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Abstract

There has recently been considerable interest in the study of mechanical oscillators
in the quantum regime. Coupled electromagnetic cavities have proven useful for
the measurement and control of these mechanical modes. Recent experiments have
demonstrated the cooling of a macroscopic mechanical oscillator to its quantum
ground state via the back-action of a coupled electromagnetic cavity mode. Such
experiments are motivated by the possibility of fundamental tests of the limits of
quantum mechanics, for coherent interfaces for quantum information processing,
and for enhanced sensing.

In this thesis we study the preparation and detection of multimode entangled
states of mechanical oscillators using coupled electromagnetic cavity modes as a
resource for control. It is shown that the entangled steady-states persist with ex-
perimentally accessible parameters, and they may be detected by monitoring the
cavity output spectrum.

In particular, the research presented here describes a system composed of three
mechanical oscillators coupled to three electromagnetic cavity modes. The electro-
magnetic cavity modes may take the form of optical cavities or microwave circuits.
Via appropriate driving of the coupled cavity modes, we show how highly-entangled
states of three mechanical oscillators can be prepared. In an adiabatic limit in which
the electromagnetic cavity modes are damped rapidly compared with other system
parameters, the operators describing the dissipation of the three mechanical oscil-
lators can take the form of the nullifiers that define a continuous-variable cluster
state in quantum information processing. Using this so-called reservoir engineering
scheme, we describe how the mechanical oscillators can be prepared in a highly-
entangled steady-state.

The effect of uncontrollable dissipation of the mechanical modes into local ther-
mal environments has also been accounted for. The entanglement properties of the
steady-state are evaluated, and the impact of the mechanical motion on the spec-
trum of fluctuations of the coupled electromagnetic cavity modes is determined.
The bipartite entanglement between mechanical oscillators is quantified using the
logarithmic negativity and the genuine tripartite mechanical entanglement is quan-
tified using the Gaussian Rényi-2 entanglement entropy.
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Chapter 1

Quantum Optomechanics

There has been a lot of recent interest in the study of macroscopic mechanical oscil-

lators in the quantum regime, with anticipated applications in sensing, information

processing and tests of fundamental physics. In particular, microwave and optical

fields have been used for the measurement and control of these oscillators, creating

the field of quantum optomechanics. Before considering the quantum mechanics

of these systems, however, we consider the classical dynamics of a macroscopic

mechanical oscillator.

1.1 Continuum Mechanics

In this section we will review the dynamics of a classical mechanical resonator.

We will focus on the vibrations of a rigid body, rather than on its translation or

rotation in space. The continuum mechanics of a mechanical resonator’s dynam-

ics can be classically described by a space- and time-dependent displacement field.

Focusing on the lowest-lying (fundamental) mode of the resonator, for small excita-

tion amplitudes the vibration may be considered as a linear (harmonic) oscillator,

and the motional state may then be represented by a single representative position

coordinate and a single representative momentum coordinate.



1.1. Continuum Mechanics

The description of long-wavelength vibrations, and the determination of the fun-

damental spatial modes of a mechanical system can be obtained through continuum

mechanics. The description is valid because the wavelengths under consideration

are large compared with the interatomic spacing of the underlying crystal lattice.

The assumption of a linear relationship between the stress and strain fields can be

considered in this approach. We shall focus on translational waves (rotationally-

propagating waves have much higher frequencies, and are difficult to detect and

actuate). These may be classified as: longitudinal (propagation and displacement

in the same direction), transverse (displacements orthogonal to the propagation di-

rection), or torsional (rotational displacements with translational propagation). In

three-dimensional structures we are usually interested in longitudinal waves (breath-

ing modes), while in two dimensions and in one dimension we usually focus on

transverse waves of low frequency, as these are relatively easy to actuate and de-

tect.

A displacement field u(r, t) leads to the strain tensor [1],

Sαµ(r) =
1

2

(
∂uα
∂xµ

+
∂uµ
∂xα

)
, (1.1)

where uα is the displacement along the axis α = {1, 2, 3} at the coordinate xµ with

µ = {1, 2, 3}. The material may be described by an elastic tensor Eµαβν , having

36 independent parameters for an assumed linear response. The stress tensor, in

terms of the symmetrized elastic tensor cµαβν , is then

Tµν =
3∑

α,β=1

cµαβνSαβ. (1.2)

The dynamics can be written as,

ρ
∂2u(r, t)

∂t2
= ∇T + f(r, t), (1.3)

where f is the externally applied force distribution, ρ is the density and ∇ is the

2



1.1. Continuum Mechanics

gradient of the stress field T .

In an isotropic solid, one may derive three types of wave equations, correspond-

ing to longitudinal, transverse and torsional waves. The equation of wave propaga-

tion for linear one dimensional structure are shown in Table 1.1. For the transverse

Oscillation Equation Ansatz Dispersion

Longitudinal ρ∂2u
∂t2

= E ∂2u
∂z2

u(z, t) = u0e
i(qz±ωt+ϕ) ω =

√
E
ρ
q

Transverse ρ∂2u
∂t2

= T ∂2u
∂z2

− EI ∂4u
∂z4

u(z, t) = u(z)e−iωt;
u(z) = e±qz, e±iqz

ω2 = T
ρA
q2+EI

ρA
q4

Table 1.1: Wave equations for linear elastic one-dimensional structures. Note that
u is the translational displacement of the beam, z is the direction of propagation of
the oscillation, ρ is the material density, E is the Young’s modulus, A is the cross-
sectional area, T is the longitudinal tension, I is the second moment of area about
the axis of bending, ω is the angular frequency of oscillation, q is the wavevector of
the oscillation, and ϕ is the initial phase.

mode of the vibration one may neglect the tensile contribution and then determine

the vibration frequency using the dispersion relation of Table 1.1, with the result

ωn = q2n

√
E

ρ
t, (1.4)

for a beam of rectangular cross-section (thickness t), and the solutions acquire an

integer index n due to the imposition of boundary conditions.

Now, each mode may be considered as a simple harmonic oscillator with a

single position coordinate and a single momentum coordinate, and with an effective

spring constant and an effective mass. The spring constant may be calculated

by calculating the static deflection due to a particular force distribution, and the

effective mass follows from the known resonance frequency.

Two-dimensional and three-dimensional structures of interest include rectan-

gular plates (such as graphene membranes), circular plates (such as microtoroidal

resonators), and large cylinders and spheres (such as resonant-mass gravitational

wave detectors). The appropriate wave equations can be determined, and the cor-

3



1.2. Classical Mechanical Resonator

responding spatial mode solutions may be found in engineering textbooks [2].

1.2 Classical Mechanical Resonator

A harmonic oscillator is a system in which the restoring force is linearly proportional

to the displacement, and which therefore has an oscillation frequency independent

of the amplitude of motion. As noted above mechanical resonators can be described

as harmonic oscillators. This picture is typically only valid where the amplitude of

the vibrating element is not large.

1.2.1 Simple Harmonic Oscillator

Harmonic motion is ubiquitous in science and engineering. As noted, a particular

vibration mode can be described as a single harmonic oscillator via continuum

mechanics, which we now describe in detail in a particular case. Let us consider a

thin doubly-clamped beam aligned such that the neutral axis of the beam is aligned

along the z axis, with its ends clamped at z = 0 and z = L (See Fig. 1.1). The

u(z,t)

0 L z

Figure 1.1: The coordinate system for transverse vibration of a doubly-clamped
mechanical oscillator.

kinetic energy associated with the flexural motion of the beam is given by

K =
1

2

∫
V

ρ

[
∂u(z, t)

∂t

]2
dV =

1

2
ρAȦ2

∫ L

0

[u(z)]2dz = η1
1

2
MȦ2, (1.5)

4



1.2. Classical Mechanical Resonator

where V is the volume of the beam, ρ is its density, A is its cross-sectional area,

A(t) is the time-dependent amplitude, and M is its mass. For the fundamental

mode of the beam, η1 ≡ 1
L

∫ L

0
[u(z)]2dz = 0.38. The strain in the beam is assumed

to be along the z axis and has amplitude |x∂2u(z,t)
∂z2

|. The potential energy associated

with the strain in the beam is given in terms of a strain field ϵ(x, y, z, t) as

U =
1

2

∫
V

E[ϵ(x, y, z, t)]2dV

=
E

2

∫ +t/2

−t/2

dx

∫ +ω/2

−ω/2

dy

∫ L

0

x2
[
∂2u(z, t)

∂z2

]2
dz

= η1
1

2
Mω2

mA2,

(1.6)

where E is the elastic modulus of the beam, w is the width of the beam and t is

the thickness of the beam. Now we consider the representative position coordinate

of the beam to be x ≡ A(t). The Lagrangian equation of motion corresponding to

Eqs. (1.5) and (1.6) is then

ẍ+ ω2
mx = 0. (1.7)

This equation describes simple harmonic motion at the resonance frequency ωm ≡√
k
m

where m is the effective mass of the resonator and k is its effective spring

constant. The corresponding classical Hamiltonian is

H =
p2

2m
+

1

2
kx2, (1.8)

where p is a representative momentum coordinate. Such a description is generally

valid, though the effective parameters depend on the system considered, the mode

under consideration and the nature of the driving.

1.2.2 Damped Harmonic Resonator

In a damped harmonic oscillator a frictional force acts that is proportional to the

oscillating velocity. The frictional force is present along with the restoring force

5



1.2. Classical Mechanical Resonator

acting on the system for damped harmonic motion. When no driving forces are

present, the equation of motion for a damped harmonic oscillator is

ẍ+ 2ζωmẋ+ ω2
mx = 0, (1.9)

where ωm =
√

k
m

is the undamped angular frequency and ζ = c
2
√
mk

is the damping

ratio, with c being the viscous damping coefficient. A damped harmonic oscillator

can be overdamped, critically damped or underdamped depending on the value of

ζ. The quality factor expressed in terms of damping ratio is defined as

Q =
1

2ζ
. (1.10)

1.2.3 Mechanical Dissipation

The energy dissipation rate of a mechanical oscillator is given by

γm =
ωm

Q
. (1.11)

There are several mechanism involved in the loss of mechanical energy. These

include:

• Viscous damping −→ caused by the friction/interaction with the surrounding

gas atoms (Fig. 1.2) [3–5].

• Clamping losses −→ caused by the radiation of elastic waves into the substrate

through the supports of the oscillator [6–17].

• Fundamental anharmonicities−→ caused by thermoelastic damping and phonon-

phonon interactions [18–20].

• Materials-induced losses −→ caused by the relaxation of intrinsic or extrinsic

defect states in the bulk or surface of the resonator [21–25].

6



1.2. Classical Mechanical Resonator

Figure 1.2: Position of an oscillator undergoing a Brownian motion (thermal fluc-
tuations) with fluctuating amplitude and phase (figure reproduced from Ref. [26]).

The different dissipation mechanisms act independently and add up incoherently

to the overall mechanical losses. The total quality factor Qtotal is defined as

1

Qtotal

=
∑
i

1

Qi

, (1.12)

where Qi denotes the mechanical quality factor associated with each dissipative

mechanism.

1.2.4 Noise Spectra

A resonantly driven harmonic oscillator will have its trajectory x(t) oscillating at

the eigenfrequency ωm. However, these oscillations show (see Fig. 1.3) randomly

variable amplitude and phase due to the mechanical damping and fluctuating ther-

mal Langevin force. Now such real-time measurements have been demonstrated

in optomechanical systems [26]. For mechanical systems near the quantum limit,

the undriven rather than the driven response is often considered. Analysis is often

performed in the frequency domain, with the force and position noise spectra

SF (ω) =
1

2π

∫ ∞

−∞
dteiωtGF (t), (1.13)

Sx(ω) =
1

2π

∫ ∞

−∞
dteiωtGx(t), (1.14)

7



1.2. Classical Mechanical Resonator

Figure 1.3: Thermal Brownian motion of a mechanical resonator in an optomechan-
ical system, a trajectory of which is shown in the upper panel, leads to a probability
distribution for the quadratures as shown in the lower panel. The two quadratures
x(t) = X1(t)cos(ωmt) + X2(t)sin(ωmt), are displayed in a frame rotating at the
angular mechanical resonance frequency ωm. The thermal Brownian motion cause
the fluctuations (figure reproduced from Ref. [27]).

where GF and Gx represent force and position auto-correlation functions, respec-

tively. With thermal excitations as the source of noise, the classical force noise and

position noise spectra can be written as

SF (ω) = 2mγkBT, (1.15)

and

Sx(ω) =
kBγT

2mω2
m

1

(ωm − ω)2 + (γ/2)2
, (1.16)

8



1.3. Quantum Mechanical Resonator

respectively. The force spectrum represent a so-called white noise process [27],

having equal power at all frequencies.

1.3 Quantum Mechanical Resonator

1.3.1 Quantum Harmonic Oscillator

Next we consider the quantum approach to a macroscopic mechanical oscillator

treated as a closed system (that is, no dissipation into an environment with many

degree of freedom). We may consider the fundamental mode to be a quantum

harmonic oscillator. The total energy operator or Hamiltonian for such a system is

Ĥ =
p̂2

2m
+

1

2
mω2

0x̂
2, (1.17)

where m is the particle’s mass, ω0 is the angular frequency of the oscillator, x̂ is

the position operator, and p̂ is the momentum operator, given in a position-space

representation by

p̂ = −i~ ∂
∂x
. (1.18)

The position and momentum operator obey the commutation relation

[x̂, p̂] = i~. (1.19)

In Eq. (1.17) the first term in the Hamiltonian represents the kinetic energy of

the particle, and the second term represents its potential energy. By solving

Schrödinger’s equation with the harmonic oscillator Hamiltonian, the energy eigen-

states are found and they have the eigenvalues

En =

(
n+

1

2

)
~ω0, (1.20)

with n indexing the eigenstates.

9



1.3. Quantum Mechanical Resonator

Alternatively, the so-called ladder operator method also allows us to extract the

energy eigenvalues without directly solving the Schrödinger equation for a harmonic

oscillator. Following this approach, we define the lowering operator â and (its

adjoint) raising operator â† of a harmonic oscillator by

â =

√
mωo

2~
x̂+ i

1√
2~mωo

p̂, (1.21)

â† =

√
mωo

2~
x̂− i

1√
2~mωo

p̂. (1.22)

The position and momentum operators may be written in terms of the raising and

lowering operators as

x̂ =
√

~
2

1
mω

(â† + â), (1.23)

p̂ = i
√

~
2
mω(â† − â). (1.24)

The commutation relations betweens the lowering and raising operators are [â, â†] =

1 and [â, â] = [â†, â†] = 0. The Hamiltonian can be written in terms of them as

Ĥ = ~ω0

(
â†â+

1

2

)
. (1.25)

The constant in Eq. (1.25) plays no role in the dynamics and is often dropped.

The Hamiltonian of a quantum harmonic oscillator may be written in terms of

dimensionless quadrature operators as

Ĥ =
~ω0

4
(X̂2 + P̂ 2), (1.26)

where we have introduced the dimensionless position and momentum operators as

X̂ =
x̂√

~/2mω0

, (1.27)

P̂ =
p̂√

~mω0/2
, (1.28)

10



1.3. Quantum Mechanical Resonator

with the corresponding canonical commutation relation,

[X̂, P̂ ] = 2i. (1.29)

1.3.2 Number State, Coherent State and Thermal State

The energy eigenvalues of a harmonic oscillator in Eq. (1.20) are associated with

the energy eigenstates |n⟩, called number or Fock states. They contain exactly n

quanta (in our case, phonons).

An essential class of states of the harmonic oscillator are the coherent states.

They are quasi-classical and they are the eigenstates of a driven harmonic oscillator.

A coherent state can be given in terms of a number of state basis as,

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩. (1.30)

Another important class of states are the so called thermal states. At tempera-

ture T the density matrix of a thermal state can be written as

ρ = (1− e−~ω0/kBT )
∞∑
n=0

|n⟩⟨n|e−n~ω0/kBT . (1.31)

The expected number of phonons in a thermal state is

n̄ ≡ ⟨n̂⟩ = 1

e−~ωm/kBT − 1
≈ kBT

~ωm

(kBT ≫ ~ωm). (1.32)

The ground state is the lowest energy state corresponding to n̄ = 0. The necessary

condition for a mode to be in its quantum ground state in a cryogenic environment

is that

~ωm ≫ kBT. (1.33)
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1.4. Cavity Optomechanics

1.4 Cavity Optomechanics

1.4.1 Optical Cavities

To model an optical cavity, we consider a Fabry-Pérot resonator consisting of two

highly reflective mirrors, separated by a distance L. The angular frequencies of the

resonances of the cavity are ω0 = nπ c
L
, where n is an integer mode number. The

free spectral range (FSR) of the cavity, meaning the frequency spacing between

adjacent resonant modes, will be

∆ωFSR = π
c

L
. (1.34)

The quality factor of a optical cavity is given by

Q = ω0τ, (1.35)

where ω0 is the frequency of a single optical mode, and τ = κ−1 is the photon

lifetime in the cavity, with the cavity intensity decay rate denoted by κ. Note that

the cavity decay rate has two parts consists of the (useful) input/output coupling

κe and the internal losses κi, as

κ = κe + κi, (1.36)

A quantum mechanical description of a cavity that is coupled to a continuum of

external field modes can be described either via master equations or via a framework

known as quantum input-output theory [28, 29]. By applying the input-output

theory of open quantum systems, the output field from the Fabry-Pérot resonator

is given by

âout = âin −
√
κeâ, (1.37)

where â is the intracavity field and âin refers to the input field. For the optical res-
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1.4. Cavity Optomechanics

onator we assume two completely uncorrelated baths, corresponding to the extrinsic

and intrinsic decay channels. Although an input-output boundary condition may

also be defined for the intrinsic optical bath and the mechanical bath, by definition

these baths are unmonitored, and the input and output fields are a mathematical

construct that allows the treatment of dissipation, but are not physically meaningful

themselves. The equation of motion for the intracavity field resonator is

˙̂a = −κ
2
â+ i∆â+

√
κeâin +

√
κif̂in, (1.38)

in a frame rotating at a driving frequency ωd = ωc + ∆, where ωc is the cavity

frequency. Note that f̂in represents the input noise fluctuation in Eq. (1.38). We

can solve Eq. (1.38) by assuming ⟨f̂in⟩ = 0, and we find that

⟨â⟩ss =
√
κe⟨âin⟩

κ
2
− i∆

. (1.39)

This Eq. (1.39) can be used to calculate the steady-state cavity population (that

is, the average number of photons circulating inside the cavity) as

n̄cav = ⟨â†â⟩ = κe
∆2 + (κ/2)2

P

~ωL

, (1.40)

where P is the input power driven into the cavity. By using Eqs. (1.37) and (1.39)

the reflection amplitude of a single-sided cavity coupled in reflection may be given

by,

R =
⟨âout⟩
⟨âin⟩

=
(κi − κe)/2− i∆

(κi + κe)/2− i∆
. (1.41)

Several regimes, neglecting the detuning, can be obtained from this expression:

• Over-coupling −→ For | R |2≈ 1 the pump photons come out from the cav-

ity without having been absorbed or lost at the second mirror. This case

corresponds to external coupling being much bigger than the cavity losses

(κe > κi).

13



1.4. Cavity Optomechanics

• Critical Coupling −→ For | R |2= 0 the input energy is either fully dissi-

pated in the resonator and fully transmitted through the second mirror. The

external coupling will be equal to the cavity intrinsic losses (κe = κi).

• Undercoupling −→ Here cavity losses will be much bigger than the external

coupling (κe << κi).

1.4.2 Optomechanical Coupling

The canonical model of a cavity optomechanical system is shown in Fig. 1.4. The

Fabry-Pérot cavity shown has an optical resonance frequency ωc, and one end mirror

of the cavity is mechanically compliant (shown here as a massive mirror mounted on

a spring). The mechanical oscillator behaves as a damped harmonic oscillator. The

Figure 1.4: A canonical cavity optomechanical system, consisting of a Fabry-Pérot
cavity with a moving end-mirror. The intracavity optical field (â) couples to the
mechanical oscillator (b̂). This produces phase modulation of an optical cavity
drive, and phase-sensitive detection of the cavity refection may be used to measure
the mechanical displacement.

14



1.4. Cavity Optomechanics

Hamiltonian for such a system, in the absence of any optomechanical interaction is

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂, (1.42)

where b̂ and b̂† represent the mechanical oscillator’s lowering and raising operators,

respectively. Now the instantaneous cavity length L is related to the equilibrium

cavity length L0 by L = L0 + x, such that x is the displacement of the mirror. The

cavity resonance frequency is then explicitly position-dependent as,

ωc(x) = ωc +
ωc

L0

x. (1.43)

Substituting Eq. (1.43) into Eq. (1.42) then leads to

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b− ~
g0
xzp

â†âx̂, (1.44)

where we identify the single-photon optomechanical coupling rate as

g0 = ωc
∆xzp
L0

, (1.45)

where ∆xzp is the width of the quantum ground state fluctuations of the mechanical

oscillator. Writing the position operator in terms of a mechanical lowering and

raising operator, we have

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b− ~g0â†â(b̂+ b̂†). (1.46)

While we explicitly considered a simple Fabry-Pérot cavity here, the Hamiltonian

of Eq. (1.46) is much more general. It applies to any system where the motion of

a mechanical oscillator shifts the resonance frequency of an electromagnetic cav-

ity. Now moving into an interaction picture for both the optical and mechanical
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1.4. Cavity Optomechanics

resonator Eq. (1.46) becomes

Ĥ = ~g0â†â(b̂e−iωmt + b̂†eiωmt). (1.47)

Now, changing the cavity driving conditions we can easily change the effective

optomechanical coupling [30], if we assume resolved-sideband (ωm ≫ κ). This is

most easily understood by considering the interaction in the frequency domain, as

shown in Fig. 1.5.

a

ωm

κ

ωlωc

κ

ωcωl

b

ωm

ωm ωm

Figure 1.5: Linearised sideband-resolved optomechanics represented in the fre-
quency domain. The optomechanical interaction scatters a coherent drive tone
to produce red and blue sidebands corresponding to phonon absorption and emis-
sion, respectively. In the sideband-resolved regime, the modified density of states
provided by the optical cavity may be used to enhance one or the other scattering
process. For red-detuned driving (a) this results in an effective beam-splitter-like
Hamiltonian which may be used for cooling or state transfer. For blue-detuned
driving (b) the effective Hamiltonian has the form of two-mode squeezing, useful
for amplification of the mechanical motion or the generation of non-classical op-
tomechanical states (figure reproduced from Ref. [33]).

Suppose the cavity mode is driven at a frequency ω1. In the experimentally

relevant weak coupling regime, where the single-photon coupling rate g0 is less

than the cavity decay rate κ, the optomechanical interaction will generate optical

sidebands at the frequencies ω1±ωm. The upper sideband at ω1+ωm, is generated
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1.4. Cavity Optomechanics

by the interaction term â†b̂ and represents the up-conversion of a drive photon

accompanied by the absorption of a phonon from the mechanical resonator. On

the other hand, the lower sideband at ω1 − ωm, is generated by the â†b̂† interaction

term and corresponds to the down-conversion of drive photons accompanied by the

emission of a phonon.

Now, if the drive is blue-detuned from the cavity (ω1 = ωc + ωm), the red

sideband is resonantly enhanced, as shown in Fig. 1.5(b), and one can derive a

linearized interaction in a rotating wave approximation

Ĥb
eff = ~g(âb̂+ â†b̂†), (1.48)

where g = αg0 is the effective optomechanical coupling strength, with α denoting

the steady state amplitude of the coherent drive field. This interaction, which has

the form of two-mode squeezing, allows one to amplify the mechanical motion, as the

process of phonon emission rather than absorption is now dominant. Conversely, if

the drive is placed at a lower frequency (red-detuned), then the blue sideband is res-

onantly enhanced (ωc = ωc−ωm), as shown in Fig. 1.5(a), the effective Hamiltonian

can be written as

Ĥr
eff = ~g(â†b̂+ âb̂†), (1.49)

where g is the effective optomechanical coupling strength as above. If we consider

the two-tone driving [31, 32], simultaneously exciting the red and blue transitions

[33], the effective Hamiltonian is simply the sum of Eqs. (1.48) and (1.49),

Ĥbr
eff = ~g(â+ â†)(b̂e−iϕ + b̂†e+iϕ), (1.50)

where ϕ is the relative phase of two driving fields. This Hamiltonian commutes with

a mechanical quadrature operator, and thus implements a quantum nondemolition

measurement of such a quadrature. Which mechanical quadrature is measured, is

determined by the choice of ϕ, the cavity driving tones.
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1.4.3 Optomechanical Equation of Motion

A theoretical treatment of the cavity optomechanical system starts from the Heisen-

berg equations of motion. While the optomechanical Hamiltonian given in Eq. (1.46)

describes the internal dynamics of the system, it does not incorporate the effects of

damping and noise due to the surrounding environment. Such effects can be intro-

duced via the standard input-output formalism for open quantum systems [4, 5],

which is briery summarised in Section 1.4.1. This leads to the Heisenberg-Langevin

equations with the radiation pressure interaction for the photon and phonon anni-

hilation operators:

d
dt
â = −i(ωc +

κ
2
)â− ig0(b̂+ b̂†)â+

√
κeâin +

√
κiâi, (1.51)

d
dt
b̂ = −i(ωm + γ

2
)b̂− igâ†â+

√
γb̂in, (1.52)

where γ and κ = κe+κi are the decay rates of the mechanical and optical oscillators,

respectively. The noise operator b̂in arises from the coupling between the mechanical

oscillator and its surrounding environment.

The coupling of the optical cavity to its environment has been separated into

two channels: the extrinsic channel, with coupling rate κe and noise operator âin,

and the intrinsic channel, with coupling rate κi and noise operator âi. The extrinsic

channel is the specific mode via which the cavity is probed, while the intrinsic

channel represents all other environmental loss channels that go unmeasured (e.g.,

radiation of energy due to scattering, material absorption inside the cavity, etc.).

Both optical noise operators are assumed Markovian and so obey the same type of

commutation relation as b̂in. The output field in the external channel is given by the

input-output boundary condition described in Eq. (1.37). While b̂in and âi are zero-

mean, âin typically consists of both a classical tone (technically, a coherent state)

at frequency ω1 in addition to stochastic noise. We may explicitly factor out both

the harmonic time dependence of the operator as well as the classical amplitude

αin by making the substitution âin = (αin + âin)e
−iω1t, and this classical tone is
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1.4. Cavity Optomechanics

incorporated into the effective optomechanical coupling rate. As the optical drive

frequency is much faster than the decay rates of the system and the mechanical

frequency, it is convenient to move into a frame rotating at the drive frequency,

focusing only on the slowly varying dynamics. This is accomplished by making a

unitary transformation, that leads to the equations of motion as

d
dt
â = −(iδ + κ

2
)â− ig0(b̂+ b̂†)â+

√
κe(αin + âin) +

√
κiâi, (1.53)

d
dt
b̂ = −i(ωm + γ

2
)b̂− ig0â

†â+
√
γb̂in, (1.54)

where δ = ωc − ω1 is the detuning between cavity and the drive. Though we

have made no assumptions so far as to the nature of the environmental noise, the

mechanical bath is typically taken to be in thermal equilibrium at temperature T ,

such that the mechanical noise operator obeys the following correlation relations

⟨b̂†in(t)b̂in(t′)⟩ = n̄δ(t− t′), (1.55)

⟨b̂in(t)b̂†in(t′)⟩ = (n̄+ 1)δ(t− t′), (1.56)

where n̄ = (e~ωm/kBT−1)−1 is the Bose factor giving the occupancy of the mechanical

bath in thermal equilibrium at temperature T , and all other one- and two-time

correlation functions of b̂in or b̂†in are zero. The intrinsic optical bath is usually

taken to be a thermal bath as well, but in the case of optical systems at room

temperature the frequency is large enough (~ωc, ~ω1 ≫ kBT ) that the bath is well-

approximated as being zero-temperature (i.e., vacuum). Thus, the corresponding

noise correlation functions are

⟨â†i (t)âi(t′)⟩ = 0, (1.57)

⟨âi(t)â†i (t′)⟩ = δ(t− t′), (1.58)

where, as in the case of the mechanical noise, all other two-time correlations van-

ish. The optical noise on the extrinsic channel, ain, is typically also assumed to
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be vacuum noise, and thus has the same type of correlation functions shown in

Eqs. (1.57) and (1.58) (note that âin and âi belong to independent baths and are

thus uncorrelated with each other). It is also possible for âin to have additional

noise due to technical noise on the input drive.

1.5 Master Equation

An alternative approach to describing the evolution of a quantum system rather

than in terms of its observables is to specify its evolution in terms of its density

matrix (an operator describing its state). Equations describing the evolution of

a systems density matrix are often referred to as master equation [34]. Here, we

briefly outline the description of a standard form of Markovian master equation

called the Lindblad master equation.

Let us consider, a quantum system S, coupled to an environment (or bath) B.

The state of the subsystem S is changing as a consequence of its internal dynamics

and the interaction with its surrounding degree of freedom. If HS is the Hilbert

space of the system andHB is the Hilbert space of the environment, then the Hilbert

space of the total system is H = HS ⊗ HB. We assume at the initial time t0, the

uncorrelated density matrix

ρ(t0) = ρS(t0)⊗ ρB, (1.59)

where ρS(t0) is the initial state of the reduced system S and ρB represents some

equilibrium state of the bath. Assuming the unitary evolution of the reduced density

operator of the system as

ρS(t) = TrBρ(t) = TrB{U(t, t0)ρ(t0)U †(t, t0)}, (1.60)

where U(t, t0) is the unitary evolution operator of the total system. In general, it is
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not possible to calculate the exact dynamics according to Eq. (1.60), and we must

approximate to make the problem tractable. There are two common approaches

to calculate the exact dynamics of the reduced density operator of a system. They

are based on the Liouville-von Neumann equation and the use of path integrals.

The Liouville-von Neumann equation approach gives us a time-local, first-order

differential equation for the reduced density operator of the system, known as master

equation.

Assuming that the system Hamiltonian is ĤS, and the Hamiltonian for the

environment is ĤB, and we let the interaction between the system and bath be

denoted by ĤI . Now by moving to an interaction picture with respect to ĤS + ĤB,

the time-evolution of the density matrix is described by the Liouville-von Neumann

equation:

d

dt
ρ(t) = − i

~
[ĤI(t), ρ(t)]. (1.61)

A master equation can also be derived in Lindbad form [35] for the reduced

density operator

d

dt
ρs(t) = − i

~
[Ĥ ′

S, ρs(t)] +
1

2

∑
k

γk[2Lkρs(t)L
†
k − L†

kLkρs(t)− ρs(t)L
†
kLk], (1.62)

where ρs is the reduced density matrix of the system alone, Lk are called Lindblad

operators describing the effect of the environmental degrees of freedom on the sys-

tem, γk is the decoherence rates, and Ĥ ′
S is the reduced system Hamiltonian. If the

Lindblad operators are all Hermitian, then Eq. (1.62) can be re-written as

d

dt
ρs(t) = − i

~
[Ĥ ′

S, ρs(t)] +
1

2

∑
k

γk[L̂k, [L̂k, ρs(t)]]. (1.63)

For a single harmonic oscillator system the quantum optical master equation, sub-
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ject to linear damping into a thermal environment, Eq. (1.62) becomes

d

dt
ρs = −i[ωmâ

†â, ρs]+γ(n̄+1)(âρsâ
†−1

2
â†âρs−

1

2
â†âρs)+γn̄(â

†ρsâ−
1

2
ââ†ρs−

1

2
ââ†ρs),

(1.64)

where n̄ is the thermal occupation of the environment, given by a Bose-Einstein

distribution, and γ is the damping rate of the harmonic oscillator.

22



Chapter 2

Dissipative State Preparation in

Cavity Quantum Optomechanics

From a Lindblad master equation we can readily determine the steady states gen-

erated with a quadratic Hamiltonian and linear dissipation. We now explore these

possibilities with one and two oscillator modes. Dissipative preparation of quantum

squeezed states of macroscopic mechanical oscillators has recently been demon-

strated experimentally.

2.1 Single Harmonic Oscillator in Thermal Equi-

librium

A simple case is a single harmonic oscillator in a thermal environment, the cor-

responding Lindbard master equation of a single harmonic oscillator defined in a

frame rotating at the oscillator resonance frequency is then

ρ̇ = γ(n̄+ 1)D[â]ρ+ γn̄D[â†]ρ, (2.1)



2.1. Single Harmonic Oscillator in Thermal Equilibrium

where n̄ is the thermal occupation of the environment and D[â]ρ is the the cavity

dissipative superoperator. The dissipative superoperator can be defined as

D[Ô]ρ = ÔρÔ† − 1

2
ρÔ†Ô − 1

2
Ô†Ôρ. (2.2)

One can readily obtain the Heisenberg equations of motion for the first and second

moments of system observables using d
dt
⟨Â⟩ = Tr(Âρ̇) as

d

dt
⟨â2⟩ = −γ⟨â2⟩, (2.3a)

d

dt
⟨â†2⟩ = −γ⟨â†2⟩, (2.3b)

d

dt
⟨â†â⟩ = −γ⟨â†â⟩+ γn̄, (2.3c)

d

dt
⟨ââ†⟩ = −γ⟨ââ†⟩+ γ(n̄+ 1). (2.3d)

At steady state, expectation values can be calculated from the above equations as

⟨â2⟩ = 0, ⟨â†2⟩ = 0, ⟨â†â⟩ = n̄, ⟨ââ†⟩ = 1 + n̄. (2.4)

That is, the steady state has n̄ thermal quanta but no coherent amplitude. We can

look at this steady-state in terms of dimensionless oscillator quadratures

X̂ = 1√
2
(â+ â†), (2.5)

P̂ = − i√
2
(â− â†). (2.6)

In terms of these oscillator quadratures, the symmetrically-ordered covariance ma-

trix can be written as

V =

 ⟨X2⟩ ⟨X̂P̂+P̂ X̂⟩
2

⟨P̂ X̂+X̂P̂ ⟩
2

⟨P 2⟩

 . (2.7)
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In the steady state we obtain the covariance matrix for single oscillator as

V =

n̄+ 1
2

0

0 n̄+ 1
2

 . (2.8)

That is, each quadrature observable possesses thermal and quantum zero-point

fluctuations.

The purity of a quantum state is a scalar quantified as

µ = Tr(ρ2). (2.9)

It gives, on a scale of 0 to 1, an indication of the extent of our knowledge of the

state of the system under consideration; a purity of 1 corresponds to the maximal

knowledge allowed by quantum mechanics. For Gaussian states, the purity may be

evaluated in terms of the covariance matrix as [36]

µ =
1

2n
√
DetV

, (2.10)

where n denotes the number of the modes. If µ is 1, it corresponds to a pure state

whereas µ < 1 is corresponds to a mixed state. Now the purity found for the single

harmonic oscillator in a thermal state is

µ =
1

2n̄+ 1
. (2.11)

That is, the system will be in a pure state if the thermal occupation of the bath is

at zero, but there is increasing statistical uncertainty over the state of the system

as the temperature is increased.
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2.2. Two Harmonic Oscillators in Thermal Equilibrium

2.2 Two Harmonic Oscillators in Thermal Equi-

librium

Next we consider two independent harmonic oscillators (a and b) coupled to inde-

pendent thermal Markovian environments. Again, the master equation is specified

in a frame rotating at both oscillators resonance frequencies. It is

ρ̇ = γa(n̄a + 1)D[â]ρ+ γan̄aD[â†]ρ+ γb(n̄b + 1)D[b̂]ρ+ γbn̄bD[b̂†]ρ, (2.12)

where γa and γb are the damping rates, and n̄a and n̄b are the thermal occupations

of the baths.

For two harmonic oscillators the Heisenberg equations of motion for second

moments of system observables are found as,

d

dt
⟨â2⟩ = −γa⟨â2⟩, (2.13a)

d

dt
⟨â†2⟩ = −γa⟨â†

2⟩, (2.13b)

d

dt
⟨b̂2⟩ = −γb⟨b̂2⟩, (2.13c)

d

dt
⟨b̂†2⟩ = −γb⟨b̂†

2⟩, (2.13d)

d

dt
⟨â†â⟩ = −γa⟨â†â⟩+ γan̄a, (2.13e)

d

dt
⟨ââ†⟩ = −γa⟨â†â⟩+ γa(n̄a + 1), (2.13f)

d

dt
⟨b̂†b̂⟩ = −γb⟨b̂†b̂⟩+ γbn̄b, (2.13g)

d

dt
⟨b̂b̂†⟩ = −γb⟨b̂b̂†⟩+ γb(n̄b + 1), (2.13h)

d

dt
⟨âb̂⟩ = −

(
γa + γb

2

)
⟨âb̂⟩, (2.13i)

d

dt
⟨â†b̂†⟩ = −

(
γa + γb

2

)
⟨â†b̂†⟩, (2.13j)

d

dt
⟨â†b̂⟩ = −

(
γa + γb

2

)
⟨â†b̂⟩, (2.13k)

d

dt
⟨âb̂†⟩ = −

(
γa + γb

2

)
⟨âb̂†⟩. (2.13l)
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2.3. Cooling a Single Harmonic Oscillator

At steady state, expectation values can be calculated from the above equations

as

⟨â2⟩ = 0, ⟨â†2⟩ = 0, ⟨b̂2⟩ = 0, ⟨b̂†2⟩ = 0,

⟨â†â⟩ = n̄a, ⟨ââ†⟩ = 1 + n̄a, ⟨b̂†b̂⟩ = n̄b, ⟨b̂b̂†⟩ = 1 + n̄b,

⟨âb̂⟩ = 0, ⟨â†b̂†⟩ = 0, ⟨â†b̂⟩ = 0, ⟨âb̂†⟩ = 0.

(2.14)

The steady-state covariance matrix, in the order of oscillator quadrature oper-

ators (X̂a, P̂a, X̂b, P̂b) is

V =



⟨X̂2
a⟩

⟨X̂aP̂a+P̂aX̂a⟩
2

⟨X̂aX̂b⟩ ⟨X̂aP̂b⟩
⟨P̂aX̂a+X̂aP̂a⟩

2
⟨P̂ 2

a ⟩ ⟨P̂aX̂b⟩ ⟨P̂aP̂b⟩

⟨X̂bX̂a⟩ ⟨X̂bP̂a⟩ ⟨̂̂X2
b ⟩

⟨X̂bP̂b+P̂bX̂b⟩
2

⟨P̂bX̂a⟩ ⟨P̂bP̂a⟩ ⟨P̂bX̂b+X̂bP̂b⟩
2

⟨P̂ 2
b ⟩


. (2.15)

The covariance matrix calculated from two oscillators is defined by,

V =



n̄a +
1
2

0 0 0

0 n̄a +
1
2

0 0

0 0 n̄b +
1
2

0

0 0 0 n̄b +
1
2


. (2.16)

Like the single harmonic oscillator system, it is clear from Eq. (2.16) that for a

zero-temperature bath (that is n̄a = 0, n̄b = 0), the system will be in a pure state.

Each harmonic oscillator is subject to independent thermal and quantum zero-point

fluctuations.

2.3 Cooling a Single Harmonic Oscillator

Here we augment the intrinsic coupling to a thermal bath with an engineered cou-

pling to a zero-temperature bath. This constitutes a minimal model for the descrip-

tion of dynamical back-action cooling in cavity optomechanics. Here the master
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2.3. Cooling a Single Harmonic Oscillator

equation can written as

ρ̇ = γ(n̄+ 1)D[â]ρ+ γn̄D[â†]ρ+ ΓD[â]ρ, (2.17)

where Γ represents an engineered cooling rate into an auxiliary zero-temperature

bath. In the cavity optomechanics context, this is a description of the electromag-

netic cavity mode after the cavity has been adiabatically eliminated, and Γ = 4g2/κ,

where g is the optomechanical coupling rate and κ is the cavity decay rate. Here

the equations of motion for second moments of system observables are calculated

as

d

dt
⟨â2⟩ = −(γ + Γ)⟨â2⟩, (2.18a)

d

dt
⟨â†2⟩ = −(γ + Γ)⟨â†2⟩, (2.18b)

d

dt
⟨â†â⟩ = −(γ + Γ)⟨â†â⟩+ γn̄, (2.18c)

d

dt
⟨ââ†⟩ = −(γ + Γ)⟨ââ†⟩+ γ(n̄+ 1). (2.18d)

The expectation values calculated at the steady-state

⟨â2⟩ = 0, ⟨â†2⟩ = 0, ⟨â†â⟩ = γ

γ + Γ
n̄, ⟨ââ†⟩ = 1 +

γ

γ + Γ
n̄. (2.19)

The covariance matrix found as

V =

 γ
γ+Γ

n̄+ 1
2

0

0 γ
γ+Γ

n̄+ 1
2

 . (2.20)

Clearly, for Γ ≪ γ the quadratures are subject to their full thermal and quantum

zero-point fluctuations. For Γ ≫ γ, the thermal fluctuations are largely attenuated

but the zero-point fluctuations remain. This describes the cooling of an oscillator

to its quantum ground state, as has been experimentally demonstrated [37].

Fig. 2.1 represents that the gradual change of expectation value ⟨ââ†⟩ = ⟨â†â⟩+1
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2.4. Quadrature Squeezing of a Single Harmonic Oscillator
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Figure 2.1: Steady-state occupation of harmonic oscillator plus one, ⟨ââ†⟩, as a
function of the ratio of damping rate into a zero-temperature environment to the
damping rate into a finite-temperature environment.

with the ratio of cooling rate and damping rate of the oscillator.

We find the purity as

µ =
γ + Γ

2γn̄+ γ + Γ
. (2.21)

For Γ = 0, This is 1/(2n̄+ 1), the purity of a complectly mixed thermal state. For

Γ very large, this tends to 1 and a highly pure state can be prepared. This equation

clearly indicates that without thermal noise a highly pure state can be prepared.

Fig. 2.2 shows that the purity is approaching to unity which indicates the possibility

of creating a highly pure state.

2.4 Quadrature Squeezing of a Single Harmonic

Oscillator

The question then arises whether or not it is possible to suppress the zero-point

fluctuations of one quadrature via dissipation, this is known as squeezing. The en-

gineered dissipative superoperator is something other than the oscillator lowering
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Figure 2.2: Purity of the steady-state of a single harmonic oscillator mode as a
function of the ratio of coupling to a zero-temperature bath to coupling to a finite-
temperature bath (n̄ = 0.5).

operator, the steady-state changes to (in the limit Γ ≫ γ) the eigenstate corre-

sponding to the zero eigenvalue of that operator. Indeed this is possible, and this

has recently been demonstrated experimentally [38]. The master equation describ-

ing these dynamics is

ρ̇ = γ(n̄+ 1)D[â]ρ+ γn̄D[â†]ρ+ ΓD[β̂]ρ. (2.22)

If we choose β̂ to be single-mode Bogoliubov operator as

β̂ = â cosh r + â† sinh r, (2.23)

Then the eigenstate corresponding to the zero eigenvalue of this operator is none

other than a squeezed state with squeezing parameter r [39]. The corresponding
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2.5. Collective Quadrature Squeezing of Two Harmonic Oscillator

dynamics for the second moments of system observables are

d

dt



⟨â2⟩

⟨â†
2
⟩

⟨â†â⟩

⟨ââ†⟩


=



−γ − Γ 0 0 0

0 −γ − Γ 0 0

0 0 −γ − Γ 0

0 0 0 −γ − Γ


.



⟨â2⟩

⟨â†
2
⟩

⟨â†â⟩

⟨ââ†⟩


+



−Γ sinh r cosh r

−Γ sinh r cosh r

γn̄+ Γ sinh r2

γ + γn̄+ Γcosh r2


.

(2.24)
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Figure 2.3: Second moment of the position quadrature ⟨X̂2⟩ against the squeezing
parameter r.

Fig. 2.3 and 2.4 illustrate the gradual change of second moments of the quadra-

ture operators X̂ and P̂ as a function of squeezing parameter r. The position

quadrature operator variance ⟨X̂2⟩ increases exponentially with r (it is anti-squeezed),

while the momentum quadrature operator variance ⟨P̂ 2⟩ decreases exponentially

with r.

2.5 Collective Quadrature Squeezing of Two Har-

monic Oscillator

Next we consider the possibility of dissipatively producing correlation between two

oscillator modes. This will require non-local dissipative operators, which may be
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Figure 2.4: Second moment of the position quadrature ⟨P̂ 2⟩ against the squeezing
parameter r.

engineered via coupling to an auxiliary system. Let us consider the master equation

as

ρ̇ = Γ1D[β̂1]ρ+Γ2D[β̂2]ρ+γa(n̄a+1)D[â]ρ+γbn̄bD[â†]ρ+γb(n̄b+1)D[â]ρ+γbn̄bD[â†]ρ,

(2.25)

where Γ1 and Γ2 are engineered damping rates, γa and γb are intrinsic damping

rates, and n̄a and n̄b are thermal occupancy of the respective baths.

Now if we take β̂1 and β̂2 as two-mode Bogoliubov operators,

β̂1 = â cosh r + b̂† sinh r, (2.26)

β̂2 = b̂ cosh r + â† sinh r, (2.27)

then the steady-state of the master equation in the limit (Γ1,Γ2 ≪ γa, γb) will be a

(highly-entangled) two-mode squeezed state.

Fig. 2.5 and 2.6 show the change of ⟨X̂2
a⟩ and ⟨P̂ 2

a ⟩ with respect to squeezing

parameter r. The ⟨X̂2
a⟩ and ⟨P̂ 2

a ⟩ is increased with the value of r; locally the

oscillators are heated.

The simplest two-mode, continuous-variable entanglement criterion is the Duan
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Figure 2.5: The change of second moment of position quadrature ⟨X̂2
a⟩ with different

thermal occupation baths as a function of squeezing parameter r. Here n̄a = 0,
n̄b = 0 (black); n̄a = 1, n̄b = 1 (blue); and n̄a = 5, n̄b = 0 (red). Parameters taken
for these curves are: γa,b = 1 and Γa,b = 10.
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Figure 2.6: The change of second moment of momentum quadrature ⟨P̂ 2
a ⟩ with

different thermal occupation baths as a function of squeezing parameter r. Here
n̄a = 0, n̄b = 0 (black); n̄a = 1, n̄b = 1 (blue); and n̄a = 5, n̄b = 0 (red). Parameters
taken for these curves are: γa,b = 1 and Γa,b = 10.

criterion. This is expressed in terms of collective quadratures operators defined by

X̂± = (X̂a ± X̂b)/
√
2, (2.28)

P̂± = (P̂a ± P̂b)/
√
2, (2.29)
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2.5. Collective Quadrature Squeezing of Two Harmonic Oscillator

where the usual quadratures for each oscillator mode are given by

X̂s = (ŝ+ ŝ†)/
√
2, (2.30)

P̂s = −i(ŝ+ ŝ†)/
√
2. (2.31)

The Duan criterion tells us that a Gaussian state for which [40]

⟨X̂2
+⟩+ ⟨P̂ 2

−⟩ < 1, (2.32)

is inseparable (that is, entangled). Note that this criterion could equally well be

formulated in terms of ⟨X̂2
−⟩ and ⟨P̂ 2

+⟩. Fig. 2.7 illustrates that the Duan quantity is
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Figure 2.7: Duan quantity (⟨X̂2
+⟩ + ⟨P̂ 2

−⟩) plotted against squeezing parameter r
with different thermal occupation baths. Here n̄a = 0, n̄b = 0 (black); n̄a = 1,
n̄b = 1 (blue); and n̄a = 5, n̄b = 0 (red). Parameters taken for these curves are:
γa,b = 1 and Γa,b = 10.

below one, which indicates that the oscillators are entangled in the steady state. In

the cavity optomechanics context, beyond a fundamental state engineering demon-

stration, such states enable teleportation for quantum processing and force sensing

beyond conventional quantum limits.
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Chapter 3

Entanglement and

Continuous-Variable Cluster

States

In the preceding chapter we briefly described some Gaussian dissipative state engi-

neering protocols. Such Gaussian states, assuming their first moments are zero, may

be specified via their symmetrically-ordered covariance matrix in terms of oscillator

quadrature operators. All of the interesting quantum noise properties of the state

are encoded in the second moments. However, to go beyond one or two oscillator

modes, it is useful to consider both how one can describe the correlations (including

entanglement), and efficiently describe the states (leading us to the notion of cluster

states).

3.1 Entanglement

A system consisting of a number of quantum subsystems is known as a composite

quantum system. When those subsystems are entangled it is impossible to fully

describe the state of one without making reference to the others. Entanglement is



3.1. Entanglement

most easily introduced starting with discrete variable systems. A simple example of

a composite quantum system is a pair of two spin −1/2 particles in a singlet state

|ψab⟩ =
1√
2
(|0⟩a|1⟩b + |1⟩a|0⟩b). (3.1)

In this singlet states if a measurement of the z-component of the spin is made on one

particle and found to be in the state |0⟩, then the other will be found with certainty

in the state |1⟩. This property of entangled quantum states, has puzzled physicists

all over the world. The paradoxical implications pointed out by Einstein, Podolsky

and Rosen (EPR) in 1935 cast doubt on the acceptability of quantum mechanics as a

consistent physical theory [41]. However, quantum mechanics has survived repeated

empirical tests, most notably in experiments demonstrating the violation of Bell

inequalities [42]. Singlet states described in Eq. (3.1) are now frequently called Bell

states. Since entanglement represents non-local correlations that are independent of

the observable to be measured, its characterization should be invariant under local

transformations performed on the subsystems and be independent of the choice of

the local basis.

If we consider a bipartite composite system in a pure state with wave function

|ψab⟩, it is possible to find orthonormal bases |ia⟩ and |ib⟩ for systems a (of dimension

N) and b (of dimension M < N) such that the joint state of the system can be

written in the form

|ψab⟩ =
N∑
i=1

√
pi|ia⟩ ⊗ |ib⟩, (3.2)

where pi > 0 and
∑N

i=1 pi = 1. The so-called Schmidt coefficients pi are uniquely

defined for the state |ψab⟩ and are given by the eigenvalues of the reduced density

matrix ρa and ρb as

ρa = Trbρab = Trb|ψab⟩⟨ψab| =
M∑
j=1

⟨Jb|ρab|Jb⟩

=
N∑
i=1

pi|ia⟩⟨ia|.

(3.3)
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Hence they are automatically invariant under local unitary transformations.

The reduced density matrix [43] ρa is an essential description whenever a wave

function cannot be attributed to a quantum subsystem A; i.e., when we do not have

the maximal knowledge about the state allowed by quantum mechanics. It contains

the correct statistics for measurements made on the system, since the expectation

value of any observable A in the associated Hilbert space of the system can be

determined by

⟨Â⟩ = Tr(Âρa). (3.4)

Suppose a wave function ψa is associated with the subsystem with probability 1,

i.e., Tr(ρ2a) = 1, then the state is called a pure state. The density matrix is given

by,

ρa = |ψa⟩⟨ψa|. (3.5)

For a pure state, we have the full knowledge about the state of the system allowed by

quantum mechanics. Otherwise a system is in a mixed state, meaning we only have

partial (or no) knowledge of the state allowed by quantum mechanics. Suppose the

system is in one of state vectors |ψ1⟩, |ψ2⟩, .....|ψN⟩ with probabilities pi respectively.

Then the density matrix for a mixed state can be written as

ρa =
N∑
i=1

pi|ψi⟩⟨ψi|, (3.6)

where
∑N

i=1 pi = 1.

From the above, one can see that for a pure state of the subsystem, the system

is not entangled when considered as a whole. Therefore, the degree of impurity

or classical uncertainty must be linked with the entanglement properties of the

subsystems. An important measure of the bipartite (two-party) entanglement of a

composite system in a pure state is the von Neumann entropy SN = Tr(ρa ln ρa).

This measure will give zero for the separable state |ψab⟩ = |ψa⟩|ψb⟩. They take the

maximum value of unity for states in which the Schmidt coefficients are all equal
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in magnitude. Unfortunately Schmidt decomposition does not apply for more than

two entangled subsystems or for a bipartite system in mixed state.

3.1.1 Entanglement Measures

Entanglement description and quantification is an area of research in its own right.

Much of the current work is motivated by the fact that entanglement is the key

resource for both quantum communication and quantum computation. In the for-

mer, it enables non-classical protocols such as quantum teleportation [44] and su-

perdense coding and leads to enhanced security in cryptographic tasks [45]. It is

a key ingredient in determining the efficiency of quantum algorithms and quantum

computation schemes [46]. In addition, entanglement raises new challenges and

provides new resources in areas of quantum mechanics that are well established.

Studies of entanglement have proved to be relevant to fields as different as atomic

physics [47], quantum chaos [48–50], quantum phase transitions [51–53], and quan-

tum networks [54].

As noted earlier for discrete-variable system, quantification of entanglement is

a procedure closely related to a description revealing the different ways the parts

can be entangled of a quantum system. There are some general requirements that

an entanglement measure should satisfy. Aside from being invariant under local

unitary transform actions, it should also decrease on average under general local

operations [55]. The issue of quantification of entanglement in a mixed state is also

of subject of research, even for bipartite systems. Prominent suggestions include

the entanglement of formation and the distillable entanglement [56]; both difficult

to compute except in the simplest of cases.

38



3.2. Continuous-Variable Cluster State

3.1.2 Logarithmic Negativity

An important class of entanglement measures are negativities, which quantify the

violation of positive partial transposition (PPT) criterion for separability. We may

write Negativity [57] as

N(ρ) =
||ρTi||1 − 1

2
, (3.7)

where

||Ô||1 = Tr
√
Ô†Ô, (3.8)

is the trace norm of the operator Ô. The negativity is the computable measure of

entanglement, being

N(ρ) = max

{
0,−

∑
k

λ−k

}
, (3.9)

where the {λ−k } are the negative symplectic eignvalues of partial transpose. In

continuous-variable systems, a related measure is more frequently used, this is called

logarithmic negativity En(ρ) [58,59], which can be defined as

En(ρ) = log||ρTi||1 = log[1 + 2N(ρ)]. (3.10)

3.2 Continuous-Variable Cluster State

Now we introduce continuous-variable cluster states, following the presentation of

Ref. [60]. The basic CV cluster states are prepared with a collection of N zero-

momentum eigenstates, which can be written as |0⟩⊗N
p , where the p-subscripted

kets satisfy p̂|s⟩ = s|s⟩p. A collection of controlled-Z operations represented as

Ĉz = e(igq̂⊗q̂), can be used to entangle these modes. Note that here, g is a real

number which defines the strength of the interaction. As Ĉz operations commute,

they can be applied to the modes in any order (or simultaneously).

Now we can construct a graphical representation for such cluster states. An

example of such a graph is shown in Fig. 3.1. The zero-momentum eigenstates
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are represented by nodes, and edges indicates a Ĉz operation to be performed be-

tween the two connected nodes. The strength g of the interaction is indicated by

the label, or weight, of the associated edge. Such weighted graphs like this with

real-valued weights can be used to map the ideal CV cluster states, which exhibit

infinite squeezing (and are therefore unphysical). They are approximated by highly

squeezed states.

The graph described can be compactly represented algebraically. Consider a

symmetric adjacency matrix A = AT whose (j, k)th entry Ajk is equal to the weight

of the edge linking node j to node k (with no edge corresponding to a weight of

0). Now the CV cluster state created with a collection of controlled-Z operations

is a function of A which can be denoted by Ĉz[A]. The CV cluster state associated

with graph A is then

|ψA⟩ = Ĉz[A]|0⟩⊗N
p =

N∑
j,k=1

e(
i
2
Ajk q̂j q̂k)|0⟩⊗N

p

= exp

(
i

2
q̂TAq̂

)
|0⟩⊗N

p

(3.11)

Figure 3.1: A CV cluster state represented as a weighted graph. Ideal (infinitely
squeezed) CV cluster states are represented by undirected graphs with real-weighted
edges. Unweighted graphs are a special case with all weights equal to 1. Each graph
uniquely defines a recipe (i.e., a quantum circuit) for creating a CV cluster state,
as illustrated: (1) each node represents a state that is infinitely squeezed in the p̂
quadrature |0⟩p; and (2) Cz gates are applied between modes in accordance with the
graph, with the weight g of an edge corresponding to the strength of the interaction
Ĉz(g) = eigq̂⊗q̂ between the two nodes connected.

Note that here q̂ = (q̂1, ....., q̂n)
T is a column vector of Schrödinger picture
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position operators. Due to the fact that each edge weight appears twice in the sum

(as Ajk and as Akj), the factor of 2 is essential. Ideal CV cluster states follow a set

of so-called nullifier relations [61,62], which can be written as

(p̂−Aq̂)|ψA⟩ = 0, (3.12)

where p̂ = (p̂1, ....., p̂n)
T is a column vector of Schrödinger picture momentum op-

erators. This equation actually represents N independent equations, one for each

component of the vector (p̂−Aq̂), which are called nullifiers for the state ψA be-

cause that state is a simultaneous eigenstate corresponding to the zero eigenvalue.

A convenient graphical representation in terms of the adjacency matrix A is to

be described for these ideal CV cluster states. We can quantify an approximate CV

cluster indexed by an overall squeezing parameter α, for which

lim
α→∞

cov(p̂−Aq̂) = 0, (3.13)

where the covariance matrix of a vector of operators has components defined as the

symmetrized expectation value

(cov r̂)jk =
1

2
⟨{r̂†j, r̂k}⟩, (3.14)

with r̂ denoting a vector of oscillator quadrature opearators. We may write the

α-indexed approximate CV cluster state as |ψA(α)⟩. Any α-indexed family of Gaus-

sian pure states {|ψA(α)⟩} satisfying Eq. (3.14) represents a family of approximate

CV cluster states described with graph A. These Gaussian pure states can be used

to describe a graphical formalism in a manner that takes into account their unique

deviation from ideality.

However, a two-mode squeezed state is a Gaussian pure state but not approxi-
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mate CV cluster state and it satisfies,

var(q̂1 − q̂2) = e−2α, (3.15)

var(p̂1 + p̂2) = e−2α. (3.16)

In the laboratory optical two-mode squeezed states are made by passage of position-

squeezed and momentum-squeezed beams through a 50 : 50 beamsplitter [63–65] or

directly by nondegenerate parametric downconversion [63, 66–69]. These states do

not satisfy Eq. (3.14) for any choice of (finitely weighted) graph A, though they are

α-indexed multimode squeezed state whose variances tend to 0 as α → ∞. That

indicates they cannot be represented within the existing graphical formalism for

CV cluster states [70]–even in the limiting case where α→ ∞. This is unfortunate

since the two-mode squeezed state is related to a two-mode CV cluster state by

a Fourier transform on one of the modes–an LG unitary [62] that is one of the

simplest to perform experimentally. That this equivalence cannot be represented in

the graphical formalism–in either the ideal or the approximate case–is a significant

drawback.

3.2.1 Matrix Formalism for Gaussian Pure States

We seek a matrix, and subsequently graphical, formalism capable of describing all

pure Gaussian states. We want this matrix to be consistent with the formalism pre-

viously introduced for ideal CV cluster states. The complex-matrix formalism [71]

for representing Gaussian pure states is now discussed. All N -mode Gaussian states

can be created by acting on the ground state of N harmonic oscillators with a

unitary operation whose Heisenberg action on the vector of quadrature operators

is given by a symplectic transformation, followed by a phase-space displacement.

These are sometimes called linear unitary Bogoliubov transformations [63]. We

neglect the phase-space displacement altogether since we want the graphical for-

malism to describe the noise properties of the state, which do not depend on overall
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displacement. Let us consider a column vector with q̂ on top of p̂ as

x̂ =

q̂
p̂

 . (3.17)

The Heisenberg action of a Gaussian unitary operation Û takes the form

´̂x = Û †x̂Û = Sx̂, (3.18)

where S is a symplectic matrix of scalars that acts via matrix multiplication on x̂ as

a vector, while Û is a unitary operator that acts on the individual operators within

x̂.

There is a unique S for every Gaussian Û , and there is a unique Û(up to an over-

all phase) for every symplectic S. The symplectic nature of S is ensured because the

commutation relations must be preserved, giving rise to a symplectic form Ω to be

preserved by the Heisenberg matrix action. The explicit form of Ω can be obtained

by the commutation relations for x̂ and requiring them to be unchanged under the

Gaussian unitary operation. The canonical commutation relations [q̂j, p̂k] = iδjk

(with ~ = 1) can be given by

[x̂, x̂T ] = i

 0 I

−I 0

 = iΩ, (3.19)

where the commutator of two operator-valued vectors is defined as

[r̂, ŝT ] = r̂ŝT − (ŝr̂T )T . (3.20)

where the transpose operation acts only on the entries in the matrix (or vector),

leaving the actual operators involved alone. The quadrature-operator commutators
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remain unchanged after the Gaussian operation and this can be written as

iΩ = iSΩST . (3.21)

Now by canceling i’s from both sides, this Eq. (3.21) is exactly the defining

relation for any 2N×2N square matrix S to be a symplectic matrix with symplectic

form Ω. This indicates the symplectic nature of S and required by the need to

preserve the canonical commutation relations, which themselves play the role of the

symplectic form Ω (up to an overall factor of i), as shown in Eq. (3.19).

A covariance matrix can be used to describe a Gaussian pure state. We may

express the symmetrized covariance matrix for an operator-valued vector as

cov r̂ =
1

2
⟨{r̂†, r̂T}⟩, (3.22)

which accords with Eq. (3.14). If we define the anti-commutator product as

{r̂, ŝT} = r̂ŝT + (ŝr̂T )T . (3.23)

Since every N -mode Gaussian pure state can be obtained by acting with a Gaus-

sian unitary operation on the ground state of N independent harmonic oscillators,

we can use the symplectic representation of this operation to parameterise these

states. By eliminating units in q̂ and p̂, the covariance matrix of the N -mode

ground state can be written as

cov x̂0 =
1

2
I, (3.24)

where x̂0 is the vector of Heisenberg operators associated with this state. This

indicates that var q̂0j = var p̂0j = 1
2
for every mode j, where var and cov stands

for variance and covariance respectively. The Heisenberg operators for any Gaus-

sian pure state can be obtained from x0 by acting with a symplectic matrix. The
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resulting covariance matrix can be written in terms of a symplectic matrix as

cov x̂ =
1

2
SST . (3.25)

Since the covariance matrix uniquely defines a Gaussian state, so does SST . Now

we have to create a graph representation of SST to be practically useful for our

purposes. Therefore, we will decompose S and use the resulting matrix factors to

define the adjacency matrix for an associated graph. There are a number of ways

to decompose a symplectic matrix, but the one we are interested in is the following

particular decomposition for any symplectic S [71]:

S =

 I 0

V I


U−1/2 0

0 U−1/2


X −Y

Y X

 , (3.26)

where U is symmetric and positive definite (U = UT > 0), V is symmetric (but not

necessarily positive definite), and the third matrix is orthogonal and thus irrelevant

in the product SST . This expansion is unique for a given S, and since we only care

about SST , we can define X = I and Y = 0 and, after multiplying the right-hand

side above, we have

S(U,V) =

 U−1/2 0

VU−1/2 U−1/2

 . (3.27)

Using Eq. (3.25), the covariance matrix associated with this state is

V(U,V) =
1

2
S(U,V)S

T
(U,V) =

1

2

 U−1 U−1V

VU−1 U+VU−1V

 . (3.28)

This is a very useful expression of covariance matrix of a pure Gaussian state

through graphical formalism. Since the state is pure, the position space wave func-
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tion can be given as

ψ(U,V)(q) = π−N/4(det U)1/4exp [
1

2
qT (U− iV)q]. (3.29)

Note that q,p, and x =

q
p

 are scalar column vectors that correspond to their

respective operator-valued counterparts. Eqs. (3.27), (3.28) and (3.29) can be used

to define a Gaussian pure state from any pair of N × N symmetric matrices, U

and V, with U > 0 ensuring the physicality of the state. Eq. (3.27) defines the

Heisenberg quadrature variables x̂ = S(U,V)x̂0 associated with the state in question,

where Eq. (3.28) gives the (symmetrized) covariance matrix, and Eq. (3.29) gives

the wave function of the state. Inversion of these relations to find U and V is

straightforward. The ground state corresponds to U = I and V = 0.

The complex combination U− iV that appears in Eq. (3.29) is suggestive of a

way to unify the two symmetric matrices that define a Gaussian pure state. After

multiplication by i, we get

Z = V + iU. (3.30)

We define Z as the adjacency matrix for an undirected graph with complex-valued

edge weights, thus providing our graph representation for any Gaussian pure state.

3.3 Approximate CV Cluster State

The graph representative of a Gaussian pure state discussed above is, in fact, the

most effective way to extend the graph representation of ideal CV cluster state

to their finitely squeezed Gaussian approximations. The canonical method for ob-

taining a CV cluster state [72] is to squeeze all modes as much as possible in the

momentum quadrature and then to apply ĈZ [A] in accord with a (real-weighted)

graph A. An ideal cluster state |ψA⟩ from Eq. (3.11) is obtained by taking the limit

of infinite initial squeezing on all the modes. Now let us consider this scenario in
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the graphical formalism [73,74].

The symplectic transformation corresponding to the canonically generated CV

cluster state consists of two parts: the initial single-mode squeezing and the controlled-

Z operations. If we take all modes to be momentum squeezed with their variance

reduced by a factor of e−2r, followed by the controlled ĈZ [A] operations, this cor-

responds to a total symplectic transformation of

 I 0

A I


erI 0

0 erI

 . (3.31)

Comparing this with Eq. (3.27), we can immediately read off that U = e2rI and

V = A, and we find that

Zr = A+ ie−2rI, (3.32)

corresponds to an r-indexed family of approximate CV cluster states with graph A

since

lim
r→∞

Zr = A. (3.33)

3.4 Complex Nullifiers

We can generalize the real-valued nullifier formalism to complex-valued nullifiers,

which can be used to represent Gaussian pure states. The nullifier formalism for

CV cluster states, given by Eq. (3.12), can be extended to all Gaussian pure states

using the simple replacement of the CV cluster-state graph A with the Gaussian

graph Z:

(p̂− Zq̂)|ψz⟩ = (−Z I)x̂Ûz|0⟩

= Ûz(−Z I)Szx̂|0⟩

= ÛzU
1/2(p̂− iq̂)|0⟩

= 0,

(3.34)
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where we have used Eq. (3.27) to substitute for Sz = S(U,V), and we note that

p̂ − iq̂ = −i
√
2â, is a vector of operators annihilating the ground state. Here the

nullifier vector p̂ − Zq̂ is not unique for a given graph since any matrix of scalar

M acting from the left, will generate a new vector of nullifiers for the state. In the

case of the ground state, Z = iI. we can calculate

cov [p̂− Zq̂] = U. (3.35)

For approximate CV cluster states, it is also necessary to calculate the covariance

matrix of just the real part of Z (namely, V):

cov [p̂−Vq̂] =
1

2
U. (3.36)

Comparing this expression with Eq. (3.33), we end up with a nice interpretation of

Z’s real and imaginary parts: V is the graph of the ideal CV cluster state approx-

imated by Z, and 1
2
U is the error in the approximation. For this interpretation to

make any sense, U must be small. If U > 0, we can use the trace to say that 1
2
trU

is the magnitude of the approximation error in approximating the ideal CV cluster

state V using Z.

In summary, we have presented the generalisation of the real nullifier formal-

ism for real-weighted ideal CV cluster states to a complex nullifier formalism for

complex-weighted, physical CV cluster states, as well as all other Gaussian pure

states.
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Chapter 4

Preparation of Entangled States

in Multimode Optomechanics

4.1 System and Hamiltonian

Techniques for the preparation of entangled states of two mechanical modes, two

optical modes, or one mechanical and one optical mode, have previously been de-

scribed. Here we consider the preparation of tripartite entangled states. Consider

a system composed of three mechanical oscillators coupled to three electromagnetic

cavity modes. The electromagnetic cavity mode may take the form of an optical

cavity [37] or a microwave circuit [75]; the underlying physics is very similar. For

the sake of concreteness, here we focus on the microwave circuit case [30]. Hence,

the development of the Hamiltonian will be framed in terms of the capacitance

of an electrical circuit rather than the radiation pressure of an optical field. Sup-

pose the cavity modes have resonance frequencies ωc,k for cavity k = 1, 2, 3 and

the mechanical oscillators have resonance frequencies ωm,j and mass mj for oscil-

lator j = 1, 2, 3. The uncoupled electromagnetic cavities may be described by a

lumped-element equivalent inductance Lk and equivalent capacitance Ck. Assum-

ing that the amplitude of the mechanical oscillators motion is small compared with



4.1. System and Hamiltonian

the equilibrium separation between the oscillators and the microwave circuit. The

capacitive coupling to linear-order, between cavity k and mechanical oscillator j is

Cjk(xj) = C0,jk (1− xj/djk) , (4.1)

where xj is the position of the mechanical oscillator, djk is the equilibrium separation

between the mechanical oscillator and microwave cavity, and C0,jk is the equilibrium

capacitance. The effective capacitance of each cavity is CΣ,k = Ck +
3∑

j=1

C0,jk, such

that the coupled resonance frequency is ωc,k = 1/
√
LkC∑

,k. Consequently, the

system is described by the classical Hamiltonian

H =
3∑

j=1

(
p2j
2mj

+
1

2
mjω

2
m,jx

2
j

)
+

3∑
k=1

(
Φ2

k

2Lk

+
Q2

k

2CΣ,k

)
+

3∑
j,k=1

βjk
2djkCΣ,k

xjQ
2
k+

3∑
j=1

3∑
k=1

1

2
[e+jk(t) + e−jk(t)]Qk,

(4.2)

where pj is the momentum of mechanical oscillator j, Φk is the flux through the

inductance and Qk is the change on the capacitance of microwave circuit k. The

coupling between the mechanical oscillator and microwave circuits are given by

βjk = Cjk/CΣ,k, and the cavities are driven at frequencies ωd,±jk, according to the

electric potential

e±jk(t) = 2
√

2~ωcL(ε±jke
+iωd,±jkt + c.c.), (4.3)

with ε±jk denote driving fields as the microwave circuit mode k.

We may quantize the Hamiltonian by imposing the commutation relations [x̂m, p̂n] =

i~δmn and [Q̂m, Φ̂n] = i~δmn. In the Schrödinger picture, we have

Ĥs =
3∑

j=1

~ωm,j b̂
†
j b̂j +

3∑
k=1

~ωc,kâ
†
kâk +

3∑
j,k=1

1

2
~κjk(b̂j + b̂†j)(âk + â†k)

2+

3∑
j=1

3∑
k=1

~(âk + â†k)(ε+jke
+iωd,+jkt + ε−jke

+iωd,−jkt + c.c.).

(4.4)
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where the circuit and mechanical oscillator lowering operators are

âk =

√
ωc,kLk

2~
Q̂k +

i√
2~ωc,kLk

Φ̂k, (4.5)

b̂j =

√
mjωm,j

2~
x̂j +

i√
2~mjωm,j

p̂j, (4.6)

respectively and the coupling constants are

κjk =
βjkωc,k∆xj

2djk
, (4.7)

with ∆xj =
√
~/2mjωm,j being the width of the quantum ground state for mechan-

ical oscillator j.

Suppose the cavities are driven on one sideband (ε−jk = 0) and by moving into

an interaction picture making a rotating-wave approximation with respect to

Ĥ1
0 =

3∑
k=1

~ωd,jkâ
†
kâk +

3∑
j=1

~ωm,j b̂
†
j b̂j, (4.8)

we find

Ĥ1
I =

3∑
j,k=1

~δ+jkâ
†
kâk+

3∑
j,k=1

~κjk(b̂je−iωm,jt+b̂†e+iωm,jt)â†kâk+
3∑

j=1

3∑
k=1

~(ε+jkâk+H.c.),

(4.9)

where δ+jk = ωc,k−ωd,+jk are the detuning parameters. Here δ±jk > 0 denotes driv-

ing on blue sideband and δ±jk < 0 denotes driving on red sideband. Alternatively,

we may consider driving the circuits on both red and the blue sidebands. To do so

we move into an interaction picture with respect to the Hamiltonian

Ĥ2
0 =

3∑
j=1

~ωm,j b̂
†
j b̂j +

3∑
k=1

~ωc,kâ
†
kâk, (4.10)
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leaves

Ĥ2
I =

3∑
j,k=1

~κjk(b̂je−iωm,jt+b̂†e+iωm,jt)â†kâk+
3∑

j=1

3∑
k=1

~(ε+jkâe
+iδ+jkt+ε−jkâe

+iδ−jkt+H.c.).

(4.11)

The terms with κjk represent a low-frequency modulation, at the mechanical

resonance frequency, of the cavity resonance frequency. Note that this coupling has

the same form as the dispersive radiation pressure coupling well-known in cavity

optomechanics. This interaction also writes sidebands onto the cavity transmission

spectrum at integer multiples of the mechanical resonance frequencies. By driving

the cavities on these sidebands, the cavity fields on resonance couple to the slowly-

varying quadratures of the mechanical oscillator motion.

4.2 Quantum Langevin Equation

The internal losses of microwave circuits can be small compared with the damp-

ing due to out-coupling of the field, such that the circuits may function as good

transducers. Further, it is assumed that the mechanical oscillators undergo a quan-

tum Brownian motion [76]. This assumption, combined with the fact that we may

subsequently linearise the optomechanical interaction, means that we shall use a

quantum Langevin equation approach rather than a master equation approach.

Now the Hamiltonian described in Eq. (4.11) and the assumption of linear damping

and a Gaussian white noise [77] input fields leads to the quantum Langevin equation

as

˙̂ak = −i
3∑

j=1

κjk(b̂je
−iωm,jt + b̂†e+iωm,jt)âk − i

3∑
j=1

(ε+jke
−iδ+jkt + ε−jke

−iδ−jkt)

−µk

2
âk +

√
µkâk,in, (4.12)

˙̂
bj = −i

3∑
k=1

κjke
iωm,jtâ†kâk −

γj
2
b̂j +

√
γj b̂j,in. (4.13)
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The associated non-zero input noise correlation functions are

⟨âk,in(t), â†k,in(t
′)⟩ = δ(t− t′), (4.14)

⟨b̂†j,in(t), b̂j,in(t′)⟩ = n̄m,jδ(t− t′), (4.15)

where n̄m,j is the thermal occupancy of the mechanical bath at the mechanical

resonance frequency, and the correlations used is defined by

⟨Â, B̂⟩ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩. (4.16)

The thermal occupancy is given by the Bose-Einstein distribution (phonons are

bosons) by

n̄m,j =

[
exp

(
~ωm,j

kBTm,j

)
− 1

]−1

. (4.17)

where kB is the Boltzmann constant, and Tm,j is the effective mechanical bath

temperature. It is assumed that the microwave circuit is at a sufficiently high

frequency that it may be assumed to be damped into a zero-temperature bath.

4.3 Effective Hamiltonian

As the cavity quality factors are assumed to be very large (i.e., we are in the so-called

resolved sideband regime, also known as the good cavity limit), we can decompose

the microwave fields into sideband modes as,

âk(t) =
3∑

j=1

[â+jk(t)e
−iωm,jt + â−jk(t)e

+iωm,jt] + â0k(t), (4.18)

b̂j(t) = b̂j(t), (4.19)

where ′−′ refers to the blue sideband components and ′+′ refers to the red sideband

components. Let us assume the cavity driving right on the mechanical sidebands

i.e., δ±jk = ±ωm,j. Substituting these into Eqs. (4.12) and (4.13) and equating
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frequency components, we obtain

˙̂a0k(t) = −i
3∑

j=1

κjk[b̂j(t)â−jk(t) + b̂†j(t)â+jk(t)]−
µ0k

2
â0k(t)+

√
µ0kâ0k,in(t),

(4.20)

˙̂a±jk(t) = −iκ±jk[b̂j(t)â0k(t)]− iε±jk −
µ±jk

2
â±jk(t)+

√
µ±jkâ±jk,in(t),

(4.21)

and

˙̂
bj = −i

3∑
k=1

κjk[â
†
0k(t)â+jk(t) + â†−jk(t)â0k(t)]−

γj
2
b̂j(t) +

√
γj b̂j,in(t). (4.22)

Initially neglecting the effect of the weak bare optomechanical coupling, we have

the steady-state amplitudes as

⟨â±jk⟩ss = ± iε±jk

(iωm,j − µ±jk)
, (4.23)

where µ±jk are the cavity damping rates as a function of cavity index k and me-

chanical oscillator index j. Now using these values and dropping the sideband

subscripts of Eqs. (4.20) and (4.21), we obtain the reduced system of quantum

Langevin equations,

˙̂ak(t) = −i
3∑

j=1

[g−jkb̂j(t) + g+jkb̂
†
j(t)]−

µk

2
âk(t) +

√
µkâk,in(t), (4.24)

˙̂
bj(t) = −i

3∑
k=1

[g+jkâ
†
k(t) + g−jkâk(t)]−

γj
2
b̂j(t) +

√
γj b̂j,in(t), (4.25)

where, g±jk are the effective couplings in this optomechanical system

g±jk = ±κjk
iε±jk

(iωm,j − µ±jk)
. (4.26)

As three mechanical resonators coupled with three cavities via two driving tones,

there exists 18 different coupling parameters on which the dynamics of our system
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depend.

By using Eq. (4.24) and Eq. (4.25), we may obtain the effective Hamiltonian of

our multimode optomechanical system as

Ĥeff = ~
3∑

j,k=1

[g+jkakbj + g−jka
†
kbj +H.c.]. (4.27)

4.4 Adiabatic Elimination of Cavity Modes

Assuming damping of the mechanical oscillators into thermal baths with occupa-

tions n̄m,j, the quantum optics master equation describing our system dynamics

may be written as

ρ̇ = − i

~
[Ĥeff, ρ] +

3∑
j=1

γj(n̄m,j + 1)D[b̂j]ρ+
3∑

j=1

γjn̄m,jD[b̂†j]ρ+
3∑

k=1

µkD[âk]ρ. (4.28)

where Ĥeff is the Hamiltonian given in Eq. (4.27). Now we assume that the circuit

modes are heavily damped such that cavity mode at the sideband of the driving field

will have few photons and will be slaved to the mechanical oscillator modes. This

is the appropriate limit for the circuits to be good transducers of the mechanical

oscillators motion. More precisely, this regime corresponds to our parameters being

chosen such that [78]

| g±jk

µk

|≪ 1. (4.29)

Then the cavity modes may be adiabatically eliminated from the description of

the system. This procedure yields the master equation for the three mechanical

oscillators modes,

ρ̇m =
3∑

j=1

γj(n̄m,j + 1)D[b̂j]ρm +
3∑

j=1

γjn̄m,jD[b̂†j]ρm +
3∑

k=1

ΓkD[N̂k]ρm, (4.30)

where the Hamiltonian dynamics of Eq. (4.27) has been incorporated into a modified

dissipative dynamics in Eq. (4.28). The new effective damping rates are Γk =
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4g2k/µk, with gk = maxj {g±jk/ḡ±jk}. The forms of the operators N̂k depend on

the cavity driving conditions, and we can set the N̂k to be an arbitrary linear

combination of mechanical quadrature operators by choosing g±jk (i.e., the driving

conditions) appropriately. If we set the driving conditions such that N̂k correspond

to the nullifiers of a three-mode continuous variable cluster state [60], then in the

limit Γk ≫ γj(n̄mj + 1), such a tripartite-entangled mechanical cluster state can be

prepared with high fidelity.

4.5 Tripartite Mechanical Steady States

Recall that in a graphical representation of the CV cluster state each vertex of the

graph corresponds to a mode, and the edges corresponds to the application of an

entangling operation between the connected modes. A canonical CV cluster state

can be specified by r-indexed matrix Zr in the Eq. (3.32) at Section 2.5. To find

this Zr we have to calculate the adjacency matrix A for undirected graph with

real-valued edge weights. We can assume adjacency matrix A by using schematic

diagram of our system in linear and triangular structure as shown in Fig. 4.1.

(b)
(a)

21 3

3

1 2

Figure 4.1: Two different tripartite cluster states, where 1, 2, and 3 denote the
three target modes of the reduced system description. (a) Schematic diagram of
linear structure. (b) Schematic diagram of triangular structure.

For a linear tripartite cluster state we assume the real-valued adjacency matrix

from Fig. 4.1(a) as

AL =


0 1 0

1 0 1

0 1 0

 , (4.31)
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4.5. Tripartite Mechanical Steady States

and for triangular structure from the Fig. 4.1(b) we have

AT =


0 1 1

1 0 1

1 1 0

 . (4.32)

The adjacency matrix with complex-valued edge weights for both structures calcu-

lated are simply

ZL =


ie−2r 1 0

1 ie−2r 1

0 1 ie−2r

 , (4.33)

ZT =


ie−2r 1 1

1 ie−2r 1

1 1 ie−2r

 . (4.34)

By using Eq. (4.33) the nullifiers for the linear structure are found as to be,

N̂1 =

(
− i√

2
− ie−2r

√
2

)
b̂1 +

(
i√
2
− ie−2r

√
2

)
b̂†1 −

b̂2√
2
− b̂†2√

2
(4.35)

N̂2 =

(
i√
2
− ie−2r

√
2

)
b̂2 +

(
− i√

2
− ie−2r

√
2

)
b̂†2 −

b̂1√
2
− b̂†1√

2
−

b̂3√
2
− b̂†3√

2
, (4.36)

N̂3 =

(
− i√

2
− ie−2r

√
2

)
b̂3 +

(
i√
2
− ie−2r

√
2

)
b̂†3 −

b̂1√
2
− b̂†1√

2
. (4.37)

where b̂j denote the lowering operators for the mechanical oscillator modes. Simi-

larly for the triangular structure we find the nullifiers to be

N̂1 =

(
− i√

2
− ie−2r

√
2

)
b̂1 +

(
i√
2
− ie−2r

√
2

)
b̂†1 −

b̂2√
2
− b̂†2√

2
− b̂3√

2
− b̂†3√

2
, (4.38)

N̂2 =

(
i√
2
− ie−2r

√
2

)
b̂2 +

(
− i√

2
− ie−2r

√
2

)
b̂†2 −

b̂1√
2
− b̂†1√

2
− b̂3√

2
− b̂†3√

2
, (4.39)

N̂3 =

(
i√
2
− ie−2r

√
2

)
b̂3 +

(
− i√

2
− ie−2r

√
2

)
b̂†3 −

b̂1√
2
− b̂†1√

2
− b̂2√

2
− b̂†2√

2
. (4.40)
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.

We have seen that the required nullifiers for a given tripartite entangled steady

state are associated with the cavity driving conditions of our multimode optome-

chanical system. We can get the required couplings comparing the N̂k with Eq. (4.28)

and Eq. (4.30). The required coupling rate for the linear tripartite entangled state

nullifiers N̂1 are

ḡ+11 =
1√
2
(i− ie−2r), ḡ−11 = − 1√

2
(i+ ie−2r), ḡ+21 = − 1√

2
,

ḡ−21 = − 1√
2
, ḡ+31 = 0, ḡ−31 = 0. (4.41)

For the nullifiers N̂2 we require

ḡ+12 = − 1√
2
, ḡ−12 = − 1√

2
, ḡ+22 =

1√
2
(i− ie−2r),

ḡ−22 = − 1√
2
(i+ ie−2r), ḡ+32 = − 1√

2
, ḡ−32 = − 1√

2
, (4.42)

and for the nullifiers N̂3 we require the coupling rates

ḡ+13 = − 1√
2
, ḡ−13 = − 1√

2
, ḡ+23 = 0,

ḡ−23 = 0, ḡ+33 =
1√
2
(i− ie−2r), ḡ−33 = − 1√

2
(i+ ie−2r). (4.43)

Similarly, we can also calculate the effective coupling rates in case of triangular

tripartite cluster state. For the nullifiers N̂1 we require the effective couplings

ḡ+11 =
1√
2
(i− ie−2r), ḡ−11 = − 1√

2
(i+ ie−2r), ḡ+22 = − 1√

2
,

ḡ−22 = − 1√
2
, ḡ+33 = − 1√

2
, ḡ−33 = − 1√

2
. (4.44)

For N̂2 we require the effective couplings,

ḡ12 = − 1√
2
, ḡ−13 = − 1√

2
, ḡ+22 =

1√
2
(i− ie−2r),

58



4.6. Experimentally Feasible Parameter

ḡ−22 = − 1√
2
(i+ ie−2r), ḡ+32 = − 1√

2
, ḡ−32 = − 1√

2
, (4.45)

and for N̂3 we require the effective couplings

ḡ+13 = − 1√
2
, ḡ−13 = − 1√

2
, ḡ+23 = − 1√

2
,

ḡ−23 = − 1√
2
, ḡ+33 =

1√
2
(i− ie−2r), ḡ−33 = − 1√

2
(i+ ie−2r). (4.46)

The complete specification of the effective coupling rates tells us the amplitude

and phases of the microwave circuit driving tones required for the generation of a

tripartite entangled mechanical steady-state.

4.6 Experimentally Feasible Parameter

In this section we will discuss the experimentally accessible parameters for our sys-

tem. The microwave circuit resonance frequencies will be ωc,k = 2π×{5.8, 6, 6.2}GHz

[79] and the mechanical oscillators resonance frequencies will be ωm,j = 2π ×

18, 20, 22MHz [80]. The cavity impedance should be 50Ω, with an equivalent induc-

tance L = 1.33 nH and an equivalent capacitance C = 0.531 pF. Assuming a me-

chanical oscillator of mass 10−15 kg, the ground state uncertainty in the mechanical

oscillator position is ∆x = 20.5 fm. We may also assume an equilibrium mechanical

oscillators to microwave circuit separation of djk = 80 nm and βjk = 0.002, then

κjk = 9.6 s−1. Microwave cavities can be fabricated with quality factor Qk = 105

and mechanical oscillators with quality factor Qm = 105, the corresponding damp-

ing rates are around µk = 3.77 × 105 s−1 and γj = 1.26 × 103 s−1. The effective

fiducial coupling g/µk = 0.09 corresponds to ε = 4.441 × 1011 s−1, and a photon

number at the drive frequency of nc = 1.249×107. This corresponds to the effective

(engineered) damping rates around Γ = 5.49× 105 s−1. The key point is that these

engineered mechanical damping rate greatly exceed the intrinsic damping rates of

the mechanical oscillators. Hence, one would expect that the tripartite mechanical
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cluster states may be prepared with high fidelity.

60



Chapter 5

Characterisation of Entanglement

in Multimode Optomechanics

Given a master equation description of the dynamics of the multimode cavity op-

tomechanics system in terms of an effective Hamiltonian, we have determined the

parameter and driving conditions required for the preparation of a given entangled

tripartite steady state. Now to characterise the entanglement in this system we need

to determine the steady-state covariance matrix. One approach is to write down a

linear system for the second moments of all modes using the master equation. How-

ever, since the effective system is linear, the steady-state covariance matrix may be

obtained in a straightforward manner from the linear quantum Langevin equation.

5.1 Linear Quantum System Approach

Recall that a dissipative system with n degrees of freedom associated with the

density matrix ρ(t) is governed by the Markovian master equation as [81,82]

ρ̇ = − i

~
[Ĥ, ρ̂] +

m∑
k=1

ΓkD[L̂k]ρ, (5.1)



5.1. Linear Quantum System Approach

where L̂k is the the kth dissipative channel that represents the coupling between

the system and environmental degree of freedom. For a linear quantum system,

Hamiltonian Ĥ and dissipative operators (sometimes called cryogenic operators)

L̂k may be written as

Ĥ =
1

2
x̂TGx̂, (5.2)

L̂k =C
T
k x̂,

where G is a real-valued, symmetric Hamiltonian matrix with G = GT ϵR2n×2n,

and Ck is a complex valued vector withG = CkϵC
2n. Now x̂ := (q̂1, ...., q̂n, p̂1, ...., p̂n)

T

is a vector of quadrature operators, which satisfy the commutation relations

x̂x̂T − (x̂x̂T )T = iΣ,Σ =

 0 In

−In 0

 . (5.3)

As for a system of (classical) linear stochastic differential equations, the evolution

of the system’s symmetrically-ordered covariance matrix V is given by a time de-

pendent Lyapunov equation [83]

dV

dt
= AV + V AT +D, (5.4)

with the drift matrix

A = Σ[G+ Im(C†C)], (5.5)

and the diffusion matrix

D = ΣRe(C†C)ΣT . (5.6)

where C = (c1, ...., cm)
T ϵCm×2n. If the system is in a steady state, then a covariance
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5.2. Bipartite Entanglement

matrix Vs will be a unique solution to this following matrix Lyapunov equation:

AVs + VsA
T +D = 0. (5.7)

Then the steady state covariance matrix is readily calculated. From the steady-

state covariance matrix we are well-placed to study the entanglement properties of

the steady-state.

Figs. 5.1 and 5.2 show the gradual decrease of purity with the increase of

squeezing parameter r
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Figure 5.1: Purity of tripartite cluster states (linear) with dissipation against
squeezing parameter r.

5.2 Bipartite Entanglement

A complete qualitative characterisation of the bipartite entanglement of a three-

mode Gaussian state is possible because the positivity of partial transpose (PPT)

criterion is necessary and sufficient for their separability under any, partial or global,

bipartition. This has led to an exhaustive classification of three-mode Gaussian

states into five distinct classes [84]. These classes take into account the fact that

the modes 1, 2, and 3 allow for three distinct bipartitions, where i, j, and k represent
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Figure 5.2: Purity of tripartite cluster states (triangular) with dissipation against
squeezing parameter r.
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Figure 5.3: Bipartite entanglement, (quantified by logarithmic Negativity) against
squeezing parameter r for a triangular (solid line) and linear (dashed line) tripartite
cluster state. Note that all bipartitions of the triangular cluster state have the same
entanglement, while this is not the case of the linear cluster state.

all possible permutations:

XClass 1: states not separable under all three possible bipartitions i × (jk) of

the modes (fully inseparable states, possessing genuine multipartite entanglement).

XClass 2: states separable under only one of the three possible bipartitions (one

mode biseparable states).
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Figure 5.4: Bipartite entanglement, (quantified by logarithmic Negativity) against
squeezing parameter r for a triangular (solid line) and linear (dashed line) tripartite
cluster state.

XClass 3: states separable under only two of the three possible bipartitions (two

mode biseparable states).

XClass 4: states separable under all the three possible bipartitions, but impos-

sible to write as a convex sum of the tripartite products of pure one-mode states

(three-mode biseparable states).

XClass 5: states that are separable under all three possible bipartitions, and

can be written as a convex sum of tripartite products of pure one mode states (fully

separable states).

Note that classes 4 and 5 cannot be distinguished by partial transposition of

any of the three modes (which is positive for both classes). States in class 4 stand

therefore as nontrivial examples of tripartite entangled states with positive partial

transpose.

There are different measures of entanglement for bipartite states. In our study

we consider all possible reduced two-mode bipartitions for both the linear and tri-

angular cluster state structures. The bipartite entanglement is studied using loga-

rithmic negativity. Now from Eq. (3.10), we may write the logarithmic negativity
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5.2. Bipartite Entanglement

as [85]

En = max {0,− ln 2χ}, (5.8)

where,

χ = 2−1/2{Σ(V )− [Σ(V )2 − 4DetV ]1/2}1/2, (5.9)

with

Σ(V ) = DetVb +DetVa − 2DetVab. (5.10)

where Va and Vb denote the covariance matrix of subsystem a and b, respectively,

and Vab is the covariance matrix between subsystems a and b.

We have calculated an r-indexed covariance matrix from approximate CV cluster

state with graph A for both linear and triangular cluster state structures. The

logarithmic negativity for linear structure have same value for En(12) and En(23) and

as expected different for En(13). These results are given below–

En(12) = − ln

√2

√√√√1

2
+

5e4r

4
−

√
− 1

16
+

(
1

2
+

5e4r

4

)2

 , (5.11)

En(23) = − ln

√2

√√√√1

2
+
e4r

2
−

√
− 1

16
+

(
1

2
+
e4r

2

)2

 , (5.12)

En(13) = − ln

√2

√√√√1

2
+

5e4r

4
−

√
− 1

16
+

(
1

2
+

5e4r

4

)2

 . (5.13)

For the triangular structure the logarithmic negativity is found to be the same

between all bipartitions.

En(12) = En(23) = En(13) = − ln

√2

√√√√1

2
+

3e4r

2
−

√
− 1

16
+

(
1

2
+

3e4r

2

)2

 ,
(5.14)

as is to be expected given the symmetry present in the cluster state structures.

All reduced two mode bipartitions for both cases are plotted in the Fig 5.5 with
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respect to the squeezing parameter r. Here all the logarithmic negativity measured

for bipartite states are greater than zero, which indicates the existence of bipartite

entanglement between all subsystems.
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Figure 5.5: The Bipartite entanglement, quantified by the logarithmic negativity
against squeezing parameter r for a triangular (solid line) and linear (dashed line)
tripartite cluster state. Note that all bipartitions give the same entanglement for
the triangular structure, but there are two different values for the linear structure
due to the symmetry of the state.

These results may be compared with these of Fig. 5.3 describing the logarithmic

negativity accounting for additional dissipative mechanisms.

5.3 Tripartite Entanglement

We can also characterize genuine tripartite entanglement via the Gaussian Rényi-2

entanglement entropy [86]. Let us recall that the form of any Gaussian state can

be simplified through (unitary) symplectic operations. Up to local unitaries, the

standard form of covariance matrix VAiAjAk
of any pure three-mode continuous-
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variable cluster state is written as

VAiAjAk
=



a1 0 e+12 0 e+13 0

0 a2 0 e−12 0 e−13

e+12 0 a2 0 e+23 0

0 e−12 0 a2 0 e−23

e+13 0 e+23 0 a3 0

0 e−13 0 e−23 0 a3


, (5.15)

with

e±ij =

√
[(ai − aj)2 − (ak − 1)2][(ai − aj)2 − (ak + 1)2]

4
√
aiaj

±
√

[(ai + aj)2 − (ak − 1)2][(ai + aj)2 − (ak + 1)2]

4
√
aiaj

,

(5.16)

here ai is related to the covariance matrix Vi of subsystem i:

ai =
√

DetVi. (5.17)

The Rényi-2 entropy is defined as

S2(ρ) = − lnTr(ρ2). (5.18)

The tripartite entanglement can be characterize by the systems bipartite states as

ε2(ρAi:Aj :Ak
) = ε2(ρAi:AjAk

)− ε2(ρAi:Aj
)− ε2(ρAi:Ak

), (5.19)

where ε2(ρAi:AjAk
) is the bipartite entanglement partitioning the global system into

Ai and AjAK , ε2(ρAi:Aj
) and ε2(ρAi:Ak

) is the entanglement entropy of subsystem

AiAj and AiAK . Now three different values of ε2(ρAi:Aj :Ak
) are possible, depending

on the choice of the three modes Ai, Aj and Ak. For pure tripartite Gaussian state,

the entanglement entropy ε2(ρAi:AjAk
) is given by,

ε2(ρAi:AjAk
) = S2(ρi) = ln ai. (5.20)
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Also the entanglement entropy for two-mode reduced states ε2(ρAi:Aj
) and ε2(ρAi:Ak

)

can be given as,

ε2(ρAi:Aj
) =

1

2
ln gk, (5.21)

ε2(ρAi:Ak
) =

1

2
ln gj, (5.22)

where

gk =


1, if ak ≥

√
a2i + a2j − 1

β
8a2k
, if αk < ak <

√
a2i + a2j − 1(

a2i−a2j
ak−1

)2

, if ak ≤ αk

(5.23)

and

gj =


1, if aj ≥

√
a2i + a2k − 1

β
8a2j
, if αj < aj <

√
a2i + a2k − 1(

a2i−a2k
aj−1

)2

, if aj ≤ αj

, (5.24)

with

αk =

√√√√2(a2i + a2j) + (a2i − a2j) + |a2i − a2j |
√

(a2i − a2j)
2 + 8(a2i + a2j)

2(a2i + a2j)
,

(5.25a)

αj =

√
2(a2i + a2k) + (a2i − a2k) + |a2i − a2k|

√
(a2i − a2k)

2 + 8(a2i + a2k)

2(a2i + a2k)
,

(5.25b)

β = −1 + 2a21 + 2a23 + 2a23 + 2a21a
2
2 + 2a21a

2
3 + 2a22a

3
2 − a41 − a42 − a43 −

√
δ,

(5.25c)

δ = (−1 + a1 − a2 − a3)(1 + a1 − a2 − a3)(−1 + a1 + a2 − a3)(1 + a1 + a2 − a3)

(5.25d)
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×(−1 + a1 − a2 + a3)(1 + a1 − a2 + a3)(−1 + a1 + a2 + a3)(1 + a1 + a2 + a3).

(5.25e)

Now using Eqs. (5.23) and (5.25a), we can calculate the residual Gaussian Rényi-2

(GR2) entanglement entropy, with respect to the focus mode Ai as

ε2(ρAi:Aj :Ak
) =

1

2
ln

(
a2i
gkgj

)
. (5.26)

By using the same method, the residual Gaussian Rényi-2 entanglement entropy

can be calculated, with respect to focus mode Aj and Ak as

ε2(ρAj :Ai:Ak
) =

1

2
ln

(
a2j
gkgi

)
, (5.27)

ε2(ρAk:Ai:Aj
) =

1

2
ln

(
a2k
gigj

)
. (5.28)

Now by using the covariance matrix for our system, mapped from r-indexed ap-

proximate continuous-variable cluster state, we have calculated ε2(ρAi:Aj :Ak
), ε2(ρAj :Ai:Ak

)

and ε2(ρAk:Ai:Aj
) for both linear and triangular tripartite cluster state structures.

The results are plotted in Fig. 5.6. We consider all the relevant cases of a fully

inseparable three-mode pure Gaussian states and all the residual GR2 entanglement

entropy are nonzero, which confirms the presence of genuine tripartite entanglement.

These results of GR2 entanglement entropy may be compared with these of Fig.

5.4 accounting for additional dissipative mechanisms.
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Figure 5.6: Genuine tripartite mechanical entanglement, (quantified by the residual
GR2 entanglement) against squeezing parameter r for a triangular (solid line) and
linear (dashed line) tripartite cluster state.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This thesis has discussed the preparation and characterisation of tripartite entangled

states of mechanical oscillators in a multimode cavity optomechanical system. The

model consists of three electromagnetic cavities coupled with three micromechanical

oscillators.

The basic theory of quantum optomechanics, and the physics necessary for our

investigation was introduced in chapter 1. This began with a treatment of the ba-

sic harmonic oscillator, followed by a quantum mechanical view of electromagnetic

and mechanical oscillators, introduction to cavity optomechanics, and a general

Markovian master equation formulation was briefly discussed. The optomechan-

ical coupling and determination of optomechanical equations of motion from the

system’s Hamiltonian were reviewed in detail.

Dissipative, in contrast to Hamiltonian, approaches to quantum state control

in cavity optomechanics were investigated in chapter 2. The steady-state of those

systems with different effective optomechanical couplings and under different driving

conditions were investigated.



6.2. Future Research

In chapter 3, a formalism for the description of multimode Gaussian states was

described. A graphical and a compact algebraic description of these states was

discussed.

In chapter 4, we described how tripartite entangled states could be prepared in a

multimode cavity optomechanics setting. The effective Hamiltonian for our system

was derived in the resolved-sideband regime. The required effective coupling rates

between the electromagnetic cavity modes and the mechanical modes was derived,

and hence the driving conditions for a specified target state were determined. Next

the cavity mode was adiabatically eliminated from the system to create a description

of the dynamics of the three mechanical oscillator alone. The dissipative operators

of the three mechanical oscillators can be set to be the nullifiers of a continuous-

variable tripartite cluster state. We explicitly considered two structures (linear and

triangular tripartite cluster states) to study our tripartite entangled states.

In chapter 5, our findings on tripartite entangled mechanical oscillator state

in multimode optomechanics were summarised. The steady-state was determined

using a linear quantum systems theory approach. The presence of bipartite en-

tanglement and genuine tripartite mechanical entanglement was determined. The

impact of the mechanical motion on the spectrum of fluctuations of the coupled

electromagnetic cavity modes was determined.

In summary, by carefully selecting the driving frequency, amplitude and phase

of a multimode optomechanical system, we can prepare highly-entangled states of

the multiple mechanical oscillators. The generation of such states has potential

applications on sensing and quantum information processing.

6.2 Future Research

There are some prospective areas of research in related to our model of reservoir-

engineered multimode cavity optomechanics. The potential future work includes:
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6.2. Future Research

• Limits of quantum mechanics −→ This study arises the the fundamental ques-

tion of quantum physics that, “Is there a limit to the size of systems to which

one can apply quantum mechanics?” The dissipative control approaches de-

scribed provide one route to answering this question experimentally.

• Quantum Many-Body Systems −→ The research could be extended for ar-

rays of mechanical oscillators coupled with one or multiple cavities in non-

linear many-body systems and optomechanical lattices. The long range en-

tanglement properties of lattices of optomechanical systems need to be better

understood.
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