

2020; Bruder et al., 2011), whereas the positive mood studies to date have focused on 

attention allocation with more complex, dual-task settings (Putkinen et al., 2017; Vanlessen 

et al., 2014). The standard two-tone oddball paradigm used in the TWIN-E study provides an 

opportunity to assess whether wellbeing is positively correlated with P3b amplitude when 

there is no competing task, as would be expected if psychopathology risk is inversely 

associated with wellbeing. 

 In addition to the oddball paradigm, the TWIN-E study included two additional 

cognitive tasks known to evoke ERP components; the go/no-go paradigm, which indexes 

inhibitory function, and the n-back task, which indexes working memory and sustained 

attention (Gatt et al., 2012). The behavioural data from the TWIN-E study suggests that both 

inhibitory function and working memory are associated with better wellbeing (Routledge et 

al., 2017), however this is yet to been confirmed at the ERP level. Within an affective 

paradigm, wellbeing has been associated with better ability to retain positive information in 

working memory (Pe et al., 2013). Positive mood has also been suggested to boost general 

working memory performance, especially verbal memory (Storbeck & Maswood, 2016), but 

the effects of naturally occurring mood on working memory appear limited (Chung et al., 

2021). However, the behavioural TWIN-E data suggests that composite wellbeing is 
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positively associated with better working memory performance (Routledge et al., 2017) and 

ERPs may be used to assess this effect on a neurological level (Watter et al., 2001).  

Inhibition has also received attention in relation to its role in maintaining mental 

wellbeing. Inhibition of negative stimuli forms an important component of emotion 

regulation, but has been found to be impaired in depression (Joormann et al., 2011; Joormann 

& Gotlib, 2010). In comparison, inhibition has been found to be positively associated with 

mental wellbeing, even when non-emotional stimuli is used (Lee & Chao, 2012; Routledge et 

al., 2017). One ERP study examined inhibition in association with positive mood using an 

anti-saccade task, where participants had to look away from (instead of towards) a visual 

stimulus when it appeared on screen (Vanlessen et al., 2015). While the authors found no 

association between positive mood and P3a amplitude, happy individuals showed a larger N2 

amplitude following target onset, suggesting greater inhibitory control in this group 

(Vanlessen et al., 2015). Examining the association between the inhibitory P3a and N2 

components in the TWIN-E sample will help to clarify the degree to which mental wellbeing 

is associated with inhibitory function. 

1.8. Thesis overview 

In summary, the primary aim of the current thesis is to explore potential 

electrophysiological endophenotypes for mental wellbeing. This is done using the TWIN-E 

study dataset to test for associations between composite wellbeing with resting EEG and 

standardised ERP tasks. Heritability was then assessed for each measure and, if an 

association with wellbeing is observed, a multivariate heritability model was used to test 

whether the association was explained by shared heritability. The second key aim of this 

thesis was to develop a short positive psychology intervention that could be used to assess the 
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relationship between identified candidate endophenotypes with responsiveness to treatment. 

While the ongoing COVID-19 pandemic interfered with testing the endophenotypes in 

relation to treatment, the intervention developed here was shown to be effective in improving 

wellbeing and may be used in future research to test for associations between endophenotype 

markers and treatment response and help establish causality between resting EEG and 

wellbeing.  

The following chapter, Identifying a resting EEG profile of wellbeing, presents a 

paper published in the Journal of Psychiatric Research detailing the relationship between 

resting EEG power and mental wellbeing (Chilver et al., 2020). This paper identified a novel 

relationship between mental wellbeing and a specific profile of resting EEG activity 

characterised by heightened alpha and delta power and reduced beta power. The association 

between this EEG profile and mental wellbeing was found to be driven by shared heritability, 

indicating its potential use in conveying genetic predisposition to mental wellbeing.  

 Chapter 3, Emotional face processing and mental health, presents a paper in 

submission to the Journal of Psychiatric Research (Chilver et al., in press) that has been 

edited to include additional heritability analyses. This chapter examined the association 

between emotional face processing, mental wellbeing, and depression/anxiety symptoms. 

Alterations in emotional face processing, namely the N170 component for fearful relative to 

happy faces, were associated with depression/anxiety symptoms, but not with wellbeing. 

Consistent with past research, the variation in this component was driven by environmental 

rather than heritable factors. Thus, emotion specific processing is not a candidate 

endophenotype for wellbeing but could be used as a state marker of depression/anxiety 

symptoms.  
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 Chapter 4, Cognitive processing and mental health, describes an investigation into the 

association between cognitive ERPs, mental wellbeing, and depression/anxiety symptoms. 

Specifically, this chapter examined whether the P3b, P3a, and N2 components from the 

auditory oddball, n-back, and go/no-go paradigms are associated with mental health. The 

heritability of each component was also assessed. The results showed that although 

behavioural performance on the auditory oddball and n-back tasks were associated with 

mental wellbeing and depression/anxiety symptoms, none of the ERPs of interest were 

significantly associated with mental health. However, the heritability analysis aligned with 

past research indicating that these components are moderately heritable in the current sample. 

 Chapter 5, Improving wellbeing with positive psychology interventions, presents a 

paper published in the Journal of Happiness Studies regarding the effectiveness of a short 

online positive psychology intervention (Chilver & Gatt, 2021). The aim of this paper was to 

investigate whether a self-administered positive psychology intervention is effective over and 

above comparable active control tasks in improving mental wellbeing in as short a period as 

six weeks. The results from this randomised control trial indicated that subjective wellbeing 

improved more in the intervention group relative to the control group by the end of the 

intervention. Furthermore, individuals who participated in the intervention before the 

introduction of COVID-19 restrictions, and individuals with lower resiliency resources 

showed greater improvements in composite wellbeing relative to the control group. These 

moderation effects may be due to these groups having lower baseline wellbeing, leaving more 

room for improvement. 

 Finally, Chapter 6 presents a general discussion of the results, including a summary 

and discussion of the current thesis in relation to its aims is provided. The limitations, 

implications, and future research directions are also discussed. 
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2.1. Preamble 

 This chapter presents the first of three studies based on the TWIN-E dataset in the 

search for EEG candidate endophenotypes for wellbeing. Specifically, this chapter aimed to 

explore whether resting EEG measures, namely alpha, beta, theta, and delta power, are 

correlated with mental wellbeing, and to determine the extent to which any observed 

correlation is accounted for by shared genetic or environmental factors using multivariate 

twin analysis. A shared genetic association between wellbeing and resting EEG would 

support the use of resting EEG power as a candidate endophenotype for mental wellbeing.   
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2.2. Abstract 

Alterations to electroencephalography (EEG) power have been reported for psychiatric 

conditions such as depression and anxiety, but not for mental wellbeing in a healthy 

population. This study examined the resting EEG profiles associated with mental wellbeing, 

and how genetics and environment contribute to these associations using twin modelling. 

Mental wellbeing was assessed using the COMPAS-W Wellbeing Scale which measures both 

subjective and psychological wellbeing. In 422 healthy adult monozygotic and dizygotic 

twins aged 18–61 years, we examined the association between mental wellbeing and EEG 

power (alpha, beta, theta, delta) using linear mixed models. This was followed by univariate 

and multivariate twin modelling to assess the heritability of wellbeing and EEG power, and 

whether the association was driven by shared genetics or environment. A significant 

association between wellbeing and an interaction of alpha, beta, and delta (ABD) power was 

found (β = −0.33, p < 0.001) whereby a profile of high alpha and delta and low beta was 

associated with higher wellbeing, independent of depression and anxiety symptoms. This 

finding was supported by a five-fold cross-validation analysis. A significant genetic 

correlation (rG = −0.43) was found to account for 94% of the association between wellbeing 

and the EEG power interaction. Together, this study has identified a novel EEG profile with a 

common genetic component that may be a potential biomarker of mental wellbeing. Future 

studies need to clarify the causal direction of this association. 
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2.3. Introduction 

Mental health is often measured as the absence of mental illness because of the assumption 

that those without mental illness are mentally healthy. However, a study of over 3000 

Americans found that 15% of individuals without a mental illness had lower wellbeing than 

individuals with major depression (Keyes, 2002). It is therefore important that mental health 

or ‘wellbeing’ be measured independently of mental illness symptoms and that its own 

unique markers are identified. Various twin and population studies have estimated that 

mental wellbeing is influenced almost equally by genetics and environment (Bartels, 2015; 

Gatt et al., 2014). This genetic component may be explained by differences in brain structure, 

function, or connectivity. Brain imaging methods such as electroencephalography (EEG) or 

functional magnetic resonance imaging (fMRI) can be used to understand the underlying 

neurobiology that contributes to wellbeing. Existing fMRI research has associated wellbeing 

with connectivity within the brain's default mode network (Luo et al., 2016), a network also 

associated with specific profiles of EEG spectral power at rest (Knyazev et al., 2011; Neuner 

et al., 2014). Despite evidence that resting brain networks are associated with wellbeing and 

that EEG power is a more cost-effective and accessible method of monitoring resting brain 

activity, research to date has not tested whether resting EEG power is an indicator of 

wellbeing. This study addressed this using a twin sample to explore the relationship between 

EEG and wellbeing and assessed whether this association was predominately environmental 

or genetic. 

 Resting EEG power measures spontaneous brain activity, largely unaffected by task 

demands (Fingelkurts & Fingelkurts, 2015). Both frontal alpha asymmetry (the difference in 

alpha power between the left and right hemisphere) and absolute resting power have been 

used to probe at the neural mechanisms underlying mental illnesses such as major depressive 
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disorder (Coburn et al., 2006; Fingelkurts & Fingelkurts, 2015). Alpha asymmetry towards 

the left hemisphere is thought to indicate less cortical activation in that region and has been 

associated with withdrawal motivation and depressive symptoms (Fingelkurts & Fingelkurts, 

2015; Harmon‐Jones & Gable, 2018). Differences in EEG absolute power have also been 

reported in individuals with major depressive disorder relative to controls, with depression 

characterised by patterns of increased alpha and beta power, and decreased delta and theta 

power (Fingelkurts & Fingelkurts, 2015). In comparison, the EEG literature on wellbeing is 

very limited. Some studies have suggested that alpha asymmetry towards the right 

hemisphere is indicative of higher wellbeing, although depressive symptoms were not 

accounted for (Alessandri et al., 2015; Urry et al., 2004). Thus, it is unclear whether this 

finding is simply reflecting the inverse association between wellbeing and depressive 

symptoms. No known attempts have been made to identify profiles of absolute EEG power 

with wellbeing. This was the focus of the current study. 

 Specifically, we explored whether resting absolute EEG power is associated with 

wellbeing and whether there is a genetic link. An exploratory method was chosen because 

previous research provides no strong rationale for a link between any specific frequency band 

and wellbeing, particularly when accounting for depression and anxiety symptoms. 

Wellbeing was operationalised using the composite COMPAS-W wellbeing scale (Gatt et al., 

2014). This scale captures subjective wellbeing (SWB; happiness and life satisfaction) and 

psychological wellbeing (PWB; positive functioning and goal-driven behaviour) with six 

subscales: composure, own-worth, mastery, positivity, achievement, and satisfaction. 

Heritability of this scale has been estimated at 48% (Gatt et al., 2014), higher than estimates 

derived from either SWB (32%) or PWB (36%) alone (Bartels, 2015). In comparison, resting 

EEG power is much more heritable, with estimates of 80–90% depending on the frequency 
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band (Smit et al., 2005). Because EEG power is more heritable than default mode network 

connectivity with estimates of 10–54% (Korgaonkar et al., 2014; Xu et al., 2017), EEG 

power is more likely to be associated with wellbeing via a shared genetic correlation. 

 The twin model applied in the current study compares similarities in monozygotic 

twins who share 100% of their genetics with those of dizygotic twins who share 

approximately 50% of their genetics using univariate models. This method asserts that the 

increased similarity between monozygotic twins compared to dizygotic twins is due to their 

shared genetics, allowing the additive genetic (A), dominant genetic (D) or common 

environment (C), and unique environment (E) effects to be estimated (Verweij et al., 2012). 

The genetic and environmental correlations between two traits is estimated using cross-twin 

cross-trait correlations whereby the first trait in twin one is correlated with the second trait in 

twin two, and vice versa. The difference in these correlations when comparing monozygotic 

and dizygotic twins informs the fit of the multivariate model (Posthuma, 2009). 

 This study aimed to explore the association between wellbeing and EEG power in a 

large healthy twin sample using models that account for interactions between alpha, beta, 

delta, and theta power, as well as variation in depression/anxiety symptoms measured using 

the Depression Anxiety Stress Scale (DASS-42; Lovibond & Lovibond, 1995). The EEG 

profiles identified in this analysis were then tested for associations with lifestyle factors. To 

test previous wellbeing and EEG research findings (Urry et al., 2004), alpha asymmetry was 

also tested. Secondly, we determined the roles of genetics and environment in these 

relationships. Univariate twin models were used to estimate the heritability of each trait, 

followed by multivariate models to estimate shared genetic and environmental contributions 

between traits. Due to the high heritability of EEG power, associations between wellbeing 

and EEG power were predicted to be predominantly due to genetic correlations. 
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2.4. Methods & Materials 

2.4.1. Participants 

This study included 441 participants drawn from the TWIN-E project (Gatt et al., 2012) who 

agreed to participate in the EEG phase of the study. The full TWIN-E project sample includes 

a total of 1669 healthy adult same-sex twin pairs of European descent recruited through the 

Australian Twin Registry between 2009 and 2012. Participants were screened for previous 

and current physical and mental health. 

 Inclusion and exclusion criteria can be found in the study protocol (Gatt et al., 2012). 

A total of 422 participants, who had complete datasets available, were included in the 

analysis. The study was approved by the Human Research Ethics Committees of the 

University of Sydney (03–2009/11430), Flinders University (FCREC#08/09), and the 

University of New South Wales (HC14256). 

2.4.2. Procedure 

Participants completed an online test battery before attending the EEG recording session at 

either the Brain Dynamics Centre at the University of Sydney, NSW, Australia, or at Flinders 

University, Adelaide, SA, Australia. This included measures of mental health, lifestyle 

factors, and cognitive and emotional function (Gatt et al., 2012). The COMPAS-W wellbeing 

scale was used to measure wellbeing. This scale has been validated against other mental 

health measures and has demonstrated high internal reliability for wellbeing of 0.84 and test- 

retest reliability of 0.82 (Gatt et al., 2014). The DASS-42 (Lovibond & Lovibond, 1995) was 

used to measure depression and anxiety symptoms. This has been validated against other 

common depression and anxiety scales, including the Beck Depression and Anxiety 
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Inventories (Lovibond & Lovibond, 1995), and has very high internal reliability at 0.97 

(Crawford & Henry, 2003). 

2.4.3. EEG acquisition and processing 

Resting EEG activity was recorded using a 26-electrode QuikCap and NuAmps DC amplifier 

with a sampling rate of 500 Hz. Impedances were kept below 5 kΩ. Recordings were made 

under an eyes open and eyes closed condition, each lasting a total of 2 min. Heart rate data 

was recorded simultaneously using an electrocardiogram (ECG) via an electrode on the left 

wrist. EEG and ECG recordings were made relative to virtual ground with a low-pass 

attenuation of 40 dB per decade above 100 Hz. A notch filter was applied to filter out line 

noise. EEG recordings were re-referenced offline to the linked mastoids for the resting power 

analysis, and to the average reference for the asymmetry analysis as used by Urry et al. 

(2004). The Gratton-Coles method was used to correct for eye movement artifacts with 

electrodes placed on the outside of each eye, and above and below the left eye (Gratton et al., 

1983). 

2.4.4. Statistical analyses 

2.4.4.1. Pre-processing 

Questionnaire data was checked for outliers and inconsistent responses prior to the 

analysis. DASS-42 scores were log transformed to normalise the score distribution. 

2.4.4.2. EEG power 

EEG power can be measured in either absolute or relative terms, whereby absolute 

power is the amplitude squared for each frequency, and relative power is each frequency's 

power as a proportion of total power. Absolute power was chosen for this study due to some 
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ambiguities in the quantification of relative power; that is, it is not clear whether an increase 

in relative power for a given frequency is caused by an increase in its absolute power, or a 

decrease in another frequency. 

 Resting power was calculated for each condition by dividing the 2min recordings into 

4-s intervals and applying a Welch window prior to the Fast Fourier Transform. The power 

spectra were averaged for each electrode site in each of the two conditions over four 

frequency bands: delta (1.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz), and beta (14.5–30 

Hz). A log transformation was applied to the resulting data to approximate a normal 

distribution. EEG power was averaged for frontal (F3, F4, F7, F8, Fp1, Fp2, Fz), central 

(CP4, CPz, CP3, Cz, C4, C3, FCz, FC3, FC4), temporal (T3, T4, T5, T6) and parietal-

occipital (O1, O2, Oz, P3, P4, Pz) regions to reduce the number of required models. 

2.4.4.3. Alpha asymmetry 

Alpha asymmetry was calculated for all frontal bilateral electrode pairs (Fp1-Fp2, F4–

F3, FC4-FC3, F8–F7) using two different methods. The first method was a difference score 

between right and left log power used previously (Urry et al., 2004), and the second method 

used the difference score as a proportion of the total power from the same electrodes (right – 

left/right + left). Both methods were applied in the eyes open and eyes closed conditions. 

2.4.4.4. Linear mixed models 

The association between EEG power and wellbeing was assessed using linear mixed models 

in R with the lme4 package (Bates et al., 2015). Models were specified with wellbeing as the 

criterion and EEG power in all four frequencies as predictors. To account for all possible 

interactions between the four EEG bands without increasing multi-collinearity, interaction 
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terms were calculated manually by multiplying each combination of frequency bands and 

regressing all lower-order terms on each interaction term for each participant (Burrill, 1997). 

The resulting residuals were then included in the models as the interaction terms, after 

multiplying by 100 to improve scaling. This method reduces the overlapping variances 

between multiple interactions produced from the same four frequency bands and improves 

the reliability of the results (Burrill, 1997). Similar models were used to assess the association 

between alpha asymmetry and wellbeing, with wellbeing as the criterion variable and each 

electrode pair as predictor variables with age, education, body mass index, and sex as 

covariates. 

 Statistical tests on the linear mixed model variables were conducted using the 

Satterthwaite method, an effective method for controlling the type 1 error rate in linear mixed 

models (Luke, 2017). A Bonferroni correction was used to control for multiple testing. 

Resting power models in each condition included 15 parameters (4 main effects, 6 two-way 

interactions, 4 three-way interactions, and 1 four-way interaction) across four different brain 

regions, resulting in an adjusted significance threshold of 0.05/60 = 0.0008 (8e-4). For the 

asymmetry analysis, the Bonferroni correction encompassed tests at 4 different electrode 

sites, resulting in an adjusted significance threshold of 0.05/4 = 0.0125. 

 Five-fold cross validation was used to determine whether EEG power was associated 

with wellbeing in held-out pairs of twins. After randomly assigning pairs of twins to one of 

five equal-sized groups, iterative linear mixed models with covariates (described above) were 

run to predict wellbeing in the held-out group. The results of this procedure were compared to 

a null model in which only the average wellbeing score within the four training folds was 

used to predict wellbeing in the held-out group for every individual. 
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2.4.4.5. Group-based analysis 

To test whether the model-identified EEG profiles differentiated the wellbeing groups, as 

well as other underlying mechanisms for wellbeing, participants were assigned to groups 

based on whether their EEG profile was associated with high, moderate, or low wellbeing in 

the linear mixed model results. EEG profiles were then tested for a linear association with the 

COMPAS-W subscales, depression/anxiety symptoms, cognitive function (Routledge et al., 

2017), emotion identification (Routledge et al., 2018), heart rate variability, and general 

lifestyle and nutrition variables (Gatt et al., 2012). For continuous variables, linear mixed 

models were used with each variable of interest included as the criterion. For ordinal 

variables (lifestyle), cumulative link mixed models were instead applied using the ordinal R 

package (Christensen, 2019). Tests were conducted using a Bonferroni correction. 

2.4.4.6. Univariate twin analysis 

Heritability of wellbeing, depression/anxiety, and the EEG measures was assessed 

using univariate twin analysis with the OpenMx package in R (Scheike et al., 2014). Where 

the intra-class correlation between monozygotic twins was double or more than the intra-class 

correlation between dizygotic twins, an ADE model was then tested, otherwise the ACE 

model was tested (Verweij et al., 2012). A, C, or D components were then dropped 

progressively from each model to find the most parsimonious model. Age, sex, and education 

were included as covariates in these twin models. 

2.4.4.7. Multivariate twin analysis 

The overlap in genetic and environmental variance between wellbeing, 

depression/anxiety, and EEG power was assessed using a correlated factors model with the 
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OpenMx R package (Neale et al., 2016) with covariates accounted for. Genetic and 

environmental correlations were tested by constraining them to zero in a new model, then 

comparing this model to the previously best-fit model using a chi-square difference test. A 

significant reduction in model fit resulting from constraining a correlation to zero indicated 

its significance (and therefore the correlation was retained in the model). 

2.5. Results 

Demographic information is provided in Table 2.1. Depression/anxiety symptoms 

were very low on average, and the average wellbeing was similar to the full TWIN-E Study 

sample. The obtained ratio of monozygotic to dizygotic twins is typical of volunteer twin 

samples, and arises from monozygotic twins having a higher participation rate than dizygotic 

twins when the same incentives are provided to both groups (Lykken et al., 1978). 

 

Table 2.1 Participant characteristics in the current sample of twins (mean ± SD).  

 Monozygotic 

(n = 292) 

Dizygotic 

(n = 130) 

Total 

(N = 422) 

Age (years) 41.0 ± 12.2 37.8 ± 14.3 40.0 ± 13.0 

Education (years) 14.8 ± 2.4 15.0 ± 2.2 14.9 ± 2.3 

COMPAS-W (wellbeing) 99.7 ± 10.5 99.3 ± 9.6 99.5 ± 10.2 

DASS-42 (anxiety/depression 

symptoms) 

0.90 ± 0.42 0.98 ± 0.39 0.92 ± 0.41 

Males  108 (37.0%) 40 (30.8%) 148 (35.1%) 

Right-handed 256 (87.7%) 111 (85.4%) 367 (87.0%) 

Sydney  188 (64.4%) 98 (75.4%) 286 (67.8%) 

Notes: COMPAS-W = a composite measure of wellbeing (Gatt et al., 2014); DASS-42 = The 

Depression Anxiety Stress Scale (Lovibond & Lovibond, 1995); Participant data were collected in 

either Sydney or Adelaide, Australia. 
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2.5.1. Linear mixed models 

With a significance threshold of p = 0.0008, only the three-way interaction between 

alpha, beta, and delta in the central region (electrodes CP4, CPz, CP3, Cz, C4, C3, FCz, FC3, 

and FC4) in the eyes closed condition showed a significant relationship between EEG power 

and wellbeing (see Table 2.2). Although no additional main effects were significant at the 

corrected threshold in this analysis, there was a marginally significant negative association 

between beta power and wellbeing, and a marginally significant positive association between 

alpha power and wellbeing. Outcomes for all other regions and conditions can be found in 

Tables S1–7. No significant association was found between wellbeing and alpha asymmetry 

at any electrode site at the corrected significance threshold of p < 0.0125 irrespective of the 

asymmetry calculation used. 

The significant three-way interaction between alpha, beta, and delta (ABD 

interaction) for the central region is shown in Fig. 2.1a. Fig. 2.1b demonstrates the 

standardised estimates of the interaction effect for each electrode site, including the central 

sites. Fig. 2.1b indicates that the interaction effect spreads bilaterally into the temporal 

regions when observing changes by electrode, despite the effect not showing statistical 

significance when averaging across the region. There was one clear EEG profile associated 

with higher wellbeing characterised by high delta, high alpha, and low beta power. This 

pattern was significant regardless of whether or not depression/anxiety symptoms were 

included in the model. 

The results of the cross-validation procedure revealed that the ABD EEG model 

accounting for depression/anxiety symptoms is able to predict wellbeing in held-out pairs of 

twins (RMSE = 9.137) slightly better than a null model with predictions based solely on the 

mean wellbeing score (RMSE = 10.219). Importantly, on each fold of this cross-validation  
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Table 2.2 Linear mixed model results of EEG power with wellbeing scores in the central 

brain region for the eyes closed condition, covarying for age, sex, zygosity, education, and 

body mass index 

 Total Wellbeing 

Predictors B β  
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 111.78  
 

 2.12 0.034 

Age -0.01 -0.01 -0.13 0.11 -0.19 0.850 

Education 0.40 0.09 0.00 0.18 2.04 0.042 

Body mass index -0.35 -0.16 -0.26 -0.06 -3.24 0.001 

Zygosity -0.14 -0.01 -0.10 0.09 -0.13 0.898 

Sex 0.42 0.02 -0.08 0.12 0.39 0.698 

Depression/anxiety 

symptoms 

-10.20 -0.41 -0.50 -0.32 -9.24 <2e-16 

Alpha 2.76 0.10 -0.03 0.23 1.56 0.119 

Beta -6.11 -0.14 -0.26 -0.02 -2.21 0.028 

Delta 3.63 0.06 -0.08 0.21 0.84 0.404 

Theta -0.54 -0.01 -0.17 0.14 -0.19 0.852 

A*B -0.01 -0.00 -0.16 0.15 -0.06 0.949 

A*T -0.00 -0.00 -0.18 0.17 -0.04 0.969 

A*D 0.07 0.05 -0.13 0.22 0.54 0.587 

B*T 0.22 0.16 -0.05 0.37 1.47 0.143 

B*D -0.43 -0.18 -0.36 0.00 -1.98 0.048 

T*D 0.05 0.03 -0.10 0.16 0.39 0.695 

A*B*T 0.35 0.10 -0.05 0.24 1.30 0.193 

A*B*D -1.97 -0.33 -0.51 -0.14 -3.46 6e-4 

A*T*D 0.12 0.02 -0.12 0.17 0.32 0.747 

B*T*D 1.20 0.18 0.02 0.34 2.16 0.031 
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A*B*T*D -1.11 -0.06 -0.15 0.02 -1.45 0.147 

 Random Effects 

σ2  58.82 

τ00 FamID  20.85 

Marginal R2 / Conditional R2  0.262 / 0.455 

Note: A = alpha power, B = beta power, D = delta power, T = theta power. Interactions are indicated 

by asterisk. B = non-standardised coefficients, β = standardised coefficient, 95% CI = standardised 95% 

confidence interval, σ2 = within family variance, τ00 FamID = between family variance. Bolded p-

values are significant at the Bonferroni corrected significance threshold of 0.0008 (8e-4). Wellbeing 

was measured using the COMPAS-W and depression/anxiety symptoms was measured using the 

Depression Anxiety Stress Scale (DASS-42). All EEG variables are based on the eyes closed condition 

averaged across the central brain region (electrodes CP4, CPz, CP3, Cz, C4, C3, FCz, FC3, and FC4). 

 

procedure, the ABD interaction remained significant, suggesting that the results hold in 

subsamples of this population. 

Group-based analysis. The group-based analysis was conducted to test whether the 

two EEG profiles most associated with wellbeing in the linear mixed model were 

significantly associated with cognitive, emotional, or lifestyle variables that might explain the 

link between EEG power and wellbeing. The ‘High ABD’ profile associated with high 

wellbeing included individuals with above-average alpha (mean = 1.49, SD = 0.370) and 

delta (mean = 1.04, SD = 0.178) power and below average beta (mean = 1.13, SD = 0.227) 

power. Those with below-average alpha and delta and above-average beta were placed into a 

‘Low ABD’ group (associated with low wellbeing), and everyone else was placed into a 

‘Moderate ABD’ group (associated with moderate wellbeing). Based on this, 46 participants 

were placed in the Low ABD group, 346 were in the Moderate group, and 30 were in the 

High ABD group. 

 A significant linear trend verified that the groups derived from these specific EEG 

profiles were associated with wellbeing in the expected direction (β = 0.135, corrected p = 

0.026), with significant effects also apparent for the COMPAS-W subscales composure (β = 
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Figure 2.1 Association between the alpha, beta, delta (ABD) EEG interaction effect and wellbeing for 

the averaged central region in the eyes closed condition. Top panel (A) shows the interaction effect for 

different power levels in each EEG frequency band. High and low values for beta and delta are based 

on ± 1 standard deviation from the mean. Bottom panel (B) shows the strength of this association at 

each electrode site, whereby red indicates a larger standardised effect size and blue indicates smaller 

effect size using absolute values. 

  

0.128, corrected p = 0.018) and satisfaction (β = 0.131, corrected p = 0.008). The EEG groups 

also showed a negative linear association with the DASS-42 depression subscale, but this 

effect was non-significant following correction (β = −0.129, corrected p = 0.136). Daily 

caffeine consumption, including coffee, soft-drink, and energy drinks (β = −1.67, corrected p 
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= 0.024), and weekly fast-food consumption (β = −2.42, corrected p = 0.019) were both lower 

in the High ABD profile compared to the Low ABD profile, consistent with a healthier 

lifestyle. No other significant associations were found. 

2.5.2. Univariate twin analysis 

Heritability estimates for the final models of wellbeing, depression/anxiety, and eyes 

closed EEG power at the central region are presented in Table 2.3. The AE model was the 

best fitting model for all variables (main and interaction variables). EEG power heritability 

estimates were similar across brain regions, ranging from 0.89–0.91 for alpha power, 0.72–

0.86 for beta power, 0.77–0.83 for theta power, and 0.54–0.77 for delta power. The ABD 

interaction was of moderate heritability, estimated at 0.37. Heritability estimates for each 

region in each condition (eyes open and eyes closed) are provided in Table S8. 

2.5.3. Multivariate twin analysis 

Depression/anxiety symptoms and the EEG ABD interaction were both significantly 

associated with wellbeing and were therefore included in the correlated factors wellbeing 

model. All lower-order EEG power interaction terms were included in the model as 

covariates by regressing them from the mean. The final model is represented in Fig. 2.2. A 

significant genetic correlation of −0.43 was found between wellbeing and the ABD 

interaction (p = 0.002), accounting for 94% of the phenotypic correlation between these 

variables. The contribution of this genetic correlation to the total observed phenotypic 

correlation is calculated by multiplying the genetic correlation (−0.43) by the genetic path 

coefficients (or √h2) for wellbeing (0.60) and the ABD interaction (0.69). Thus, the genetic 

correlation contributes −0.178 (CIs: 0.066 to −0.286) of the total phenotypic correlation of 
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Table 2.3 Univariate heritability estimates in the averaged central brain region for the eyes 

closed condition, covarying for age, sex, and education 

Phenotype ICC Best Fit Model Estimates 

MZ DZ Model p A2 C2 D2 E2 

Wellbeing .428 .076 AE .331 .393 - 0 .607 

Depression/ 

Anxiety 

symptoms 

.351 .261 AE 1 .325 0 - .675 

Alpha .898 .363 AE .150 .891 - 0 .109 

Beta .868 .381 AE .543 .857 - 0 .143 

Theta .837 .414 AE .636 .822 - 0 .178 

Delta .787 .652 AE .060 .736 0 - .264 

A*B .776 .034 ADE .031 0 - .752 .248 

A*T .756 .151 AE .062 .742 - 0 .258 

A*D .597 .061 ADE .014 0 - .632 .368 

B*T .779 .181 AE .159 .749 - 0 .251 

B*D .677 .167 AE .052 .660 - 0 .340 

T*D .495 -.015 AE .073 .421 - 0 .579 

A*B*T .621 -.065 ADE .037 0 - .586 .414 

A*B*D .402 .020 AE .134 .376 - 0 .624 

A*T*D .405 .040 AE .076 .398 - 0 .602 

B*T*D .400 .057 AE .059 .406 - 0 .594 

A*B*T*D .283 .183 AE .872 .307 0 - .693 

Note: ICC = intra-class correlation, MZ = monozygotic twins, DZ = dizygotic twins. Starting models 

were either ADE or ACE, where A = additive genetic, D = dominant genetic, C = common environment, 

E = unique environment. The ACE starting model was used if the ICC for MZ twins was greater than 

double the ICC for DZ twins. Squared model components indicate their contribution as a percentage of 

total variance. Wellbeing was measured using the COMPAS-W and depression/anxiety symptoms was 

measured using the Depression Anxiety Stress Scale (DASS-42). EEG power interactions are indicated 

by an asterisk where A = alpha, B = beta, T = theta, D = delta. All EEG variables are based on the eyes 

closed condition averaged across the central brain region (electrodes CP4, CPz, CP3, Cz, C4, C3, FCz, 

FC3, and FC4). 
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 −0.193, or 93.7% of the total phenotypic correlation between these traits. Remaining 

confidence intervals can be found in Table S9. The environmental correlation between 

wellbeing and the ABD interaction term was non-significant (p = 0.751). Interestingly, there 

were significant genetic and environmental correlations between depression/anxiety 

symptoms and the ABD interaction, but in opposite directions. That is, there was a significant 

positive genetic correlation between depression/anxiety symptoms and the ABD interaction 

(p < 0.001), but a significant negative environment correlation between them also (p = 

0.012). This resulted in a non-significant phenotypic correlation between depression/anxiety 

symptoms and the ABD interaction. 

Figure 2.1 Correlated factors model for wellbeing, the alpha, beta, delta (ABD) EEG interaction, and 

depression/anxiety symptoms. Single-headed arrows indicate the influence of additive genetic (A) or 

unique environmental (E) influence on each variable with standardised path coefficients. Double-

headed arrows indicate genetic and environmental correlations between variables, with standard errors 

provided in parentheses. Solid lines indicate significant correlations, whereas dashed lines indicate non-

significant correlations. For point estimates and corresponding confidence intervals, please refer to 

Table S9. 
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2.6. Discussion 

 This was the first study to test and show an association between resting EEG power 

and wellbeing in a healthy sample, independent of depression/anxiety symptoms. Linear 

mixed models including interactions between EEG bands revealed a significant three-way 

interaction between alpha, beta, and delta power. A profile of high alpha and delta in 

combination with low beta was associated with elevated wellbeing. The univariate heritability 

analysis aligned with past estimates indicating moderate heritability of wellbeing and 

depression/anxiety symptoms, and high heritability of EEG power (Smit et al., 2005). In the 

multivariate heritability analysis, a significant genetic correlation between wellbeing and the 

ABD interaction accounted for 93.7% of their association. 

 The ABD interaction reported here indicates that the relative amplitudes of each band 

are relevant to mental wellbeing. Past studies have reported that alpha-delta coupling (i.e., 

positive correlation) and delta-beta coupling are associated with anxiety and stress levels (van 

Peer, 2008). Knyazev et al. (2006) examined resting EEG power in university students who 

were measured on trait anxiety using the State-Trait Anxiety Inventory and were randomly 

told that they either had good or poor performance on a go-no-go task. Participants with low 

trait anxiety had more alpha-delta coupling than those with high trait anxiety regardless of 

experimental condition. In contrast, there were no differences in beta-delta coupling between 

high and low trait anxiety groups. However, those who received negative feedback showed a 

significant increase in beta-delta coupling. This finding could indicate that beta-delta 

coupling is a sign of stress. This is supported by a study where cortisol administration in 40 

male students increased beta-delta coupling, particularly for those with high behavioural 

inhibition which is associated with anxiety (van Peer, 2008). These past studies support the 

findings of the current study whereby associations between alpha, beta, and delta power were 



89 

 

 

associated with differences in wellbeing. The current study is differentiated from the previous 

studies by the association of three, instead of two, EEG bands, and the extension to wellbeing 

rather than negative symptoms. We also reported a direction of effect in means that are 

associated with higher wellbeing (namely, high alpha, high delta, low beta), whereas many of 

the previous studies focused on the presence/absence of the coupling correlation. It would be 

useful for future studies to explore this three-way (or four-way) EEG association in other 

phenotypes. Along with this, alternative methodologies could be used to provide a more in-

depth evaluation of the current findings in relation to the functional roles of each frequency. 

For instance, source localisation conducted via low-resolution brain electromagnetic 

topography (Kozlowska et al., 2018) or simultaneous EEG and fMRI recordings (Neuner et 

al., 2014) could be used to improve understanding of the relationship between EEG power 

and underlying brain networks such as the default mode network. These and other methods 

may deepen our understanding of how EEG frequencies relate to wellbeing. 

 No significant association was found between alpha asymmetry and wellbeing, 

contrary to previous reports (Urry et al., 2004). Alpha asymmetry towards the right 

hemisphere (indicating greater cortical activity in the left hemisphere), particularly in frontal 

regions, is theorised to index approach motivation and is often associated with positive affect 

(Angus & Harmon-Jones, 2016), whereas the opposite pattern of asymmetry may predict 

depression (Olbrich & Arns, 2013). One possible explanation for the lack of an asymmetry 

effect in the current study is the lack of any emotional manipulation. Previous reports indicate 

that the power to detect associations between asymmetry and psychological traits (such as 

wellbeing) is weakened in the resting EEG paradigm due to the impact of uncontrolled or 

circumstantial variables (Harmon‐Jones & Gable, 2018). Thus, an association between 

asymmetry and wellbeing may be detected in alternative paradigms. 
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 A large meta-analysis of the heritability of SWB and PWB has estimated that around 

35% of the variance in wellbeing is heritable (Bartels, 2015). The present study produced a 

similar estimate of 39.3%. The heritability of depression/anxiety symptoms was slightly 

lower than for wellbeing, at 32.5%, also similar to previous estimates (Sullivan et al., 2000). 

Finally, the heritability of the EEG power bands in the current study were very high, ranging 

from 70 to 90%. This study was the first to evaluate the heritability of the interactions 

between bands. Here it was found that the interaction terms had smaller heritable components 

compared to the raw EEG bands, ranging from 30 to 80%. The current study has thus 

replicated previous heritability estimates of wellbeing, depression/anxiety, and EEG power, 

but has also shown that interactions between the bands have larger environmental 

components than individual bands alone. 

 In the multivariate analysis, a genetic correlation accounted for 93.7% of the total 

correlation between wellbeing and the ABD EEG interaction (r = 0.196). Genetic correlations 

may indicate pleiotropy, which is when a single gene influences multiple traits. Pleiotropy 

can be biological whereby the gene directly impacts both traits, or mediated, whereby the 

gene causes trait A, and trait A causes trait B (Hackinger & Zeggini, 2017). However, genetic 

correlations can also arise from assortative mating and gene-gene correlations that were not 

accounted for in this study. Assortative mating refers to the tendency for individuals to mate 

with those who are genetically similar to themselves. This makes it more likely for gene-gene 

correlations to occur, whereby certain genes are more likely to occur together. Gene-gene 

correlations can also arise from the proximity of genes on a chromosome, as proximal genes 

are more likely to be inherited together. Thus, future research is needed to clarify whether 

pleiotropy is contributing to the genetic correlation between wellbeing and the ABD 

interaction. Regardless of the cause of the association between wellbeing and EEG, the 
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current study suggests that resting EEG power could be used as a biological predictor of 

wellbeing. 

 The primary limitation of this study is of the twin model itself, which relies on the 

equal environment assumption. This is the assumption that assumes that monozygotic and 

dizygotic twins experience the same level of environmental similarity. This assumption is 

violated if (i) monozygotic twins have more similar environments than dizygotic twins, (ii) 

the increased similarity impacts the trait of interest, and (iii) the increased environmental 

similarity is not itself due to genetic effects (Derks et al., 2006). Violating this assumption 

would inflate the genetic component of the model. While there is concern that this 

assumption is not always met in twin studies, it is unlikely to have a significant impact on 

heritability estimates (Felson, 2014). Other factors including assortative mating, as described 

earlier, and gene-environment correlations can also impact the estimation of genetic and 

environmental effects in the twin model, not accounted for here. Furthermore, the chosen 

sample of healthy twins of European descent may limit the generalisability of the study. This 

sample was selected to limit confounding effects of mental illness symptoms and treatment 

effects, and to minimise population stratification effects on genetic variants. However, the 

current models should be interpreted with these limitations in mind. 

 A final point for consideration is the use of absolute power instead of relative power, 

taken as a percentage of total power for the analysis. There is evidence indicating that skull 

thickness can have a small effect on measures of absolute power, although the majority of 

variance is explained by cortical activity (Hagemann et al., 2008). Despite this limitation, 

absolute power was chosen because relative power reduces the information captured. 

Specifically, relative power for all bands can be impacted by a change in a single frequency 

band as the total power changes. Absolute power is not impacted in this way. Furthermore, 
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the interactions reported in the current study were calculated within-subjects, limiting the 

already small impact of skull thickness on the results. 

 This study has made a significant contribution to our understanding of the relationship 

between wellbeing and EEG by providing evidence for a link between resting EEG power 

and wellbeing. An interaction between alpha, beta, and delta power was found to predict 

wellbeing whereby high alpha and delta power combined with low beta power was associated 

with elevated wellbeing. This interaction effect was supported using five-fold cross validation 

and may be an indicator of low trait anxiety and stress. The association between EEG power 

and wellbeing was found to be predominately genetic in nature, suggesting a common genetic 

pathway for both measures. Future research should aim to evaluate the relationship between 

EEG power and wellbeing to determine whether there are causal mechanisms underlying 

their association. 
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Table S1 Linear mixed model results of EEG power with wellbeing scores in the frontal 

brain region, eyes closed condition. 

 Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 113.80    19.35 <0.001 

Age -0.03 -0.04 -0.15 0.07 -0.74 0.459 

Education 0.44 0.10 0.01 0.19 2.23 0.026 

Body mass index -0.36 -0.17 -0.26 -0.07 -3.32 0.001 

Zygosity -0.14 -0.01 -0.10 0.09 -0.13 0.897 

Sex 0.27 0.01 -0.09 0.11 0.25 0.803 

Depression/anxiety -10.35 -0.42 -0.51 -0.33 -9.20 <0.001 

Alpha 1.82 0.06 -0.05 0.18 1.12 0.264 

Beta -4.51 -0.09 -0.19 0.02 -1.65 0.099 

Delta 4.13 0.07 -0.05 0.19 1.13 0.260 

Theta -2.59 -0.06 -0.19 0.07 -0.89 0.375 

A*B -3.20 -0.02 -0.14 0.10 -0.36 0.717 

A*T 4.29 0.04 -0.11 0.18 0.50 0.616 

A*D -4.14 -0.02 -0.16 0.11 -0.35 0.727 

B*T 24.38 0.13 -0.02 0.28 1.66 0.098 

B*D -31.93 -0.10 -0.23 0.02 -1.63 0.103 

T*D 0.93 0.00 -0.10 0.11 0.08 0.939 

A*B*T -15.02 -0.03 -0.14 0.09 -0.47 0.639 

A*B*D -91.45 -0.10 -0.23 0.02 -1.58 0.115 

A*T*D 16.92 0.03 -0.08 0.13 0.49 0.626 

B*T*D 66.40 0.06 -0.06 0.17 0.98 0.329 

A*B*T*D -239.70 -0.07 -0.15 0.01 -1.70 0.090 

 Random Effects 
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σ2  60.06 

τ00 FamID  20.21 

Marginal R2 / Conditional R2  0.253 / 0.441 

Notes:  Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the frontal brain region (average of electrodes 

F3, F4, F7, F8, Fp1, Fp2, Fz). A = alpha power, B = beta power, D = delta power, T = theta 

power. Interactions are indicated by asterisk. B = non-standardised coefficients, β = 

standardised coefficient, 95% CI = standardised 95% confidence interval,. P-values in bold 

indicate significance at the corrected threshold. Under random effects, σ2 = within family 

variance, τ00 FamID = between family variance. Wellbeing was measured using the 

COMPAS-W and depression/anxiety symptoms was measured using the Depression Anxiety 

Stress Scale (DASS-42). 
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Table S2 Linear mixed model results of EEG power with wellbeing scores in the temporal 

brain region, eyes closed condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 110.94    19.47 <0.001 

Age -0.02 -0.02 -0.14 0.10 -0.32 0.746 

Education 0.41 0.09 0.01 0.18 2.08 0.038 

Body mass index -0.35 -0.16 -0.26 -0.06 -3.21 0.001 

Zygosity 0.04 0.00 -0.09 0.10 0.04 0.971 

Sex 0.33 0.02 -0.09 0.12 0.29 0.769 

Depression/anxiety -10.20 -0.41 -0.50 -0.32 -9.22 <0.001 

Alpha 2.33 0.08 -0.05 0.22 1.18 0.237 

Beta -4.64 -0.10 -0.21 0.01 -1.85 0.065 

Delta 6.61 0.13 -0.04 0.29 1.48 0.139 

Theta -2.91 -0.08 -0.25 0.10 -0.87 0.387 

A*B -1.70 -0.01 -0.16 0.13 -0.19 0.847 

A*T -3.02 -0.03 -0.22 0.16 -0.30 0.763 

A*D 0.95 0.01 -0.19 0.20 0.07 0.947 

B*T 31.57 0.21 0.00 0.41 1.94 0.053 

B*D -35.64 -0.15 -0.32 0.01 -1.86 0.064 

T*D 1.26 0.01 -0.12 0.14 0.12 0.906 

A*B*T 6.41 0.02 -0.13 0.16 0.21 0.832 

A*B*D -119.84 -0.19 -0.35 -0.02 -2.22 0.027 

A*T*D -1.57 -0.00 -0.12 0.12 -0.05 0.958 

B*T*D 96.21 0.13 -0.01 0.27 1.77 0.077 

A*B*T*D -170.37 -0.08 -0.17 0.00 -1.98 0.049 
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 Random Effects 

σ2  57.49 

τ00 FamID  22.52 

Marginal R2 / Conditional R2  0.261 / 0.469 

Notes: Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the temporal brain region (average of electrodes 

T3, T4, T5, T6). A = alpha power, B = beta power, D = delta power, T = theta power. 

Interactions are indicated by asterisk. B = non-standardised coefficients, β = standardised 

coefficient, 95% CI = standardised 95% confidence interval. P-values in bold indicate 

significance at the corrected threshold. Under random effects, σ2 = within family variance, τ00 

FamID = between family variance. Wellbeing was measured using the COMPAS-W and 

depression/anxiety symptoms was measured using the Depression Anxiety Stress Scale 

(DASS-42). 
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Table S3 Linear mixed model results of EEG power with wellbeing scores in the parietal-

occipital brain region, eyes closed condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 113.80    19.35 <0.001 

Age -0.03 -0.04 -0.14 0.09 -0.74 0.459 

Education 0.44 0.10 0.02 0.19 2.23 0.026 

Body mass index -0.36 -0.17 -0.25 -0.05 -3.32 0.001 

Zygosity -0.14 -0.01 -0.10 0.09 -0.13 0.897 

Sex 0.27 0.01 -0.09 0.11 0.25 0.803 

Depression/anxiety -10.35 -0.42 -0.50 -0.32 -9.20 <0.001 

Alpha 1.82 0.06 0.00 0.30 1.12 0.264 

Beta -4.51 -0.09 -0.26 -0.01 -1.65 0.099 

Delta 4.13 0.07 -0.05 0.31 1.13 0.260 

Theta -2.59 -0.06 -0.27 0.10 -0.89 0.375 

A*B -3.20 -0.02 -0.16 0.17 -0.36 0.717 

A*T 4.29 0.04 -0.24 0.16 0.50 0.616 

A*D -4.14 -0.02 -0.19 0.24 -0.35 0.727 

B*T 24.38 0.13 -0.06 0.44 1.66 0.098 

B*D -31.93 -0.10 -0.33 0.09 -1.63 0.103 

T*D 0.93 0.00 -0.18 0.11 0.08 0.939 

A*B*T -15.02 -0.03 -0.16 0.19 -0.47 0.639 

A*B*D -91.45 -0.10 -0.39 0.00 -1.58 0.115 

A*T*D 16.92 0.03 -0.11 0.17 0.49 0.626 

B*T*D 66.40 0.06 -0.09 0.22 0.98 0.329 

A*B*T*D -239.70 -0.07 -0.10 0.07 -1.70 0.090 
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 Random Effects 

σ2  60.06 

τ00 FamID  20.21 

Marginal R2 / Conditional R2  0.253 / 0.441 

Notes: Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the parietal-occipital brain region (average of 

electrodes O1, O2, Oz, P3, P4, Pz). A = alpha power, B = beta power, D = delta power, T = 

theta power. Interactions are indicated by asterisk. B = non-standardised coefficients, β = 

standardised coefficient, 95% CI = standardised 95% confidence interval. P-values in bold 

indicate significance at the corrected threshold. Under random effects, σ2 = within family 

variance, τ00 FamID = between family variance. Wellbeing was measured using the 

COMPAS-W and depression/anxiety symptoms was measured using the Depression Anxiety 

Stress Scale (DASS-42). 
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Table S4 Linear mixed model results of EEG power with wellbeing scores in the frontal 

brain region, eyes open condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 113.04    18.85 <0.001 

Age -0.06 -0.07 -0.19 0.04 -1.24 0.218 

Education 0.39 0.09 0.00 0.18 1.91 0.057 

Body mass index -0.32 -0.14 -0.24 -0.05 -2.88 0.004 

Zygosity -0.14 -0.01 -0.10 0.09 -0.13 0.900 

Sex 0.46 0.02 -0.08 0.12 0.41 0.684 

Depression/anxiety -10.34 -0.42 -0.51 -0.33 -9.16 <0.001 

Alpha 0.66 0.02 -0.13 0.16 0.23 0.817 

Beta -1.09 -0.02 -0.13 0.08 -0.43 0.670 

Delta 4.82 0.08 -0.06 0.21 1.12 0.262 

Theta -4.18 -0.07 -0.24 0.09 -0.86 0.388 

A*B 6.36 0.04 -0.12 0.19 0.49 0.626 

A*T -4.24 -0.02 -0.19 0.14 -0.29 0.770 

A*D -26.30 -0.11 -0.28 0.05 -1.36 0.174 

B*T 12.90 0.06 -0.15 0.26 0.55 0.586 

B*D -3.93 -0.01 -0.16 0.13 -0.18 0.857 

T*D 15.00 0.05 -0.08 0.19 0.77 0.443 

A*B*T 6.56 0.01 -0.10 0.12 0.18 0.860 

A*B*D -68.59 -0.07 -0.22 0.09 -0.87 0.385 

A*T*D 47.63 0.06 -0.07 0.18 0.90 0.368 

B*T*D 25.08 0.02 -0.13 0.17 0.27 0.788 

A*B*T*D -330.20 -0.08 -0.17 0.00 -1.95 0.052 
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 Random Effects 

σ2  58.91 

τ00 FamID  23.27 

Marginal R2 / Conditional R2  0.234 / 0.451 

Notes:  Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the frontal brain region (average of electrodes 

F3, F4, F7, F8, Fp1, Fp2, Fz). A = alpha power, B = beta power, D = delta power, T = theta 

power. Interactions are indicated by asterisk. B = non-standardised coefficients, β = 

standardised coefficient, 95% CI = standardised 95% confidence interval. P-values in bold 

indicate significance at the corrected threshold. Under random effects, σ2 = within family 

variance, τ00 FamID = between family variance. Wellbeing was measured using the 

COMPAS-W and depression/anxiety symptoms was measured using the Depression Anxiety 

Stress Scale (DASS-42). 

  



108 

 

 

Table S5 Linear mixed model results of EEG power with wellbeing scores in the central 

brain region, eyes open condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 113.90    17.70 <0.001 

Age -0.03 -0.03 -0.16 0.09 -0.52 0.602 

Education 0.41 0.09 0.00 0.18 2.03 0.043 

Body mass index -0.36 -0.17 -0.27 -0.07 -3.30 0.001 

Zygosity -0.23 -0.01 -0.11 0.09 -0.20 0.839 

Sex 0.38 0.02 -0.09 0.12 0.33 0.741 

Depression/anxiety -10.40 -0.42 -0.51 -0.33 -9.19 <0.001 

Alpha 1.27 0.04 -0.12 0.20 0.49 0.626 

Beta -4.41 -0.10 -0.23 0.02 -1.57 0.118 

Delta 3.22 0.05 -0.10 0.20 0.67 0.506 

Theta -0.73 -0.02 -0.20 0.17 -0.16 0.871 

A*B 1.22 0.01 -0.17 0.19 0.11 0.914 

A*T -1.78 -0.02 -0.20 0.17 -0.16 0.874 

A*D -7.97 -0.05 -0.25 0.16 -0.44 0.664 

B*T 10.50 0.06 -0.18 0.30 0.49 0.623 

B*D -14.70 -0.05 -0.22 0.11 -0.64 0.521 

T*D 2.98 0.01 -0.15 0.18 0.15 0.883 

A*B*T -3.03 -0.01 -0.14 0.12 -0.11 0.912 

A*B*D -83.79 -0.13 -0.34 0.08 -1.17 0.243 

A*T*D 9.06 0.02 -0.15 0.18 0.20 0.844 

B*T*D 119.45 0.14 -0.08 0.37 1.23 0.220 

A*B*T*D -149.85 -0.07 -0.16 0.01 -1.63 0.105 
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 Random Effects 

σ2  59.87 

τ00 FamID  22.64 

Marginal R2 / Conditional R2  0.232 / 0.443 

Notes:  Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the central brain region (average of electrodes 

CP4, CPz, CP3, Cz, C4, C3, FCz, FC3, FC4). A = alpha power, B = beta power, D = delta 

power, T = theta power. Interactions are indicated by asterisk. B = non-standardised 

coefficients, β = standardised coefficient, 95% CI = standardised 95% confidence interval. P-

values in bold indicate significance at the corrected threshold. Under random effects, σ2 = 

within family variance, τ00 FamID = between family variance. Wellbeing was measured using 

the COMPAS-W and depression/anxiety symptoms was measured using the Depression 

Anxiety Stress Scale (DASS-42). 
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Table S6 Linear mixed model results of EEG power with wellbeing scores in the temporal 

brain region, eyes open condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 116.03    20.25 <0.001 

Age -0.04 -0.05 -0.17 0.07 -0.84 0.400 

Education 0.37 0.08 -0.01 0.18 1.83 0.067 

Body mass index -0.39 -0.18 -0.28 -0.08 -3.48 0.001 

Zygosity -0.22 -0.01 -0.11 0.09 -0.19 0.846 

Sex 0.51 0.02 -0.08 0.13 0.44 0.657 

Depression/anxiety -10.24 -0.41 -0.50 -0.32 -9.04 <0.001 

Alpha -1.06 -0.03 -0.19 0.13 -0.38 0.702 

Beta -3.31 -0.08 -0.19 0.02 -1.58 0.114 

Delta 2.97 0.05 -0.11 0.22 0.60 0.548 

Theta 1.15 0.02 -0.19 0.23 0.20 0.841 

A*B -5.85 -0.05 -0.23 0.13 -0.51 0.608 

A*T -6.65 -0.05 -0.23 0.14 -0.51 0.612 

A*D -9.31 -0.05 -0.27 0.16 -0.49 0.622 

B*T 40.99 0.21 -0.03 0.45 1.69 0.093 

B*D -26.99 -0.11 -0.28 0.05 -1.32 0.186 

T*D 8.14 0.03 -0.13 0.20 0.41 0.679 

A*B*T -26.08 -0.05 -0.18 0.08 -0.80 0.422 

A*B*D -11.91 -0.02 -0.19 0.16 -0.18 0.855 

A*T*D 1.75 0.00 -0.11 0.12 0.05 0.961 

B*T*D 80.34 0.08 -0.10 0.26 0.89 0.377 

A*B*T*D -286.40 -0.09 -0.17 -0.01 -2.14 0.033 
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 Random Effects 

σ2  57.41 

τ00 FamID  24.68 

Marginal R2 / Conditional R2  0.239 / 0.468 

Notes:  Linear mixed model output predicting wellbeing from EEG power with covariates (age, 

sex, zygosity, education, body mass index) for the temporal brain region (average of electrodes 

T3, T4, T5, T6). A = alpha power, B = beta power, D = delta power, T = theta power. 

Interactions are indicated by asterisk. B = non-standardised coefficients, β = standardised 

coefficient, 95% CI = standardised 95% confidence interval. P-values in bold indicate 

significance at the corrected threshold. Under random effects, σ2 = within family variance, τ00 

FamID = between family variance. Wellbeing was measured using the COMPAS-W and 

depression/anxiety symptoms was measured using the Depression Anxiety Stress Scale 

(DASS-42). 
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Table S7 Linear mixed model results of EEG power with wellbeing scores in the parietal-

occipital brain region, eyes open condition.  

 
Total Wellbeing 

Predictors B β 
95% CI 

Low 

95% CI 

High 
Statistic p 

(Intercept) 113.59    18.90 <0.001 

Age -0.01 -0.02 -0.14 0.10 -0.31 0.760 

Education 0.42 0.10 0.01 0.18 2.11 0.036 

Body mass index -0.40 -0.18 -0.28 -0.08 -3.62 <0.001 

Zygosity -0.43 -0.02 -0.12 0.08 -0.39 0.698 

Sex 0.78 0.04 -0.07 0.14 0.67 0.502 

Depression/anxiety -10.31 -0.42 -0.50 -0.33 -9.21 <0.001 

Alpha -0.70 -0.03 -0.19 0.13 -0.33 0.739 

Beta -5.36 -0.12 -0.24 0.00 -1.93 0.054 

Delta 2.96 0.06 -0.11 0.22 0.67 0.503 

Theta 3.88 0.08 -0.12 0.29 0.80 0.426 

A*B -1.23 -0.01 -0.19 0.16 -0.14 0.889 

A*T -6.07 -0.06 -0.25 0.13 -0.63 0.530 

A*D -2.61 -0.02 -0.22 0.18 -0.21 0.837 

B*T 36.08 0.20 -0.04 0.44 1.62 0.106 

B*D -32.05 -0.14 -0.31 0.03 -1.58 0.114 

T*D -3.92 -0.02 -0.17 0.13 -0.26 0.798 

A*B*T -39.30 -0.10 -0.24 0.03 -1.52 0.130 

A*B*D -50.69 -0.10 -0.28 0.09 -1.04 0.297 

A*T*D -2.03 -0.00 -0.13 0.13 -0.07 0.946 

B*T*D 129.99 0.16 -0.02 0.33 1.76 0.079 

A*B*T*D -118.74 -0.06 -0.15 0.02 -1.46 0.144 
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 Random Effects 

σ2  58.90 

τ00 FamID  21.97 

Marginal R2 / Conditional R2  0.248 / 0.452 

Notes:  Linear mixed model output predicting wellbeing from EEG power with covariates 

(age, sex, zygosity, education, body mass index) for the parietal-occipital brain region 

(average of electrodes O1, O2, Oz, P3, P4, Pz). A = alpha power, B = beta power, D = delta 

power, T = theta power. Interactions are indicated by asterisk. B = non-standardised 

coefficients, β = standardised coefficient, 95% CI = standardised 95% confidence interval. P-

values in bold indicate significance at the corrected threshold. Under random effects, σ2 = 

within family variance, τ00 FamID = between family variance. Wellbeing was measured 

using the COMPAS-W and depression/anxiety symptoms was measured using the Depression 

Anxiety Stress Scale (DASS-42). 
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Table S8 Univariate heritability estimates for alpha, beta, theta, and delta power by region 

and condition.  

Phenotype ICC Best Fit Model Estimates 

MZ DZ Model p A2 C2 D2 E2 

Frontal eyes closed 

Alpha .903 .345 AE .152 .895 - 0 .105 

Beta .868 .229 AE .113 .759 - 0 .241 

Theta .792 .439 AE .696 .774 0 - .226 

Delta .787 .481 AE .221 .544 0 - .456 

Central eyes closed 

Alpha .898 .363 AE .150 .891 - 0 .109 

Beta .868 .381 AE .543 .857 - 0 .143 

Theta .837 .414 AE .636 .822 - 0 .178 

Delta .787 .652 AE .060 .736 0 - .264 

Temporal eyes closed 

Alpha  .913 .404 AE .261 .908 - 0 .093 

Beta .735 .361 AE .834 .720 - 0 .280 

Theta .851 .456 AE 1 .837 0 - .163 

Delta  .791 .608 AE .330 .744 0 - .256 

Parietal-occipital eyes closed 

Alpha .898 .404 AE .154 .891 - 0 .109 

Beta .847 .358 AE .308 .833 - 0 .167 

Theta .849 .459 AE 1 .832 0 - .168 

Delta .824 .623 AE .445 .774 0 - .226 

Frontal eyes open 

Alpha .870 .465 AE .925 .866 0 - .134 

Beta .657 .279 AE 1 .618 - 0 .383 

Theta .758 .512 AE .262 .722 0 - .278 

Delta .653 .403 AE 1 .584 0 - .416 

Central eyes open 

Alpha .906 .494 AE .688 .900 0 - .100 

Beta .839 .491 AE .575 .818 0 - .182 
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Theta .840 .585 AE .408 .815 0 - .185 

Delta .841 .650 AE .487 .793 0 - .207 

Temporal eyes open 

Alpha .916 .536 AE .476 .911 0 - .089 

Beta .612 .442 AE .396 .627 0 - .373 

Theta .856 .604 AE .283 .833 0 - .167 

Delta .776 .628 AE .486 .717 0 - .283 

Parietal-occipital eyes open 

Alpha .919 .485 AE .929 .912 0 - .088 

Beta .831 .488 AE .683 .814 0 - .186 

Theta .848 .577 AE .611 .824 0 - .176 

Delta .805 .615 AE 1 .750 0 - .250 

Notes. Model fit indices for univariate models. ICC = intra-class correlation, MZ = 

monozygotic twins, DZ = dizygotic twins. Starting models were either ADE or ACE, where A 

= additive genetic, D = dominant genetic, C = common environment, E = unique environment. 

The ACE starting model was used if the ICC for MZ twins was greater than double the ICC 

for DZ twins. Squared model components indicate their contribution as a percentage of total 

variance. Frontal = average of F3, F4, F7, F8, Fp1, Fp2, Fz; Central = average of CP4, CPz, 

CP3, Cz, C4, C3, FCz, FC3, FC4; Temporal = average of T3, T4, T5, T6; Parietal-occipital = 

average of O1, O2, Oz, P3, P4, Pz.  
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3.1. Preamble 

Chapter 2 showed that resting EEG can be used to predict mental wellbeing 

independently from depression/anxiety symptoms. This could be an indicator that 

spontaneous thought patterns, such as mind wandering, differs in individuals with high 

compared to low wellbeing. The next aim of this thesis was to investigate whether task-based 

measures, that is, event-related potentials (ERPs) can be used to predict mental wellbeing. 

Specifically, Chapter 3 focused on whether emotional face processing is associated with 

differences in mental wellbeing. Given the substantial research base focused on emotional 

face processing in clinical and subclinical depression and anxiety, this chapter also tested 

whether emotional face processing is associated with depression/anxiety symptoms within the 

current non-clinical sample. This allowed for a more complete picture of how emotional 

processing relates to mental health.  
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3.2. Abstract 

Whilst alterations in emotional face processing, as indicated by event-related potentials 

(ERPs), are associated with depression and anxiety symptoms in clinical and non-clinical 

samples, it has remained unclear whether they are related to mental wellbeing. The current 

study aimed to address this question in a non-clinical sample. The analysis included 402 adult 

twins from the TWIN-E study. The COMPAS-W and the Depression Anxiety Stress Scale 

(DASS-42) were used to measure mental wellbeing and depression/anxiety symptoms, 

respectively. Participants viewed facial expressions under Unmasked (conscious) and Masked 

(subliminal) conditions while ERPs were recorded. The associations of emotion processing 

with mental wellbeing and depression/anxiety symptoms were assessed using multivariate 

linear mixed models. There was a strong association between depression/anxiety symptoms 

and the N170 amplitude difference for the Fear – Happy contrast in the Masked condition 

after controlling for wellbeing scores (B = 0.34, p < .001). Specifically, higher depression/ 

anxiety symptoms were associated with a lack of differentiation between fearful and happy 

faces. No associations were found between emotional face processing and mental wellbeing 

scores. These results indicate that even within a non-clinical sample, alterations in emotional 

ERPs, namely the N170, reflect differences in depression/anxiety symptoms rather than 

differences in wellbeing. Furthermore, this effect was limited to automatic processing, rather 

than conscious processing of emotional stimuli, suggesting the observed differences apply 

only to the subconscious pathway. 
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3.3 Introduction 

Mental wellbeing describes a complete state of positive psychological functioning, 

positive mood, and life satisfaction (Gatt et al., 2014). Although mental wellbeing and mental 

illness are often viewed as two ends of the same spectrum, multiple studies have 

demonstrated they are mostly independent of each other. In a study of over 3000 American 

adults, representative of the general population, mental wellbeing was found to share only 

28% of its variance with mental illness (Keyes, 2005). This finding was replicated in the 

TWIN-E study (Gatt et al., 2012), involving an Australian sample with no history of mental 

illness, in which mental wellbeing shared 30% of its variance with depression, anxiety, and 

stress symptoms (hereinafter referred to as depression/anxiety symptoms) (Routledge et al., 

2016). Thus, mental wellbeing is correlated with but independent of depression/anxiety 

symptoms in both clinical and non-clinical samples. Given that they share some variance, it is 

important to identify the neurophysiological correlates that are unique to mental wellbeing 

and/or depression/anxiety symptoms. However, little research has aimed to differentiate 

neurological markers for these constructs in this way.  

Alterations to emotion recognition have been repeatedly associated with 

depression/anxiety symptoms in clinical and non-clinical samples using behavioural 

measures, functional magnetic resonance imaging (fMRI) and event-related potentials 

(ERPs). In clinical samples, Major Depressive Disorder (MDD) has been associated 

behaviourally and neurologically with a bias towards negative and especially sad facial 

expressions (Chen et al., 2014; Dai et al., 2016; Dai & Feng, 2012; Weightman et al., 2014; 

Zhang et al., 2016). For example, behavioural studies have reported that MDD patients are 

slower to recognise positive expressions and are more likely to misidentify neutral 

expressions as sad expressions compared to controls (Weightman et al., 2014). Meanwhile, 
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ERP studies have reported enhanced neural responses reflected in the P1, N170, and vertex 

positive potential (VPP), consistent with a bias towards negative expressions (Chen et al., 

2014; Dai & Feng, 2012; Zhang et al., 2016). However, some studies have also reported 

reduced neural differentiation between expressions in MDD and subclinical depression, 

whereby positive and negative expressions are processed similarly to each other. Some have 

proposed that a lack of differentiation may serve as a trait-like marker of vulnerability in 

subclinical cases, whereas a negativity bias may reflect a state-like effect of the disorder in 

clinical states (e.g., Watters et al., 2018). Others have suggested the difference may be related 

to the severity of illness in clinical groups (e.g., Chen et al., 2014). Notably, however, both 

effects may be observed in the same sample. Zhang et al. (2016) reported that while MDD 

patients showed enhanced N170 amplitude to sad faces relative to controls, N170 amplitudes 

for sad and happy faces did not differ within the MDD group. Thus, further work is necessary 

to clarify the underlying cause of these differential effects.  

Our previous work has primarily focused on non-clinical samples. One study 

examined the differential effects of depression and anxiety on emotion processing, finding 

that high trait anxiety was associated with enhanced N1 and reduced VPP amplitudes in 

response to subliminal presentations of fearful faces, whereas high depression was associated 

with enhanced N1 and reduced VPP amplitudes in response to conscious presentations of 

fearful faces (Williams et al., 2007). In a more recent study, unaffected individuals with 

familial risk for MDD showed a lack of neural differentiation between emotional expressions 

compared to controls, as indexed by the VPP (Watters et al., 2018). To test whether 

wellbeing might also play a role in emotion processing, the TWIN-E study examined 

behavioural responses in identifying emotional faces. The results showed a potential 

positivity bias in those with high wellbeing, indicated by faster reaction times for happy faces 
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compared to those with low wellbeing (Routledge et al., 2018). A subset of these participants 

also participated in a functional magnetic resonance imagining (fMRI) study that found 

wellbeing was positively associated with activation in the inferior frontal gyrus (IFG) for 

happy relative to neutral faces (Park et al., 2021), a region previously associated with 

emotional face processing (Jabbi & Keysers, 2008) and emotion regulation (Grecucci et al., 

2013). These results suggest that mental wellbeing, similarly to depression/anxiety 

symptoms, may also be associated with alterations in how emotional stimuli are processed, 

but whether these alterations are reflected in ERPs remains to be examined. 

Within the full TWIN-E study, the association between wellbeing and shorter reaction 

times was predominantly explained by shared heritable factors (82%), as was the relationship 

with depression/anxiety symptoms (79%; Routledge et al., 2018). These results suggest that 

similar genes may influence both emotion recognition and mental health. Within the fMRI 

sample, IFG activation during emotion recognition was somewhat heritable (20%) but its 

association with wellbeing was fully explained by environmental factors (Park et al., 2021). 

Whether electrophysiological correlates of emotion processing are more heritable than fMRI 

correlates is unclear. One study reported that ERPs indexing emotional processes are 

moderately heritable (42-64%), however, these estimates may be inflated by the heritability 

of face processing more generally (Anokhin et al., 2010). A later study sought to estimate the 

heritability of emotion-specific processing by regressing out variance shared between neutral 

and fearful faces (Shannon et al., 2013). While this approach found no evidence that fear-

specific processing is heritable, the authors only examined fearful faces and no other 

emotional expressions (Shannon et al., 2013). Furthermore, no studies have yet tested the 

heritability of subconscious emotion processing that can be detected by ERPs within a 

backwards-masking paradigm (Liddell et al., 2004, 2005).  
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Based on these research gaps, the primary aim of the current study was to examine 

whether mental wellbeing is associated with alterations in ERP indices of emotional face 

processing independently of depression/anxiety symptoms. We chose to focus on the N1, P1, 

N170, VPP, and P250 components given their use in previous research assessing the 

association between emotion processing mental health in both clinical and non-clinical 

samples (Chen et al., 2014; Dai & Feng, 2012; Hu et al., 2017; Jaworska et al., 2010, 2012; 

Watters et al., 2018; Williams et al., 2007; Zhang et al., 2016). Because emotional facial 

expressions can be processed with or without conscious awareness via an alternative 

subcortical pathway (Liddell et al., 2005) with differential associations with 

depression/anxiety symptoms (Williams et al., 2007), we included a masked and unmasked 

task condition. This could help clarify whether specific processing streams are impacted by 

mental wellbeing. Finally, the current study sought to estimate the heritability of emotion-

specific processing for happy, sad, fearful, angry, and disgusted expressions within the 

masked and unmasked conditions. This was used to determine whether any associations 

identified between either wellbeing or depression/anxiety symptoms with emotional face 

processing were explained by heritable or environmental factors. 

3.4. Materials and Methods 

3.4.1. Design 

 This study formed part of the TWIN-E study, a multi-component longitudinal twin 

study (Gatt et al., 2012). The initial phase of the TWIN-E study was carried out online and 

included a battery of self-report questionnaires measuring physical and psychological health, 

and standardized cognitive tests. A subset of the online sample opted to participate in the 

EEG phase of the study, which consisted of standardized psycho-physiological activation 
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tasks described previously (see Gatt et al., 2012), including the emotional ERP paradigm 

reported here.  

The analysis aimed to assess whether wellbeing and depression/anxiety symptoms are 

associated with distinct components of emotion processing under masked and unmasked 

conditions. The design includes three within-subject factors (Emotion, Masked vs Unmasked 

Condition, and Component) and two continuous between-subjects factors that covary 

(wellbeing and depression/anxiety symptoms). Because the study was conducted in a twin 

sample, a linear mixed model was used to account for family ID. Due to differences in event 

timing, the masked and unmasked conditions were not compared. A multivariate mixed 

model approach allowed for both wellbeing and depression/anxiety symptoms to be tested in 

the same model as predictors of ERP amplitude for each emotion condition. Further details 

on statistical analysis are provided in section 2.3.4.  

3.4.2. Participants 

A subsample of 438 participants from the TWIN-E study (Gatt et al., 2012) 

participated in this ERP task. Recruitment was conducted through the Australian Twin 

Registry, now known as Twins Research Australia. All participants were either monozygotic 

or dizygotic, same-sex twins between the ages of 18 and 61. Twin pairs with a current, past, 

or family history of psychiatric disorder were excluded from the study. Further details of 

inclusion and exclusion criteria can be found in the study protocol (Gatt et al., 2012). 

This study was carried out in accordance with the Declaration of Helsinki and 

approved by the Human Research Ethics Committees of the University of Sydney (03-

2009/11430), Flinders University (FCREC#08/09), and the University of New South Wales 

(HC14256). All participants provided written informed consent prior to participation.  
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3.4.3. Procedure 

 After completing the online phase of the TWIN-E study which included the 

COMPAS-W and DASS-42 questionnaires (see below), participants attended the recording 

session onsite at either the Brain Dynamics Centre at the University of Sydney, NSW, 

Australia, or Flinders University, Adelaide, SA, Australia. The median time between the 

online and EEG session was 91 days.  

3.4.3.1. Questionnaires 

The 26-item COMPAS-W questionnaire was used to measure mental wellbeing. The 

COMPAS-W was designed to provide an overall measure of both subjective and 

psychological components of mental wellbeing and includes six subscales: composure, own-

worth, mastery, positivity, achievement, and satisfaction (Gatt et al., 2014). The 42-item 

Depression Anxiety Stress Scale (DASS-42) was used to measure depression/anxiety 

symptoms (Lovibond & Lovibond, 1995). It was chosen because it has been validated and 

widely used to measure depression and anxiety symptoms in non-clinical samples (Crawford 

& Henry, 2003). 

3.4.3.2. Emotion paradigm 

The emotion paradigm, illustrated in Figure 3.1, included the presentation of six basic 

emotional facial expressions (neutral, happy, sad, angry, disgusted, and fearful) using images 

selected from a previously validated and standardised series (Gur et al., 2002) and altered to 

be centrally positioned at eye level and to have equivalent luminance and brightness (Watters 

et al., 2018). Each expression was depicted by eight different actors, half of whom were male, 

for a total of 48 images. 
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The experiment included two viewing conditions, masked and unmasked. For both 

conditions, a block design was adopted, with each block consisting of eight trials of different 

faces portraying the same emotion (e.g., eight different happy faces were presented as a block 

before moving onto another emotion). For the unmasked condition, each trial was presented 

for 500 msec, followed by an interstimulus interval of 750 msec. For the masked condition, 

each trial consisted of an emotional face presented for 10 msec, immediately followed by a 

neutral face for 150 msec, then followed by an interstimulus interval of 1040 msec. The 

stimulus presentation timing for each condition was selected based on a prior signal detection 

study where displays over 170 msec were identified consistently above chance 

(discrimination threshold) while identification of displays presented for 10 msec did not 

differ from chance (Williams et al., 2004). For both masked and unmasked conditions, there 

were 192 trials in total showing each emotional expression 32 times, presented as four blocks 

Figure 2.1 The experimental task consisted of: (A) an unmasked condition where each 

emotional stimulus was presented for 500 msec as a blocked design (i.e., each emotion was 

presented eight times in a block, before moving to a new emotion block); and (B) a masked 

condition where each emotional stimulus was presented for 10 msec before being masked with 

a neutral stimulus for 150 msec. Task duration for each condition was 5 minutes and 8 seconds. 

ISI: interstimulus interval. 
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of eight emotional faces. Participants were told they would be asked about the stimuli later in 

the experimental session but were not required to behaviourally respond to the stimuli. The 

same protocol has been employed in similar independent studies (Watters et al., 2018; 

Williams et al., 2007). 

3.4.3.3. EEG acquisition and ERP processing 

EEG data was recorded using a 26-electrode QuikCap and NuAmps DC amplifier at a 

sampling rate of 500 Hz (electrodes included Fp1, Fp2, Fz, F3, F4, F7, F7, FC3, FC4, FCz, 

C3, C4, Cz, CP3, CP4, CPz, T3, T4, T5, T6, P3, P4, Pz, O1, O2, and Oz). Data was recorded 

relative to the virtual ground with impedances kept below 5 kΩ. BrainVision Analyzer v2.1 

was used for processing the data offline. First, the data was down sampled to 250 Hz and a 

0.01 – 30 Hz Butterworth filter applied (Luck, 2005). The data was re-referenced offline to 

the common average. Ocular artefacts were corrected using a semi-automatic infomax ICA 

procedure, followed by manual inspection of the data. Trials with remaining artefacts 

exceeding a min-max excursion of 50 microvolts were excluded from further analysis. Single 

ERP trial data was constructed from 1000 msec segments, which included a 200 msec pre-

stimulus and an 800 msec post-stimulus period, each baseline corrected to the 200 msec pre-

stimulus interval before being averaged by condition. Participants with fewer than 10 

artefact-free trials in any experimental condition were excluded from the analysis, meaning 

each participant had 10 to 32 trials included per emotion in each condition. 

The frontocentral N1 and parietal P1 components have been shown to reflect 

processing of low-level visual features that may be relevant to distinguishing between 

emotional and neutral expressions (Batty & Taylor, 2003) and were examined based on 

previous evidence that these components may be altered to specific emotional expressions in 
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clinical and sub-clinical samples (Dai & Feng, 2012; Jaworska et al., 2010; Williams et al., 

2007; Zhang et al., 2016). Based on prior research, the N1 was measured from the Cz 

electrode (Williams et al., 2007) and the P1 was measured from the average of the O1 and O2 

electrodes (Dai & Feng, 2012; Jaworska et al., 2010; Zhang et al., 2016). The following N170 

and VPP components capture face-specific processing (Eimer, 2000; Luo et al., 2010) and are 

also reportedly sensitive to emotional expressions (Hinojosa et al., 2015; Luo et al., 2010). 

Consistent with the literature (Hinojosa et al., 2015), the N170 was measured from the T5 and 

T6 electrodes, which are placed in the same position as the P7 and P8 electrodes, while the 

VPP was measured from Cz. The posterior P250 component, measured from the T5 and T6 

electrode sites, was also included. This emotion-sensitive component sometimes referred to 

as the P2 (daSilva et al., 2016; Eimer & Holmes, 2007), has previously shown reduced 

emotional differentiation in clinical samples (Hu et al., 2017; Jaworska et al., 2012). 

The following components were analysed with time windows selected from the peaks 

in grand-averaged waveforms for the masked and unmasked conditions, respectively, ± 20 

msec: N1, calculated as the mean voltage between 88-128 msec in the unmasked condition, 

and 84-124 msec in the masked condition; P1, calculated as the mean voltage between 84-

124 msec in the unmasked condition, and 80-120 msec in the masked condition; N170 and 

VPP, both calculated as the average voltage between 140-180 msec in the unmasked 

condition, and 136-176 msec in the masked condition; and P250, calculated as the mean 

voltage from 216-256 msec in the unmasked condition, and 232-272 msec in the masked 

condition. Separate time windows were used for the masked and unmasked conditions due to 

the differences in event timing between the two conditions. 

 



129 

 

 

3.4.3.4. Statistical analyses 

All statistical analyses were carried out in R (R Core Team, 2020). Evidence of 

emotional differentiation in the behavioural and ERP components was assessed using linear 

mixed models specified using the lme4 package (Bates et al., 2015) to account for twin 

relatedness, followed by Tukey-adjusted pairwise comparisons using the emmeans package 

(Lenth, 2020). Masked and unmasked conditions were evaluated separately due to differences 

in the event timing. Random effects were specified such that each participant ID was nested 

within family ID to account for family relatedness in the within- by between-subjects design.  

Multivariate linear mixed models were used to evaluate the association between 

emotion-specific processing and mental wellbeing and/or depression/anxiety symptoms. 

Models were based on difference scores calculated for each participant between emotional – 

neutral expressions and between negative – happy expressions. Difference scores were 

entered as criterion variables in the multivariate models while COMPAS-W and DASS-42 

scores were entered as predictors, first in separate models, then combined in a single model to 

determine whether any identified associations were specific to one outcome or the other. Age, 

sex, and zygosity were also included as covariates in all models, and family ID was included 

as the random effect. Models were fit using the MCMCglmm package in R (Hadfield, 2010) 

which uses a Markov chain Monte Carlo to fit the model under a Bayesian framework. 

Variance-covariance matrices were derived from data collected in a different sample (Gatt et 

al., 2007), but with low confidence. The simulations were run with 20,000 iterations, a burn-

in of 3,000 iterations, and a thinning interval of 10. Models were carried out separately for 

each ERP component. Following the analysis, a Benjamin-Hochberg procedure (Benjamini & 

Hochberg, 1995) was used to control the False Discovery Rate (FDR) at .05 across a total of 
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45 tests (9 emotion contrasts x 5 ERP components) for each of the two viewing conditions for 

each outcome (mental wellbeing and depression/anxiety symptoms). Because we were 

interested in associations with wellbeing and depression/anxiety symptoms that were 

independent of each other, this correction was only assessed for the models including both 

wellbeing and depression/anxiety. 

Univariate heritability of each of the emotion contrasts was assessed using the 

OpenMx package in R (Scheike et al., 2014). When monozygotic twins had an intra-class 

correlation of at least double that of dizygotic twins, the ADE model was tested, otherwise 

the ACE model was tested (Verweij et al., 2012). When intra-class correlations were negative 

for dizygotic twins, the ACE model was chosen as the starting model. A, C, or D components 

were then progressively dropped from the model to identify the most parsimonious model on 

the basis of AIC and a chi-square test. Age, sex, and education were included as covariates in 

the heritability analysis. Further, multivariate models were planned where significant 

heritability was found for contrasts that were also associated with either mental wellbeing or 

depression/anxiety symptoms. 

3.5. Results 

Of the 438 participants, 36 were excluded due to having fewer than ten trials 

remaining for any given Emotion condition once trials with artefacts had been removed. Of 

the remaining 402 participants, 42 of the 125 dizygotic twins were male and 103 of the 277 

monozygotic twins were male. Participants were aged from 18 to 61 years (M = 39.97, SD = 

12.72). COMPAS-W (M = 99.98, SD = 9.99) and DASS-42 scores (raw M = 11.13, SD = 

10.59; log-transformed M = 0.92, SD = 0.41) were similar to the larger TWIN-E sample (Gatt 

et al., 2014). 
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3.5.1. ERP emotion pairwise comparisons 

To assess whether the ERP components of interest were sensitive to differences in 

emotional expressions, Tukey-corrected pairwise comparisons were used to compare 

amplitudes between each emotion for each component. The results are detailed in the 

Supplementary Materials. Means and standard deviations for ERP amplitudes are provided in 

Table S1. Some emotion-specific effects were found for all components other than the N1 for 

the masked and unmasked conditions and are shown in Table S2.  

3.5.2. Associations between wellbeing and depression/anxiety symptoms with 

emotion processing 

In each condition, nine emotion contrasts were tested, including each emotional 

expression relative to Neutral, and each negative expression (Fearful, Sad, Angry, and 

Disgusted) relative to Happy. Associations with mental wellbeing and depression/anxiety 

symptoms were first tested separately without co-varying for the other, before being entered 

into a combined model to check if any identified associations were unique to one variable. 

3.5.2.1. Unmasked condition 

In the Unmasked condition, only differences between negative facial expression and 

Happy expressions showed significant associations with mental wellbeing and 

depression/anxiety symptoms, and only for the N1 and VPP components as described below. 

A summary of significant contrasts is provided in Table 3.1. 

N1. No significant associations were found between wellbeing and differences in N1 

amplitude. However, higher depression/anxiety symptoms were associated with larger 

amplitudes for Disgusted relative to Happy expressions, and this effect for depression/anxiety 
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symptoms remained when covarying for mental wellbeing, illustrated in Figure 3.2. When 

controlling the FDR at .05, this association was not significant. 

 

Table 3.1 Summary of associations found in the unmasked condition 

Wellbeing Model N1   VPP   

Contrast Estimate p-value Estimate p-value 

Fearful - Happy 0.00 0.748 0.01* 0.021 

Disgusted - Happy 0.00 0.814 0.01* 0.009 

Angry - Happy 0.00 0.993 0.01* 0.016 

DASS Model N1   VPP   

Contrast Estimate p-value Estimate p-value 

Fearful - Happy -0.14 0.162 -0.30* 0.007 

Disgusted - Happy -0.24* 0.018 -0.23 0.061 

Sad - Happy -0.10 0.311 -0.25* 0.035 

DASS in Combined 

Model 

N1   VPP   

Contrast Estimate p-value Estimate p-value 

Disgusted - Happy -0.29* 0.005 -0.19 0.105 

Notes. * indicates significance at p < 0.05. None of the unmasked associations 

survived FDR correction for 45 tests. Only contrasts with at least one 

significant association are shown. 

 

 

VPP. Without covarying for depression/anxiety symptoms, mental wellbeing was 

associated with larger VPP amplitudes for Disgusted, Fearful, and Angry expressions relative 

to Happy expressions. When covarying for depression/anxiety symptoms, no associations 

with mental wellbeing remained significant. Lower depression/anxiety symptoms were 

associated with larger amplitudes for Fearful, and Sad expressions relative to Happy 

expressions, neither of which remained significant when covarying for wellbeing. 
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Figure 3.2 Contrasts with significant associations with depression/anxiety symptoms after controlling 

for mental wellbeing in the unmasked condition. Graphs show participants in the lowest or highest 

tertile of depression/anxiety symptoms for the sake of illustration. (A) The Disgust and Happy 

waveforms for the N1. High Depression/Anxiety n = 140, Low Depression/Anxiety n = 143. 

 

3.5.2.2. Masked condition 

In the Masked condition, associations between wellbeing and depression/anxiety 

symptoms were found for the VPP, N170, and P250 components as described below. A 

summary of significant contrasts is provided in Table 3.2. 

VPP. Without covarying for depression/anxiety symptoms, higher wellbeing was 

associated with larger VPP amplitudes for Sad, Fearful, Angry, and Disgusted expressions 

relative to Happy expressions. None of these associations remained significant when 

covarying for depression/anxiety symptoms. Lower depression/anxiety symptoms were 

similarly associated with larger VPP amplitudes for Sad, Fearful, Disgusted, and Angry 

expressions relative to Happy expressions. Only the associations with Sad and Fearful 
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relative to Happy expressions remained significant when covarying for mental wellbeing, 

shown in Figure 3.3A. Neither association was significant after controlling the FDR at .05. 

 

Table 3.2 Summary of associations found in the masked condition 

Wellbeing Model VPP   N170    P250   

Contrast Estimate p-value Estimate p-value Estimate p-value 

Fearful - Happy 0.01* 0.002 -0.00 0.597 -0.00 0.986 

Sad - Happy 0.01* 0.001 -0.00 0.589 -0.00 0.880 

Disgusted - Happy 0.01* 0.005 -0.00 0.745 -0.00 0.394 

Angry - Happy 0.01* 0.004 -0.00 0.326 -0.00 0.781 

DASS Model VPP   N170    P250   

Contrast Estimate p-value Estimate p-value Estimate p-value 

Fearful - Neutral -0.10 0.342 0.22* 0.026 0.03 0.790 

Fearful - Happy -0.32* 0.001 0.30* 0.001 0.22* 0.044 

Sad - Happy -0.36* 0.001 0.20 0.064 0.12 0.293 

Disgusted - Happy -0.31* 0.005 0.20 0.052 0.25* 0.026 

Angry - Happy -0.27* 0.014 0.05 0.587 0.07 0.512 

DASS in Combined 

Model 

VPP   N170    P250   

Contrast Estimate p-value Estimate p-value Estimate p-value 

Fearful - Neutral -0.10 0.342 0.26* 0.014 0.08 0.487 

Fearful - Happy -0.25* 0.031 0.34* 0.001 0.28* 0.040 

Sad - Happy -0.29* 0.016 0.21 0.064 0.16 0.186 

Notes. * indicates significance at p < 0.05. Bold indicates significance after FDR correction for 45 

tests. Only contrasts with at least one significant association are shown. 

 

 N170. No associations were found between N170 amplitudes and wellbeing. Lower 

depression/anxiety symptoms were associated with larger absolute N170 amplitudes for 

Fearful relative to Happy and Neutral faces. Both associations were retained when covarying 

for mental wellbeing, shown in Figures 3.3B and 3.3C. Only the association between 

depression/anxiety symptoms and Fearful relative to Happy faces remained significant when 

controlling the FDR at .05 (p = .0006 < p = .0011).  
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Figure 3.3 Contrasts with significant associations with depression/anxiety symptoms in the masked 

condition. Graphs show participants in the lowest or highest tertile of depression/anxiety symptoms for 

the sake of illustration. (A) Happy, Fear, and Sad waveforms for the VPP. (B) Neutral, Fear waveforms 

for the N170. (C) Happy, Fear waveforms for the N170 and P250. High Depression/Anxiety n = 140, 

Low Depression/Anxiety n = 143. 
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 P250. No associations were found between P250 amplitudes and wellbeing. Lower 

depression/anxiety symptoms were associated with smaller amplitudes for Fearful and 

Disgusted faces relative to Happy faces. The association with Fearful relative to Happy 

expressions remained significant when covarying for wellbeing, illustrated in Figure 3.3C. 

This effect did not remain significant when controlling the FDR at .05.   

3.5.3. Univariate twin analysis 

 Table 3.3 presents the intra-class correlations and univariate heritability estimates for 

for the Unmasked condition, and Table 3.4 presents the same measures for the Masked 

condition. In both cases, only contrasts for which either the AE or CE model was deemed to 

be the best fit was reported. In all remaining models (not shown), the E model was the best 

fit, attributing all variance to unique environmental effects.  

3.5.3.1. Unmasked condition 

Within the Unmasked condition, there was evidence for the CE model for the Happy 

– Sad contrast for both the P1 and N170 components. Here, common environmental factors 

accounted for approximately 14% of the variance in this contrast, with the remaining variance 

accounted for by unique environmental factors. In comparison, additive genetics accounted 

for 18.8% and 20.9% of the variance in the Neutral – Disgust contrast for the N170 and P250 

components, respectively. 

3.5.3.2. Masked condition 

Within the Masked condition, there was evidence for the CE model for the Neutral – 

Happy contrast for the VPP component whereby 24.2% of variance was attributed to 

common environmental factors. In comparison, additive genetic factors were found to 
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account for 26.0% and 18.7% of the variance in the Neutral – Angry and Neutral – Sad 

contrasts for the VPP, respectively. In addition, the Neutral – Sad and Happy – Sad contrasts 

for the N170 were also partially explained by additive genetics, which accounted for 22.8% 

and 17.8% of the variance in these contrasts, respectively. 

3.5.4. Multivariate twin analysis 

 As the Happy – Fear N170 contrast in the Masked condition was the only contrast to 

be significantly associated with mental health outcomes (i.e., depression/anxiety symptoms) 

after FDR correction, and this contrast was fully explained by unique environmental factors, 

it was not necessary to conduct a multivariate twin analysis.  

3.6. Discussion 

Mental wellbeing and depression/anxiety symptoms are distinct but correlated 

constructs and cannot be regarded as tails of the same continuum (Keyes, 2005; Routledge et 

al., 2016). Despite extensive research into emotional correlates of mental health, no study, to 

the best of our knowledge, has yet investigated the independent effects of wellbeing and 

depression/anxiety symptoms on emotion processing within the same sample. To this end, we 

aimed to examine whether electrophysiological correlates of emotional face processing may 

show unique associations with mental wellbeing or depression/anxiety symptoms, and 

whether such associations would differ depending on the type of emotion processing 

(conscious vs. automatic). We found a strong association between depression/anxiety 

symptoms and the N170 amplitude difference for the Fear – Happy contrast in the masked 

condition. Importantly, this association was significant after controlling for the participants’ 

wellbeing levels, suggesting that individuals with high levels of depression/anxiety show 

deficits in differentiating negative (fear) and positive (happy)  emotions, regardless of
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Table 3.3 Univariate heritability by component and emotion for the masked condition 

Phenotype ICC  Model fit Parameter estimates 

 MZ DZ Model -2LL AIC Comparison p-value A (CI) C or D (CI) E (CI) 

P1 

Happy-Sad 

0.136 0.228 ACE 1120.109 1136.109 vs. saturated NA 0 0.144 

(< 0.01, 0.28) 

0.856 

(0.72, 0.99) 

CE 1120.109 1134.109 vs. ACE 1 - 0.144 

(< 0.01, 0.28) 

0.856 

(0.72, 0.99) 

E 1123.922 1135.922 vs. CE 0.051 - - 1 

N170 

Happy-Sad 

0.158 0.119 ACE 1057.197 1073.197 vs. saturated NA 0 

(< .01, 0.15) 

0.142 

(< 0.01, 0.28) 

0.858 

(0.70, > 0.99) 

CE 1057.197 1071.197 vs. ACE 1 - 0.142 

(< 0.01, 0.28) 

0.858 

(0.72, > 0.99) 

E 1060.884 1072.884 vs. CE 0.054 - - 1 

N170 

Neutral-Disgust 

0.290 -0.252 ACE 950.823 966.823 vs. saturated NA 0.188 

(< 0.01, 0.36) 

0 

(< 0.01, 0.14) 

0.812 

(0.50, 0.99) 

AE 950.823 964.823 vs. ACE 1 0.188 

(0.01, 0.36) 

- 0.812 

(0.64, 0.99) 

E 954.988 966.988 vs. AE 0.041 - - 1 

P250 

Neutral-Disgust 

0.213 0.074 ADE 1075.091 1091.091 vs. saturated NA 0 

 

0.229 

(< 0.01, 0.37) 

0.771 

(0.63, > 0.99) 

AE 1075.395 1089.395 vs. ADE 0.581 0.209 

(0.03, 0.37) 

- 0.791 

(0.63, 0.97) 

E 1080.614 1092.614 vs. AE 0.022 - - 1 
Notes. ICC = Intraclass correlation; MZ = monozygotic twins; DZ = dizygotic twins; starting models were either ACE or ADE where A = additive genetic, D = dominant 

genetic, C = common environment, E = unique environment. Parameter estimates indicate their contribution as a percentage of total variance. Models in bold letters represent 

the best fit based on AIC. 
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Table 3.4 Univariate heritability by component and emotion for the unmasked condition 

Phenotype ICC  Model fit Parameter estimates 

 MZ DZ Model "-2LL" AIC Comparison p-value A (CI) C or D (CI) E (CI) 

VPP 

Neutral-Happy 

0.214 0.291 ACE 877.74 893.74 vs. saturated NA 0.036 

(< 0.01, 0.29) 

0.214 

(< 0.01, 0.42) 

0.749 

(0.58, > 0.99) 

  CE 877.757 891.757 vs. ACE 0.895 - 0.242 

(0.10, 0.37) 

0.758 

(0.63, 0.90) 

  E 888.679 900.679 vs. CE < 0.001 - - 1 

VPP 

Neutral-Angry 

0.206 0.149 ACE 922.495 938.495 vs. saturated NA 0.26 

(0.07, 0.43) 

0 0.74 

(0.57, 0.93) 

  AE 922.495 936.495 vs. ACE 1 0.26 

(0.07, 0.43) 

- 0.74 

(0.57, 0.93) 

  E 929.642 941.642 vs. AE 0.007 - - 1 

VPP 

Neutral-Sad 

0.231 -0.136 ACE 921.166 937.166 vs. saturated NA 0.187 

(0.01, 0.35) 

0 0.813 

(0.65, 0.99) 

  AE 921.166 935.166 vs. ACE 1 0.187 

(0.01, 0.35) 

- 0.813 

(0.65, 0.99) 

  E 925.42 937.42 vs. AE 0.039 - - 1 

N170 

Neutral-Sad 

0.298 -0.207 ACE 966.825 982.825 vs. saturated NA 0.228 

(0.06, 0.38) 

0 0.772 

(0.62, 0.93) 

  AE 966.825 980.825 vs. ACE 1 0.228 

(0.07, 0.38) 

- 0.772 

(0.62, 0.93) 

  E 974.298 986.298 vs. AE 0.006 - - 1 

N170 

Happy-Sad 

0.239 -0.169 ACE 932.995 948.995 vs. saturated NA 0.178 

(0.01, 0.33) 

0 0.822 

(0.67, 0.99) 

  AE 932.995 946.995 vs. ACE 1 0.178 

(0.01, 0.33) 

- 0.822 

(0.67, 0.99) 

  E 937.456 949.456 vs. AE 0.035 - - 1 

Notes. ICC = Intraclass correlation; MZ = monozygotic twins; DZ = dizygotic twins; starting models were either ACE or ADE where A = additive genetic, D = dominant 

genetic, C = common environment, E = unique environment. Parameter estimates indicate their contribution as a percentage of total variance. Models in bold letters represent 

the best fit based on AIC. 
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whether they had high or low wellbeing. The association was also found to reflect unique 

environmental factors linked with both traits. Contrary to our hypothesis, we did not find 

evidence of a link between wellbeing (independent of depression/anxiety) and emotion-

related ERPs. 

Previous studies investigating electrophysiological correlates of conscious and 

automatic emotional face processing in clinical populations have reported either a heightened 

response to negative faces, or diminished differentiation between negative and positive faces 

(Chen et al., 2014; Jaworska et al., 2012; Zhang et al., 2016). Within the masked paradigm, 

we observed weaker differentiation between fearful and happy faces in relation to high 

depression/anxiety levels in a large sample of healthy community adults. Such a link is 

broadly in line with previous work from the authors utilising the same emotion paradigm in 

trait anxiety and depression in a non-clinical sample (Williams et al., 2007) and in first-

degree relatives of proband parents with MDD (Watters et al., 2018). While in Williams et 

al., (2007), trait anxiety and depression were associated with enhanced N1 and reduced VPP 

amplitudes to masked and unmasked fearful faces, respectively, the latter study reported 

reduced differentiation between negative and positive faces (Watters et al., 2018), similar to 

what is observed in the current study. However, despite multiple studies reporting a strong 

association between Sad – Happy amplitude difference and clinical depression/anxiety 

symptoms (Dai et al., 2016; Dai & Feng, 2012; Zhang et al., 2016), here we observed the 

same association only with a Fear – Happy amplitude difference. More specifically, a visual 

inspection of the waveforms showed that the reduced neural differentiation between the two 

emotions in those with higher depression/anxiety symptoms was driven by an increased 

neural response to Happy faces compared to individuals with lower depression/anxiety 

symptoms. Given previous research establishing fearful faces as a prominent threat signal 
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(Ekman et al., 1972) one interpretation of this is that these cases show a reduced ability to 

automatically distinguish between threatening and non-threatening stimuli, causing non-

threatening stimuli (i.e., happy faces) to be processed as potential threats.  

Out of the five components-of-interest tested in the current study, only the N170 

component was found to be significantly related to mental health measures (i.e., 

depression/anxiety levels). The N170 has been widely shown to be sensitive to faces and 

familiar objects (Bentin et al., 1996), and appears to be modulated by various aspects of face-

related features (for review, see Schindler & Bublatzky, 2020), including emotional 

expression (Hinojosa et al., 2015). This indicates that the N170 may be involved in a 

perceptual processing of facial features that include emotional expressions (Schyns et al., 

2009). A more recent review has also suggested that passive viewing paradigms, as used in 

the current study, may amplify the effect of emotion on the N170, potentially due to a lack of 

other confounding factors such as a motor response (Schindler & Bublatzky, 2020). The 

authors proposed that such designs allow for a more in-depth focus on emotion-specific 

features that give rise to larger N170 amplitude modulations as a function of emotion. When 

taken together with research that show attenuated emotion-related ERPs in individuals at 

familial risk for depression (e.g., Watters et al., 2018), the current findings add to the idea 

that atypical differentiation between negative and positive/neutral emotions is evident in non-

clinical individuals with higher levels of depression/anxiety symptoms, and manifest as a lack 

of differentiation between fearful and happy faces in the current sample. Importantly, this 

association is present even after individual wellbeing levels are accounted for, suggesting that 

the link between atypical N170 amplitude difference and depression/anxiety levels exist 

regardless of mental wellbeing, even in non-clinical (and otherwise healthy) participants. 

This is particularly pertinent as much of mental health research focuses on the healthy vs. 
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illness dichotomy. The current results suggest that mental wellbeing is only associated with 

alterations in electrophysiological markers of emotion processing to the extent that wellbeing 

is associated with depression/anxiety symptoms within healthy samples.  

The current study also examined the effect of masked vs. unmasked presentation of 

emotional faces on the association between emotion processing and wellbeing, as well as 

with depression/anxiety symptoms. Despite previous findings linking depression symptoms 

with altered conscious processing of emotional faces (e.g., Watters et al., 2018; Williams et 

al., 2007), the only significant link we observed was for depression/anxiety symptoms in the 

masked paradigm, indicating altered automatic processing. Specifically, depression/anxiety 

symptoms were associated with reduced differentiation in the Fear – Happy N170 contrast. 

This is consistent with evidence suggesting that within healthy populations, the N170 is 

enhanced for negative (e.g., angry, fearful) compared to non-negative (e.g., happy, neutral) 

emotions in masked paradigms (Kiss & Eimer, 2008; Zotto & Pegna, 2015). However, the 

results suggest that this pattern is altered in participants with high depression/anxiety 

symptoms who are otherwise healthy as the amplitude difference typically observed between 

fearful and happy faces was lost. This is more in line with what has been reported in 

individuals with MDD (Zhang et al., 2016). Furthermore, as one of the few studies that have 

tested both masked and unmasked conditions within the same sample of participants (also see 

Williams et al., 2007), it is interesting to note that the conscious processing of facial 

expressions did not differ as a function of depression/anxiety levels in healthy participants 

when wellbeing levels are controlled for. Here, we speculate that in non-clinical populations, 

any potential associations between negative and positive emotion processing with 

depression/anxiety levels may only be present (or observable) for subconscious processes. 

This might reflect alterations to the automatic orienting response that is triggered especially 
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for threat-related stimuli (Liddell et al., 2004; Tamietto & de Gelder, 2010) in individuals 

with higher levels of depression/anxiety symptoms. 

 The second aim of the current study was to assess the heritability of each emotion 

contrast to clarify whether emotion-specific processing is heritable. Consistent with a 

previous study that assessed the heritability of fear-specific processing (Shannon et al., 2013), 

most emotions showed no evidence of heritability in the current study. There were, however, 

some exceptions. Within the unmasked condition, there was a significant heritable 

component to disgusted face processing within the N170 and the P250 components (0.19 and 

0.21, respectively). In contrast, within the masked condition, there was a significant heritable 

component to sad face processing within the VPP and N170 components (0.19 and 0.23, 

respectively), and for the angry face processing in the VPP component (0.26). This suggests 

that the heritability of emotion specific processing differs between emotions and according to 

visual pathways (conscious vs. subconscious; see Liddell et al., 2005, 2004). In addition to 

these heritable components, a common environment component was found for sad relative to 

happy face processing in the unmasked paradigm for the P1 and N170 components, and for 

happy relative to neutral faces in the masked paradigm for the VPP component. This suggests 

that shared environmental features, such as the prenatal environment or parenting styles, 

might contribute to the processing of sad and happy faces. As this was the first study to assess 

the heritability of emotion-specific processing for non-fearful expressions, further replication 

of these results is warranted. In addition, while none of the contrasts with significant 

heritability were associated with either mental wellbeing or depression/anxiety symptoms in 

the current sample, the processing of sad, happy, and disgusted faces have been associated 

with clinical depression and anxiety in clinical samples (Chen et al., 2014; Watters et al., 

2018; Zhang et al., 2016). Thus, while the association between the fear-happy contrast and 
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depression/anxiety symptoms found in the current sample is best explained by environmental 

factors, it is possible that a genetic correlation could play a role in clinical groups. 

A limitation of the present study is that, compared to other ERP studies of emotional 

face processing, there were fewer trials per emotion, reducing the signal-to-noise ratio. 

However, this methodological choice enabled a larger sample size to be obtained, as well as 

being able to collect both masked and unmasked conditions of the experiment. Furthermore, 

the same paradigm has been used successfully in previous work (e.g., Watters et al., 2018; 

Williams et al., 2007). A further limitation was the lack of behavioural data during the ERP 

recording. As such, it is unclear whether greater neural differentiation translates to better 

conscious ability to distinguish between emotional expressions, or vice versa. However, using 

a passive viewing paradigm meant we did not need to account for certain confounding 

factors, such as a motor response or higher-level decision-making processes (i.e., deciding 

between response options). It is also important to note that this sample had low levels of 

depression/anxiety symptoms relative to the general population, making it unclear whether 

the linear effects reported here would extend to samples with a greater variability of 

symptoms. On this note however, our finding of an association between such symptoms and 

the N170 suggests that this component could be a more sensitive indicator of 

depression/anxiety symptoms compared to low levels of wellbeing.  

In conclusion, the current study indicates that, within a non-clinical sample, increased 

depression/anxiety symptoms rather than decreased mental wellbeing accounts for alterations 

in neural differentiation between emotional expressions. More specifically, heightened, non-

clinical depression/anxiety symptoms were associated with a lack of neural differentiation, 

indicated by ERP amplitude, between fearful and happy expressions. Furthermore, this 

difference was limited to automatic processing of facial expressions, rather than conscious 
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awareness and processing of such stimuli and appears to be driven by unique environmental 

factors. Future research using longitudinal designs could explore whether the degree of neural 

differentiation between fearful and happy faces in non-clinical samples changes as symptom 

levels change or if a lack of N170 differentiation between these emotions is a risk factor for 

future mental illness to better understand the nature of this association.  
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Supplement 1: ERP emotion pairwise comparisons  

Unmasked contrasts. Emotional faces tended to evoke smaller P1 amplitudes than neutral 

faces, except for sad faces which did not differ significantly from neutral faces. P1 

amplitudes were larger for sad compared to other negative faces, larger for happy relative to 

fearful and angry faces, and larger for disgusted relative to angry faces. This pattern was 

reversed for the VPP and N170 where emotional faces evoked larger amplitudes compared to 

neutral expressions. Angry faces evoked significantly larger VPP and N170 amplitudes than 

all other expressions, and fearful faces evoked larger N170 amplitudes than sad, happy, and 

disgusted faces. Similar to the P1, P250 amplitudes were again smaller for emotional 

compared to neutral faces, excluding disgust which did not significantly differ from neutral. 

Angry faces evoked smaller P250 amplitudes relative to all other emotions, and fearful faces 

evoked smaller amplitudes than disgusted and happy faces. 

Masked contrasts. Overall, there was less distinction between different emotions in the 

masked condition relative to the unmasked condition. In contrast to the unmasked condition, 

P1 amplitudes tended to be larger for emotional than neutral faces, with significantly larger 

amplitudes for sad, happy, and disgusted faces compared to neutral. The VPP also had 

enhanced amplitudes to emotional relative to neutral faces, except for happy faces. Happy 

VPP amplitudes were significantly smaller than for sad, fearful, and angry faces, and 

disgusted amplitudes were significantly smaller than angry faces. Angry faces evoked 

significantly larger amplitudes relative to disgusted faces. The N170 showed enhanced 

amplitudes to angry and fearful faces, which were significantly larger than neutral, happy, 

and disgusted faces. Angry faces also evoked larger N170 amplitude than fearful and sad 

faces. Finally, P250 amplitudes were attenuated to angry, fearful, and disgusted faces relative 

to neutral and sad faces. Fearful and angry faces also evoked significantly smaller P250 



155 

 

 

amplitudes than disgusted and happy faces and did not differ from each other. 
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Table S1. ERP component amplitude means and standard deviations by condition and emotion 

Unmasked  N100 P100 VPP N170 P250 

Emotion  Neutral -1.60 (1.42) 2.79 (2.49) -0.47 (1.54) 0.28 (1.92) 2.93 (2.38) 

 Sad -1.59 (1.36) 2.71 (2.50) -0.34 (1.59) 0.14 (2.00) 2.78 (2.28) 

 Happy -1.57 (1.33) 2.62 (2.42) -0.34 (1.54) 0.16 (1.92) 2.77 (2.23) 

 Disgust -1.59 (1.33) 2.59 (2.43) -0.32 (1.54) 0.11 (1.91) 2.84 (2.31) 

 Fear -1.58 (1.33) 2.50 (2.53) -0.31 (1.49) -0.08 (2.00) 2.71 (2.39) 

 Angry -1.55 (1.30) 2.46 (2.41) -0.13 (1.47) -0.21 (1.86) 2.40 (2.22) 

Masked  N100 P100 VPP N170 P250 

Emotion Neutral -1.22 (1.18) 1.75 (2.13) 0.43 (1.47) -1.01 (1.86) 2.10 (2.04) 

 Sad -1.20 (1.21) 1.89 (2.24) 0.58 (1.48) -1.06 (1.94) 2.11 (2.04) 

 Happy -1.20 (1.23) 1.89 (2.22) 0.49 (1.49) -1.03 (1.87) 2.20 (2.15) 

 Disgust -1.21 (1.17) 1.90 (2.22) 0.53 (1.45) -0.99 (1.88) 2.25 (2.11) 

 Fear -1.22 (1.19) 1.82 (2.18) 0.60 (1.49) -1.11 (1.80) 1.99 (1.97) 

 Angry -1.23 (1.20) 1.83 (2.18) 0.66 (1.48) -1.17 (1.87) 1.98 (2.01) 

Notes. N1 and VPP are measured from Cz, P1 is measured from the mean of O1 and O2, N170 and P250 are  

measured from the mean of T5 and T6. N = 402. 
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Table S2. Tukey-corrected emotion pairwise comparisons by ERP component and condition 

Unmasked P100  VPP  N170  P250  

Contrast Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Sad - Neutral  -0.08 (-0.19, 0.03) 0.13 (0.03, 0.22)* -0.14 (-0.23, -0.04)* -0.15 (-0.25, -0.05)* 

Happy - Neutral -0.17 (-0.28, 0.06)* 0.13 (0.04, 0.23)* -0.12 (-0.22, -0.03)* -0.16 (-0.26, -0.05)* 

Disgust - Neutral -0.20 (-0.31, -0.09)* 0.15 (0.05, 0.24)* -0.17 (-0.27, -0.08)* -0.09 (-0.19, 0.01) 

Fear - Neutral -0.29 (-0.40, -0.18)* 0.17 (0.07, 0.26)* -0.36 (-0.45, 0.26)* -0.22 (-0.33, -0.12)* 

Angry - Neutral -0.33 (-0.44, -0.22)* 0.34 (0.24, 0.43)* -0.49 (-0.59, -0.39)* -0.52 (-0.63, -0.42)* 

Sad - Happy 0.09 (-0.02, 0.20) 0.00 (-0.10, 0.09) -0.02 (-0.11, 0.08) 0.00 (-0.10, 0.11) 

Sad - Disgust 0.12 (0.01, 0.23)* -0.02 (-0.12, 0.07) 0.03 (-0.06, 0.13) -0.06 (-0.16, 0.04) 

Sad - Fear 0.21 (0.10, 0.32)* -0.04 (-0.13, 0.06) 0.22 (0.13, 0.32)* 0.07 (-0.03, 0.18) 

Sad - Angry 0.25 (0.14, 0.36)* -0.21 (-0.30, -0.12)* 0.35 (0.26, 0.45)* 0.37 (0.27, 0.48)* 

Disgust - Happy -0.03 (-0.14, 0.08) 0.02 (-0.08, 0.11) -0.05 (-0.14, 0.05) 0.07 (-0.04, 0.17) 

Fear - Happy -0.12 (-0.23, -0.01)* 0.03 (-0.06, 0.13) -0.24 (-0.33, -0.14)* -0.07 (-0.17, 0.04) 

Angry - Happy -0.16 (-0.27, -0.05)* 0.21 (0.11, 0.30)* -0.37 (-0.46, 0.27)* -0.37 (-0.47, -0.27)* 

Disgust - Fear 0.09 (-0.02, 0.20) -0.02 (-0.11, 0.08) 0.19 (0.09, 0.28)* 0.13 (0.03, 0.24)* 

Disgust - Angry 0.13 (0.02, 0.24)* -0.19 (-0.28, -0.09)* 0.32 (0.22, 0.41)* 0.43 (0.33, 0.54)* 

Fear - Angry 0.04 (-0.07, 0.15) -0.17 (-0.27, -0.08)* 0.13 (0.04, 0.23)* 0.30 (0.20, 0.40)* 

Masked P100  VPP  N170  P250  

Contrast Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Sad - Neutral 0.14 (0.04, 0.24)* 0.16 (0.07, 0.24)* -0.05 (-0.14, 0.03) -0.00 (-0.09, 0.09) 

Happy - Neutral 0.14 (0.04, 0.24)* 0.07 (-0.02, 0.15) -0.02 (-0.10, 0.07) 0.10 (0.00, 0.19) 

Disgust - Neutral 0.15 (0.05, 0.25)* 0.11 (0.02, 0.19)* 0.01 (-0.07, 0.10) 0.15 (0.06, 0.24)* 

Fear - Neutral 0.07 (-0.03, 0.17) 0.18 (0.09, 0.26)* -0.10 (-0.19, -0.02)* -0.11 (-0.20, -0.02)* 
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Angry - Neutral 0.08 (-0.02, 0.18) 0.24 (0.15, 0.32)* -0.16 (-0.25, -0.08)* -0.13 (-0.22, -0.03)* 

Sad - Happy 0.00 (-0.10, 0.10) 0.09 (0.00, 0.18)* -0.03 (-0.12, 0.05) -0.09 (-0.19, 0.00) 

Sad - Disgust -0.01 (-0.11, 0.09) 0.05 (-0.04, 0.14) -0.06 (-0.15, 0.02) -0.14 (-0.24, -0.05)* 

Sad - Fear 0.07 (-0.03, 0.17) -0.02 (-0.11, 0.07) 0.05 (-0.03, 0.14) 0.12 (0.02, 0.21)* 

Sad - Angry 0.06 (-0.04, 0.16) -0.08 (-0.17, 0.01) 0.11 (0.03, 0.20)* 0.13 (0.04, 0.22)* 

Disgust - Happy 0.01 (-0.09, 0.11) 0.04 (-0.05, 0.13) 0.03 (-0.05, 0.12) 0.05 (-0.04, 0.14) 

Fear - Happy -0.07 (-0.17, 0.03) 0.11 (0.02, 0.20)* -0.08 (-0.17, 0.00)* -0.21 (-0.30, -0.12)* 

Angry - Happy -0.07 (-0.16, 0.03) 0.17 (0.08, 0.26)* -0.14 (-0.23, -0.06)* -0.22 (-0.31, -0.13)* 

Disgust - Fear 0.08 (-0.02, 0.18) -0.07 (-0.16, 0.02) 0.12 (0.03, 0.20)* 0.26 (0.17, 0.35)* 

Disgust - Angry 0.07 (-0.03, 0.17) -0.13 (-0.22, -0.04)* 0.18 (0.09, 0.26)* 0.27 (0.18, 0.37)* 

Fear - Angry 0.00 (-0.10, 0.10) -0.06 (-0.15, 0.03) 0.06 (-0.02, 0.15) 0.01 (-0.08, 0.10) 

Notes. * p < 0.05; N = 402. 
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Chapter 4: 

Cognitive processing and mental health 
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4.1. Introduction 

Mental wellbeing, defined as a state of positive psychological functioning, positive 

mood, and life satisfaction, has been associated with alterations in cognition, with higher 

wellbeing being associated with better global cognitive function, including sustained 

attention, working memory, inhibition, and motor coordination (Lee & Chao, 2012; 

Llewellyn et al., 2008; Pe et al., 2013; Routledge et al., 2017). Differences in how individuals 

with high wellbeing direct their attention and control it could play a role in their ability to 

maintain high wellbeing through more effective use of emotion regulation strategies 

(Schmeichel et al., 2008). In contrast, depression, anxiety, and stress symptoms (referred to 

here as depression/anxiety symptoms) are associated with poorer executive function in 

clinical and subclinical samples (Harvey et al., 2004; Lukasik et al., 2019; Moran, 2016; 

Snyder, 2013). These cognitive deficits have been observed in clinical groups using both 

behavioural and neurological measures, including event-related potentials (ERPs) which 

show early stages of cognitive processing by measuring electrical activity from the scalp. In 

clinical research, cognitive ERPs have been used as biomarkers to predict mental illness 

(Bernat et al., 2020; Gilmore et al., 2010). However, it remains unclear whether ERPs can be 

similarly applied to wellbeing, which has only been linked to changes in cognitive control 

through behavioural measures. Thus, the current chapter explores the association between 

mental wellbeing and ERPs indexing attention and inhibitory processes to determine whether 

variation in these cognitive processes could help explain variation in wellbeing. 

 While the association between mental wellbeing and attentional control and inhibition 

remains preliminary, there is substantial evidence that positive emotions, which form an 

important component of mental wellbeing (Diener, 1984; Gatt et al., 2014), alter these 

processes. Using experimental methods with behavioural and neurological measures, studies 
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have found that positive emotions broaden attentional scope (Fredrickson, 2001; Putkinen et 

al., 2017; Vanlessen et al., 2014), facilitate cognitive control and inhibition (Paul et al., 2021; 

Vanlessen et al., 2015, 2016), and improve working memory (Dreisbach & Goschke, 2004; 

Gray, 2001; Storbeck & Maswood, 2016). It has been suggested that the same cognitive 

functions aid emotion regulation processes, which might explain why these functions are also 

associated with wellbeing (Lee & Chao, 2012; Pe et al., 2013; Routledge et al., 2017). For 

example, individuals with greater working memory capacity are more likely to use emotion 

regulation strategies when instructed to and following negative feedback (Schmeichel et al., 

2008; Schmeichel & Demaree, 2010). Meanwhile, failing to update and inhibit negative 

information in working memory has been associated with higher depression and anxiety 

symptoms (Joormann et al., 2011; Joormann & Gotlib, 2010). Thus, if positive emotions 

increase cognitive control, they may lead to more effective emotion regulation and 

maintenance of positive emotions over time, resulting in improved wellbeing. 

 Similar associations have been reported between cognitive control and positive 

emotions using experimental manipulations of positive mood. For example, similar to 

associations reported between inhibition and induced positive mood (Vanlessen et al., 2015), 

wellbeing has been positively associated with response inhibition in behavioural tasks (Lee & 

Chao, 2012; Routledge et al., 2017). Working memory function is also positively associated 

with wellbeing. One study used an affective n-back procedure to test working memory 

function in individuals with varying levels of wellbeing (Pe et al., 2013). They found that 

individuals with higher subjective wellbeing made fewer errors for positive n-back trials 

compared to those with poorer wellbeing. A similar positive association was found between 

composite wellbeing and working memory in the full TWIN-E study cohort (Routledge et al., 

2017). These effects are also similar to those reported in association with positive mood 
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(Storbeck & Maswood, 2016). Based on these similar behavioural findings, it is possible that 

the alterations in ERPs indexing attention and inhibition reported in association with positive 

mood might also generalise to wellbeing. 

 Some of the key ERP components used to index attention and inhibition include the 

P3b, P3a, and N2 components, with the most widely investigated being the P3b. The P3b 

component was first recorded in response to target stimuli within an oddball paradigm where 

participants responded to rare target stimuli and ignored frequent standard stimuli (Polich, 

2007). It is usually used to index attention allocation and cognitive load during oddball and 

working memory tasks (Polich, 2007; Watter et al., 2001). The P3b component has been used 

to investigate alterations in attentional processes associated with positive mood (Putkinen et 

al., 2017; Vanlessen et al., 2014), but it has not yet been applied to wellbeing research. In the 

context of positive emotions, which are theorised to broaden attentional scope (Fredrickson, 

2001), it was expected that oddball P3b amplitudes would be reduced in the presence of a 

secondary task. While this effect was found in a study using auditory stimuli (Putkinen et al., 

2017), an earlier study found that happy individuals actually had larger P3b amplitudes when 

the secondary task was spatial in nature, suggesting that both the secondary and primary tasks 

were easier during a positive mood state (Vanlessen et al., 2014). While these studies confirm 

that positive mood can alter early attentional processes in the context of dual-task paradigms, 

no studies to date have investigated how the P3b component might be affected by either 

positive mood or wellbeing in the standard oddball paradigm without a secondary task. 

In contrast to the P3b, which measures attention, the N2 and P3a are used to index 

inhibitory processes, with current theories suggesting that the N2 is involved in inhibition of 

planned motor responses and the P3a in inhibition of motor activity (Huster et al., 2013; 

Smith et al., 2013). Just one study has used ERPs to investigate the effects of positive mood 



163 

 

 

on these inhibition related components (Vanlessen et al., 2015), and none have been 

conducted on wellbeing. Vanlessen et al. (2015) used mood induction to put participants into 

either a positive or neutral mood before testing their inhibition using a cued anti-saccade task. 

This task required participants to either look away from (on anti-saccade trials), or towards 

(on prosaccade trials) a visual probe appearing on one side of the screen. The happy mood 

group was found to have augmented N2 amplitude on both trial types relative to the neutral 

mood group despite no difference in behavioural measures. No effect was found for the P3a 

component. As the task was cued to let participants know whether each trial would require an 

anti-saccade or a prosaccade, the authors suggested that the increased N2 amplitude was a 

sign of increased reactive control at the cost of proactive control, meaning happy participants 

were less likely to prepare their inhibitory response based on the cue preceding each trial. 

Studies examining the relationship between inhibition and wellbeing have not used ERPs, but 

did report differences in behavioural performance which might indicate larger effects of 

wellbeing on inhibition compared to positive mood (Lee & Chao, 2012; Routledge et al., 

2017). 

 Although ERPs have rarely been used to investigate the cognitive correlates of 

wellbeing and positive mood, various studies have used them to investigate the effects of 

clinical and subclinical depression and anxiety on cognition. Reduced attentional capture 

within oddball paradigms, indexed by smaller P3b amplitudes to oddball stimuli, is associated 

with major depression and anxiety disorders, including familial risk (Bernat et al., 2020; 

Bruder et al., 2011; Houston et al., 2003; Röschke & Wagner, 2003; Xu et al., 2014). More 

recently, the frontal ‘novelty P3’ (also called the P3a) component elicited in response to 

novel, non-target stimuli has also been identified as a negative predictor of psychopathology 

risk (Bernat et al., 2020). These effects indicate impairments in attention orienting and 
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processing of task-relevant stimuli in clinical groups (Bernat et al., 2020). In addition, 

impairments in inhibitory function have been reported in clinical depression and anxiety, 

indicated via both behavioural and ERP indices (Kaiser et al., 2003; Katz et al., 2010; 

Ruchsow et al., 2008; Xia et al., 2020). Specifically, both depression and anxiety symptoms 

are associated with reduced N2 amplitudes compared to non-clinical controls, and N2 

amplitudes have been correlated with symptom severity (Kaiser et al., 2003; Katz et al., 2010; 

Xia et al., 2020). Some studies have also reported alterations to the inhibitory P3a 

component, with one study reporting that P3a amplitudes were smaller in depressed 

compared to control participants (Ruchsow et al., 2008), and another study reporting that P3a 

amplitudes were enhanced in anxious participants despite the same participants showing 

reduced N2 amplitudes (Xia et al., 2020). The association between ERPs and mental illness 

symptoms is of particular interest because they have been identified as candidate 

endophenotypes for risk due to their moderate to high heritability (Anokhin et al., 2004, 

2017; Malone et al., 2014; Smit et al., 2007). The current chapter aimed to replicate the 

moderate heritability of these ERP components and evaluate their potential for use as 

endophenotypes of mental wellbeing. 

 The aim of this Chapter is to investigate the associations between cognitive 

processing, mental wellbeing, and depression/anxiety symptoms using behavioural 

performance and ERPs. This is done using the TWIN-E study data which included three 

cognitive tasks: the auditory oddball paradigm to measure attentional orienting (P3b to 

targets); the n-back paradigm to measure working memory updating and recognition (P3b to 

targets and non-targets), with distractor trials used to index attentional orienting to novel 

stimuli (P3a); and the go/no-go paradigm to measure inhibition (N2 and P3a to no-go 

stimuli). To investigate the potential use of these components of interest as endophenotypes, 
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univariate analyses were conducted to estimate the heritability of each component; and 

multivariate correlated factors models were planned in the case of significant associations 

between mental wellbeing or depression/anxiety symptoms with ERP amplitude. 

4.2. Methods 

4.2.1. Participants 

The participants for this study were recruited as part of the TWIN-E study of mental 

wellbeing and resilience, recruited through the Australian Twin Registry (now known as 

Twins Research Australia) between 2009 and 2012 (Gatt et al., 2012). A total of 433 same-

sex monozygotic or dizygotic twins aged 18 to 61 years completed at least one of the three 

cognitive ERP tasks assessed. Participants with a personal or family history of mental illness 

or major physical illness were excluded from the study. Detailed inclusion and exclusion 

criteria can be found in the study protocol (Gatt et al., 2012). 

This study was approved by the Human Research Ethics Committees of the 

University of Sydney (03-2009/11430), Flinders University (FCREC#08/09), and the 

University of New South Wales (HC14256). 

4.2.2. Materials 

Participants completed a comprehensive test battery including mental health and 

related questionnaires, behavioural cognitive performance, and emotional processing online 

before their session, as detailed elsewhere (Gatt et al., 2012). The measures relevant to the 

current analysis included the COMPAS-W wellbeing questionnaire which measures six 

subscales relating to psychological and subjective wellbeing, including composure under 

stress, own-worth, mastery, positivity, achievement, and satisfaction (Gatt et al., 2014). The 
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COMPAS-W has been validated against other mental health measures and has high internal 

(0.84) and test-retest reliability (0.82; Gatt et al., 2014). Depression/anxiety symptoms were 

measured using the Depression Anxiety Stress Scale (DASS-42; Lovibond & Lovibond, 

1995). The DASS-42 has been validated within non-clinical samples against other depression 

and anxiety measures, and has very high internal reliability of 0.97 (Crawford & Henry, 

2003). 

Following the online session, participants were invited to either the Brain Dynamics 

Centre at the University of Sydney, NSW, Australia, or Flinders University, SA, Australia for 

the EEG recording. Three cognitive assessments were conducted at this session: the auditory 

oddball, the n-back, the go/no-go task, described below. All three tasks have been validated 

previously and widely applied to study healthy and clinical populations (Gordon et al., 2005; 

Williams et al., 2005). 

4.2.2.1. Auditory oddball paradigm 

Participants were presented with a total of 340 trials including 60 presentations of a 

high-pitched (1000 Hz) target tone and 280 presentations of a low-pitched (500 Hz) standard 

tone. Participants were instructed to respond to target tones but ignore standard tones. Both 

tones were played at 75 dB with a 50 msec duration and 1000 msec inter-stimulus interval. 

4.2.2.2. N-back paradigm 

Participants were presented with a total of 125 trials, each presenting either one of 

four white letters (B, C, D, or G) or a blue and green checkerboard on a black background for 

200 msec in pseudo-random order. The inter-stimulus interval was 2500 msec. Participants 

were to respond with a button press when the letter onscreen matched the letter presented on 
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the previous trial (i.e., 1-back), and to withhold responses on all other trials. Non-repeated 

letter stimuli were standard trials presented on 85 trials, repeated letter target stimuli were 

presented on 20 trials, and the checkerboard distractor trials were presented on 20 trials.  

4.2.2.3. Go/no-go paradigm 

Participants were presented with 168 trials where the word “PRESS” was printed 

either in red or in green text on a black screen. Participants were instructed to respond with a 

button press when the text was green (75% of trials, n = 126) and to withhold a response 

when the text was red (25% of trials, n = 42). Trials were presented pseudo-randomly in 

blocks of six trials.  

4.2.3. Procedures 

4.2.3.1. EEG acquisition and processing 

A 26-electrode QuickCap and NuAmps DC amplifier were used to record EEG data 

during the cognitive tasks at a sampling rate of 500 Hz and frequency band of 0.1-42 Hz, 

relative to virtual ground. Impedances were kept below 5 kΩ. The data was re-referenced 

offline to linked mastoids. An artifact rejection algorithm used previously (Bryant et al., 

2021; Watters et al., 2018) was used that rejected epochs where three or more channels 

exceeded a maximum threshold of 100 µV. Horizontal and vertical eye movements were 

recorded from above and below the left eye, and 1.5 cm from the outer canthus of each eye to 

correct for blinks using the Gratton-Coles method (Gratton et al., 1983). Following artifact 

rejection, epochs were averaged for each experimental condition, including at least 50% of 

trials of each type per participant.  
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Grand-averaged waveforms of all conditions in each experimental task were used to 

select time windows for each component, based on the peak amplitude +/- 20 msec. P3b 

components were measured at Pz and the frontal components P3a and N2 were measured 

from FCz in accordance with the literature (Polich, 2007; Smith et al., 2013). Time periods 

used to calculate average amplitude for each component are as follows: oddball P3b from 

328–368 msec, n-back P3b from 368–408 msec, n-back P3a from 344–384 msec, go/no-go 

N2 from 160–200 msec, and go/no-go P3a from 336–376 msec.  

4.2.4. Statistical analysis   

4.2.4.1. Linear mixed models 

Linear mixed models were used for the statistical analysis to account for twin 

relatedness in all models by entering family ID as the random effect. These were fit using the 

lme4 package in R (Bates et al., 2015; R Core Team, 2020). Pairwise comparisons to test for 

differences in ERP amplitude between experimental conditions were conducted using the 

emmeans package (Lenth, 2020). ERPs of interest were chosen based on the literature (Bernat 

et al., 2020; Vanlessen et al., 2014, 2015; Watter et al., 2001) and included the target P3b 

from the auditory oddball, target and non-target P3b from the n-back, distractor P3a from the 

n-back, and no-go N2 and P3a from the go/no-go. These components were tested as 

predictors of wellbeing and depression/anxiety symptoms in separate models, where 

depression/anxiety symptoms were entered as a covariate for wellbeing models and wellbeing 

was entered as a covariate for depression/anxiety models.  
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4.2.4.2. Univariate heritability 

Univariate heritability for each ERP of interest was conducted using the OpenMx 

package in R (Scheike et al., 2014). The intra-class correlations (ICC) were used to select the 

starting model; where monozygotic twins had an ICC of at least double that of dizygotic 

twins, the ADE model was chosen as the starting model, otherwise the ACE starting model 

was chosen (Verweij et al., 2012). A, C, or D components were then progressively dropped 

from the model to identify the most parsimonious model on the basis of AIC and a chi-square 

test. Age, sex, and education were included as covariates in the heritability analysis. 

Multivariate models were planned to assess the shared heritability between ERP components 

of interest and wellbeing and/or depression/anxiety symptoms where significant associations 

were found in the linear mixed models.  

4.3. Results 

4.3.1. Sample characteristics 

 Of the 433 participants who completed at least one of the three cognitive tasks, 427 

completed the n-back task, 422 completed the oddball task, and 420 completed the go/no-go 

task. Sample characteristics for the full sample of 433 participants are provided in Table 4.1. 

Subsamples for each task did not significantly differ in demographic characteristics from the 

full sample. 

4.3.2. Behavioural performance 

 Individuals with high error rates, defined as errors on more than 10% of trials in the 

oddball task or go trials in the go/no-go task, or on more than 25% of trials in other  
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Table 4.1 Participant characteristics for participants completing at least one cognitive task 

Characteristic MZ 

(n = 301) 

DZ 

(n = 132) 

Total 

(n = 433) 

Age 41.03 (12.1) 38.41 (14.4) 40.23 (12.9) 

COMPAS-W (M/SD) 99.6 (10.4) 99.4 (9.8) 99.54 (10.2) 

DASS-42  10.74 (10.6) 12.02 (11.2) 11.13 (10.8) 

log DASS-42  0.90 (0.4) 0.97 (0.4) 0.92 (0.4) 

Sex (M/F) 112/189 43/89 155/278 

Handedness (R/L) 272/29 120/12 392/41 

Notes. COMPAS-W = total composite measure of wellbeing (Gatt et al., 2014); DASS-42 = 

Depression, Anxiety, Stress Scale (Lovibond & Lovibond, 1995); MZ = monozygotic; DZ = dizygotic; 

N = 433. 

 

conditions were excluded from the data due to the high likelihood that they did not 

understand the task instructions. This removed six participants from the oddball (remaining n 

= 417), seven participants from the n-back (remaining n = 420), and six participants from the 

go/no-go task (remaining n = 414). Behavioural performance data for the reduced sample is 

provided in Table 4.2. Overall performance was high across the sample. Linear mixed models 

were used to assess for associations between task performance and wellbeing and 

depression/anxiety symptoms, described below.  

 

Table 4.2 Behavioural performance for the auditory oddball, n-back, and go/no-go tasks 

Task Correct RT Commission 

Errors 

Omission 

Errors 

Total 

Errors 

Oddball (n = 417) 361.33 (49.89) 0.47 (1.26) 0.13 (0.49) 0.60 (1.42) 

N-back (n = 420) 513.28 (100.58) 0.63 (1.05) 0.73 (1.07) 1.36 (1.64) 

Go/No-Go (n = 414) 287.20 (43.01) 1.93 (1.62) 0.26 (1.06) 2.19 (2.02) 

Notes. Correct RT = mean reaction time in msec for correct press response; errors indicate the mean 

number of errors made by type on relevant trials.  
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4.3.1.1. Auditory oddball paradigm 

Within the oddball paradigm, mental wellbeing was associated with fewer total errors (b = -

1.12, p = .002) driven by fewer commission errors (b = -1.14, p = .005), but not omission 

errors (b = -1.70, p = .079). There was no association between mental wellbeing and reaction 

time (p = .825). When covarying for depression/anxiety symptoms, the association between 

mental wellbeing and fewer total errors (b = -0.907, p = .006) and fewer commission errors (b 

= -0.90, p = .016) remained significant, and the association with fewer omission errors (b = -

1.55, p = .084) remained non-significant. No new association with reaction time was found 

when controlling for depression/anxiety symptoms. 

 Depression/anxiety symptoms were not significantly associated with behavioural 

performance, either in terms of total errors (b = 0.02, p = .085), or commission errors (b = 

0.03, p = .077) in individuals with higher compared to lower depression/anxiety symptoms. 

When controlling for mental wellbeing, these effects weakened further (p > .100). No 

associations with omission errors or reaction time were found. 

4.3.1.2. N-back paradigm 

Within the n-back paradigm, mental wellbeing was associated with fewer errors 

overall (b = -0.61, p = .039), driven by fewer commission errors (b = -0.96, p = .036) rather 

than omission errors (p = .293). There was no association between mental wellbeing and 

reaction time (p = .710). When controlling for depression/anxiety symptoms, there were no 

significant associations between wellbeing and behavioural performance (p > .05).  

 Depression/anxiety symptoms did not have a significant association with more total 

errors (b = 0.02, p = .072), or omission errors (p = .511), but did have a significant 
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association with increased commission errors (b = .04, p = .035). There was no association 

between depression/anxiety symptoms and reaction time (p = .315). When controlling for 

wellbeing, there were no significant associations between depression/anxiety symptoms and 

behavioural performance (p > .05).  

4.3.1.3. Go/no-go paradigm 

Within the go/no-go paradigm, mental wellbeing was not associated with any measure 

of behavioural performance, either with or without controlling for depression/anxiety 

symptoms (p > .100). Similarly, depression/anxiety symptoms were not associated with 

differences in behavioural performance, either with or without controlling for wellbeing (p > 

.100).  

4.3.2. Event-related potentials 

4.3.2.1. Auditory oddball paradigm 

The auditory oddball waveform is shown in Figure 4.1. A comparison of P3b amplitude 

between targets (M = 10.30 µV, SD = 6.7) and non-targets (M = -0.32 µV, SD = 1.9) revealed 

a significant effect of condition whereby targets elicited significantly larger P3b amplitudes 

than non-targets (t416 = 34.06, p < .001). Linear mixed models revealed no significant 

symptoms with target P3b amplitude, either with or without controlling for wellbeing (both p 

> .100) associations between mental wellbeing and target P3b amplitude either with or 

without controlling for depression/anxiety symptoms (both p > .100), nor between 

depression/anxiety.   
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4.3.2.2. N-back task 

 The n-back waveform is shown in Figure 4.2. Pairwise comparisons between targets 

(M = 12.7 µV, SD = 6.2), non-targets (M = 10.4 µV, SD = 4.5), and distractors (M = 22.6 µV, 

SD = 7.3) found that targets (t419 = 7.24, p < .001) and distractors (t419 = 38.80, p < .001) had 

larger P3b amplitudes compared to non-targets, respectively. Distractors also had 

significantly larger P3b amplitude than targets (t419 = 31.53, p < .001). Linear mixed models 

revealed no significant associations between P3b amplitude for either targets or non-targets 

with mental wellbeing, either with or without controlling for depression/anxiety symptoms 

both p > .100). Furthermore, no associations were found between depression/anxiety 

symptoms and P3b amplitude for targets or non-targets, either with or without controlling for 

mental wellbeing (p > .100). 

Figure 4.1 Auditory oddball waveform comparing the P3b component for targets and non-

targets at Pz. 
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Frontal P3a amplitudes were also considered. Pairwise comparisons between targets 

(M = 7.43 µV, SD = 6.8), non-targets (M = 7.52 µV, SD = 5.3), and distractors (M = 19.38 

µV, SD = 8.2) found that distractors elicited significantly larger P3a amplitude relative to 

targets (t419 = 35.77, p < .001) and non-targets (t419 = 35.48, p < .001), respectively. No 

significant difference in P3a amplitude was found between targets and non-targets (p > .100). 

Figure 4.2 N-back waveform comparing targets, non-targets, and distractors at (a) FCz for the P3a 

component, and (b) Pz for the P3b component. 
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Linear mixed models revealed no significant association between P3a amplitude for 

distractors with mental wellbeing, regardless of whether depression/anxiety symptoms were 

controlled for (both p > .100). Similarly, no significant association was found between with 

depression/anxiety symptoms, regardless of whether wellbeing was controlled for (both p > 

.100). 

4.3.2.3. Go/no-go paradigm 

The go/no-go waveform is shown in Figure 4.3. Comparisons between go (M = -0.38 

µV, SD = 5.2) and no-go (M = -0.86 µV, SD = 4.9) trials found that N2 amplitudes were 

significantly larger in absolute amplitude on no-go relative to go trials (t413 = 3.34, p < .001). 

Linear mixed models revealed no significant association between mental wellbeing no-go N2 

amplitude, regardless of whether depression/anxiety symptoms were controlled for (both p > 

.100) Similarly, no significant association was found between no-go N2 amplitude and 

Figure 4.3 Go/no-go waveform comparing go and no-go trials at FCz for the N2 

and inhibitory P3a components 
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depression/anxiety symptoms regardless of whether wellbeing was controlled for (both p > 

.100). 

When considering P3a amplitude, comparisons between go (M = 4.59 µV, SD = 4.6) 

and no-go (M = 7.97 µV, SD = 4.8) trials found that P3a amplitude was significantly greater 

for no-go relative to go trials (t413 = 14.91, p < .001). Linear mixed models revealed no 

significant association between wellbeing and no-go P3a amplitude, regardless of whether 

depression/anxiety symptoms were controlled for (both p > .100). Similarly, no significant 

association was found between depression/anxiety symptoms and no-go P3a amplitude, 

regardless of whether wellbeing was controlled for (both p > .100). 

4.3.3. Univariate heritability 

 Although no significant associations were found between the ERPs of interest and 

either mental wellbeing or depression/anxiety symptoms, the planned univariate heritability 

analysis was still carried out in an exploratory manner. A summary of the univariate models 

is provided in Table 4.3.  

4.3.3.1. Auditory oddball heritability 

Based on the intraclass correlations, the ACE model was chosen as the starting model 

for target P3b heritability. An AE model was found to be the best fitting model, showing 

significant moderate heritability of the P3b at 0.67. 

4.3.3.2. N-back heritability 

Based on the intraclass correlation, the ACE model was chosen as the starting model 

for target and non-target P3b amplitude, and for distractor P3a amplitude. P3b amplitude for 
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both targets and non-targets was found to be moderately heritable at 0.58 and 0.62, 

respectively, with no common environmental component. However, the CE model was the 

best fit for distractor P3a amplitude, indicating a significant effect of common environmental 

factors at 0.55.  

4.3.3.3. Go/No-Go heritability 

Based on the intraclass correlations, the ADE model was chosen as the starting model 

for the no-go N2 amplitude, but the ACE was chosen as the starting model for P3a amplitude. 

Both components were moderately heritable, but the N2 heritability was attributed to a 

dominant genetic effect at 0.62, whereas the inhibitory P3a heritability was attributed to 

additive genetics at 0.49.  
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Table 4.3 Univariate heritability by task and component for select conditions 

Phenotype ICC Model fit Parameter estimates 

 MZ DZ Model Comparison -2LL AIC p-value A (CI) C or D (CI) E (CI) 

Oddball 

Target P3b 

0.71 0.42 ACE vs. saturated 2601.98 1785.98 NA 0.67 

(0.39, 0.74) 

< .01 

(< .01, .26) 

0.33 

(0.26, 0.61) 

  AE vs. ACE 2601.98 1783.98 1 0.67 

(0.57, 0.75) 

- 0.33 

(0.25, 0.43) 

  E vs. AE 2692.36 1872.36 < .001 - - 1 

N-back 

Target P3b 

0.57 0.43 ACE vs. saturated 2630.41 1810.41 NA 0.53 

(0.11, 0.66) 

0.05 

(< .01, 0.42) 

0.42 

(0.34, 0.89) 

  AE vs. ACE 2630.47 1808.47 0.812 0.58 

(0.48, 0.67) 

- 0.42 

(0.33, 0.52) 

  E vs. AE 2693.61 1869.61 < .001 - - 1 

N-back 

Non-Target 

P3b 

0.64 0.34 ACE vs. saturated 2375.67 1547.67 NA 0.60 

(0.17, 0.70) 

0.02 

(< .01, 0.42) 

0.38 

(0.30, 0.48) 

  AE vs. ACE 2375.69 1545.69 0.217 0.62 

(0.52, 0.70) 

- 0.38 

(0.30, 0.48) 

  E vs. AE 2456.22 1624.22 < .001 - - 1 

N-back 

Distractor 

P3a 

0.58 0.49 ACE vs. saturated 2899.74 2067.74 NA 0.20 

(< .01, 0.44) 

0.37 

(0.22, 0.65) 

0.43 

(0.34, 0.53) 

  CE vs. ACE 2900.76 2066.76 0.312 - 0.55 

(0.44, 0.62) 

0.45 

(0.38, 0.55) 

  E vs. CE 2975.87 2139.87 < .001 - - 1 

GNG 

No-Go N2 

0.63 0.02 ADE vs. saturated 2439.75 1623.75 NA < .01 

(< .01, 0.52) 

0.62 

(0.10, 0.70) 

0.38 

(0.29, 0.90) 

  AE vs. ADE 2444.75 1626.75 0.025 0.61 

(0.49. 0.70) 

- 0.39 

(0.30, 0.51) 

  E vs. AE 2508.37 1688.37 < .001 - - 1 

GNG 

No-Go P3a 

0.46 0.37 ACE vs. saturated 2460.11 1644.11 NA 0.41 

(0.28, 0.59) 

0.07 

(< .01, .31) 

0.51 

(0.40, 0.64) 

  AE vs ACE 2460.23 1642.23 0.727 0.49 

(0.36, 0.60) 

- 0.51 

(0.39, 0.64) 

  E vs. AE 2501.01 1681.01 < .001 - - 1 

Notes. ICC = Intraclass correlation; MZ = monozygotic twins; DZ = dizygotic twins; starting models were either ACE or ADE where A = additive genetic, D = dominant 

genetic, C = common environment, E = unique environment. Squared model components indicate their contribution as a percentage of total variance. Models in bold letters 

represent the best fit. 
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4.4. Discussion 

 Previous research has found that positive mood states can alter cognitive processes 

relating to cognitive control, attention, and inhibition (Storbeck & Maswood, 2016; 

Vanlessen et al., 2014, 2015). Similar alterations have been reported in the wellbeing 

literature, with reports of higher wellbeing being associated with better sustained attention, 

working memory, cognitive flexibility, inhibition, and motor coordination (Llewellyn et al., 

2008; Routledge et al., 2017). Within studies investigating the effects of positive mood and 

mental illness on cognitive function, changes to ERP indices of attention, working memory, 

and inhibition have been reported (Bernat et al., 2020; Kaiser et al., 2003; Putkinen et al., 

2017; Vanlessen et al., 2014, 2015; Xia et al., 2020). However, similar studies have not been 

conducted for ERP indices of cognitive functions with the broader construct of mental 

wellbeing. To address this gap, the current study explored the associations between mental 

wellbeing and the P3b, P3a, and N2 ERP components involved in attention, working 

memory, and inhibitory control within three different tasks. Although significant associations 

were found between mental wellbeing and behavioural performance on the auditory oddball 

and n-back tasks, these associations were not reflected in changes to the P3b component. 

Furthermore, no associations were found between behavioural performance in the go/no-go 

task or any other ERP components with either mental wellbeing or depression/anxiety 

symptoms. However, univariate heritability analyses supported past evidence indicating that 

the P3b, N2, and inhibitory P3a components are moderately heritable suggesting an influence 

of both genetics and environment in these measures. 

 Alterations in attention and working memory have been reported for positive relative 

to negative or neutral emotional states, and in individuals with elevated mental wellbeing (Pe 

et al., 2013; Routledge et al., 2017; Vanlessen et al., 2014). Previous work from the TWIN-E 

sample found that mental wellbeing was positively associated with working memory capacity 
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and the ability to sustain attention throughout an n-back task requiring constant working 

memory updating based on behavioural performance (Routledge et al., 2017). Another study 

found that individuals with higher wellbeing were better able to update working memory with 

positive stimuli compared to those with poorer wellbeing (Pe et al., 2013). Positive emotions 

have also been linked to better attentional control and more efficient allocation of attentional 

resources (Vanlessen et al., 2016) which might contribute to the observed positive effects of 

wellbeing on attention, as these individuals experience positive emotions more frequently. 

The current study replicated the positive association between attention and working memory 

processes found in the larger TWIN-E sample (Routledge et al., 2017), with those with higher 

wellbeing demonstrating fewer errors on both the n-back and oddball task. Similar to the full 

TWIN-E sample, the association between behavioural performance on the n-back task and 

mental wellbeing was no longer significant after controlling for depression/anxiety 

symptoms. However, more accurate responses in the oddball task, which was not tested in the 

larger TWIN-E cohort, was associated with higher wellbeing even after controlling for 

depression/anxiety symptoms in the current sub-sample. This might indicate that sustained 

attention, which is important for both the n-back and the oddball task, is more strongly 

associated with wellbeing than working memory updating, which is an additional component 

within the n-back task (Harvey et al., 2004; Watter et al., 2001). However, it is possible that 

the association between wellbeing and n-back performance (and the P3b) would be stronger 

in more challenging 2-back or 3-back conditions which require greater executive control 

relative to the 1-back condition used here (Harvey et al., 2004). This should be tested in 

future studies, especially since both wellbeing and positive emotions have been associated 

with better executive function in contexts requiring more complex management of 

information (Paul et al., 2021; Routledge et al., 2017; Vanlessen et al., 2016).  
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 Although mental wellbeing was associated with better behavioural performance on 

the oddball and n-back tasks, this was not reflected in the P3b components used to index 

attention allocation and working memory, respectively. Given that previous studies that have 

examined the effects of positive mood on cognition have found P3b effects in the absence 

behavioural effects (Vanlessen et al., 2014), it was expected that the P3b component would 

be more sensitive to changes in cognitive processing than behavioural measures, with larger 

amplitudes indicating the task was performed more easily (Watter et al., 2001). Although 

targets did elicit larger P3b amplitudes relative to non-targets in both tasks as expected, P3b 

amplitudes were not significantly related to mental wellbeing, inconsistent with hypotheses. 

Studies associating oddball P3b amplitude with positive emotions have only done so in the 

context of dual-task paradigms, in which the P3b was measured in response to targets on the 

primary task while participants were also attending to a peripheral secondary task (Putkinen 

et al., 2017; Vanlessen et al., 2014). It is possible here that although behavioural performance 

was better in those with higher mental wellbeing, the task was not difficult enough for 

differences in P3b amplitude to be observed. Alternatively, as the strength of the association 

between wellbeing and n-back performance was relatively weak, it is also possible that the 

association between behavioural performance on the n-back and wellbeing was a spurious 

association unrelated to working memory. Instead, given the stronger association with 

oddball performance, wellbeing may be primarily associated with the ability to either sustain 

attention or maintain the motor control needed to avoid commission errors.  

Within the context of the n-back task, non-target P3b amplitude is used to index 

working memory updating, while target P3b amplitude is used to index the ability identify a 

match with the item held in working memory (Watter et al., 2001). Wellbeing and 

depression/anxiety symptoms were both associated with the number of commission errors, 

rather than omission errors, indicating that the difference in performance is most likely 
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reflects differences in the ability to update working memory on each trial rather than the 

ability to identify a match. Thus, non-target P3b would be expected to correlate more 

strongly with wellbeing and depression/anxiety symptoms than target P3b amplitude. 

However, this was not detected in the current study. Increasing the task difficulty in future 

studies might increase the sensitivity of the task to associations between P3b amplitude and 

mental wellbeing. 

 In comparison to the oddball and n-back tasks where a positive association was found 

between wellbeing and behavioural performance, no associations were found between 

wellbeing and behavioural or EEG measures of inhibition using the go/no-go task. This 

differs from prior research, including the full TWIN-E sample, which has found positive 

associations between both behavioural and ERP indices of inhibition with mental wellbeing 

and positive mood (Lee & Chao, 2012; Routledge et al., 2017; Vanlessen et al., 2015). The 

lack of a behavioural association within the current sub-sample could be attributed to a loss 

of statistical power relative to the larger TWIN-E study cohort. Meanwhile, the use of a non-

cued go/no-go task could explain the difference between the current results and those from 

other samples. Two other studies that have reported associations between inhibition and 

positive mood and wellbeing used cued, anti-saccade tasks (Lee & Chao, 2012; Vanlessen et 

al., 2015). The anti-saccade paradigm requires participants to inhibit the reflex of looking 

towards a visual probe appearing to one side of the screen, and instead requiring them to look 

in the opposite direction (Vanlessen et al., 2015). As this task requires the inhibition of a 

reflex, it might be more difficult and therefore more sensitive to differences in inhibition 

ability than the button press used in the current go/no-go paradigm. In addition, both studies 

(Lee & Chao, 2012; Vanlessen et al., 2015) used cued designs which allow participants to 

prepare their response before the probe appears on screen. This design was used by 

Vanlessen et al. (2015) to compare the use of proactive (i.e., preparing a response based on 
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the cue) versus reactive control (i.e., responding only based on the presentation of the probe). 

In line with other reports (Paul et al., 2021), Vanlessen et al. (2015) found that positive 

emotions were associated with increased use of reactive control, indicated by larger N2 

amplitude in this group, and a reduced C1 component following the cue. It is possible that the 

omission of a cue in the current go/no-go paradigm reduced differences in the use of reactive 

control, as there was no opportunity to use proactive control. Future studies could investigate 

this by comparing cued and non-cued conditions within the same sample. 

 In addition to testing associations between cognition and wellbeing, associations with 

non-clinical depression/anxiety symptoms were also assessed. Within clinical and subclinical 

samples, depression and anxiety have been associated with deficits in attention, working 

memory, and inhibition (Snyder, 2013). This has been reflected in reduced P3b and novelty 

P3a amplitude in clinical and at-risk groups (Bernat et al., 2020; Bruder et al., 2011; Houston 

et al., 2003), reduced P3b amplitude in working memory tasks (Deldin et al., 2001), and 

reduced N2 and inhibitory P3a in go/no-go tasks (Kaiser et al., 2003; Katz et al., 2010; 

Ruchsow et al., 2008; Xia et al., 2020). Within the current sample, no associations were 

found between depression/anxiety symptoms and ERP components for any of the three tasks. 

This indicates that the hindering effects of depression and anxiety on cognitive processing is 

not evident in samples with low symptom levels without familial risk for clinical depression 

or anxiety. While some studies have reported effects in behavioural measures within 

subclinical samples (Dotson, 2014; Lukasik et al., 2019), the current sample had lower 

symptom levels than samples used in previous work. Furthermore, it indicates that low-level 

depression/anxiety symptoms have at most a small impact on cognition, based on the current 

behavioural performance data which was not significantly associated with depression/anxiety 

symptoms after controlling for wellbeing. 
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 Finally, the current study assessed the heritability of each of the ERP components of 

interest. In line with previous research reporting moderate to high heritability of the P3b 

component (Hall et al., 2006; Smit et al., 2007; van Beijsterveldt & van Baal, 2002), the 

current study estimated the heritability of these components from 0.58-0.67 in the auditory 

oddball and n-back tasks, the remainder of the variance being attributed to unique 

environmental effects. In addition, the heritability of the N2 and inhibitory P3a components 

was estimated at 0.62 and 0.49, respectively, also consistent with past research with reported 

heritability estimates of 0.58-0.60 in adolescents (Anokhin et al., 2004, 2017). However, the 

N2 component was best explained by dominant, rather than additive, genetic effects in 

contrast to previous work (Anokhin et al., 2004, 2017). Notably, Anokhin et al. (2017) found 

that between the ages of 12 and 16, the dizygotic intra-class correlation decreased 

substantively while the monozygotic correlation remained relatively stable, which suggests 

that the dominant genetic effect might increase with age (Verweij et al., 2012). This would be 

consistent with the current findings from an adult sample. However, this was the first study to 

my knowledge to estimate the heritability of the novelty P3a component, which is a frontally-

distributed component elicited in response to novel, non-target stimuli (Bernat et al., 2020; 

Polich, 2007). While typically studied in a three-tone variation of the auditory oddball, the 

current study measured the novelty P3a in response to checkerboard stimuli shown 

throughout the n-back task. Previous research has shown that the novelty P3a is enhanced in 

more difficult tasks and when the novel stimuli is more distinct from targets (Polich & 

Comerchero, 2003), thus the use of large checkerboard stimuli in the context of the n-back 

was well-suited to evoke the novelty P3a component. In the current study, common 

environment (referring to environmental factors that are shared within twin pairs) accounted 

for 0.55 of novelty P3a variance. Common environmental effects are rarely reported in EEG 

heritability estimates, which is likely to do most EEG/ERP studies being underpowered for 
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twin analysis (van Beijsterveldt & van Baal, 2002). While the current finding should be 

replicated in future research, it suggests that the association between novelty P3a amplitude 

and psychopathology risk that has recently emerged (Bernat et al., 2020) is explained by 

environmental, rather than heritable, factors. Further investigation of this association in 

clinical samples is warranted despite the lack of an association in the current non-clinical 

sample. 

 A limitation of the current study is the choice of sample, which consisted of healthy 

Australian adults of Caucasian descent with no personal or family history of major mental 

illness. This sample was chosen to focus on variation in cognition within a healthy population 

while reducing the confounding effects of mental illness, while also allowing for the 

investigation of molecular genetic effects (Gatt et al., 2012). However, this choice of sample 

reduces the generalisability of the results and may have made it more difficult to observe 

associations between ERP components and differences in mental wellbeing or 

depression/anxiety symptoms due to the restricted range of symptoms. In addition, the n-back 

task employed only a 1-back condition, which is relatively easy compared to 2-back and 3-

back conditions often also included other studies (e.g., Levens & Gotlib, 2010; Pe et al., 

2013). While depressive symptoms have been found to impair performance even on 1-back 

trials (Dotson, 2014; Harvey et al., 2004), more difficult n-back conditions might be more 

sensitive to potential effects of mental wellbeing. 

 This chapter investigated the associations between cognitive function, mental 

wellbeing, and depression/anxiety symptoms within a non-clinical sample. Although some 

behavioural indices were associated with both wellbeing and depression/anxiety symptoms, 

specifically within the oddball and n-back tasks, these differences were not reflected in ERP 

indices of attention, working memory, or inhibition. Thus, while ERPs might provide insight 

into the cognitive effects of clinical depression and anxiety and mood, the current 
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investigation suggested that these indices are not associated with differences in wellbeing or 

depression/anxiety symptoms within a non-clinical sample. However, the P3b, N2, and 

inhibitory P3a components all showed significant heritability, supporting previous literature 

showing that these ERP components could confer heritable risk for mental illness. In contrast, 

the novelty P3a component, is largely explained by environmental factors.   
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5.1 Preamble 

 Chapters 2 to 5 of this thesis focused on identifying EEG correlates of mental 

wellbeing that might be used to indicate predisposition towards wellbeing within a healthy 

sample. The results showed that only resting EEG power, not emotional or cognitive ERPs, 

was associated with mental wellbeing. Because these results were based on a cross-sectional 

sample, it is unclear whether resting EEG power is associated with a changeable or stable 

aspect of wellbeing. That is, does resting EEG change as wellbeing changes, or does it 

indicate a stable marker of one’s predisposition towards a certain level of wellbeing? It is also 

possible that resting EEG would help predict an individual’s treatment response to 

behavioural interventions. As positive psychology interventions (PPIs) have been widely 

used to improve mental wellbeing in general populations, it seemed fitting to use PPIs to 

assess whether resting EEG changes with wellbeing levels, and whether resting EEG at 

baseline can predict early reactivity to PPIs. For this, a short and effective PPI program was 

needed. The development and assessment of this PPI is presented in the current chapter. Due 

to the commencement of the ongoing COVID-19 pandemic during this trial, the EEG 

component could not be carried out. Nonetheless, this study serves to demonstrate that even a 

relatively short, online PPI can outperform an active control in improving mental wellbeing. 

This design may be used in future trials in conjunction with EEG measures to clarify the link 

between resting EEG profile and treatment response. 
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5.2. Abstract 

Improving mental wellbeing has a range of benefits for society, including increased 

productivity, longevity, and resiliency. However, interventions designed to improve mental 

wellbeing are often only compared to waitlist controls, leaving uncertainty regarding the 

mechanisms of their effectiveness. The current study in 326 participants assessed a six-week 

positive psychology intervention against an active control (n = 163) in an online randomized 

control trial. Outcome measures included life satisfaction, wellbeing (subjective and 

psychological wellbeing), stress, depression and anxiety symptoms, and self-compassion. The 

potential moderating effect of participating during the ongoing COVID-19 pandemic was 

also explored. The intervention group showed greater improvements in life satisfaction by 

week six (β = 0.18, p = .014) and were maintained through to seven weeks post-baseline (β = 

0.23, t = 3.07, p = .002) and remained significant when accounting for COVID-19 

restrictions. An improvement in composite wellbeing from baseline to seven weeks post-

baseline was detected when accounting for COVID-19 restrictions. Composite wellbeing and 

total depression and anxiety symptoms improved significantly more in the intervention group 

for participants with low baseline resiliency resources. These findings support the efficacy of 

using online multi-component positive psychology interventions in boosting wellbeing and 

reducing distress symptoms particularly in individuals with fewer resiliency resources who 

may need added support. 

 

Keywords: COVID-19; randomized control trial; resilience; COMPAS-W; stress 
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5.3. Introduction 

Mental wellbeing can be defined as a state of optimal positive functioning that is 

related but independent from mental illness (World Health Organization, 2004). States of 

mental wellbeing are not only desirable in the general population (Parks et al., 2012; Sanders 

et al., 2019), but also associated with increased longevity (Martín-María et al., 2017) and 

health (Kushlev et al., 2020), improved work productivity (Gandy et al., 2016; Hamar et al., 

2015), and resilience against mental illness (Grant et al., 2013; Iasiello et al., 2019; Lamers et 

al., 2015). Many people actively seek out methods to improve their mental wellbeing (Parks 

et al., 2012; Sanders et al., 2019). Developing evidence-based interventions that are 

accessible to the general population is important to help individuals promote their own 

wellbeing and improve life satisfaction, health, and productivity of the general population. 

A range of interventions including acts of kindness, gratitude, positive reminiscence, 

and self-compassion have been proposed to improve mental wellbeing (for review see Sin & 

Lyubomirsky, 2009). Collectively, these interventions have been referred to as positive 

psychology interventions (PPIs). Some activities have a stronger evidence base than others. 

Acts of kindness interventions, for instance, have been found to have a moderate effect size 

(Cohen’s d = .28) on subjective wellbeing in a meta-analysis of 27 studies with over 4000 

participants (Curry et al., 2018). Another popular PPI, gratitude, has been found to have a 

similar effect size (d = .31) when compared against a measurement-only control condition, 

but a much smaller effect size (d = .14) when compared against a matched control activity 

(Davis et al., 2016). Some other interventions have a smaller research base but show 

promising outcomes. Positive reminiscence is a psychological intervention commonly used in 

elderly samples, often applied in nursing homes (Meléndez Moral et al., 2015; Pinquart & 

Forstmeier, 2012). In these samples, the effect size has also been moderate (Hedge’s g = .33) 

for measures of positive wellbeing based on a meta-analysis of 128 studies (Pinquart & 
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Forstmeier, 2012). The benefits found in older adults appear to generalise to younger samples 

based on a study of young adults (Hallford & Mellor, 2016). Relative to these other 

interventions, self-compassion interventions are reported to have a moderate effect size 

(Pearson’s r = .47) on overall wellbeing in a meta-analysis including 79 samples and over 

16,000 participants (Zessin et al., 2015). It is noted that while the observed effect of self-

compassion was strong across studies, studies included in the meta-analysis were not required 

to have a control condition. Nonetheless, each of these interventions show great promise in 

their effectiveness. 

While the aforementioned interventions showed significant positive effects on mental 

wellbeing on their own, it has been suggested that providing a variety of activities, rather than 

just one, improves their overall effectiveness (Schueller & Parks, 2012). Variety may make 

PPIs more appealing to users, resulting in higher engagement and efficacy (Schueller & 

Parks, 2012). Furthermore, the application of multi-component PPIs (MPPIs) is theorised to 

reduce hedonic adaptation, improving their effectiveness over time (Bao & Lyubomirsky, 

2014; Lyubomirsky, 2010). A meta-analysis of 50 randomised control trials on multi-

component PPIs found them to be effective in improving both subjective (g = .34) and 

psychological (g = .39) wellbeing (Hendriks et al., 2020), with a particular advantage in 

improving psychological wellbeing over single-component PPIs with effect sizes of d = .34 

and d = .20 reported for subjective and psychological wellbeing, respectively (Bolier et al., 

2013).  

Although these meta-analyses all provide evidence for the efficacy of PPIs, it is 

unclear whether online interventions can achieve the same results as face-to-face 

interventions, and whether PPIs are more effective than other non-evidence-based activities 

due to a placebo effect. For instance, one of the largest studies of online PPIs failed to find a 

significant difference in wellbeing between the intervention condition, an exercise 
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intervention, or simply reading a book on positive psychology (Joutsenniemi et al., 2014). 

However, multiple online studies using wait-list control groups have found significant 

improvements from PPIs (Drozd et al., 2014; Feicht et al., 2013; Schotanus-Dijkstra et al., 

2017). Online interventions that have been effective relative to active control conditions tend 

to be lower-powered (e.g., n < 50) and focused on older adults, limiting their generalisability 

(e.g., Hausmann et al., 2017). Thus, larger studies with active control conditions are needed 

to determine whether MPPIs are more effective than non-MPPI activities. 

The current study aimed to address this gap by delivering a six-week online MPPI in a 

university sample with an active control condition. Three components were chosen for 

delivery based on past evidence suggesting that between two and four interventions is more 

effective than one or six interventions (Parks et al., 2012). Given their evidence base and ease 

of adaptation to an online format, self-compassion, acts of kindness, and positive 

reminiscence were chosen as interventions for the current study. In comparison, the control 

group received self-esteem, acts of novelty, and neutral reminiscence modules. The control 

condition tasks were designed to be as similar as possible to the intervention tasks while 

omitting the key mechanism believed to account for the positive effects of the interventions. 

It was hypothesised that there would be a significant interaction between time and condition 

such that improvements in wellbeing over time would be larger in the treatment group 

relative to the control group. Changes in self-compassion and depression and anxiety 

symptoms were also evaluated and expected to improve more in the intervention group 

relative to controls over the course of the study. A secondary aim of this study was to assess 

whether baseline levels of resiliency, referring to the level of support systems available to 

participants, would moderate the effects of the intervention. This was measured using a 

social-ecological measure developed for adults by the Resilience Research Centre 

(Liebenberg & Moore, 2018). It was expected that those with lower levels of resiliency 
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resources at baseline would have more to gain from the intervention and therefore show 

greater improvements in mental wellbeing than those with higher levels of resiliency 

resources at baseline. 

5.4. Materials and Methods 

5.4.1. Design 

The study was carried out as a randomised control trial over a six-week period. The 

intervention and control groups both included three modules, closely matched on activity 

type. Participants were randomly assigned to a treatment group upon completing the baseline 

questionnaire using a random number generator in Qualtrics. The order of activities within 

each condition was also chosen using random number generation with six possibilities. All 

participants completed the baseline questionnaire prior to gaining access to the modules, 

which they were instructed to complete once a week over a period of six weeks. This was 

followed by a questionnaire seven weeks post-baseline. Participants were not informed which 

condition they were assigned to until the end of the study. 

5.4.2. Participants & Procedures 

Participants were first year psychology students from the University of New South 

Wales who volunteered to participate in the study in exchange for course credit. There were 

three rounds of data collection over the study period, from June 10th 2019 to April 30th 2020. 

Round 1 occurred from June 10th to August 11th 2019, Round 2 occurred from September 13th 

to November 30th 2019, and Round 3 occurred from February 14th to April 30th 2020. For 

context, Australia’s first case of COVID-19 community transmission was reported on March 

2nd 2020, and COVID-19 restrictions were gradually introduced from mid-March 2020. The 

University of New South Wales cancelled all in-person classes from March 20th 2020.  
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Four-hundred twenty-nine participants enrolled in the study, 260 of whom enrolled in 

Round 3 data collection (i.e., partly during COVID-19). Twenty participants were excluded 

for not completing the baseline questionnaire. Of the remaining 409 participants, 290 (71%) 

were female. The mean age of the sample was 19.61 (SD = 3.05). All consenting participants 

were eligible to participate. The study was approved by the Human Research Ethics 

Behavioural Sciences Committee at UNSW (HC3216).  

Upon completing the baseline questionnaire, participants were emailed a link to the 

first weekly activity which was hosted by Qualtrics (Provo, UT). Reminders were emailed 

five and seven days after the initial email if the task was not yet completed. The link to the 

weekly tasks was always sent on the same day of the week as the first task. Participants who 

did not access any of the weekly task links were considered to have withdrawn consent to 

participate and excluded from data analysis. Of the 409 participants who completed the 

baseline questionnaires, 326 participants were included in the final analyses once drop-outs 

and non-completers were accounted for. 

5.4.2.1. Intervention exercises 

The intervention condition was made up of three modules, each consisting of two 

weeks of activities (six weeks in total). Participants were randomly assigned the order of 

modules, given in the format of ABCABC, such that they would complete part one of each 

module before completing part two of each module in the same order. Full task instructions 

can be found in the supplementary materials (S1).  

Self-compassion. The instructions for the self-compassion module were based on 

descriptions of self-compassion activities described in previous research (Breines & Chen, 

2012). Participants were instructed to consider events that have made them feel negatively 

about themselves, then imagine how they might respond to a friend going through a similar 
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experience. Compassionate responses were defined based on (Neff, 2003a) as those which 

focus on kindness rather than judgement, shared rather than isolating experiences, and 

balanced rather than polarised responses (not suppressing or exaggerating the consequences). 

After considering this definition, participants were instructed to write a self-compassionate 

letter to themselves about those events. Three unique prompts were given in each week for 

participants to consider. 

Acts of kindness. The acts of kindness instructions were based on those provided in 

Curry et al. (2018). Participants were asked to brainstorm acts of kindness they would feel 

comfortable doing for others within the next week. They were specifically instructed to come 

up with kind acts that they do not usually practice, with either new kind acts for someone 

they are regularly kind to, or familiar kind acts towards someone they are not usually kind to. 

After identifying acts of kindness they could complete, participants were instructed to 

complete the acts before returning to record what they completed. A minimum of 24 hours 

was required to pass before participants could submit the questionnaire to reduce false 

responses. In the second part, participants were told they could repeat the same tasks, or 

different ones. 

Positive reminiscence. Positive reminiscence task instructions drew upon research 

carried out in an online study including young adults (Hallford & Mellor, 2016). The study 

reported that positive reminiscence responses that focused on problem solving and identity-

forming events (i.e., positive events that had a lasting impact on their life) were found to 

significantly improve self-esteem and meaning, and identity-forming events also improved 

positive affect. Based on this, three prompts were given in part one and part two that targeted 

ways in which participants had overcome difficulties in the past or recalled events that had a 

significant impact on their life. The instructions asked participants to imagine they were 

telling the story to a friend as they wrote their responses.  
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5.4.2.2. Control exercises 

The control group exercises were chosen based on those used in past research. Self-

esteem was used as a control condition for self-compassion (Breines & Chen, 2012), acts of 

novelty was used as a control for acts of kindness (Buchanan & Bardi, 2010), and neutral 

reminiscence was used as a control for positive reminiscence (Hallford & Mellor, 2016). The 

self-esteem module differed from the self-compassion module in that participants were asked 

to focus on the positive aspects of negative situations in their responses rather than being 

compassionate to themselves. In the acts of novelty module, participants were asked to come 

up with ways to change their routine, either by doing activities they do not usually do, or by 

changing how they go about their usual activities. In the control reminiscence module, 

participants were given prompts about things they were good at or emotional moments 

instead of those related to overcoming challenging or defining events. 

5.4.3. Measures 

Mental wellbeing was measured using a composite measure called the COMPAS-W, 

designed to capture both subjective and psychological aspects of mental wellbeing (Gatt et 

al., 2014). This questionnaire consists of an overall Wellbeing score in addition to six 

subcomponents: Composure, relating to one’s ability to cope with stressful situations; Own-

worth, including self-esteem and autonomy; Mastery, relating to self-confidence and 

perceived control of one’s environment; Positivity, having a positive outlook; Achievement, 

relating to goal orientation and striving; and Satisfaction, including satisfaction with life, 

work, health, and relationships. Items are scored on a scale of one to five, from strongly 

disagree to strongly agree. The measure has been validated in adult and adolescent samples 

with demonstrated high internal reliability (r = .84), test-retest reliability (r = .82) and 

construct validity (Gatt et al., 2014). This measure was administered at baseline, week three, 
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week six, and at seven weeks post-baseline to balance the ability to track progress over the 

study duration and reducing load on participants. 

The five-item Satisfaction with Life Scale (Diener et al., 1985) was used to measure 

life satisfaction. This was chosen in addition to the COMPAS-W for its brevity and wide 

usage as a measure of subjective wellbeing. Items are rated on a 7-point Likert scale. It has 

high estimated internal reliability in the range of .79-.89, and high test-retest reliability over 

periods under four months (Pavot & Diener, 2008). This scale was measured weekly. 

Stress was measured using the 10-item Perceived Stress Scale (Cohen, 1988; Cohen et 

al., 1983). It is a well-established stress measure with high internal consistency (Cronbach’s 

alpha = .89) and established convergent and divergent validity (Roberti et al., 2006). Items 

are rated on a 5-point scale from 0 indicating Never to 4 indicating Very Often. This scale was 

administered weekly to monitor ongoing stress levels throughout the intervention, 

particularly because stress was expected to increase during the university semester.  

Depression and anxiety symptoms were measured using the 21-item version of 

Depression Anxiety Stress Scale (Crawford & Henry, 2003; Lovibond & Lovibond, 1995). It 

is widely used in non-clinical populations to measure negative symptoms. It has been 

validated in large samples and has demonstrated high test-retest reliability (Crawford & 

Henry, 2003). Items are scored on a 4-point scale, with 0 indicating Did not apply to me at 

all, to 3 indicating Applied to me very much or most of the time. Participants completed this 

questionnaire at baseline and at seven weeks post-baseline. 

Self-compassion was measured using the Self-Compassion Scale (Neff, 2003b) to 

determine corresponding changes in self-compassion during the intervention. This 

questionnaire is the most widely used measure of self-compassion in psychological research. 

The questionnaire consists of 26 items ranked on a 5-point scale. It includes six subscales: 
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self-kindness, self-judgement, common humanity, isolation, mindfulness, and over-

identification. Participants completed this questionnaire at baseline and at seven weeks post-

baseline. 

The Resilience Research Centre Adult Resilience Measure (Liebenberg & Moore, 

2018) was measured at baseline as an indicator of resiliency resources. It includes 28 items 

with a 5-point response scale ranging from Describes me extremely well to Does not describe 

me. The scale is designed to measure the contextual resources that support resilience 

processes. These include aspects of social and community inclusion, family support, 

spirituality, identity, and personal skills and competencies.  

5.4.4. Data Analysis 

5.4.4.1. Power analysis 

An a priori power analysis was conducted based on a repeated measures, within by 

between interaction model using G*power3 (Faul et al., 2007). The power analysis was 

conducted on the basis of a small effect size (f = .10), with α = .05 and only two time points 

to ensure power for measures taken only at baseline and seven weeks post-baseline. The 

results indicated a sample of 200 participants (n = 100) would be required for 80% power, 

and a sample of 266 (n = 133) participants would be required for 90% power. Due to higher 

than expected attrition, the final analysis was instead conducted using a linear mixed model 

which is better able to handle missing data (Krueger & Tian, 2004).  

5.4.4.2. Missing data 

Multiple imputation was conducted using the mice package in R (R Core Team, 2020; 

van Buuren & Groothuis-Oudshoorn, 2011). This was done separately for each condition 

using the same method involving classification and regression trees (cart method). Twenty-
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five imputations were run based on the overall percentage of data missing, which was 

approximately 25% of all data.  

5.4.4.3. Modelling 

Linear mixed models were conducted in R with the lme4 package (Bates et al., 2015) 

using all 25 data imputations and the original, non-imputed dataset. Results from each 

imputation were pooled using mice (van Buuren & Groothuis-Oudshoorn, 2011). Participant 

ID was added as the random effect and mental health outcomes as fixed effects. We then 

tested whether the effects were dependent on baseline resiliency resources or gender by 

adding interaction terms with each variable to each model. Significant resiliency moderation 

effects were explored post hoc by dividing the sample into three equal groups and testing the 

time by group interaction within each level of resiliency resources. This method was also 

used to plot the three-way interactions. To evaluate effect size, while Cohen’s d is not 

generally reported as an effect size for linear mixed models due to its inability to capture the 

covariance structure of the random effects, it was estimated here for the significant 

intervention effects to provide a more direct comparison to past findings. Cohen’s d was 

estimated from the standardised beta coefficients and standard error using the following 

formula: β / √(n)*SE. Cohen’s d cannot be estimated for interactions including continuous 

measures as it is designed for group-based comparisons only. As a rule of thumb, Cohen’s d 

effects sizes of 0.20 are considered ‘small’, 0.5 are considered ‘medium’, and 0.8 are 

considered ‘large’ effects. 

As the study was partly conducted during 2020 when Australia began to introduce 

social distancing restrictions to reduce the spread of COVID-19, we also tested whether 

participating during these restrictions had an impact on the efficacy of the intervention. To 

account for this, additional models were run with a continuous variable representing the 
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number of weeks that participants were enrolled in the study since the first introduction of 

COVID-19 restrictions in Australia (entered as March 13, 2020). Thus, participants who 

enrolled on March 13 would have a score of seven indicating they would have experienced 

seven weeks of total COVID-19 restrictions by the end of their study participation, whereas 

participants who were enrolled on February 14, 2020 (the first day of Round 3) would have a 

score of three and those who enrolled in Round 1 and 2 were given a score of zero. 

5.5. Results 

5.5.1. Participant characteristics 

Of the 429 participants who enrolled in the study, 20 were excluded because they 

failed to complete the baseline questionnaire, and a further 83 were excluded because they 

withdrew from the study or did not access any of the weekly tasks. The remaining sample (N 

= 326, n = 163) had a mean age of 19.7 (SD = 3.2) and included 229 females (70%). One 

hundred and twenty-five participants completed all six of the weekly activities. A CONSORT 

diagram depicting participant flow is shown in Figure 5.1. 

As shown in Table 5.1, no significant differences were found at baseline for any of 

the outcome variables of interest including wellbeing, life satisfaction, stress, depression and 

anxiety symptoms, self-compassion, nor resiliency resources between the control group and 

the intervention group. T-tests comparing participants who completed at least five of the 

weekly activities to those who completed less than five suggested that completers had 

significantly higher Satisfaction with Life Scale scores (M = 24.97, SD = 6.57 vs M = 22.93, 

SD = 6.57), lower Perceived Stress Scale scores (M = 16.47, SD = 6.48 vs M = 18.78, SD = 

6.36), and lower DASS-21 total scores (M = 25.57, SD = 20.50 vs M = 30.93, SD = 23.01) 

than non-completers.  
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Figure 5.1 CONSORT diagram of study participants 
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Table 5.1 Descriptive statistics and t-tests comparing the intervention with the control group 

at baseline 

Variable Intervention Control t (324) p value 

 n = 163 n = 163   

 M SD M SD   

SWLS 23.55 6.89 23.88 6.38 0.45 0.65 

PSS 18.56 6.52 17.23 6.42 1.84 0.07 

COMPAS-W 94.29 12.77 94.97 12.46 0.49 0.63 

DASS-21+ 3.10 0.94 2.99 1.02 1.00 0.32 

SCS 2.99 0.63 2.94 0.56 0.68 0.50 

RRC-ARM 107.66 16.53 106.16 17.51 0.79 0.43 

Notes. SWLS = Satisfaction with Life Scale; PSS = Perceived Stress Scale; COMPAS-W = 

COMPAS-W Wellbeing Score; DASS-21 = Depression Anxiety Stress Scale; SCS = Self-

Compassion Scale; RRC-ARM = Resilience Research Centre Adult Resilience Measure. +DASS-21 

scores were log-transformed. 

 

Bivariate Pearson correlation coefficients between key measures at baseline are 

shown in Table 5.2. All correlations were significant. As expected, mental wellbeing, life 

satisfaction, self-compassion, and resiliency resources were all positively correlated with one 

another, including COMPAS-W subscales, and each was negatively correlated with perceived 

stress and depression and anxiety symptoms. 

5.5.2. Intervention effects 

5.5.2.1. COMPAS-W Wellbeing 

There was a significant main effect of time for mental wellbeing, indicating that when 

averaged across both conditions, there was a reduction in wellbeing from baseline to week 

three (β = -0.15, t = -2.52, p = .012) and week six (β = -0.14, t = -2.37, p = .018) that was not 

maintained through to seven weeks post-baseline (p = .465). There was no significant 

interaction between condition and time. However, the moderation analyses showed that the 

treatment effect on wellbeing was dependent on whether students participated during 

COVID-19 restrictions and their baseline resiliency resources. While there was no observed  
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Table 5.2 Bivariate Pearson correlations between the survey measures at baseline 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. COMPAS-W               

2. Composure 0.74              

3. Own-worth 0.79 0.46             

4. Mastery 0.57 0.19 0.46            

5. Positivity 0.75 0.51 0.57 0.25           

6. Achievement 0.60 0.22 0.39 0.44 0.30          

7. Satisfaction 0.86 0.76 0.66 0.23 0.66 0.33         

8. SWLS 0.69 0.57 0.48 0.20 0.63 0.38 0.68        

9. PSS -0.60 -0.55 -0.50 -0.15 -0.45 -0.24 -0.67 -0.54       

10. DASS-21+ -0.61 -0.55 -0.44 -0.15 -0.50 -0.25 -0.68 -0.50 0.67      

11. Depression+ -0.64 -0.52 -0.47 -0.20 -0.54 -0.34 -0.67 -0.57 0.64 0.84     

12. Anxiety+ -0.50 -0.48 -0.38 -0.12 -0.35 -0.18 -0.59 -0.40 0.55 0.82 0.63    

13. Stress+ -0.51 -0.49 -0.38 -0.11 -0.44 -0.15 -0.59 -0.41 0.63 0.90 0.65 0.67   

14. SCS 0.64 0.66 0.52 0.18 0.47 0.22 0.63 0.51 -0.58 -0.54 -0.50 -0.42 -0.53  

15. RRC-ARM 0.68 0.45 0.51 0.29 0.66 0.45 0.59 0.61 -0.40 -0.46 -0.50 -0.34 -0.40 0.44 

Notes. SWLS = Satisfaction with Life Scale; PSS = Perceived Stress Scale; COMPAS-W = COMPAS-W Wellbeing Score; DASS-21 = Depression Anxiety 

Stress Scale; SCS = Self-Compassion Scale; RRC-ARM = Resilience Research Centre Adult Resilience Measure. +DASS-21 and subscales were log-

transformed. All correlations are significant at p < 0.05. 
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effect of COVID-19 restrictions on wellbeing, accounting for this in the model revealed a 

significant condition by time interaction at seven weeks post-baseline (β = 0.33, t = 2.21, 

estimated Cohen’s d = 0.17, p = .028), indicating greater improvements in wellbeing in the 

intervention group relative to the active control group from baseline to seven weeks post-

baseline (Figure 5.2a, Table S1). There was also a significant three-way interaction between 

resiliency resources, time, and condition at week three (β = -0.15, t = -1.36, p = .054) and 

week six (β = -0.19, t = -2.32, p = .021), indicating greater improvements in wellbeing for 

those with lower levels of baseline resiliency resources. To examine this effect further, the 

time by condition interaction was tested in participants with high, medium, and low resiliency 

resources based on tertile cut-offs. We found the low baseline resiliency group showed 

greater improvement in the intervention relative to the control condition at week six (β = 

0.34, t = 2.24, estimated d = 0.18, p = .026) and seven weeks post-baseline (β = 0.35, t = 

2.31, estimated d = 0.18, p = .022) (Figure 5.3a, Table S1). There was a strong overall 

relationship between resiliency and wellbeing, indicating that higher resiliency was 

associated with higher wellbeing throughout the intervention.  

5.5.2.2. COMPAS-W Composure 

 Composure significantly increased from baseline to week six (β = 0.14, t = 2.00, p = 

.046) and seven weeks post-baseline (β = 0.16, t = 2.29, p = .023) when averaging across 

both conditions (Table S2). Neither of these effects remained when accounting for COVID-

19 restrictions. There were no effects of condition, and effectiveness of the intervention was 

not moderated by baseline resiliency resources or gender.  

5.5.2.3. COMPAS-W Own-worth 

Own-worth significantly reduced from baseline to week three (β = -0.26, t = -2.85, p 

= .004) and week six (β = -0.44, t = -4.64, p < .001), but this was not maintained at post (p =  
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Figure 5.2 Significant overall effects of the intervention relative to the active control group for (a) 

COMPAS-W Wellbeing, (b) COMPAS-W Positivity (moderated by COVID-19 restrictions), (c) 

COMPAS-W Own-worth, (d) Satisfaction with Life Scale (SWLS), (e) COMPAS-W Satisfaction, and 

(f) Perceived Stress Scale (PSS) scores. * indicates significantly larger improvements in the intervention 

group compared to the control group relative to baseline without accounting for COVID-19 restrictions. 

+ indicates significantly larger improvements in the intervention group compared to the control group 

relative to baseline when accounting for COVID-19 restrictions. COMPAS-W scores have been 

normalised to a scale of 0 – 1 for comparative purposes. 

 

.197). A significant condition by time interaction was found for Own-worth at week six (β = 

0.38, t = 2.80, estimated d = 0.22, p = .005), with the control condition showing a reduction 

in own-worth over time as compared to the intervention group who instead showed little 

change over time (Figure 5.2c, Table S3). When accounting for COVID-19 restrictions, the 

main effect of time on Own-worth at week three (p = .211) and the interaction effect at week 

six was no longer significant (p = .069), but there was still a significant main effect from 

baseline to week six showing a reduction in Own-worth averaged across both groups (p = 
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.004). The effect of the intervention was not moderated by baseline resiliency resources or 

gender. 

5.5.2.4. COMPAS-W Mastery 

 There was a significant reduction in Mastery from baseline to week three (β = -0.25, t 

= -3.00, p = .003) and week six (β = -0.26, t = -3.05, p = .002) when averaging across 

treatment and control conditions that was not maintained through to seven weeks post-

baseline (p = .205, Table S4). These effects remained when accounting for COVID-19 

restrictions. There was no significant time by condition interaction, but there was a three 

way-interaction between time, condition, and resiliency resources such that the intervention 

was more effective relative to the control condition for individuals with lower baseline 

resiliency resources. However, when participants were split into high, medium, and low 

resiliency groups, no group showed significantly greater improvements in the intervention 

condition relative to controls over time. The effect of the intervention was not moderated by 

gender. 

5.5.2.5. COMPAS-W Positivity 

There was a significant decrease in Positivity from baseline to week three (β = -0.14, t 

= -2.09, p = .037) and week six (β = -0.19, t = -2.73, p = .007) that were not maintained 

through to seven weeks post-baseline (p = .286). However, when accounting for COVID-19 

restrictions, the reductions in Positivity at week three (p = .144) and week six (p = .062) were 

not significant. Accounting for COVID-19 lockdown revealed a significant time by condition 

interaction at seven weeks post-baseline demonstrating greater improvements in Positivity for 

the intervention group relative to the control group (β = 0.49, t = 2.79, estimated d = 0.21, p 

= .006). There was also a three-way interaction between time, condition, and COVID-19 at 

seven weeks post-baseline (β = -0.12, t = -2.40, p = .017) showing that improvements in 
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Positivity for the intervention group relative to the control group were smaller for individuals 

participating during COVID-19 restrictions compared to those who participated before the 

restrictions were introduced (Figure 5.2b, Table S5). Inspection of the graphs suggested the 

reduced efficacy of the intervention during COVID-19 could be due to the participants in 

Round 3 having higher baseline Positivity than participants in Rounds 1 and 2. A t-test 

revealed that this effect was marginally significant (t(169) = 1.52, p = .085). The effect of the 

intervention was not moderated by baseline resiliency resources or gender. 

5.5.2.6. COMPAS-W Achievement 

There was no evidence for any effect of the intervention or time on Achievement in 

either the control or intervention conditions over the study period, and no moderating effect 

of COVID-19, baseline resiliency, or gender (Table S6).  

5.5.2.7. COMPAS-W Satisfaction 

There was a significant decrease in Satisfaction from baseline to week three when 

averaging across both groups (β = -0.16, t = -2.39, p = .017). However, this effect was not 

maintained at week six (p = .151) and reversed with a significant positive effect of time by 

seven weeks post-baseline (β = 0.14, t = 2.05, p = .041). There was a significant time by 

condition interaction indicating greater improvements in Satisfaction for the intervention 

compared to controls at week six (β = 0.25, t = 2.53, estimated d = 0.19, p = .012) and seven 

weeks post-baseline (β = 0.29, t = 2.90, estimated d = 0.23, p = .004) relative to baseline 

(Figure 5.2e, Table S7). Participating during COVID-19 restrictions was found to have a 

somewhat positive effect on Satisfaction (β = 0.07, t = 2.02, p = .043), and the intervention 

effect found at week six (β = 0.41, t = 2.59, estimated d = 0.20, p = .010) and seven weeks 

post-baseline remained significant (β = 0.48, t = 2.83, estimated d = 0.22, p = .005) (Figure 

5.2e, Table S7). Furthermore, the main effects of time on Satisfaction at week three (p = 



217 

 

 

.116) and seven weeks post-baseline (p = .766) were not significant when accounting for 

COVID-19 restrictions in the model. The impact of the intervention on Satisfaction was not 

moderated by baseline resiliency resources or gender. 

5.5.2.8. Satisfaction with Life Scale (SWLS) 

There was a significant increase in life satisfaction each week of the program relative 

to baseline, averaging across both conditions (β = 0.18, t = 3.41, p = .001 at seven weeks 

post-baseline). There was a significant time by condition interaction indicating greater 

improvement in life satisfaction for the intervention group relative to the control group from 

baseline to week six (β = 0.18, t = 2.47, estimated d = 0.20, p = .014) and seven weeks post-

baseline (β = 0.23, t = 3.07, estimated d = 0.26, p = .002) (Figure 5.2d, Table S8). When 

accounting for COVID-19 restrictions, the main and interaction effects at seven weeks post-

baseline remained significant (β = 0.29, t = 2.48, estimated d = 0.19, p = .014), but the 

interaction effect at week six did not (p = .096) (Figure 5.2d, Table S8). There was also a 

significant positive main effect of participating during COVID-19 restrictions on life 

satisfaction (β = 0.09, t = 2.35, p = .019). The effect of the intervention was not moderated by 

baseline resiliency resources or gender.  

5.5.2.9. Perceived Stress Scale (PSS) 

There was a significant main effect of time on perceived stress such that when 

averaged across both groups, stress was higher during weeks one to six relative to baseline. 

There was a significant time by condition interaction at week four indicating lower perceived 

stress for the intervention condition relative to the control condition (β = -0.31, t = -2.97, 

estimated d = -0.24, p = .003) (Figure 5.2f, Table S9). A similar trend was evident at week 

five but did not reach significance (β = -0.19, t = -1.79, p = .073). These interactions were not 

significant when accounting for COVID-19 restrictions (p < .279).  
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The main effect of time on perceived stress was moderated by baseline resiliency, 

indicating that those with more resiliency resources at baseline had larger increases in stress 

during the program, averaged across conditions up to week five (β = 0.14, t = 2.63, p = .009). 

There was also a main effect of gender such that male participants had lower stress than 

Figure 5.3 Significant moderation effects of intervention effects at low baseline resiliency resources 

for (a) COMPAS-W Wellbeing and (b) log-transformed DASS-21 depression and anxiety total scores. 

Low resiliency was defined as a score less than 101 (N = 104, n = 54 in Intervention group) using the 

Resilience Resource Centre Adult Resilience Measure (RRC-ARM). * indicates significantly greater 

improvements in the intervention group compared to the control group relative to baseline. COMPAS-

W scores were normalised to a scale of 0 – 1 for comparative purposes. 
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females at week one (β = -0.50, t = -3.33, p = .001), and there was a significant time by 

gender interaction indicating that males had larger increases in stress at week three compared 

to females (β = -0.30, t = -2.03, p = .042).  

5.5.2.10. Depression, Anxiety, Stress Scale (DASS-21) 

A significant main effect of time was found for the DASS-21 scores, indicating a 

reduction in symptoms over time when averaged across both groups (β = -0.23, t = -3.20, p = 

.001). There was no interaction between condition and time, showing no difference between 

the intervention and control condition at the end of the program. When accounting for 

COVID-19 restrictions, the main effect of time on DASS-21 scores was no longer significant 

(p = .248), and there was a main effect of condition showing that the intervention group had 

lower DASS-21 scores overall relative to the control group, but no interaction suggests the 

change over time was similar between the two groups. The effect of the intervention was 

moderated by baseline resiliency (β = 0.21, t = 2.10, p = .036), indicating that the intervention 

group showed greater symptom reductions relative to the control group for participants with 

low baseline resiliency resources. This effect is shown in Figure 3.3b (Table S10). The effect 

of the intervention was not moderated by gender. An analysis of the DASS-21 subscales 

revealed that the main effect on total DASS-21 scores was driven by reductions in anxiety (β 

= -0.41, t = -5.29, p < .001) and stress (β = -0.25, t = -3.53, p = .001) seven weeks post-

baseline, but not by change in depressive symptoms (Table S11-S13). However, none of the 

subscales were significantly moderated by resiliency as was observed for the total scale 

(Table S11-S13).  

5.5.2.11. Self-Compassion Scale 

No change in self-compassion was noted throughout the experiment, and no interactions were 

found with COVID-19 restrictions, gender, or baseline resiliency (Table S14). 
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5.6. Discussion 

The aim of this study was to test the effectiveness of a six-week positive psychology 

intervention program against an active control group. The results indicate that an intervention 

made up of self-compassion, acts of kindness, and positive reminiscence can improve life 

satisfaction to a greater degree than comparable control tasks. This was found with both the 

COMPAS-W Satisfaction subscale (β = 0.29, estimated d = 0.22) and the Satisfaction with 

Life Scale (β = 0.23, estimated d = 0.25), with both effects emerging regardless of COVID-19 

restrictions. COMPAS-W Own-worth (measuring autonomy and self-esteem) also improved 

in the intervention relative to the control group at week six compared to baseline but was not 

significant when accounting for COVID-19 restrictions. In contrast, greater improvements in 

composite wellbeing and COMPAS-W Positivity were found for the intervention group 

relative to the control group only when accounting for COVID-19 restrictions. The effect of 

the intervention on composite wellbeing and DASS-21 scores was moderated by baseline 

resiliency such that those with poor resiliency resources at the start of the trial benefitted 

more from the intervention condition than those with more resources. Thus, the current trial 

demonstrates that MPPIs delivered online can be effective in improving life satisfaction 

regardless of resiliency resources and may improve composite wellbeing and reduce 

depression, anxiety, and stress symptoms in individuals with poor perceived support.  

The positive effect of the intervention on subjective wellbeing indicated by improvements in 

life satisfaction (measured here using both the COMPAS-W Satisfaction subscale and the 

SWLS) and positivity (COMPAS-W Positivity) is consistent with past studies which have 

found online MPPIs to improve subjective wellbeing relative to waitlist control groups 

(Drozd et al., 2014; Feicht et al., 2013; Schotanus-Dijkstra et al., 2017). This improvement 

has been found across a range of subjective wellbeing measures, including the WHO five-

factor wellbeing index after a seven-week intervention (Feicht et al., 2013), affect balance 
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after a four-week intervention (Drozd et al., 2014), and all components of the Keyes’ Mental 

Health Continuum (Short Form) in those who completed a supported self-help program over 

eight to twelve weeks (Schotanus-Dijkstra et al., 2017). The effect sizes reported in the 

current study for measures of subjective wellbeing were small, ranging from d = .22 to d = 

0.25 overall (or 0.19 – 0.22 when accounting for COVID). While lower than the overall 

effect size reported for MPPIs in a recent meta-analysis (g = .34 for subjective wellbeing), 

our effect sizes are similar to the effect size reported when low-quality studies, defined as 

meeting less than three of six criteria outlined by the Cochrane Collaboration assessment tool 

(Higgins et al., 2011), were excluded from the analysis (g = 0.26) (Hendriks et al., 2020). The 

current study therefore provides evidence that online MPPI programs of only six weeks are a 

viable approach to improving subjective wellbeing over and above any placebo effect.  

In contrast to the effects found for subjective wellbeing, the current intervention was 

not as effective in improving measures of psychological wellbeing (e.g., COMPAS-W Own-

worth, Mastery and Achievement). Other than the study by Schotanus-Dijkstra et al. (2017), 

very few studies have examined composite or psychological measures of wellbeing in relation 

to online MPPIs. The current findings suggest that while composite or psychological 

wellbeing can be improved (e.g., for both composite wellbeing and Own-worth), an online 

intervention of six weeks is not sufficient to produce robust effects. Most interventions that 

have shown improvements in psychological wellbeing in particular used longer trial duration 

of nine to twelve weeks and are most often delivered in person (Hendriks et al., 2020), which 

could explain why the improvements in composite wellbeing and Own-worth reported here 

were only weak effects (d = .17 and .23, respectively) in comparison to past studies (g = .31). 

Furthermore, while improvements in psychological wellbeing have been reported previously 

for online interventions, this was in the context of participants having email support from a 

personal counsellor in addition to the assigned activities, which likely improved the 
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effectiveness of the intervention compared the current study where all activities were 

completely self-administered (Schotanus-Dijkstra et al., 2017). Nonetheless, the current study 

found evidence for temporary benefits in Own-worth (d = .23), capturing psychological 

wellbeing domains relating to self-esteem and autonomy, and improvements in composite 

wellbeing were apparent for individuals with poor baseline resiliency. A longer intervention 

period may improve the effectiveness of the interventions used here.  It is also possible that 

the specific intervention tasks applied here are better suited to improving subjective aspects 

of wellbeing. Future research should explore whether including activities more targeted to 

psychological wellbeing outcomes would translate to expanded effects. Such strategies may 

include activities that focus on promoting elements of Own-worth, Mastery and Achievement 

(e.g., activities focusing on building self-confidence, strengths, and goal striving).  

In addition to effects on wellbeing, there is some evidence that the intervention 

impacted depression and anxiety symptoms using the DASS-21. Specifically, only 

intervention participants with poor baseline resiliency showed greater reductions in overall 

scores compared to control participants. This effect was significant only for the total DASS-

21 score and not the specific subscales. By comparison, the perceived stress scale (PSS) was 

not moderated by resiliency, and the significant reduction in perceived stress for the 

intervention relative to the control group at week four did not remain significant when 

accounting for COVID-19 restrictions. It is notable however that the DASS-21 and PSS are 

two different measures of distress. While the DASS-21 measures symptoms of depression, 

anxiety and stress including for example an inability to relax or a feeling of tension 

(Lovibond & Lovibond, 1995), the Perceived Stress Scale measures the appraisal of events 

as more or less stressful (Cohen, 1988). Thus, the intervention appears to have been more 

useful in improving how some symptoms of depression and anxiety are dealt with despite life 

events (like COVID-19) still being appraised as stressful. Future trials could implement 
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activities that also focus on the cognitive appraisal of stressful life events, such as cognitive 

behavioural therapy.  

It is important to consider the co-occurrence of the COVID-19 pandemic during the 

final data collection phase of this study. More than half of the participants were undergoing 

the study while COVID-19 restrictions were introduced in Australia in March and April 

2020. Accounting for COVID-19 restrictions had an impact on some of the study outcomes, 

particularly in relation to the COMPAS-W total Wellbeing score, where a significant effect of 

the intervention relative to the control condition was only significant when COVID-19 

restrictions were accounted for. Participating during COVID-19 restrictions may have 

impacted the effectiveness of the Acts of Kindness intervention in particular as participants 

were more limited in the types of social interactions they could partake in during this time. 

We also found a three-way interaction between time, condition, and COVID-19 restrictions 

for COMPAS-W Positivity indicating that while the intervention group showed significant 

improvements in Positivity relative to the control group (d = .21), these improvements were 

smaller for those who participated during COVID-19 restrictions. While this could be 

interpreted as a negative effect of the pandemic, observation of Figure 5.2b suggests that it 

might be explained by the higher baseline Positivity observed in Round 3 compared to earlier 

rounds of data collection. This was supported by a t-test that showed a marginally significant 

trend in this direction (p = .085). This difference could be explained by the timing of Round 3 

data collection relative to the academic year. That is, these participants were first year 

students participating at the beginning of their university training after their summer and 

Christmas break. In comparison, participants who did not participate during COVID-19 

restrictions were in the middle or end of their academic year, which is when mental health 

problems are known to increase (Duffy et al., 2020). Thus, the reduced effectiveness of the 

intervention in improving Positivity during COVID-19 restrictions might actually be 
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explained by these participants having higher Positivity from the beginning of the 

intervention, resulting in a ceiling effect. Due to this potential confound, COVID-19 effects 

should be interpreted with caution.  

The current study was designed to examine whether a combination of PPIs can 

improve mental wellbeing rather than to test whether specific interventions were effective, 

therefore we cannot conclude whether some activities or certain prompts contributed more to 

the overall effects than others. For instance, while the intervention overall showed significant 

improvements in wellbeing, there was no significant improvement in self-compassion scores 

despite the expectation that improved self-compassion would mediate improvements in 

mental wellbeing (Zessin et al., 2015). It is therefore unclear whether this null result reflects 

an ineffective self-compassion exercise or a measurement of self-compassion not sensitive to 

intervention changes. Also, because self-compassion was only measured at the beginning and 

end of the program, it is possible that the intervention produced temporary improvements in 

self-compassion scores that were not measured at intermediary time-points and not 

maintained through to the final assessment. Furthermore, the salience of the event that 

participants recalled for the self-compassion activity may have varied between participants, 

potentially affecting its impact. Yet, the salience of events reported was not examined here so 

we cannot determine their impact. In future studies, alternative and more frequent measures 

of self-compassion and the salience of chosen events would be needed to clarify these effects.  

The use of an active control group instead of a waitlist control is a key strength of the 

current study. This experimental design helped keep attrition rates similar in both groups as 

the amount of time spent on tasks was comparable. It also provided evidence that MPPI 

activities are indeed more effective than non-MPPI activities and helps rule out a placebo 

effect as participants were blinded to their assigned condition until the conclusion of the 

study. These results are in contrast to a number of past online MPPIs that did not find 
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significant improvements in mental wellbeing relative to active controls. For instance, in a 

large community sample of Finnish adults, an intervention consisting of good deeds, 

gratitude, optimism, and reducing rumination produced no significant improvement in 

happiness as measured by the Happiness-Flourishing Scale, or depressive symptoms in the 

intervention group relative to controls who either exercised or read a book about happiness 

(Joutsenniemi et al., 2014). However, they did find that the good deeds intervention resulted 

in the greatest improvements in happiness relative to the other activities, indicating some 

evidence in support of this specific PPI. Another study conducted in HIV-positive patients 

failed to find significant improvements in positive affect after a five-session intervention 

when compared with facilitator interviews (Moskowitz et al., 2017). In contrast, one small 

study of older adults with osteoarthritis found a significant improvement in life satisfaction 

and reduction in negative affect following a six-week phone program compared to an active 

control group (Hausmann et al., 2017). While the current study was based on a very specific 

age group and socio-educational demographic of university students, it was a relatively larger 

sample than many previous studies and showed further evidence that online MPPIs can 

effectively improve subjective wellbeing relative to active controls in a different age group. 

While current and past findings suggests that MPPIs can be effective across the lifespan, 

further work should assess whether the findings generalise to different socio-economic 

backgrounds and vulnerable groups. 

Apart from the specific socio-demographic targeted in the current sample, another 

limitation of the current study is the significant amount of attrition that occurred over the 

intervention period. This was handled using multiple imputation to account for uncertainty in 

the missing the data, using an intention to treat analysis, and a larger sample was recruited 

over three rounds to obtain more study completers. However, it is impossible to know 

whether individuals who did not complete the study would have responded differently from 
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those who remained, especially given that those who continued with the study had higher life 

satisfaction, lower stress and DASS-21 scores at baseline relative to non-completers. Given 

that we found greater improvements in those with lower resiliency at baseline, it is possible 

that the intervention effects may have been even more apparent if the non-completers 

remained in the program. However, it is also possible that those who withdrew from the study 

did so due to finding the intervention ineffective in meeting their needs. Moreover, while our 

study was conducted completely online, other approaches using in-person assessments 

showed a much lower attrition rate (16%) and have suggested that taking this approach could 

help lower attrition rates in future research (Kushlev et al., 2020). Another limitation is the 

potential homogeneity within the three training activities that might arise from differences in 

the salience of events selected (e.g., for the self-compassion or reminiscence exercises), and 

differences in existing social networks (e.g., for the acts of kindness). In the current study, we 

did not collate measures of salience or personal networks, but instead analysed the impact of 

all three training modules as a whole. Future studies could consider such variations and how 

they may potentially modify the outcomes. Finally, our last time-point was seven weeks post-

baseline and so we were unable to examine the long-term maintenance of any significant 

effects found. Studies using similar intervention tasks have found effects lasting up to six 

months (Hausmann et al., 2017) suggesting that long-term effects may be present. This 

remains to be confirmed in future studies. 

In conclusion, this study provides new evidence of the effectiveness of MPPIs relative 

to active control activities in primarily improving subjective wellbeing. The intervention 

remained effective even when delivered under COVID-19 restrictions in Australia, and there 

is evidence that composite wellbeing improved more in the intervention group when the 

impact of COVID-19 restrictions was accounted for in the model. The intervention was found 

to be more effective in improving composite wellbeing, and depression and anxiety 
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symptoms within individuals with low baseline resiliency resources, suggesting that MPPIs 

may be particularly useful for those with fewer resources to cope with stressful situations. 

Future studies are needed to determine whether different MPPI activities could be used to 

promote improvements in other aspects of wellbeing such as the COMPAS-W subscales of 

Composure, Mastery and Achievement. In summary, the current study indicates that online 

MPPIs including acts of kindness, positive reminiscence, and self-compassion outperform 

active control tasks and show promise as a means to improve mental wellbeing and 

symptoms of distress.  
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S1. Task instructions 

Intervention Activities 

Acts of kindness 

Part 1. The purpose of this week’s exercise is to learn to appreciate the positive 

impact that we can have on others through our actions. Everyone has experienced the impact 

of an unexpected act of kindness, and everyone has the ability to do kind things for others. 

This week you are challenged to complete at least 5 acts of kindness that are new for you. 

To do this, first consider the kind acts that you do for others on a regular basis. 

Perhaps you regularly compliment your friends, help them study, or do chores at home that 

benefit other people in your household. Take a moment to list some acts of kindness that you 

already do on a regular basis. 

Now that you’ve considered some of the things you already do, take a moment to 

consider how you could expand your acts of kindness either for different people or different 

acts. For instance, if you already feel comfortable buying a coffee for a friend, you might 

consider buying a coffee for someone else – a stranger or a newer acquaintance. 

Alternatively, if you feel less comfortable reaching out to someone new, consider new acts of 

kindness you could do for someone you’re already close to. Write a kind message to someone 

who is important to you, or invite a friend to a social event. Acts of kindness do not have to 

directed towards a specific person, but could be more general such as taking time to clean up 

litter in your neighbourhood, making a donation to a charity (clothes, money, or time), or 

giving a blood donation. 

Here are some examples of acts of kindness you could do: 
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- Leave an encouraging comment on a media post 

- Pick up litter 

- Give away an unwanted item for free instead of selling 

- Make a charity donation 

- Do a favour for someone else 

- Invite someone to an event 

- Buy a coffee for the person behind you in line 

- Call a parent or grandparent 

- Buy an unexpected gift  

- Offer to help a friend study 

With these ideas in mind, brainstorm 5 acts of kindness you could realistically do 

within the next week. Remember it is completely up to you which acts of kindness you 

choose. There is no obligation to spend money, talk to strangers, or spend a large amount of 

time. Pick things that you think will be meaningful to the recipients but also achievable 

within your budget and timeframe. 

Now consider what days of the week you could do these activities. Some people 

might choose to do all 5 acts in a single day, whereas others might prefer to spread them out 

throughout the week. 

Consider the days that would be most suitable for your acts of kindness. Next to each 

day, fill in the number of acts you think you could do on that day. The total should add up to 
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5. 

At the end of the week, you will be given an opportunity to report back on the acts 

you actually completed. There is no obligation to stick to the tasks or days identified here. 

You may find throughout the week that opportunities arise for acts of kindness that you did 

not consider here. To keep track of these acts, you might find it useful to note down your acts 

of kindness as you complete them. 

Now that you’ve brainstormed the acts of kindness for the week, please rate how 

confident you are that you will be able to complete at least 5 acts of kindness within the next 

7 days. 

Please exit and return using the same link in your email link once you have completed 

your tasks. All previous responses will be saved. 

Following minimum 24-hour break: 

The task for this week was to complete new acts of kindness for others that you 

wouldn’t normally do to draw attention to the positive impact that your actions can have on 

other people. 

Please provide a short description of each of the acts of kindness you completed for 

this task. 

Which act of kindness do you think had the greatest positive impact on other people? 

Thinking about the act of kindness that you think had the greatest impact on other 

people, please describe below how you think you made them feel, and why. 

Imagine you were a bystander to the act of kindness you described above. How would 
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you feel as a witness to that act of kindness? 

Part 2. Earlier in this study, you were asked to complete 5 acts of kindness that were new for 

you. The task for this week is to complete an additional 5 acts of kindness. This time you can 

feel free to repeat the same acts you did last time, or try new things. Take a moment to list 

some acts of kindness that you already did, or considered doing for this task the first time: 

As a reminder, here is a list of ideas that was presented to you before: 

- Leave an encouraging comment on a media post 

- Pick up litter 

- Give away an unwanted item for free instead of selling 

- Make a charity donation 

- Do a favour for someone else 

- Invite someone to an event 

- Buy a coffee for the person behind you in line 

- Call a parent or grandparent 

- Buy an unexpected gift  

- Offer to help a friend study 

With these ideas in mind, brainstorm 5 acts of kindness you could realistically do 

within the next week. Remember it is completely up to you which acts of kindness you 

choose. There is no obligation to spend money, talk to strangers, or spend a large amount of 

time. Pick things that you think will be meaningful to the recipients but also achievable 
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within your budget and timeframe. 

Now consider what days of the week you could do these activities. Some people 

might choose to do all 5 acts in a single day, whereas others might prefer to spread them out 

throughout the week. Consider the days that would be most suitable for your acts of kindness. 

Next to each day, fill in the number of acts you think you could do on that day. The total 

should add up to 5. 

At the end of the week, you will be given an opportunity to report back on the acts 

you actually completed. There is no obligation to stick to the tasks or days identified here. 

You may find throughout the week that opportunities arise for acts of kindness that you did 

not consider here. To keep track of these acts, you might find it useful to note down your acts 

of kindness as you complete them. 

Please exit and return using your email link once you have completed your tasks. All 

previous responses will be saved. 

Following minimum 24-hour break: 

Please provide a short description of each of the acts of kindness you completed for 

this task. 

Which act of kindness do you think had the greatest positive impact on other people? 

Thinking about the act of kindness that you think had the greatest impact on other 

people, please describe below how you think you made them feel, and why. 

Imagine you were a bystander to the act of kindness you described above. How would 

you feel as a witness to that act of kindness? 
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Self-compassion. 

The task for this week is focused on understanding how you view yourself in difficult times. 

There are 3 separate activities. You should allow at least 5 minutes for each activity. You can 

do all of them at once, or use your link to return at any time in the next 7 days to complete it. 

Many people find that they treat themselves differently from how they treat others when 

going through a difficult time. 

To provide an example of this, think about a time when you failed to achieve a goal. 

This could include getting a lower mark on an exam than you wanted, not being hired for a 

job you wanted, or disappointing a friend. Please share below some of the things you thought 

about yourself immediately following this event. 

Now consider when someone you admire experienced something similar. They set a 

goal for themselves that they failed to achieve and were feeling very upset about it. As a 

friend to this person, what are some things you would consider saying to them following this 

event? 

Now, re-read both responses. Both responses are displayed on-screen. 

You might find similar responses in both cases, or you might find that the thoughts 

you had about yourself were much less compassionate than what you would say to a friend 

going through a similar experience. 

A compassionate response can be characterised by three things: 

- A focus on kindness rather than judgement 

- A focus on universal rather than isolating experiences 
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- A balanced approach that doesn’t rely on suppressing or exaggerating the 

consequences 

Please re-write a compassionate response to the same experience as above. In writing 

this response, avoid statements of judgement (“just because you didn’t pass that exam doesn’t 

mean you are stupid”), focus on universal experiences (“everyone makes mistakes”), and take 

a balanced view of the situation (“it will make things harder for next time, but you can still 

succeed”).  You can write in the first person (e.g. "I can...") if you want to. 

Briefly outline an experience that made you feel inadequate, that still makes you feel 

negative emotions when you think about it. With this event in mind, write a self-

compassionate response to yourself. It might help to consider how you might comfort a friend 

in the same situation. It should be 1-2 paragraphs long. In writing this response, avoid 

statements of judgement (“just because you didn’t pass that exam doesn’t mean you are 

stupid”), focus on universal experiences (“everyone makes mistakes”), and take a balanced 

view of the situation (“it will make things harder for next time, but you can still succeed”). 

Briefly outline something you did that still makes you feel guilty when you think 

about it. 

With this event in mind, write a self-compassionate response to yourself. It might help 

to consider how you might comfort a friend in the same situation. It should be 1-2 paragraphs 

long. In writing this response, avoid statements of judgement (“just because you didn’t pass 

that exam doesn’t mean you are stupid”), focus on universal experiences (“everyone makes 

mistakes”), and take a balanced view of the situation (“it will make things harder for next 

time, but you can still succeed”). 

Part 2. The task for this week is focused on understanding how you view yourself when you 
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make mistakes. This task is similar to one you did a few weeks ago. There are 3 separate 

activities. You should allow at least 5 minutes for each activity. You can do all of them at 

once, or use your link to return at any time in the next 7 days to complete it. 

Many people find that they treat themselves differently from how they treat others 

when things don't go as well as expected. To provide an example of this, think about a time 

when you felt embarrassed for something that you did. This could be related to an 

assessment, a social interaction, or a mistake you made. Please share below some of the 

things you thought about yourself immediately following this event. Now think about a time 

when someone you know was embarrassed about something, but you didn't think it was a big 

deal. 

As a friend to this person, what are some things you would consider saying to them 

following this event? You might find similar responses in both cases, or you might find that 

the thoughts you had about yourself were much less compassionate than what you would say 

to a friend going through a similar experience. 

A compassionate response can be characterised by three things: 

- A focus on kindness rather than judgement 

- A focus on universal rather than isolating experiences 

- A balanced approach that doesn’t rely on suppressing or exaggerating the 

consequences 

Please re-write a compassionate response to the same experience as above. In writing 

this response, avoid statements of judgement (“just because you didn’t pass that exam doesn’t 

mean you are stupid”), focus on universal experiences (“everyone makes mistakes”), and take 
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a balanced view of the situation (“it will make things harder for next time, but you can still 

succeed”).  You can write in the first person (e.g. "I can...") if you want to. 

Briefly outline something that recently made you feel self-critical. This could be 

related to an assessment, a social interaction, or a mistake you made. With this event in mind, 

write a self-compassionate response to yourself. It might help to consider how you might 

comfort a friend in the same situation. It should be 1-2 paragraphs long. In writing this 

response, avoid statements of judgement (“just because you didn’t pass that exam doesn’t 

mean you are stupid”), focus on universal experiences (“everyone makes mistakes”), and take 

a balanced view of the situation (“it will make things harder for next time, but you can still 

succeed”). 

Briefly outline something that recently made you feel disappointed with yourself. This 

could be related to an assessment, a social interaction, or a mistake you made. 

With this event in mind, write a self-compassionate response to yourself. It might help 

to consider how you might comfort a friend in the same situation. It should be 1-2 paragraphs 

long. In writing this response, avoid statements of judgement (“just because you didn’t pass 

that exam doesn’t mean you are stupid”), focus on universal experiences (“everyone makes 

mistakes”), and take a balanced view of the situation (“it will make things harder for next 

time, but you can still succeed”). 

Positive Reminiscence. 

The task for this week is focused on remembering positive past experiences and 

considering the impact of those experiences on who you are today.  

For this task to be effective, it is important that you choose examples that are 

particularly meaningful to yourself. There will be three activities, all of which will ask you to 
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write about a personal experience. You can choose to complete all the activities at once, or 

spread them throughout the week. Please aim to spend at least 5 minutes on each task. 

Take a moment to think about a time when you were faced with a difficult problem, 

something that was very stressful at the time that you eventually overcame. This event might 

be something you experienced recently, or it could be from many years ago. It could be 

relevant to your relationships, your education, your job, or a hobby. 

Now that you have an example in mind, try to tell the whole story. You can include as 

much detail as you want, but please do not include names in your response. Imagine you are 

telling a story to a friend. Describe what the problem was, why it was significant for you, 

why it was difficult to overcome, how you eventually solved it, and how it feels to have 

overcome it. This task should take around 5 minutes. 

Take a moment to think about some of the things you are good at. When thinking of 

examples, consider things you do regularly or that you enjoy. It could be something you’re 

very good at, or just something you’ve improved a lot at. It could be relevant to your 

relationships, your education, your job, or a hobby. Pick one of those skills and write about 

how you got from where you started – the first time you tried that activity that you can 

remember, to where you are now. You can include as much detail as you want, but please do 

not include names in your response. Imagine you are telling a story to a friend. Describe how 

you felt about it when you first started, how you started to get better, how your feelings 

changed as you started to improve, and how it feels now that you consider how far you’ve 

come. This task should take around 5 minutes. 

Take a moment to think about a time when you were very anxious about something, 

but you did it anyway. This could be something that happened recently, or a long time ago. It 

could be relevant to your relationships, your education, your job, or a hobby. With this event 
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in mind, try to tell it as a story. You can include as much detail as you want, but please do not 

include names in your response. Imagine you are telling a story to a friend. Describe how the 

event started, how you gained the courage to do it anyway, how it felt as you did it, and what 

happened afterwards. This task should take around 5 minutes. 

Part 2. The task for this week is focused on remembering positive past experiences and 

considering the impact of those experiences on who you are today. For this task to be 

effective, it is important that you choose examples that are particularly meaningful to 

yourself. There will be three activities, all of which will ask you to write about a personal 

experience. You can choose to complete all the activities at once, or spread them throughout 

the week. Please aim to spend at least 5 minutes on each task. 

Take a moment to think about an event from your childhood that you think has had a 

lasting impact on who you are today.  This event could be relevant to your family life, your 

school, your friendships, or a one-off life event. Now that you have an example in mind, try 

to tell the whole story. You can include as much detail as you want, but please do not include 

names in your response. Imagine you are telling a story to a friend. Describe the context of 

the event, what happened, why it was significant for you, and how it has impacted your self-

identity. This task should take around 5 minutes. 

Take a moment to think about a relationship that you have or had in the past that 

greatly influenced you. It could be a relationship with a family member, a friend, a romantic 

partner, colleague, or other relationship. Now that you have an example in mind, try to tell a 

story about this relationship. You can include as much detail as you want, but please do not 

include names in your response. Imagine you are telling a story to a friend. Describe how you 

met, what your relationship was like, how it influenced you, and how you think you would be 

different without this person in your life. This task should take around 5 minutes. 
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Take a moment to think about a major change that happened in your life that has 

influenced who you are today. This could be something that happened recently, or a long 

time ago. It could be relevant to your relationships, your education, your job, a hobby, or 

where you live. With this event in mind, try to tell the whole story. You can include as much 

detail as you want, but please do not include names in your response. Imagine you are telling 

a story to a friend. Describe the context before the change, what the change was, how it 

happened, how it impacted you at the time, and how it impacts you now. This task should 

take around 5 minutes. 

Control Activities 

Acts of Novelty.  

Part 1. The purpose of this week’s exercise is to learn to appreciate the positive impact that 

variation can have in our lives. Everyone has experienced the impact of trying new things, 

and everyone has the ability to add variety in their own lives. This week you are challenged 

to complete at least 5 activities that add variation to your usual routine.  

To do this, first consider the kinds of activities you do on a regular basis. Think about 

things in your daily routine that stay very similar from week to week. For instance, you might 

cook similar meals each week, leave for university at the same time of day, or talk to the 

same people. Take a moment to list some of the things you currently do on a regular basis.

 Now that you’ve considered some of the things you do very regularly, take a moment 

to consider how you could adapt these activities to add more variation to your life. This does 

not mean you have to change everything completely, but it could mean changing the content 

of your activities slightly, or changing the time that you do them. For instance, if you always 

eat out on a particular day, you could order a different meal or try a new restaurant. 

Alternatively, if you usually leave university as soon as your classes end, you could try 
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staying later. You could also add a completely new activity, like playing a new game. 

Here are some examples of things you could change: 

- Eat somewhere different 

- Try a new recipe 

- Try a new type of exercise 

- Talk to someone you don't regularly talk to 

- Play a new game 

- Take a different route home 

- Wake up at a different time 

- Do a regular activity in a different location 

- Wear your hair differently 

With these ideas in mind, brainstorm 5 ways you could realistically add variation to 

your life in the next week. Remember it is completely up to you how you do this. Pick things 

that are different from what you normally do, but also achievable within your budget and 

timeframe. Now consider what days of the week you could do these activities. Some people 

might choose to do all 5 variations in a single day, whereas others might prefer to spread 

them out throughout the week. Consider the days that would be most suitable for your routine 

variations. Next to each day, fill in the number of acts you think you could do on that day. 

The total should add up to 5. 

At the end of the week, you will be given an opportunity to report back on the 
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variations you actually completed. There is no obligation to stick to the tasks or days 

identified here. You may find throughout the week that opportunities arise for variations that 

you did not consider here. To keep track of the new things that you do, it might be useful to 

write them down as you complete them. Please exit and return using your email link after you 

have completed your tasks. All previous responses will be saved. 

Following minimum 24-hour break: 

The task for this week was to add new variation to your routine to draw attention to 

the positive impact of trying new things. Please start by indicating how many routine 

variations you completed as a result of this task (changes that you wouldn’t normally do). 

Please provide a short description of each of the routine variations you completed for 

this task. 

Which routine variation do you think had the greatest positive impact on yourself? 

Thinking about the routine variation that had the greatest positive impact on yourself, 

please describe below how it made you feel, and why it impacted you. 

Part 2. Earlier in this study, you were asked to complete 5 activities that add variation to your 

usual routine that were new for you. The task for this week is to complete an additional 5 

routine variations. This time you can feel free to repeat the same acts you did last time, or try 

new things. Take a moment to list some acts of novelty that you already did, or considered 

doing for this task the first time. 

As a reminder, here is a list of ideas that was presented to you before: 

- Eat somewhere different 
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- Try a new recipe 

- Try a new type of exercise 

- Talk to someone you don't regularly talk to 

- Play a new game 

- Take a different route home 

- Wake up at a different time 

- Do a regular activity in a different location 

- Wear your hair differently 

Based on your experience of this task last time, brainstorm 5 ways you could 

realistically add variation to your life in the next week. Remember it is completely up to you 

how you do this. Pick things that are different from what you normally do, but also 

achievable within your budget and timeframe.  

Following minimum 24-hour break: 

Please provide a short description of each of the routine variations you completed for 

this task. 

Which routine variation do you think had the greatest positive impact on yourself? 

Thinking about the routine variation that had the greatest positive impact on yourself, 

please describe below how it made you feel, and why it impacted you. 

Self-esteem. 
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Part 1. The task for this week is focused on understanding how you view yourself in difficult 

times. There are 3 separate activities. You should allow at least 5 minutes for each activity. 

You can do all of them at once, or use your link to return at any time in the next 7 days to 

complete it. 

Many people find that they treat themselves differently from how they treat others 

when going through a difficult time. To provide an example of this, think about a time when 

you failed to achieve a goal. This could include getting a lower mark on an exam than you 

wanted, not being hired for a job you wanted, or disappointing a friend. 

Please share below some of the things you thought about yourself immediately 

following this event. Now consider when someone you admire experienced something 

similar. They set a goal for themselves that they failed to achieve and were feeling very upset 

about it. As a friend to this person, what are some things you would consider saying to them 

following this event? 

Now, re-read both responses. Both responses are displayed on-screen. 

You might find similar responses in both cases, or you might find that the thoughts 

you had about yourself were more focused on negative traits than the comments you might 

make to a friend. Focusing on negative aspects of a situation can make it much harder to 

move afterwards compared to when you stay focused on your positive traits. Please re-write 

response to the same experience as above that focuses on your positive traits rather than on 

your failures. 

In writing this response, focus on only the positive aspects surrounding the event you 

described above. Do your best to avoid acknowledging any negative traits in your response. 

For anything that comes up that is negative, try to find a positive viewpoint on the same trait. 
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Please write your response below. 

Briefly outline an experience that made you feel inadequate, that still makes you feel 

negative emotions when you think about it. With this event in mind, write a positive letter to 

yourself about the situation. It should be 1-2 paragraphs long. In writing this response, focus 

only on the positive outcomes from this event, and positive traits about yourself that make up 

for the negative aspects of the experience.   

Briefly outline something you did that still makes you feel guilty when you think 

about it. With this event in mind, write a positive letter to yourself about the situation. It 

should be 1-2 paragraphs long. In writing this response, focus only on the positive outcomes 

from this event, and positive traits about yourself that make up for the negative aspects of the 

experience.   

Part 2. The task for this week is focused on understanding how you view yourself when you 

make mistakes. This task is similar to one you did a few weeks ago. There are 3 separate 

activities. You should allow at least 5 minutes for each activity. You can do all of them at 

once, or use your link to return at any time in the next 7 days to complete it. Many people 

find that they treat themselves differently from how they treat others when things don't go as 

well as expected. 

To provide an example of this, think about a time when you felt embarrassed for 

something that you did. This could include getting a lower mark on an exam than you 

wanted, not being hired for a job you wanted, or disappointing a friend. Please share below 

some of the things you thought about yourself immediately following this event. 

Now consider when someone you know was embarrassed about something, but you 

didn't think it was a big deal. As a friend to this person, what are some things you would 
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consider saying to them following this event? Both responses are displayed on-screen. 

You might find similar responses in both cases, or you might find that the thoughts 

you had about yourself were more focused on negative traits than the comments you might 

make to a friend. Focusing on negative aspects of a situation can make it much harder to 

move afterwards compared to when you stay focused on your positive traits. Please re-write 

response to the same experience as above that focuses on your positive traits rather than on 

your failures. In writing this response, focus on only the positive aspects surrounding the 

event you described above. Do your best to avoid acknowledging any negative traits in your 

response. For anything that comes up that is negative, try to find a positive viewpoint on the 

same trait. 

Briefly outline an experience that recently made you feel self-critical. This could be 

related to an assessment, a social interaction, or a mistake you made. With this event in mind, 

write a positive letter to yourself about the situation. It should be 1-2 paragraphs long. In 

writing this response, focus only on the positive outcomes from this event, and positive traits 

about yourself that make up for the negative aspects of the experience.   

Briefly outline something that recently made you feel disappointed with yourself. This 

could be related to an assessment, a social interaction, or a mistake you made. 

With this event in mind, write a positive letter to yourself about the situation. It 

should be 1-2 paragraphs long. In writing this response, focus only on the positive outcomes 

from this event, and positive traits about yourself that make up for the negative aspects of the 

experience.   

Reminiscence Control. 

Part 1. The task for this week is focused on remembering past experiences. For this task to be 
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effective, it is important that you choose examples that you can remember well. There will be 

three tasks, all of which will ask you to write about an event in your life. You can choose to 

complete all the activities at once, or spread them throughout the week. Please aim to spend 

at least 5 minutes on each task. 

Take a moment to think about a time from your past that you can remember well. This 

event might be something you experienced recently, or it could be from many years ago. It 

could be relevant to your relationships, your education, your job, or a hobby. 

Now that you have an example in mind, try to tell the whole story. You can include as 

much detail as you want, but please do not include names in your response. Imagine you are 

telling a story to a friend. Describe how the event started, what happened, and how it ended. 

This task should take around 5 minutes. 

Take a moment to think about some of the things you are good at. It could be relevant 

to your relationships, your education, your job, or a hobby. With that activity in mind, write 

about the last time you did that activity that you can remember well. You can include as 

much detail as you want, but please do not include names in your response. Imagine you are 

telling a story to a friend. Describe how the event started, what happened, and how it ended. 

This task should take around 5 minutes. 

Take a moment to think about a time when you were emotional about something. This 

could be something that happened recently, or a long time ago. It could be relevant to your 

relationships, your education, your job, or a hobby. With this event in mind, try to tell it as a 

story. You can include as much detail as you want, but please do not include names in your 

response. Imagine you are telling a story to a friend. Describe how the event started, what 

happened, and how it ended. This task should take around 5 minutes. 
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Part 2. The task for this week is focused on remembering past experiences. For this task to be 

effective, it is important that you choose examples that you can remember well. There will be 

three tasks, all of which will ask you to write about an event in your life. You can choose to 

complete all the activities at once, or spread them throughout the week. Please aim to spend 

at least 5 minutes on each task. 

Take a moment to think about an event from your childhood that you can remember 

well. This event could be relevant to your family life, your school, your friendships, or a one-

off life event. Now that you have an example in mind, try to tell the whole story. You can 

include as much detail as you want, but please do not include names in your response. 

Imagine you are telling a story to a friend. Describe how the event started, what happened, 

and how it ended. This task should take around 5 minutes. 

Take a moment to think about a relationship that you have or had in the past. It could 

be a relationship with a family member, a friend, a romantic partner, colleague, or other 

relationship. Now that you have an example in mind, try to tell a story about this relationship. 

You can include as much detail as you want, but please do not include names in your 

response. Imagine you are telling a story to a friend. Describe how the relationship started, 

what the relationship was like, and something memorable that happened in this relationship. 

This task should take around 5 minutes. 

Take a moment to think about a major change that has happened in your life. This 

could be something that happened recently, or a long time ago. It could be relevant to your 

relationships, your education, your job, a hobby, or where you live. With this event in mind, 

try to tell it as a story. You can include as much detail as you want, but please do not include 

names in your response. Imagine you are telling a story to a friend. Describe how the event 

started, what happened, and how it ended. This task should take around 5 minutes. 
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Table S1. COMPAS-W Wellbeing linear mixed model results 

COMPAS-W Wellbeing  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  0.04 0.07 -0.11 0.18 0.05 0.06 -0.07 0.16 -0.13 0.12 -0.36 0.11 

Time Wk3 *-0.15 0.06 -0.26 -0.03 *-0.15 0.06 -0.26 -0.04 -0.18 0.09 -0.36 0.01 

 Wk6 *-0.14 0.06 -0.26 -0.03 *-0.15 0.06 -0.26 -0.03 *-0.20 0.10 -0.39 0.00 

 7wk post 0.04 0.06 -0.07 0.16 0.04 0.06 -0.07 0.16 -0.02 0.10 -0.22 0.17 

Intervention  -0.05 0.11 -0.26 0.15 -0.06 0.08 -0.21 0.10 0.05 0.17 -0.29 0.38 

Time x Intervention Wk3 -0.06 0.08 -0.22 0.10 -0.06 0.08 -0.22 0.10 -0.04 0.14 -0.30 0.23 

 Wk6 0.08 0.09 -0.09 0.25 0.08 0.08 -0.08 0.24 0.13 0.14 -0.14 0.40 

 7wk post 0.15 0.09 -0.02 0.32 0.15 0.09 -0.02 0.32 * 0.33 0.15 0.04 0.62 

RRC-ARM      0.67 0.06 0.56 0.79     

Time x RRC-ARM Wk3     *-0.18 0.06 -0.29 -0.07     

 Wk6     *-0.12 0.06 -0.24 -0.01     

 7wk post     0.03 0.06 -0.08 0.14     

Intervention x RRC-ARM      0.08 0.08 -0.08 0.23     

Time x Intervention x RRC-ARM Wk3     -0.15 0.08 -0.30 0.00     

 Wk6     *-0.19 0.08 -0.35 -0.03     

 7wk post     -0.11 0.08 -0.27 0.05     

COVID-19 Weeks          0.06 0.04 -0.01 0.14 

Time x COVID-19 Weeks Wk3         0.01 0.03 -0.04 0.07 

 Wk6         0.02 0.03 -0.04 0.08 

 7wk post         0.03 0.03 -0.03 0.09 

Intervention x COVID-19 Weeks          -0.04 0.05 -0.14 0.06 

Time x Condition x COVID-19 Weeks Wk3         -0.01 0.04 -0.09 0.07 

 Wk6         -0.02 0.04 -0.10 0.06 

 7wk post         -0.07 0.04 -0.16 0.02 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = 

standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; 

reference level for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S2. COMPAS-W Composure linear mixed model results 

COMPAS-W Composure  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  -0.10 0.08 -0.25 0.05 -0.10 0.07 -0.23 0.04 -0.21 0.12 -0.45 0.03 

Time Wk3 0.06 0.07 -0.07 0.19 0.06 0.07 -0.07 0.19 0.03 0.11 -0.18 0.25 

 Wk6 * 0.14 0.07 0.00 0.27 * 0.14 0.07 0.00 0.27 0.12 0.11 -0.09 0.34 

 7wk post * 0.16 0.07 0.02 0.30 * 0.16 0.07 0.02 0.30 0.12 0.12 -0.11 0.35 

Intervention  -0.03 0.11 -0.24 0.18 -0.03 0.10 -0.22 0.16 0.11 0.18 -0.24 0.45 

Time x Intervention Wk3 0.01 0.10 -0.18 0.20 0.01 0.10 -0.18 0.20 0.02 0.16 -0.31 0.34 

 Wk6 -0.02 0.10 -0.21 0.17 -0.02 0.10 -0.21 0.17 0.03 0.16 -0.28 0.33 

 7wk post 0.12 0.09 -0.06 0.30 0.12 0.09 -0.06 0.30 0.21 0.17 -0.12 0.55 

RRC-ARM      * 0.39 0.07 0.25 0.52     

Time x RRC-RM Wk3     0.04 0.07 -0.09 0.17     

 Wk6     0.09 0.07 -0.04 0.23     

 7wk post     0.06 0.07 -0.07 0.19     

Intervention x RRC-ARM      0.06 0.10 -0.13 0.25     

Time x Intervention x RRC-ARM Wk3     -0.13 0.09 -0.31 0.05     

 Wk6     -0.17 0.10 -0.37 0.02     

 7wk post     -0.14 0.10 -0.33 0.06     

COVID-19 Weeks          0.04 0.04 -0.03 0.12 

Time x COVID-19 Weeks Wk3         0.01 0.03 -0.05 0.08 

 Wk6         0.00 0.03 -0.06 0.07 

 7wk post         -0.06 0.09 -0.06 0.09 

Intervention x COVID-19 Weeks          -0.05 0.05 -0.16 0.05 

Time x Condition x COVID-19 Weeks Wk3         0.00 0.05 -0.10 0.09 

 Wk6         -0.02 0.05 -0.11 0.07 

 7wk post         -0.04 0.05 -0.14 0.07 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = standardised 

standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; reference level 

for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S3 COMPAS-W Own-worth linear mixed model results 

COMPAS-W Own-worth  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  * 0.18 0.08 0.03 0.32 * 0.18 0.07 0.05 0.32 0.05 0.12 -0.19 0.29 

Time Wk3 *-0.26 0.09 -0.44 -0.08 *-0.27 0.09 -0.44 -0.09 -0.19 0.15 -0.49 0.11 

 Wk6 *-0.44 0.10 -0.63 -0.26 *-0.45 0.09 -0.63 -0.27 *-0.47 0.16 -0.79 -0.15 

 7wk post -0.13 0.10 -0.32 0.07 -0.13 0.10 -0.32 0.06 -0.20 0.16 -0.51 0.11 

Intervention  -0.13 0.11 -0.34 0.08 -0.13 0.10 -0.32 0.06 -0.13 0.17 -0.48 0.21 

Time x Intervention Wk3 0.04 0.13 -0.22 0.30 0.04 0.13 -0.22 0.29 0.04 0.22 -0.39 0.47 

 Wk6 * 0.38 0.13 0.11 0.64 * 0.38 0.13 0.12 0.63 0.41 0.22 -0.03 0.85 

 7wk post 0.15 0.14 -0.12 0.43 0.15 0.14 -0.12 0.42 0.40 0.23 -0.05 0.84 

RRC-ARM      * 0.57 0.07 0.44 0.70     

Time x RRC-ARM Wk3     *-0.34 0.09 -0.52 -0.16     

 Wk6     *-0.30 0.09 -0.48 -0.11     

 7wk post     -0.01 0.09 -0.19 0.17     

Intervention x RRC-ARM      0.00 0.10 -0.19 0.19     

Time x Intervention x RRC-ARM Wk3     -0.08 0.13 -0.33 0.16     

 Wk6     -0.06 0.13 -0.32 0.19     

 7wk post     -0.05 0.13 -0.31 0.20     

COVID-19 Weeks          0.05 0.04 -0.02 0.12 

Time x COVID-19 Weeks Wk3         0.04 0.22 -0.39 0.47 

 Wk6         0.41 0.22 -0.03 0.85 

 7wk post         0.03 0.05 -0.07 0.12 

Intervention x COVID-19 Weeks          0.00 0.05 -0.10 0.10 

Time x Condition x COVID-19 Weeks Wk3         0.00 0.07 -0.13 0.13 

 Wk6         -0.01 0.07 -0.14 0.12 

 7wk post         -0.09 0.07 -0.23 0.04 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = standardised 

standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; reference level 

for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S4. COMPAS-W Mastery linear mixed model results 

COMPAS-W Mastery  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  0.13 0.08 -0.02 0.27 0.13 0.07 -0.01 0.27 0.17 0.12 -0.08 0.41 

Time Wk3 *-0.25 0.08 -0.42 -0.09 *-0.25 0.08 -0.41 -0.09 *-0.32 0.14 -0.59 -0.05 

 Wk6 *-0.26 0.08 -0.42 -0.09 *-0.26 0.08 -0.42 -0.09 *-0.44 0.14 -0.72 -0.17 

 7wk post -0.12 0.09 -0.30 0.06 -0.12 0.09 -0.29 0.06 -0.14 0.15 -0.43 0.15 

Intervention  0.00 0.11 -0.21 0.21 0.00 0.10 -0.20 0.20 -0.09 0.18 -0.43 0.26 

Time x Intervention Wk3 -0.12 0.12 -0.35 0.12 -0.12 0.12 -0.36 0.11 -0.01 0.20 -0.40 0.38 

 Wk6 -0.03 0.12 -0.27 0.21 -0.03 0.12 -0.27 0.21 0.06 0.20 -0.33 0.44 

 7wk post 0.04 0.13 -0.21 0.29 0.04 0.13 -0.20 0.29 0.08 0.20 -0.32 0.48 

RRC-ARM      * 0.22 0.07 0.08 0.36     

Time x RRC-ARM Wk3     0.03 0.08 -0.13 0.19     

 Wk6     0.05 0.09 -0.12 0.23     

 7wk post     0.02 0.09 -0.15 0.19     

Intervention x RRC-ARM      * 0.22 0.10 0.02 0.42     

Time x Intervention x RRC-ARM Wk3     *-0.25 0.12 -0.48 -0.03     

 Wk6     -0.21 0.12 -0.44 0.03     

 7wk post     -0.04 0.12 -0.28 0.19     

COVID-19 Weeks          -0.02 0.04 -0.09 0.06 

Time x COVID-19 Weeks Wk3         0.03 0.04 -0.05 0.11 

 Wk6         0.07 0.04 -0.01 0.16 

 7wk post         0.01 0.04 -0.08 0.09 

Intervention x COVID-19 Weeks          0.03 0.05 -0.07 0.14 

Time x Condition x COVID-19 Weeks Wk3         -0.04 0.06 -0.16 0.07 

 Wk6         -0.03 0.06 -0.15 0.08 

 7wk post         -0.02 0.06 -0.13 0.10 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = 

standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; 

reference level for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S5. COMPAS-W Positivity linear mixed model results 

 

COMPAS-W Positivity  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  0.09 0.08 -0.06 0.24 0.10 0.06 -0.02 0.22 -0.06 0.12 -0.30 0.18 

Time Wk3 *-0.14 0.07 -0.28 -0.01 *-0.15 0.07 -0.27 -0.02 -0.16 0.11 -0.39 0.06 

 Wk6 *-0.19 0.07 -0.33 -0.05 *-0.19 0.07 -0.33 -0.06 -0.22 0.12 -0.44 0.01 

 7wk post -0.08 0.08 -0.23 0.07 -0.08 0.07 -0.23 0.06 -0.18 0.13 -0.43 0.08 

Intervention  -0.01 0.11 -0.22 0.20 -0.01 0.09 -0.18 0.16 -0.04 0.18 -0.39 0.30 

Time x Intervention Wk3 -0.10 0.10 -0.29 0.09 -0.10 0.09 -0.29 0.08 -0.04 0.17 -0.38 0.29 

 Wk6 0.01 0.10 -0.18 0.20 0.01 0.09 -0.17 0.19 0.14 0.16 -0.18 0.47 

 7wk post 0.17 0.12 -0.06 0.39 0.17 0.11 -0.05 0.39 * 0.49 0.18 0.15 0.84 

RRC-ARM      * 0.66 0.06 0.54 0.78     

Time x RRC-ARM Wk3     *-0.25 0.07 -0.38 -0.12     

 Wk6     *-0.21 0.07 -0.35 -0.07     

 7wk post     0.04 0.07 -0.10 0.18     

Intervention x RRC-ARM      0.10 0.09 -0.07 0.27     

Time x Intervention x RRC-ARM Wk3     -0.15 0.10 -0.35 0.05     

 Wk6     -0.13 0.09 -0.31 0.05     

 7wk post     -0.19 0.10 -0.38 0.00     

COVID-19 Weeks          0.06 0.04 -0.02 0.13 

Time x COVID-19 Weeks Wk3         0.01 0.03 -0.06 0.08 

 Wk6         0.01 0.04 -0.06 0.08 

 7wk post         0.04 0.04 -0.04 0.11 

Intervention x COVID-19 Weeks          0.01 0.05 -0.09 0.12 

Time x Condition x COVID-19 Weeks Wk3         -0.02 0.05 -0.12 0.08 

 Wk6         -0.05 0.05 -0.15 0.05 

 7wk post         *-0.12 0.05 -0.22 -0.02 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = 

standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; 

reference level for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S6. COMPAS-W Achievement linear mixed model results 

 

COMPAS-W Achievement  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  -0.06 0.08 -0.21 0.09 -0.05 0.07 -0.18 0.08 -0.22 0.12 -0.46 0.03 

Time Wk3 0.04 0.06 -0.08 0.16 0.04 0.06 -0.08 0.16 -0.03 0.10 -0.22 0.17 

 Wk6 0.04 0.06 -0.08 0.17 0.04 0.06 -0.08 0.17 0.04 0.11 -0.17 0.25 

 7wk post 0.05 0.06 -0.08 0.17 0.05 0.06 -0.08 0.17 0.02 0.11 -0.19 0.24 

Intervention  0.04 0.11 -0.17 0.25 0.04 0.10 -0.15 0.23 0.22 0.18 -0.13 0.57 

Time x Intervention Wk3 -0.14 0.09 -0.32 0.03 -0.14 0.09 -0.32 0.03 -0.11 0.15 -0.40 0.18 

 Wk6 -0.07 0.10 -0.26 0.13 -0.07 0.10 -0.26 0.13 -0.07 0.16 -0.38 0.24 

 7wk post -0.02 0.10 -0.21 0.16 -0.02 0.10 -0.21 0.16 -0.02 0.15 -0.32 0.27 

RRC-ARM      * 0.53 0.07 0.40 0.66     

Time x RRC-ARM Wk3     -0.07 0.06 -0.19 0.05     

 Wk6     0.01 0.07 -0.13 0.14     

 7wk post     0.00 0.07 -0.13 0.14     

Intervention x RRC-ARM      -0.18 0.10 -0.37 0.01     

Time x Intervention x  Wk3     0.10 0.09 -0.07 0.28     

RRC-ARM Wk6     0.00 0.09 -0.18 0.19     

 7wk post     -0.05 0.10 -0.24 0.14     

COVID-19 Weeks          0.06 0.04 -0.01 0.14 

Time x COVID-19 Weeks Wk3         0.03 0.03 -0.03 0.09 

 Wk6         0.00 0.03 -0.07 0.07 

 7wk post         0.01 0.03 -0.06 0.07 

Intervention x COVID-19 Weeks          -0.07 0.05 -0.18 0.04 

Time x Condition x COVID-19 Weeks Wk3         -0.01 0.05 -0.10 0.08 

 Wk6         0.00 0.05 -0.09 0.10 

 7wk post         0.00 0.05 -0.09 0.09 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = standardised 

standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; reference level 

for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S7. COMPAS-W Satisfaction linear mixed model results 

 

COMPAS-W Satisfaction  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  0.02 0.07 -0.13 0.16 0.02 0.06 -0.10 0.15 -0.18 0.12 -0.41 0.06 

Time Wk3 *-0.16 0.07 -0.29 -0.03 *-0.16 0.06 -0.28 -0.04 -0.17 0.11 -0.38 0.04 

 Wk6 -0.10 0.07 -0.23 0.04 -0.10 0.07 -0.23 0.03 -0.15 0.12 -0.38 0.07 

 7wk post * 0.14 0.07 0.01 0.27 * 0.14 0.06 0.01 0.26 0.03 0.11 -0.19 0.26 

Intervention  -0.14 0.11 -0.35 0.07 -0.14 0.09 -0.32 0.03 -0.05 0.17 -0.38 0.29 

Time x Intervention Wk3 0.07 0.10 -0.12 0.25 0.07 0.09 -0.11 0.25 0.14 0.15 -0.16 0.44 

 Wk6 * 0.25 0.10 0.06 0.44 * 0.25 0.10 0.06 0.43 * 0.41 0.16 0.10 0.72 

 7wk post * 0.29 0.10 0.09 0.48 * 0.29 0.10 0.10 0.48 * 0.48 0.17 0.15 0.81 

RRC-ARM      * 0.62 0.06 0.50 0.74     

Time x RRC-ARM Wk3     *-0.25 0.06 -0.38 -0.13     

 Wk6     *-0.22 0.07 -0.36 -0.09     

 7wk post     -0.01 0.07 -0.14 0.12     

Intervention x RRC-ARM      0.05 0.09 -0.12 0.23     

Time x Intervention x RRC-ARM Wk3     -0.09 0.09 -0.27 0.08     

 Wk6     -0.11 0.09 -0.30 0.07     

 7wk post     -0.10 0.09 -0.28 0.08     

COVID-19 Weeks          * 0.07 0.04 0.00 0.15 

Time x COVID-19 Weeks Wk3         0.01 0.03 -0.06 0.07 

 Wk6         0.02 0.03 -0.05 0.09 

 7wk post         0.04 0.04 -0.03 0.11 

Intervention x COVID-19 Weeks          -0.04 0.05 -0.14 0.07 

Time x Condition x COVID-19 Weeks Wk3         -0.03 0.05 -0.12 0.07 

 Wk6         -0.06 0.05 -0.16 0.03 

 7wk post         -0.07 0.05 -0.18 0.03 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = standardised 

standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; reference level 

for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S8. Satisfaction With Life Scale linear mixed model results 

 
SWLS  Model 1 Model 2 Model 3 

  β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper 

Intercept  *-0.20 0.08 -0.36 -0.04 *-0.20 0.06 -0.32 -0.08 *-0.43 0.12 -0.67 -0.19 

Time Wk1 * 0.26 0.05 0.17 0.35 * 0.26 0.05 0.18 0.35 * 0.19 0.07 0.04 0.33 

 Wk2 * 0.26 0.05 0.16 0.35 * 0.26 0.05 0.16 0.35 * 0.27 0.08 0.12 0.42 

 Wk3 * 0.28 0.05 0.19 0.37 * 0.28 0.05 0.19 0.37 * 0.26 0.08 0.10 0.41 

 Wk4 * 0.18 0.05 0.08 0.28 * 0.18 0.05 0.08 0.28 * 0.23 0.08 0.07 0.39 

 Wk5 * 0.20 0.05 0.10 0.30 * 0.20 0.05 0.10 0.30 * 0.29 0.08 0.13 0.46 

 Wk6 * 0.17 0.05 0.07 0.27 * 0.17 0.05 0.07 0.27 * 0.22 0.08 0.06 0.38 

 7wk post * 0.18 0.05 0.08 0.28 * 0.18 0.05 0.08 0.28 * 0.16 0.08 0.00 0.32 

Intervention  -0.08 0.11 -0.29 0.13 -0.08 0.09 -0.25 0.09 0.01 0.18 -0.34 0.35 

Time x Intervention Wk1 -0.02 0.06 -0.14 0.11 -0.02 0.06 -0.14 0.11 0.05 0.11 -0.16 0.25 

Wk2 -0.03 0.07 -0.17 0.10 -0.03 0.07 -0.17 0.10 -0.01 0.11 -0.23 0.21 

Wk3 -0.02 0.07 -0.15 0.12 -0.02 0.07 -0.15 0.12 0.03 0.12 -0.20 0.26 

 Wk4 0.13 0.07 -0.01 0.27 0.13 0.07 -0.01 0.26 0.16 0.11 -0.06 0.39 

 Wk5 0.11 0.08 -0.03 0.26 0.11 0.07 -0.03 0.26 0.09 0.13 -0.16 0.34 

 Wk6 * 0.18 0.07 0.04 0.33 * 0.18 0.07 0.04 0.33 0.21 0.12 -0.04 0.45 

 7wk post * 0.23 0.07 0.08 0.37 * 0.22 0.07 0.08 0.37 * 0.29 0.12 0.06 0.52 

RRC-ARM      * 0.62 0.06 0.50 0.74     

Time x RRC-ARM Wk1     0.06 0.04 -0.03 0.15     

Wk2     -0.02 0.05 -0.11 0.07     

Wk3     0.03 0.05 -0.06 0.13     

 Wk4     -0.05 0.05 -0.14 0.05     

 Wk5     -0.05 0.05 -0.15 0.05     

 Wk6     -0.02 0.05 -0.12 0.08     

 7wk post     -0.02 0.06 -0.13 0.10     

Intervention x RRC-ARM      -0.03 0.09 -0.19 0.14     

Time x Intervention x RRC-ARM Wk1     -0.03 0.06 -0.16 0.09     
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Wk2     -0.06 0.07 -0.19 0.07     

Wk3     -0.13 0.07 -0.26 0.00     

Wk4     -0.05 0.07 -0.18 0.09     

 Wk5     -0.07 0.07 -0.21 0.08     

 Wk6     -0.09 0.07 -0.23 0.05     

 7wk post     -0.11 0.08 -0.26 0.04     

COVID-19 Weeks          *0.09 0.04 0.01 0.16 

Time x COVID-19 Weeks Wk1         0.05 0.11 -0.16 0.25 

Wk2         -0.01 0.11 -0.23 0.21 

Wk3         0.03 0.12 -0.20 0.26 

 Wk4         0.16 0.11 -0.06 0.39 

 Wk5         0.09 0.13 -0.16 0.34 

 Wk6         0.21 0.12 -0.04 0.45 

 7wk post         0.29 0.12 0.06 0.52 

Intervention x COVID-19 Weeks          -0.03 0.05 -0.14 0.07 

Time x Condition x COVID-19 Weeks Wk1         -0.02 0.03 -0.09 0.04 

Wk2         -0.01 0.03 -0.07 0.06 

 Wk3         -0.02 0.03 -0.09 0.05 

 Wk4         -0.01 0.03 -0.08 0.06 

 Wk5         0.01 0.04 -0.06 0.08 

 Wk6         -0.01 0.04 -0.08 0.06 

 7wk post         -0.03 0.03 -0.09 0.04 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = 

standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; 

reference level for Time is baseline; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S9. Perceived Stress Scale linear mixed model results 

 
PSS  Model 1 Model 2 Model 3 Model 4 

  β SE 95% CI β SE 95% CI β SE 95% CI β SE 95% CI 

    Lower Upper   Lower Upper   Lower Upper   Lower Upper 

Intercept  *-0.66 0.07 -0.80 -0.52 *-0.66 0.07 -0.80 -0.53 *-0.56 0.12 -0.79 -0.33 *-0.49 0.09 -0.66 -0.32 

Time Wk1 * 0.79 0.07 0.66 0.92 * 0.79 0.07 0.66 0.92 *0.73 0.11 0.52 0.95 * 0.73 0.08 0.57 0.89 

 Wk2 * 0.83 0.07 0.69 0.96 * 0.83 0.07 0.69 0.96 *0.85 0.11 0.63 1.07 * 0.74 0.08 0.58 0.91 

 Wk3 * 0.93 0.07 0.80 1.07 * 0.94 0.07 0.80 1.07 *0.85 0.12 0.62 1.07 * 0.83 0.09 0.66 1.00 

 Wk4 * 1.05 0.07 0.90 1.19 * 1.05 0.07 0.91 1.19 *0.98 0.12 0.75 1.22 * 0.97 0.09 0.80 1.15 

 Wk5 * 0.95 0.07 0.81 1.09 * 0.95 0.07 0.82 1.09 *0.94 0.12 0.71 1.17 * 0.88 0.09 0.71 1.05 

 Wk6 * 0.96 0.07 0.82 1.10 * 0.96 0.07 0.82 1.10 *1.00 0.12 0.77 1.23 * 0.93 0.09 0.75 1.10 

 7wk 

post 

0.12 0.08 -0.03 0.27 0.12 0.08 -0.03 0.27 *0.32 0.12 0.07 0.56 0.14 0.10 -0.05 0.33 

Intervention  0.08 0.10 -0.12 0.28 0.08 0.10 -0.11 0.27 -0.15 0.17 -0.47 0.17 -0.02 0.12 -0.26 0.21 

Time x Intervention Wk1 -0.02 0.10 -0.21 0.17 -0.02 0.09 -0.20 0.17 0.14 0.16 -0.17 0.44 0.05 0.11 -0.17 0.27 

Wk2 -0.08 0.10 -0.27 0.11 -0.08 0.10 -0.26 0.11 0.02 0.16 -0.29 0.33 0.01 0.12 -0.21 0.24 

Wk3 -0.05 0.10 -0.24 0.15 -0.05 0.10 -0.24 0.14 0.10 0.17 -0.22 0.42 0.03 0.12 -0.20 0.26 

 Wk4 *-0.31 0.10 -0.51 -0.11 *-0.31 0.10 -0.51 -0.11 -0.18 0.17 -0.51 0.15 *-0.22 0.13 -0.47 0.02 

 Wk5 -0.19 0.10 -0.39 0.02 -0.19 0.10 -0.39 0.01 -0.16 0.18 -0.51 0.18 -0.11 0.12 -0.35 0.13 

 Wk6 -0.01 0.10 -0.21 0.19 -0.01 0.10 -0.21 0.19 -0.02 0.17 -0.36 0.32 0.04 0.13 -0.21 0.28 

 7wk 

post 

-0.04 0.11 -0.26 0.17 -0.04 0.11 -0.25 0.17 -0.24 0.18 -0.61 0.12 0.00 0.13 -0.26 0.26 

RRC-ARM      *-0.39 0.07 -0.52 -0.26         

Time x RRC-ARM Wk1     * 0.14 0.07 0.01 0.27         

Wk2     * 0.15 0.07 0.02 0.28         

Wk3     * 0.25 0.07 0.11 0.40         

 Wk4     * 0.25 0.07 0.11 0.39         

 Wk5     * 0.19 0.07 0.05 0.33         

 Wk6     * 0.14 0.07 0.00 0.28         

 7wk 

post 

    -0.02 0.08 -0.18 0.14         
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Intervention x 

RRC-ARM 

     -0.03 0.10 -0.22 0.15         

Time x Intervention 

x RRC-ARM 

Wk1     0.04 0.09 -0.14 0.23         

Wk2     0.09 0.10 -0.10 0.27         

Wk3     -0.03 0.10 -0.23 0.17         

 Wk4     0.02 0.10 -0.18 0.22         

 Wk5     0.03 0.10 -0.17 0.23         

 Wk6     0.07 0.11 -0.14 0.29         

 7wk 

post 

    0.07 0.11 -0.15 0.28         

COVID-19 Weeks          -0.04 0.04 -0.11 0.03     

Time x COVID-19 

Weeks 

Wk1         0.02 0.03 -0.04 0.09     

Wk2         -0.01 0.03 -0.08 0.06     

Wk3         0.03 0.04 -0.04 0.10     

Wk4         0.02 0.04 -0.04 0.09     

 Wk5         0.00 0.04 -0.07 0.08     

 Wk6         -0.02 0.04 -0.09 0.05     

 7wk 

post 

        *-0.08 0.04 -0.15 0.00     

Intervention x 

COVID-19 Weeks 

         

0.09 0.05 -0.01 0.19 

    

Time x Condition x 

COVID-19 Weeks 

Wk1         -0.06 0.05 -0.15 0.03     

Wk2         -0.04 0.05 -0.13 0.06     

Wk3         -0.06 0.05 -0.16 0.04     

Wk4         -0.05 0.05 -0.15 0.05     

Wk5         -0.01 0.05 -0.12 0.10     

 Wk6         0.00 0.05 -0.10 0.11     

 7wk 

post 

        0.08 0.06 -0.04 0.20     

Gender              *-0.50 0.15 -0.79 -0.20 

Time x Gender Wk1             0.18 0.14 -0.10 0.46 

 Wk2             0.24 0.14 -0.04 0.52 

 Wk3             * 0.30 0.15 0.01 0.59 
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 Wk4             0.23 0.16 -0.08 0.53 

 Wk5             0.20 0.15 -0.10 0.50 

 Wk6             0.09 0.15 -0.21 0.39 

 7wk 

post 

            -0.05 0.17 -0.39 0.28 

Intervention x 

Gender 

             0.25 0.22 -0.18 0.68 

Time x Condition x 

Gender 

Wk1             -0.21 0.21 -0.62 0.20 

Wk2             -0.28 0.21 -0.70 0.14 

Wk3             -0.21 0.22 -0.64 0.22 

Wk4             -0.27 0.23 -0.72 0.18 

 Wk5             -0.23 0.23 -0.68 0.22 

 Wk6             -0.17 0.25 -0.64 0.31 

 7wk 

post 

            -0.19 0.25 -0.67 0.29 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time x intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. Model 4 tests 

the moderation effect of gender. SE = standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience 

Measure as measured at baseline; reference level for Time is baseline; reference level for Intervention is Control; reference level for Gender is Female. *p < 0.05, 

n = 136. 
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Table S10. Depression Anxiety Stress Scale (total DASS-21) linear mixed model results 

 
DASS-21 Total Model 1 Model 2 Model 3 

 β SE 95% CI β SE 95% CI β SE 95% CI 

   Lower Upper   Lower Upper   Lower Upper 

Intercept 0.06 0.07 -0.08 0.21 0.06 0.07 -0.07 0.19 0.21 0.12 -0.02 0.44 

Time *-0.23 0.07 -0.36 -0.09 *-0.23 0.07 -0.36 -0.09 -0.13 0.12 -0.36 0.09 

Intervention -0.05 0.10 -0.25 0.15 -0.05 0.09 -0.23 0.13 *-0.35 0.17 -0.68 -0.02 

Time x Intervention 0.02 0.10 -0.17 0.22 0.02 0.10 -0.17 0.22 0.09 0.17 -0.24 0.41 

RRC-ARM     *-0.34 0.07 -0.47 -0.22     

Time x RRC-ARM     0.01 0.07 -0.13 0.15     

Intervention x RRC-ARM     -0.18 0.09 -0.36 0.00     

Time x Intervention x RRC-ARM     * 0.21 0.10 0.01 0.41     

COVID-19 Weeks         -0.06 0.04 -0.13 0.01 

Time x COVID-19 Weeks         -0.04 0.03 -0.10 0.03 

Intervention x COVID-19 Weeks          * 0.11 0.05 0.01 0.21 

Time x Condition x COVID-19 Weeks         -0.02 0.05 -0.12 0.07 

Notes. All model output based on standardised outcomes and DASS-21 scores have been log transformed. Model 1 includes the primary main effects and time 

by intervention interaction. Model 2 tests the moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-

19 restrictions in Australia. SE = standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience 

Measure as measured at baseline; Time indicates change from baseline to 7-weeks post; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S11. DASS-21 Depression linear mixed model results 

 

DASS-21 Depression Model 1 Model 2 Model 3 

 β SE 95% CI β SE 95% CI β SE 95% CI 

   Lower Upper   Lower Upper   Lower Upper 

Intercept -0.03 0.07 -0.18 0.11 -0.04 0.07 -0.16 0.09 0.14 0.12 -0.09 0.38 

Time  0.03 0.07 -0.11 0.18 0.03 0.07 -0.11 0.18 0.08 0.12 -0.16 0.32 

Intervention -0.01 0.10 -0.22 0.19 -0.01 0.09 -0.19 0.17 -0.27 0.17 -0.60 0.07 

Time x Intervention -0.08 0.10 -0.28 0.12 -0.08 0.10 -0.27 0.12 -0.06 0.17 -0.40 0.27 

RRC-ARM     -0.44 0.07 -0.57 -0.32     

Time x RRC-ARM     0.08 0.07 -0.06 0.22     

Intervention x RRC-ARM     -0.12 0.09 -0.30 0.06     

Time x Intervention x RRC-ARM     0.17 0.10 -0.03 0.37     

COVID-19 Weeks         -0.07 0.04 -0.14 0.00 

Time x COVID-19 Weeks         -0.02 0.04 -0.09 0.05 

Intervention x COVID-19 Weeks          0.10 0.05 0.00 0.20 

Time x Condition x COVID-19 Weeks         0.00 0.05 -0.11 0.10 

Notes. All model output based on standardised outcomes and DASS-21 scores have been log transformed. Model 1 includes the primary main effects and time 

by intervention interaction. Model 2 tests the moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-

19 restrictions in Australia. SE = standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience 

Measure as measured at baseline; Time indicates change from baseline to 7-weeks post; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S12. DASS-21 Anxiety linear mixed model results 

 

DASS-21 Anxiety Model 1 Model 2 Model 3 

 β SE 95% CI β SE 95% CI β SE 95% CI 

   Lower Upper   Lower Upper   Lower Upper 

Intercept * 0.15 0.07 0.01 0.29 * 0.15 0.07 0.01 0.28 0.21 0.12 -0.02 0.45 

Time *-0.41 0.08 -0.56 -0.26 *-0.41 0.08 -0.55 -0.26 *-0.30 0.13 -0.55 -0.05 

Intervention -0.06 0.10 -0.26 0.14 -0.06 0.10 -0.25 0.13 *-0.35 0.17 -0.68 -0.02 

Time x Intervention 0.10 0.11 -0.11 0.31 0.10 0.11 -0.11 0.31 0.09 0.18 -0.28 0.45 

RRC-ARM     *-0.25 0.07 -0.39 -0.12     

Time x RRC-RM     0.02 0.08 -0.13 0.17     

Intervention x RRC-ARM     -0.10 0.10 -0.29 0.09     

Time x Intervention x RRC-ARM     0.19 0.11 -0.03 0.40     

COVID-19 Weeks         -0.03 0.04 -0.10 0.04 

Time x COVID-19 Weeks         -0.04 0.04 -0.12 0.04 

Intervention x COVID-19 Weeks          * 0.11 0.05 0.01 0.21 

Time x Condition x COVID-19 Weeks         0.01 0.06 -0.10 0.11 

Notes. All model output based on standardised outcomes and DASS-21 scores have been log transformed. Model 1 includes the primary main effects and time 

by intervention interaction. Model 2 tests the moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-

19 restrictions in Australia. SE = standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience 

Measure as measured at baseline; Time indicates change from baseline to 7-weeks post; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Table S13. DASS-21 Stress linear mixed model results 

 

DASS-21 Stress Model 1 Model 2 Model 3 

 β SE 95% CI β SE 95% CI β SE 95% CI 

   Lower Upper   Lower Upper   Lower Upper 

Intercept 0.06 0.07 -0.08 0.20 0.05 0.07 -0.08 0.19 0.15 0.12 -0.08 0.39 

Time *-0.25 0.07 -0.40 -0.11 *-0.25 0.07 -0.39 -0.11 -0.13 0.12 -0.36 0.11 

Intervention -0.06 0.10 -0.26 0.14 -0.06 0.10 -0.25 0.13 -0.28 0.17 -0.61 0.05 

Time x Intervention 0.07 0.10 -0.14 0.27 0.07 0.10 -0.13 0.27 0.08 0.17 -0.26 0.42 

RRC-ARM     *-0.29 0.07 -0.42 -0.16     

Time x RRC-RM     -0.01 0.08 -0.16 0.14     

Intervention x RRC-ARM     -0.17 0.10 -0.36 0.01     

Time x Intervention x RRC-ARM     0.20 0.11 -0.01 0.41     

COVID-19 Weeks         -0.04 0.04 -0.11 0.03 

Time x COVID-19 Weeks         -0.05 0.04 -0.12 0.02 

Intervention x COVID-19 Weeks          0.08 0.05 -0.02 0.18 

Time x Condition x COVID-19 Weeks         0.00 0.05 -0.11 0.10 

Notes. All model output based on standardised outcomes and DASS-21 scores have been log transformed. Model 1 includes the primary main effects and time 

by intervention interaction. Model 2 tests the moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-

19 restrictions in Australia. SE = standardised standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience 

Measure as measured at baseline; Time indicates change from baseline to 7-weeks post; reference level for Intervention is Control. *p < 0.05, n = 136.
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Table S14. Self-Compassion Scale linear mixed model results 

 
SCS Model 1 Model 2 Model 3 

 β SE 95% CI β SE 95% CI β SE 95% CI 

   Lower Upper   Lower Upper   Lower Upper 

Intercept -0.04 0.07 -0.18 0.11 -0.03 0.07 -0.16 0.10 -0.12 0.12 -0.36 0.11 

Time 0.02 0.06 -0.09 0.13 0.02 0.06 -0.09 0.13 -0.09 0.10 -0.28 0.10 

Intervention 0.05 0.11 -0.15 0.26 0.05 0.10 -0.14 0.24 0.20 0.17 -0.14 0.54 

Time x Intervention -0.12 0.08 -0.28 0.04 -0.12 0.08 -0.28 0.04 0.03 0.14 -0.23 0.30 

RRC-ARM     * 0.42 0.07 0.29 0.55     

Time x RRC-ARM     -0.03 0.06 -0.15 0.08     

Intervention x RRC-ARM     0.01 0.10 -0.18 0.19     

Time x Intervention x RRC-ARM     -0.06 0.08 -0.22 0.11     

COVID-19 Weeks         0.03 0.04 -0.04 0.11 

Time x COVID-19 Weeks         0.04 0.03 -0.02 0.10 

Intervention x COVID-19 Weeks          -0.06 0.05 -0.16 0.05 

Time x Condition x COVID-19 Weeks         -0.06 0.04 -0.14 0.03 

Notes. All model output based on standardised outcomes. Model 1 includes the primary main effects and time by intervention interaction. Model 2 tests the 

moderation effect of resiliency resources. Model 3 tests the moderation effect of time relative to the start of COVID-19 restrictions in Australia. SE = standardised 

standard error; 95% CI = 95% confidence interval; RRC-ARM = Resilience Resource Centre Adult Resilience Measure as measured at baseline; Time indicates 

change from baseline to 7-weeks post; reference level for Intervention is Control. *p < 0.05, n = 136. 
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Until recently, mental wellbeing was largely understood only as far as its relationship 

to mental illness. This has left significant gaps in the current understanding of mental 

wellbeing, including its underlying neural mechanisms, how it is best promoted, and 

identifying what makes individuals predisposed to high or low levels of wellbeing. This 

thesis aimed to explore potential electrophysiological endophenotypes for mental wellbeing, 

namely resting EEG, emotional event-related potentials (ERPs), and cognitive ERPs, that 

might be used to indicate genetic predisposition towards wellbeing and predict 

responsiveness to treatments such as positive psychology interventions (PPIs). Chapters 2, 3, 

and 4 focused on exploring potential electrophysiological correlates of mental wellbeing and 

depression/anxiety symptoms that could be used as candidate endophenotypes. Chapter 5 

presented the results of a randomised controlled trial that aimed to test the effectiveness of a 

short online PPI in improving mental wellbeing relative to an active control group. This 

intervention may be used in future trials in conjunction with EEG measures to investigate 

whether electrophysiological measures can predict early responsivity to PPIs. This discussion 

provides an overview of the conclusions from each study, followed by a discussion of 

implications of the results, limitations, and future research directions.  

6.1. Resting EEG as a marker of mental wellbeing 

 The aim of Chapter 2 was to investigate the previously unexplored relationship 

between absolute resting EEG power and mental wellbeing. Resting EEG power captures 

spontaneous brain activity independent from task demands, similar to the default mode 

network examined in fMRI research (Knyazev et al., 2011; Neuner et al., 2014). Although the 

default mode network has been previously associated with mental wellbeing (Luo et al., 

2016), links between resting EEG power and mental wellbeing have been limited to alpha 

asymmetry studies (Alessandri et al., 2015; Urry et al., 2004; Xu et al., 2018). In clinical 

research, absolute resting EEG power, especially increased alpha and beta power, has been 



276 

 

associated with depression, anxiety, and stress (Grin-Yatsenko et al., 2009; Knyazev et al., 

2006; Schutter & van Honk, 2005; van Peer, 2008), suggesting potential for a relationship 

between absolute power and wellbeing. Therefore, the first aim of Chapter 2 was to explore 

the association between mental wellbeing and EEG, including both alpha asymmetry and 

absolute resting EEG power. 

 Previous studies have estimated the heritability of absolute resting EEG power to be 

very high (h2 = 0.80-0.90) (McLoughlin et al., 2014; Smit et al., 2005), while the heritability 

of alpha asymmetry is very low (h2 = 0.0-0.27) (Anokhin et al., 2006). This means that while 

alpha asymmetry might be useful as a state biomarker of mental wellbeing (Urry et al., 2004; 

Xu et al., 2018), it is not regarded as a candidate endophenotype (Anokhin et al., 2006; 

McLoughlin et al., 2014). Should absolute resting EEG power be associated with wellbeing, 

its high heritability would make it a more promising candidate endophenotype for mental 

wellbeing. Thus, the second aim of Chapter 2 was to estimate the heritability of resting EEG 

power and to assess whether a genetic correlation between wellbeing and resting EEG power 

accounts for any observed associations between them.  

 In contrast to previous studies which have found associations between wellbeing and 

alpha asymmetry (Alessandri et al., 2015; Urry et al., 2004), the current investigation found 

no such relationship. This could be due to the sensitivity of alpha asymmetry to daily 

fluctuations in mood and other situational factors that were not controlled for in the current 

study (Harmon‐Jones & Gable, 2018). A novel association, however, was identified between 

a specific profile of alpha, beta, and delta power (ABD) with mental wellbeing, where high 

alpha and delta power combined with low beta power was associated with greater wellbeing, 

independent from depression/anxiety symptoms. Most past research has focused on the 

relationship between individual frequency bands and mental illnesses such as depression or 

anxiety (Fingelkurts & Fingelkurts, 2015; Grin-Yatsenko et al., 2009). However, some 
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findings have indicated that coupling between different frequency bands, suggesting that the 

pattern of both frequencies increasing and decreasing in unison, may be more relevant to 

mental states including stress and anxiety than individual frequencies (Knyazev et al., 2006; 

Schutter & van Honk, 2005; van Peer, 2008). The current results extend these findings to 

mental wellbeing, showing that the interactions between different frequencies are a better 

predictor of wellbeing than individual frequencies. Past studies have associated increased 

alpha power with more severe depressive symptoms (Fingelkurts & Fingelkurts, 2015), but 

this is usually reported in the presence of higher beta power also (Grin-Yatsenko et al., 2009). 

Here, higher alpha power was found to indicate higher wellbeing when beta power was also 

low and delta power was high. Given that alpha power is associated with greater internal 

attention including mind wandering (Arnau et al., 2020; Benedek et al., 2014; Ceh et al., 

2020), whereas beta power has been associated with depressive rumination (Ferdek et al., 

2016), and delta power is associated with reward processing (Knyazev, 2012), the ABD 

profile may be indicative of more positive mind wandering in individuals with high 

wellbeing. Further research into how these frequencies interact to indicate higher wellbeing is 

warranted.  

The univariate heritability analysis confirmed that both this ABD profile and mental 

wellbeing were moderately heritable (h2 = 0.37 and 0.39, respectively). Thus, a multivariate 

correlated factors model was conducted to estimate the degree to which environmental and 

genetic factors accounted for the observed association. This analysis found that 93.7% of the 

phenotypic correlation between mental wellbeing and the ABD profile was attributed to a 

genetic correlation, suggesting that common genes explain variance in ABD power and 

mental wellbeing. This finding suggests that resting EEG power can serve as a candidate 

endophenotype for mental wellbeing. Endophenotypes are relatively stable, heritable 

physiological traits that can be used to indicate one’s predisposition towards certain 
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phenotypes (Gottesman & Gould, 2003; McLoughlin et al., 2014). While the ABD profile 

identified here appears to meet this criteria, further work is needed to assess the stability of 

this profile over time and evaluate its use in predicting long-term wellbeing outcomes. While 

individual frequency bands are relatively stable over time (Smit et al., 2005), the lower 

heritability of the ABD profile relative to individual frequencies in the current study suggest 

that this ABD profile might be less stable than individual frequencies. Thus, it is worth 

investigating whether this resting EEG profile changes with one’s current state of wellbeing 

or if it is a more stable indicator of one’s predisposition towards experiencing higher 

wellbeing. 

6.2. Emotional face processing and mental health 

Following evidence that resting EEG power is associated with mental wellbeing, the 

next aim, explored in Chapters 3 and 4, was to investigate whether task-related processes 

measured using ERPs are associated with mental wellbeing. Chapter 3 specifically focused 

on exploring the relationship between mental wellbeing and emotional face processing. 

Alterations to emotional face processing have been found in clinical and subclinical samples 

with depression and anxiety, usually supporting a mood-congruency bias indicated by faster 

and more accurate behavioural responses and enhanced ERP amplitudes to negative stimuli 

(Chen et al., 2014; Dai & Feng, 2012; Weightman et al., 2014; Williams et al., 2007; Zhang 

et al., 2016). Although ERP components including the VPP and N170 are typically sensitive 

to different emotional expressions in healthy samples (Hinojosa et al., 2015; Smith et al., 

2013), some studies have found these emotion-sensitive effects to be diminished in clinical, 

subclinical, and at-risk groups (Chen et al., 2014; Watters et al., 2018; Zhang et al., 2016). 

While no prior studies have examined the association between mental wellbeing and emotion 

processing using ERPs, behavioural and fMRI results from the TWIN-E study found that 

wellbeing was associated with faster processing of happy expressions indicated through 
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behavioural performance (Routledge et al., 2018), and greater activation of the inferior 

frontal gyrus for happy relative to neutral expressions using fMRI (Park et al., 2021). Chapter 

3 aimed to extend upon these findings using ERP methods. Given that past research has 

found differential associations between subclinical symptoms of depression and anxiety with 

conscious compared to subconscious processing (Williams et al., 2007), both masked 

(subconscious) and unmasked (conscious) viewing conditions were examined. 

 The second aim of Chapter 2 was to assess the heritability of emotion-sensitive ERPs. 

Although past research has estimated the heritability of emotion-related ERP to be 

moderately heritable (h2 = 0.42–0.64) (Anokhin et al., 2010), these estimates were based on 

ERP amplitude for each emotion condition, without necessarily capturing emotion-specific 

effects by either subtracting or regressing out variance associated with neutral face 

processing. As variation in emotion-specific processing is of interest to clinical research, a 

previous study aimed to address this gap by estimating the heritability of the N170 and P200 

for fearful faces after regressing out variance shared with neutral faces (Shannon et al., 2013). 

The authors found no evidence that fear-specific processing was significantly heritable. 

However, as only fearful expressions were assessed, the study did not assess whether the 

processing of other emotional expressions, including sad and happy expressions, were 

heritable. Here, it was important to test whether the processing of other emotional 

expressions is heritable to clarify their potential use as candidate endophenotypes, as has been 

suggested previously (Anokhin et al., 2010). Therefore, the second aim of Chapter 3 was to 

investigate the heritability of emotion-specific processing for each ERP component of 

interest, and test whether any associations found between emotional processing and mental 

wellbeing could be explained by a genetic correlation, similar to Chapter 2. 

 In contrast to previous findings from the TWIN-E sample (Park et al., 2021; 

Routledge et al., 2018), no association was found between emotion-specific processing and 
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mental wellbeing after correcting the false discovery rate. However, a significant association 

was found between depression/anxiety symptoms and N170 amplitude for Fearful relative to 

Happy expressions within the masked condition, whereby high depression/anxiety symptoms 

were associated with a lack of N170 differentiation between fearful and happy facial 

expressions. This effect remained significant when covarying for wellbeing, indicating that 

depression/anxiety symptoms are associated with reduced differentiation between these 

emotions regardless of levels of wellbeing. The finding that early emotional processing was 

associated with depression/anxiety symptoms aligns with previous research showing a lack of 

neural differentiation between different emotional expressions in clinical and at-risk groups 

(Chen et al., 2014; Watters et al., 2018; Zhang et al., 2016) and shows that these alterations 

can extend to even low symptom levels. However, the lack of an association with mental 

wellbeing is at odds with past findings from the larger TWIN-E study which associated 

higher mental wellbeing with faster reaction times (Routledge et al., 2018) and greater 

activation of the right inferior frontal gyrus (Park et al., 2021). These past findings would 

suggest that wellbeing is associated with changes to the neural processing of happy faces, 

however, the current results did not support this. Yet, as only early ERPs were examined here 

(i.e., ERPs within 300 msec of stimulus onset), it is possible that associations between 

wellbeing and emotional processing emerge in later stages of processing, which would be 

better captured by fMRI or later ERPs. For instance, the late positive potential (LPP) is a an 

ERP emerging around 300 msec that lasts for the duration of stimulus presentation and 

captures emotional arousal and elaborative processing of emotional stimuli (Cuthbert et al., 

2000; Myruski et al., 2019). LPP activity has also been linked to activation in the right 

inferior frontal gyrus (Matsuda & Nittono, 2015), which has shown increased activation in 

response to happy relative to neutral faces in individuals with high wellbeing (Park et al., 
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2021). Future research using longer stimulus presentation and inter-stimulus intervals could 

be used to assess whether the LPP is altered in association with wellbeing.  

While the univariate heritability analysis found evidence that some components of 

disgusted, sad, and angry face processing was somewhat heritable (h2 = 0.19-0.26), these 

components were not significantly associated with either mental wellbeing or 

depression/anxiety symptoms in the current sample. However, alterations to the processing of 

sad and disgusted faces have been reported in individuals who are either clinically depressed 

(Chen et al., 2014; Zhang et al., 2016) or have familial risk for depression (Watters et al., 

2018). Thus, while these ERP indices are unlikely to prove useful as markers of wellbeing, 

they might yet show potential use as markers capturing heritable risk for depression within 

clinical populations.  

6.3. Cognitive processing and mental health 

Where Chapter 3 aimed to investigate the associations between mental health and 

emotion processing, Chapter 4 aimed to investigate the associations with cognition. Past 

evidence has indicated that both wellbeing and the experience of positive emotions are 

associated with similar improvements in cognitive processing. These alterations have been 

more extensively researched in the context of positive emotions, where they have been found 

to broaden attentional scope (Fredrickson, 2001; Putkinen et al., 2017; Vanlessen et al., 

2014), improve attentional control and inhibition (Dreisbach & Goschke, 2004; Paul et al., 

2021; Vanlessen et al., 2015, 2016), and improve working memory (Gray, 2001; Storbeck & 

Maswood, 2016). Similar effects have been reported to be associated with wellbeing, where 

higher subjective wellbeing has been linked with improvements in working memory, 

inhibition, sustained attention, and general cognitive ability (Lee & Chao, 2012; Llewellyn et 

al., 2008; Pe et al., 2013; Routledge et al., 2017). Given these similarities, it could be 
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expected that mental wellbeing would also be associated with alterations in ERPs, which 

have previously been associated with positive emotions (Putkinen et al., 2017; Vanlessen et 

al., 2014, 2015) and mental illness (Bernat et al., 2020; Kaiser et al., 2003; Xia et al., 2020), 

but not tested for wellbeing in a healthy population.  

 The first aim of Chapter 4 was to investigate the associations between mental 

wellbeing, depression/anxiety symptoms, and cognitive ERPs. Namely, the P3b, novelty P3a, 

and inhibitory N2 and P3a components were investigated on the basis of prior research. The 

P3b component has been used to investigate attention and working memory in positive 

emotions (Putkinen et al., 2017; Vanlessen et al., 2014) and in clinical depression and anxiety 

(Bernat et al., 2020; Bruder et al., 2009; Deldin et al., 2001). Meanwhile, the N2 has been 

reportedly enhanced in positive emotional states relative to neutral states (Vanlessen et al., 

2014), and both the N2 and inhibitory P3a are reportedly reduced in depressed and anxious 

samples (Kaiser et al., 2003; Katz et al., 2010; Ruchsow et al., 2008; Xia et al., 2020). The 

novelty P3a component has also been recently identified as a marker of psychopathology risk 

(Bernat et al., 2020), but has not previously been investigated in the context of positive 

emotions. Thus, these components were the ERPs of interest for Chapter 4, assessed using an 

auditory oddball paradigm (P3b), an n-back paradigm with novel distractors (P3b and novelty 

P3a), and a go/no-go paradigm (N2 and inhibitory P3a). In addition, to assess the potential 

use of these components as candidate endophenotypes for wellbeing and to replicate past 

findings (Anokhin et al., 2017; Smit et al., 2007; van Beijsterveldt & van Baal, 2002), the 

heritability of all components was also assessed in Chapter 4.  

The results of Chapter 4 showed that despite behavioural associations between 

cognitive function and both wellbeing and depression/anxiety symptoms emerging within the 

auditory oddball and n-back task, none of the ERPs of interest were associated with either 

mental wellbeing or depression/anxiety symptoms within the TWIN-E sample. Furthermore, 
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unlike behavioural results reported in past studies, including the larger TWIN-E study (Lee & 

Chao, 2012; Routledge et al., 2017), no association was found between wellbeing or 

depression/anxiety symptoms with inhibition in the current subsample. Given past indications 

that ERP indices are more sensitive to detecting differences in cognitive function than 

behavioural indices (Vanlessen et al., 2014), it was surprising that none of the ERPs of 

interest were associated with mental health outcomes. This could be an indication that the 

effects of wellbeing on cognition are small and might only be detectable in larger samples 

(Routledge et al., 2017) or when using more challenging tasks, such as the inhibition of 

reflexes (Lee & Chao, 2012; Vanlessen et al., 2015), higher working memory load (Pe et al., 

2013; Storbeck & Maswood, 2016), or dual-task paradigms (Putkinen et al., 2017; Vanlessen 

et al., 2014). It is also possible that later cognitive processes, such as error-monitoring 

captured in the error-related negativity (ERN) component, play a stronger role in 

performance differences between individuals with higher relative to lower wellbeing. The 

ERN is a negative-going component that is elicited within 100 msec of making a commission 

error, with larger amplitudes correlated with better behavioural performance (Weinberg et al., 

2015). Although the ERN has not yet been associated with mental wellbeing, previous work 

has indicated that positive moods increase ERN amplitude (Bakic et al., 2014), which could 

indicate better performance monitoring and explain why positive moods and wellbeing are 

associated with better behavioural performance. While the ERN could not be examined in the 

current cognitive tasks because more commission errors are needed for the ERN to be reliable 

(Meyer et al., 2013), including slightly more difficult tasks in future research would allow for 

the investigation of this component.  

The univariate heritability analysis revealed that all the ERPs of interest apart from 

the novelty P3a were moderately heritable, in line with past research (Anokhin et al., 2017; 

Smit et al., 2007; van Beijsterveldt & van Baal, 2002). In contrast, the novelty P3a was 
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explained best by common and unique environmental factors. As no previous studies have 

estimated the heritability of the novelty P3a component, the finding that P3a amplitude is 

explained primarily by common and unique environmental effects should be confirmed in 

future research. In conclusion, Chapter 4 found that while cognitive ERPs may serve as 

candidate endophenotypes for mental disorders, there is currently no evidence that they are 

associated with wellbeing. 

6.4. Effectiveness of positive psychology interventions 

Following the investigation of potential endophenotype markers of mental wellbeing 

in Chapters 2 to 4, the aim of Chapter 5 was to test the efficacy of a short, online PPI. Such 

an intervention, if effective, could be used in future research to investigate whether EEG 

measures can predict early reactivity, and whether changes in wellbeing from participating in 

the intervention can alter EEG activity. Due to the introduction of COVID-19 restrictions 

during the pilot trial, the EEG component was not feasible. Therefore, Chapter 5 focused on 

assessing the efficacy of the intervention during the early stages of the ongoing pandemic. 

Although previous studies, including meta-analyses, have supported the effectiveness of PPIs 

in improving subjective and psychological wellbeing, the same meta-analyses reported 

significant heterogeneity between individual intervention programs (Bolier et al., 2013; 

Hendriks et al., 2020). A short but effective online intervention was desired to improve the 

feasibility of repeating the intervention with EEG measures. However, as different 

intervention durations and delivery modes (face to face vs. online) have been suggested to be 

sources of heterogeneity among PPIs (Bolier et al., 2013), it was possible that a short, online 

intervention might not be effective. Therefore, the intervention program developed and 

assessed in Chapter 5 was designed to assess whether such an intervention would remain 

effective in improving mental wellbeing against an active control group. 
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 Based on previous research indicating that the added variety of multi-component PPIs 

may increase their efficacy (Proyer et al., 2015; Sheldon et al., 2013), but that two to four 

interventions was more effective than up to six (Parks et al., 2012), a program of three 

modules was chosen. These modules included acts of kindness, positive reminiscence, and 

self-compassion, based on prior evidence of their effectiveness (Curry et al., 2018; Hallford 

& Mellor, 2016; Pinquart & Forstmeier, 2012; Zessin et al., 2015). To evaluate whether these 

activities were more effective than active control tasks, acts of novelty, neutral reminiscence, 

and self-esteem conditions were used in the control group. These control activities used 

similar elements to each of the intervention tasks, but omitted key aspects believed to 

contribute to their positive effects on wellbeing. The efficacy of the interventions was 

assessed in the current study using the COMPAS-W wellbeing scale (Gatt et al., 2012), the 

Satisfaction With Life Scale (Diener et al., 1985), the Self-Compassion Scale (Neff, 2003), 

and the Depression, Anxiety, Stress Scale (Lovibond & Lovibond, 1995). Furthermore, to test 

whether the efficacy of treatment was related to pre-existing resiliency resources such as 

social support, the Resilience Research Centre – Adult Resilience Measure (RRC-ARM) was 

also included and investigated as a moderator in the analyses (Liebenberg & Moore, 2018).  

 The results showed significantly greater improvement in life satisfaction, measured 

using both the COMPAS-W Satisfaction subscale (Gatt et al., 2014), and the Satisfaction 

With Life Scale (Diener et al., 1985). This effect remained significant when covarying for 

ongoing COVID-19 restrictions, indicating that the intervention was effective in improving 

subjective wellbeing even during an ongoing stressful event. Additionally, the intervention 

group showed improvement in COMPAS-W Own-worth, but this effect was lost when 

accounting for COVID-19 restrictions. In contrast, a positive effect of the intervention on 

COMPAS-W Positivity emerged only after accounting for COVID-19 restrictions. The 

moderation analysis revealed that the positive effects of the program on both mental 
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wellbeing and on depression/anxiety symptoms were larger in individuals with lower 

resiliency resources at the start of the program; these individuals also tended to have lower 

mental wellbeing scores at baseline. It is noted that the while the intervention did improve 

composite wellbeing when controlling for COVID-19 restrictions, this was driven by 

improvements in subjective components of wellbeing rather than improvements in 

psychological components. This could be due to the short duration of the program as previous 

programs targeting psychological wellbeing outcomes have tended to be of longer duration, 

around 12 weeks on average (Bolier et al., 2013; Hendriks et al., 2020). This has implications 

for using the intervention program to investigate how markers of composite wellbeing, such 

as resting EEG, change over time. 

The positive effect of the intervention on subjective and composite wellbeing is in 

line with past online PPI studies that have used waitlist control groups (Drozd et al., 2014; 

Feicht et al., 2013; Schotanus-Dijkstra et al., 2017). However, some previous studies using 

active control groups similar to the present study have failed to find significant improvements 

in wellbeing (Joutsenniemi et al., 2014; Moskowitz et al., 2017), although a phone-based 

program in older adults did find a positive effect of a PPI program over an active control 

(Hausmann et al., 2017). The finding that online interventions are significantly more effective 

than control tasks over a short period has positive implications for public health programs. 

Because online interventions are cost-effective, they can be used to reach large populations 

including individuals who might otherwise be difficult to reach (Bolier et al., 2013). 

Furthermore, even small effect sizes can have large public health benefits when applied to a 

large population (Huppert, 2009). Finally, as intervention effectiveness was mediated by 

baseline resiliency resources whereby individuals with fewer support resources available to 

them at the start of the intervention benefitted more than those with more available support 



287 

resources, this suggests that these programs could be targeted towards more vulnerable 

groups who need the support.  

6.5. Results summary and implications 

Taken together, this thesis provides a thorough investigation into the 

electrophysiological correlates of mental wellbeing. The key finding was that resting EEG 

measures, specifically the profile of alpha, beta, and delta power, are significantly associated 

with mental wellbeing within a healthy sample, regardless of concurrent depression/anxiety 

symptoms. Meanwhile, emotional and cognitive ERPs were not significantly associated with 

mental wellbeing when accounting for depression/anxiety symptoms. While resting EEG and 

ERPs are both heritable, the current findings can only suggest that resting EEG serves as a 

viable candidate endophenotype for wellbeing, as only resting EEG power was significantly 

associated with wellbeing. This was supported by a multivariate correlated factors model 

which confirmed that the association between resting EEG and mental wellbeing was 

primarily explained by a genetic correlation. Finally, the efficacy of a short online PPI was 

assessed to facilitate the investigation into whether resting EEG predicts early responsivity to 

PPIs and whether changes in wellbeing are reflected in EEG measures. Although the ongoing 

COVID-19 pandemic made it unfeasible to carry out the planned follow-up study, the 

intervention was found to significantly improve subjective wellbeing relative to an active 

control group within six weeks. Thus, this thesis has substantially progressed current 

understanding of the electrophysiological correlates of mental wellbeing and ways to promote 

it.  

These findings have implications for understanding the neural basis of mental 

wellbeing and the search for more effective interventions. First, the finding that resting EEG, 

but not task-based ERP measures, were associated with mental wellbeing suggests that what 
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the mind is doing at rest may be more important for mental wellbeing than how specific 

stimuli is processed. This would be consistent with the previous work showing that activation 

in the default mode network is associated with wellbeing (Luo et al., 2016), and that the 

contents of a person’s thoughts is a better predictor of happiness than how they spend their 

time (Killingsworth & Gilbert, 2010). For instance, participants who spent more time 

thinking about their current activities or in engaging in pleasant mind wandering were 

happier than those who spent more time engaged in neutral or unpleasant forms of mind 

wandering (Killingsworth & Gilbert, 2010). Resting EEG power, specifically alpha power, 

has previously been shown to increase during mind wandering (Arnau et al., 2020; Ceh et al., 

2020). Meanwhile, increases in beta power have been associated with rumination (Ferdek et 

al., 2016), and delta power has been associated with both reward processes and inattention. It 

would be worth investigating in future research whether the ABD profile is indicative of 

certain thought processes like pleasant mind wandering to determine if this would explain the 

observed association with wellbeing.  

Second, the finding that mental wellbeing was not significantly associated with early 

emotional and cognitive ERPs but was associated with behavioural performance on these 

tasks (Routledge et al., 2017, 2018), suggests that the behavioural effects are possibly driven 

by alterations in later stages of processing not evaluated here. Later ERPs that could be 

examined in future research include the LPP and ERN components. The LPP reflects more 

elaborative emotion-related processes and has been associated with activation in the right IFG 

(Matsuda & Nittono, 2015; Myruski et al., 2019). The same region was found to show greater 

activation for happy relative to neutral faces in individuals with high wellbeing using fMRI 

(Park et al., 2021). Thus, alterations to the LPP component could help explain why 

individuals with higher wellbeing were faster at identifying happy faces (Routledge et al., 

2018). For the cognitive tasks, investigating the ERN component would be useful to 
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potentially explain why behavioural performance was improved in individuals with higher 

wellbeing as this component is involved in performance monitoring and larger ERN 

components are associated with better task performance (Weinberg et al., 2015).  

The results from the PPI trial provide evidence that online interventions can 

outperform active control tasks in improving wellbeing within a period as short as six weeks. 

Most previous online PPI studies have instead used waitlist control groups (e.g., Drozd et al., 

2014; Feicht et al., 2013; Schotanus-Dijkstra et al., 2017), leaving it unclear whether the 

positive effects of PPIs were due to placebo effects or more general positive effects from 

trying new activities (Buchanan & Bardi, 2010). Furthermore, some previous studies using 

short, online interventions with active control groups have reported no significant 

improvements in wellbeing for the intervention group relative to controls (e.g., Joutsenniemi 

et al., 2014; Moskowitz et al., 2017). Thus, the current results show that even short, online 

interventions can improve mental wellbeing, albeit with a small effect size (estimated 

Cohen’s d of 0.18-0.23). The type of intervention activities chosen might contribute to 

heterogeneity between studies (Bolier et al., 2013). The present intervention activities (i.e., 

acts of kindness, positive reminiscence, and self-compassion) were chosen based on previous 

meta-analytic evidence of their effectiveness (Curry et al., 2018; Pinquart & Forstmeier, 

2012; Zessin et al., 2015). Each of these interventions is designed to promote a positive view 

of oneself (Hallford & Mellor, 2016; Neff, 2003). Similarly, the acts of kindness activity can 

help interrupt negative thought patterns such as rumination by engendering positive thoughts 

about oneself and others (Layous et al., 2014).  

Finally, this thesis supports the dual-factor theory of mental health, whereby mental 

illness and mental wellbeing represent two distinct components of mental health (Greenspoon 

& Saklofske, 2001; Keyes, 2005; Suldo & Shaffer, 2008). For instance, the association 

between a resting ABD profile and wellbeing was independent from mental illness 



290 

symptoms, and alterations to emotion processing were associated with depression/anxiety 

symptoms, but not with mental wellbeing. This supports the idea that markers of wellbeing 

are not necessarily the same as markers of depression/anxiety symptoms, and that markers of 

wellbeing should be studied in addition to markers of mental illness and related symptoms. 

Further implications for mental wellbeing come from the intervention trial, which was found 

to mostly improve subjective components of wellbeing rather than psychological components 

within the COMPAS-W wellbeing scale. Given that there was been ongoing debate regarding 

whether subjective and psychological wellbeing are distinct forms of wellbeing (Disabato et 

al., 2016; Goodman et al., 2018), it is theoretically important to know that subjective and 

psychological wellbeing components are not equally improved though the PPIs selected here, 

suggesting different underlying mechanisms for each. It is possible that the same activities 

could influence psychological wellbeing if practised for a longer time period such as twelve 

weeks (Hendriks et al., 2020). Alternatively, psychological components might be more 

responsive to interventions that have more focus on autonomy, mastery or life purpose, such 

as goal setting (Thorsteinsen & Vittersø, 2018).  

6.6. Limitations 

The studies discussed in the current thesis should be interpreted in light of their 

limitations relating to sample characteristics, study design, and statistical models used.  

6.6.1. Sample characteristics 

6.6.1.1. TWIN-E sample 

The TWIN-E study sample was used in Chapters 2, 3, and 4. This sample was 

selected for the primary purpose of investigating variation within a healthy sample without a 

history of mental illness (Gatt et al., 2012). This meant that certain exclusion criteria had to 

be applied which may limit the generalisability of the results. More specifically, individuals 
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were excluded if they reported a history of previous mental disorder, or current mental 

illness, if they were under 18 or over 65 years of age to avoid potential confounding with 

mental illness or developmental differences. Furthermore, to facilitate genomic analyses 

(reported elsewhere) and heritability analyses, the sample was limited to Australians of 

European descent and same-sex twin pairs. While these choices were made in line with the 

study aims, it is possible that the findings might not generalise to more diverse populations 

with varying levels of wellbeing and mental health status (past or present). Furthermore, the 

current sample was highly educated with 73% of participants completing training beyond 

high school compared to 51% of the general Australian population at the time the TWIN-E 

data was collected (Australian Bureau of Statistics, 2016). Higher education could also be 

associated with higher household income and other environmental factors known to influence 

mental wellbeing but not accounted for here (Diener & Biswas-Diener, 2009; Kristoffersen, 

2018). These participants’ characteristics might therefore reduce the generalisability of the 

current findings to individuals with lower education or socio-economic status. The results 

should therefore be replicated in more diverse samples, including individuals with current or 

past history of mental illness. This would help clarify whether markers of wellbeing, such as 

resting EEG power, remain independent from mental illness symptoms when including a 

broader range of symptom levels. 

6.6.1.2. Intervention sample 

Although the intervention trial described in Chapter 5 was based on an independent 

sample without exclusion criteria as used in the twin study, it was based on a convenience 

sample of first-year psychology students. University students make up a significant 

proportion of participants in psychological studies globally due to the ease of recruitment 

(Peterson, 2001; Peterson & Merunka, 2014). However, it has been previously shown that 
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university samples are homogenous (Peterson, 2001), and are not representative of the 

general population (Hanel & Vione, 2016), which could limit the generalisability of the 

results. However, similar PPI trials have been conducted in diverse samples including young 

to older adults (Hallford & Mellor, 2016; Pinquart & Forstmeier, 2012), clinical groups (e.g., 

Hausmann et al., 2017), and different cultures (Hendriks et al., 2018). Thus, the reported 

intervention effects are expected to generalise beyond the student population included in the 

present study. 

A potentially more concerning aspect of the intervention sample was the high rate of 

attrition. Of the 326 participants who completed at least one week of the intervention, only 

173 completed week six, indicating an attrition rate of 47%. Although this high attrition rate 

is similar to other online interventions (e.g., Schueller & Parks, 2012), it does raise concerns 

about the generalisability of the results. It is possible that individuals who did not complete 

the study were predominantly individuals with poor early reactivity to the intervention, who 

have been shown previously to engage less with PPIs than those who initially respond well to 

the intervention (Cohn & Fredrickson, 2010; Proyer et al., 2015). The results also showed 

that drop-outs had lower life satisfaction, and higher depression, anxiety, and stress 

symptoms than continuers, which could contribute to an apparent increase in mean wellbeing 

over the course of the intervention. Multiple imputation and an intention-to-treat analysis 

were used to reduce the potential bias in the results (Kenward & Carpenter, 2007; White et 

al., 2012); however, replicating the study with lower attrition rates would be ideal. It is 

possible that including in-person assessments at the beginning and end of an online 

interventions program could help to reduce attrition (e.g., Kushlev et al., 2020), which might 

bring the attrition rate of otherwise online studies closer to that of in-person studies 

(Balakrishnan et al., 2014). However, it is noted that such an approach would not have been 

feasible within the context of the COVID-19 pandemic because of restrictions limiting in-
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person testing. Furthermore, COVID-19 might have played a direct role in increasing the 

attrition rate in the current study as participant retention was lower during the third data 

collection wave in 2020 relative to the initial waves of data collection that took place in 2019. 

Regardless, efforts should be made in future work to increase participant retention by 

including in-person assessments or providing a monetary incentive for completing all 

components (Balakrishnan et al., 2014). 

6.6.2. Study design 

6.6.2.1. Self-report measures 

All the primary outcome measures of this thesis were based on self-report measures. 

These included measures of wellbeing (Diener et al., 1985; Gatt et al., 2014), depression, 

anxiety and stress symptoms (Cohen et al., 1983; Lovibond & Lovibond, 1995), resiliency 

resources (Liebenberg & Moore, 2018), and self-compassion (Neff, 2003). Each of the 

selected measures have been previously applied and validated within a range of different 

samples. Although self-report measures can be potentially limited by social desirability bias 

(Heintzelman et al., 2015; Perinelli & Gremigni, 2016) and demand characteristics (Nichols 

& Maner, 2008), they are arguably the best available measure for capturing participants’ 

psychological states for the constructs examined here due to the personal insight that 

participants have about their own mental states (Haeffel & Howard, 2010). Regardless, 

including social desirability measures in future studies to control for potential positive 

response bias may still be useful to ensure that the associations reported here are truly 

reflective of wellbeing and not response biases. 

Another consideration regarding the chosen measures is that the conclusions of this 

research were based primarily on two self-report measures: the COMPAS-W for wellbeing 

and the DASS-42 for depression/anxiety symptoms. This raises the question of whether the 
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results will generalise when other measures of wellbeing or depression/anxiety symptoms are 

used. Both of these measures have been validated against other measures of similar 

constructs. For instance, the COMPAS-W was moderately correlated with the Satisfaction 

with Life Scale and with other constructs well-recognised to be related to mental wellbeing 

such as extraversion and neuroticism (Gatt et al., 2014). The DASS-42 has also been 

validated against other measures of depression and anxiety, showing strong correlations with 

other measures of depression and anxiety, including the Hospital Depression and Anxiety 

Scale (Crawford & Henry, 2003). Therefore, while a limited set of measures were used in the 

current project, these measures have been shown to be associated with other related 

constructs, indicating that the results would generalise to other related measures.  

6.6.2.2. Online data collection 

Both the TWIN-E sample and the intervention samples’ questionnaire data were 

collected online. Concerns have been raised about the quality of data collected online due to 

inattentiveness or intentional misrepresentation (Johnson, 2005). Participants in online 

studies might have more distractions present, they might multi-task, or complete measures 

more quickly. However, more recent studies of online samples have found similar data 

quality and experimental results for online compared to lab-based samples, suggesting they 

are equivalent measures (Crump et al., 2013; Germine et al., 2012). Larger samples can also 

be recruited online, which can help reduce measurement error resulting from the slightly 

poorer data quality of online samples (Brown et al., 2014; Stewart et al., 2017). Finally, the 

COMPAS-W questionnaire, which was the primary outcome measure of this thesis, was 

validated online and includes reverse-scored items to reduce the impact of inaccurate 

responding (Gatt et al., 2014). 
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Within the TWIN-E study, it is noted that the online questionnaires took place at a 

different point in time to the EEG measures, with the median time difference between the 

online data collection and in-person data collection being three months. However, wellbeing, 

which was the primary outcome measure, was found to be relatively stable over a 12-month 

period with an intra-class correlation of 0.82 (Jamshidi et al., 2020). Thus, the delay in testing 

was not expected to have significant implications for the associations between wellbeing and 

the electrophysiological measures included here. However, the delay may have impacted 

associations with less stable constructs such as positive mood or depression/anxiety 

symptoms. This might explain why no association was found between alpha asymmetry and 

wellbeing, in contrast with previous reports (Alessandri et al., 2015; Urry et al., 2004), as 

alpha asymmetry is more sensitive to one’s current mood than resting EEG measures 

(Harmon‐Jones & Gable, 2018) and less heritable (Anokhin et al., 2006). It might have also 

reduced the strength of the association between wellbeing and cognitive ERPs because 

cognitive ERPs are known to vary with one’s current mood (Vanlessen et al., 2014, 2015), 

which is likely to vary between the online and in-person session. However, the ERPs tested 

have shown high test-retest reliability (0.74-0.86) (Williams et al., 2005) and the behavioural 

data collected within the ERP session for the cognitive tasks was still significantly associated 

with mental wellbeing and depression/anxiety symptoms despite the measurement gap. As 

such, it is expected that the gap in testing would have a relatively minor impact on the results. 

6.6.2.3. Emotion and cognitive paradigms 

Chapters 3 and 4 assessed the association between electrophysiological correlates of 

emotional and cognitive processing with mental wellbeing and non-clinical 

depression/anxiety symptoms. The tasks used to measure these functions have been 

previously validated in clinical and non-clinical groups (Gordon et al., 2005; Williams et al., 
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2004, 2005). However, these tasks have primarily been used to investigate alterations in 

emotional and cognitive processing within clinical groups including depression and anxiety 

(Williams et al., 2011), attention deficit/hyper-activity disorder (Williams, Hermens, et al., 

2010) and schizophrenia (Williams, Nagy, et al., 2010). The goal of including these tasks in 

the TWIN-E study was to assess how these hallmark markers of mental illness vary within a 

non-clinical population (Gatt et al., 2012). It is possible that these tasks were not associated 

with wellbeing because they were not challenging enough to detect small differences in 

cognitive function within a non-clinical sample. Past research associating wellbeing and 

positive emotions with cognition have tended to use more challenging working memory 

tasks. For instance, while the current study only used a 1-back condition within the n-back 

task, many other studies in non-clinical groups use the more challenging 2-back and 3-back 

conditions (Dreisbach & Goschke, 2004; Pe et al., 2013). Similarly, inhibition tasks used in 

positive psychology have focused on the inhibition of reflexive eye movements (Lee & Chao, 

2012; Vanlessen et al., 2015), which are more difficult to inhibit relative to the button press 

response used here. Although behavioural performance within the n-back and auditory 

oddball were still associated with wellbeing in the current design, using more challenging 

cognitive tasks might be required to detect differences in ERP amplitude associated with 

wellbeing. In terms of the emotion task, including varying levels of emotional intensity, 

rather than a single intensity level, could be used to investigate whether associations with 

wellbeing emerge when more mild emotional expressions are used (Jaworska et al., 2010). 

Differences might be more pronounced for more mild expressions because interpreting more 

neutral expressions as either more positive or negative is an indication of mood congruency 

bias (Cavanagh & Geisler, 2006). 

6.6.2.4. Intervention assessment 
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Within the intervention study reported in Chapter 5, the focus was to assess the 

effectiveness of a multi-component PPI against active control groups. However, it might also 

be useful to understand whether specific intervention tasks (i.e., acts of kindness, positive 

reminiscence, and self-compassion) or prompts were more effective than others. Due to the 

study design, this could not be assessed. Because all of the intervention activities were chosen 

based on past meta-analytic evidence of their effectiveness (Curry et al., 2018; Pinquart & 

Forstmeier, 2012; Zessin et al., 2015), it was expected that all of the interventions would 

contribute to the overall effect on wellbeing. Nonetheless, the lack of an observable effect of 

the intervention on self-compassion scores raises the concern that the self-compassion 

module was ineffective, despite being based on a previously validated protocol (Breines & 

Chen, 2012). Thus, more detailed research into the effects of each individual intervention 

should be conducted in future work. 

Finally, although the control conditions were selected to be highly similar to the 

active intervention conditions, it is noted that some aspects of the intervention were more 

social than the control activities. This consideration is particularly relevant for the acts of 

kindness intervention which involved reflecting on the impact that each act of kindness had 

on other people, an aspect that was not included in the acts of novelty comparison condition. 

Including measures of social connectedness and further examining the social nature of both 

acts of kindness and acts of novelty would help clarify whether differences in the level of 

social interaction contributed to the larger effect size in the intervention relative to the control 

group.  

6.6.3. Statistical limitations 

6.6.3.1. Twin model limitations 
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One of the key aims of this thesis was to assess whether electrophysiological measures share 

genetic variance with mental wellbeing, as this would indicate their relevance as candidate 

endophenotypes. Twin models were used to assess this. One of the assumptions of the twin 

model is the equal environments assumption, where monozygotic and dizygotic twins are 

assumed to have equally similar environments (Verweij et al., 2012). Some evidence has 

suggested that monozygotic twins have more similar environments than dizygotic twins 

(Horwitz et al., 2003), however, it has also been noted that some of this increased similarity 

could be due to genetic factors (Derks et al., 2006). Although violations of the equal 

environments assumptions tend to have only a small impact on twin model estimates (Felson, 

2014), it can lead to inflation of heritability estimates and underestimation of common 

environmental effects. Another assumption of the twin model is that monozygotic twins share 

all of their genes, while dizygotic twins share 50% of their genes on average (Verweij et al., 

2012). However, assortative mating, which is the tendency for individuals to choose partners 

who are more similar to themselves, can increase the percentage of shared genes in dizygotic 

twin pairs. This would lead to an over-estimation of the common environmental component 

of the twin model. Although these assumptions were not tested for in the current analysis, the 

impact of a violation is expected to be small, especially as the heritability estimates obtained 

for wellbeing (Bartels, 2015), resting EEG (Smit et al., 2005), and ERPs (Smit et al., 2007; 

van Beijsterveldt & van Baal, 2002) provided here aligned with previous research using 

independent twin samples. 

The limitations of the twin model also have implications for the correlated factors 

model used to assess the genetic correlation between resting EEG and wellbeing in Chapter 2. 

Similar to how assortative mating could impact the univariate heritability estimates, 

assortative mating could also lead to a ‘spurious’ genetic correlation between traits, whereby 

certain features are inherited together based on mating preferences or chromosomal proximity 
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of genes. The genetic correlation could also be caused by different types of pleiotropy, which 

is where a single gene impacts multiple traits (Hackinger & Zeggini, 2017). This can be due 

to a direct effect of the same gene on more than one trait, or it can be a mediated effect 

whereby the gene impacts Trait A, which then influences Trait B. Further research into the 

association between resting EEG and wellbeing would help clarify whether a causal 

relationship exists between the two traits, or if they are simply correlated. In addition, 

genomic methods could be used to assess whether the same genes influence both traits 

directly, however, this would require much larger sample sizes than are currently available 

for EEG and wellbeing (Visscher et al., 2008).  

6.7. Future research directions 

This thesis extended the current understanding of the electrophysiological correlates 

of mental wellbeing. EEG power was identified as a promising candidate endophenotype for 

wellbeing, however, no robust associations were found between mental wellbeing and ERP 

indices of emotion or cognitive processing. Based on this, future research should focus on 

further exploring the association between resting EEG and wellbeing, including whether it 

could be used to predict early reactivity to PPIs and other mental health interventions, and 

whether there is a causal relationship between resting EEG power and wellbeing. 

Associations between emotional and cognitive processing with wellbeing could also be 

further investigated to clarify whether more challenging or emotionally valanced cognitive 

tasks have stronger associations with wellbeing.  

The finding that resting EEG power was associated with wellbeing appears to align 

with past research indicating an association between activation in the default mode network 

measured using fMRI and mental wellbeing (Knyazev et al., 2011; Luo et al., 2016; Neuner 

et al., 2014). However, future research using both resting EEG and functional connectivity 
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analyses should further clarify whether the resting EEG profile is associated specifically with 

the default mode network, or whether other networks are also involved. Furthermore, as the 

current research used a cross-sectional sample, longitudinal designs could also be considered 

to clarify whether resting EEG profiles are predictive of changes in wellbeing over time. 

Using experimental methods could also help clarify whether the relationship between resting 

EEG and mental wellbeing is causal or simply correlational. One of the aims of developing 

the PPI program described in Chapter 5 was to test whether resting EEG at baseline would be 

predictive of early reactivity to the intervention, and whether changes in wellbeing due to the 

intervention would be reflected in changes in resting EEG patterns. One study has used a 

similar method to investigate the association between alpha asymmetry and mental wellbeing, 

finding that a larger shift from left to right frontal alpha asymmetry was associated with 

greater improvements in wellbeing (Xu et al., 2018). Alternatively, neurofeedback protocols, 

which have been used previously to train individuals to change their resting EEG activity 

(e.g., Kluetsch et al., 2014), could be used to explore whether changing resting EEG patterns 

results in changes in wellbeing.  

6.8. Conclusion 

This thesis provided the first investigation into the associations between mental 

wellbeing with electrophysiological correlates of resting brain function, emotion processing 

and cognitive processing. Resting EEG power was found to be associated with mental 

wellbeing such that greater alpha and delta power combined with low beta power predicted 

higher wellbeing. Twin models showed that this association was best explained by a genetic 

correlation, suggesting that resting EEG poses as a candidate endophenotype for mental 

wellbeing. In contrast, no significant associations between wellbeing and electrophysiological 

correlates of either emotional or cognitive processing were identified. Chapter 5 reported on 

the results of a short, online PPI which found that practicing acts of kindness, positive 
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reminiscence, and self-compassion can improve wellbeing over and above similar control 

tasks. This intervention may be used in future research to further investigate the association 

between resting EEG power and wellbeing, including the prediction of early reactivity using 

resting EEG power as a predictive endophenotype. 
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