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Abstract 

Reverse mortgages are becoming remarkably popular in the last few years in Aus­
tralia, and although they have been around a lot longer in the United States, they 
are receiving renewed interest among the elderly. Increase in life expectancies and 
decrease in the real income at retirement because of inflation continue to worry the 
retirees. Financial products that help alleviate the "risk of living longer" therefore 
continue to be attractive among the retirees. 

Reverse mortgages involve various risks from the provider's perspective which 
may hinder the further development of these financial products. In this thesis, we 
address one method of transferring and financing the risks associated with these 
products through the form of securitization. Securitization is becoming an attrac­
tive alternative form of risk transfer of insurance liabilities. We therefore construct 
a securitization structure for reverse mortgages similar to the one applied in insur­
ance risks. In particular, we investigate the merits of developing survivor bonds 
and survivor swaps for reverse mortgage products. In the case of survivor bonds, 
for example, we are able to develop premiums, both analytically and numeri­
cally through simulations, and to examine how the longevity risk is transferred to 
the investors. Our numerical calculations provide an indication of the economic 
benefits derived from developing survivor bonds to securitize the "longevity risk 
component" of reverse mortgage products. Some sensitivity analysis of these eco­
nomic benefits also indicates that the survivor bond can be a promising tool for 
investment diversification. 

Vll 



Chapter 1 

Introduction 

In many countries today life expectancy is over 80 years; while life expectancy has 

increased in the last a few years, according to Bateman, Kingston and Piggott 

(2001, [5]), the labour market participation rates for males aged 60-64 have fallen 

from 70-90 percent, down to 20-50 percent in recent years. Living longer and 

retiring earlier exacerbate the risk that the elderly may not be able to fund their 

retirement in old age. This risk is known as "longevity risk" . 

Research has found that retired people often have plenty of equity locked in 

their homes but few liquid assets to support their daily lives. For example, in 

Australia home equity takes a proportion of 50 percent of all household assets in 

1996 (1998, [3]). This is a common situation among retired people in many western 

countries called "house rich and cash poor". One option available to retirees in 

this position is a reverse mortgage (RM) product. A reverse mortgage is a non­

recourse first lien loan that allows retirees, usually 62 years or older, to consume 

part or all of their home equity but still remain in their homes until they die or sell 

their homes. With home ownership and the elderly population steadily increasing 

in many developed countries, reverse mortgages are a viable way for house-rich, 

cash-strapped seniors to supplement their income and afford long-term care while 

staying in their homes. 

In the USA, the reverse mortgage loan has become a very popular product in the 

financial market during the last decade with the most significant and rapid growth 

occurring since the beginning of the millennium. The various payment options 

for borrowers include: an up-front lump sum payment; a fixed monthly annuity 

1 



1. Introduction 2 

payment; a line of credit with an upper limit and various combinations of these 

three types. Reverse mortgages were introduced in Australia in the early 1990's. 

Although the market has not yet proven viable, the product has a lot of potential 

according to Reed and Gibler (2003, [49]). Since major players in the financial 

market such as the Commonwealth bank started offering the product recently, the 

market has improved and there is indication that it will expand further in the near 

future. 

Although a reverse mortgage sounds like an attractive product to the retirees, 

the product involves various risks from the provider's perspective. Most of the 

loan amount accrues interest at a variable rate, usually adjusted monthly or yearly 

based on an index rate, and is repaid only when the borrower dies or sells or per­

manently leaves the home. In most cases, the loan balance accumulates faster than 

the home equity value rises, so that in time it will exceed the value of the home 

equity. If the outstanding loan balance exceeds the home equity value before the 

loan is due, the lender will incur a loss. This "cross-over" risk is the crucial risk in 

reverse mortgages and is determined mainly by three underlying variables: mor­

tality rates, interest rates and house prices. Improvements in the mortality rate, a 

high interest rate environment and a depressed real estate market can exacerbate 

the cross-over risk. Of the three variables, the mortality rate is believed to be the 

most important one in the pricing and risk management of reverse mortgages. 

A traditional method of dealing with the risks in reverse mortgages is insur­

ance. The Home Equity Conversion Mortgages (HECM) program in the United 

States is an example of one such scheme. This thesis suggests securitization as a 

possible means of managing the longevity risk in reverse mortgages, as mortality 

securitization is regarded as a flexible way to transfer the unwanted mortality risk 

from the insurers to the capital market, allowing the risks to be more efficiently 

distributed. 

Securitization is a financial innovation emerged in the 1970's in the United 

States. Since then, the product has shown its incredibly fast growth and has 

expanded from the finance to the insurance industry. An economic justification 

of securitization of insurance risk is provided by Cox in 2000 (2000, [17]). Once 

insurance risk-based securities such as catastrophe bond proved popular, the idea 

of securitizing mortality risk was introduced in 2001 (2001, [6]). Several models 

of mortality-based securities were proposed including mortality bonds and swaps 
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by academia. Shortly after the concepts were introduced, the insurance industry 

put them into practice. For examples, Swiss Re and European Investment Bank 

issued different types of mortality-based securities respectively in 2003 and 2004. 

While Swiss Re offered a brevity risk bond to hedge the risk of adverse changes 

in mortality rates, European Investment Bank issued a survivor bond to address 

the improvements in mortality rates. This thesis proposes a method to hedge the 

longevity risk inherent in reverse mortgage products. Following a similar approach 

used by Lin and Cox (2004, [40]), several examples of longevity securitization are 

given, including two types of survivor bonds and a survivor swap. The survivor 

bonds are priced and a sensitivity analysis is applied to each bond to assess the 

effectiveness in hedging the longevity risk. The results show that securitization 

can provide an efficient and economical way to hedge the longevity risk in reverse 

mortgages. 

The thesis consists of six chapters. Chapter 2 discusses and reviews the his­

torical development and the current market state of securitization in the relevant 

literature. An economic justification of securitization products of mortality risk is 

provided using Cox's approach. Different categories of securitization of mortality 

risk are examined and several recent examples are provided. Chapter 3, examines 

the history of reverse mortgage products in the US and discusses the risks involved. 

In Chapter 4, the risks are analyzed in detail and a model is provided to price the 

reverse mortgage. The results are calculated using a simulation technique. In 

Chapter 5, a model is developed to securitize the longevity risk in reverse mort­

gages. Several example schemes are given, including two types of survivor bonds 

and a survivor swap. The survivor bonds are then priced both analytically and 

numerically and the effect of risk hedging is examined at the end of this chapter. 

The thesis concludes with a summary of the findings and a recommendation for 

securitization as a method to manage the longevity risk. 



Chapter 2 

Securitization 

2.1 History and current development in securi­

tization 

The first securitized transactions can be traced back to 1970 in the United States 

when the Government National Mortgage Association ( "Ginnie Mae") began to 

sell guaranteed mortgage pass-through certificates (1996, [32)). In the late 1970s, 

private securitized residential mortgage transactions began to emerge, in respond 

to a funding shortfall in the U.S. home mortgage market. At that time, demand 

of homeowners and potential homeowners for mortgage loans exceeded the lenders 

capital ability to supply, leading the financial markets to find a more efficient way 

to transfer funds from investors in the capital markets to the mortgage demanders 

(2002, [19]). 

Since then, the general financial markets have seen securitization grow whip and 

spur resulting in the creation of a numbers of new securities. Two factors have 

contributed to the blossoming of the securitization market over the last twenty 

years. The first was changes to the tax code. In 1986, new legislation was intro­

duced in the U.S. to simplify tax structuring of some complex mortgage-backed 

securitization (1996, [32)). The second factor was the development in pricing tech­

nology and computing power, since to proper pricing of certain securities requires 

modern economic and financial techniques and extensive computation (1999, [291). 

In the USA, since the introduction of mortgage-backed securities in the 1970s 

4 



2. Securitization 5 

the securitization volume has increased dramatically. By 2002, the newly issued 

volume of mortgage-backed securities (MBS) and asset-backed securities (ABS) 

reached $1.5 trillion and $450 billion respectively (2003, [18]). By the second quar­

ter of 2003 a total of $6.6 trillion worth of securities had been issued. Recently, 

securitization has begun to expand into other industries including the insurance 

industry. 

In Europe also, the securitization market has shown strong growth. Figure 

(2.1) 1illustrate the rapid growth of European securitization in the last decade. 

The issuance volume has dramatically increased by over 700%, from less than €40 

billion in 1998 to a new historical record €319.6 billion in 2005. 

Figure (2.2) illustrates the rapid growth of European securitization in the last 

year. Securitization volume has increased by 31.1 %, from the previous record 

€241.2 billion in 2004 to €319.6 billion in 2005. The issuance in the fourth quarter 

of 2005 also set a new quarterly record of €135.7 billion. According to the latest 

ESF survey rapid growth is expected to continue in 2006, with securitized volume 

expected to increase 15.0 percent this year. 

2.2 Classification of securitization 

Securitization products can be classified as either asset securitization ( or asset­

backed securitization) or risk securitization based on whether a backing-asset is 

involved. The asset backed securities market enables the originator to move the 

asset off the balance sheet through securitization. Essentially, asset securitization 

repackages the asset and sell it in the market to either transfer the risk or refi­

nance. ABS, MBS, CMBS ( Commercial Mortgage Backed Securities) and CDO 

(Collateralized Debt Obligations) fall into this category. 

Risk securitization is, on the other hand, more like reinsurance. Indeed in a 

broader sense, reinsurance can be considered a form of securitization. The sole 

aim of the transaction is to transfer the risk, either to a counterpart or a capital 

market; the key feature is that backing-assets are not involved in this type of 

securitization. Catastrophe bonds, mortality /survivor bonds or swaps all belong 

1 The statistics and figures are quoted from the European Securitization Forum (ESF) Secu­
ritisation Data Report. These quotations have been approved by ESF. 
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to this group. Compared to asset securitization, risk securitization is expensive 

due to the additional costs including the cost of measuring the risks and educating 

investors. These costs, however will decline as investors become more familiar with 

the risks in time. 

Another classification approach is suggested by Gorvett (1999, [29)) based on 

the goal of the transaction. Based on his method, securitization products can be di­

vided into those that transfer risk and those that provide contingent funding. The 

former group include reinsurance products which transfer risks to other companies 

within the insurance industry; swaps which exchange risk with a counter-party, or 

transfer risks to other insurers or the capital markets; catastrophe bonds which 

transfer risks to the capital markets; and exchange-traded derivatives which also 

transfer risks to the capital markets. The latter group includes line of credit (the 

right to borrow fund); contingent surplus notes which offer an option to borrow 

contingent upon the occurrence of an adverse event; and catastrophe equity puts 

which offer the option to sell equity ( usually preferred shares) on redetermined 

terms, contingent upon an event. 

2.3 Securitization of mortality risk 

Cummins (2004, [19)) analyzed various traditional securitization models and dis­

cussed the emerging securitization classes in the insurance industry. He concluded 

that while securitization of insurance risk had great potential although growth 

could be impeded by its complexity and opacity. But Cummins deemed mortality 

risk one of the drivers of demand for insurance securitizations. Demand for new se­

curities always arises when new risks appear and when existing risks become more 

significant. The appearance of mortality securitization is a result of the increasing 

importance of mortality risk. 

A mortality-based security, as its name, is a particular type of securitization 

transferring mortality risk. They are usually long duration and high capacity. 

Examples of mortality-based securities include: annuity futures, where prices are 

linked to a specified future market annuity rate; mortality options, which include 

a range of contracts with option characteristics where payoff depends on an under­

lying mortality table at the payment date; and short-dated, mortality-linked secu-
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rities which are market-traded securities where payments are linked to a mortality 

index. Some life insurance securitization deals since 1996 are listed in Appendix 

(D). 

2.3.1 Survivor bonds 

Mortality-based securities are very recent subject in the literature. The first paper 

on the topic of mortality-based securities was published by Blake and Burrows in 

2001 (2001, [6]). In this paper the authors first introduced the concept of survivor 

bonds. "The idea behind the survivor bonds is to make the coupon payments 

contingent on mortality rate of a certain age; it pays a coupon proportional to 

the number of survivors in a cohort. The original example was an annuity bond 

with coupon payments tied to a survivor index published periodically by certain 

authorities." Blake and Burrows suggested that survivor bonds have considerable 

potential as mortality-hedging instruments for insurance companies. 

Lin and Cox (2004, [40]) provide a detailed method to securitize the longevity 

risks in annuity products. The authors use Wang transform (1996, [60]) and 

(2000, [61]) to price a survivor bond with coupon payments linked to the sur­

vivorship of a pooled annuity portfolio. The thresholds of survivorship in each 

period are projected using Renshaw's GLM mortality model (1996, [50]) based on 

the U.S. mortality experience (1963, 1973, 1983 and 1996 US individual annuity 

mortality tables). However in their model, the investors are exposed to "basis 

risk" or "cohort risk" which is the risk that the mortality experience of the linked 

annuity pool could deteriorate significantly more than that of the mortality tables. 

Denuit, Dhaene, Le Bailly de Tilleghem and Teghem (2005, [22]) also undertook 

a pricing of survivor bond by projecting the future mortality rates using the Lee­

Carter model (1992, [38]). 

2.3.2 Survivor swaps 

Dowd, Blake, Cairns and Dawson (2006, [25]) recommend another form of mortality­

based security: survivor swaps. The authors define a survivor swap as "an agree­

ment to exchange cash flows in the future based on the outcome of at least one 

survivor index" and list several advantages that survivor swaps have over sur-
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vivor bonds. This include cost effectiveness and flexibility. Survivor swaps can be 

arranged at lower transaction costs than a bond issue and are more easily cancelled. 

They are more flexible and they can be tailor-made to suit diverse circumstances. 

Furthermore, they do not require the existence of a liquid market, just the will­

ingness of counterparts to exploit their comparative advantages or trade views on 

the development of mortality over time. 

Survivor swaps were discussed briefly by Blake (2003, [7]) and Dowd (2003, [24]), 

and in more detail by Dawson (2002, [21)) and Lin and Cox in (2004, [40]) and 

(2005, [39]). In (2005, [39]), Lin and Cox designed a specific mortality swap scheme 

between a life insurer and an annuity insurer, which they called "natural hedging". 

They used the same method to price the product as they price a survivor bond 

using Wang transform. Other than the benefits mentioned above, the authors 

show that the mortality swap can avoid basis risk problem since there is no need 

to project the future mortality thresholds. However, the method only holds based 

on the assumptions that investors accept the same transformed distribution and 

independence assumption for pricing mortality swaps. 

The following are two recent examples illustrating how mortality-based securi­

ties are applied to hedge adverse mortality risk and longevity risk. 

Example 1 Swiss Re brevity risk bond 

It is based on the news that in December 2003, Swiss Re issued a bond link­

ing principal payment to adverse mortality risk scenarios. The bond is designed 

to hedge the brevity risk in its life book of business, i.e. ( the dramatic impact 

that premature death has on mortality rates) the excessive mortality changes of 

premature death. Brevity risk can be managed with the standard tools as long as 

there are no correlated mortality surprises. 

To facilitate this transaction, Swiss Re set up a special purpose vehicle (SPY), 

which raised $400 million from investors. This issue was the first floating rate bond 

which links the return of principal solely to a "mortality index". The maturity of 

the bond is 4 years, and investors receive a floating coupon rate of US LIBOR plus 

135 basis points. This coupon rate is higher than other straight bonds, however 

the principal payment is at risk if "the weighted average of general population 

mortality across five reference countries (US, UK, France, Italy and Switzerland) 

exceeds 130% of the 2002 level". Since mortality is generally improving over time, 
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the probability of such high mortality are very low. so investors obtain a high 

coupon rate in return for assuming the risk. 

The Swiss Re transaction is the first securitization that focus only and directly 

on the mortality risk. The transaction ignored all the other risks and cash flows 

in the life insurance business lines. In some sense, it is the first "pure" mortality 

bond. What is more, linking the return solely to a "mortality index" avoid the 

moral hazard from the issuer and can diversify the risk as great as possible. The 

disadvantage of the index linking is that it could introduce basis risk to the insurer, 

which is discussed in detail in Section (4.1.2). 

Example 2 EIB survivor bond 

In November 2004, the European Investment Bank (EIB) issued a longevity 

bond. This bond involves "time t coupon payments that are tied to an initial 

annuity payment of £50 million indexed to the time t survivor rates of English 

and Welsh males aged 65 in 2003". Unlike the Swiss Re brevity risk bond dealing 

with the extreme short-term adverse mortality risk, the EIB bond can be used to 

hedge against the long-term longevity risk since coupon payments are tied to a 

survivor index. It was reported that the total value of the issue was $540 million, 

and was primarily intended for purchase by UK pension funds. 

Although the EIB survivor bond successfully realized the concept of survivor 

bond, which had been discussed for several years in the academia, it has the same 

problem as Swiss Re brevity risk bond. As the coupon rate is linked to the survivor 

index and there is mismatch between the index experience and the annuity issuers' 

individual mortality exposure, it does not provide a perfect hedge for the annuity 

issuers. 

2.4 Economic justification of securitization of mor­

tality risk 

The benefits of mortality risk securitization has been extensively covered by Blake, 

Burrows, Dawson and Dowd ([6]), ([7]), ([21]), ([24]) and ([25]). The basic idea 

is that through mortality securitization, mortality risks can be distributed more 

efficiently over the whole economy. Cox (2000, [17]) identifies other benefits as 
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well, "Securitization provides access to larger amounts of coverage. Counter-party 

risk is eliminated with securitization. Securitization may provide more favorable 

tax treatment. The special purpose reinsurer is usually located in a jurisdiction 

which allows favorable tax treatment of reserves." 

Cox (2000, [17)) also provides an economic justification of risk securitization 

based on Markowitz mean-variance portfolio theory. The Markowitz portfolio the­

ory has been extensively covered in the academic literature and applied in the 

finance industry since the 1960's. An excellent introduction of the Markowitz 

model can be found in Luenberger (1998, [41)). In this section, following Cox's ap­

proach I show that the efficiency of the financial market is improved by introducing 

a mortality-based security to the financial market. First, a brief explanation of 

the Markowitz model (1959, [42)) is provided below. 

Suppose a risky asset has a random rate of return r over period ( t, T) . The 

expected return of this asset is denoted as E(r) and its variance is Var(T). Now 

consider a portfolio P containing n risky assets, with percentage wi invested in 

the i-th asset. The return of the i-th asset is Ti respectively. If the covariance of 

any of two assets Ti and Tj is ai,j, then the variance of the whole portfolio can 

be expressed as an by n symmetric matrix denoted by L = [ai,j]- The diagonal 

elements of L are the variances of each return a;. Given the weight vector of the 

portfolio P 

the portfolio return is calculated as: 

n 

Tw = L wiri. 
i=l 

Taking expectations on both sides, the expected portfolio return µw = E ( Tw) can 

be calculated as follows: 

n 

i=l 

The variance aw = V ar ( Tw) is a product of weight vector wr and the covariance 

matrix L = [ai,j] : 
n n 

a~= L wi L wjCov (Ti, Tj) 
i=l i=l 
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or 

2.4.1 Efficient portfolios 

"lnvestorWord" defines Efficient Portfolio as: "A portfolio that provides the great­

est expected return for a given level of risk, or equivalently, the lowest risk for a 

given expected return. Also called optimal portfolio." Figure (2.3) illustrates the 

concept of efficiency and portfolio dominance. 

Note that portfolio A dominates portfolio B since it offers the same variance 

but has a higher expected return. Similarly, portfolio A dominates portfolio C 

because it offers the same expected return but a lower variance. 

The Markowitz portfolio problem attempts to find the "efficient portfolio", 

that is the portfolio with the maximum return for a given portfolio variance or the 

portfolio with the minimum variance for a given portfolio return. Take the above 

portfolio P for example. If a required portfolio expected return µ is given, then 

the aim is to minimize the variance a-~ = wr L W subject to the two constraints: 

n 

and 
n 

i=l 

The first constraint requires that the whole portfolio P is invested in risky 

assets and the second set the expected return of P as required. This problem can 

be solved by using the Lagrange multiplier, 

Differentiating L to get the first order conditions: 

n 

L o-i,jWi - >.1E (r\) - ..\2 = 0 for O :S i :Sn 
j=l 

n 

L wiE (ri) = µ 
i=l 
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n 

This system of linear equations can be expressed as a single matrix equation: 

L * [W, A1, A2f = [O, ... , µ, 1f 

where 
0-1,1 0-1,2 0-1,n -E(r1) -1 

0-2,1 (T~ 0-2,n -E(r2) -1 

I:*= 
0-n,l 0-n,2 a-2 -E(rn) -1 n 

E(r1 ) E(r2) E(rn) 0 0 

1 1 1 0 0 

This system consists of n + 2 equations for n + 2 unknowns. The solution 

of these equations will produce a weight vector for an efficient portfolio with the 

required expected return. 

2.4.2 Efficient frontier and Two-fund theorem 

An efficient frontier is simply the line comprised of n efficient portfolios. Given 

n expected returns µ, using the Lagrangian method, a corresponding set of n 

minimum a can be solved. An efficient frontier can be plotted with the set of 

(aw, µ). According to the two-fund theorem given in Luenberger (1998, [41]), "Two 

efficient funds (portfolios) can be established so that any efficient portfolio can be 

duplicated, in terms of mean and variance, as a combination of these two. In other 

words, all investors seeking efficient portfolios need only invest in combinations of 

these two funds." A simple proof is provided below. 

Consider a bond portfolio P 1 and a stock portfolio P 2 , both of which are 

efficient. P 1 has expected return and volatility (µ 1,o-1) and weight vector W 1 . P 2 

has expected return and volatility (µ 2,o-2) and weight vector W 2. µ 2 > µ1, o-2 > 
o-1 .Given any required returnµ withµ ~ µ 1 , a portfolio P3 can be formed with 

weights W 3 , where W 3 satisfy Equation (2.1). 

[ 3 3 3] T [ 1 I l] T ( ) [ 2 2 2] T W , -X 1, -A2 = a W , A1 , -A2 + 1 - a W , A1 , -A2 (2.1) 
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where 
µ-µI 

a=---. 
µ2 - µI 

It is easy to verify P 3 to be efficient. Because P 1 and P 2 are efficient, first order 

conditions (2.2) and (2.3) hold. 

and 

La [w2, Ai, A~]T = [O, ... , 0,µ2, 1f · 

It is straightforward to obtain (2.4) from (2.2) and (2.3), 

La [W3 , Ai_A~]T = [O, ... , 0, µ, 1f. 

Thus (2.4) shows P 3 is a efficient portfolio. The return of P 3 

r 3 = ar1 + (1 - a)r2 , 

(2.2) 

(2.3) 

(2.4) 

has an expected valueµ= E[r3], and a minimum variance a 2 = Var(r3 ). There­

fore given any required returnµ, a new efficient portfolio can be formed from P 1 

and P2 with weight a. In other words, every efficient portfolio can be formed as a 

weighted average of the two other portfolios. Figure (2.4) illustrates the efficient 

frontier established from P 1 and P2 . 

2.4.3 One-fund theorem and CML 

After introducing a risk-free security R with deterministic return r I and O variance 

to the market, although the investor's opportunity set is expanded, the shape of 

the efficient frontier is simplified. The efficient frontier is a line constructed as a 

combination of the risk-free asset and an efficient portfolio F of risky assets with 

weights wr = [w1 , ... , wn]. This line, which is also called the "capital market line" 

( CML), can be expressed mathematically as 

TF - Tj 
µ=r1+--~a. 

aF 
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The CML can be obtained by investing the proportion 

(aF - a) 
a=--_-I-

a F 
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in the risk-free asset Rand (1 - a) in F. The CML is illustrated in Figure (2.5). 

Figure (2.5) shows that the capital market line is tangent to the original ef­

ficient frontier. With the exception of the tangent point F ( also called "market 

portfolio"), all the portfolios in the CML are more efficient than those on the orig­

inal efficient frontier. According to Luenberger (1998, [41]), the one-fund theorem 

states: "There is a single fund F of risky assets such that any efficient portfolio can 

be constructed as a combination of the fund F and the risk-free asset." It is optimal 

for mean-variance optimizing investors to hold a portfolio formed as a weighted av­

erage of F and R, for a certain weight a. This optimized portfolio lies on the CML 

and gives a return as ar 1 + ( 1 - a )r F. The one-fund theorem is the final conclusion 

(the optimal application) of Markowitz mean-variance portfolio theory. Based on 

the Markowitz model, I will show that introducing mortality-based securities will 

improve market efficiency. 

2.4.4 A more efficient market with mortality-based secu­

rities 

Now we introduce a mortality-based security M, for example a bond with a higher 

expected return µM and higher variance aL than a straight bond. Since mortality 

rates have nothing to do with the performance of the capital market and vice versa, 

this mortality bond has no correlation with other risky assets, that is Cov(rM, rp) 

= 0. 

Consider a portfolio K formed as a linear combination of market portfolio F 

and mortality-base security M with a return 

TK = arp + (1 - a)rM. 

The expected return of portfolio K is 

and because Cov(rF, rM) = 0, the variance of portfolio K is simply 
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(2.5) 

Suppose that aM > ap and µM > µp . Equation (2.5) is quadratic and is 

minimized at 

The minimized ak is 

a2 
a= M 

a2 + a2 . 
F M 

ata} 
a~= 2 2 ~ a}. 

ap + <JM 

It is straightforward to show that the expected return µ F 

Hence the new market portfolio K* (µ K, a'.k) formed by the mortality bond M and 

F dominates the original market portfolio F ( a F, µ F). The slope of the new CML 

is at least µK---;rt since it must dominate all the feasible portfolios. Also it is clear 
aK 

that 
µK-TJ>Tp-TJ 

* - ' aK <Jp 

Thus the slope of the new CML must be greater than the slope of the original 

one through F. A similar argument applies if a M < a F and µ M < µF. Thus the 

mean-variance portfolio theory shows that the introduction of the mortality bond 

results in better opportunity set for investors, and justifies the demand for the 

mortality bond. The two CMLs are illustrated in Figure (2.6). 

The readers should be aware that the Markowitz model is based on strict 

assumptions: First, there is no collinearity. That is, among the set of n risky 

assets, no single asset is a linear combination of the others. This restraint ensures 

that the n risky assets have an invertible covariance matrix. Second, the market is 

perfect: there are zero transaction costs; information is instantaneously revealed; 

there are no taxes and so on. 

Cox (2000, [17]) also identified some benefits of securitization of insurance risk 

including elimination of counterpart risk, alleviation of capital strains, more fa­

vorable tax treatment and the capacity to handle very large losses. These benefits 

can certainly be applied to mortality securities. Many mortality risk deals provide 

longer term coverage compared to traditional reinsurance and mortality securiti­

zation also brings more capital to cover risks that would not be covered otherwise. 
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Mortality based securities pushed the market to a better equilibrium. Through 

mortality-based securities, investors can obtain the benefit of investment risk diver­

sification and duration immunization. AB mortality risk is independent of "market 

risk", a mutual fund could hold some mortality-based securities to diversify the 

market risk of its portfolio. Life insurance companies might also be interested 

in holding such securities to hedge against the adverse mortality risks. Through 

mortality-based securities, risks are distributed more efficiently throughout the fi­

nancial market. The reverse mortgage lender can transfer the longevity risks to 

the capital market. 
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Figure 2.1: European securitization volume in the last decade 
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Figure 2.2: European securitization volume in 2005 

17 



2. Securitization 

C .... 
::::, --(I) 

0::: 

O.oo.5 ------- - ---

0.00 --- ---- ------ ----- - --- - ----- A e------ -- ---- --

0.055 -

0.05 -------- - - s• 

0.045 ~ ----------

18 

-c• ----~--

0.04 ~----~----~-----~----~----~ 

0.04 0.045 0.05 0.055 QOO 0005 

Figure 2.3: Portfolio dominance. 



2. Securitization 

3!Il% ---------------. 

345% -

3-0% 

E335% 
::, 

~ 
.Q33'.l% 

~ 
~323% 

3al"/o 

315% 

----- ----------------- ---

P1------. 

--- ------- --------------- ------------

310%+----+----+----+----+----+---t----+---+----+-----J 

19 

3.50'/o 4.00'/o 4.50'/o 5.00'/o 5!Il% 7.00% 7.!Il% aCD% a!Il% 

R:rtfcfo sigre 

Figure 2.4: An efficient frontier 



2. Securitization 20 

0.02 ----- ----

0.02 

0.02 

0.01 

C 
:i 0.01 -Q) .... 
. Q 0.01 
:§ -0 0.01 
a.. 

0.01 

~k.freerae 
0.00 

0.00 

0.00 

0.00 0.05 010 0~5 0.20 0.25 

R:>rtfolio sigra 

Figure 2.5: An efficient frontier with a CML 



2. Securitization 

C: ... 

29'/o 

20'/o -- ------

.3 1B'/o 
Q) ... 
0 

:§ 

15 10'/o 
a.. 

~· 

-------- ~--·-~~·-------

--wth l\tbrlality Bond 

• wthoL.tl\rbrlalityBond 

O'/o ~----~-----~----~-----~----~ 

15% ;;no;. 25% 30% 35% 40% 

Patfdio sigra 

Figure 2.6: Comparing the two efficient frontiers 

21 



Chapter 3 

Reverse mortgage products 

3.1 Introduction of reverse mortgages 

3.1.1 Ageing population and longevity risk 

Today, while life expectancy is over 80 years in many countries, labour market 

participation rates for males aged 60-64 have fallen from between 70 and 90 per 

cent in the 1970s to between 20 and 50 percent (2001, [5]). According to Australian 

government actuaries, the life expectancy of a male aged 62 has almost doubled 

during the last 100 years from 13 years in the period 1881-1890 to 20 years in the 

period 2000-2002. (See Figure (3.1) .) The tendency towards increasing longevity 

has grown stronger since 1970 with life expectancy increasing 50 percent in the 

last twenty years alone. 

While life expectancy has been increasing, decreasing real retirement income 

due to inflation and increasing health care costs has made it increasingly diffi­

cult for the elderly to maintain adequate standards of living during retirement. 

Consequently, longevity risk, the risk that the elderly may outlive their financial 

assets has become the subject of increasing attention from financial practitioners 

and academics. The traditional way to deal with longevity risk has been the an­

nuity product; however, despite the apparent utility gain of the annuity product, 

the private annuity market has remained weak due to obstacles such as adverse 

selection. The weak annuity market has puzzled economists for decades. One 

reason put forward by the researchers is that retirees usually hold a most of their 
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wealth in their home equity and have few liquid assets in hand. In some developed 

countries such as the United States, Japan and Australia, residential real estate 

represents more than half the value of private wealth of the elderly population 

(2003, [45]). With home ownership and the elderly population steadily expand­

ing in many western countries, reverse mortgages represent a viable way for these 

house-rich, cash-strapped seniors to supplement their income and afford long-term 

care while remaining in their homes. 

A reverse mortgage is a non-recourse first lien loan that enables retirees, usually 

62 years or older, to convert part of their home equity into tax-free income while 

remaining in their homes until they die or sell their homes. Payment options 

to borrowers include an up-front lump sum payment; a fixed monthly annuity 

payment; a line of credit with an upper limit and various combinations of these 

three types. The loan amount accrues interest at a variable interest rate, usually 

adjusted monthly or yearly based on an index rate, and is repaid only when the 

borrower dies or sells or permanently leaves the home. During the course of the 

loan, the title of the residence is retained by the borrower; no repayments are 

made to the lender; and no assets other than the home may be attached to debt 

repayment. When the loan is due, the repayment amount is capped by the value 

of the home and if the borrower chooses to sell the home, she keeps any excess 

sales proceeds (2000, [l]). 

3.1.2 History of reverse mortgages 

The first reverse mortgage loan was issued by Nelson Haynes of Deering Savings & 

Loan (Portland, ME) in the United States in 1961. Only a few banks offered reverse 

mortgages until the product was approved for sale by the Federal Home Loan Bank 

Board in 1979 (1994, [14]). In 1989, after the Federal Housing Administration 

(FHA) introduced of the Home Equity Conversion Mortgages (HECM) program, 

reverse mortgages covered by public insurance became widely available in the 

United States. 

Despite the great potential of reverse mortgages, the market grew very slowly 

until the beginning of the century. In seeking to explain this slow growth, Eschtruth 

and Tran (2001, [26]) listed several factors that depressed both demand and supply. 

On the demand side, the most important factor was that the up-front costs were 



3. Reverse mortgage products 24 

too high. In 1999, the total up-front costs could add up to $10,000 to a median 

HECM loan ranging from $52,500 to $63,000, which is nearly 20% of the loan 

amount! Another major factor was that the limits on the size of HECM loans 

set by the FHA were too restrictive. Other reasons include that fear of debt 

(2000, [12]), concerns about future medical expenses, and the bequest motive. The 

bequest motive also explains why the demand for annuity reverse mortgages is 

lower than that for other forms of reverse mortgage loans (2003, [45]). 

The low demand in turn discouraged supply. The expenses associated with 

the product are quite considerable when demand is low. Many lenders couldn't 

generate enough loans to covered costs of educating consumers, developing the 

market and maintaining trained staff. As a result, they had to exit the market. 

Legal issues were also a concern for the suppliers. According to Reed and Gibler 

(2003, [49)), regulations and laws governing the market were inadequate during the 

early stage of the market. For example, the wording of some of the requirements for 

the lender was often confusing. What is more, according to Boehm and Ehrhardt 

(1994, [8]), that required accounting techniques also made the loans financially 

unattractive. Last but not least, in the infancy of the market, the risk involved in 

a reverse mortgage was not insurable. According to Reed and Gibler (2003, [49]), 

the lenders also had to hold the products in their portfolios since there was no 

secondary market for liquidation. 

However, many of these obstacles could be overcome if demand for reverse 

mortgages were strong. For example, higher demand would allow lenders to reduce 

their costs and would create a constituency which could lobby for the elimination 

of the remaining regulatory barriers and clarification of tax issues. After a decade 

of slow growth, the reverse mortgage market started to boom in the 21st century. 

According to the National Reverse Mortgages Lenders Association, nearly 40,000 

new HECM loans originated in the years between 2000 to 2003. During 2004, a 

total number of 37,829 of HECM loans were approved, representing a 109% jump 

over the previous year, and nearly 500%growth since 2001. The growth continued 

in 2005 with a total number of 43,131 HECM reverse mortgages, which increased 

14% from the year 2004. The number of RM lenders has tripled to 191 (2004, [57)). 

As HECMs are the most popular of the three reverse mortgage products currently 

available, accounting for about 90% of all reverse mortgages in the US today, the 

above statistics well represents the condition of the reverse mortgage market. The 
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boom has been attributed to greater consumer awareness of and comfort with the 

product; and the increasingly tight budgets of America's seniors; the increase in 

home ownership and the growth of the elderly population. While the market has 

shown considerable growth, as of in 2000, only approximately 0.25% of elderly 

homeowners had entered into reverse mortgages contracts, indicating far more 

potential for growth in the market. 

3.2 The merits of reverse mortgages 

The most notable merit of a reverse mortgage is that the borrower is not required to 

repay the loan until he/she dies or vacates his/her house. As compared to normal 

asset-backed loans, reverse mortgage loans provide the elderly with a means of 

hedging their longevity risk. Another merit of a reverse mortgage is the "non 

recourse" feature. When the loan is terminated, the borrower only needs to repay 

the loan amount or proceeds from the sale of the house price: whichever is the 

lesser sum. 

In a broader sense, allowing the elderly to consume the equity in their homes 

could help to stimulate the national economy. For instance, the unlocked equity 

could be spent on a holiday or a car, thus helping to maintain the consumption 

level of the economy (2003, [49]). Reverse mortgages may provide many other 

indirect benefits for society, although these are often difficult to predict and even 

harder to measure. 

3.3 Various risks in reverse mortgages 

While reverse mortgage loans provide many attractive benefits to the borrower, 

they involve many risks for the provider (lender). The most crucial risk in reverse 

mortgage loans is the "cross-over" risk. As the loan balance accumulates faster 

than the value of the borrower's home equity, the loan balance will in time exceed 

the value of the home equity. If the cross-over occurs before the loan is due, the 

lender will incur a loss. The cross-over risk is a combination of three underlying 

risks: the longevity risk, the interest risk and the house price risk. Improved 

mortality rates, a high interest rate, and a depressed real estate market will all 
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exacerbate the cross-over risk. The three variables are the major inputs for the 

pricing model and will be analyzed in detail in Chapter 4. 

In addition to the three major risks, other important risks include maintenance 

risk and expenses risk. Maintenance risk is sometimes called "moral hazard" . 

Maintenance risk arises when the reverse mortgage borrowers fail to make the 

necessary repairs to maintain the value of their homes because they know that 

the lender bears the risk of the declining home resale value. Maintenance risk 

is discussed by Miceli and Sirmans (1994, [43]). The authors studied the optimal 

maintenance decision of the borrowers by maximizing a two-period utility model in 

a competitive market. Their model shows that the loan amount and expected state 

of the real estate market are the key factors affecting the maintenance decision. 

Their model also indicates that the best way to ensure the outcome for the lender 

results when either a limit of lending is set or a extra premium is charged to cover 

the risk. Shiller and Weiss (1998, [54]) presented another calibrated model for 

assessing this moral hazard risk. They argue that the risk might be reduced if the 

contracts are redesigned so that the settlement is determined by real estate price 

indices, rather than in terms of the sale price of the home itself. 

One important risk which does not attract much attention is the expense risk. 

A good discussion on this topic can be found in Piggott, Mitchell, Valdez and 

Detzel (2003, [48]). The cost to enter the market is usually very large for a new 

comer. Considerable expenses may be associated with the marketing of the prod­

uct and to educate potential buyers. After the loan is assessed and issued, there 

are costs associated with administrating the loan and complying with regulatory 

requirements. These include the ongoing monitoring expenses to ensure the bor­

rower pays property taxes and insurance fees. When the homeowner dies or moves, 

there arise costs of inspection, evaluation and sale of the property. These expenses 

could be recovered by charging an up-front fee and ongoing administrating fees. 

Inaccurate assessing of the future expenses could result in fail to recover all the 

expenses incurred in product administration. 

The subject of reverse mortgages has been covered extensively in the literature. 

Bartel, Daly, and Wrage (1980, [4]) published one of the first articles on reverse 

mortgages, which described the features of early reverse mortgage product. In 

1987, the U.S. Housing Authorization Act was passed which contained provision 

for the establishment of a guarantee fund to cover losses in a reverse mortgage 
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portfolio. Following the instruction of the US Housing Authorization Act, Wein­

robe (1988, [62]) investigated the concept and operation of the guarantee fund, and 

calculated the cost of providing the guarantee fund. In the early 1990's two pa­

pers regarding the pricing and financial modeling of reverse mortgages appeared 

in the actuarial literature. Using Monte-Carlo simulation method, DiVenti and 

Herzog (1991, [23]) investigated the actuarial perspectives of the product, by esti­

mating the amount of level payment in a life annuity reverse mortgage. In addition 

to quantitatively assessing the risks involved in a reverse mortgage, Phillips and 

Gwin (1992, [47]) introduced the idea of asset reserving to protect the solvency of 

a reverse mortgage lender. 

Several papers on the topic of risks of reverse mortgages can be found in the 

special issue published by the Journal of the American Real Estate and Urban Eco­

nomics Association in 1994. Boehm and Erhardt (1994, [8]) analyzed the interest 

risk in reverse mortgages. The authors calculated Mcaulay's duration and elastic­

ity of a bond, a conventional mortgage and a fixed-rate annuity reverse mortgage. 

The comparison shows a reverse mortgage is much more sensitive to interest rate 

changes than the other products, which explains why reverse mortgages mostly 

involve variable interest. Szymanoski (1994, [56]) developed a general loss model 

to determine the fair premium that the HECM program should charge. The pric­

ing model shows that the present value of the expected loss should never exceed 

the present value of expected insurance premiums. Using a simulation technique, 

he calculates the highest loan-to-value ratio of a reverse mortgage, which depends 

on age, interest and house price appreciation assumptions. Klein and Sirmans 

(1994, [36]) undertook an empirical research to determine the key drivers for the 

termination of the loans. They analyzed data offered from the reverse mortgage 

program by the Connecticut Housing Finance Authority, which provides term an­

nuity reverse mortgage loans to low-income residents in Connecticut aged 68 years 

or older. The authors regressed the loan repayment rate on borrower and loan 

characteristic variables, and found that a borrower's age and martial status played 

the most important role in the termination of a reverse mortgage loan. 
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3.4 'lransferring the mortality risk in reverse mort­

gages 

A traditional method to deal with the risks in reverse mortgages is insurance. Re­

cently, securitization has been applied to reverse mortgages. In March 2001, the 

first European reverse mortgage securitization transaction worth GBP 222.5 mil­

lion was launched by Citibank N .A. in Europe. The offer was given a preliminary 

rating of AAA by Standard&Poor (2001, [55]). In October 2004, the United States 

amended the Internal Revenue Code of 1986 to eliminate financial asset securitiza­

tion investment trusts (FASITs) and to expand the real estate mortgage investment 

conduit (REMIC) rules to allow securitization of certain mortgages with increasing 

balances and certain government-originated loans. The REMIC amendments are 

designed to facilitate the securitization of reverse mortgages. These transactions 

are similar to mortgage-backed securitizations, which sell the consolidated asset to 

release the capital. This thesis propose a risk securitization model only focusing 

on transferring the longevity risk in reverse mortgages. 
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Chapter 4 

Pricing reverse mortgages 

4.1 Risk analysis for reverse mortgage providers 

4.1.1 The cross-over risk 

When a reverse mortgage loan is repaid, the borrower only needs to repay the 

proceeds of the sale of the house or the balance of the loan amount: whichever 

is the lesser amount. In the case that the loan value has outgrown the collateral 

house value, the borrower only repays the proceeds of sale the house. Any access 

is considered a loss to the lender. Since the interest rate is usually higher than the 

house price appreciation rate, the loan value will definitely exceed the house value 

at some future point. The question is whether the cross-over happens before the 

loan is terminated or after. If the cross-over occurs before the loan termination, the 

lender will incur a loss. However, if the loan is terminated before the cross-over, 

any excess proceeds from the sale will go to the borrower or their heir, rather than 

becoming the lender's gain. This characteristic makes reverse mortgages more 

similar to options rather than futures. 

From the reverse mortgage provider's perspective, avoiding loss is basically 

avoiding cross-over before the loan is repaid. The timing of the cross-over is mainly 

affected by three crucial variables: mortality rate, interest rate and house price. 

To illustrate their effects on the loss to the lender, a simple example is provided 

below. In this scenario it is assumed that the interest rate is flat at 6% annually, 

and the house price appreciation rate is 3% per year. The loan-to-value ratio is 
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0.5, allowing a 62-year old male to borrow a lump sum amount of $200, 000 against 

his house which is currently valued at $400, 000. 

Figure ( 4.1) illustrates the cross-over risk. If the loan is repaid before the 

cross-over point, there is no loss to the lender. However, if the loan is repaid after 

the cross-over point, the difference between the balance of the loan and the house 

price is the loss to the lender for that particular year. Assuming the lender finances 

the capital at an interest rate of 4% per annum, Figure (4.2) illustrates the net 

cash flow to the lender in each year. After the cross-over point, the net cash flow 

becomes negative. 

In some sense, to price a financial product is just to price its risks. In the 

following section, the three major risks - longevity risk, interest rate risk, and 

house price risk - are thoroughly examined for the purpose of pricing. 

4.1.2 Longevity risk and occupancy risk 

The occupancy risk is the risk that the borrower could live in the house too long so 

that the loan value accumulates to a point where it exceeds the house value. The 

occupancy risk is believed to be independent of the other two major risks, as life 

expectancy in most cases does not interact with the market variables of interest 

rates and house prices. The occupancy time is a function of both mortality rate 

and the mobility rate. 

Although the decision to move and repay the loan may be affected by the 

condition of the real estate market and the interest rate, the real attractiveness 

of the reverse mortgage loan is that the product allows the borrower, (who is 

usually elderly low-income and doesn't want to move), to stay in their home until 

they die. Some US researchers, like DiVenti and Herzog (1991, [23]), assume that 

the mobility rate is approximately proportional to the mortality rate. The same 

assumption is employed in this thesis in the absence of available data. Thus the 

duration of the loan is mainly determined by the mortality rate. Due to the 

dramatic improvement in the mortality rate since the 1970's, the longevity risk 

has become the most crucial risk in reverse mortgage product. 

Because of the great mortality improvement in the last decade, projecting fu­

ture mortality has become the subject of increasing attention from academia and 

practitioners. However, to predict the human being's future mortality is very dif-
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ficult. The simple belief that life expectancy will continue to increase indefinitely 

may be too optimistic. As we can see from Figure (4.3), although the force of 

mortality generally improves over time, sometimes it deteriorates. Lin and Cox 

(2004, [40]) summarized the different opinions about mortality trends and discussed 

the difficulties of predicting future mortality changes. A summary is provided be­

low. 

First of all, although mortality rates have been observed to improve for more 

than a decade throughout the world, not all academics believe that human mor­

tality rates will continually improve. For one thing, Lin and Cox suspect that 

the recent improvement in mortality could be exaggerated. The dramatic im­

provements for certain age groups in the U.S. may be in part the result of the 

adjustments to previous mortality decline. What is more, the mortality rates for 

different age groups have not all improved. For example, Goss, Wade, and Bell 

(1998, [30]) show that the age-adjusted annual death rates for ages 85 and over 

in the United States actually deteriorated between 1990-1994. Secondly, medical 

and technological advances have not eliminated all the severe threats to life and 

of course there is always the threat of new unforeseen diseases. SARS in 2003 and 

avian flu in 2004 are examples of infectious diseases which could severely impact 

on mortality rates. According to Rogers (2002, [52]), it is possible that HIV may 

expand or develop variants. There is always the chance that new viruses may 

emerge due to the abuse of drugs and medicines. 

Even within the group believing that future mortality will continually improve, 

researchers can not agree on the extent to which mortality will improve. First, they 

can not agree on whether there exists a natural limit for human life expectancy. 

Some researchers predict that there will be no limit to the age a human can live 

based on the great progress of the Human Gnome Project and medical research 

into anti-ageing drugs. Some others, like Hayflick (2002, [31]), believe that there 

is a limit to human life expectancy and that improvements in the mortality rate 

will slow down as the limit is approached. Lin and Cox called this "Life table 

entropy". Buettner (2002, [10]) provides a review and summary of these different 

opinions. 

Lin and Cox conclude "that there is no agreement among experts on the future 

of mortality. Steady improvement is the trend, but changes in either direction are 

feasible." 
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Traditionally, actuaries project future mortality rates using life tables - a 

kind of parametric model. Based on the Law of Large Number, the longevity risk 

is believed to be well diversified given a large enough pool. However, solely using 

the life tables has some shortcomings. The first problem is the "table risk" or 

"model risk". Most actuarial tables are based on the population census several 

years prior. The paces at which actuaries and demographers update their life 

tables may never keep pace with the current mortality rate. Especially in recent 

years, rapid improvements of health and innovations in medical technology have 

exacerbated the model risk. 

Another problem of the life table approach is the "basis risk": the mismatch of 

the table experience and the product experience. In the case of reverse mortgages, 

the major target customers for the product are retirees on low-incomes, many 

of whom are short of cash for health care and have a shorter life expectancy 

than that of the average population. Obviously, there is no such experience in 

the life table. If we use an annuitant table the projected mortality rates could be 

underestimated, since people who purchase annuities are mostly wealthier and have 

a relatively longer life expectancy than the general population. Those RM lenders 

who price the product with annuitant tables could over-charge the borrowers and 

lose competence in the market. To sum up, if a mortality table has to be used, 

some appropriate adjustments need to be made to match the customer experience. 

Actuaries and statisticians have proposed many ways to solve the problems with 

the life table. For example, Frees, Carriere and Valdez found that the Gompertz 

model fits the force of mortality very well in the range of old ages ( 60 above), and 

can be used to generate the future force of mortality (1996, [27]). Their model 

are widely used in the actuarial literature and adopted in economics literature 

for optimal annuity asset allocation and insurance product pricing; see Milevsky 

and Young (2003, [44]), for example. The force of mortality in their model is 

shown only as a function of ages x, not time t, which does not represent the 

systematic mortality improvement. However, the model could be extended to 

be stochastic after adding some extra components. For example, Charupat and 

Milevsky (2001, [13]) attached an time-dependent random shock to the Gompertz 

model and applied to determine the optimal annuitization polices. 

Some other models also treat mortality rate as a function of both age x and 

time t. Lee and Carter (1992, [38]) introduced a simple model for central mortality 
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rates m(t, x) which involves age-dependent and time-dependent terms. Renshaw, 

Haberman and Hatzoupoulos (1996, [50]) suggested a Generalized Linear Model 

for the force of mortality similar to Lee and Carter's approach. Cairns et al. 

(2004, [11]) provided an excellent review for the various mortality rate models and 

a theoretical framework to pricing mortality derivatives. 

4.1.3 Interest rate and house price risk 

Today in the U.S., most reverse mortgage loans carry a variable interest rate. In 

a high interest rate environment, the loan amount will accumulate at a faster rate 

than it would in a normal interest rate environment, resulting in the interest be­

coming a larger part of the repayment. This obviously makes the loan amount 

more likely to exceed the future house value. Since the loan repayment is capped 

by the future house price, the excess interest may not be fully recovered from 

the borrower, resulting in the lender possibly incurring a loss. Figure ( 4.4) illus­

trate the effect of interest rates on the lender's loss holding the other variables 

unchanged. Using the simple example in the last section, if the interest rate raised 

50 basis point, the cross-over will occur about 5 years earlier than it would have 

in a normal interest rate environment. The extent of the loss in each year after 

the cross-over is also larger if the interest rate rises. Figure ( 4.5) shows that in a 

high interest rate scenario, the negative cash flows come earlier and are of a larger 

magnitude. 

Since the interest rate is a nationwide economical variable, the interest risk 

can only be hedged, not diversified. Interest rate modeling is extensively covered 

in the finance and economics literature. There are plenty of models, from simple 

to complex, depending on the situation adopted. One of the most used models is 

the Vasicek model, which features a mean reversion stochastic interest rate. The 

Vasicek model is used in the simulation task and discussed in next section. 

House prices also play an important part in whether the lender will incur a 

loss. Since the loan repayment is capped by the house price, the loan repayment 

could be heavily reduced if the condition of the real estate market is adverse during 

the course or at the termination of the loan. Figure ( 4.6)shows the effect of the 

house price appreciation rate on the lender's loss based on the same example above. 

Holding the other variables constant, if the house price appreciation rate is 50 basis 
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points lower, the cross-over will be about 5 years earlier than expected, and the 

amount of loss in each year after the cross-over will also be larger than expected. 

Figure ( 4. 7) illustrates that in a depressed real estate market, the negative cash 

flows to the lender come earlier and are on a larger scale than expected. 

The house price risk can be partially diversified. The systematic part of the 

house price is affected only by the fluctuation of the national economy, and con­

sequently is not diversifiable. Such economical variables as interest rates or infla­

tion rates and such catastrophic events as earthquakes or hurricanes can result in 

changes to the systematic part of the house price. The idiosyncratic part of the 

house price is affected by the location or maintenance of the house, and therefore 

can be diversified by a large pool of properties throughout the country. While 

a "practical" house price model could be very complicated, a simple stochastic 

house price model is adopted in this thesis to focus on the longevity risk. The 

house price is assumed to be a geometric Brownian motion, which means the price 

has no memory and is only affected by random shocks. Although sometimes the 

house price process presents certain mean reversion feature similar to interest rates, 

Gau (1987, [28]) found the auto-correlation is statistically insignificant in the long 

run based on the U.S. experience and argued that the no-memory property should 

be preserved. 

Many researchers believe interest rates and house prices are negatively corre­

lated, at least in a lagged sense. The possible economic explanation is that high 

mortgage interest rates ( adjusted based on the index interest rate) may result in 

suppressed the demand in the real estate market, thus lowering the house price. If 

this is true, the reverse mortgages lender can expect more fluctuation in the loss 

experience. In a high interest rate situation, the house price appreciation will be 

lower and the loan amount will grow faster. This will lead to a greater loss since 

the loan repayment is capped by the house price. On the other hand, a low inter­

est rate and a strong real estate market can reduce the possibility of loss. Thus 

a negative correlation between the interest rate and the house price increases the 

variance of the lender's loss distribution, which makes the risk management more 

difficult. The opposite is true for a positive correlation. So it is necessary to test 

the correlation between the two variables. An empirical analysis is performed in 

the next section based on Australian 25 years' experience (1980-2005). Quarterly 

10-year Australian government bond yields and the average of quarterly median 
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house prices of eight Australian capital cities are used for the test. The result 

shows that the long-term real (after inflation) interest rate is positively correlated 

to 1-year lagged house prices and negatively correlated to 2-year lag prices. Both 

results are statistically significant. The detailed results are provided in the section 

4.3. 

4.2 Pricing equation 

In this section, a lump sum reverse mortgage is priced following an approach 

adopted by Piggott et. al (2003, [48]). Suppose a 62-year old male takes out a loan 

to the value of Q0 dollars, against his house currently valued at Ho dollars. If at 

time t the loan amount is Qt, the house price is Ht, and the cost of the capital is 

Mt, then by definition the value of the reverse mortgage loan is 

½=Min (Qt, Ht), 

and the loss to the lender Lt is 

If the loan amount Qt accumulates at a risk free interest rate rt plus a risk premium 

>., the house price Ht appreciates at a rate of '5t and the cost of the capital Mt 

accumulates at a interest rate of T/, then the loan value process is 

Q - Q efi(rt+>-)dt t - 0 , 

the house price process is 
H _ H JJ<51dt 

t - oe , 

and the process of cost of capital is 

Since the value of the loan repayment ½ is the smaller of the house price and 

accumulated loan amount, 
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The loss to the lender Lt at time t thus becomes 

Suppose the future life span of the loan is a random variable T, then when the 

loan is repaid the loss Lr is 

(4.1) 

According to the actuarial equivalence principle, the present value of total expected 

loss should be equal to zero, 

(4.2) 

Substituting (4.1) into (4.2), the pricing equation of the reverse mortgage is olr 

tained: 

E ( eorT Qef[ 1/tdt) = E [ e-rT Min ( Qoef[h+>-)dt' Ho/l dtdt)] (4.3) 

With the pricing equation (4.3), given a certain risk premium ,\ charged by the 

lender, the maximal safe loan amount Q0 can be calculated. Or given a certain 

initial loan amount Q0 , the actuarially fair risk premium ,\ that the lender should 

charge can be determined. A numerical example is provided in the next section to 

illustrate the pricing of reverse mortgages. 

4.3 A numerical example 

4.3.1 Projecting the mortality rate 

In this section, a Gompertz mortality model used by Frees et. al (1996, [27]) is 

adopted to project the future force of mortality µx- In the case of Gompertz 

mortality, the force of mortality 

µ = .!_e(x-m)/a 
X (5 ' 

where a is the scale parameter and m is the location parameter. Then the survival 

probability can be expressed as: 

f x+t d 
P - e- X µS S t X -
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[ 1x+t l l tPx = exp - X -;.e(s-m)/a ds 

tPx = exp [a-µx (1 - et/a)] . 

The probability distribution function (PDF) of future life time T of aged x is 

The repayment rate of the contract is the sum of mortality rate qx+t and mobility 

rate mx+t· Following the example set by DiVenti and Herzog (1991, [23]), the mo­

bility rate is assumed to be 30% of the mortality rate, where the overall repayment 

rate is denoted as q;+t, then 

4.3.2 Projecting interest rates and house prices 

In this example the well-known one-factor stochastic Vasicek model is adopted to 

project the interest rate. The key feature of Vasicek interest model is mean rever­

sion (1977, [59]). Unlike alternative models like the CIR model proposed by Cox, 

Ingersoll, and Ross (1985, [16]), in the Vasicek model interest rate may actually 

become negative. The Vasicek model describes the short rate's Q dynamics by the 

following SDE: 

(4.4) 

where Zt is a standard Brownian motion. A discrete approximation can be ex­

pressed as 

Tt - Tt-{j,_t = 0: ((3 - Tt-{j,_t) f:1t + O"rEr,t, 

where Er,t = ( Zr,t - Zr,t-Ll.t), is normally distributed as normal with mean O and 

variance !1t. After fitting the model, the future interest rate can be projected as 

where a, (3, and a'r are fitted parameters. 
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For the house price model, to distinguish between the diversifiable idiosyncratic 

price risk and the non-diversifiable systematic price risk, a specific and a general 

house price appreciation rate are introduced. The basic structure of the house 

price model is a geometric Brownian motion: 

where µH is the drift and CJH is the volatility parameter. Using Ito's lemma, this 

stochastic differential equation can be solved as 

Rt= Rt-I exp (µH + aHZH), 

where ZH rv N (0, 1). A discrete time approximation is 

Rt = Rt-l:;.t exp (µHL::it + aHEH,t.JM) , 

where EH,t are iid (identical independent distributed) standard normal variable 

N (0, 1). With the projected house price, the general house appreciation rate Ct is 

calculated to represent the systematic part of price risk: 

Rt 
Ct = -- -1. 

Rt-1 

As discussed above, the idiosyncratic part of the house price is greatly affected 

by the borrower's maintenance behavior and regional economic fluctuation. To 

capture this characteristic, a random shock is attached to the general appreciation 

rate to determine the specific house appreciation rate c[ for each house: 

where Zs rv N (0, 1). It is obvious that c: is a normal variable with a mean of 

general house appreciation rate Ct and a variance a;. Finally each house has its 

own price process expressed as 

4.3.3 Calibration of the models 

Australian Life Tables 2000-02 for male in the age range of 62-100 are used to 

calibrate the Gompertz mortality model. Using iterative trials in MS Excel, the 
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I Parameters I Values I 
Mean 4.16% 

O'. 0.5757 
(3 4.8825 
ar 4.7891 

Table 4.1: Fitted parameters for the Vasicek model 

I Parameters I Values I 
µH 0.034 
aH 0.1003 
as 0.08 

Table 4.2: Fitted parameters for the house price model 

location parameter m is found to be 82.119 and the scalar a is 9.786. The life 

expectancy for the table experience is 17.3582, and the modelled life expectancy is 

17.3238. The model fits very well except for some very old ages in the neighborhood 

of 100. In this age range, the Gompertz model seems to underestimate the survival 

rate, and as a result gives a slightly lower life expectancy. Figure ( 4.8) shows the 

fitness of the Gompertz model. 

The Australian 10-year government bond yield (1980-2005) is used to fit the 

Vasicek interest model. Using Ordinary Least Squares (OLS) estimation, the sum 

of the squares of the difference between the real interest rate and the modeled 

interest rate is minimized. A brief introduction to OLS is provided in Appendix 

A. The model is fitted by iterations in MS Excel. The fitted results are listed in 

Table (4.1). 

The house price model is calibrated to the quarterly median house prices from 

eight capital cities in Australia. Similarly using OLS estimation, the parameters 

for the house price model are calculated in Table (4.2). 

The correlation between interest rates and house prices is calculated in Table 

(4.3). Although the results are statistically significant for both lags, it is hard 

to conclude how the two series are correlated overall. So in the following simu­

lation process, the two series are generated independently with zero lag and zero 

correlation. 
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I Statistic I Values 
lag 1 p 0.144 

t value 0.935 
lag 2 p -0.661 

t value 0.495 

I 95% percentile I 1.9665 I 
Table 4.3: The correlation between interest rates and house prices 

Large business indicator lending rate 9.10 
Bank standard housing loans rate 7.30 
10-year Australian government bond yield 5.35 

Credit premium for RMs capital financing 3.75 
Mortgage risk premium 1.95 

Table 4.4: Calculation of risk premiums 

4.3.4 The risk premiums 

Besides the above parameter calibrations, it is also assumed that the total risk 

premium for the lender is 7% to lend the money and 3. 75% to finance the capital. 

Following are some of the bases of this assumption. 10-year Australian government 

bond yields are used as a base rate. The difference between the base rate and the 

other rates is calculated as an approximation of the market premium for the risks. 

For example, the credit premium for reverse mortgage lender capital financing is 

the difference between the "large business indicator lending rate" and the base 

rate. The mortgage risk ( approximately for the sum of interest rate risk and house 

price risk) is the difference between "bank standard housing loans rate" and the 

base rate. 

The premium for mortality risk can be calculated based on the annuity price 

data and the mortality table covering the same period. Using Wang transformation 

(1996, [60)) and (2000, [61]), the transformed distribution of future life time F* (t) 

for aged x can be expressed as 

( 4.5) 

where ,\ is the risk premium. Using Elliptical transformation (2005, [58]), the 



4. Pricing reverse mortgages 42 

transformed distribution of future life time F* ( t) for aged x can be expressed as 

F* (t) = Fz [<I>-1 (tqx) - ,\*], (4.6) 

where ,\ * is the risk premium, F z ( ·) is the distribution function of a spherical 

random variable with density generator. If gz is chosen to be the density generator 

of a Normal distribution, then the Elliptical transformation can be simplified as 

Wang transformation. Given the table mortality rate tQx (the original distribution) 

and the annuity price F* (t) (the transformed distribution), solving Equation (4.5) 

or ( 4.6) numerically can lead us to the risk premium or market price of mortality 

risk. However without the actual annuity price data, we just assume the risk 

premium for mortality risk is 1.8% in the following simulations. Thus the sum of 

the risk premiums that the lender charges is approximately 7%. 

Notice that the total premium for all the risks may not be equal to the sum 

of the premium for each different risk. Besides, the risk premiums may change 

over time. The most straightforward way to estimate the total risk premium is ap­

plying Wang transformation or Elliptical transformation to real reverse mortgage 

price data. In the absence of reverse mortgage data, I have to make simplified 

assumptions. 

4.3.5 The simulation results 

Two portfolios are considered, containing 50 and 1000 loans respectively. For 

each portfolio, 1000 trials are calculated in Matlab. In the 50-loan portfolio for 

example, in each trial an interest rate process, 50 different house price processes 

and 50 life spans of loans are generated. For each loan, a repayment and a loss are 

calculated. Then a maximal safe loan amount is calculated by trial and error using 

the relationship in Equation (4.3). The outcomes of the of 50 trials are averaged 

to arrive at the final result. 

For a house currently valued at $100,000, the maximal safe loan amount for a 

lump sum reverse mortgage is $38,128 for the portfolio of 50 loans and $39,222 

for the portfolio of 1000 loans. If the reverse mortgage takes the form of annuity, 

the maximal safe annual payment is $4,271 and $4,447 for the portfolio of 50 and 

1000 loans respectively. Figures (4.9) and (4.10) show a single simulation path for 

each portfolio. (Both the figures are for the lump sum case). 
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Notice the portfolio of 1000 loans gives a larger maximal safe amount of loan. 

This result is reasonable, because the risks are better diversified in the larger 

portfolio. Since the larger portfolio actually involves less risk, it can afford a 

larger maximal safe loan amount. Figure ( 4.11) shows the loss (present value) 

distribution of a single contract. It is clear the loss is approximately normally 

distributed with a little long right tail. 

The distribution of the number of loan repayments in each year is illustrated in 

Figure ( 4 .12). The figure shows that in most years, the number of repayments is 

normally distributed. This makes sense. In each year the number of repaid loans 

dx+t is binomially distributed at the repayment rate q;+t. If the number of loans is 

large, say more than 30, then the number of loan repayments is approximately dis­

tributed as normal according to the Central Limit Theorem (CLM). The situation 

is more complicated for the distribution of the aggregate loss amount. 

The distribution of the aggregate loss amount in each year is illustrated in 

Figure (4.13). Some of the histograms look like normal distribution. In fact, 

all the distributions are asymptotically normal if the number of loan repayments 

approaches infinity. In the early years, most of the repayments turn out to be 

negative losses ( or gains). Especially in the first 2 years, all the losses are negative. 

This is to be expected because the cross-over happens very rarely in the early 

period. It would only happen in extreme scenarios where house prices collapse as 

a result of earthquake for example. In the early course of the loan, the distributions 

are skewed to the right. But this gradually changes to the opposite over time. In 

about the 20th year, the distribution of aggregate loss begins to become symmetric 

around 0. (In this period, the number of repayments is the larger, so the aggregate 

loss is more closer to normal distribution.) After that, the distribution starts to 

skew to the left because the losses start to outnumber the gains. In the last few 

years, nearly all the repayments turn out to be losses. This is consistent with our 

analysis in chapter 3. 

The average number of losses and average aggregate loss amount in each year 

are also calculated. Figure (4.14) shows that the number of repayments continues 

to increase until year 20, after that the number of repayments gradually decreases 

to 0 at year 48. The average aggregate loss amount is negative in the early period, 

but after year 18, all the losses become positive. In year 28, although the number 

of losses is not the greatest, the average aggregate loss is the largest. From then on, 



4. Pricing reverse mortgages 44 

the aggregate loss amount decreases rapidly, because the increase in the size of the 

loss of a single contract is offset by the decrease in the number of repayments. In 

the last few years, although the loss amount of a single contract may be very large 

as shown in Figure (4.14), the aggregate loss amount need not be a big concern for 

the lender. According to the above analysis, the most financially stressful period 

for the lender is the several years in the period year 28-33, not the last few years. 
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Figure 4.10: One simulation path for 1000-loan portfolio 
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Figure 4.11: The loss distribution of one contract 
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Figure 4.12: The number of repayments in each year 
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Figure 4.14: The average loss amount and number of repayments in each year 



Chapter 5 

Securitization with reverse 

mortgages 

5.1 Structure of securitization 

Cox (2000, [17]) pointed out that a common structure for the asset and liability 

securitizations involves four entities: retail customers, a retail contract issuer, a 

special purpose company, and investors. The authors then illustrate the process 

using the examples of several recent catastrophe bonds including USAA hurricane 

bonds, Winterthur Windstorm Bonds, and Swiss Re California Earthquake Bonds. 

In this section, the general structure is applied to a lump sum case of a reverse 

mortgage product. In the case of reverse mortgage securitization, the process 

should involve at least five components: 

• Borrower (Homeowner) 

• Loan originator (Retailer) 

• Special Purpose Company (or Special Purpose Vehicle) 

• Lender (Investment bank) 

• Investors ( Capital markets) 

Figure ( 5.1) illustrates the general structure of reverse mortgage securitization 

and all the cash flows involved in the process. 

58 
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The transaction starts from the RMs retailer. The retailer is the front office 

that makes contact with the reverse mortgage loan borrower and negotiates the 

loan. After the retailer initiates the loan, it collects the lump sum from the reverse 

mortgages lender and then pays the amount to the borrower. To protect itself 

from the risk of not being able to fully recover the accumulated loan amount, the 

lender enters into an insurance contract with the Special Purpose Company (SPC). 

The insurance contract sets up a schedule of fixed trigger levels such that if the 

loss amount exceeds the triggers, the SPC will pay the lender a certain amount 

of benefit up to an upper limit. In return, the SPC collects a premium from the 

lender up front. The SPC issues a survivor bond on the market. The bond is sold 

at a price lower than the normal market price, because in the event that the loss 

of the lender exceeds the trigger, part or all of the coupon could be defaulted to 

the bond holders and transferred to the insured - the lender. 

Readers should notice that the above model only provides a very basic structure 

for the securitization process. In the real world, the process usually involves many 

other components which serve various purposes. For example, to protect the bond 

investors from the default risk from the SPC, the process can involve some forms 

of credit enhancement, from institutional rating agencies. 

5.1.1 Cash flow analysis for each component 

For the retailer 

As an independent servicing institution, the retailer provides service to the cus­

tomers, monitors their repayments of the loans, and maintains the integrity of the 

cash flows and payment process. In each period after the loan starts, the retailer 

collects the repaid loan amount from the borrowers and transfers the amount to 

the lenders. From the perspective of the retailer, the cash inflows from the bor­

rowers are exactly the same as the cash outflows to the lenders and therefore there 

is no risk of loss at all. 

For the lender 

The lender predicts the number of survivors of the loans and the loss amount in 

each period by analyzing the past mortality improvement, interest rate fluctuation 
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and the real estate market conditions before the loans start. In each period after 

the loans commence, the lender's cash inflows are the loan repayments collected 

from the retailer and the cash outflows are the accumulated cost of capital. If the 

net of the two is less than the scheduled triggers, no insurance benefit is claimed 

from the SPC. Otherwise, the lender can collect a benefit from the SPC to cover 

the loss. 

For the SPC 

The SPC is a passive entity that only exists to securitize the mortality risk and sell 

the security on the market. For this purpose, it collects premiums from the lender 

and issues a survivor bond. The premium and the capital from selling the bond 

are invested at a risk-free interest rate. In each period after the loans commence, 

the SPC's only cash inflow is the risk-free investment proceeds. The SPC's cash 

outflows are the claims from the retailer with high priority and the coupons paid 

to the bond holders. At the end of the term of the bond, the SPC repays the 

principal to the investors. The net cash flow should be always zero for the SPC. 

For the investors 

The survivor bond investors purchase the survivor bond at a lower price than a 

straight bond, but bear the risk of losing some of the future coupons. In each 

period after the loans commence, the cash inflows for the bond holders are the 

random coupons from the SPC. At the end of the term, the investor collects 

the full principal. To illustrate the securitization process, several examples of 

securitization schemes are provided, including two types of survivor bonds and 

one survivor swap. 

Example 1: Reverse mortgage survivor bond type 1 

In this case, to illustrate the effect of longevity securitization, the interest rate and 

house appreciation rate are both assumed to be constant. Suppose the lender holds 

a portfolio of l0 loans. At time 0, all the borrowers are aged 62 and each borrow 

a lump sum of Q0 against their home property currently valued at H0 . To hedge 

the longevity risk, the lender purchases insurance from the SPC at a lump sum 
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premium P. Under the contract, in each period after the cross-over, the SPC will 

pay the lender a benefit of At (tt - Lt), up to a ceili~g amount C, if the number of 

survived loans It exceeds the predetermined trigger lt. In period t the loss amount 

for each loan i is Li,t, and since the interest rate and house appreciation rate are 

constant, Li,t = Lt for all i and all t. At is determined as the 1-period discounted 

difference between the expected loss in t and t + 1. 

If the risk-free interest rate is r, the house appreciation rate is c, the risk 

premium the lender charges is ..\1 and the premium that the lender is charged for 

capital finance is ..\2 , then 

Lt= Qo (1 + r + ..\2)t - min [Qo (1 + r + -X1)t, Ho (1 +cl]. 

For example, if r = 6.5%, c = 3%, ,\1 = 3%, ..\2 = 1.5%, Q0 = 50000 and 

H0 = 100000, the Lt and At in each period are calculated and graphed as below 

in Figure (5.2) and (5.3). 

In Figure (5.2), Lt is always increasing with t after the cross-over. This means 

after the cross-over the loss amount increases over time. In Figure (5.3), At is 

always positive and increasing with t after cross-over. This means the 1-period 

discounted loss Lt+I is larger than the current period loss Lt. This finding implies 

that after the cross-over, the lender is always better off incurring loss at the current 

time than incurring loss later. The actual and expected number of repaid loans in 

each period t are denoted as dt and dt, and the first period that the lender claims 

benefit is j. It is straightforward to show 

(5.1) 

Equation (5.1) indicates that less loss incurred in the current period means more 

loss will be incurred in the future, because the excessive survived loans ultimately 

will need to be repaid in some time in the future. When these excessive loans are 

repaid later, the present value of the these losses will be greater than if they had 

been incurred in present time. The difference between any two losses L1 and Lk 
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(j ::::; k) in two different periods after the cross-over can be expressed as 

k 

Lk - Lj = L AtSt-jlr, 
t=j 

62 

(5.2) 

where St-jlr denotes the accumulation of 1 from time j to k at risk free interest rate 

r. Protected by the insurance contract, after the cross-over the lender can claim 

payments from the SPC to construct a reserve to cover the unexpected future loss 
~ 

in the event that l1 > l1• The benefit payments B 1 of each period are determined 

in (5.3). After collection, the benefits are invested at a risk free interest rate rand 

accumulate until the excessive survived loans are repaid. 

(5.3) 

Let the first period that the lender claims benefit Bt be j, then the reserve Rt 

the lender accumulates continually with B1 during the loan process is 

t 

Rt= L BtSt-jlr· 
t=j 

Denote the actual and expected aggregate loss in each period t as Lt and Lt. By 

definition, the actual aggregate loss is 

and expected aggregate loss is 

Lt= dtLt. 

In the case of Lt > it, the lender will have an unexpected loss of 

Lt - it = ( dt - lit) Lt. 

This unexpected loss in period t could be partly or fully covered by the reserve Rt. 

Notice that 
T T 

Rt = L BtSt-jlr ::::; L ( Lt - it) , (5.4) 
t=j t=j 
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which means the accumulated unexpected loss is the upper limit of the reserve Rt. 

This avoids the problem of over-insurance. The accumulated unexpected loss is 

fully covered only if 

or 

T 

Rt = L ( Lt - it) ' 
t=j 

t 

Rt= L AtSt-jlr, 
t=j 

in which case all the benefits collected from the insurer are less than the ceiling C. 

The SPC issues a bond with a face value F and survivorship-contingent coupon 

payments Ct at a price of V :S F. The coupon payments are deducted whenever 
~ 

lt < lt and the net coupon payments that the bond holders receive in each period 

are l C if lt :S lt 
Ct = C - At ( lt - lt) if 4 < lt < f . 

0 if lt > f 
(5.5) 

In each period, the SPC needs to pay the coupon Ct and in the last period, the 

SPC needs to pay back the principal as well. To cover the cash outflow, the SPC 

invests the premium P and the survivor bond price V in a straight risk-free bond 

with a face value F sold at a price of W. If v = i!r is the one period discount 

factor, as long as 
T 

P+ V ~ W = FvT + LvkC, 
k=l 

the SPC can collect the amount C in each period and will be able to fulfill both his 

insurance and bond contract. To avoid any arbitrage, we should have P + V = W. 

Example 2: Reverse mortgage survivor bond type 2 

In this case, the interest rate and house appreciation rate are no longer assumed 

to be deterministic, but stochastic. Suppose the lender holds the same portfolio of 

l0 loans as in survivor bond type 1. At time O, all the borrowers are aged 62 and 

each borrow a lump sum of Q0 against a property currently valued at H0 . If the 

survivor bond type 1 is applied, there is a chance that the lender is over-insured, 



5. Securitization with reverse mortgages 64 

that is that the reserve Rt may sometimes exceed what the lender actually needs: 

T 

Rt > L ( Lt - it) ' 
t=j 

where Lt and it stand for the aggregate actual loss and the preset trigger amount. 

This is because Lt may not be necessarily increasing all the time, and thus At 

may not be positive all the time. To avoid this problem, the lender may purchase 

another type of insurance contract from the SPC at a lump sum premium P. Under 

this insurance contract, in each period after the cross-over, the SPC will cover the 

lender's aggregate loss up to a ceiling amount C if the actual total amount of loss 

Lt exceeds the trigger amount it, for example 95% percentile of the distribution 

of Lt. Under this arrangement, the benefit paid to the lender in period t is 

if Lt ::;; it 

if it< Lt::;; C 

if Lt> C 

The lender's net loss after the benefit in period t is 

if Lt ::;; it 

if it< Lt::;; C 

if Lt> C 

(5.6) 

(5.7) 

Similar to the above case, the survivor bond has a face value F and random 

coupon payments of Ct sold at a price of V ::;; F. But in this case, the coupon 

payments are linked to the lender's aggregate loss, not the number of survived 

loans. The coupons for the bond holders in period t are 

if Lt ::;; it 

if it< b::;; C 

if Lt> C 

(5.8) 
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As in type 1, the SPC invests the premium P and the survivor bond price V 

in a straight risk-free bond with a face value of F sold at a price of W. If v is the 

one period discount factor, as long as 

T 

P + V ~ W = FvT + L vkC, 
k=l 

the SPC can collect amount C in each period and fulfill both his insurance and 

bond contract. For the securitization to be actuarially fair, we should have P+ V = 
w. 

Example 3: Reverse mortgage survivor swap 

Another possible securitization structure is a reverse mortgage swap. In the sur­

vivor swap transaction, there is no principal payment at time T. At one side, the 

SPC pays the same cash flows Bt to the insurer, t = l, 2, ... , T. In exchange for the 

floating benefit Bt, the lender pays a fixed annual premium x to the SPC instead 

of paying a lump sum premium P. Eventually, we have 

At the other side, the SPC pays Ct to the bond holders. The investors pay the 

SPC a fixed amount y each year in order to receive the same coupons Ct, instead 

of paying V for the survivor bond. So we have 

T 

yar1 = L vk E ( Ct) . 
k=l 

As in the RMs bond example, the SPC has cash flows of Bt to the lender and Ct 

to the investors. Assuming there is no counter-party risk, in each year the SPC 

gets x + y, exactly enough to finance its obligation Bt + Ct. One advantage of 

swaps over issuing survivor bonds is the lower transaction costs, but the trad~ff 

is that swaps could introduce default risk. As part of the solution, the swap might 

be provided by a broker or investment banker to reduce the default risk. 
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5.2 Pricing a reverse mortgage survivor bond 

Basically to price a bond is just to discount all the expected future cash flows at 

the appropriate discount rate. The general bond pricing equation is 

T 

V = FvT + LvkE(Ct) (5.9) 
k=l 

where the notation follows the examples in the last section. The two types of 

survivor bonds are priced below. 

5.2.1 Case 1: Survivor bond type 1 

Following the example in the above section, it is assumed that the interest rate 

and house appreciation rate are constant. The only difference between survivor 

bond type 1 and a straight bond is that the former's coupon payments are linked 
~ 

to the survivorship of the loans and is thus uncertain. Suppose a series of lt are 

determined as the triggers, for a portfolio of l0 loans borrowed by persons aged x 

with the identical house value H0 , the bond holders will receive coupons in each 

period t I C if lt ~ lt 
Ct = C - At ( lt - It) if 4 < lt < f 

0 if lt > f 
This is equivalent to 

Taking the expectation on both sides, 

(5.10) 

The pricing equation of the survivor bond type 1 can be obtained by substituting 

equation (5.10) into (5.9): 
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As mentioned in Chapter 4, the number of survived loans lt follows binomial dis­

tribution at the same repayment rate q;+t. If the loan number is large, for example 

more than 30, according to the Central Limit Theorem, lt is approximately distrib­

uted as normal with mean µt = lt (1 - q;+t) and variance o-z = lt (l - q;+t) q;+t· 
In equation (5.10), we can rewrite the expectations term as 

E [At (zt -Z:) ,o]+ = AtE [(lt -µt)- (Z:- µt) ,o]+ 

E [A, (z, -T.) , oL = A,o-,E [ (l, ~/,) _ (f.~'µ,), oJ, 
Let E (X - k)+ = \ll (k) 1 , kt = (1t~;1), we have 

E [At (zt - it) ,o]+ = Atat'll (kt). 

Similarly, 

E [At (zt -Z:)-c,o]+ = Atat'll (kt + ~). 

Thus succinctly, equation (5.10) can be rewritten as 

(5.12) 

Substituting (5.12) in (5.9), we have the approximated pricing equation of the 

reverse mortgage survivor bond type 1, 

(5.13) 

From equation (5.13), the survivor bond price can be easily calculated. From the 

derivation in Appendix B, we know 

\JI (k) = E (X - k)+ = cp (k) - k [1 - <I> (k)], (5.14) 

where cp ( x) and <I> ( x) are PD F and CD F of a standard normal random variable 

X. After obtaining the bond price, we can calculate the internal return rate (I RR) 

of the survivor bond. 

1 E (X - k)+ = E [(X - k), OJ+ 
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I Period I Loss Lt I Period I Loss Lt I Period I Loss Lt 
1 -588.33 14 -3590.22 27 16738.21 
2 -691.29 15 -4059.30 28 18400.75 
3 -807.79 16 2500.51 29 20206.01 
4 -939.43 17 5935.67 30 22165.68 
5 -1087.97 18 6651.23 31 24292.41 
6 -1255.36 19 7431.25 32 26599.90 
7 -1443.77 20 8281.12 33 29102.90 
8 -1655.62 21 9206.63 34 31817.40 
9 -1893.57 22 10214.08 32 34760.64 
10 -2160.57 23 11310.25 36 37951.27 
11 -2459.91 24 12502.48 37 41409.46 
12 -2795.21 25 13798.72 38 45156.95 
13 -3170.50 26 15207.54 

Table 5.1: Single loss in each period 

A numerical example 

Following the above example, let the annual interest rate r be 6.5%, annual house 

price appreciation c be 3%, the risk premium the lender charges >. 1 and is charged 

>.2 be 3% and 1.5% respectively, the initial loan amount Q0 be $50, 000 and the 

house price H0 be $100,000, then the Lt and At in each period are calculated in 

Table (5.1) and (5.2). 

To get the projected number of survivors, the future force of mortality is pro­

jected as a function of both age x and time t. As discussed in Chapter 4, many 

projection methods have been proposed in the literature. This thesis adopts the 

Generalized Linear Model (GLM) suggested by Renshaw et al. (1996, [50]). Ac­

cording to the Renshaw model, the force of mortality µx,t is a log-linear function 

of age x and time t. Based on the Australian life table for 1881-2002, the model 

is calibrated as: 

where Lj (x) is the Legendre polynomial. In S-plus, a GLM regression is per­

formed using the mortality rates from the Australian Life Table for 1881-2002. 

The regression results are listed in Table (5.3). 



5. Securitization with reverse mortgages 69 

I Period I Appreciation At I Period I Appreciation At I Period I Appreciation At I 
1 -552.42 14 -2092.50 27 11173.30 
2 -613.19 15 -2313.83 28 11712.80 
3 -680.39 16 4093.37 29 12284.82 
4 -754.69 17 7166.25 30 12891.65 
5 -836.83 18 7475.87 31 13535.76 
6 -927.60 19 7802.34 32 14219.77 
7 -1027.90 20 8146.79 33 14946.54 
8 -1138.70 21 8510.39 34 15719.13 
9 -1261.07 22 8894.45 32 16540.83 
10 -1396.21 23 9300.32 36 17415.19 
11 -1545.42 24 9729.49 37 18346.04 
12 -1710.12 25 10183.56 38 19337.48 
13 -1891.91 26 10664.21 

Table 5.2: Appreciation of each loss in each period 

Parameters Value I Standard Error I t value 

f3o -2.08911420 0.2313983 -9.02821598 

/31 1.62026486 0.4471106 3.62385658 

/32 -0.06886849 0.5358593 -0.12851972 

/33 -0.01089401 0.4734314 -0.02301074 
0:1 -0.31284970 0.2433404 -1.28564656 
0:2 -0.31091752 0.4554777 -0.68261856 

'Y11 0.09956416 0.4690509 0.21226730 

'Y1 2 -0.05981924 0.5609072 -0.10664731 

'Y1 3 -0.06188307 0.5008452 -0.12355728 

'Y2 1 -0.02977038 0.8790215 -0.03386763 

'Y22 -0.04404868 1.0510683 -0.04190849 

"(23 -0.08197422 0.9356919 -0.08760813 
Residual Deviance 0.4061248 

Table 5.3: Fitted parameters in the GLM model 
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Age range GLM µx,t Current table µx,t Projected Improvement 
(2000-02) improvement rate 

62-66 0.0096 0.016603 0.007013 0.00140 
67-71 0.0152 0.027621 0.012461 0.00109 
72- 76 0.0304 0.046858 0.016447 0.00080 
77- 81 0.0656 0.075844 0.010215 -0.00125 
82-86 0.1171 0.130129 0.012998 0.00056 
87-91 0.1189 0.189262 0.070341 0.01147 
92-96 0.0417 0.242077 0.200356 0.02600 

97 - 101 0.0027 0.297514 0.294837 0.01890 

Table 5.4: Projected improvement of force of mortality 

The goodness-of-fit are illustrated in Figures (5.4), (5.5) and (5.6). 

Future improvements in the force of mortality are calculated on a 5 year in­

terval basis, as the mortality tables are mostly published every 5 years. In each 5 

year interval, the mortality improvement is assumed to be linear. The projected 

improvements in the force of mortality are listed in Table (5.4). 
~ 

With the above improvement factors, the corresponding trigger lt for each 

period can be easily obtained. The trigger values are calculated with formula 

(5.15). 
lo (tPx) eo.OOI4t for O < t ~ 5 
lo (tPx) eo.OO1+O.OO109(t-5) for 5 < t ~ 10 
lo (tPx) eo.O125+O.ooos(t-IO) for 10 < t ~ 15 

~ lo (tPx) eO.0164-O.OOI25(t-15) for 15 < t ~ 20 
lt = lo (tPx) eo.O102+O.ooos6(t-2O) for 20 < t ~ 25 

(5.15) 

lo (tPx) eo.ol3o+o.on47(t-25) for 25 < t ~ 30 
lo (tPx) eo.o7o3+O.O26(t-3O) for 30 < t ~ 35 
lo (tPx) eO.2OO4+O.O189(t-35) for 35 < t ~ 40 

The results are illustrated in Figure (5.7) and listed in Table (5.5). 

The survivor bond price is calculated with 1000-run simulation. Some of the 

results are listed in Table (5.6). 

The results show prices for survivor bonds for a group of 1000 loans with loan 

amount of $50,000 per person and the trigger levels calculated in Table (5.5). The 
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Period I Trigger z: I Period I :><. 

Trigger lt I Period I >< 

Trigger lt 

1 986 14 677 27 152 
2 973 15 639 28 124 
3 958 16 599 29 99 
4 942 17 557 30 79 
5 924 18 514 31 61 
6 904 19 470 32 48 
7 883 20 427 33 37 
8 859 21 384 34 28 
9 834 22 342 32 21 
10 807 23 300 36 15 
11 778 24 259 37 11 
12 746 25 220 38 8 
13 712 26 183 

Table 5.5: Projected trigger values in each period 

Number of loans 1000 
Initial house value $100,000 
Lump sum borrowed $50,000 
Face value of straight bond $100,000,000 
Face value of survivor bond $100,000,000 
Coupon rate for both bonds 6.5% p.a. 
Annual aggregate cash flow out of SPC $6,500,000 

Straight bond price $100,000,000 
Survivor bond price $99,902,898 
Premium paid to SPC $97,102 

Table 5.6: Calculation of the mortality bond price (Type 1) 
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annual aggregate cash flow out of the SPC is $6, 500, 000 and the coupon rate for 

both the straight bond and the survivor bond is 6.5%. The price of the survivor 

bond is $999.02 per $1000 of face value. The total premium is actually quite small 

relative to the total amount of loans: only 97, 102/ (1000 x 50,000) which equals 

0.2%. For as long as 38 years' protection, this price is very cheap. 

Sensitivity testing 

To examine how sensitive the value of a survivor bond is to the mortality change, 

a random shock is attached to the projected force of mortality µx,t· Suppose the 

distribution of mortality shocks Et at time t is a beta distribution with parameters 

a and b. The mortality improvement shock Et is expressed as a percentage of the 

force of mortality µx t, so it ranges from Oto 1, that is, 0 < Et < I with probability 

1. Without the shock, the projected survival probability Px,t = e(-:Ux,t). With the 

shock, the new survival probability can be expressed as: 

Af ( ~ )1-ct (A )1-ct 
Px,t = exp -µx,t = Px,t · 

It is clear that 
A/ < ( A )1-ct 

Px,t - Px,t · 

After 10,000 simulation trials, the impact of various mortality shocks is sum­

marized in the Table (5.7). The table lists how many survivors will remain in 

the portfolio after 20 years, and how much of the total value of the coupons and 

principal the investors will lose after the shocks. For example, when a = 1.38, 

b = 26.30, E[ct] = 0.05, on average the investors will lose only 0.11 % of the total 

value of the coupons and principal. The maximal loss is 0.13%. 

The results show that the impact of mortality shocks is very limited in terms of 

the entire investment. Even in a scenario of a 50% mortality surprise, the investors 

lose 99, 902, 898-99, 663, 909 which equals $238, 989 on average, which is less than 

3. 7% of the total value of expected coupons and 1 % of the total value of expected 

coupons and principal. Therefore there is very little chance of investors losing 

large amounts of coupons. 
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Shock Et Statistic l20 PV of coupons Percentage 
and principal change 

1% Min 429 99,790,111 -0.11% 
5% percentile 430 99,793,980 -0.11% 
95% percentile 432 99,795,946 -0.11% 
Max 435 99,796,337 -0.11% 
Mean 431 99,795,199 -0.11% 
Stdev 1 635 

5% Min 435 99,768,435 -0.13% 
5 % percentile 440 99,785,248 -0.12% 
95% percentile 453 99,795,809 -0.11% 
Max 465 99,797,493 -0.11% 
Mean 446 99,791,922 -0.11% 
Stdev 4 3,369 

10% Min 444 99,744,368 -0.16% 
5 % percentile 453 99,773,260 -0.13% 
95 % percentile 481 99,798,092 -0.11% 
Max 504 99,786,999 -0.10% 
Mean 465 99,786,940 -0.12% 
Stdev 8 6,946 

25% Min 465 99,663,820 -0.24% 
5% percentile 491 99,714,999 -0.19% 
95% percentile 569 99,783,484 -0.12% 
Max 641 99,793,361 -0.11% 
Mean 528 99,758,254 -0.14% 
Stdev 24 21,573 

50% Min 411 99,482,588 -0.42% 
5 % percentile 483 99,557,089 -0.35% 
95% percentile 699 99,751,549 -0.15% 
Max 825 99,774,291 -0.13% 
Mean 584 99,663,909 -0.24% 
Stdev 65 69,833 

Table 5.7: Sensitivity Testing (Type 1) 
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5.2.2 Case 2: Survivor bond type 2 

In this case, the future coupon payments of the survivor bond are a function 

of the lender's aggregate loss amount in each period, which is affected by both 

the number of survivors and the single loss amount of each repaid loan. In this 

example, the values of trigger Lt are set to be the 95% percentile of the aggregate 

loss distribution in each period. To take account of the randomness of mortality 

improvement, a 1 % shock Et is attached to the projected force of mortality µx,t· 

Following the example in the last section of a portfolio of l0 loans borrowed by 

persons aged x with the identical house value H0 , in each period t, the bond 

holder will receive coupon 

c, = l C if Lt :::; Lt 

c-(L -L) if Lt< Lt:::; C -t -t 
0 if Lt> C 

This is equivalent to 

Ct = C - [ ( Lt - it) , 0] + + [ ( Lt - Lt) - C, 0] + . 

Taking the expectation on both sides, 

E ( Ct) = C - E [ ( Lt - b) , 0] + + E [ ( Lt - it) - C, 0] + . (5.16) 

Substituting Equation (5.16) into (5.9), the pricing equation of the survivor bond 

type 2 is 

Since it is impossible to find out the distribution of Lt, the simulation techniques 

are used. A numerical example follows. 

A numerical example 

Using the algorithm in Chapter 2, the trigger values Lt in each year are calculated 

as the average of 1000 simulation trials. The results are listed in Table (5.8). 

The price of the survivor bond is calculated in Table (5.9). 
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Period I Trigger it I Period I Trigger it I Period I Trigger it 
1 0 14 2,281,434 27 17,132,581 
2 0 15 2,907,624 28 17,435,844 
3 0 16 3,681,598 29 17,452,028 
4 0 17 4,446,271 30 17,168,945 
5 0 18 5,419,246 31 15,990,877 
6 0 19 6,587,557 32 15,343,864 
7 0 20 7,955,241 33 13,715,978 
8 116,142 21 9,333,113 34 11,531,379 
9 278,462 22 11,068,592 32 10,051,137 
10 446,561 23 12,229,021 36 8,538,117 
11 837,594 24 13,476,656 37 6,651,498 
12 1,182,790 25 15,116,196 38 4,828,433 
13 1,641,429 26 16,262,309 

Table 5.8: The projected triggers with simulation 

Number of loans 1000 
Initial house value $100,000 
Lump sum borrowed $50,000 
Face value of straight bond $100,000,000 
Face value of survivor bond $100,000,000 
Coupon rate for both bonds 6.5% p.a. 
Annual aggregate cash flow out of SPC $6,500,000 

Straight bond price $100,000,000 
Survivor bond price $98,504,875 
Premium paid to SPC $1,495,125 

Table 5.9: Calculation of the bond price (Type 2) 
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The results show prices for survivor bonds for a group of 1, 000 loans with loan 

amount of $50,000 per person and the trigger levels calculated above. The annual 

aggregate cash outflow of the SPC is $6,500,000 and the coupon rate for both the 

straight bond and the survivor bond is 6.5% . The price of the survivor bond is 

$985.04 per $1,000 of face value. As we can see, the premium here is much larger 

than that of survivor bond type one, since much greater risks are involved in this 

case. But the total premium is still very small relative to the total amount of 

loans: 1,495, 125/ (1000 x 50,000) which equals 2.99%. 

Sensitivity testing 

To examine the impact of mortality improvement in some extreme scenarios, the 

value of the shock parameter Et is increased. The results of sensitivity testing are 

summarized in Table (5.10). 

The results show that the impact of mortality shock is very limited in terms of 

the whole investment. Since in this case other risk variables are not controlled, it 

is difficult to tell exactly how much the change can be attributed to mere mortality 

improvement. But the results show no matter how great the mortality shock is, 

the present value of the bond does not change much, which means the present 

value is not sensitive to mortality improvement. 
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Shock Et Statistic PV of coupons Percentage 
and principal change 

5% Min 59,169,754 -39.93% 
5% percentile 88,218,673 -10.44% 
95% percentile 100,000,000 1.52% 
Max 100,000,000 1.52% 
Mean 98,250,787 -0.26% 
Stdev 5,346,482 

10% Min 59,927,863 -39.16% 
5% percentile 86,700,844 -11.98% 
95% percentile 100,000,000 1.52% 
Max 100,000,000 1.52% 
Mean 98,196,112 -0.31% 
Stdev 1,803,888 

25% Min 61,486,654 -37.58% 
5% percentile 86,745,006 -11.94% 
95% percentile 100,000,000 1.52% 
Max 100,000,000 1.52% 
Mean 98,070,043 -0.44% 
Stdev 5,708,053 

50% Min 61,880,827 -37.18% 
5% percentile 87,868,901 -10.80% 
95% percentile 100,000,000 1.52% 
Max 100,000,000 1.52% 
Mean 98,267,554 -0.24% 
Stdev 1,732,446 

Table 5.10: Sensitivity Testing (Type 2) 
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Figure 5.1: The process of reverse mortgage securitization. 
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Chapter 6 

Conclusion 

6.1 Summary of results 

The reverse mortgage is a promising product with many benefits, which has ma­

tured and become increasingly popular in recent years. Due to the various risks 

involved in reverse mortgages, especially the longevity risk component, the devel­

opment of the product has to some extent been stunted. The risks are compulsorily 

insured in the United States to protect the loan borrowers. In this thesis, I suggest 

a more flexible method, namely securitization, to deal with the risks to the lender, 

particularly the longevity risk. 

In Chapter 2, a review of securitization is provided. Securitization as a form 

of financial engineering has existed for little more than 30 years, but it has had 

a significant impact on the financial industry, and most recently the insurance 

industry. Compared to traditional insurance, securitization has certain advantages. 

These advantages include: greater coverage of risks; the elimination of counter­

party risk; and more favorable tax treatment. Securitization of mortality risk, 

is one of the major developments in the securitization of insurance risks. It has 

been the subject of academic interest since the rapid improvement in mortality 

rates. Several securitization products have been proposed and discussed, and even 

put into practice in the insurance industry recently. Following Cox's approach 

(2000, [17]), an economic justification of securitization of mortality risk is provided 

in this chapter based on Markowitz mean-variance portfolio theory. 

In Chapter 3, the concept of the reverse mortgage product is introduced and 

85 
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its development is reviewed. I find that although the product experienced slow 

growth in its infancy, it has been understood and accepted more widely, which has 

resulted in rapid growth in recent years. The advantages of the reverse mortgage 

over other ordinary collateralized loans is discussed. The unique features of the 

product not only allow the borrower to convert their home equity into a liquid 

asset, but also to hedge their longevity risk, which is an important financial risk 

for retirees. These benefits to the borrower, however, pose a huge risk to the lender. 

A brief discussion of the risks inherent in the product is provided in this chapter. 

The three major risk variables are interest rates, house prices and mortality rates. 

Other risks include the maintenance risk and the expense risk. At the end of this 

Chapter, the trend towards transferring the mortality risk in reverse mortgages 

through securitization is examined. 

In Chapter 4, to acquaint the readers with the reverse mortgage and its risks 

at a higher level, a pricing model for the product adopted by Piggott et. al 

(2003, [48])is introduced. The four input variables of the pricing model are interest 

rates, house price, mortality rates and the risk premium that the lender charges. 

How these variables affect the price are analyzed in detail. A numerical example 

to illustrate the pricing of the product is then provided. In the example, the 

well-known Vasicek model is adopted to project the interest rates. For simplicity, 

the geometric Brownian motion is used to model the systematic part of the house 

price. To capture the impact of the borrower's maintenance behavior and regional 

economic fluctuation, a random shock is attached to represent the idiosyncratic 

part of the house price. The correlation between the interest rate and the house 

price are discussed in this chapter and tested later. To project the most important 

variable - mortality rate - the Gompertz mortality model adopted by Frees et. 

al (1996, [27]) is used. 

The model is then calibrated to the Australian dataset including the ten year 

government bond yield (1980-2005), the median house price of eight capital cities 

(1980-2005) and the Australian male life tables (2002). Certain models to calculate 

the risk premiums are also suggested. The simulation results of two different sized 

portfolios are discussed at the end of the chapter. The results show that the larger 

portfolio, the greater the maximal safe loan amount it allows. The results also 

reveal that the average loss to the lender does not necessarily increase with the 

length of the loan. Instead, in our example the most financially stressful period for 
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the lender is the several years between years 28-33 rather than the last few years. 

In Chapter 5, the securitization technique is applied to the reverse mortgage 

product. Following a similar approach used by Lin and Cox (2004, [40]), a model 

is provided to securitize the longevity risk in a reverse mortgage. The cash flows 

for each component of the transaction are analyzed in detail. Several examples 

of longevity securities based on the model are provided, including two types of 

survivor bonds and a survivor swap. The formulae for pricing the securities are 

provided subsequently. A numerical example for pricing each type of survivor bond 

is also provided. 

For survivor bond type 1, the interest rate and house appreciation rate are 

assumed to be constant to emphasize the effect of longevity securitization. To 

grasp the stochastic feature of the mortality improvement rates, the GLM model 

suggested by Renshaw et al. (1996, [50)) is used. The model is calibrated to the 

Australian male life tables (1881-2002). The number of parameters are chosen 

based on both accuracy and efficiency. Using the fitted model, the triggers for the 

survived loans are calculated and the survivor bond prices obtained. The results 

show that for the lender, the insurance premium is cheap relative to the total value 

of the portfolio and the period of protection. To test its value to the investor, a 

sensitivity analysis is undertaken to show how much the bond value will change 

in responds to mortality shocks. If mortality rates improve by 5%, the investor 

will lose 0.12% of the total value of expected coupons. Even a dramatic mortality 

improvement shock of 50% will only result in the investors losing less than 3. 7% 

of the total value of expected coupons. Therefore there is very little chance of 

investors losing large amounts of coupons. 

For survivor bond type 2, the randomness of interest rates and house prices 

is taken into account. The same interest rate and house price models adopted in 

pricing reverse mortgages are used to project the inputs. A simulation approach 

is applied because it is very difficult to solve the equation of bond prices analyti­

cally. Since more risks are involved in this case, the insurance premiums are more 

expensive than in the case of survivor bond type 1. But compared to the total 

loan amount of the portfolio, it still only amounts to 2.99%. On the other hand, 

the investor can expect a maximal loss of 2.01 % of the total expected coupons 

even in the worst case scenario where a combination of shocks occur. Since none 

of the three risk variables are controlled, it is impossible to tell exactly how much 
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the change can be attributed to each shock in this case, but the investor does not 

lose a large portion of their returns even in the most adverse situations. 

This thesis shows that the securitization model is a good method to control 

the longevity risk in reverse mortgages. Examples are given including two types of 

survivor bond and a survivor swap. The survivor bonds are priced using analyt­

ical and simulation methods. The results show that through these securitization 

schemes, long term protection for the reverse mortgage lender can be obtained at 

relatively cheap prices. The impact of mortality improvement shocks on the bond 

prices are examined using sensitivity testing. The test results reveal that even 

in the situation where mortality dramatically improves, there is little chance that 

survivor bond investors will lose large portion of the investment. Given the many 

benefits of mortality securitization, I believe it can help the development of reverse 

mortgage products. 

6.2 Limitation of the results 

The readers of this thesis should be aware that there are simplifying assumptions 

in this analysis. For example, in the case of the survivor bond type 1, the interest 

rates and the house appreciation rate are controlled to be constant. In reality, 

these rates are never constant. In addition, there are other limitations due to 

model choice and data limitation. 

6.2.1 Model choice 

In choosing the house price model, for simplicity the geometric Brownian motion 

is used to model the systematic part of the house price. In the real world, the 

house price model could be extremely complicated when the effects of many eco­

nomic variables are taken into account. Further, when applying this model to 

calculate the correlation between the interest rate and the house price, our results 

show that although the two are correlated in the lagged sense, the correlation is 

not simply positive or negative. I choose to ignore the correlation in the further 

analysis considering that a linear correlation test may not be convincing due to 

the simplified house price model. And this simplification may affect the price of 

the reverse mortgage as well as the prices of the survivor bonds. 
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6.2.2 Data limitation 

In calculating the premiums that the lender charges, the most straightforward 

way is to apply the Distortion methods (Wang Transformation or Elliptical Trans­

formation) to the real world reverse mortgage price data. Without the reverse 

mortgage data, I can only suggest some approximate models to estimate the total 

risk premiums, which still require certain annuity price data. However, unable to 

get the appropriate annuity price data, for this analysis, I have had to choose the 

total risk premium subjectively and conservatively. Therefore the risk premium 

may be lower than that in the industry, and hence the numerical results of the 

maximal safe loan amount derived could be overstated. 

When pricing the reverse mortgage using simulation, the number of survived 

loans is only generated to 38 years after the loan starts. The reason is that the 

Australian life tables used to calibrate the Gompertz model are truncated to age 

100. Although the Gompertz model is parametric and can be used to generate 

death numbers for older ages, it does not fit very well in very old ages. For this 

reason and simplicity, any loss beyond the 38th year is forced to occur in the 38th 

year. This approximation will overstate the numbers and the aggregate amount 

of losses in the last year. Subsequently, the numerical results of the maximal safe 

loan amount could be understated since the losses could grow greater if they were 

not brought forward to the 38th year. 

What is more, since table mortality data is used rather than the real mortality 

experiences obtained from reverse mortgage provider, the basis risk is introduced. 

6.3 Further work 

In this thesis, only pricing examples of survivor bonds are given. It has been 

argued that survivor swaps have advantages over survivor bonds and can be applied 

between the reverse mortgage lender and the life insurer. It would be interesting 

to see how a survivor swap is priced in reverse mortgages. Dawson (2002, [211), 

Dowd (2006, [25])and Lin et. al (2004, [39]) are useful references on this topic. 

A copula approach could also be applied to model the correlation between the 

interest rate and the house price. This would allow the researcher to investigate 

the effects of the correlation on the pricing and the risk management of reverse 
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mortgages. Lastly, a calibration of our models to real data would reveal the actual 

effect of securitization of longevity risk in reverse mortgages. These topics are left 

for future research. 
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Appendix A 

OLS method for model fitting 

• In the Gompertz model, the sum of squares is 

To minimize the SSE, we take derivatives of B and e to get the first order 
conditions (FOCs): 

&SSE [ ( B )] e65 (et - 1) ( B ) -- = 2 ~ tPtable - exp --ex (et -1) ----exp --ex (et - 1) 
8 B ~ x In e In e In e 

t 

&SSE 
8e 

-2 ~ [p~.Me - exp ( -1: /" ( c' - I))] [ ~:: ( c' - I) ( ( c' - I) c: c - 65) -tc')] 
Equating the two FOCs to zero and solving them simultaneously give us the B 
and c that minimize the squared errors. Unfortunately, the system of equations 
can not be solved analytically, so we solve them in Excel numerically. The Excel 
macro is attached in Appendix E. 

• In Vasicek interest model, we can find the parameters a and (3 through the 
following formula: 
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(t Ttk_At) 
2 

+ N t r;k_~t 
k=I k=I a=--------~-----------~~------

f:1t · [N t r~_~t - (t Ttk_At) 
2

] 

k=l k=I 

N N N 

L Ttk . L Ttk_At - NL Ttk_AtTtk -

k=I k=l k=l 

N N N N 

L Ttk · L r;k_~t - L Ttk_At · L Ttk_AtTtk 

/3 _ k=I k=I k=l k=I 

-t Ttk · t Ttk_At - N t Ttk_AtTtk - (t Ttk_At) 
2 
+ N t r;k_~t 

k=I k=I k=l k=I k=l 

where tk - !:1t = tk_1and N is the number of observations without the starting 
value. The standard deviation is 

with 

(J = MSE(rt) 

f:1t · (N - 2)' 

N -- 2 

M SE (rt) = L [rtk - (t1ta/3b + (1 - l1ta) rtk-At)] 

k=l 

• In the geometric Brownian motion model for house price, µ H and a H are 
estimated by 



Appendix B 

Integration by parts 

For a random variable X with a Probability Distribution Function (PDF) f x (x) ,Cumulated 
Distribution Function (CDF) Fx (x), if E (X) < oo, by definition of expectation, 
we know that 

00 

E [(X - k)+J = j (x - k) fx (x) dx. (B.1) 
k 

Integrate the right-hand side by applying integration by parts: 

u = - ( X - k) and V = l - F X ( X) . 

so that du= -dx and dv = - fx (x). Therefore 

00 

E[(X-k)+J =-(x-k)[l-F(x)]lri+ j[l-F(x)]d(x-k) 

k 

00 

E [(X - k)+] = -0 + 0 + J [1 - F (x)] dx 
k 

00 

E [(X -k)+] = J [l-F(x)]dx. (B.2) 

k 

For a standard normal random variable x-N (0, 1) with a PDF </> (x) and a 
GDF <I> (x). </> (x) is 

</> ( x) = vk exp ( - ~
2

) . 

Differentiating on both sides, we have 

</>' (x) = -x</> (x). 
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From equation (B.2), we get 

Again we integrate the right-hand side by applying integration by parts: 

u = x and v = I - <I> ( x) 

so that du= dx and dv = - fx (x). Therefore 

00 

E[(X-k)+] =x[l-F(x)]I%°- Jxd[I-F(x)] 

k 

00 

E [(X - k)+J = 0- k [I - <I> (x)] + / x<f>(x) dx. 
. k 

Using the result in equation (B.1), we have 

00 

E [(X - k)+J = - J </>' (x) dx - k [I - <I> (x)] 
k 

E (X - k)+ = </> (k) - k [I - <I> (k)]. 
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GLM for projecting the future 
mortality 

As discussed in Chapter 3, many projection methods of mortality rates have been 
proposed in the literature. In Chpater 5, we use the generalized linear model first 
suggested by Renshaw et al. (1996, [50]). According to the Renshaw model, the 
force of mortality is a log-linear function of age x and time t, 

(C.l) 

where r, s are the number of parameters and Lj (x) is the Legendre polynomial 
defined below: 

L0 (x) = 1 

L1(x)=x 

L2 ( x) = 3x2 - 1 
2 

L3(x) = 5x3 - 3x 
2 

(n + 1) Ln+l (x) = (2n + l)xLn (x) - nLn-1 (x) 

Equation (C.1) can be expressed as 
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Notice that the first term in the right-hand side is a special case of Gompertz­
Makeham law of mortality: 

To estimate the unknown parameters o:i, f3 j and 'Y i,j, the actual number of deaths 
a(x,t) are modelled as independent Poisson response variables A(x,t) of a generalized 
linear model with mean and variance given by 

E[A(x,t)] = ffi(x,t) = R~x,t)µ(x,t) 

var [ A(x,t)] = </>m(x,t) 

Re is the central exposed-to-risk, and </J is a scale parameter. 
(x,t) 

log ffi(x t) = log Re + log µ(x t) = T/(x t) 
' (x,t) , , 

s r r s 

log ffi(x,t) = log R~x.t) + f3o + L /3jLj (x') + L o:it'i + L L 'Yi,jLj (x') t'i 
j=l i=l i=l j=l 

Estimation of the parameters is carried out using the quasi-log-likelihood approach, 
which, in this case, involves maximizing the expression 

1 
1> L ( -m(x,t) + a(x,t) log ffi(x,t)) 

x,t 

To determine the optimum values of r and s, the improvement in the scaled de­
viance for successive increases in the values of r and s is compared with a 2 
random variable with 1 d.f. as an approximation. The optimum values chosen are 
the minimum values of r and s beyond which improvement in the deviance is not 
statistically significant. 

The unscaled deviance corresponding to the predicted rates, ii(x,t), is 

D (c, f) = 2 L [a(x,t) log (;(x,t)) - (a(x,t) - ffi(x,t))] 
x,t (x,t) 

where 



Appendix D 

Life insurance securitization deals 
since 1996 

Life Insurance Securitization Deals Since 1996 

Purpose Amount (m) Date Issuer 
Liquidity /M&E Securitization $900+ 1996-1998 American Skandia 
VIF Securitization €731 1998-2002 Hannover Re 
VIF Monetization £260 Apr 1998 NPI 
Closed Block Monetization $1,750 Dec 2001 Prudential 
Closed Block Monetization $300 Apr 2002 MONY 
Reg XXX Financing $1,150 Jul 2003 Genworth I 
VIF Monetization $150 Jun 2004 Forethought 
VIF Monetization £400 Oct 2003 Barclays Life 
Reg XXX Financing $600 Nov 2004 Banner Life 
Reg XXX Financing $850 Dec 2004 Genworth II 
VIF Monetization £380 Dec 2004 Friends Provident 
Source: Cowley and Cummins (2005) 
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Appendix E 

Program Codes 

E.1 Excel macro for fitting the Gompertz 

'fit Gompertz to the 2000-02 Australian mortality experience 

Sub fit _2000 () 

Application.ScreenUpdating = False 
test = Range("C5") + Range( 11 C6 11 ) 

Do Until test= 0 
differentials= Range("C5") + Range( 11 C6 11 ) 

For i = 1 To 30 
Sheets("2000").Range("I65").Goa1Seek Goal:=0, 
ChangingCell:=Sheets( 11 2000 11 ).Range( 11 C5 11 ) 

Sheets("2000").Range("J65").Goa1Seek Goal:=0, 
ChangingCell:=Sheets( 11 2000 11 ).Range( 11 C6 11 ) 

Next i 
test= differentials - Range("C5") - Range( 11 C6 11 ) 

Loop 

Application.ScreenUpdating = True 

End Sub 

'fit Gompertz to all the past Australian mortality experience 

Sub fi t_all () 
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Application.ScreenUpdating = False 
For j = 0 To 15 
Fors= 0 To 38 
Worksheets("male").Cells(45 + s, 3) = 
Worksheets("male").Cells(2 + s, 2 + j) 

Next s 
test= Range("M47") + Range("M48") 

Do Until test= 0 
differentials = Range("M47") + Range( 11 M48 11 ) 

For i = 1 To 20 
Sheets("male").Range("H85").Goa1Seek Goal:=O, 

ChangingCell:=Sheets( 11male").Range("M47 11 ) 

Sheets("male").Range("I85").Goa1Seek Goal:=O, 
ChangingCell:=Sheets( 11 male").Range("M48 11 ) 

Next i 
test= differentials - Range("M47") - Range("M48") 

Loop 

Worksheets( 11 results").Cells(6 + j, 2) 
= Worksheets("male").Cells(50, 13) 

Worksheets("results").Cells(6 + j, 3) 
= Worksheets("male").Cells(51, 13) 

Next j 

Application.ScreenUpdating = True 
End Sub 

E.2 Matlab code for simulations 

% Generate random life time of each contract. % 
% Simulate the stochastic process of interest and house price% 
% Find the maximal safe loan amount given the risk premium % 
% Plot the loss distribution and other figures % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
p=10; % number of runs 
n=1000; % number of loans in each portfolio 
l=zeros(p,38); % number of survivors 
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d=zeros(p,38); % number of terminations 
sumloss=zeros(p,38); % total loss in each year 
meanloss=zeros(p,38); % average loss in each year 
meanlossd=zeros(p,38); % 1-period discounted average loss in each year 
interest=ones(p,38); 
for s=1 :p 

%%%%% Random life time %%%%%%% 
% age=62; mode=82.118134; sigma=9.786905707; % 2000 data fitted 
age=62; mode=82.3782; sigma=9.73327; % projeted future mu fitted 
T=zeros(1,n); % life span for each loan 
for j=1:n % Gompertz 

u1=rand(1); 
T(j) = ceil(log(1 - log(u1) / exp((age - mode)/ sigma)) 

*sigma+ 0.5); 
if T(j)>38 

end; 
end 

T(j)=38; 

%%% Interest rate and house price appreciation rate%%% 
rho=0; lag=0; % correlation parameters 
r0=6.5; a=0.5757; b=4.8825; sigmaR=4.7891; % Vasicek 
meanH=0.0354; sigmaH=0.1003; % general shock 
sigmaS=0.08; % individual shock 
general=ones(1,38); 
houseapp=ones(n,38); 
for i=1:38 

n1=randn(1); n2=randn(1); 
el(i) = n1; 
if i >= lag 

eH(i) =rho* el(i - lag)+ sqrt(1 - rho -2) * n2; 
end 
k = i - lag; 
if k <= 1 

interest(s,k) = r0 / 100; 
general(k) = exp(meanH + sigmaH * eH(i)); 

elseif k > 1 
interest(s,k) = 

(a* b + (1 - a)* interest(s,k - 1) * 100 + sigmaR * el(i)) / 100; 
general(k) = exp(meanH + sigmaH * eH(i)) * general(k - 1); 

end 
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end 
for j=1 :n 

n3=randn(1); 
houseapp(j,1) = general(1) - 1 + sigmaS * n3; 
for i=2:38 

n4=randn(1); 
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houseapp(j,i) = general(i) / general(i - 1) - 1 + sigmaS * n4; 
end 

end 
%%%%%Accumulation factors%%%%%% 
accL=ones(i,38); % accmulation factor for loan 
accCL=ones(1,38); % accmulation factor for cost of capital 
accH=ones(n,38); % accmulation factor for house appreciation 
premL=0.075; % total risk premium lender charges 
premC=0.0375; % total risk premium lender is charged 
disc=0.065; % discount rate 
accL(1)=1+interest(s,1)+premL; 
accCL(1)=1+interest(s,1)+premC; 
% Lump sum and cost ace factor 
for i=2:38 

accL(i)=(i+interest(s,i)+premL)*accL(i-1); 
accCL(i)=(i+interest(s,i)+premC)*accCL(i-1); 

end 
% House price ace factor 
for j=1:n 

accH(j,1)=1+houseapp(j,1); 
for i=2:38 

accH(j,i)=(1+houseapp(j,i))*accH(j,i-1); 
end 

end 
%%%%%%%% Loan amount, house price and losses%%%% 
Q0=50000; % starting value 
H0=100000; % initial house value 
QL=ones(1,n); % accumulated loan amount when repaid 
HT=ones(1,n); % accumulated house price when repaid 
VL=ones(1,n); % recoverable amount (minimum of the above two) 
costL=ones(1,n); % accumulated cost of capital when terminated 
lossL=ones(1,n); % the diff between cost and recoverable amount 
% pvlossL=ones(1,n); 
for j=1:n 
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end 

QL(j)=QO*accL(T(j)); 
HT(1,j)=HO*accH(j,T(j)); 
VL(j)=min(QL(j),HT(j)); 
costL(j)=QO*accCL(T(j)); 
lossL(j)=costL(j)-VL(j); 
% pvlossL(j)=lossL(j)/(1+disc)-T(j); 

%%%%% Minimization of the loss and take average%%%% 
[QO,SL]=fminbnd(©pvL,1,HO,optimset('Display','off'), 

accL,HT,accCL,disc,T,n); 
iterL(s)=QO; % find the lump sum minimizes the APV of loss 

[m]=find(T==1); % find the loans terminated at t=1 
d(s,1)=length(m); % number of terminations 
l(s,1)=n-length(m); % number of survivors 
sumloss(s,1)=sum(lossL(m)); % total loss 
if length(m)-=O 

meanloss(s,1)=mean(lossL(m)); % average loss 
meanlossd(s,1)=meanloss(s,1)/(1+interest(s,1)); 

end 
for i=2:38 

end 

[m]=find(T==i); % find the loan terminated at time i 
d(s,i)=length(m); % number of terminations 
l(s,i)=l(s,i-1)-length(m); % number of survivors 
sumloss(s,i)=sum(lossL(m)); % total loss 
if length(m)-=0 

meanloss(s,i)=mean(lossL(m)); 
meanlossd(s,i)=meanloss(s,i)/(1+interest(s,i)); 

end 

end 
meansumloss=zeros(1,38); 
mmloss=zeros(i,38); 
mmlossd=zeros(1,38); 
accmeanloss=zeros(i,38); 
meand=zeros(1,38); 
meanl=zeros(i,38); 
trigger=zeros(i,38); 
for i=1 :38 

meansumloss(1,i)=sum(sumloss(:,i))/p; 
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mmloss(1,i)=sum(meanloss(:,i))/p; 
mmlossd(1,i)=sum(meanlossd(:,i))/p; 
meand(1,i)=sum(d(:,i))/p; 
meanl(1,i)=sum(l(:,i))/p; 
trigger(1,i)=quantile(sumloss(:,i),0.95); 

end 
accmeanloss=zeros(i,38); 
for i=1 :38 

accmeanloss(i+1)=mmlossd(i+1)-mmloss(i); 
end 
meanL=sum(iterL)/p; 
meanL 

subplot (2,2,1), plot(meanl), 
title('average survivors in the portfolio each year') 
grid on 
subplot(2,2,2), plot(mmloss), 
title('average loss of all the 

terminated loans each year') 
grid on 
subplot(2,2,3), plot(meansumloss), 
title('average total loss of the portfolio each year') 
grid on 
subplot (2,2,4), plot(accmeanloss), 
title('differenced average loss 

of all the terminated loans each year') 
grid on 

figure(2) 
for i=1 :38 
subplot(5,8,i), hist(l(:,i),15),title(' '); 
grid on 

end 
figure(3) 
for i=1:38 
subplot(5,8,i), hist(lossamtA(:,i),15),title(' '); 
grid on 

end 
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figure(4) 
subplot(3,1,1), plot(meanlossamtA), 
title('Average loss amount in each year') 
grid on 
subplot(3,1,2), plot(meand), 
title('Average terminated loans in each year') 
grid on 
subplot(3,1,3), plot(meanl), 
title('Average survived loans in each year') 
grid on 

%%%%%%Funtions used in the scripts%%%%%%% 

function pvA=pvA(x,accA,HT,accCA,disc,T,n) 
for j=1 :n 

f(j)=(min(x.*accA(T(j)),HT(j))-x.*accCA(T(j))) 
./((1+disc).-T(j)); 

end 
pvA=abs(sum(f)); 

function pvL=pvL(x,accL,HT,accCL,disc,T,n) 
for j;;;:1:n 

f(j);;;;(min(x.*accL(T(j)),HT(j))-x.*accCL(T(j))) 
./((1+disc).-T(j)); 

end 
pvL;;;;abs(sum(f)); 

%%%%% Survivor Bond Type 2 Pricing %%%%%%% 

p;;;:1000; % number of runs 
n;;;:1000; % number of loans in each portfolio 
l=zeros(p,38); % number of survivors 
d=zeros(p,38); % number of terminations 
sumloss;;;;zeros(p,38); % total loss in each year 
meanloss;;;;zeros(p,38); % average loss in each year 
interest;;;;ones(p,38); 
shockp=zeros(p,38); 
c=zeros(p,38); 
pvmbc;;;;zeros(p,38); 
pvmb=zeros(1,p); 
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for s=1:p 

for i=1 :38 
shock=betarnd(l.49,147.51); 
shockp(s,i)=px(i)-(1-shock); 

end 
l(s,1)=ceil(n*shockp(1)); 
d(s,l)=n-l(s,1); 
for i=2:38 

end 

l(s,i)=ceil(l(s,i-l)*shockp(s,i)); 
d(s,i)=l(s,(i-1))-l(s,i); 

rho=0; lag=0; % correlation parameters 
r0=6.5; a=0.5757; b=4.8825; sigmaR=4.7891; % Vasicek 
meanH=0.0354; sigmaH=0.1003; % general shock 
sigmaS=0.08; % individual shock 
general=ones(l,38); 
houseapp=ones(n,38); 
for i=l:38 

n1=randn(1); n2=randn(1); 
eI(i) = nl; 
if i >= lag 

eH(i) =rho* eI(i - lag)+ sqrt(! - rho -2) * n2; 
end 
k = i - lag; 
if k <= 1 

interest(s,k) = r0 / 100; 
general(k) = exp(meanH + sigmaH * eH(i)); 

elseif k > 1 
interest(s,k) = 
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(a* b + (1 - a)* interest(s,k - 1) * 100 + sigmaR * eI(i)) / 100; 
general(k) = exp(meanH + sigmaH * eH(i)) * general(k - 1); 

end 
end 

for j=l:n 
n3=randn(1); 
houseapp(j,1) = general(!) - 1 + sigmaS * n3; 
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end 

for i:;;:2:38 
n4:;;:randn ( 1) ; 
houseapp(j,i) = general(i) / general(i - 1) - 1 + sigmaS * n4; 

end 

accL=ones(i,38); % accmulation factor for each loan 
accCL=ones(1,38); % accmulation factor for cost of capital 
accH=ones(n,38); % accmulation factor for house appreciation 
premL=0.075; % total risk premium lender charges 
premC=0.0375; % total risk premium lender is charged 
disc=0.065; % discount rate 

accL(1)=1+interest(s,1)+premL; 
accCL(1)=1+interest(s,1)+premC; 
for i=2:38 

accL(i)=(1+interest(s,i)+premL)*accL(i-1); 
accCL(i)=(1+interest(s,i)+premC)*accCL(i-1); 

end 
for j=1:n 

end 

accH(j,1)=1+houseapp(j,1); 
for i=2:38 
accH(j,i)=(i+houseapp(j,i))*accH(j,i-1); 
end 

Q0=39222; % starting value 
H0=100000; % initial house value 
QL=ones(1,n); % accumulated loan amount when terminated 
HT=ones(1,n); % accumulated house price when terminated 
VL=ones(1,n); % recoverable amount (minimum of the above two) 
costL=ones(1,n); % accumulated cost of capital when terminated 
lossL=ones(1,n); % diffe between cost and recoverable amount 

for j=1:d(s,1) 
QL(j)=QO*accL(1); 
HT(1,j)=HO*accH(j,1); 
VL(j)=min(QL(j),HT(j)); 
costL(j)=QO*accCL(1); 
lossL(j)=costL(j)-VL(j); 
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sumloss(s,1)=sum(lossL(1:d(s,1))); 
end 

for i=2:38 
for j=(n-l(s,(i-1))+1):(n-l(s,i)) 

QL(j)=QO*accL(i); 
HT(1,j)=HO*accH(j,i); 
VL(j)=min(QL(j),HT(j)); 
costL(j)=QO*accCL(i); 
lossL(j)=costL(j)-VL(j); 
sumloss(s,i)=sum(lossL((n-l(s,(i-1))+1):(n-l(s,i)))); 

end 
end 

for i=1:38 

end 

if sumloss(s,i)<trigger(i) 
c(s,i)=O; 

elseif sumloss(s,i)>6500000 
c(s,i)=6500000; 

else c(s,i)=sumloss(s,i); 
end 

for i=1:38 
pvmbc(s,i)=(6500000-c(s,i))/(1+disc)-ci); 

end 
pvmb(s)=sum(pvmbc(s,:))+n*HO/(!+disc)-38; 

end 

mbprice=sum(pvmb(:))/p 
premium=n*HO-mbprice 

subplot(2,2,1), plot(lossL),title('') 
grid on 
subplot(2,2,2), plot(sumloss(p,:)),title('') 
grid on 
subplot(2,2,3), plot(c(p,:)),title('') 
grid on 
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subplot(2,2,4), plot(trigger),title('value of trigger each year') 
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grid on 

%%%%%senario analysis for goodness of hedge%%%% 

p=10000; 
n=1000; 
T=38; 
tpx=zeros(p,T); 
l=zeros(p,T); 
shockp=zeros(p,T); 
mean=zeros(p,T); 
sigma=zeros(p,T); 
k1=zeros(p,T); 
k2=zeros(p,T); 
f i1=zeros (p, T) ; 
fi2=zeros(p,T); 
E=zeros(p,T); 
PVEC=zeros(p,T); 
V=zeros(p,1); 
disc=0.065; 
a=1.49; b=147.51; % 1% shock 
% a=1.38; b=26.30; % 5% shock 
% a=1.26; b=11.37; % 10% shock 
% a=0.88; b=2.65; % 25% shock 
% a=0.25; b=0.25; % 50% shock 
C=6500000; F=100000000; 

for s=1:p 
for i=1:T 

shock=betarnd(a,b); 
shockp(s,i)=px(i)-(1-shock); 

end 
l(s,1)=n*shockp(1); 
tpx(s,1)=shockp(s,1); 
for i=2:T 

l(s,i)=l(s,i-1)*shockp(s,i); 
tpx(s,i)=tpx(s,i-1)*shockp(s,i); 

end 
for i=1:T 

mean(s,i)=n*tpx(s,i); 
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end 

sigma(s,i)=(mean(s,i)*(1-tpx(s,i)))-o.5; 
k1(s,i)=(l(s,i)-mean(s,i))/sigma(s,i); 
k2(s,i)=C/sigma(s,i)+k1(s,i); 
fi1(s,i)=normpdf(k1(s,i),0,1)-k1(s,i)*(1-normcdf(k1(s,i),0,1)); 
fi2(s,i)=normpdf(k2(s,i),0,1)-k2(s,i)*(1-normcdf(k2(s,i),0,1)); 
E(s,i)=C-At(i)*sigma(s,i)*fi1(s,i)+At(i)*sigma(s,i)*fi2(s,i); 
PVEC(s,i)=E(s,i)/(1+disc)-i; 

V(s)=sum(PVEC(s,:))+ F/(1+disc)-T; 
end 
mbprice=sum(V(:))/p 
premium=F-mbprice 
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