
Architectural artificial intelligence: exploring and developing
strategies, tools, and pedagogies toward the integration of
deep learning in the architectural profession

Author:
Khean, Nariddh

Publication Date:
2019

DOI:
https://doi.org/10.26190/unsworks/22641

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/71003 in https://
unsworks.unsw.edu.au on 2024-05-04

http://dx.doi.org/https://doi.org/10.26190/unsworks/22641
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/71003
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Architectural Artificial Intelligence:

Exploring and Developing Strategies, Tools, and
Pedagogies Toward the Integration of Deep

Learning in the Architectural Profession

Nariddh Khean

A thesis in fulfilment of the requirements for the degree of

Master of Philosophy

Faculty of Built Environment

September 2019

Thesis/Dissertation Sheet

Surname/Family Name : Khean

Given Name/s : Nariddh

Abbreviation for degree as give in the University calendar : MPhil

Faculty : Built Environment

School :

Thesis Title :
Architectural artificial intelligence: Exploring and developing strategies, tools,
and pedagogies toward the integration of deep learning in the architectural
profession

Abstract 350 words maximum: (PLEASE TYPE)

The growing incessance for data collection is a trend born from the basic promise of data: “save everything you can, and
someday you’ll be able to figure out some use for it all” (Schneier 2016, p. 40). However, this has manifested as a plague
of information overload, where “it would simply be impossible for humans to deal with all of this data” (Davenport
2014, p. 151). Especially within the field of architecture, where designers are tasked with leveraging all available sources
of information to compose an informed solution. Too often, “the average designer scans whatever information [they]
happen on, […] and introduces this randomly selected information into forms otherwise dreamt up in the artist’s studio
of mind” (Alexander 1964, p. 4). As data accumulates—less so the “oil”, and more the “exhaust of the information age”
(Schneier 2016, p. 20)—we are rapidly approaching a point where even the programmers enlisted to automate are
inadequate.

Yet, as the size of data warehouses increases, so too does the available computational power and the invention of clever
algorithms to negotiate it. Deep learning is an exemplar. A subset of artificial intelligence, deep learning is a collection
of algorithms inspired by the brain, capable of automated self-improvement, or “learning”, through observations of large
quantities of data. In recent years, the rise in computational power and the access to these immense databases have
fostered the proliferation of deep learning to almost all fields of endeavour. The application of deep learning in
architecture not only has the potential to resolve the issue of rising complexity but introduce a plethora of new tools at
the architect’s disposal, such as computer vision, natural language processing, and recommendation systems. Already,
we are starting to see its impact on the field of architecture. Which raises the following questions: what is the current
state of deep learning adoption in architecture, how can one better facilitate its integration, and what are the implications
for doing so? This research aims to answer those questions through an exploration of strategies, tools, and pedagogies for
the integration of deep learning in the architectural profession.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part
in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights,
such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

……………………………………………………………
 Signature

……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction
for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and
require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

2021.07.20

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational institution,
except where due acknowledgement is made in the thesis. Any contribution made to
the research by others, with whom I have worked at UNSW or elsewhere, is
explicitly acknowledged in the thesis. I also declare that the intellectual content of
this thesis is the product of my own work, except to the extent that assistance from
others in the project's design and conception or in style, presentation and linguistic
expression is acknowledged.’

Signed …………………………………………………………

Date …………………………………………………………
2021.07.20

COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to archive
and to make available my thesis or dissertation in whole or part in the University
libraries in all forms of media, now or here after known, subject to the provisions of
the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also
retain the right to use in future works (such as articles or books) all or part of this
thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).

I have either used no substantial portions of copyright material in my thesis or I have
obtained permission to use copyright material; where permission has not been
granted I have applied/will apply for a partial restriction of the digital copy of my
thesis or dissertation.’

Signed …………………………………………………………

Date …………………………………………………………

AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred and
if there are any minor variations in formatting, they are the result of the conversion
to digital format.’

Signed …………………………………………………………

Date …………………………………………………………

2021.07.20

2021.07.20

INCLUSION OF PUBLICATIONS STATEMENT

UNSW is supportive of candidates publishing their research results during their candidature
as detailed in the UNSW Thesis Examination Procedure.

Publications can be used in their thesis in lieu of a Chapter if:
• The candidate contributed greater than 50% of the content in the publication and is the

“primary author”, ie. the candidate was responsible primarily for the planning, execution
and preparation of the work for publication

• The candidate has approval to include the publication in their thesis in lieu of a Chapter
from their supervisor and Postgraduate Coordinator.

• The publication is not subject to any obligations or contractual agreements with a third
party that would constrain its inclusion in the thesis

Please indicate whether this thesis contains published material or not:

☐ This thesis contains no publications, either published or submitted for publication
(if this box is checked, you may delete all the material on page 2)

x
Some of the work described in this thesis has been published and it has been
documented in the relevant Chapters with acknowledgement
(if this box is checked, you may delete all the material on page 2)

☐ This thesis has publications (either published or submitted for publication)
incorporated into it in lieu of a chapter and the details are presented below

CANDIDATE’S DECLARATION
I declare that:

• I have complied with the UNSW Thesis Examination Procedure
• where I have used a publication in lieu of a Chapter, the listed publication(s) below

meet(s) the requirements to be included in the thesis.

Candidate’s Name
Nariddh Khean

Signature Date (dd/mm/yy)
02/08/2021

Acknowledgements

This research was supported by the Australian Government Research Training Program Scholarship.

I would like to express my utmost gratitude to Alessandra Fabbri and Matthias Hank Haeusler.

Even before this degree, you have been so incredibly generous with your time, always willing to

go above and beyond with your duties. From praise to criticism, all of the comments you’ve

provided have not only affected the words I would write, but also the person that I am. I would

consider these past few years as my most formative, and you two have massively shaped who I

am and how I see the world. For that, and everything else, thank you.

And, thank you to my parents, Lychheng and Nounara Khean, for your faith in education.

Table of Contents

List of Figures and Tables

List of Publications, Presentations, and Workshops

Abstract

Chapter 1. Introduction

Chapter 2. Background

2.1. The Last Human Invention

2.2. Reflecting on Intelligence

2.3. The Digitised Intelligence

2.4. From Connectionism to Deep Learning

2.5. A Need for Greater Intelligence in Architecture

Chapter 3. Research Objectives

Chapter 4. Research Questions

Chapter 5. Methodology

Chapter 6. Literature Review

6.1. Early Explorations of Intelligence in Architecture

6.2. Deep Learning Research in Architecture

6.3. A Resistance to Adopting Machine Learning in Industry

6.4. Bridging the Gap

Page

vii

viii

1

2

4

5

7

12

17

19

22

24

26

28

28

31

34

37

Chapter 7. Assessment

7.1. The State of Machine Learning Research in the Architectural Industry

7.2. Factors that Affect the Adoption of Machine Learning

7.3. A Comparison of Machine Learning Tools for Architects

Chapter 8. Technical Conceptual Framework

Chapter 9. Strategies, Tools, and Pedagogies

9.1. Applying Active Learning Pedagogies for Teaching Backpropagation

9.2. A Tool for Deep Reinforcement Learning in Grasshopper

Chapter 10. Considerations and Implications

10.1. Should the Architect Learn Machine Learning?

10.2. Considerations for the Application of Deep Learning in Architecture

10.3. Is Deep Learning Really Intelligence?

Chapter 11. Conclusion

References

Appendix A. Arup’s Machine Learning Assessment

(removed in public version)

Appendix B. Factors that Affect Machine Learning

Appendix C. Learning Machine Learning

40

40

41

42

49

57

57

61

77

77

82

86

91

93

101

118

List of Figures and Tables

figure 1: Hero of Alexandria's Aeolipile.

figure 2: The performance of deep learning algorithms compared to older

learning algorithms with respect with the amount of training data available.

figure 3: Data flow diagram between Grasshopper and Python for deep Q-

learning.

figure 4: Initialising the Grasshopper environment.

figure 5: Sightlines from the car intersects with the road network to generate

the input states.

figure 6: Encoding input states and sending to Python server.

figure 7: Receiving action from server and performing the associated action.

figure 8: Calculating the reward and sending that to the Python server.

Table 1: A comparison of Grasshopper plugins and their machine learning

algorithms.

Table 2: A comparison of Grasshopper plugins and their functionality with

artificial neural networks.

Table 3: A further comparison of Grasshopper plugins and their functionality

with artificial neural networks.

Page

35

35

64

66

67

68

70

71

44

46

59

List of Publications, Presentations, and Workshops

2018 March

UNIVERSITY WORKSHOP

“How Machines Learn”

Conducted at the University of New South Wales, Australia.

2018 September

CONFERENCE PAPER AND PRESENTATION

Khean, N, Fabbri, A & Haeusler, MH 2018, ‘Learning Machine Learning as an Architect, How

to? Presenting and Evaluating a Grasshopper-Based Platform to Teach Architecture Students

Machine Learning’, Proceedings of the 36th International eCAADe Conference, vol. 1, pp. 95-

102.

Presented at the Łódź University of Technology, Poland.

2018 April

CONFERENCE WORKSHOP

“Deep Reinforcement Learning in Grasshopper: Using Deep Q-Networks to Train an

Intelligent Agent to Act in a Grasshopper Environment”

Conducted at the Victoria University of Wellington, New Zealand.

2018 April

INDUSTRY PRESENTATION

“5x5 Series: Research. Machine Learning in the Built Environment”

Presented at Arup Sydney, Australia.

2019 June

UNIVERSITY WORKSHOP

“Deep Reinforcement Learning in Grasshopper: Using Deep Q-Networks to Train an

Intelligent Agent to Act in a Grasshopper Environment”

Conducted at the University of New South Wales, Australia.

2019 June

CONFERENCE PAPER AND PRESENTATION

Khean, N, Fabbri, A, Gerber, D & Haeusler, MH 2019, ‘Examining Potential Socio-economic

Factors that Affect Machine Learning Research in the AEC Industry’, Proceedings of the 18th

International CAAD Futures Conference, vol. 1, pp. 247-263.

Presented at Korea Advanced Institute of Science and Technology, South Korea.

2019 September

CONFERENCE WORKSHOP

“Deep Reinforcement Learning in Grasshopper: Discovering Emergent Behaviour with Q-

Learning”

Conducted at the University of Porto, Portugal.

1

Abstract

The growing incessance for data collection is a trend born from the basic promise of data: “save

everything you can, and someday you’ll be able to figure out some use for it all” (Schneier 2016,

p. 40). However, this has manifested as a plague of information overload, where “it would simply

be impossible for humans to deal with all of this data” (Davenport 2014, p. 151). Especially within

the field of architecture, where designers are tasked with leveraging all available sources of

information to compose an informed solution. Too often, “the average designer scans whatever

information [they] happen on, […] and introduces this randomly selected information into forms

otherwise dreamt up in the artist’s studio of mind” (Alexander 1964, p. 4). As data accumulates—

less so the “oil”, and more the “exhaust of the information age” (Schneier 2016, p. 20)—we are

rapidly approaching a point where even the programmers enlisted to automate are inadequate.

Yet, as the size of data warehouses increases, so too does the available computational power and

the invention of clever algorithms to negotiate it. Deep learning is an exemplar. A subset of

artificial intelligence, deep learning is a collection of algorithms inspired by the brain, capable of

automated self-improvement, or “learning”, through observations of large quantities of data. In

recent years, the rise in computational power and the access to these immense databases have

fostered the proliferation of deep learning to almost all fields of endeavour. The application of

deep learning in architecture not only has the potential to resolve the issue of rising complexity,

but introduce a plethora of new tools at the architect’s disposal, such as computer vision, natural

language processing, and recommendation systems. Already, we are starting to see its impact on

the field of architecture. Which raises the following questions: what is the current state of deep

learning adoption in architecture, how can one better facilitate its integration, and what are the

implications for doing so? This research aims to answer those questions through an exploration

of strategies, tools, and pedagogies for the integration of deep learning in the architectural

profession.

2

Chapter 1.

Introduction

The dream of artificial intelligence (AI) has been in the minds of technologists, inventors, and

authors well before the advent of the computer. One of its earliest known manifestations can be

traced back to the 8th century BCE, where Homer depicted Hephaestus’ mechanical assistants as

having “intellect and [...] skill[s] in subtle crafts” (2009, p. 385). However, this early idea of

artificial intelligence came to be better understood as “automata”: autonomous, mechanised

humanoids. In the 17th century, two philosophers, René Descartes and Thomas Hobbes,

continued to regard the human as the archetype for intelligence, and contemplated the general

premise behind artificial intelligence. This premise—the assumption that thought can be

mechanised and expressed mathematically—lead to the study of computational logic in the 20th

century, which substantiated the elusive embodiment of intelligence. The programmable

computer further splintered the field, forming two schools of thought that both believed they

possessed the algorithms for true artificial intelligence: connectionist and symbolic AI.

Ultimately, artificial intelligence is not simply a technology, but an ideal that evolves through

time. The modern incarnation of artificial intelligence, deep learning, is a set of algorithms

inspired by the brain. Stemming from the notions of connectionist AI, deep learning has come to

achieve beyond-human level performance on a plethora of narrow tasks. Most notable is its ability

to extract insight from vast quantities of data, a valuable capability in the age of the peta-, exa-,

and zettabyte.

Within the field of architecture, there is a demand for architects and designers to leverage all

available information to resolve problems of growing complexity. However, in lieu of the ability

to glean meaning from vast quantities of data, in tandem with the decreasing effectiveness of the

programmer, deep learning is a technology that could prove effective in taming the scourge of

3

quantity. Thus, the overarching objective of this research is to promote, explore, and develop for

a more intelligent field of architecture, through the adoption of deep learning. By doing so,

architects and designers, equipped with a proficiency with deep learning, possess a toolset that

would yield a more holistic perspective on design problems that are more faceted, intricate, and

complex than ever.

The following body of research can be segmented into three sections. The first is a series of studies

to capture the current state of deep learning integration within the architecture, engineering, and

construction industry. This will explore the extent of investment in deep learning research, the

socio-economic barriers to further integration, and the current tools that facilitates its use. The

insights gathered will drive the next section, an applied exploration of educational software tools

and resource-centred pedagogies. This will include the development of deep learning software

tools, as well as how architectural practitioners, educators, and students respond to learning deep

learning. Finally, armed with the knowledge and experience of the previous sections, this research

will conclude with an inquiry into the implications for the application of deep learning in the field

of architecture.

4

Chapter 2.

Background

As early as the Neolithic Revolution, where previously nomadic tribes congregated to adopt

agriculture and geographic permanence, humans have pursued the act of invention. Studying one

of the best-preserved Neolithic settlements, the Çatalhöyük archaeological site in Turkey, one of

the earliest forms of architectural construction was realised through mud-bricks. Subsequently,

the invention of load-bearing arches, Vitruvius' Classical Orders, and computer-aided

architectural design (CAAD), have all shaped the evolution of the built environment. Despite the

uncertainty behind the technology that will drive the architecture of the future, there is a clarity

in the persistence of human invention and its dramatic affect toward the advancement of the field.

A common aphorism states that "necessity is the mother of invention". And for the most part, this

is reflected in the development of architecture. Taking the aforementioned examples, the arch was

designed to better offset downward forces, Vitruvius' Classical Orders were developed to define

column types and entablature designs, and the advent of CAAD sought to replace the tedium of

hand-drawing. However, historian and author of Guns, Germs, and Steel: A Short History of

Everybody for the Last 13,000 years, Jared Diamond, comes to the conclusion that technology

"finds most of its uses after it has been invented, rather than being invented to meet a foreseen

need" (2017, p. 235). If we set aside the latter half of his assertion, which directly contradicts the

original aphorism, one could argue that these two statements are not mutually exclusive, and, in

tandem, say something quite profound about the value of an invention. Necessity may act as a

catalyst for invention; however, the potentiality of the invention is revealed only after it's ubiquity.

Let's take, for instance, computer-aided architectural design. CAAD was initially intended as the

next step in hand-drawing. The earliest CAAD software was ostensibly a glorified pencil and

5

paper. Yet, parametric design, a modern application of CAAD, has allowed designers to generate

forms that go beyond preconceived notions of form from primitives—toward forms that are

dictated more by mathematics and logic. Parametric design, along with structural analysis,

rendering and visualisation, building information modelling, amongst many more applications,

are the result of wide-spread use of an invention that was originally aimed at solving a completely

different problem. From this, a trend emerges: the more general an invention, the broader its

potential applicability, thus the greater its value.

As a precursor to Erik Brynjolfsson and Andrew McAfee's The Second Machine Age,

Brynjolfsson presented a talk that demonstrated the importance of general-purpose technology.

He places these current and upcoming technologies within the context of a new machine age; one

which allocates more value on "knowledge creation than just physical production" (Brynjolfsson

2013). One of the three words used to characterise the new machine age was "combinatorial".

Reinforcing the importance of generality, Brynjolfsson explains this characterisation through a

comparison between the "stagnationist view", where "ideas get used up like low-hanging fruit",

against the reality, where "each innovation creates building blocks for more innovations" (2013).

Thus, although necessity may be the mother of invention, the invention with the greatest value

are those that have a broad spectrum of applicability.

2.1. The Last Human Invention

Glancing back at the broader history of invention, we can observe an overarching trend.

Philosopher and author of Superintelligence: Paths, Dangers, Strategies, Nick Bostrom, observes

that "history seems to exhibit a sequence of distinct growth modes, each much more rapid than

its predecessor" (2014, p. 1). These "modes" are induced by specific technological shifts, caused

by an invention that accelerates productivity beyond the invention's initial objective; the general-

purpose technology. Steam engines, electricity, and transistors are such exemplars—so much so

6

that they are attributed as the defining technologies for the first, second, and third industrial

revolutions, respectively.

Many believe that we are on the cusp of yet another industrial revolution, this time, propelled by

artificial intelligence (AI). In The Second Machine Age, Brynjolfsson and McAfee suggests that

the next growth mode "will be characterized by countless instances of machine intelligence and

billions of interconnected brains" (2014, p. 96), and goes so far as to proclaim that "building

intelligent machines [is] perhaps the most important invention in human history (Brynjolfsson,

2013). In conjunction, executive chairman of the World Economic Forum and author of The

Fourth Industrial Revolution, Klaus Schwab, postulates a revolution that is "characterised by a

much more ubiquitous and mobile internet, by smaller and more powerful sensors, and by

artificial intelligence" (2017, p. 7).

Modern AI has yet to reach a level of ubiquity beyond the narrow applications it was originally

intended to solve, thus, it is difficult to predict its potentiality. But as with the most impactful

inventions, the true benefit of AI will be seen after wide-spread use. Some see AI incredibly

favourably, suggesting that "the transformations [...] will be profoundly beneficial" (Brynjolfsson

& McAfee 2014, p. 9). However, other's beliefs align more with mathematician, I. J. Good's often-

quoted prediction about intelligent machines:

"Let an ultraintelligent machine be defined as a machine that can far surpass all the

intellectual activities of any man however clever. Since the design of machines is

one of the intellectual activities, an ultraintelligent machine could design even better

machines; there would then unquestionably be an "intelligence explosion," and the

intelligence of man would be left far behind. Thus, the first ultraintelligent machine

is the last invention that man need ever make..."

(Good 1965, p. 33)

7

However, as it stands, there is a difference between the AI that is currently being used to fuel

business decisions and defeat world champions in Jeopardy!, compared with that of the

superintelligence feared since the dawn of computing. This isn't helped when the very definition

of "intelligence" is one that has transformed even before the invention of the computer. As

Bostrom cleverly points out, the "advent of such machines was often placed some twenty years

into the future. Since then, the expected arrival date has been receding at a rate of one year per

year; so that today, futurists [...] often believe that intelligent machines are a couple of decades

away" (2014, p. 3-4).

2.2. Reflecting on Intelligence

The field of artificial intelligence has accelerated in recent years, and as a consequence, a rigorous

and widely accepted ontology has struggled to keep pace. However, irrespective of the field's

momentum, the difficulty of characterising and delineating breakthroughs stems from our poorly

assembled and ever-changing ideals of "intelligence". To form an understanding of the current

state of AI research, it is beneficial to revisit our earliest efforts in the field: our attempts to invent

artificial intelligence.

Founding member of the Association for the Advancement of Artificial Intelligence (AAAI),

Bruce G. Buchanan, suggests that "the beginnings of artificial intelligence [can be] traced to

philosophy, fictions, and imagination" (Buchanan 2005, p. 53). The prevailing theory places the

invention of something comparable to artificial intelligence in Ancient Greece. Homer's 8th

century BCE poem, The Iliad, depicts Hephaestus, the god of fire, metallurgy, and craftsmen,

building golden handmaidens to assist him in his forge.

8

"Grasping a thick staff he limped from the forge, supported by servants made of gold,

fashioned like living girls, who attended swiftly on their master. As well as the use

of their limbs they had intellect, and the immortals gave them skill in subtle crafts."

(Homer 2009, p. 385)

Greek literature is littered with fanciful stories of machines exhibiting intelligence, such as Talos,

the colossus tasked with defending Crete, and Daedalus' animated bronze sculptures. Throughout,

these stories share a thread of commonality, such that, "humanoid machines were mostly

conceived as representing straightforward hope—the ideal servant who always obeys, the perfect

soldier who never tires" (Cave & Dihal 2018, p. 474). These ideals painted artificial intelligence

as physically embodied, often humanoid, and, despite being imbued with the divine, ultimately

mechanical.

For centuries, many would also perceive intelligence as a mechanisable phenomenon. In the 1st

century CE, Hero of Alexandria developed a series of "intelligent" inventions, from coin-operated

apparatus to an automated puppet theatre. In the 9th century, the Banū Mūsā brothers created a

mechanical flute player driven by steam, among a host of other machines showcased in their Book

of Ingenious Devices. In the 13th century, polymath, Ismail al-Jazari, wrote their Book of

Knowledge of Ingenious Mechanical Devices, which included designs for a programmable

musical quartet and a drink-serving waitress.

But, can we really consider these inventions as "artificial intelligence"?

As time yielded greater comprehension for the nuances of these inventions, many grew

uncomfortable calling them "intelligent". Eventually, they adopted Homer's original, and more

accurate, classification of "automata": a mechanical device, embodying the intelligence of its

human creator, to autonomously act upon the world. And although these inventions may have

9

seemed intelligent in their respective contexts, a broader understanding has shifted what it means

to be intelligent.

It was not until the 17th century that, informed by the views of Aristotle, Euclid, and al-

Khwarizmi, philosophers provided a new notion of intelligence. René Descartes, a French

philosopher and mathematician, further rejected the notion that the automaton was intelligent.

Expounded in Descartes' philosophical treatise published in 1637, Discourse on the Method of

Rightly Conducting one's Reason and of Seeking Truth in the Sciences, Descartes separates man

from machine by highlighting two fallacies of the automata:

1. their inability to "produce different sequences of words so as to give an appropriately

meaningful answer to whatever is said in its presence—which is something that the dullest

of men can do," and

2. "even though such machines might do some things as well as we do them, or perhaps even

better, they would be bound to fail in others; and that would show us that they weren’t

acting through understanding but only from the disposition of their organs" (Descartes

2007, pp. 22).

In other words, the two failings of automata were their conversational impotence and an ineptitude

for generalisation. Extrapolating further, Descartes suggests that "these two factors also tell us

how men differ from beasts" (Descartes 2007, pp. 22). In his view, humans were the only beings

that possessed the ability to reason. Thus, with humans as the archetype of intelligence, AI was

formalised as "a discipline that aims to understand the nature of human intelligence" (Nath 2009,

p. 34). Subsequently, two broad philosophies grew from Descartes' supposition, which attempted

to rationalise human cognition: the computational and non-computational theory of mind.

10

A contemporary of Descartes, Thomas Hobbes, is widely considered the earliest proponent for

the computational theory of mind. As outlined in his 1655 text, De Corpore, Hobbes asserts

human reasoning as a mathematical process. "By ratiocination, I mean computation" (Hobbes

1969, p. 3). Hobbes’ assertion alludes to the fundamental idea of the computational theory of

mind, whereby thought can be distilled to a series of symbolic operations. "To compute, is either

to collect the sum of many things that are added together, or to know what remains when one

thing is taken out of another... All ratiocination is comprehended in these two operations of the

mind, addition and subtraction" (Hobbes 1969, p. 3). Hobbes substantiates his views by

illustrating that "of the several conceptions of fours sides, equality of sides, and right angles, is

compounded the conception of a square" (Hobbes 1969, p. 4). He further describes propositions

and syllogisms, other mental activities, as simple additions.

Many believe Hobbes' De Corpore to be a critical moment in AI history, some going so far as to

proclaim Hobbes "prophetically launching artificial intelligence" (Haugeland 1985, p. 23). And,

as we will discuss later, this methodical, rule-based conception on intelligence was quite pivotal,

forming one of the two main paradigms in computational AI. But more about that later.

Returning to Descartes, his famous proposition "cogito, ergo sum" (I think, therefore I am) is

suggestive of the non-computational theory of mind. The concept of 'I think', an inherently

subjective activity, defies the fabric of computation. Author of Philosophy of Artificial

Intelligence: A Critique of the Mechanistic Theory of Mind, Rajakishore Nath, makes this

argument, suggesting that "the mental processes, for Descartes, are intentional and are free acts

of the thinking subject. Hence, they cannot be mapped mechanically in an algorithmic system"

(2009, p. 116). Nath continues, arguing that "the human mind is beyond the sphere of

computationality, because the human mind has innate ideas, which are embedded as the innate

dispositions of the human mind. These ideas a priori in the human mind and are the basic in-born

propensities" (Nath 2009, p. 118), a view validated by Descartes, who claimed that

11

"understanding what is called a thing, or a truth, or a thought, it appears to me that I hold this

power from no other source than my own nature" (1911, p. 14). In other words, rational thought

is partially formed from an intrinsic intuition that cannot be captured as computation. To

Descartes, no matter how "intelligent" a machine may appear to be, the fact that computation does

not allow for subjectivity prevents the machine from true intelligence.

Much later, philosopher and author of Language and Mind, Noam Chomsky, affirms Descartes'

ideas of innate intelligence in the context of linguistics. "As Descartes himself quite correctly

observed, language is a species-specific human possession, and even at low levels of

intelligence... we find a command of language that is totally unattainable by an ape" (Chomsky

2005, p. 9). Chomsky argues that if there exists a property that persists across every language, the

finding would be indicative of a "universal grammar" and suggests that language acquisition is

genetically predetermined. Thus, if there is a component to human intelligence that is only

attainable through biology, no machine nor computer could ever truly exhibit human-level

intelligence. This is the non-computational theory of mind.

From Homer's tales of Hephaestus' automata, where intelligence is mechanical, to Hobbes'

algebraic operations of thought, where intelligence is computational, and even Chomsky's

universal grammar, which intelligence is genetic, history has shown how the substance of

intelligence is one that is ever-changing. The very nature of intelligence is steeped in vacillating

philosophical debate. This has led to an aphorism in the modern AI community: "AI is what we

don't yet understand.'' From the perspective of the early 21st century, it may be easy to look back

and criticise the naivety. However, definitions of intelligence has been, and will continue to be,

snapshots of a greater temporal continuum. Our current perceptions of intelligence may yet be

another step in the journey toward what is truly artificial intelligence.

12

2.3. The Digitised Intelligence

Intelligence has evaded a lasting definition, however, similar to that of Descartes, if one were to

equate intelligence to cognitive ability, a consensus emerges. Both philosophers and technologists

alike suggests “that human reasoning, learning, and inference comprise one of the most

sophisticated thinking systems in existence” (Chen et al. 2016). However, information processing

conducted in biological systems are limited in both scalability and bias. If further evolution

(natural or otherwise) happened to enlarge the human brain, the axons connecting neurons must

extend to compensate, subsequently increasing the distance for the signal to travel. If the speed

of the signal remains constant, this increase in distance will extend the time it takes for signals to

traverse the brain, thus slowing thought. In fact, almost any change to the brain—increasing the

interconnectedness, signalling speed, or neuron count—comes with a detrimental compromise,

usually in energy cost or sporadic behaviour (Fox 2011). Thus, biological "intelligence has a

threshold" (Gladwell 2011, p. 80). There are, however, other methods toward enhancing our

cognitive abilities. Neurological stimulants, eugenics, and genome editing, are "clearly feasible",

"however, when compared with possible-breakthroughs in machine intelligence, would be

relatively slow and gradual" (Bostrom 2014, p. 50), not to mention the ethical debate that often

ensues. Regardless, if an enhanced biological intelligence came to be, would we still call them

'artificial' intelligence? Although stimulants and genome editing is by no means 'natural', their

subject is still human. These blurry lines were sharpened between 1936 to 1938, when the advent

of the programmable computer gave way to a new type of 'artificial'. Theoretically unrestrained

by physical size, energy consumption, or processing power, the computer was immediately

identified as the ideal vehicle to realise artificial intelligence.

The programmable computer was first invented with the goal of automating sequences of logical

operations. In essence, what we know as a calculator. And although the calculator can operate at

a speed and accuracy beyond that of any human, one would not regard it as "intrinsically

intelligent" (Fogel 2006, p. 17). Everything a calculator 'knows' is already pre-programmed by

13

the human. Calculators are only able to solve these problems because a human has already solved

it, albeit, perhaps more onerously. However, as delineated in the progression of invention, even

though the computer was invented to automate calculation, its potentiality grew with its ubiquity.

Thanks to Descartes, who established the human as the exemplar for intelligence, an early

approach to creating machine intelligence was simulating specific domains of human expertise.

This initially manifested as two-person games of strategy. Christopher Strachey’s 1952 checkers-

playing program, and the myriad of chess-playing programs from 1956 and onwards, are

examples of what was once considered the forefront of AI. This all culminated in 1997, where

IBM’s Deep Blue defeated Garry Kasparov, Russian grandmaster at the time, in match play,

scoring two wins, one loss, and three draws (Silver 2012). Although the event received

widespread media attention and public speculation of machines more intelligent than humans,

Deep Blue wasn’t an intelligent machine.

Deep Blue was only able to defeat Kasparov with the help of 32 parallel processors and 512

custom application-specific integrated circuits (ASIC), which allowed a search of 200 million

chess positions per second. “This level of play requires many millions of times as much

computing as a human chess player does” (McCarthy 1997, p. 1518) and takes advantage of its

incredible speed to imitate intelligence. Furthermore, Deep Blue did not have the capacity to

‘learn’. There were attempts to incorporate “automated tuning”, however a member of the Deep

Blue team claimed that it was a “clunky process” and they “never found a good way to make [it]

work” (Clark 1997, p. 31). Between games in the 1997 match, adjustments were made to Deep

Blue based on Kasparov’s play, but again, these decisions were derived from the intelligence of

the human, not the machine. “Such programs did not embody intelligence and did not contribute

to the quest for intelligent machines. A person isn’t intelligent because he or she is a chess master;

rather, that person is able to master the game of chess because he or she is intelligent” (Schank &

Childers 1984, p. 30). David Fogel, author of Evolutionary Computation: Toward a New

14

Philosophy of Machine Intelligence, elegantly places “the dream of the intelligent machine [as]

the vision of creating something that does not depend on having people pre-program its problem-

solving behaviours” (2006, p. 1). And yet again, the notion of intelligence takes another step in

its evolution—this time, possessing the ability to learn.

These aforementioned game-playing systems fall within one of the two paradigms that divided

early AI research. The first paradigm, 'symbolic AI', which was later nicknamed by John

Haugeland as "Good Old-Fashioned Artificial Intelligence" (1985), denotes a system that

leverages explicit and high-level representations of knowledge, in the form of logic and rules. A

common example of symbolic AI is the 'expert-system', whereby 'knowledge engineers'

painstakingly translate their domain expertise to a symbolic representation understood by the

machine. Up until the 1980s, "it seemed like knowledge engineering was about to take over the

world, with countries and companies making massive investment in it" (Domingos 2015, p. 35).

However, its main flaw was highlighted in, arguably, the longest running project in AI history:

the 'Cyc project'.

In 1984, Doug Lenat, a Stanford professor at the time, became frustrated with hand-coding

domain-specific knowledge into expert-systems. In response, Lenat started the Cyc project with

the objective of creating "a knowledge base spanning all human consensus knowledge" (Lenat et

al. 1990, p. 30). In Lenat's documentation of the project, Cyc: Toward Programs with Common

Sense, published six years after the project's inception, Lenat proudly affirms that "there are

currently between one and two million assertions in our knowledge base, many of which are

general rules, classifications, constraints, and so on" (Lenat et al. 1990, p. 32). As the project

continued, the sheer quantity of assertions that were required continued to delay the initial

projected completion date of 10 years. Today, a vocal few consider the Cyc project as a failure,

namely Marvin Minsky and Pedro Domingos, the latter indicating in his 2015 book, The Master

Algorithm, that "thirty years later, Cyc continues to grow without end in sight, and commonsense

15

reasoning still eludes it" (Domingos 2015, p. 30). Some suggest that perhaps "all [of] human

consensus knowledge" was too ambitious of a task. However, even if applied to a more

constrained domain, there were still two problems that are inherent to symbolic AI: the stochastic

and ever-changing nature of the world, and its inability to revise previously encoded rules. For

the most part, symbolic AI are monotonic—the more rules that are added, the more vast its

intelligence. However, according to previously defined attributes of intelligence—possessing the

ability to learn—unable to change previous assertions, the Cyc project is not intelligent. In fact,

all symbolic AI, which requires the human to encode their own knowledge into it, fails to meet

this criterion. Despite the later inclusion of learning algorithms, symbolic AI lost traction and

gave way to AI's other paradigm, 'connectionism'.

Connectionist AI is characterised by a network of relatively simplistic nodes that perform

computations in parallel, activating simultaneously and hierarchically, all contributing to a

resultant thought or action. By way of illustration, we can look to the human brain as a

representation of connectionist principles. As our retinas absorb light entering the eye, the light

is converted to electrochemical impulses, which is then sent to the brain for interpretation. The

neurotransmitters, passing the impulses along, can either ‘excite’ or ‘inhibit’ the impulses for

subsequent neurotransmitters. This simple operation is one of many that occurs in the network of

neurotransmitters, constantly exciting and inhibiting impulses as we continue to perceive. Early

work in connectionist AI can be attributed to Warren McCulloch and Walter Pitts. From previous

research in theoretical neurophysiology, McCulloch and Pitts adopted the structural unit of the

brain and the nature of their excitation to formalise nervous activity as a computational model

(McCulloch & Pitts 1943). Later, Frank Rosenblatt invented the 'perceptron', a mathematical

model of the neuron (1958). Together, these ideas were the building blocks of the 'artificial neural

network', the quintessential algorithm of connectionism. Where symbolic AI "tried to bring about

artificial intelligence the way an adult tries to learn a second language;" connectionism "tried to

16

make it happen in much the same way that children learn their first language" (McAfee &

Brynjolfsson 2017, p. 69).

At this stage, connectionists proclaimed that their paradigm was "the obvious path to computers

with humanlike intelligence; Turing and others thought it was the only plausible path" (Domingos

2015, p. 35). However, a decade later, a pivotal paper from Martin Minsky and Seymour Papert,

Perceptrons: An Introduction to Computational Geometry, publicised a glaring limitation of the

perceptron model (1969). They mathematically proved that, at the current state of the perceptron,

the simple 'exclusive or' (XOR) function—not linearly separable—was something the perceptron

could not model (Minsky & Papert 1969). This book alone plunged connectionism into a state of

hibernation, where research slowed to an almost-standstill. It was at this point where symbolic AI

reached its aforementioned zenith.

The exact year of the most recent paradigm shift—from symbolic back to connectionist—is

debated. Though, most ascribes David Rumelhart's 1986 paper, Learning Representations by

Backpropagating Errors, as the turning point (Rumelhart, Hinton & Williams 1986). Within, they

suggest the use of multiple layers of perceptrons to overcome the XOR limitation shown 17 years

earlier. This, however, increased the complexity for tweaking the model, which they solved with

an algorithm called 'backpropagation'. As ground-breaking as the use of multiple layers would

seem, it had already been suggested. In fact, it was suggested in Minsky and Papert's Perceptrons,

the very same publication that exposed the flaw of the single perceptron model (1969).

Furthermore, although Rumelhart's paper may have popularised the backpropagation technique,

it also had been previously proposed. In his 1974 PhD thesis, Paul Werbos reversed the automatic

differentiation technique and was the first to apply backpropagation to tweak the connections in

artificial neural networks. Nonetheless, by 1986, the impression of Rumelhart's paper shifted the

AI community back to connectionism.

17

With multilayer perceptrons overcoming its single perceptron limitation, combined with

backpropagation, an effective method to train them, AI research has since been dominated by

connectionism. However, by no means does this suggest that connectionism is the true

formulation of AI. Far from it. The journey through the history of AI—from automata to the

computational theory of mind—is suggestive that our conceptions of intelligence has and will

continue to evolve.

2.4. From Connectionism to Deep Learning

As automatic self-improvement, or learning, became an integral part of artificial intelligence,

connectionists turned toward statistics. Stemming from the conceptual underpinnings of 18th and

19th century statistics, such as Bayes' Theorem and the method of least squares, a subset of these

concepts formed the foundation for the automated self-improvement of connectionist algorithms.

This came to be known as machine learning (ML).

In 1951, Marvin Minsky and Dean Edmonds built the Stochastic Neural Analog Reinforcement

Calculator (SNARC), which is often cited as the first artificial neural network that utilised ML

(Crevier 1993, p. 34-35). Due to the subsequent popularity of the multilayer perceptron, combined

with the brilliance of the backpropagation learning algorithm, artificial neural networks "have

[since] seen a great flourishing" (Brynjolfsson & McAfee 2017, p. 74). In 2006, Geoffrey Hinton

published ground-breaking research his seminal paper, A Fast Algorithm for Deep Belief Nets

(Hinton, Osindero & Teh 2006), which showed how an artificial neural network with several

layers could be effectively and automatically trained. And although their work has been

superseded by modern breakthroughs, it was the defining moment that proved that multi-layered

artificial neural networks had the capacity to produce valuable results. The era of deep learning

ensued, and artificial neural networks built with several layers, or 'deep neural networks', are "now

18

the dominant type of artificial intelligence by far, and they seem likely to stay on top for some

time" (Brynjolfsson & McAfee 2017, p. 74).

Deep learning's potential was brought to the public’s attention during its involvement with the

'ImageNet' competition. ImageNet is an online database containing millions of labelled images,

with over 1,000 images for each of the more than 100,000-word phrase labels. This database is

the basis for the annual 'Large Scale Visual Recognition Challenge', a competition that asks

participants to train a computer to visually recognise the predominant object within images. The

challenge is trivial for the human, with average accuracy scores of 95%, but difficult for machines

as their sense of 'sight' is an array of numbered pixel values. A slight change in the image for

human vision is a potentially gargantuan change in the array of pixels. In 2010, the year the

competition was first issued, the best algorithm achieved an accuracy of 71.8%, which was raised

to 74.2% in the following year (Russakovsky et al. 2015). However, in 2012, a team lead by

Geoffrey Hinton employed a deep learning approach, and achieved an accuracy of 83.6%

(Krizhevsky, Sutskever & Hinton 2012). This staggering increase encouraged the use of more

deep learning techniques in latter competitions, eventually enabling the 2015 winner to be the

first to surpass human capabilities with 95.06% accuracy (He et al. 2015).

Despite connectionists experimenting with artificial neural networks in the 1950s, and machine

learners using backpropagation to train them in the 1970s and 80s, there were two major forces

that hindered deep learning's proliferation until after the turn of the century: massively parallel

computing enabled by graphics processing units (GPUs) and the accumulation of large, high-

detailed, labelled datasets. One of the flaws with deep learning, prior to parallel computing, was

the arduousness of training models. As computational speed increases, in conjunction with the

expected arrival of ubiquitous quantum and cloud computing, training deep learning models no

longer has such a barrier. In addition, deep learning algorithms have been shown to exhibit better

results when trained upon larger datasets (that is, up until a certain threshold). With data being

19

described as "a natural by-product of computing" (Schneier 2016, p. 20), its passive accumulation

has inadvertently provided deep learning algorithms with a plethora of training datasets. Deep

learning has since gone on to further the fields of speech and audio processing, language

modelling and language processing, information retrieval, and beyond.

2.5. A Need for Greater Intelligence in Architecture

Since the inception of computational artificial intelligence, advocates have predicted great

transformations that AI will catalyse in their respective fields. Architecture is no exception. The

promise of AI's grandeur has sparked speckled interest through the history of architecture,

whether that manifests as a tool that optimises certain aspects of the design process, as generative

systems that aim to mimic (and replace) the architect, or even as architecture that could embody

and exhibit intelligence.

Christopher Alexander, an architect and design-theorist, applied principles of cybernetics and

symbolic artificial intelligence in his 1964 dissertation, Notes on the Synthesis of Form. Alexander

identifies that the increasing complexity of design problems, combined with narrowing

specialisation, leads to "widespread, diffuse, and unorganized" information (1964, p. 4). "As a

result, although ideally a form should reflect all the known facts relevant to its design, in-fact the

average designer scans whatever information [they] happen on, consults a consultant now and

then when faced by extra-special difficulties, and introduces this randomly selected information

into forms otherwise dreamt up in the artist's studio of [their] mind" (Alexander 1964, p. 4). In an

attempt to remedy this, Alexander proposed a novel design process that could isolate design

requirements that needed reconsideration, which he called "misfits", through the computational

analysis of forms represented as sets of data. In essence, Alexander designed a recommendation

engine for the revision of design requirements.

20

Although Alexander's later work (1968; Alexander, Ishikawa & Silverstein 1977) became a model

for system architectures, computer languages, and contemporary interfaces, the ideas put forth in

his dissertation stills resonates today. Issues around growing complexity and specialisation have

exacerbated, and new factors—such as the ceaseless collection of data and unwieldy magnitudes

of unstructured information—has furthered the need for a technological solution. Data has often

been referred to as "the new oil", however, more recent thoughts have implied that data has

transformed into "the exhaust of the information age" (Schneier 2016, p. 20). Bruce Schneier,

author of Data and Goliath, identified the modern "promise of big data: save everything you can,

and someday you'll be able to figure out some use for it" (2016, p. 40). However, Thomas H.

Davenport, author of Big Data at Work: Dispelling the Myths, Uncovering the Opportunities,

bemoans this mentality behind data collection, and affirms that "the point is not to be dazzled by

the volume of data, but rather to analyze it—to convert it into insights, innovations, and business

value" (2014, p. 2). Following current trends, it is becoming increasingly difficult for humans to

extract meaning from the masses of data.

A solution to a growing complexity was the programmer. However, there is a limit to this solution,

made evident when Pedro Domingos identifies the three phases to the growth of a company. The

first is where every operation is performed manually, services are personalised, and items are

ordered, displayed, and recommended on a case-by-case basis. As the company expands to serve

more consumers, there won't be enough workers, thus they attempt to automate aspects through

computerisation. "In come the programmers, consultants, and database managers, and millions of

lines of code get written to automate all the functions of the company that can be automated"

(Domingos 2015, p. 11). And although this may have solved the problem of increasing scale,

improving both efficiency and productivity, the quality of their products and services will

inadvertently decrease, because "computer programs are too rigid to match humans’ infinite

versatility" (Domingos, 2015, p. 11). The third and final stage of a company's growth is realised

when even the hundreds and even thousands of programmers aren't enough to match demand. At

21

this stage, Domingos argues that "the company inevitably turns to machine learning" (Domingos

2015, p. 11).

The field of architecture has experienced technological shifts, such as the adoption of building

information modelling (BIM) and in-place data visualisation (as you would see with solar analysis

and structural analysis), providing the architect with more control over the design process.

However, these technologies have also created new methods of data use, generation, and

collection. Architecture is undergoing Domingos' second phase of growth, and design methods

such as data-driven design and parametricism benefit greatly from more data, fuelling better

decision-making in the design process. But as with all industries, architecture will shift to the

third phase, "and those organizations that can recognise and react quickly and intelligently have

the upper hand" (Davenport 2014, p. 18).

22

Chapter 3.

Research Objectives

The trajectory of architecture alludes to an impending moment, where programmers—enlisted to

automate, analyse, and parametrise—will simply be inadequate to fathom the deluge of data.

Design problems are becoming increasingly facetted, unreasonably asking designers to

comprehend the vast complexity of issues at grandiose scales, within unprecedented domains, and

in real-time. As this trend continues, so too does the need for more intelligent processes to extract

meaning from the overabundance of information.

Deep learning has the potential to solve this. Its ability to extract insights from vast quantities of

unstructured data, learn intelligent behaviour from simple heuristics, and infer complex trends

from past experiences, would be invaluable tools for the designer in the age where data is more

‘exhaust’ than ‘oil’. Its pervasive adoption in almost all fields is an indicator for the value of the

technology. And yet, the architecture, engineering, and construction (AEC) field has shown a

resistance to its adoption.

The overarching objective of this research is to promote, explore, and develop for a

more intelligent field of architecture, through the adoption of deep learning.

Previous approaches that also promote deep learning in the AEC—whereby the desire to apply

deep learning precedes the identification of a problem—are necessary steps toward the shared

overarching objective; however, becomes an arms race of model accuracy, rather than a lasting

fundamental shift in thinking. Moreover, the number of identifiable problems are infinite, further

diminishing the impact of the aforementioned approach. In an attempt to counter this myopic

23

mentality, this research aims to approach the promotion, exploration, and development for deep

learning in architecture through:

1. a holistic assessment of the current state of machine learning research in the architecture

industry,

2. an exploration of strategies, tools, and pedagogies to facilitate the integration of deep

learning, and

3. an exploration of considerations and implications of a more intelligent architecture fuelled

by deep learning.

24

Chapter 4.

Research Questions

Toward the objective of adopting deep learning in the field of architecture, the driving research

question is:

What strategies, tools, and pedagogies can be utilised or developed to foster the

integration of deep learning in the AEC?

To answer this question, first there is a need to gain a preliminary understanding of the current

state of deep learning within the context of the AEC. Understanding the differences of deep

learning’s uptake—in academia compared to industry, in the different domains of architecture,

and in current approaches to facilitate the integration—is imperative. Thus, the sub-question

motivating the first of three sections of this research (chapters 7 and 8) is:

1. To what extent is architectural academia and industry researching, committing,

and investing in machine learning?

Grasping the current position of machine learning in the AEC, this research then focuses on the

use and development of strategies, tools, and pedagogies for the adoption of deep learning. The

sub-question prompting the second section (chapter 9) is:

2. What approaches can be utilised or developed to facilitate a greater integration

of deep learning in the architectural industry?

25

Finally, upon developing and implementing these strategies, tools, and pedagogies, this research

intends to reflect upon their effectiveness, consider the impact of deep learning in the AEC, and

ask if the adoption of deep learning is fostering a more intelligent field of architecture. The final

sub-question (chapter 10) is:

3. What are the considerations and implications for the adoption of deep learning

in the AEC?

26

Chapter 5.

Methodology

The three sub-questions delineated in chapter 4. Research Questions will be the skeleton for this

body of work. Each sub-question will be tackled in their own sections and presented sequentially.

This linearity is favoured due to the reliance latter questions’ have on the results from the former.

The first sub-question will be answered through an applied, inductive methodology, whereby

quantitative and qualitative data will be sourced from the architectural industry and academia. For

the primary analysis conducted on the AEC industry, this research will leverage databases

cataloguing industry research projects, as well as creating new data from interviews and surveys.

Conversely research publications, educational tools and modules, and pedagogies will inform the

secondary analysis of academia. Upon inferring conclusions from the cross-sectional data

analysis, the research will switch to a deductive methodology to answer the remaining two sub-

questions.

The second sub-question can be further divided into two sections. The first, documented in

chapter 9.1. Applying Active Learning Pedagogies for Teaching Backpropagation, will utilise

pre-existing student-centred pedagogies applied to an educational tool developed prior to this

research. After using these strategies within the architectural curriculum for participatory primary

research, this deductive methodology will leverage data collected by surveys and interviews with

the participating students to understand how it was received. The second section of this sub-

question, documented in chapter 9.2. A Tool for Deep Reinforcement Learning in Grasshopper,

aims to further explore approaches for deep learning education. This uses an action research

methodology, which can be defined as an iterative cycle of creation, assessment, and

improvement. The software package, once developed, will be similarly tested through

participatory primary research, where it will be used to teach architects deep reinforcement

27

learning through workshops at conferences and universities. The qualitative responses will help

shape its development.

Finally, the third sub-question will follow a conclusional, deductive research methodology,

whereby the results of the former two research activities will inform conclusions about the

considerations and implications of deep learning in the architectural profession. The final chapter,

chapter 10.3. Is Deep Learning Really Artificial Intelligence?, will utilise the knowledge gained

from the entirety of this research, to deliberate if deep learning is indeed intelligent, under a

definition of intelligence that is unaffected by the wax and wanes of technological progress.

28

Chapter 6.

Literature Review

6.1. Early Explorations of Intelligence in Architecture

As early as 1969, Nicholas Negroponte, founder of the MIT Media Lab, validated the pursuit of

architectural artificial intelligence by highlighting the "deficiencies" of the architect. "First,

architects cannot handle large scale problems, for they are too complex; second, architects ignore

small scale problems, for they are too particular and individual (and, to them, too trivial)" (1969,

p. 9). Even still, Negroponte suggests that a machine, designed to follow to rules put in place by

the designer, still fails to overcome these problems. Negroponte elaborates through a discussion

of ownership and what it means for a machine to be creative. "When a designer supplies a machine

with step-by-step instructions for solving a specific problem, the resulting solution is

unquestionably attributed to the designer's ingenuity and labors" (Negroponte 1969, p. 9). Thus,

if the machine simply embodies the sensibilities of the designer, also embodied are the

deficiencies. For the machine to overcome the fallacies of the human architect, Negroponte argues

that the machine must also "learn to be adaptable and learn to be relevant" (1969, p. 9).

Inspired by McCulloch and Pitts' 1943 formulation of computational learning, Negroponte

proposes a machine "that can intelligently respond to the tiny, individual, constantly changing

bits of information that reflect the identity of each urbanite as well as the coherence of the city"

(1969, p. 10). Further, Negroponte postulates that, only through a collaboration between the

learning machine and the architect, can the aforementioned deficiencies be overcome. “The

dialogue would be so intimate—even exclusive—that only mutual persuasion and compromise

would bring about ideas, ideas unrealizable by either conversant alone. No doubt, in such a

symbiosis it would not be solely the human designer who would decide when the machine is

relevant” (Negroponte 1970, p. 11-12).

29

The architecture machine Negroponte envisions consists of five abstract components: "a heuristic

mechanism, a rote apparatus, a conditioning device, a reward selector, and a forgetting

convenience" (Negroponte 1969, p. 10). The heuristic mechanism is the decision-maker, designed

to apply stored heuristics to minimise potential design solutions. Through repeated use, the rote

apparatus updates these heuristics through the association of recurring events and solutions. The

collaboration with the architect is enabled through the conditioning device and reward selector,

where the architect can influence the learned heuristics through a Skinnerian application of reward

and punishment. Finally, Negroponte emphasises that "unlearning is as important as learning" as

"information can assume less significance over time and eventually disappear" (1969, p. 11),

which is achieved through the forgetting convenience.

To build the architecture machine to a sufficiently complex capacity, however, proved to be quite

difficult. In 1967, URBAN5 was Negroponte's first major attempt to compile his ideas of

Skinnerian reward and punishment, human-machine interaction, and artificial intelligence in the

field of architecture (built with its predecessor, URBAN2, at its core). Three years later,

Negroponte reflects with a chapter called URBANS: A Postmortem, highlighting the four major

shortcomings of URBAN5: preinstalled heuristics resisted change, a feigning of generality through

a collective of smaller, highly-specific architecture machines, inadequate capturing of slightly-

complex design contexts, and a lack of input methods for more expressive interactions

(Negroponte 1970, p. 94-96). Where URBAN5 fell short, Negroponte's 1974 architecture machine

sought to fix. However, all future incarnations of the architecture machine failed to achieve

ubiquitous adoption and illustrated the difficulty of incorporating artificial intelligence in the

design process.

Architect, Cedric Price, conducted similar explorations in the integration of artificial intelligence

in architecture. However, rather than its application in the design process, Price focused on its

application in the design itself. In tandem with Price's disregard toward a resolved architectural

30

form, Price preferred design through the lens of information architecture, i.e. "defining a system

that delivered information around a building, or employed cybernetic exchanges of information,

or supported a new, self-initiated approach to learning" (Steenson 2014, p. 122). Price's unique

stance on design has cultivated a collection of influential works, including the Fun Palace,

Potteries Thinkbelt, and the Inter-Action Centre, however, none are more prolific than Generator:

the first intelligent building.

The Generator project was a proposal for the Gilman Corporation on their White Oak Plantation

site in Yulee, Florida. The premise of Generator, a retreat centre, sought to facilitate unfamiliar

social interactions between their guests, induced by a dynamic, self-organising architecture (The

Generator Project 2015). The proposal comprised an orthogonal, foundational grid, similar to

that of a chessboard. Modular components, such as wall panels, furniture, services, and fittings,

would be reorganised by a mobile crane operator, in accordance to one of four programs. Three

of these programs would use sensors from the modular components, and the final program would

formulate new, unique arrangements, if a change hasn't been made for some time. The fourth

program characterised Generator as having sense of boredom and creativity, leading to its

designation of the first intelligent building. Like many of Price's ideas, Generator was never built.

A commonality shared between the works of Negroponte and Price was how their projects were

not driven by a technological fetishism. In fact, for Price, technology was something he personally

avoided, approaching computational designers, Julia and John Frazer, to develop the four

programs for Generator. Yet, technologically speaking, URBAN5 and Generator were markedly

prescient. They represent "the nexus of architecture and nascent ubiquitous or pervasive

computing" (Steenson 2010, p. 15), decades before their explorations are now being seriously

pursued. Furthermore, their reliance on artificial intelligence, despite following the simple

symbolic paradigm, reinforces the architectural field's need for artificial intelligence.

31

6.2. Deep Learning Research in Architecture

More recently, increased computational speeds and an excess of available data have brought new,

innovative deep learning algorithms to the attention of architectural research. For instance, the

convolutional neural network and the recurrent neural network—popular artificial neural network

variants designed to comprehend spatial and temporal data respectively—have been shown to

radically increase state of the art performance in a plethora of existing problem domains.

To start, the theoretical premise of the convolutional neural network (CNN) is its ability to

interpret data of any dimensions. As such, it's most predominant use-case has been its application

on image processing tasks, achieving state of the art performance on image classification, object

detection, and semantic segmentation. Outlined below are two examples of architectural research

that leverage CNNs.

The effort for "community engagement for urban decision-making is often ineffective,

uninformed, and only occurs in projects’ later stages" (Zhang et al. 2018, pp. 196). In 2018,

CityMatrix, an interactive urban planning simulator, leveraged CNNs to provide computationally

efficient traffic and solar performance predictions through a tactile, non-expert interface (Zhang

et al.). The second research project was born of a distaste for the tedium of categorising archival

architectural plans and sections. To automate the process, a software package, with a CNN at its

core, was developed to take a document of architectural drawings, categorise each page as either

plan or section, and returns two documents of either category (Ng et al. 2019). Furthermore, if the

CNN showed any uncertainty, that drawing was flagged and presented for human judgement.

On the other hand, recurrent neural networks (RNN) are designed to understand sequences of data

by internalising information gained from earlier inputs. Often more difficult to train than CNNs,

RNNs have been successfully applied to natural language processing, speech recognition, and

32

temporal predictions. Outlined below are two applications of RNNs within the field of

architecture.

Firstly, commercial agent-based pedestrian simulations unrealistically follow shortest-path

algorithms. In an attempt to train an agent to exhibit more realistic and "temporally dynamic

behaviour" (Karoji et al. 2019, p. 281), an RNN was employed to include the effects of stopping,

congestion, agent visibility, and sightlines with key visual markers (Karoji et al 2019). Secondly,

the material performance of viscoelastic materials are difficult to simulate. A step toward

simplifying the process has involved the use of RNNs to learn the behaviour of strips of elastomer

and synthetic rubber with varying widths (Luo, Wang & Xu 2018). Once trained, the RNN could

be used to predict the resultant form from the properties of the strip, as well as deduce the varying

widths a strip from a target form.

Within three of the four aforementioned instances of deep learning, conspicuously absent was its

use within unique application domains. That is not to say that deep learning has yet to be

successfully applied on previously unsolvable problems (as Ng's research does). However, deep

learning's use on existing problems implies that a previous technique has been superseded by the

performance gains of deep learning. And this alludes to an intriguing question: was it the desire

to solve a problem better than existing methods, or the reputed performance of deep learning, that

motivated the research? Even further, if motivations aligned more with the latter, would that not

paint deep learning as the proverbial hammer in search for a nail?

A 2019 study, "the first attempt to provide a coherent and comprehensive overview of [the]

advances in the field of machine learning-aided architectural design" (Papasotiriou, p. 823),

provides some insights. The study leveraged term clustering and scientometrics to uncover

patterns and insights from over 4000 research papers, published between 1970 and 2019, at the

intersection of ML and computer-aided architectural design.

33

Within this research, a prevailing trend—the accelerating growth of research interest after the turn

of the millennium—was not only validated, but quantified. In her concluding remarks,

Papasotiriou reflects upon this, suggesting that the rapidity of publications render previous

research "obsolete in a timescale of months" (2019, p. 823). This is symptomatic of the

expectations of deep learning research in pre-existing problem domains: a model that trumpets an

accuracy slightly above the current state of the art. Large jumps of improvements are rarely seen,

as the accuracy of these models already encroach 100%. Furthermore, once a trained model

overtakes current benchmarks, that in itself is enough reason to publish, and efforts to further

model accuracy only delays the publication. This begs the question, what is the value of these

incremental improvements? Rather than the application of deep learning in existing problem

domains, would it not be more poignant to place research efforts elsewhere—for instance, novel

applications of deep learning or the development of education tools and resources to reduce the

barrier to entry for architects?

Finally, the study revealed seven main clusters of research interest determined by the prevalence

of key terms. These clusters are architectural education, information flow, modelling processes,

sustainability, research, urban planning, and feasibility. Interestingly, Papasotiriou identifies that

"education appears to attract considerable interest, which underlines the momentum of machine

learning, and its future role in architectural design" (2019, p. 822). This could be due simply to

the general rising interest in ML or may suggest a shift from the reliance of external ML experts

and consultants, to the education of architects for ML’s uptake. Regardless, these results suggest

that there is movement toward the inclusion of ML within architectural curricula.

The culture of machine learning research fosters a preference for incremental improvements in

model accuracy. However, due to the pace of the field, and the minute increases in performance,

these improvements are quickly made obsolete. Architectural ML research would yield more

34

value if applied in novel applications domains. One such domain that has witnessed a large portion

of research efforts has been in education.

6.3. A Resistance to Adopting Machine Learning in Industry

In 2017, Klaus Schwab described his assessment of the Fourth Industrial Revolution as "rapidly

evolving with the rise of artificial intelligence" (Skilton 2017). Almost in parallel, architectural

historian, Mario Carpo, observed a shift towards a new design industry (Carpo 2017). Known as

the Second Digital Turn in Architecture, Carpo describes a world where prediction can be based

on sheer information retrieval, and form finding by simulation and optimisation can replace

deduction from mathematical formulas. As computation approaches the limit of a "near infinite

amount of data recorded, transmitted, and retrieved at almost no cost" (Carpo 2016), computers

can exploit incredibly onerous operations, previously deemed too computationally intensive.

Operations that can leverage these vast amounts of data to extract patterns and behaviours.

Operations capable of 'learning'.

However, these shift changes have taken a considerable amount of time to take effect in the field

of architecture, engineering, and construction (AEC). Academia has seen a mere smattering of

applications, predominantly adopting deep learning's predilection for computer vision tasks

(Fukuda, Kuwamuro & Yabuki 2017; Cao, Fukuda & Yabuki 2019, Ng et al. 2019), and

architectural practices have yet to go beyond exploratory research and feasibility prototyping. As

revealed in an international study conducted by McKinsey Digital, the AEC industry are

consistently among the worst industries for the adoption of new technology, ML included

(McKinsey Digital 2015, 2016, 2017a).

This may prove to be a problem, as the diffusion of technological innovation into industry is what

"ultimately determines the pace of economic growth and the rate of change of productivity" (Hall

35

and Khan 2003). This is reflected no better than Hero of

Alexandria's Aeolipile (figure 1). If pursued, invested,

and adopted, this early steam engine may have invoked

the industrial revolutions sixteen centuries earlier.

"Once an inventor has discovered a use for a new

technology, the next step is to persuade society to adopt

it. Merely having a bigger, faster, more powerful device

for doing something is no guarantee for ready

acceptance" (Diamond 2017, p. 237).

And this is where deep learning stands in the AEC. Deep

learning has shown greater performance than other

statistical techniques, and even other ML methods, as the quantity of data available increases

(figure 2). However, the AEC maintains a resistance to its adoption. Ruminated below are barriers

that affect the uptake of deep learning in other industries, in an attempt to hypothesise the potential

causes for the AEC's intransigence towards deep learning.

figure 1: Hero of Alexandria's Aeolipile.

figure 2: The performance of deep learning compared to older learning algorithms with respect with the amount of
training data available.

36

Despite the undoubtedly great increases in performance that deep learning offers, all deep learning

algorithms are black boxes. A black box is a system that "relate the inputs to the outputs in a

mathematically complex, non-transparent, and opaque way" (Baesens, 2014, p. 52). And because

of this opacity, there is a hesitancy for its use in situations where a failure has terrible

repercussions, as black boxes makes it impossible to understand why. Meredith Broussard, author

of Artificial Unintelligence, suggests that "we tend to think of data as the immutable truth, but we

forget that data and data-collection systems are created by people" (2018, pp. 57). Extrapolating

further, these inaccuracies have the potential to be carried over to the deep learning model, who's

performance is predicated on the quality of the training data. Combined with the inherent "bias

we have for computerized results", "when a computer generates something, we don't question

them" (Fry 2018, p. 18), and with deep learning, we can't question them. Hannah Fry, author of

Hello World: How to be Human in the Age of the Machine, identifies that "this tendency of ours

to view things in black and white—seeing algorithms as either omnipotent masters or a useless

pile of junk—presents quite a problem in our high-tech age" (2018, p. 23). Perhaps the resistance

for deep learning's adoption is due to a distrust?

On the other hand, the simple fact that deep learning is a field that is heavily steeped in computer

science and mathematics, most likely beyond the comprehension of the average architect, could

be the reason for its scarcity. In terms of the mathematics required to understand the nuances of

deep learning algorithms, linear algebra, algorithms and complexity, probability theory, and

multivariate calculus are the bare minimum. However, there is debate within the ML community

as to whether the mathematical minutiae of the algorithm's internal operations are required to

develop and train ML models. Some argue that an understanding of the problem domain, and an

adequate command over a programming language with ML packages, would suffice. Even so, the

latter requirement is becoming less important. The popularity of deep learning has garnered the

development of ML platforms and frameworks that remove the need to use any programming

language. Platforms such as Google Cloud AutoML, Microsoft Azure ML Studio, and IBM Watson

37

Studio are a few examples of how ML models can be built with little understanding of either

computer science or mathematics.

Key thinkers assert that the Fourth Industry Revolution and the Second Digital Turn in

Architecture are imminent and share the belief that artificial intelligence will be a crucial driver

of the change. The rising complexity of design problems in the overflowing pool of data validates

this need for deep learning in architecture. And yet, the AEC industry has shown a resistance to

its adoption. Looking to other industries, this resistance may be born from a distrust of black-box

algorithms, the difficulty of applying deep learning, or something else entirely. Regardless, an

investigation into the state of deep learning in the AEC industry, as well as the source of this

resistance, is a necessary step to elucidate the barriers for a more intelligent architecture field

through deep learning.

6.4. Bridging the Gap

Due to its association with the stigma that surrounds artificial intelligence, until recently, deep

learning was regarded by non-experts as an impenetrable enigma. As its popularity grows, in

tandem with the number of deep learning success stories, the development of tools and platforms

aiming to democratise deep learning, have found its way into all fields of endeavour, architecture

included. The rising abundance of easy-to-use deep learning tools and the focus on deep learning

education in architectural research is all suggestive of a movement: the combination of the

architect and the deep learning engineer.

As Christopher Alexander identified, the narrowing specialisation of expertise, in combination

with the sea of unstructured data, obscures the holistic understanding needed to solve complex

design problems (1964). Whereas this may pose minimal concern for other industries, permitting

the reliance on external consultants, it can pose a challenge in the architectural design process,

38

where a dynamic process of interaction between the designer and the design is required.

Furthermore, an understanding of the domain is imperative for high-accuracy deep learning

models. A key step in applied deep learning is the process of feature engineering, whereby

knowledge of the domain is leveraged to alter the data to facilitate increased performance. "Some

machine learning projects succeed and some fail. What makes the difference? Easily the most

important factor is the features used" (Domingos 2012, p. 84). Andrew Ng, co-founder of Google

Brain, goes so far as to proclaim that although "coming up with features is difficult, time-

consuming, [and] requires expert knowledge, applied machine learning is basically feature

engineering" (Ng 2013, p. 16). Hence, for the AEC industry to adopt deep learning, it is imperative

for architects to learn deep learning. "The future belongs to those who understand at a very deep

level how to combine their unique expertise with what algorithms do best" (Domingos 2015, p.

45).

Despite the plethora of deep learning tools that reduces the barrier to entry, there remains a need

to educate architects in deep learning beyond the use of a tool. Andrej Karpathy, once a research

scientist for OpenAI and now director of AI at Tesla, published the blog post, A Recipe for

Training Neural Networks, that starts with an outline of two common pitfalls for deep learning

development (2019). Firstly, Karpathy asserts that training deep learning models are "a leaky

abstraction". The abundance of packages and libraries proclaiming "30-line miracle snippets"

gives a false impression for the simplicity of achieving high-accuracy models. "Backprop + SGD

does not magically make your network work. Batch norm does not magically make it converge

faster. RNNs don’t magically let you “plug in” text. And just because you can formulate your

problem as RL doesn’t mean you should. If you insist on using the technology without

understanding how it works you are likely to fail" (Karpathy 2019). To those applying deep

learning without the adequate conceptual understanding, the ramifications of his first point

worsens with his next: "neural net training fails silently". Within software development, when

code is broken or misconfigured, errors are presented to the developer. However, contrasted with

39

developing for deep learning, everything can be built correctly and training starts without fault,

however, some misunderstanding of a deep learning concept, carried over into the code, could

prevent the training of the model to reach desired accuracies or even cause the model to learn a

completely different task. "Maybe your autoregressive model accidentally takes the thing it’s

trying to predict as an input due to an off-by-one bug. Or you tried to clip your gradients but

instead clipped the loss, causing the outlier examples to be ignored during training. Or you

initialized your weights from a pretrained checkpoint but didn’t use the original mean" (Karpathy

2019). These aforementioned examples, and all potential misunderstanding or incorrect

implementation, will allow the network to commence training, but ultimately fail to learn the

intended task. Thus, as beneficial as these tools are, there remains a need for an exploration of

pedagogies and educational strategies for teaching architects the conceptual premise and

operations of deep learning.

Architectural artificial intelligence started out as methods to solve unique problems. Negroponte

and Price used artificial intelligence, not out of a desire to apply the technology, but almost out

of need. However, the recent popularity of deep learning has shifted this mentality toward that of

technological fetishism, where a thirst for applying artificial intelligence drives research, rather

than an appropriate need. This shift has led to a culture of research favouring incremental

improvements, resulting in research outcomes that become obsolete in a matter of months.

Toward countering this rapid desuetude and the culture of techno-fetishism, the objectives of this

research aims to employ strategies, tools, and pedagogies to fuse the role of the architect and deep

learning engineer. By doing so, deep learning might be seen more as another tool within the

architect's tool belt, to be applied when deemed appropriate.

40

Chapter 7.

Assessment

Toward the adoption of deep learning in the architectural profession, a preliminary study was

conducted to gather an understanding of the current state of machine learning in the architecture,

engineering, and construction (AEC) industry. Three avenues of exploration were outlined as

preliminary trajectories:

1. assess the current state of research in the AEC industry and to the degree to which machine

learning is being invested,

2. diagnose the barriers that affect the adoption of machine learning in the AEC industry

beyond that of technical complexity, and

3. compare and contrast existing tools that offer the application of machine learning within

architectural software.

Through the aforementioned studies, this research will compile a representation of the AEC

industry and their stance on ML, which will direct the exploration and development of strategies,

tools and pedagogies in later chapters.

7.1. The State of Machine Learning Research in the Architectural Industry

Introduction

To assess the state of machine learning in the AEC industry, this research partnered with Arup

Engineering, a well-established, global architectural engineering firm with over 16,000

employees. Arup is known for their commitment to investing in ideas, which is evident through

their Invest in Arup initiative: a system where employees can propose research projects and

41

receive the necessary funding to carry it out. The following report is the culmination of this year-

long study, leveraging data from the Invest in Arup database, interviews with key proponents for

ML at Arup, and a technical skills survey.

(Appendix A. Arup’s Machine Learning Assessment was removed in public version)

Conclusion

Rather than an overview of all machine learning projects at Arup, this report investigates how

documented ML research projects are perceived, understood, and used. The study uncovers three

major findings: the largest concern for those applying ML is data collection and expertise, positive

sentiment toward ML research saw an initial rise but has since waned, and standardisation of

technologies will foster a more resilient community of ML developers.

7.2. Factors that Affect the Adoption of Machine Learning

Introduction

As part of the partnership with Arup Engineering, this research conducted a series of diagnostic

data analyses to identify barriers that have the potential to hinder the adoption of machine learning

in the AEC industry. The following conference paper, surmising the analyses, was presented at

the 18th international conference on Computer-Aided Architectural Design Futures (CAAD

Futures) held in Daejeon, South Korea. The theme of the conference was "Hello, Culture!", a

reference to the iconic "Hello, World" of the first computer program, found in Brian Kernighan

and Dennis Ritchie's 1978 book, The C Programming Language (p. 5).

42

(This paper can be found in Appendix B. Factors that Affect Machine Learning)

Conclusion

In accordance to the theme of the CAAD Futures conference, this study approached the

identification of factors that hinder the adoption of machine learning in the AEC industry through

a social, political, economic, and cultural lens. The study revealed that the combination of a

hesitancy to apply ML approaches over pre-existing methods, and an underwhelming supportive

community, reinforces the importance of digital standards and a more data-centric approach to

engineering.

7.3. A Comparison of Machine Learning Tools for Architects

Introduction

Machine learning is a vast field—one that draws from applied mathematics, probability and

statistics, data modelling and evaluation, algorithms and complexity, and not to mention

programming itself. Thus, as these are not usually found in the architectural curriculum, architects

inclined to explore ML are faced with an unusually steep technical barrier to entry. A time-

honoured approach to minimise this barrier is through the use of tools. Architectural engineers,

and more recently, computational designers, have been able to conduct solar analysis, structural

analysis, and fluid simulations, through the use of tools that bridge the gap between mathematical

complexity and architecture. As an example, the popular visual scripting plugin, Grasshopper,

built on top of the 3D modelling software, Rhino, has a plethora of community-made tools on a

platform called Food4Rhino. Respectively, Ladybug (Roudsari 2018), Karamba (2014), and

RhinoCFD (2017) are such tools that can be utilised for the aforementioned applications.

43

Comparison

Author of Architectural Intelligence: How Designers and Architects Created the Digital

Landscapes, Molly Wright Steenson, observes that "we are in the midst of a new wave of

architectural design and architecture pedagogy in which the computer plays an operative role and

reshapes how we teach architects and how they conceive their work. In some schools of

architecture, instead of drawing, students learn "visualization"; in addition to construction, they

adopt approaches to "fabrication"; they capture the information and decision-making around the

architectural project in "building information models"" (2017, p. 75). As the necessity of ML tools

becomes increasingly apparent, the computational design community have developed a variety of

tools that incorporate ML. As of the 19th of July, the time of writing, there are six Grasshopper

tools that proclaim the inclusion of ML algorithms: Dodo first released in 2015 (Greco), Lunchbox

in 2017 (Proving Ground), Octopus in 2018 (Vierlinger), and Owl (Zwierzycki 2019a), Wallacei

(Wallacei), and Opossum (Wortmann) in 2019. However, there is an argument to be made for the

removal of Wallacei and Opossum from this list, as they aren't offering the user the ability to use

ML. Rather, they offer the use of evolutionary algorithms, NSGA-2 (Deb 2002) and RBFOpt

(Costa & Nannicini 2018) respectively, which utilise ML internally. Wallacei and Opossum does

not provide the user with the ability to explore ML directly, thus will be removed from further

comparisons. Below is a comprehensive evaluation of the remaining four tools, documenting what

ML algorithms they offer (Table 1).

44

Paradigm Algorithm

D
o

d
o

(2

0
15

)

L
u

n
ch

b
o

x

(2
0

17
)

O
ct

o
p

u
s

(2
0

18
)

O
w

l
(2

0
19

)

Supervised

Linear regression x

Logistic regression * x *

Support vector machine x

Nearest neighbour x x

Random forest x

Naïve Bayes classifier x

Neural network x x x x

Supervised/
Unsupervised

Restricted Boltzmann x

Unsupervised

Self-organising map x

Elastic map x

K-means x x

t-Distributed SNE x

Gaussian mixture model x

Hidden Markov model x

Markov chain ^

* Despite not explicitly included, linear regression and logistic regression can be modelled using
a simplified version of neural networks. However, as some of the Grasshopper tools does not
provide the identity activation function, linear regression isn't possible.

^ Despite the fact that Markov chains are not technically an unsupervised learning algorithm—
rather a statistical model—Owl categorised the component underneath the 'unsupervised' section.

Table 1: A comparison of Grasshopper plugins and their machine learning algorithms.

45

Immediately, it is glaringly obvious how little overlap there is in terms of included algorithms

across the four tools. In fact, only three of the fifteen algorithms are included more than once

(four if you include logistic regression). As such, no one tool stands as the most comprehensive;

but nor do any shine in a specific ML paradigm. Another observation is the absence of any

reinforcement learning, one of the three paradigms. However, it should be noted that on Owl's

GitHub repository, the author recently created a subdirectory called "QLearning", a type of

reinforcement learning algorithm (Zwierzycki 2019b), suggestive that Zwierzycki may include

reinforcement learning in Owl for future versions. What can be gleaned from this preliminary

review is an indication of the state of ML in architecture. Potentially due to the field being in a

transitive state, much like the current state of ML use in architecture, these tools are incomplete

in their offering and scattered in their domain.

By the very nature of being a tool—a bridge between complexity and the users—the authors must

define their own balance between simplicity and control. A tool that is simple to learn becomes

too inflexible to be applied to many domains, whereas a tool with too much control becomes

convoluted and intimidating to learn. Through a review of the one algorithm that persists across

all the four tools, the artificial neural network, and the amount of control each tool offers, the

targeted purpose and audience for the tool can be derived (Table 2).

46

Type Functionality

D
o

d
o

(2

0
15

)

L
u

n
ch

b
o

x

(2
0

17
)

O
ct

o
p

u
s

(2
0

18
)

O
w

l
(2

0
19

)

Network
architecture

Number of hidden layers x x x

Number of neurons in hidden layers x x x x

Varying number of neurons in layers x

Activation
functions

Bipolar sigmoid x * x

Sigmoid x x * x

Sigmoid alpha variable x x * x

Softplus x *

Threshold * x

Hyperparameters

Batch size x

Stopping at max iterations x x x x

Stopping at max compute time x

Stopping at max memory x

Regularisation
methods

Early stopping by error threshold x x

Early stopping by divergent steps x

Learning
algorithms

Resilient backpropagation x

Backpropagation x x x

Delta rule learning x

Perceptron learning x

Learning rate x x x

Momentum x x

Meta Initialisation seed x x

* Despite the Encog Engine (the ML engine behind Octopus) offering a wealth of different
activation functions (Heaton 2014), Octopus doesn't specific which activation function was used,
nor does it give the flexibility to select an activation function.

Table 2: A comparison of Grasshopper plugins and their functionality with artificial neural networks.

47

From the above table, Lunchbox is an example of a machine learning tool that abstracts away too

much control. It removes the ability to control vital aspects when training neural networks, such

as the number of hidden layers, the learning rate, and the ability to allow for mutually exclusive

classification with the output activation function. In fact, Lunchbox errs so much on the side of

simplicity, that artificial neural networks trained using Lunchbox are limited in the complexity of

problems it can be applied to.

Octopus, on the other hand, provides the greatest interoperability during the training process.

Early stopping is a regularisation technique used for controlling the balance between variance and

bias. These techniques are used if the intention is to deploy the trained neural network afterward,

as opposed to experimentation. That said, even though Octopus provides the ability to build deep

neural networks, they do not allow for the variation in the number of neurons for each layer. Put

another way, if you were using Octopus to build a deep neural network of 10 layers (an arbitrarily

selected number of layers), each hidden layer is restricted to the same number of neurons—a

neural network architecture that is rarely seen in practice.

The only tool that provides control over the number of neurons in each layer—arguably, one of

the most important parameters for training neural networks—is Owl. Slightly more difficult for

the beginner to use, especially with its unfamiliar terminology of 'Tensors' and 'Tensorsets', Owl

offers almost all the vital functions required to train and use artificial neural networks: batch size,

learning rate, and momentum. However, despite its functionality, the tool does not offer any way

to observe or stop the training process to prevent overfitting, "a central problem to machine

learning" (Domingos, 2015, p. 71).

Conclusion

These tools are spread across the spectrum from simplistic but ineffectual to functional but

complex, and carry with them varying pros and cons. At the current state of these tools, the trade-

48

offs are too great to legitimately use them on problems of any considerable complexity. That is

not to say that these tools don't have any merit, as they are great tools to learn ML in a familiar

environment.

49

Chapter 8.

Technical Conceptual Framework

Introduction

The subsequent strategies, tools, and pedagogies discussed in this research relies heavily on a

conceptual understanding of the paradigms of machine learning, in tandem with a notional grasp

of the two algorithms that all deep learning systems are predicated. There are three paradigms of

ML: 'supervised', 'unsupervised', and 'reinforcement' learning. In recent years, a fourth paradigm,

'semi-supervised' learning, has garnered some attention. However, within this conceptual

framework, semi-supervised learning will not be discussed, as no semi-supervised learning

techniques were used in this research (and an understanding of supervised and unsupervised

learning is enough for one to interpolate).

First and foremost, it is imperative to understand that the three paradigms of ML are vastly

different and cannot be used interchangeably; they are inherently designed to solve different

problems. In the most abstract incarnation: supervised learning is used to teach a system to capture

a relationship between example inputs and outputs, so that the system can provide an output

prediction when it is posed with a new input; unsupervised learning is used to find an alternative

representation of only input data, to uncover hidden patterns, anomalies, or associations; and

reinforcement learning is used to train the behaviour of a decision-making agent, to act within an

environment according to a schema of rewards and punishments. An effective method to

differentiate the three paradigms is to consider what type of data is needed for training. Supervised

learning requires both input and output data, unsupervised learning requires only input data, and

reinforcement learning doesn't require any data beyond how to reward and punish the agent.

Furthermore, it is pertinent to note that these are the paradigms of machine learning, not deep

learning. Deep learning refers to a subset of ML, characterised by a certain type of algorithms.

50

Whereas ML encompasses both symbolic and connectionist AI algorithms, deep learning includes

only the latter. All deep learning algorithms are variations of the multilayered artificial neural

network, or the 'deep' neural network, hence the subfield's name. This conceptual framework, and

the larger body of research, focuses predominantly on deep learning techniques.

A commonality between deep learning algorithms across the three paradigms of ML is the method

by which they learn. Backpropagation, first applied to neural networks by Werbos (1974), makes

use of automatic differentiation (Linnainmaa 1970), to adjust the internal state of a neural

network. The inner operations of the artificial neural network and the backpropagation algorithm

will be explored below; as well as the three paradigms of ML, and their key variations of deep

learning algorithms. The purpose of this conceptual framework is to provide an introduction to a

basic technical understanding of ML, so that its use in later chapters can be better understood.

Artificial Neural Networks

Rooted in connectionism, artificial neural networks (ANN) were heavily inspired by the

operations of the brain. According to the tenets of the Neuron Doctrine, the widely accepted

scheme by which the brain operates, thought is exhibited when signals are sent through a mass of

neurons and synapses. The computational version borrows these ideas of structure, as well as

some inspiration about how the neuron fires, to build what we now know as the artificial neural

network.

The most basic of artificial neural networks, the architecture considered as the starting point for

all of its modern variations, contains a series of differences when compared with biological brain.

The most prominent instance is the organisation of neurons into sequential layers. The first layer,

known as the 'input layer', conducts no computation, and is merely a placeholder for the input

signal. The last layer is the 'output layer', which should take the shape of the desired outputs, and

51

is where the resultant signal comes out. All the layers in between are known as 'hidden layers',

and, with the output layer, is where all the computation occurs.

Each neuron in a layer is connected to every neuron in the layers immediately before and after.

Each connection, the computational equivalent of a synapse, takes the form a single number

known as the 'weight'. The weights between two layers can be represented as a matrix of floating-

point numbers, with dimensions equal to the multiplication of the number of neurons in the

connected layers. When an input signal is sent into the input layer, the signal is propagated through

the weights that connect the input neurons with the first hidden layer, and the results are held in

that layer of neurons. Each neuron in that layer then performs some computation that determines

the degree by which the neuron fires (this calculation uses variables called a 'bias' as well as a

non-linearity function called an 'activation function'). This altered signal is then sent through

another set of weights to the next layer, held in that layer to perform some computation in the

neurons, and fires off another set of signals. This process is repeated until that signal comes out

the other end through the output layer. What was just described is known as the feedforward pass

of an artificial neural network, and is what constitutes as 'thought' in ML.

Backpropagation

Once an artificial neural network model is constructed, immediately conducting an initial

feedforward pass would yield an incredibly inaccurate result. In the previous section, two

variables were identified that alters the resultant output signal: the weights and biases. When a

model is built, these variables are initialised randomly, so it's no wonder why the outputs are

unreliable. However, if one had the expected outputs for every given input, they could

theoretically tweak the weights and biases until the predicted output looks more like that of the

expected. This is the premise of backpropagation.

52

The question then becomes how to know how much to tweak these variables by. The premise of

connectionism makes this a challenge, as all neurons contribute to the output to varying degrees,

making it difficult to specify the precise change needed in each weight and bias. Some discount

Rumelhart's efforts when attributed with the backpropagation algorithm (1986), as they credit

Werbos who first applied it to neural networks years earlier (1974). However, Rumelhart's

contribution revealed the greater significance of applying backpropagation to train neural

networks and the implications of the efficiency the algorithm allows. Although Rumelhart didn't

invent the algorithm, he is the main reason it is still used to train state of the art neural networks

today.

Before backpropagation, there are two requirements: target outputs and error functions. The

former requirement calls for the possession of the inputs' target outputs, an objective for the

predicted outputs. As a side note, it was previously stated that only one ML paradigm, supervised

learning, expects both the inputs and outputs in its training dataset. However, that does not

necessarily mean that backpropagation is a supervised learning algorithm. In fact,

backpropagation can be used across all paradigms of ML. This is possible by finding clever ways

to fabricate the target output: such as an unsupervised learning algorithm called the 'autoencoder',

which replicates the input data to act as target outputs, and a reinforcement learning algorithm

called 'deep q-learning', which creates target outputs by tweaking the predicted output through a

system of rewards and punishments. The second requirement of backpropagation is the error

function. In this context, 'error', also known as 'cost' or 'loss', can be intuitively described as how

far the predicted output is from the target output. The error function is a way to calculate this.

With error calculated, backpropagation is tasked with minimising this error value across the entire

training dataset.

Using a single training datapoint for illustrative purposes, backpropagation can start after sending

that input datapoint through the neural network in a feedforward pass. The neural network returns

53

a predicted output, which can then be used to calculate the network's error. The goal of

backpropagation is to adjust the weights and biases to minimise this error. The algorithm finds

the partial derivatives of the network's error with respect to each weight and bias, to inform the

extent of these adjustments. In other words, backpropagation determines how much to adjust the

weights and biases, by calculating the impact that tweaking a single weight or bias has on the

entire network. This calculation cannot happen simultaneously, because the partial derivatives

(impact) of the earlier layers relies on the results of the later layers. But through the clever use of

a principle in calculus called the 'chain rule', backpropagation calculates the partial derivatives of

the layer closest to the output, and iteratively propagates those values back through the network

to compute the other layers, hence the name, 'backpropagation'. These partial derivatives are then

multiplied by a value known as the 'learning rate', which determines the pace at which the neural

network learns, and then carries out these adjustments. Repeated feedforward passes, error

calculations, and backpropagation, constitutes the iterative process by which an artificial neural

network learns.

It is important to recognise that this process is one of the more basic methods for training artificial

neural networks. Since its inception, ML researchers have since developed a plethora of

optimisation techniques for improving the performance of training, regularisation techniques to

prevent the common pitfalls, and intuitions that help find the best parameters.

Supervised Learning

The objective of supervised learning, one of the paradigms of machine learning, is to capture the

relationship between a set of inputs and outputs, so that when posed with a new input, that learnt

relationship can be used to predict the output. It's known as 'supervised' because the correct

outputs, provided in the training dataset, are given to the algorithm to guide the learning process.

This type of learning is similar to that of a child learning the names of shapes, where a mentor

54

would give the child examples. A parallel can be drawn between supervised learning and

observational learning seen in social psychology, which is predicated on imitation.

Algorithms that can be used for supervised learning include regression, decision trees, random

forests, k-nearest neighbours, and support vector machines. The algorithms that are explicitly

deep learning include the artificial neural network, as well as their structural variants: the

convolutional neural network that is designed to capture spatial relationships, and the recurrent

neural network, designed to capture temporal relationships.

Supervised learning can be applied to two types of problems: regression, which returns a

continuous value; and classification, which returns discrete values. In other words, regression

returns a number, whereas classification results in a category.

Unsupervised Learning

Whereas supervised learning shows some semblance to observational learning, unsupervised

learning is more analogous to classical conditioning in associative learning. Given a set of input

data, what patterns, structures, and/or anomalies can be detected? Revisiting the example of the

child learning their shapes, an application of unsupervised learning could be to ask the child to

group shapes based on the shape’s properties. What the child may come to discover is that some

shapes have curved edges, or that others have unequal side lengths, and structure them

accordingly. Through this example, the functional differences between the two paradigms become

apparent. The supervised learning approach sought to teach a child the properties of shapes, so

that they could apply this knowledge to classify new shapes, whereas unsupervised learning used

those properties to represent a collection of shapes in a new manner.

Algorithms that can be used for unsupervised learning include k-means clustering, principal

component analysis, and t-distributed stochastic neighbour embedding. The algorithms that are

55

explicitly deep learning include the aforementioned autoencoder, which is often used for data

compression or latent space representation, and self-organising maps, a topographic organisation

method where spatial distance represents the similarity of input properties.

Unsupervised learning can be applied to a range of different problems—including clustering,

dimensionality reduction, and anomaly detection—often where the data is too vast, in quantity or

dimension, to be understood upon inspection.

Reinforcement Learning

Reinforcement learning has strong ties to the field behavioural psychology. Often described as a

computerised version of operant conditioning, reinforcement learning is a process by which

agents are allowed to explore environments and are given rewards or punishments to shape their

behaviour. Returning to the example of the child (the ‘agent’, in this case) learning to identify

shapes around them (the ‘environment’), the child’s behaviour can be moulded with an onlooker

rewarding correctly identified shapes and punishing those incorrectly identified (the scheme for

rewards and punishments is known as the ‘reward function’). Reinforcement learning differs from

the other two paradigms largely due to the lack of training data required. Deep learning predicates

its superior performance compared to other ML methods as the size of the training dataset

increases, however, reinforcement learning creates its own training dataset as the agent explores

the environment.

Algorithms that can be used for reinforcement learning include Q-learning, Monte Carlo learning,

and temporal difference learning. The algorithms that are explicitly deep learning include the deep

Q-network, a variant of the Q-learning method using a deep neural network as the policy (decision

maker in the agent), and their variants: double Q-networks and duelling Q-networks.

56

Reinforcement learning can be applied to any problem where an agent must take actions within

an environment, in order to maximise a defined reward function. Reinforcement learning has seen

most of its successes in robotics and game-playing scenarios.

57

Chapter 9.

Strategies, Tools, and Pedagogies

The overarching objective of this research is to explore and develop methods to foster the adoption

of deep learning in the AEC field. In chapter 6.4. Bridging the Gap, this research identified that

the most effectual approach toward this was the fusing of the architect and the ML engineer.

Attempting to reduce the inherently steep technical barrier to entry, this chapter presents a

collection of strategies, tools, and pedagogies, including:

1. an exploration of active learning pedagogies applied toward the education of computational

design students in artificial neural networks and backpropagation, and

2. the development of a software package that facilitates the learning and use of deep

reinforcement learning within architectural software.

These applications, the resultant tools, and workshops conducted, are practical instances that

reinforce the movement toward furthering the integration of deep learning in architecture.

9.1. Applying Active Learning Pedagogies for Teaching Backpropagation

Introduction

Prior to this body of work, a bachelor-level thesis, in pursuit of similar objectives, ventured into

the development of the artificial neural network and backpropagation algorithm in software

familiar to architects (Khean et al. 2018). The thesis, entitled The Introspection of Deep Neural

Networks - Towards Illuminating the Black Box, was published in the proceedings for the 23rd

international conference on Computer-Aided Architectural Design Research in Asia (CAADRIA)

held in Beijing, China. The theme of the conference was “Learning, Prototyping and Adapting”,

58

which asked researchers for “both innovative responses integrating emerging technologies into

experimental architectural practice and their critical reflection” (Xu et al. 2018, p. iv).

"This paper describes the development of a learning tool directed at architects and

designers to better understand the inner workings of machine learning. Within the

parametric modelling environment of Grasshopper, this research develops a

framework to express the mathematics and programmatic operations of neural

networks in a visual scripting language. This offers a way to segment and

parametrise each neural network operation into a basic expression. Unpacking the

complexities of machine learning in an intermediary software environment such as

Grasshopper intends to foster the broader adoption of artificial intelligence in

architecture."

(Khean et al. 2018, p. 237)

Comparison

Referring to chapter 7.3. A Comparison of Machine Learning Tools for Architects, where four

Grasshopper plugins that offered the use of ML algorithms were assessed based on their

functionality, below is how the developed tool compares (Table 3).

59

Type Functionality

D
o

d
o

(2

0
15

)

L
u

n
ch

b
o

x

(2
0

17
)

O
ct

o
p

u
s

(2
0

18
)

O
w

l
(2

0
19

)

K
h

ea
n

(2

0
18

)

Network
architecture

Number of hidden layers x x x x

Number of neurons in hidden layers x x x x x

Varying number of neurons in layers x x

Activation
functions

Bipolar sigmoid x x x

Sigmoid x x x x

Sigmoid alpha variable x x x x

Softplus x x

Softmax x

Threshold x x

Rectified linear unit x

Hyperparameters

Batch size x x

Stopping at max iterations x x x x x

Stopping at max compute time x

Stopping at max memory x

Regularisation
methods

Early stopping by error threshold x x x

Early stopping by divergent steps x

Learning
algorithms

Resilient backpropagation x

Backpropagation x x x x

Delta rule learning x

Perceptron learning x

Learning rate x x x x

Learning rate decay x

Momentum x x x

Dropout x

Meta Initialisation seed x x x

Table 3: A further comparison of Grasshopper plugins and their functionality with artificial neural networks.

60

On face value, the developed tool (Khean et al. 2018) offers more functionality than the four other

plugins. However, the tool fails when comparing the number of algorithms provided and the speed

of computation. Whereas only one algorithm was included, the artificial neural network (trained

with backpropagation), the other four plugins included at least three other algorithms. In doing

so, the four plugins are able to offer the user a wider breadth of applications. Furthermore, the

developed tool encoded the artificial neural network and backpropagation algorithm using

Grasshopper components alone. When compared with the other four plugins, which was written

in VB.NET or C#.NET, the developed tool is orders of magnitude slower than the plugins. This

is due to the computational bottleneck of the Hoopsnake component, used to counter

Grasshopper’s recursive loop avoidance check. As such, although the tools offers greater

functionality, using it to train a model would be unnecessarily tedious.

Despite the shortcomings of the developed tool, its intention was never to be used to train neural

networks, rather, as a complementary resource for an educational module aimed at teaching

architects deep learning. The developed tool, built in a software environment familiar to

architects, in a fashion where all operations are transparent and interactable, offers a window into

the complexities of deep learning.

At the start of 2018, this educational module took the shape of a four-week series of workshops,

which was later taught to third-year Bachelor of Computational Design Students at the University

of New South Wales. The development, teaching, and evaluation of the module was documented

in the following conference paper, Learning Machine Learning as an Architect, How to?, which

was presented at the 36th international conference on Education and Research in Computer-Aided

Architectural Design in Europe (eCAADe) held in Łódź, Poland. The theme of the conference

was “Computing for a Better Tomorrow”, which called for “a revision of methods and tools

applied in research, teaching, and practice” (Kępczyńska-Walczak 2018, p. v).

61

(This paper can be found in Appendix C. Learning Machine Learning)

Conclusion

This study reflects upon the development and execution of an educational module to teach AEC

students basic deep learning algorithms in a familiar software environment. The results highlight

the importance of deep learning within the architectural curriculum and validates the student-

centred approach, namely the resource-based pedagogy, for ML education within the built

environment.

9.2. A Tool for Deep Reinforcement Learning in Grasshopper

Introduction

Throughout this body of work, there is a recurring theme with the reinforcement learning

paradigm; that is, its scarcity. From a search of the Cumulative Index about publications in

Computer-Aided Architectural Design database, a database containing over 12,300 publications

from six international conferences, only 5 papers used reinforcement learning, of which, only 2

uses deep reinforcement learning (Srinivasan & Malkawi 2005a; 2005b); the analysis of Arup’s

research database, described in chapter 7.1. The State of Machine Learning Research in the

Architectural Industry, revealed no instances of reinforcement learning research projects at the

time of data extraction; and of the ML plugins examined in chapter 7.3. A Comparison of Machine

Learning Tools for Architects, none offer the ability to leverage reinforcement learning

algorithms. The latter point is a major barrier for the adoption of deep reinforcement learning.

Thus, much like the previously mentioned educational Grasshopper tool (Khean et al. 2018), a

strategy to facilitate the integration of deep learning in the AEC was to develop a reinforcement

learning software package aimed at providing architects a method to explore deep reinforcement

62

learning. The objective is to develop a software package that allows architects to, not only learn,

but use deep reinforcement learning algorithms within a familiar software environment.

Development

Reiterating the outline of reinforcement learning in chapter 8.5, reinforcement learning is a

process to train an agent to take actions within an environment, in order to maximise a defined

reward function. Substantial effort in the application of reinforcement learning lies in the creation

of an environment wherein the agent can perform their actions. If the objective of using

reinforcement learning is to imbue intelligence into a real-world agent, the environment must be

set up to be as realistic as possible. Otherwise, if the agent is to remain simulated, this is less

important. It is common practice to use game engines or software libraries for the creation and

simulation of the agent and environment, such as Unity or OpenAI's Gym, in tandem with

packages that can perform the operations needed to perform reinforcement learning, such as ML-

Agents and TRFL. Thus, in the context of architecture, a combination of Rhino and Grasshopper,

chosen for its architectural familiarity, and Python, for its power and simplicity, was identified as

a suitable foundation for the software package. Further, offloading the substantial amount of

computation required for training ML models to python will provide more efficient training, thus

faster training time.

As with each ML paradigm, within reinforcement learning are several algorithms, each with

varying strengths and weaknesses. For this software package, the Q-learning algorithm was

chosen for two reasons: its ability to use deep learning models as the decision-making policy, and

the recent successes of the algorithm's modern variants. Reinforcement learning is predicated on

shaping the behaviour of an intelligent decision-making system. This system is called the 'policy'.

Q-learning is an algorithm to train this policy, however the policy itself can be another algorithm

altogether. As the focus of this research is deep learning, the deep neural network was chosen as

the decision-making policy, making this specific type of reinforcement learning algorithm, 'deep

63

Q-learning'. Furthermore, variations of the Q-learning algorithm, such as duelling Q-learning

(Wang et al. 2015) and double Q-learning (Van Hasselt, Guez & Silver 2016) have been used to

show beyond human level proficiency on narrow tasks. Q-learning has been successfully applied

in game-playing tasks such as ATARI games (Mnih et al. 2013), the board game Go (Silver et al.

2017), and even incredibly complex games like StarCraft II (Vinyals et al. 2019). Thus, toward

the objective of providing a software package that allows architects to learn and apply deep

reinforcement learning within Grasshopper, the deep Q-learning algorithm was chosen.

For illustrative purposes, a toy example problem—using deep Q-learning to steer a car along a

road network—was used to ground the development. For this problem, the car, represented as a

rectangle in Grasshopper, will act as the agent, interacting with a road network, represented as a

planar list of curves. For simplicity, the agent will be continuously propelled forward, rather than

giving control of the speed to the algorithm (although the envisioned software package can be

extended upon to include this). To avoid collision with the edges of the road, the agent’s

immediate surroundings are inputted into the deep Q-network, to decide whether to turn left, right,

or continue straight.

Having decided that the agent and environment will persist in Grasshopper, and the deep Q-

learning algorithm will run in Python, a method for inter-process communication (IPC) and a data

flow diagram (DFD) was required. IPC methods are operating system-specific approaches for the

management and transfer of data between processes (an instance of a computing program), which

was required for this project to send data between Grasshopper and Python. After a comparison

between a selection of IPCs—sockets, pipes, and shared memory—ultimately, sockets were found

to be the most appropriate IPC. Despite being slower than shared memory and pipes, sockets were

chosen for its simplicity, control, and inbuilt synchronisation, as well as the potential for

extending its capabilities for network sockets with little modification. The DFD to implement

deep Q-learning in Grasshopper and Python through sockets is outlined below (figure 3).

64

The versions for Python and the important libraries are as follows: Python 3.6.8, tensorflow-gpu

2.0.0-beta0, and Numpy 1.17.0. Below outlines the process by which each component of the

software package was created.

1. Initialise Server and Environment

Before the training loop starts, both the local Python server and Grasshopper environment

requires some initialisation steps. In the server, the neural network, acting as the decision-making

policy, and the objects used to train it are defined and compiled.

import tensorflow as tf

...

class PolicyNetwork(tf.keras.Model):
 def __init__(self, neurons_per_hidden_layer, output_neurons):
 super(PolicyNetwork, self).__init__()
 self.hidden_layers = []
 for i, n in enumerate(neurons_per_hidden_layer):
 self.hidden_layers.append(
 tf.keras.layers.Dense(

figure 3: Data flow diagram between Grasshopper and Python for deep Q-learning.

65

 units=n,
 activation='relu',
 name=f'hidden{i+1}'
)
)
 self.output_layer = tf.keras.layers.Dense(
 units=output_neurons,
 activation='sigmoid',
 name='output'
)
 def call(self, x):
 for layer in self.hidden_layers:
 x = layer(x)
 return self.output_layer(x)

@tf.function
def train_step(inputs, labels):
 with tf.GradientTape() as tape:
 loss = loss_object(labels, model(inputs))
 grad = tape.gradient(loss, model.trainable_varaibles)
 optimiser.apply_gradients(zip(grad, model.trainable_variables))
 mean_loss(loss)

...

if __name__ == '__main__':

 # Build Model
 model = PolicyNetwork(NEURONS_PER_HIDDEN_LAYER, OUTPUT_DIMENSIONS)
 loss_object = tf.keras.losses.MeanSquaredError()
 optimiser = tf.keras.optimizers.Adam()
 mean_loss = tf.keras.metrics.Mean()

Next, there will be multiple occasions where a socket of differing ports will be bound to. Below

are the functions in the server used for sending and receiving data to and from Grasshopper

through sockets.

import socket

...

def recv_from_gh(socket):
 socket.listen()
 conn, _ = socket.accept()
 with conn:
 message_byte = conn.recv(BYTES)
 message_string = message_byte.decode()
 return [float(value) for value in message_string.split()]

def send_to_gh(socket, message):
 socket.listen()
 conn, _ = socket.accept()
 with conn:
 conn.send(str(message).encode())

66

When the server initialises, and the training loop starts, the server binds to the first of two ports,

and waits to receive the first inputs from Grasshopper.

Training Loop
for _ in range(ITERATIONS):
 with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT_1))

 ...

 state_input = recv_from_gh(s)

In terms of the initialisation required in Grasshopper, the environment (the road network) should

be drawn and internalised in a Curves container, and the initial position of the agent (the

rectangular car) should be stored within the Hoopsnake component. Hoopsnake is a community-

made component that subverts Grasshopper’s recursive loop avoidance check and is how the

training loop will be managed (figure 4).

figure 4: Initialising the Grasshopper environment.

67

2. Send State to Server (Grasshopper)

At this stage, the training loop can commence. With the local server running and the initialisation

steps completed, right clicking the Hoopsnake component and selecting ‘Loop’ will start training.

The server has binded with the first port and is waiting on Grasshopper to send the first input

state. The input state is how the agent perceives its environment and is the input for the neural

network policy to decide upon an appropriate action. Determining what part of the problem can

be an input state is a significant detail in framing a problem for deep Q-learning. This will

ultimately determine how well the policy can generalise its learnt knowledge to unfamiliar

environments. For this toy example, a series of lines that protrude from the front of the rectangle,

representing sightlines, and their intersections with the road network will act as the input state to

send to the neural network policy as inputs (figure 5).

The intersection values (input state) should be sent to the server. For data to be sent through

sockets, it first must be serialised into bytes. This is achieved by using Grasshopper components

to convert the list of floating-point values to a string of separated values, to be encoded in the

GH_CPython component (figure 6).

figure 5: Sightlines from the car intersects with the road network to generate the input states.

68

After Grasshopper has sent the input state to the server, it stays bound to the first port, and waits

to receive an action back from the server.

3. Infer Action with Neural Network Policy (Python)

As the server receives the input state from Grasshopper, the input state is fed into the neural

network. After a feedforward pass, the resultant outputs from the neural network are a list of

probability values, corresponding to each action (in the toy example, they are: ‘turn left’, ‘turn

right’, or ‘don’t turn’). In theory, the action with the highest value is what the neural network

policy decides as the best action to take. This is known as a ‘greedy policy’. As the agent starts

to explore the environment, if it quickly finds a behaviour that yields moderate rewards, it would

continue to exhibit that behaviour, in favour of a known reward, as opposed to the uncertainty it

faces with other options. This can be detrimental if another pattern of behaviour with the potential

to yield even greater rewards requires the agent to perform actions that they are uncertain on. In

practice, the ‘greedy policy’ leads to suboptimal behaviour. One technique that has shown

promising results is the introduction of randomness. The ‘epsilon-greedy policy’ is a controlled

figure 6: Encoding input states and sending to Python server.

69

method to force the agent to occasionally perform random actions. Finding the balance between

a greedy policy and randomness is known as the ‘exploration vs. exploitation’ problem.

import random

import numpy as np

...

def e_greedy_policy(q_estimates):
 if random.random() <= epsilon:
 return int(random.randint(0, OUTPUT_DIMENSIONS - 1))
 else:
 return int(np.argmax(q_estimates))

...

Training Loop
for _ in range(ITERATIONS):

 ...

 q_estimates = model(np.array([state_input]))
 action = e_greedy_policy(q_estimates)

Still bound to the first port, the action is sent back to Grasshopper through the same socket. After,

using Python’s context managers, the server then unbinds with the first port, and binds to the

second, awaiting the reward value for the action taken from Grasshopper.

Training Loop
for _ in range(ITERATIONS):
 with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s:

 ...

 send_to_gh(s, action)

 with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT_2))

 ...

 reward = recv_from_gh(s)[0]

70

4. Perform Action and Calculate Reward (Grasshopper)

Previously, Grasshopper was left bound to the first socket, waiting for the action. Upon receiving

the action from the server, it unbinds from the first port, and Grasshopper updates the position of

the agent in accordance to the action (figure 7).

In this new position, a reward should be calculated following a ‘reward function’. A reward

function is an omnipotent, objective measure that quantifies the contemporaneous quality of the

agent. Behind deciding on what the problem’s input states are, the reward function is another vital

aspect of reinforcement learning. It is what ultimately directs the behaviour of the agent. For the

toy example, the reward function follows three cumulative rules: add 0.1 for each iteration the car

does not collide with the edge of the road, subtract 10 for a collision, and reset to 0 after a collision

(figure 8).

figure 7: Receiving action from server and performing the associated action.

71

Having calculated the reward value in accordance to the reward function, the reward is serialised,

and then Grasshopper binds with the second port, to send the reward to the server.

import socket

...

reward_string = str(reward)
reward_byte = reward_string.encode()

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.connect((HOST, PORT_2))
 s.send(reward_byte)

At this stage, there is nothing left for Grasshopper to do besides get ready for the next iteration.

To do so, the new agent position is sent back into the Hoopsnake component, the input state is

recalculated, and binding with first port, ready to send the next input state to the server.

figure 8: Calculating the reward and sending that to the Python server.

72

5. Update Policy with Q-Learning (Python)

Bound to the second port, the server should receive the reward value from Grasshopper. The way

the toy problem is set up, when the agent (car) intersects with the environment (edge of road), the

agent will be punished with a reduction of reward, and the position of the agent is reset. Upon

every iteration, except those where the agent resets, the server should have four variables: the

previous input state, the action decided by the policy for that input state, the reward for performing

that action, and a new state. These four variables are stored into the memory of the deep Q-

learning algorithm as a memory sample, and acts as the training dataset for the deep Q-network.

Below is how the server samples from its accumulating memory, alters the values in accordance

to the reward, and trains the deep Q-network.

Training Loop
for _ in range(ITERATIONS):

 ...

 # Store Memory Sample
 memory_sample = [prev_state, action, reward, state_input]
 memory.append(memory_sample)
 if len(memory > MAX_MEMORY:
 memory.pop(0)

 # Sample Batch from Memory
 if BATCH_SIZE > len(memory):
 batch = random.sample(memory, len(memory))
 else:
 batch = random.sample(memory, BATCH_SIZE)

 # Predict Q-Values for Batch
 qsa = model(np.array([sample[0] for sample in batch]))
 qsad = model(np.array([sample[3] for sample in batch]))

 # Set Up Arrays for Training
 x = np.zeros(shape=(len(batch), INPUT_DIMENSIONS))
 y = np.zeros(shape=(len(batch), OUTPUT_DIMENSIONS))

 for index, sample in enumerate(batch):
 pre_st, actn, rwrd, nxt_st = sample[0], sample[1], sample[2], sample[3]
 current_q = qsa[index]
 current_q[actn] = ALPHA * (rwrd + GAMMA * np.max(qsad[index]))
 x[index] = st_in

y[index] = current_q

 # Train Model
 train_step(x, y)

 ...

73

After the deep Q-network has been trained for one iteration, the server reaches the end of the loop,

and repeats the process by binding with the first port, awaiting Grasshopper to send the next state

input.

Training Loop

for _ in range(ITERATIONS):
 with socket.socket(socket.AF_INT, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT_1))

 ...

 state_input = recv_from_gh(s)

Application

This software package, facilitating the learning and application of deep Q-learning within

Grasshopper, acted as the basis for an educational module. The module was formulated as a two-

day intensive workshop, aimed at teaching architects with no prerequisite knowledge of machine

learning the potential of reinforcement learning within the context of the built environment.

The workshop, titled Deep Reinforcement Learning in Grasshopper: Using Deep Q-Networks to

Train an Intelligent Agent to Act in a Grasshopper Environment, was first conducted during the

24th international conference on Computer-Aided Architectural Design Research in Asia

(CAADRIA) held in Wellington, New Zealand. The theme of the conference was “Intelligent and

Informed”, which was “driven by the intention to take in aspects of machine intelligence, and a

wide range of potential research that engages with the intelligent exploitation of computer-

mediated techniques in architecture” (Schnabel, Brown & Moleta 2019, p. vi). Sixteen students,

researchers, and educators from nine different countries attended the workshop. Later, the

workshop was conducted at the University of New South Wales for a selection of five

undergraduate computational design students. And finally, the workshop is set to run during the

74

upcoming 37th international conference on Education and Research in Computer-Aided

Architectural Design in Europe (eCAADe) held in Porto, Portugal. The theme of the conference

is “Architecture in the Age of the Fourth Industrial Revolution”, provoking an inquiry into “the

emerging opportunities and main threats to our discipline caused by the rise of intelligent agents”

(eCAADe 2019).

Reflection

The described software package includes the fundamental requirements for the training of

intelligent agents using deep Q-learning in Grasshopper. Contemporary research efforts that offer

increased performance and efficiency, such as the previously mentioned Q-learning variants—

double Q-learning and dueling Q-learning—can very easily be combined with the package.

However, it was decided that the unembellished version would be more amenable as an

educational tool.

During the workshops, often questioned was the necessity of communicating with a local Python

server. Since the Grasshopper plugin, GH_CPython, was used to import sockets, why not also

use GH_CPython to train the deep Q-network within Grasshopper? The answer stems from how

Grasshopper resolves the flow of data. GH_CPython acts similarly to other components, meaning

that the operations performed inside the component must completely resolve before any data is

outputted. Thus, if a GH_CPython component was used to initialise a model and continue to run

outside of (and in parallel to) the training loop, since the component is still running (and not

resolving), the loop would not even start. If placed within the training loop, not only would it

initialise the model at every iteration—effectively undoing the previous efforts of training—it

would also import Tensorflow at every iteration (a large Python library, thus incredibly arduous

to compute). As a result, the software package relies on the local Python server.

75

Another characteristic of Grasshopper, one that severely restrained the development of the

software tool, was its inbuilt recursive loop avoidance check. Simply put, this is Grasshopper’s

method for preventing a loop in the flow of data. Again, stemming from how the program works,

a Grasshopper script acts as a blueprint for a series of computations. A loop is unfavourable in

Grasshopper, as that blueprint would contain an infinitely long series of computations. There are

methods for tricking Grasshopper into allowing a loop, such as the use of two Data Dam

components wired up to some timers. However, this approach is inefficient, due to the replication

of data, and relies on a delay rather than events. A more common work around is through the use

of plugins, such as Hoopsnake. Hoopsnake allows for loops in Grasshopper by splitting the

infinite series of computations at the point of the Hoopsnake component, allowing each loop to

conduct the desired operations once, output a result that is fed back into the Hoopsnake

component, which subsequently triggers the next iteration. As the time of writing, there are two

other plugins that offer similar functionality, Loop and Anemone. Regardless of which method is

used to facilitate recursion in Grasshopper, the method forces Grasshopper to overlook its single-

threaded graph logic.

The reliance of a local Python server, in tandem with the substantial effort taken to subvert

Grasshopper’s recursive loop avoidance check, begs the question, to what extent does the

endeavour to shoehorn deep learning capabilities in familiar software contribute toward a greater

adoption of deep learning in architecture? Do these highly specific and unique workarounds allow

architects to learn the algorithm, or does it moreso ask them to learn the intricacies of a singular

tool? This will be explored further in the following chapter, 10.1. Should the Architect Learn

Machine Learning?

Conclusion

The goal of the chapter, founded from a scarcity of reinforcement learning in the AEC, was to

develop a software package that provided architects the ability to learn about and train deep Q-

76

networks in a familiar software environment. The resultant software package largely succeeded

in that regard. However, its development also brought to light the uncertain value of these

endeavours toward the long-term adoption of deep learning in the AEC.

77

Chapter 10.

Considerations and Implications

To combat the rising complexity of design problems and the prolific quantities of data, the

research efforts throughout this body of work have been in the pursuit of a more intelligent field

of architecture. With deep learning identified as the technology that could solve these issues, this

research explored and developed strategies, tools, and pedagogies, to fuse the role of the architect

and deep learning engineer, fostering the adoption of artificial intelligence-driven approaches.

However, the specificity of the developed tools combined with the depth of knowledge required

to productionise deep learning models brings into question the viability of combining the two

roles. Further, simply understanding how to train models does not adequately encompass the

exhaustive list of considerations and implications for applying deep learning. These

considerations will be explored in this final chapter, which aims to:

1. discuss the necessity for combining the role of the architect and the deep learning engineer,

2. examine the often-overlooked implications for applying deep learning, and

3. ask if deep learning is indeed intelligent.

10.1. Should the Architect Learn Machine Learning

Introduction

The ambition to combine the architect and the deep learning engineer has directed the research

objectives toward developing tools and creating modules to teach architects deep learning.

However, the tools, developed and existing, that enables architects to train deep learning models

in familiar software are often limited in either computational speed, interoperability, or control.

These tools are aimed at the exploration of deep learning through exploratory research or

78

feasibility prototyping, rather than offering the functions needed to realistically train high

performing models on complex scenarios. As a result, the educational modules that aim to teach

these highly specific and niche tools are forced into teaching skills applicable only to that tool,

rather than providing transferable skills to developing deep learning models. This then begs the

question: are all these tools, those developed and taught in this body of work as well as the four

plugins assessed in chapter 7.3. A Comparison of Machine Learning Tools for Architects, truly

an effective method toward the objective of a more intelligent field of architecture?

Balancing Simplicity and Control

The tools taught in chapter 9.1. Applying Active Learning Pedagogies for Teaching

Backpropagation and developed in chapter 9.2. A Tool for Deep Reinforcement Learning in

Grasshopper have shown to be effective methods for the promotion and exploration of deep

learning. They offer a method for AEC practitioners to understand the capabilities of deep

learning algorithms, the types of problems they can solve, and the efforts required to train models.

However, all tools exist on a spectrum—with abstracted simplicity on one end and complete

control on the other—that determines the tools functionality, usability, and flexibility.

Reflecting on the backpropagation algorithm (Khean et at. 2018), although it offers greater

functionality than the tools assessed in chapter 7.3. A Comparison of Machine Learning Tools for

Architects, all operations were created using Grasshopper components. The motivation for this

was to demystify the complexities of the backpropagation algorithm, by breaking it down to the

simplest mathematical and computational operations. Encoding these base operations into

Grasshopper components allows AEC practitioners familiar with Grasshopper to understand

what is really happening inside the once-cryptic mass of matrices. Furthermore, Grasshopper’s

graph logic style of computation provides an interoperability to inspect data at any stage of the

process. However, despite the fact that it is fully capable of training deep learning models, the

benefits gained from interoperability comes with the detriment of severely decreased efficiency.

79

Combined with its limited flexibility to control large quantities of data and cumbersome usability,

the tool was never intended to legitimately train deep learning models.

In response to the lessons learnt above, the deep Q-learning tool developed in chapter 9.2. aimed

to facilitate the training of deep learning models, while maintaining interoperability and an

introspective quality. As such, a machine learning library, designed for speed and efficiency, was

utilised to handle the majority of the deep learning computation. Furthermore, the machine

learning library offers the ability to export the model once trained, allowing models to be reused.

However, the want for faster computation, forced the use of software that is less familiar to

architects, and that limits the potential to inspect inner operations, by hiding complexity behind a

veil of “it just works”. And despite the flexibility of the tool, where different problem domains

and further algorithms can be added, its usability requires the architect to have a considerable

grasp of the software, alluding to the learning of a tool rather than the underlying principles of

deep reinforcement learning.

Although these tools allow for the exploration of deep learning in the AEC, they are too

cumbersome to be used for training high performing deep learning models, as evidenced by the

lengths taken in their development. Granted, the original intention of these tools were to be used

as educational resources. Rather than its use for productionising models, these tools were designed

with explainability, clarity, and simplicity as key pillars.

Algorithms Are Not Enough

As evidenced by chapter 9.1. Applying Active Learning Pedagogies for Teaching

Backpropagation, a resource-based pedagogy proved an effective method for teaching deep

learning within the AEC. However, although these tools, as well as those covered in chapter 7.3.

A Comparison of Machine Learning Tools for Architects, contribute to the number of ways deep

learning can be applied, they all focus on different algorithms. There is so little overlap in the

80

machine learning algorithms offered by these tools, that a comprehensive understanding of the

ML field requires the learner to adjust to the quirks and nuances of each tool.

However, the importance placed on what algorithms are offered reinforces a detrimental “silver

bullet” mentality. Too often have deep learning beginners assumed that the use of a “better”

algorithm will solve their problems and yield better performing models. This may be true to an

extent, however, there are a range of techniques that deep learning practitioners use, that simply

aren’t provided by these aforementioned tools, thus preventing the architect from training very

high performing models on complex problems.

Bart Baesens, author of Analytics in a Big Data World, suggests that in building a statistical model

“the most time-consuming step is the data selection and preprocessing step, [which] usually takes

around 80% of the total efforts” (2014, p. 5). Disregarding the developed deep Q-learning

software package, which does not require any training data, all other tools that offer the

application of deep learning within Grasshopper offers no data processing or feature

engineering/selection components. These tools assume that the imputed dataset is ready to be used

for training, effectively skipping “80% of the total efforts”. This further reinforces the “silver

bullet” mentality, as it implies that by plugging data into their components, it will readily return

insightful meaning. Even after raw data has been adequately preprocessed for training, the act of

tweaking hyperparameters (the variables that determines the architecture of the deep learning

model, the nuances of the learning algorithm, and etc.), a vital step, is limited with the simplicity

of these tools. There are a plethora of other techniques used to achieve high performing models,

such as cross validation, autoML, and ensembles. The shallow emphasis these tools place on

algorithms, rather than offering a deep level of control, is reflected in the performance of resulting

models in complex scenarios.

81

By training architects to use tools that abstract the functionality needed to train high performing

deep learning models, architects can learn the basics of the algorithms, but would be hard-pressed

to productionise any resultant models. There is benefit with learning the fundamentals of machine

learning, which can be transferred to more capable machine learning libraries, however, what is

the value of teaching architects through the use of these experimental tools for a more intelligent

architecture through deep learning?

The Architect and the Engineer

The objective of this chapter was not to bemoan the avenues for deep learning in the AEC, but to

provide a realistic perspective for the impact of these tools. A majority of architects wanting to

use such tools would be inherently disadvantaged when attempting to train high performance

models needed for complex problems, compared to the powerful libraries available to deep

learning engineers. The depth of understanding required to deploy production-ready models

requires an inordinate amount of knowledge from a broad range of mathematical and computer

science topics, usually beyond that of the architectural curriculum. This disparity will inevitably

lead to poorer quality models, disenfranchising the AEC upon seeing poor performance. Thus, to

more effectively adopt deep learning in the AEC, accurate and reliable models built by deep

learning engineers would further the field more than architects experimenting to limited

capacities. Then, what is the point of these tools?

Charles Babbage, inventor of computational machines powered by punch cards, was only able to

conceive it through a combination of his knowledge and the silk-weaving industry. Similarly,

Henry Ford leveraged his knowledge of sewing machines and meat packing plants to invent the

car manufacturing assembly line (Teodoridis, Bikard & Vakili 2018). Neither were experts in

silk-weaving, sewing machines, or meat packing, but a high-level understanding provided them

with the insight of when to apply those techniques. Likewise, architects with a high-level

understanding of deep learning algorithms—what types of problems each algorithm was designed

82

to solve, the training data that is required, and the expected outcomes—allows them to identify

when a problem can be solved through deep learning.

Thus, the objective of more intelligent architecture field through the adoption of deep learning, is

less so about the fusing of the architect and the ML engineer, and more so an exposure of

architects to these tools and algorithms, allowing an understanding of when best to apply it.

Identifying when deep learning should be used, and then having the foresight to then approach

external experts, is the more impactful approach toward a more intelligent AEC. And, the only

way to gain this high-level understanding is by first bridging that gap through the exploration of

these tools.

10.2. Considerations for the Application of Deep Learning in Architecture

Introduction

Upon deciding for deep learning to be applied on a problem within the AEC, it is imperative for

the designer to thoroughly consider the implications. Almost all deep learning algorithms are

treated as ‘black box’ algorithms, a mathematical model that lacks interpretability and

explainability. Thus, when applying neural networks, expect answers without justification.

Coming to terms with this fact, to further minimise the potential for negative repercussions in the

application of deep learning in the built environment, there are three heuristics that should be

adhered to: design for failure; garbage in, garbage out; and intelligence ages.

Failure

Deep learning has a fatal flaw: “they sometimes provide wrong answers that they are confident

are right” (Agrawal, Gans & Goldfarb 2018, p. 61). This is known as the false positive and is

often incredibly difficult to detect. No matter how elaborate a system of safety nets designed to

83

catch these failures, ultimately, all models are simplifications, and thus are unable to capture every

nuance of our stochastic world. Failure is inevitable.

In conjunction, as identified in chapter 7.2. Factors that Affect the Adoption of Machine Learning,

ML models heavily favour efficiency over accuracy—a contributing factor to the resistance of

engineers. Once trained, although this efficiency has the potential to speed up the time it takes for

computationally onerous tasks by orders of magnitude, what the ML model learns will always

only ever be an approximation. This might be tolerable in some situations, especially for problems

that are itself only approximations (i.e. fluid dynamics simulations). However, if deep learning

was applied to problems with small margins for error, at best, the designer would appear foolish,

and at worst, quite literally, lives could be at stake.

In lieu of a 100% accurate model, it might be prudent to adopt Domingos’ attitude toward

statistical models: “all models are wrong, but some are useful” (2015, p. 149). By expecting

failure, domain knowledge can be leveraged to understand the tolerance of the problem, and an

informed decision can be made as to whether or not deep learning is an apt approach. "When the

stakes are high, accuracy is what matters most" (Fry 2018, p. 84).

In the age of deep learning, algorithms are no longer simply right or wrong. In fact, some deep

learning algorithms offer no avenue to gauge a measure of accuracy. However, of all the fields of

knowledge, the built environment, and more specifically architectural design, is one of the few

disciplines that doesn't have a definitive solution to right or wrong. The subjective nature of

architecture and design lends itself to the application of these imprecise systems, and to the ability

to have different interpretations. Ultimately, deep learning is best applied to processes that are

lengthy and have outcomes subject to subjectivity.

84

Data

One of the two factors that are commonly attributed as the reason for deep learning’s success is

the increasing number of ways to measure aspects of our world, combined with our incessance to

record those measurements. Because of this, a common pitfall for deep learning engineers is an

over-emphasis on the quantity of training data. Although prolific quantities of data have propelled

deep learning beyond the achievements of other ML approaches, those vast quantities come with

a cost. Big data is costly to store, manage, and move, takes longer to train models with, and have

a high potential for data pollution. Furthermore, datasets in the thousands, and at times millions,

simply don’t exist within the targeted problem domain.

Rather than an insistence on quantity, those applying deep learning should offer a similar

insistence to data quality. Senior program manager at Microsoft, George Krasadakis, suggests that

projects that are data-intensive, encompassing a majority of ML projects, “have a single point of

failure: data quality” (2017). Particularly within the AEC industry, as identified in chapter 7.1.

The State of Machine Learning Research in the Architectural Industry, one of the major risks

identified by those applying machine learning is data collection. The data collection process is

unlikely to ever be perfect, as imprecise measuring implements and poorly worded survey

questions plague masses of datasets. However, understanding what determines a quality dataset

will aid in its acquisition, thus aid in the training and implementation of deep learning algorithms.

The exact attributes that defines high quality datasets are debated, and different problem domains

call for an emphasis of some and a downplaying of others. According to Dan Ortega’s 2017

article, Seven Characteristics that Define Quality Data, accuracy, validity, reliability, timeliness,

completeness, availability, and uniqueness, are what demonstrates a quality dataset.

The call for a focus on quality over quantity requires a mentality shift. Rather than the current

attitude of hoarding any and all data in hopes of a prospective usefulness, instead place focus on

85

identifying reliable sources of data, capturing a profile of the data, and implementing data

validation techniques.

Longevity

All data is historical. The act of measuring, storing, and retrieving data immediate dates it. Thus,

in the context of statistical models, we ask them to predict future outcomes, from a set of present

input data, based on its understanding of the past. Often, we see data as an abstraction of the real

world. “Meanwhile, out in the world, these numbers have consequences” (Broussard 2018, p.

114). Exacerbated with the stochastic and ever-changing nature of the world, the longer models

are in service, the more inaccurate their understanding of the world becomes. This is known as

‘conceptual drift’.

In a 2018 article, Lessons Learned Turning Machine Learning Models into Real Products and

Services, David Talby asserts that "models degrade in accuracy as soon as they are put in

production" (2018). ML is inherently different to other types of software and should be treated as

such. The assumption that ML models get better over time is often misconstrued with the

improvements gained during the learning process, and not when the model is live (that is, unless

there are systems in place to continually collect new data and train the model).

Tably notes the difficulty of maintaining accurate models by stating that, “unlike most things, it’s

easier to get started with machine learning than it is to keep going with it… the hardest part of

machine learning today is deploying and maintaining accurate models” (2018). However, there

are techniques to help deploy, monitor, and uphold the accuracy of ML models: such as periodic

evaluation, which requires a feedback mechanism measuring performance and indicating when

retraining is needed, or continual learning, where the model is always learning.

86

Whichever method is employed, the deployment of ML models should be approached differently

than that of other software. Upon deciding that deep learning is suitable for the problem domain,

consider the longevity of the model, and the systems in place to reduce the effects of conceptual

drift.

Conclusion

The proliferation of deep learning has provided built environment academics and practitioners

with a new suite of powerful tools. However, the combination of a relatively young field and the

rapid speed at which the field is moving, has led to deep learning's application in ill-fitting

problem domains. Simply understanding how to apply deep learning does not adequately equip

ML engineers with the ability to mitigate the host of negative implications. This chapter highlights

three considerations for minimising the negative impact of deep learning models in the context of

the built environment.

10.3. Is Deep Learning Really Intelligence?

Introduction

Throughout this body of research, the overarching objective was to explore and develop strategies,

tools, and pedagogies to facilitate greater intelligence in the architecture industry. And as deep

learning was identified as the technology that currently embodies artificial intelligence, research

efforts have targeted the barriers, tools, and education for the adoption of deep learning. However,

as concluded in chapter 2.2. Reflecting on Intelligence, the definition of intelligence is one that

changes as we come to understand its previous exemplars. Thus, can we assume that, as we

develop new technology that outperforms deep learning, our ideals of intelligence surpasses deep

learning’s capabilities? In the future, would we still consider deep learning as “artificial

intelligence”? This treatise leverages the knowledge gained from two years of working with deep

learning—from a mathematical and computational perspective to a more conceptual and

87

philosophical one—in an attempt to discern if deep learning is indeed intelligent, under a

definition of intelligence that is unaffected by the wax and wanes of technological progress.

Definitions of Intelligence

In 2007, Shane Legg and Marcus Hutter collated over 70 definitions of intelligence from artificial

intelligence researchers, psychologists, and collective beliefs. At the time, Legg and Hutter

claimed that the definitions presented are “the largest and most well referenced collection there

is” (2007, p. 1). In their concluding remarks, upon reviewing all definitions and combining the

reoccuring attributes, they developed the following definition of intelligence: “intelligence

measures an agent’s ability to achieve goals in a wide range of environments” (Legg & Hutter

2007, p. 9). The three attributes that formed this definition are explored through the lens of deep

learning below.

Is Deep Learning… Contextual?

The first and third of Legg and Hutter’s attributes of intelligence suggests that intelligence is a

“property that an agent has as it interacts with its environment” and depends on “how the agent is

able to adapt to different objectives and environments” (2007, p. 9). This is reinforced by Ben

Goertzel’s The Hidden Pattern: A Patternist Philosophy of Mind, which states that intelligence is

“the ability to achieve complex goals in complex environments” (2006, p. 198), and by Pei

Wang’s On the Working Definition of Intelligence, which states that “intelligence is the ability

for an information processing system to adapt to its environment with insufficient knowledge and

resources” (1995, p. 5).

Immediately, the language used makes it easy to classify one of the three schools of ML,

reinforcement learning, as intelligent. Within reinforcement learning, an agent develops

behaviours through interactions with its environment. The agent adapts to the environment

through the development of behaviours, a process predicated on the maximisation of a reward

88

function. By these characteristics of intelligence, reinforcement learning agents would be

considered intelligent.

Conversely, when one thinks of supervised and unsupervised learning, the environment wherein

the agent interacts is often misattributed to the real world. Under this misattribution, the narrow

and insular nature of these algorithms, necessitating retraining under any change of context or

conceptual drift, would thus exclude these two schools from being considered intelligent. This is

a misconception. The environment that these algorithms interact with and adapt to is not the real

world, but the data used to train it. Within the training of supervised and unsupervised deep

learning algorithms, the interaction with the environment equates to the feedforward pass, and the

adaptation of the agent is the learning algorithm, backpropagation. Under this understanding of

agent and environment, all deep learning algorithms exhibit the ability to interact and adapt to

their respective environments, thus intelligent.

A similarity found in Legg and Hutter’s first and third attributes for intelligence is the reliance on

an environment. This implies that for an agent to be considered intelligent, it must perform

intelligent acts (interactions and adaptation) on or within an environment. Ricardo Gudwin even

asserts that “intelligent systems cannot be considered separately from the environment” (2000, p.

2080). Which raises the question: can something be considered intelligent without an

environment?

Is Deep Learning… Observed?

The second characteristic that Legg and Hutter attributes to intelligence is an “agent’s ability to

succeed with respect to some goal or objective” (2007, p. 9). This notion is reinforced by John

McCarthy’s What is Artificial Intelligence?, which suggests that “intelligence is the

computational part of the ability to achieve goals in the world” (2007), and by Ray Kurzweil’s

89

The Age of Spiritual Machines, which claims that “intelligence is the ability to use optimally

limited resources to achieve goals” (1999, p. 68).

The goal in training deep learning algorithms can be boiled down to how well the model can

minimise error. To reiterate, deep learning models learn through a feedforward pass that captures

the current state of its understanding, the outputs of which are used to calculate how wrong the

model is (the error), which is then used for tweaking the model through backpropagation. The

method by which error is calculated, the error function, can be accompanied by a measure of

accuracy for supervised classification problems, and validation error, which assesses how well

the model is able to generalise. Regardless of what function is used, how successful

backpropagation is at reducing the error, or increasing accuracy, is indicative of the intelligence

of the model.

Despite how these measures appear to be contained within the intelligent agent (the deep learning

model), they are not needed for the agent to exhibit intelligence. For the agent to show

intelligence, all that’s required is a feedforward pass. Calculations of error and accuracy are tools

for the agent to improve and are no longer required when the model is in use. Thus, the method

to determine whether the agent achieves its goal, is external to the agent. Intelligence is predicated

on the existence of an external observer. Then, without an observer, can an agent be intelligent?

Intelligence is Relative

In accordance with Leg and Hutter’s characteristics for intelligence, deep learning is intelligent.

Deep learning algorithms can interact with and adapt to an environment and is capable of

achieving its goals. Thus, the efforts to adopt deep learning within the AEC industry greatly

contributes to a more intelligent field.

90

But, with that in mind, it is almost arbitrary whether a technology is or is not intelligent, because

intelligence is ultimately relative. What we consider as intelligent relies too heavily on context;

the environment and the observer. If an agent was placed within an environment that allows it to

achieve its goals faster, more accurately, or more efficiently, it would appear more intelligent than

an environment that is more hostile. Equally, if the observer understands less of the world,

intelligent agents might perform feats perceived as magic, whereas as an observer approaches

omniscience, intelligence become benal. This is the reason why the technology we see as

intelligent changes through time. We, as the observer, further our understanding, thus, the

technology that exhibits intelligence, would seem less so as we come to understand more.

91

Chapter 11.

Conclusion

The motivation behind this body of research was identified to be the rising complexity of design

problems in a world where domain experts and programmers cannot sufficiently develop methods

to comprehend the vast quantities of data. As such, the overarching objective was to explore and

develop strategies, tools, and pedagogies to promote and explore the integration of deep learning

in the architectural profession.

To comprehend the current state of machine learning within the architecture, engineering, and

construction field, this research explored how the industry has invested into machine learning-

powered exploratory research and feasibility prototyping. Furthermore, this research conducted a

study to identify the socio-economic barriers that hinders the adoption of machine learning in the

industry and compared a set of tools that aimed to introduce machine learning methods to

architectural software. It was found that the comparatively slow adoption of machine learning in

the AEC industry is predominantly due to the high-technical barrier to entry; a problem the

aforementioned tools aimed to resolve. This portion of the research highlighted the need to

combine the roles of the architect and the deep learning engineer, through the use of deep learning

tools and pedagogies, within the architectural curriculum.

Toward the goal of fusing the roles of the architect and the deep learning engineer, this research

explored the application and development of deep learning tools within architectural software.

Leveraging a Grasshopper tool developed prior to this research, and through a student-centred

and resource-based pedagogy, it was found that the students struggled to find a reason to apply

such techniques. Further, a separate software package, designed to teach architects deep

reinforcement learning and in what scenarios to apply it, was the central resource used in several

workshops. And although both tools and pedagogies were received well overall, it was concluded

92

that the complexity and depth of knowledge needed to adequately train deep learning models for

production will often be beyond the skillset of the architect.

This provoked the final section of this research, which asked whether the aforementioned

objective of fusing the architect and the deep learning engineer will truly aid in the integration of

deep learning in the AEC. This section concluded that it would be unlikely for the architect to

develop deep learning models on par with those created by dedicated deep learning engineers,

and that a reliance on external experts would better contribute to the overarching objective by

developing highly accurate and reliable models. This does not invalidate the tools and pedagogies

explored, as there is still a need for the architect to understand these algorithms at a high level.

The explored tools and pedagogies has the potential to teach architects the types of problems deep

learning algorithms can solve, the types of data required for training deep learning models, and

the expected results—which arms architects with the knowledge of when to apply deep learning.

This approach, where architects have the conceptual understanding of knowing when to apply

deep learning on a problem, would better facilitate the integration of deep learning in the AEC,

galvanising a greater architectural artificial intelligence.

93

References

Agrawal, A, Gans, J & Goldfarb, A 2018, Prediction Machines: The Simple Economics of

Artificial Intelligence, Harvard Business Review Press, United States of America.

Alexander, C 1964, Notes on the Synthesis of Form, Harvard University Press, United States of

America.

Alexander, C 1968, ‘Systems Generating Systems’, Architectural Design, vol. 38, pp. 605-610.

Alexander, C, Ishikawa, S & Silverstein, M 1977, A Pattern Language: Towns, Buildings,

Construction, Oxford University Press, United States of America.

Basesens, B 2014, Analytics in a Big Data World: The Essential Guide to Data Science and its

Applications, John Wiley & Sons, United States of America.

Bostrom, N 2014, Superintelligence: Paths, Dangers, Strategies, Oxford University Press,

United Kingdom.

Broussard, M 2018, Artificial Unintelligence: How Computers Misunderstand the World, The

MIT Press, United States of America.

Brynjolfsson, E 2013, The Key to Growth? Race with the Machines, TED talk, accessed 24 July

2019,

<https://www.ted.com/talks/erik_brynjolfsson_the_key_to_growth_race_em_with_em_the_

machines>.

Brynjolfsson, E & McAfee, A 2014, The Second Machine Age: Work, Progress, and Prosperity

in a Time of Brilliant Technologies, W. W. Norton & Company, United States of America.

Buchanan, BG 2005, ‘A (Very) Brief History of Artificial Intelligence’, AI Magazine, vol. 26,

no. 4, pp. 53-60.

Cao, R, Fukuda, T & Yabuki, N 2019, ‘Quantifying Visual Environment by Semantic

Segmentation Using Deep Learning: A prototype for Sky View Factor’, Proceedings of the

24th CAADRIA Conference, vol. 2, pp. 623-632.

Carpo, M 2016, The Second Digital Turn, keynote lecture, accessed 6 June 2018,

<https://taubmancollege.umich.edu/events/2016/10/29/lecture-mario-carpo-acadia-

conference-keynote-second-digital-turn>.

Carpo, M 2017, The Second Digital Turn: Design Beyond Intelligence, The MIT Press, United

States of America.

94

Cave, S & Dihal, K 2018, ‘Ancient Dreams of Intelligent Machines: 3,000 Years of Robots’,

Nature, vol. 559, no. 7715, pp. 473-475, DOI:10.1038/d41586-018-05773-y.

CHAM 2017, RhinoCFD, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/rhinocfd>.

Chen, Y, Argentinis, JD & Weber, G 2016, ‘IBM Watson: How Cognitive Computing Can Be

Applied to Big Data Challenges in Life Sciences Research’, Clinical Therapeutics, vol. 38,

no. 3, pp. 688-701.

Chomsky, N 2005, Language and Mind, Cambridge University Press, United States of America.

Clark, D 1997, ‘Deep Thoughts on Deep Blue’, IEEE Expert: Intelligence Systems and Their

Applications, vol. 12, no. 4, pp. 31.

Costa, A & Nannicini, G 2018, ‘RBFOpt: An Open-Source Library for Black-Box Optimization

with Costly Function Evaluations’, Mathematical Programming Computation, vol. 10, no. 4,

pp. 597-629.

Crevier, D 1993, AI: The Tumultuous History of the Search for Artificial Intelligence, Basic

Books, United States of America.

Cross, N 1999, ‘Natural Intelligence in Design’, Design Studies, vol. 20, no. 1, pp. 25-39, DOI:

10.1016/S0142-694X(98)00026-X.

Davenport, TH 2014, Big Data at Work: Dispelling the Myths, Uncovering the Opportunities,

Harvard Business Review Press, United States of America.

Deb, K, Pratap, A, Agarwal, S & Meyarivan T 2002, ‘A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II’, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.

182-197.

Descartes, R 1911, Meditations on First Philosophy, e-book, translated from French by E S

Haldane, accessed 9 July 2019,

<http://selfpace.uconn.edu/class/percep/DescartesMeditations.pdf>.

Descartes, R 2007, Discourse on the Method of Rightly Conducting one's Reason and Seeking

Truth in the Sciences, e-book, translated from French by J Bennett, accessed 8 July 2019,

<https://www.earlymoderntexts.com/assets/pdfs/descartes1637.pdf>.

Diamond, J 2017, Guns, Germs, and Steel: A Short History of Everybody for the Last 13,000

Years, Penguin Random House, United Kingdom.

95

Domingos, P 2012, ‘A Few Useful Things to Know About Machine Learning’, Communications

of the ACM, vol. 55, no. 10, pp. 78-87.

Domingos, P 2015, The Master Algorithm: How the Quest for the Ultimate Learning Machine

Will Remake Our World, Basic Books, United States of America.

eCAADe 2019, Architecture in the Age of the Fourth Industrial Revolution, eCAADe, accessed

23 August 2019, <https://ecaadesigradi2019.arq.up.pt/page/theme/>.

Fogel, DB 2006, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, John Wiley & Sons, United States of America.

Fox, D 2011, ‘The Limits of Intelligence’, Scientific American, vol. 305, no. 1, pp. 36-43.

Fry, H 2018, Hello World: How to Be Human in the Age of the Machine, Doubleday, United

Kingdom.

Fukuda, T, Kuwamuro, Y & Yabuli, N 2017, ‘Optical Integrity of Diminished Reality Using

Deep Learning’, Proceedings of the 35th eCAADe Conference, vol. 1, pp. 241-250.

Gladwell, M 2008, Outliers: The Story of Success, Back Bay Books, United States of America.

Goertzel, B 2006, The Hidden Pattern: A Patternist Philosophy of Mind, Brown Walker Press,

United States of America.

Good, IJ 1965, ‘Speculations Concerning the First Ultraintelligent Machine’, Advances in

Computers, vol. 6, pp. 31-88.

Greco, L 2015, Dodo, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/dodo>.

Gudwin, RR 2000, ‘Evaluating Intelligence: A Computational Semiotics Perspective’, IEEE

International Conference on Systems, Man and Cybernetics, pp. 2080-2085.

Hall, BH & Khan B 2003, ‘Adoption of New Technology’, New Economy Handbook, Academic

Press, DOI: 10.3386/w9730.

Haugeland, J 1985, Artificial Intelligence: The Very Idea, MIT Press, United States of America.

He, K, Zhang, X, Ren, S & Sun, J 2015, ‘Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification’, Proceedings of the IEEE International

Conference on Computer Vision, pp. 1026-1034.

96

Heaton, J 2014, org.encog.engine.network.activation, Encog Core 3.3.0 API, accessed 19 July

2019, <http://heatonresearch-site.s3-website-us-east-1.amazonaws.com/javadoc/encog-

3.3/overview-summary.html>.

Hinton, GE, Osindero, S & Teh, YW 2006, ‘A Fast Learning Algorithm for Deep Belief

Networks’, Neural Computation, vol. 18, no. 8, pp. 1527-1554.

Hobbes, T 1969, De Corpore, e-book, translated from Latin by Sir B W Molesworth, accessed 9

July 2019,

<https://www.humanities.mcmaster.ca/~rarthur/phil4A03/thomas_hobbes_the_english_w.pd

f>.

Homer 2009, The Iliad, translated from Ancient Greek by A S Kline, Poetry in Translation.

Karpathy, A 2019, A Recipe for Training Neural Networks, Andrej Karpathy Blog, accessed 21

August 2019, <http://karpathy.github.io/2019/04/25/recipe/>.

Karamba3D 2014, Karamba3D, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/karamba3d>.

Karoji, G, Hotta, K, Hotta, A & Ikeda, Y 2019, ‘Pedestrian Dynamic behaviour Modelling’,

Proceedings of the 24th CAADRIA Conference, vol. 1, pp. 281-290.

Kępczyńska-Walczak, A 2018, ‘Theme: Computing for a Better Tomorrow’, Proceedings of the

36th eCAADe Conference, vol. 1, pp. v-vi.

Khean, N, Kim, L, Martinez, J, Doherty, B, Fabbri, A, Gardner, N & Haeusler, MH 2018, ‘The

Introspection of Deep Neural Networks: Towards Illuminating the Black Box’, Proceedings

of the 23rd CAADRIA Conference, vol. 2, pp. 237-246.

Krasadakis, G 2017, Data Quality in the Era of A.I., freeCodeCamp, accessed 24 August 2019,

<https://www.freecodecamp.org/news/data-quality-in-the-era-of-a-i-d8e398a91bef/>.

Krizhevsky, A, Sutskever, I & Hinton, GE 2012, ‘ImageNet Classification with Deep

Convolutional Neural Networks’, Advances in Neural Information Processing Systems, pp.

1097-1105.

Kurzweil, R 1999, The Age of Spiritual Machines: When Computers Exceed Human

Intelligence, Penguin, United States of America.

97

Lenat, DB, Guha, R, Pittman, K, Pratt, D & Shepherd, M 1990, ‘Cyc: Toward Programs with

Common Sense’, Communications of the Association for Computing Machinery, vol. 33, no.

8, pp. 30-50.

Linnainmaa, S 1970, ‘The representation of the cumulative rounding error of an algorithm as a

Taylor expansion of the local rounding errors’, Master's thesis, University of Helsinki.

Luo, D, Wang, J & Xu, W 2018, ‘Applied Automatic Machine Learning Process for Material

Computation’, Proceedings of the 36th eCAADe Conference, vol. 1, pp. 109-118.

McAfee, A & Brynjolfsson, E 2017, Machine | Platform | Crowd: Harnessing Our Digital

Future, W. W. Norton & Company, United States of America.

McCarthy, J 1997, AI as Sport’, Science, vol. 276, no. 5318, pp. 1518-1519,

DOI:10.1126/science.276.5318.1518.

McCarthy, J 2007, What is Artificial Intelligence? accessed 24 August 2019, <http://www-

formal.stanford.edu/jmc/whatisai/node1.html>.

McCulloch, WS & Pitts, WH 1943, ‘A Logical Calculus of the Ideas Immanent in Nervous

Activity’, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133.

Minsky, M & Papert, S 1969, Perceptrons: An Introduction to Computational Geometry, The

MIT Press, United States of America.

Mnih, V, Kavukcuoglu, K, Silver, D, Graves, A, Antonoglou, I, Wierstra, D & Riedmiller, M

2013, ‘Playing ATARI with Deep Reinforcement Learning’, arXiv preprint

arXiv:1312.5602.

Nath, R 2009, Philosophy of Artificial Intelligence: A Critique of the Mechanistic Theory of

Mind, Universal Publishers, United States of America.

Negroponte, N 1969, ‘Toward a Theory of Architecture Machines’, Journal of Architectural

Education, vol. 23, no. 2, pp. 9-12.

Negroponte, N 1970, The Architecture Machine, The MIT Press, United States of America.

Ng, A 2013, Machine Learning an AI via Brain Simulations, accessed 21 August 2019,

<http://ai.stanford.edu/~ang/slides/DeepLearning-Mar2013.pptx>.

Ng, JMY, Khean, N, Madden, D, Fabbri, A, Gardner, N, Haeulser, MH & Zavoleas, Y 2019,

‘Optimising Image Classification: Implementation of Convolutional Neural Network

Algorithms to Distinguish Between Plans and Sections within the Architectural, Engineering

98

and Construction (AEC) Industry’, Proceedings of the 24th CAADRIA Conference, vol. 2,

pp. 795-804.

Ortega, D 2017, Seven Characteristics that Define Quality Data, Blazent, accessed 24 August

2019, <https://www.blazent.com/seven-characteristics-define-quality-data/>.

Papasotiriou, T 2019, ‘Identifying the Landscape of Machine Learning-Aided Architectural

Design: A Term Clustering and Scientometrics Study’, Proceedings of the 24th CAADRIA

Conference, vol. 2, pp. 815-824.

Proving Ground 2017, Lunchbox, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/lunchbox>.

Rosenblatt, F 1958, ‘The Perceptron: A probabilistic Model for Information Storage and

Organization in the Brain’, Psychological Review, vol. 65, no. 6, pp. 386-408.

Roudsari, MS 2018, Ladybug Tools, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/ladybug-tools>.

Rumelhart, DE, Hinton, GE & Williams, RJ 1986, ‘Learning Representations by Back-

propagating Errors’, Nature, vol. 323, no. 6088, pp. 533-536.

Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla,

A, Bernstein, M, Berg, AC & Fei-Fei, L 2015, ‘ImageNet Large Scale Visual Recognition

Challenge’, International Journal of Computer Vision, vol. 155, no. 3, pp. 211-252.

Schank, RC & Childers, PG 1984, The Cognitive Computer: On Language, Learning, and

Artificial Intelligence, Addison-Wesley, United States of America.

Schnabel, MA, Brown, A & Moleta T 2019, ‘Conference Theme: Intelligent & Informed’,

Proceedings of the 24th CAADRIA Conference, vol. 1, pp. vi.

Schneier, B 2016, Data and Goliath: The Hidden Battles to Collect Your Data and Control the

World, W. W. Norton & Company, United States of America.

Schwab, K 2017, The Fourth Industrial Revolution, Currency, United States of America.

Silver, N 2012, The Signal and the Noise: Why So Many Predictions Fail—but Some Don't, The

Penguin Press, United States of America.

Silver, D, Schrittwieser, J, Simonyan, K, Antonoglou, I, Huang, A, Guez, A, Hubert, T, Baker,

L, Lai, M, Bolton, A & Chen, Y 2017, ‘Mastering the Game of Go Without Human

Knowledge’, Nature, vol. 550, no. 7676, p. 354-359.

99

Skilton, M 2017, ‘How do we Prepare for the Artificial Intelligence Society?’, Huffington Post,

3 January, accessed 6 June 2018, <https://www.huffingtonpost.com/entry/how-do-we-

prepare-for-the-artificial-intelligence-society_us_58b680d1e4b0e5fdf61978b5>.

Srinivasan, RS & Malkawi, AM 2005a, ‘Reinforcement Learning and Real-time Building

Thermal Performance Data Visualization’, Proceedings of the 10th CAADRIA Conference,

vol. 2, pp. 141-148.

Srinivasan, RS & Malkawi, AM 2005b, ‘Real-time Simulations Using Learning Algorithms for

Immersive Data Visualization in Buildings’, International Journal of Architectural

Computing, vol. 3, no. 3., pp. 265-280.

Steenson, MW 2010, ‘Cedric Price's Generator’, Journal of the American Institute of

Architecture Students, vol. 69, pp. 12-15.

Steenson, MW 2014, ‘Architectures of Information: Christopher Alexander, Cedric Price, and

Nicholas Negroponte & MIT's Architecture Machine Group’, PhD thesis, Princeton

University.

Steenson, MW 2017, Architectural Intelligence: How Designers and Architects Created the

Digital Landscapes, The MIT Press, United States of America.

Teodoridis, F, Bikard, M & Vakili, K 2018, ‘When Generalists are Better than Specialists and

Vice Versa’, Harvard Business Review, accessed 26 August 2019,

<https://hbr.org/2018/07/when-generalists-are-better-than-specialists-and-vice-versa>.

The Generator Project 2015, accessed 18 August 2019,

<http://www.interactivearchitecture.org/the-generator-project.html>.

Van Hasselt, H, Guez, A & Silver, D 2016, ‘Deep Reinforcement Learning with Double Q-

Learning’, 13th AAAI Conference on Artificial Intelligence.

Vierlinger, R 2018, Octopus, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/octopus>.

Vinyals, O, Ewalds, T, Bartunov, S, Georgiev, P, Vezhnevets, AS, Yeo, M, Makhzani, A,

Küttler, H, Agapiou, J, Schrittwieser, J & Quan, J 2017, ‘Starcraft II: A New Challenge for

Reinforcement Learning’, arXiv preprint arXiv:1708.04782.

Wallacei 2019, Wallacei, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/wallacei-0>.

100

Wang, P 1995, ‘On the Working Definition of Intelligence’, Center for Research on Concepts

and Cognition CRCC, Indiana University.

Wang, Z, Schaul, T, Hessel, M, van Hasselt, H, Lanctot, M & de Freitas, N 2015, ‘Dueling

Network Architectures for Deep Reinforcement Learning’, arXiv preprint arXiv:1511.06581.

Werbos, P 1974 ‘Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences’, PhD thesis, Harvard University.

Wortmann, T 2019, Opossum, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/opossum-optimization-solver-surrogate-models>.

Xu, W, Huang, W, Liu, Y, Zhou, Y, Xu, F & Yu, L 2018, ‘Conference Theme: Learning,

Prototyping and Adapting’, Proceedings of the 23rd CAADRIA Conference, vol. 1, pp. iv-v.

Zhang, Y, Gridnard, A, Aubuchon, A, Lynox, K & Larson, K 2018, ‘Machine Learning for

Real-time Urban Metrics and Design Recommendations’, Proceedings of the 38th ACADIA

Conference, pp. 196-205.

Zwierzycki, M 2019a, Owl, Food4Rhino, accessed 19 July 2019,

<https://www.food4rhino.com/app/owl>.

Zwierzycki, M 2019b, Owl/QAgent.vb, GitHub, accessed 19 July 2019,

<https://github.com/mateuszzwierzycki/Owl/blob/master/Owl.Learning/QLearning/QAgent.

vb>.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

	Title Page : Architectural Artificial Intelligence: Exploring and Developing Strategies, Tools, and Pedagogies Toward the Integration of Deep Learning in the Architectural Profession
	Acknowledgements
	Table of Contents
	List of Figures and Tables
	List of Publications, Presentations, and Workshops
	Abstract

	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. Research Objectives
	Chapter 4. Research Questions
	Chapter 5. Methodology
	Chapter 6. Literature Review
	Chapter 7. Assessment
	Chapter 8. Technical Conceptual Framework
	Chapter 9. Strategies, Tools, and Pedagogies
	Chapter 10. Considerations and Implications
	Chapter 11. Conclusion
	References
	Appendices

