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Abstract

Finding the shortest path between two points in a network is a fun-

damental problem in computer science with many applications. By

exploiting properties of the underlying networks we improve and ex-

tend one of the state-of-the-art algorithms for finding shortest paths

in road networks, Transit Node Routing (TNR). We develop a new

algorithm for finding shortest paths in public multi-modal transport

networks, where we need to deal with other requirements such as

transfers, multi-objectiveness, user preferences, etc. Finally we ex-

tend our technique to the new domain of grid networks, where one of

the challenges is to deal with path symmetries.
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Chapter 1

Introduction

1.1 Motivation

Efficient routing is a very common problem that arises in many different areas

such as in car navigation, public transportation, logistics optimization and even

in video games. For road navigation, this is an important component of any GPS

navigation system. In logistics, it is an integral part of any solver of Vehicle Rout-

ing Problem (VRP). Living in the world of very complex public transportation

networks, being able to get from ’A’ to ’B’ by finding and following an efficient

itinerary is a daily task for each of us. In Artificial Intelligence (AI) path finding

also emerges in robotics and games as a core problem. In addition, the recent

penetration of mobile devices and online services requires very efficient algorithms

to solve this problem.

The basic idea of efficient routing in networks is to model a specific problem as

a graph and then to find the shortest path in this graph. While there are well

known algorithms that can find the shortest path in a graph for straightforward
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cases, the real world introduce many challenges. For example, road networks are

inherently dynamic, due to traffic jams, road closures, accidents, to name a few.

Routing in public transportation networks introduces new challenges which are

non-existent in road networks, such as transfers, waiting, tickets, etc. Grid net-

works have a lot of symmetries, which do not exist in road and public transport

networks all together. More accurate and careful engineering is required in order

to meet the complexities of each particular problem.

The goal of this research is to extend a state-of-the-art technique to find the

shortest paths in road, public transportation and grid networks. At the same

time, we want to keep reasonable hardware requirements and relatively simple

implementation.

1.2 Our contribution

We introduce new efficient algorithms in three major areas of route planning,

specifically, road, public transportation and grid networks. Our ideas were in-

spired by Transit Node Routing (TNR) [Bast et al., 2006], which was one of the

most efficient algorithms known at the time of beginning this research. Even to-

day it continues to be very attractive due to it intuitive approach and relatively

simple implementation. We measure the efficiency of the algorithm, both analyt-

ically and experimentally, using three criteria: precomputation time, additional

space requirements and query time. Our algorithms provide different trade-offs

between those criteria and in some of the cases are more efficient in all three

criteria than other recently introduced techniques.
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1.2.1 Road Networks

Most of the recent and the fastest speed up techniques use (offline) precomputed

auxiliary data in order to answer (online) very fast shortest path queries. One of

the pitfalls of those approaches is that in reality road networks are dynamic and

not static. For example, roads can be closed for repairs, special events, accidents,

etc. We have developed a new algorithm, based on Transit Node Routing (TNR)

[Bast et al., 2006] which allows under certain assumptions incremental updates of

only the affected parts of the network and does not recompute the whole auxiliary

data from scratch. We show a new, very efficient way to extract the path itself

as well as the distance. In addition, we describe and formally prove a way to

minimize the offline storage, allowing us to achieve the fastest possible queries

of the Grid-TNR. Finally, we develop a new algorithm that improves TNR in

all three criteria and is very competitive with the recent state-of-the-art Hub

Labeling (HL) [Abraham et al., 2011] algorithm.

1.2.2 Public Transportation Networks

Due to many inherent complications in public transportation networks, most of

the speed up techniques that worked for road networks are not directly applica-

ble here. While they are still theoretically correct, in practice they yield unrea-

sonably long precomputation time and/or prohibitively large additional storage

requirements. We show how efficiently to apply the aforementioned Transit Node

Routing (TNR) idea to public transportation networks without losing optimality

of the final queries. We not only propose a new algorithm, but also create a new

time expanded model of the network, which is more efficient than the previously

3



known time expanded model.

1.2.3 Grid Networks

Many speed-up techniques have been developed for accelerating shortest paths

queries in transportation networks. Whilst grid networks somewhat resemble

road network structure (relatively low degree, planar), there are other inherent

properties of grids that make it less obvious whether speed-up techniques for

roads will work well in practice on grids. For example, grids do not have a

clear hierarchy between edges and there are many symmetrical paths. In this

work, we are the first to apply TNR on the grid networks domain and provide an

analysis on a set of popular grid-based video-game benchmarks taken from the AI

pathfinding literature. We show that in the presence of path symmetries, which

are inherent to most grids but usually not road networks, TNR is strongly and

negatively impacted, both in terms of performance and memory requirements. We

address this problem by developing a new general symmetry breaking technique.

Using our enhancements, TNR achieves up to four orders of magnitude speed

improvement vs. A* search and uses in many cases only a small or modest

amount of memory. We also compare TNR with Compressed Paths Database

(CPD), a recent and very fast database-driven pathfinding approach. We find the

algorithms have complementary strengths but also identify a class of problems for

which TNR is up to two orders of magnitude faster than CPDs using a comparable

amount of memory.
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1.3 Overview

We present an overview of the structure of this dissertation. In Chapter 2 we in-

troduce basic definitions of graph theory in order to have consistent terminology

and notations.The thesis is divided into three major parts - road networks (Chap-

ter 3), public transportation networks (Chapter 4) and grid networks (Chapter

5). Each Section contains a comprehensive discussion of the topic, including a

review of the related work, proposed algorithms, theoretical analysis and experi-

mental results. Finally, we conclude the thesis in Chapter 6, and discuss possible

future research directions.
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Chapter 2

Preliminaries

In this chapter, we introduce basic data structures, algorithms, and some notation

that are used throughout this thesis. The presented concepts are covered in more

detail by most textbooks on algorithms, e.g. [14, 83].

2.1 Basic Concepts in Graph Theory

Definition 2.1. A directed graph G is pair (V,E), where V is a finite set and

E is a subset of V ×V . The set V is called the vertex set of G, and its elements

are called vertices (or nodes). The set E is called the edge set of G, and

its elements are called edges (or links). A weighted graph , is a graph for

which each edge has an associated weight (or cost), typically given by a weight

(cost) function w : E → R.

Definition 2.2. If (u, v) is an edge in a directed graph G, we say that (u, v) is

incident from or leaves vertex u and is incident to or enters vertex v. If

(u, v) is an edge in undirected graph we say that (u, v) is incident on vertices
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u and v. The degree of a vertex in undirected graph is the number of edges

incident on it. In a directed graph, the out-degree of a vertex is the number of

edges leaving it, and the in-degree of a vertex is the number of edges entering

it. The degree of a vertex in a directed graph is its in-degree plus out-degree.

Definition 2.3. A path of length k from a vertex u to a vertex u′ in a graph

G = (V,E) is a sequence < v0, v1, v2, ..., vk > of vertices, such that u = v0 and

u′ = vk, and (vi−1, vi) ∈ E for i = 1, 2, ..., k. We say that the path contains the

vertices v0, v1, ..., vk and the edges (v0, v1), (v1, v2), ..., (vk−1, vk). If there is a path

p from u to u′, we say that u′ is reachable from u via p, which we sometimes

write as u  u′. A subpath of a path p =< v0, v1, v2, ..., vk > is a contiguous

subsequence of its vertices.

Definition 2.4. Let G = (V,E) be an undirected or directed graph. Two paths

p1 and p2 from s ∈ V to t ∈ V are called edge-disjoint if they do not share any

edges. Please notice that edge-disjoint paths may pass through the same vertex

(or vertices). Similarly, we say that paths are internally vertex disjoint if

they do not share any internal vertices. Please notice that vertex disjoint path

may start and finish at the same vertex.

Definition 2.5. An undirected graph is connected if every pair of vertices is

connected by a path.

Definition 2.6. A path p =< v0, v1, v2, ..., vk > called a cycle if v0 = vk and the

path contains at least one edge. A graph with no cycles is acyclic.

Definition 2.7. A tree is a connected, acyclic graph. A rooted tree is a tree

in which one of the vertices is distinguished from the others. The distinguished

vertex is called the root of the tree.
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2.2 Shortest Paths

In a shortest-path problem , we are given a weighted, directed graphG = (V,E)

with weight function w : E → R mapping edges to real-valued weights. The

weight (or cost) of a path p =< v0, v1, v2, ..., vk > is the sum of the weights of

its constituent edges:
k∑
i=1

w(vi−1, vi).

The shortest-path from vertex u to a vertex v (if it exists) is defined as the

path with the minimum weight over all the paths between u and v.

Variants

Given a graph G = (V,E)

Single source shortest path problem : Find the shortest path from a given

source vertex s ∈ V to each vertex v ∈ V

Single destination shortest path problem : Find a shortest path to a given

destination vertex t from each vertex v. By reversing the direction of each edge

in the graph, we can reduce this problem to a single-source problem.

Single pair shortest path problem : Find the shortest path from u to v for

given vertices u and v.

All pairs shortest path problem : Find the shortest path from u to v for

every pair of vertices u and v. Although this problem can be solved by running a

single source algorithm once for each source vertex, it can usually be solved faster.
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Optimal substructure of a shortest path

Shortest path algorithms typically rely on the property that a shortest path be-

tween two vertices contains other shortest paths within it. More formally:

Theorem 2.1. Subpaths of shortest paths are shortest paths Given a

weighted, directed graph G = (V,E) with weight function w : E → R, let

p =< v0, v1, v2, ..., vk > be a shortest path from vertex v1 to vertex vk. For any

i and j such that 1 ≤ i ≤  ≤ k, let pij =< vi, vi+1, ..., vj > be the subpath of p

from vertex vi to vertex vj. Then, pij is a shortest path from vi to vj.

Definition 2.8. A shortest-path tree rooted at s is a directed subgraphG′ = (V ′, E ′),

where V ′ ⊆ V and E ′ ⊆ E, such that

(1) V’ is the set of vertices reachable from s in G

(2) G’ forms a rooted tree with root s, and

(3) for all v ∈ V ′, the unique simple path from s to v in G′ is a shortest path

from s to v in G

Dijkstra’s Algorithm

Dijkstra’s algorithm [Cormen et al., 2001] (p. 595) is a greedy algorithm that

solves the single-source shortest path problem on a weighted, directed graph

G = (V,E) where all the edge weights are nonnegative. The algorithm starts at

the source vertex, s, it grows a tree, T , by exploring all the vertices one by one

in order of their distance from s. The obtained tree T is called Dijkstra’s tree
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2.3 Flow in Networks

A flow network N is given by a directed graph G = (V,E), a function c : E → R

assigning nonnegative capacities to the edges, and two distinct vertices s, t ∈ V

designated as the source and the sink, respectively. A flow f from s to t, or an

s− t-flow for short, is a function f : E → R satisfying the following constraints:

(1) Capacity constraints: ∀e ∈ E : 0 ≤ f(e) ≤ c(e).

(2) Skew Symmetry: ∀u, v ∈ V : f(u, v) = −f(v, u).

(3) Flow conservation: ∀u ∈ V r {s, t} :
∑
v∈V

f(u, v) = 0.

The quantity f(u, v), which can be positive, zero or negative, is called the flow

from vertex u to vertex v. The value of a flow f is defined as:

|f | =
∑
v∈V

f(s, v),

that is, the total flow out if the source. In the maximum flow problem , we

are given a flow network N with source s and sink t, and we wish to find a flow

of maximum value.
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Figure 2.1: Example of a flow network.

Definition 2.9. Intuitively, given a flow network and a flow, the residual network

consist of edges that can admit more flow. More formally, suppose that we have

a flow netowrk N with source s and sink t. Let f be a flow in N , and consider a

pair of vertices u, v ∈ V . The amount of additional flow we can push from u to

v before exceeding the capacity c(u,v) is the residual capacity of (u, v), given

by cf (u, v) = c(u, v)− f(u, v)

The residual network of G induced by f is Gf = (V,Ef ), where

Ef = {(u, v) ∈ V × V |cf (u, v) > 0}

Each edge of the residual network, or residual network , can admit a flow

greater than 0.

Theorem 2.2. In a network N with unit capacities (c(e) = 1 for all e ∈ E) the

value of the maximum flow equals to the maximum number of edge disjoint paths.
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Proof. Let f ∗ be a maximum flow and assume by contradiction that there are

strictly less than |f ∗| edge disjoint paths in N , i.e. m < |f ∗|. It means that we

can push a flow via all those paths and obtain a valid flow with value greater

than |f |, contradicting maximality of f .

In the other direction, let m be the maximum number of edge disjoint paths.

Assume by contradiction that the flow f (that is flowing via those paths) is

not the maximum flow and the maximum flow value is |f ∗| > m. Then, by

flow decomposition theorem, we can decompose the maximal flow to f ∗ paths.

Since in N all capacities are one, those paths have to be edge disjoint, and this

contradicts maximality of m.

Corollary 1. In a network N with unit capacities (c(e) = 1 for all e ∈ E) a max

flow algorithm give us the largest possible set of edge-disjoint paths.

Definition 2.10. A cut (S, T ) of a flow network N is a partition of V into S and

T = V − S such that s ∈ S and t ∈ T . if f is a flow, then the net flow across

the cut (S,T) is defined to be f(S, T ) =
∑

x∈S
∑

y inT f(x, y). The capacity of

the cut (S, T ) is c(S, T ) =
∑

x∈S
∑

y inT c(x, y). A minimum cut of a network

is a cut whose capacity is minimum over all cuts of the network.

Theorem 2.3. Max-flow min-cut theorem In a flow network N the value of

the maximal flow equals to the value of the minimum cut [Cormen et al., 2001]

(p. 657).
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2.4 Bipartite Graphs and Matching

Definition 2.11. A bipartite graph is an graph G = (V,E), where V can be

partitioned into two sets V1 and V2 such that any edge (u, v) ∈ E implies either

u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1

Figure 2.2: Example of a bipartite graph

Definition 2.12. Given a graph G = (V,E), a matching is a subset of edges

M ⊆ E, such that for all vertices v ∈ V , at most one edge of M is incident on v.

A maximum matching is a matching of maximum cardinality.

13



Figure 2.3: Example of a matching in a bipartite graph

2.5 Vertex Cover

Definition 2.13. A vertex cover of a graph (G = V,E) is a subset V ′ ⊆ V

such that for every edge (u, v) in G either u ∈ V ′ or v ∈ V ′ (or both). The size

of a vertex cover is the number of vertices in it. The vertex cover problem is

to find a vertex cover of minimum size.

The vertex cover problem is NP-complete [Cormen et al., 2001] (p. 1006).

Nevertheless, for bipartite graphs, we can efficiently find a minimum vertex cover

in polynomial time, by finding a maximum flow in a corresponding flow network

[Cormen et al., 2001] (pp. 664-668).
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Figure 2.4: Example of a vertex cover in a bipartite graph

Theorem 2.4. König’s Theorem [Konig, 1931]

In any bipartite graph, the number of edges in a maximum matching equals to the

number of vertices in a minimum vertex cover.

2.6 Graph Connectivity

Definition 2.14. Let s and t be distinct vertices in a graph G. An s−t separating

vertex set in G is a set of vertices (others than s and t) whose removal destroys

all s t paths in G.

Similarly, let S and T be subsets of vertices in a graph G. A S − T separating

vertex set in G, is a set of vertices whose removal destroys all s t paths between

any node in S to any node in T .

Theorem 2.5. Menger’s Theorem (Vertex version)[Menger, 1927]

Let s and t be two non adjacent vertices in a graph G, then the minimum number
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of vertices in an s − t separating vertex set is equal to the maximum number of

internally vertex disjoint s− t paths in G.

2.7 Hitting Set

Definition 2.15. Let U be a finite set and S a collection of its subsets S = {S1, S2, ..., Sn}.

A hitting set of S is a subset H ⊆ S such that H contains at least one ele-

ment from each subset in S. A minimum hitting set is a hitting set whose

cardinality is minimum over all possible hitting sets.

Definition 2.16. The frequency of an element of U is the number of sets in

S that contain the element. The frequency of the most frequent element of U

is denoted by f . The special case of f = 2 is also known as the vertex cover

problem [Cormen et al., 2001] (p. 1006).

Since minimum vertex cover is NP-complete [Cormen et al., 2001] (p. 1006),

the minimum hitting set problem is NP-complete as well.

Definition 2.17. We say that an algorithm for a problem has an approxi-

mation ratio of α if, for any input, the cost C of the solution produced by

the algorithm is within a factor of α of the cost C∗ of an optimal solution:

max( C
C∗ ,

C∗

C
) ≤ α. We also call an algorithm that achieves an approximation

ratio of α a α-approximation algorithm .

The greedy algorithm below is Hk approximation algorithm for the minimum

hitting set problem [Fernandez de la Vega et al., 1992], where k = max{|Si| : Si ∈ S}

and

Hk =
k∑
i=1

1

i
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.

Greedy Hitting Set Algorithm

The greedy hitting set algorithm works in iterations. At each iteration, the

algorithm picks the set in S that hits the largest number of elements in U and

removes the covered elements from U . It stops when U is emptied. The final

picked sub-collection is returned then as the solution. Below we present the

pseudocode of the algorithm.

H ← φ

while U 6= φ

do select Si ∈ S that maximizes |S ∩ U |

U ← U − S

H ← H ∪ Si

return H
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Chapter 3

Road Networks

Part of the work in this chapter was presented in [Antsfeld, 2013; Antsfeld and

Walsh, 2012c; Antsfeld et al., 2013].

3.1 Related Work

Following the pioneering work of Dijkstra (1959) in finding shortest paths in a

graph, there has been a plethora of work on finding shortest paths in graphs in

general and in road networks in particular [Delling et al., 2009b; Wagner and

Willhalm, 2007]. Very fast speed-up techniques have been developed that can

answer shortest path distance queries in a matter of milliseconds [R. Geisberger,

2012], microseconds[Bast et al., 2006; Sanders and Schultes, 2006a] and recently

even in nanoseconds [Abraham et al., 2011] on a typical modern server [Intel].

We will mention the classical, the most recent and the most relevant approaches.
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Dijkstra algorithm

The Dijkstra algorithm [Dijkstra, 1959] will find the shortest path in a graph with

non-negative weights in O(m + n logm), where n is the number of nodes and m

is the number of edges in the graph [Cormen et al., 2001]. For road networks,

where the degree of a node is bounded by a small constant, the time complexity of

finding the shortest path between two nodes becomes O(n log n). Starting from a

source node, the algorithms explores nodes one by one, in order of their distances

to the source, until it reaches the target node. For a large network, it may take

more than a second to find a solution, which is a prohibitively slow for many real

world applications.

An immediate improvement, called bidirectional Dijkstra is to perform the

search from both directions, i.e. from a source and destination simultaneously,

until the two search spaces meet. In a road network, where search spaces have

roughly circular shape, the bidirectional variant of Dijkstra grows two (roughly)

circles around source and destination. The radius of those circles are approxi-

mately two times smaller than the circle grown in the original Dijkstra, therefore

we can expect a speedup of about factor of two.

A* (A Star)

A* algorithm [Hart et al., 1972] can be seen as another improvement of the

original Dijkstra. It directs the search toward the target. Similar to Dijkstra it

explores nodes one by one until it reaches the target node, but the order in which

nodes are explored is sum of a distance of the current node to the source plus the

estimated (a.k.a. heuristic) distance of the node to the target. If the heuristic
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is admissible, i.e. not overestimating the distance between a node and a target,

the A* algorithm is guaranteed to find the shortest path. For road networks, a

commonly used admissible heuristics is simply the flying distance between two

nodes. We can easily see, that if we choose the heuristic to be a constant of zero,

A* becomes a simple Dijkstra search. The perfect heuristic (i.e. the exact graph

distance between two nodes) will direct A* straight to the target exploring only

nodes along the shortest path. Similar to Dijkstra, with a little bit more caution,

A* can also be speeded-up using a bidirectional approach [Geisberger, 2011].

Geometric Containers

Geometric Containers [Wagner and Willhalm, 2003] are another attempt to prune

the search space and accelerate Dijkstra. The authors observe and exploit a

property of the shortest paths: an edge that is not a first edge on the shortest

path toward a target, won’t appear on any shortest path toward this target.

For every edge e a set of nodes S(e) is precomputed, such that S(e) contains

all the nodes that can be reached by a shortest path that starts with e. Then

during a Dijkstra search, edges e for which target is not in S(e) can be ignored.

Since storing all such sets will require a prohibitively large memory footprint,

the authors use geometric objects (called containers), for each edge that contain

nodes of S(e) (and possible more). They considered many different containers,

such as disk, ellipse, box, sector, and others. Surprisingly, the simplest container,

bounding box, outperformed all other geometric objects. Later, this algorithm

was improved by combining it with A* and a multilevel approach [Holzer et al.,

2004].
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The ALT Algorithm (Landmarks)

The ALT algorithm [Goldberg and Harrelson, 2005] speeds-up A* search by pro-

viding tighter lower bound for the A* heuristic. The basic idea of ALT is to

choose a subset of nodes L ⊂ V , called landmarks and precompute distances be-

tween any node of the given graph and L. Then during the search we can use this

information to have a tighter lower bound of the shortest distance to the target.

For example, let v ∈ V and l ∈ L. In road networks, where Euclidian distances

are used as link weights, A* will use a simple geometrical distance between v

and target t as an heuristic that estimates shortest distance between v and t.

Using landmarks and the triangle inequality allow us to have a better estimate.

We notice that d(v, t) ≥ d(v, l) − d(t, l) and d(v, t) ≥ d(l, t) − d(l, v), therefore

d(v, t) ≥ maxl∈L{d(v, l) − d(t, l), d(l, t) − d(l, v)} = h(v). Bidirectional A* with

the heuristic function above is called ALT.

The speed up factor highly depends on how well landmarks are distributed

over the graph. Finding the smallest set L that will yield the fastest search is

still an open problem. The most common landmark selection methods are avoid

and maxCover [Goldberg and Werneck, 2005].

Arc Flags

Arc Flags algorithm [Möhring et al., 2007] precomputes and stores for each edge

a flag which will be later used to guide Dijkstra search. Initially the graph is

partitioned into k regions. Each edge of a graph has a k-bits binary flag. Bit

i ∈ {1, 2, .., k} is set to 1 indicates that this edge potentially can be used along

some shortest paths toward some node in region i. Complementary, if the i bit is
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set to 0 it means that there is no shortest path traversing via this edge toward any

node in the region i. Then, during the query, knowing the region of the target,

while executing Dijkstra we can safely disregard all edges with bit corresponding

to this region set to 0.

While the search procedure is quite simple, the preprocessing is not that straight-

forward. The naive approach would be to execute all pairs shortest paths com-

putation of the whole graph, which of course would be prohibitively long. A

better approach would be to execute Dijkstra only from the border nodes of each

region. More sophisticated techniques exist. Higler [Hilger, 2007] preprocessed

the Western Europe road network with about 18× 106 nodes using the Arc Flags

algorithm in about 17 hours and archived query times thousand times faster than

the original Dijkstra. In addition, to a relatively slow preprocessing time, the

other disadvantages of this approach is relatively slow queries when two nodes

are in the same region. In this case, a query becomes a regular Dijkstra and can

be improved by performing a bidirectional search.

REACH

REACH algorithm [Goldberg et al., 2006] is based on a definition of the reach

of a node [Gutman, 2004]. Intuitively a node has a large reach if this node is

in a middle of a long shortest path. During the query, the idea is to reduce the

bidirectional Dijkstra search space by not visiting small reach vertices. Later

Goldberg improved their algorithm by combining it with ALT [Goldberg et al.,

2007]. Another improvement was achieved by clever integration with shortcuts

[Sanders and Schultes, 2005, 2006b].
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Precomputed Cluster Distances (PCD)

PCD (similar to A*) is a goal directed technique. PCD [Maue et al., 2006]

partitions the network to clusters and then precomputes and stores the shortest

distances between all the clusters. Then, during the query, the algorithm executes

a Dijkstra search and constantly maintains upper and lower bounds of the shortest

path, by applying this preprocessed information. This allows to significantly

reduce the search space and speed-up the Dijkstra. It is a very flexible algorithm,

because its preprocessing time does not depend on the number of the border

nodes of the clusters. In addition, its asymptotic preprocessing time and space is

better than ALT and Arc Flags mentioned above [Maue et al., 2010].

Highway Hierarchies

The Highway Hierarchies (HH) [Sanders and Schultes, 2005, 2006b; Schultes,

2008] algorithm is the first algorithm that reported average query time measured

in milliseconds for continental sized road networks. The algorithm is based on the

basic idea that when traveling a long distance away, we usually at some stage, hop

on the highway network and at some stage hop off the highway network to reach

our destination. The algorithm consist of two stages - offline preprocessing and

real-time query. During the preprocessing highway hierarchies are constructed

by alternating between two basic routines nodes reduction and edge reduction.

Node reduction routine removes nodes with low degree, by bypassing them with

shortcut edges. Edge reduction routine removes non-highway edges, i.e., edges

that only appear on shortest paths close to source or target. A query is a restricted

bidirectional Dijkstra, where non-highway edges need not be expanded when the
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search is sufficiently far from the source or the target.

SHARC [Bauer and Delling, 2010] is a clever combination of HH with Arc

Flags. SHARC (SHortcuts + ARC Flags) was designed to deal with queries

where bidirectional search is impossible, such as time dependent scenarios. Gen-

erally, SHARC can be used with static networks, yielding even greater speedup.

Contraction Hierarchies

Contraction Hierarchies (CH) [Geisberger et al., 2008; R. Geisberger, 2012] is

another (very successful) speedup technique of the Dijkstra algorithm. During

preprocessing, nodes are assigned a strict ordering (a.k.a. importance) and then

are sequentially contracted according to this order (starting from the less impor-

tant). The central idea of node contraction is to remove a node from a graph,

and add shortcut edges to preserve shortest-path distances between the remaining

nodes. A contracted node v is removed and replaced by a shortcut edge between

its neighbors u and w, if and only if the shortest path between u and w contains

v. Good node ordering will yield less shortcuts, which consequently will make

preprocessing and final query more efficient. Generally, finding the optimal or-

der that will minimize number of shortcuts is a NP-Hard problem [Bauer et al.,

2010a], but good heuristics exist [Geisberger, 2008]. A query is performed by

restricted bidirectional Dijkstra, where only more important nodes are explored.

CHASE [Bauer et al., 2010b] (CH + ARC Flags) is another clever com-

bination of CH with Arc Flags. Initially, a complete contraction hierarchy is

created. Then, arc flags are computed, but only on a core of the most important

nodes (including shortcuts). The query is similar to CH until the search reaches
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the core, then arc flags are used to guide the search. This results in a very fast

algorithm with query times below 20µs for the road network of Wester Europe.

Customizable Route Planning

Most of the previous algorithms require some preprocessing effort which is com-

puted with a given cost function (metric), fastest time for example. If we are

interested to find a shortest path using a different metric (e.g. shortest dis-

tance instead of fastest time) we need to perform the whole precomputation from

scratch again using a new metric. The Customizable Route Planning (CRP)

[Delling et al., 2011] algorithm was designed to address this issue. The main idea

is to perform metric-independent partitioning of the network first. This defines a

topology for the overlay graph [Holzer et al., 2009]. PUNCH [Delling et al., 2010]

was proposed as a very successful partitioning heuristic tailored specifically to

road networks. The second stage customization is much faster. It precomputes

the actual costs of the overlay arcs and will be run each time the metric change.

Finally, the query uses information of the previous two stages to find a shortest

paths in real time (milliseconds). While this algorithm is relatively slow, it can be

useful when metric is not known in advance or can change frequently. Recently

another improvement was proposed [Delling and Werneck, 2013], which speeds

up the customization stage to a fraction of a second.

Transit Node Routing

In 2006, Bast, Funke and Matijevic were first to introduce the notion of Transit

Node Routing (TNR) [Bast et al., 2006]. Their primary idea was based on the
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simple observation inspired from real-life navigation: when traveling between two

locations that are “far away” one must inevitably use some small set of nodes that

are common to many shortest paths. a.k.a. transit nodes. In order to identify

those transit nodes, the authors subdivided the network into cells by overlaying

it with a simple grid. Border nodes of the cells which are on “far away” shortest

paths defined to be as access nodes of that cell. The union of all access nodes

constitutes the set of aforesaid transit nodes. Next, distance tables between all

transit nodes and every node and its associated transit nodes are precomputed

and stored.

A query between any two “far away” src and dst locations is performed as

follows: we fetch the transit nodes associated with cells containing src and dst

and choose those two that will give us a minimal cost of the combined three

subpaths: src  Tsrc, Tsrc  Tdst, Tdst  dst. For all other queries we apply

any efficient search algorithm; A* for example. On average the number of access

nodes was a relatively small constant number, which allowed very fast distance

queries.

Since our work was highly inspired by TNR, we will discuss and analyze this

algorithm in more details in Section 3.2.

TNR+HH [Bast et al., 2007] relies on very similar observation as TNR, but

based on the HH to preselect the set of transit nodes rather than identify them

using a grid1. In [Bast et al., 2007] the two approaches are compared. One of

the advantages of TNR+HH is that it answers all types of queries, unlike Grid-

TNR which efficiently answers only “far away” queries. In addition Grid-TNR

1This was also developed in parallel by by P. Sanders and D. Shultes [Sanders and Schultes,
2006a].
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has more modest memory requirements, TNR+HH has faster preprocessing and

average query time (i.e. all types of queries are considered). Since then TNR+HH

was superseded by Hub Labeling [Abraham et al., 2011] and CH-TNR [Arz et al.,

2013], we will therefore compare our results with the later two.

TNR+Arc Flags [Bauer et al., 2010b] is a speed-up of TNR “far away”

queries. The authors noticed that table lookups consume most of the TNR query

time. Naturally, the idea was to reduce the number of those lookups by discarding

unnecessarily ones and considering only lookups that may lead us to the desti-

nation. With reasonable overhead of preprocessing time and additional storage,

the query time was reduced by factor of 1.8.

CH-TNR [Arz et al., 2013] is the most recent result that combines TNR with

CH. Similar to TNR+HH this method preselects transit nodes by using the top

nodes from CH. The authors report very competitive results with other methods,

where as expected, there is a tradeoff between additional storage space, prepro-

cessing and final query time. Another noticeable contribution of this work is

replacing a geometrical locality filter with a purely graph-theoretical one. Local-

ity filter is a function, where given a source and destination, it indicates whether

a query requires a local path search.

Hub Labeling Algorithm

One of the most prominent methods in static road network routing, called Hub

Labeling (HL) was introduced by [Abraham et al., 2011]. Essentially it can be

seen as a speedup of CH query. HL precomputes and stores search spaces of

CH and simply intersects them during the query time, rather than performing a
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bidirectional search as CH does. Using fine tuning and sophisticated engineering

to optimize memory accesses and to prevent cache misses, the authors achieve

the fastest known distance query times, up until today. However, its practi-

cal applicability may be limited due to a very large memory requirement and

quite complicated implementation. In [Abraham et al., 2012], the authors intro-

duce Hierarchical HL, which slightly improves the original HL in both memory

requirements and query time. Nevertheless, the offline generated data is often

prohibitively large for practical usage. Hub Label Compression [Delling et al.,

2013], one of the most recent techniques, manages to reduce the memory footprint

significantly, but at a price of almost an order of magnitude slower queries.

Highway Dimension

While all of the mentioned algorithms performs very well for road networks, it

is relatively easy to build instances of networks where these algorithms will fail

to perform as effectively. This raised a natural question:“what are the theoretical

properties of road networks that made those approached to be successful ?” To

answer this question I. Abraham et al. defined a notion of Highway Dimension

(HD) [Abraham et al., 2010]. Informally, HD is defined as the size of the smallest

set of nodes, such that any “long” shortest path is covered by a node from this

set. The authors formally showed that low HD of the network will guarantee

good query performance. Then they argue that road networks indeed have a low

HD. This explains why many the aforementioned shortest-path algorithms (HH,

CH, TNR, SHARC) are performing so well in practice.
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3.2 Transit Node Routing

Our research was inspired by the original idea of H. Bast et al., the Transit Node

Routing (TNR) algorithm [Bast et al., 2006]. At the beginning of this research it

was one of the fastest shortest path distance queries algorithms. Since then TNR

was generalized as a more generic framework [Schultes, 2008] and several TNR

variants were proposed [Bauer et al., 2010b; Eisner and Funke, 2012; Sanders and

Schultes, 2006a]. Until today TNR is considered to be one of the best algorithms

and still attracts new research [Arz et al., 2013]. In the recent literature the

original grid based TNR is referred to as Grid-TNR, therefore for the sake of

consistency we also adopt this notation.

3.2.1 Contributions

In what follows we will describe the original Grid-TNR and will extend it to pro-

vide the fastest times as well as the shortest distance queries. The main difference

is that in a road network, the distance between two adjacent nodes A and B is

the same in both directions, but traveling time may not be. That means that

Grid-TNR will now have to deal with directed links rather than undirected as it

was originally designed. This generalization for directed graphs was left by the

authors as an open and non trivial problem. We will show how Grid-TNR can

be adjusted to deal with directed graphs. Next, we will describe a more efficient

way to extract the shortest path itself (rather than its value). We will show even

more improvements in Section 5.5.

We point out a mistake in the original Grid-TNR paper [Bast et al., 2006]

which requires a re-evaluation of the original results. We also give a proof of cor-
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rectness of Grid-TNR and perform theoretical time and approximate asymptotic

space complexity analysis.

We tackle a more difficult problem that until now was left untreated, updat-

ing the precomputed database caused by small changes in an underlying road

network, due to traffic jams for example. Of course, a naive and highly inefficient

way would be to recompute everything from scratch. We are the first to show an

efficient way to incrementally update Grid-TNR precomputed tables without the

need of full recomputation.

Finally, we design and present a new TNR based algorithm, called CHAT

(Cluster, Hierachify and Hit). It addresses weaknesses of Grid-TNR and im-

proves it in both additional storage space and final query time. Moreover, as we

will show CHAT is very competitive with the latest state-of-the-art algorithms

HL [Abraham et al., 2011] and TNR-CH [Arz et al., 2013]

The original Grid-TNR algorithm is based on a very simple intuition inspired

from real-life navigation: when traveling between two locations that are “far

away” one must inevitably use some small set of nodes that are common to many

shortest paths. This set was named as “transit nodes” for which the algorithm

is called . The algorithm proceeds in two phases: (i) an offline precomputation

phase and (ii) an online query phase.

3.2.2 Precomputation

There are two steps to Grid-TNR’s precomputation phase. The first step identifies

transit nodes and the second step builds a database of exact costs between the
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transit nodes and between transit nodes and other nodes in the graph. We will

describe each step in turn.

Identifying Transit Nodes

Grid-TNR begins by dividing an input map into a grid of equal-sized cells. To

achieve this the algorithm computes a bounding box for the entire map and

divides this box into g × g equal-size cells. Let C denote such a cell. Further,

let I (Inner) and O (Outer) be squares having C in the center, as depicted in

Fig. 3.6. The size of the cell C and squares I and O can be arbitrary without

compromising correctness. Their exact values however will directly impact factors

such as an algorithm preprocessing time, storage requirements and online query

times.

Figure 3.1: Example of the Grid-TNR grid; also cells, inner and outer squares.

In what follows we will compute shortest paths between nodes in C and border

nodes of O and look for transit nodes among the endpoints of edges that cross

the border of I. Let VC be set of nodes as follows: for every link that has one

of its endpoints inside C and the other outside C, VC will contain the endpoint
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inside C. Similarly, define VI and VO by considering links that cross I and O

accordingly. Now, the set of transit nodes for the cell C (a.k.a. set of access

nodes of C) is the set of nodes v ∈ VI with the property that there exists a

shortest path from some node in VC to some node in VO which passes through v.

For the directed graphs, we will differentiate between two types of access nodes

(i) outgoing access nodes - is the set of nodes v ∈ VI such that there exists a

shortest path from some node in VC to some node in VO which passes through v

(ii) incoming access nodes - is the set of nodes v ∈ VI such that there exists a

shortest path from some node in VO to some node in VC which passes through

v. We associate every node inside C with the set of access nodes of C. Next, we

iterate over all cells and similarly identify access nodes for every other cell. The

union of all access nodes comprise a set of transit nodes.

Computation and Storage of Distances

Once we have identified all transit nodes we compute and store, for every node of

the graph, the shortest distance (or fastest time) from this node to all its access

nodes. Recall from the previous section that every such node v ∈ V is associated

with the set of access nodes that were found for its cell. In addition we also

compute and store the shortest distance (or fastest time) from each transit node

to every other transit node. We store those distances in three tables (node-to-

transit (N2T), transit-to-transit (T2T), transit-to-node (T2N). In Section 3.4.7

we will describe how to store this information efficiently.

In an undirected graph it was enough to compute and store costs in only one

direction. For a directed graph we will have to perform those two tasks in the

opposite direction as well. This can be efficiently done by using reverse links.
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3.2.3 Local Search Radius

Grid-TNR distinguishes between two types of queries: local and global. Two

nodes for which horizontal or vertical distance (as measured in cells) is greater

than some local search radius are considered to be “far away” and the query

between them is called global. We define the local search radius to be equal

to the size of the inner square I plus the distance from I to the outer square O.

This definition guarantees that for each global query two important conditions are

satisfied: (i) the start node src and destination node dst are not inside the outer

squares of each other (ii) their corresponding inner squares do not overlap. Both

conditions are necessary to ensure that the Grid-TNR is correct and optimal.

3.2.4 The Shortest Distance Query

For every global query from src to dst we fetch the access nodes Tsrc, Tdst of the

cells containing src and dst and choose those two that will give us a minimal cost

of the combined three subpaths: src tsrc, tsrc  tdst, tdst  dst, where

tsrc ∈ Tsrc, tdst ∈ Tdst. More formally:

dist(src, dst) = min
tsrc∈Tsrc
tdst∈Tdst

dist(src, tsrc) + dist(tsrc, tdst) + dist(tdst, dst)

The idea is depicted in Figure 3.2 below.
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Figure 3.2: Example of Grid-TNR query.

Local Queries

For local queries, we need to resort to some other efficient algorithm. Luckily, (i)

there are typically not many local queries (1%-2%) and (ii) source and destination

for such queries are close to each other and therefore most of algorithms (see

Section 3.5 for more discussion) are relatively fast. In [Lingkun Wu and Zhou,

2012], the authors showed that CH [Geisberger et al., 2008] is often the best

choice for dealing with local queries.

3.2.5 Extracting the Shortest Path

Until now, not much work has been done on efficient path extraction using TNR

precomputed databases. An intuitive and somewhat naive way would be per-

forming a series of repeated distance queries of the algorithm. In the original

paper, the authors suggested first finding the next adjacent node to the source

on the shortest path and then iteratively applying a Grid-TNR query from that
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node to extract the full path [Bast et al., 2006]. An immediate improvement of

this approach would be that we can store the next node of every precomputed

shortest path, rather than search for it. Then we apply a similar technique, by

simply fetching the next adjacent node of the shortest path. It will require an

additional entry of 4 bytes1, for every precomputed sub-path.

A more sophisticated improvement can be achieved by exploiting a property

of the optimal substructure of the shortest path, i.e. any subpath of the shortest

path is a shortest path. Using this, we observe that Tdst is the correct transit

node for any sequential query and we can reuse it, see Figure 3.3. In the example

in the Figure 3.3, for all the queries src  dst, u  dst, v  dst, Tdst will be

always the same access node of the dst. Therefore, for the sequential subpath

u  dst we know apriori the transit node of the dst and can save time by not

searching for Tdst and fetching dist(Tdst, dst) every iteration, but rather reuse it.

Since the query time is quadratic in the number of access nodes, this allow us to

reduce all subsequent query times to be linear in the number of access nodes.

1The typical size of integer value is 4 bytes, but generally it depends on the platform and
the compiler.
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Figure 3.3: Query time as a function of number of access nodes

Moreover, we are also exploiting the fact that access nodes are associated

with a cell, therefore any two nodes in the same cell will have exactly same access

nodes. For example, in Figure 3.3 nodes src and u have exactly the same set

of access nodes. Moreover, the shortest path from u to dst will necessary pass

via Tsrc. It means that for any subsequent node v on the path that is in the

same cell as its predecessor u (i.e. both u and v are in the same cell C), we

know that optimal access node of u, Tu will be also an optimal access node of v.

Therefore we don’t need to spend time searching for it. This optimization makes

the time complexity of every subsequent query constant, i.e. O(1), which in turn

makes the whole path extraction time complexity O(k), where k is number of

cells which the shortest path is crossing. In section 5.5 we will present in detail

an even faster, novel approach for shortest path extraction.
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3.2.6 Proof of Correctness

Let src and dst be source and destination nodes of interest. Assume that the

query between src and dst is global (as defined in 3.2.3). In this case we execute

the Grid-TNR query procedure as in 3.2.4. Let P be a path with cost c(P )

returned by Grid-TNR. The proof proceeds by contradiction. Suppose there

exists another path P̂ with cost c(P̂ ), such that c(P̂ ) < c(P ). Now, let T̂1

and T̂2 be transit nodes of P̂ of src and dst respectively. Note, the way we’ve

chosen transit nodes guarantee that P̂ passes via some T̂1 and T̂2. Let us denote

P̂1 = src  T̂1, P̂2 = T̂1  T̂2 and P̂3 = T̂2  dst subpaths of P̂ . The shortest

path optimal substructure property [Cormen et al., 2001] (pp. 581-582) says that

every subpath of a shortest path is a shortest path. Thus it follows that P̂1, P̂2

are P̂3 are all shortest paths. Similarly, let be P1 = src  T1, P2 = T1  T2

and P3 = T2  dst be subpaths of P . By assumption (at least) one of the

following must be true: c(P1) > c(P̂1) or c(P2) > c(P̂2) or c(P2) > c(P̂2). But

this contradicts the fact that Grid-TNR query returns a minimal sum of subpaths

from src to dst. Q.E.D.

3.2.7 Complexity Analysis

In this section we present an approximate asymptotic complexity analysis of TNR.

The complexity of the algorithm depends on many factors, such as graph nodes

distribution, node connectivity, etc. Intuitively we can see that if we choose the

inner square, I to be very small (say containing only one node), then every node

will be a transit node and the precomputation will compute all the shortest paths.

In this case a query will be a simple lookup in a large precomputed table. On
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the other extreme, suppose we choose I to contain all the nodes. In this case,

every query is local and we do no precomputation. So we can observe that there

is a clear tradeoff between size of the squares, precomputation time, storage and

query time. In what follows, we will assume a simplified “grid world” graph

layout, where nodes are equally distributed and every node is connected to its

four neighbors by a link of unit cost. Let k denote the number of cells and n = |V |

denote the number of nodes. Consider cell C. Then |VC | = n
k
. Let Inner be a

square centred on C consisting of some constant number of cells. In the worst

case, for “grid world” graph, the number of transit nodes for cell C equals the

number of border nodes of Inner, which is O(
√

n
k
). Since we have n nodes, the

storage space for the node-to-transit table will be O(n
√
n) for any choice of k,

which may be prohibitive.

In real life networks, not every road has the same travel time. There are highways,

major roads, minor roads, etc. In order to make our simplified “grid-world”

graph resemble a real life road network we assume that every, say, 10th vertical

and horizontal road is a highway. We will model this by assigning significantly

smaller cost to such highways. Since every cell C is of bounded size, it follows

that only a constant number of highways cross every cell. Consequently, since the

“grid world” network is planar and all the long shortest paths will converge to use

those highways and the number of transit nodes for every cell is O(1). This gives

O(n) storage space for the node-to-transit table. Now, the total number of transit

nodes is O(k). Therefore, if we choose k to be O(
√
n) we need O(k2) = O(n)

storage space for the transit-to-transit table.

Our experiments support such a model as we observed that the storage space did

indeed scale linearly.
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3.2.8 Speed-Up Techniques

When determining transit nodes in 3.2.2, we need to execute the Dijkstra al-

gorithm from every node on a border of a cell C to every node of a border of

the outer square O. In many cases, when the number of border nodes of O is

greater than the number of border nodes of C (Figure 3.6), we can speed-up the

computation. It is a well known fact that in order to solve single source-many

destinations, a.k.a. one-to-many shortest path problem, a slight modification of

Dijkstra will be more efficient than running many times the basic one-to-one Di-

jkstra algorithm. Similarly, running k times one-to-m will be faster than running

m times one-to-k, where k < m. With this observation, when the number of bor-

der nodes of O is greater than the number of border nodes of C, we are using the

one-to-many variation of Dijkstra, by initializing the priority queue with target

nodes and considering backward links. This gives a significant improvement in

the preprocessing run time.

Another significant improvement is to notice that there is no need to pre-

compute and store distances from/to every node in the network. Without loss

of accuracy we can ignore “dead-end” nodes and nodes of degree two. Similar

ideas exist in the CH approach [R. Geisberger, 2012], which is equivalent to initial

contraction of all nodes that can be contracted without the need to add short-

cuts. Given a query where source or destination is one of these nodes we can

just simply follow the only path from this node until we encounter the first node

whose degree is greater than two. We observed around a 20% reduction in the

number of nodes for which we should perform a precomputation stage 3.2.2 on

the road network of W. Europe. This gives another significant improvement in
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both preprocessing time and storage space.

For directed networks, the set of outgoing access nodes may differ from the

set of incoming access nodes. In this case, we can save computational time and

space, by ignoring pairs of access nodes (tincoming, toutgoing), simply because this

pair will never be realized.

One can notice that the process 3.2.2 of identifying transit nodes for a cell

is completely independent of other cells and therefore can be easily parallelized.

Similarly we can observe that the precomputation and storage stage 3.2.2 of

the three tables (node-to-transit (N2T), transit-to-transit (T2T), transit-to-node

(T2N)) is also independent and can be performed in parallel. Of course, while

writing to those databases we need to take care of synchronization issues.

In Section 3.2.9 we will discuss more low level engineering consideration for

speeding up TNR queries.

3.2.9 Experiments

We implemented the Grid-TNR algorithm in Java and the online query method

in C++ compiled (with /Ox optimization) under Microsoft Visual Studio C++

2012. Online queries were tested on a machine running Windows Server 2012

with 64Gb of DDR3-1333RAM and 6-core Xeon X5650 CPUs at 2.66GHz [Intel].

We tested our implementation on three continental size networks:

Australia (|V | = 6.1× 106, |E| = 12.4× 106) taken from OSM [OSM]

Western Europe (|V | = 18× 106, |E| = 42× 106) and

USA (|V | = 24× 106, |E| = 58× 106)

taken from the 9th DIMACS Implementation Challenge [Demetrescu et al., 2009].
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We measure the global query time by running 107 random queries (picked uni-

formly in advance).

Low level optimization of the Query

Generally, the query procedure is very simple and can be summarized in pseu-

docode in Algorithm 1:

For every i ∈ 1, ...|Tsrc|
tsrc ← fetch Tsrc
d1 ← dist(src, tsrc)
For every j ∈ 1, ...|Tdst|

tdst ← fetch Tdst
d2 ← dist(tdst, dst)
d← fetch dist(tsrc, tdst)
if (d1 + d+ d2 < min_d)

min_d = d;
return min_d;

Algorithm 1: Pseudo code of procedure for finding the shortest path distance

However, while this is correct, that would be not the most cache-efficient way to

implement the query. Since access to the main memory is much slower than the

CPU clock cycle, memory access becomes a main bottleneck of the query rou-

tine. For example on our machine the processor clock run at a speed of 2.66GHz

but the memory runs at 1333Mhz, or 1.3GHz, which is considerably slower. The

processor essentially has to wait until the memory responds and transfers the

data. In order to improve this bottleneck, processor manufacturers have added

a small amount of very fast memory close to the processor itself, a.k.a. cache

memory. When accessing main memory, the cache is filled with data close to

the requested data, under the assumption that it may be needed again, and on
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subsequent accesses the data is returned from the very fast cache if its still there.

This spares the processor from reaching out to main memory and waiting for it to

react and return the data. On modern processors, access to cache memory takes

around 7 nano-seconds while accessing main memory (a.k.a. cache miss) may take

up to 50 nano-seconds. Similarly in our query, the main bottleneck is a mem-

ory access rather than arithmetic operations. In the worst case, it may require

|Tsrc|+ |Tdst|+ |Tsrc||Tdst| accesses to RAM, which is somewhat wasteful. With a

little bit of careful engineering, we can reduce this number to 2|Tsrc|+ 2|Tdst|.

For every i ∈ 1, ...|Tsrc|
tsrc,i ← fetch Tsrc
d1,i ← dist(src, tsrc)

For every j ∈ 1, ...|Tdst|
tdst,j ← fetch Tdst
d2,j ← dist(tdst, dst)

For every i ∈ 1, ...|Tsrc|
For every j ∈ 1, ...|Tdst|

d← fetch dist(tsrc,i, tdst,j)
if (d1,i + d+ d2,j < min_d)

min_d = d;
return min_d;

Algorithm 2: Pseudo code of cache efficient procedure for finding the shortest
path distance

This implementation, is more cache-efficient because (with careful engineering)

all access nodes of a src/dst can be loaded to a cache in one fetch (rather many

as before). By careful engineering we mean that we need to store related data

physically close to each other. For example, when we are precomputing and

storing access nodes of a node, it is more cache efficient to store this information

sequentially in the memory. This is even more important, when we precomputing
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and storing transit-to-transit tables.

Query Time

Given two nodes src and dst that are “far away”, the query time depends mostly

on the number of outgoing access nodes of src and the number of incoming access

nodes of dst. Therefore, the average number of access nodes per node is a good

quantitative, machine independent measure for the speed of TNR query. Below,

in Figure 3.31 we present a graph that plots query time as a function of the

average number of access nodes.

Figure 3.4: Query time as a function of number of access nodes

We fit the runtime to the model Axb and found a good fit for b=1.17 with

the residual sum of squares (RSS) about 105. This suggests that, whilst growth

is greater than linear, it is not much greater and is less than quadratic.
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Mistake in original Grid-TNR

During very careful examination we have discovered that there is a mistake in

the original Grid-TNR [Bast et al., 2006]. In order to speedup the preprocessing

authors suggested the sweep-line algorithm. The motivation was to reduce the

search space of the Dijkstra when identifying transit nodes.

Figure 3.5: Example of sweep line algorithm

The sweep line algorithm identifies potential transit nodes that reside on a ver-

tical (or horizontal) line as follows. In the example in Figure 3.5, for all nodes on

a vertical sweep line the suggested algorithm executes Dijkstra until all nodes on

the border of Cleft = {CA,CB,CC,CD,CE} and Cright = {C1, C2, C3, C4, C5}

are settled (closed). Then, for every pair (vL, vR), where vL is on the boundary of

Cleft and vR is on the boundary of Cright, a node v with minimal d(vL, v)+d(v, vR)

identified as a transit node. The hidden assumption of the sweep-line algorithm is

that the transit node on (for example) a horizontal sweep line may only appear
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on the shortest paths between a node in C and the node on the horizontal border

of the outer square O. In reality this may not always be the case. In the example

below we schematically present a configuration where the sweep-line algorithm

will fail to identify v as a transit node. Independently, a similar observation was

reported in [Lingkun Wu and Zhou, 2012].

Figure 3.6: Example of the Grid-TNR grid and nodes configuration where the
sweep line algorithm will fail

This, in turn, results in underestimating the number of transit nodes and

returns non optimal paths.

In addition, the authors reported average number of access nodes per cell which is

somewhat a “skewed” measure. It may be the case (more likely for a finer grid),

where some of the cells are empty (e.g. overlay over mountains or forest) or some

cells may contain roads where all the nodes are of degree two (for which we do

not calculate access nodes). Those type of cells, see Figure 3.7 for example, do
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not contribute to the total count of the transit nodes, but reduce the reported

average. We report the average number of access nodes per node, for which we

actually calculate and store access nodes (i.e. we are excluding “dead-ends and

nodes of degree 2). We believe that this is a better quantitative measure that

more accurately correlates with global query time.

Figure 3.7: Example of a cell with zero transit nodes

Finally, the authors originally used the time metric on an undirected version

of the US network. This somewhat “favors” shortest paths algorithms, because

the time metric induces a better hierarchy between the links, whilst the distance

metric does not. Consider the example in the Figure 3.8 below. Assume that all

the links are residential (slow) roads with distance 1 and only the link (y, d) is

a much faster, but slightly longer highway, say of distance 2. Using the distance

metric we will find two shortest paths s1 → x→ d, s2 → z → d that give us two

transit nodes {x,w}. With the time metric however, it is clearly better to travel
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via the faster highway s1 → y → d, s2 → y → d that gives us only one transit

node y.

Figure 3.8: Example of an undirected graph, where time metric yields fewer
transit nodes than a distance metric

Therefore, not surprisingly, using real distances and not times is more chal-

lenging and produces more transit nodes. Below is a table that summarize the

difference of running Grid-TNR on undirected Europe and USA networks us-

ing the time metric (as was reported originally) vs. using the distance metric

(calculated as a great circle distance).

Europe (time) Europe (dist)

Grid
|T|

Db.
avg. |A| |T|

Db.
avg. |A|

Size Size Size

256 x 256 41 340 7.7 Gb 11.6 108 963 47.3 Gb 39.3

512 x 512 133 253 68.9 Gb 11.4 276 014 292.2 Gb 30.8

1024 x 1024 366 173 512.8 Gb 10.4 631 108 1.5 Tb 22.8

Table 3.1: Comparison of time metric vs. distance metric for the European
network
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USA (time) USA (dist)

Grid
|T|

Db.
avg. |A| |T|

Db.
avg. |A|

Size Size Size

256 x 256 97 428 38.3 Gb 14.2 213 248 175 Gb 32

512 x 512 340 179 443 Gb 13.1 548 774 1.2 Tb 24.8

1024 x 1024 996 244 3.8 Tb 11.6 1 276 153 6.2 Tb 18.3

Table 3.2: Comparison of time metric vs. distance metric for USA network

In the next Section we present an extensive evaluation of Grid-TNR for three

continental size road networks. We report results for both the undirected version

(using great circle distance as a metric) and the directed version (using provided

travel time as a metric). We report total number of trasnit nodes, additional

storage requirements, average number of access nodes (per node), and percentage

of global queries out of all queries.

Results

In previous section we have discussed the query time of Grid-TNR. In what

follows we present other Grid-TNR critical performance measures. We report

total number |T| of transit nodes, additional space requirements, average number

|A| of access nodes, percentage of global queries for distance metric (undirected

version) and travel time metric (directed version).
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Australia (time) Australia (dist)

Grid
|T|

Db.
avg. |A| |T|

Db.
avg. |A|

%

Size Size Size Global

64 x 64 1568 0.4 Gb 8.4 2141 0.4 Gb 14.4 80.7%

128 x 128 4414 0.5 Gb 8.1 5710 0.5 Gb 14.1 89%

256 x 256 11 781 0.9 Gb 8 14 299 1.1 Gb 13.1 93.8%

512 x 512 29 874 3.8 Gb 7.9 34 425 4.8 Gb 13.2 96.6%

1024 x 1024 71 603 19.9 Gb 7.9 77 971 23.5 Gb 12.8 98.4%

Table 3.3: Results of Grid-TNR for Australia network.

USA (time) USA (dist)

Grid
|T|

Db.
avg. |A| |T|

Db.
avg. |A|

%

Size Size Size Global

64 x 64 7472 2.7 Gb 16.7 25 431 5.8 Gb 46.5 92.5%

128 x 128 26 468 4.9 Gb 15.5 76 280 25.1 Gb 39.4 97.7%

256 x 256 97 428 38.3 Gb 14.2 213 248 175 Gb 32 99.3%

512 x 512 340 179 443 Gb 13.1 548 774 1.2 Tb 24.8 99.8%

1024x1024 996 244 3.8 Tb 11.6 1 276 153 6.2 Tb 18.3 99.9%

Table 3.4: Results of Grid-TNR for USA network.

Europe (time) Europe (dist)

Grid
|T|

Db.
avg. |A| |T|

Db.
avg. |A|

%

Size Size Size Global

64 x 64 3710 1.2 Gb 11.5 12 726 3.3 Gb 52.9 84 %

128 x 128 12 049 1.7 Gb 11.4 38 968 8.2 Gb 47.5 94.9 %

256 x 256 41 340 7.7 Gb 11.6 108 963 47.3 Gb 39.3 98.4%

512 x 512 133 253 68.9 Gb 11.4 276 014 292.2 Gb 30.8 99.5%

1024x1024 366 173 512.8 Gb 10.4 631 108 1.5 Tb 22.8 99.8%

Table 3.5: Results of Grid-TNR for Europe network.
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Directed vs. Undirected Graphs

We notice that in undirected graphs (e.g. using distance metric) the average

number of access nodes is larger than in a directed graphs (e.g. using time

metric), but the total number of access nodes in undirected graphs is smaller.

This “phenomenon” can be explained by the following observation. Consider

graphs in Figures 3.9 and 3.10 below. Assume all the link weights are 10 and

only the link between y and d3 has weight of 1.

Figure 3.9: Example of undirected graphs, where we have 3 access nodes

In the undirected version we have 4 paths in total that connect s with {d1, d2, d3, d4}

in both directions: (s↔ x↔ d1) (s↔ y ↔ d2) (s↔ y ↔ d3) (s↔ w ↔ d4) and

3 access nodes {x, y, w} in total.
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Figure 3.10: Example of directed graphs, where we have 2 outgoing and 2 incom-
ing access nodes and totally 4 access nodes

In the directed version, on the other hand, we have 2 paths that connect s with

{d1, d2}, (s → x → d1) (s → y → d2) and 2 paths that connect {d3, d4} with

s (d3 → y → s) (d4 → w → s). Therefore, we have 2 outgoing access nodes

{x, y} and 2 incoming access nodes {z, w}. So in total we have 4 access nodes.

However, for the sake of queries that start (or finish) at s, we are interested only

in 2 outgoing (or incoming) access nodes {x, y}. So, in this example, for directed

graphs we have a smaller number of outgoing (or incoming) access nodes, but

more access nodes in total.
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3.2.10 Minimizing Number of Access Nodes

We recall that Grid-TNR identifies access nodes on a border of the inner square

(see 3.2.2). Since the query time is quadratic in the number of access nodes, it

is highly beneficial to minimize this set. Lets take a closer, more careful look on

how we choose those border nodes.

A border node of an inner square is one of the endpoints of the link that

crosses this square. When deciding what endpoint of the crossing link to choose,

Bast et al. [Bast et al., 2006] suggested to choose the node with the minimum

index1. This is a good strategy, because it will prevent choosing unnecessary

transit nodes that essentially are endpoints of the same link. However, if we take

a closer look, we may notice that in some cases there is a room for improvement,

and we can actually reduce the number of access nodes of a cell. Consider an

example in Figure 3.11 below.

Figure 3.11: Example of a non optimal choice of transit nodes

1Index of a node can be any unique random number. For example it can be its address in
the memory or the index can be assigned when creating a graph.
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If indices of x and y are less than index of z, we may identify x and y as two

access nodes. Clearly, choosing z in this case would be a better choice, because

we will have only one access node instead of two. In the worst case, a bad choice

of the end-point of the crossing link may unnecessarily increase the number of

access nodes, also making the query times significantly slower.

Our solution is to search for access nodes from a minimum vertex cover (see

2.5) of the bipartite graph (see 2.4) where the left nodes of the graph are inside

the outer square and the right nodes of the bipartite graph are outside the inner

square. For this we have an additional step of finding a minimum vertex cover

of all the crossing links of the inner square. From König theorem 2.4 it follows

that finding a minimum vertex cover in a bipartite graph reduces to a maximal

matching problem. This problem can be efficiently solved by finding a maximum

flow in a corresponding unit capacity flow network [Cormen et al., 2001] (pp. 664-

667). In practise we saw a reduction up to 35% in the number of access nodes

by this method. However, this method is not discussed any further, because it is

superseded by a method described in the next paragraph.

Next we show how to find the minimum set of access nodes, which will guar-

antee us the fastest possible queries Grid-TNR can achieve. For the sake of

simplicity, the following discussion will talk about set of outgoing access nodes.

Exactly the same holds for incoming access nodes. Consider the example in

Figure 3.12. Intuitively, the access nodes of a cell C can be anywhere1 on the

shortest path between the cell C and outer square O without compromising the

1access node can also appear outside the outer square, as long it is on a shortest path that
connects C with O
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correctness of the algorithm.

Figure 3.12: Example of the cell and outer square, where the access nodes can
appear anywhere between them.

With this observation, we are looking to minimize the number of access nodes

in order to have faster queries. One of weaknesses of Grid-TNR is that the

overlayed grid is rigid and does not take into account the underlying topology of

the network. There is no guarantee that the inner square will fall exactly in the

“good” spot (for example, the entrance to a bridge or a tunnel).
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Figure 3.13: Example of more efficient choice of transit nodes.

In the example in Figure 3.13 above, Grid-TNR would find 4 transit nodes

(that reside on the border of the inner square), where intuitively we can see that

it is more efficient to choose only one transit node (which is not necessarily on

the border of the inner square).

Clearly, the minimum set of access nodes, A, should contain at least one

node from any shortest path from VC to VO. Therefore, one of the most natural

candidates to search the access nodes from (instead as originally on the border

of the inner square), is the minimum separation vertex set (see Definition 2.14)

that disconnects all the shortest paths from VC to VO. Please notice, that we do

not require to completely disconnect VC from VO, but only to disconnect all the

shortest paths.

55

() 

I 

(--' ' II, 
c \ ~-/·· · bridge .... 

"'• ··· ........... ...... _ . . -.; -, 
'-~ -v 



Figure 3.14: Schematic representation of the alternative set of access nodes, de-
picted in green. Red nodes are the border nodes of the cell C, VC and blue nodes
are the border nodes of the square O, VO.

Definition 3.1. Let G = (V,E) be a graph, where E is all the edges that lie on

all the paths between VC and VO and V is set of nodes of those paths. We define a

subgraph GC O = (VC O, EC O) that contains only edges on the shortest paths1

between VC and VO and nodes of those edges. We define a new set of access nodes

A to be the minimum VC − VO vertex separation set in GC O. Please notice, by

the definition of the separation set, we guaranteed that A won’t be empty (unless

C and O are disconnected in the first place).

Claim 3.1. For every cell C, the set of access nodes A defined as in 3.1, is the

minimum set of access nodes over all other possible choices of access nodes set.

1w.l.og. we can assume that the shortest path between any pair of nodes is unique, otherwise
we can add very small random noise to break the symmetries 5.4
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Proof. Assume, by contradiction that there exist another, minimum set of access

nodes Ā, such that |Ā| < |A|. Clearly, Ā ⊆ VC O (i.e. all the nodes of Ā lie on

some shortest path), because otherwise we could find and remove node x ∈ Ā

that is not on a shortest path between C and O, contradicting minimality of

Ā. In addition, since Ā contains (at least one) node from all the shortest paths

from C to O, removal of nodes of Ā from GC O will necessarily disconnect all

the shortest paths from C to O, cause otherwise Ā wouldn’t be a complete set

of access nodes and there would be a shortest path that Ā does not cover. This

in turn contradicts minimality of A which is defined to be a minimum vertex

separation set.

We are only left to show how we find the minimum separating vertex set of

GC O. For that we define a flow network N as follows. We introduce two virtual

nodes s and t and connect s to VC (border nodes of C) and VO (border nodes

of O) connected to t. We set the capacity of all the links to one. The resulting

network N is depicted in Figure 3.15 below. Clearly, an s − t separating vertex

set in N is a VC − VO separating vertex set in G.
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Figure 3.15: Schematic representation of the flow network N . Red nodes are the
border nodes of the cell C, VC and blue nodes are the border nodes of the square
O, VO.

Menger’s theorem (see 2.5) suggests to us that in order to find a minimum

s− t separating set we need to find the maximum number of vertex disjoint paths

in N . We can reduce this problem into a problem of finding the maximal number

of edge disjoint paths in a modified network N∗ that defined as follows [Marcon,

2012] (pp. 137-141):

(1) Replace each vertex x 6= s, t, by two vertices x1, x2

(2) Add a directed edge (x1, x2) with capacity 1

(3) Replace each directed edge (w, x) in N by a directed edge (w, x1)

(4) Replace each directed edge (x,w) in N by a directed edge (x2, w)

Similar to N , all capacities are set to be one.
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Figure 3.16: Example of a network N∗ obtained from N .

Therefore, the problem of finding a minimum set of access nodes for a cell C

reduces to a problem of finding a minimum cut in N∗. There are several ways

to find a minimum cut in a network [Pothen et al., 1990]. We will follow the

max-flow min-cut approach. We find a maximum flow in the network N∗, using

Ford-Fulerson-Edmond-Karp (FFEK) algorithm [Cormen et al., 2001] (p. 660).

Then we identify all the reachable nodes in the residual network N∗f (Figure 2.9).

The reachable nodes are the endpoints of the minimum cut and are exactly the

minimum set of access nodes we are after.

However, the query speed-up comes at the price of a larger total number of tran-

sit nodes, consequently larger memory requirements and precomputation time.

For every cell, the only additional overhead over original Grid-TNR is executing

FFEK, whose complexity is

O(|VC O||EC O|2) = O(|VC O|3) = O

(
n3

k3

)
,

which is relatively fast in practise. The main drawback of this approach is a large

number of total transit nodes. It can be easily explained looking at the Figures
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3.17 and 3.18. Since, in the original Grid-TNR access nodes could only reside

on a grid, many cells could share the same transit node. In new settings, this is

less likely, because every cell has its own optimal set of access nodes, which can

reside anywhere between the cell and its outer square

Figure 3.17: Schematic representation of the flow network N . Red nodes are the
border nodes of the cell C, VC and blue nodes are the border nodes of the square
O, VO.
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Figure 3.18: Schematic representation of the flow network N . Red nodes are the
border nodes of the cell C, VC and blue nodes are the border nodes of the square
O, VO.

We could achieve a very small number of access nodes (∼5 per node on av-

erage), making our queries very fast (measured in nano-seconds), but at a price

of prohibitively large additional space. In Section 3.4 we will describe a novel

algorithm that will successfully address this issue, without compromising query

times.
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3.3 Incremental Updating

In this section, we present a novel and efficient way for updating Grid-TNR

precomputed databases when the weight of the links, as is typically happens,

increases [Antsfeld and Walsh, 2012c]. This addresses one of the weaknesses of

the Grid-TNR algorithm which assumes that the underlying network is static,

i.e. the edge weights do not change. In reality the road conditions change quite

frequently, due to planned (e.g. road repairs, special events) or unforseen events

(e.g. car accident).

3.3.1 The Motivation

To provide an intuition for our update algorithm, consider the example below.

Lets assume that the road (depicted in red) in the cell in the middle is blocked.
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Figure 3.19: Example of the grid and two shortest paths, only one of which going
via a blocked road (colored in red).

The traditional approach would be to precompute everything from scratch. As

we intuitively understand and also the example shows, there are many shortest

paths (including the path above) that are not affected by this change. Any

efficient recomputation could ignore these unaffected shortest paths, and save

this computational effort. In what follows we present an update algorithm that

significantly reduces the amount of the required recomputation.
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3.3.2 The Algorithm

We suppose that travel time over a link e, as it usually happens, increases (say

because of road works). If only we knew all the pairs of nodes whose shortest

path contains e, we could recompute and update the tables node-to-transit (N2T),

transit-to-transit (T2T) and transit-to-node (T2N) (see 3.2.2) only for these spe-

cific pairs. In this case the recomputation would be minimal.

It is actually quite easy to “hack” Grid-TNR and obtain this information.

During precomputation of the N2T, T2T, T2N tables, we can also extract the

whole path and store it along with the distance. However, we would now need

to store all the edges along the shortest path between pairs of nodes, rather than

just the distance. For every link e, we store a set Pe = {(src, dst)} such that e

is on a shortest path between every pair in Pe. In the worst case, the asymptot-

ical storage requirement for this additional information is O(mn), where m is a

number of links and n is the number of nodes in the graph. Unfortunately, this

can be prohibitively large in practice.

In order to reduce the storage requirements, our second attempt was to store

this information for pairs of cells rather than pairs of nodes. In other words, for

every link e, we store a set Pe = {(Co, Cd)} such that e is on a shortest path

between a node in Co and a node in Cd. The worst case storage for this case is

O(mk2), where k is the number of cells in the grid. Although better in practice,

this was still prohibitively large for real world road networks.

Finally, in order to reduce the storage requirements even more, instead of link

e, we considered the cell C containing this link. In other words, for every cell C

we store a set Ce = {(Co, Cd)}, such that for every link e in cell C there exist
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a pair of nodes src in Co and dst in Cd, such that e is on the shortest path be-

tween src and dst. In this case the asymptotical worst case memory requirement

reduced to O(k3) which was practical to implement.

3.3.3 Experiments

We tested our algorithm on the New South Wales road network with 200,000

nodes and 470,000 edges using different grid sizes. We randomly “blocked” roads

and then executed the precomputation stage using the additional information

stored during the initial precomputation. Since local, unimportant roads lie on

significantly less shortest paths, we “blocked” the most important roads in our

experiments. Results are summarized in the table below.

Grid size
Original New Original Additional Average

precomputation precomputation storage storage update
time time time

50 x 50 6 min 8 min 172 Mb 185 Mb 4 min
75 x 75 11 min 16 min 315 Mb 940 Mb 3 min

100 X 100 22 min 50 min 580 Mb 3.1 Gb 5 min
125 X 125 31 min 160 min 955 Mb 6.9 Gb 7.5 min

Table 3.6: Results of incremental updating of Grid-TNR for NSW network.

While those results are reasonably feasible, more careful examination showed

us that majority of recomputed pairs of nodes didn’t pass through the blocked

link but only through the cell containing this link (which may contain other, not

affected links). Therefore, there is still plenty room for improvement for more

economical incremental updating. Considering the fact that many times, not

only one, but several roads in a region can be affected, one such update should

take care of all of them in one run, rather than running it for every edge separately.

65



3.4 CHAT

In this section we present a novel algorithm, we named CHAT (for Cluster,

Hierarchify and Hit). It can be seen as instantiation of the more general TNR

framework [Schultes, 2008]. CHAT was inspired by the Grid-TNR, but signifi-

cantly outperforms it, addressing some of Grid-TNR weaknesses. We have ob-

served that CHAT is completive with the latest state of the art algorithms [Abra-

ham et al., 2011; Arz et al., 2013].

One of the drawbacks of Grid-TNR is that the algorithm does not exploit any

topological information of the underlying network, like bottlenecks. Consider the

example in Figure 3.20 below.

Figure 3.20: Five transit nodes identified by Grid-TNR vs two access nodes
identified by CHAT that cover eventually the same “long” shortest paths.

Since Grid-TNR is identifying transit nodes strictly on the border of inner

cells, in this example, we would identify five transit nodes. Intuitively, we can

clearly see, that two nodes, strategically chosen as entranse/exit points into the
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bridge, would be enough to cover all “long” shortest paths (longer than some

predefined radius). Also, since the grid is artificial and rigid, there is no guarantee

that a transit node is indeed an important node, e.g. entrance to a highway, bridge

or a tunnel. In addition it is not clear, a priori, what grid size we should choose,

since it directly affects the tradeoff between precomputation time, storage space

and a final query time. Finally, when overlaying a grid, there is no guarantee as

for the number of nodes in every cell. Some of the cells may contain very large

number of nodes (in the city for example) and some cells can be almost empty

(remote areas). We address all these issues.

Intuitively, when we drive “far away”, at the beginning we use residential

roads, at some stage we usually enter a highway network and eventually some-

where close to our destination we leave the highway network and use residential

roads again. In addition we observe that many close nodes will have exactly the

same set of access nodes. For example, it is most likely that most of the nodes in

the same neighborhood will have exactly the same access nodes, when traveling

“far away”. In what follows we will explain how we successfully exploit those

observations.

3.4.1 The Algorithm

For clarity, we will start with the basic, non-optimized version. The basic idea

of our algorithm is for every node v to find a small set Av of important1 access

nodes, such that every “long” shortest path from (or to) v will necessarily pass

through one of the nodes in Av. Then, for a query, given a source src and

1The idea of using important nodes to reduce the search space is also presented in [Schultes
and Sanders, 2007]. However, here, the authors used Highway Hierarchies to define this set.
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destination dst, we will be able to find the shortest path similar to Grid-TNR,

simply by trying all possible combinations of subpaths: src Asrc, Asrc  Adst,

Adst  dst, where Asrc ∈ Asrc and Adst ∈ Adst.

Given that every road has a known type1and a traveling speed associated with

it, we exploit the inherent hierarchy of the road network. We introduce two levels

of hierarchy - highways (usually roads with speed limit above 70km/h) and the

rest, residential roads. Initially we identify all the nodes which have at least one

endpoint as a highway, we call them major (a.k.a. important) nodes. In the

pseudo code below, we call this step “Hierarchify”.

Next, for every node v we want to know how far we can travel (no matter

what direction we are going) without passing a major node. Assume that the

furthest node we can reach is w and its distance from v is Dv. It means that

for every node outside ball Bv of radius Dv with v in its center, we will have

to pass via at least one major node (otherwise Dv wouldn’t be the maximum

distance). In order to find Dv, for every node v (which is not a major node),

we grow a Dijkstra tree until every branch of the tree hits at least one major

node. Theoretically, this can take O(n log n), practically this is performed much

faster, since the actual nodes that we explored are only a very small fraction of

n. Av consists of major nodes of this tree, such that any node in Av doesn’t have

any other major nodes as its parent. We do the same using incoming links, in

order to find incoming access nodes when traveling to v. Notice, that Av already

complies with the desirable property that any shortest path that ends outside Bv

will necessary pass via at least one node from Av. At this stage, we can already

1if type of the road is not explicitly given, we can implicitly deduce it using the average
travel speed.
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successfully apply our query routine using the Av and are able to find the shortest

path. Practically, the size of Av can be prohibitively large (more than a hundred

nodes), which significantly impairs the query time.

3.4.2 Reducing the number of access nodes

We describe how to reduce the size of Av significantly. We notice that when

traveling “far away” and passing via one of the major nodes we usually also pass

via other major nodes. Observing this, bring us to the idea that essentially we

are interested to hit all “long” shortest paths that start at v with as few major

nodes as possible. This is equivalent to the Minimal Hitting Set Problem (see

2.7). Finding a minimal hitting set is a NP-hard problem, nevertheless good

approximation algorithms exist [Cormen et al., 2001]. Note that we don’t need

to have the minimal hitting set in order to be able to find a shortest path; any

hitting set will do. In our experiments, a greedy approximation algorithm 2.7

produced very good results. In summary, the set of access nodes of a node v is

defined as a hitting set of major nodes along all shortest path between v and the

border of Bv.

3.4.3 How far is “far away” ?

In Section 3.4.1 we have defined Bv, a ball with a center in v of radius Dv, such

that in order to get to any node outside Bv we necessary have to pass via at least

one node in Av. Intuitively we observe that the further we travel, the smaller

the hitting set from the previous step is. Experimentally we learnt that defining

“far away” radius,Rv = 1.5·Dv yields the best compromise between preprocessing
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time, number of access nodes (consequently required memory size) and the final

query time. Choosing Rv < 1.5·Dv will make precomputation somewhat faster,

but will increase size of Av. Choosing Rv > 1.5·Dv will insignificantly decrease

size of Av, while making preprocessing longer.

Given a map G = (V,E), in what follows we present a pseudocode for finding

a set of access nodes.

M ← Hierarchify nodes V
For every node v ∈ V \ M

Dv ← Dijkstra Tree(v, M)
{Pi} ← Dijkstra(v, Rv)

Av ← Hitting Set({Pi})

.
Algorithm 3: Pseudo code for finding a set of access nodes. M is the set of
major nodes and Pi set of shortest paths that starts at v and ends at radius Rv

Having successfully reduced the size of Av, we encountered another problem.

For every node v, Av are mostly disjoint, i.e. in most of the cases Av ∩ Au = φ.

This results in a large total number of access nodes and consequently prohibitively

large precomputed access-to-access table. In next section we describe how to

efficiently resolve this.

3.4.4 Clustering

As we have mentioned before, we observe that when we start a journey from a

neighborhood, it is most likely that many starting point in this area will have some

access nodes in common. Therefore it looks natural to partition the network into

clusters and deal with clusters rather than with every individual node separately.

There are many different clustering techniques. The two most intuitive are
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KD-Tree and K-Means clustering. KD-Tree clustering partitions the map into

rectangles, such that each rectangle contains the same number of nodes. K-

Means, clusters the node, such that every node in a created cluster is closer to

clusters’ center of mass than to any other cluster center of mass. The advantage

of KD-Tree is that it is fast and creates balanced cells, the drawback is that it

may create large rectangles, which consequently increase the local search radius.

K-Means heuristic handles this problem very well, but it is slow and in addition

creates unbalanced clusters. In our implementation we combined two techniques.

In the first step, we created KD-Tree clusters. Next, we refine this, by applying

a single iteration of K-Means clustering, where the initial centers were chosen as

centroid of clusters’ convex hulls. Our experiments showed that this combination

outperformed (in terms of preprocessing time, required storage space and final

query time) each of those techniques applied separately. Below is the example of

partitioning Sydney area into 64 clusters using the three clustering techniques

Figure 3.21: KD-Tree
Clustering

Figure 3.22: K-Means
Clustering

Figure 3.23: KD-Tree re-
fined with K-Means Clus-
tering

From this point, the algorithm is essentially the same as was described in

previous section. The only difference, that we perform the Algorithm 3 not for

every individual node, but for only nodes that are on a border of the cluster
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C, i.e. nodes on the convex hull of C. The “far away” radius RC defined as

RC = 1.5·DC , where DC is the radius of the cluster C measured from the center

of mass of its convex hull.

C← Cluster nodes V
M ← Hierarchify nodes V

For every cluster C ∈ C

RC ← Dijkstra Tree(border(C), M)
{Pi} ← Dijkstra(border(C), 1.5 ∗RC)

AC ← Hitting Set({Mi})

Algorithm 4: Pseudo code for finding a set of access nodes. C is a set of
clusters, M is the set of major nodes and Pi is a set of shortest paths that
starts at v and ends at radius RC

Finally, similar to Grid-TNR, we are only left to precompute and store the

distances between every node and its associated access nodes (in both directions)

and between all the access node.

3.4.5 Query

The query is performed similar to the original TNR. For a query between src and

dst which is global, i.e. dist(src, dst) > max(Rsrc, Rdst), we fetch access nodes

associated with their clusters and find the path with minimal sum of the three

subpaths: src Asrc, Asrc  Adst, Adst  dst.

The test whether the query is global or local is also know as a locality filter. A

locality filter is a function L : V× V→ {true, false}. In our case L(s, t) = true

(i.e. the query is local) if dist(src, dst) ≤ max(Rsrc, Rdst), otherwise the query is

global.

Please notice in Figure 3.24 below how access nodes are located in “strategically”
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important locations and not restricted to reside on somewhat random grid lines.

Figure 3.24: Example of CHAT query, where the triangles are access nodes.

For all other, local queries, as was suggested by [Bast et al., 2006] we can use

any other efficient local search technique. According to [Lingkun Wu and Zhou,

2012] CH (Contraction Hierarchies) [R. Geisberger, 2012] is the preferable choice.

3.4.6 Proof of Correctness

Before proving the correctness of CHAT algorithm we will prove the following

lemma, which may be not completely clear due to the non-trivial way we define

access nodes.

Lemma 3.2. Any global shortest path P between src and dst will always pass via

Asrc, access node of the scr and Adst, access node of the dst, i.e. it will be of the

form P = src Asrc  Adst  dst.

Proof. Let P be a global shortest path between src and dst. Let Dsrc be a local
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radius of the src. Since P is global, at some stage P crosses Bsrc, the ball of

radius Dsrc with src in the center. Lets denote this subpath as Psrc. Clearly Psrc

is a shortest path by itself. On one hand, by definition, Psrc contains at least one

major node. On the other hand, we remember that the set of access nodes of

src is defined as a hitting set of major nodes along all shortest path between src

and the border of Bsrc (including Psrc). Therefore by definition of the hitting set

Psrc necessarily contains at least one access node of the src. Exactly the same

arguments hold for the dst.

We are ready now to prove correctness of CHAT (which is similar to 3.2.6).

Theorem 3.3. CHAT finds optimal queries.

Proof. Let src and dst be source and destination nodes of interest. Assume that

the query between src and dst is global (as defined in 3.4.5). In this case we

execute the CHAT query procedure as in 3.4.5. Let P be a path with cost c(P )

returned by CHAT. The proof proceeds by contradiction. Suppose there exists

another path P̂ with cost c(P̂ ), such that c(P̂ ) < c(P ). Now, let Â1 and Â2 be

access nodes of P̂ of src and dst respectively. From Lemma 3.2 we are guaranteed

that P̂ passes via some Â1 and Â2. Let us denote P̂1 = src Â1, P̂2 = Â1  Â2

and P̂3 = Â2  dst subpaths of P̂ . The shortest path optimal substructure

property [Cormen et al., 2001] (pp. 581-582) says that every subpath of a shortest

path is a shortest path. Thus it follows that P̂1, P̂2 are P̂3 are all shortest paths.

Similarly, let be P1 = src A1, P2 = A1  A2 and P3 = A2  dst be subpaths

of P . By assumption (at least) one of the following must be true: c(P1) > c(P̂1)

or c(P2) > c(P̂2) or c(P2) > c(P̂2). But this contradicts the fact that Grid-TNR
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query returns a minimal sum of subpaths from src to dst. For local queries, we

are using CH [Geisberger et al., 2008], which is known to be correct. Q.E.D.

3.4.7 Data storage

In this section we describe an efficient way to store the precomputed data. We

will start with outgoing access nodes (where exactly the same we do for incoming

access nodes). For every node v, we need to store array of distances from v to

its all outgoing access nodes, say {A1, A2, ..., Aq}. For this we need to allocate an

array of size (q + 1). A node v will point to the first element of this array, which

will indicate the number of the access nodes, then we sequentially store all the

distances, as in Figure 3.26

Figure 3.25: Storage of the shortest distances between a node and its access nodes

Assuming that nodes are integers represented in 4 bytes1 , for the node v we

in total we will require 4 + 4(q + 1) = 4q + 8 bytes. Exactly the same true for

incoming access nodes. Assuming we have n nodes (that do have access nodes,

14 bytes is a typical size of an integer, however in general, it depends on the platform and
the compiler.
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see 3.2.8), we will require 2n(4q + 8) = 8n(q + 2) bytes to store distances from

(to) every node to (from) its access nodes.

Now, lets take a look on the table that stores distances between all the pairs of

access nodes. Since this is the most expensive and the most frequent operation

during the query, this table should be implemented very efficiently. Generally, a

hash table allows us to fetch an element in O(1) of time complexity, assuming

there are no collisions. For this, we first re-index all the access nodes from 0 to

(N − 1), where N is the total number of access nodes. A function xN + y, where

x and y are indexes of two access nodes and is one to one and will guarantee no

collisions between any two pairs of access nodes.

Figure 3.26: Storage of the shortest distances between all transit nodes

In order to store distances between all the pairs of access nodes we need 4N2

bytes, plus 4 bytes to store a pointer to the hash table. Summarizing, the total

additional storage for CHAT is 8n(q + 2) + 4N2 + 4. Exactly the same analysis

is also true for Grid-TNR. Thus, for a typical example when we have 106 nodes,

with 10 access nodes per node on average and totaly 105 access nodes, we will

require 9.7Gb. The Figure 3.27 below summarizing memory requirements as a

function of total number of access nodes and average number of access nodes per

node. Of course, for the undirected case, the storage requirements are halved.

76



Figure 3.27: CHAT/TNR storage requirements

Space reduction

We can notice, that eventually we do not need to precompute the distances be-

tween all pair of access nodes, but only between all outgoing to all incoming

access nodes (see 3.2.8). Assume we totally have |Nout| outgoing access nodes

indexed {x, x + 1, x + 2, x + 3, ...} and |Nin| incoming access nodes indexed

{y, y+1, y+2, y+3....}. For every outgoing access nodes x we store the distances

only between x and all other incoming access nodes, as in Figure 3.28
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Figure 3.28: More efficient storage of distances between all access nodes.

In this case the space requirement becomes 4|Nout| + 4|Nout||Nin|. Assuming

that |Nout| ≈ |Nin| ≈ N
2

, the total space requirement becomes 8n(q+2)+2N2+2N .

The total memory requirements are plotted in the Figure 3.29 below. We can see

up to factor of 4 space reduction by these optimisations.
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Figure 3.29: More efficient CHAT/TNR storage requirements

For some practical purposes, 2 bytes may be enough to store the fastest time. If

time is measured in seconds, 2 bytes = 16 bits will allow us to store maximum

time length of 216 seconds, which is slightly more than 18 hours. For maps, where

we know that the longest shortest path is faster than 18 hours (France or Ger-

many for example), we can store time using only 2 bytes. In addition, for many

practical purposes, precision of minutes is good enough. In this case we can store

time in minutes rather than seconds and then the shortest paths of length up to

216 minutes, which is more than 1092 hours can be expressed. This observation

will reduce additional storage by almost factor of 2.
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More compression can be achieved, by noticing, that in the vast majority of cases

the distance from a node to its access node and the distance from an access node

to a node is the same, i.e. d(v,A) = d(A, v). In this case we can store it only

once, thus significantly reducing the size of the access-to-node table. The idea of

compressing edge weights and some other compression techniques are presented

in [Sanders et al., 2008].

3.4.8 Experiments

We implemented our CHAT algorithm in Java and the online query in C++ com-

piled (with /O2 optimization) under Microsoft Visual Studio C++ 2012. Online

queries were tested on a machine running Windows Server 2012 with 64Gb of

DDR3-1333RAM and 6-core Xeon X5650 CPUs at 2.66GHz Intel. Similar to

Grid-TNR (3.2.9) we tested our implementation on three continental size net-

works:

Australia (|V | = 6.1× 106, |E| = 12.4× 106) taken from OSM [OSM]

Western Europe (|V | = 18× 106, |E| = 42× 106) and

USA (|V | = 24× 106, |E| = 58× 106)

taken the from 9th DIMACS Implementation Challenge [Demetrescu et al., 2009].

We measure global query time by running 107 random queries (picked uniformly

between all possible pairs). In addition, in order to verify correctness of CHAT

implementation, extensive comparison with the basic Dijkstra algorithm was per-

formed. All 107 tests returned the same value as Dijkstra’s algorithm.

80



Results

In what follows we present CHAT’s critical performance measures. We report

total number |T| of transit nodes, additional space requirements, average number

|A| of access nodes, percentage of global queries for distance metric (undirected

version) and travel time metric (directed version).

Australia (time) Australia (dist)

No. of
|T|

Db.
avg. |A|

%
|T|

Db.
avg. |A|

%

Clusters Size Global Size Global

512 4282 1.1 Gb 6 93.8% 3699 0.5 Gb 8.1 91.2%

1024 7877 1.1 Gb 5.6 96.5% 6939 0.6 Gb 7.7 94.4%

2048 13 700 1.1 Gb 5.1 97.5% 12 084 0.6 Gb 7.1 95.4%

4096 22 754 1.4 Gb 4.7 98.2% 20 379 0.8 Gb 6.5 96.5%

8192 36 199 2.1 Gb 4.2 98.6% 33 311 1.5 Gb 6 97.2%

16384 54 510 3.6 Gb 3.8 98.9% 51 262 2.9 Gb 5.5 97.7%

32768 79 143 6.7 Gb 3.5 99.1% 76 481 5.9 Gb 5.1 98%

Table 3.7: Results of CHAT for Australia network.

USA (time) USA (dist)

No. of
|T|

Db.
avg. |A|

%
|T|

Db.
avg. |A|

%

Clusters Size Global Size Global

512 4422 1.7 Gb 9.5 97.4% 8096 2.9 Gb 17.7 96.1%

1024 8119 1.6 Gb 8.7 98.5% 14 825 2.9 Gb 16.5 97.4%

2048 13 802 1.6 Gb 7.9 98.9% 24 926 3.1 Gb 15.3 98%

4096 24 361 1.9 Gb 7.1 99.3% 41 787 4 Gb 14 98.4%

8192 39 822 2.7 Gb 6.4 99.4% 65 539 6.3 Gb 13.1 98.5%

16384 65 198 5.2 Gb 5.7 99.5% 99 902 11 Gb 12.1 98.7%

32768 101 423 10.9 Gb 5.3 99.6 % 143 988 21.7 Gb 11.4 98.8%

Table 3.8: Results of CHAT for USA network.
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Europe (time) Europe (dist)

No. of
|T|

Db.
avg. |A|

%
|T|

Db.
avg. |A|

%

Clusters Size Global Size Global

512 5551 1 Gb 6.8 96.3% 7023 1.8 Gb 15.4 87.8%

1024 9604 1 Gb 6.3 97.5% 12 495 1.8 Gb 14.5 91.9%

2048 15 926 1.1 Gb 5.8 98.2% 21 300 2 Gb 13.6 93.3%

4096 25 293 1.4 Gb 5.3 98.5% 35 297 2.7 Gb 12.8 94.8%

8192 37 837 2.1 Gb 4.9 98.7% 54 379 4.3 Gb 12 95.4%

16384 53 424 3.5 Gb 4.5 98.9% 80 144 7.5 Gb 11.4 96%

32768 125 554 15.8 Gb 4.7 99.6% 111 057 13.1 Gb 10.8 96.4%

Table 3.9: Results of CHAT for Europe network.

As we can observe, CHAT is less efficient for the distance metric. This is

because of the nature of how we chose major nodes. It’s easy to think about

scenario where the “long” shortest path can avoid all the highways all together.

This, in turn will increase the local search radius, which causes the large number

of false negative global queries. Consider the example in a Figure 3.30 below.
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Figure 3.30: Example of potential global query being identified as a local.

The path src Asrc  Adst  dst will be identified as a local path, because

we needed to travel a very long distance until we met v, a major node at the

other side. It may be an interesting research direction, for the distance metric to

choose major nodes using a different approach.

Given the clustering, CHAT’s precomputation time is essentially the same as

of Grid-TNR, with the addition of finding a hitting set of the major nodes. In

practice, it is very fast, because we are dealing with relatively small sets. Usually

5 − 8 iterations of the greedy frequency based algorithm is enough. In addition

CHAT is highly parallelizable, which makes the precomputation fast when we

have many cores. In addition, CHAT requires a much smaller number of clusters

than the number of cells required by Grid-TNR to achieve a similar percentage
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of global queries.

Global query times are summarized in the chart in Figure 3.31 below. Our global

query times are comparable with the state-of-the-art HL algorithm Abraham

et al. [2011], while being tested on a somewhat slower machine. On a similar ma-

chine, XEON 5680, which is 25% faster, we would expect additional performance

improvement.

Figure 3.31: Query time as a function of number of access nodes

3.4.9 Discussion

We have presented a novel algorithm, CHAT, for very fast “long” shortest path

queries. It uses local Hitting Set to identify a small set of access nodes among

already provided major nodes. The idea of using a global Hitting Set to em-

pirically find a lower bound on the set of transit nodes was used by Eisner and

Funke [Eisner and Funke, 2012]. They showed that the number of transit nodes

84



in Grid-TNR [Bast et al., 2006] and HH-TNR algorithms [Sanders and Schultes,

2006a] was actually close to optimal. Though, authors did not recommend to use

their approach for practical purposes as it was very time and space consuming.

Another theoretical algorithm for finding an upper bound on the set of transit

nodes was introduced by Abraham et al. [Abraham et al., 2010] by using global

Shortest Path Covers (SPC), which is essentially a global Hitting Set. Computing

such covers is NP-hard, but the authors suggest a greedy algorithm to achieve

a logarithmic approximation factor in polynomial time. However, the authors

suggested the algorithm is not practical, since the precomputation time will take

several times and the unpractical theoretical bound.

When comparing CHAT with recent state-of-the-art CH-TNR [Arz et al.,

2013] we notice two major differences in their approaches - transit nodes selection

and locality filter. CH-TNR defines transit nodes as the k highest nodes from the

CH data structure and the locality filter is the relatively expensive operation of

intersection of two precomputed and stored search spaces. Clearly, CH-TNR fast

preprocessing time (measured in minutes) stands out as a clear advantage over

CHAT (whose preprocessing time is measured in hours). However, CH-TNR’s

additional storage is larger. While a query in both algorithms boils down to a

few table lookups, the locality filter of CH-TNR’s is more complex to calculate,

which impairs its final query time. Both approaches are using CH as a fall back

algorithm for local queries, so we will compare only speed of the global queries.

For the European road network with time metrics, CH-TNR reports global query

time ∼1.3µs, whilst CHAT’s global query time is between 200−300ns for various

choices of number of clusters, which is almost 5-6 times faster. Considering all

types of queries, on average, CHAT’s query time is still very competitive, see
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table 3.10 below.

Comparing CHAT with another recent state-of-the-art algorithm Hub Label-

ing (HL) [Abraham et al., 2011] that has the fastest known queries, will show us

a similar trade-off. While HL preprocessing is faster (under one hour), with the

query times in a range of 250 − 560ns, its additional storage space can be pro-

hibitive for practical use (up to 18Gb). An improvement Hub Label Compression

(HLC) [Delling et al., 2013], reduces storage space by an order of magnitude, but

at the price of an order of magnitude slower query times. Another noticeable

difference is that HL (and its variants) answers all types of queries, where CHAT

needs to use a fall back algorithm for local queries. Below we present the table

that summarized the additional storage and query times1 of the discussed algo-

rithms [Bast et al., 2014]. For the sake of completion, for the local queries we are

using CH, and adding 0.4Gb. to count for CH data structure to CHAT storage

requirements.
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Algorithm Source Storage Global Avg.

Gb. Query (µs) Query (µs)

CH [Bast et al., 2014] 0.4 - 110

CH-TNR [Bast et al., 2014] 2.5 1.2 1.25

HL [Bast et al., 2014] 18.8 - 0.56

HL-∞ [Bast et al., 2014] 17.7 - 0.25

HLC [Bast et al., 2014] 1.8 - 2.55

CHAT-2084 1.5 0.295 2.27

CHAT-4096 1.8 0.256 1.9

CHAT-8192 2.5 0.227 1.65

CHAT-16384 3.9 0.204 1.41

CHAT-32768 16.2 0.215 0.65

Table 3.10: Comparison of storage requirements and query times of various algo-
rithms on Western Europe.

The measured preprocessing times for the above datasets varied between 1 and

12 hours. However, it won’t be correct to directly compare CHAT preprocess-

ing times with the other algorithms, for several reasons. First of all, CHAT was

implemented in Java (unlike other algorithms that were implemented in C++).

Secondly our precomputation were performed on shared resources (a.k.a. cluster)

with significantly slower machines (Intel Xeon E5405 @ 2.00GHz vs. Intel Xeon

X5680 @ 3.33GHz) than reported state-of-the-art algorithms. When run on a

dedicated machine and normalized to the faster, Xeon X5680, we believe CHAT

preprocessing times should be at least 2 times faster.

In conclusion, we see that when dealing with long range queries, as for example,

in a case of national size fleet logistics transportation problems, CHAT has a clear

advantage over other approaches. On average, it is also very competitive with

1The times of CH, CH-TNR, HL, HL-∞ and HLC are reported using Intel X5680 3.33Ghz
CPU. Our queries were performed on somewhat slower Intel X5650 @2.67Ghz machine
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recent state-of-the-art algorithms.

Another clear advantage of CHAT, while not quantitative, but still non insignif-

icant, is that it is very intuitive and relatively simple to implement.

3.5 Conclusions and Future Work

We have extended Grid-TNR to directed graphs. Then we showed how to reduce

the number of access nodes and eventually obtained fast possible queries using

Grid framework. We formally prove that the vertex separating set between bor-

der nodes of the cell and its outer square is the minimum set of access nodes. In

addition, we have presented two new algorithms: the first for Incremental Up-

dating Grid-TNR database and CHAT - a new instantiation of TNR framework.

While the results are very promising, there are interesting research questions and

further improvements that can be pursued. Below we list some directions for

potential research.

Incremental TNR

The space reduction from O(mn) to O(k3) comes with the cost of additional,

somewhat redundant, recomputation work that has to be done during the update

stage. Cells (Co, Cd) associated with C may also often contain pairs of nodes that

do not involve the blocked road e in the shortest path between them. It is an

open problem how we can further reduce these redundant computations.

In the presented algorithm we considered a scenario when the link weight in-

creased. This is the most common scenario in road networks, when dealing with

travel times, which are usually get longer due to morning congestion for example.

88



It would also be interesting to consider how to update efficiently the tables when

travel times of a link decrease.

Combining real time live traffic updates into TNR framework is another in-

teresting and challenging problem. It will require faster decision making and may

even require completely different approach.

CHAT

An immediate speed-up for CHAT queries is to boost it with Arc Flags (AF)

[Möhring et al., 2007]. As it was shown in [Bauer et al., 2010b] CH-TNR queries

were almost two times faster when combined with AF. It would be interesting to

see how much AF can speed-up CHAT queries.

The second direction is to improve the locality filter and eliminate “long” local

queries. For examples, assume there are two locations on opposite sides of a bay

(quite common in Sydney). While they are geographically close to each other,

it may require quite a long journey to get from one side of the bay to another.

Clearly it can be more efficient treat this as a global query.

The example in Figure 3.30 may happen not only when using the distance metric,

but also when using a time metric, in particular in remote areas, where we need

to travel relatively far until we reach another highway. It seems like an interesting

and challenging problem, to find for every node its minimum local search radius

without compromising database size and query time. This will reduce the num-

ber of local queries (which are much slower than global), will make them faster

(because of the reduced search space) and will increase number of global queries

(that are very fast).
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Finally, it would be interesting to see the effect of different clustering tech-

niques.
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Chapter 4

Public Transportation Networks

In this Chapter we present an algorithm to find optimal paths in a public trans-

portation network. Nowadays there are numerous systems that provide users with

transit 1 information, e.g. NSW TranportInfo [NSW], Google Transit [Google].

Such systems are often available as a web service or smart phone application.

The application asks a user to input an origin, destination and expected depar-

ture or arrival time and provides the user with recommended travel routes. Such

systems are useful in encouraging people to switch from their private cars to use

public transport services, thus reducing congestion, CO2 emission and providing

travelers with a better experience.

Our algorithm extends the Transit algorithm [Bast et al., 2006, 2007] using a novel

time expanded graph of a multi-modal public network. As we’ve discussed in 3.1

the original Grid-TNR algorithm is one of the best methods for finding shortest

paths in very large road networks, but was previously limited to a single mode

of transport and static and undirected graphs. The nature of public network is

1the textual similarity between transit networks (a.k.a. public transportation networks)
and transit node routing is accidental
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very different from road network in many ways, e.g., links are directional, time

dependent, etc. In addition, the number of nodes is very large, especially if, as is

the usual case, we deal with time dependency by constructing a time expanded

graph. In practice, simply applying Grid-TNR to a time expanded graph does

not scale. To deal with this problem, we will apply it on a two-layers model of

the public transportation network. We start with a single objective problem and

show how to extend it to multi-objective criteria, such as travel time, tickets cost

and hassle of interchanges to accommodate various user preferences.

4.1 Related Work

Modeling

The information of public transport availability is usually provided in a timetable,

where each service in the timetable contains a list of stations with its arrival and

departure times.

Station Arrival Departure

A 8:00

B 8:05 8:06

C 8:10 8:11

D 8:20 8:21

· · · · · · · · ·
· · · · · · · · ·
Z 9:00

Table 4.1: Example of timetable information for a service that travels from A to
Z.

The basic idea is to convert those timetables into a graph on which we can
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then compute the shortest paths. There are two main ways to model the problem,

specifically time expanded [Müller-Hannemann and Weihe, 2001; Schulz et al.,

2000] and time dependent [Brodal and Jacob, 2004; Nachtigall, 1995; Orda and

Rom, 1990] models.

In the time dependent model the node set of the graph is the set of all the

stations and there is a link between two nodes, if and only if there is at least one

service between two stations. The cost of each link is time dependent. In order to

model realistic transfer times, for every station node, for each route that passes

via this station, we introduce an auxiliary route node. The route nodes are then

connected to their respective station nodes, with the cost reflecting the transfer

time.

In the time expanded model each node of the graph correspond to an event

rather than a physical station. In a simple model, there are two types of events:

arrival and departure. In order to model realistic transfer times, we introduce a

new transfer node which is connected to a departure node with a link which cost

reflects the transfer time. The main difference between the models are the link

weights, which are functions in the first instance and are constant in the later.

For an exhaustive description of the models and existing techniques we address

the readers to [Müller-Hannemann et al., 2007; Pyrga et al., 2004].

In [Pyrga et al., 2004] the authors experimentally compared those two models

on several real-world data sets using variations of Dijkstra. The experiments

revealed that time-dependant model performed better on a simplified version of

the earliest arrival problem, while time-expanded model is more suitable to model

more complex, realistic scenarios.

There are numerous work on trying to apply techniques from road networks
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onto public transportation networks [Delling et al., 2009b; Müller-Hannemann

et al., 2007]. Below we review the most recent results.

Car or Public Transport ?

While in recent years many algorithms have been developed that use precomputed

information to speed-up shortest path queries in a road network (see 3.1), less

progress has been made for public transportation networks. In [Bast, 2009], the

author discusses why finding shortest paths in public transportation networks is

not as straight forward as in road networks. There are several issues that arise

in public networks, which are not encountered in road networks. For example,

the start and end of the journey are usually geographical locations (e.g. home or

work), and we need to walk to some nearby station first. It is unclear, a priori,

what station should we start our journey from, so here we have a set of source

and target stations. Other issues we need to consider for example, are walking

between different services, transfer time safety buffers, tickets cost, operating days,

etc.

Pareto Search

In [Müller-Hannemann and Schnee, 2007], the authors presented an efficient algo-

rithm to provide attractive alternatives for users of public railroad systems using

time-expanded model. They considered three criteria: travel time, fare and num-

ber of train changes. Essentially the proposed algorithm is a “Pareto version” of

Dijkstra’s algorithm using multi-dimensional labels. In the previous work [Müller-

Hannemann and Weihe, 2001] the authors showed that in practice the number
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of Pareto optimal paths (for the German railroad network) is a relatively small

constant, though in theory this number could be much larger.

In order to speed up queries, they used goal directed search (similar to A*),

using a station graph to calculate a lower bound to the destination. In addition,

the author noticed that while there are some solutions that are theoretically

sub-optimal (and therefore would be omitted by the algorithm), they are still

attractive from a practical point of view. In order to “pick up” those solutions

they defined a notion of relaxed Pareto dominance. This allowed to find and

return sub-optimal, yet reasonably attractive solutions. To compare their results

with the current Deutsche Bahn System, the authors introduced a linear utility

function to reflect preferences of three different types of travelers: businessman

(who is interested in the fastest journey), handicapped person (interested in the

smallest number of changes), student (interested in the cheapest journey).

In [Disser et al., 2008] the authors considered a similar problem, i.e. finding

all Pareto optimal paths, but this time using a time dependent model. They

showed that this approach is very competitive with the previous, time-expanded

one. Still the authors suggested that in order to make this algorithm practical

its performance needs to be improved.

Accelerating is Harder Than Expected

In [Berger et al., 2009] the authors investigated the effect of applying two well

known speed-up techniques Arc Flags and SHARC (see 3.1). They describe

how those techniques should be adopted to work well with public transportation

networks. Eventually, they report only marginal speed-ups (compared to the ob-

95



served speedups in the road networks) and come to a conclusion that the classical

extensions of arc-flags and contraction does not work well.

Access Node Routing

In [Delling et al., 2009a] D. Delling et al. tackled a multi-model problem when

in addition to a public transport, travelers are also allowed to use a car at the

beginning or at the end of their journey. The authors introduced an Access Node

Routing (ANR), by separating road and public transport networks and treating

each of them separately. D. Delling et al. adopted some ideas from Transit node

Routing (TNR) in the sense that access nodes into the public transport network

can be seen as transit nodes of the combined (road + public transport) networks.

The authors reports preprocessing time in range of if several hours and relatively

fast query times in range of 2.3-5.8 ms.

Contraction Hierarchies (CH)

In [Geisberger, 2009] CH was applied to timetable networks. As it was impractical

to apply CH directly to the time-dependent model, the author developed a new

station graph model. For the simplified version, without transfer times, it is

exactly as the time dependent model. For a more realistic scenario that considers

transfer times, the main difference is that the station graph still keeps one node

per station and does not have parallel edges. The algorithm was tested on real-

world data of European railroads. The author reported preprocessing time of a

few minutes with query times of half a millisecond.
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Google Transit

Until today, this is considered to be a state-of the-art algorithm by H. Bast

et al. [Bast et al., 2010] and is currently incorporated in Google Maps (for

public transportation networks). They report a time of 10ms for station-to-

station query for a North America public transportation network consisting of

338K stations and more than 110M events. The idea is to precompute and store

transfer patterns. Then the query is performed on a much smaller query graph

which is constructed from previously precomputed patterns. In order to speed-

up precomputation, at the cost of slightly compromising optimality, the authors

suggest to perform the precomputation only for the hub stations. Hub stations

are heuristically identified as stations that are on the largest number of shortest

paths. Besides being relatively complicated, the main drawback of their algorithm

is the large computational resources required for precomputation. The authors

report requirements of 20-40 (CPU core) hours per 1 million of nodes. For the

Swiss transit network, which is comparable in size to the Sydney network, the

reported precomputation time was between 560− 635 hours.

User-Constrained Routing (UCCH)

In [Dibbelt et al., 2012] the authors presented a fast multi-modal speedup tech-

nique that can handle different multi-modal user preferences at query time (and

not during the preprocessing). Essentially the authors suggested to merge two

networks: road (time independent) and public transport (time dependent) and

apply Contraction Hierarchy on the combined graph. Practically, contraction

could only be only applied on the road part of the combined network (contract-
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ing public transportation led to prohibitively large number of shortcuts). User

preferences over the modes of transportation are represented by automata, which

is used to constrain Dijkstra search during the query time. For some instances,

the authors reported speed-up of over 45000 over multi-modal Dijkstra.

Round-Based Routing (RAPTOR)

In [Daniel Delling and Werneck, 2012], the authors presented a novel algorithm

for computing all Pareto-optimal journeys - minimizing the arrival time and the

number of transfers. Unlike previous approaches, RAPTOR is not Dijkstra based.

It is fully dynamic and does not rely on any preprocessing. Essentially the al-

gorithm falls into the category of dynamic programming. It operates in rounds,

where at each round, every route is traversed at least once. Round k computes

the fastest way of getting to every other stop with at most k− 1 transfers. RAP-

TOR can be easily parallelized and extended to deal with more criteria. While

it works very well on relatively small (city size) instances it is still not clear how

well it will perform on continental sized networks.

Fuzzy Domination

In [Delling et al., 2012] the authors present an algorithm for finding multi-modal

journeys, including unrestricted walking, driving, cycling, and schedule-based

public transportation. Initially the algorithm computes the full Pareto set (using

adjusted multimodal multicriteria RAPTOR) and then scores all the solutions

using techniques from fuzzy logic. This step eliminates less relevant journeys and

leaves only the most significant ones. In order to deal with unrestricted walking,
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the authors use contraction [R. Geisberger, 2012].

Result Diversity

Recently, in [Bast et al., 2013] proposed a new way Types aNd Thresholds (TNT)

to present to the traveler a small, still representative and meaningful subset of

Pareto optimal results. The TNT concept comprise of several steps: discretization

of the Pareto optimal results, filtering unreasonable results (considering the rela-

tive duration of each mode) and finally applying threshold for relative durations

of each mode. The approach was evaluated on the New York transit network and

while the basic algorithm yields infeasible query times, using an (almost optimal)

heuristic allowed to reduce the query time to 1sec.

4.2 Contribution

The original Grid-TNR algorithm [Bast et al., 2006, 2007] remains one of the best

methods for finding shortest paths in very large road networks, but is limited

to a single mode of transport and static and undirected graphs. One of the

advantages of the TNR is that the final query time is completely independent

of the path length and only depends on the number of the access nodes of the

origin and destination. The public transportation network, somewhat resembles

the structure of road network, therefore it looked natural to extend and adjust

the Grid-TNR to public transportation network. In this chapter we present a

novel time expanded graph of the multi-modal public network and successfully

extend Grid-TNR to work on this graph. We elaborate on those results in the

following sections. Part of the work in this chapter was presented in [Antsfeld
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and Walsh, 2012a,b].

4.3 Modeling

In our new model, we eliminate transfer nodes and all the links from transfer nodes

to departure nodes. Instead we connect arrival and departure nodes directly. The

model consist of two layers: station graph and events graph. The events graph

nodes are arrival and departure events of a station and are interconnected by four

types of links: departure links, continue links, changing links, waiting links. The

station graph nodes are the stations and it has two types of links station links and

walking links. In our experiments, we connect two stations with a walking link, if

they are within 10 minutes of walking distance from each other. The described

graph is illustrated below.
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Figure 4.1: The two layered, time expanded graph with three stations.

For the Sydney public transport network containing 9.3 × 103 stations and

4×106 events, comparing to the traditional expanded model the space reduces by

20%. In addition to the storage saving this modification as we will see, will also

speed up our precomputation time.
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4.4 Grid-TNR

Assume for a moment that our world is a public transportation network, i.e. we

always start and finish our journey at event nodes. We start with solving a single

objective problem, e.g. we are interested to find the fastest way to get from

station A to station B starting our journey at time t. Being consistent with [Bast

et al., 2010] we denote this problem as A@t → B. This problem is equivalent

to finding an earliest arrival time, given the departure time. In reality the user

may be interested in finding a route with the latest departure time, given an

arrival time, which we will denote as A → B@t. This query can be answered

efficiently by simply applying exactly the same algorithm but using backward

Dijkstra. Similarly to the original Grid-TNR algorithm [Bast et al., 2006] our

algorithm also consists of two phases - precomputation and query.

4.4.1 Precomputation

In order to identify transit nodes we exploit the fact that the public transport

stations have geographical coordinates associated with them. It allows us to

overlay the network with a rectangular grid as we did for a road network (see

Section 3.2).

Identifying Transit Nodes

At first stage of this phase, we identify a set of transit nodes. Since the time

expanded graph is too large, both precomputation time and storage space will be

prohibitive. In order to overcome this issue we define transit nodes to be subset of

stations rather than events and determine them on the stations graph layer. This

102



approach very successfully solves the scalability issue. Since the station graph is

relatively small (10K-40K nodes), this is done relatively fast (and of course can

be always executed in parallel).

Computation and Storage of Distances

The next stage is performed on the events graph layer of our network. We pre-

compute the following shortest routes and store them in three tables:

(i) node-to-transit : for every station node S, from every departure event of S to

every transit station node of S,

(ii) transit-to-transit : from every departure/arrival event of every transit station,

to every other transit station node and

(iii) transit-to-node: for every station node S, from every departure/arrival event

of its associated transit station node to S.

4.5 Grid-TNR with Hubs

In what follows we’ll describe a significant improvement of the previous precom-

putation stage. We will show how we can significantly reduce precomputation

(time and storage) without loosing optimality of the final queries. Consider an

example in Figure 4.2 below.

Figure 4.2: Example of hub and non-hub nodes
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In the example there are three bus (or e.g. train) services: A→ B → C → D → F ,

H → B → C → D → E and G → D → E. We want to travel from A to E.

Clearly, at some point we will have to change a service and it can be either at

B, C or D. Now, there is no particular reason for us to change a service at C.

On the other hand, potentially we may change a line at B or D. Therefore, we

will identify B and D as hub stations and will refer to C as a non hub station.

Intuitively, a hub station1 is a station where we could potentially change a service,

where all others non hub stations have no particular reason to be used for trans-

fers. We observed that in reality (for Sydney and NSW public transportation

networks), only a relatively small portion of all stations, 15% − 20%, are hubs.

More formally, let GS = (VS, ES) to be a station graph, as described in Section

4.3. Denote Si be a set of all services that depart from station si ∈ VS. Then set

of hub nodes is defined as

H = {si ∈ VS | ∃sj. s.t. (si, sj) ∈ ES ∧ Sj ⊂ Si}
⋃

{sj ∈ VS | ∃si. s.t. (si, sj) ∈ ES ∧ Si ⊂ Sj}
⋃

{si, sj ∈ VS | (si, sj) ∈ ES ∧ Sj 6= Si}

Pseudo code for identifying hub-nodes

Using the notations from previous Section, we present a pseudo code for deter-

mining hub nodes.

We notice that if we know the optimal route between any hub station to any

1Our hub stations are different from the hub stations in [Bast et al., 2010], see 4.1. They
are likely to be the same, but may be different
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for(si ∈ VS)
for((si, sj) ∈ E)

if (Sj ⊂ Si)
H := H r sj
H := si

else if (Si ⊂ Sj)
H := H r si
H := sj

else if (Si 6= Sj )

H := si
H := sj

Algorithm 5: Pseudo code for identifying hub-nodes

other hub station, then a shortest route between any two nodes (not necessarily

hubs) can be found immediately as described in the next Section.

4.5.1 Extracting the optimal path

We make an important observation that for every two “far away” non hub stations

A and B, the following schema holds.

Figure 4.3: Example of query between two non hub stations

Generally, if a station si is not a hub node, there is only one succeeding station

sj, such that there is a service between si to sj, i.e. (si, sj) ∈ ES. Otherwise si

would be a hub node itself. Similar holds for Sj, etc... Therefore, referring to

Figure 4.3, there is only one direct way to follow from any non hub node A to its

first hub node HA and from HB to B. In other words, any service that departs

105



from A will certainly arrive to HA. Similarly any service that arrives to B will

certainly depart from HB (because otherwise B would be a hub as well). It brings

us to the following idea. If we only knew the shortest path from any hub node

to any other hub node, it would give us very fast, simple and intuitive algorithm

for finding shortest path between any two stations.

Given a query between A and B:

(i) Start from A and follow to it’s first (outgoing) hub node HA

(ii) Traverse backwards from B find it’s first (incoming) hub node HB.

(iii) Fetch from the precomputed database the optimal route HA  HB.

(iv) Combine all three segments together to obtain an optimal path .

Since eventually public transportation networks are inherently time dependent,

we are interested in a query A@t→ B. Adding a time dimension to the algorithm

above is relatively simple as well:

(i) Start with first service that departs at time t1 > t form A and follow until the

first hub node HA arriving there at time t2.

(ii) Fetch from the precomputed database the optimal route HA@t2  HB

(ii) Continue to B with a direct service that departs from HB at time t3 > t2

(iv) Combine all three segments together to obtain an optimal path .

Although the obtained path, in theory will be the fastest, in practice it may

not be very convenient and involve unnecessary waiting (for example if services

departing from HA are infrequent) or unnecessary change between services at the

hub nodes. In order to address this we do some “after-analysis” of the obtained

route: if in the obtained route there is a relatively long waiting (say more than

10 mins) at HA, we check if we can leave A later and still eventually to arrive at
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the same time. We will discuss in a Section 4.8 in more details how to apply the

obtained results in the real world.

From Section 4.5.1 we know that it is enough to know the optimal route only

between pair of hubs in order to easily reconstruct the optimal route between any

two nodes. Therefore our aim will be to efficiently answer the queries between

any two hubs. For this we will use the modified Grid-TNR algorithm.

4.5.2 Precomputation

The stage of identifying transit nodes is performed exactly as in 4.4.1. Note,

it wouldn’t be correct simply to disregard non-hub nodes now. This is because

in order to get from one hub to another, we still may need to change a service at

a non hub node, therefore we can not disregard them at this stage.

The computation and storage of distances stage is performed similarly as

in 4.4.1 with the only major difference, that now we simply disregard all non-

hub nodes and precompute tables only for hub nodes. More specifically, we

precompute the following shortest routes and store them in three tables:

(i) hub-to-transit : for every hub station H, from every departure event of H to

every transit station node of H

(ii) transit-to-transit : from every departure event of transit station node to every

other transit station node and

(iii) transit-to-hub: for every hub station H, from every departure event of its

associated transit station node to H.
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4.5.3 Query (time only)

Given a global query1 A@t → B, between two hub nodes A and B, we find the

fastest journey time similarly as in the original Grid-TNR as follows. We fetch

the transit station nodes of A and B, TA and TB accordingly. Let τA ∈ TA and

τB ∈ TB be transit nodes of A and B. For every τA we fetch c1 = cost(A@t, τA).

Let’s assume that this route arrived to τA at time t1. Then we fetch c2 = cost(τA@t1, τB).

Finally, assuming that the fastest route from τA at time t1 arrived to τB at time t2,

we fetch c3 = cost(τB@t2, B). Eventually the total travel time will be c1 + c2 + c3.

Iterating over all τA ∈ TA the cost of the fastest route will be the one that yields

minimal c1 +c2 +c3. In case A@t→ B is a local query, we just apply any efficient

search algorithm, A* for example.

4.5.4 Query (itinerary)

Unlike road networks, where for many practical applications returning the time

(or distance) is sufficient, in public transport networks users will be usually in-

terested in concrete route directions. More precisely, besides knowing on which

service to board at the start of their journey, we need to provide the whole

itinerary, i.e. instructions where they should change services. Note, that unlike

in road networks, we don’t have to provide all intermediate stops of the journey,

but only the stations where transfers between services occur. Luckily, the vast

majority of our journeys consist of a very small number of transfers, 2-3 (4 and

more on very rare occasions). Observing this, during precomputation phase for

every precomputed pair we store the instructions where to change services (will

1global query is defined exactly as for Grid-TNR in Section 3.2.3
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require additional 4 bytes of storage for every change). Alternatively we can store

only the first change (similarly to storing the first link in the road networks) and

reconstruct the whole journey by iteratively applying the Query from the next

transfer station. Again the number of iterations should be very small.

4.5.5 Local queries

Similar to Grid-TNR we still need to address non-global, a.k.a. local queries.

Luckily, many of the local queries are direct connections, i.e. do not require

transfers and can be efficiently obtained as in [Bast et al., 2010]. The authors

reported query time of 10µsec. For all other queries we will have to fall back to

some other method, A* for example, which should be relatively fast in practise

because of the proximity between src and dst.

4.6 Practical Speed-up Techniques

One significant improvement was achieved by noticing that there is no need to

precompute and store distances from (or to) every node in the network. Without

loss of optimality we can safely ignore stations that are visited only by one service.

Given a query where source or destination one of this nodes we can just simply

follow the only service from this node until we encounter the first station node

that is visited by more than one service.We observed about a 40% reduction in

the number of nodes for which we should perform a precomputation stage 4.4.1.

Another significant speed up was achieved by noticing that the same service run-

ning, say 10 minutes later, will eventually take us exactly to the same stations

just 10 minutes later. Since there is no point for the user to wait on the sta-
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tion for exactly the same service which will arrive 10 minutes later, during the

precomputation stage, when running Dijkstra this whole branch can be pruned.

Consider the example in Figure 4.4 below. Assume we have two identical services

that operate with say 10 minutes difference. During the precomputation stage,

when performing Dijkstra from the first departure node we can safely prune the

whole branch that starts at the later departure node of exactly the same service.

Figure 4.4: Example of pruning identical service.

The branches that can be pruned are identified and marked during the initial

creation of the public transport network. This gave us about 20% speed up in

the precomputation time.

Similarly, we notice that a service from station A to a station B, say at 9am

and 9:30am has actually exactly the same pattern1. On the other hand travel-

ing from A to B, say at 6pm may have a different time pattern. In order to

capture this, we group similar services during the day according to their time

1exactly the same sequence of stops, but only with shifted time.
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pattern. Luckily the number of these patterns is not large, for example it may

take for some service 20minutes at night, 30minutes in the morning, 25minutes

during the day and 35minutes in the evening. Essentially this is the same ser-

vice, but it may be affected and take different time due to city traffic patterns.

Then we precompute the tables only for a single representative service of every

pattern. A more simplistic approach would be to divide the day into segments

(e.g. 6am-9am, 9am-12pm, 12pm-4pm, 4pm-7pm, 7pm-10pm, 10pm-6am) and

then similarly perform precomputation only for a single representative of every

segment. This short-cut may sacrifice a small amount of optimality, but makes a

significant improvement in precomputation time.

Another ’trick’ to make precomputation twice as fast is to precompute the tables

only for departure events. During the query time, if we need to continue on the

same service through one of the transit stations, the departure event associated

with the arrival event of these service can be momentarily accessed by an auxil-

iary link connecting between those two events. It will cost of additional 4 bytes

of storage for every pair arrival-departure.

Finally, similarly to Grid-TNR we notice that the process of identifying transit

nodes for one cell is completely independent of other cells and therefore can be

parallelized. Analogously, we observe that second phase of the precomputation

and storage of the three database (node-to-transit, transit-to-transit, transit-to-

node) tables is also independent and can be performed in parallel.

For public transportation networks, in order to provide a plethora of results we

need to execute several (independent) queries between different source and des-

tination stations. Clearly this can be easily parallelized, allowing us to achieve

location-to-location query time essentially almost as fast as single node-to-node
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query (as long we have enough available cores).

4.7 Dealing with Multi-Objective Queries

In addition to finding the fastest connection between two points, the user may

consider also other criteria, such as the cost of tickets, hassle of interchanging

between services, etc. Moreover, different users can have different preferences

over these criteria. For example a businessmen may try to optimize his travel

time, a student may try to minimize his costs and a visitor may wish to avoid

changing services in order not to get lost. There are several ways to deal with

multi-objective optimization Müller-Hannemann et al. [2007]. In this work we

choose the normalization approach, by introducing a linear utility function. We

will precompute the tables for different values of the linear coefficients that reflect

different user preferences. This approach reduces the multi-criteria problem to a

single-criterion optimization, which we can solve as described.

4.8 Providing multiple results in the real world

Until now we have assumed that our world is a public transport network, i.e. the

start and end point of the journey is always a station node and we are departing

exactly at time t. The result we obtain is theoretically optimal, but of course in

the real world most of the time this is not the case. We may need to walk from

our home to our first station and from the last station to our final destination.

Moreover, in real life we would prefer to wait a little bit now if we know that

eventually we may arrive earlier, for example to wait for an express bus. In
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addition we all like choices, therefore the system will be more user friendly if it

could provide multiple attractive alternatives to the user. In order to cover those

real life scenarios and provide the user several attractive suggestions we will run

our Query starting from different stations around the user’s starting location and

different times around his specified departure/arrival time t. From those we are

choosing the best five. Experimentally we could see that this heuristics provide

us with the most reasonable results that a person would make.

Another important aspect we consider is robustness of the provided solutions. In

practice, public transport often runs late due to traffic congestion or accidents or

other unpredicted events. Missing a connection by one minute may cost us an

hour in our total journey time, if the next connection is infrequent and departs

say only once an hour. In order to minimize such occurrences and to make the

system more reliable and user friendly we identify 1 those trips and warn the user

about risky connections. Then the user will choose his preferred trip according

to his risk adverseness.

4.9 Implementation and Experiments

The proposed algorithm was implemented using the Java programming language

and the experiments were performed on PowerEdge 1950 server, with those speci-

fications: CPU: 2 x 2.00GHz Intel Quad Core Xeon E5405, Memory: 16 GB. The

presented results were obtained using the Sydney metropolitan and state of New

South Wales (NSW) public transport multimodal network consisting of buses,

trains, ferries, lightrail and monorail modes. The graph representing Sydney net-

1we post-process each trip and identify risky connection that may cause to a significant
total delay
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work contains 9.3K station nodes, 2.1M event nodes and 8.1M links. The graph

representing the whole NSW network contains 46.3K station nodes, 6.7M event

nodes and 23.2M links.

Given a grid size g × g and sizes of Inner and Outer, for every query it is very

easy to verify whether it is a global or a local. We just need to check if the two

nodes are within a local radius of each other. Therefore by simple sampling of

many random queries we can have a good estimate of the percentage of global

vs.local queries. It allows us to fine tune the sizes of grid, Inner and Outer to

achieve the desirable percentage of global queries. Larger values for Inner and

Outer normally yield smaller number of transit nodes, consequently requiring

smaller memory requirement, but also covers a smaller number of global queries.

We experimented with different sizes of the grid, Inner and Outer and came to

a conclusion that for public transportation networks the choice of Inner = 3× 3

and Outer = 5 × 5 provide better results than traditional choice Inner = 5 × 5

and Outer = 9 × 9 for road networks. Below we present results demonstrating

tradeoff between percentage of global queries and memory/time requirements of

the offline stage. In addition we present the average query time (in micro sec-

onds) for a single query of different types: hub-to-hub (HH), station-to-station

(SS), location-to-location (LL)1 time complexity..

1we store the station nodes in KD-Tree structure, which allow us to find the closest node
to a location in O(log n)

114



Area Global Grid size |T | Storage Precomp. Query time (µs.)

queries (cells) (Mb.) time (hours) HH SS LL

Sydney 70% 70 x 70 1174 321 0.7 91 95 104

Sydney 80% 89 x 89 1505 446 0.9 70 76 85

Sydney 90% 136 x 136 2256 825 1.2 49 55 65

NSW 70% 42 x 42 1023 215 1.5 70 76 85

NSW 80% 59 x 59 1733 375 2.5 89 95 105

NSW 90% 94 x 94 3270 1200 6.5 66 71 80

Table 4.2: Experimental results of applying Hub Grid-TNR on Sydney and NSW
public transport network.

Applying the TRANSIT algorithm in a naive way, without including hub nodes

and any speed ups yields memory requirements up to 45Gb for Sydney and 50Gb

for NSW networks with the estimated precomputation time of several days.

4.10 Discussion

In this work we presented a novel approach for finding optimal connections in

public transportation network based on Grid-TNR. We compare our algorithm

with one of the fastest algorithms for public transportation networks [Bast et al.,

2014], Google Transfer Patterns (TP) [Bast et al., 2010]. Algorithmically, the

two approaches are fundamentally different. TP is based on the observation that

many optimal journeys share the same transfer patterns. These transfer patterns

are precomputed and stored for all pairs of nodes and departure times. Then,

during a query, a small query graph is constructed and relatively fast search is

performed on this graph. In order to accelerate the precomputation and to reduce

storage space, hub nodes are heuristically selected and then the transfer patterns
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are precomputed only for those hubs.

There are several advantages of our approach over Transfer Patterns (TP).

First of all, TP precomputation requires large computational resources. The

authors report requirements of 20-40 (CPU core) hours per 1 million of nodes.

For the Swiss transit network, which is comparable in size to the Sydney network,

the reported precomputation time is between 560− 635 hours, where for Sydney

network the precomputation takes slightly more than one hour. The additional

precomputed storage is comparable for both algorithms, ∼800Mb. An additional

advantage of our approach is in a query time. TP requires perform an online

search in a small1 query graph and it is reported a typical query time of 10ms.

Grid-TNR approach requires only limited number of table lookups, independently

of the size of the underlying network and its global query time is measured in µs.

The advantage of TP is that it successfully handles all types of queries, while for

local queries, which are not direct connections, we need to fall back for a local

search. Nevertheless, considering the case when 10% of the queries are local and

take 10ms and the rest 90% of the global queries take 50µs, it gives us an average

query time of ∼1ms, which is still faster than 2-3ms reported by TP.

4.11 Conclusions and Future Work

In this work we presented a novel approach for finding optimal connections in

public transportation network based on Grid-TNR. We presented an experimen-

tal results using the Sydney and New South Wales (NSW) timetables. There are

several interesting directions that we thing worth pursuing.

1typical number of arcs is below 1000
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In 4.4.1 we identified transit nodes as a subset of station nodes. This approach

very successfully solves the scalability issue, but introduces a new challenge. Be-

tween two stops, one path can be a shortest path, say in the morning and another

one in the evening. Therefore it could be desirable to make transit nodes time

dependent. When querying for a journey a time t, we can fetch only access nodes

associated with this time, rather all access nodes as we do today. This in turn

will speed-up final query time.

It would be interesting to investigate the hierarchical TNR, introducing several

layers of transit nodes. This should reduce local queries for which we’ll have to

invoke a fall back algorithm.

Applying CHAT (Section 3.4) looks like another potential improvement.

In addition we would like to extend this idea to fully realistic inter modal jour-

ney planer which includes combination of private transport (e.g. car, motorbike,

bicycle) and public transport and incorporates real time updates for both traffic

conditions and public transport actual location.
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Chapter 5

Grid Networks

Part of the results obtained in this Chapter was a collaborative work with Daniel

Harabor. A joint paper appeared in AIIDE’13 [Antsfeld et al., 2012].

5.1 Grid Graphs

Grid maps are widely used in video games and other domains (AI, for example).

There are two variants of grid based graphs. In the first instance, every node may

be connected only to its nearest horizontal or vertical neighbor with a weight

equals 1. In the second instance, diagonal moves are also allowed, therefore

additional diagonal links can be present with a weight equals
√

2. Below is an

example of typical grid maps from a game “Baldurs Gate II” and artificially

created maze.
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Figure 5.1: Map from Baldurs Gate II Figure 5.2: Synthetic map of a maze

5.2 Related Work

The AI and Game Development communities have devoted much attention to

the study of both exact and approximate techniques that speed up forward state-

space search algorithms such as Dijkstra and A*. Below we review the fraction

of the work which is the most relevant to our research.

Near-optimal Techniques

In [Botea et al., 2004] the authors presented a Hierarchical Path-Finding A*

(HPA*). Initially the grid map is divided into disjunct rectangular clusters and

transitions between those clusters are identified. Next, an abstract graph is de-

fined as follows. For each transition between two adjacent clusters, there are two

nodes (one for each cluster) and a inter-edge link that connects them. Each pair

of nodes inside the cluster is connected with an intra-edge link. Then, an online

query is carried out by A* on the abstracted graph. The authors reported up to
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10 times speed-up over highly optimized A*, when the cost of the found paths

are within 1% of optimal. Later in [Sturtevant, 2007] this approach was improved

by combing it with Path-Refinement A* (PRA*) [Sturtevant and Buro, 2005]. A

speed-up of up to 100 times over A* was reported, at the cost of 3% additional

storage.

True Distance Heuristics (TDH)

The basic idea is to improve the heuristic used by A* search. Clearly, the perfect

heuristic will guide A* directly to the goal, but it will require precomputation and

storage of all pairs shortest paths, which is, of course, in many cases impractical.

In [Sturtevant et al., 2009], the authors presented two methods that compute and

store only a small part of this information. Experimental results on a number of

domains showed a 6-14 fold improvement in search speed over previously known

heuristics.

An additional attempt, called Portal Heuristics (PH) was introduced in [Gold-

enberg et al., 2010]. The algorithm is based on partitioning the state space into

regions, ideally of similar size with few border states (a.k.a. nodes). It somewhat

resembles Precomputed Cluster Distances (PCD) [Maue et al., 2010], with the

main difference that here the auxiliary data is used as a heuristic for a following

online A* search. For the instances where the grid map could be “nicely” par-

titioned, (i.e. divided into regions that are connected with each other by small

number of edges), PH outperformed previous TDHs.
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Compressed Path Databases (CPD)

CPD [Botea, 2011, 2012] is relative new technique for pathfinding without the

need of runtime search. The basic idea, similar to Spatial Induced Linkage Cog-

nizance (SILC) [Sankaranarayanan et al., 2005], is that many shortest paths which

start at the same location, share the same first move, regardless of the final desti-

nation. SILC decomposes the map into quadtree structures and then performs a

binary search to find a block that contains a location l. CPD, for every location

l decomposes the map into equivalences classes, such that every class contains

all destinations reachable from l starting in one of the 8 possible directions. The

author report up to 700 times speed-up over A*. Since some of our results inter-

twine with CPD, we will describe this algorithm in more details in the Section

5.5.1.

Swamps

In [Pochter et al., 2010, 2009], the authors introduced the concept of swamps and

swamp hierarchies. The idea is to use preprocessing to eliminate set of nodes

that eventually will not appear on any shortest path. This idea is similar to

[Björnsson and Halldórsson, 2006] where the authors use preprocessing to identify

dead ends. The main difference between those two approaches is that the swamps

also identify and prune other areas that can be avoided, if there is an alternative

shortest path.
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Jump Points

In [Harabor and Grastien, 2011], the authors introduced a new online pruning

strategy using jump points. The idea is, during the search, to eliminate intermedi-

ate nodes on a path between two jump points, such that jumping over them does

not affect optimality. The authors reported order of magnitude faster queries

compared to Swamps.

Contraction Hierarchies (CH)

As there is no clear hierarchy among the edges in the grid, it was not that obvious

that CH will work “out of the box”. The first attempt to apply CH on grid maps

was reported in [Sturtevant and Geisberger, 2010]. The authors reported an order

of magnitude speed-up over A*. While at that time it considered to be state-of-

the-art, those results are superseded today by CPD.

The most recent result [Storandt, 2013] also demonstrates that it is possible to

apply CH on grid maps. While no modifications to CH were necessary to run

CH on grid maps, the author suggested a speed-up technique, that also allows

to extract canonical paths, i.e. a paths with a minimum number of turns. The

algorithm was tested on some selective instances and showed a speed up of two

orders of magnitude over A* with precomputation time of about 10 sec. and

additional storage of up to factor of 7.
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5.3 Contribution

Our contribution is as follows: We give a first detailed evaluation of Grid-TNR

(see Chapter 3.2) on popular grid domains from the AI literature. We find that

Grid-TNR is strongly and negatively impacted, in terms of running time and also

memory, by uniform-cost path symmetries that are inherent to many grid-based

domains but not road networks. We address this with a new general technique

for breaking symmetries using small additive ε-costs to perturb the weights of

edges in the search graph. Our enhancements reduce the number of nodes in the

Grid-TNR network by up to 4 times and yield running times up to 4 orders of

magnitude faster than A* search. We also report on additional benefits derived

from tuning various preprocessing parameters, including cell size, border crossings

and reductions to the number of queries which are considered global.

We also compare Grid-TNR with CPDs [Botea, 2011]: a recent and very fast

database-driven pathfinding approach. Our results indicate the two algorithms

have complementary strengths and we suggest an approach by which they could

be combined. However, we also identify a class of problems to which Grid-TNR

appears uniquely well suited. In these cases we report up to two orders speed

improvement vs CPDs using a comparable amount of memory.

Finally, we introduce a new hybrid method combining CPD with Grid-TNR

for path extraction. We give an evaluation of our method using popular grid

domains from the AI literature Sturtevant [2012a] and find that the synergy of

Grid-TNR with CPD outperforms solely Grid-TNR based path extraction by

up to more than three orders of magnitude. In addition we observed that the

suggested algorithm is very competitive with an original CPD path extraction -
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in both memory requirements and the query time, where in addition it answers

very fast the distance queries.

5.4 Grid-TNR

In addition to computing shortest paths it is sometimes desirable to efficiently

calculate the distance between two units on a map or the distance to an object

of interest. Support for such distance queries is found in popular game libraries,

including Umbra 31, where they are used for optimizing game logic and driving

scripted events. Distance queries may also be useful for higher level AI; e.g. as

described in [Champandard, 2009].

The Grid-TNR algorithm does not appear to have been tested previously

on grid-based maps of the type commonly found in game maps. On our first

attempt we observed the algorithm often has prohibitively large memory require-

ments and relatively long query times. This behavior can be traced to a property

commonly found in grid maps but rarely in road networks: uniform-cost path

symmetries [Harabor and Grastien, 2011]. To overcome this difficulty we propose

a novel symmetry breaking technique which we apply during preprocessing and

which involves the addition of small positive “noise” to all edge weights. This idea

has been previously suggested in the context of symmetry breaking for Integer

Linear Programming [Margot, 2009] but the authors note that such perturbation

“does not help much and can even be counter-productive”. In our case, perturba-

tion of edge weights significantly reduces the number of transit nodes and leads

to faster preprocessing times, lower memory requirements and significantly better

1http://www.umbrasoftware.com/
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query times. To the best of our knowledge, we are the first to successfully apply

such a technique to symmetry breaking in pathfinding search. Our idea is gener-

ally applicable to any kind of search graph; we exemplify it on the 4-connected

grid in Figure 5.3.

Figure 5.3: (a) Example of many symmetric shortest paths between src and v in
4-connected grid network. (b) Example of shortest paths from src to dst1, dst2
and dst3 that share many common shortest subpaths from src to v.

Assume that during Grid-TNR’s preprocessing phase we are calculating short-

est paths from the node src to each of dst1, dst2 and dst3 – which all reside on the

border of the Outer square O. Notice that each shortest path shares a common

symmetric subpath src  v and crosses the Inner square I in three different

locations. Therefore we identify T1, T2 and T3 as transit nodes (starred locations

in Figure 5.3). Our intuition is as follows: if we will add a “small” random ε-cost

to each edge in the grid, there will be (with high probability) 1 only one shortest

1See the Appendix for more detailed analysis
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path to node v, e.g. through T3. We assume here that src  v will appear as a

common subpath for two or more of dst1, dst2, dst3; although theoretically this

is not guaranteed it occurs very often in practice.

We will now show that choosing ε sufficiently small will preserve optimality

of all shortest paths.

Definition 5.1. Let G = (V,E) be a weighted graph with integer costs (if they’re

not integer, we just scale them up by a suitable factor so that they are) and let L

be the number of links on the longest shortest path in G. Then we define ε < 1
L

.

Note for all practical purposes there is no need to actually calculate the length

of the longest shortest path L, but we can use |V | as an upper bound.

Definition 5.2. Let G(ε) to be an exact copy of G with the only difference that

for every edge e in G(ε) we add a random number from the interval (0, ε) to its

weight.

Lemma 5.1. For every optimal path πε in G(ε) there exists a corresponding

shortest path π in G that traverses through exactly the same nodes as πε.

Proof. By contradiction. Let πε in G(ε) be an optimal path between two nodes

src and dst. Let π be a path in G which travels through the same nodes as πε

but is not optimal. This means there exists another path π′ between src and dst

in G which is strictly shorter than π. Let π′ε be a non-optimal path in Gε which

travels through the same nodes as π′. Now we notice that the smallest difference

between costs of any two paths in G can be at least 1. From Definition 5.1 this

can only happen if π′ε is longer than L, which is impossible.

A natural value for L in a 4-connected grid map is ε = 1
L

; for 8-connected

grids we define ε = 2−
√
2

L
.
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Corollary 2. The number of transit nodes identified in G(ε) is no greater than

in G

A direct conclusion from the latest discussion is that during the identification

of transit nodes stage, we can safely substitute G with G(ε) and in practice

eliminate all symmetric path segments. This will reduce the number of transit

nodes, precomputation time and storage space as well as final query time.

Notice that perturbation of the graph weights in the manner described above

is not specific to grid maps or indeed to any implementation of the Grid-TNR

algorithm. It is a general technique for reducing symmetries in pathfinding search

and could be used in other settings: e.g. Dijkstra’s algorithm.

5.5 Path Extraction

In the domain of grid networks, in most of the cases we are required to find the

shortest path itself, rather than simply its cost. In this section we present a new

idea of extracting the shortest path by combining Grid-TNR with CPD. A brief

overview of CPDs is necessary to understand how the idea is integrated into our

architecture. For a more detailed description we point the reader to the original

publications [Botea, 2011, 2012].

5.5.1 CPD

In the pre-processing phase, All Pairs Shortest Paths (APSP) data are computed

as an iterative procedure. There is one iteration for every map node n. An

invocation of the Dijkstra algorithm allows computing a first-move table Tn with
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optimal moves move(n, t) from n towards any reachable target t on the map.1

The table’s two-dimensional size mirrors the size of the map, with cell Tn[x, y]

storing move(n, t) for the target t with map coordinates (x, y).

Figure 5.4: Example of the first-move table2

The second half of an iteration is the compression, when a first-move table

is decomposed into a list Ln of disjoint so-called homogeneous rectangles. All

locations t within such a rectangle have the same move label move(n, t). The

fewer the rectangles, the better the compression. Part of these can be removed,

without any information loss, with a list trimming step, which allows removing

from a list rectangles with the same move label d, called a default move [Botea,

2012].

1For example, move(n, t) can be the id of an outgoing edge from n.
2The drawing by Adi Botea.
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Query

At runtime, given a current node n and a target t, we need to retrieve an optimal

move from n towards t. The program searches in the list of rectangles in Ln

for the rectangle that contains t. The move label of that rectangle is the sought

optimal move. Ordering rectangles in Ln decreasingly by their size improves the

move fetching time. If no rectangle containing t is found in Ln, it means that the

rectangle has been removed as a result of trimming. Thus, the rectangle must

have the move label d, which is the move to return as an optimal step from n

towards t.

The offline pre-processing can be paralellized, since it consists of a series of

independent iterations. The pre-processing time can be critical, for instance

in cases such as a dynamically-changing environment, which would require us

occasionally to re-compute a CPD. Despite the ability of CPDs to compress All

Pairs Shortest Paths (APSP) data by hundreds of times without any information

loss, their size can sometimes be a performance bottleneck, depending on the map

size, the topology, and the amount of RAM available.

5.5.2 Grid-TNR with CPD

The basic idea of our approach is to break a global src dst query into number

of shorter, local subpaths:

src = T0  T1  T2... ...Tk−1  Tk = dst.

Then we reconstruct our src dst path by sequentially extracting local subpaths

Ti  Ti+1, i = 0...k from the CPD.
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5.5.2.1 Precomputation

We immediately notice that all the queries from the CPD are only local, therefore

we can precompute CPDs only for pairs of nodes which are within a local search

distance of each other. This is a major saving in both precomputation time and

memory requirements of CPD.

5.5.2.2 Query

We start with invoking the basic Grid-TNR query. We remember that every

global shortest path, (that is longer than a local search radius) is of a form:

src Tsrc  Tdst  dst. By definition, subpath src Tsrc is local, therefore we

are applying a CPD query to extract the shortest path from src to Tsrc. Next,

if Tsrc  dst is a local query, we extract this subpath from CPDs as before and

we are done. If Tsrc  dst is a global query, then we will repeat the above

procedure but this time using Tsrc as our new src. We can improve this even

more, by noticing that when running sequential queries with Grid-TNR Tdst and

the distance from Tdst to dst are not changing (see Figure 3.3). We exploit this

fact, by reusing Tdst. This speeds up the time complexity of subsequent Grid-

TNR queries from quadratic to linear in the number of the transit nodes. Below

we present the pseudocode of the described algorithm.

One of the advantages of this approach over the techniques mentioned earlier is

that we advance from src to dst by “chunks” of local subpaths, rather than by

a single link. In addition for every such “chunk” we exploit the strength of the

CPD algorithm that is very efficient for local shortest path queries. Actually we
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(Tsrc, Tdst)← Grid-TNR.query(src, dst);

CPD.getShortestPath(src, Tsrc);
while ((isLocalQuery(Tsrc, dst) == false))

(T̄src, T̄dst)← Grid-TNR.query(Tsrc, dst);
CPD.getShortestPath(Tsrc, T̄src);
Tsrc := T̄src

CPD.getShortestPath(Tsrc, dst);

Algorithm 6: Pseudo code for extracting the shortest path between src and
dst

have observed that for some instances the described algorithm performs slightly

better than pure CPD extraction.

In the next section we will present a comparative analysis of this algorithm.

5.6 Experiments

We evaluate Grid-TNR on a subset (Table 5.1) of Sturtevant’s popular and freely

available 1 grid map benchmarks [Sturtevant, 2012a].

Benchmark Map Size States

BG
AR0602SR 299× 308 23 314

AR0700SR 320× 320 51 586

DAO
orz100d 395× 412 99 626

orz900d 656× 1491 96 603

Mazes-1 maze512-1-0 512× 512 131 071

Random-10 random512-10-0 512× 512 235 900

Rooms-32 32room 000 256× 256 240 671

Table 5.1: Grid maps used for evaluation of Grid-TNR.

1http://movingai.com/benchmarks
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These problem sets have appeared extensively in the literature; for example

in [Björnsson and Halldórsson, 2006; Botea et al., 2004; Felner and Sturtevant,

2009; Goldenberg et al., 2010; Harabor and Grastien, 2011; Pochter et al., 2009;

Sturtevant, 2007]. Some, such as BG and DAO, are taken from real video games.

The others, comprising Rooms-32 and Mazes-1, are synthetic. We selected from

each benchmark set maps we considered to be the most challenging; either due

to the presence of extensive uniform-cost path symmetries (as discussed in the

preceding section) or due to topographic features (e.g. narrow corridors, dead-

ends etc.) which are likely to induce significant error for standard heuristics such

as Manhattan Distance (can move to 4 neighbors) and Octile Distance (can move

to 8 neighbors). For each map we generate 10K valid problems from across all

possible problem lengths. Our implementation is written entirely in Java. We

perform all experiments on an Intel Core2Duo with 8GB RAM. For comparative

purposes we include results for a similar set of instances using Compressed Path

Databases (CPD). This algorithm is originally described in [Botea, 2011]; its

source code was kindly made available to us by the original author.

Efficiently Approximating Network Size

Grid-TNR’s performance strongly depends on a set of preprocessing parameters:

(i) the size of each grid cell C and (ii) sizes of the Inner square I and Outer

square O. It is not clear apriori how to choose those parameters. Finding a set of

parameters that is effective for a given input map can be costly, requiring many

invocations of Grid-TNR’s preprocessing phase.

In this section we propose a very simple heuristic that we found useful for
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choosing those parameters and quickly estimating the size of the final preprocess-

ing data as well as percentage of global vs. local queries. For a given overlay grid

of size m×m, we count the number of edges crossing each horizontal and vertical

line of the grid. This number gives us an upper bound of the number of transit

nodes and allows us to tune the grid size to match available computing resources

and application requirements. Having selected a grid size S and sizes of I and

O, for every query it is very easy to verify whether it is global or local: we just

need to check if the two nodes at hand are within a local radius of each other.

Using simple random sampling we can build a good estimate of the percentage of

global vs.local queries and we can adjust our parameter values until we achieve

the desired result. In our experience, larger values for S, I and O normally yield

a smaller number of transit nodes and require less memory overall but also cover

a smaller number of global queries.

Results

We evaluate Grid-TNR on each of our input maps and measure its performance

in terms of: total number of transit nodes (T), database size (DB) and global

query time. To provide a common point of reference we report the latter in terms

of speedup which we define as relative improvement vs. standard A* search. The

exception is Table 5.2 where we report times in µs. Database size is always in

MB.
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Map
(* = no diag.)

(S, I, O)
G Gε

TN QT TN QT
32room 000 (32, 5, 9) 2482 14 1922 8
32room 000* (32, 5, 9) 8858 183 1837 8
AR0602SR (45, 5, 9) 4251 61 3618 38
AR0602SR* (45, 5, 9) 4273 89 2173 14
AR0700SR (40, 5, 9) 10 173 205 9035 122
AR0700SR* (40, 5, 9) 8769 268 4724 38
maze512-1-0 (38, 5, 9) 1707 2 1707 2
maze512-1-0* (38, 5, 9) 1707 2 1707 2
orz100d (43, 5, 9) 18 852 643 16 934 419
orz100d* (43, 5, 9) 16 189 844 10 192 141
orz900d (57, 5, 9) 4886 105 3732 74
orz900d* (57, 5, 9) 2303 74 1177 29

Table 5.2: Effect of adding random ε-costs to edge weights. G is the original
graph and Gε is the graph with perturbed edge weights. TN = total transit
nodes. QT = global query time (µs), S = grid size, I = Inner cell size, O =
Outer cell size. Note that there are two versions of each map: one which allows
diagonal transitions and the other which does not.

5.6.1 Symmetry Reduction

In Table 5.2 we give results for our ε-based symmetry breaking approach. We run

Grid-TNR on two variants of each input map: one where diagonal transitions are

allowed and the other where they are not. Both are common in games and often

studied in the literature.

In the case where diagonal transitions are disallowed the addition of random

ε-costs to edge-weights has a dramatic effect, reducing the number of identified

transit nodes by a factor of between 2-4 and reducing global query times by

anywhere between 2.5 times to over one order of magnitude. When diagonal

transitions are allowed (which is always the case in the remainder of this section)

the improvement is less dramatic but remains strongly positive: we reduce the
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number of transit nodes by between 10-25% and improve global query times by

up to a factor of 2.

5.6.2 Distance Queries

We compare Grid-TNR with Compressed Path Databases [Botea, 2011] (CPD)

on each map in our test set 1. CPD is one of the latest and fastest algorithms

for shortest path queries without state-space search [Sturtevant, 2012b]. Only a

linear number of lookups into a compact database are required (the number is

equal to the individual steps on the path). By comparison Grid-TNR performs

a single lookup operation which compares an up to a quadratic number of local

transit nodes. Figure 5.5 summarises our findings. Note that values along the

y-axis are logs in base 10.

We plot in most cases three curves for Grid-TNR; each one represents a differ-

ent set of preprocessing parameters including different abstract grid size (S) and

different sizes for the Inner square I and Outer square O (we measure both of

these in terms of cells in the abstract grid). We also give the average number of

transit nodes (T) for each cell in the abstract graph and the percentage of queries

which are global (GQ) and do not require any state-space search. Remaining

local queries are omitted (these paths are usually short and can be solved using

any available search algorithm; for example Jump Point Search [Harabor and

Grastien, 2011]).

1diagonals are always allowed here.
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Figure 5.5: Search time speedup (i.e. relative improvement) of Grid-TNR and
CPDs vs. A*. Note the log10 scale on the y-axis.
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We observe that on domains containing no symmetries (Mazes) or only short

symmetric path segments (Rooms) Grid-TNR outperforms CPDs by between one

and two orders of magnitude (and up to 4 orders improvement over A* search).

Grid-TNR requires a moderate amount of storage (32MB and 10MB respectively)

and covers 90% of all queries without search (the remaining 10% are local). CPDs

require 51MB and 5MB respectively and cover all queries. Notice that we store

only a very small number of transit nodes per cell. We experimented with different

preprocessing parameters beyond those given in Figure 5.5 but were unable to

reduce this number further for additional speed gains.

The remaining domains, particularly orz100d and AR0700SR, are character-

ized by large open areas and long symmetric path segments that often span several

cells in the abstract grid. The effect of our symmetry breaking techniques using

ε-costs is less significant for finer grids, because the Outer square induced by the

fine grid will be naturally smaller and contain fewer symmetrical paths in the

first place. As a consequence, for 90% coverage, its performance is dominated by

CPDs; both in terms of time and database size. We ran additional experiments

on these problems using two smaller values for global query coverage: 60% and

30%. We used a coarser abstract grid in these cases, having larger (absolute)

values for I and O. 60% global query coverage omits all paths of lengths between

50-125 (depending on the domain). 30% coverage can omit in some cases all paths

up to length 175. In return for this tradeoff, we see a dramatic reduction in the

average number of access nodes per cell (T) and a corresponding improvement

in performance: Grid-TNR is shown to be up to an order of magnitude faster
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than CPDs using 30% global query coverage and requires substantially less mem-

ory; in some cases just a few MB. For 60% global query coverage, Grid-TNR is

comparable with CPDs, both in terms of performance and database size.

5.6.3 Path Extraction

As we have discussed earlier Grid-TNR and CPD have complementary strengths

and weaknesses. In terms of distance query time, Grid-TNR is very fast for global

queries and relies on other algorithms for local queries. CPD on other hand is very

fast for short queries and becomes slower as the shortest path becomes longer. In

terms of memory requirements, as was discussed in [Antsfeld et al., 2012], there

is a clear tradeoff between memory requirements and final query time for Grid-

TNR. In order to take advantage of the strengths of both algorithms we choose

the Grid-TNR parameters that will guarantee us at least 30% of the queries to

be global [Antsfeld et al., 2012]. Those are usually the longest and the most

challenging queries for CPD.

Map CPD CPDL Grid-TNR Combined

AR0602SR 6.3 3.7 1.2 4.9

AR0700SR 41.7 22.8 12.3 35.1

orz100d 138.2 78.2 31.5 109.7

orz900d 25.8 25.8 9.3 35.13

maze512-1-0 53.2 28.7 7.1 35.8

32room 000 215.4 171.7 40 211.7

Table 5.3: Sizes (in Mb) of the Grid-TNR database, CPD, Local CPD (CPDL)
and the combined method.
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We evaluate path extraction using three methods (Grid-TNR, CPD and Grid-

TNR+CPD) on each of our input maps and measure its performance in terms of:

memory requirements (Mb.) and global query time (µs). Figure 5.3 summarizes

the additional storage requirements, where CPDL denotes the CPD database

restricted only to local queries.

Figure 5.6 below demonstrates the time required for full path extraction as a

function of the shortest path length (measured in number of links).
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Figure 5.6: Path extraction time (µsec.) as function of the shortest path length
(] of links). Note the log10 scale on the y-axis.

140

AR0602SR AR0700SR 
1:~oooo lOOOt>: O 

! QOOOO JQOi>: O 

100CO 10!): 0 

Jt>:o 11>: 0 

:to I • I I I I I • • I • • :to 
10 10 

1 1 
~ ~ 0 ~ 0 ~ Q ~ 0 •• 0 ~ 0 ~ Q .• 0 ~ Q ~ 0 ~ Q ~ 
~ ~ 0 

, _ 
~ ~ :0. N ~ .. 0 N ~ !:; 0 :-. ~ .. :0. N ~ .. 0 N - N ~ N N .. ., ., ~ ~ ~ " ' N " ~ ~ ., ~ ~ 

- T;=tA'ISIT ---CPO .....,... TR:..NSIT •CPD -T;=tAN~IT ---CJ>) .....,... TRAil. SIT •CPD 

orzlOOd orz900d 
1(;111):1111) 1 1:(!1l!X:U 

IM :lOO l <.iUl):;O 

10)00 l UI)'.;O 

:.ooo l OCO 

100 li • •• ••••••••• a• :.co 

10 10 

l 1 
~ .. ~ ~ ~ ~ ~ ,. ~ ~ ~ ~ ~ .• ~~ 

~ ~ ~ ~ ., V • ~ ~ v ~ ~ ., ~ .. ~ .. N >· N ~ ::;: ~ N .. N .. :-. ~ ~ 
N ~ N ~ N ~ N ~ ~ " ~ " N N • •. ~ "' " • "' ~ m " ' ~ "' ,., . , ,. ~ • • ~ ~ ~ ~ ·- ·- ~ " " " " " " " .. " ·~ · -.: 

.-.-TF:>NSrT -tt-CPD -.-11\.\NSfT+CPO ,_._ TR.o\I>J!iiT -e-CP> ---l ru u it+CPO 

maze512 32room 
! OOOJOO ! IJOOJOO 

100300 100300 

10)00 10)00 

·ono : •JOO 

IIIIJ 1111J • •••••••••• • •• 10 10 
1 l 
~ ~ ~ ~ ~ ~ ., ~ ~ ~ ,. ·~ ~ ~ ~ .. " " ·- " ·-,, 

" .. ~ " '" " .. .. ~ ~ ~ J • .. ~ ~ ~ 

~ :!: ~ 0 " "' " Q 
,. 
~ " ' =· .n ~ ~ :'l 

,, 
!; ~ ~ " :.1 [;> (Jl -N N N ~ ~ ~ ~ ~ • ~ ~ ., N ~ ~ 

- llUo.N$1T - CPD ... r ran: ih C)D - llUo.Ni iT - CPO -rran~it..C~O 



We observe that our new approach outperforms by 2-3 orders of magnitude

the state of the art approach that uses purely Grid-TNR database. Moreover for

some of the instances, the combined method performs slightly better than pure

CPD path extraction.

Discussion

We show in the preceding section that Grid-TNR is able to compete with and

even outperform CPDs for a certain class of distance query: those where the start

and goal are not in close proximity. Such problems are usually considered difficult

for state-space search algorithms but also for CPDs because more lookups are re-

quired and each lookup has an associated, and often linear-time, cost. On one

hand, CPDs are attractive because they perform well in practice and offer com-

plete coverage of all queries without resorting to any localized state-space search

(as is usually the case for Grid-TNR), as well naturally produce an actual path.

On the other hand, CPDs preprocessing time is longer and in case of any change

in the network the precomputation has to be made again from scratch. By com-

parison, recent variants of Grid-TNR can incrementally update the precomputed

costs database [Antsfeld and Walsh, 2012c], when the link weight increases.

We find that the two methods have quite different strengths and character-

istics and believe them to be orthogonal and easily combined. For example: we

could compute a small Grid-TNR database covering queries longer than some

minimum length. To cover all remaining queries, we could compute a CPD that

contains only paths of lengths less than this minimum: i.e. during the all-pairs

shortest path computation, do not generate any successors beyond the predefined
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limit. This is a much smaller subset of nodes than CPDs usually consider and we

expect it will require proportionally less space to store and potentially less time

to perform lookups. Once preprocessing is complete, any given distance query is

either global for Grid-TNR, and we can extract it very fast, or we invoke Grid-

TNR’s local query algorithm and extract the length from our local CPD. Using

a similar procedure we can also very quickly extract the actual shortest path for

any given distance query.

5.7 Conclusions and Future Work

We have reported the first results for Grid-TNR [Bast et al., 2006] route-finding

to grid-based benchmarks from video games. We find that on such domains

the basic algorithm is impacted, in a strongly negative way, by the presence of

uniform-cost path symmetries. To address this, we give a new general symmetry

breaking technique involving the random perturbation of edges in the input graph

with small ε-costs. We prove this technique is optimality preserving and show

that it can reduce Grid-TNR’s memory overhead by several factors and improve

performance by up to two orders. We undertake an extensive empirical analysis of

Grid-TNR on a range of popular grid-based pathfinding benchmarks taken from

video games and give a first comparison of Grid-TNR with CPDs [Botea, 2011].

We find the two have complementary strengths and identify a class of problems

to which Grid-TNR appears better suited: distance queries involving start and

goal locations that are not in close proximity, i.e global queries of the Grid-TNR.

For path extraction we proposed a hybrid method that combines Grid-TNR with

CPD. We found that the proposed method extracts the complete shortest path
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2-3 orders of magnitude faster that any known method based solely on Grid-TNR

database. Also we found that our method in some cases performs slightly better

than pure CPD while in the most cases require less memory than full-scale CPDs.

One obvious direction for future work is to apply Grid-TNR on a sparse graph

created by Jump Point Search [Harabor and Grastien, 2011]. Another interesting

direction is to reduce the number of the transit nodes, by applying CHAT (see

3.4). Finally, future work would be to extend CPD idea for road networks. While

Grid-TNR is already well known technique for roads, there are no reported results

for CPD on road networks.
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Chapter 6

Concluding Remarks

6.1 Summary

In this work, we have investigated the problem of pathfinding between two points

in large scale graphs in three major domains: road networks, pubic transportation

networks and finally grid maps. While the basic shortest path problem was

solved by Dijkstra already in 1956, there are many practical applications where

this solution would be too slow. In addition, some domains impose significant

challenges that were not addressed by Dijkstra. Consequently, there is an ongoing

extensive research in the area of path finding.

In this thesis we addressed some of those challenges and presented efficient

algorithms, based on Grid-TNR for routing in large scale networks.

Road Networks

Initially we adjusted original Grid-TNR [Bast et al., 2006] to work on realis-

tic, directional networks. We formally proved Grid-TNR correctness and per-
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formed an approximate complexity analysis. Next, we extended Grid-TNR to

deal with dynamic travel time changes (traffic jams for example) and developed

a new mechanism to allow incrementally updates, rather than performing full

re-computation. Finally, we presented a novel algorithm, CHAT which address

some of the main weaknesses of the Grid-TNR. Our experiment show that in

some cases, we outperform state-of-the-art algorithms in this domain.

Public Transportation Networks

First of all, we developed a novel, fully realistic model of public transportation

networks. Then, we successfully applied Grid-TNR on our new model. We pre-

sented a significant improvement, by introducing hub stations. We believe that

this idea can be also integrated with other previous techniques. In addition, we

presented numerous practical speed-up techniques. Our experiment show that

applying Grid-TNR to the public transportation domain is not only feasibly, but

actually very competitive with current state-of-the-art algorithms.

Grid Maps

We were the first to investigate and apply Grid-TNR algorithm in this domain.

Many similar paths, a.k.a. symmetries, was a challenge that made Grid-TNR per-

form relatively poorly. We addressed this problem, introducing a new technique

of symmetry breaking, by adding a small random noise. For distance queries,

we outperformed state of-the-art, CPD algorithm by an order of magnitude. For

complete path extraction, we showed how to efficiently combine Grid-TNR with

CPD.
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6.2 Future directions

In concluding section of each chapter, we have mentioned possible improvements

and future research directions. In addition to those concrete suggestions, the real

world application impose new challenges.

Currently Grid-TNR (and CHAT) support static networks, i.e. where the

weights of the links are constant and time-independent and single objective cri-

teria. It might be interesting to extends those techniques to deal with time-

dependent and multi-objective scenarios. We presented the first attempt of net-

work dynamization by introducing incremental updates of the TNR database,

where we dealt with multi-objective cases using linear utility function.

One of the weaknesses of TNR is a fall-back for another algorithm for non-

global queries. While, most likely, it wouldn’t be impossible to eliminate local

queries completely, it would be desirable to minimize their number and provide

some guarantee for the local query performance.

Minimizing TNR database is another challenge. While our new algorithm,

CHAT, could reduce TNR database significantly, we believe there is still room

for improvement. Finding the smallest number of access nodes looks like a key

to address this issue.

6.3 Outlook

The basic technique of preprocessing and storing auxiliary data that can be used

to speed-up later computations is a powerful idea. As usual, there is always a

time-memory tradeoff and the challenge is to find a fine balance between those
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two concepts.

For some optimization problems, when very fast querying of a lot of shortest

paths are required, Transit Node Routing (TNR) algorithm is a perfect candidate

for this task. This is because of its very simplistic query mechanism - a few

precomputed table lookups and a few basic mathematical operations. While this

is still a challenging and open problem, we believe that adopting TNR to deal

with fully dynamic networks will result in considerably faster query times than

current methods.
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Appendix

In this section we want to study the effect of adding a random noise to the link

weights as we suggested in 5.4. More specifically, we would like to estimate the

probability that two symmetric paths will have exactly the same total weight.

Assume we have c bits to represent a number. Then p = 2c is the number of

possible integer values we can represent with c bits. We are interested to answer

the following question: what is the probability that two random sets of the same

size chosen uniformly from {0, 1, 2, 3, ..., p} will sum up to the same value? More

precisely:

Let Xi be Identically Independent Distributed (I.I.D.) Discrete Uniform Ran-

dom Variables from {0, 1, 2, 3, ..., p}. Then µ = p
2

and σ2 = (p2−1)
12

Let Sn =
∑n

i=1Xi. Then the probability that two random sums are equal is:

P (S1
n = S2

n) =

np∑
k=0

P (S1
n = k ∧ S2

n = k) =

np∑
k=0

P (S1
n = k)P (S2

n = k) =

np∑
k=0

P (Sn = k)2

Using standardization and continuity correction we can write:
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P (Sn = k) = P (S∗n =
k − nµ√
nσ2

) ≈ P

(
k − nµ− 1

2√
nσ2

≤ S∗n ≤
k − nµ+ 1

2√
nσ2

)

where S∗n is standardized Sn with µ = 0 and σ2 = 1.

Substituting µ = p
2

and σ2 = (p2−1)
12

gives us:

k − nµ± 1
2√

nσ2
=
k − np

2
± 1

2√
np

2−1
12

=

√
3(2k − np± 1)√
n(p2 − 1)

For n large enough (as in our case, n > 30) we can use Central Limit Theorem

(C.L.T.) to approximate S∗n. Therefore, combining previous substitution we have:

P

(
k − nµ− 1

2√
nσ2

≤ S∗n ≤
k − nµ+ 1

2√
nσ2

)
= P

(√
3(2k − np− 1)√
n(p2 − 1)

≤ S∗n ≤
√

3(2k − np+ 1)√
n(p2 − 1)

)
≈

≈ NA

(√
3(2k − np− 1)√
n(p2 − 1)

,

√
3(2k − np+ 1)√
n(p2 − 1)

)

where NA(a, b) denotes an area under the graph of the standard normal density

between a and b. Rewriting the original sum gives us:

P (S1
n = S2

n) =

np∑
k=0

P (Sn = k)2 ≈
np∑
k=0

NA

(√
3(2k − np− 1)√
n(p2 − 1)

,

√
3(2k − np+ 1)√
n(p2 − 1)

)2
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We notice that the following is always true:

NA(a−∆, a+ ∆) < 2∆ max(φ(x)) = 2∆
1√
2π

where φ(x) is standard normal density function.

In our case ∆ =
√
3√

n(p2−1)
, therefore

NA

(√
3(2k − np− 1)√
n(p2 − 1)

,

√
3(2k − np+ 1)√
n(p2 − 1)

)
< 2

√
3√

n(p2 − 1)

1√
2π

Since
∑np

k=0NA

(√
3(2k−np−1)√
n(p2−1)

,
√
3(2k−np+1)√
n(p2−1)

)
< 1 we have:

np∑
k=0

NA

(√
3(2k − np− 1)√
n(p2 − 1)

,

√
3(2k − np+ 1)√
n(p2 − 1)

)2

< 2

√
3√

n(p2 − 1)

1√
2π

=

√
6√

πn(p2 − 1)
≈

≈
√

6

p
√
πn
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Summarizing:

P (S1
n = S2

n) <

√
6

p
√
πn

As we can see, the probability of having two symmetric paths of the same

length, approaches zero as n, the number of links of the path grows. For typical

values of p = 252 and n = 30, P (S1
n = S2

n) < 6× 10−17.
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Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas

Willhalm. Partitioning graphs to speedup Dijkstra’s algorithm. J. Exp. Algo-

rithmics, 11, February 2007. ISSN 1084-6654. doi: http://doi.acm.org/10.1145/

1187436.1216585. URL http://doi.acm.org/10.1145/1187436.1216585. 21,

89

163

http://dx.doi.org/10.1007/11764298_29
http://dx.doi.org/10.1007/11764298_29
http://doi.acm.org/10.1145/1498698.1564502
http://doi.acm.org/10.1145/1187436.1216585
http://doi.acm.org/10.1145/


REFERENCES

Matthias Müller-Hannemann and Mathias Schnee. Finding all attractive train

connections by multi-criteria pareto search. In Proceedings of the 4th interna-

tional Dagstuhl, ATMOS conference on Algorithmic approaches for transporta-

tion modeling, optimization, and systems, ATMOS’04, pages 246–263, Berlin,

Heidelberg, 2007. Springer-Verlag. ISBN 3-540-74245-X, 978-3-540-74245-6.

URL http://portal.acm.org/citation.cfm?id=1961366.1961381. 94

Matthias Müller-Hannemann and Karsten Weihe. Pareto shortest paths is of-

ten feasible in practice. In Proceedings of the 5th International Workshop on

Algorithm Engineering, WAE ’01, pages 185–198, London, UK, 2001. Springer-

Verlag. ISBN 3-540-42500-4. URL http://portal.acm.org/citation.cfm?

id=647258.720925. 93, 94

Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos

Zaroliagis. Timetable information: models and algorithms. In Proceedings of

the 4th international Dagstuhl, ATMOS conference on Algorithmic approaches

for transportation modeling, optimization, and systems, ATMOS’04, pages

67–90, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-74245-X, 978-

3-540-74245-6. URL http://portal.acm.org/citation.cfm?id=1961366.

1961370. 93, 94, 112

K. Nachtigall. Time depending shortest-path problems with applications to

railway networks. European Journal of Operational Research, 83(1):154 –

166, 1995. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/0377-2217(94)

E0349-G. URL http://www.sciencedirect.com/science/article/pii/

0377221794E0349G. 93

164

http://portal.acm.org/citation.cfm?id=1961366.1961381
http://portal.acm.org/citation.cfm?id=647258.720925
http://portal.acm.org/citation.cfm?id=647258.720925
http://portal.acm.org/citation.cfm?id=1961366.1961370
http://portal.acm.org/citation.cfm?id=1961366.1961370
http://www.sciencedirect.com/science/article/pii/0377221794E0349G
http://www.sciencedirect.com/science/article/pii/0377221794E0349G
http://dx.doi.org/10.1016/0377-2217


REFERENCES

TransportInfo NSW. http://www.131500.com.au/. 91

Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in

networks with time-dependent edge-length. J. ACM, 37(3):607–625, July 1990.

ISSN 0004-5411. doi: 10.1145/79147.214078. URL http://doi.acm.org/10.

1145/79147.214078. 93

OSM. Project OSRM. URL http://project-osrm.org/. 40, 80

N. Pochter, A. Zohar andJ. S. Rosenschein, and A. Felner. Search space reduction

using swamp hierarchies. In AAAI, 2010. 121

Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Using swamps to improve

optimal pathfinding. In AAMAS, pages 1163–1164, 2009. 121, 132

Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices

with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, May

1990. ISSN 0895-4798. doi: 10.1137/0611030. URL http://dx.doi.org/10.

1137/0611030. 59

Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Ex-

perimental comparison of shortest path approaches for timetable information.

In Algorithm Engineering and Experimentation, pages 88–99, 2004. 93

D. Schultes C. Vetter R. Geisberger, P. Sanders. Exact routing in large road

networks using contraction hierarchies. Transportation Science, Volume 46,

Issue 3:388–404, 2012. 18, 24, 39, 73, 99

165

http://doi.acm.org/10.1145/79147.214078
http://doi.acm.org/10.1145/79147.214078
http://project-osrm.org/
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030


REFERENCES

Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest

path queries. In European Symposium on Algorithms, pages 568–579, 2005.

doi: 10.1007/11561071 51. 22, 23

Peter Sanders and Dominik Schultes. Robust, almost constant time shortest-path

queries on road networks. In 9th DIMACS Implementaional Challenge, 2006a.

18, 26, 29, 85

Peter Sanders and Dominik Schultes. Engineering highway hierarchies. In

European Symposium on Algorithms (ESA), pages 804–816, 2006b. doi:

10.1007/11841036 71. 22, 23

Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile route plan-

ning. In Dan Halperin and Kurt Mehlhorn, editors, European Symposium

on Algorithms (ESA), volume 5193 of Lecture Notes in Computer Science,

pages 732–743. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-87743-

1. doi: 10.1007/978-3-540-87744-8 61. URL http://dx.doi.org/10.1007/

978-3-540-87744-8_61. 80

Jagan Sankaranarayanan, Houman Alborzi, and Hanan Samet. Efficient query

processing on spatial networks. In ACM international symposium on Advances

in Geographic Information Systems (GIS), pages 200–209, 2005. 121

D. Schultes. Route planning in road networks. PhD thesis, University Karlsruhe,

2008. 23, 29, 66

Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In In Proc.

166

http://dx.doi.org/10.1007/978-3-540-87744-8_61
http://dx.doi.org/10.1007/978-3-540-87744-8_61


REFERENCES

6th Workshop on Experimental and Efficient Algorithms. LNCS, pages 66–79.

Springer, 2007. 67

Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line:

an empirical case study from public railroad transport. J. Exp. Algorithmics,

5:110–123, December 2000. ISSN 1084-6654. doi: http://doi.acm.org/10.1145/

351827.384254. URL http://doi.acm.org/10.1145/351827.384254. 93

Sabine Storandt. Contraction hierarchies on grid graphs. In IngoJ. Timm and

Matthias Thimm, editors, KI 2013: Advances in Artificial Intelligence, volume

8077 of Lecture Notes in Computer Science, pages 236–247. Springer Berlin

Heidelberg, 2013. ISBN 978-3-642-40941-7. doi: 10.1007/978-3-642-40942-4

21. URL http://dx.doi.org/10.1007/978-3-642-40942-4_21. 122

N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on Com-

putational Intelligence and AI in Games, 4(2):144 – 148, 2012a. URL http:

//web.cs.du.edu/~sturtevant/papers/benchmarks.pdf. 123, 131

Nathan Sturtevant. Grid-based path planning competition results. 2012b. URL

http://www.movingai.com/GPPC/GPPC.pdf. 135

Nathan R. Sturtevant. Memory-efficient abstractions for pathfinding. In AIIDE,

pages 31–36, 2007. 120, 132

Nathan R. Sturtevant and Michael Buro. Partial pathfinding using map abstrac-

tion and refinement. In AAAI, pages 1392–1397, 2005. 120

Nathan R. Sturtevant and Robert Geisberger. A comparison of high-level ap-

proaches for speeding pathfinding. In AIIDE, pages 76–82, 2010. 122

167

http://doi.acm.org/10.1145/351827.384254
http://dx.doi.org/10.1007/978-3-642-40942-4_21
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://www.movingai.com/GPPC/GPPC.pdf
http://doi.acm.org/10.1145/


REFERENCES

Nathan R. Sturtevant, Ariel Felner, Max Barrer, Jonathan Schaeffer, and Neil

Burch. Memory-based heuristics for explicit state spaces. In IJCAI, pages

609–614, 2009. 120

Dorothea Wagner and Thomas Willhalm. Geometric speed-up techniques for

finding shortest paths in large sparse graphs. In European Symposium on Al-

gorithms, pages 776–787, 2003. 20

Dorothea Wagner and Thomas Willhalm. Speed-up techniques for shortest-path

computations. In Wolfgang Thomas and Pascal Weil, editors, STACS 2007, vol-

ume 4393 of Lecture Notes in Computer Science, pages 23–36. Springer Berlin

Heidelberg, 2007. ISBN 978-3-540-70917-6. doi: 10.1007/978-3-540-70918-3 3.

18

168


	Title page: Finding shortest paths in large scale networks
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: Road Networks
	Chapter 4: Public Transportation Networks
	Chapter 5: Grid Networks
	Chapter 6: Concluding Remarks
	 Appendix
	References

