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Abstract 

The growing incessance for data collection is a trend born from the basic promise of data: “save 

everything you can, and someday you’ll be able to figure out some use for it all” (Schneier 2016, 

p. 40). However, this has manifested as a plague of information overload, where “it would simply 

be impossible for humans to deal with all of this data” (Davenport 2014, p. 151). Especially within 

the field of architecture, where designers are tasked with leveraging all available sources of 

information to compose an informed solution. Too often, “the average designer scans whatever 

information [they] happen on, […] and introduces this randomly selected information into forms 

otherwise dreamt up in the artist’s studio of mind” (Alexander 1964, p. 4). As data accumulates—

less so the “oil”, and more the “exhaust of the information age” (Schneier 2016, p. 20)—we are 

rapidly approaching a point where even the programmers enlisted to automate are inadequate.  

 

Yet, as the size of data warehouses increases, so too does the available computational power and 

the invention of clever algorithms to negotiate it. Deep learning is an exemplar. A subset of 

artificial intelligence, deep learning is a collection of algorithms inspired by the brain, capable of 

automated self-improvement, or “learning”, through observations of large quantities of data. In 

recent years, the rise in computational power and the access to these immense databases have 

fostered the proliferation of deep learning to almost all fields of endeavour. The application of 

deep learning in architecture not only has the potential to resolve the issue of rising complexity, 

but introduce a plethora of new tools at the architect’s disposal, such as computer vision, natural 

language processing, and recommendation systems. Already, we are starting to see its impact on 

the field of architecture. Which raises the following questions: what is the current state of deep 

learning adoption in architecture, how can one better facilitate its integration, and what are the 

implications for doing so? This research aims to answer those questions through an exploration 

of strategies, tools, and pedagogies for the integration of deep learning in the architectural

profession.  
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Chapter 1. 

Introduction 

The dream of artificial intelligence (AI) has been in the minds of technologists, inventors, and 

authors well before the advent of the computer. One of its earliest known manifestations can be 

traced back to the 8th century BCE, where Homer depicted Hephaestus’ mechanical assistants as 

having “intellect and [...] skill[s] in subtle crafts” (2009, p. 385). However, this early idea of 

artificial intelligence came to be better understood as “automata”: autonomous, mechanised 

humanoids. In the 17th century, two philosophers, René Descartes and Thomas Hobbes, 

continued to regard the human as the archetype for intelligence, and contemplated the general 

premise behind artificial intelligence. This premise—the assumption that thought can be 

mechanised and expressed mathematically—lead to the study of computational logic in the 20th 

century, which substantiated the elusive embodiment of intelligence. The programmable 

computer further splintered the field, forming two schools of thought that both believed they 

possessed the algorithms for true artificial intelligence: connectionist and symbolic AI. 

Ultimately, artificial intelligence is not simply a technology, but an ideal that evolves through 

time. The modern incarnation of artificial intelligence, deep learning, is a set of algorithms 

inspired by the brain. Stemming from the notions of connectionist AI, deep learning has come to 

achieve beyond-human level performance on a plethora of narrow tasks. Most notable is its ability 

to extract insight from vast quantities of data, a valuable capability in the age of the peta-, exa-, 

and zettabyte. 

 

Within the field of architecture, there is a demand for architects and designers to leverage all 

available information to resolve problems of growing complexity. However, in lieu of the ability 

to glean meaning from vast quantities of data, in tandem with the decreasing effectiveness of the 

programmer, deep learning is a technology that could prove effective in taming the scourge of 
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quantity. Thus, the overarching objective of this research is to promote, explore, and develop for 

a more intelligent field of architecture, through the adoption of deep learning. By doing so, 

architects and designers, equipped with a proficiency with deep learning, possess a toolset that 

would yield a more holistic perspective on design problems that are more faceted, intricate, and 

complex than ever. 

 

The following body of research can be segmented into three sections. The first is a series of studies 

to capture the current state of deep learning integration within the architecture, engineering, and 

construction industry. This will explore the extent of investment in deep learning research, the 

socio-economic barriers to further integration, and the current tools that facilitates its use. The 

insights gathered will drive the next section, an applied exploration of educational software tools 

and resource-centred pedagogies. This will include the development of deep learning software 

tools, as well as how architectural practitioners, educators, and students respond to learning deep 

learning. Finally, armed with the knowledge and experience of the previous sections, this research 

will conclude with an inquiry into the implications for the application of deep learning in the field 

of architecture. 

  



 

4 
 

Chapter 2. 

Background 

As early as the Neolithic Revolution, where previously nomadic tribes congregated to adopt 

agriculture and geographic permanence, humans have pursued the act of invention. Studying one 

of the best-preserved Neolithic settlements, the Çatalhöyük archaeological site in Turkey, one of 

the earliest forms of architectural construction was realised through mud-bricks. Subsequently, 

the invention of load-bearing arches, Vitruvius' Classical Orders, and computer-aided 

architectural design (CAAD), have all shaped the evolution of the built environment. Despite the 

uncertainty behind the technology that will drive the architecture of the future, there is a clarity 

in the persistence of human invention and its dramatic affect toward the advancement of the field. 

 

A common aphorism states that "necessity is the mother of invention". And for the most part, this 

is reflected in the development of architecture. Taking the aforementioned examples, the arch was 

designed to better offset downward forces, Vitruvius' Classical Orders were developed to define 

column types and entablature designs, and the advent of CAAD sought to replace the tedium of 

hand-drawing. However, historian and author of Guns, Germs, and Steel: A Short History of 

Everybody for the Last 13,000 years, Jared Diamond, comes to the conclusion that technology 

"finds most of its uses after it has been invented, rather than being invented to meet a foreseen 

need" (2017, p. 235). If we set aside the latter half of his assertion, which directly contradicts the 

original aphorism, one could argue that these two statements are not mutually exclusive, and, in 

tandem, say something quite profound about the value of an invention. Necessity may act as a 

catalyst for invention; however, the potentiality of the invention is revealed only after it's ubiquity. 

 

Let's take, for instance, computer-aided architectural design. CAAD was initially intended as the 

next step in hand-drawing. The earliest CAAD software was ostensibly a glorified pencil and 
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paper. Yet, parametric design, a modern application of CAAD, has allowed designers to generate 

forms that go beyond preconceived notions of form from primitives—toward forms that are 

dictated more by mathematics and logic. Parametric design, along with structural analysis, 

rendering and visualisation, building information modelling, amongst many more applications, 

are the result of wide-spread use of an invention that was originally aimed at solving a completely 

different problem. From this, a trend emerges: the more general an invention, the broader its 

potential applicability, thus the greater its value. 

 

As a precursor to Erik Brynjolfsson and Andrew McAfee's The Second Machine Age, 

Brynjolfsson presented a talk that demonstrated the importance of general-purpose technology. 

He places these current and upcoming technologies within the context of a new machine age; one 

which allocates more value on "knowledge creation than just physical production" (Brynjolfsson 

2013). One of the three words used to characterise the new machine age was "combinatorial". 

Reinforcing the importance of generality, Brynjolfsson explains this characterisation through a 

comparison between the "stagnationist view", where "ideas get used up like low-hanging fruit", 

against the reality, where "each innovation creates building blocks for more innovations" (2013). 

Thus, although necessity may be the mother of invention, the invention with the greatest value 

are those that have a broad spectrum of applicability. 

 

 

2.1. The Last Human Invention 

Glancing back at the broader history of invention, we can observe an overarching trend. 

Philosopher and author of Superintelligence: Paths, Dangers, Strategies, Nick Bostrom, observes 

that "history seems to exhibit a sequence of distinct growth modes, each much more rapid than 

its predecessor" (2014, p. 1). These "modes" are induced by specific technological shifts, caused 

by an invention that accelerates productivity beyond the invention's initial objective; the general-

purpose technology. Steam engines, electricity, and transistors are such exemplars—so much so 
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that they are attributed as the defining technologies for the first, second, and third industrial 

revolutions, respectively. 

 

Many believe that we are on the cusp of yet another industrial revolution, this time, propelled by 

artificial intelligence (AI). In The Second Machine Age, Brynjolfsson and McAfee suggests that 

the next growth mode "will be characterized by countless instances of machine intelligence and 

billions of interconnected brains" (2014, p. 96), and goes so far as to proclaim that "building 

intelligent machines [is] perhaps the most important invention in human history (Brynjolfsson, 

2013). In conjunction, executive chairman of the World Economic Forum and author of The 

Fourth Industrial Revolution, Klaus Schwab, postulates a revolution that is "characterised by a 

much more ubiquitous and mobile internet, by smaller and more powerful sensors, and by 

artificial intelligence" (2017, p. 7). 

 

Modern AI has yet to reach a level of ubiquity beyond the narrow applications it was originally 

intended to solve, thus, it is difficult to predict its potentiality. But as with the most impactful 

inventions, the true benefit of AI will be seen after wide-spread use. Some see AI incredibly 

favourably, suggesting that "the transformations [...] will be profoundly beneficial" (Brynjolfsson 

& McAfee 2014, p. 9). However, other's beliefs align more with mathematician, I. J. Good's often-

quoted prediction about intelligent machines: 

 

"Let an ultraintelligent machine be defined as a machine that can far surpass all the 

intellectual activities of any man however clever. Since the design of machines is 

one of the intellectual activities, an ultraintelligent machine could design even better 

machines; there would then unquestionably be an "intelligence explosion," and the 

intelligence of man would be left far behind. Thus, the first ultraintelligent machine 

is the last invention that man need ever make..." 

(Good 1965, p. 33) 
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However, as it stands, there is a difference between the AI that is currently being used to fuel 

business decisions and defeat world champions in Jeopardy!, compared with that of the 

superintelligence feared since the dawn of computing. This isn't helped when the very definition 

of "intelligence" is one that has transformed even before the invention of the computer. As 

Bostrom cleverly points out, the "advent of such machines was often placed some twenty years 

into the future. Since then, the expected arrival date has been receding at a rate of one year per 

year; so that today, futurists [...] often believe that intelligent machines are a couple of decades 

away" (2014, p. 3-4). 

 

 

2.2. Reflecting on Intelligence 

The field of artificial intelligence has accelerated in recent years, and as a consequence, a rigorous 

and widely accepted ontology has struggled to keep pace. However, irrespective of the field's 

momentum, the difficulty of characterising and delineating breakthroughs stems from our poorly 

assembled and ever-changing ideals of "intelligence". To form an understanding of the current 

state of AI research, it is beneficial to revisit our earliest efforts in the field: our attempts to invent 

artificial intelligence. 

 

Founding member of the Association for the Advancement of Artificial Intelligence (AAAI), 

Bruce G. Buchanan, suggests that "the beginnings of artificial intelligence [can be] traced to 

philosophy, fictions, and imagination" (Buchanan 2005, p. 53). The prevailing theory places the 

invention of something comparable to artificial intelligence in Ancient Greece. Homer's 8th 

century BCE poem, The Iliad, depicts Hephaestus, the god of fire, metallurgy, and craftsmen, 

building golden handmaidens to assist him in his forge. 
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"Grasping a thick staff he limped from the forge, supported by servants made of gold, 

fashioned like living girls, who attended swiftly on their master. As well as the use 

of their limbs they had intellect, and the immortals gave them skill in subtle crafts." 

(Homer 2009, p. 385) 

 

Greek literature is littered with fanciful stories of machines exhibiting intelligence, such as Talos, 

the colossus tasked with defending Crete, and Daedalus' animated bronze sculptures. Throughout, 

these stories share a thread of commonality, such that, "humanoid machines were mostly 

conceived as representing straightforward hope—the ideal servant who always obeys, the perfect 

soldier who never tires" (Cave & Dihal 2018, p. 474). These ideals painted artificial intelligence 

as physically embodied, often humanoid, and, despite being imbued with the divine, ultimately 

mechanical. 

 

For centuries, many would also perceive intelligence as a mechanisable phenomenon. In the 1st 

century CE, Hero of Alexandria developed a series of "intelligent" inventions, from coin-operated 

apparatus to an automated puppet theatre. In the 9th century, the Banū Mūsā brothers created a 

mechanical flute player driven by steam, among a host of other machines showcased in their Book 

of Ingenious Devices. In the 13th century, polymath, Ismail al-Jazari, wrote their Book of 

Knowledge of Ingenious Mechanical Devices, which included designs for a programmable 

musical quartet and a drink-serving waitress. 

 

But, can we really consider these inventions as "artificial intelligence"? 

 

As time yielded greater comprehension for the nuances of these inventions, many grew 

uncomfortable calling them "intelligent". Eventually, they adopted Homer's original, and more 

accurate, classification of "automata": a mechanical device, embodying the intelligence of its 

human creator, to autonomously act upon the world. And although these inventions may have 
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seemed intelligent in their respective contexts, a broader understanding has shifted what it means 

to be intelligent. 

 

It was not until the 17th century that, informed by the views of Aristotle, Euclid, and al-

Khwarizmi, philosophers provided a new notion of intelligence. René Descartes, a French 

philosopher and mathematician, further rejected the notion that the automaton was intelligent. 

Expounded in Descartes' philosophical treatise published in 1637, Discourse on the Method of 

Rightly Conducting one's Reason and of Seeking Truth in the Sciences, Descartes separates man 

from machine by highlighting two fallacies of the automata: 

 

1. their inability to "produce different sequences of words so as to give an appropriately 

meaningful answer to whatever is said in its presence—which is something that the dullest 

of men can do," and 

2. "even though such machines might do some things as well as we do them, or perhaps even 

better, they would be bound to fail in others; and that would show us that they weren’t 

acting through understanding but only from the disposition of their organs" (Descartes 

2007, pp. 22). 

 

In other words, the two failings of automata were their conversational impotence and an ineptitude 

for generalisation. Extrapolating further, Descartes suggests that "these two factors also tell us 

how men differ from beasts" (Descartes 2007, pp. 22). In his view, humans were the only beings 

that possessed the ability to reason. Thus, with humans as the archetype of intelligence, AI was 

formalised as "a discipline that aims to understand the nature of human intelligence" (Nath 2009, 

p. 34). Subsequently, two broad philosophies grew from Descartes' supposition, which attempted 

to rationalise human cognition: the computational and non-computational theory of mind. 
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A contemporary of Descartes, Thomas Hobbes, is widely considered the earliest proponent for 

the computational theory of mind. As outlined in his 1655 text, De Corpore, Hobbes asserts 

human reasoning as a mathematical process. "By ratiocination, I mean computation" (Hobbes 

1969, p. 3). Hobbes’ assertion alludes to the fundamental idea of the computational theory of 

mind, whereby thought can be distilled to a series of symbolic operations. "To compute, is either 

to collect the sum of many things that are added together, or to know what remains when one 

thing is taken out of another... All ratiocination is comprehended in these two operations of the 

mind, addition and subtraction" (Hobbes 1969, p. 3). Hobbes substantiates his views by 

illustrating that "of the several conceptions of fours sides, equality of sides, and right angles, is 

compounded the conception of a square" (Hobbes 1969, p. 4). He further describes propositions 

and syllogisms, other mental activities, as simple additions. 

 

Many believe Hobbes' De Corpore to be a critical moment in AI history, some going so far as to 

proclaim Hobbes "prophetically launching artificial intelligence" (Haugeland 1985, p. 23). And, 

as we will discuss later, this methodical, rule-based conception on intelligence was quite pivotal, 

forming one of the two main paradigms in computational AI. But more about that later. 

 

Returning to Descartes, his famous proposition "cogito, ergo sum" (I think, therefore I am) is 

suggestive of the non-computational theory of mind. The concept of 'I think', an inherently 

subjective activity, defies the fabric of computation. Author of Philosophy of Artificial 

Intelligence: A Critique of the Mechanistic Theory of Mind, Rajakishore Nath, makes this 

argument, suggesting that "the mental processes, for Descartes, are intentional and are free acts 

of the thinking subject. Hence, they cannot be mapped mechanically in an algorithmic system" 

(2009, p. 116). Nath continues, arguing that "the human mind is beyond the sphere of 

computationality, because the human mind has innate ideas, which are embedded as the innate 

dispositions of the human mind. These ideas a priori in the human mind and are the basic in-born 

propensities" (Nath 2009, p. 118), a view validated by Descartes, who claimed that 
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"understanding what is called a thing, or a truth, or a thought, it appears to me that I hold this 

power from no other source than my own nature" (1911, p. 14). In other words, rational thought 

is partially formed from an intrinsic intuition that cannot be captured as computation. To 

Descartes, no matter how "intelligent" a machine may appear to be, the fact that computation does 

not allow for subjectivity prevents the machine from true intelligence. 

 

Much later, philosopher and author of Language and Mind, Noam Chomsky, affirms Descartes' 

ideas of innate intelligence in the context of linguistics. "As Descartes himself quite correctly 

observed, language is a species-specific human possession, and even at low levels of 

intelligence... we find a command of language that is totally unattainable by an ape" (Chomsky 

2005, p. 9). Chomsky argues that if there exists a property that persists across every language, the 

finding would be indicative of a "universal grammar" and suggests that language acquisition is 

genetically predetermined. Thus, if there is a component to human intelligence that is only 

attainable through biology, no machine nor computer could ever truly exhibit human-level 

intelligence. This is the non-computational theory of mind. 

 

From Homer's tales of Hephaestus' automata, where intelligence is mechanical, to Hobbes' 

algebraic operations of thought, where intelligence is computational, and even Chomsky's 

universal grammar, which intelligence is genetic, history has shown how the substance of 

intelligence is one that is ever-changing. The very nature of intelligence is steeped in vacillating 

philosophical debate. This has led to an aphorism in the modern AI community: "AI is what we 

don't yet understand.'' From the perspective of the early 21st century, it may be easy to look back 

and criticise the naivety. However, definitions of intelligence has been, and will continue to be, 

snapshots of a greater temporal continuum. Our current perceptions of intelligence may yet be 

another step in the journey toward what is truly artificial intelligence. 
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2.3. The Digitised Intelligence 

Intelligence has evaded a lasting definition, however, similar to that of Descartes, if one were to 

equate intelligence to cognitive ability, a consensus emerges. Both philosophers and technologists 

alike suggests “that human reasoning, learning, and inference comprise one of the most 

sophisticated thinking systems in existence” (Chen et al. 2016). However, information processing 

conducted in biological systems are limited in both scalability and bias. If further evolution 

(natural or otherwise) happened to enlarge the human brain, the axons connecting neurons must 

extend to compensate, subsequently increasing the distance for the signal to travel. If the speed 

of the signal remains constant, this increase in distance will extend the time it takes for signals to 

traverse the brain, thus slowing thought. In fact, almost any change to the brain—increasing the 

interconnectedness, signalling speed, or neuron count—comes with a detrimental compromise, 

usually in energy cost or sporadic behaviour (Fox 2011). Thus, biological "intelligence has a 

threshold" (Gladwell 2011, p. 80). There are, however, other methods toward enhancing our 

cognitive abilities. Neurological stimulants, eugenics, and genome editing, are "clearly feasible", 

"however, when compared with possible-breakthroughs in machine intelligence, would be 

relatively slow and gradual" (Bostrom 2014, p. 50), not to mention the ethical debate that often 

ensues. Regardless, if an enhanced biological intelligence came to be, would we still call them 

'artificial' intelligence? Although stimulants and genome editing is by no means 'natural', their 

subject is still human. These blurry lines were sharpened between 1936 to 1938, when the advent 

of the programmable computer gave way to a new type of 'artificial'. Theoretically unrestrained 

by physical size, energy consumption, or processing power, the computer was immediately 

identified as the ideal vehicle to realise artificial intelligence. 

 

The programmable computer was first invented with the goal of automating sequences of logical 

operations. In essence, what we know as a calculator. And although the calculator can operate at 

a speed and accuracy beyond that of any human, one would not regard it as "intrinsically 

intelligent" (Fogel 2006, p. 17). Everything a calculator 'knows' is already pre-programmed by 
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the human. Calculators are only able to solve these problems because a human has already solved 

it, albeit, perhaps more onerously. However, as delineated in the progression of invention, even 

though the computer was invented to automate calculation, its potentiality grew with its ubiquity. 

 

Thanks to Descartes, who established the human as the exemplar for intelligence, an early 

approach to creating machine intelligence was simulating specific domains of human expertise. 

This initially manifested as two-person games of strategy. Christopher Strachey’s 1952 checkers-

playing program, and the myriad of chess-playing programs from 1956 and onwards, are 

examples of what was once considered the forefront of AI. This all culminated in 1997, where 

IBM’s Deep Blue defeated Garry Kasparov, Russian grandmaster at the time, in match play, 

scoring two wins, one loss, and three draws (Silver 2012). Although the event received 

widespread media attention and public speculation of machines more intelligent than humans, 

Deep Blue wasn’t an intelligent machine. 

 

Deep Blue was only able to defeat Kasparov with the help of 32 parallel processors and 512 

custom application-specific integrated circuits (ASIC), which allowed a search of 200 million 

chess positions per second. “This level of play requires many millions of times as much 

computing as a human chess player does” (McCarthy 1997, p. 1518) and takes advantage of its 

incredible speed to imitate intelligence. Furthermore, Deep Blue did not have the capacity to 

‘learn’. There were attempts to incorporate “automated tuning”, however a member of the Deep 

Blue team claimed that it was a “clunky process” and they “never found a good way to make [it] 

work” (Clark 1997, p. 31). Between games in the 1997 match, adjustments were made to Deep 

Blue based on Kasparov’s play, but again, these decisions were derived from the intelligence of 

the human, not the machine. “Such programs did not embody intelligence and did not contribute 

to the quest for intelligent machines. A person isn’t intelligent because he or she is a chess master; 

rather, that person is able to master the game of chess because he or she is intelligent” (Schank & 

Childers 1984, p. 30). David Fogel, author of Evolutionary Computation: Toward a New 
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Philosophy of Machine Intelligence, elegantly places “the dream of the intelligent machine [as] 

the vision of creating something that does not depend on having people pre-program its problem-

solving behaviours” (2006, p. 1). And yet again, the notion of intelligence takes another step in 

its evolution—this time, possessing the ability to learn. 

 

These aforementioned game-playing systems fall within one of the two paradigms that divided 

early AI research. The first paradigm, 'symbolic AI', which was later nicknamed by John 

Haugeland as "Good Old-Fashioned Artificial Intelligence" (1985), denotes a system that 

leverages explicit and high-level representations of knowledge, in the form of logic and rules. A 

common example of symbolic AI is the 'expert-system', whereby 'knowledge engineers' 

painstakingly translate their domain expertise to a symbolic representation understood by the 

machine. Up until the 1980s, "it seemed like knowledge engineering was about to take over the 

world, with countries and companies making massive investment in it" (Domingos 2015, p. 35). 

However, its main flaw was highlighted in, arguably, the longest running project in AI history: 

the 'Cyc project'. 

 

In 1984, Doug Lenat, a Stanford professor at the time, became frustrated with hand-coding 

domain-specific knowledge into expert-systems. In response, Lenat started the Cyc project with 

the objective of creating "a knowledge base spanning all human consensus knowledge" (Lenat et 

al. 1990, p. 30). In Lenat's documentation of the project, Cyc: Toward Programs with Common 

Sense, published six years after the project's inception, Lenat proudly affirms that "there are 

currently between one and two million assertions in our knowledge base, many of which are 

general rules, classifications, constraints, and so on" (Lenat et al. 1990, p. 32). As the project 

continued, the sheer quantity of assertions that were required continued to delay the initial 

projected completion date of 10 years. Today, a vocal few consider the Cyc project as a failure, 

namely Marvin Minsky and Pedro Domingos, the latter indicating in his 2015 book, The Master 

Algorithm, that "thirty years later, Cyc continues to grow without end in sight, and commonsense 



 

15 
 

reasoning still eludes it" (Domingos 2015, p. 30). Some suggest that perhaps "all [of] human 

consensus knowledge" was too ambitious of a task. However, even if applied to a more 

constrained domain, there were still two problems that are inherent to symbolic AI: the stochastic 

and ever-changing nature of the world, and its inability to revise previously encoded rules. For 

the most part, symbolic AI are monotonic—the more rules that are added, the more vast its 

intelligence. However, according to previously defined attributes of intelligence—possessing the 

ability to learn—unable to change previous assertions, the Cyc project is not intelligent. In fact, 

all symbolic AI, which requires the human to encode their own knowledge into it, fails to meet 

this criterion. Despite the later inclusion of learning algorithms, symbolic AI lost traction and 

gave way to AI's other paradigm, 'connectionism'. 

 

Connectionist AI is characterised by a network of relatively simplistic nodes that perform 

computations in parallel, activating simultaneously and hierarchically, all contributing to a 

resultant thought or action. By way of illustration, we can look to the human brain as a 

representation of connectionist principles. As our retinas absorb light entering the eye, the light 

is converted to electrochemical impulses, which is then sent to the brain for interpretation. The 

neurotransmitters, passing the impulses along, can either ‘excite’ or ‘inhibit’ the impulses for 

subsequent neurotransmitters. This simple operation is one of many that occurs in the network of 

neurotransmitters, constantly exciting and inhibiting impulses as we continue to perceive. Early 

work in connectionist AI can be attributed to Warren McCulloch and Walter Pitts. From previous 

research in theoretical neurophysiology, McCulloch and Pitts adopted the structural unit of the 

brain and the nature of their excitation to formalise nervous activity as a computational model 

(McCulloch & Pitts 1943). Later, Frank Rosenblatt invented the 'perceptron', a mathematical 

model of the neuron (1958). Together, these ideas were the building blocks of the 'artificial neural 

network', the quintessential algorithm of connectionism. Where symbolic AI "tried to bring about 

artificial intelligence the way an adult tries to learn a second language;" connectionism "tried to 
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make it happen in much the same way that children learn their first language" (McAfee & 

Brynjolfsson 2017, p. 69). 

 

At this stage, connectionists proclaimed that their paradigm was "the obvious path to computers 

with humanlike intelligence; Turing and others thought it was the only plausible path" (Domingos 

2015, p. 35). However, a decade later, a pivotal paper from Martin Minsky and Seymour Papert, 

Perceptrons: An Introduction to Computational Geometry, publicised a glaring limitation of the 

perceptron model (1969). They mathematically proved that, at the current state of the perceptron, 

the simple 'exclusive or' (XOR) function—not linearly separable—was something the perceptron 

could not model (Minsky & Papert 1969). This book alone plunged connectionism into a state of 

hibernation, where research slowed to an almost-standstill. It was at this point where symbolic AI 

reached its aforementioned zenith. 

 

The exact year of the most recent paradigm shift—from symbolic back to connectionist—is 

debated. Though, most ascribes David Rumelhart's 1986 paper, Learning Representations by 

Backpropagating Errors, as the turning point (Rumelhart, Hinton & Williams 1986). Within, they 

suggest the use of multiple layers of perceptrons to overcome the XOR limitation shown 17 years 

earlier. This, however, increased the complexity for tweaking the model, which they solved with 

an algorithm called 'backpropagation'. As ground-breaking as the use of multiple layers would 

seem, it had already been suggested. In fact, it was suggested in Minsky and Papert's Perceptrons, 

the very same publication that exposed the flaw of the single perceptron model (1969). 

Furthermore, although Rumelhart's paper may have popularised the backpropagation technique, 

it also had been previously proposed. In his 1974 PhD thesis, Paul Werbos reversed the automatic 

differentiation technique and was the first to apply backpropagation to tweak the connections in 

artificial neural networks. Nonetheless, by 1986, the impression of Rumelhart's paper shifted the 

AI community back to connectionism. 
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With multilayer perceptrons overcoming its single perceptron limitation, combined with 

backpropagation, an effective method to train them, AI research has since been dominated by 

connectionism. However, by no means does this suggest that connectionism is the true 

formulation of AI. Far from it. The journey through the history of AI—from automata to the 

computational theory of mind—is suggestive that our conceptions of intelligence has and will 

continue to evolve. 

 

 

2.4. From Connectionism to Deep Learning 

As automatic self-improvement, or learning, became an integral part of artificial intelligence, 

connectionists turned toward statistics. Stemming from the conceptual underpinnings of 18th and 

19th century statistics, such as Bayes' Theorem and the method of least squares, a subset of these 

concepts formed the foundation for the automated self-improvement of connectionist algorithms. 

This came to be known as machine learning (ML). 

 

In 1951, Marvin Minsky and Dean Edmonds built the Stochastic Neural Analog Reinforcement 

Calculator (SNARC), which is often cited as the first artificial neural network that utilised ML 

(Crevier 1993, p. 34-35). Due to the subsequent popularity of the multilayer perceptron, combined 

with the brilliance of the backpropagation learning algorithm, artificial neural networks "have 

[since] seen a great flourishing" (Brynjolfsson & McAfee 2017, p. 74). In 2006, Geoffrey Hinton 

published ground-breaking research his seminal paper, A Fast Algorithm for Deep Belief Nets 

(Hinton, Osindero & Teh 2006), which showed how an artificial neural network with several 

layers could be effectively and automatically trained. And although their work has been 

superseded by modern breakthroughs, it was the defining moment that proved that multi-layered 

artificial neural networks had the capacity to produce valuable results. The era of deep learning 

ensued, and artificial neural networks built with several layers, or 'deep neural networks', are "now 
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the dominant type of artificial intelligence by far, and they seem likely to stay on top for some 

time" (Brynjolfsson & McAfee 2017, p. 74). 

 

Deep learning's potential was brought to the public’s attention during its involvement with the 

'ImageNet' competition. ImageNet is an online database containing millions of labelled images, 

with over 1,000 images for each of the more than 100,000-word phrase labels. This database is 

the basis for the annual 'Large Scale Visual Recognition Challenge', a competition that asks 

participants to train a computer to visually recognise the predominant object within images. The 

challenge is trivial for the human, with average accuracy scores of 95%, but difficult for machines 

as their sense of 'sight' is an array of numbered pixel values. A slight change in the image for 

human vision is a potentially gargantuan change in the array of pixels. In 2010, the year the 

competition was first issued, the best algorithm achieved an accuracy of 71.8%, which was raised 

to 74.2% in the following year (Russakovsky et al. 2015). However, in 2012, a team lead by 

Geoffrey Hinton employed a deep learning approach, and achieved an accuracy of 83.6% 

(Krizhevsky, Sutskever & Hinton 2012). This staggering increase encouraged the use of more 

deep learning techniques in latter competitions, eventually enabling the 2015 winner to be the 

first to surpass human capabilities with 95.06% accuracy (He et al. 2015). 

 

Despite connectionists experimenting with artificial neural networks in the 1950s, and machine 

learners using backpropagation to train them in the 1970s and 80s, there were two major forces 

that hindered deep learning's proliferation until after the turn of the century: massively parallel 

computing enabled by graphics processing units (GPUs) and the accumulation of large, high-

detailed, labelled datasets. One of the flaws with deep learning, prior to parallel computing, was 

the arduousness of training models. As computational speed increases, in conjunction with the 

expected arrival of ubiquitous quantum and cloud computing, training deep learning models no 

longer has such a barrier. In addition, deep learning algorithms have been shown to exhibit better 

results when trained upon larger datasets (that is, up until a certain threshold). With data being 
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described as "a natural by-product of computing" (Schneier 2016, p. 20), its passive accumulation 

has inadvertently provided deep learning algorithms with a plethora of training datasets. Deep 

learning has since gone on to further the fields of speech and audio processing, language 

modelling and language processing, information retrieval, and beyond. 

 

 

2.5. A Need for Greater Intelligence in Architecture 

Since the inception of computational artificial intelligence, advocates have predicted great 

transformations that AI will catalyse in their respective fields. Architecture is no exception. The 

promise of AI's grandeur has sparked speckled interest through the history of architecture, 

whether that manifests as a tool that optimises certain aspects of the design process, as generative 

systems that aim to mimic (and replace) the architect, or even as architecture that could embody 

and exhibit intelligence. 

 

Christopher Alexander, an architect and design-theorist, applied principles of cybernetics and 

symbolic artificial intelligence in his 1964 dissertation, Notes on the Synthesis of Form. Alexander 

identifies that the increasing complexity of design problems, combined with narrowing 

specialisation, leads to "widespread, diffuse, and unorganized" information (1964, p. 4). "As a 

result, although ideally a form should reflect all the known facts relevant to its design, in-fact the 

average designer scans whatever information [they] happen on, consults a consultant now and 

then when faced by extra-special difficulties, and introduces this randomly selected information 

into forms otherwise dreamt up in the artist's studio of [their] mind" (Alexander 1964, p. 4). In an 

attempt to remedy this, Alexander proposed a novel design process that could isolate design 

requirements that needed reconsideration, which he called "misfits", through the computational 

analysis of forms represented as sets of data. In essence, Alexander designed a recommendation 

engine for the revision of design requirements. 
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Although Alexander's later work (1968; Alexander, Ishikawa & Silverstein 1977) became a model 

for system architectures, computer languages, and contemporary interfaces, the ideas put forth in 

his dissertation stills resonates today. Issues around growing complexity and specialisation have 

exacerbated, and new factors—such as the ceaseless collection of data and unwieldy magnitudes 

of unstructured information—has furthered the need for a technological solution. Data has often 

been referred to as "the new oil", however, more recent thoughts have implied that data has 

transformed into "the exhaust of the information age" (Schneier 2016, p. 20). Bruce Schneier, 

author of Data and Goliath, identified the modern "promise of big data: save everything you can, 

and someday you'll be able to figure out some use for it" (2016, p. 40). However, Thomas H. 

Davenport, author of Big Data at Work: Dispelling the Myths, Uncovering the Opportunities, 

bemoans this mentality behind data collection, and affirms that "the point is not to be dazzled by 

the volume of data, but rather to analyze it—to convert it into insights, innovations, and business 

value" (2014, p. 2). Following current trends, it is becoming increasingly difficult for humans to 

extract meaning from the masses of data. 

 

A solution to a growing complexity was the programmer. However, there is a limit to this solution, 

made evident when Pedro Domingos identifies the three phases to the growth of a company. The 

first is where every operation is performed manually, services are personalised, and items are 

ordered, displayed, and recommended on a case-by-case basis. As the company expands to serve 

more consumers, there won't be enough workers, thus they attempt to automate aspects through 

computerisation. "In come the programmers, consultants, and database managers, and millions of 

lines of code get written to automate all the functions of the company that can be automated" 

(Domingos 2015, p. 11). And although this may have solved the problem of increasing scale, 

improving both efficiency and productivity, the quality of their products and services will 

inadvertently decrease, because "computer programs are too rigid to match humans’ infinite 

versatility" (Domingos, 2015, p. 11). The third and final stage of a company's growth is realised 

when even the hundreds and even thousands of programmers aren't enough to match demand. At 
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this stage, Domingos argues that "the company inevitably turns to machine learning" (Domingos 

2015, p. 11). 

 

The field of architecture has experienced technological shifts, such as the adoption of building 

information modelling (BIM) and in-place data visualisation (as you would see with solar analysis 

and structural analysis), providing the architect with more control over the design process. 

However, these technologies have also created new methods of data use, generation, and 

collection. Architecture is undergoing Domingos' second phase of growth, and design methods 

such as data-driven design and parametricism benefit greatly from more data, fuelling better 

decision-making in the design process. But as with all industries, architecture will shift to the 

third phase, "and those organizations that can recognise and react quickly and intelligently have 

the upper hand" (Davenport 2014, p. 18). 
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Chapter 3. 

Research Objectives 

The trajectory of architecture alludes to an impending moment, where programmers—enlisted to 

automate, analyse, and parametrise—will simply be inadequate to fathom the deluge of data. 

Design problems are becoming increasingly facetted, unreasonably asking designers to 

comprehend the vast complexity of issues at grandiose scales, within unprecedented domains, and 

in real-time. As this trend continues, so too does the need for more intelligent processes to extract 

meaning from the overabundance of information. 

 

Deep learning has the potential to solve this. Its ability to extract insights from vast quantities of 

unstructured data, learn intelligent behaviour from simple heuristics, and infer complex trends 

from past experiences, would be invaluable tools for the designer in the age where data is more 

‘exhaust’ than ‘oil’. Its pervasive adoption in almost all fields is an indicator for the value of the 

technology. And yet, the architecture, engineering, and construction (AEC) field has shown a 

resistance to its adoption.  

 

The overarching objective of this research is to promote, explore, and develop for a 

more intelligent field of architecture, through the adoption of deep learning. 

 

Previous approaches that also promote deep learning in the AEC—whereby the desire to apply 

deep learning precedes the identification of a problem—are necessary steps toward the shared 

overarching objective; however, becomes an arms race of model accuracy, rather than a lasting 

fundamental shift in thinking. Moreover, the number of identifiable problems are infinite, further 

diminishing the impact of the aforementioned approach. In an attempt to counter this myopic 
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mentality, this research aims to approach the promotion, exploration, and development for deep 

learning in architecture through: 

 

1. a holistic assessment of the current state of machine learning research in the architecture 

industry, 

2. an exploration of strategies, tools, and pedagogies to facilitate the integration of deep 

learning, and 

3. an exploration of considerations and implications of a more intelligent architecture fuelled 

by deep learning. 
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Chapter 4. 

Research Questions 

Toward the objective of adopting deep learning in the field of architecture, the driving research 

question is: 

 

What strategies, tools, and pedagogies can be utilised or developed to foster the 

integration of deep learning in the AEC? 

 

To answer this question, first there is a need to gain a preliminary understanding of the current 

state of deep learning within the context of the AEC. Understanding the differences of deep 

learning’s uptake—in academia compared to industry, in the different domains of architecture, 

and in current approaches to facilitate the integration—is imperative. Thus, the sub-question 

motivating the first of three sections of this research (chapters 7 and 8) is: 

 

1. To what extent is architectural academia and industry researching, committing, 

and investing in machine learning? 

 

Grasping the current position of machine learning in the AEC, this research then focuses on the 

use and development of strategies, tools, and pedagogies for the adoption of deep learning. The 

sub-question prompting the second section (chapter 9) is: 

 

2. What approaches can be utilised or developed to facilitate a greater integration 

of deep learning in the architectural industry? 
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Finally, upon developing and implementing these strategies, tools, and pedagogies, this research 

intends to reflect upon their effectiveness, consider the impact of deep learning in the AEC, and 

ask if the adoption of deep learning is fostering a more intelligent field of architecture. The final 

sub-question (chapter 10) is: 

 

3. What are the considerations and implications for the adoption of deep learning 

in the AEC? 
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Chapter 5. 

Methodology 

The three sub-questions delineated in chapter 4. Research Questions will be the skeleton for this 

body of work. Each sub-question will be tackled in their own sections and presented sequentially. 

This linearity is favoured due to the reliance latter questions’ have on the results from the former.  

 

The first sub-question will be answered through an applied, inductive methodology, whereby 

quantitative and qualitative data will be sourced from the architectural industry and academia. For 

the primary analysis conducted on the AEC industry, this research will leverage databases 

cataloguing industry research projects, as well as creating new data from interviews and surveys. 

Conversely research publications, educational tools and modules, and pedagogies will inform the 

secondary analysis of academia. Upon inferring conclusions from the cross-sectional data 

analysis, the research will switch to a deductive methodology to answer the remaining two sub-

questions. 

 

The second sub-question can be further divided into two sections. The first, documented in 

chapter 9.1. Applying Active Learning Pedagogies for Teaching Backpropagation, will utilise 

pre-existing student-centred pedagogies applied to an educational tool developed prior to this 

research. After using these strategies within the architectural curriculum for participatory primary 

research, this deductive methodology will leverage data collected by surveys and interviews with 

the participating students to understand how it was received. The second section of this sub-

question, documented in chapter 9.2. A Tool for Deep Reinforcement Learning in Grasshopper, 

aims to further explore approaches for deep learning education. This uses an action research 

methodology, which can be defined as an iterative cycle of creation, assessment, and 

improvement. The software package, once developed, will be similarly tested through 

participatory primary research, where it will be used to teach architects deep reinforcement 
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learning through workshops at conferences and universities. The qualitative responses will help 

shape its development.  

 

Finally, the third sub-question will follow a conclusional, deductive research methodology, 

whereby the results of the former two research activities will inform conclusions about the 

considerations and implications of deep learning in the architectural profession. The final chapter, 

chapter 10.3. Is Deep Learning Really Artificial Intelligence?, will utilise the knowledge gained 

from the entirety of this research, to deliberate if deep learning is indeed intelligent, under a 

definition of intelligence that is unaffected by the wax and wanes of technological progress. 
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Chapter 6. 

Literature Review 

6.1. Early Explorations of Intelligence in Architecture 

As early as 1969, Nicholas Negroponte, founder of the MIT Media Lab, validated the pursuit of 

architectural artificial intelligence by highlighting the "deficiencies" of the architect. "First, 

architects cannot handle large scale problems, for they are too complex; second, architects ignore 

small scale problems, for they are too particular and individual (and, to them, too trivial)" (1969, 

p. 9). Even still, Negroponte suggests that a machine, designed to follow to rules put in place by 

the designer, still fails to overcome these problems. Negroponte elaborates through a discussion 

of ownership and what it means for a machine to be creative. "When a designer supplies a machine 

with step-by-step instructions for solving a specific problem, the resulting solution is 

unquestionably attributed to the designer's ingenuity and labors" (Negroponte 1969, p. 9). Thus, 

if the machine simply embodies the sensibilities of the designer, also embodied are the 

deficiencies. For the machine to overcome the fallacies of the human architect, Negroponte argues 

that the machine must also "learn to be adaptable and learn to be relevant" (1969, p. 9). 

 

Inspired by McCulloch and Pitts' 1943 formulation of computational learning, Negroponte 

proposes a machine "that can intelligently respond to the tiny, individual, constantly changing 

bits of information that reflect the identity of each urbanite as well as the coherence of the city" 

(1969, p. 10). Further, Negroponte postulates that, only through a collaboration between the 

learning machine and the architect, can the aforementioned deficiencies be overcome. “The 

dialogue would be so intimate—even exclusive—that only mutual persuasion and compromise 

would bring about ideas, ideas unrealizable by either conversant alone. No doubt, in such a 

symbiosis it would not be solely the human designer who would decide when the machine is 

relevant” (Negroponte 1970, p. 11-12).
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The architecture machine Negroponte envisions consists of five abstract components: "a heuristic 

mechanism, a rote apparatus, a conditioning device, a reward selector, and a forgetting 

convenience" (Negroponte 1969, p. 10). The heuristic mechanism is the decision-maker, designed 

to apply stored heuristics to minimise potential design solutions. Through repeated use, the rote 

apparatus updates these heuristics through the association of recurring events and solutions. The 

collaboration with the architect is enabled through the conditioning device and reward selector, 

where the architect can influence the learned heuristics through a Skinnerian application of reward 

and punishment. Finally, Negroponte emphasises that "unlearning is as important as learning" as 

"information can assume less significance over time and eventually disappear" (1969, p. 11), 

which is achieved through the forgetting convenience. 

 

To build the architecture machine to a sufficiently complex capacity, however, proved to be quite 

difficult. In 1967, URBAN5 was Negroponte's first major attempt to compile his ideas of 

Skinnerian reward and punishment, human-machine interaction, and artificial intelligence in the 

field of architecture (built with its predecessor, URBAN2, at its core). Three years later, 

Negroponte reflects with a chapter called URBANS: A Postmortem, highlighting the four major 

shortcomings of URBAN5: preinstalled heuristics resisted change, a feigning of generality through 

a collective of smaller, highly-specific architecture machines, inadequate capturing of slightly-

complex design contexts, and a lack of input methods for more expressive interactions 

(Negroponte 1970, p. 94-96). Where URBAN5 fell short, Negroponte's 1974 architecture machine 

sought to fix. However, all future incarnations of the architecture machine failed to achieve 

ubiquitous adoption and illustrated the difficulty of incorporating artificial intelligence in the 

design process. 

 

Architect, Cedric Price, conducted similar explorations in the integration of artificial intelligence 

in architecture. However, rather than its application in the design process, Price focused on its 

application in the design itself. In tandem with Price's disregard toward a resolved architectural 
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form, Price preferred design through the lens of information architecture, i.e. "defining a system 

that delivered information around a building, or employed cybernetic exchanges of information, 

or supported a new, self-initiated approach to learning" (Steenson 2014, p. 122). Price's unique 

stance on design has cultivated a collection of influential works, including the Fun Palace, 

Potteries Thinkbelt, and the Inter-Action Centre, however, none are more prolific than Generator: 

the first intelligent building. 

 

The Generator project was a proposal for the Gilman Corporation on their White Oak Plantation 

site in Yulee, Florida. The premise of Generator, a retreat centre, sought to facilitate unfamiliar 

social interactions between their guests, induced by a dynamic, self-organising architecture (The 

Generator Project 2015). The proposal comprised an orthogonal, foundational grid, similar to 

that of a chessboard. Modular components, such as wall panels, furniture, services, and fittings, 

would be reorganised by a mobile crane operator, in accordance to one of four programs. Three 

of these programs would use sensors from the modular components, and the final program would 

formulate new, unique arrangements, if a change hasn't been made for some time. The fourth 

program characterised Generator as having sense of boredom and creativity, leading to its 

designation of the first intelligent building. Like many of Price's ideas, Generator was never built. 

 

A commonality shared between the works of Negroponte and Price was how their projects were 

not driven by a technological fetishism. In fact, for Price, technology was something he personally 

avoided, approaching computational designers, Julia and John Frazer, to develop the four 

programs for Generator. Yet, technologically speaking, URBAN5 and Generator were markedly 

prescient. They represent "the nexus of architecture and nascent ubiquitous or pervasive 

computing" (Steenson 2010, p. 15), decades before their explorations are now being seriously 

pursued. Furthermore, their reliance on artificial intelligence, despite following the simple 

symbolic paradigm, reinforces the architectural field's need for artificial intelligence. 
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6.2. Deep Learning Research in Architecture 

More recently, increased computational speeds and an excess of available data have brought new, 

innovative deep learning algorithms to the attention of architectural research. For instance, the 

convolutional neural network and the recurrent neural network—popular artificial neural network 

variants designed to comprehend spatial and temporal data respectively—have been shown to 

radically increase state of the art performance in a plethora of existing problem domains. 

 

To start, the theoretical premise of the convolutional neural network (CNN) is its ability to 

interpret data of any dimensions. As such, it's most predominant use-case has been its application 

on image processing tasks, achieving state of the art performance on image classification, object 

detection, and semantic segmentation. Outlined below are two examples of architectural research 

that leverage CNNs. 

 

The effort for "community engagement for urban decision-making is often ineffective, 

uninformed, and only occurs in projects’ later stages" (Zhang et al. 2018, pp. 196). In 2018, 

CityMatrix, an interactive urban planning simulator, leveraged CNNs to provide computationally 

efficient traffic and solar performance predictions through a tactile, non-expert interface (Zhang 

et al.). The second research project was born of a distaste for the tedium of categorising archival 

architectural plans and sections. To automate the process, a software package, with a CNN at its 

core, was developed to take a document of architectural drawings, categorise each page as either 

plan or section, and returns two documents of either category (Ng et al. 2019). Furthermore, if the 

CNN showed any uncertainty, that drawing was flagged and presented for human judgement. 

 

On the other hand, recurrent neural networks (RNN) are designed to understand sequences of data 

by internalising information gained from earlier inputs. Often more difficult to train than CNNs, 

RNNs have been successfully applied to natural language processing, speech recognition, and 
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temporal predictions. Outlined below are two applications of RNNs within the field of 

architecture. 

 

Firstly, commercial agent-based pedestrian simulations unrealistically follow shortest-path 

algorithms. In an attempt to train an agent to exhibit more realistic and "temporally dynamic 

behaviour" (Karoji et al. 2019, p. 281), an RNN was employed to include the effects of stopping, 

congestion, agent visibility, and sightlines with key visual markers (Karoji et al 2019). Secondly, 

the material performance of viscoelastic materials are difficult to simulate. A step toward 

simplifying the process has involved the use of RNNs to learn the behaviour of strips of elastomer 

and synthetic rubber with varying widths (Luo, Wang & Xu 2018). Once trained, the RNN could 

be used to predict the resultant form from the properties of the strip, as well as deduce the varying 

widths a strip from a target form. 

 

Within three of the four aforementioned instances of deep learning, conspicuously absent was its 

use within unique application domains. That is not to say that deep learning has yet to be 

successfully applied on previously unsolvable problems (as Ng's research does). However, deep 

learning's use on existing problems implies that a previous technique has been superseded by the 

performance gains of deep learning. And this alludes to an intriguing question: was it the desire 

to solve a problem better than existing methods, or the reputed performance of deep learning, that 

motivated the research? Even further, if motivations aligned more with the latter, would that not 

paint deep learning as the proverbial hammer in search for a nail? 

 

A 2019 study, "the first attempt to provide a coherent and comprehensive overview of [the] 

advances in the field of machine learning-aided architectural design" (Papasotiriou, p. 823), 

provides some insights. The study leveraged term clustering and scientometrics to uncover 

patterns and insights from over 4000 research papers, published between 1970 and 2019, at the 

intersection of ML and computer-aided architectural design. 
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Within this research, a prevailing trend—the accelerating growth of research interest after the turn 

of the millennium—was not only validated, but quantified. In her concluding remarks, 

Papasotiriou reflects upon this, suggesting that the rapidity of publications render previous 

research "obsolete in a timescale of months" (2019, p. 823). This is symptomatic of the 

expectations of deep learning research in pre-existing problem domains: a model that trumpets an 

accuracy slightly above the current state of the art. Large jumps of improvements are rarely seen, 

as the accuracy of these models already encroach 100%. Furthermore, once a trained model 

overtakes current benchmarks, that in itself is enough reason to publish, and efforts to further 

model accuracy only delays the publication. This begs the question, what is the value of these 

incremental improvements? Rather than the application of deep learning in existing problem 

domains, would it not be more poignant to place research efforts elsewhere—for instance, novel 

applications of deep learning or the development of education tools and resources to reduce the 

barrier to entry for architects? 

 

Finally, the study revealed seven main clusters of research interest determined by the prevalence 

of key terms. These clusters are architectural education, information flow, modelling processes, 

sustainability, research, urban planning, and feasibility. Interestingly, Papasotiriou identifies that 

"education appears to attract considerable interest, which underlines the momentum of machine 

learning, and its future role in architectural design" (2019, p. 822). This could be due simply to 

the general rising interest in ML or may suggest a shift from the reliance of external ML experts 

and consultants, to the education of architects for ML’s uptake. Regardless, these results suggest 

that there is movement toward the inclusion of ML within architectural curricula. 

 

The culture of machine learning research fosters a preference for incremental improvements in 

model accuracy. However, due to the pace of the field, and the minute increases in performance, 

these improvements are quickly made obsolete. Architectural ML research would yield more 
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value if applied in novel applications domains. One such domain that has witnessed a large portion 

of research efforts has been in education. 

 

 

6.3. A Resistance to Adopting Machine Learning in Industry 

In 2017, Klaus Schwab described his assessment of the Fourth Industrial Revolution as "rapidly 

evolving with the rise of artificial intelligence" (Skilton 2017). Almost in parallel, architectural 

historian, Mario Carpo, observed a shift towards a new design industry (Carpo 2017). Known as 

the Second Digital Turn in Architecture, Carpo describes a world where prediction can be based 

on sheer information retrieval, and form finding by simulation and optimisation can replace 

deduction from mathematical formulas. As computation approaches the limit of a "near infinite 

amount of data recorded, transmitted, and retrieved at almost no cost" (Carpo 2016), computers 

can exploit incredibly onerous operations, previously deemed too computationally intensive. 

Operations that can leverage these vast amounts of data to extract patterns and behaviours. 

Operations capable of 'learning'. 

 

However, these shift changes have taken a considerable amount of time to take effect in the field 

of architecture, engineering, and construction (AEC). Academia has seen a mere smattering of 

applications, predominantly adopting deep learning's predilection for computer vision tasks 

(Fukuda, Kuwamuro & Yabuki 2017; Cao, Fukuda & Yabuki 2019, Ng et al. 2019), and 

architectural practices have yet to go beyond exploratory research and feasibility prototyping. As 

revealed in an international study conducted by McKinsey Digital, the AEC industry are 

consistently among the worst industries for the adoption of new technology, ML included 

(McKinsey Digital 2015, 2016, 2017a). 

 

This may prove to be a problem, as the diffusion of technological innovation into industry is what 

"ultimately determines the pace of economic growth and the rate of change of productivity" (Hall 
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and Khan 2003). This is reflected no better than Hero of

Alexandria's Aeolipile (figure 1). If pursued, invested, 

and adopted, this early steam engine may have invoked 

the industrial revolutions sixteen centuries earlier. 

"Once an inventor has discovered a use for a new 

technology, the next step is to persuade society to adopt

it. Merely having a bigger, faster, more powerful device 

for doing something is no guarantee for ready 

acceptance" (Diamond 2017, p. 237). 

 

And this is where deep learning stands in the AEC. Deep 

learning has shown greater performance than other 

statistical techniques, and even other ML methods, as the quantity of data available increases 

(figure 2). However, the AEC maintains a resistance to its adoption. Ruminated below are barriers 

that affect the uptake of deep learning in other industries, in an attempt to hypothesise the potential 

causes for the AEC's intransigence towards deep learning. 

 

figure 1: Hero of Alexandria's Aeolipile. 

figure 2: The performance of deep learning compared to older learning algorithms with respect with the amount of 
training data available. 
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Despite the undoubtedly great increases in performance that deep learning offers, all deep learning 

algorithms are black boxes. A black box is a system that "relate the inputs to the outputs in a 

mathematically complex, non-transparent, and opaque way" (Baesens, 2014, p. 52). And because 

of this opacity, there is a hesitancy for its use in situations where a failure has terrible 

repercussions, as black boxes makes it impossible to understand why. Meredith Broussard, author 

of Artificial Unintelligence, suggests that "we tend to think of data as the immutable truth, but we 

forget that data and data-collection systems are created by people" (2018, pp. 57). Extrapolating 

further, these inaccuracies have the potential to be carried over to the deep learning model, who's 

performance is predicated on the quality of the training data. Combined with the inherent "bias 

we have for computerized results", "when a computer generates something, we don't question 

them" (Fry 2018, p. 18), and with deep learning, we can't question them. Hannah Fry, author of 

Hello World: How to be Human in the Age of the Machine, identifies that "this tendency of ours 

to view things in black and white—seeing algorithms as either omnipotent masters or a useless 

pile of junk—presents quite a problem in our high-tech age" (2018, p. 23). Perhaps the resistance 

for deep learning's adoption is due to a distrust? 

 

On the other hand, the simple fact that deep learning is a field that is heavily steeped in computer 

science and mathematics, most likely beyond the comprehension of the average architect, could 

be the reason for its scarcity. In terms of the mathematics required to understand the nuances of 

deep learning algorithms, linear algebra, algorithms and complexity, probability theory, and 

multivariate calculus are the bare minimum. However, there is debate within the ML community 

as to whether the mathematical minutiae of the algorithm's internal operations are required to 

develop and train ML models. Some argue that an understanding of the problem domain, and an 

adequate command over a programming language with ML packages, would suffice. Even so, the 

latter requirement is becoming less important. The popularity of deep learning has garnered the 

development of ML platforms and frameworks that remove the need to use any programming 

language. Platforms such as Google Cloud AutoML, Microsoft Azure ML Studio, and IBM Watson 
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Studio are a few examples of how ML models can be built with little understanding of either 

computer science or mathematics. 

 

Key thinkers assert that the Fourth Industry Revolution and the Second Digital Turn in 

Architecture are imminent and share the belief that artificial intelligence will be a crucial driver 

of the change. The rising complexity of design problems in the overflowing pool of data validates 

this need for deep learning in architecture. And yet, the AEC industry has shown a resistance to 

its adoption. Looking to other industries, this resistance may be born from a distrust of black-box 

algorithms, the difficulty of applying deep learning, or something else entirely. Regardless, an 

investigation into the state of deep learning in the AEC industry, as well as the source of this 

resistance, is a necessary step to elucidate the barriers for a more intelligent architecture field 

through deep learning. 

 

 

6.4. Bridging the Gap 

Due to its association with the stigma that surrounds artificial intelligence, until recently, deep 

learning was regarded by non-experts as an impenetrable enigma. As its popularity grows, in 

tandem with the number of deep learning success stories, the development of tools and platforms 

aiming to democratise deep learning, have found its way into all fields of endeavour, architecture 

included. The rising abundance of easy-to-use deep learning tools and the focus on deep learning 

education in architectural research is all suggestive of a movement: the combination of the 

architect and the deep learning engineer. 

 

As Christopher Alexander identified, the narrowing specialisation of expertise, in combination 

with the sea of unstructured data, obscures the holistic understanding needed to solve complex 

design problems (1964). Whereas this may pose minimal concern for other industries, permitting 

the reliance on external consultants, it can pose a challenge in the architectural design process, 
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where a dynamic process of interaction between the designer and the design is required. 

Furthermore, an understanding of the domain is imperative for high-accuracy deep learning 

models. A key step in applied deep learning is the process of feature engineering, whereby 

knowledge of the domain is leveraged to alter the data to facilitate increased performance. "Some 

machine learning projects succeed and some fail. What makes the difference? Easily the most 

important factor is the features used" (Domingos 2012, p. 84). Andrew Ng, co-founder of Google 

Brain, goes so far as to proclaim that although "coming up with features is difficult, time-

consuming, [and] requires expert knowledge, applied machine learning is basically feature 

engineering" (Ng 2013, p. 16). Hence, for the AEC industry to adopt deep learning, it is imperative 

for architects to learn deep learning. "The future belongs to those who understand at a very deep 

level how to combine their unique expertise with what algorithms do best" (Domingos 2015, p. 

45). 

 

Despite the plethora of deep learning tools that reduces the barrier to entry, there remains a need 

to educate architects in deep learning beyond the use of a tool. Andrej Karpathy, once a research 

scientist for OpenAI and now director of AI at Tesla, published the blog post, A Recipe for 

Training Neural Networks, that starts with an outline of two common pitfalls for deep learning 

development (2019). Firstly, Karpathy asserts that training deep learning models are "a leaky 

abstraction". The abundance of packages and libraries proclaiming "30-line miracle snippets" 

gives a false impression for the simplicity of achieving high-accuracy models. "Backprop + SGD 

does not magically make your network work. Batch norm does not magically make it converge 

faster. RNNs don’t magically let you “plug in” text. And just because you can formulate your 

problem as RL doesn’t mean you should. If you insist on using the technology without 

understanding how it works you are likely to fail" (Karpathy 2019). To those applying deep 

learning without the adequate conceptual understanding, the ramifications of his first point 

worsens with his next: "neural net training fails silently". Within software development, when 

code is broken or misconfigured, errors are presented to the developer. However, contrasted with 
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developing for deep learning, everything can be built correctly and training starts without fault, 

however, some misunderstanding of a deep learning concept, carried over into the code, could 

prevent the training of the model to reach desired accuracies or even cause the model to learn a 

completely different task. "Maybe your autoregressive model accidentally takes the thing it’s 

trying to predict as an input due to an off-by-one bug. Or you tried to clip your gradients but 

instead clipped the loss, causing the outlier examples to be ignored during training. Or you 

initialized your weights from a pretrained checkpoint but didn’t use the original mean" (Karpathy 

2019). These aforementioned examples, and all potential misunderstanding or incorrect 

implementation, will allow the network to commence training, but ultimately fail to learn the 

intended task. Thus, as beneficial as these tools are, there remains a need for an exploration of 

pedagogies and educational strategies for teaching architects the conceptual premise and 

operations of deep learning. 

 

Architectural artificial intelligence started out as methods to solve unique problems. Negroponte 

and Price used artificial intelligence, not out of a desire to apply the technology, but almost out 

of need. However, the recent popularity of deep learning has shifted this mentality toward that of 

technological fetishism, where a thirst for applying artificial intelligence drives research, rather 

than an appropriate need. This shift has led to a culture of research favouring incremental 

improvements, resulting in research outcomes that become obsolete in a matter of months. 

Toward countering this rapid desuetude and the culture of techno-fetishism, the objectives of this 

research aims to employ strategies, tools, and pedagogies to fuse the role of the architect and deep 

learning engineer. By doing so, deep learning might be seen more as another tool within the 

architect's tool belt, to be applied when deemed appropriate. 
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Chapter 7. 

Assessment 

Toward the adoption of deep learning in the architectural profession, a preliminary study was 

conducted to gather an understanding of the current state of machine learning in the architecture, 

engineering, and construction (AEC) industry. Three avenues of exploration were outlined as 

preliminary trajectories: 

 

1. assess the current state of research in the AEC industry and to the degree to which machine 

learning is being invested, 

2. diagnose the barriers that affect the adoption of machine learning in the AEC industry 

beyond that of technical complexity, and 

3. compare and contrast existing tools that offer the application of machine learning within 

architectural software. 

 

Through the aforementioned studies, this research will compile a representation of the AEC 

industry and their stance on ML, which will direct the exploration and development of strategies, 

tools and pedagogies in later chapters. 

 

 

7.1. The State of Machine Learning Research in the Architectural Industry 

Introduction 

To assess the state of machine learning in the AEC industry, this research partnered with Arup 

Engineering, a well-established, global architectural engineering firm with over 16,000 

employees. Arup is known for their commitment to investing in ideas, which is evident through 

their Invest in Arup initiative: a system where employees can propose research projects and 
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receive the necessary funding to carry it out. The following report is the culmination of this year-

long study, leveraging data from the Invest in Arup database, interviews with key proponents for 

ML at Arup, and a technical skills survey. 

 

 

(Appendix A. Arup’s Machine Learning Assessment was removed in public version) 

 

 

Conclusion 

Rather than an overview of all machine learning projects at Arup, this report investigates how 

documented ML research projects are perceived, understood, and used. The study uncovers three 

major findings: the largest concern for those applying ML is data collection and expertise, positive 

sentiment toward ML research saw an initial rise but has since waned, and standardisation of 

technologies will foster a more resilient community of ML developers. 

 

 

7.2. Factors that Affect the Adoption of Machine Learning 

Introduction 

As part of the partnership with Arup Engineering, this research conducted a series of diagnostic 

data analyses to identify barriers that have the potential to hinder the adoption of machine learning 

in the AEC industry. The following conference paper, surmising the analyses, was presented at 

the 18th international conference on Computer-Aided Architectural Design Futures (CAAD 

Futures) held in Daejeon, South Korea. The theme of the conference was "Hello, Culture!", a 

reference to the iconic "Hello, World" of the first computer program, found in Brian Kernighan 

and Dennis Ritchie's 1978 book, The C Programming Language (p. 5). 
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(This paper can be found in Appendix B. Factors that Affect Machine Learning) 

 

 

Conclusion 

In accordance to the theme of the CAAD Futures conference, this study approached the 

identification of factors that hinder the adoption of machine learning in the AEC industry through 

a social, political, economic, and cultural lens. The study revealed that the combination of a 

hesitancy to apply ML approaches over pre-existing methods, and an underwhelming supportive 

community, reinforces the importance of digital standards and a more data-centric approach to 

engineering. 

 

 

7.3. A Comparison of Machine Learning Tools for Architects 

Introduction 

Machine learning is a vast field—one that draws from applied mathematics, probability and 

statistics, data modelling and evaluation, algorithms and complexity, and not to mention 

programming itself. Thus, as these are not usually found in the architectural curriculum, architects 

inclined to explore ML are faced with an unusually steep technical barrier to entry. A time-

honoured approach to minimise this barrier is through the use of tools. Architectural engineers, 

and more recently, computational designers, have been able to conduct solar analysis, structural 

analysis, and fluid simulations, through the use of tools that bridge the gap between mathematical 

complexity and architecture. As an example, the popular visual scripting plugin, Grasshopper, 

built on top of the 3D modelling software, Rhino, has a plethora of community-made tools on a 

platform called Food4Rhino. Respectively, Ladybug (Roudsari 2018), Karamba (2014), and 

RhinoCFD (2017) are such tools that can be utilised for the aforementioned applications. 

 

 



 

43 
 

Comparison 

Author of Architectural Intelligence: How Designers and Architects Created the Digital 

Landscapes, Molly Wright Steenson, observes that "we are in the midst of a new wave of 

architectural design and architecture pedagogy in which the computer plays an operative role and 

reshapes how we teach architects and how they conceive their work. In some schools of 

architecture, instead of drawing, students learn "visualization"; in addition to construction, they 

adopt approaches to "fabrication"; they capture the information and decision-making around the 

architectural project in "building information models"" (2017, p. 75). As the necessity of ML tools 

becomes increasingly apparent, the computational design community have developed a variety of 

tools that incorporate ML. As of the 19th of July, the time of writing, there are six Grasshopper 

tools that proclaim the inclusion of ML algorithms: Dodo first released in 2015 (Greco), Lunchbox 

in 2017 (Proving Ground), Octopus in 2018 (Vierlinger), and Owl (Zwierzycki 2019a), Wallacei 

(Wallacei), and Opossum (Wortmann) in 2019. However, there is an argument to be made for the 

removal of Wallacei and Opossum from this list, as they aren't offering the user the ability to use 

ML. Rather, they offer the use of evolutionary algorithms, NSGA-2 (Deb 2002) and RBFOpt 

(Costa & Nannicini 2018) respectively, which utilise ML internally. Wallacei and Opossum does 

not provide the user with the ability to explore ML directly, thus will be removed from further 

comparisons. Below is a comprehensive evaluation of the remaining four tools, documenting what 

ML algorithms they offer (Table 1). 
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Supervised 

Linear regression  x   

Logistic regression * x  * 

Support vector machine   x  

Nearest neighbour x  x  

Random forest x    

Naïve Bayes classifier  x   

Neural network x x x x 

Supervised/ 
Unsupervised 

Restricted Boltzmann  x   

Unsupervised 

Self-organising map x    

Elastic map x    

K-means  x  x 

t-Distributed SNE    x 

Gaussian mixture model  x   

Hidden Markov model   x  

Markov chain    ^ 

* Despite not explicitly included, linear regression and logistic regression can be modelled using 
a simplified version of neural networks. However, as some of the Grasshopper tools does not 
provide the identity activation function, linear regression isn't possible. 

^ Despite the fact that Markov chains are not technically an unsupervised learning algorithm—
rather a statistical model—Owl categorised the component underneath the 'unsupervised' section. 
 

Table 1: A comparison of Grasshopper plugins and their machine learning algorithms. 
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Immediately, it is glaringly obvious how little overlap there is in terms of included algorithms 

across the four tools. In fact, only three of the fifteen algorithms are included more than once 

(four if you include logistic regression). As such, no one tool stands as the most comprehensive; 

but nor do any shine in a specific ML paradigm. Another observation is the absence of any 

reinforcement learning, one of the three paradigms. However, it should be noted that on Owl's 

GitHub repository, the author recently created a subdirectory called "QLearning", a type of 

reinforcement learning algorithm (Zwierzycki 2019b), suggestive that Zwierzycki may include 

reinforcement learning in Owl for future versions. What can be gleaned from this preliminary 

review is an indication of the state of ML in architecture. Potentially due to the field being in a 

transitive state, much like the current state of ML use in architecture, these tools are incomplete 

in their offering and scattered in their domain. 

 

By the very nature of being a tool—a bridge between complexity and the users—the authors must 

define their own balance between simplicity and control. A tool that is simple to learn becomes 

too inflexible to be applied to many domains, whereas a tool with too much control becomes 

convoluted and intimidating to learn. Through a review of the one algorithm that persists across 

all the four tools, the artificial neural network, and the amount of control each tool offers, the 

targeted purpose and audience for the tool can be derived (Table 2). 
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Network 
architecture 

Number of hidden layers x  x x 

Number of neurons in hidden layers x x x x 

Varying number of neurons in layers    x 

Activation 
functions 

Bipolar sigmoid x  * x 

Sigmoid x x * x 

Sigmoid alpha variable x x * x 

Softplus x  *  

Threshold   * x 

Hyperparameters 

Batch size    x 

Stopping at max iterations x x x x 

Stopping at max compute time   x  

Stopping at max memory   x  

Regularisation 
methods 

Early stopping by error threshold x  x  

Early stopping by divergent steps   x  

Learning 
algorithms 

Resilient backpropagation   x  

Backpropagation x x  x 

Delta rule learning x    

Perceptron learning x    

Learning rate x  x x 

Momentum x   x 

Meta Initialisation seed  x  x 

* Despite the Encog Engine (the ML engine behind Octopus) offering a wealth of different 
activation functions (Heaton 2014), Octopus doesn't specific which activation function was used, 
nor does it give the flexibility to select an activation function. 

Table 2: A comparison of Grasshopper plugins and their functionality with artificial neural networks. 
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From the above table, Lunchbox is an example of a machine learning tool that abstracts away too 

much control. It removes the ability to control vital aspects when training neural networks, such 

as the number of hidden layers, the learning rate, and the ability to allow for mutually exclusive 

classification with the output activation function. In fact, Lunchbox errs so much on the side of 

simplicity, that artificial neural networks trained using Lunchbox are limited in the complexity of 

problems it can be applied to. 

 

Octopus, on the other hand, provides the greatest interoperability during the training process. 

Early stopping is a regularisation technique used for controlling the balance between variance and 

bias. These techniques are used if the intention is to deploy the trained neural network afterward, 

as opposed to experimentation. That said, even though Octopus provides the ability to build deep 

neural networks, they do not allow for the variation in the number of neurons for each layer. Put 

another way, if you were using Octopus to build a deep neural network of 10 layers (an arbitrarily 

selected number of layers), each hidden layer is restricted to the same number of neurons—a 

neural network architecture that is rarely seen in practice. 

 

The only tool that provides control over the number of neurons in each layer—arguably, one of 

the most important parameters for training neural networks—is Owl. Slightly more difficult for 

the beginner to use, especially with its unfamiliar terminology of 'Tensors' and 'Tensorsets', Owl 

offers almost all the vital functions required to train and use artificial neural networks: batch size, 

learning rate, and momentum. However, despite its functionality, the tool does not offer any way 

to observe or stop the training process to prevent overfitting, "a central problem to machine 

learning" (Domingos, 2015, p. 71). 

 

Conclusion 

These tools are spread across the spectrum from simplistic but ineffectual to functional but 

complex, and carry with them varying pros and cons. At the current state of these tools, the trade-
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offs are too great to legitimately use them on problems of any considerable complexity. That is 

not to say that these tools don't have any merit, as they are great tools to learn ML in a familiar 

environment. 
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Chapter 8. 

Technical Conceptual Framework 

Introduction 

The subsequent strategies, tools, and pedagogies discussed in this research relies heavily on a 

conceptual understanding of the paradigms of machine learning, in tandem with a notional grasp 

of the two algorithms that all deep learning systems are predicated. There are three paradigms of 

ML: 'supervised', 'unsupervised', and 'reinforcement' learning. In recent years, a fourth paradigm, 

'semi-supervised' learning, has garnered some attention. However, within this conceptual 

framework, semi-supervised learning will not be discussed, as no semi-supervised learning 

techniques were used in this research (and an understanding of supervised and unsupervised 

learning is enough for one to interpolate). 

 

First and foremost, it is imperative to understand that the three paradigms of ML are vastly 

different and cannot be used interchangeably; they are inherently designed to solve different 

problems. In the most abstract incarnation: supervised learning is used to teach a system to capture 

a relationship between example inputs and outputs, so that the system can provide an output 

prediction when it is posed with a new input; unsupervised learning is used to find an alternative 

representation of only input data, to uncover hidden patterns, anomalies, or associations; and 

reinforcement learning is used to train the behaviour of a decision-making agent, to act within an 

environment according to a schema of rewards and punishments. An effective method to 

differentiate the three paradigms is to consider what type of data is needed for training. Supervised 

learning requires both input and output data, unsupervised learning requires only input data, and 

reinforcement learning doesn't require any data beyond how to reward and punish the agent. 

 

Furthermore, it is pertinent to note that these are the paradigms of machine learning, not deep 

learning. Deep learning refers to a subset of ML, characterised by a certain type of algorithms. 
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Whereas ML encompasses both symbolic and connectionist AI algorithms, deep learning includes 

only the latter. All deep learning algorithms are variations of the multilayered artificial neural 

network, or the 'deep' neural network, hence the subfield's name. This conceptual framework, and 

the larger body of research, focuses predominantly on deep learning techniques. 

 

A commonality between deep learning algorithms across the three paradigms of ML is the method 

by which they learn. Backpropagation, first applied to neural networks by Werbos (1974), makes 

use of automatic differentiation (Linnainmaa 1970), to adjust the internal state of a neural 

network. The inner operations of the artificial neural network and the backpropagation algorithm 

will be explored below; as well as the three paradigms of ML, and their key variations of deep 

learning algorithms. The purpose of this conceptual framework is to provide an introduction to a 

basic technical understanding of ML, so that its use in later chapters can be better understood. 

 

Artificial Neural Networks 

Rooted in connectionism, artificial neural networks (ANN) were heavily inspired by the 

operations of the brain. According to the tenets of the Neuron Doctrine, the widely accepted 

scheme by which the brain operates, thought is exhibited when signals are sent through a mass of 

neurons and synapses. The computational version borrows these ideas of structure, as well as 

some inspiration about how the neuron fires, to build what we now know as the artificial neural 

network. 

 

The most basic of artificial neural networks, the architecture considered as the starting point for 

all of its modern variations, contains a series of differences when compared with biological brain. 

The most prominent instance is the organisation of neurons into sequential layers. The first layer,

known as the 'input layer', conducts no computation, and is merely a placeholder for the input 

signal. The last layer is the 'output layer', which should take the shape of the desired outputs, and 
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is where the resultant signal comes out. All the layers in between are known as 'hidden layers', 

and, with the output layer, is where all the computation occurs. 

 

Each neuron in a layer is connected to every neuron in the layers immediately before and after. 

Each connection, the computational equivalent of a synapse, takes the form a single number 

known as the 'weight'. The weights between two layers can be represented as a matrix of floating-

point numbers, with dimensions equal to the multiplication of the number of neurons in the 

connected layers. When an input signal is sent into the input layer, the signal is propagated through 

the weights that connect the input neurons with the first hidden layer, and the results are held in 

that layer of neurons. Each neuron in that layer then performs some computation that determines 

the degree by which the neuron fires (this calculation uses variables called a 'bias' as well as a 

non-linearity function called an 'activation function'). This altered signal is then sent through 

another set of weights to the next layer, held in that layer to perform some computation in the 

neurons, and fires off another set of signals. This process is repeated until that signal comes out 

the other end through the output layer. What was just described is known as the feedforward pass 

of an artificial neural network, and is what constitutes as 'thought' in ML.  

 

Backpropagation 

Once an artificial neural network model is constructed, immediately conducting an initial 

feedforward pass would yield an incredibly inaccurate result. In the previous section, two 

variables were identified that alters the resultant output signal: the weights and biases. When a 

model is built, these variables are initialised randomly, so it's no wonder why the outputs are 

unreliable. However, if one had the expected outputs for every given input, they could 

theoretically tweak the weights and biases until the predicted output looks more like that of the

expected. This is the premise of backpropagation. 

 



 

52 
 

The question then becomes how to know how much to tweak these variables by. The premise of 

connectionism makes this a challenge, as all neurons contribute to the output to varying degrees, 

making it difficult to specify the precise change needed in each weight and bias. Some discount 

Rumelhart's efforts when attributed with the backpropagation algorithm (1986), as they credit 

Werbos who first applied it to neural networks years earlier (1974). However, Rumelhart's 

contribution revealed the greater significance of applying backpropagation to train neural 

networks and the implications of the efficiency the algorithm allows. Although Rumelhart didn't 

invent the algorithm, he is the main reason it is still used to train state of the art neural networks 

today. 

 

Before backpropagation, there are two requirements: target outputs and error functions. The 

former requirement calls for the possession of the inputs' target outputs, an objective for the 

predicted outputs. As a side note, it was previously stated that only one ML paradigm, supervised 

learning, expects both the inputs and outputs in its training dataset. However, that does not 

necessarily mean that backpropagation is a supervised learning algorithm. In fact, 

backpropagation can be used across all paradigms of ML. This is possible by finding clever ways 

to fabricate the target output: such as an unsupervised learning algorithm called the 'autoencoder', 

which replicates the input data to act as target outputs, and a reinforcement learning algorithm 

called 'deep q-learning', which creates target outputs by tweaking the predicted output through a 

system of rewards and punishments. The second requirement of backpropagation is the error 

function. In this context, 'error', also known as 'cost' or 'loss', can be intuitively described as how 

far the predicted output is from the target output. The error function is a way to calculate this. 

With error calculated, backpropagation is tasked with minimising this error value across the entire 

training dataset. 

 

Using a single training datapoint for illustrative purposes, backpropagation can start after sending 

that input datapoint through the neural network in a feedforward pass. The neural network returns 
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a predicted output, which can then be used to calculate the network's error. The goal of 

backpropagation is to adjust the weights and biases to minimise this error. The algorithm finds 

the partial derivatives of the network's error with respect to each weight and bias, to inform the 

extent of these adjustments. In other words, backpropagation determines how much to adjust the 

weights and biases, by calculating the impact that tweaking a single weight or bias has on the 

entire network. This calculation cannot happen simultaneously, because the partial derivatives 

(impact) of the earlier layers relies on the results of the later layers. But through the clever use of 

a principle in calculus called the 'chain rule', backpropagation calculates the partial derivatives of 

the layer closest to the output, and iteratively propagates those values back through the network 

to compute the other layers, hence the name, 'backpropagation'. These partial derivatives are then 

multiplied by a value known as the 'learning rate', which determines the pace at which the neural 

network learns, and then carries out these adjustments. Repeated feedforward passes, error 

calculations, and backpropagation, constitutes the iterative process by which an artificial neural 

network learns. 

 

It is important to recognise that this process is one of the more basic methods for training artificial 

neural networks. Since its inception, ML researchers have since developed a plethora of 

optimisation techniques for improving the performance of training, regularisation techniques to 

prevent the common pitfalls, and intuitions that help find the best parameters. 

 

Supervised Learning 

The objective of supervised learning, one of the paradigms of machine learning, is to capture the 

relationship between a set of inputs and outputs, so that when posed with a new input, that learnt 

relationship can be used to predict the output. It's known as 'supervised' because the correct

outputs, provided in the training dataset, are given to the algorithm to guide the learning process. 

This type of learning is similar to that of a child learning the names of shapes, where a mentor 
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would give the child examples. A parallel can be drawn between supervised learning and 

observational learning seen in social psychology, which is predicated on imitation. 

 

Algorithms that can be used for supervised learning include regression, decision trees, random 

forests, k-nearest neighbours, and support vector machines. The algorithms that are explicitly 

deep learning include the artificial neural network, as well as their structural variants: the 

convolutional neural network that is designed to capture spatial relationships, and the recurrent 

neural network, designed to capture temporal relationships. 

 

Supervised learning can be applied to two types of problems: regression, which returns a 

continuous value; and classification, which returns discrete values. In other words, regression 

returns a number, whereas classification results in a category. 

 

Unsupervised Learning 

Whereas supervised learning shows some semblance to observational learning, unsupervised 

learning is more analogous to classical conditioning in associative learning. Given a set of input 

data, what patterns, structures, and/or anomalies can be detected? Revisiting the example of the 

child learning their shapes, an application of unsupervised learning could be to ask the child to 

group shapes based on the shape’s properties. What the child may come to discover is that some 

shapes have curved edges, or that others have unequal side lengths, and structure them 

accordingly. Through this example, the functional differences between the two paradigms become 

apparent. The supervised learning approach sought to teach a child the properties of shapes, so 

that they could apply this knowledge to classify new shapes, whereas unsupervised learning used 

those properties to represent a collection of shapes in a new manner.

 

Algorithms that can be used for unsupervised learning include k-means clustering, principal 

component analysis, and t-distributed stochastic neighbour embedding. The algorithms that are 
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explicitly deep learning include the aforementioned autoencoder, which is often used for data 

compression or latent space representation, and self-organising maps, a topographic organisation 

method where spatial distance represents the similarity of input properties. 

 

Unsupervised learning can be applied to a range of different problems—including clustering, 

dimensionality reduction, and anomaly detection—often where the data is too vast, in quantity or 

dimension, to be understood upon inspection. 

 

Reinforcement Learning 

Reinforcement learning has strong ties to the field behavioural psychology. Often described as a 

computerised version of operant conditioning, reinforcement learning is a process by which 

agents are allowed to explore environments and are given rewards or punishments to shape their 

behaviour. Returning to the example of the child (the ‘agent’, in this case) learning to identify 

shapes around them (the ‘environment’), the child’s behaviour can be moulded with an onlooker 

rewarding correctly identified shapes and punishing those incorrectly identified (the scheme for 

rewards and punishments is known as the ‘reward function’). Reinforcement learning differs from 

the other two paradigms largely due to the lack of training data required. Deep learning predicates 

its superior performance compared to other ML methods as the size of the training dataset 

increases, however, reinforcement learning creates its own training dataset as the agent explores 

the environment. 

 

Algorithms that can be used for reinforcement learning include Q-learning, Monte Carlo learning, 

and temporal difference learning. The algorithms that are explicitly deep learning include the deep 

Q-network, a variant of the Q-learning method using a deep neural network as the policy (decision

maker in the agent), and their variants: double Q-networks and duelling Q-networks. 
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Reinforcement learning can be applied to any problem where an agent must take actions within 

an environment, in order to maximise a defined reward function. Reinforcement learning has seen 

most of its successes in robotics and game-playing scenarios. 
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Chapter 9. 

Strategies, Tools, and Pedagogies 

The overarching objective of this research is to explore and develop methods to foster the adoption 

of deep learning in the AEC field. In chapter 6.4. Bridging the Gap, this research identified that 

the most effectual approach toward this was the fusing of the architect and the ML engineer. 

Attempting to reduce the inherently steep technical barrier to entry, this chapter presents a 

collection of strategies, tools, and pedagogies, including: 

 

1. an exploration of active learning pedagogies applied toward the education of computational 

design students in artificial neural networks and backpropagation, and 

2. the development of a software package that facilitates the learning and use of deep 

reinforcement learning within architectural software. 

 

These applications, the resultant tools, and workshops conducted, are practical instances that 

reinforce the movement toward furthering the integration of deep learning in architecture. 

 

 

9.1. Applying Active Learning Pedagogies for Teaching Backpropagation 

Introduction 

Prior to this body of work, a bachelor-level thesis, in pursuit of similar objectives, ventured into 

the development of the artificial neural network and backpropagation algorithm in software 

familiar to architects (Khean et al. 2018). The thesis, entitled The Introspection of Deep Neural 

Networks - Towards Illuminating the Black Box, was published in the proceedings for the 23rd 

international conference on Computer-Aided Architectural Design Research in Asia (CAADRIA) 

held in Beijing, China. The theme of the conference was “Learning, Prototyping and Adapting”, 
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which asked researchers for “both innovative responses integrating emerging technologies into 

experimental architectural practice and their critical reflection” (Xu et al. 2018, p. iv). 

 

"This paper describes the development of a learning tool directed at architects and 

designers to better understand the inner workings of machine learning. Within the 

parametric modelling environment of Grasshopper, this research develops a 

framework to express the mathematics and programmatic operations of neural 

networks in a visual scripting language. This offers a way to segment and 

parametrise each neural network operation into a basic expression. Unpacking the 

complexities of machine learning in an intermediary software environment such as 

Grasshopper intends to foster the broader adoption of artificial intelligence in 

architecture." 

(Khean et al. 2018, p. 237) 

 

Comparison 

Referring to chapter 7.3. A Comparison of Machine Learning Tools for Architects, where four 

Grasshopper plugins that offered the use of ML algorithms were assessed based on their 

functionality, below is how the developed tool compares (Table 3). 
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Network 
architecture 

Number of hidden layers x  x x x 

Number of neurons in hidden layers x x x x x 

Varying number of neurons in layers    x x 

Activation 
functions 

Bipolar sigmoid x   x x 

Sigmoid x x  x x 

Sigmoid alpha variable x x  x x 

Softplus x    x 

Softmax     x 

Threshold    x x 

Rectified linear unit     x 

Hyperparameters 

Batch size    x x 

Stopping at max iterations x x x x x 

Stopping at max compute time   x   

Stopping at max memory   x   

Regularisation 
methods 

Early stopping by error threshold x  x  x 

Early stopping by divergent steps   x   

Learning 
algorithms 

Resilient backpropagation   x   

Backpropagation x x  x x 

Delta rule learning x     

Perceptron learning x     

Learning rate x  x x x 

Learning rate decay     x 

Momentum x   x x 

Dropout     x 

Meta Initialisation seed  x  x x 

 

Table 3: A further comparison of Grasshopper plugins and their functionality with artificial neural networks. 
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On face value, the developed tool (Khean et al. 2018) offers more functionality than the four other 

plugins. However, the tool fails when comparing the number of algorithms provided and the speed 

of computation. Whereas only one algorithm was included, the artificial neural network (trained 

with backpropagation), the other four plugins included at least three other algorithms. In doing 

so, the four plugins are able to offer the user a wider breadth of applications. Furthermore, the 

developed tool encoded the artificial neural network and backpropagation algorithm using 

Grasshopper components alone. When compared with the other four plugins, which was written 

in VB.NET or C#.NET, the developed tool is orders of magnitude slower than the plugins. This 

is due to the computational bottleneck of the Hoopsnake component, used to counter 

Grasshopper’s recursive loop avoidance check. As such, although the tools offers greater 

functionality, using it to train a model would be unnecessarily tedious. 

 

Despite the shortcomings of the developed tool, its intention was never to be used to train neural 

networks, rather, as a complementary resource for an educational module aimed at teaching 

architects deep learning. The developed tool, built in a software environment familiar to 

architects, in a fashion where all operations are transparent and interactable, offers a window into 

the complexities of deep learning. 

 

At the start of 2018, this educational module took the shape of a four-week series of workshops, 

which was later taught to third-year Bachelor of Computational Design Students at the University 

of New South Wales. The development, teaching, and evaluation of the module was documented 

in the following conference paper, Learning Machine Learning as an Architect, How to?, which 

was presented at the 36th international conference on Education and Research in Computer-Aided 

Architectural Design in Europe (eCAADe) held in Łódź, Poland. The theme of the conference 

was “Computing for a Better Tomorrow”, which called for “a revision of methods and tools 

applied in research, teaching, and practice” (Kępczyńska-Walczak 2018, p. v). 
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(This paper can be found in Appendix C. Learning Machine Learning) 

 

 

Conclusion 

This study reflects upon the development and execution of an educational module to teach AEC 

students basic deep learning algorithms in a familiar software environment. The results highlight 

the importance of deep learning within the architectural curriculum and validates the student-

centred approach, namely the resource-based pedagogy, for ML education within the built 

environment. 

 

 

9.2. A Tool for Deep Reinforcement Learning in Grasshopper 

Introduction 

Throughout this body of work, there is a recurring theme with the reinforcement learning 

paradigm; that is, its scarcity. From a search of the Cumulative Index about publications in 

Computer-Aided Architectural Design database, a database containing over 12,300 publications 

from six international conferences, only 5 papers used reinforcement learning, of which, only 2 

uses deep reinforcement learning (Srinivasan & Malkawi 2005a; 2005b); the analysis of Arup’s 

research database, described in chapter 7.1. The State of Machine Learning Research in the 

Architectural Industry, revealed no instances of reinforcement learning research projects at the 

time of data extraction; and of the ML plugins examined in chapter 7.3. A Comparison of Machine 

Learning Tools for Architects, none offer the ability to leverage reinforcement learning 

algorithms. The latter point is a major barrier for the adoption of deep reinforcement learning. 

Thus, much like the previously mentioned educational Grasshopper tool (Khean et al. 2018), a 

strategy to facilitate the integration of deep learning in the AEC was to develop a reinforcement 

learning software package aimed at providing architects a method to explore deep reinforcement 
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learning. The objective is to develop a software package that allows architects to, not only learn, 

but use deep reinforcement learning algorithms within a familiar software environment. 

 

Development 

Reiterating the outline of reinforcement learning in chapter 8.5, reinforcement learning is a 

process to train an agent to take actions within an environment, in order to maximise a defined 

reward function. Substantial effort in the application of reinforcement learning lies in the creation 

of an environment wherein the agent can perform their actions. If the objective of using 

reinforcement learning is to imbue intelligence into a real-world agent, the environment must be 

set up to be as realistic as possible. Otherwise, if the agent is to remain simulated, this is less 

important. It is common practice to use game engines or software libraries for the creation and 

simulation of the agent and environment, such as Unity or OpenAI's Gym, in tandem with 

packages that can perform the operations needed to perform reinforcement learning, such as ML-

Agents and TRFL. Thus, in the context of architecture, a combination of Rhino and Grasshopper, 

chosen for its architectural familiarity, and Python, for its power and simplicity, was identified as 

a suitable foundation for the software package. Further, offloading the substantial amount of 

computation required for training ML models to python will provide more efficient training, thus 

faster training time. 

 

As with each ML paradigm, within reinforcement learning are several algorithms, each with 

varying strengths and weaknesses. For this software package, the Q-learning algorithm was 

chosen for two reasons: its ability to use deep learning models as the decision-making policy, and 

the recent successes of the algorithm's modern variants. Reinforcement learning is predicated on 

shaping the behaviour of an intelligent decision-making system. This system is called the 'policy'.

Q-learning is an algorithm to train this policy, however the policy itself can be another algorithm 

altogether. As the focus of this research is deep learning, the deep neural network was chosen as 

the decision-making policy, making this specific type of reinforcement learning algorithm, 'deep 
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Q-learning'. Furthermore, variations of the Q-learning algorithm, such as duelling Q-learning 

(Wang et al. 2015) and double Q-learning (Van Hasselt, Guez & Silver 2016) have been used to 

show beyond human level proficiency on narrow tasks. Q-learning has been successfully applied 

in game-playing tasks such as ATARI games (Mnih et al. 2013), the board game Go (Silver et al. 

2017), and even incredibly complex games like StarCraft II (Vinyals et al. 2019). Thus, toward 

the objective of providing a software package that allows architects to learn and apply deep 

reinforcement learning within Grasshopper, the deep Q-learning algorithm was chosen. 

 

For illustrative purposes, a toy example problem—using deep Q-learning to steer a car along a 

road network—was used to ground the development. For this problem, the car, represented as a 

rectangle in Grasshopper, will act as the agent, interacting with a road network, represented as a 

planar list of curves. For simplicity, the agent will be continuously propelled forward, rather than 

giving control of the speed to the algorithm (although the envisioned software package can be 

extended upon to include this). To avoid collision with the edges of the road, the agent’s 

immediate surroundings are inputted into the deep Q-network, to decide whether to turn left, right, 

or continue straight. 

 

Having decided that the agent and environment will persist in Grasshopper, and the deep Q-

learning algorithm will run in Python, a method for inter-process communication (IPC) and a data 

flow diagram (DFD) was required. IPC methods are operating system-specific approaches for the 

management and transfer of data between processes (an instance of a computing program), which 

was required for this project to send data between Grasshopper and Python. After a comparison 

between a selection of IPCs—sockets, pipes, and shared memory—ultimately, sockets were found 

to be the most appropriate IPC. Despite being slower than shared memory and pipes, sockets were 

chosen for its simplicity, control, and inbuilt synchronisation, as well as the potential for 

extending its capabilities for network sockets with little modification. The DFD to implement 

deep Q-learning in Grasshopper and Python through sockets is outlined below (figure 3). 
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The versions for Python and the important libraries are as follows: Python 3.6.8, tensorflow-gpu 

2.0.0-beta0, and Numpy 1.17.0. Below outlines the process by which each component of the 

software package was created.  

 

1. Initialise Server and Environment 

Before the training loop starts, both the local Python server and Grasshopper environment 

requires some initialisation steps. In the server, the neural network, acting as the decision-making 

policy, and the objects used to train it are defined and compiled.  

 

 

import tensorflow as tf 
 
... 
 
class PolicyNetwork(tf.keras.Model): 
    def __init__(self, neurons_per_hidden_layer, output_neurons): 
        super(PolicyNetwork, self).__init__() 
        self.hidden_layers = [] 
        for i, n in enumerate(neurons_per_hidden_layer): 
            self.hidden_layers.append( 
                tf.keras.layers.Dense( 

figure 3: Data flow diagram between Grasshopper and Python for deep Q-learning. 
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                    units=n, 
                    activation='relu', 
                    name=f'hidden{i+1}' 
                ) 
            ) 
        self.output_layer = tf.keras.layers.Dense( 
            units=output_neurons, 
            activation='sigmoid', 
            name='output' 
        ) 
    def call(self, x): 
        for layer in self.hidden_layers: 
            x = layer(x) 
        return self.output_layer(x) 
 
@tf.function 
def train_step(inputs, labels): 
    with tf.GradientTape() as tape: 
        loss = loss_object(labels, model(inputs)) 
        grad = tape.gradient(loss, model.trainable_varaibles) 
        optimiser.apply_gradients(zip(grad, model.trainable_variables)) 
        mean_loss(loss) 
 
... 
 
if __name__ == '__main__': 
 
    # Build Model 
    model = PolicyNetwork(NEURONS_PER_HIDDEN_LAYER, OUTPUT_DIMENSIONS) 
    loss_object = tf.keras.losses.MeanSquaredError() 
    optimiser   = tf.keras.optimizers.Adam() 
    mean_loss   = tf.keras.metrics.Mean() 

 

 

Next, there will be multiple occasions where a socket of differing ports will be bound to. Below 

are the functions in the server used for sending and receiving data to and from Grasshopper 

through sockets. 

 

 

import socket 
 
... 
 
def recv_from_gh(socket): 
    socket.listen() 
    conn, _ = socket.accept() 
    with conn: 
        message_byte = conn.recv(BYTES) 
    message_string = message_byte.decode() 
    return [float(value) for value in message_string.split()] 
 
def send_to_gh(socket, message): 
    socket.listen() 
    conn, _ = socket.accept() 
    with conn: 
        conn.send(str(message).encode()) 
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When the server initialises, and the training loop starts, the server binds to the first of two ports, 

and waits to receive the first inputs from Grasshopper. 

 

 

# Training Loop 
for _ in range(ITERATIONS): 
    with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s: 
        s.bind((HOST, PORT_1)) 
 
        ... 
 
        state_input = recv_from_gh(s) 

 

 

In terms of the initialisation required in Grasshopper, the environment (the road network) should 

be drawn and internalised in a Curves container, and the initial position of the agent (the 

rectangular car) should be stored within the Hoopsnake component. Hoopsnake is a community-

made component that subverts Grasshopper’s recursive loop avoidance check and is how the 

training loop will be managed (figure 4). 

 

 

 

figure 4: Initialising the Grasshopper environment. 
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2. Send State to Server (Grasshopper) 

At this stage, the training loop can commence. With the local server running and the initialisation 

steps completed, right clicking the Hoopsnake component and selecting ‘Loop’ will start training. 

The server has binded with the first port and is waiting on Grasshopper to send the first input 

state. The input state is how the agent perceives its environment and is the input for the neural 

network policy to decide upon an appropriate action. Determining what part of the problem can 

be an input state is a significant detail in framing a problem for deep Q-learning. This will 

ultimately determine how well the policy can generalise its learnt knowledge to unfamiliar 

environments. For this toy example, a series of lines that protrude from the front of the rectangle, 

representing sightlines, and their intersections with the road network will act as the input state to 

send to the neural network policy as inputs (figure 5). 

 

The intersection values (input state) should be sent to the server. For data to be sent through 

sockets, it first must be serialised into bytes. This is achieved by using Grasshopper components 

to convert the list of floating-point values to a string of separated values, to be encoded in the 

GH_CPython component (figure 6). 

 

figure 5: Sightlines from the car intersects with the road network to generate the input states. 
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After Grasshopper has sent the input state to the server, it stays bound to the first port, and waits 

to receive an action back from the server. 

 

3. Infer Action with Neural Network Policy (Python) 

As the server receives the input state from Grasshopper, the input state is fed into the neural 

network. After a feedforward pass, the resultant outputs from the neural network are a list of 

probability values, corresponding to each action (in the toy example, they are: ‘turn left’, ‘turn 

right’, or ‘don’t turn’). In theory, the action with the highest value is what the neural network 

policy decides as the best action to take. This is known as a ‘greedy policy’. As the agent starts 

to explore the environment, if it quickly finds a behaviour that yields moderate rewards, it would 

continue to exhibit that behaviour, in favour of a known reward, as opposed to the uncertainty it 

faces with other options. This can be detrimental if another pattern of behaviour with the potential 

to yield even greater rewards requires the agent to perform actions that they are uncertain on. In 

practice, the ‘greedy policy’ leads to suboptimal behaviour. One technique that has shown 

promising results is the introduction of randomness. The ‘epsilon-greedy policy’ is a controlled 

figure 6: Encoding input states and sending to Python server. 
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method to force the agent to occasionally perform random actions. Finding the balance between 

a greedy policy and randomness is known as the ‘exploration vs. exploitation’ problem. 

 

 

import random 

import numpy as np 
 
... 
 
def e_greedy_policy(q_estimates): 
    if random.random() <= epsilon: 
        return int(random.randint(0, OUTPUT_DIMENSIONS - 1)) 
    else: 
        return int(np.argmax(q_estimates)) 
 
... 
 
# Training Loop 
for _ in range(ITERATIONS): 
 
    ... 
 
    q_estimates = model(np.array([state_input])) 
    action = e_greedy_policy(q_estimates) 

 

 

Still bound to the first port, the action is sent back to Grasshopper through the same socket. After, 

using Python’s context managers, the server then unbinds with the first port, and binds to the 

second, awaiting the reward value for the action taken from Grasshopper. 

 

 

# Training Loop 
for _ in range(ITERATIONS): 
    with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s: 
 
        ... 
 
        send_to_gh(s, action) 
 
    with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s: 
        s.bind((HOST, PORT_2)) 
         
        ... 
 
        reward = recv_from_gh(s)[0] 
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4. Perform Action and Calculate Reward (Grasshopper) 

Previously, Grasshopper was left bound to the first socket, waiting for the action. Upon receiving 

the action from the server, it unbinds from the first port, and Grasshopper updates the position of 

the agent in accordance to the action (figure 7). 

 

In this new position, a reward should be calculated following a ‘reward function’. A reward 

function is an omnipotent, objective measure that quantifies the contemporaneous quality of the 

agent. Behind deciding on what the problem’s input states are, the reward function is another vital 

aspect of reinforcement learning. It is what ultimately directs the behaviour of the agent. For the 

toy example, the reward function follows three cumulative rules: add 0.1 for each iteration the car 

does not collide with the edge of the road, subtract 10 for a collision, and reset to 0 after a collision 

(figure 8). 

  

figure 7: Receiving action from server and performing the associated action. 
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Having calculated the reward value in accordance to the reward function, the reward is serialised, 

and then Grasshopper binds with the second port, to send the reward to the server. 

 

 

import socket 
 
... 
 
reward_string = str(reward) 
reward_byte = reward_string.encode() 
 
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: 
    s.connect((HOST, PORT_2)) 
    s.send(reward_byte) 

 

 

At this stage, there is nothing left for Grasshopper to do besides get ready for the next iteration. 

To do so, the new agent position is sent back into the Hoopsnake component, the input state is 

recalculated, and binding with first port, ready to send the next input state to the server. 

  

figure 8: Calculating the reward and sending that to the Python server. 
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5. Update Policy with Q-Learning (Python) 

Bound to the second port, the server should receive the reward value from Grasshopper. The way 

the toy problem is set up, when the agent (car) intersects with the environment (edge of road), the 

agent will be punished with a reduction of reward, and the position of the agent is reset. Upon 

every iteration, except those where the agent resets, the server should have four variables: the 

previous input state, the action decided by the policy for that input state, the reward for performing 

that action, and a new state. These four variables are stored into the memory of the deep Q-

learning algorithm as a memory sample, and acts as the training dataset for the deep Q-network. 

Below is how the server samples from its accumulating memory, alters the values in accordance 

to the reward, and trains the deep Q-network. 

 

 

# Training Loop 
for _ in range(ITERATIONS): 
 
    ... 
 
    # Store Memory Sample 
    memory_sample = [prev_state, action, reward, state_input] 
    memory.append(memory_sample) 
    if len(memory > MAX_MEMORY: 
        memory.pop(0) 
 
    # Sample Batch from Memory 
    if BATCH_SIZE > len(memory): 
        batch = random.sample(memory, len(memory)) 
    else: 
        batch = random.sample(memory, BATCH_SIZE) 
 
    # Predict Q-Values for Batch 
    qsa  = model(np.array([sample[0] for sample in batch])) 
    qsad = model(np.array([sample[3] for sample in batch])) 
 
    # Set Up Arrays for Training 
    x = np.zeros(shape=(len(batch), INPUT_DIMENSIONS)) 
    y = np.zeros(shape=(len(batch), OUTPUT_DIMENSIONS)) 
 
    for index, sample in enumerate(batch): 
        pre_st, actn, rwrd, nxt_st = sample[0], sample[1], sample[2], sample[3] 
        current_q = qsa[index] 
        current_q[actn] = ALPHA * (rwrd + GAMMA * np.max(qsad[index])) 
        x[index] = st_in 

y[index] = current_q
 
    # Train Model 
    train_step(x, y) 
 
    ... 
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After the deep Q-network has been trained for one iteration, the server reaches the end of the loop, 

and repeats the process by binding with the first port, awaiting Grasshopper to send the next state 

input. 

 

 

# Training Loop 

for _ in range(ITERATIONS): 
    with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s: 
        s.bind((HOST, PORT_1)) 
 
        ... 
 
        state_input = recv_from_gh(s) 

 

 

 

Application 

This software package, facilitating the learning and application of deep Q-learning within 

Grasshopper, acted as the basis for an educational module. The module was formulated as a two-

day intensive workshop, aimed at teaching architects with no prerequisite knowledge of machine 

learning the potential of reinforcement learning within the context of the built environment.  

 

The workshop, titled Deep Reinforcement Learning in Grasshopper: Using Deep Q-Networks to 

Train an Intelligent Agent to Act in a Grasshopper Environment, was first conducted during the 

24th international conference on Computer-Aided Architectural Design Research in Asia 

(CAADRIA) held in Wellington, New Zealand. The theme of the conference was “Intelligent and 

Informed”, which was “driven by the intention to take in aspects of machine intelligence, and a 

wide range of potential research that engages with the intelligent exploitation of computer-

mediated techniques in architecture” (Schnabel, Brown & Moleta 2019, p. vi). Sixteen students, 

researchers, and educators from nine different countries attended the workshop. Later, the 

workshop was conducted at the University of New South Wales for a selection of five 

undergraduate computational design students. And finally, the workshop is set to run during the 
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upcoming 37th international conference on Education and Research in Computer-Aided 

Architectural Design in Europe (eCAADe) held in Porto, Portugal. The theme of the conference 

is “Architecture in the Age of the Fourth Industrial Revolution”, provoking an inquiry into “the 

emerging opportunities and main threats to our discipline caused by the rise of intelligent agents” 

(eCAADe 2019). 

 

Reflection 

The described software package includes the fundamental requirements for the training of 

intelligent agents using deep Q-learning in Grasshopper. Contemporary research efforts that offer 

increased performance and efficiency, such as the previously mentioned Q-learning variants—

double Q-learning and dueling Q-learning—can very easily be combined with the package. 

However, it was decided that the unembellished version would be more amenable as an 

educational tool. 

 

During the workshops, often questioned was the necessity of communicating with a local Python 

server. Since the Grasshopper plugin, GH_CPython, was used to import sockets, why not also 

use GH_CPython to train the deep Q-network within Grasshopper? The answer stems from how 

Grasshopper resolves the flow of data. GH_CPython acts similarly to other components, meaning 

that the operations performed inside the component must completely resolve before any data is 

outputted. Thus, if a GH_CPython component was used to initialise a model and continue to run 

outside of (and in parallel to) the training loop, since the component is still running (and not 

resolving), the loop would not even start. If placed within the training loop, not only would it 

initialise the model at every iteration—effectively undoing the previous efforts of training—it 

would also import Tensorflow at every iteration (a large Python library, thus incredibly arduous 

to compute). As a result, the software package relies on the local Python server. 
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Another characteristic of Grasshopper, one that severely restrained the development of the 

software tool, was its inbuilt recursive loop avoidance check. Simply put, this is Grasshopper’s 

method for preventing a loop in the flow of data. Again, stemming from how the program works, 

a Grasshopper script acts as a blueprint for a series of computations. A loop is unfavourable in 

Grasshopper, as that blueprint would contain an infinitely long series of computations. There are 

methods for tricking Grasshopper into allowing a loop, such as the use of two Data Dam 

components wired up to some timers. However, this approach is inefficient, due to the replication 

of data, and relies on a delay rather than events. A more common work around is through the use 

of plugins, such as Hoopsnake. Hoopsnake allows for loops in Grasshopper by splitting the 

infinite series of computations at the point of the Hoopsnake component, allowing each loop to 

conduct the desired operations once, output a result that is fed back into the Hoopsnake 

component, which subsequently triggers the next iteration. As the time of writing, there are two 

other plugins that offer similar functionality, Loop and Anemone. Regardless of which method is 

used to facilitate recursion in Grasshopper, the method forces Grasshopper to overlook its single-

threaded graph logic. 

 

The reliance of a local Python server, in tandem with the substantial effort taken to subvert 

Grasshopper’s recursive loop avoidance check, begs the question, to what extent does the 

endeavour to shoehorn deep learning capabilities in familiar software contribute toward a greater 

adoption of deep learning in architecture? Do these highly specific and unique workarounds allow 

architects to learn the algorithm, or does it moreso ask them to learn the intricacies of a singular 

tool? This will be explored further in the following chapter, 10.1. Should the Architect Learn 

Machine Learning? 

 

Conclusion 

The goal of the chapter, founded from a scarcity of reinforcement learning in the AEC, was to 

develop a software package that provided architects the ability to learn about and train deep Q-
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networks in a familiar software environment. The resultant software package largely succeeded 

in that regard. However, its development also brought to light the uncertain value of these 

endeavours toward the long-term adoption of deep learning in the AEC. 
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Chapter 10. 

Considerations and Implications 

To combat the rising complexity of design problems and the prolific quantities of data, the 

research efforts throughout this body of work have been in the pursuit of a more intelligent field 

of architecture. With deep learning identified as the technology that could solve these issues, this 

research explored and developed strategies, tools, and pedagogies, to fuse the role of the architect 

and deep learning engineer, fostering the adoption of artificial intelligence-driven approaches. 

However, the specificity of the developed tools combined with the depth of knowledge required 

to productionise deep learning models brings into question the viability of combining the two 

roles. Further, simply understanding how to train models does not adequately encompass the 

exhaustive list of considerations and implications for applying deep learning. These 

considerations will be explored in this final chapter, which aims to: 

 

1. discuss the necessity for combining the role of the architect and the deep learning engineer, 

2. examine the often-overlooked implications for applying deep learning, and 

3. ask if deep learning is indeed intelligent. 

 

 

10.1. Should the Architect Learn Machine Learning 

Introduction 

The ambition to combine the architect and the deep learning engineer has directed the research 

objectives toward developing tools and creating modules to teach architects deep learning. 

However, the tools, developed and existing, that enables architects to train deep learning models 

in familiar software are often limited in either computational speed, interoperability, or control. 

These tools are aimed at the exploration of deep learning through exploratory research or 
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feasibility prototyping, rather than offering the functions needed to realistically train high 

performing models on complex scenarios. As a result, the educational modules that aim to teach 

these highly specific and niche tools are forced into teaching skills applicable only to that tool, 

rather than providing transferable skills to developing deep learning models. This then begs the 

question: are all these tools, those developed and taught in this body of work as well as the four 

plugins assessed in chapter 7.3. A Comparison of Machine Learning Tools for Architects, truly 

an effective method toward the objective of a more intelligent field of architecture? 

 

Balancing Simplicity and Control 

The tools taught in chapter 9.1. Applying Active Learning Pedagogies for Teaching 

Backpropagation and developed in chapter 9.2. A Tool for Deep Reinforcement Learning in 

Grasshopper have shown to be effective methods for the promotion and exploration of deep 

learning. They offer a method for AEC practitioners to understand the capabilities of deep 

learning algorithms, the types of problems they can solve, and the efforts required to train models. 

However, all tools exist on a spectrum—with abstracted simplicity on one end and complete 

control on the other—that determines the tools functionality, usability, and flexibility. 

 

Reflecting on the backpropagation algorithm (Khean et at. 2018), although it offers greater 

functionality than the tools assessed in chapter 7.3. A Comparison of Machine Learning Tools for 

Architects, all operations were created using Grasshopper components. The motivation for this 

was to demystify the complexities of the backpropagation algorithm, by breaking it down to the 

simplest mathematical and computational operations. Encoding these base operations into 

Grasshopper components allows AEC practitioners familiar with Grasshopper to understand 

what is really happening inside the once-cryptic mass of matrices. Furthermore, Grasshopper’s 

graph logic style of computation provides an interoperability to inspect data at any stage of the 

process. However, despite the fact that it is fully capable of training deep learning models, the 

benefits gained from interoperability comes with the detriment of severely decreased efficiency. 
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Combined with its limited flexibility to control large quantities of data and cumbersome usability, 

the tool was never intended to legitimately train deep learning models. 

 

In response to the lessons learnt above, the deep Q-learning tool developed in chapter 9.2. aimed 

to facilitate the training of deep learning models, while maintaining interoperability and an 

introspective quality. As such, a machine learning library, designed for speed and efficiency, was 

utilised to handle the majority of the deep learning computation. Furthermore, the machine 

learning library offers the ability to export the model once trained, allowing models to be reused. 

However, the want for faster computation, forced the use of software that is less familiar to 

architects, and that limits the potential to inspect inner operations, by hiding complexity behind a 

veil of “it just works”. And despite the flexibility of the tool, where different problem domains 

and further algorithms can be added, its usability requires the architect to have a considerable 

grasp of the software, alluding to the learning of a tool rather than the underlying principles of 

deep reinforcement learning. 

 

Although these tools allow for the exploration of deep learning in the AEC, they are too 

cumbersome to be used for training high performing deep learning models, as evidenced by the 

lengths taken in their development. Granted, the original intention of these tools were to be used 

as educational resources. Rather than its use for productionising models, these tools were designed 

with explainability, clarity, and simplicity as key pillars. 

 

Algorithms Are Not Enough 

As evidenced by chapter 9.1. Applying Active Learning Pedagogies for Teaching 

Backpropagation, a resource-based pedagogy proved an effective method for teaching deep

learning within the AEC. However, although these tools, as well as those covered in chapter 7.3. 

A Comparison of Machine Learning Tools for Architects, contribute to the number of ways deep 

learning can be applied, they all focus on different algorithms. There is so little overlap in the 
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machine learning algorithms offered by these tools, that a comprehensive understanding of the 

ML field requires the learner to adjust to the quirks and nuances of each tool. 

 

However, the importance placed on what algorithms are offered reinforces a detrimental “silver 

bullet” mentality. Too often have deep learning beginners assumed that the use of a “better” 

algorithm will solve their problems and yield better performing models. This may be true to an 

extent, however, there are a range of techniques that deep learning practitioners use, that simply 

aren’t provided by these aforementioned tools, thus preventing the architect from training very 

high performing models on complex problems. 

 

Bart Baesens, author of Analytics in a Big Data World, suggests that in building a statistical model 

“the most time-consuming step is the data selection and preprocessing step, [which] usually takes 

around 80% of the total efforts” (2014, p. 5). Disregarding the developed deep Q-learning 

software package, which does not require any training data, all other tools that offer the 

application of deep learning within Grasshopper offers no data processing or feature 

engineering/selection components. These tools assume that the imputed dataset is ready to be used 

for training, effectively skipping “80% of the total efforts”. This further reinforces the “silver 

bullet” mentality, as it implies that by plugging data into their components, it will readily return 

insightful meaning. Even after raw data has been adequately preprocessed for training, the act of 

tweaking hyperparameters (the variables that determines the architecture of the deep learning 

model, the nuances of the learning algorithm, and etc.), a vital step, is limited with the simplicity 

of these tools. There are a plethora of other techniques used to achieve high performing models, 

such as cross validation, autoML, and ensembles. The shallow emphasis these tools place on 

algorithms, rather than offering a deep level of control, is reflected in the performance of resulting 

models in complex scenarios. 
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By training architects to use tools that abstract the functionality needed to train high performing 

deep learning models, architects can learn the basics of the algorithms, but would be hard-pressed 

to productionise any resultant models. There is benefit with learning the fundamentals of machine 

learning, which can be transferred to more capable machine learning libraries, however, what is 

the value of teaching architects through the use of these experimental tools for a more intelligent 

architecture through deep learning? 

 

The Architect and the Engineer 

The objective of this chapter was not to bemoan the avenues for deep learning in the AEC, but to 

provide a realistic perspective for the impact of these tools. A majority of architects wanting to 

use such tools would be inherently disadvantaged when attempting to train high performance 

models needed for complex problems, compared to the powerful libraries available to deep 

learning engineers. The depth of understanding required to deploy production-ready models 

requires an inordinate amount of knowledge from a broad range of mathematical and computer 

science topics, usually beyond that of the architectural curriculum. This disparity will inevitably 

lead to poorer quality models, disenfranchising the AEC upon seeing poor performance. Thus, to 

more effectively adopt deep learning in the AEC, accurate and reliable models built by deep 

learning engineers would further the field more than architects experimenting to limited 

capacities. Then, what is the point of these tools? 

 

Charles Babbage, inventor of computational machines powered by punch cards, was only able to 

conceive it through a combination of his knowledge and the silk-weaving industry. Similarly, 

Henry Ford leveraged his knowledge of sewing machines and meat packing plants to invent the 

car manufacturing assembly line (Teodoridis, Bikard & Vakili 2018). Neither were experts in 

silk-weaving, sewing machines, or meat packing, but a high-level understanding provided them 

with the insight of when to apply those techniques. Likewise, architects with a high-level 

understanding of deep learning algorithms—what types of problems each algorithm was designed 
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to solve, the training data that is required, and the expected outcomes—allows them to identify 

when a problem can be solved through deep learning. 

 

Thus, the objective of more intelligent architecture field through the adoption of deep learning, is 

less so about the fusing of the architect and the ML engineer, and more so an exposure of 

architects to these tools and algorithms, allowing an understanding of when best to apply it. 

Identifying when deep learning should be used, and then having the foresight to then approach 

external experts, is the more impactful approach toward a more intelligent AEC. And, the only 

way to gain this high-level understanding is by first bridging that gap through the exploration of 

these tools. 

 

 

10.2. Considerations for the Application of Deep Learning in Architecture 

Introduction 

Upon deciding for deep learning to be applied on a problem within the AEC, it is imperative for 

the designer to thoroughly consider the implications. Almost all deep learning algorithms are 

treated as ‘black box’ algorithms, a mathematical model that lacks interpretability and 

explainability. Thus, when applying neural networks, expect answers without justification. 

Coming to terms with this fact, to further minimise the potential for negative repercussions in the 

application of deep learning in the built environment, there are three heuristics that should be 

adhered to: design for failure; garbage in, garbage out; and intelligence ages. 

 

Failure 

Deep learning has a fatal flaw: “they sometimes provide wrong answers that they are confident 

are right” (Agrawal, Gans & Goldfarb 2018, p. 61). This is known as the false positive and is 

often incredibly difficult to detect. No matter how elaborate a system of safety nets designed to 
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catch these failures, ultimately, all models are simplifications, and thus are unable to capture every 

nuance of our stochastic world. Failure is inevitable.  

 

In conjunction, as identified in chapter 7.2. Factors that Affect the Adoption of Machine Learning, 

ML models heavily favour efficiency over accuracy—a contributing factor to the resistance of 

engineers. Once trained, although this efficiency has the potential to speed up the time it takes for 

computationally onerous tasks by orders of magnitude, what the ML model learns will always 

only ever be an approximation. This might be tolerable in some situations, especially for problems 

that are itself only approximations (i.e. fluid dynamics simulations). However, if deep learning 

was applied to problems with small margins for error, at best, the designer would appear foolish, 

and at worst, quite literally, lives could be at stake. 

 

In lieu of a 100% accurate model, it might be prudent to adopt Domingos’ attitude toward 

statistical models: “all models are wrong, but some are useful” (2015, p. 149). By expecting 

failure, domain knowledge can be leveraged to understand the tolerance of the problem, and an 

informed decision can be made as to whether or not deep learning is an apt approach. "When the 

stakes are high, accuracy is what matters most" (Fry 2018, p. 84). 

 

In the age of deep learning, algorithms are no longer simply right or wrong. In fact, some deep 

learning algorithms offer no avenue to gauge a measure of accuracy. However, of all the fields of 

knowledge, the built environment, and more specifically architectural design, is one of the few 

disciplines that doesn't have a definitive solution to right or wrong. The subjective nature of 

architecture and design lends itself to the application of these imprecise systems, and to the ability 

to have different interpretations. Ultimately, deep learning is best applied to processes that are 

lengthy and have outcomes subject to subjectivity. 
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Data 

One of the two factors that are commonly attributed as the reason for deep learning’s success is 

the increasing number of ways to measure aspects of our world, combined with our incessance to 

record those measurements. Because of this, a common pitfall for deep learning engineers is an 

over-emphasis on the quantity of training data. Although prolific quantities of data have propelled 

deep learning beyond the achievements of other ML approaches, those vast quantities come with 

a cost. Big data is costly to store, manage, and move, takes longer to train models with, and have 

a high potential for data pollution. Furthermore, datasets in the thousands, and at times millions, 

simply don’t exist within the targeted problem domain.  

 

Rather than an insistence on quantity, those applying deep learning should offer a similar 

insistence to data quality. Senior program manager at Microsoft, George Krasadakis, suggests that 

projects that are data-intensive, encompassing a majority of ML projects, “have a single point of 

failure: data quality” (2017). Particularly within the AEC industry, as identified in chapter 7.1. 

The State of Machine Learning Research in the Architectural Industry, one of the major risks 

identified by those applying machine learning is data collection. The data collection process is 

unlikely to ever be perfect, as imprecise measuring implements and poorly worded survey 

questions plague masses of datasets. However, understanding what determines a quality dataset 

will aid in its acquisition, thus aid in the training and implementation of deep learning algorithms.  

 

The exact attributes that defines high quality datasets are debated, and different problem domains 

call for an emphasis of some and a downplaying of others. According to Dan Ortega’s 2017 

article, Seven Characteristics that Define Quality Data, accuracy, validity, reliability, timeliness, 

completeness, availability, and uniqueness, are what demonstrates a quality dataset.

 

The call for a focus on quality over quantity requires a mentality shift. Rather than the current 

attitude of hoarding any and all data in hopes of a prospective usefulness, instead place focus on 
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identifying reliable sources of data, capturing a profile of the data, and implementing data 

validation techniques. 

 

Longevity 

All data is historical. The act of measuring, storing, and retrieving data immediate dates it. Thus, 

in the context of statistical models, we ask them to predict future outcomes, from a set of present 

input data, based on its understanding of the past. Often, we see data as an abstraction of the real 

world. “Meanwhile, out in the world, these numbers have consequences” (Broussard 2018, p. 

114). Exacerbated with the stochastic and ever-changing nature of the world, the longer models 

are in service, the more inaccurate their understanding of the world becomes. This is known as 

‘conceptual drift’. 

 

In a 2018 article, Lessons Learned Turning Machine Learning Models into Real Products and 

Services, David Talby asserts that "models degrade in accuracy as soon as they are put in 

production" (2018). ML is inherently different to other types of software and should be treated as 

such. The assumption that ML models get better over time is often misconstrued with the 

improvements gained during the learning process, and not when the model is live (that is, unless 

there are systems in place to continually collect new data and train the model).  

 

Tably notes the difficulty of maintaining accurate models by stating that, “unlike most things, it’s 

easier to get started with machine learning than it is to keep going with it… the hardest part of 

machine learning today is deploying and maintaining accurate models” (2018). However, there 

are techniques to help deploy, monitor, and uphold the accuracy of ML models: such as periodic 

evaluation, which requires a feedback mechanism measuring performance and indicating when

retraining is needed, or continual learning, where the model is always learning. 
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Whichever method is employed, the deployment of ML models should be approached differently 

than that of other software. Upon deciding that deep learning is suitable for the problem domain, 

consider the longevity of the model, and the systems in place to reduce the effects of conceptual 

drift. 

 

Conclusion 

The proliferation of deep learning has provided built environment academics and practitioners 

with a new suite of powerful tools. However, the combination of a relatively young field and the 

rapid speed at which the field is moving, has led to deep learning's application in ill-fitting 

problem domains. Simply understanding how to apply deep learning does not adequately equip 

ML engineers with the ability to mitigate the host of negative implications. This chapter highlights 

three considerations for minimising the negative impact of deep learning models in the context of 

the built environment. 

 

 

10.3. Is Deep Learning Really Intelligence? 

Introduction 

Throughout this body of research, the overarching objective was to explore and develop strategies, 

tools, and pedagogies to facilitate greater intelligence in the architecture industry. And as deep 

learning was identified as the technology that currently embodies artificial intelligence, research 

efforts have targeted the barriers, tools, and education for the adoption of deep learning. However, 

as concluded in chapter 2.2. Reflecting on Intelligence, the definition of intelligence is one that 

changes as we come to understand its previous exemplars. Thus, can we assume that, as we 

develop new technology that outperforms deep learning, our ideals of intelligence surpasses deep 

learning’s capabilities? In the future, would we still consider deep learning as “artificial 

intelligence”? This treatise leverages the knowledge gained from two years of working with deep 

learning—from a mathematical and computational perspective to a more conceptual and 
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philosophical one—in an attempt to discern if deep learning is indeed intelligent, under a 

definition of intelligence that is unaffected by the wax and wanes of technological progress. 

 

Definitions of Intelligence 

In 2007, Shane Legg and Marcus Hutter collated over 70 definitions of intelligence from artificial 

intelligence researchers, psychologists, and collective beliefs. At the time, Legg and Hutter 

claimed that the definitions presented are “the largest and most well referenced collection there 

is” (2007, p. 1). In their concluding remarks, upon reviewing all definitions and combining the 

reoccuring attributes, they developed the following definition of intelligence: “intelligence 

measures an agent’s ability to achieve goals in a wide range of environments” (Legg & Hutter 

2007, p. 9). The three attributes that formed this definition are explored through the lens of deep 

learning below. 

 

Is Deep Learning… Contextual? 

The first and third of Legg and Hutter’s attributes of intelligence suggests that intelligence is a 

“property that an agent has as it interacts with its environment” and depends on “how the agent is 

able to adapt to different objectives and environments” (2007, p. 9). This is reinforced by Ben 

Goertzel’s The Hidden Pattern: A Patternist Philosophy of Mind, which states that intelligence is 

“the ability to achieve complex goals in complex environments” (2006, p. 198), and by Pei 

Wang’s On the Working Definition of Intelligence, which states that “intelligence is the ability 

for an information processing system to adapt to its environment with insufficient knowledge and 

resources” (1995, p. 5). 

 

Immediately, the language used makes it easy to classify one of the three schools of ML, 

reinforcement learning, as intelligent. Within reinforcement learning, an agent develops 

behaviours through interactions with its environment. The agent adapts to the environment 

through the development of behaviours, a process predicated on the maximisation of a reward 
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function. By these characteristics of intelligence, reinforcement learning agents would be 

considered intelligent. 

 

Conversely, when one thinks of supervised and unsupervised learning, the environment wherein 

the agent interacts is often misattributed to the real world. Under this misattribution, the narrow 

and insular nature of these algorithms, necessitating retraining under any change of context or 

conceptual drift, would thus exclude these two schools from being considered intelligent. This is 

a misconception. The environment that these algorithms interact with and adapt to is not the real 

world, but the data used to train it. Within the training of supervised and unsupervised deep 

learning algorithms, the interaction with the environment equates to the feedforward pass, and the 

adaptation of the agent is the learning algorithm, backpropagation. Under this understanding of 

agent and environment, all deep learning algorithms exhibit the ability to interact and adapt to 

their respective environments, thus intelligent. 

 

A similarity found in Legg and Hutter’s first and third attributes for intelligence is the reliance on 

an environment. This implies that for an agent to be considered intelligent, it must perform 

intelligent acts (interactions and adaptation) on or within an environment. Ricardo Gudwin even 

asserts that “intelligent systems cannot be considered separately from the environment” (2000, p. 

2080). Which raises the question: can something be considered intelligent without an 

environment? 

 

Is Deep Learning… Observed? 

The second characteristic that Legg and Hutter attributes to intelligence is an “agent’s ability to 

succeed with respect to some goal or objective” (2007, p. 9). This notion is reinforced by John

McCarthy’s What is Artificial Intelligence?, which suggests that “intelligence is the 

computational part of the ability to achieve goals in the world” (2007), and by Ray Kurzweil’s 
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The Age of Spiritual Machines, which claims that “intelligence is the ability to use optimally 

limited resources to achieve goals” (1999, p. 68). 

 

The goal in training deep learning algorithms can be boiled down to how well the model can 

minimise error. To reiterate, deep learning models learn through a feedforward pass that captures 

the current state of its understanding, the outputs of which are used to calculate how wrong the 

model is (the error), which is then used for tweaking the model through backpropagation. The 

method by which error is calculated, the error function, can be accompanied by a measure of 

accuracy for supervised classification problems, and validation error, which assesses how well 

the model is able to generalise. Regardless of what function is used, how successful 

backpropagation is at reducing the error, or increasing accuracy, is indicative of the intelligence 

of the model. 

 

Despite how these measures appear to be contained within the intelligent agent (the deep learning 

model), they are not needed for the agent to exhibit intelligence. For the agent to show 

intelligence, all that’s required is a feedforward pass. Calculations of error and accuracy are tools 

for the agent to improve and are no longer required when the model is in use. Thus, the method 

to determine whether the agent achieves its goal, is external to the agent. Intelligence is predicated 

on the existence of an external observer. Then, without an observer, can an agent be intelligent? 

 

Intelligence is Relative 

In accordance with Leg and Hutter’s characteristics for intelligence, deep learning is intelligent. 

Deep learning algorithms can interact with and adapt to an environment and is capable of 

achieving its goals. Thus, the efforts to adopt deep learning within the AEC industry greatly

contributes to a more intelligent field. 
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But, with that in mind, it is almost arbitrary whether a technology is or is not intelligent, because 

intelligence is ultimately relative. What we consider as intelligent relies too heavily on context; 

the environment and the observer. If an agent was placed within an environment that allows it to 

achieve its goals faster, more accurately, or more efficiently, it would appear more intelligent than 

an environment that is more hostile. Equally, if the observer understands less of the world, 

intelligent agents might perform feats perceived as magic, whereas as an observer approaches 

omniscience, intelligence become benal. This is the reason why the technology we see as 

intelligent changes through time. We, as the observer, further our understanding, thus, the 

technology that exhibits intelligence, would seem less so as we come to understand more. 
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Chapter 11. 

Conclusion 

The motivation behind this body of research was identified to be the rising complexity of design 

problems in a world where domain experts and programmers cannot sufficiently develop methods 

to comprehend the vast quantities of data. As such, the overarching objective was to explore and 

develop strategies, tools, and pedagogies to promote and explore the integration of deep learning 

in the architectural profession. 

 

To comprehend the current state of machine learning within the architecture, engineering, and 

construction field, this research explored how the industry has invested into machine learning-

powered exploratory research and feasibility prototyping. Furthermore, this research conducted a 

study to identify the socio-economic barriers that hinders the adoption of machine learning in the 

industry and compared a set of tools that aimed to introduce machine learning methods to 

architectural software. It was found that the comparatively slow adoption of machine learning in 

the AEC industry is predominantly due to the high-technical barrier to entry; a problem the 

aforementioned tools aimed to resolve. This portion of the research highlighted the need to 

combine the roles of the architect and the deep learning engineer, through the use of deep learning 

tools and pedagogies, within the architectural curriculum.  

 

Toward the goal of fusing the roles of the architect and the deep learning engineer, this research 

explored the application and development of deep learning tools within architectural software. 

Leveraging a Grasshopper tool developed prior to this research, and through a student-centred 

and resource-based pedagogy, it was found that the students struggled to find a reason to apply 

such techniques. Further, a separate software package, designed to teach architects deep 

reinforcement learning and in what scenarios to apply it, was the central resource used in several 

workshops. And although both tools and pedagogies were received well overall, it was concluded 
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that the complexity and depth of knowledge needed to adequately train deep learning models for 

production will often be beyond the skillset of the architect. 

 

This provoked the final section of this research, which asked whether the aforementioned 

objective of fusing the architect and the deep learning engineer will truly aid in the integration of 

deep learning in the AEC. This section concluded that it would be unlikely for the architect to 

develop deep learning models on par with those created by dedicated deep learning engineers, 

and that a reliance on external experts would better contribute to the overarching objective by 

developing highly accurate and reliable models. This does not invalidate the tools and pedagogies 

explored, as there is still a need for the architect to understand these algorithms at a high level. 

The explored tools and pedagogies has the potential to teach architects the types of problems deep 

learning algorithms can solve, the types of data required for training deep learning models, and 

the expected results—which arms architects with the knowledge of when to apply deep learning. 

This approach, where architects have the conceptual understanding of knowing when to apply 

deep learning on a problem, would better facilitate the integration of deep learning in the AEC, 

galvanising a greater architectural artificial intelligence. 

  



 

93 
 

References 

Agrawal, A, Gans, J & Goldfarb, A 2018, Prediction Machines: The Simple Economics of 

Artificial Intelligence, Harvard Business Review Press, United States of America. 

Alexander, C 1964, Notes on the Synthesis of Form, Harvard University Press, United States of 

America. 

Alexander, C 1968, ‘Systems Generating Systems’, Architectural Design, vol. 38, pp. 605-610. 

Alexander, C, Ishikawa, S & Silverstein, M 1977, A Pattern Language: Towns, Buildings, 

Construction, Oxford University Press, United States of America. 

Basesens, B 2014, Analytics in a Big Data World: The Essential Guide to Data Science and its 

Applications, John Wiley & Sons, United States of America. 

Bostrom, N 2014, Superintelligence: Paths, Dangers, Strategies, Oxford University Press, 

United Kingdom. 

Broussard, M 2018, Artificial Unintelligence: How Computers Misunderstand the World, The 

MIT Press, United States of America. 

Brynjolfsson, E 2013, The Key to Growth? Race with the Machines, TED talk, accessed 24 July 

2019, 

<https://www.ted.com/talks/erik_brynjolfsson_the_key_to_growth_race_em_with_em_the_

machines>. 

Brynjolfsson, E & McAfee, A 2014, The Second Machine Age: Work, Progress, and Prosperity 

in a Time of Brilliant Technologies, W. W. Norton & Company, United States of America. 

Buchanan, BG 2005, ‘A (Very) Brief History of Artificial Intelligence’, AI Magazine, vol. 26, 

no. 4, pp. 53-60. 

Cao, R, Fukuda, T & Yabuki, N 2019, ‘Quantifying Visual Environment by Semantic 

Segmentation Using Deep Learning: A prototype for Sky View Factor’, Proceedings of the 

24th CAADRIA Conference, vol. 2, pp. 623-632. 

Carpo, M 2016, The Second Digital Turn, keynote lecture, accessed 6 June 2018, 

<https://taubmancollege.umich.edu/events/2016/10/29/lecture-mario-carpo-acadia-

conference-keynote-second-digital-turn>. 

Carpo, M 2017, The Second Digital Turn: Design Beyond Intelligence, The MIT Press, United 

States of America. 



 

94 
 

Cave, S & Dihal, K 2018, ‘Ancient Dreams of Intelligent Machines: 3,000 Years of Robots’, 

Nature, vol. 559, no. 7715, pp. 473-475, DOI:10.1038/d41586-018-05773-y. 

CHAM 2017, RhinoCFD, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/rhinocfd>. 

Chen, Y, Argentinis, JD & Weber, G 2016, ‘IBM Watson: How Cognitive Computing Can Be 

Applied to Big Data Challenges in Life Sciences Research’, Clinical Therapeutics, vol. 38, 

no. 3, pp. 688-701. 

Chomsky, N 2005, Language and Mind, Cambridge University Press, United States of America. 

Clark, D 1997, ‘Deep Thoughts on Deep Blue’, IEEE Expert: Intelligence Systems and Their 

Applications, vol. 12, no. 4, pp. 31. 

Costa, A & Nannicini, G 2018, ‘RBFOpt: An Open-Source Library for Black-Box Optimization 

with Costly Function Evaluations’, Mathematical Programming Computation, vol. 10, no. 4, 

pp. 597-629. 

Crevier, D 1993, AI: The Tumultuous History of the Search for Artificial Intelligence, Basic 

Books, United States of America. 

Cross, N 1999, ‘Natural Intelligence in Design’, Design Studies, vol. 20, no. 1, pp. 25-39, DOI: 

10.1016/S0142-694X(98)00026-X. 

Davenport, TH 2014, Big Data at Work: Dispelling the Myths, Uncovering the Opportunities, 

Harvard Business Review Press, United States of America. 

Deb, K, Pratap, A, Agarwal, S & Meyarivan T 2002, ‘A Fast and Elitist Multiobjective Genetic 

Algorithm: NSGA-II’, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 

182-197. 

Descartes, R 1911, Meditations on First Philosophy, e-book, translated from French by E S 

Haldane, accessed 9 July 2019, 

<http://selfpace.uconn.edu/class/percep/DescartesMeditations.pdf>. 

Descartes, R 2007, Discourse on the Method of Rightly Conducting one's Reason and Seeking 

Truth in the Sciences, e-book, translated from French by J Bennett, accessed 8 July 2019, 

<https://www.earlymoderntexts.com/assets/pdfs/descartes1637.pdf>. 

Diamond, J 2017, Guns, Germs, and Steel: A Short History of Everybody for the Last 13,000 

Years, Penguin Random House, United Kingdom. 



 

95 
 

Domingos, P 2012, ‘A Few Useful Things to Know About Machine Learning’, Communications 

of the ACM, vol. 55, no. 10, pp. 78-87. 

Domingos, P 2015, The Master Algorithm: How the Quest for the Ultimate Learning Machine 

Will Remake Our World, Basic Books, United States of America. 

eCAADe 2019, Architecture in the Age of the Fourth Industrial Revolution, eCAADe, accessed 

23 August 2019, <https://ecaadesigradi2019.arq.up.pt/page/theme/>. 

Fogel, DB 2006, Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence, John Wiley & Sons, United States of America. 

Fox, D 2011, ‘The Limits of Intelligence’, Scientific American, vol. 305, no. 1, pp. 36-43. 

Fry, H 2018, Hello World: How to Be Human in the Age of the Machine, Doubleday, United 

Kingdom. 

Fukuda, T, Kuwamuro, Y & Yabuli, N 2017, ‘Optical Integrity of Diminished Reality Using 

Deep Learning’, Proceedings of the 35th eCAADe Conference, vol. 1, pp. 241-250. 

Gladwell, M 2008, Outliers: The Story of Success, Back Bay Books, United States of America. 

Goertzel, B 2006, The Hidden Pattern: A Patternist Philosophy of Mind, Brown Walker Press, 

United States of America. 

Good, IJ 1965, ‘Speculations Concerning the First Ultraintelligent Machine’, Advances in 

Computers, vol. 6, pp. 31-88. 

Greco, L 2015, Dodo, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/dodo>. 

Gudwin, RR 2000, ‘Evaluating Intelligence: A Computational Semiotics Perspective’, IEEE 

International Conference on Systems, Man and Cybernetics, pp. 2080-2085. 

Hall, BH & Khan B 2003, ‘Adoption of New Technology’, New Economy Handbook, Academic 

Press, DOI: 10.3386/w9730. 

Haugeland, J 1985, Artificial Intelligence: The Very Idea, MIT Press, United States of America. 

He, K, Zhang, X, Ren, S & Sun, J 2015, ‘Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification’, Proceedings of the IEEE International 

Conference on Computer Vision, pp. 1026-1034. 



 

96 
 

Heaton, J 2014, org.encog.engine.network.activation, Encog Core 3.3.0 API, accessed 19 July 

2019, <http://heatonresearch-site.s3-website-us-east-1.amazonaws.com/javadoc/encog-

3.3/overview-summary.html>. 

Hinton, GE, Osindero, S & Teh, YW 2006, ‘A Fast Learning Algorithm for Deep Belief 

Networks’, Neural Computation, vol. 18, no. 8, pp. 1527-1554. 

Hobbes, T 1969, De Corpore, e-book, translated from Latin by Sir B W Molesworth, accessed 9 

July 2019, 

<https://www.humanities.mcmaster.ca/~rarthur/phil4A03/thomas_hobbes_the_english_w.pd

f>. 

Homer 2009, The Iliad, translated from Ancient Greek by A S Kline, Poetry in Translation. 

Karpathy, A 2019, A Recipe for Training Neural Networks, Andrej Karpathy Blog, accessed 21 

August 2019, <http://karpathy.github.io/2019/04/25/recipe/>. 

Karamba3D 2014, Karamba3D, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/karamba3d>. 

Karoji, G, Hotta, K, Hotta, A & Ikeda, Y 2019, ‘Pedestrian Dynamic behaviour Modelling’, 

Proceedings of the 24th CAADRIA Conference, vol. 1, pp. 281-290. 

Kępczyńska-Walczak, A 2018, ‘Theme: Computing for a Better Tomorrow’, Proceedings of the 

36th eCAADe Conference, vol. 1, pp. v-vi. 

Khean, N, Kim, L, Martinez, J, Doherty, B, Fabbri, A, Gardner, N & Haeusler, MH 2018, ‘The 

Introspection of Deep Neural Networks: Towards Illuminating the Black Box’, Proceedings 

of the 23rd CAADRIA Conference, vol. 2, pp. 237-246. 

Krasadakis, G 2017, Data Quality in the Era of A.I., freeCodeCamp, accessed 24 August 2019, 

<https://www.freecodecamp.org/news/data-quality-in-the-era-of-a-i-d8e398a91bef/>. 

Krizhevsky, A, Sutskever, I & Hinton, GE 2012, ‘ImageNet Classification with Deep 

Convolutional Neural Networks’, Advances in Neural Information Processing Systems, pp. 

1097-1105. 

Kurzweil, R 1999, The Age of Spiritual Machines: When Computers Exceed Human 

Intelligence, Penguin, United States of America. 



 

97 
 

Lenat, DB, Guha, R, Pittman, K, Pratt, D & Shepherd, M 1990, ‘Cyc: Toward Programs with 

Common Sense’, Communications of the Association for Computing Machinery, vol. 33, no. 

8, pp. 30-50. 

Linnainmaa, S 1970, ‘The representation of the cumulative rounding error of an algorithm as a 

Taylor expansion of the local rounding errors’, Master's thesis, University of Helsinki. 

Luo, D, Wang, J & Xu, W 2018, ‘Applied Automatic Machine Learning Process for Material 

Computation’, Proceedings of the 36th eCAADe Conference, vol. 1, pp. 109-118. 

McAfee, A & Brynjolfsson, E 2017, Machine | Platform | Crowd: Harnessing Our Digital 

Future, W. W. Norton & Company, United States of America. 

McCarthy, J 1997, AI as Sport’, Science, vol. 276, no. 5318, pp. 1518-1519, 

DOI:10.1126/science.276.5318.1518. 

McCarthy, J 2007, What is Artificial Intelligence? accessed 24 August 2019, <http://www-

formal.stanford.edu/jmc/whatisai/node1.html>. 

McCulloch, WS & Pitts, WH 1943, ‘A Logical Calculus of the Ideas Immanent in Nervous 

Activity’, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133. 

Minsky, M & Papert, S 1969, Perceptrons: An Introduction to Computational Geometry, The 

MIT Press, United States of America. 

Mnih, V, Kavukcuoglu, K, Silver, D, Graves, A, Antonoglou, I, Wierstra, D & Riedmiller, M 

2013, ‘Playing ATARI with Deep Reinforcement Learning’, arXiv preprint 

arXiv:1312.5602. 

Nath, R 2009, Philosophy of Artificial Intelligence: A Critique of the Mechanistic Theory of 

Mind, Universal Publishers, United States of America. 

Negroponte, N 1969, ‘Toward a Theory of Architecture Machines’, Journal of Architectural 

Education, vol. 23, no. 2, pp. 9-12. 

Negroponte, N 1970, The Architecture Machine, The MIT Press, United States of America. 

Ng, A 2013, Machine Learning an AI via Brain Simulations, accessed 21 August 2019, 

<http://ai.stanford.edu/~ang/slides/DeepLearning-Mar2013.pptx>. 

Ng, JMY, Khean, N, Madden, D, Fabbri, A, Gardner, N, Haeulser, MH & Zavoleas, Y 2019, 

‘Optimising Image Classification: Implementation of Convolutional Neural Network 

Algorithms to Distinguish Between Plans and Sections within the Architectural, Engineering 



 

98 
 

and Construction (AEC) Industry’, Proceedings of the 24th CAADRIA Conference, vol. 2, 

pp. 795-804. 

Ortega, D 2017, Seven Characteristics that Define Quality Data, Blazent, accessed 24 August 

2019, <https://www.blazent.com/seven-characteristics-define-quality-data/>. 

Papasotiriou, T 2019, ‘Identifying the Landscape of Machine Learning-Aided Architectural 

Design: A Term Clustering and Scientometrics Study’, Proceedings of the 24th CAADRIA 

Conference, vol. 2, pp. 815-824. 

Proving Ground 2017, Lunchbox, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/lunchbox>. 

Rosenblatt, F 1958, ‘The Perceptron: A probabilistic Model for Information Storage and 

Organization in the Brain’, Psychological Review, vol. 65, no. 6, pp. 386-408. 

Roudsari, MS 2018, Ladybug Tools, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/ladybug-tools>. 

Rumelhart, DE, Hinton, GE & Williams, RJ 1986, ‘Learning Representations by Back-

propagating Errors’, Nature, vol. 323, no. 6088, pp. 533-536. 

Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla, 

A, Bernstein, M, Berg, AC & Fei-Fei, L 2015, ‘ImageNet Large Scale Visual Recognition 

Challenge’, International Journal of Computer Vision, vol. 155, no. 3, pp. 211-252. 

Schank, RC & Childers, PG 1984, The Cognitive Computer: On Language, Learning, and 

Artificial Intelligence, Addison-Wesley, United States of America. 

Schnabel, MA, Brown, A & Moleta T 2019, ‘Conference Theme: Intelligent & Informed’, 

Proceedings of the 24th CAADRIA Conference, vol. 1, pp. vi. 

Schneier, B 2016, Data and Goliath: The Hidden Battles to Collect Your Data and Control the 

World, W. W. Norton & Company, United States of America. 

Schwab, K 2017, The Fourth Industrial Revolution, Currency, United States of America. 

Silver, N 2012, The Signal and the Noise: Why So Many Predictions Fail—but Some Don't, The 

Penguin Press, United States of America. 

Silver, D, Schrittwieser, J, Simonyan, K, Antonoglou, I, Huang, A, Guez, A, Hubert, T, Baker, 

L, Lai, M, Bolton, A & Chen, Y 2017, ‘Mastering the Game of Go Without Human 

Knowledge’, Nature, vol. 550, no. 7676, p. 354-359. 



 

99 
 

Skilton, M 2017, ‘How do we Prepare for the Artificial Intelligence Society?’, Huffington Post, 

3 January, accessed 6 June 2018, <https://www.huffingtonpost.com/entry/how-do-we-

prepare-for-the-artificial-intelligence-society_us_58b680d1e4b0e5fdf61978b5>. 

Srinivasan, RS & Malkawi, AM 2005a, ‘Reinforcement Learning and Real-time Building 

Thermal Performance Data Visualization’, Proceedings of the 10th CAADRIA Conference, 

vol. 2, pp. 141-148. 

Srinivasan, RS & Malkawi, AM 2005b, ‘Real-time Simulations Using Learning Algorithms for 

Immersive Data Visualization in Buildings’, International Journal of Architectural 

Computing, vol. 3, no. 3., pp. 265-280. 

Steenson, MW 2010, ‘Cedric Price's Generator’, Journal of the American Institute of 

Architecture Students, vol. 69, pp. 12-15. 

Steenson, MW 2014, ‘Architectures of Information: Christopher Alexander, Cedric Price, and 

Nicholas Negroponte & MIT's Architecture Machine Group’, PhD thesis, Princeton 

University. 

Steenson, MW 2017, Architectural Intelligence: How Designers and Architects Created the 

Digital Landscapes, The MIT Press, United States of America. 

Teodoridis, F, Bikard, M & Vakili, K 2018, ‘When Generalists are Better than Specialists and 

Vice Versa’, Harvard Business Review, accessed 26 August 2019, 

<https://hbr.org/2018/07/when-generalists-are-better-than-specialists-and-vice-versa>. 

The Generator Project 2015, accessed 18 August 2019, 

<http://www.interactivearchitecture.org/the-generator-project.html>. 

Van Hasselt, H, Guez, A & Silver, D 2016, ‘Deep Reinforcement Learning with Double Q-

Learning’, 13th AAAI Conference on Artificial Intelligence. 

Vierlinger, R 2018, Octopus, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/octopus>. 

Vinyals, O, Ewalds, T, Bartunov, S, Georgiev, P, Vezhnevets, AS, Yeo, M, Makhzani, A, 

Küttler, H, Agapiou, J, Schrittwieser, J & Quan, J 2017, ‘Starcraft II: A New Challenge for 

Reinforcement Learning’, arXiv preprint arXiv:1708.04782. 

Wallacei 2019, Wallacei, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/wallacei-0>. 



 

100 
 

Wang, P 1995, ‘On the Working Definition of Intelligence’, Center for Research on Concepts 

and Cognition CRCC, Indiana University. 

Wang, Z, Schaul, T, Hessel, M, van Hasselt, H, Lanctot, M & de Freitas, N 2015, ‘Dueling 

Network Architectures for Deep Reinforcement Learning’, arXiv preprint arXiv:1511.06581. 

Werbos, P 1974 ‘Beyond Regression: New Tools for Prediction and Analysis in the Behavioral 

Sciences’, PhD thesis, Harvard University. 

Wortmann, T 2019, Opossum, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/opossum-optimization-solver-surrogate-models>. 

Xu, W, Huang, W, Liu, Y, Zhou, Y, Xu, F & Yu, L 2018, ‘Conference Theme: Learning, 

Prototyping and Adapting’, Proceedings of the 23rd CAADRIA Conference, vol. 1, pp. iv-v. 

Zhang, Y, Gridnard, A, Aubuchon, A, Lynox, K & Larson, K 2018, ‘Machine Learning for 

Real-time Urban Metrics and Design Recommendations’, Proceedings of the 38th ACADIA 

Conference, pp. 196-205. 

Zwierzycki, M 2019a, Owl, Food4Rhino, accessed 19 July 2019, 

<https://www.food4rhino.com/app/owl>. 

Zwierzycki, M 2019b, Owl/QAgent.vb, GitHub, accessed 19 July 2019, 

<https://github.com/mateuszzwierzycki/Owl/blob/master/Owl.Learning/QLearning/QAgent.

vb>. 

  



 

101 
 

 

  



 

102 
 

 

  



 

103 
 

 

  



 

104 
 

 

  



 

105 
 

 

  



 

106 
 

 

  



 

107 
 

 

  



 

108 
 

 

  



 

109 
 

 

  



 

110 
 

 

  



 

111 
 

 

  



 

112 
 

 

  



 

113 
 

 

  



 

114 
 

 

  



 

115 
 

 

  



 

116 
 

 

  



 

117 
 

 

  



 

118 
 

 

  



 

119 
 

 

  



 

120 
 

 

  



 

121 
 

 

  



 

122 
 

 

  



 

123 
 

 

  



 

124 
 

 

  



 

125 
 

 


	Title Page : Architectural Artificial Intelligence: Exploring and Developing Strategies, Tools, and Pedagogies Toward the Integration of Deep Learning in the Architectural Profession
	Acknowledgements
	Table of Contents
	List of Figures and Tables
	List of Publications, Presentations, and Workshops
	Abstract

	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. Research Objectives
	Chapter 4. Research Questions
	Chapter 5. Methodology
	Chapter 6. Literature Review
	Chapter 7. Assessment
	Chapter 8. Technical Conceptual Framework
	Chapter 9. Strategies, Tools, and Pedagogies
	Chapter 10. Considerations and Implications
	Chapter 11. Conclusion
	References
	Appendices

