
Harmoniac - a digital signal processor

Author:
Connor, Philip Michael

Publication Date:
1981

DOI:
https://doi.org/10.26190/unsworks/4918

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/56307 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/4918
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/56307
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


HARMONIAC - A DIGITAL SIGNAL PROCESSOR

by

Philip Michael Connor B.E.

This thesis is an account of design work and its implementation 

submitted as full requirement for the degree of Master of Engin- 

-eering, (Electrical), University of New South Wales, June,1981.



I hereby certify that the work: contained 
.n this thesis has not been submitted for a 
lighaj degree to any other university or 
.nstitution.

Signature . .

Date •2.2/6 z

iS-i"

— GF N.IJ.

92637 Z9.JUNJ2
LIBRARY
... ....................n mniii —

^



SUMMARY
OF

"HARMONIAC - A DIGITAL SIGNAL PROCESSOR"
This is an account of the design, construction and 

application of a low cost digital signal processor for 
audio frequency applications. The design shows how a 
fast, three address 16 bit computer with partitioned 
memory can be implemented with a relatively small amount 
of hardware. This implementation demonstrates the princ­
iples intended to achieve good performance and flexibility 
at low cost but is not an attempt to build the smallest 
possible device.

The three address structure is achieved with a prog­
ram wordlength of only 16 bits by limiting the addresses 
to five bits each and making all operations separate 
locations within the 32 word address space. The main 
data memories are also accessed via locations in this 
space. The use of two buses allows simultaneous transfer 
of two operands to two destinations where they generally 
are operated on, providing a result at another address.
The worst case execution time for normal operations is 
150 nanoseconds. The use of auto-incrementing address 
registers on the main data memories allows greater speed 
in many algorithms.

An assembler written in Fortran, a debugging program 
and various utility programs such as a Fast Fourier Tra­
nsform, real-time complex wave summation, division, log­
arithms and an exponential are described and listed. An 
integrated package for the analysis and resynthesis of 
the soprano singing voice which uses the above programs 
is described.



ERRATA
FOR

"HARMONIAC - A DIGITAL SIGNAL PROCESSOR"

Page 5 , line 12
" •••,30 milliseconds for a 512 point..."
Page 16 , line II
"...very high speed (90 nanoseconds)."
Page 50 , line II
"...via the TTY and line printer."
Page 69 , line 10
"...it would allow a shorter instruction cycle."
Page 70 , line 18
"...used (in ALU) and the memory speed."
In the Appendices:
Page iii - xvi should be moved , replacing xlii,xliii. 
Page xxxv , line 13
"...see Appendix B . locations IDE ~ IFO."
Page xlv Appendix IV has no heading : 
should be "HARMONIAC ASSEMBLER"
Page lvi , Appendix V (last page), point 10 
" Total DIP count 440. (With 6K main memory , IK chips)"

On ALL Harmoniac Machine Language Listings the Decimal 
version of the program memory location has been inadvert 
ently cut off the right edge of each page. The same 
information is given in Hexadecimal in the second column 
of the listing.



HARMON I AC - A DIGITAL SIGNAL PROCESSOR

INDEX

Page
ACKNOWLEDGEMENTS

1. INTRODUCTION 1

1.1 Historical Review (Fig. 25) 3

2. ARCHITECTURE AND DESIGN CONSIDERATIONS

2.1 General Requirements 7

2.2 Operations and Memory Required 9

2.3 The Chosen Structure (Fig. 1,2) 10

2.4 Operation Timing (Fig. 3) 13

2.5 Other Possibilities (Table 1) 15

3. SECTIONAL DETAILS OF THE HARDWARE

3.1 Construction (Fig. 4,5) 17

3.2 The Subsections:

3.2.1 The Control Section (Fig. 6,7,8,9) 20

3.2.2 The Direct Memory Access Section (DMA)
(Fig. 10) 27

3.2.3 The Main Data Memories (Fig. 21,11,12,12,14) 29

3.2.4 The Arithmetic and Logic Unit (Fig. 15) 35

3.2.5 Transfer and Right Shift Section 38

3.2.6 The Sine Table Memory (Fig. 16,17) 38

3.2.7 The Multiplier 41

3.2.8 The Power Supply (Fig. 18,19,20) 42



Page
4. APPLICATIONS AND SOFTWARE

4.1 Applications 46

4.1.1 Real Time 46

4.1.2 Non-Real-Time Applications 47

4.1.3 The Appropriate Applications 47

4.2 Assembler (Appendix IV, I) 48

4.2.1 Debug Utility "HBUG" 50

4.2.2 "MTEST“ Memory and Conmunication Tester 50

4.3 Signal Processing Utilities Available for Harmoniac 51

4.3.1 Sine-wave Synthesis ("SINSUM")(Fig. 22,23,

24,26) 51

4.3.2 Maths, FFT and Power Spectral Analysis

(Appendix II) 60

4.4 Signal Processing from the Host Computer (Append­

ix III) 62

4.5 Stand-alone Operation 63

4.6 Maximum Possible Speed 64

5. CONCLUSION 70

REFERENCES 71

APPENDICES

Appendix I - Operation Codes (Haref Listing) i

Appendix II - Spectral Analysis Package (Listing) xvii 

Appendix III - Singing Resynthesis (Article) xxx

Appendix IV - Harmoniac Assembler (Listing) xlv

Appendix V - Specifications Ivi



ACKNOWLEDGEMENTS

This work would not have been possible without the financial 

and personal assistance given by Macquarie University and the 

staff of the Speech and Language Research Centre (S.L.R.C.). In 

particular, I wish to thank A/Prof John Bernard who inspired the 

project from its beginning and my fellow workers, Harry Purvis, 

Mark Stevens, John Telec and Ian Yates, who worked tirelessly for 

nearly two years to complete it, and all the linguistic staff for 

their keen interest.



- 1 -

HARMONIAC - A DIGITAL SIGNAL PROCESSOR

1. INTRODUCTION

Harmoniac is a signal-processing computer designed for audio­

frequency applications. It was designed as a low-cost digital pro­

cessor for those signal-processing tasks which had to be performed 

at or near a "real time" rate in the Speech and Language Research 

Centre at Macquarie University. The intention was to provide a 

minimum-cost resource with sufficient speed in typical audio-signal- 

processing tasks to make flexible software simulations realistically 

usable for the researcher.

Even the fastest mini or micro computers are too slow to per­

form significant signal-processing tasks in real time. Some typical 

tasks in speech and music research include the production of power 

spectra, correlation digital filtering and the summation of sin­

usoids. As an example of the speed required, each sinusoid being 

used in the construction of a waveform requires one multiply, two 

adds, three memory operations and loop counting. A conventional 

minicomputer requires at least 15 psec for this process when using 

500 nanoseconds main memory. Since a new sample of the waveform 

must be produced at least once in 30 psec, only two sinusoids would 

be possible. Similar operations are required for each pole or zero 

in a digital filter. The slow speed of a conventional machine 

derives from three limitations in design:

(1) There is only one main memory, so access is one datum 

at a time, with instruction accesses in between.

(2) Memory needs to be large for general-purpose use so its 

speed must be slow to keep cost down.



- 2 -

(3) Only one arithmetic unit is used, and it is often 

optimised for floating-point operation.

Without excluding any of the advantages of the conventional 

sequential machine on these sequential signal-processing tasks, 

this design (Harmoniac) avoids some of the disadvantages by the 

following features:

(i) Memory is divided into four simultaneously accessible 

parts - two data memories, program memory and a sine 

look-up table. (See 2.3 for rationale.)

(ii) Since the memories need not be very large for typical 

tasks, high speed (< 90 nanoseconds) static memory has 

been used.

(iii) Auto incrementing/decrementing address registers have 

been incorporated on the data memories to avoid un­

necessary instructions steps when processing arrays 

of data.

(iv) The arithmetic unit, multiply and shift circuitry are 

separate and data retaining to provide very high speed 

processing and to reduce the need to store intermediate 

results in memory.

(v) Schottky bipolar logic is used throughout to keep size 

and costs low. (Relative to more exotic logic such as 

ECL.)

(vi) Multiple data paths (2) to allow full speed use of the 

two-main memories and the processing elements. (See 

Fig. 1.)

Only 16-bit integer operations are provided as floating point 

is not required for normal signal processing. All instructions for



- 3 -

this machine are executed in a 150 nanoseconds cycle except the 

multiply which requires two cycles.

The normal mode for use of this type of processor is as a slave 

to a normal minicomputer which provides program and data through a 

16-bit interface. This type of connection minimises tedious machine- 

language software development as many of the non-critical tasks can 

be performed in a higher level language on the host machine (see 4.4 

on Singing Voice synthesis as an example of such a division of labour), 

In this way only a few basic algorithms need to be developed for the 

signal processor. Those already written and in use are detailed in 

section 4.3. See section 4.5 for stand-alone operation.

1.1 Historical Review

Most recent types of stored-program digital computers have at 

some stage been used for some kind of signal processing, but here we 

will restrict our discussion to machines capable of some useful real­

time processing of full audio-bandwidth signals. Such processing can 

be performed on a large mainframe computer although the cost is 

usually very high as such a machine is very inefficiently used in 

real-time audio tasks. The inefficiency derives from the very low 

usage of the large random-access memory and discs which are lying 

idle while the central processor is virtually fully occupied. This 

is an inappropriate use of the general-purpose mainframe type of 

processor. Some of the more appropriate, non real-time uses of main­

frames in the musical field are covered by Mathews in ref. 17. The 

conventional minicomputer or microcomputer is simply too slow for 

significant real-time processing (see the introduction). So a more 

specialised machine has usually been employed in real-time audio 

applications.



~ 4 -

These specialised machines have used a variety of approaches to 

achieve the processing speeds required, and most of these approaches 

are relatively expensive. The fastest machines have used Emitter 

Coupled Logic (ECL) in multiple-arithmetic units. Such machines are 

far more complex and expensive than Harmoniac so they will not be 

covered here. An example of a multi-arithnietic-unit machine is the 

Lincon Laboratory FDP, a fast programmable signal processor described 

in reference 1 (1971). It uses four AU's with a separate array mul­

tiplier, two data memories and employs 18-bit fixed-point arithmetic. 

The multiple arithmetic units (AU's) make the programming organis­

ation of this machine somewhat difficult. It has been designed 

basically to be able to perform the basic butterfly (inner loop) 

operation of an FFT in one instruction, while allowing more general- 

purpose operations to be performed with the same hardware. Another 

rather special-purpose machine is described in ref. 2 (1975). This 

machine, designed by Renato and De Mori, uses an ECL arithmetic unit, 

14-bit precision and TTL memories to achieve high speeds without very 

high costs but the precision is a little low and the complexity rather 

too high to make comparison with a machine like Harmoniac fair. Both 

of these machines (ref. 1,2) can perform 512 ft. real time FFT's in 

under 3 milliseconds (versus approx. 20 milliseconds in Harmoniac).

Reference 10 describes the AP120B, a so-called "array processor" 

which achieves similar speed to the FDP (above) but operates with 

38-bit floating-point arithmetic. This is considerably higher pre­

cision than is required for most audio processing tasks but it is 

interesting to see that its degree of parallelism is lower than 

Harmoniac in some respects (see Figure 25). It uses two blocks of 

accumulators, similar to the "scratch" memories of Harmoniac, with 

separate program and table memories as does Harmoniac. 64-bit in-



HOST

4a

M

H
 -<

F
ig

. 
25

FLOATING FLOATING
POINT POINT
MULTIPLIER ADDER



- 5 -

struction words allow a more powerful addressing and interconnection 

system, so that the ALU and multiplier can connect to all memories 

freely. There are some restrictions on such interconnections in 

Harmoniac, due to the 16-bit instruction word. Only the most useful 

connections are readily available. The AP120B allows for pipelining 

of operations to a larger extent than Harmoniac, mainly because it 

has a longer multiply time. The normal operation-execution time is 

very similar at 167 nanoseconds.

There are several simpler machines which are more fairly to be 

compared with Harmoniac. The SPS-41, described in ref. 14 (1975) is 

a 16-bit fixed-point machine with a 200 nanosecond instruction cycle 

which takes approximately 300 milliseconds for a 512-point real FFT 

(Harmoniac 20 milliseconds). It is a triple microprocessor machine 

with six ALU's, four multipliers and four memories. It seems to be 

more costly and complex than Harmoniac and of slightly lower perform­

ance. An even more comparable machine is described in ref. 6 (1978).

This is called G.A.S.P., a general-purpose signal processor 

designed and built at the University of Adelaide at about the same 

time as Harmoniac using similar chip types (similar level of integra­

tion). The main differences are the use of a floating-point arith­

metic, 20-bit wordlengths, multiplexers instead of tristate buses 

and a single data memory. The cost and complexity of this machine 

is three times that of Harmoniac and its speed is similar on typical 

tasks. The greater wordlength is a definite advantage over Harmoniac.

The only powerful real-time audio-signal processor so far located 

which is simpler and cheaper than Harmoniac is the Lincon Laboratory 

microprocessor Linear Predictive Vocoder described in ref. 4. This is 

actually a general-purpose machine with a fixed program in ROM. It is



- 6 -

a 16-bit integer machine with a 150-nanosecond instruction cycle, one 

data memory, a separate 48-bit program memory and a four cycle (600 

nanosecond) multiplier. The very large width of the instruction word 

allows powerful instructions but the single data memory would limit 

its performance relative to Harmoniac. It uses only 162 dual in-line 

packages compared to Harmoniac's 440. Package count has been kept 

low because very little data memory is provided (2000 words), high- 

density chips have been used and the multiplier is only one quarter 

of a ful1 array.

There are now several single-chip bipolar microprocessors 

intended for simple real-time signal processing. These are too 

limited in capacity to be compared with Harmoniac. It seems that 

they are intended for low-bandwidth digital filtering.

With this background it can be seen that Harmoniac fits in as 

a low cost, moderately high-performance signal processor. It has 

no exact equivalent amongst its peers but seems to give a higher 

performance to cost ratio than any in the literature except perhaps 

the Lincon Lab. machine in ref. 4. But the Lincon Lab. processor 

is not entirely comparable as its real-time signal-processing power 

is probably about half that of Harmoniac on tasks such as filtering 

and sinewave synthesis because of its single data memory and slow 

multiply.

The details of speed, precision, memory and instructions 

necessary for audio-signal processing are considered in the 

following sections 2.1, 2.2, and in greater detail in ref. 5.



- 7 -

2- ARCHITECTURE AND DESIGN CONSIDERATIONS 

2.1 General Requirements

The design of Harmoniac was undertaken after the author had 

completed the programming of a number of signal processing tasks in 

speech work. These included the design of an interactive Fourier 

transform, power-spectrum analysis package, various pitch-detection 

algorithms and an additive sinewave-synthesis routine. This exper­

ience showed that most of the speech processing tasks in the S.L.R.C. 

(Speech and Language Research Centre, Macquarie University) could be 

accomplished with a 16-bit integer machine, but that certain algorithms 

either required pre-scaling of the data (block floating point) or a 

longer wordlength in critical sections. A typical example is FFT's 

performed on 12-bit data. When the number of points in the transform 

exceeds 256, greater than 16-bit precision may be required to prevent 

overflow as the data grows by /N. Recursive digital-filtering pro­

cesses often require wordlengths of 24-bits and more for stability 

and low noise (refs. 5, 16) although most filters for speech synthesis 

and 1 inear-prediction analysis of speech can be implemented in 16- to 

20-bit wordlengths.

A good compromise which can cope with most audio processing 

tasks is 20-bits (fixed point) per word but it was decided to stick 

with the minicomputer standard of 16-bits in this implementation, 

using block floating-point techniques (software exponent) where 

necessary to maintain precision. Occasionally double precision is 

necessary (see 4.3.1).

This compromise was made on the basis of lower cost, simpler 

interfacing to 16-bit machines and generally simpler hardware.



- 8 -

The processing speed required in a digital signal processor is 

always ultimately limited by a cost benefit ratio. If FFT processing 

of real-time audio data is taken as an example, there is ultimately a 

judgment to be made as to how often in time the results are required 

and how much detail in frequency is required. Typically results are 

required every 10 milliseconds but the frequency resolution is a com­

promise between smearing the analysis over too much time and getting 

the best resolution of frequency detail. To see only the major 

resonances in speech the frequency resolution need not be better 

than 100 or even 200 Hz.

The overall bandwidth to be dealt with is usually a much easier 

decision. For speech, 4 to 8 KHz is sufficient whereas music may 

require up to 15 or 20 KHz bandwidth. Musical analysis is perhaps 

an even finer art than speech analysis as it needs to be seen at 

several different resolutions in time and frequency at the same in­

stant for every aspect to be covered.

Given a bandwidth requirement of 5 KHz and a resolution require­

ment of 40 Hz with 10 milliseconds between result frames, the system 

must generate spectra of 128 pts. (~ every 10 milliseconds.

This requires a 256 point real FFT every 10 milliseconds, just possible 

in Harmoniac. (FFT execution time is proportional to N 1og^ N.)

As mentioned in the introduction, each independent sinusoid 

generated or each pole/zero of a digital filter requires about one 

multiply, two adds, three main memory accesses and loop counting over­

head - minimum of eight instructions in a two-operand machine such as 

Harmoniac, and generally more. Hence the processing speed required 

in such algorithms is easily calculated as (approx.): instruction

time x 10 = time per pole (or sine). So a 150 nanoseconds instruction



- 9 -

time implies 1.5 milliseconds for updating each pole in a simple 

fi1 ter.

Higher speeds can be obtained either by using a faster logic 

type or by eliminating instructions in the inner loop by the inclusion 

of more specialised hardware.

2.2 Operations and Memory Required

The usual integer operations must be available - logical (and/or), 

add, subtract, multiply, divide, shift and compare, and the use of 

two's complement arithmetic for these eight operations seemed to be 

the most pratical to use. The basic add, subtract, logical and compare 

operations have been implemented in a medium scale integrated arithmetic 

unit (using 74S181 chips). The frequent requirement for fast multiplies 

dictated the choice of an array multiplier rather than the usual shift/add 

variety. The very infrequent requirement for division in the signal 

processing allowed it to be left to a conventional softare shift and 

subtract algorithm employing the aritmetic unit.

The choice of logic type to be used was dictated by the need to 

keep the machine simple and cheap but at the same time as fast as possible. 

Emitter coupled logic (ECL) is expensive, large, and power-hungry while 

metal-oxide-semiconductor (MOS) large-scale integrated circuites (LSI) are 

far too slow. The availability of a large range of functions in medium- 

scale integrated-circuit chips in Schottky Transistor Transitor Logic 

STTL) made this the natural choice for a fast, cheap machine (in 1975).

Memory requirements for signal processing in real-time applications 

are usually quite modest. There are a few algorithms which require more



10 -

than four thousand words of data memory and program/memory requirements 

are usually in the hundreds of words for a reasonably efficient machine- 

code implementtation of a Fast Fourier Transform. An early decision was 

taken to have each word in the program memory correspond to a complete 

instruction for speed and simplicity.

2.3 The Chosen Structure

Since most arithmetic operations require two operands and 

produce one or two results, it seemed natural that the machine should 

have two data buses in order to move both operands at once. For the 

same reason the memory in which the bulk operands are to be stored 

should be divided into two pieces separately accessible for the two 

buses. The other important structural choice from a speed point 

of view was to keep the stored program in a separate memory so that 

one instruction can be executed while another is being fetched - 

pipelined instruction fetches. The block diagram in Fig. 1 shows the 

basic two-bus structure with three independent memories plus a 

table memory.

To keep the instruction wordlength short but allow powerful 

instructions, it was decided normally not to specify main memory 

addresses directly in the instruction word. Instead, addresses are 

normally set up be a separate instruction which stores the address 

in a memory-address register.



10a

16 BIT 
TRI STATE 

BUS

/

HARMON I AC/

— 2'S COMPLEMENT ARITH.COMPUTER. (l6 BIT INTEGER) 

-~<UO N SEC PER OPERA TION
BUS 1 — TO 64 K WDS MEM. B U S 0

SCRATCH

OIREC. TU^ ^ ^ 0 ^ ^
Anrvtn RAM_

SCRATCH

directly
ADDRESSED RAM _

H1NA IN

CUT A'LU ' rADO Cfl 1
j________

inr
i/V

M P Y
MSP

16X16 L.SP

RIGHT SHIFT
_________ ONE. PLACE__________

A IN

D I MEM
DO 1
A 0 ■ ID. .22.K_____________

SINE ROM ^
4006 X UBTT

TRANSFER- iwd

TRANSFER ~ 1WD

ITh

CONTROL FLAGS
_______________ a.frj vi/Poe^e*.

INPUT OUTPUT

P C N T

PROGRAM MEMORY

/ »r

/. , Q E G, 16 BJ 7
CcmmjW j 

C*8nv'
I

souRct i SOu***
«o8*.

J x J L,S A,r j

16 BIT TRISTATE
BUS

CAN BE USED AS 
IMMEDIATE BUS:

FROM INSTR. 
DIRECT TO BUS 0

V PITS FOR JUMPS)
=>>0* * 127 CONSTANTS

REG

(or

AND DIRECT ADOPESSINC,

DRAWING NO- 16
PROjEC t. harmoniac

SECTION B.OCK DIAGRAM

nail___
DESIGN. 
REVISION, 
DR A r T. st

SIR C
st. sn Ytus _
MACQUARIE UN[.

Fig. 1



11

The number of basic instructions required is small (approx.

8 sufficient) so it was decided to arrange the instructions and 

memory access ports together with a small set of general-purpose 

registers as one thirty-two-word address space. All instructions 

are executed as transfers within this directly addressable thirty- 

two-location space. This means that only five bits are required 

for any address so that a three-address specification can be given 

in fifteen bits, one address being the common-destination address 

for both buses and the other two being the source addresses on each 

bus. As can be seen in the block diagram (Fig. 1) the top sixteen 

addresses are the "scratch" or general-purpose register set on each 

bus. The lower sixteen addresses are instruction inputs and data 

memory inputs and outputs.

Each instruction is a separate piece of hardware, except for 

those performed in the arithmetic unit. This allows for the 

possibility of asynchronous instruction execution where a slow 

instruction such as the multiply can be left to go to completion 

while several other instructions are executed. For this purpose 

an input register is provided on every instruction so that the 

results of the instruction are available any time after the 

propagation delay of that instruction. This feature, together 

with the use of tristate bus elements makes the design very 

flexible - one instruction could be substituted for another or 

new ones added if the address space is expanded. The general 

structure of an instruction is shown in Fig. 2.



12 -

Bus 1 
16 bits

Asynchronous
operation

logicInput Latch Input Latch

Destn >-------
Enable Pulse (PHI 3) Enable

Tristate
Driver

Tris
Driv

tate

Source
Enable

Source
Enable
Pulse Pulse
(PHI 2,3)

Fig. 2

The initial specification of addresses for the data memories 

is often done using a special mode where most of the instruction 

word is used as data directly onto bus zero, whence it can be 

stored into a memory-address register or any other register. If 

it is stored into the program counter, a jump is performed. This 

mode is called the immediate mode and a bit is reserved in the in­

struction word to specify it. In immediate-mode instructions, some

Bus 0 
16 bits

Destn
Pulse



- 13 -

special decoding is performed to allow the maximum number of bits 

possible, particularly for jump instructions so that all jumps can 

be directly addressed (Fig. 8). If the immediate-mode bit is not 

set, the instruction is always a straight transfer from two of the 

thirty-two locations on the buses to a common pair of destination 

locations. Hence all the fifteen bits remaining in the instruction 

word are used to specify these three 5-bit addresses. Transfers 

between the lower addresses (containing instructions and main data 

memory) are effected by demultiplexers driven by the respective 

address fields of the instruction word and synchronised with the 

appropriate phases of the three phase clock. (See 3.2.1 and 

Fig. 6.)

For many signal processing tasks, programs can be devised 

where main data memory addresses do not need to be specified, 

except at the beginning of a processing loop, by using the hard­

ware memory-address counters. These allow auto increment, decre­

ment and reversed bit counting of addresses while processing an 

array (or two arrays) of data with the option of the address 

counting being triggered by either a read or a write to the 

respective memory. (See 3.2.3.)

2.4 Operation Timing

The basic timing of an operation is very simple as all 

that is necessary is to enable an output to drive the bus and, 

after data settles, provide a positive edge pulse to latch the 

data from the bus into its destination.

This can be seen in Fig. 3.



14 -

|-f——Instruction Fetch------ J

^Instruction decode & memory addr. change

PHI 1

PHI 2

PHI 3
Instruction Execution Vari- 
-able to 200 nsec for MPY

Tristate 
Bus-Driven ~

Input 
latch- 

4* setup - 
t ime

Clock phases 
50 nsec each

—

v>
A source enable- 
(Output of an op- 
-eration drives
bus(es))

A destination 
enable-

latches data at destination 
(Input to an operation)

Fig. 3

The source is enabled first to allow for capacitive delays 
in charging the bus lines and then the destination pulse is 
generated to latch the data. A third phase (PHI 1) is provided 
to allow the next instruction to be decoded after it is fetched 
from the program memory, and to allow the main-memory-address 
setup time.



15 -

2.5 Other Possibilities

The unusual structure chosen did not lend itself to the use of 

bit-slice microprocessors - the other most suitable way to implement 

the arithmetic unit, compare-and-shift circuitry. Microprogramming 

was rejected on the grounds that it introduces further delay and would 

make the design more complex without providing a significant increase 

in speed, although it would have made programming easier. There is no 

significant speed improvement possible from microcoding as the instruc­

tion fetch is performed simultaneously with the execution of the 

previous instruction and all the memories are equally high speed.

The instructions provided are almost microinstructions in their sim­

plicity and the instruction decode and timing are extremely simple.

(See Figs. 6 and 8 and ref. 15.)

Another major method of achieving a fast processor is the use of 

microprocessor arrays where each microprocessor has only moderate 

performance but the overall result is very fast execution of a complex 

algorithm (ref. 11, 12, 13). This approach was considered to be too 

difficult for the programmer in the case of many of the signal-pro­

cessing algorithms although ways of treating them in parallel may be 

evolved in the future.

In a stand-alone signal processor it is often (not always) 

necessary to buffer a set of samples before beginning processing. This 

usually requires an interrupt structure and real time clock so that 

processing on a previous block can continue while a new block is being 

stored. This feature was not provided in Harmoniac as it was thought 

that a host microprocessor could provide such functions for minimum 

cost. See Table 1 for a summary of some of the relevant design

alternatives.



16 -

TABLE 1

Summary of possible alternatives NOT used in this design

* Floating point - not essential.

* Longer wordlength - not essential.

* Mos microprocessor array - difficult to program (not always 
efficient).

* Bit-slice micro - existing designs do not suit a double-data 
memory, double-data bus design.

* Microprogramming - no faster because instruction fetch is a 
doubly overlapped pipeline arrangement and main memory is 
very high speed (100 milliseconds).

* ECL logic - more expensive and physically larger.

* Interrupt logic - not essential if host processor used. (For 
real-time operation the processor must be faster than necessary 
so some time is always wasted.)

Summary of Design Features of Harmoniac

Very high-speed memory (90 nanoseconds) - only a small amount 
required for typical algorithms.

4 separate, simultaneously accessible memories - three can be 
accessed at one time and program memory fetch is at same time 
as instruction and execution.

Two separate data buses - provides simultaneous transfers of 
two operands to an operation.

Major operations implemented in independent, asynchronous, 
data-latching blocks of hardware - to allow pipelining and 
to minimize storage of intermediate results.

Operations and data memory parts treated as locations in a 
small 32 word memory space to minimise instruction width.



- 17 -

3• SECTIONAL DETAILS OF THE HARDWARE

3 • 1 Construction

A single array of wire wrap sockets ("cambion") was employed 

to hold the 440 Schottky chips used in Harmoniac. This fits into a 

standard,19 inch (47.5 cm) rack mounting chassis approx. 10 cm high. 

No switches or controls were provided on the front panel as all con­

trol is executed through the host processor. A photograph of the 

chassis with the top up is shown in Fig. 4. The power-supply reg­

ulator is a conventional series-pass type mounted on the rear of the 

chassis to share the cooling fans which pressurise the interior where 

the logic chips are mounted. The airflow is in through the top and 

out through a slot along each side and a hole at the rear for the 

regulator heat-sink. The unregulated voltage (+ 12 YDC) is supplied 

from a separate chassis containing the power transformer, rectifier 

and associated components. All the logic is powered by 5 volts (at 

27 amps).

The wire wrapping was done manually from computer-generated 

and checked listings. The program to verify the wire wrapping was 

specially written for this project in ALPHA-16 machine language for 

a Computer Automation ALPHA-16 minicomputer. Wrapping was point to 

point, level ordered over a ground plane.

Bus interconnections between sections of the machine were 

achieved by 16-core flat cable plugged into standard 16-pin sockets 

in the logic array. This system allows any section to be isolated 

from the bus for fault-finding purposes.

The layout of chips on the chassis is shown in Fig. 5.



lo
 

-

F
ig. 

4



-
 

19
 

-

F
ig

. 
5



- 20 -

3.2 The Subsections

3.2.1 The Control Section

The basic timing of the machine, the scratch registers, the 

program memory and instruction decode are provided in the control 

section which can be seen in the lower left part of Fig. 5. It 

consists of thirty-two chips in the program memory array of 512 

words and fifty-nine chips in the remainder. Detailed circuit 

diagrams are shown in Figs. 6, 7, 8 and 9.

The clock oscillator which times all events in the machine is 

basically a crystal oscillator, but for flexibility in the prototype 

a voltage controllable oscillator was used. The socket position 354 

can be occupied either by a crystal of about 20 mHz or a voltage- 

control trim pot assembly, as shown in Fig. 6 (left centre). This 

oscillator drives a ring counter of three J-K flip flops which 

generates the basic three-hase timing waveforms (chips 351, 352).

A stop switch is provided on the oscillator for static testing - 

Harmoniac is completely static in operation and can be run at any 

clock rate up to the maximum (approx. 20 mHz).

The program counter and associated logic is shown in Fig. 7.

It is advanced at the beginning of each cycle by $1, addressing the 

next location in the program memory. Initially it is set to zero 

by the host processor vial MRL - . Jumps are executed by a store 

into the program counter via 301, 302, 303. Subroutine jumps 

simultaneously save the previous contents of the program counter 

into a latch (312-315) so that a return is possible. The "fill mux" 

is used only during direct memory access transfers which store into 

the program memory. Otherwise the "fill mux" (308-310) acts as a 

memory address driver for the program memory. The PROMS (programm-



- 21

able read-only memories) shown (365, 366) are not installed as yet 

in the prototype, but are intended to provide either a set of 

"system" subroutines or be used for a stand-alone, fixed software 

arrangement.

The program memory array (Fig. 8) stores 512 words of 16 bits. 

Its output is latched at the start of a cycle (4>1) to provide the 

next instruction.

Also in Fig. 8 can be seen the "immediate-mode" bus drivers 

(321-323). These are used to provide part of the instruction word 

direct onto bus zero for execution of jumps (direct) and to give 

small positive numbers for simple arithmetic. A separate "immediate­

mode" bit of the instruction word is used to disable the normal 

source address for bus zero and to enable the five-bit source-zero 

field (see Fig. 1 bottom) directly onto bus zero together with 2 

bits borrowed from the source and destination fields. The presence 

of a jump or jump-to-subroutine destination with the immediate-bit 

set is decoded to use the whole of the five-bit bus one-source 

address directly on bus zero as well as the normal seven immediate 

bits to give eleven bits for the jump address on bus zero with no 

operation being performed on bus one. This allows direct addressing 

for jumps within 2048 locations of program memory - more than suffi- 

cent for realistic algorithms. For convenience this address space 

has been divided into two parts with random-access memory (RAM) at 

the bottom and PROM at the top in normal operation. A switch is 

provided (see Fig. 7 Chip 756) to reverse this order for stand-alone 

operation putting the PROM at the bottom so that execution will begin 

in the PROM at power up (512 words are allowed for).



22 -

There are two immediate modes, one using six bits of the 

instruction word and the other seven bits. The mode is changed 

by a store into the arithmetic control flag (see Fig. 1 and ALU 

Fig. 15). The seven-bit mode restricts source addressing on bus 

one to the lower eight sources of operations and scratch registers 

and both modes prohibit storing into a scratch-register destination.

Fig. 9 shows the scratch-register files which are the top 

sixteen locations of each of the three address fields. The 

demultiplexers, chips 344-349, on Fig. 6 decode the source and 

destination addresses to drive the operation-input latches and 

tristate outputs respectively. The "NOP" operation, which 

inhibits an operation on one or both buses, is specified by all 

zeroes in one of the source fields. This is decoded by the 

source-enabling demultiplexers 347 and 349 to produce "BUSONOP" 

or "BUS1N0P" which then inhibits the destination demultiplexer 

and prevents a tranfer on that bus. Note that the jump to sub­

routine or call instruction is destination zero, which normally 

causes a no-operation, but the presence of the immediate-bit set 

causes the jump to subroutine to be executed.

The fact that the next instruction is being fetched at the 

same time as the present instruction is being executed means that 

a jump instruction (or "subroutine call") will not prevent execu­

tion of the very next instruction in line. This next instruction 

could be called the "jump shadow" and must be kept in mind always 

when programming or some very unusual "bugs" can turn up.



D E S T IN A T IO N  E N A B L E S . SOURCE EN ABL
ST 0 PEST 1

-
 

23
 

-

JljL 
J

>
 

<• 
•

£ C
j 

f ) 
C

)

Fig. 6

SL.RC MACQUARIE UNIVERSITY



BUFF PCNTR P FILL MUX PROM PROM

- 
24 

-

F
ig

. 
7



25

-
a

—
 B

|<1. O
 

<N ^
 -J U~> 10 f'-

'>*■ 
a
^
Q
O
Q
;

O. <* Q
 Q

 cc 
^

Fig. 8



-
 

26
 

-2! 
Ci

C
 Ci c

 c

F
ig

. 
9



- 27 -

3.2.2 The Direct Memory-Access Section (DMA)

In the prototype all communications with the outside world 

have been provided through the DMA channel. A1though a programmed 

input/output section was allowed for in the design, it was not 

considered necessary in the prototype since all control and input/ 

output could be achieved through the host processor access to 

Harmoniac's memory. Some type of programmed or interrupt driven 

input/output would be essential in a stand-alone signal processor.

In the prototype implementation the program and data are loaded via 

the DMA channel and any suitable locations in main memory are used 

as flags to tell Harmoniac to begin a process and to tell the host 

processor that a given stage is complete. (See section 4.3.1 and 

appendix III for examples.) For some applications an interrupt to 

the host is an advantage and this is provided.

A detailed circuit diagram of the DMA section is shown in 

Fig. 10 and its position in the chassis in Fig. 5 can be seen 

halfway up the right column of chips (bay 3). A total of forty- 

three chips is used in this section. A part of the DMA circuit is 

included in Fig. 14 (chips 86-99 and 133-135). The DMA signals to 

and from the host enter the chassis in four sixteen-core flat cables 

which plug into the chip-array socket positions 90, 99, 100 and 101. 

They are respectively, input data (to Harmoniac), output data, 

address for Harmoniac and the strobes and flags for timing the 

data transfer.

When a DMA transfer is requested by the host, the next in­

struction cycle is halted in <I>1 (phase 1) via DPEND (9/108 in Fig.

10 top RH) and chip 359 (Fig. 6 bottom GH). The "hold state" 

freezes the main timer (chips 351, 352) but allows the synchronised



28
 
-

Fig. 10



29a

Unused

Mem 1

P Mem (4K)

Mem 0

: FOOO

: 8000

0

Fig. 21



- 29 -

DMA timer (chips 110, 111, 112) to continue. The memory write enables 

are generated from this DMA timer, so any writes underway to memory 

are completed. After the end of the normal phase 3, an extra seven 

phases are counted by the DMA timer to execute the DMA transfer requested.

AH the memories are switched to the DMA address for the duration 

of the DMA cycle (DMACYC, 6/124, Fig. 10 bottom RH), but only the par­

ticular memory required is read or written. The top four bits of the 

DMA address select which memory is required. Fig. 21 shows the map of 

the address space as seen by the host.

Circuitry has been provided to read the contents of the program 

memory from the host although this is not essential for normal operation 

(chips 133-135 in Fig. 14 centre). This facility allows easy memory 

testing from the host.

The DMA address register is a counter so that only one address 

need be supplied to read or write any block of memory. When an address 

is received by Harmoniac, a DMA read is automatically executed at that 

address and the address is incremented ready for the next read. If the 

operation is to be a write to Harmoniac, the address supplied must be 

one less than the desired write address. The master reset pulse from 

the host (MRST-) initialises all flip flops in the machine and sets the 

program counter to zero. This can be used to execute a view program at 

any time by inserting a jump at location zero.

3-2.3 The Main Data Memories

Tow banks of three thousand (3K) words of 16 bits are installed 

in the prototype although each bank can be extended to 28K. The full 

memory-circuit diagrams are shown in Figs. 11, 12, 13 and 14. The 

memory-array circuit (Fig. 13) and the data-latch circuitry (Fig. 14)



- 30 -

each show chip numbering for both memories as these sections of the 

memories are identical except for the connection to pin 7 on chip 63/77 

etc. (Bottom left of Fig. 14.) The memory arrays and support circuitry 

are located in the top and bottom of bay 3 (right column) and some of 

bay 2 in the chip-position diagram (Fig. 5). One hundred and eighty- 

four chips are used in the memory section, most of them 1024 bit static 

RAMS - either TTL 93425 or VMOS 2125 types.

The address and data inputs of the memories are latches as in any 

other operation, but the address latch is a counter and a multiplexer 

is provided on the address so that count up, count down and reverse-bit 

addressing can be achieved by a simple mode change (see Figs. 11 and 12). 

The bit reversal is achieved by a set of plug in jumpers on sixteen-pin 

headers (chips 9, 10, 39, 40).' This feature is used in certain FFT 

algorithms. For a 1024 point transform the first ten bits of the address 

(0+9) are transposed (9 + 0) and the other bits connected normally so that 

each one K (1024 point) page is in bit-reverse order but the pages are in 

normal order. The address-mode change multiplexer is also used during a 

DMA cycle to drive the memory arrays with the DMA address. The current 

memory addresses are buffered onto the bus at locations in the operations 

field so that the addresses can be tested when the memories are in an 

auto-incrementing or decrementing mode.

Output data from the memory array is not latched as this would 

slow operation. A set of tristate buffers is provided to isolate the 

memory array from the bus in both memories.

To provide single instruction transfers of data and address to 

memory, a special address port is provided on memory one (see app. I, 

"MID/AD") which allows immediate mode to generate the address on bus 

zero while the data is transferred into memory via bus one.



Mf.M 0
- 31 -

Fig. 
11



-
 32

 
-

jTTTV

Fig. 12



33

F
ig

. 
13

MACQUARIE UNi.



- 
34 

-

F
ig

. 
14



35 -

3.2.4 The Arithmetic and Logic Unit

This section does adds, subtracts, "and", "or" and comparison 

tests all in two's complement arithmetic. The circuit is given in 

Fig. 15. The data is inverted by the input latches and output 

tristate buffers. The 74S181 medium-scale integration ALU chips 

are operating on inverted data and producing inverted results.

The ALU is an unusual section in that its input takes up five 

locations in the operations address field, but it has only one 

address for output (see appendix I). The output is available at 

the same address on both buses. This is extremely convenient when 

programming as the results of simple arithmetic are often required 

on either bus (or both) for subsequent operations.

The comparison can be in a variety of modes: equal, not

equal, greater than (>), less than (<) and greater than or equal 

to (>) and the effect of a comparison instruction is to cause a 

skip of the following instruction if the condition specified is 

true. This is achieved by disabling the destination demultiplexers 

in the control section during phase 3 so that the destination 

registers are not clocked. The propagation delays which occur 

during comparison seem to be the main speed limitation in Harmoniac 

and could possibly be improved. The equals test uses the open col­

lector "wired or" - the only critical resistive pull up.

An overflow flag and a half-scale flag are provided. The 

half-scale flag is set when an ALU operation makes the result bits 

14 and 15 different,indicating that overflow is imminent. These 

flags can be read on the bus as bit zero of a location called AFLG 

(see app. I). The flag to be read is selected by an arithmetic



- 36 -

mode change using chip 723. The mode change also sets the 

comparison mode and resets the overflow (0V) and half scale (HS) 

flags if required. The top bits AFLG are always zero (see 715,

732, 733, 730 Fig. 15).

There would be some speed advantage to be gained by using 

separate hardware for comparison so that the contents of the ALU 

were not destroyed when testing for the end of a loop in a program. 

This option was not chosen because of space limitations in the 

prototype chassis.



- 37 -

-f-—
■
-
<

» a o &

kS 
ij 

*£■ 
iJi 

«
 

i* 
i<r

K 
-4 

S
 i

Fig. 
15

[ SLR C MAC



- 38 -

3.2.5 Transfer and Right Shift Section

The use of two independent buses creates the necessity for 

transfers of data between locations which are on different buses. 

This could be done through the ALU but this would waste time in 

certain situations where the ALU is holding an intermediate result, 

so separate tristate latch/buffers have been provided to transfer 

in each direction.

Simple scaling of data by arithmetic right shifts is a 

common requirement in signal processing. For this purpose a 

single-place right shift register has been provided. It can be 

set up to shift into the most significant bit (MSB) either of: 

the previous MSB (arithmetic shift), zero (logical shift), the 

previous least significant bit LSB (rotate) or the overflow bit.

A full circuit diagram for this section is shown in Fig. 16. It 

uses a latch which has the output bits wired one further up on 

the bus relative to the input bits.

3.2.6 The Sine Table Memory

For simplicity in stand-alone applications and speed in host- 

assisted applications a separate read-only memory (ROM) sine table 

has been provided (Fig. 17). This is addressed by sixteen bits 

(12 bit accurate) and produces a sixteen-bit result (accurate to 

15 bits). It uses a commercial 1024 point by ten-bit quarter-cycle 

sine-table bipolar ROM (MMI 6068) combined with a set of four PROMS 

(DM8574) to give another 1024 points by four bits to provide a total 

of fourteen bits in ROM for each point on the quarter of the sine 

cycle.

The address and the table output are inverted as required to 

produce the full sine cycle from minus PI to plus PI where minus PI



- 39 -

Fig. 16

£2___M STEVENS
SLRC MACQUAWE



- 
40 

-

£
4

F
ig

. 
17



- 41 -

corresponds to an input of -32768 and plus PI corresponds to an 

input of +32767. The resultant output is scaled so that plus one 

corresponds to +32767 and minus one corresponds to -32768. This 

scaling given maximum precision and simplifies both hardware and 

programming. The maximum access time of the sine ROM is approx­

imately two hundred nseconds with its associated logic, so an 

extra instruction time should be allowed before using the result 

of a sine table look up (PI = 3.1412 Radians).

3.2.7 The Multiplier

Multiplication is heavily used in most signal-processing 

tasks so a high-speed multiplier is necessary if fast processing 

rates are to be achieved. For this purpose a full two's complement 

16 x 16 bit-array multiplier has been used in Harmoniac. Maximum 

delay through the multiplier is just over 200 nanoseconds, so a 

one-instruction delay is necessary for reliable results although 

in practice no delay was required in the prototype. Although 

single-chip multipliers are now available in 16 bit x 16 bit sizes, 

the prototype has used an array of 4 bit x 2 bit chips (93 S 43) 

that were available when it was under construction in 1976. Circuit 

diagrams of the array and the input/output latches are shown in 

Figs. 18 and 19 respectively. The chips implement the Booth- 

McSorley algorithm.

A double-precision result is produced with the high-order 

bits available on bus one and the low-order bits on bus zero.

Signle-precision multiply and accumulate is provided via chips 

253 and 254 (Fig. 18). An extra function, a long logical left 

shift (double precision) is included in the tristate output bus 

drivers by the use of four-bit multiplexers (74 S 257) in chips



- 42 -

243 to 250. This left shift is used in division algorithms and 

the other successive approximation tasks which need a double­

precision left shift.

3.2.8 The Power Supply

As<mentioned previously in 3.1 the regulator section is 

mounted on the logic chassis and the transformer, rectifier, 

electrolytics and circuit breaker are mounted on a separate 

chassis with two metre cables between the two chassis. A micro­

switch is provided on the lid of the logic chassis to cut the 

main supply (240 volt ac) if the lid is opened, thus preventing 

overheating caused by low air circulation.

The use of one logic family (STTL) exclusively in Harmoniac 

allows a single five-volt regulated supply. Current drawn in the 

prototype was approximately twenty-seven amps at five volts. A 

conventional series regulator was used for simplicity. No over­

current shut down was provided, except for a D.C. circuit breaker 

just before the regulator (see Fig. 20 for details). Overvoltage 

and overtemperature protection are provided with a zener and a 

thermal bimetallic switch being used to trigger a large silicon- 

controlled rectifier (SCR) if either condition occurs. The SCR 

is mounted on the regulator heatsink and, once fired, it short 

circuits the unregulated voltage until the circuit breaker (or 

the mains fuse) opens.

There would be a considerable power saving if a switching 

power supply was used, but this was not done in the prototype 

because of cost considerations.



- 43 -

J

EKE
"T 252

22 20 VI 16 .10 « t 4 

2 SC 9 JOB
2 J 21 19 17 11 9 7 8

T~f • f-f

#7 ? A1 z'i/J *'{$
i i i i i i ; i

7CS112
"/*£j (K1 S) 17 18fVro -

P
Z? 20 18 16

17 * Vm
f-H

253
1 19 17 11 9 7 S

6 4 Ht*cu*
ro 19 o«

12 •*" - 235 - 242
3»o«

■g <.K3) /K 21 (X11 (« #) 
102 16 17/ 1» 19/201

J,, yo •*
y/wt W ►—jtzr

C./J44 Y15

A AAA 
11 I761 

IS 17

A A A A
IS l 20 I

rs 2/

4 AAA
22 124 I 

23 25

444444

Wi

1 _ 

2
*
5
6

9
10 —| 
11 - 

12 -

X4
CN 
X3 
X2 
X/ 
*0 
IX-7 

SO

li
S3

Vcc

wp
KO 
K1 
K2 
K3 
S 5 
S4

„ 0*4__

93 b ^3

-24
-23
-22
-2/
-20
-19
-IP
-17
-16
-15
-1C
-13

c**s j«i - jjj , Jn,^

DRAWING NO
PRCJf 'T HAPMONJAC

-•r: 7 {c'*■' ■ TWO S COMP MUL TIPL t'
O'i'-f. 33/?0 a/OV 79?g

Revision. i

oesiGN p, CONNOR
0»*f r. M, STEVENS

SLRC MACQUARIE UNI.

Fig. 18



- 
44 

-

0 0 0

t? 
t 

V 
>•>->-

ci 
q
 

q
 

q
 
9
9

F
ig

. 
19



45

■* I

u; u) 1 
£

ui 
a.

V
O
 

0

onQ.Z<ornH-<>ID

CCLlIs—
i

Ll.
i—

i
h~OLiJ
crLUCDQt—

i

crCD

Uld 0 .

21<5>incro

oIDvfsinzC
M

cro002:<cr.

CLz<oLOvir
inIDLi­
onrsjcrCO00

F
ig

. 
20

POWER SUPPLY



- 46 -

APPLICATIONS AND SOFTWARE

4.1 Applications

Basically applications for such a processor are either real 

time or non-real time applications. Most stand-alone work would 

require real-time operation to avoid build-up of unprocessed data, 

whereas more flexibility is possible in a system supported by a 

host processor with fast mass storage like a hard disc (eg. a 

16-bit microprocessor with a "Winchester"-type disc.

4.1.1 Real Time

The limits on real-time operation are easy to determine. The 

capacity depends on the bandwidth of the signal to be processed, 

the instruction rate, and the complexity of the algorithm. The 

maximum instruction rate in the prototype is 6.6 MHz or 150 nano­

seconds per complete double word transfer and operation. A typical 

target bandwidth for high-quality audio processing might be 15 KHz 

or 33 microseconds per sample processed. Each sample must be pro­

cessed synchronously with the external crystal clock of the analog 

data-acquisition system. It was found in a real-time sinusoid syn­

thesis routine (Fig. 22 in 4.3.1) that approximately ten instructions 

are used in synchronisation by polling of a memory location (used as 

a timing flag from the host processor). Another twenty or thirty 

instructions are usually required to set up loops, so that the inner 

loop of the signal processing algorithm is limited to about 160 in­

struction times total for high-quality sound. This is sufficient for 

many useful, algorithms (see 4.3.1) but not every possibility. Digital 

filters, sine-wave summation, linear predictive processes, and FFT 

analysis are all possible within bandwidth and complexity restric­

tions. Processes such as the FFT which require a buffer full of



- 47 -

samples can easily be double buffered to provide continuous processing.

A fast disc is not usually necessary if real-time processing is possible.

4.1.2 Non Real-Time Applications

There are no fundamental limitations on algorithms which do not 

need to be executed within a specified time interval but many would 

require a large program memory space and hence become impractical. 

Another aspect to be considered is the programming effort required to 

implement the wide range of functions (such as floating-point oper­

ations) which may be required in the more complex algorithms. It 

would usually be simpler, and almost as fast, to implement algorithms 

with complex requirements on a machine with a higher level language.

The type of non real-time algorithm which might be expected to be 

suitable to run on Harmoniac would be one using integer operations, 

but so many that they take a fair amount of time to complete (eg. a 

large or multiple FFT task, see 4.4).

4.1.3 The Appropriate Applications

The main advantage of this type of machine over a standard "black 

box" such as a spectrum analyser for rapid signal processing is that a 

more sophisticated, tailored algorithm can be run at high speed. In some 

cases, such as plain spectral analysis, there is no need fora tailored 

algorithm and in other cases speed may not be important or cost no object. 

But there is a class of tasks which require more speed than a standard 

LSI microprocessor can provide but not the sophistication or cost of a 

"mainframe". The disadvantage of the Harmoniac structure is that soft­

ware is a little harder to write than in a single-memory machine.

This difficulty arises from the "handedness" of the machine. Many 

operations require a particular operand on the left-hand bus (bus 1) 

when it was deposited on the right-hand bus (bus 0) by 

the last instruction. Hence some care needs to be taken



- 48 -

in choosing the initial placing of operands in memory and their sub­

sequent handling in the "scratch RAM" memories. With practice this 

is not very difficult.

4.2 The Assembler

To .facilitate the writing of software for Harmoniac a two pass 

assembler has been written. It is written entirely in Fortran IV and 

runs on a Hewlett Packard 21 MX which is interfaced to Harmoniac. The 

assembler should be easily adapted to run on any Fortran system. A 

full listing of the assembler itself is given in appendix IV. It is 

part of a package which includes a simple file-handling system, editor 

and loader. The instruction mnemonic set and some of the rules in 

using it are given in appendix I ("Haref"). Typical examples of 

assembler listings of programs can be seen in section 4.3.1 and 4.3.2 

which follow.

In the program body the left column is a destination (common for 

both bus destinations) followed by a source one (left bus) and a source 

zero (right bus). Labels for jump destinations and data addresses are 

indicated by a "#" character. At the branch point of a jump (or call) 

the label occurs in the third column while the destination of the jump 

is labelled in the fourth column. Immediate mode is automatically used 

for labelled jumps. A no-operation on a given bus is indicated by a 

blank for the source on that bus (or "NOP"). Labels for addresses in 

the data memories appear in the second column, after the contents of 

the location are specified. Reference to these labels must occur in 

the third column and immediate mode is used to generate the address 

(limit 127). When a label in any field is not defined as data or a 

jump it is assumed to be a location in "scratch RAM".



- 49 -

A new program origin is indicated by "0PM, n n" in the first 

column and a new data origin is indicated by "@M1, nn" where n n is 

a positive decimal number. Data values for the current memory loca­

tion are given as decimal numbers between -32768 and +32767.

When the 16-bit instruction code (or data) has been assembled 

it is listed in terms of field addresses and as a four-digit hexa­

decimal number with a decimal and hexadecimal address, and the opera­

tion code is stored in a buffer. At the end of assembly, the buffer 

(object code) is transferred to disc or direct to Harmoniac. The 

listing can be suppressed if desired.

Many common errors are detected and flagged. These are listed 

in "HAREF" Appendix 1. A summary of the errors and warnings and the 

memory space used is listed at the end of assembly, in case no other 

listing is generated. The warnings are to assist in the use of 

immediate mode - to make the programmer aware that he is using a 

combination of addresses which cannot be used with the seven-bit 

immediate mode (which uses source one bit three). If the 7-bit mode 

is not in use, the instruction is valid.

Usually the scratch locations (16) are automatically allocated 

as the otherwise undefined variable destination labels are encountered, 

but it is possible to define a set of eight labels which become the 

first eight scratch labels. These do not use the third source bit and 

are thus always available for use.

The assembler takes source from disc in successive small files, 

each separately accessed by six character names. For a given assembly 

run only the first four characters of a name are used, the other two 

allowing separate editing of each of the small files. All files



50 -

assembled in one run must have the same first four characters. Hence 

a kind of linked assembly of several files is possible.

Results of an assembly are optionally sent direct to Harmoniac 

or placed in a disc file for later use.

4.2.1 Debug Utility "HBUG"

Since Harmoniac has no front-panel controls, all control must be 

exercised by software, using the direct memory-access port. To enable 

hardware and software verification a de-bugging program called "HBUG" 

was written to run on the host processor. The initial version of this 

runs on the ALPA-16 processor and was written in machine language, 

communicating via the TTY.

"HBUG" has facilities to inspect and change ("I") any location 

of the program and data memories as well as search ("S"), fill ("F") 

and copy ("C") facilities. These can be used for simple memory testing, 

using the "search for not equal" command (S nn.mm.v N") after the memory 

has been filled from nn to mm with value v with a "F" command. The in­

struction registers and scratch RAM registers are not directly access­

ible via the DMA port so a breakpoint subroutine was written for 

Harmoniac which copies all the registers into standard memory tables 

so that they can be communicated to the user. This facility is exer­

cised using a "B" command which inserts calls to the breakpoint sub­

routine whenever they are needed. A few locations in each memory and a 

few registers in the scratchpad memory must be reserved for the break­

point routine to operate smoothly.

4.2.2 "MTEST" Memory and Communications Tester

To verify that the DMA link to the host processor and Harmoniac*s 

memory are in good working order, a simple diagnostic was written in



51

Fortran. This writes patterns into Harmoniac's memory and reports 

any discrepancies when they are read back. It does not use any of 

the processing circuitry in Harmoniac so it can be used as the first 

stage in isolating a fault. The patterns used are firstly fixed-bit 

patterns, then rotating patterns and then an incrementing binary 

number.

The program is called from disc in the Hewlett Packard 21MX 

host system.

4.3 Signal Processing Utilities Available for Harmoniac

This section describes some of the utilities written for 

Harmoniac which are now in use at the Speech and Language Research 

Centre.

4.3.1 Sine Wave Synthesis ("SINSUM")

A good general purpose utility for musical applications is a 

routine which can gnerate successive samples of a sum of sinusoids 

in real time. Such a utility is shown in Figs. 22, 24. It is 

based on a similar concept to the digital oscillator described 

in ref. 7. Parametric input is in a file of amplitudes and phase 

increments in memory one which can be changed at will by the host 

processor. Synchronisation with the sample rate set by the host 

is achieved through a location in memory defined as a flag. The 

host sets it to non-zero to initiate the processing for one sample 

and Harmoniac sets it back to zero when finished (see lines 70 to 

75 for polling, lines 77 to 79 for reset, Fig. 22). Sample value 

is left in a predetermined memory location for the host to access. 

This routine produces 15 sinewaves with a 15 KHz bandwidth. There 

are several deficiencies in this routine which are corrected in a 

more advanced version shown in Fig. 23.



52 -

The version in Fig. 23 uses double-precision phase angles 

to achieve 2 ** 31 points in frequency over a 15 KHz range and 

it changes parameters only at a zero crossing so that no dis­

continuities are heard. It is used in the singing-voice re­

synthesis system described in 4.4 and appendix III. It uses a 

buffer to store a large number of samples and is not oriented 

towards real time operation (parameters are changed at every 

zero crossing for program simplicity).

A close look at the single-precision sine-synthesis 

routine in Figs. 24, 22 will clarify some programming techniques.

A table of the phases of each sine wave starts at memory zero 

location zero. The phase increments and amplitudes are stored 

in a coefficients table in memory one starting at location 121. 

Overall amplitude is stored at memory one, location 120. The 

result and flag are at 100 and 101. The arithmetic control word 

is set for seven-bit immediate mode at location one of the pro­

gram. The memory control word is set (at location zero) to sine 

to pop memory one (increment on a read) and push memory zero (in­

crement on a store - update of phase). Program memory locations 

are given in decimal in the RH column of the listing.



53 -
Fig. 22

PAGE 1 HARMONIAC ASSEMBLY OF : SINSUM GEN N SINES
,INE ADDR MEM. SOURCE CODE #LABELS < JMP ) *CMTS

2 NEW PROGRAM SEGMENT EEGINS @PM, 500
3 01F4 C574 JMP #HERE #HERE
4 01F5 0000 NOP
5 NEW PROGRAM SEGMENT BEGINS @PM>0
6 0000 C574 JMP #HERE
7 0001 0000 NOP
8 DATA FILE: FOR MAIN MEM BEGINS @M0,0
9 0000 0000 0 #PHASES

10 0001 0000 0
11 0002 0000 0
12 DATA FILE: FOR MAIN MEM BEGINS @M1, 120
13 0078 01F4 500 #ANPLA
14 0079 0064 100 fcPHIAMP
1 5 007A 1770 6000
16 007B 00C8 200
17 007C 1770 6000
18 007D 012C 300
19 007E 1388 5000
20 007F 0190 400
21 0080 1388 5000
22 0081 01F4 500
23 0082 1388 5000
24 0083 0258 600
25 0084 1388 5000
26 0085 02BC 700
27 0086 OFAO 4000
28 0087 0320 BOO
29 0088 OBBB 3000
30 0089 0384 900
31 008A 07D0 2000
32 008B 03E8 1000
33 008C 03E8 1000
34 008D 044C 1100
35 008E 0320 800
36 008F 04B0 1200
37 0090 0258 600
38 0091 0514 1300
39 0092 01F4 500
40 DATA FILE FOR MAIN MEM BEGINS @M1, 100
41 0064 0000 0 #DATAD
42 0065 0000 0
43 0066 0000 0 #FLGAD
44 NEW PROGRAM SEGMENT BEGINS «PM,0
45 0000 9009 RSH/MC =NOP i 9 *POP Ml IM
46
47 0001

PUSH
9400

MO
SIN/AC NOP 0 SETUP ALU IM

48 0002 FD19 MID/AD NOP #PHIAMP #SAMLO IM
49 0003 B420 TRANS AFLG 0 A ZERO IM
50 0004 9800 MADR NOP #PHASES IM
51
52

0005
0006

40A5
20E7

#SAMPL
ADD

TRANS
=MDAT

TRANS 
, MDAT #ADD PH IN

53
54

«*C
0007

TO PH 
9460 SIN =ALU , 0 #SINLO IM

55 * MPY SINE BY AMPL OF THIS C0MP0NENT(M1

DECODED OBJECT

0 500 
0 0

0 500 
0 0

5
15 
13

6
16 

8

0 0 
0 121 

0

ID ID



- 54 -
Fig. 22

PAGE 2 HARMONIAC ASSEMBLY OF : SINSUM
56 0008 30ED MPY “MDAT SIN 12 7 13
57 0009 1C03 MOAT “NOP ALU *DLY F 7 0 3
58 **0R MPY
59 OOOA 2090 ADD MPYH #SAMPL 8 4 16
60 OOOB 4063 #SAMPL. ALU ALU 16 3 3
61 OOOC BB4C COMP MOADDR 12 IM 14 2 12
62 GOOD 8407 JMP “NOP #SINLQ *L)0 MOIM 1 0 7
63
64 OOOE 20E7 ADD “MDAT MDAT * JMP S 8 7 7
65 *#SHADOW
66 * MPY BY iOVERALL AMPL COEFT
67 OOOF FT) 18 MID/AD NOP #AMPLA IM 15 0 120
68 0010 0000 NOP NOP 0 0 0
69 0011 30F0 MPY MDAT #SAMPL 12 7 16
70 *WAIT FOR HOST TO SET FLAG - 0< DATA REC
71 0012 FD06 MID/AD NOP #FLGAD #HOSTWT IM 15 0 102
72 0013 B8E0 COMP MDAT 0 IM 14 7 0
73 * WAITING FOR HOST TO TAKE LAST SAMPLE
74 0014 8412 JMP NOP #HOSTWT IM 1 0 18
75 0015 0000 NOP NOP 0 0 0
76 0016 FD84 Ml D/AD MPYH #DATAD IM 15 4 100
77 * SET FLG =1 TO TELL HOST DATA READY
78 0017 B401 TRANS NOP 1 IM 13 0 1
79 0018 FDA6 MID/AD TRANS #FLGAD IM 15 5 102
80 0019 8402 JMP =NOP #SAMLO IM 1 0 2
81 001A 0000 NOP NOP 0 0 0
0 WARNINGS TOTAL 
0 ERRORS TOTAL



55
Fig. 23

2
3
4
5
6 
7
a
9
10
11
12

RUNNING SINUSOID SUMMATION SYNTHESIS
USES DOUBLE PRECISION PHASE ADDITION 
FOR HIGH ACCURACY PITCH CONTROL.
AMPL SUMMATION IS S.PRECISION.
RUNS AS SUBROUTINE THAT CALCS NHOP 
PTS OF WAVEFORM ON EA. CALL(STACKED)

01CA 9008 MC 8 #SINSUM
01CB 9400 AC 0 IM7 SET
* POP THE CNT/ADDR PARAMETERS 
**SET UP TO DO “NHOP" SAMPLES

ENTRY IM
IM

42 * 12 INSTRUCTION INNER LOOP
43 * NOW CHECK IF ZERO CROSSING SO CAN
44 * CHANGE PARAMETERS WITHOUT CLICK

13 01CC BC 1 5 MID/AD NOP #ENDRES IM 15 0 21
14 01CD S4E0 #T1 MDAT NOP PTS TO END 21 7 0
15 * SET UP PTR TO RESULTS STACK IN Ml
16 DICE S8E0 #T2 MDAT NOP 22 7 0
17 01CF FC1C Ml D/AD 4NSINES #SAMLOP IM 15 0 60
18 01 DO E1F7 ADD MDAT #PHASES IM Q 7 119
19 01 D! 5063 #CNT ALU ALU 20 3 3
20 01D2 B4E1 TRANS MDAT 1 IS OVERALL AMP IM 13 7 1
21 01D3 A460 AND ALU 0 IM 9 3 0
22 01D4 4063 #ALUS ALU ALU USED FOR SAMPLE 16 3 3
23 01D5 D917 MADDR #PHASES IM 6 0 119
24 01D6 9009 MC 9 POP Ml,PUSH 0 IM 4 0 9
25 01D7 20E7 ADD MDAT MDAT ADD LSPS 8 7 7
26 01D8 XCQ3 MDAT NOP ’ ALU #SINLOP * 7 0 . 327 01D9 0000 NOP WAIT ON MO PU 0 0 0
28 01DA 2027 ADD AFLG MDAT * 8 1 7
29 01DB 20E3 ADD MDAT ALU ADD MBPS * 8 7 330 01 DC 1C03 MDAT ALU PUSH MSP 7 0 331 01DD A068 ADD ALU 8 ROUND FOR SINE IM 8 3 Q32 #
33 * NOTE 65DB S/N POSS W 11B*1024 SINE
34 01DE 947B SIN/AC ALU 24 ROV&SEE OV & >= IM 5 3 2435 * MPY BY AMPL OF THIS COMPONENT
36 01DF 30ED MPY MDAT SIN 12 7 13
37 01E0 2090 ADD MPYH #ALUS UPDATE SAMPLE 8 4 16
38 01E1 4063 #ALUS ALU ALU 16 3 3
39 01E2 3854 COMP MOADDR #CNT 14 2 20
40 01E3 8578 JMP • ------  " #SINLOP IM 1 0 472
41 01E4 20E7 ADD MDAT MDAT NEXT LSP ADD 8 7 7

45 01E5 BA21 COMP #DPQ 1 EOUIV TO >0 IM 14 17 1
46 01E6 C 56 A JMP #NEG EXEC IF C—0 NOW IM 1 0 490
47 01E7 0000 NOP 0 0 0
48 01E8 C574 JMP #CONTIN EXCE IF IS >0 IM 1 0 500
49 01E9 0000 NOP 0 0 0
50 01 EA BAOO COMP ALUS 0 #NEG >=TEST IM 14 16 0
51 Q1EB C574 JMP #CONTIN #CONTI IF<0 LA IM 1 0 500
52 * BLOCK MOVE OF CONTROL PARAMS
53 01 EC FC1C MID/AD #NSINES IM 15 0 60
54 01ED 9819 MADDR #PARIN (HOST INPUT) IM 6 0 25
55 01 EE 9018 MC 24 PUSH1,POPO IM 4 0 24
56 01EF 22E7 ADD # Z R 0 MDAT 3 23 7
57 01F0 1C 60 MDAT ALU NOP #MOVP 7 3 0
58 01F1 F956 COMP MOADR #ENDPIN IM 14 2 118
59 01F2 C570 JMP #MOVP IM 1 0 496
60 01F3 22E7 ADD #ZRO MDAT 8 23 7



56

Fig. 2 3 (Contd.)
* (20 PARAM SETS ALLOWED)

62 * MPY BY OVERALL AMPL
63 01F4 3205 MPY #ALUS TRANS #CONTIN AMPL 12 16 5
64 01F5 A2C 1 ADD #T2 1 IM 8 22 1
65 01F6 3C83 M1D/AD MPYH ALU 15 4 3
66 01F7 4480 #DP0 MPYH NOP 17 4 0
67 01F8 5863 #T2 ALU ALU 22 3 3
68 OIF'9 36A3 TRANS #T 1 ALU 13 21 3
6? 01FA 3QA5 COMP TRANS TRANS REACHED END ? 14 5 5
70 01FB 856F JMP #SAMLOP IM 1 0 463
71 01FC 9009 MC 9 RESTORE MEM STATUS IM 4 0 9
72 01FD 0401 JMP RETURN 1 0 1
73 01FE 0000 NOP 0 0 0
74 DATA FILE FOR MAIN MEM BEGINS ©Ml, 20
75 0014 0100 256 #NHOP
76 0015 0900 2304 #ENDRES
77 0016 0800 2043 #RPTR
78 * END RESULTS AREA OF Ml
79 0017 0014 20 #LITTLE
80 DATA FILE FOR MAIN MEM BEGINS ©MO,25 PARAMETERS INPUT FILE
81 0019 0002 2 #PARIN
82 001A 07 DO 2000
83 001B 0000 0
84 001C 00C8 200
85 00 ID 01F4 500

*ENDS AT 118 
DATA FILE FOR

0076 0000 0
0077 0000 0
0078 0000 0 
DATA FILE FOR

003C 0002 2
03E8 1000 
0000 0 
07D0 2000 
1388 5000

86
87
88
89
90
91
92
93
94
95
96
97 * THREE WORDS 
5 WARNINGS TOTAL 
0 ERRORS TOTAL

003D
003E
003F
0040

MAIN MEM BEGINS ©MO,118 RUNNING PHASE TABLE 
ftENDPIN 
ttPHASES

MSP
MAIN MEM BEGINS ©Ml, 60 *•* PARAMETERS WORKING FILE 

#NSINES TWICE NO. OF SINES REQ 
#AMPLA OVERALL AMPL 
#PHIAMP PHASE INC LSP 

PHASE INC MSP 
AMPL OF THIS COMPONENT 

DESCRIBE EA COMPONENT



S1
- 57 -

03
7C

E
sz
+->

■ f—
i-
o
cn

1/1CD
JZ.
+->
c
>5

4-
O

E
03
i-
CT>
03

uo

CDcn
03

CD
C
03

<D
C

-C
o
03
E

Fig 24



- 58 -

<r^ /6 nir rK/ir#T£~ bus ^_/4n,

Ij 3**'4 .

An expanded block diagram of Harmoniac

Fig. 26



- 59 -

At location two of the program, memory one address is set to 

point at the first of the coefficients, beginning the loop which adds 

sine components to build up the resultant sample. The running-phase 

table address is initialised at location four and the initial value 

of the sample is zeroed at location five. At location six the current 

value of the running phase from memory zero is added to the phase in­

crement. The updated value is stored back in memory zero at location 

nine. This phase is used to look up the sine table at location seven 

and the resultant sine is multiplied by the amplitude of this com­

ponent (from memory one) in location eight. By location ten (Hexa­

decimal :A) the result of the multiply must be ready so it is added 

to the accumulating sample value in location ten and saved in loca­

tion eleven (:B). A check is made at location twelve (:C) to see 

if all the sine components have been added in, if not a loop is made 

back to location seven. Note that the instruction after the jump is 

also part of the loop (location 14) and it is used instead of going 

back to the instruction at location six.

At the end of the loop the sample has accumulated and it is 

multiplied by the overall amplitude at locations 15(:F) and 17(:11) 

and placed in memory where the host will find it at 22(:16) after 

waiting for the host to accept the previous result by polling the 

flag memory location in a small loop at 18(:12), 19(:13) and 20(:14) 

for zero flag. The flag is then set to one to tell the host that 

the new sample is ready (at 24(:18)). After this the program loops 

back to do the next sample.

The listing of the double-precision sine-synthesis subroutine 

in Fig. 23 (SINSUM in FFT1DS) has several improvements to make it 

more practical to use. Double-precision phase calculation gives



- 60 -

much finer control of frequency at a small cost in execution time 

(25% slower). It also detects positive zero crossings of the resul­

tant waveform, changing the input coefficients only at these points 

to avoid step changes in the waveform. This section should be im­

proved if real-time operation is required as the coefficients are 

changed at every zero crossing and every zero. It would be better 

to change at the first zero crossing of a buffer full of samples 

and do a default change of coefficients at the end of a buffer in 

coase no zero crossing occurred. (Limited space prevented this.)

Using a buffer, the double-precision sine-wave generator 

should be able to produce about eight to ten sines at a thirty 

microsecond sample rate. It has a signal to noise ratio of about 

65 dB in the prototype of Harmoniac (see ref. 8, "Noise in Digital 

Oscillators").

4.3.2 Maths, FFT and Power Spectral Analysis Package

In appendix II can be found the listings of a spectral- 

analysis package designed for rapid generation of power spectra, 

pitch analysis and smoothing of power spectra. It includes several 

general-purpose mathematical routines such as division, integer 

logarithmic routines and an exponential base two. It is basically 

a cepstral analysis routine used for speech analysis. In the 

initial implementation at the Speech and Language Research Centre, 

this transform package is used together with display and A/D 

(analog to digital) routines to produce four-colour spectrograms 

on a television display with a hardcopy facility.

The FFT (Fast Fourier Transform) subroutine itself begins on 

page eight, location 307 (see right column) of the listing in



- 61

appendix II. It uses a software system for bit reversed reordering 

(at location 39 and following) so that it can be used for any number 

of points that is an integer power of two. A program which uses the 

bit-reverse jumpers on the main memories has been written which runs 

significantly faster, but it lacks flexibility in the number of 

points that can be used. The routine shown is a translation of 

one given in Fortran by Markel in ref. 9 ("FFT Pruning"), which 

gives a time saving when smoothing transforms are being executed. 

(Where the number of input points is less than the number of output 

points.) The time-saving check is performed at location 327. A 

normal 512-point complex transform takes approximately 35 mi 11- 

seconds using this routine.

The FFT inner loop contains twenty-five instructions, per­

forming one "butterfly" of the transform per pass. Most of the 

instructions are used for address calculation. At locations 370- 

372 can be seen a typical programming trick to allow the multiply 

instruction to execute fully without wasting any time waiting the 

one instruction delay required. Another instruction whose 

position was not very critical has been put between the initia­

tion of the multiply and use of the result. This has been done 

to ensure the multiply was complete, although it was found to be 

unnecessary in the prototype.

The integer-divide subroutine can be found at location 198 

in appendix II. It uses a conventional shift-1eft-and-subtract 

method and hence is not very fast. It was assumed that division 

will not be much used in signal processing. The inner loop con­

tains eleven instructions, executed sixteen times so a division 

takes approximately thirty microseconds.



- 62 -

The integer logarithm (base "e") is from location 27 to 111.

It is based on the fractional log base e from 84 to 111, which 

calculates a power-series approximation to the logarithm. Execution 

takes approximately sixty microseconds. The log algorithm was trans­

lated from C.A.I. ALPHA-16 Assembler utilities. A table-look-up 

algorithm would be about sixty times faster.

The method used to call the FFT and the power spectrum options 

is a loop polling a single flag location which is set up by the host 

processor when some operation is to be performed on a buffer of data. 

This loop (from 0 to 20) does a series of comparisons in the "not- 

equals" mode so that a given option is not performed until the 

number of that option appears in the flag location.

Nested subroutines are used throughout this package. This has 

been achieved by careful attention to subroutine heirarchy and 

reservation of scratch registers to store return points - Harmoniac 

does not have a hardware stack. As an example DPNEG(248) is used 

by DIV(198) which is used by L0GF(84) which is used by 1 L0GE(27) 

which is used by 1 LOG 10(21) which is used by PWRL0G(155) which is 

used by PSPECT(465).

4.4 Signal Processing from the Host Computer

As an example of a full signal-processing algorithm which uses 

Harmoniac together with a host computer, a listing is given in 

appendix III of a singing-voice analysis and resynthesis routine 

which operates on the HP21MX in Fortran. It uses a modified version 

of the FFT package shown in appendix II for analysis with the sine- 

wave resynthesis routine of Fig. 23 as one of the options (instead 

of the cepstrum option). This system has been implemented to re-



- 63

process noisy acoustic gramophone recordings of opera singers, and 

it has worked quite effectively, especially on the soprano voice.

It is fully described in an article in the Speech and Language 

Research Centre's (S.L.R.C.) Working Papers which is included in 

appendix III.

The system is arranged so that both computers are processing 

simultaneously for maximum speed, but program memory limitations 

on the prototype of Harmoniac required that the pitch extraction 

section by partly done in the HP21MX and this is the limiting 

factor on processing speed. (Approx. 500 milliseconds per ten 

milliseconds processed.) Note that block floating point has been 

used to maintain high amplitude precision in the FFT's.

4.5 Stand-Alone Operation

The use of read only memory (ROM) for the program and addition 

of some analogue interface circuitry would make it possible to use 

Harmoniac as a stand-alone signal processor. The ROMs have been 

provided in the prototype together with a switch which allows the 

ROMs to be the lowest part of memory so that execution will begin 

on the program in ROM when power is switched on. (See Fig. 7.)

The extra circuitry required to implement an analog inter­

face would be: a real time clock (2 chips), an interrupt line (six

chips), analogue to digital (A/D) and digital to analogue (D/A) con­

verters (six chips) plus a DC -DC converter to provide the negative 

supply required. This could riot be implemented in the prototype 

because of a lack of space and time. In any case it would probably 

be cheaper and easier to use a standard 16-bit microcomputer as a 

host so that standard interfaces could be provided.



- 64 -

4.6 Maximum Possible Speed

Great care was exercised in the initial design of Harmoniac 

to keep the timing as simple as possible with a minimum number of 

gate delays in the more critical paths in order to allow high speed 

operation. In the case of bus transfers, phases two and three are 

used to place the data on the bus while phase three provides the 

setup time for the input latch on each operation. The chip con­

figuration used would allow a clock period of 35 nanoseconds per 

phase, worst case, but this cannot be achieved in practice because 

of the comparison function loop and the main-memory address counters.

To achieve a simple comparison facility, the loop was incorp­

orated into the arithmetic unit (using 74S181 chips). The compa­

rison must either inhibit or allow the instruction which follows 

the comparison. To delay the decision of comparison any more than 

one instruction would make programming awkward. In order to inhibit 

the instruction following the comparison instruction and at the same 

time allow as much time as possible for the decision to be made, the 

result (true or false) of the comparison is used at the last possible 

point in the instruction execution. This is during phase three when 

the destination-enable pulse is generated via the demultipiexers 344, 

345, 363 and 364 (Fig. 6, 74S1381s). To be sure that no partial 

destination-enable pulse is generated, the comparison decision must 

be available at the input to these demultiplexers just before the 

start of phase three. The data upon which the comparison is to be 

made reach the arithmetic unit up to 43 nanoseconds after the 

previous phase three and the arithmetic unit may take up to 49 nano­

seconds to deliver the decision back to chips 344 etc. (the demulti­

plexers). Hence the interval between the end of a phase three to



- 65 -

the start of the next phase three cannot be less than 92 nanoseconds. 

So the clock period must be 46 nanoseconds or more, giving an instruc­

tion execution time of 138 nanoseconds. The breakdown of these com­

parison delays is as follows:

(Refer to Figs. 15 and 6.)

PINS CHIP NO. CHIP TYPE MAX.DELAY SIGNAL GENERATED
(nanoseconds)

2, 3 350 74S00 5 from <J>~. to demux, 
enableJA

5, 9 344(etc) S138 11 through demux, to 
destination pulse

1, 8 722 S 30 5 ) to clock at ALU
1, 3 716 S 00 5 ) destination

9, 3 704(etc) S175 17 to data at ALU 
(through latch)

19, 14 700(etc) S181 30 to "=" output of ALU

12, 11 725 S 86 10.5 ) through comparison
6, 7 724 S158 7.5 ) mode control to "COMP"

2, 3 350 S 00 -2 (only differential 
delay of 350 relevant)

1M LEAD LENGTH DELAY 3

92 MAXIMUM DELAY 
FOR COMPARISON

This 92 nanoseconds represents the periods of two phases of the 

clock. Hence the worst-case minimum instruction cycle (three clock 

phases) is 138 nanoseconds if the comparison path is the limiting 

factor.

The main memories have a similar worst-case speed restriction. 

These will be analysed with reference to Fig. 10, where the memory 

write-enable pulses are generated, and Figs. 11, 12 which show the 

main-memory address generators. During the real cycles, there is no 

great problem as the address-change time and memory-access times are



- 66 -

just added together and need only be less than the full three-phase 

cycle by a margin of the time to charge up the bus and the setup 

time of the latch at the destination of the data. The address-change 

time is the time taken for the address counters on the memories to 

change after the previous read cycle (when "popping" data) and for 

that address to reach the memory chips. This period is 50 nano­

seconds worst case for a read. The read-access time 60 nanoseconds 

worst case for the 93425 memory chips used. This bus-charge and set­

up time for the destination latch (8551) is 30 nanoseconds. These 

add up to a 140 nanosecond instruction cycle, but none of these periods 

need to be synchronised so that the worst-case conditions mentioned 

here are extremely unlikely to all occur together. It should be noted 

that there is a possible extra period of 8 nanoseconds in this cycle 

due to the 74S138 destination demultiplexers. The S138 which starts 

the address change may be different to that which latches the data at 

the destination so the difference between the maximum and minimum 

delays is relevant. This would lead to a possible 148-nanosecond 

cycle but this is even more unlikely in practice.

The timing of the main-memory write cycle is a little more 

critical as the address change during a succession of "push" in­

structions to main memory must occur in less than one clock period 

as the other two clock phases (2, 3) are used to generate the write- 

enable pulse. The new address must be stable at the memory chip in­

puts a few nanoseconds before the write-enable pulse arrives (the 

address setup time). An analysis of the delays in the chain from 

the last write-enable to the new address follows:



- 67

PINS CHIP NO. CHIP TYPE MAX.DELAY SIGNAL GENERATED
(nanoseconds) (Figs. 10, 12)

2, 12 58 74S12 5 ) from LWEI neg. edge
11, 3 58 S12 5 )
9, 3 59 SOO 5 ) to addr. cntr. clo

2, 14 31(etc) S161 10 to addr. change out
of cntr.

6, 7 41(etc) S253 20 to address at memory
array (50 pF)

Total (delay from LWEI to address = 45 nanoseconds

The worst-case memory address setup time available before the 

next write to memory is:

TSUP = tclk " taddrch + twedly

TADDRCH 1S ^ nanoseconds

TwEDLY m"*nimum delay from LWEI to the write-enable

pulse to the whole memory array, assumed 3 nano­

seconds

Hpncp T = t + t _ tnence iCL|< isup 'ADDRCH 'WEDLY

= 5 + 45-3

= 47 nanoseconds, assuming 5 nanoseconds setup

time on the 93425 or 2125 RAMs. (T^p)

The worst-case cycle-time limit due to main memory writes is 

141 nanoseconds. This limit is more likely to be significant in 

practice than the read cycle because one slow memory chip or one 

slow address counter has a delay which is a greater proportion of 

the available time for the event, the address change, which must 

be completed in less than one clock period.

So, in a particular implementation of this design the most 

likely cause of the top-speed limit would be either the comparison



- 68 -

delay (max. 138 nanoseconds per instruction) or the memory-write 

cycle which leads to an instruction cycle of 141 nanoseconds. Hence 

the design speed could be set at 140 nanoseconds.

In the prototype it would be expected that an instruction time 

of better than 140 nanoseconds should be possible as the delays in 

typical chips are generally less than the maximum figures quoted 

above. In actual operation of complex algorithms the minimum in­

struction time was found to be approximately 150 nanoseconds. This 

was apparently due to jitter in the master clock generator which 

could be seen in its waveform. The jitter was due to the use of a 

voltage controlled oscillator (74 S 124) in a relatively noisy 

electrical environment. This jitter could cause certain instruc­

tion periods to be up to 20% shorter than the average.

Unfortunately, it was not possible to acquire a suitable 

crystal to test the machine at full speed, although an "outboard" 

oscillator would be possible if it used a separate power supply.

In any case the performance of the machine was quite adequate for 

the tasks for which it was designed at the Speech and Language 

Research Laboratory.

Several ways to improve the speed of the compare operation 

are possible. One would be to use selected chips in this area for 

maximum speed. Another method that would give a similar speed in 

the comparison as in transfer and other functions is to reduce the 

number of gates in the comparison path by reducing the flexibility 

of the compare. This would eliminate chips 725 and 724 in Fig. 15, 

giving a cycle of 111 nanoseconds. Unfortunately, this method would 

make programming very awkward as only the "equals" compare would be



- 69 -

available. Another method would be to extend the time available for 

the comparison by making the conditional instruction the second one 

after the comparison rather than the first. The conditional instruc­

tion is usually a jump so the instruction which follows it is always 

executed, even if the jump is not. Hence the comparison at present 

usually takes three instruction times (one is the jump shadow) so it 

would take four instruction times if the compare execution was 

delayed. There would then be a "compare shadow" instruction as 

well. This would be rather awkward for the programmer, although 

it would allow an instruction cycle.

A fourth method would be the use of separate comparison hard­

ware. This would avoid the destruction of the previous ALU contents 

which occurs in the prototype but would be very expensive in terms 

of extra hardware. This method would both speed up the cycle time 

as well as eliminating instructions currently used to save and 

restore the ALU contents in certain loops. All of these methods 

for improving the comparison speed were rejected because they were 

either too expensive to implement (especially since the available 

chassis space was full) or too awkward for the programmer. The use 

of a crystal-control led clock generator should allow the machine to 

run at a speed limited only by the comparison or the memory address 

change time, that is 140 nanoseconds worst case. The direct memory 

access feature, which stops and restarts the main timing ring, is 

designed to operate at clock periods down to 30 nanoseconds so it 

is not a limiting factor on Harmoniac's speed.



- 70 -

5. CONCLUSION

Although Harmoniac has been successfully applied to most of the 

tasks for which it was designed, some areas leave room for improvement. 

The main limitation discovered was word length. Although 16-bit words 

are adequate in most applications envisaged, it was found that 20- or 

24-bit data would have been desirable for FFT and filtering processes.

In the FFT a kind of block floating point had to be used when 1024 PT. 

transforms were performed on 12-bit input data to avoid overflow during 

the transform, (i.e. pre-scaling and post-scaling of data). Extension 

of the machine to twenty bits would be quite easy except for the inter­

face to a 16-bit machine. It would probably be simplest to provide 

direct access to the lower sixteen bits from the host and leave the 

program memory to sixteen bits.

The other area which could be improved in Harmoniac is processing 

speed. With the logic type and architecture used it should be possible 

to derive an instruction execution time of 110 nanoseconds maximum. It 

seems that this target was not met because of the method of comparison 

used (in ALU).

The most notable feature of this design is the use of only 16-bit 

wordlength in the program memory while maintaining speed and efficiency 

of hardware usage. Most signal processors have employed very large 

wordlengths in the program memory so that several addresses could easily 

be provided simultaneously. The method used to keep the program word 

short was to keep the number of instructions small and to treat main 

memory ports and all instructions like a small address space of thirty- 

two words. This has allowed very simple interfacing to cheap mini­

computers and a low overall cost of implementation of a fast signal

processor.



- 71 -

REFERENCES

1. "The FDP, a fast Programmable Signal Processor", I.E.E.E. T.C.
Vol. C20 No. 1 Jan. 71 pp. 33-38, Bernard Gold, Irwin Lehow,
Paul McHew, Charles Rader.

2. "A Special Purpose Computer for Digital Signal Processing"
De Mori, Renato, T - C 75, Dec. 1202-1211.

3. "Digital Filter realisations using a special purpose stored 
program computer", White and Nagle, I.E.E.E. T.A.E. Oct. 1972, 
pp. 289-294.

4. Microprocessor realization of a Linear Predictive Vocoder, 
Hofstetter, Tierney, Wheeler, I.E.E.E. A.S.S.P. Vol. 25 No.5, 
October 1977.

5. "Digital Signal Processing", Rabiner and Gold, 1977.

6. "G.A.S.P. A Fast General Purpose Signal Processor", Fensom,
Smith and Ackland (University of Adelaide) paper given at the 
Conference on Computers in Engineering in 1978 Canberra,
23-25 August.

7. "A digital oscillator which can generate up to 256 sine waves 
in Real Time", Computer Music Journal No. 2, 197#.^ J. S^ell

9. "FFT Pruning", J. Markel, I.E.E.E. Transactions on Audio and 
Electroacoustics, Vol. AU. 19 No. 4, December 1971.

10. "Array Processor Provides High Throughput Rates", W.R. Willmayer, 
Computer Design.

11 "Reflections in a pool of processors", S. Harbison and W.A. Wulf, 
Technical Report, Dept. Comput. Sci., Carnegie-Mel Ion University, 
Pittsburg, P.A., November 1977.

12. "Some Issues in Programming. Multi-mini-processors", A. Newell 
and G. Robertson, C.M.U. Report January 1975.

13. "Programming Issues raised by a multi-microprocessor", A.K. Jones, 
R. Chansler et al Proc. I.E.E.E., Jan. 1978.

14. "Real-Time Linear - Predictive Coding of Speech on the SPS-41 
Triple Microprocessor Machine", Michael J. Knudsen I.E.E.E. & 
A.S.S.P. Feb. 1975, 140-145.

15. "Microprogramming a mini-computer for fast signal processing",
T. Mulrooney, Electronics, March 16, 1978.

16. Effects of finite register length in digital filtering and fast 
Fourier transforms", A.V. Oppenheim and C.J. Weinstein,
Proc. I.E.E.E. Vol. 60, pp. 956-976, Aug. 1972.

17. The Technology of Computer Music, M.V. Mathews, M.I.T. Press,
Mass. 1969.

18. "LDVT: High Performance mini-computer for real-time speech 
processing", presented at the 1975 EASCOM Conf. Washington,
D.C., Sept. 29-0ct. 1, 1975.



APPENDICES



APPENDIX 1
- i

PAGE HARMONIAC ASSEMBLY OF HAREF 9 AUG 1979 ALL INSTR. SET
LINE ADDR MEM. SOURCE CODE ^LABELS(JMP) #CMTS DECODED QBJE<

2 NEW PROGRAM SEGMENT BEGINS ©PM;0
3 0000 0000 NOPCALL=NOP ;NOP #START (JSUB) 0 0 0
4 0001 0421 JMP -AFLG ;RETURN 1 1 1
5 0002 0842 IQADR =M0ADR , 12 2 2 2
6 0003 0C63 ODAT =ALU » ALU 3 3 3
7 0004 1084 RSH/MC =MPYH ; MPYL 4 4 4
8 0005 14A5 SIN/AC =TR01 ; TRIO 5 5 5
9 0006 18C6 MADR “MlADR , 14 6 6 6

10 0007 1CE7 MDAT “MDAT1 ,MDATO 7 7 7
11 0008 2108 ADD ~Z 1 ; Z1 8 8 8
12 0009 2529 AND “Z2 , Z2 9 9 9
13 OOOA 294A SUB = 11 , Z3 10 10 10
14 OOOB 2D6B OR = 13 , SOV 11 11 11
15 OOOC 318C MPY =RSH , SMPYAD 12 12 12
16 GOOD 35AD TRANS ~23 , SIN 13 13 13
17 OOOE 39CE COMP = Z4 ;BUS1 *NOT INSTALLED 14 14 14
18 OOOF 3DEF M1D/AD = Z5 ,RMPYA *SETS NORMAL MPY 15 15 15
19 0010 4210 SCRnn =SCRnn .SCRnn 16 16 16 DE

SOURCE ONE ERROR ! 99
SOURCE

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

ZERO ERROR ! 99
* =s ,

* FIRST 2 CMS ONLY REQ'D
^NUMERIC SCE ZERO CAUSES IMMEDIATE MODE 

0011 8400 JMP -NOP » #START
* SUBROUTINE JMP/RETURN SEQUENCE CAUSES 

THE "JMP SHADOW" INSTR STRAIGHT AFTER 
CALL TO BE EXECUTED TWICE-BEWARE! 
INSTRUCTION AFTER A JMP IS EXECUTED 
BEFORE! THE JMP ("JMP SHADOW").
LABELS START WITH ARE 6CHS LONG.
JMP DEST LABELS ARE IN 4TH FIELD. 
SCRATCH VAR LABELS IN 1ST 3 FIELDS. 
DATA MEM ADDR LABELS IN 2ND FIELD

# 
n 
*
*
#

*

* DURING 7 BIT IMMED INSTRS* NO HI SCR
* 024) OR HI SCES07) AVAIL ON BUS 1. 

(AS BIT 3 OF SCE1 USED BY 7BIT IMMED) 
60 IT IMMEDS GIVE ALL OPS AS NORMAL 
EXCEPT THAT SCR CANNOT BE WRITTEN.

RSH/NEM CONTROL BIT USAGE AS BELOW 
USE SUM OF OPTIONS REQ'D

42
43 MEM 1 STACK MEMO
44
45 *------------------1------------

BOTH!
1 _ . _ _ 1 . . .

46 *N0RM (0 > ! POP STACK! NORM (0) !POP < 0)
47 *D0WN(32)i (0) (8) ! DOWN (2) !
48 * RAD(64)!PUSH NON(0) ! RAD (4): PUSH
49 * DMA(96 > } (16) ! DMA <6)1 (1)
50
51

*
* SIN/ARITH CONTROL BIT USAGE AS BELOW

52 * USE SUM OF OPTIONS REQ'D
53 *NOT EQU ! IM6 COMPAREIOV&HS ! AC 0UT8<
54 (64 > 1 SET TEST I RESET !RSH IN
55 *NORM EQU! (32) = (0 ) ! IF(O)! 0V(0)



PAGE
56 >«
57 ■a
50 ■»
59 •a
60 •»
61 *
62 #

63 *
64 a-
65 a-
66 *
67 4*
60 «•
69 a-
70 a-
71 Mr

72 a
73
74 *■
75 •i*
76 *
77 *
78 *•
79 a-
80 Mr

81 *
82 a-
83 *
84 *
85 a
86 a-
87 *
08 a
89 *
90 #
91 Mr

HARMONIAC ASSEMBLY OF : HAREF 
(0) !RESET! >(8) !SAVED I HSC(1)

! (0) ! <<16) I IF(4)ILRSB(2)
! !>« < 24) I « MPQV(3)

&
ARITH(O) 
LOORT(1) 
ROTRT(2) 

OV <3)

COMPARE CAUSES SKIP OF FOLLOWING INST 
WHEN SET CONDITION IS TRUE(EG IF=)

ASSEMBLER ERROR MESSAGE TYPES :
S / D ERR 1 - OP, CODE DOES'NT EXIST 
DEBT ERR 2 - FORBIDDEN DEBT SEQUENCE 

(NOT ENOUGH TIME FOR OP. TO FINISH)
SCEO ERR 
DEST ERR 
SCE1 ERR 
DEST ERR
SCEO ER 101 -

JMP/CALL/SCRO SYMB UNDE 
SCRATCH VARIDLE OVERFLO 
LABEL DOESN'T EXIST 
NO SCR DEST W IMhED SCE 
IMMED>2047 OR <0 ON JMP 
OR A CONST OUT OF RANGE

SCEO ERR 
SCE1 ERR

97
99

SCEO ERR 
SCEO ER

SCE1

SCR RAM BEING READ & 
WRITTEN IN ONE OPERATION

_ M It II II

127 - IMhED >127 (XM7)
(NOTE: 63 MAX ON IM6)

ERR 24 - SCE1 ADDR >24 WITH IM7 
(NO HI SCR ALLOWED WITH IM7)

--------------- WARNING ONLY---------OK IF IM6
SCE1 ERR 15 - SCE1 ADR >7 & <16 W IM7
--------------------WARNING ONLY-------------------- -------

(NO HI OPS(SCE1) WITH IM7) 
(NOTE - THIS IS NOT ERR IF IM6 SET)

0 WARNINGS TOTAL
1 ERRORS TOTAL



iii

APPENDIX 1 (Contd.)
PAGE 1 HARMONIAC ASSEMBLY OF : FFT1MN MAIN CALLING PROG FOR FFT

LINE ADDR MEM. SOURCE CODE #LABELS(JMP ) *CMTS DECODED OB JEC

2 » 21APR 1980 SYNC. RESYNTH PARAM CHANGE
3 * N FT TRANSFORM
4 * FOR ANY ”N" (SOFT BIT REVERSE)
5 * -NOT AS FAST AS HARD BIT REVERSE
6 * LOG/LIN PWR SPECTRUM
7 •« & SMOOTHED PWR SPECT Z< PITCH AVAIL.
8 * SET UP FOR 12BIT INPUT,10 BIT DISPLAY
9 * MOD'D TO INCL RESYNTHESIS W PSPECT

10 * PHIL CONNOR,SLRC,MAGUARIE UNIVERSITY
11 * FIRST A "PROTECT11 PROG TO OPERATE
12 * DURING FILL UP OF HARM'S MEMS
13 NEW PROGRAM SEGMENT BEGINS ©PM,510
14 01FE C57E JMP #HERE #HERE
15 01 FT 0000 NOP
16 NEW PROGRAM SEGMENT BEGINS ©PM,0
17 0000 C57E JMP #HERE
18 0001 0000 NOP
19 *

IM 1 0 510
0 0 0

IM 1 0 510
0 0 0

20 $#ALUS #DPO #DP1 #TEMP #CNT
21 * #T1 #T2 #ZRO
22 DATA FILE FOR MAIN MEM BEGINS @M1,0
23 0000 0200 512 #ARGS
24 0001 0200 512
25 0002 OOOA 10 #L
26 0003 OOOA 10 #M
27 0004 0000 0 #PITCHP PITCH PERIOD RESULT
23 0005 0000 0 #PITCH
29 0006 0005 5 #SMOOTH
30 0007 0400 1024 #DISCL FOR A 10 BIT DISPLAY
31 0008 OOOF 15 #VTHRSH
32 0009 FFFE -2 ItFFFEMl
33 OOOA 0000 0 #RDYFL2
34 GOOD 3FFF 16383 #PI/2
35 DATA FILE FDR MAIN MEM BEGINS ©Ml, 50
36 0032 7FFF 32767 #SGNMSK THESE 2 RESTORED
37 0033 0000 0 #RDYFLG BY FFTHD(CALLER)
38 0034 8000 -32768 #8000
39 * BEWARE ,BUGFLG IS AT 53
40 DATA FILE FOR MAIN MEM BEGINS ©Ml, 54
41 0036 3796 14230 #PLOG1E
42 0037 4000 16384 #H4000
43 DATA FILE FOR MAIN MEM BEGINS ©MO, 0
44 0000 2710 10000 #SAMRAT
45 0001 0080 128 #LINSCF
46 0002 FFFE -2 #FFFE
47 0003 58B A 22714 #PL0GE2
48 0004 4000 16384 #HLF
49 0005 0E39 3641 #C4
50 0006 1249 4681 #C 5
51 0007 1999 6553 #C6
52 0008 2 AAA 10922 #C7
53 0009 0400 1024 #P1024
54 OOOA 0000 0 #PWRRET
55 OOOB 0000 0 #PSPR



iv -

PAGE-: 2 HARMON I AC ASSEMBLY OF : FFT1MM
56 OOOC OOOO 0 #PSSPR
57 GOOD 0000 0 #FFTRET
58 NEW PROGRAM SEGMENT BEGINS @PM,0
59 * MOST OF PROGRAM USES IM6 MODE TO
60 * GIVE ACCESS TO ALL REGS & 0-63 IMMEDS
61 0000 9000 RSH/MC =NOP ;0 #START IM 4 0 0
62 0001 9400 SIN/AC NOP 0 SETS IM7 IM 5 0 0
63 0002 D500 SIN/AC NOP 96 SETS MOT EQU,16 IM 5 0 96
64 0003 A460 AND ALU 0 GENERATE A ZERO IM 9 3 0
65 0004 5C63 #ZR0 ALU ALU 23 3 3
66 0005 FC13 MID/AD -NOP /#RDYFLG #WAIT IM 15 0 51
67 0006 B8E1 COMP «=MDAT ; 1 IM 14 7 1
68 0007 C043 CALL NOP #FFT IM 0 0 291
69 0008 FC13 MID/AD NOP #RDYFLG FOR NEXT IN T IM 15 0 51
70 0009 B8E5 COMP MDAT 5 IM 14 7 5
71 OOOA C07B CALL NOP #PSPECT DOES LOG SPECTR IM 0 0 443
72 QOOB FC13 MID/AD NOP #RDYFLG IM 15 0 51
73 •» COMP MDAT 6 REM 'D-RESYNTH
74 #CALL NOP #SSPECT SMOOTHED SPECT
75 * MID/AD NOP #RDYFLG
76 OOOC 9000 RSH/MC NOP 0 MEM NORM IM 4 0 0
77 OOOD BCOA MID/AD MOP #RDYFL2 IM 15 0 10
78 OOOE B8E1 COMP MDAT 1 IM 14 7 1
79 OOOF FEF3 MID/AI) =#ZRO ,#RDYFLG IM 15 23 51
80 0010 8400 JMP -NOP ,#START IM 1 0 0
81 0011 BEEA MID/AD #ZRO #RDYFL2 IM 15 23 10
82 #
2 * 20 JULY 1979 ,
3
A

* THERE IS SLIGHT ERROR IN LOGE ???
H
5

IT

» INTEGER LOG BASE E
6 0012 6001 #L/M NOP RETURN #ILOGE 24 0 1
7 * IN ALU;OUT ALU
8 ♦RETURN ZERO IF <:®ZERO IN
9 0013 4063 #ALUS ALU ALU 16 3 3

10 0014 D408 AC 40 >; 16 IM 5 0 40
11 0015 BS60 COMP ALU 0 >0? IM 14 3 i
12 0016 0418 JMP #L/M SKIP THRU IF TRUE 1 0 24
13 0017 A2E0 ADD #ZRO 0 IM 8 23 0
14 0018 CO ID CALL NOP #NORM IM 0 0 61
15 0019 A200 ADD #ALUS 0 RESTORE ALU IM B 16 0
16 ♦GIVES EXPONENT BASE 2 IN #DP1 MSP
17 001A 81OB CALL NOP #LOGF ♦FRACTIONAL LOG IM 0 0 75
18 ♦RESULT ALWAYS NEG SINCE LOG OF FRACTIO
19 00IB D400 SIN/AC NOP 32 IM 5 0 32
20 ♦ARITH R. S. OF FRACT *4
21 001C 3412 TRANS NOP #DP 1 13 0 18
22 001D 10A0 RSH TRANS NOP 4 5 0
23 001E 1180 RSH RSH NOP 4 12 0
24 00IF 1180 RSH RSH NOP 4 12 0
25 0020 1180 RSH RSH NOP 4 12 0
26 0021 3580 TRANS RSH NOP 13 12 0
27 0022 4805 #DP 1 NOP TRANS 18 0 5
28 0023 9S03 MADDR NOP #PLDGE2 IM 6 0 3



V

PAGE 3 HARMONIAC ASSEMBLY OF : FFT1LG
29 0024 3247 MPY #DP 1 MDAT GET EXP BASE E 12 18 7
30 0025 4484 #DPO MPYH MPYL 17 4 4
31 0026 3231 MPY #DPO #DPO tfLLEFT LSP 12 17 17
32 0027 4408 #DPO NOP Z1 17 0 8
33 0028 A2E0 ADD #ZRO 0 IM 8 23 0
34 0029 5460 #T1 ALU NOP 21 3 0
35 * LINE UP BIN PT WITH EXPONENT
36 002A C012 CALL NOP #DFRT1 #LINRT IM 0 0 50
37 002B A2A 1 ADD #T1 1 IM 8 21 1
38 002C 5460 #T1 ALU NOP 21 3 0
39 002D BAAS COMP #T 1 5 IM 14 21 5
40 002E C40A JMP NOP #LINRT IM 1 0 42
41 002F 3631 TRANS #DPG #DPO 13 17 17
42 0030 0418 JMP NOP #L/M 1 0 24
43 0031. 20B2 ADD TRANS #DP 1 8 5 18
44 ■w-
45 * SINGLE D. P. LOGICAL RIGHT OF #DPO
46 0032 D401 SIN/AC NOP 33 #DPRT1 IM 5 0 33
47 0033 1220 RSH #DPO NOP 4 17 0
48 *LOST BIT IN AFLG 4

49 0034 D402 SIN NOP 34 SEE LRSB&ROTATE IM 5 0 34
50 0035 4580 #DPO RSH NOP 17 12 0
51 0036 BC09 MID/AD NOP #FFFEM1 IM 15 0 9
52 0037 24F1 AND MDAT #DPO 9 7 17
53 0038 2C23 OR AFLG ALU PUT IN CARRY BIT 11 1 3
54 0039 1060 RSH ALU NOP ROTATE RT 4 3 0
55 003A A180 ADD RSH 0 IM 8 12 0
5E3

56 003B 0401 JMP NOP RETURN 1 0 1
57 003C 4403 #DPQ NOP ALU 17 0 3
58 *
59 * NORM BUILDS INTEGER EXPONENT
60 * Ih1 ALU, OUT EXP MSP #DP1» FRAC LSP
61 003D D400 SIN NOP 32 #NORM IM 5 0 32
62 003E 9000 RSH/MC NOP 0 IM 4 0 0
63 003F B061 MPY ALU 1 IM 12 3 1
64 0040 B402 TRANS NOP 2 IM 13 0 2
65 0041 5SA0 #T2 TRANS NOP 22 5 0
66 0042 FC 17 MiD/AD NOP #H4000 IM 15 0 55
67 0043 A2EF ADD #ZRG 15 EXP CNT IM 8 23 15
68 0044 4864 #DP 1 ALU MPY #NL.OOP 18 3 4
69 0045 24E4 AND MDAT MPY 9 7 4
70 0046 32C4 MPY #T2 MPY 12 22 4
71 0047 38E3 COMP MDAT ALU 14 7 3
72 0048 8504 JMP NOP #NLOOP UNTIL BIT 14 SET IM 1 0 68
73 0049 AA41 SUB #DP 1 1 IM 10 18 1
74 004A 0401 JMP NOP RETURN 1 0 1
75 ■«

76
77 * LOGF IS FRACTIONAL LOG BASE E
78 004B 6401 #RTN3 RETURN #LQGF 25 0 1
79 004C 9804 MADDR NOP #HLF IM 6 0 4
80 004D 36F2 TRANS #ZRO #DP 1 13 23 18
81 004E 90A0 RSH TRAMS 0 IM 4 5 0
82 004F 2987 SUB RSH MDAT USUALLY NEG RESUL 10 12 7

SOI



vi

PAGE 4 HARMONIAC ASSEMBLY OF : FFT1LG
83 0050 4465 #DPG ALU TRANS 17 3 5
84 0051 CG39 CALL NOP #DIV NEG NUMERATOR IM 0 0 185
85 0052 2187 ADD RSH MDAT 8 12 7
86 0053 3411 TRANS NOP #DPQ RESULT DPO LSP 13 0 17
87 0054 30B1 MPY TRANS #DPO SQUARE IT 12 5 17
88 0055 9008 RSH/MC NOP 8 POP MO IM 4 0 8
89 0056 4484 #DPO MPYH MPYL. SAVE SQ 17 4 4

2 0057 9805 MADDR ~NOP , #C4 IM 6 0 5
3 0058 3227 MPY #DPQ MDAT (C4) 12 17 7
4 0059 2087 ADD MPYH MDAT (C5) a 4 7
5 00 5A 3223 MPY #DPO ALU 12 17 3
6 005B 2087 ADD MPYH MDAT (C6) 8 4 7
7 005C 3223 MFY #DPQ ALU 12 17 3
0 00 5D 2087 ADD MPYH MDAT <C7> 8 4 7
9 005E 3223 MPY #DPO ALU 12 17 3

10 005F 34A0 TRANS TRANS NOP RESULT OF DIV 13 5 0
i i 0060 3085 MPY MPYH TRANS 12 4 5
12 0061 2085 ADD MPYH TRANS 8 4 5
13 0062 B062 MPY ALU 2 IM 12 3 2
14 0063 9000 MC 0 IM 4 0 0
15 0064 0419 JMP NOP #RTN3 1 0 25
16 0065 4804 #DPi NOP MPYL 18 0 4
17
18 * PUT COSINE WINDOW ON SIGNAL ............
19 * MANNS MEM1 BUFFER/ZEROES MEMO
20 * SIGNAL INPUT IN MEMO AFTER 12SEPT
21 * CHECKED □K 31 AUG 1979
22 0066 6801 #LI/MX NOP RETURN #HANN 26 0 1
23 ♦GET PARAMETERS FROM MEM1
24 0067 8050 CALL NOP #FARAS IM 0 0 272
25 0068 5804 #T2 NOP MPYL 22 0 4
26 0069 FC 12 Ml D/AD NOP #SGNMSK GET : 7FFF IM 15 0 50
27 ♦CALC PHASE INCR 2PI/N
28 006A B4E1 TRANS MDAT 1 IM 13 7 1
29 006B 44 A 5 #DPQ TRANS TRANS 17 5 5
30 006C C039 CALL- NOP #DIV IM 0 0 185
31 006D 22F6 ADD #ZRO #T2 8 23 22
32 ♦RESULT IN #DPO LSP
33 ♦START READING SINE FROM -PI/2
34 006E 90F9 RSH MDAT 25 °USH MEMS IM 4 7 25
35 006F B580 TRANS RSH 0 IM 13 12 0 SOI
111
36 0070 28 A 5 SUB TRANS TRANS TO-:3FFF( -PI/2) 10 5 5
37 0071 4C03 #TEMP NOP ALU 19 0 3
38 0072 5460 #T1 ALU NOP 21 3 0
39 0073 1BBD MADDR #BA5E #BASE 6 29 29
40 0074 58A0 #T2 TRANS NOP CNTR 22 5 0
41 ♦ 1ST 1/2 OF DATA
42 0075 D6A8 SIM #T 1 40 IM 5 21 40
43 0076 22ED ADD #ZRO SIN #HANL01 > 8 23 13
44 0077 1060 RSH ALU NOP 4 3 0
4 5 0078 2993 SUB RSH #TEMP ADD H. S. 10 12 19
46 * TAKE INPUT DATA FROM MEM 0 (IMG STOR)
47 0079 3067 MPY ALU MDAT 12 3 7
48 007A 22B1 ADD #11 #DPO UPDATE SIN ADDR 8 21 17



vi i

PAGE !5 HARMONIAC ASSEMBLY OF : FFT1L.1
49 007B 9C80 MDAT MPYH 0 IM 7 4 0
50 007C 5460 #T1 ALU MOP 21 3 0
51 007D A2C2 ADD #T2 2 UPDATE CNTR IM 8 22 2
52 007E 5860 4T2 ALU NOP 22 3 0
53 0Q7F 3876 COMP ALU #T2 14 3 22
54 0080 C516 JMP NOP #HANL01 IM 1 0 118
55 * 2ND 1/2 OF DATA
56 0081 D6AB SIN #T1 40 IM 5 21 40
57 0082 58A0 #T2 TRANS NOP ZERO CNTR 22 5 0
58 0083 22ED ADD #ZRO SIN 4HANL02 8 23 13
59 0084 1060 RSH ALU NOP 4 3 0
60 0085 2993 SUB RSH #TEMP 10 12 19
61 0086 3067 MPY ALU MDAT *DATA FROM MO 12 3 7
62 0087 2AB 1 SUB #T1 #DPO 10 21 17
63 0088 9C80 MDAT MPYH 0 IM 7 4 0
64 0089 5460 #T1 ALU NOP 21 3 0
65 008A A2C2 ADD #T2 2 IM 8 22 2
66 008B 5860 #T2 ALU NOP 22 3 0
67 008C 3876 COMP ALU #T2 14 3 22
68 008D 8423 JMP NOP #HANL02 IM 1 0 131
69 006E D6A8 SIN #T 1 40 IM 5 21 40
70 OQBF 041A JMP NOP ttLI/MX 1 0 26
71 0090 9000 RSH NOP 0 IM 4 0 0
72 * —

73 * LOG POWER CALCS FOR SPECTRUM
74 * DOES 1/2CL0G(X'"' 2+Y~2>3
75
76 0091 980A MADDR NOP 4PWRRET #PWRLOG IM 6 0 10
77 0092 1C01 MDAT NOP RETURN 7 0 1
78 0093 D418 SIN NOP 56 16;>= IM 5 0 56
79 0094 A2E0 ADD #ZRO 0 IM 8 23 0
80 0095 6C60 #L2/N1 ALU NOP LOOP CNTR 27 3 0
81 0096 9801 MADDR 4LINSCF IM 6 0 1
82 0097 5007 #CNT NOP MDATO 20 0 7
83 0098 1BBD MADDR #BASE #BASE 6 29 29
84 0099 9000 RSH NOP 0 NORM MEMS IM 4 0 0
85 009A 34E0 TRANS MDAT NOP 13 7 0
86 009B 30E5 MPY MDAT TRANS #PWRLOP 12 7 5
87 009C 3447 TRANS MOADR MDAT 13 2 * 7
88 009D 5805 #T2 NOP TRANS 22 0 5

2 009E 4484 #DP 0 MPY MPY 17 4 4
3 «• NOW V^2
4 009F 30A7 MPY TRANS MDAT 12 5 7
5 OOAO C06E CALL NOP #DPADD IM 0 0 430
6 00A1 4884 #DP1 MPY MPY 18 4 4
7 00A2 C.039 CALL NOP #DIV IM 0 0 185
8 00A3 22F4 ADD #ZRO #CNT SCALE TO INTEGER 8 23 20
9 * COPY LINEAR PWR SPECT TO EXTRA BUFFER

10 * AT #BASE+N IN MEM 0 SO IT'S AVAILABLE
11 * FOR RESYNTHESIS
12 00A4 3416 TRANS #T2 GET CUR ADDR 13 0 22
13 00A5 20BB ADD TRANS #L2/N1 8 5 27
14 00A6 1803 MADDR NOP ALU 6 0 3
15 00A7 1C11 MDAT NOP #DPO 7 0 17



- vii i -

PAGE 6 HARMONIAC ASSEMBLY OF : FFT1L2
3 6 00A8 22F1 ADD tfZRO #DPO 8 23 17
17 00A9 8012 CALL NOP #ILOGE IM 0 0 18
18 OOAA BCQ7 Ml D/AD #DISCL. IM 15 0 7
19 * SCALE DISPLAY BY MPY & DISCARD OF LSP
20 OOAB 30E3 MPY MDAT ALU 12 7 3
21 00AC 3C16 MlD/AD NOP #T2 GET CURR ADDR 15 0 22
22 GOAD 1016 MADDR #T2 6 0 22
23 OOAE A362 ADD #L2/N1 2 IM 8 27 2
174
24 00AF 6C60 #L2/N1 ALU MOP DOES N/2 PTS 27 3 0
25 OOBO AOC1 ADD Ml ADR 1 UPDATE IM 8 6 1
26 GOBI 9C80 MDAT MPY 0 SPECT RESULT IM 7 4 0
27 00B2 D408 SIN NOP 40 > ,16 IM 5 0 40
28 00D3 1863 MADDR ALU ALU FOR NEXT FETCH 6 3 3
29 00B4 3B7B COMP #L2/N1 *L2/N1 14 27 27
30 00B5 843B JMP NOP #PWRLOP IM 1 0 155
31 00B6 B4E1 TRANS MDAT 1 IM 13 7 1
32 * MUST ZERO OUT REST OF R&I FOR SMOOTH
33 00B7 8565 JMP NOP #MRET IM 1 0 453
34 00B8 980A MADDR MOP #PWRRET IM 6 0 10
35 ♦
2 00B9 7001 #RTN1 NOP RETURN #DIV ♦DIV SUBR 28 0 1
3 ♦HI &L0 DIVIDEND INPUT #DPO (D. P. )
4 ♦DIVISOR IN ALU, RESULT IN &DPQ LSP
5 ♦ REMAINDER IN #DPO MSP(SON OF DVDEND)
6 ♦ CHECKED OK AUG 1979
7 OOBA 4063 #ALUS ALU ALU 16 3 3
8 OOBB 3223 MPY =#DPO , ALU ♦QUOT 12 17 3
9 ♦SIGN GOT BY MPY

10 OOBC 9400 SIN NOP 0 IM 5 0 0
11 00BD D500 SIN NOP 96 IM 5 0 96
12 ♦IF MSP OF DPO IS 0 , USE DIVISR AS SGN
13 OOBE BA20 COMP #DPO 0 IM 14 17 0
14 OOBF B201 MPY #ALUS 1 DONE IF ”0 IM 12 16 1
15 OOCO D410 SIN/AC NOP 48 *IM6,< IM 5 0 48
16 00C1 B620 TRANS #DPO 0 IM 13 17 0
17 00C2 4C85 #TEMP MPY TRANS 19 4 5
18 ♦MAKE DIVISOR POS
19 00C3 BAOO COMP #ALUS 0 IM 14 16 0
20 00C4 8527 JMP NOP #POSDVR IM 1 0 199
21 00C5 28B0 SUB TRANS #ALUS 10 5 16
22 00C6 4003 #ALUS NOP ALU 16 0 3
23 ♦MAKE DVDEND POS
24 0QC7 BA20 COMP ft DPO 0 #P05DVR < IM 14 17 0
25 Q0C8 852B JMP NOP #PDSDND IM 1 0 203
26 00C9 D400 SIN/AC NOP 32 IM 5 0 32
27 OOCA C12B CALL NOP #DPNEG IM 0 0 235
28 ♦PACK LSP LEFT BEFORE USING D. P. LEFT
29 OOCB 080B IOADR NOP SOV #POSDND 2 0 11
30 OOCC 30B1 MPY TRANS tiDPO ♦ PACK LSP 12 5 17
31 OOCD 4408 fcDPO NOP Z1 17 0 8
32 OOCE 50A0 #CNT TRANS NOP 20 5 0
33 OOCF 2A30 SUB #DPO ft ALUS #DI VL SUB DIVOR 10 17 16
34 ♦RESTORE DIVIDEND IF 0V= 1
35 OODO B820 COMP AFLG 0 IM 14 1 0



ix

PAGE 7 HARMONIAC ASSEMBLY OF : FFT1DV
36 00D1 8534 JMP NOP #REST IM 1 0 212
37 00D2 AE20 OR #DP0 0 IM 11 17 0
38 00D3 2 A 30 SUB #DPO #ALUS *D0 REAL SUBTR 10 17 16
39 00D4 3071 MPY ALU #DPO #REST 12 3 17
40 0005 4508 #DPO Z1 zi 17 8 8
41 0006 A281 ADD #CNT 1 •a-1 NCR CNT IM 8 20 1
42 00D7 5060 #CNT ALU NOP 20 3 0
43 00D8 BQ70 COMP ALU 16 IM 14 3 16
44 00D9 852F JMP NOP #DIVL IM 1 0 207
43 OODA D4G0 SIN/AC NOP 32 IM 5 0 32
46 OODB D413 SIN/AC NOP 51 IM 5 0 51
47 * MOVE 0V(0) INTO MSP OF REM
48 OODC 1220 RSH/MC #DPO NOP 4 17 0
49 *SET REM SIGN SAME AS DVDEND
50 OODD 3413 TRANS NOP #TEMP GET DVDND 13 0 19
51 OODE B8A0 COMP TRANS 0 < IM 14 5 0
52 OODF C524 JMP NOP #POSR IM 1 0 228
53 OOEO 4500 #DPO RSH NOP *REM POS 17 12 0
54 00E1 B620 TRANS #DPO 0 IM 13 17 0
35 00E2 28A5 SUB TRANS TRANS 10 5 5
56 OOEO 4460 #DPO ALU * NOP 17 3 ♦ 0
57 00E4 BA60 COMP #TEMP 0 #POSR IM 14 19 0
50 00E5 C 529 JMP NOP #POSG IM 1 0 233
59 *NEGATE QUOT IF REQ'D
60 00E6 B400 TRANS NOP 0 IM 13 0 0
61 00E7 28B1 SUB TRANS #DPO 10 5 17
62 OOEQ 4403 #DPO NOP ALU 17 0 3
63 00E9 041C JMP NOP #RTN1 #PQSQ 1 0 28
64 OOEA D404 SIN/AC NOP 36 IM 5 0 36
65 * DOUBLE PRECISION NEGATE OF #DPO
66 OOEB D400 AC 32 #DPNEG IM 5 0 32
67 OOEC FC 12 MlD/AD NOP #SGNMSK *GET SGNMSK IM 15 0 50
68 OOED B620 TRANS #DPO 0 IM 13 17 0
69 OOEE 28B1 SUB TRANS #DPO ^NEGATE LSP 10 5 17
70 OOEF 24E3 AND MDATA ALU *CLR SGN 9 7 3
71 OOFO 4403 #DPO NOP ALU *SAV LSP 17 0 3
72 OOF 1 3BB 1 COMP TRANS ttDPO 14 5 17
73 *IF LSP-/0 MAKE MSP COMPL, NOT NEGATE
74 00F2 C 535 JMP NOP ftNGTO IM 1 0 245
75 00F3 28A5 SUB TRANS TRANS *NEG MSP 10 5 5
76 00F4 0401 JMP NOP RETURN 1 0 1
77 OOFS 4460 #DPO ALU NOP #N0T0 *SAV MSP 17 3 0
78 00F6 AA21 SUB #DPO 1 *COMPLEM IM 10 17 i
79 00F7 0401 JMP NOP RETURN 1 0 1
00 00F8 4460 #DPO ALU NOP 17 3 0

2 * FILE FFT1EX
3 * EXPONENTIAL BASE TWO
4 * LEVL ZERO SUBROUTINE<IN ALU*OUT MPYL)
5 00F9 4063 #ALUS =ALU i ALU #EXP2 16 3 3
6 OOF A B401 TRANS “NOP 1 IM 13 0 1
7 OOFB B0A1 MPY =TRANS , 1 IM 12 5 1
8 OOFC B860 COMP =ALU 0 GEN CASE IM 14 3 0
9 OOFD 8440 JMP =NOP > #MPYMO GEN CASE IM 1 0 256

10 OOFE B402 TRANS “NOP , 2 IM 13 0 2



X

PAGE 8 HARfiONIAC ASSEMBLY OF : FFT1EX
l i OOFF 0401 JMP -’NOP ,RETURN GEN CASE (REGD) 1 0 1
12 0100 AA01 SUB #ALUS 1 #MPYMO IM 10 16 1
13 0101 30A4 MPY =TRANS , MPY 12 5 4
14 0102 4060 #ALUS ^ALU , NOP 16 3 0
15 0103 B860 COMP =ALU , 0 IM 14 3 0
16 0104 8440 JMP "NOP ,#MPYMO IM 1 0 256
17 0105 22E4 ADD #ZRO MPYL 8 23 4
18 0.106 0401 JMP =NGP ,RETURN 1 0 1
19 * SCL2 - DIVIDES BY A PWR OF 2
20 » INPUT :IN RSH (ALREADY/2 ONCE)
21 * WITH CNT OF TOTAL SHIFTS REG'D IN #T2
22 * OUTPUT IN ALU
23 0107 AAC 1 SUB #T2 1 #SCL2 T2 MSP CN IM 10 22 1
24 0108 4063 #ALUS ALU ALU 16 3 3
25 0109 AA01 SUB #ALUS 1 #SHLOP IM 10 16 1
26 010A 4063 #ALUS ALU ALU 16 3 3
27 01GB 3AE3 COMP #ZRO ALU 14 23 3
28 010C 8449 JMP NOP #SHLGP IM 1 0 265
29 010D 1180 RSH RSH NOP 4 12 0
30 010E 0401 JMP NOP RETURN 1 0 1
31 010F A180 ADD RSH 0 FOR EASY ACCESS IM 8 12 0
271
2 * FFT BEGINS

MEM1 (0-> >3 * ARGUMENTS FROM
4 * ARE: BASER,BASEI, M, L<)
5 * BASES MUST BE SAME IN EA MEM(H400)
6 * M IS TOT PTS (PWR OF 2) ,L NON 0 PTS
7 0110 5801 #72 NOP RETURN #PARAS 22 0 1
S 0111 D400 SIN/AC NOP 32 ■M-IM6, " IM 5 0 32
9 0112 9008 RSH/MC NOP 8 P0PM1 Ih 4 0 8
10 0113 BCOO MlD/AD NOP #ARGS IM 15 0 0
11 0114 74E0 #BASE =MDAT , NOP 29 7 0
12 0115 AOEO ADD MDAT 0 IM 8 7 0
13 0116 7463 #BASE ALU ALU ***AVOID Ml ERR 29 3 3
14 0117 34E0 TRANS =MDAT , NOP 13 7 0
15 0118 6005 #L/M =NQP ,TRANS 24 0 5
16 0119 60E0 #L/M =MDAT , NOP 24 7 0
17 * CALC NON ZERO PTS (PWR OF 2)
10 01 1A 2317 ADD #L/M #ZRO 8 24 23
19 01 IB C 139 CALL NOP #EXP2 IM 0 0 249
20 011C 3404 TRANS NOP MPYL 13 0 4
21 01 ID 6CA0 #L2/M1 TRANS NOP 27 5 0
22 * CALC TOT PTS (PWR OF 2)
23 01 IE 22F0 ADD #ZRQ #L/M 8 23 24
24 01 IF C 139 CALL NOP #EXP2 IM 0 0 249
25 0120 6C04 #L2/N1 NOP MPYL 27 0 4
26 0121 0416 JMP NOP #T2 1 0 22
27 0122 9000 RSH NOP 0 IM 4 0 0
28 *
29 0123 980D MADR #FFTRET #FFT IM 6 0 13
30 0124 1C01 MDAT RETURN 7 0 1
31 0125 8050 CALL NOP #PARAS IM 0 0 272
32 * SET UP OUTER LOOP

1 833 0126 A2E1 ADD # Z R 0 IM 23 1
34 0127 7803 #L 1/0 NOP ALU 30 0 3



xi

PAGE S? HARMONIAC ASSEMBLY OF : FFT1A
35 0128 3418 TRANS “NOP #L/M #LOLOO 13 0 24
36 0129 28BE SUB “TRANS , #Ll/0 10 5 30
37 012A Cl 39 CALL =NOP #EXP2 IM 0 0 249
38 01213 6804 #LI/MX «N OP MPYL 26 0 4
39 012C 5804 #T2 -NOP MPYL 22 0 4
40 012D B402 TRANS NOP 2 IM 13 0 2
41 012E 30A4 MPY -TRANS , MPYL 12 5 4
42 012F FC 12 M l D/AD NOP #SGNMSK IM 15 0 50
43 0130 3404 TRANS =NOP MPYL 13 0 4
44 0131 68A0 #LI/MX “TRANS / NOP 26 5 0
45 * SET UP 2PI IN 1D. P. : 1 7FFF
46 0132 2357 ADD “#LI/MX , #ZRO 8 26 23
47 0133 B4E1 TRANS MDAT 1 IM 13 7 1
48 0134 44A5 #DPO TRANS TRANS 17 5 5
49 0135 C039 CALL NOP #DI V IM 0 0 185
50 0136 D410 SIN/AC NOP 48 ♦ < IM 5 0 48
51
52 ♦PRUNING TEST WAS REMOVED TO SAVE SPACE
53 ■»
54 0137 B6E0 TRANS =#ZRO 0 #13 IM 13 23 0
55 0138 50A5 #CNT “TRANS , TRANS 20 5 5
56 0139 22F1 ADD #ZRO #DPO 8 23 17
57 013A 7C03 #RTN2 NOP ALU TEMP SAVE 31 0 3
58 013B 9000 RSH/MC “NOP 0 IM 4 0 0
59 013C 329F MPY #CNT #RTN2 #LMLOO 12 20 31
60 013D BCOB Ml D/AD NOP #PI/2 IM 15 0 1 1
61 013E 3404 TRANS “NOP MPY 13 0 4
62 013F A0A8 ADD TRANS 8 TO ROUND SINE/COS IM 8 5 8
63 0140 D460 SIN “ALU / 32 IM 5 3 32
64 0141 20E3 ADD MDAT ALU *ADDS PI/2 FOR COS 8 7 3
65 0142 4C0D #TEMP NOP SIN 19 0 13
66 0143 D468 SIN “ALU 40 IM 5 3 40
67 0144 2357 ADD =#LI/MX , #ZRO FOR INNER LOOP 8 26 23
68 0145 34 OD TRANS “NOP SIN 13 0 13
69 0146 4CA0 #TEMP “TRANS , NOP 19 5 0
70 * SET UP INNER LOOP
71 0147 7860 #Ll/0 “ALU , NOP 30 3 0
72 0148 23D4 ADD “#L1/0 , #CNT 8 30 20
73 0149 3740 TRANS =#LI/MX , NOP #L1LOO 13 26 0
74 01 4 A 2865 SUB “ALU > TRANS 10 3 5
75 014B 4063 #ALUS “ALU » ALU 16 3 3
76 014C 23A3 ADD #BASE ALU 8 29 3
77 014D 4463 #DPO ALU ALU 17 3 3
78 014E 207A ADD ALU #LI/MX 8 3 26
79 01 4F 4863 #DP 1 ALU ALU 18 3 3
80 0150 1A51 MADDR “#DP1 #DPO 6 18 17
81 0151 34E7 TRANS “MDAT MDAT 13 7 7
82 0152 1A32 MADDR “#DPO #DP 1 6 17 18
83 0153 28E5 SUB “MDAT TRANS 10 7 5
84 0154 5463 #T 1 “ALU i ALU 21 3 3
85 0155 20E5 ADD “MDAT TRANS 8 7 5
86 0156 1C60 MDAT “ALU i NOP 7 3 0
87 0157 28A7 SUB “TRANS , MDAT 10 5 7
88 0158 4063 #ALUS “ALU i ALU 16 3 3



xii
PAGE 10 HARMON I AC ASSEMBLY OF : FFT1A
89 0159 20 A 7 ADD -TRANS , MDAT B 5 7
2 015A 1811 MADDR NOP #DPO 6 0 17
3 01 5B 3275 MPY #TEMP #T1 12 19 21
4 015C 1C03 MDAT NOP ALU 7 0 3
5 015D A080 ADD MPYH 0 IM 8 4 0
6 01 5E 3213 MPY #ALUS #TEMP 12 16 197 015F 1A52 MADDR #DP 1 #DP1 ACTS AS MPY DELAY 6 18 18
8 0160 2083 ADD MPYH ALU S 4 3
9 0161 32B3 MPY #T 1 #TEMP 12 21 19
10 0162 1C60 MDAT ALU NOP 7 3 0
11 0163 A080 ADD MPYH 0 IM 8 4 0
12 0164 3270 MPY #TEMP #ALUS 12 19 16
13 0165 3740 TRANS «#LI/MX ,NOP ACTS AS MPY DELAY 13 26 0
14 0166 2883 SUB MPYH ALU 10 4 3
15 01.67 1 C03 MDAT -NOP > ALU 7 0 3
16 * END INNER LOOP CALC 'S
17 0168 23C5 ADD =#Ll/0 iTRANS 8 30 5
18 0169 7860 #Ll/0 -ALU , NOP 30 3 0
19 ♦CHECK INNER LOOP STAGE
20 016A 387B COMP -ALU ,#L2/N1 14 3 27
21 016B 8549 JMP -NOP , #L1L0G IM 1 0 329
22 016C 23D4 ADD #Ll/0 #CNT 8 30 20
23 016D A281 ADD =#CNT , 1 IM 8 20 1
24 016E 5063 #CNT -ALU , ALU 20 3 3
25 ♦CHECK MIDDLE LOOP STAGE
26 016F D400 SIN/AC NOP 32 *-&IM6 IM 5 0 32
27 0170 3876 COMP -ALU , #T2 14 3 2228 0171 C45C JMP -NOP ,#LMLOO IM 1 0 31629 0172 34 IE TRANS —NOP ,#Ll/0 13 0 30
30 0173 A0A1 ADD -TRANS i 1 IM 8 5 131 0174 7803 #L 1/0 -NOP i ALU 30 0 332 0175 A861 SUB -ALU , 1 IM 10 3 1
33 0176 3878 COMP -ALU , #L/M 14 3 2434 0177 C448 JMP -NOP ,#LOLOO IM 1 0 296
35 ♦ NOW FFT FINISHED - DO REORDERING36 ♦ DOES SOFTWARE REVERSE BIT REORDER37 ♦ & SCALE DOWN BY’ SORT NON-O MO. PTS.38 ♦ (THIS IS APPROX GROWTH RATE OF DATA)39 0178 9300 RSH #L/M 0 IM 4 24 0 SO
376
40 0179 2197 ADD RSH #ZRQ a 12 23
41 017A 1BBD MADDR #BASE #BASE 6 29 29
42 01713 5863 #T2 ALU ALU 22 3 3
43 017C 9000 MC 0 #RLDOP IM 4 0 0
44 017D AOCO ADD Ml ADR 0 IM 8 6 0
45 017E 4463 #DPO ALU ALU SAV NORM 17 3 3
46 017F B07D CALL NOP &REVEIT IM 0 0 413
47 0180 D418 AC 56 >-I6 IM 5 0 56
48 0181 3A71 COMP #TEMP #DPO N>R~•>SK IP 14 19 17
49 0182 8475 UMP #SKIP IM 1 0 405
50 ♦ DO THE EXCH OF REV/NORM
51 0183 90E0 RSH MDAT 0 IM 4 7 0
52 0184 8047 CALL #SCL2 IM 0 0 263
53 0185 4980 #DP 1 RSH NOP SCLD NORM 1 18 12 0
34 0186 3407 TRANS MDAT 13 0 7



PAGE 11 HARMQNIAC ASSEMBLY OF : FFT1B
55 0187 8047 CALL #SCL2 IM 0 0 263
56 0188 1OAO RSH TRANS NOP 4 5 0
57 0189 4803 #DP 1 NOP ALU SCLD NORM 0 18 0 3
58 018A 1A73 MADDR &TEMP #TEMP SET REV 6 19 19
59 018B 8047 CALL #SCL2 IM 0 0 263
60 018C 90E0 RSH MDAT 0 IM 4 7 0
61 018D 7060 **RTNi ALU MOP SAVE SCLD REV 1 28 3 0
62 01 BE 3407 TRANS MDAT 13 0 7
63 018F 0047 CALL #SCL2 IM 0 0 263
64 0190 10A0 RSH TRANS NOP 4 5 0
65 0191 7003 #RTN1 NOP ALU SAV SCLD REV 0 28 0 3
66 0192 1E52 MDAT #DF1 &DP1 PUT NORMS AT REV 7 IS 18
67 0193 1A31 MADDR #DP0 #DPO SET NORM ADDR 6 17 17
68 0194 1F9C MDAT #RTN1 #RTN1 REVS TO NORMS 7 28 28
69 0195 28DD SUB Ml ADR #BASE #SKIP 10 6 29
70 0196 A061 ADD ALU 1 IM 8 3 1
71 0197 9008 MC 8 POP IM 4 0 8
72 0198 3Q7B COMP ALU #L2/N1 END? 14 5l 27
73 0199 C55C JMP #RL.OOP IM 1 0 380
74 019A 24E7 AND MDAT MDAT 9 7 7
75 019B 8565 JMP $MRET IM 1 0 453
76 019C 980D MADR #FFTRET IM 6 0 13
77 •a
78 0190 32F7 MPY #ZRO #ZRO #REVBIT 12 23 23
79 019E 28DD SUB Ml ADR #BASE 10 6 29
BO 019F 4C80 #TEMP MPY NOP 19 4 0
81 01 AO D402 AC 34 LR5B TO AFLG IM 5 0 34
82 01A1 1060 RSH ALU NOP 4 3 0
83 01A2 2C2.4 OR AFLG MPYL #SWLOP 1 1 1 4
84 01 A3 B062 MPY ALU 2 IM 12 3 2
85 01A 4 A261 ADD #TEMP 1 IM 8 19 1
86 01A5 4C60 #TEMP ALU NOP 19 3 0
87 01A6 3878 COMP ALU #L/M 14 3 24
88 01A7 C462 JMP NOP #SWLOP IM 1 0 418
09 01A8 1180 RSH RSH NOP 4 12 0
90 01A9 22E4 ADD #ZRO MPYL 8 23 4
91 01AA 9060 RSH ALU 0 IM 4 3 0
92 01AE 219D ADD RSH #BASE 8 12 29
93 01 AC 0401 JMP RETURN 1 0 1
94 01 AD 4C63 #TEMF ALU ALU REVERSED ADDR 19 3 3

2 * D. P. ADD OF DPO &DP1 TO DPO, OV ERR
3 01 AE 9000 RSH/MC =NOP ,0 #DPADD IM 4 0 0
4 01AF FC 12 MID/AD =NOP ,#SGNMSK IM 15 0 50
5 01 BO 24F1 AND =MDAT , #DPO 9 7 17
6 01B 1 D400 SIN/AC =MOP , 32 IM 5 0 32
7 01B2 2072 ADD -ALU , #DP1 ADDL.0 ORD 8 3 18
B 01B3 24E3 AND =MDAT1 ,ALU CLEAR SIGN 9 7 3
9 01B4 4403 #DPO -NOP ,ALU LOSUM 17 0 3

10 01B 5 3620 TRANS =#DPO , NOP 13 17 0
11 01B6 2025 ADD -AFLG ,TRANS ADD CARRY 8 1 5
12 01B7 D400 SIN/AC =NOP , 32 IM 5 0 32
13 01B8 2243 ADD =#DP 1 ,ALU HISUM 8 IQ 3
14 01B9 0401 JMP -NOP ,RETURN RESLT DPO 1 0 1
15 OlBA 4460 #DP0 -ALU , NOP 17 3 0



xi v -
PAGE 12 HARMONIAC ASSEMBLY OF : FFT1CL

2 *
3 * HI LEV SPECTRUM CALLERS
4 •*

5 01DB 980B MADDR =NOP .ttPSPR #PSPECT IM 6 0 116 01BC 1C01 MDAT -NOP iRETURN SAVERETURN 7 0 17 01BD C 106 CALL -NOP i#HANN IM 0 0 1028 01BE 0000 NOP ss 1 0 0 09 01DF C043 CALL =NOP , #FFT IM 0 0 29110 01C0 0000 NOP = } 0 0 011 01C1 8031 CALL =NOP ,#PWRLOG IM 0 0 14512 01C2 0000 NOP 0 0 013 01C3 816A CALL #SINSUM IM 0 0 45814 01C4 980B MADDR -NOP , #PSPR IM 6 0 111.5 01C 5 B401 TRANS NOP 1 #MRET IM 13 0 116 01C6 BCAA MID/AD TRANS #RDYFL2 IM 15 5 1017 01C7 9400 SIN NOP 0 IM 5 0 018 01C8 0407 JMP NOP MDAT 1 0 719 01C9 D500 SIN NOP 96 IM 5 0 9620 2= i

21 * SMOOTHED SPEC! USED TO BE HERE
22 * HAS BEEN MOD 'D FOR RESYNTH
2 * RUNNING SINUSOID SUMMATION SYNTHESIS
3 * /
4 * USES DOUBLE PRECISION PHASE ADDITION —

5 * FOR HIGH ACCURACY PITCH CONTROL.
6 * AMPL SUMMATION IS S. PRECISION.
7 -a- RUNS AS SUBROUTINE THAT CALCS NHOP
8 * PTS OF WAVEFORM ON EA CALL(STACKED)
9 01C A 9008 MC 8 #SINSUM ENTRY IM 4 0 810 01CB 9400 AC 0 IM7 SET IM 5 0 01 1 * POP THE CNT/ADDR PARAMETERS

12 **SET UP TO DO " NHOP" SAMPLES13 01CC BC1 5 MID/AD NOP #ENDRES IM 15 0 2114 01CD 54E0 #T 1 MDAT NOP PTS TO END 21 7 015 * SET UP PTR TO RESULTS STACK IN Ml16 01CE 58E0 #T2 MDAT NOP 22 7 017 01 CF FC1C MID/AD #NSINES #SAMLOP IM 15 0 6018 01 DO E1F7 ADD MDAT #PHASES IM B 7 11919 01D1 5063 #CNT ALU ALU 20 3 320 01D2 B4E1 TRANS MDAT 1 IS OVERALL AMP IM 13 7 121 01D3 A460 AND ALU 0 IM 9 3 022 01D4 4063 #ALUS ALU ALU USED FOR SAMPLE 16 3 323 01D5 D917 MADDR #PHA3ES IM 6 0 11924 01D6 9009 MC 9 POP Ml, PUSH 0 IM 4 0 925 01D7 20E7 ADD MDAT MDAT ADD LSPS 8 7 726 01D8 1C03 MDAT NOP ALU #SINLOP * 7 0 327 01D9 0000 NOP WAIT ON MO PU 0 0 028 01 DA 2027 ADD AFLG MDAT * 8 1 729 01DB 20E3 ADD MDAT ALU ADD MSPS * 8 7 330 01 DC 1C 03 MDAT ALU PUSH MSP 7 0 331 01DD AO60 ADD ALU 8 ROUND FOR SINE IM 8 3 832 #
33 * NOTE 65DB S/N POSS W 1 IB*1024 SINE34 OiDE 9478 SIN/AC ALU 24 ROV&SEE OV & >= IM 5 3 24



XV

PAGE 13 HARMONIAC ASSEMBLY OF : FFT1DS
35 * MPY BY AMPL OF THIS COMPONENT
36 01DF 30ED MPY MDAT SIN 12 7 13
37 01EO 2090 ADD MPYH #ALUS UPDATE SAMPLE 8 4 16
38 01E1 4063 #ALUS ALU ALU 16 3 3
39 01E2 3854 COMP MOADDR #CMT 14 2 20
40 01E3 8578 JMP #SINLOP IM 1 0 472
41 01E4 20E7 ADD MDAT MDAT NEXT LSP ADD 8 7 7
42 *12 INSTRUCTION INNER LOOP
43 * NOW CHECK IF ZERO CROSSING SO CAN
44 * CHANGE PARAMETERS WITHOUT CLICK
45 01E5 BA21 COMP #DPQ 1 EQUIV TO >0 IM 14 17 1
46 01E6 C56A JMP #NEG EXEC IF OO NOW IM 1 0 490
47 01E7 0000 NOP 0 0 0
48 01E8 C574 JMP &CONTIN EXCE IF IS >0 IM 1 0 500
49 01E9 0000 NOP 0 0 0
50 01EA BAOO COMP &ALUS 0 #NEG >=TEST IM 14 16 0
51 01EB C 574 JMP #CONTIN #CONTI IF<0 LA IM 1 0 500
52 * JJLULft MUVb Uh 1LUNIKUL rAMAMS

53 01 EC FC1C N1D/AD ENGINES IM 15 0 60
54 01 ED 9819 MADDR #PARIN (HOST INPUT) IM 6 0 25
55 01 EE 9018 MC 24 PUSH1# POPO IM 4 0 24
56 01EF 22E7 ADD ttZRO MDAT 8 23 7
57 01F0 1C 60 MDAT ALU * NOP #MOVP 7 3 0
58 01F1 F956 COMP MOADR #ENDPIN IM 14 2 118
59 01F 2 C570 JMP #MDVP IM 1 0 496
60 01F3 22E7 ADD ftZRO MDAT 8 23 7
61 * <20 PARAM SETS ALLOWED)
62 * MPY BY OVERALL AMPL
63 01F4 3205 MPY #ALUS TRANS #CONTJN AMPL 12 16 5
64 01F5 A2C1 ADD #T2 1 IM 8 22 1
65 01F6 3C83 MID/AD MPYH ALU 15 4 3
66 01F7 4480 #DPO MPYH NOP 17 4 0
67 01F8 5863 #T2 ALU ALU 22 3 3
6B 01F9 36A3 TRANS #T1 ALU 13 21 3
69 01 FA 38A5 COMP TRANS TRANS REACHED END ? 14 5> 5
70 01FB 856F JMP #SAMLOP IM 1 0 463
71 01FC 9009 MC 9 RESTORE MEM STATUS IM 4 0 9
72 01FD 0401 JMP RETURN 1 0 1
73 01FE 0000 NOP 0 0 0
74 DATA FILE FOR MAIN MEM BEGINS ©Ml,20
75 0014 0100 256 #NHOP
76 0015 0900 2304 #ENDRES
77 0016 0800 2048 #RPTR
78 * END RESULTS AREA OF Ml
79 0017 0014 20 #LITTLE
80 DATA FILE FOR MAIN MEM BEGINS ©MO,25 PARAMETERS INPUT FILE
81 0019 0002 2 #PARIN
82 001A 07D0 2000
83 00IB 0000 0
84 001C 00C8 200
85 001D 01F4 500
86 *ENDS AT 118
87 DATA FILE FOR MAIN MEM BEGINS ©MO, 118 RUNNING PHASE TABLE
88 0076 0000 0 #ENDPIN



xvi

PAGE 14 HARMONIAC ASSEMBLY OF : FFTIDS
89 0077 0000 0 #PHASE5
90 0076 0000 0 MSP
91 DATA FILE FOR MAIN MEM BEGINS «M1,60 ** PARAMETERS WORKING FILE
92 003C 0002 2 #NSINES TWICE NO. OF SINES REG
93 0031) 03E8 1000 #AMPLA OVERALL AMPL
94 003E 0000 0 #FHIAMP PHASE INC LSP
95 003F 07D0 2000 PHASE INC MSP
96 0040 1388 5000 AMPL OF THIS COMPONENT
97 * THREE WORDS DESCRIBE EA COMPONENT 
5 WARNINGS TOTAL
0 ERRORS TOTAL



- xvii

APPENDIX II
PAGE 1 HARMONIAC ASSEMBLY OF

LINE ADDR MEM. SOURCE CODE
FFT1KN MAIN CALLING PROG FOR FFT 
#LABELS< JMP) »CMTS DECODED OS

2
3
4
5
6
7
8 
9
10
it
12
13
14
15
16
17
18
19
20 
21 
22

N PT TRANSFORM
FOR ANY "N" (SOFT BIT REVERSE)
-NOT AS FAST AS HARD BIT REVERSE 
LOG/LIN PWR SPECTRUM 
& SMOOTHED PWR SPECT 8< PITCH AVAIL. 
SET UP FOR 12BIT INPUT,10 BIT DISPLAY 
19TH OCT 1979 SOFTWARE XFORM <12B) 
PHIL CONNOR
FIRST A MPROTECT“ PROG TO OPERATE 
DURING FILL UP OF HARM'S MEMS 

NEW PROGRAM SEGMENT BEGINS ®PK,510 
01FE C37E JMP #HERE #HERE
01FF 0000 NOP
NEW PROGRAM SEGMENT BEGINS iPM, 0

JMP
NOP

#HERE0000 CS7E
0001 OOOO
»
fHIALUS #DPO #DP1 
$ 4T1 #T2 #ZRO
DATA FILE FOR MAIN MEM BEGINS

0 5100 o
0 510 
0 0

#TEMF #CNT
«M1, 0

23 0000 0200 512 #ARGS
24 0001 0200 512
23 0002 OOOA 10 #L
26 0003 OOOA 10 #M
27 0004 0000 0 #PITCHP PITCH PERIOD RESULT
20 0005 0000 0 4PITCH
29 0006 0003 5 tSMOOTH
30 0007 0200 512 #DIBCL FOR A 7 BIT DISPLAY
31 0008 000* 15 #VTHRSH
32 0009 FFFE -2 #FFFEM1
33 OOOA 0000 0 #RDYFL2
34 OOOB 3FFF 16383 #PI/2
33 DATA FILE FOR MAIN MEM BEGINS mi, so
36 0032 7FFF 32767 #SGNMSK THESE 2 RESTORED
37 0033 0000 0 #RDYFLQ BY FFTHD<CALLER)
38 0034 8000 -32768 #8000
39 * BEWARE ,BUGFLG IS AT 53
40 DATA FILE FOR MAIN MEM BEGINS mi, 54
41 0036 3796 14230 #PL0G1E
42 0037 4000 16384 #H4000
43 DATA FILE FOR MAIN MEM BEGINS mo, o
44 0000 2710 10000 #SAMRAT
43 0001 FFFE -2 #FFF£
46 0002 58BA 22714 #PL0GE2
47 0003 4000 16384 #NLF
48 0004 0E39 3641 #C4
49 0003 1249 4681 #C5
50 0006 1999 6353 #C6
31 0007 2AAA 10922 #C7
52 0008 0400 1024 #P1024
53 0009 0000 0 #PWRRET
34 OOOA 0000 0 #PSPR
35 OOOB OOOO 0 «PSBPR
56 NEW PROGRAM SEGMENT BEGINS tPM, 0



- xviii
PAGE 2 HARMONIAC ASSEMBLY OF : FFT1MN
57 * MOST OF PROGRAM USES IM6 MODE TO
50 * GIVE ACCESS TO ALL REGS & 0--63 IMMEDS
59 0000 9000 RSH/MC “NOP 0 tfSTART IM 4 0 0
60 0001 9400 SIN/AC NOP 0 SETS IM7 IM 5 0 0
61 0002 D500 SIN/AC NOP 96 SETS NOT EQU# 16 IM 5 0 96
62 0003 A460 AND ALU 0 GENERATE A ZERO IM 9 3 0
63 0004 5C63 $ZRO ALU ALU 23 3 3
64 0005 FC13 M1D/AD «*NQP #RDYFLG #WAIT IM 15 0 51
65 0006 B8E1 COMP «MDAT 1 IM 14 7 1
66 0007 C053 CALL NOP #FFT IM 0 0 307
67 0008 FC13 Ml D/AD NOP #RDYFLG FOR NEXT IN T IM 15 0 51
68 0009 BSE5 COMP MDAT 5 IM 14 7 5
69 OOOA 8171 CALL NOP #PSPECT DOES SPECTRUM IM 0 0 465
70 OOGB FC13 MID/AD NOP #RDYFLQ IM 15 0 51
71 OOGC BSE 6 COMP MDAT 6 IM 14 7 6
72 GOOD 817B CALL NOP #SSP£CT SMOOTHED SPECT IM 0 0 475
73 OOOE FC 13 MID/AD NOP #RDYFLG IM 15 0 51
74 OOOF 9000 RSH/MC NOP 0 MEM NORM IM 4 0 0
75 0010 BCOA MID/AD NOP 8RDYFL2 IM 15 0 10
76 0011 B8E1 COMP MDAT 1 IM 14 7 1
77 0012 FEF3 MID/AD -9ZR0 #RDYFLG IM 15 23 51
78 0013 8400 JMP “NOP #START IM 1 0 0
79 0014 BEEA MID/AD 4ZRQ #RDYFL2 XM 15 23 10
80 *
2 * 2C) JULY 1979 ,
3 0015 6001 #LI/MX “NOP RETURN #ILOG10 24 0 1
4 * INPUT IN ALU*GUT IN ALU
5 0016 80 IB CALL —NOP #lL00c IM 0 0 27
6 0017 FC 16 M1D/AD NOP #PL0G1E IM 15 0 54
7 0018 30E3 HP Y MDAT ALU 12 7 3
8 0019 0418 JMP NOP IILI/MX 1 0 24
9 001A A080 ADD MPYH 0 IM 8 4 0
10 *
11 * INTEGER LOG BASE E
12 00 IB 6401 #L/M NOP RETURN #ILOGE 25 0 1
13 *XN ALU,OUT ALU
14 *RETURN ZERO IF <>ZERO IN
15 001C 4063 #ALUS ALU ALU 16 3 3
16 00 ID D408 AC 40 >,16 IM 5 0 40
17 00 IE B06O COMP ALU 0 >0? IM 14 3 0
18 00 IF 0419 JMP #L/M SKIP THRU IF TRUE 1 0 25
19 0020 A2E0 ADD #ZRG 0 IM 8 23 0
20 0021 8106 CALL NOP #NORM IM 0 0 70
21 0022 A200 ADD #ALUS 0 RESTORE ALU IM 8 16 0
22 OGIVES EXPONENT BASE 2 IN fDPl MSP
23 0023 8114 CALL NOP $LOGF ^-FRACTIONAL LOG IM 0 0 84
24 ^RESULT ALWAYS NEG SINCE LOG OF FRACTIO
25 0024 D400 SIN/AC NOP 32 IM 5 0 32
26 *ARITH R. !3. OF FRACT *4
27 0025 3412 TRANS NOP #DP1 13 0 18
28 0026 10A0 RSH TRANS NOP 4 5 0
29 0027 1180 RSH RSH NQP 4 12 0
30 0028 1180 RSH RSH NOP 4 12 0
31 0029 1180 RSH RSH NOP 4 12 0



xix -

»AGE 3 HARMONIAC ASSEMBLY OF : FFT1LG
32 002A 3580 TRANS RSH NOP 13 12 0
33 002B 4805 #DP 1 NOP TRANS 10 0 5
34 O02C 9802 HADDR NOP #PL0GE2 IM 6 0 2
35 002D 3247 MPY #DP 1 MDAT GET EXP BASE E 12 18 7
36 0C2E 4484 $DP0 MPYH MPYL 17 4 4
37 002F 3231 MPY #DFG #DPO *LLEFT LSP 12 17 17
38 0030 4408 mpo NOP Z1 17 0 8
39 0031 A2E0 ADD #ZRO 0 IM 8 23 0
40 0032 5460 #T1 ALU NOP 21 3 0
41 * LINE UP BIN PT WITH EXPONENT
42 0033 C01B CALL NOP #DPRT1 #LINRT IM 0 0 59
43 0034 A2A1 ADD #T1 1 IM a 21 1
44 0035 5460 #T1 ALU NOP 21 3 0
45 0036 BAAS COMP #T1 5 IM 14 21 5
46 0037 C413 JMP NOP #LINRT IM 1 0 51
47 0038 3631 TRANS #DPO #DPO 13 17 17
48 0039 0419 JMP NOP 8L/M 1 0 25
49 003A 20B2 ADD TRANS #DP1 8 5 18
50 # --—-----

51 * SINGLE DP. LOGIC At. RIGHT OF #DPO
52 003B D401 SIN/AC NOP 33 #DPRT1 IM 5 0 33
53 003C 1220 RSH #DPO NOP 4 17 0
54 *L0ST BIT IN AFLG
55 003D D402 SIN NOP 34 SEE LRSB&ROTATE IM 5 0 34
56 003E 4580 #DPQ RSH NOP 17 12 0
57 003F BC09 MID/AD NOP &FFFEM1 IM 15 0 9
58 0040 24F1 AND MDAT #DPO 9 7 17
59 0041 2C23 OR AFLG ALU PUT IN CARRY BIT 11 1 3
60 0042 1060 RSH ALU NOP ROTATE RT 4 3 0
61 0043 A180 ADD RSH 0 IM 8 12 0 SOI

67r
62 0044 0401 JMP NOP RETURN 1 0 1
63 0045 4403 #DPO NOP ALU 17 0 3
64
65 * NORM BUILDS INTEGER EXPONENT
66 * X^ i ALU, OUT EXP MSP #DF1 ,FRAC LSP
67 0046 D400 SIN NOP 32 #NORM IM 5 0 32
68 0047 9000 R8H/MC NOP 0 IM 4 0 0
69 0048 33061 MPY ALU t IM 12 3 1
70 0049 B402 TRANS NOP 2 IM 13 0 2
71 004A 53A0 #T2 TRANS NOP 22 5 0
72 Q04B FC17 MID/AD NOP #H40Q0 IM 15 0 55
73 004C A2EF ADD #ZRO 15 EXP CNT IM 8 23 15
74 Q04D 4864 #DP 1 ALU MPY #NLOOP 10 3 4
75 004E 24E4 AND MDAT MPY 9 7 4
74 004F 32C4 MPY #T2 MPY 12 22 4
77 0050 38E3 COMP MDAT ALU 14 7 3
78 0051 850D JMP NOP #NLQOP UNTIL BIT 14 SET IM 1 0 77
79 0052 AA4I SUB #DP 1 I IM 10 18 1
80 0053 0401 JMP NOP RETURN 1 0 1
81 *
82
83 * LOGF IS FRACTIONAL log BASE E
84 0054 D400 AC NOP 32 #LOGF IM 5 0 32
es 0055 6801 #RTN3 NOP RETURN 26 0 1



XX

PAGE 4 HARMONIAC ASSEMBLY OF : FFT1LG
86 0056 9803 MADDR NOP #HLF IM 6 0 3
87 0057 36F2 TRANS #ZRO #DP1 13 23 18
88 0058 90A0 RSH TRANS 0 IM 4 3 0
89 0059 2987 SUB RSH MOAT USUALLY NEG RESUL 10 12 7
90 005A 4463 #DPO ALU TRANS 17 3 5
91 005B 8126 CALL NOP #DIV NEG NUMERATOR IM 0 0 198
92 005C 2187 ADD RSH MDAT 8 12 7
93 003D 3411 TRANS NOP #DPO RESULT DPO LSP 13 0 17
94 003E 3081 MPY TRANS #DPQ SQUARE IT 12 5 17
95 005F 9008 RSH/MC NOP 8 POP MO IM 4 0 8
96 0060 4484 #DPG MPYH MPYL SAVE SQ 17 4 4
2 0061 9804 MADDR **NOP , #C4 IM 6 0 4
3 0062 3227 MPY 4DP0 MDAT <C4) 12 17 7
4 0063 2087 ADD MPYH MDAT (C5> 8 4 7
3 0064 3223 MPY #DPO ALU 12 17 3
6 0063 2087 ADD MPYH MDAT (C6) 8 4 7
7 0066 3223 MPY #DPO ALU 12 17 3
8 0067 2007 ADD MPYH MDAT <C7) 8 4 7
9 0068 3223 MPY $>DPQ ALU 12 17 3
10 0069 34A0 TRANS TRANS NOP RESULT OF DIV 13 5 0
11 006A 3083 MPY MPYH TRANS 12 4 5
12 0068 2083 ADD MPYH TRANS 9 4 5
13 006C B062 MPY ALU 2 IM 12 3 2
14 006D 4804 fcDPl NOP MPYL 18 0 4
15 006E 041A UMP NOP &RTN3 1 0 26
16 006F 9000 RSH/MC NOP 0 IM 4 0 0
17
IB * PUT COSINE WINDOW ON SIGNAL
19 * HANNS MEM1 BUFFER,ZEROES MEMO
20 * SIGNAL INPUT IN MEMO AFTER 12SEPT
21 * CHECKED OK 31 AUG 1979
22 0070 6001 #LI/MX NOP RETURN #HANN 24 0 1
23 ♦GET PARAMETERS FROM MEMl
34 0071 C040 CALL NOP $PARAS IM 0 0 288
25 0072 5804 #T2 NOP MPYL 22 0 4
26 0073 FC12 Ml D/AD NOP #SGNMSK GET :7FFF IM 13 0 50
27 ♦CALC PHASE INCR 2PI/N
28 0074 B4E1 TRAMS MDAT 1 IM 13 7 1
29 0075 44A3 #DPO TRANS TRANS 17 5 5
30 0076 8126 CALL NOP fcDIV IM 0 0 198
31 0077 22F6 ADD #ZRO #T2 8 23 22
32 ♦RESULT IN m?Q LSP
33 ♦START READING SINE FROM -PI/2
34 0078 90F9 RSH MDAT 23 PUSH MEMS IM 4 7 25
35 0079 8580 TRAP4S RSH 0 IM 13 12 0
121L
36 007A 28A5 SUB TRANS TRANS TO-:3FFF(-PI/2) 10 3 5
37 007B 4C03 #TEMP NOP ALU 19 0 3
38 0C7C 5460 •T1 ALU NOP 21 3 0
39 007D IBBD MADDR #BASE #BASE 6 29 29
40 007E 38A0 #T2 TRANS NOP CNTR 22 5 0
41 ♦ 1ST 1/2 OF DATA
42 007F D6A0 BIN #T1 40 IM 5 21 40
43 0080 22ED ADD #ZRO SIN 4HANL01 > 8 23 13
44 0081 1060 RSH ALU NOP 4 3 0



- xxi

PAGE 5 HARMONIAC ASSEMBLY OF : FFT1L1
45 0082 2993 SUB RSH «TEMP ADD H. S. 10 12 19
46 * TAKE INPUT DATA FROM MEM 0 (IMG STOR)
47 0083 3067 HP Y ALU MDAT 12 3 7
40 0084 22 B 1 ADD •Tl #DPO UPDATE SIN ADDR 8 21 17
49 0083 9C80 MDAT MPYH 0 IM 7 4 0
50 0086 5460 #T 1 ALU NOP 21 3 0
51 0087 A2C2 ADD #T2 2 UPDATE CNTR IM S 22 2
52 0088 5860 $»T2 ALU NOP 22 3 0
53 0089 3876 COMP ALU #T2 14 3 22
54 008A 8420 JMP NOP tHANLOl IM 1 0 128
55 * 2ND 1/2 OF DATA
56 0088 D6A8 SIN #T 1 40 IM 5 21 40
37 008C 58 AO #T2 TRANS NOP ZERO CNTR 22 5 0
38 008D 22ED ADD #ZRO SIN #HANL02 8 23 13
39 008E 1060 RSH ALU NOP 4 3 0
60 008F 2993 SUB RSH #TEMP 10 12 19
61 0090 3067 MPY ALU MDAT »DATA FROM MO 12 3 7
62 0091 2AB1 SUB #T1 #DPO 10 21 17
63 0092 9C80 MDAT MPYH 0 IM 7 4 0
64 0093 5460 #T1 ALU NOP 21 3 0
65 0094 A2C2 ADD #T2 2 IM 8 22 2
66 0093 3860 #T2 ALU NOP 22 3 0
67 0096 3876 COMP ALU #T2 14 3 22
68 0097 842D JMP NOP #HANL02 IM 1 0 141
69 0098 D6A8 SIN &T1 40 IM 5 21 40
70 0099 0418 JMP NOP 4LI/MX 1 0 24
71 009A 9000 RSH NOP 0 IM 4 0 0
72 *
73 * LOG POWER CALCS FOR SPECTRUM
74 * DOES 1 /2CL0C ( X^2’*’Y^2) 3
73 »
76 009B 9809 MADDR NOP &PWRRET #PWRLOG IM 6 0 9
77 009C 1C01 MDAT NOP RETURN 7 0 1
78 009D D418 SIN NOP 56 16/ >*= IM 5 0 36
79 009E A2E0 ADD #ZRO 0 IM 0 23 0
80 009F 6C60 #L2/N1 ALU NOP LOOP CNTR 27 3 0
81 OOAO 1 BED MADDR #BASE #BA5E 6 29 29
82 00 A1 9000 RSH NOP 0 NORM MEMS IM 4 0 0
83 00A2 34E0 TRANS MDAT NOP 13 7 0
84 00A3 30E5 MPY MDAT TRANS #PWRLOP 12 7 5
83 00 A 4 3447 TRANS MOADR MDAT 13 2 7
86 00A5 5805 #T2 NOP TRANS 22 0 • 5

2 OOA6 4484 #DFG MPY MPY 17 4 4
3 * NOW Y^2
4 00A7 30A7 MPY TRANS MDAT 12 5 7
3 00A8 8164 CALL NOP 4DPADD IM 0 0 452
6 00A9 4884 #DP 1 MPY MPY 18 4 4
7 OOAA 8126 CALL NOP #DXV IM 0 0 198
8 OOAB E2FF ADD #ZRO 63 SCALE TO INTEGER IM 8 23 63
9 * COPY LINEAR PWR SPECT TO EXTRA BUFFER

10 * A1f #BASE+N IN MEM 0 SO IT'S AVAILABLE
11 * FOR RESYNTHESIS
12 OOAC 2GDB ADD M1ADDR #L2/N1 ADV ADDR W Ml 8 6 27
13 OOAD 1803 MADDR NOP ALU 6 0 3



PAGE <6 HARMONIAC ASSEMBLY OF : FFT1L2
14 OOAE 1C11 MDAT NOP #DPO 715 OOAF 22F1 ADD #ZRO #DFQ 8
16 OOBO 8015 CALL NOP #XLQ010 IM 0
17 OOB1 BC07 MID/AD #DI5CL IM 15
18 « SCALE DISPLAY !BY MPY & DISCARD OF LSP
19 00B2 30E3 MPY MDAT ALU 1220 00B3 3C16 MID/AD NOP #T2 GET CURR ADDR 1521 OOB 4 1816 MADDR #T2 622 OOB 5 A362 ADD #L2/N1 2 IM S181
23 OOB 6 6C60 #L2/N1 ALU NOP DOES N/2 PTS 2724 OOB 7 AOC1 ADD Ml ADR 1 UPDATE IM 829 OOB 8 9C80 MDAT MPY 0 SPECT RESULT IM 726 00B9 D408 SIN NOP 40 > ,16 IM 527 OOBA 1863 MADDR ALU ALU FOR NEXT FETCH 628 008S 3B7B COMP #L2/N1 #L2/Ni 1429 OOBC C423 JMP NOP tPWRLOP IM 130 OOBD B4E1 TRANS MDAT 1 IM 1331 * MUST ZERO OUT REST OF R&I FOR SMOOTH32 OOBE 23BB ADD #BASE 4L2/N1 FORM TARGET ADD 833 008F 3823 #T2 AFLO ALU 2234 OOCO 9019 MC 25 PUSH BOTH MEM5 IM 433 OOC1 38D6 COMP MlADDR <*T2 #PZOT 1436 00C2 8321 JMP fcPZOT IM 137 0003 9EE0 MDAT #ZRO 0 IM 738 00C4 C579 JMP NOP #MRET IM 139 00C3 9809 MADDR NOP #PWRRET IM 640 ♦
2 00C6 7001 #RTN1 NOP RETURN #DIV ♦ DIV SUBR 283 ♦HI &L0 DIVIDEND INPUT #DP0 (D. P. )4 *DIVISOR IN ALU, RESULT IN #DPO LSP
5 * REMAINDER IN #DPO MSP(SON OF DVDEND)
6 * CHECKED OK AUG 19797 OOC7 4063 &ALUS ALU ALU 168 O0C8 3223 MPY «!»#DPO , ALU ♦QUOT 129 ♦SIGN GOT BY MPY10 00C9 9400 SIN NOP 0 IM 511 OOCA D300 SIN NOP 96 IM 512 ♦IF MSP OFr DPO IS 0 , USE DIVISR AS SON13 OOCB BA20 COMP #DFQ 0 IM 1414 OOCC B201 MPY #ALUS 1 DONE IF -0 IM 1215 OOCD D410 SIN/AC NOP 48 *XM6,< IM 516 OOCE B620 TRANS #DPO 0 IM 1317 OOCF 4C83 #TEMP MPY TRANS 1918 ♦MAKE DIVISOR POS—

19 OODO BAOO COMP #ALUS 0 IM 1420 00D1 8334 JMP NOP 4P0SDVR IM 121 00D2 28BG SUB TRANS #ALUS 1022 Q0D3 4003 #ALUS NOP ALU 1623 ♦MAKE DVDEND POS
^DPO24 00D4 BA20 COMP 0 #POSDVK < IM 1423 00D5 8338 JMP NOP 4P0SDND IM 126 00D6 D400 SIN/AC NOP 32 IM 527 00D7 Cl38 CALL NOP #DPNEG IM 028 ♦PACK LSP LEFT BEFORE USING D. P LEFT

0
23
0
0
7
0
0

27
3 
64 
0 
3

27
0
7

29
1
0
6
0

23
0
0
0

3 
17
0
0
17
16
0
17
4

16
0
5 
0
17
0
0
0

17
17
21
7
3

22
22
2
0
1
0

40
3

27
163

1
27
3

25
22
193
0

505
9
1

3
3
0

96
0
1

48
0
3
0

212
16
3
0

216
32
248



- xxiii
PAGE 7r HARMONIAC iASSEMBLY OF : FFT1DV
29 OOD0 080B 10 ADR NOP SQV #P08DND 2 0 11
30 00D9 30B1 MPY TRANS #DPG * PACK LSP 12 5 17
31 OODA 4408 #DPO NOP Z1 17 0 8
32 0ODB 50AQ •CNT TRAN3 MOP 20 5 0
33 OODC 2A30 SUB #DPO 8ALUS #DIVL SUB DIVGR 10 17 16
34 ♦RESTORE DIVIDEND IF 0V~1
33 DODD B820 COMP AFLO 0 IM 14 1 0
36 CODE C521 JMP NOP #R£ST IM 1 0 225
37 OODF AE20 OR #DPO 0 IH 11 17 0
38 OOEO 2A30 SUB ttDPO #ALU8 ♦DO REAL SUBTR 10 17 16
39 00E1 3071 MPY ALU &DPO #REST 12 3 17
40 00E2 4500 #DPO 11 Z1 17 8 8
41 00E3 A281 ADD #CNT 1 ♦ INCR CNT IM 8 20 1
42 00E4 5060 $CNT ALU NOP 20 3 0
43 DOES B870 COMP ALU 16 IM 14 3 16
44 00E6 853C JMP NOP 8DIVL IM 1 0 220
45 00E7 D400 9IN/AC NOP 32 IM 5 0 32
46 OOE0 D413 SIN/AC NOP 51 IM 5 0 51
47 * MOVE OV(0) INTO MSP OF REM
40 G0E9 1220 RSH/MC #DP0 NOP 4 17 0
49 *SET REM SION SAME AS DVDEND
50 OOEA 3413 TRANS NOP #TEMP GET DVDND 13 0 19
51 OOEB B8A0 COMP TRANS 0 < IM 14 5 * 0
52 OOEC C531 JMP NOP #FQSR IM 1 0 241
33 OOED 4580 #DPO RSH NOP ♦REM POS 17 12 0
54 OOEE B 620 TRANS #DPO 0 IM 13 17 0
53 OOEF 28 A 5 SUB TRANS TRANS 10 5 5
56 OOFO 4460 #DPO ALU NOP 17 3 0
57 00F1 BA60 COMP #TEMP 0 #POSR IM 14 19 0
58 00F2 C536 JMP NOP #POSG IM 1 0 246
59 ♦NEGATE QUOT IF REQ'D
60 00F3 B400 TRANS NOP 0 IM 13 0 0
61 00F4 28B1 SUB TRANS #DPO 10 5 17
62 OOF 5 4403 #DPO NOP ALU 17 0 3
63 00F6 041C JMP NOP #RTN1 #POSG 1 0 28
64 00F7 D404 SXN/AC NOP 36 IM 5 0 36
65 ♦ DOUBLE PRECISION NEGATE OF #DPO
66 OOF8 9000 RSH/MC NOP 0 #DPNEG IM 4 0 0
67 00F9 D400 SIN/AC NOP 32 IM 5 0 32
68 OOFA FC12 MID/AD NOP tSGNMSK ♦GET SGNMSK IM 15 0 50
69 OOFB B620 TRANS #DPO 0 IM 13 17 0
70 OOFC 28B1 SUB TRANS #DPO ♦NEGATE LSP 10 5 17
71 OOFD 24E3 AND MDATA ALU ♦CLR SGN 9 7 3
72 DOPE 4403 #DPQ NOP ALU ♦SAV LSP 17 0 3
73 OOFF 38B1 COMP TRANS #BPO 14 5 17
74 ♦ IF LSP-/C) MAKE MSP COMPL* NOT NEGATE
75 0100 8443 JMP NOP #NOTO IM 1 0 259
76 0101 28 A 5 SUB ,TRANS 

' NOP
TRANS ♦NEG MSP 10 5 5

77 0102 0401 jmp RETURN 1 0 1
78 0103 4460 #DPQ ALU NOP #NGTO *SAV MSP 17 3 0
79 0104 AA21 SUB #DPO 1 ♦COMPLEM IM 10 17 1
80 0105 0401 JMP NOP RETURN 1 0 1
01 0106 4460 #DPO ALU NOP 17 3 0
2 * EXPONENTIAL BASE TWO



- xxiv -

PAGE 8 HARMONIAC ASSEMBLY OF : FFTlEX
3 * LEVL ZERO SUBROUTINE ( IN ALU# OUT MPYL)
4 0107 4063 #ALUS «AL.U # ALU #EXP2 16 3 3
5 0108 B401 TRANS “NOP 1 IM 13 0 1
6 0109 B0A1 MPY “TRANS , 1 IM 12 5 1
7 010A B860 COMP *ALU # 0 GEN CASE IM 14 3 0
8 0100 844E JMP “NOP #MPYMO GEN CASE IM 1 0 270
9 010C B402 TRANS “NOP 2 IM 13 0 2
10 010D 0401 JMP «NOP RETURN GEN CASE (REQD) 1 0 1
11 010E AA01 SUB tALUS 1 #MPYMO IM 10 16 1
12 01OF 30A4 MPY *TRANS , MPY 12 5 4
13 0110 4060 #ALUS “ALU NOP 16 3 0
14 0111 B860 COMP “ALU # 0 IM 14 3 0
15 0112 844E JMP «NOP •MPYMO IM 1 0 270
16 0113 22E4 ADD #ZRO MPYL 8 23 4
17 0114 0401 JMP "NOP RETURN 1 0 1
10 * SCL2 - DIVIDES BY A PWR OF 2
19 « INPUT IN RSH <ALREADY/2 ONCE)
20 * WITH CNT OF TOTAL SHIFTS REG 'D IN #T2
21 0115 D400 SIN/AC NOP 32 #SCL.2 I6&RS IM 5 0 32
22 0116 AAC1 SUB #T2 1 *CNT IN T2 MSP IM 10 22 1
23 0117 4063 #ALUS ALU ALU 16 3 3
24 0118 AA01 SUB #ALU3 1 #SHLOP IM 10 16 1
25 0119 4063 #ALUS ALU ALU 16 3 3
26 OH A B860 COMP ALU 0 IM 14 3 0
27 011B 8458 JMP NOP USHLOP IM 1 0 280
28 OUC 1180 RSH RSH NOP 4 12 0
29 011D A180 ADD RSH 0 FOR EASEY ACCESS IM 8 12 0 sc
285
30 01 IE 0401 JMP NOP RETURN 1 0 i
31 01 IF 9418 SIN/AC NOP 24 IM 5 0 24
2 * FFT BEGINS
3 * ARGUMENTS FROM MEM! <0-0- >
4 * ARE: BASER#BASEI#M#L<^2)
5 * BASES MUST BE !SAME IN EA S 3 .#

*•
* X O o

6 * M IS TOT PTS (PWR OF 2)# L NON 0' PTS
7 0120 5801 &T2 NOP RETURN #PARAS 22 0 1
B 0121 D400 SIN/AC NOP 32 *IM6# ® IM 5 0 32
9 0122 9008 RSH/MC NOP 8 P0PM1 IM 4 0 8

10 0123 BCOO MID/AD NOP #ARGS IM 15 0 0
11 0124 74E0 #BASE “MDAT NOP 29 7 0
19 0125 AOEO ADD MDAT 0 IM 8 7 0
13 0126 7463 #BASE ALU ALU ***AVOID Ml ERR 29 3 314 0127 34E0 TRANS “MDAT NOP 13 7 015 0128 6405 #L/M “NOP TRANS 25 0 516 0129 64E0 #L/M «MDAT NOP ------------------- r 25 7 017 * CALC NON ZERO 1»TS (PWR OF 2)
18 012A 2337 ADD #L/M #ZR0 8 25 2319 012B 8047 CALL NOP #EXP2 IM 0 0 26320 012C 3404 TRANS NOP MPYL 13 0 421 012D 6CA0 #L2/N1 TRANS NOP 27 %5 022 * CALC TOT PTS (PWR OF 2)
23 012E 22F9 ADD #ZRQ #L/M 8 23 2324 012F 8047 CALL NOP #exp2 IM 0 0 26325 0130 6C04 #L.2/N! NOP MPYL 27 0 426 0131 0416 JMP NOP #T2 ----~~ 1 0 22



XXV

PAGE ? HARMONIAC ASSEMBLY OF : FFT1A
27 0132 9000 RSH NOP 0 IM 4 0 0
28 #
29 0133 6801 #RTN3 NOP RETURN #FFT 26 0 1
30 0134 C040 CALL NOP •PARAS IM 0 0 288
31 * SET UP OUTER LOOP
32 0135 A2E1 ADD • ZRG 1 IM 0 23 i
33 0136 7803 •Ll/Q NOP ALU 30 0 3
34 0137 3419 TRANS “NOP * •L/M •LOLOO 13 0 25
33 0138 288E BUB “TRAMS ,•Ll/O 10 5 30
36 0139 8047 CALL “NOP ,4EXP2 IM 0 0 263
37 013A 6004 #LI/MX “NOP * MPYL 24 0 4
38 0138 5804 #T2 “NOP , MPYL 22 0 4
39 013C B402 TRANS NOP 2 IM 13 0 2
40 013D 30A4 MPY “TRANS # MPYL 12 5 4
41 013E FC12 MID/AD NOP •SONMSK IM 15 0 50
42 013F 3404 TRANS “NOP , MPYL 13 0 4
43 0140 60A0 •LI/MX “TRANS , NOP 24 5 0
44 * SET UP 2PI IN 10. P. 1 7FFF
4$ 0141 2317 ADD “•LI/MX , #ZRO 8 24 2346 0142 D4E1 TRANS MDAT 1 IM 13 7 1
47 0143 44A5 tDPO TRANS TRANS 17 5 . 548 0144 3126 CALL NOP #DI V IM 0 0 19849 0145 D410 SIN/AC NOP 48 » < IM 5 0 48
50 0146 233E ADD “#L/M ,•Ll/O 8 25 30
51 0147 3879 COMP ALU •L/M 14 3 25
52 * DO PRUNE IF LQ+L<M
S3 0148 854B JMP «NOP , #13 IM 1 0 33154 0149 2377 ADD *#L2/N1 i #ZRO a 27 23
55 014A 5803 #T2 “NOP , ALU 22 0 3
36 014B B6E0 TRANS «#ZRO ' , 0 413 IM 13 23 0
57 014C 50 A 3 •CNT “TRANS , TRANS 20 5 558 014D 22F1 ADD #ZRG #DPO 8 23 17
59 014E 7C03 #RTN2 NOP ALU 7EMP SAVE 31 0 3
60 014F 9000 RSH/MC “NOP , 0 IM 4 0 0
61 0150 329F MPY #CNT #RTN2 •LMLOO 12 20 31
62 0151 BCGB MID/AD NOP •PI/2 IM 15 0 11
63 0152 3404 TRANS -NOP , MPY 13 0 4
64 0153 D4A0 SIN “TRANS , 32 IM 5 5 32
65 0154 20E4 ADD MDAT MPY ^ADDS PI/2 FOR COS 8 7 4
66 0155 4C0D •TEMP NOP SIN 19 0 13
67 0156 D468 SIN =ALU , 40 IM 5 3 40
68 0157 2317 ADD “•L.I/MX ,#ZRO FOR INNER LOOP a 24 23
69 0158 340D TRANS “NOP , SIN 13 0 13
70 0159 4CA0 #TEMP “TRANS , NOP 19 5 0
71 * SET UP INNER LOOP
72 015A 7860 #L1/G “ALU , NOP 30 3 0
73 0158 23D4 ADD “•LI/O / #CNT 8 30 20
74 015C 3700 TRANS =#LI/MX , NOP 4L1L0G 13 24 0
73 01 5D 2865 SUB “ALU ,TRANS 10 3 5
76 015E 4063 •ALUS “ALU , ALU 16 3 3
77 015F 23A3 ADD •BASE ALU 8 29 3
78 0160 4463 #DPQ ALU ALU 17 3 3
79 0161 2070 ADD ALU •LI/MX 8 3 24
80 0162 4863 #DP 1 ALU ALU 18 3 3



xxvi

PAGE 10 HARMONIAC ASSEMBLY OF : FFT1A
81 0163 1A51 MADDR «#DP 1 , #DFO 6 18 17
82 0164 34E7 TRANS «MDAT , MDAT 13 7 7
83 0165 1A32 MADDR «*#DPO , #DP 1 6 17 IB
84 0166 28E5 SUB “MDAT ,TRANS 10 7 5
85 0167 5463 #T 1 «alu , ALU 21 3 3
86 0168 20E5 ADD «MDAT ,TRANS 8 7 5
87 0169 1C60 MDAT **AL.U , NOP 7 3 0
88 016A 28 A 7 SUB »TRANS , MDAT 10 5 7
89 0168 4063 &ALUS “’ALU * ALU 16 3 3
90 0160 20A7 ADD “TRANS , MDAT 8 5 7

2 016D 1811 MADDR NOP #DPO 6 0 17
3 016E 3275 MPY #TEMP #T 1 12 19 21
4 016F 1C03 MDAT NOP ALU 7 0 3
5 0170 A080 ADD MPYH 0 IM 8 4 0
6 0171 3213 MPY 8ALUS #TEMP 12 16 19
7 0172 1A52 MADDR #DP1 #DP1 ACTS AS MPY DELAY 6 18 18
8 0173 2083 ADD MPYH ALU 8 4 3
9 0174 32B3 MPY # Ti #TEMP 12 21 19

10 0175 1C60 MDAT ALU NOP 7 3 0
11 0176 A080 ADD MPYH 0 IM 8 4 0
12 0177 3270 MPY *TEMP #ALUS 12 19 16
13 0178 3700 TRANS ®#LX/MX ,NOP ACTS AS MPY DELAY 13 24 0
S 4 0179 2883 SUB MPYH ALU 10 4 3
15 017A 1C03 MDAT «NGP , ALU 7 0 3
16 * END INNER LOOP CALC 'S
17 017B 23C5 ADD “#Ll/0 ,TRANS 8 30 5
18 017C 7860 #L.l/0 -ALU , NOP 30 3 0
19 ♦CHECK INNER LOOP STAGE
20 017D 387B COMP «ALU ,*L2/N1 14 3 27
21 017E 855C JMP «NOP ,#L1L00 IM 1 0 340
82 017F 23D4 ADD #Ll/0 #CNT 8 30 20
23 0180 A281 ADD «#CNT > 1 IM 8 20 1
24 0181 5063 #CNT “ALU , ALU 20 3 3
25 ♦CHECK MIDDLE LOOP STAGE
26 0182 D400 SIN/AC NOP 32 IM 5 0 32
27 0183 3876 COMP -ALU , #T2 14 3 22
28 0184 0550 JMP “NOP , #LMLOO IM 1 0 336
29 0185 34 IE TRANS “NOP ,#Ll/0 13 0 30
30 0186 A0A1 ADD “TRANS , 1 IM 8 5 1
31 0187 7803 #L1/Q “NOP , ALU 30 0 3
32 0188 A861 SUB «ALU , 1 IM 10 3 1
33 0189 3879 COMP =*ALU , #L/M 14 3 25
34 018A C457 JMP «NOP ,#LGLQO IM 1 0 311
35 ♦ NOW FFT FINISHED - DO REORDERING
36 ♦ DOES SOFTWARE REVERSE BIT REORDER
37 ♦ & SCALE DOWN BY SGRT NON-O NO. PTS.
38 ♦ <THIS IS APPROX GROWTH RATE OF DATA)
39 O10B 9320 RSH #L/M 0 IM 4 25 0 SO
395
40 018C 2197 ADD RSH #ZRO 8 12 23
41 018D 1BBD MADDR #BASE &BASE 6 29 29
42 OISE 5863 #T2 ALU ALU 22 3 3
43 018F" 9000 MC 0 #RLOOP IM 4 0 0
44 0190 AOCO ADD Ml ADR 0 IM 8 6 0
45 0191 4463 #DPQ ALU ALU SAV NORM 17 3 3



xxvi i

PAGE 11 HARMONIAC ASSEMBLY OF : FFTIB
46 0192 C073 CALL NOP #REVBIT IM 0 0 435
47 0193 9418 AC 24 >« IM 5 0 24
48 0194 3A71 COMP #TEMP •DPO N>R~>SKIP 14 19 17
49 0195 C468 JMP •SKIP IM 1 0 424
50 * DC5 THE EXCH OF REV/NORM
51 0196 90E0 RSH MDAT 0 IM 4 7 0
52 0197 8055 CALL •SCL2 IM 0 0 277
53 0198 4980 •DP 1 RBH NOP SCLD NORM 1 18 12 0
54 0199 3407 TRANS MDAT 13 0 7
55 019A 8055 CALL •5CL2 IM 0 0 277
56 0199 10A0 RSH TRANS NOP 4 5 0
57 019C 4803 •dp i NOP ALU SCLD NORM 0 18 0 3
58 019D 1A73 MADDR •TEMP •TEMP SET REV 6 19 19
59 019E 8055 CALL •SCL2 IM 0 0 277
60 019F 90EQ RSH MDAT 0 IM 4 7 0
61 01A0 7060 #RTN1 ALU NQP SAVE SCLD REV 1 28 3 0
62 01 Ai 3407 TRANS MDAT 13 0 7
63 01A2 8055 CALL •SCL2 IM 0 0 277
64 01 A3 10A0 RSH TRANS NOP 4 5 0
65 01A4 7003 #RTN1 NOP ALU SAV SCLD REV 0 28 0 3
66 01A5 1E52 MDAT •DPI •DPI PUT NORMS AT REV 7 18 18
67 01A6 1A31 MADDR •DPQ •DPO SET NORM ADDR 6 17 17
68 01A7 1F9C MDAT •RTN1 #RTN1 REVS TO NORMS 7 28 20
69 01A8 28DD SUB Ml ADR •BASE #SKIP 10 6 29
70 01A9 A061 ADD ALU 1 IM 8 3 1
71 01AA 9008 MC 8 POP IM 4 0 8
72 01AB 307B COMP ALU •L2/N1 END? 14 3 27
73 01 AC B46F JMP •RLOOP IM 1 0 399
74 01 AD 24E7 AND MDAT MDAT 9 7 7
75 01AE B401 TRANS NOP 1 IM 13 0 1
76 01AF BCAA MID/AD TRANS •RDYFL2 IM 15 5 10
77 01 BO 9400 SIN/AC NOP 0 IM 5 0 0
78 0XB1 D500 SIN/AC NOP 96 /«* 16 IM 5 0 96
79 * STATUS LEFT READY TO CONT TREE SEARCH
80 * WITH NOT EGU TEST
81 01B2 041A JMP “NOP » •RTN3 1 0 26
82 *
83 01B3 32F7 MPY • ZRO •ZRO 4REVBIT 12 23 23
84 01B4 28DD SUB Ml ADR •BASE 10 6 29
85 01B5 4C80 •TEMP MPY NOP 19 4 0
86 01B6 D402 AC 34 L.RSB TO AFLG IM 5 0 34
87 01B7 1060 RSH ALU NOP 4 3 0
88 0198 2C24 OR AFLG MPYL •SWLOP 11 1 4
89 0199 0062 MPY ALU 2 IM 12 3 2
90 01BA A261 ADD •TEMP 1 IM 8 19 1
91 01BB 4C60 •TEMP ALU NOP 19 3 0
92 01BC 3879 COMP ALU •L/M 14 3 25
93 01BD C478 JMP NOP •SWLOP IM 1 0 440
94 GIBE 1180 RSH RSH NOP 4 12 0
95 01BF 22E4 ADD • ZRQ MPYL 8 23 4
96 01C0 9060 RSH ALU 0 IM 4 3 0
97 01C1 219D ADD RSH •BASE 8 12 29
98 01C2 0401 JMP RETURN 1 0 1
99 01C3 4C63 #TEMP ALU ALU REVERSED ADDR 19 3 3



- xxviii

PAGE 12 HARMONIAC ASSEMBLY OF : FFT1BA
2 * D. P. ADD OF DPO &DP 1 TO DPO, OV ERR
3 01C4 9000 RSH/MC “NOP ,0 #DPADD IM 4 0 0
4 01C5 FC12 MID/AD -NOP ,#SGNMSK IM 15 0 50
5 01C6 24F1 AND -MDAT , #DPO 9 7 17
6 01C7 D400 SIN/AC -NOP , 32 IM 5 0 32
7 01C8 2072 ADD -ALU ,#DP1 ADDLO ORD 8 3 IB
e 01C9 24E3 AND -MDAT1 ,ALU CLEAR SIGN 9 7 3
9 01CA 4403 #DP 0 -NOP ,ALU LOSUM 17 0 3
10 01C3 3620 TRANS -#DPO , NOP 13 17 0
ii 01CC 2025 ADD *AFL© ,TRANS ADD CARRY 8 1 5
12 01CD D400 SIN/AC -NOP , 32 IM 5 0 32
13 01CE* 2243 ADD =a#DP 1 ,ALU HISUM 8 18 3
14 01CF 0401 UMP -NOP ,RETURN RESLT DPO 1 0 1
15 01D0 4460 fcDPQ -ALU , NOP 17 3 0
2 *
3
A

* m
41

[ LEV SPECTRUM1 CALLERS
*T
5 01D1 980A MADDR -NOP ,#PSPR #PSPECT IM 6 0 10
6 01D2 1C01 MDAT -NOP ,RETURN SAVERETURN 7 0 17 01D3 C110 CALL »NOP ,#HANN IM 0 0 112
8 01D4 0000 NOP n f 0 0 0
9 01D5 C053 CALL -NOP , #FFT IM 0 0 307
10 01D6 0000 NOP ss I 0 0 0
11 01D7 803B CALL -NOP ,#PWRLOG IM 0 0 15512 01D8 9000 RSH NOP 0 IM 4 0 0
13 01D9 C579 JMP NOP #MRET IM 1 0 505
14 01 DA 980A MADDR -NOP # ®PSPR IM 6 0 10
15 «■ “ i

16 » SMOOTHED PWR SPECT
17 01DB 980B MADDR NOP &PSSPR 4SSPECT IM 6 0 1110 01 DC 1C01 MDAT NOP RETURN 7 0 1
19 01DD 8171 CALL NOP flPSPECT IM 0 0 465
20 01DE 0000 NOP 0 0 0
21 * NOW DO CEPSTRUM XFORM
22 01DF C053 CALL NOP #FFT IM 0 0 307
23 * DC) SEARCH FOR HIGHEST PEAK(PITCH)
24 * THEN TRUNCATE CEPSTRUM BY ZEROING
25 * HIGH TIME ELEMENTS
26 * AND PRODUCE SMOOTHED !SPECTRUM BY
27 * A TRANSFORM
28 01E0 23BB ADD #BASE #L2/N1 B 29 27
29 01E1 5863 #T2 ALU ALU 22 3 3
30 01E2 BC06 MID/AD #SMOOTH IM 15 0 6
31 01E3 BCE3 MID/AD MDAT #M SET FOR SMOOTH IM 15 7 3
32 01E4 9019 RSH NOP 25 PUSH BOTH IM 4 0 25
33 01E5 D40S SIN NOP 40 IM 5 0 40
34 01E6 A2EA ADD #ZRO 10 * VOICING THRESHOLD IM 8 23 10
35 01E7 5463 #Ti ALU ALU 21 3 3
36 01E8 A3BF ADD #BA8E 31 IM 8 29 31 S488
37 01E9 187D MADDR ALU #8ASE 6 3 2938 * SCAN ALL REALS ABOVE 1FORMANT INFO
39 * FOR HIGHEST PEAK ~> PITCH PERIOD
40 01EA 3440 TRANS MOAB NOP #ZOT 13 2 041 01EB AOEO ADD MDAT 0 IM 8 7 0



- xxix -

PAGE 13 HARMONIAC ASSEMBLY OF : FFT1CL
42 01EC 3AA3 COMP #T1 ALU PREVIOUS PKS? 14 21 3
43 01 ED 54E5 #T1 MDAT TRANS SKIP IF T1 IS > 21 7 5
44 * PITCH PERIOD IN LSP OF T1 AT END
43 01 EE 3836 COMP MOADR #T2 ALL DONE? 14 2 22
46 01EF C56A JMF NOP #ZOT IM 1 0 490
47 01F0 9EE0 MDAT #ZRO 0 IM 7 23 0
40 * DONE-PUT PITCH PERIOD IN MEM
49 OIF 1 2AFD SUB #ZRO #BASE REMOVE OFFSET 10 23 29
30 01F2 2075 ADD ALU #ti 8 3 21
51 01F3 A061 ADD ALU 1 ADDR LAGS BY 1 IM S 3 1
52 01F4 BC64 MlD/AD ALU #PITCHP IM 15 3 4
53 01F5 C053 CALL NOP #FFT DO SMOOTHER IM 0 0 307
34 * RESTORE M TO SAME AS L
35 01F6 BC02 filD/AD #L IM 15 0 2
36 01F7 BCE3 MID/AD MDAT IM 15 7 3
57 01F8 980B MADDR NOP #PSSPR IM 6 0 11
58 01F9 B401 TRANS NOP 1 #MRET IM 13 0 1
59 01 FA BCAA MID/AD TRANS 4RDYFL2 IM 15 5 10
60 01FB 9400 SIN NOP 0 IM 5 0 0
61 01FC 0407 JMP NOP MDAT 1 0 7
62 01FD D500 SIN NOP 96 IM 5 0 96
6 WARNINGS TOTAL 
0 ERRORS TOTAL



- XXX -APPENDIX III

A System for the Analysis and Resynthesis of the Soprano
Singing Voice.

INTRODUCTION

The electronic enhancement of vocal recordings made by the "acoustic" process 

has to date most usually involved some form of filtering, or, as in the case of 

the Soundstream Process adopted by R.C.A., compensation for postulated recording 

horn resonances. The inadequate musical accompaniment has typically been left 

intact and surface noise, turntable rumble etc., have at best been reduced but 

not eliminated.

This paper describes a more thorough-going noise-reduction algorithm which, 

under certain conditions, can take the voice alone from such early recordings and 

make it available to re-recording under modern conditions. It is basically an 

analysis/synthesis system in which FFT analysis produces consecutive power spectra 

from which the fundamental frequency, Fq, of the voice is continually estimated 

together with the changing amplitudes of its harmonics. From these two parameters 

the voice, and only the voice, is resynthesised. The block diagram of the system 

is shown in Figure 1.

Implementation has been in software on a dual processor system made up of an 

HP21MX computer (16-bit) and Harmoniac, a 16-bit high-speed computer designed 

for audio research at the Macquarie University Speech and Language Research Centre 

(1). Considerations of speed and accuracy have led to some complexity in the flow 

chart shown in Figure 1. The processes marked B, C and G are performed in Harmonic 

at the same time that the remainder of the algorithm is executed in the HP because 

the FFT and resynthesis are time-consuming on a conventional computer. There 

would be some advantage in performing the Fq estimation in the faster computer 

but limitations on the available program memory have prevented this in the initial 

implementation.

SPECTRUM COLLAPSE F ESTIMATIONo

Time-domain (cepstral) techniques of F^ estimation become less accurate as



xxxi

MAGNETIC TAPE

(A) SEGMENT TO BE ANALYSED (100 MSEC 
WINDOW, STEPPED 10 MSEC ON SUCCESSIVE 
ANALYSES)

(B)
FFT

POWER SPECTRUM 
(HARMONIAC)

SAVE LINEAR POWER 
SPECTRUM

(C) LOG POWER SPECTRUM 
(HARMONIAC)

(D)

SAVE LOG POWER 
SPECTRUM

"SPECTRAL C 
PITCH EXTRi

OLLAPSE"
A.CTOR

PITCH CONSIS TENCY CHECK

POSSIBLE MANUAL OR 
TRACKING SUBSTITUTION

(E)

CRUDE PITCH ESTIMATE

iHARMONIC HOP' 
PITCH REFINEMENT

____ J

r
(F)

FINE PITCHESTIMATE

TAKE LINEAR SPECTRAL 
AMPLITUDES AT MULTIPLES 
OF PITCH

(G)
RESYNTHESISE NEXT 10 MSEC of VOICE 
USING DIRECT SINEWAVE SUMMATION AT 
AMPLITUDES AND FREQUENCIES DERIVED
ABOVE

(HARMONIAC)

(H) PLACE RESYNTHESISED 
SOUND ON TAPE

Figure 1. Block diagram of noise-reduction algorithm.



xxxii

voice Fq increases and are not appropriate for the soprano voice in the upper 

part of its range. Moreover they do not work well in the presence of harmonic 

noise such as is provided by the old musical accompaniments.

In order to have the system cope well with all voice types a new algorithm 

for estimating voice was designed. It has proved reliable in the presence of 

both surface noise and most instruments. The algorithm has some similarities with 

Schroeder’s harmonic product method (2) and with other frequency-domain methods sucl 

as the SIFT algorithms (3) (4), but has the peculiarities of not being dependent 

on peaks in the spectrum and of giving effectively less weight to the upper 

harmonics.

For each point (IK) in the log power spectrum which exceeds in amplitude a 

variable preset threshold,starting at the left, an amplitude (KINC) is added to 

a collapsed-spectrum store, initially all zero, at frequencies which are integral 

approximations to the frequency of point (IK) divided by NI, where NI = 1,2,3.... 

NAHMAX. NAHMAX, the maximum number of analysed harmonics, is preset for each run.

When NI = 1, the (KINC) coming from point (IK) is equal to the spectral 

amplitude at point (IK). As NI increases, it becomes progressively less. The 

same process is repeated for each point in the spectrum which exceeds the 

amplitude threshold so that a set of (KINC)s is accumulated in each sub-multiple 

frequency position. When all is done, the frequency of the point of greatest 

amplitude in the collapsed spectrum can serve as a first estimate of the Fq of 

the strongest harmonic sound present. In acoustic vocal recordings this is almost 

always the voice.

The Fortran program relevant to this part of the spectral-collapse algorithm 

is shown in Appendix A, lines 329 to 393.

The accuracy of the first estimate is not great, being only -+/- one point 

in the frequency spectrum. (With a 512-point spectrum and a 12.5 KHz sample rate, 

each point represents 12.5 Hz). Jn order to achieve greater accuracy, the original



xxx .ii i

log power spectrum is searched. The frequency of the second harmonic is estimated 

by doubling the first Fq estimate. The largest peak in the spectrum near this 

frequency and within the error bounds is assumed to be the second harmonic and 

from its frequency a more accurate second estimate of is made. Should no 

significant harmonic be found in the expected region, the error bounds are increased 

by one point before moving on from it. The process is subsequently repeated on 

and on up the spectrum and it is the highest number significant harmonic, N, 

which is ultimately used to define Fq which is calculated in floating point for 

good accuracy.

The Fortran listing of this part of the algorithm in in Appendix A, lines
*

394 to 450.

The whole process is not excessively slow but, if the number of harmonics to 

be analysed and the number of spectral points to be treated are made large, it 

can be time-consuming on a normal computer. In the initial tests on acoustic 

recordings of Dame Nellie Melba, the recorded material was already bandlimited 

to about 2.5 KHz so only 256 points of the spectrum, i.e., about 3KHz, were 

analysed and NAHMAX was set at 7. The Fq estimation then took about 200 msec on 

the HP21MX, not including FFT and power spectrum.

RESYNTHESIS ALGORITHM

Once Fq is known to good accuracy it is easy to take the amplitudes of each 

component of the voice from the linear power spectrum (stage F, fig. 1) 

and then to resynthesize ten milliseconds of the waveform of the voice using 

machine language software in the Harmoniac. The resynthesis algorithm adds up 

a set of sine waves, which in this case are harmonically related, at the 

amplitudes in question. A block diagram is given in fig. 2.



xxxiv

PHASE
INCREMENT
TABLE

RESULTANT
WAVEFORM

SINE TABLE

RUNNING
PHASE
TABLE AMPLITUDE

TABLE

CURRENT
SAMPLE
REGISTER

Figure 2 Block diagram of sine-wave synthesis algorithm (Harmonise 
machine language)



XXXV

The algorithm keeps a table of the current phases of each of the sines and, 

for each sample being generated, the phases are incremented by amounts which 

depend on the frequency of the component. Hence the frequencies of the 

components must be converted to phase increments before being given to the 

synthesis algorithm. The phase of each component is used to look up a sine 

table, giving the maximum amplitude of the component at that instant. This 

amplitude is multiplied by the overall amplitude of the component and the 

result is accumulated with all the other components to produce the resultant 

pressure wave sample. In this algorithm ten milliseconds of samples are 

stored in a buffer after each new set of frequencies and amplitudes are 

received. To avoid discontinuities in the waveform at the start of a ten 

millisecond interval, the new set is not used until the waveform passes
4

through a positive zero crossing. See Appendix B.

Frequency calculations are done to thirty-one bit accuracy so there 

is no problem with audible frequency steps. Noise level in the generated 

sinewaves is approximately 65dB below peak signal level. The noise source 

is mainly from limitations on the number of phase steps (4096) and the number 

of amplitude steps in the sine table (2048 in the prototype of Harmoniac).

This algorithm operates very quickly in Harmoniac machine language and is capable 

of producing up to ten sinusoids at a thirty microsecond sample rate in real 

time. It is used in the singing resynthesis in a buffered mode so that speed 

of execution is not important. Host of the execution time of the singing 

processing is spent in the pitch extraction algorithm and the FFT.

PERFORMANCE AND DIFFICULTIES

At present the process yields good results when the accompaniment is not 

prominent but further work is needed to make it fully viable.

No non-harmonic components such as occur in fricatives have yet been added. 

They are few in early recordings in any case but it is clearly desirable that
■ -------------------- ------------------ i



xxxvi

some at least be "sketched in". No difficulty is anticipated in using
a speech synthesiser for this purpose.

Apart from this, there are situations when dealing with the harmonic
signal which call for special attention.

F Errors: 
o

Type 1 - Surface Noise
No result is produced when the information in the log. power spectrum 

is below the threshold set for the spectrum-collapse algorithm. This is to 

avoid Fq errors due to surface noise, but it can leave abrupt terminations and 

initiations which sometimes need overriding operator intervention to make 
smooth.

Type 2 - Competing Voice

When the voice becomes lower in amplitude than the accompaniment 
the wrong Fq may be selected. An algorithm has been developed which is 

manually guided only for the first point of an Fq track and which thereafter 
uses the nearest large peak in the next spectral frame analysed each time 
until the voice stops or there is some other discontinuity. At present 
"starting points" for the F^ tracks are inserted as comments on the 
digital magnetic tape after a preliminary analysis/resynthesis precedure 
has been run to allow the operator to locate points of discontinuity.
Type 3 •* Submult-iple Voice

Accompanying instruments can cause difficulties even when their level is 
low if they have a fairly strong component at half the pitch of the voice.

In this case the pitch extractor will build up this half pitch component as 

as a submultiple of the true fundamental, as its structure is such that it 

enhances all submultiples. In the case where only one or two harmonics of



xxxvii

the voice are present any algorithm could he forgiven for this type of error and in 

fact this is the condition which usually gives rise to it. Since all the correct 

harmonics are part of the series based on a half frequency fundamental the error 

is not quite as serious as others but unfortunately the creation of sudden new 

component at half the previous F causes a discontinuity in the resynthesised 

waveform heard as a click.

To overcome this error the manually-guided F^-tracking algorithm described 

above is again used. The incidence of the error is lower when the rate of 

change of harmonic amplitude is limited. See "Resynthesis Errors - Type 1".

Resynthesis Errors 

Type 1 - Surface Noise

Some of the harmonics of the voice may be close in amplitude to the surface
♦

noise level and thus become audibly modulated by the surface-noise component 

in the analysis. At present this effect is reduced by the use of a resynthesis 

threshold causing components below a predetermined level in the linear power 

spectrum (which teflects recording signal to noise ratio) to be set at zero 

amplitude.

It has been found that if the surface, noise is high,momentary peaks may still 

breakthrough this threshold and lead to objectionable intermittent false upper 

harmonics. These are noticeable as a sort of "high bubbling" when the signal-to- 

noise ratio is only 20 or 25 dB,but can occur to some extent at all signal-to-noise 

ratios.

To counter them further,the rate of change of harmonic amplitude is limited. 

The magnitude of the limitation represents a compromise between freedom from 

the false harmonics and ability to duplicate the original voice accurately. In 

the prototype only +/- 4.5 dB change in amplitude per 10 msec frame was allowed 

on each harmonic unless the amplitude of the harmonic in the previous frame was 

zero,in which case the initial, amplitude of the component was set at the level of t



xxxviii

noise threshold. If all the components were zero in the previous frame, all 

harmonics were allowed to take the levels specified by the unmodified analysed 

spectrum.

Type 2 - Marginal Discontinuities

This is not strictly a noise, but rather the discontinuity which may 

occur at the end and sometimes the beginning of sounds - an abrupt passing 

of the noise threshold when the signal can no longer be determined reliably 

by the pitch extractor. It causes the sound to terminate or begin suddenly - 

typically at about - 25 dB for the Dame Nellie Melba tests. It should be 

possible to extend this dynamic range considerably by the use of an F 

tracking algorithm or by manual control, but this has not yet been fully 

explored.

Type 3 - Very Rapid Change

This is caused by rapid Fq changes which take place in a time less 

than the effective length of one transform analysis window, i.e. 100 msec x % msec 

(factor of h caused by Hanning window used). Such rapid changes broaden the 

spectral peaks and can cause errors in estimated Fq. Vibrato seems to be 

adequately well tracked but the rapid Fq changes in the onsets of some plosives 

like’b* and *d* seem sometimes to be missed,with consequent blurring* of the 

consonant. It is proposed that this problem could be reduced by using an 

adaptive, transform length which drops to one half or one quarter of its full 

length during rapid pitch or amplitude changes and in silences. The present 

implementation uses a 12.5 KHz sample rate and 1024 point transforms with 125 

point (10 msec) hop between analysis frames. Complications in software caused 

by over-lapping operations on different frames in the two computers have so 

far prevented implementation of the adaptive transform length. Resynthesis 

of plosives is often considered adequate as it is.



xxxix

CONCLUSION

The process described has already given very promising results and work 

continues on its refinement. While it cannot make intelligible a voice which 

is not intelligible,it has been shown able substantially to isolate and 

to improve the signal to noise ratio of a single voice recorded by the"acoustic" 

process. The cleaner the original recording the more successful the result.

The process seems likely to be of use for separating one voice from 

another but has not been applied as yet to this. It may also be of interest 

to writers of musique concrete to whom it gives the possibility to modify 

the discrete sound elements they assemble while in parametric form.



xl
APPENDIX A

0329
0330 
0331.
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387

C PITCH DETERMINATION FROM PWR SPECTRUM 
C USING COLLAPSED SPECTRUM METHOD 
2000 IPKLEV « 0 

KPKS = 0
C COMPENSATE AMPL THRESH FOR PESCALING BEFORE FFT 
C FIND NO OF SHIFTS DONE

LTHRSH = LTHRH-IFIX<<ALOG<FLOAT<MAXD>/AL0G2)*128. 0 + 0.5) 
C THRESH MOVES DOWN WHEN DIVISOR IS LARGE AS SIGNAL IS STRONGER 
C IE THERE IS LESS NOISE VISIBLE IN SPECTRUM 

IF(LTHRSH. LT. 1 )LTHRSH = 1 
DO 2010 IK = 1,NQRT 
RBLOCK(IK) = 0 

2010 CONTINUE
C DO SUBMULTIPLE COLLAPSE OF SPECTRUM 
C FIRST HALF OF SPECTRUM TO 3KHZ
C THIS IS A TIME CONSUMING SECTION - APPROX 120 MSEC FOR 256 PTS 

DO 2025 IK = PMIN#NQRT
IF(DISBUF(IK).GT.IPKLEV) IPKLEV = DISBUF(IK)
IF(DISBUF(IK).LT.LTHRSH) GO TO 2025 
DO 2025 NI = 1,NAHMAX 
IKL * ((( IK + IK )/NI ) + 1 ) /2
IF<DISBUF(IKL).LT.LTHRSH) GO TO 2025 
IF( IKL. LT. PMIN. OR. IKL. GT. PMAX) GO TO 2025 

C GIVE PRIMARY COMPONENT MORE PROMINENCE 
C

KINC « DISBUF(IK)/NI 
C
C ADD UPPER COMPONENT TO SUBMULTIPLE 
2026 RBLOCK(IKL) = RBLOCK <IKL) + KINC
2025 CONTINUE
C HISTOGRAM OF LOG SPECTRUM SUBMULTIPLES IS FINISHED 
C GET HIGHEST ENTRY IN HISTOGRAM AS 1ST PITCH ESTIMATE 
2500 IEST = 0 

IPEST « 0
DO 2510 IK = PMIN# PMAX
IF(RBLOCK(IK). LE. IEST)GO TO 2510
IEST = RBLOCK(IK)
IPEST = IK 

2510 CONTINUE
C SET AS SILENCE IF CORRELATION OF SPECTRUM VERY POOR 

IF(IEST. LT. 2*LTHRSH) IPEST = 0 
C CHECK FOR PITCH HALVING ERROR 

IPR » ( IPEST*3. 0 + 0. 5)
I PR 1 « DISBUF(IPR)
IPR2 = DISBUF<IPR + 1)
IPR3 = DISBUF(IPR-1)
IF<IPR2. GT. IPR1)IPR1 * IPR2 
IF <IPR3. GT. IPR 1 ) IPR1 ■ IPR3 
IPESH m (IPESL + l)/2
IF ( IPESH. EG. IPEST. OR. IPESH+1. EG. IPEST. OR. IPESH-1. EG. IPEST 

1. AND. I PR 1. LT. LTHRSH+20. AND. 3*DISBUF( IPEST). LT. DISBUF(IPEST 
2 IPEST = 2*IPEST 
IPESL = IPEST 
IPSAVE = IPEST 

C
C CHECK FOR EDIT PITCH CORECTION 
C

IND » IAND (PITCHT (96 + N01), 377B)
IF (IND .GT. 0) IPEST = IND



0388
0389
03900391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450

- xli -
APPENDIX A (continued).

C
C SAVE VALUE IN PITCH TABLE 
C PITCHT (48 + N01) - IPEST 
CC NOW WE HAVE A CRUDE PITCH ESTIMATE
C USE INDIVIDUAL HARMONICS FROM DOT OF SPECTRUM UP TO
C PROGRESSIVELY REFINE THE PITCH ESTIMATE# STARTING AT FUND.
C ASSUME INITIAL ESTIMATE MAY BE +0R- 1 

, NHARM = 1 
NER « 1 
NSH = 0 
NA = 8
NPEST = IPEST

C LOOK AT EA HARMONIC #REFINING EST IF WE CAN FIND MATCHING PEA 
NBEST » IPEST

C LOOK FOR LARGEST PEAK INSIDE RANGE OF EA HARMONIC 
WFILE(l) = 1 C
DO 2560 LHARM « 1#NSHMAX
IF((NPEST + NER). GE. INH) GO TO 2560
NSH « NSH + 1

C THRESHOLD ON USEFULLNESS OF UPPER HARMS RISES W HARM NO. 
ITHRSH » IPKLEV/NA

C SET UP DEFAULT FOR NPES AS ESTIMATED HARMONIC POSITION 
2540 NPES * NPEST 

LPT a 0
C TRY EA PT AROUND EXPECTED POSITION OF THE HARMONIC 

DO 2550 IK « (NPEST-NER)# (NPEST + NER)
IF( IK. LT. 1 ) GO TO 2550 
IF(DISBUF(IK). LT. LPT) GO TO 2550 

C GOT LARGESTLPT » DISBUF(IK)IF(LPT.GT.ITHRSH) NPES = IK 
2550 CONTINUE 
C GOT LGEST PKC ESTIMATE POSITION OF NEXT HARMONIC 
C USING ROUNDINGNPEST = NPES + (( NPES+NPES )/ LHARM +1 ) / 2
C PUT PRESENT HARM FRG IT TABLE FOR RESYNTH 

WFILE(LHARM) = NPES 
IF(LPT.GT.ITHRSH) GO TO 2555 

C NO SIGNIFICANT PEAK FOUND- GREATER POSS ERROR 
NER = NER + l 
GO TO 2556

C USE PK TO REFINE NPES
2555 NER = 1
C MAKE A NOTE OF BEST RELIABLE ESTIMATE SO FAR 

NBEST = NPES 
NHARM = LHARM

2556 NA = NA-2
IF ( NA. LT. 2) NA = 2

2560 CONTINUE
C AT END OF ALL PEAKS # CALC F. P. PITCH
2561 CONTINUE

PITCH a (FLOAT(NBEST)*FRESLN)/(FLOAT(NHARM))
IF(PITCH. LT. PITMIN) PITCH = 0.0 
WRITE(1#2531)IPSAVE, IPEST, IND 

2531 FORMAT ( "CRUDEP A", 16," B ",I6," C "#I6>
WRITE <1,2530 > PITCH 

2530 FORMAT( "PITCH ",F7. 2)
GO TO ISUBR 

C



xlii

APPENDIX B
2 * RUNNING SINUSOID SUMMATION SYNTHESIS
3 * ~ *
4 * USES DOUBLE PRECISION PHASE ADDITION
5 * FOR HIGH ACCURACY PITCH CONTROL.
6 * AMPL SUMMATION IS S. PRECISION.
7 * RUNS AS SUBROUTINE THAT CALCS NHOP
8 * PTS OF WAVEFORM ON EA . CALL(STACKED)
9 01CA 9008 MC 8 #SINSUM ENTRY IM 4 0 8
10 01CB 9400 AC 0 IM7 SET IM 5 0 0
11 * POP THE CNT/ADDR PARAMETERS
12 **SET UP TO DO " NHOP" SAMPLES
13 01CC BC1 5 MID/AD NOP #ENDRES IM 15 0 21
14 01 CD 54E0 #T 1 MDAT NOP PTS TO END 21 7 0
15 * SET UP PTR TO RESULTS STACK IN Ml
16 01CE 58E0 #T2 MDAT NOP 22 7 017 01CF FC 1C MID/AD #NSINE5 #SAMLOP IM 15 0 6018 01 DO E1F7 ADD MDAT ^PHASES IM 8 7 119
19 01D1 5063 #CNT ALU ALU 20 3 3
20 01D2 B4E1 TRANS MDAT 1 IS OVERALL AMP IM 13 7 121 01D3 A460 AND ALU 0 IM 9 3 022 01D4 4063 #AL.US ALU ALU USED FOR SAMPLE 16 3 323 01D5 D917 MADDR ^PHASES IM 6 0 119
24 01D6 9009 MC 9 POP Ml,PUSH 0 IM 4 0 9
25 01D7 20E7 ADD MDAT MDAT ADD LSPS 8 7 7
26 01D8 1C03 MDAT NOP ALU #SINLOP * 7 0 3
27 01D9 0000 NOP WAIT ON MO PU 0 0 0
28 01DA 2027 ADD AFLG MDAT * 8 1 7
29 01DB 20E3 ADD MDAT ALU ADD MSPS * 8 7 3
30 01DC 1C03 MDAT ALU PUSH MSP 7 0 3
31 01DD A068 ADD ALU 8 ROUND FOR SINE IM 8 3 8
32 •a
33 * NOTE 65DB S/N POSS W 11B*1024 SINE
34 01DE 9478 SIN/AC ALU 24 RQV&SEE OV & >=* IM 5 3 DA

35 * MPY BY AMPL OF THIS COMPONENT
36 01DF 30ED MPY MDAT SIN 12 7 1337 01E0 2090 ADD MPYH #ALUS UPDATE SAMPLE 8 4 1638 01E1 4063 #ALUS ALU ALU 16 3 339 01E2 3854 COMP MOADDR #CNT 14 2 2040 01E3 8578 UMP #SINLOP IM 1 0 47241 01E4 20E7 ADD MDAT MDAT NEXT LSP ADD 8 7 742 * lcl INSTRUCTION INNER 1LOOP
43 * NOW CHECK IF ZERO CROSSING SO CAN44 * CHANGE PARAMETERS WITHOUT CLICK
45 01E5 BA21 COMP #DPO 1 EQUIV TO >0 IM 14 17 146 01E6 C56A JMP #NEG EXEC IF OO NOW IM 1 0 49047 01E7 0000 NOP 0 0 048 01E8 C574 JMP #CONTIN EXCE IF IS >0 IM 1 0 50049 01E9 0000 NOP 0 0 050 01EA BAOO COMP #ALUS 0 #NEG >=*TEST IM 14 16 051 01EB C574 JMP #CONTIN #CONTI IF<0 LA IM i 0 50052 * BLOCK MOVE OF CONTROL PARAMS53 01EC FC 1C MID/AD #NSINES IM 15 0 6054 01ED 9819 MADDR #PARIN (HOST INPUT) IM 6 0 2555 01 EE 9018 MC 24 PUSHl/POPO IM 4 0 2456 01EF 22E7 ADD #ZR0 MDAT 8 23 757 01F0 1C60 MDAT ALU NOP #MOVP 7 3 058 01F1 F956 COMP MOADR #ENDPIN IM 14 2 11859 01F2 C570 JMP #MOVP IM 1 0 49660 01F3 22E7 ADD #ZRG MDAT 8 23 7



xliii

APPENDIX B continued.

61 * (20 PARAM SETS ALLOWED)
62 * MPY BY OVERALL AMPL
63 01F4 3205 * MPY #ALUS TRANS #CONTIN AMPL 12 16 5
64 01F5 A2C1 ADD #T2 1 IM 8 22 1
65 01F6 3C03 MID/AD MPYH ALU 15 4 3
66 01F7 4480 #DP0 MPYH NOP t 17 4 0
67 01FQ 5863 #T2 ALU ALU 22 3 3
68 01F9 36A3 TRANS #T1 ALU 13 21 3
69 01FA 38A5 COMP TRANS TRANS REACHED END ? 14 5 5
70 01FB 056F JMP #SAMLQP IM 1 0 463
71 OiFC 9009 MC 9 RESTORE MEM STATUS IM 4 0 9
72 01FD 0401 JMP RETURN 1 0 1
73 01FE 0000 NOP 0 0 0
74 DATA FILE FOR MAIN MEM BEGINS @M1,20
75 0014 0100 256 #NHOP
76 0015 0900 2304 #ENDRES
77 0016 0800 2048 #RPTR
78 * END RESULTS AREA OF Ml
79 0017 0014 20 #LITTLE
BO DATA FILE FOR MAIN MEM BEGINS fcMO,25 PARAMETERS INPUT FILE
81 0019 0002 2 #PARIN
82 001A 07D0 2000
83 001B 0000 0
84 001C 00C8 200
85 00 ID 01F4 500
86 *ENDS AT 11887 DATA FILE FOR MAIN MEM BEOINS @MQ,118 RUNNING PHASE TABLE
88 0076 0000 0 ftENDPIN
89 0077 0000 0 ^PHASES
90 0078 0000 0 MSP
91 DATA FILE FOR MAIN MEM BEGINS @M1,60 ** PARAMETERS WORKING FILE
92 003C 0002 2 #NSINES TWICE NO. OF SINES REQ
93 003D 03E8 1000 #AMPLA OVERALL AMPL
94 003E 0000 0 #PHIAMP PHASE INC LSP
95 003F 07D0 2000 PHASE INC MSP
96 0040 1388 5000 AMPL OF THIS COMPONENT
97 * THREE WORDS DESCRIBE EA COMPONENT



xliv
REFERENCES

1. P.M. Connor, "Harmoniac - A Digital Signal Processor" 
S.L.R.C. Working Papers, Macquarie University, 1981.

2. M.R. Schroeder, "Period Histogram and Product Spectrum:
New Methods for Fundamental Frequency Measurement",
JASA, Vol. 43, No.4, January, 1968.

3. A.M. Noll, "Pitch Determination of Human Speech by the 
Harmonic Product Spectrum, The Harmonic Sum Spectrum and
a Maximum Likelihood Estimate," presented at the Symposium 
on Computer Processing in Communications, Polytechnic 
Institute of Brooklyn, Brooklyn, N.Y. Apr. 8 - 10, 1969.

4. J.D. Markel, "The Sift Algorithm for Fundamental Frequency 
Estimation", I.E.E.E., T.A.E., Vol. AU-20 December, 1972.

5. Seneff, Stephanie, "A Real Time Harmonic Pitch Detector" 
I.E.E.E., T - A.S.S.P., Vol. 26, No. 4, August 1978.

6. R.L. Miller, "Performance Characteristics of an Experimental 
Harmonic Identification Pitch Extraction (Hipex) System", 
J.A.S.A., Vol. 47, June 1970.

7. W.H. Tucker, "A Pitch Estimation Algorithm for Speech and Music" 
I..E.E.E., T-A.S.S.P., Vol. 26, No.6, Dec. 1978.

8. T.W. Parsons, "Separation of Speech from Interfering Speech by 
means of Harmonic Selection", J.A.S.A., Vol. 60, No. 4, October 
1976.



APPENDIX IV
xlv -

PAGE 0001 FTN4 COMPILER: HP24177 (SEPT 1974)

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 
0011 
0012
0013
0014
0015 
GO 16
0017
0018
0019
0020 
0021 
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056

FTN. L, C
SUBROUTINE MASSY

C ON FILE "HARA7"
C BY P. M CONNOR MACQUARIE UNIV S. L. R C.
C REVISION 7TH SEPT 1979 (WARNINGS,LAST ADDR)

COMMON RFIL.E 
COMMON LLINE
INTEGER RFILE(20, 100),FNUMB, COMAND, FNAME(3), HLIST<3) 
INTEGER HEX L ( 4 ) ,HEXA(4)
INTEGER LLINE(80)
INTEGER AFNAME(3)
INTEGER HOBJN(3)
INTEGER OF ILE(1000),TMAME(3),OFNAME(3), CFILE(20, 100) 
INTEGER ERFILE(20)
INTEGER SYMBT(7,100)
INTEGER SCRSYM(6,17)
INTEGER DEST(20),SCE1(19),SCEO<19)
INTEGER ERD,ERSO,ERS1,COFIL(1000)
DATA TNAME/2HHM/,0FNAME/2HHB/
DATA ERFIL.E/2HMP, 19*0/
DATA DEST/2HN0,2HJM,2HI0,2H0D, 2HRS, 2HSI, 2HMA, 2HMD,

#2HAD, 2HAN, 2HSU, 2H0R, 2HMP, 2HTR, 2HC0, 2HM1,2HSC, 2HCA, 2HJS, 2H 
DATA SCE1/2HN0, 2HAF,2HM0,2HAL, 2HMP, 2HTR, 2HM1,2HMD,

#2HZ1,2HZ2,2HI1,2HI3,2HRS,2HZ3, 2HZ4, 2HZ5, 2HSC, 2HJS/
DATA SCE0/2HN0,2HPS,2HI2,2HAL,2HMP,2HTR,2HI4,2HMD,

**2HZ1,2HZ2, 2HZ3,2HS0,2HSM, 2HSI, 2HBU,2HRM, 2HSC, 2HRE/
DATA IRCDE/10/, IBEE'P/3400B/# IC0N/103B/
DATA HLIST/2HHL,2HIS, 1HT/,FNAME/2HHM/
DATA ICLR/15473D/
DATA AFNAME/2HHM/
DATA IC0N4/1607B/
DATA HOBJN/2HH0,2MBJ,2H1 /
ISTRT--2

20 WRITE<1,21)IBEEP,IBEEP
21 FORMAT(A2, "NAME OF PROG TO BE ASSEMBLED(4KEY CH). . . "

#A1, )
READ ( 1, 22 ) F NAME

22 FORMAT<3A2)
IF<FNAME(1).EQ 2H ) RETURN
LU~ 1
LI«1
WRITE < 1,845)

845 FORMAT <" LIST ON VT(1),LP(6) OR NONE < 0 )?","__" )
READt1,#■)LU 
IF(LU. EQ. 0) LU“99 
IF < LU. N£. 99 > LI =LU 
WRITE(l,848)

848 FORMAT < "SAVE ON DISC(D) OR SEND TO HARMONI AC (H ) ?", ,,„m" ) 
READ(1,849)LOBJD

849 FORMAT(Al>
KZR0“0
DO 100 FNUMB-O.99 

90 CALL ASCI I(FNUMB,AFNAME)
CALL EXEC( 18, AFNAME, ISECT)
IF ( I SECT. EQ. 0)G0T0 120
CALL EXEC(14,ICON,RFILE,2000,AFNAME,0>



PAGE 0002 HASSV FTN4 COMPILER: HP24177 (SEPT. 1974)

0057
0058
0059
0060 
0061 
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080 
0081 
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093 
009 4
0095
0096
0097
0098
0099
0100 
0101 
0102
0103
0104
0105
0106
0107
0108
0109
0110 
0111 
0112

IF(RFILE<1, 1). EQ. 0) KZRQ=KZR0+1 
IF(KZRQ. GT. 20) GO TO 120 
DO 99 J=li 2
IF(RFILE( J, 1 ). NE. FNAME< J) )GOTO 100

99 CONTINUE
C RESET LIST LINE COUNT WHEN CHANGING FILES FOR READER'S CONVENIE 

L. INE-2 
GOTO 140

100 CONTINUE
120 WRITE<1,130)
130 FORMAT!/"FILE DOES NOT EXIST , TRY AGAIN............................"/>

GO TO 903
140 IF(ISTRT. GE. 0) GO TO 141 
C GENERATE A JUMP SYMBOL TABLE 

IF(ISTRT.OE.-1) GO TO 142 
IADD-0 
ISTRT*—1 
ISYPT-1
DO 3003 K* 1,700

3003 SYMBT < K) = 1H
C INITIALISE BOTH JMP &SCR SYMBOL TABLES 

DO 3004 K=1,102
3004 SCRSYM (K > =*1H 

NSYMB=0
C NOW BUILD SYMBOL TABLE FOR CURRENT FILE 
C -JUMP & MAIN MEM ADDR SYMBOLS 
142 JSTRT=20

DO 2901 Ka=2, 100
IF<RFILE( 1, K). EQ. 0) GO TO 3001 
CALL PULLH(K)
IF ( LLINE ( 1 ). EQ. 1H OR. RFILE (1,2). EQ. 0 ) GO TO 3100 
IF (LL. I NE ( 1 ). EQ. 1 H$ ) GO TO 3000 

C SET PADDR WHEN WE FIND IT
IF(LLINE(1).NE.1H@)G0T0 3007 
IF(LLINE(2). EG. 1HP) JSTRT=20 
IF(LLINE(2).EG 1HM> JSTRT=6 
CALL NUMB(LLINE,5,IADD,1STAT,0,8192)

3007 DO 3005 J=l,40
C EA LINE SCANNED FOR M#" (IGNORE 1ST 20 CHS)

IF(LLINE(J) EQ. 1H*)G0 TO 3000 
IF ( J. LT. JSTRT ) GO TO 3005 
IF<LLINE(J). NE. 1H#)G0 TO 3005 

C GOT A LABEL - STACK XT 
SYMBT(ISYPT+6)-IADD 
JS*0
DO 3011 JT=J+l,J+6 
SYMBT(ISYPT+JS)*LLINE(JT)
JS^JS*-!
IF(LLINE(JT). EQ. 1H > GO TO 3012 
IF( ISYPT. LT. 700) GO TO 3011 
WRITE (LI,3020)

3020 FORMAT("1 SYMBOL TABLE OVERFLOW HAS OCCURRED !’!!1")
GO TO 3100

3011 CONTINUE
3012 ISYPTssISYPT+7 

NSYMBssNSYMB+1



0113
0114
0115
0116
0117
one
01 19
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168

xl vi i

PAGE 0003 HASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

GOTO 3000 
3005 CONTINUE
3000 I F ( LL INE ( 1 ). NE. 1H@. AND LLINE< 1 ). NE. 1H*. AND. LLINE ( 1 ) . NE.

#1H*. AND LLINE(1). NE 0) IADD=IADD+1
IF(LLINE <1). NE. 1H$) GO TO 3001

C HERE DOING HI PRIORITY SCRATCH SYMBOL LIST (MUST BE 1ST IN PROG 
KPRC=2
DO 317 KPRC=KPRC*40
IF(LLINE(KPRC). EQ. 1H#) GO TO 316
GO TO 317

C INSERT HI PRIORITY SCR SYM (6 CHS)IF IT'S NOT IN
316 DO 381 KSCY=1,16 

DO 382 JSC=1,6
IF(SCRSYMC 1, KSCY>. EQ. 1H ) GO TO 319 
IF(LLINE<JSC+KPRC). NE. SCRSYMCJSC, KSCY))G0 TO 3B1 
IF < SCRSYM (JSC/KSCY). EQ. 1H ) GO TO 317 

382 CONTINUE 
C GOT MATCH -LEAVE ALONE 

GO TO 317 
381 CONTINUE 

GO TO 384
319 DO 318 KPCC=1,6

SCRSYM(KPCC fKSCY)=LLINE(KPRC+KPCC)
318 CONTINUE 

GO TO 317
384 WRITE(LI/3022)
3022 FORMAT("/ PRIORITY SCRATCH TABLE OVERFLOW !">

GO TO 3001
317 CONTINUE
3001 IF(LLINE(1). NE. 1H#) GO TO 2901
C DEST IS SCRATCH SYMBOL-PUT IT IN TABLE IF NOT ALREADY THERE 

DO 3510 KSCY-1/16 
DO 3520 JSC=1/6
IF(SCRSYM(1,KSCY).EQ.IN ) GOTO 3570 
IFCLLINECJSC+1).NE.SCRSYM(JSC/KSCY)) GO TO 3510 
IF(SCRSYM(JSC/KSCY). EQ. 1H ) GO TO 2901 

3520 CONTINUE 
C MATCH FOUND 

GOTO 2901 
3510 CONTINUE
C IF TABLE FULL & NO MATCH—>ERROR 

WRITE(LIi2904)
2904 FORMAT("/ TOO MANY SCRATCH SYMBOLS !")

GO TO 2901
C PUTTING IN A NEW SYMBOL
3570 DO 3560 JSC=1,6
3560 SCRSYM(JSC/KSCY)=LLINE < JSC+1)
2901 CONTINUE
C FILE FINISHED - GET ANOTHER 

GO TO 100
C NOW FINISHED BUILD OF SYMBOL TABLES SO 
C GO BACK TO 1ST FILE TO ASSEMBLE ALL FILES 
3100 ISTRT-0

GO TO 849
C
C SYMB TABLE FINISHED - INITIALISE FOR ASSY



0169
0170
0171
0172
0173
0174
0170
0176
0177
0170
0179
01S0
0181
0.102
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224

xlvi i i

PAGE 0004 MASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

C
141 LFC *1

IF (RFILE ( 1 > 1 >. EG 0 ) GC) TO 903 
IFCI5TRT. EG. 1)GOTO 899 
ISTRT-1

C ZERO OUTPUT FILE
DO 152 J=i,1000 
COFILtJ>*0 

152 OFILE(J)=0
C INSERT PROGRAM NAME IN OBJECT OUTPUT FILE
150 DO 200 J-1»3
200 OFILE<J)=RFILE(J,1)
C ADDR IS WITHIN P MEM
C SET UP A DEFAULT ADDR IN CASE NO ORG 

OFILE(5)=0700000 
IADD*070000B 
IADDR-0 
IKNTP=4 
IDAT*0 
KNTWD-0

C OBJ FILE INSERT PTR IS KRES 
KRES-6 
L.INE=2 
LDEST=0 
LPOl 
KER=0 
KWARN-0 
KLIN~1
IF (LU. EQ. 99) GO TO 399
WRITE(LU# 890>LPC, (RF ILF. ( JK, 1 ), JK=1,20)
IF ( ISTAT. GT. 0) WR ITE <LU, 602)

602 FORMAT < "START ADDR IS OUT OF RANGE <0-8192)'*)
890 FORMAT("1 PAGE ”, 13 " HARMONIAC ASSEMBLY OF :

2,20A2/," LINE ADDR MEM. SOURCE CODE
3" #LABELS<JMP) *CMTS DECODED OBJECT"/)

C
C
C ONLY 1ST LINE (NAME OF PROG) 
C ASSEMBLY START
899 DO 1000 J~2,100 
C OBJ BUILD LOOP 

ERD=»0 
ERS0=0 
ER51-Q 
LWARN=0 
KIM*0 
ISCRP-O 
CALL PULLH(J)
IF(LLINE( 1 ). EG. 1H*> GO TO 

C CHECK IF IT'S AN EMPTY END OF 
315 IF(RFILE< 1, J). EG. 0) GO TO 

IFCLLINE(l). EG. 1H~) GO TO 
IF(LLINE(1). EG. 1H*) GO TO 

C CHECK FOR NEW ORG
IF <LLINE<1). EQ. 1H@) GO TO 

C CHECK IF DOING A DATA AREA

IS IGNORED DURING ASSEMBLY

793
FILE - SKIP THRU 
1000 
695 
793

988



0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280

xlix -

PAGE 0005 MASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

IF(IDAT. EG. 1HD) GO TO 981 
NOW START ON PROGRAM ASSEMBLY 

RESET DEFAULT ORG INDIC AS WE ARE ABOUT 
KORG1=0

(CAN NO LONGER OVERWRITE DEFAULT

TO DC) SOME PROGRAM

DO DEST FIRST( CHECK IF SYMBOLIC SCRATCH)

IF(LLINE(1). NE. 1H#) GO TO 358 
C DEST IS SCR SYMBOL-CHECK IF ALREADY IN SCRSYM-PUT 

DO 351 KSCY*1> 16 
DO 352 J5C= I, 6
IF(SCRSYM(1, KSCY). EQ, IN ) GOTO 357 
IF(LLINE(JSC+1). NE. SCRSYM(JSC, KSCY)) GO TO 351 
IF(SCRSYM(JSC,KSCY).EQ 1H ) GO TO 353

352 CONTINUE 
C MATCH FOUND
353 KDAD-KSCY-1 

GO TO 354
351 CONTINUE
C IF TABLE FULL & NO MATCH->ERROR 

ERD*=4 
KDAD-Q 
GO TO 354

C PUTTING IN A NEW SYMBOL
357 DO 356 JSC-1,6
356 SCR3YM(JSC, KSCY > =LLINE(JSC+1)

GO TO 353
C NORMAL "0P2 DESTINATION PROCESSING FOLLOWS

IN IF NOT ((OF

358

300

2800

2801

301
302 
320

DO 300 KDAD ‘*=1,20
IF(RFILE(1,J). EQ. DEST(KDAD)> GOTO 320 
CONTINUE
IF(RFILE( 1, J). NE. 2HMC ) GO TO 2800
KDAD=5
GOTO 320
IF(RFILE(1,J). NE. 2HAC) GO TO 2801
KDAD-6
GO TO 320
CONTINUE
IF (RFILE ( 1, J). NE. 2HG0 > GO TO 301
KDAD=2
GO TO 320
KDAD-l
ERD=1
KDAD-KDAD-1
IF(KDAD. EG. 16) GO TO 350
IF (KDAD. EQ. 17>KDAD*=0
IF(KDAD. EQ. 18)KDAD=0
IF(KDAD. NE. 19) GO TO 303
KDAD-0
KDA=0
KSIAD-O
KS1=0
KS0AD=0
KSO—0
GO TO 600



0281
0282
0283
0284
0285
0206
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336

1

PAGE 0006 HASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

303 CONTINUE 
GO TO 360

350 CALL PULLH(J)
C SCRATCH DEST PROCESS

CALL NUMB (LLINE# 4, KDAD, ERD, 0, 15)
354 ISCRP-1

KDAD-KDAD+16
C NOW CHECK FOR FORBIDDEN SEQUENCE OF DESTS 
360 IF(RFILE( 1, J). EQ. LDEST) ERD=2 

L.DEST-0
DO 370 KERP-1> 20
IF(RFILE <1/J). EQ. ERFILE(KERP))LDEST=ERFILE(KERP)

370 CONTINUE 
C
C NOW DO SOURCE ONE 
C

KDA-KDAD
C CHECK FOR SYMBOLIC SCR SOURCE 1

IF(LLINE<9>. NE. 1H#> GO TO 458 
C IT IS SYMBOLIC SCR/FIND IT & REPLACE WITH ADDR 

DO 451 KSCY=1/17 
DO 452 JSC-1/6
IF(LLINE(9+JSC). NE. SCRSYM(JSC/KSCY)) GO TO 451 
IF(SCRSYM(JSC/KSCY). EG 1H ) GO TO 453

452 CONTINUE 
C MATCH
453 KS1AD =KSCY~1 

GOTO 454
451 CONTINUE 

ERS1=5 
KSIAD^O 
GO TO 454

458 DO 400 KS1AD-1/18
IF (RFILE (5/ J). EQ. SCE1 (KS1AD) ) GO TO 420

400 CONTINUE
IF(RFILE(5, J). NE. 2H ) GO TO 401 
KS1AD-0 
GO TO 460

401 KS1AD = 1
402 ERS1 = 1
420 KS1AD-KS1AD-1

IF(KS1AD.EQ.16) GO TO 450 
IF(KS1AD. EQ. 17) KS1AD=1 
GOTO 460

450 CALL NUMB(LLINE, 12/KS1AD,ERS1,0/ 15)
454 KS1AD-KS1AD+16

IF(ISCRP. NE. 0)ERS1=99 
C LATER DO SOURCE ONE ERROR CHECK 
C
C NOW SOURCE ZERO 
C
460 KS1-KS1AD

IF(RFILE<9# J). EQ. 2H ) GO TO 533
IF (LLINEC 17). GE. 1H0. AND. LLINE( 17). LE. 1H9 ) GO TO 544 
IF(LLINE<17).NE IN#) GO TO 558 

C SYMBOLIC SCE ZERO



0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364 
03<* 5
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392

- 1i -
PAGE 0007 MASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

C CHECK IF IT IS JMP SYMBOL OR SCR SYMBOL IADI—0
IF<KDAD. EQ. 1. AND. KS1AD. EQ. 0) GO TO 4000 
IF (KDAD. EQ. 0. AND. KS1AD. EQ. 0)G0 TO 4000 

C SEE IF IT'S MEM ADDR 1ST 
GO TO 3990

4070 DO 551 KSCY *1, 17 
DO 552 JSC=1, 6
IF < LLINE(17+JSC >. NE. SCRSYM(JSC , KSCY))GO TO 551 
IF(SCRSYM(JSC, KSCY). EQ. 1H ) GO TO 553

552 CONTINUE 
C MATCH
553 KSOAD=KSCY~1 

GO TO 554
551 CONTINUE
C NO SYMBOL WAS FOUND -ERROR 

KS0AD:=1 
ERS0=3 
GO TO 520

C SET UP IMMEDIATE JUMP TO LOCATION GIVEN IN JMP SYMBOL TABLE(0 
C OR MEM ADDR LABEL FIND 
3990 IAD1=1
4000 DO 4001 KSCY*!,NSYMB 

DO 4010 JSC = 1,6
IF<LLINE<17+JSC). NE. SYMBT(JSC,KSCY)) GO TO 4001 
IF(SYMBT(JSC,KSCY). EQ. 1H ) GO TO 4011

4010 CONTINUE
C GOT FULL MATCH
4011 KSOAD=SYMBT(7, KSCY >

IF (KSOAD. LT. 0. OR. KSOAD GT 2047) ERS0=101 
KS0=KS0AD
IF(IADI. EQ. 1) GO TO 545 
GO TO 4060

4001 CONTINUE
C NO SYMBOL WAS FOUND TO MATCH - POSSIBLY A SCR SYMB -TRY 

GO TO 4070
C NORMAL SCR 0 OPERATION SCAN 
558 DO 500 KSOAD=1,18

XF(RFILE(9,J). EQ. SCEO(KSOAD)) GO TO 520
500 CONTINUE
501 KSOAD*1
502 ERS0=1
520 KS0AD=KS0AD-1

IF(KSOAD. EQ. 16) GOTO 550 
IF(KSOAD. EQ. 17)KS0AD=1 
KSG=KS0AD 
GO TO 600

C SET SCEO =SCEi IF NO SCEO SPECIFIED 
533 KS0AD=KS1AD

KS0=KS0AD 
GO TO 600

C NUMERIC SOURCE ZERO INDICATES IMMEDIATE MODE 
544 CALL NUMB < LLINE, 17# KSOAD,ERSO,0,2047)

KSO=KSOAD
IF ( ISCRP. NE. 0)ERS0=97

C CHECK IF IT'S AN IM JMP->NO SCE 1 AT ALL



0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
041 1
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448

Hi
PAGE 0008 HASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

C USE SCE1 BITS 0, 1,2,4 TO GIVE 11 FOR JMPS0 I
IF (KDAD. NE. 1. AND. KDAD NE. 0)G0 TO 545 

C IT'S A JMP (OR JSUBR > SO INSERT EXTRA IMMED BITS 
C BIT 7 :
4060 KT=IAND(KSOAD,000200B)

KSOAD=KSOAD~KT 
KT=KT/128
KSIAD^XQR(KS1AD, KT)

C BIT 8 :
KT =IAND(KSOAD,000400B)
KSOAD-KSOAD-KT 
KT=KT/128
KS1AD=IOR(KS1AD, KT)

C BIT 9 :
KT=IAND(KSOAD, 001000B)
KSOAD=KSOAD--KT 
KT=KT/128
KS1AD=IOR(KS1AD, KT)

C BIT 10 :
KT=IAND(KSOAD,002000B)
KSOAD=KSOAD-KT
KT=KT/64
KS1AD-IOR(KS1AD, KT)
GO TO 589 

545 CONTINUE
C THERE WAS A CHECK HERE FOR 7 BIT IMMED INDICATOR CHAR -REMO

IF( KS1 AD. GT. 23) LWARN=24
IF(KS1 AD. GT. 7. AND KS1AD. LT. 16) LWARN =15 
IF(KSOAD. GT. 127) ERS0=127 

C REMOVE BIT 6 FROM SCE 0 
589 KT=IAND(KSOAD, 000100B)

KS0AD=KS0AD-KT
KT*KT/8

C TO BIT 3 IN SCE 1
KS1AD=IOR(KS1AD, KT)

C CANNOT USE BIT 4 OF DEST DURING IM 
555 CONTINUE

IF(KDAD. GT. 15) ERD=6 
KT=IAND(KSOAD,000040B)
KS0AD=KS0AD-KT
KT=KT/2

C INSERT BIT 5 SCE 0 IN DEST BIT 4 
KDAD*IOR(KDAD, KT)
KXf4=X00000B 
GO TO 600

C THIS IS FOR SCRATCH RAM 0
550 CALL NUMB(LLINE,20,KSOAD, ERSO, 0, 15)
554 KS0AD=KS0AD+16 

KS0=K30AD
IF(ISCRP. NE. 0)ERS0=99 

600 KS1AD1=K51 AD*32
KSOAD1=1OR(KSOAD,KS1AD1)
KDAD1=KDAD*1024
KSOAD1 = 1OR(KSOAD1, KDADi)
KS0AD1 = I0R(KSOAD1, KIM)



0449
0430
0451
0452
0453
0454
0435
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
O4B0
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504

- liii -

PAGE 0009 HASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

C
C INSERT ASSEMBLED OBJECT WORD IN OUTPUT FILE 
C

OFILE(KRES)-KSOAD1 
KRES~KRES+1
IF (ERD. NE. 0. OR. ERSO. NE 0. OR. ERS1. NE. 0>KER=KER+1 
IF(LWARN. NE. 0) KWARN^KWARN*1 

793 CONTINUE
IF(LU. EQ. 99) GO TO 630 
IM=2H
IF(KIM. EQ. 100000B) IM=2HIM 
IF (KLIN. LT. 55) GO TO 630 
LPC=LPC+1
WRITE ( LU, 890 ) LPC# (RFILE ( JK, 1), JK=1,3>
KLIN=1

630 IF<LLINE(1). NE. 1H*. AND. LLINE(l). NE. 1H$) GO TO 620 
627 IF(LU. EQ. 99) GO TO 640

WRITE(LU,094)LINE# (RFILE(JK/J), JK«1,20)
894 FORMAT( X, 15, M ",20A2)

GOTO 640
620 CALL OHEX(KS0AD1, HEXL)

CALL OHEX(IADDR, HEXA)
IF < LU. EQ. 99) GO TO 921 
IF( IDAT. EQ. 1HD) GO TO 631

WRITE(LU, 895)LINE, HEXA(1), HEXA<2),HEXA<3),HEXA(4), 
♦HEXL <1),HEXL(2),HEXL(3),HEXL<4)
1, (RFILE( JK, J), JK= 1,20), IM,
2 KDA,KS1, KSO

895 FORMAT (X, 15, " ",4A1," ",4A1, " '*, 21A2, I 4, 14, 14, )
IF (ERD. NE. 0. QR. ERSO. NE. 0. OR ERS1. NE. 0) GOTO 920
IF(LWARN. NE. 0)WRITE(LU, 2910)LWARN 

2910 FORMAT(" SOURCE ONE WARNING(IM6 REQD) !",I3)
IF < LU. EQ. 6 ) WR I TE < LU, 6900) IADDR 

6900 FORMAK M ", 15, H_ ”)
WRITE(LU, 898)

898 FORMAT<M M)
GO TO 921

920 IF ( ERD. NE. 0)WRITE(LU, 691 ) ERD
691 FORMAT(M DESTINATION ERROR ! ",I3)

IF < ERS1. NE. 0)WRITE < LU, 692)ERS1
692 FORMAK" SOURCE ONE ERROR ! ",I3>

IF (ERSO. NE. 0) WRITE (LU, 693) ERSO
693 FORMAT(" SOURCE ZERO ERROR ! ",I3)
921 CONTINUE 

KNTWD*KNTWD+1 
□FILE(IKNTP)=KNTWD

922 JADDR-IADDR+1 
640 LINE*LINE+1

KLIN*KLIN+1
IF(KRES. GE. 1000) GO TO 913 

1000 CONTINUE
C GO GET ANOTHER FILE OF SAME NAME 

GO TO 100
891 FORMAT(X, 14, " ERRORS TOTAL")
695 CGNTINUE

IF ( LU. EQ. 99) GO TO 786



0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0520
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0550
0559
0560

liv -

PAGE 0010 HASSY FTN4 COMPILER: HP24177 (SEPT. 1974)

WRITE(LU,2911)KWARM 
2911 FORMAT(X/14/" WARNINGS TOTAL")

WRITE(LU,891)KER 
786 WRITE(1,891) KER

WRITEC 1*2911) KUIARN 
WRITE (1,2712) IADDR

2712 FORMAT <X,I5, “ WAS THE LAST ADDR USED")
IF (LOB JD. NE. 1HH ) GO TO 906

911 JK*=4
C JK POINTING AT FIRST COUNT IN OFILE
912 KOSND=OFILE(JK>+2

IF (KQSND. EQ. 2) GO TO 905 
IF < KOSND. LT. 2 ) STOP 77 
IF(KOSND.GT.1000) GO TO 913 

C NOW COPY OUT ONE FILE TO COFIL.E & SEND IT TO HARM 
J=1
DO 910 JK=JK,KOSND+JK-1 
IF(J. GT. 1000) GO TO 913 
C OFIL(J)=0FILE(JK)

910 J=J+i 
1075 CONTINUE
C SEND ONE CONTIGUOUS SLAB TO HARMONIAC 

CALL EXEC(2,IC0N4,COFIL,KOSND)
C GO COPY OUT ANOTHER DATA FILE 

GO TO 912 
C
C BEGIN DATA SECTION (FOR MAIN MEM 0 OR 1 )
C OR NEW ORG - PMEM 
988 IERDAT

IF(LLINE(2).NE.1HP) GO TO 2000 
C START NEW PROGRAM ORIGIN - SEPARATED SEGMENT 

I DAT =*0
C OVERWRITE DEFAULT ORG. IF NO PROGRAM HAS PRECEDED THIS 

IF(KRES. EQ. 6)KRES-4
CALL NUMB (LLINE, 5, IADDR, IERDAT, 0,8192)
1ADD=IOR(IADDR,070000B)

C ADDR WITHIN P
OFILE(KRES+1)=IADD 
IKNTP=KRES 
KRES-KRES+2 
KNTWD“0
IF (LU. EQ. 99) GO TO 2010
WRITE(LU,2010)LINE, (RFILE(JK,J), JK*1,20)

2010 FORMAT(X,15," NEW PROGRAM SEGMENT BEGINS ",20A2)
IF(IERDAT. NE. 0)WRITE(LI,987)IERDAT 
IF(IERDAT. NE. 0)KER”KER+1 
GO TO 640 

2000 CONTINUE
IF(LLINE(2). NE. 1HM)IERDAT-1 
I DAT*31 HD
CALL NUMB(LLINE, 3,MEM, IERDAT,0, 1)
CALL NUMB(LLINE, 5, IADDR, IERDAT, 0, 28672)
IADD~IADDR
IF (MEM EG. .1 ) I ADD* I OR ( IADDR, 100000B)
KNTWD=0

C OVERWRITE DEFAULT ORG IF NO PROG/DATA HAS PRECEEDED THIS



lv -

0561
0562
0563
0564
0565
0566
0567 
0563
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580 
0501
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598

PAGE 0011 HASBY FTN4 COMPILER: HP24177 (SEPT. 1974)

IF(KRES. EG. 6) KRES=4
IKNTP—KRES
0FILE(KRES+1>~IADD
KRES=KRES+2
IF(LU. EG. 99) GO TO 640
WRITE(LU, 979)LINE, (RFILE(JK, J), JK=1,20)

979 FORMAT(X, 15, " DATA FILE FOR MAIN MEM BEGINS ,,,20A2) 
GO TO 640 

C DOING DATA AREA
981 CALL NUMB(LLIME, 1,KS0AD1, IERDAT, -32768, 32767)

OFILE < KRES)=KSOAD1
KRES=KRES+1
IF<LU. EG. 99) GO TO 984 
GO TO 793

631 WRITE(LU,982)LINE,HEXA(1), HEXA(2), HEXA(3),HEXA(4>
1, HEXL(1), HEXL<2)» HEXLT3), HEXL(4)
2, (RFILE(JK,J>,JK«1,20)

982 FORMAT (X, 15, " ", 4A1, " ",4A1," ",20A2, " )
IF< IERDAT. EG. 0) GO TO 985
WRITE(LU,987)IERDAT 
KER=KER+1

987 FORMAT(" DATA CODE/ADDR ERROR !",I5, " @" >
985 WRITE(LU, 984)
984 FORMAT (" 11 )

KNTWD=KNTWD+1 
OFILE(IKNTP > =KMTWD 
GO TO 922

903 WRITE(LI, 904)
904 FORMAT(X,/,” NO END MARKER (~> !")

GO TO 905
913 WRITE(LI, 914)
914 FORMAT (X, /, " OBJECT FILE IS FULL. !"

2 )
GOTO 905

906 CALL EXEC(15, ICON,OFILE, 1000, HOBJN, 0)
905 RETURN 

END
%

LIST END *#**



APPENDIX V - HARMONIAC SPECIFICATIONS

Instruction time: 140 nanoseconds (150 nanoseconds in proto­
type due to clock jitter).

Master clock period: 47 nanoseconds.

Timing: Three phase.

Method of operation: Simultaneous transfer of two operands
from their sources to a destination 
which may be an arithmetic operation 
or memory, using twin tristate buses.

Memories: Program - up to 1 K ROM, IK RAM (32X 74 S 201)

Data memories - two identical, up to 28K each 
(96x 93425)

Table memory - one of 1 K ROM (lx 6068 sine)

(Prototype Program memory is 512 words RAM, data memories are 
3K words each, table is IK x 10 sine).

Memory addressing: automatic push or pop.

Array Multiplier: Full 16 x 16 multiply, 225 nanosecond
maximum, using 32 x 93 S 43 (2 x 4 bit).

Arithmetic: ADD, AND, OR, SUB, compare using 4 x 74 S 181
(compare is =, f , >, <, >).

Input, output: Direct memory access.

Total DIP count 440.

Power consumption: 5V @ 27A Typical (135 W).

Construction: Wire wrap socket array 45 cm x 40 cm approx.


	Title Page : HARMONIAC - A DIGITAL SIGNAL PROCESSOR
	SUMMARY
	ERRATA
	INDEX
	ACKNOWLEDGEMENTS

	1. INTRODUCTION
	2. ARCHITECTURE AND DESIGN CONSIDERATIONS
	3. SECTIONAL DETAILS OF THE HARDWARE
	4. APPLICATIONS AND SOFTWARE
	5. CONCLUSION
	REFERENCES
	APPENDICES



