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Abstract

Due to the climate crisis, the importance of reducing greenhouse gas (GHG) has been
recognized by governments, private companies and the general public alike. Yet carbon
capturing-based approaches are difficult to integrate with transportation, which is one of
the largest GHG producing sectors, Therefore, electrification is the only viable approach
to reduce emissions from transportation, by greatly increasing the market share of electric
vehicles (EVs). However, the mass adoption of either (or both) of battery EVs (BEVs) and
fuel cell EVs (FCEVs) require a large amount of supporting infrastructures, particularly the
construction of EV charging stations (EVCSs) for BEVs and hydrogen refuelling stations
(HRSs) for FCEVs. The goal of this study is to provide effective approaches for the sizing
and sitting of EVCSs and HRSs to facilitate the deployment of BEVs and FCEVs.

The background and an overview of the thesis are provided in Chapter 1, where the gaps
in the current research are pointed out and the objectives of the thesis are formulated.
Chapter 2 reviewed the current state of technologies regarding the hydrogen life cycle as
well as the popular planning models for EVCSs and HRSs. In Chapter 3, to achieve a
competitive strategy from the perspective of private companies, a market-based framework
is proposed for the problem of EVCS planning by leveraging Graph Convolutional Network
(GCN) and game theory. In Chapter 4, a multi-objective planning model is developed for
EVCSs and the expansion of distribution network with significant renewable components
while considering uncertainties in EV charging behaviour. Additionally, in Chapter 5, a
planning model of HRS maximises the long-term profit while considering different practical
constraints. The HRS planning model also addresses short-term demand uncertainty via
redistribution. The models that are developed in this study are validated using either
synthetic or real-world case studies, and the simulation results showed the effectiveness of
the proposed models. Finally Chapter 6 summarises the major achievements of the thesis
and provides directions for further research.
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Chapter 1

Introduction

1.1 Research background

Due to the growing concerns of the climate crisis in recent decades, countries have begun

implementing procedures and policies to reduce Greenhouse Gas (GHG) emissions and

the world’s dependence on fossil fuels. For instance, to reduce emissions from the energy

sector—the largest GHG producer [1]—various renewable energy sources (such as wind,

solar, hydro and geothermal) and clean energy sources (such as nuclear) have received un-

precedented or renewed interest. As a result of this surge of interest, renewable generation,

mainly wind and solar, accounts for 90% of the new power generation capacity in 2021 and

2022 worldwide [17]. Additionally, Carbon Capture and Storage (CCS) technologies are

being tested for the industry sector—the third-largest GHG producer—as well as existing

fossil fuel power plants [18].

In line with the measures being implemented by other sectors to curb GHG emissions,

it stands to reason that efforts should be made to reduce emissions in the second-largest

GHG producing sector: transportation. This sector consumes half of the world’s oil supply

and accounts for more than 25% of CO2 emissions [1]. As the transportation sector is made

up of millions of cars and thousands of ships, locomotives and aeroplanes, it is a nontrivial
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task to integrate CCS-based emission reduction mechanisms. Currently, electrification is

the only path that can effectively reduce GHG emissions from transportation. This means

replacing internal combustion engine (ICE) vehicles with electric vehicles (EVs), including

both battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). Yet, progress

in reducing GHG emissions from transportation has been lacking. Despite EVs in road

transport ramping up significantly as of 2020, BEVs only account for around 1% of all

road vehicles and 4% of new road vehicles sales [19], while FCEVs have a market share of

about 0.1% [20]. As for forms of transportation, fully electric ships and planes are still

being trialled or developed [21, 22], and the only form of transportation that is highly

electrified is rail [23].

One of the reasons hindering the deployment of BEVs and FCEVs for road transport

is the lack of electric vehicle charging stations (EVCSs) and hydrogen refueling stations

(HRSs). Some researchers refer to this as a ’chicken-and-egg’ problem [24],that is, BEVs

and FCEVs would not be widely accepted unless there is a large network of EVCSs and

HRSs. However, EVCSs and HRSs will not be built unless there is already a fleet of

BEVs and FCEVs. Luckily, governments worldwide have recognised this issue and seek

to resolve it through favourable policies and investments. For example, both China and

the European Union have announced plans to promote BEVs and FCEVs to replace ICE

vehicles, along with massive investments in related infrastructure [2, 25]. Increased com-

mitment and investment in EVs infrastructure has another benefit, boosting the public’s

acceptance and indirectly reducing the cost of EVs. At the time of writing in 2021, all

EVs are more expensive than ICE vehicles in terms of Total Cost of Ownership (TCO) [2].

Contributing factors of TCO include initial capital cost as well as operational costs. Since

more infrastructure means it will be cheaper to recharge or refill a BEV or FCEV, it will

boost the number of BEVs and FCEVs. As more consumers choose a EV over an ICE

vehicle, the price of EVs will reduce as a result of both economies of scale and competi-

tion. In fact, it is projected that both BEVs and FCEVs will be cheaper to own than ICE

vehicles in terms of TCO by 2023 at the latest [2].

To maximise the effect of the investment, it is vital to size the EVCSs and HRSs optimally.
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Moreover, appropriately locating EVCSs and HRSs will increase the acceptance of BEVs

and FCEVs and further speed up the pace of electrifying the transportation sector as a

whole. Therefore, this thesis aims to develop efficient EVCS and HRS planning models to

facilitate BEV and FCEV deployment, and in turn, speed up the electrification of road

transportation.

1.2 Motivation for this thesis

Over the last decade a large number of research works and publications have focused on

locating and sizing EVCSs and HRSs. Various approaches have been applied to find opti-

mal solutions, such as genetic algorithm optimisation (e.g., [26–31]), integer programming

(e.g., [32–38]), and particle swarm optimisation (e.g., [39–41]). There has even been a

planning model developed for combined EVCS and HRS aiming to service both BEVs and

FCEVs (e.g., [42]).

1.2.1 Identified research gaps

Even though the planning of EVCS and HRS has been extensively studied, several iden-

tified research gaps are as follows:

1. Despite many studies aiming to leverage hydrogen to reduce GHG emissions from

transportation, there is no a systematic review of the entire hydrogen life cycle. The

hydrogen life cycle includes production, storage and transportation, HRS planning

and fuel cell technologies. Other review focus on sections of the hydrogen life cycle.

However, it is difficult for readers to be fully informed from just sections of the life

cycle. A good understanding of the entire hydrogen life cycle will help researchers

optimize each stage of the life cycle in a comprehensive manner rather than isolated

stages. For example, more realistic HRS planning methods can be designed by

considering limits from other stages, such as hydrogen production and transportation
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as well as FCEVs.

2. The majority of studies on EVCS and HRS planning focus on obtaining a global

optima in the absence of competition. In a free-market economy where private com-

panies compete with each other, a global optima often cannot be achieved. Moreover,

in case studies for EVCS and HRS planning, most of the current research uses syn-

thetic data, because real-world data often suffers from practical issues, for example

missing data. Using synthetic data for case studies means that some real world

implications might be overlooked. Further, infrastructure planning (i.e., EVCS and

HRS planning) generally requires a prediction of future demand. Yet, a generalised

traffic flow prediction model cannot encompass the case-specific characteristics. A

flexible practically-relevant traffic flow prediction approach is needed.

3. In the literature, a trade-off often has to be made between computational time and

the optimality of the planning results. It is advantageous to design an approach

that can simultaneously increase approximation accuracy and reduce computation

time. For instance, probabilistic modelling of the charging or refueling demand is

widely used in EVCS and HRS planning. Monte-Carlo Simulations (MCSs) and sce-

nario reduction techniques are commonly used to generate BEV charging demands.

The approximation accuracy increases with the initial number of scenarios and so

does computation time. It is desirable to directly generate a small number of rep-

resentative scenarios, thereby skipping the time-consuming scenario reduction step.

Another example is, due to the computational complexity of multi-objective optimi-

sation algorithms, near-optimal results are often chosen to speed up the calculation.

Currently, the worst-case complexity of extensively used algorithms is in quadratic

time. An algorithm with a worst-case complexity of linear or near-linear time, that

can obtain similar or better optimization results, would be preferred.

4. In terms of optimisation objectives, the current HRS planning models are based on

some form of social benefit, such as minimising detours, wait times or investments.

However, private businesses are generally motivated by profits. Therefor, it is nec-

essary for the modelling to account for the profitability of HRSs. Additionally, the
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current planning models only focus on long-term operation, but short-term fluctua-

tions in refuelling demand may lead to hydrogen imbalances among the HRSs. To

overcome this imbalance, a hydrogen redistribution mechanism is needed.

1.2.2 Thesis objectives

To address the aforementioned research gaps, the following research objectives are formu-

lated:

• review and summarise the current status of technologies and research related to the

hydrogen life cycle to facilitate decision-making for policy makers and future studies

for researchers (Chapter 2)

• develop a data-driven market-based planning framework for EVCSs that is practical

and flexible (Chapter 3)

• develop a multi-objective optimisation model that can simultaneously plan the sizing

and sitting of EVCSs as well as the local Distribution Network (DN) expansion, while

adopting a novel scenario generation method to speed up computation and improve

accuracy, and using a new multi-objective optimisation tool with less computational

complexity (Chapter 4)

• develop a planning model that optimises the location and capacity of HRSs and their

components (electrolysers, solar panels and storage tanks) while maximising the

captured traffic flow and profit, and propose a hydrogen redistribution mechanism

(Chapter 5).

1.3 Thesis structure

This thesis is structured as follows:
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Chapter 1 gives a general background, outlines identified gaps in the current research, and

provides the research objectives.

Chapter 2 (submitted as [43]) consists of a systematic review of all the steps in the hy-

drogen life cycle, including hydrogen production techniques, hydrogen storage and trans-

portation methods, HRS planning models and fuel cell technologies.

Chapter 3 (published as [44]) presents a data-driven framework for EVCS planning. To

address the issue of missing data, a spatial-temporal data imputation method derived

from matrix factorisation is deployed. Additionally, a multi-relation graph convolutional

network (GCN) is adopted to predict the EV charging demands, and a Cournot competi-

tion game model is used to obtain the budget allocation for different companies operating

in the same area. The Cournot competition equilibrium is obtained with a new parallel

computational algorithm. The optimal EVCSs sizing at each zone is solved as a mixed-

integer linear programming (MILP) problem. The effectiveness of the proposed framework

is demonstrated with a case study of Sydney, Australia.

In Chapter 4 (published as [45]), a multi objective planning model that optimises the sizing

and location of EVCSs as well as local distribution network expansions is presented. The

objectives of the planning model are to minimise the investment cost while maximising

the captured traffic flow. The uncertainties of renewable generation and EV charging

behaviour are also considered. In particular, a recent scenario generation (SG) method is

used to speed up the process of generating total EV charging load from the probabilistic

model. Finally, the Multi-Objective Natural Aggregation Algorithm (MONAA) is used

to obtain the final planning results. Simulation results shows that SG-based MONAA

outperforms other commonly used methods.

In Chapter 5 (published as [46]), a modified Capacitated Flow Refuelling Location Model

(CFRLM) is used for the planning of HRSs where the objective is to maximise the overall

profit. Various real-world constrains such as Traffic Network (TN) constraints, DN con-

straints, hydrogen balance constraints and range constraints for FCEVs are considered.

The short-term uncertainty of hydrogen refuelling demand is resolved by a redistribution
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method based on solving the One-commodity Pickup-and-Delivery Traveling Salesman

Problem (1-PDTSP). A case study of Western Sydney with real-world data is used to

validate the planning model, while the effectiveness of the redistribution method is tested

in a numerical simulation.

Finally, Chapter 6 summarises the main contributions of this thesis and provides some

directions for future research.
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CHAPTER 2. REVIEW ON HYDROGEN TECHNOLOGY IN THE E-MOBILITY
TRANSFORMATION: CHALLENGES AND OPPORTUNITIES

Chapter 2

Review on Hydrogen Technology

in The E-mobility Transformation:

Challenges and Opportunities

2.1 Relationship to the Thesis

As mentioned in Chapter 1, the majority of current review works regarding using hydrogen

as a energy carrier for transportation only cover parts of the hydrogen life cycle. To offer

the readers a more comprehensive knowledge base, various literature related to the entire

hydrogen life cycle is reviewed in this chapter.

This Chapter has been submitted for publication as J. Zhang, C. Li, G. Chen, Z. Y.

Dong, and Q-L. Han, “Review on Hydrogen Technology in The E-mobility Transformation:

Challenges and Opportunities”
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2.2. ABSTRACT

2.2 Abstract

The growing concerns regarding the climate emergency has led to an increase in efforts

to reduce greenhouse gas emissions. As for reducing the emission from the transportation

sector, the current consensus is that electrification would be the best approach. Hydrogen

and fuel cell electric vehicles are viewed as key elements in this transformation. At the mo-

ment, hydrogen is only widely used in chemical industry and is mostly generated from fossil

fuels. The wide adoption of hydrogen in the transportation sector requires eco-friendly

and efficient methods in the entire life-cycle, i.e. the production, storage and transporta-

tion, distribution, and utilization of hydrogen. To this end, this review covers both reform

and electrolysis production techniques; gases, liquid as well as hydrogen carrier storage

and transportation methods; point based and flow based location models for hydrogen

refueling station planning; and major types of fuel cells. The strengths and weaknesses of

each of these techniques/methods/technologies are pointed out. This chapter severs as an

overview of the current status technological of using hydrogen in transportation.

2.3 Introduction

As the climate crisis worsens, methods to reduce greenhouse gas (GHG) emissions drew

more and more attention from police makers and general public alike. As shown in Fig.

2.1 the transportation sector is the the second largest CO2 producing sector in the world.

This is because currently more than 90% of energy used in transportation is supplied by

fossil fuels [1]. However, unlike in energy production or industry sectors where the CO2

emission is concentrated, the distributed nature of the transportation means that carbon

capture and storage (CCS) approaches cannot be easily integrated. Therefore, the only

feasible solution to reduce GHG from transportation is by electrification coupled with the

decarbonisation of electricity generation. In other words, the current internal combustion

engine (ICE) vehicles needs to be replaced by alternative fuel vehicles (AFVs) such as,

fuel cell electric vehicles (FCEVs), battery electric vehicles (BEV), hybrid electric vehicles
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Figure 2.1: World’s CO2 emission by sector in million tonnes (data from [1]).

(HEVs) and biofuel vehicles. Additionally, the alternate fuels need to be generated from

renewable or clean energy sources such as solar, wind, hydro or nuclear power plants.

Hydrogen, being the substances with the highest known gravimetric energy density (∼ 120

kJ/g) [47], is viewed by many to be a good alternative fuel to replace fossil fuels and help

lower the GHG emission in transportation [46]. The attempt to using hydrogen as an

energy source in vehicles dates back to the early 1800s, with the initial idea being to use

hydrogen in ICE vehicles [3]. The principle of using fuel cell to generate electricity is

first demonstrated in 1839 [2]. However the notion of using fuel cells to power EVs with

hydrogen did not gain much traction until the late-20th century, and only in the 21st

century, due to the increasing awareness of the climate crisis, did FCEVs saw wider com-

mercial deployment. The major milestone of fuel cell and FCEV development is presented

in Fig.2.2.

Compared to other AFVs and alternate fuels, FCEVs and hydrogen offer some distinct

advantages. For example, as shown in Fig. 2.3, FCEVs offer the greatest reduction in CO2

emissions especially when the hydrogen is produced from renewable sources (around 90%

reduction compared to ICE vehicles). Moreover, hydrogen does not generate any GHG at

the point of usage, where as biofuel, such as corn ethanol, will still generate some CO2

when the energy is released. Furthermore, unlike BEVs, which still have limited range,

the travel ranges of FCEVs are greater therefore are more convenient for the driver. The

extended driving range of FCEVs also means that less refueling stations needs to be built.
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Figure 2.2: Timeline of fuel cell development and applications. (modified from [2,3])

It is worth noting that despite being the most abundant element in the universe, pure

hydrogen does not exist naturally on Earth. Thus, hydrogen is an energy carrier/secondary

energy source just like electricity and must be produced from a primary source. The energy

sources for producing hydrogen and hydrogen’s potential uses are illustrated in Fig.2.4.

Currently, hydrogen is already an established commodity with more than 70 million ton

demand annually [48]. The majority of demand for pure hydrogen today is in oil refining

(∼ 51%) followed by chemical (mainly ammonia) synthesis (∼ 43%) [49]. Additionally

hydrogen (in the form of syngas) is also being used in metal refining as a way to reduce

GHG emission [48]. Apart from being an alternate fuel in the transportation sector,

hydrogen also has other uses as an energy carrier. For instance, hydrogen can be used to

produce electricity as well as heat in a fuel cell or gas turbine in the MW range [5]. In this

way hydrogen can function as an energy storage medium. Hydrogen energy storage is an
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Figure 2.3: Well-to-wheel analysis of potential reduction in GHG emissions. (modified
from [4])

effective method to regulate the variable output of renewable production from sources like

wind and solar. Moreover, hydrogen is a valid fuel for distributed generation [5]. Hydrogen

can also be injected to the current natural gas network to lower the GHG emission of other

sectors. When reacted with CO2, hydrogen can also be used to produce synthetic fuels.

Synthetic fuels produced from green hydrogen can have net zero carbon emissions. Using

hydrogen as an energy carrier fall in the frame work of Power to Power [50]. In this case it

means converting one form of power, usually electricity, to hydrogen, and then converting

hydrogen back to a form of power, electricity, at a different time and/or place.

Right now, more than 95% of the worlds hydrogen is produced from fossil fuel reforms

with high CO2 emissions [48]. Although various projections envision that the production

of hydrogen will ramp up significantly and the majority of it will be green hydrogen by

2050 [51,52]. To achieve this vision, reform based hydrogen production methods needs to

be coupled with CCS technology, and the percentage of hydrogen from electrolysis needs

to increase [20].

The produced hydrogen needs appropriate storage methods. Hydrogen can be stored as

a compressed gas, a cryogenic liquid or in various carriers [11]. Each of these storage

methods have different characteristics, transportation methods, and level of energy input.

The Hydrogen Refueling Stations (HRSs) are the final point of distribution for hydrogen.
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Figure 2.4: Energy sources for hydrogen production and hydrogen usages (obtained from
[5])

Their availability and serviceability is vital to the wide adoption and acceptance of FCEVs

[53]. The importance of a planning of hydrogen infrastructure, particularly the location

of HRSs, has been recognized since 1990s [54, 55]. Although BEVs and FCEVs are both

considered as candidates to replace ICE vehicles in order to combat climate change [42], the

constrains related to the corresponding infrastructures are different. Currently BEVs still

have limited range and long charging time thus electric vehicle charging stations (EVCSs)

needs to be built closer together and with many chargers [44], whereas the refueling

stations for FCEVs are more like petrol/diesel stations due to FCEVs’ longer range and

faster refueling time [46]. Moreover, EVCSs put additional loads on the local electrical

networks [56], whereas HRSs have different hydrogen delivery/ production methods that

may or may not require electricity.

Hydrogen is ultimately converted to electricity by fuel cells to power FCEVs. There are

many different types of duel cells, including Alkaline Fuel Cell (AFC), Phosphoric Acid

Fuel Cell (PAFC), Proton Exchange Membrane Fuel Cells (PEMFC), Solid Oxide Fuel

Cell (SOFC), and Molten Carbonate Fuel Cell (MCFC). All of these aforementioned fuel
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Figure 2.5: A Sustainable Pathway for Energy Transition.

cells use hydrogen as fuel. There also exist fuel cells that uses different kinds of fuels,

such as Direct Alcohol Fuel Cell (DAFC) that uses various alcohols as fuel and Biofuel

cell (BFC) that utilizes organic compounds.

The life cycle of hydrogen in the context of transportation is shown in Fig. 2.5. There

have been many papers covering a single section of the life cycle of hydrogen. For exam-

ple, a review of fuel cell technologies focuses on using fuel cell as distributed generation

system is given in [12]. In [57], an overview of hydrogen production methods is provided,

mainly covering reforming and pyrolysis, while also discussing other methods such as elec-

trolysis/photoelectrolysis and thermochemical water splitting. A systemic review of fuel

cell technologies and applications was done by Sharaf and Orhan [13], with an emphasis

on hydrogen fuel cells. A brief discussion of the advantage of using hydrogen as energy

carrier can be found in [58], which also covered the storage method of hydrogen in detail.

In [59] the formulations and constrains of HRS location models are discussed, different

models are categorised based on the number of objectives. However to the best of the

authors’ knowledge, there is no paper that reviews all the sections of the hydrogen life

cycle, namely hydrogen production, hydrogen storage and transportation, HRS planning

and fuel cell technologies.
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The rest of the chapter is organised as follows. Section 2.4 outlines the motivations for

this chapter. Section 2.5 covers the production methods of hydrogen. Section 2.6 reviews

the storage and transportation methods for hydrogen. Section 2.7 discusses the planning

strategies for HRSs. Different fuel cell technologies are covered in Section 2.8. Finally

Section 2.9 concludes this chapter.

2.4 Motivations

Despite their ability to greatly reduce GHG emissions, FCEVs and hydrogen in general

are still not widely deployed in transportation [51]. Case in point, FCEVs only account

for 0.5% of all AFV sales in 2019 [20]. The main reason that the public and private

sectors are reluctant to adopt FCEVs is the high expenditure. Today the Total Cost of

Ownership (TCO) of an FCEV is still higher than BEV and almost double that of an ICE

vehicle. As a result, the high upfront cost of buying an FCEV as well as the expensive

price of hydrogen are the major obstacle that lays ahead [2] . Another main challenge

that currently hinders the deployment of FCEV is the lack of hydrogen infrastructure.

This lack of hydrogen infrastructure manifests in many forms, the most notable to the end

user is the lack of HRSs. Since FCEVs can only operate in areas with HRSs. Hence, The

construction of HRSs must precede the deployment of FCEVS. Yet, currently there are

only about 500 HRSs around the world [20]. To put the lack of HRSs into perspective,

Germany has more than 14000 fuel stations for ICE vehicles.

In recent years, having recognised FCEVs’ potential in reducing GHG emissions countries

and regions such as China [25], the European Union [2], United States [5], Japan [20] and

South Korea [38] have all announced national policies along with significant investments

focused on promoting the adoption of FCEVs and hydrogen. For instance the EU countries

announced 45-50 billion euro investments in hydrogen by 2030 and the total investment

will be more than 180 billion euros by 2050 [2]. South Korea also announced national

strategies to boost FCEV and hydrogen acceptance, among which is the commitment to

build 1200 HRSs by 2040 [20]. In addition, the costs of both FCEVs and hydrogen are
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projected to decrease dramatically in the near term due to technological improvements

combined with the economy of scale. In fact, it is estimated that FCEVs will undercut

both BEVs and ICE vehicles in terms of TCO by 2030 [2].

A reduction of TCO coupled with favourable governmental policies and investments will

likely lead to a mass adoption of FCEVs. Consequently, it is imperative that to properly

and optimally direct further research and locate HRSs in order to maximize the reduction

of GHG emissions from FCEVs and hydrogen. This chapter aims to review the current

state of technologies and methods, to help better direct future research and development

efforts as well as allow policy makers and private companies to make informed decisions.

2.5 Hydrogen production techniques

As stated in Section 2.3, hydrogen, which does not exist in element form on earth, must

be produced from a primary source. This primary source can be fossil fuels, biomass or

even water. In this section we review the currently used hydrogen production methods as

well as the leading experimental methods in the literature.

2.5.1 Reformed hydrogen

The vast majority of hydrogen is currently produced by reforming some form of hydro-

carbons or carbohydrates. Depending on the carbon source, the hydrogen reforming can

be further separated into two categories, namely fossil fuel based reforms and renewable

source based reforms (biomass gasification).

The four main processes used in reforming are Steam Reforming (SR), Partial Oxidation

(POX), pyrolysis, and Water Gas Shift (WGS). The general chemical reactions when using

hydrocarbon as feedstock are given below.

Steam Reforming
CmHn + mH2O −−→ mCO + (m + 1

2 n)H2, (2.1)
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Partial Oxidation
CmHn + 1

2 mO2 −−→ mCO + 1
2 nH2, (2.2)

Pyrolysis
CmHn −−→ mC + 1

2 nH2, (2.3)

Water Gas Shift
CO + H2O −−→ CO2 + H2, (2.4)

Combustion
CO + 1

2 O2 −−→ CO2, (2.5)

H2 + 1
2 O2 −−→ H2O, (2.6)

C + 1
2 O2 −−→ CO2, (2.7)

The chemical process of biomass gasification is more complex and the exact procedure

varies depending on the feedstock [60]. Biomass gasification is considered to be POX-

based but Eq (2.1)-(2.7) all happen simultaneously in different regions of the reactor [61].

The initial product of SR/POX/pyrolysis/gasification is known as syngas, a mixture of H2

and CO that contains CO2 among other impurities. Purified syngas has several applica-

tions itself, most notably as an energy source and a reduction agent in metal refining [48].

To obtain pure hydrogen the syngas is passed though several WGS reactors to convert as

much CO to H2 as possible [62]. The energy efficiency of hydrocarbon reforms vary be-

tween 50-85 [63] with Steam Methane Reform (SMR) being the most energy efficient and

the most widely used. Biomass gasification methods generally have lower energy efficien-

cies as the water content in the feedstock is also vaporized in the process [61]. Moreover,

the current gasification process will result in up to 20 wt% tar present in the final product,

which lowers the efficiency and requires additional cleanup processes as well [64]. For a

detailed review of hydrogen from various carbon sources see [65].
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Table 2.1: Typical specifications of electrolyzers (modified from [7] with updated informa-
tion from [8–10])

Specification AECs PEMECs SOECs

Technology maturity Commercialization Commercialization Demonstrations
Cell temperature (°C) 60 − 80 50 − 80 700 − 1000
Cell pressure (Mpar) 1 − 3 2 − 5 0.1 − 1.5
Current density (A/cm2) 0.25 − 0.45 1.0−2.0(up to 20) 0.3-1.0
Cell voltage (V) 1.8 − 2.4 1.8 − 2.2 0.95 − 1.3
Cell efficiency (%) 59 − 70 67 − 82 up to 100
Specific system energy
consumption1(kWh/Nm3)

4.2 − 4.8 4.4 − 5.0 2.5 − 3.5

Minimum partial load (%) 10 − 40 0 − 10 -
Cell area (m2) 3 − 3.6 < 0.13 < 0.06
Hydrogen production per stack
(Nm3/h)

1400 400 < 10

Stack lifetime (kh ) 55 − 120 60 − 100 8 − 20
System lifetime (years) 20 − 30 10 − 20 -
Hydrogen purity (% ) 99.8 99.999 -
Cold start-up time (min) 60 5 − 10 hours
Investment costs (e/kW1) 800 − 1500 1400 − 2100 2000 − 5000
1 Excluding rectifier and utilities (0.4 − 0.8kWh/Nm3).

Regardless of the reform processes and feedstock a significant amount of CO2 is released

when producing hydrogen. Take SMR as an example, which is used to produce half of the

world’s current H2 supply [66], 7-10 kg of CO2 is released per kg of H2 produced [66,67].

To address this issue CCS methods have been proposed at the expense of reduced efficiency

and increased cost. [66]. Nevertheless, in the near to mid term different reforms are going

to be main methods of hydrogen production. Interestingly one type of fuel cells, MCFCs,

can actually assist in the concentration and removal of CO2 in the flue gas. More details

are given in Section 2.8.6

2.5.2 Hydrogen from Electrolysis

Electrolysis
1
2 H2O + electricity −−→ H2 + 1

2 O2, (2.8)

The overall reaction for electrolysis is given in Eq 2.8. Currently, less than 1% of the

worlds annual hydrogen production is from electrolysis [20]. As stated in Section 2.5.1

generating reformed hydrogen also produces a considerable amount of CO2. Thus, for
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hydrogen to become a more effective tool in combating climate change and reducing CO2

emissions, a significant potion of hydrogen needs to be generated by electrolysis. Moreover,

the electrolyzers needs to be powered by renewable sources, such as solar and wind, or

cleaner energy sources, e.g. nuclear. In this section the electrolysis technologies that

have been commercialized or are nearing commercialization are reviewed, namely Alkaline

Electrolysis Cells (AECs), Proton Exchange Membrane Electrolysis Cells (PEMECs) and

Solid Oxide Electrolysis Cells (SOECs). Being essentially the reverse of fuel cells AECs,

PEMECs and SOECs have similar operating conditions and structures as their fuel cell

counter parts. The important parameters for the different electrolysis cells are summarized

in Table 2.1.

2.5.2.1 Alkaline Electrolysis Cells (AECs)

AECs are the earliest and most mature form of electrolysis and have seen many commer-

cial uses [7]. The nickle-based anode and cathode of AEC are submerged in the liquid

electrolyte separated by a diaphragm. The electrolytes in AECs are 30% NaOH and/or

KOH solutions in water. Being the most widely used electrolysis method, AECs are usu-

ally supplied by stable grid power and are not suitable to be coupled to renewable energy

sources [8], like wind and solar. Because AECs have have poor performance in low loading

conditions and have a long response time to load changes while the output of renewable

sources fluctuate constantly [68]. Moreover, as seen in Table 2.1 AECs have additional

draw backs such as low current density and low purity [69].

2.5.2.2 Proton Exchange Membrane Electrolysis Cells (PEMECs)

Unlike AEC which uses liquid electrolyte, PEMEC uses a solid polymer electrolyte, which

is called a Proton Exchange Membrane (PEM) because it only allows proton to pass

though but not electrons. The electrolytes along with the solid membrane forms the

Membrane Electrode Assembly (MEA). The main advantage of PEMECs is the quick

response and to load variations making it the ideal candidate to be coupled to renewable
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generation methods [8,68]. As seen in Table 2.1 PEMECs also have additional advantages

including compact and modular design, high current density, high H2 purity and high

output pressure, making PEMECs suitable for industrial hydrogen generation [8]. The

main roadblock to wide utilization of PEMECs is their prohibitively high cost. in terms of

both capital investment and operational cost [9]. However despite the draw backs, more

and more PEMEC plants are being built around the world [20], due to their ability to

work with renewable power sources.

2.5.2.3 Solid Oxide Electrolysis Cells (SOECs)

SOECs, due to their up to 1000°C operating temperature, are considered as high temper-

ature electrolysis cells. As the high operating temperature lowers the anode and cathode

overpotentials, SOECs have a higher efficiency compared to other electrolysis methods [70].

Another feature of SOECs is their ability to electrolyze CO2 to form CO [71, 72]. Thus,

when steam and CO2 are supplied to SOECs simultaneously syngas can be produced.

Nuclear power, being a cleaner energy source than fossil fuels [73], has been considered

by many researchers to be the best energy source for SOECs as the nuclear reactor can

supply both the thermal and electrical energy [74, 75]. Currently SOECs are only in

demonstration phase due to limited life span and harsh operating conditions.

An up to date review of the history and current status of water electrolysis can be found

in [10].

2.5.3 Other hydrogen production methods

Apart from the previous mentioned production techniques, various alternative hydrogen

production methods have been proposed and tested, such as plasma reforming [76], aque-

ous phase reforming [77], ammonia reforming [78], thermochemical water splitting [79],

photolysis [80], dark fermentation [81], photo fermentation [82] and microbial electrolysis

cells [83]. Currently all of these alternative production methods are still in the research
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phase and are far from commercialization. Interested readers can refer to the respective

reference for more information.

2.6 Hydrogen storage and transportation

The storage of hydrogen falls into two categories, storing hydrogen in its pure form or

storing hydrogen in a carrier. Since the methods of transporting hydrogen are closely

related to the storage methods, they will be discussed in this section as well.

2.6.1 Pure hydrogen

Pure hydrogen exists as a gas at room temperature and atmospheric pressure with very low

volumetric energy density (9.9 MJ/m3) [84]. Therefor, to increase the energy density and

reduce the size of the storage container, pure hydrogen is usually stored as a compressed

gas or a liquid.

2.6.1.1 Compressed hydrogen

There exists four type of pressure vessels to store compressed hydrogen, namely (with

descending weight but increasing cost) Types I, II, III and IV [11, 85]. Type I pressure

vessel is fully metallic, made with aluminum or steel and can be pressured to 50 Mpa.

Type II is a metallic vessel with a composite overwrap and is around 40% lighter than

Type I while the cost is 1.5 times of Type I. Interestingly, there is no practical limit on the

pressure a Type II vessel can hold. Both Type III and IV are regarded as fully composite

pressure vessels. The distinction lies in the propose of the liner. In a Type III vessel, the

(usually metal) liner also contributes to the mechanical strength of the vessel. Whereas in

a Type IV vessels the polymer or metal liner is purely for sealing propose. Usually Type

III vessels are rated for 45 Mpa while Type IV vessels can withstand up to 100 Mpa. The

application and a compromise of performance and cost effectiveness usually decides which
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type of vessel is chosen for storing hydrogen. Currently, industrial applications stores

hydrogen at 20 − 30 MPa Type I cylinders [85]. For stationary hydrogen storage both

Types I and II tanks can be used, While the on-board storage tanks of FCEVs are usually

Type III or IV [86,87].

The transportation of gases hydrogen can be done with pressurized pipelines (up to 20

Mpa [88]) or with tube trailers (up to 70 Mpa [89]). Although a pipeline system can deliver

hydrogen to HRSs more cheaply and quickly [90,91], such a system does not (widely) exist

yet. As of 2016 there are only around 4500 km of hydrogen pipelines around the world [92],

these pipelines are almost exclusively located near oil refineries or chemical plants [91]. For

reference the current total length of natural gas pipelines exceeds 1 million km [93]. Thus,

enormous amount of investment needs to be allocated to building hydrogen pipelines (the

natural gas pipeline is unfit to transport pure hydrogen [94]). In the mean while tube

trailers are a transportation method with acceptable of cost [53].

2.6.1.2 Liquid hydrogen

The volumetric density of liquid is more than doable that of compressed hydrogen [95].

However, the boiling point of liquid hydrogen is around 20 K or −253°C, thus gases

hydrogen have to be cooled to that temperature for it to liquefy. The liquefaction of

hydrogen requires large amount of energy and time. It is calculated that liquefaction

process costs between 30−40% of the energy of stored hydrogen, in comparison compressed

hydrogen only loses 10% of its energy content [85,96]. Additionally, liquid hydrogen tanks

also loses 0.1−1% of its content due to boil off each day, the exact rate is inversely related to

the volume to area ratio [97]. Liquid hydrogen is only suitable for large quantity transport

over long distances. Liquefied hydrogen can be transferred by cryogenic tanker (ship, train

or truck). In theory liquid hydrogen can also be transported by a pipeline system. However

the entire pipeline will need to be cryogenically cooled, which will increasing the energy

loss. More over the pipe line system will also experience a larger boil off effect due to

increased surface area.
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There exists a third method of storing and transferring pure hydrogen called cyro-compressed

hydrogen. This method keeps hydrogen at high pressure and low temperature as a super-

critical fluid. Hydrogen in this supercritical fluid state has an even higher density than

liquid hydrogen. But currently, the overall energy efficiency of cyro-compressed hydrogen

is worse than liquid hydrogen. For more details about this technology please refer to [98].

2.6.2 Hydrogen in a carrier

There are two main types of hydrogen carriers: chemical carriers that absorb and release

hydrogen though chemical reactions, and physical carriers that are porous and hold hy-

drogen in the void spaces within the carrier materials. The storage capacity for these

carriers are summarized in Table 2.2. One of the most studied chemical carrier is metal

hydrides, which is considered as one of the more promising candidates for on-board stor-

age to replace the current compressed gas storage method [99]. Another type of chemical

carriers that received more attention lately is the Liquid Organic Hydrogen Carriers (LO-

HCs). However the low storage capacity, as seen in Table 2.2, limits the application of

LOHCs. Although hydrogen carriers have much better storage capacities (in terms of

wt%) than compressed or liquid hydrogen [85], various technical challenges, like charge-

discharge kinetics, material weight and cost still needs to be addressed before any of them

are commercialized. More information can be found in the references given in 2.2. Recent

review of different hydrogen carriers can also be found in [99].

In terms of transportation methods, some of the chemical hydrogen carriers are in the

liquid form, e.g. LOHCs and formic acid, and can be transferred via specialized pipeline

systems or trucks. In the mean time, all of the physical carriers and several chemical

carriers, like metal hydrides, are in solid form. In this case the carrier material needs to

be processed and integrated into the storage containers [11], which can then be carried by

trucks.
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Table 2.2: Maximum storage capacities (percentage of weight wt%) reported for a number
of different physical and chemical hydrogen carriers. (modified from [11])

Carrier wt% References

Chemical

Ammonia Borane 19.4 [100, 101]
Metal Hydrides 12.6 [102, 103]
Alanates 9.3 [104, 105]
Formic Acid 4.4 [106, 107]
Carbohydrate 14.8 [108]
LOHCs 7.2 [109, 110]

Physical

Carbon Materials 8 [111, 112]
Zeolites 9.2 [113, 114]
Glass Capillary Arrays 10 [115, 116]
Glass Microspheres 14 [117]

2.7 Hydrogen Refueling Station (HRS) location models

In this section the various approaches for planning FCEV refueling stations are discussed.

Despite their different sets of constrains, both HRS planning and EVCS planning are

special cases of the facility location problem [118, 119], The facility location problem has

many other real world applications, for example, supply chain management [120]. In the

literature, there are many different ways to categorize the works regarding the facility

location problem, such as, number of objectives [59] single/multi objective,randomness

in the modelling [118] deterministic/Stochastic models, solving approaches [120] general

solver/dedicated algorithm, structure of the planning area [121] discrete/continuous spaces

or networks and types of demand modeling [122] point demand/flow based demand. As

there is a clear preference to use flow based demand in traffic related models, in this review

we classify the papers based on how demand is modelled in them.

2.7.1 Point demand models

In point demand models, the demand for service is localized at individual points or small

polygonal sectors within the planning area [122]. There are three main sub categories

covering problem, P-median problem and P-center problem. The following notations are

used in this section for the formulation of these problems:
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i Index of customer/demand locations

j Index of candidate facility locations

xj Binary variable equal to 1 if a facility is built at j, 0 otherwise,

yi Binary variable equal to 1 if node i is covered by a facility, 0 otherwise,

cj Cost of building a facility at location j,

aij Binary variable with value 1 if the demand at location i can be serviced by facility at location j,

0 otherwise,

di Demand at location i,

Dij Distance between demand location i and facility location j, which can be 0,

P Limit for number of facilities,

z Maximum distance between customer locations and their nearest facilities.

2.7.1.1 Covering problem

In covering problems, a facility can only service customers within a limited distance, that

is to say there exists a limit S such that aij = 1 if and only if Dij ≤ S. Note in covering

problems, a demand location can be covered/serviced by several facilities.

A straight forward objective of the model would be to cover all of the customer while

minimizing the total cost of building facilities, such problems is referred to as total covering

problems, first being formulated in 1971 [123]. Total covering problem is a real world

application of the Set Covering Problem (SCP) [124]. The general formulation of the total

covering problem is as follows:

min
∑

j

cjxj , (2.9)

subject to

∑
j

aijxj ≥ 1; ∀i, (2.10)

xj ∈ {0, 1}; ∀j. (2.11)

The objective function (2.9) aims to minimize the total cost of facilities. Eq. (2.10) ensures

that every customer is covered by at least one facility. This type of formulation is applicable
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to the planning of emergency services, infrastructure and war-time facilities [121], where

all of the demands must be covered.

In the original paper [123], it is assumed that it costs the same to locate a facility at any

of the candidate locations, i.e. cj = 1, ∀j, thus the objective function becomes:

min
∑

j

xj . (2.12)

which minimizes the number of the facilities instead of cost. The authors utilized integer

programming method to solve this problem in the context of locating emergency services.

In [125] the total covering problem is applied to the planning of HRSs while considering

each driver’s scheduling and routing needs. In this study, to simplify the formulation and

speed up the computing time, the maximum number of refuels per vehicle per day is set

to 1. The case study of Irvine and Newport Beach showed that the proposed method

can reduce the minimum number of facilities compared to models that does not consider

routing.

The covering model is expanded by Tu et al. [122] to include temporal constrains, such

as arrival time, wait time and charging duration, in the planning of charging stations for

electric taxis. The objective of the modified problem is to maximize charging service level

as well as the service level of electric taxis. A genetic algorithm is adopted to obtain the

final solutions and a case study is conducted using GPS data in Shenzhen, China.

If the total number of facilities or cost is limited and the objective is to cover as many

demand as possible then it is called a Maximal Covering Location Problem (MCLP), first

being described in 1974 [126]. The general formulation is as follows:

max
∑

i

diyi, (2.13)

subject to

∑
j

aijxj ≥ yi, ∀i (2.14)

∑
j

xj ≤ P, (2.15)

yi, xj ∈ {0, 1}, ∀i, ∀j, (2.16)
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Objective function (2.13) maximizes the demand covered. Constraint (2.14) ensures that

demand can only be covered if a facility is within range. Constrain (2.15) limits the total

number of facilities built. Constrain (2.16) is the integrity constrain. As noted by [126]

such an approach is well suited for the planning of public services.

For example, in [127] the maximal covering approach is used to optimize the police patrol

areas in Dallas, Texas in the US. This study also proposed a backup covering model, then

geographic information system is combined with linear programming to find and convey

the optimal solutions. Simulations carried out in this paper shows that the proposed

method can achieve better incident coverage than existing arrangements.

To address the need of planning HRSs in the country of South Korea, in [38], a multistage

planning method is developed. Firstly, the point based refueling demand is estimated using

statistics from government agencies. Secondly, the total number of HRSs is determined

based on a service level model. Then, the capacitated MCLP is solved to determine the

locations of of HRSs. Finally, the P-median problem is solved to further improve the

location results.

In the past four decades, researchers have developed many different variants of both SCP

and MCLP, interested readers can refer to [128] for a detailed review of covering problems

in the area of facility location.

2.7.1.2 P-median problem

Being described in 1964 by Hakimi [129], both the P-median and the P-center problem are

actually relaxations of the covering problem [118], where theoretically any facility locations

can service any one of the demand locations in the planning area. The P-median problem

can be modeled as:
min

∑
i

∑
j

Dijdiaij , (2.17)

subject to

27



CHAPTER 2. REVIEW ON HYDROGEN TECHNOLOGY IN THE E-MOBILITY
TRANSFORMATION: CHALLENGES AND OPPORTUNITIES

∑
j

aij = 1, ∀i (2.18)

∑
j

xj ≤ P, (2.19)

aij ≤ xj , ∀i, ∀j, (2.20)

aij , xj ∈ {0, 1}, ∀i, ∀j. (2.21)

As it can be seen in Eq. (2.17), the aim of this model is to minimize the total cost of

the customers in terms of the demand-weighted travel distance. Eq (2.18) guaranties that

each customer can only be serviced by one facility. Eq (2.19) and (2.20) set the limit for

number of facilities and allows located facilities to serve customers, respectively. Eq (2.21)

is the integrity constrain for binary variables.

In [129], the P-median model is used to find switching centers in communication net-

works, [25] used the P-median formulation to locate HRSs in Beijing, China by combining

information of the existing petrol station network, traffic network, population and regional

economic. A hybrid-solution approach is adopted in [25], where genetic algorithm is inte-

grated with greedy algorithm to speed-up convergence and annealing algorithm to avoid

converging to local optimums. Simulation results showed that the greedy algorithm can

effectively reduce the solution space and the computational complexity. For more informa-

tion, in [130] a detailed review of P-median problem and its variations in location science

was provided.

2.7.1.3 P-center problem

The integer programming model for the P-center problem is as follows:

min z, (2.22)

subject to

28



2.7.1 Point demand models

∑
j

Dijaij ≤ z, ∀i, (2.23)

∑
j

aij = 1, ∀i (2.24)

∑
j

xj ≤ P, (2.25)

aij ≤ xj , ∀i, ∀j, (2.26)

aij , xj ∈ {0, 1}, ∀i, ∀j. (2.27)

The objective function (2.22) and constrain (2.23) together minimize the maximum dis-

tance between any given demand location and the facility that services it, which is why

the P-center problem is classified as a minmax problem [118]. Constrains (2.24)-(2.27)

are exactly the same as constrains (2.18)-(2.21) for the P-median problem.

The goal of the P-center problem is to improve the worse case scenario for all customers

[121]. Thus, it is well suited for public/emergency services. For instance, in the original

paper [129] P-center problem was solved to locate police stations and hospitals. Due to

the NP-hard nature of the P-center problem, obtaining exact solutions may not always be

practical and heuristic approaches are adopted [121]. A detailed review of different exact

and heuristic approaches used to solve P-center problems can be found in [131].

For locating refueling stations for AFVs, in [132] the core idea of P-center problem, im-

proving the worst case scenario , was combined with flow based demand modelling to

form a "p-center flow-refueling problem". The model is designed to locate P refueling sta-

tions while trying to minimize the maximum percentage of deviation for each driver. An

Implicit enumeration algorithm is employed to find exact optima. The numerical results

showed that for the save level of deviation there exists different equally optimal solutions.

Additionally, small increase in either vehicle range or number of stations does not always

lower the maximum deviation.

In [133], the P-center problem was integrated with robust optimization to solve the reliable

facility location problem. In the reliable facility location problem the allocated facilities
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need to provide service to all customers even if some of the facilities has been disrupted by,

for example, nature disasters. The authors formulated a two-stage robust location model

and applied three different solution methods. Extensive numerical tests are carried out to

examine the performance of the solution methods as well as to compare the proposed model

with other reliable location models. The simulation results showed that the proposed

reliable the P-center problem can achieve better coverage in the worst case scenarios while

other methods have better average performance among all cases.

2.7.2 Flow based models

In point demand models the demands are located at or aggregated to nodes of the network

and demands are met via node to node travel [134]. However, in some cases the main

goal of a customer is not to obtain a service but to travel between a predefined origin-

destination (OD) pair and if a facility happens to be located along the corresponding

path the customers may choose to visit it [135], some examples of this type of business

include fast food shops, automatic teller machines (ATMs) and fuel stations. To better

encapsulate the characteristics of flow based demand, location models that "intercept"

traffic flow have been developed, namely the Flow Capturing Location Model(FCLM) [136]

and Flow Refueling Location Model(FRLM) [137].

2.7.2.1 Flow Capturing Location Model(FCLM)

The integer programming formulation of FCLM require the following notations:

i Index of facility locations

q Index of paths

xi Binary variable equal to 1 if a facility is built at location i, 0 otherwise,

yq Binary variable equal to 1 if there is a facility on path q, 0 otherwise,

fq Flow of traffic on path q,

Iq Set of potential facility locations on path q,

P Limit for number of facilities.
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The objective is:
max

∑
q

fqyq, (2.28)

subject to

∑
i

xi ≤ P, (2.29)∑
i∈Iq

xi ≥ yq, ∀q (2.30)

xi, yq ∈ {0, 1}, ∀i, ∀q. (2.31)

As shown in the objective function (2.28), this model aims to maximize the total captured

flow. Eq (2.29) limits the total number of facilities to be located. Eq (2.31) ensures that

the flow on path q can only be captured if at least one facility is built along q.

Similar to other facility location models, the FCLM is also NP-hard [138]. Therefore,

solutions are often obtained with heuristic methods [139,140] or approximation approaches

[56, 141]. There have been many different extensions of the FCLM that consider different

factors such as limited facility capacity [142], drivers taking detours to refuel [143] or

to avoid check points [144]. In [145, 146] a more generalized formulation for FCLM was

provided and it is proved that many extensions are just special cases of the generalized

model.

The FCLM was extended by Wu and Sioshansi [56] into a two stage model that consider

the uncertain nature of traffic flow as well as the fact that drivers may take detours from

their intended path to refuel their cars. However, the resulting model is intractable, hence,

the authors proposed a ample-average approximation method to tackle this issue. A case

study using data from Central Ohio, US was carried out. The case study showed that

optimal solution of the introduced model can increase the percentage of BEVs that can

complete their daily tours. In addition, the case study also showed that the stochastic

model can achieve better demand coverage that its deterministic version.
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2.7.2.2 Flow Refueling Location Model(FRLM)

In the FCLM it is assumed that drivers can complete their trip with just one facility along

the desired path. Yet for AFCs, especially in the early stages of AFCs deployment, their

limited range means that several refueling stations may be needed along the desired path.

To address this concern the FRLM was proposed by Kuby and Lim [137]. The following

additional notation is needed to convert FCLM to FRLM:

j Index of combinations of facility locations

aij Binary variable equal to 1 if a facility i is built in combination j , 0 otherwise,

bjq Binary variable equal to 1 if facility combination j can service path q, 0 otherwise,

lj Binary variable equal to 1 if all facilities in combination j is built, 0 otherwise,

The model is
max

∑
q

fqyq, (2.32)

subject to

∑
j

bjqlj ≥ yq, ∀q, (2.33)

aijxi ≥ lj , ∀j; i|aij = 1, (2.34)∑
i

xi ≤ P, (2.35)

xi, lj , yq ∈ {0, 1}, ∀i, ∀j, ∀q. (2.36)

Similar to FCLM, the objective of FRLM (2.32) is to maximize the serviced traffic flow.

However, instead of requiring one facility to be located along path q to capture the flow,

constrain (2.33) requires at least one combination of facilities, that satisfies the range

requirements of AFVs, to be build along path q in order to capture the traffic. Constrain

(2.34) sets lj to one if and only if all facilities in combination j are built. Constrains

(2.35) and (2.36) serve the same purpose as (2.30) and (2.31) in the FCLM.

As noted in [137], the FRLM requires all of the combinations of facility locations to

be generated, which is infeasible for practical applications. To address this issue various

reformulations of FRLM have been brought forward, see [147–149] for these reformulations.
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Table 2.3: Summary of Facility location literature covered in this section

Demand type Model References

Point-based

SCP [122, 123, 125]
MCLP [38, 126, 127]
P-median [25,38, 129]
P-center [129, 133]

Flow based FCLM [56, 142–144, 146]
FRLM [132, 137, 147–150]

For example, in [150] the problem of locating wireless charging stations for BEVs was

studied while the drivers’ routing behaviours was modeled with stochastic user equilib-

rium. The authors of [150] formulated the modified FRLM as a mixed-integer nonlinear

program (MINLP). Different linearization methods were deployed to convert the MINLP

to a mixed-integer linear program (MILP), then a commercial solver is used to obtain the

final solution. Simulation studies showed that the developed model resulted in different

EVCS locations and traffic flow patterns comparing with another model that assumed

drivers’ will choose the shortest route.

In contrast to the original FCLM and FRLM, which are both based on the maximal

covering approach, a P-center formulation of FRLM was implemented in [132], where he

objective is to minimize the maximum detour of each driver. For more examples of the

different extensions of flow based models, one can refer to [151, 152] and the references

therein.

The location models covered in this section are summarized in Table 2.3. So far this section

has only been discussing single objective location models. It is worth noting that all of

the facility location models can be extended to multi-objective optimization models. One

classical approach is the scalarization method where different objective function is added

together as a weighted sum. For example, in [153] the FCLM and P-median model was

combined, and the objective function is a weighted sum of the two objectives. A different

approach can be seen in [154], where the objective of maximal coverage, P-median, and

P-center problems were considered, a pareto optimal method was adopted to find the non-

dominated solutions. Another example of the pareto frontier approach is [45]. In [155]
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the different heuristic techniques for multi-objective optimization was reviewed , more

examples of multi-objective location problem can also be found inside.

2.8 Fuel cell technologies

At the final step of hydrogen’s life cycle, hydrogen is converted to heat and electrical

energy in fuel cells. According to [12], the fuel cell technologies are mainly classified by

the electrolyte they use to carry charges between cathodes and anodes. However there are

fuel cells that are classified by their fuel types, e.g.direct methanol fuel cells.

In this section, we will review the different types of fuel cell technologies and their limi-

tations. The major types of fuel cells and some of their suitable applications are given in

Table 2.4, note that Biofuel cells (BFCs) are excluded from Table 2.4 as they are designed

for more niche applications.

2.8.1 Alkaline Fuel Cells (AFCs)

AFCs,also known as Bacon fuel cells. were first developed by Francis Thomas Bacon,

and saw practical use by NASA in the Apollo program and later in the space shuttle

program for generating electricity and drinkable water [156]. AFCs typically use potassium

hydroxide (KOH) solution as electrolyte, with the OH– ion being the charge carrier.

AFC is one of the most mature and the most efficient fuel cell technologies. In AFCs

between 60 to 70% of the energy stored in hydrogen is converted to electricity [157].

Another advantage the AFCs have is that the catalysts on the electrodes can be made

from a variety of relatively inexpensive metals [13], such as nickel and sliver. This flexibility

in catalyst material also leads to the AFC being the cheapest fuel cell type. Furthermore,

operating temperature of AFCs is around 100°C leading to fast start time [12].

The main drawback of the AFC is that it is susceptible to CO2 poisoning. The mechanism

for poisoning is that first CO2 will react with the KOH in the electrolyte thus reducing its
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conductivity, then the K2CO3 formed will deposit on the catalyst site and further reduce

the performance of the cell. In fact the 0.04% CO2 in air [158] is enough to significantly

reduce the efficiency and life span of the cell. In practical applications the vehicles usually

need to use pure hydrogen and either carry pure oxygen on board or have a extra device to

remove CO2 from air for the AFCs to function properly. Moreover, the electrolyte solution

in AFC is highly corrosive, leading to issues with the seal of the fuel cell and reduced life

span.

Due to the above mentioned issues research interest in AFCs have dwindled since the 1990s

after the advancement of PEMFC [2]. But in recent years, there has been a renewed in-

terest in AFCs particularly anion-exchange membrane fuel cells (AEMFCs), which uses

solid electrolytes and hops to alleviate much of the issues with traditional AFCs [159].

However currently the AEMFCs still have several problems that need to be addressed be-

fore commercial application. For instance, performance stability issues caused by chemical

degradation [159].

Examples of EVs using AFCs includes the 1966 GM Electrovan [160], which is the first

fuel cell powered vehicle.

2.8.2 Phosphoric Acid Fuel Cells (PAFCs)

PAFC is the first commercial fuel cell type and is the most widely used fuel cell type before

the 21 century [161]. As its name suggests PAFCs use liquid phosphoric acid (H3PO4) as

electrolyte. The common usage for PAFCs is for stationary Combined Heat and Power

(CHP) generation. As a result of having low energy density PAFCs require more space,

thus can only be fitted into larger vehicles such as buses [162,163] and trains [164]. Apart

from having low power density, one other issue the PAFC faces is its low electrical efficiency.

Although the efficiency of PAFCs for CHP is around 80% [164], when generating electricity

alone PAFC is only 30 − 45% efficient [13], which sits narrowly above the energy efficiency

of ICE (20 − 30% [165, 166]). Moreover, PAFCs use platinum as catalyst and have a

higher catalyst loading, resulting in the price being high [12]. Similar to AFCs, the liquid
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electrolyte of PAFCs is also highly corrosive, resulting in limited cell life. As PAFCs

operate between 160 − 220°C, they have a relatively slower start time.

The main advantage of PAFC is its ability to handle impurities in both hydrogen and the

oxygen sources [167]. Since PAFC uses acidic electrolyte the presence of CO2 does not

affect cell performance. thus air is usually the oxygen source. Unlike PEMFC, PAFC can

also tolerate up to 1.5% of carbon monoxide (CO) content, leading to it’s wide adoption

[168].

2.8.3 Proton Exchange Membrane Fuel Cells (PEMFCs)

Unlike AFCs or PAFCs which use liquid electrolytes, PEMFCs use solid PEMs as elec-

trolytes. The polymer membrane is the most important part of the PEMFC and contribute

to around 30% of the component cost for the cell [167]. Since PEMFCs do not use corro-

sive liquid electrolyte, they have a longer cell life. PEMFCs have been the focus of fuel cell

research since the 1990s [13] because it is highly modular and have high power density. In

fact PEMFCs have the highest power density among all of the fuel cell technologies [12],

making them particularly suitable for applications such as automobiles where space is of

concern. Moreover, start time of PEMFCs is short since the operating temperature of is

between 50 − 100 °C. The use of acidic electrolyte in PEMFCs makes them indifferent

to the presence of CO2 , thereby ambient air can be used as oxygen source. The energy

efficiency of PEMFCs is 40 − 60% which is lower than AFCs but much higher than ICEs.

Similar to PAFCs, PEMFCs also require expensive platinum catalyst at its electrodes

leading to high cost, nevertheless, the catalyst loading of PEMFCs is lower than that

of PAFCs [169]. In addition the platinum catalyst in PEMFCs is very susceptible to CO

poisoning [170]. Currently the limit for CO concentration in hydrogen for vehicle use is 0.2

ppm [171], which is well above the CO content in reformed hydrogen [172]. Furthermore,

PEMFCs require complex water and heat management systems. In a PEMFC too much

water accumulated in the cell will cause flooding, while too little water will make the PEM

to dry up, both of these conditions will reduce the performance of the cell [173].
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Examples of FCEVs using PEMFCs include the Toyota Mira [174], which is the first

commercially available FCEV.

2.8.4 Direct Alcohol Fuel Cells (DAFCs)

As their name suggests DAFCs uses alcohol as fuel. Most of DAFCs are based on PEM

technology, while alkaline cells have also been developed [14]. There are currently two

major variants of DAFCs that have seen some commercialization, Direct Menthol Fuel

Cells (DMFCs) that use menthol as fuel, and Direct Ethanol Fuel Cells (DEMCs) that use

ethanol as fuel. There also have been attempts to develop Direct Ethylene Glycol Fuel

Cells (DEGFCs), but DEGFCs are yet to be commercialized [175]. DAFCs are considered

as newer types of fuel cells with DMFC being first invented in 1990s. The reasoning for

developing DAFCs are very straight forward: alcohols can be produced from a variety

of sources(fossil fuels or biomass) [14], all of them are already being produced in large

quantities [176–178], all of them have high volumetric energy density [179], and they are

in liquid state at room temperature resulting in straightforward storage and transportation

methods.

However, currently DAFCs require expensive catalysts and high catalyst loading. For

instance DEFCs also uses platinum catalyst and the loading is higher than PEMFCs [180].

Another hurdle that DAFCs face is the slow reaction kinetics at the anode [181] which limits

the maximum power output. Moreover, all of the DAFCs suffer from fuel crossover where

the fuel will pass though the membrane resulting in problems like reduced performance

and lower energy efficiency [182]. For example, the current DMFCs are only 20 − 30%

efficient [183] which is at the same level as ICE. In addition DAFCs will form side products,

e.g. CO, aldehydes and acids, that will cause complications like catalyst poisoning and

electrode corrosion during operation [15].

As a result of the aforementioned limitations DMFCs and DEFCs have only seen com-

mercialization in portable electronic devices, such as mobile phones and laptops [184,185]

and DMFCs have also been used in small vetches like forklifts [186]. Please note that
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most methanol fuel cell vehicles, like the Gumpert Nathalie [187], are not using DMFCs.

Instead methanol fuel cell vehicles actually have on board reformers to convert methanol

to hydrogen and use the hydrogen in PEMFCs.

Apart from alcohols, other liquid or liquid solutions,such as formic acid [188], dimethyl

ether [189], borohydride [190] and hydrazine [191], have also been considered for direct

fuel cell applications. But they are still purely experimental.

2.8.5 Solid Oxide Fuel Cells (SOFCs)

In SOFCs the electrolytes are zirconia-based ceramic that conducts oxide ions (O2-).

Most SOFCs operates near 1000°C but there have been newer models where the operating

temperature is reduced to 500−800°C [192], nevertheless all SOFCs are considered as high

temperature fuel cells. One major advantage of SOFCs is fuel flexibility. As a result of the

elevated operating temperature SOFCs have the ability to use light hydrocarbons [193]

and CO as fuel directly or by internally reforming them into hydrogen [194]. Furthermore,

the elevated temperature also eliminates the need of expensive catalyst [195]. Additionally

the efficiency of SOFCs for generating electricity alone is 50 − 65% [196], the overall fuel

efficiency can be further boosted ( 80%) if SOFCs are coupled with gas turbines or used

for CHP [197, 198].

The high operating temperature of SOFCs also brings a set of problems. To begin with,

SOFCs requires adequate thermal shielding in order to maintain the high temperature

and achieve high energy efficiency, resulting in increased size and lower power density [13].

Another issue of SOFCs is that the start up time is slow [199] partly caused by the high

temperature. The other factor contributing to the slow start up of SOFCs is that, if the

heat is supplied too quickly or unevenly, the solid ceramic electrolytes might crack under

thermal stress [200]. Currently SOFCs also have durability issues caused by processes like

electrode corrosion [201,202], carbon deposition [203] and thermal cycling [204]. Despite

the fact that expensive catalyst is not required, the overall cost of SOFCs are still high

due to strict material requirement and complicated manufacturing process [205]. SOFCs
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are also sensitive to sulfur contaminates [206].

One way to extend the cell life of SOFCs is to reduce the frequency of start ups and shut

downs, thereby reducing the thermal stress the stack experiences. This, coupled with the

long start up time, means SOFCs are usually considered as an option for stationary power

generation [207] or for heavy duty vehicles such as trains [208]. However companies have

tried to adapt SOFCs to power automobiles, with Nissan unveiling the first prototype

SOFC car in 2016 [209].

2.8.6 Molten Carbonate Fuel Cells (MCFCs)

MCFCs use liquid alkali carbonate salts, a binary or ternary mixture of Li2CO3, Na2CO3

and K2CO3, as the electrolyte and operates at 600−700 °C (the melting point of carbonate

salts). MCFCs are also categorized as high temperature fuel cells and share some of the

strengths and weaknesses with SOFCs, such as high energy efficiency [210], fuel flexibility

[211, 212], inexpensive catalyst [213], long start time, durability issues [214], low power

density [156] and intolerance of sulfur compounds [206]. In addition, as MCFCs operate at

a lower temperature, MCFCs have less strict material requirement than SOFCs [13]. Like

other fuel cells that uses corrosive liquid electrolytes, MCFCs also have seal issues [215].

However, MCFCs also have drawbacks that are unique to them. For example, there is

a net transfer of CO2 from the cathode to the anode during operation of MCFCs [216],

thus additional auxiliary systems are need to inject more CO2 to the cathode either by

recycling CO2 from anode [157] or from another CO2 source [217]. Further more, catalyst

dissolution is another issue that reduces the life span of MCFCs [213].

Due to the low power density, long start up time and the need for auxiliary systems,

MCFCs are not satiable for FCEV applications. But MCFCs are useful in applications

where space and start time is of less concern, for example stationary power generation

and large watercraft [156]. More recently, MCFCs have been investigated as a tool to

concentrate CO2 in CCS systems for fossil fuel power plants [218].
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2.8.7 Biofuel Cells(BFCs)

BFCs uses biological processes to convert fuel (usually organic compounds) to electricity.

There are two different types of BFCs: Enzymatic Fuel Cells (EFCs) that uses immobilized

protein catalysts (enzymes) at its electrodes and Microbial Fuel Cells (MFCs) that have

living organisms (often bacteria) act as catalysts. One of the proposed usage for BFCs

is for powering medical implants [219] due to BFCs mild operating temperatures and PH

level. The application that is closet to commercialization is using MFCs for waste water

treatment [220,221].

Currently, BFCs are still being actively developed and researched with several barriers to

over come, such as very low power density [222] and current output [223], slow conversion

rate [224], high manufacturing cost [225], poor understanding and optimization of the

electron transfer mechanisms [226] and strict operational conditions [13].

2.9 Conclusion

Due to the growing concerns regarding the climate emergency, more and more countries

begin implementing policies and investments to accelerate the electrification of transporta-

tion in order to reduce GHG emission. Hydrogen and FCEVs are considered by many as

important tools to achieve this transformation. In this chapter various topics that are crit-

ical to using hydrogen as a energy carrier for transportation, namely hydrogen production

methods , hydrogen storage and transport methods, fuel cell technologies and HRS plan-

ning models, are reviewed. The strengths of each technology/method/model are disused

as well as the challenges each of them faces and their short comings. These challenges and

short comings can serve as focus points for future researches. This review covers literature

spanning the last several decades. However due to the large number of 6 topics covered in

this review, it is not possible to cover every detail of each topic, thus additional references

are provided should the readers require more information.
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Chapter 3

Data-driven Planning of Electric

Vehicle Charging Infrastructure:

A Case Study of Sydney, Australia

3.1 Relationship to the Thesis

In Chapter 1, one of the research gaps that have been identified is that there lacks a

market-based planning approach for EVCSs. In this chapter a data-driven competitive

planning framework for EVCSs is developed and validated with a real-world case study of

Sydney, Australia.

This Chapter is written from: C. Li, Z. Dong, G. Chen, B. Zhou, J. Zhang, and X. Yu,

“Data-driven planning of electric vehicle charging infrastructure: A case study of Sydney,

Australia,” IEEE Transactions on Smart Grid, pp.1–1,2021.

This chapter has been edited to incorporate thesis reviewers’ comments.
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Nomenclature

Set

Âq the set of arcs on path q in the expanded TN

Ĥ the set of hours

Îq the set of nodes on path q in the expanded TN

M̂ the set of months

E the set of edges between nodes

I the set of nodes in the TN

M the set of companies in the competitive market

Q the set of paths

Xm the set of feasible budget allocation domains for company m

V the set of nodes

Functions/Operators

F(x) the fixed-point map

fm(·) the payoff function for company m

F(·) the nonlinear prediction function

ϕ(·) the function to stack all adjacency matrices

Φ : (X × X ) → R ρ-regularized Nikaido–Isoda function

Ψ(·) the charging serviceability function

σ(·) the activation function

Ci(·) the cost function of the construction cost of EVCS as well as the cost

associated with waiting time

SIM(·) the cosine similarity function

tanh(·) the tanh function

tr(·) the trace of a matrix

Parameters of Matrix Factorization

α, β the l2 regularisation parameters

γg the graph regularization parameter

S the temporal traffic flow matrix
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Ŝ the spacial traffic flow matrix

ŝn
j the summed traffic flow for node n at the j-hour

G = (V; E) the relation network that includes nodes and edges

Ag the adjacency matrix describing relation g

a1
ij the spatial proximity between zone i and j

a2
ij the region similarity between zone i and j

a3
ij the TN connections between zone i and j

Dg the degree matrix for graph g

Lg the Laplacian for graph g

P ∈ RN×K the matrix of size RN×K used for the low rank K approximation in

spatial matrix factorization

Q ∈ RK×H the matrix of size RK×H used for the low rank K approximation in

spatial matrix factorization

U ∈ RM×K the matrix of size RM×K used for the low rank K approximation in the

temporal matrix factorization

V ∈ RK×H the matrix of size RK×H used for the low rank K approximation in the

temporal matrix factorization

sij the traffic flow at hour j in month i

Parameters of Deep Neural Network

Ŷt+κ the κ-step-ahead predicted traffic flow volume at time t of all nodes

Â the adjacency matrix with a self-loop connection

D̂ the diagonal node degree matrix

Hl,p ∈ R1×P (P ≤ 3) the kernel of 1D convolution at layer l for graph g matrix

h
′
t the current memory at time t

ht the final memory at time t

l the layer index

W l the weight matrix of layer l

X l+1
t ,X l

t the output and input matrices of layer l at time t

Xt+Z the observed features of N nodes at time t + Z

zt the update gate at time t
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rt the reset gate at time t

Parameters of Game Model

Γ Cournot competition game

µm the utility parameter regarding the charging time

νi the construction cost parameter for zone i

πi the service benefit basic price at the ith zone

ρ the regularization parameter

τ , ζ the precondition parameters of the accelerated fixed-point map

Si the charging demand

θi the parameter related to waiting time, given Si

Bm the budget of company m

Emax
i the capacity constraint of the DN

Emin
i the policy constraint

Parameters of Optimal Sizing

ηi the income coefficient at zone i

n̂m
i,k the maximum number of level-k EV charging post at the ith zone

x̂m,i the budget of company m for constructing EVCS and charging posts at

zone i

λq
ij the fraction of charging demand on path q from node i to j

λq
OD the fraction of unsatisfied charging demand on path q from node O to

D

Is,t the upper limit of current for line s, t

V s/V s the lower/upper limit of nodal voltage at bus s

ςs the square of the magnitude of the nodal voltage at bus s

ϑ the phase angle between EV charging voltage and current

ξs,t the impedance of line s, t

ξ∗
s,t the conjugate of ξs,t

ce the electricity cost caused by EV charging demands

cp the penalty cost due to unsatisfied charging demand

Fs,t the power flow in line s, t from bus s to bus t
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fs the nodal power injection at bus s

ls,t the square of the magnitude of the current in line s, t from bus s to bus

t

pk the charging power of the Level-k EV charging posts

rk the revenue generated by Level-k EV charging post

Sq the traffic flow on path q

Decision Variables

x−m the variable describing the strategies of companies beside m

xm the variable describing the strategy of company m

ym the strategy variable of ρ-regularized Nikaido–Isoda function given xm

ζm
i,k the binary variable indicating whether an EVCS containing Level-k EV

charging posts is built at zone i

nm
i,k the integer variable corresponding to the number of the Level-k EV

charging posts in the EVCS at zone i built by company m

xm,i the allocated budget on zone i from company m

3.2 Introduction

The modern world continues to recognise EVs’ advantages to the society and environment

[227]. Additionally, technological advancements continue to increase EVs’ range while

reducing their cost, an increasing number of people are viewing EVs as a viable choice of

transportation. As a result, the market share of EVs continues to grow in Australia, which

means that the need for EVCSs is also increasing.

The current studies on EVCS planning fall into two categories [228], namely point demand

models and flow demand models. In point demand models, the charging demand is located

at individual points or polygons, while flow demand models consider demand to be the flow

between points [229]. For instance, in FCLM [136], the EV charging demand is represented

by the drivers seeking for a EVCS during the journey between origin-destination (OD)

pairs. An OD matrix is required to estimate the distribution of EV charging demand
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and locate EVCSs to maximise the captured traffic flows [230]. In [228], the CFRLM

is proposed by including DN constraints and deploying queuing theory to determine the

locations of EVCSs. In point based models, it is assumed that EV charging demand is

concentrated at certain point of interest, and the demand is estimated based on nearby

traffic flow counts over a period of time [231]. Usually the time cost is the primary concern

of such models and the objective is to minimise the travel time while maximising the

covered demand for a given number of EVCSs [232]. In [233], a multi-period fast charging

location planning model, that can adjust to varying charging demands, is developed by

incorporating demand dynamics.

Yet, without a deep knowledge of the TN and the corresponding traffic flow data, it is diffi-

cult for the Australian energy sector to have an accurate estimate of EV charging demands,

resulting in the sub-optimal deployment of EVCSs. In a recent report, Australian Electric

Vehicle Council [227] pointed out that the number of Australian EVCSs is far fewer than

other developed nations like U.K. and U.S., with inadequate government funding being the

primary reason. In addition, if government investment led the EVCS development plan,

it will likely result in a monopoly market which causes various inefficiencies [234]. Hence,

private investments should be allowed in the market of EVCS construction and man-

agement [235]. To be a successful company, EVCS providers must deliver high-quality

services while competing in a free-market [236]. Therefore, to encourage private service

providers to invest in EVCSs, it is necessary to design a market-based planning framework.

A versatile game-theoretic model is employed in [237] to model the competitive market

for EVCS providers. In this model each EVCS provider seeks to maximise their profit

by optimally sizing and sitting EVCSs as well as setting charging prices. In [238], the

competitive charging behaviors are studied and a charging congestion game is developed

to locate EVCSs. Further, Global Positioning System (GPS) data of each vehicle cannot

be given to third parties, as per Australian data privacy regulations, thereby limiting one’s

ability to determine EV charging demand. Theoretically, one can obtain travel profiles by

crowdsourcing mobile data [239]. However, in Australia, estimating EV charging demand

from GPS data of individual vehicle is difficult due to aforementioned privacy regulations.

The spatial-temporal distribution of EV charging demands can estimated using GIS and
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household travel survey (HTS) information with a probabilistic model [240]. Additionally,

a practical market mechanism should also include local economic elements in the planning

of EVCSs.

Here are the three main contributions of this chapter.

i) A data-driven framework for optimal planning of EVCSs is developed in the per-

spective of private companies, adopting a market-based mechanism in a competitive

environment. The introduction of a predict-then-optimize diagram aims to fore-

cast the future traffic flow by neural network methods. Then, the EVCS planning

strategy for each company is optimised based on the projected traffic flow.

ii) Developed a spatial-temporal missing data imputation method which utilised data-

based analysis of the publicly-available TN data in Sydney. The missing data issue,

which often exists in real-world data sets, is then addressed by imputing the missing

traffic data. In the state of New South Wales (NSW), Australia, the traffic counter

data are open for public access. Consequentially, EV charging demand estimation

can be based on traffic count data and the optimal budget allocation of EVCSs can

can be obtained with a point demand model. To deal with various relations among

different nodes, a graph convolutional network (GCN) based on multi-graph fusion

is constructed by capturing the spatial information from the traffic flow.

iii) The Cournot competition amongst multiple EVCS providers is described with a

game-theoretical model. There is few research focusing on EVCS planning from a

competitive market perspective. In a competitive market, private companies com-

pete to allocate EVCS by focusing on maximising their profits and limiting the

capital expense. Additionally, from a micro perspective, an MILP model is utilised

to size individual EVCSs for each company with for individual zone considering the

DN constraints.

The organisation of the remaining sections of this chapter are as follows. A data-driven

framework for optimal planning of EVCSs is presented in Section 3.3. The data-based
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Figure 3.1: Flow chart of the data-driven framework for EVCS planning

approach for EV charging demand estimation is detailed. A data imputation method is

proposed. The demand prediction method is given. The Cournot competition model is

explained in Section 3.4. This model is then used for allocating EVCS budget to each

planning zone. A parallel algorithm is developed to derive the Nash equilibrium. Further,

the EVCSs are sized optimally with respect to three charger levels. The experimental

results for the optimal planning of EVCSs are given in Section 3.5. Finally, Section 3.6

gives the conclusion of this chapter.

3.3 Data-driven Model on EV charging infrastructure plan-

ning

It is assumed that different private companies have a competitive relationship in the

planning of EVCSs. In addition, each of the companies seeks to maximise overall profit

while operating with fixed budgets. To this end, a data-driven method is developed with

the goal of maximising the profit of EVCS provider while minimising the overall cost. The

discomfort of EV drivers is also penalised in the form of additional cost to maximise the

captured traffic flow. As shown in Fig. 3.1, the solution to EVCS planning includes a

Predict, then Optimize diagram, in which the EV charging demand is first projected with

big data analysis. Afterwards, the EVCS planning result is optimised by the game theory
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model based on the predicted charging demand.

In the first step, which is data acquisition and pre-processing, DN and TN data are

gathered from NSW public services for Sydney. This resulted in adequate data sets for

subsequent machine learning steps.

In the prediction step, the EV charging demand of Sydney is estimated via the traffic flow.

The EV charging demand estimation is improved by extracting deep insight from economic

activities, which represents the people’s behaviours to a certain degree. In particular, to

address the absence of TN data, a spatial-temporal data imputation method is developed.

As [122] pointed out, the EV charging demand is correlated to the daily traffic flow. By

thoroughly utilising the spatial-temporal understanding [241], a novel multi-relation GCN

is proposed for uncovering the many spatial relations within TN. The projected traffic

flow of the whole city is derived in this step. The EV charging demand is then evaluated

according to the projected traffic flow.

Next, a Cournot competition model is developed for the budget allocation step. The allo-

cation of EVCS budgets for each company and each zone is determined by the competition

model. A conceptual analysis of the competition model is given such that the readers can

have a better comprehension on the optimal sizing and sitting of EVCSs. An efficient

parallel algorithm is also developed to find the Nash equilibrium in a timely manner. At

the end of this step, the optimal budget allocation for each EVCS provider will be decided

for all the planning zones.

Lastly, in the optimal sizing of EVCS step, an MILP model is adopted for acquiring the op-

timal EVCS sizing result by including local DN constraints and serviceability constraints.

The optimised EVCS deployment plan that can service the projected EV charging demand

is obtained at the end of this step.
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(a) 2008 (b) 2018

Figure 3.2: The average daily traffic flow for 2008 (a), and 2018 (b). High volumes of
traffic flow are depicted in red.

3.3.1 Data set for predicting EV charging demand

As mentioned above, to predict future EV charging demand, a new GCN is proposed to

describe the spacial and temporal relationship of TN.

The TN data over last twelve years were collected for NSW, Australia. The data set

contains the daily traffic volume and the TN structure of the Greater Sydney area. Par-

ticularly, the traffic flow data are made of bidirectional vehicle volume count from sensors

in 1 hour intervals from 2008. As shown in Fig.3.2, the change in the average daily vehicle

count between 2008 and 2018 is considerable. Moreover, economic activities also play an

important role in the prediction of EV charging demand. When planning EVCS deploy-

ments, it is essential to design a novel prediction model that can accommodate projected

traffic conditions and economic factors.

3.3.2 Data Pre-processing

Raw TN data often contains many missing entries, as a result of routine maintenance or

sensor failures, that will limit the accuracy of predicted future traffic flow. Hence, a data

pre-processing step is necessary to impute the missing data before building a new GCN to

conduct the times series prediction of traffic flow. In this chapter, a two-stage method is
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developed to impute the absent data through the incorporation of the spatial and temporal

correlations of TN data sets. The goal of EVCS planning is to achieve long-term social

benefit and profit. Consequently, it is within reason to accumulate daily traffic flows from

each node into yearly traffic flow to predict traffic flow in the long-term. The raw TN data

are collected 24-hours a day and grouped in to calendar months over multiple years. For

more information see NSW traffic flow1. The data imputation starts with the estimation

of temporal missing data for each sensor and each month.

3.3.2.1 Temporal matrix factorisation

Let S = [sij ] ∈ RM×H be a traffic flow matrix, which represents the traffic flow of node

n ∈ V for all the months in a given year. i ∈ M̂ where M̂ = {1, 2, 3, ..., 12} is the month

index. j ∈ Ĥ where Ĥ = {1, 2, 3, ..., 24} is the hour index. sij is the recorded traffic flow at

hour j of month i for this particular sensor. It is assumed that the occurrence of missing

data is entirely random and can happen at any combination of i and j. The missing data

is denoted by s0
ij = 0. To reconstruct the original matrix S without missing data, the

formulation of the matrix factorisation is

min
U,V

∥S − UV ∥2
F + α

2 (∥U∥2
F + ∥V ∥2

F ), (3.1)

where the product of U ∈ RM×K and V ∈ RK×H is the approximation of S with a low rank

K. ∥ · ∥F is Frobenius norm. α is the l2 regularisation parameter. The estimated values of

missing data ŝ0
ij can be obtained by using the Alternating-Least-Squares algorithm (ALS)

to solve (3.1). In other words, after solving (3.1) with ALS, the matrix UV would contain

the values of ŝ0
ij that corresponds to s0

ij .

1https://www.rms.nsw.gov.au/about/corporate-publications/statistics/traffic-
volumes/aadt-map/#/?z=6
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3.3.2.2 Spatial matrix factorisation

To thoroughly encapsulate the spatial features of TN, the approximated Ŝ of sensor n is

the accumulated sum for each hour in 24-hour format, i.e., Ŝn = [ŝn
1 , ŝn

2 , ..., ŝn
24](n ∈ V).

Thus, for all sensors within the TN, the traffic flow matrix Ŝ = [ŝn
j ] ∈ RN×H is for all

months of a specific year.

Spatial dependency modelling: There can be several different spatial relationships

between two sensors. Hence, different graphs are needed to describe these relationships.

Definition 1 (Traffic Graph): A traffic graph is modelled by a weighted, undirected

graph, denoted as G = (V; E). V is a set of nodes while E is a corresponding set of edges.

Each edge represents a relationship between two nodes. The spacial inter-dependencies are

expresses as an adjacency matrix A ∈ RN×N .

There are three different kinds of relationships modelled in this chapter:

Geographical neighbours Spatial proximity is used to construct the first graph G1. The

corresponding adjacency matrix A1 = [a1
ij ] ∈ RN×N is defined by

a1
ij =


e−

Dis2
ij

σ2 , if e−
Dis2

ij

σ2 ≥ ϵ,

0, otherwise.

(3.2)

where Disij denotes the distance between nodes i and j. The thresholds for the connec-

tivity of the graph are denoted by σ and ϵ, and are set to 20 and 0.5, respectively.

Region similarity Region similarity is used to define the second graph G2. In this

context, a Region is defined as an area on the map that have the same postcode. Traffic

nodes located in similar regions are more likely to have similar traffic flow patterns. For

example, similar sized shopping malls located within different commercial zones will attract

comparable traffic flows. Therefore, the connection between two nodes is given by their

similarity. The corresponding adjacency matrix A2 = [a2
ij ] ∈ RN×N is

a2
ij = SIM(Regioni, Regionj), (3.3)
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where the similarity between two regions ( a number between 0 and 1) is measured by the

function SIM(·). The function SIM(·) is defined by the cosine similarity as

cosine(Regioni, Regionj) =
< Regioni, Regionj >

∥Regioni∥ × ∥Regionj∥
, (3.4)

where < a, b > denotes the inner product of a and b.

Transportation network Another layer of relationship among the nodes stems from the

real-world TN connections. In other words, a connection exists between geographically

reachable regions. Hence, the corresponding adjacent matrix is

a3
ij =


1, if nodes i and j are connected in TN,

0, otherwise.

(3.5)

Note that all graph Laplacian Lg = Dg −Ag where g = {1, 2, 3} and Dg is a degree matrix,

i.e., dg
ii =

∑N
j=1 ag

ij .

Thus, the spatial matrix factorisation is formulated as

min
P,Q

∥Ŝ − PQ∥2
F + β

2 (∥P∥2
F + ∥Q∥2

F )

+
3∑

g=1
γgtr(P ⊤LgP ), (3.6)

where, similar to the temporal factorisation case, P ∈ RN×K and Q ∈ RK×H are used to

approximate Ŝ by P ×Q. γg is the graph regularization parameter. β is the l2 regularisation

parameter. tr(·) is the trace of a matrix. Likewise, this problem can be solved by the ALS

algorithm. The resulting matrices P and Q from ALS are used to compute the missing

value by computing PQ and finding the entries corresponding to the missing values. The

absent data is imputed by taking the temporal and spatial relationships into account over

the TN from different times.

3.3.3 Graph Convolutional Network for Traffic Flow Prediction

Multiple graph relations are utilised to predict EV charging demands by developing a new

GCN. Similar to deep load forecasting [242], traffic flow at (t+1), · · ·, (t+Z ′), is foretasted
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based on past traffic data until (t), using a traffic flow prediction model F . The foretasted

traffic flow can then be used to estimate the projected EV charging demand. Using the

graph inputs, the forecast model with a lag of Z + 1 is

Ŷt+κ = F(Xt, Xt−1, · · ·, Xt−Z+1, Xt−Z)

= F(Yt−Z:t; G), (3.7)

where Ŷt+κ is the κ-step-ahead predicted traffic flow at time slot (t). By simultaneously

predicting future traffic flows for κ ∈ {1, · · · , Z ′}, Xt+1, ..., Xt+Z′−1, Xt+Z′ from (t + 1) to

(t+Z ′) are obtained. All the past information Yt−Z:t are incorporated in these predictions

for all nodes.

Problem 1 (Prediction): Traffic flow prediction is a typical time-series forecasting

problem. For instance, maximising the conditional probability of prediction results (e.g.

traffic flow) for the next Z ′ time stamps, given the previous Z + 1 time stamps’ traffic

flow, that is

Xt+1, ..., Xt+Z′−1, Xt+Z′ =

arg max
X

log P
(
Xt+1, ..., Xt+Z′−1, Xt+Z′ |Xt−Z ,

Xt−Z+1, · · ·, Xt

)
, (3.8)

where Xt is the observed features of N nodes at time stamp t. Each feature records all the

observed values for a single node.

In this prediction model, it is assumed that the training data set is generated from a

stationary process. This means that the probability density function (PDF) of traffic flow

does not vary over time. It should be noticed that, if the PDF of the traffic flow varies

from year to year, the input data sets need to be processed with re-scaling methods to

satisfy the stationary requirement.
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(a) (b)

Figure 3.3: (a) The encoder-decoder architecture that is developed for the multi-step
demand prediction. (b) the illustration of the multi-graph fusion GCN layer.

3.3.3.1 Network architecture

The architecture of the proposed demand prediction network is given in Fig. 3.3(a). This

architecture involves a series of steps, from the multi-graph fusion-based GCN layer to

the Gated Recurrent Unit (GRU). An encoder-decoder network is deployed to extract the

spatial-temporal characteristics related to the yearly changes in traffic flow and economic

activity over the planning area.

GCN Layer. Given data in graph format for day t, the spectral graph convolutional

operator is defined as

X l+1
t = σ

(
D̂

1
2 ÂD̂

1
2 X l

tW
l
)
, (3.9)

where X l+1
t and X l

t are the matrices for the output and input data at layer l (l = 1, ..., L),

respectively. The row number of these matrices corresponds to the index of nodes whereas

the column number corresponds to the index of features. At time instance t, each element

in these matrices represents traffic flow or economic indicator of a specific month. With I

being the identity matrix, the adjacency matrix Â = A+I contains a self-loop connection.

D̂ is the normalised version of diagonal node degree matrix D. The normalisation aims to

re-scale the information from the neighbours of a node. σ(·) denotes an activation function.

W l is a weight matrix, the elements of which are trained. A new graph convolutional layer

is added to deal with distinct types of relations with corresponding weights. Different

from the traditional GCN, a graph convolutional operator is introduced with a trainable
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filter so as to fuse different sub-graphs. As presented in Fig. 3.3(b), these sub-graphs

are learned from a similarity model. Given a kernel Hl,p ∈ R1×P (P ≤ 3) at layer l, the

formulation of the graph convolutional layer is as below.

X̄p
t = Hl,p ∗ ϕk(ÂgX l

t),

X l+1
t = σ

([
X l

t

∣∣∣X̄1
t , ..., X̄P

t

]
W l
)
, (3.10)

where ϕ(·) is used to stack the products of Âg and X l
t ∈ RN×F , following a top-k selection

rule. The number of features is denoted with F .

GRU Layer The recurrent neural network (RNN) is a powerful tool for predicting sequen-

tial data. After the fusion process of the multi-graph GCN(·), the temporal dependency

is modelled by the standard GRU as follows

zt = σ
(
WzGCN(Xt) + uzht−1 + bz

)
, (3.11)

rt = σ
(
WrGCN(Xt) + urht−1 + br

)
, (3.12)

h
′
t = tanh

(
WhGCN(Xt) + uh(rt ⊙ ht−1) + bh′

)
, (3.13)

ht = (1 − zt) ⊙ ht−1 + (1 − zt) ⊙ h
′
, (3.14)

where ⊙ is the Hadamard product. σ(·) is a nonlinear activation function. zt and rt

are the gates for updating and resetting at time stamp t, respectively. h
′
t and ht are the

present and final memories.

Decoder Cell A GRU is constructed as the output layer to further extract the temporal

information. This GRU linearly maps the outcomes from the previous GRU unit to

the next decoder cell. The prediction of traffic flow for N nodes is derived by a linear

transformation, which is formulated as

X̂ = ReLU(wz + b)

where w is a weight vector. b is a bias. z is the prediction result obtained from the previous

GCN and GRU layers. The loss function is defined as

L(X̂) =
∥∥∥F(Yt−Z:t; G) − Yt+1

∥∥∥2
, (3.15)
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Table 3.2: Australian EV Charging Station Configuration

Commercial EV Charging Station List
Charging
Modes

Nominal Supply
Voltage (Volts)

Current
(Amps)

Fully
Charged
Time

Charging Rate Installation
Cost

Level 1 120 VAC, single
phase

10 ∼ 15
Amp

12 ∼ 18
hours

10∼20 km of range
per hour

$ 400 ∼ 800

Level 2 208 ∼ 240 VAC,
single phase

32 Amp 1 ∼ 3
hours

up to 40 km of range
per hour

$500 ∼ 2, 200

Level 3 600 VDC, three
phases

40 ∼ 500
Amp

15 ∼ 30
mins

up to 150 km of range
per hour

$50, 000+

where Yt+1 is the ground truth at (t + 1). Similarly, Ŷt+κ can be obtained for all κ.

Remark 1. In the prediction network [243], an LSTM layer is used to capture the temporal

information. After that, a GCN layer is adopted for obtaining the spatial information.

Whereas in this chapter, the multi-graph GCN is used at each time stamp for the extraction

of spatial information among various nodes. Then, the output from the GCN layer is

passed to a GRU-based encoder-decoder architecture. Additionally [243] used the weighted

summation to handle the multi-graph information fusion through the attention mechanism.

In contrast, this chapter proposed the use of a trainable 1D convolutional operator for fusing

the multi-graph information.

3.4 Game Theoretical Model of EV Charging Infrastructure

Deployment

The focus of this section is the deployment of commercial EVCSs for multiple companies.

These companies aim to provide the charging service in the same area.

3.4.1 Cournot Competition Model

The objective of the Cournot competition model is to give the optimal planning guideline

for individual company to achieve the maximal profit. The profit refers to the difference

between the revenue from serving EV charging demand and the cost. Different from
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the existing approaches that are based on integer programming [244], the deployment of

EVCSs is solved in a resource-allocation manner. That is, there are competitive relations

between service providers in the same market.

Here are a few of assumptions applied to the model.

i) The EV chargers provided by the same company are of the same type. Moreover,

each company has an exclusive right to use a certain charging mode. The available

charging modes are presented in Table 3.2. The lifespan of each charging post is no

less than 10 years.

ii) An entire charging operation is without interruption. In order to maximize the

battery lifespan, a charging operation results in the SoC increasing from 20% to

80%.

iii) For a specific zone, there is a linear mapping between the EV charging demand and

the traffic flow.

Assume that a city is partitioned into I zones. M is the number of companies that build

EVCSs. xm = [xm,1, ..., xm,i, ..., xm,I ]⊤ denotes the optimal planning strategy of a service

provider m at the ith zone. x−m is the service providers in the same zone except m. πi

is the basic price at zone i. The setting of this price is linked with the local consumption

level. Bm is the budget for service provider m. The projected EV charging demand of

the ith zone is Si while its corresponding cost function of the charging post deployment

is written as Ci(·). The cost consists of the quality of service as well as construction

expenses.

Construction Expense According to [228], the installation cost and the land-use cost

account for a large portion of the investment of an EVCS. These costs are proportional

to the average real-estate price and the business activities at zone i, and are modelled by

νixm,i. νi is the construction expense at the ith zone, including the cost of labour, space

and installation.
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Quality of Service High investment input always accompanies high-quality service. To

fulfill the EV charging demand, desirable service means shorter charging time and waiting

time. Often, the charging time is dependent on the power of the provided charging posts.

The length of waiting queue determines the waiting time. Specifically, the queue length

is highly related to the charging demand of zone i. The measure of the service quality is

modelled as the summation of − 1
µm

x2
m,i [245] and θiSixm,i. θi is the parameter associated

with the waiting time, given charging demand Si. The calculation of the final cost is as

below

Ci(xm,i) = − 1
µm

x2
m,i + (νi + θiSi)xm,i. (3.16)

Problem 2 (Game Model) The service-provider-based planning problem is formulated

by the Cournot competition model.

max
xm

fm(xm, x−m) (3.17)

=
I∑

i=1

{
πi

(
1 −

xm,i +
∑M

j=1,j ̸=m xj,i

Si

)
xm,i − Cm,i(xm,i)

}
,

s.t. Xm =
{

xm|
I∑

i=1
xm,i ≤ Bm, (3.18)

Emin
i ≤

M∑
m=1

xm,i ≤ Emax
i , (3.19)

0 ≤ xm,i

}
. (3.20)

Eq.(3.17) is the payoff function associated with individual service provider m. The ob-

jective of this payoff function is to maximise the demand coverage while achieving the

maximal profit at the minimal cost. The competitive relations between service providers

are described by the Cournot competition model. In this model, if all the service providers

develop high-value investment plans in the same zone, the benefit of individual demand

coverage falls. In addition, this Cournot model allows multiple players. This may result in

multiple Nash equilibria due to the joint constraint. Eq.(3.18) gives the allocated-budget

constraint of service provider m at all the zones. Bm is the total budget of service provider

m. Eq.(3.19) discusses the availability of EV charging posts at a specific zone. Emin
i is the
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minimum EV charging posts required by the government. The upper limit of the avail-

ability, Emax
i , is determined by the capacity of the local DN. To avoid the non-existence

of Nash equilibrium caused by integer variables, the deployment strategy is modelled with

a continuous variable. A large number of EVs charging simultaneously might degrade the

frequency stability of the power system, and cause a voltage imbalance in the power grid.

Even though the uptake of EVs in Sydney is still at a low level, it is necessary to take

actions in advance to cope with the massive adoption of EVs in the future. Therefore, a

capacity constraint is introduced to guarantee a reliable EVCS deployment at zone i. The

constraint in Eq.(3.20) is for ensuring a non-negative EVCS deployment strategy.

Cournot Competition Game To maximize the benefit of each service provider, indi-

viduals will choose their own optimal planning strategy of EVCS. Thus, the optimisation

problem of individual service provider in a Cournot competition game model is formulated

as Γ =
{

M, {Xm}m∈M, {fm(xm, x−m)}m∈M
}

in which

• Players: M is a set of service providers;

• Strategy set: Xm is nonempty, compact and convex, for each m ∈ M;

• Payoff function: for each m ∈ M, fm(xm, x−m) is shown in (3.17).

Definition 2 (Optimal Planning Strategy): Let Γ =
{

M, {xm}m∈M, {fm(xm, x−m)}m∈M
}

be the Cournot competition model for EVCS planning. x∗ = (xm, x−m) is a Nash equilib-

rium of Γ, if and only if:

fm(x∗
m, x∗

−m) ≤ fm(xm, x∗
−m), ∀m ∈ M. (3.21)

The final allocation of budgets for each company is called the optimal planning strategy.

3.4.2 Cournot Competition Equilibrium

In game theory, a Nash equilibrium refers to the case where no player can further their

objective by changing their strategy. In this chapter, the Nash equilibrium is the same as

61



CHAPTER 3. DATA-DRIVEN PLANNING OF ELECTRIC VEHICLE CHARGING
INFRASTRUCTURE: A CASE STUDY OF SYDNEY, AUSTRALIA

the Cournot competition equilibrium. The existence of Cournot competition equilibrium

needs to be verified before a parallel computation algorithm is developed to find the

equilibrium.

Theorem 1 If 4( πi
Si

− 1
µm

) ≥ 1
I−1

∑I
j=2

πj

Sj
, ∀i ∈ {1, 2, · · · , I}, ∀m ∈ {1, 2, · · · , M}, then

there is at least one equilibrium for the Cournot competition model (3.17).

3.4.3 Parallel Computation for Cournot Equilibrium

To deal with the real-world scenario where a large number of zones exist, an efficient

competition model is required to solve the Cournot competition model. This section

introduces a parallel best response dynamics algorithm to obtain the Cournot competition

equilibrium by using a Nikaido–Isoda function. Firstly, the ρ-regularized Nikaido–Isoda

function Φ : (X × X ) → R is defined as

Φ(x, y) =
M∑

j=1

(
fm(xm, x−m) − fm(ym, x−m)

−ρ

2∥xm − ym∥2
)

(3.22)

where X = ΠM
m=1Xm is the joint constraint. ym = [ym,1, ..., ym,i , ..., ym,I ]⊤ ∈ X . The

ρ-regularized Nikaido–Isoda function is uniformly concave with respect to ym for ρ ≥ 0 as

a fixed parameter.

Given miny∈X Φ(x∗, y) = 0, x ∈ X is a Cournot competition equilibrium. Then, the

best response dynamics is a convex combination of the current strategy x(n) and the best

response strategy y :


y := argminy∈X Φ(x∗, y),

x(n + 1) = τx(n) + (1 − τ)y,

(3.23)

where τ ∈ [0, 1) is used to reconstruct a new best response strategy x at the n + 1th

iteration. The best response dynamics (3.23) can be viewed as the fixed-point mapping

F(x) = y − x which resulting in a normalized Nash equilibrium.
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The results from the classic best response dynamics algorithms linearly converge to a

normalized Nash equilibrium. In Algorithm 1, a momentum method is employed to

speed up the convergence.

Algorithm 1 Accelerated Best Response Dynamics for Cournot Competition Equilibrium
1: for m ∈ {1, 2, · · · , M} and i ∈ {1, 2, · · · , I} do

2: Initialise an EVCS budget allocation xm,i;

3: Randomly initialize ym,i;

4: end for

5: n = 1;

6: while ∥x − y∥ ≤ ϵ do

7: Best response of company m:

Parallel computation ym = argminym∈X Φ(x∗
m, ym);

8: New EVCS budget allocation is determined by

x(n + 1) = x(n) + τ
(
y − x(n)

)
− ζ

(
x(n) − x(n − 1)

)
; (3.24)

9: n + +;

10: end while

11: Output: Optimal budget allocations x for all companies;

Theorem 2 If

τ =
(

2√
λmax(∂F(x∗)) +

√
λmin(∂F(x∗))

)2

, (3.25)

ζ =
(√

λmax(∂F(x∗)) −
√

λmin(∂F(x∗))√
λmax(∂F(x∗)) +

√
λmin(∂F(x∗))

)2

, (3.26)

where λmax(·) and λmin(·) denote the maximal and minimal eigenvalues of the matrix

regarding the subgradient

∂F(x∗) = ∇y⊤(x∗) − E (3.27)

at the Cournot competition equilibrium x∗. E is the identical matrix with a proper di-

mension, Then, Algorithm 1 can superlinearly converge to a Cournot competition equi-

librium.
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Note that step 7 of Algorithm 1 is a standard convex optimisation problem which can

be easily solved by the existing algorithms, i.e. quadratic programming.

3.4.4 Optimal Sizing of EVCSs

After the optimal budget allocations are obtained for each zone, the final optimal sizing

of EVCSs for each provider is modelled as an MILP.

According to charging powers, there are three types of EV charging posts. They are Level-

1, 2 and 3 in ascending charging power. ζm
i,k is a binary variable, indicating whether an

EVCS, that contains Level-k charging posts, is built at zone i. For instance, ζm
5,3 = 1

means there is an EVCS with Level-3 charging post at zone 5 built by company m. The

cost of building an EVCS varies according to the type of charging post. c1,i,k denotes the

expense of building an EVCS that contains Level-k charging posts at zone i. c2,i,k is the

expense of building individual Level-k charging posts in the EVCSs at zone i. nm
i,k is an

integer variable corresponding to the number of the Level-k charging post in the EVCS at

zone i for company m.

Problem 3 (Optimal Sizing) A new CFRLM is developed to maximise the profit of

each node. The optimal sizing of EVCSs takes various types of charging posts into account

as follows:

max
{ζm

i,k
,nm

i,k
}

{ ∑
m∈M

∑
i∈I

3∑
k=1

(
∆Tηi(rk − ce)pknm

i,k

−c1,i,kζm
i,k − c2,i,knm

i,k

)
−
∑
q∈Q

cpλq
ODSq

}
(3.28)

subject to

∑
{j|(i,j)∈Âq}

λq
ij −

∑
(j|(j,i)∈Âq)

λq
ji =


1, i = O

−1, i = D

0, i ̸= O, D

, ∀q ∈ Q, ∀i ∈ Îq, (3.29)

λq
ij ≥ 0, ∀q ∈ Q, ∀(i, j) ∈ Âq, (3.30)
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∑
q∈Q

∑
{j|(j,i)∈Aq}

Tqλq
ji ≤

∑
m∈M

3∑
k=1

Ψ(nm
i,k), ∀i ∈ I, (3.31)

nm
i,k ≤ ζm

i,kn̂m
i,k, ∀i ∈ I, k ∈ {1, 2, 3}, (3.32)

3∑
k=1

(c1,i,kζm
i,k + c2,i,knm

i,k) ≤ x̂m,i, (3.33)

Fs,t = fs +
∑

u∈U�s

(Fu,s − ξu,slu,s), (3.34)

0 = f0 +
∑

u∈U�0

(Fu,0 − ξu,0lu,0), (3.35)

ςs − ςt = 2Re(ξ∗
s,tFs,t) − |ξs,t|2ls,t, (3.36)

|Fs,t|2 ≤ ls,tςs, (3.37)

ls,t ≤ |Is,t|2, (3.38)

|V s|2 ≤ ςs ≤ |V s|2, (3.39)

fs = −fEV
s − fB

s , (3.40)

fEV
s = pEV

s + J tan ϑpEV
s , (3.41)

pEV
s =

∑
m∈M

∑
i∈Is

3∑
k=1

pknm
i,k, (3.42)

nm
i,k ∈ Z, ζm

i,k ∈ {0, 1}, ∀i ∈ I, k ∈ {1, 2, 3}. (3.43)

By assuming the average life span of an EV charging post is 10 years, the planning horizon

∆T in hours is calculated as

∆T = 10 × 365days/year × 24hours/day. (3.44)

The profit modeling recognises that the same service has a higher price in high-income

areas. Thereby, the adjusted profit is calculated as the product of base profit i.e. rk − ce

and the income coefficient ηi at the ith zone. cp is introduced to penalise the unsatisfied

EV charging demand.Sq is the total charging demand on path q. λq
OD is the fraction of

unsatisfied charging demand on path q. λq
ij is the fraction of charging demand on path q

from node i to j. I is the set of nodes of the traffic network. Îq is the set of nodes of the

expanded TN on path q. Âq is the set of arcs of the expanded TN on path q. Q is the

set of paths. Ψ(·) is the function of charging serviceability. The expression of Ψ(nm
i,k) is
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Ψ(nm
i,k) = αknm

i,k, where αk is a parameter based on the type of EV charging posts. n̂m
i,k

is the maximum number of Level-k EV charging posts at the ith zone. x̂m,i is the budget

for building the EVCS and EV charging posts at zone i for company m.

Fs,t denotes the power flow in line s, t from bus s to bus t. fs is the nodal power injection at

bus s. ξs,t is the impedance of line s, t. ξ∗
s,t is the conjugate of ξs,t. ls,t is the square of the

magnitude of the current in line s, t from bus s to bus t. ςs is the square of the magnitude

of the nodal voltage at bus s. Is,t is the upper limit of current for line s, t. V s/V s is the

lower/upper limit of nodal voltage at bus s. Bus 0 is the transmission substation that

connects to the transmission network.

The term ∆Tηi(rk −ce)pknm
i,k in Eq.3.28 includes the electricity cost ce and the revenue rk

from Level-k EV charging posts over ∆T . The charging power of the Level-k EV charging

post is denoted as pk. The revenue rk is set as 1.5ck. The operation cost ck is obtained

by Eq.(3.45).

c1,k/n̄ + c2,k + pkcet = pkckt, ∀k ∈ {1, 2, 3}, (3.45)

where n̄ is the average number of charging posts per EVCS. c1,k and c2,k are the base cost

of building one Level-k EVCS and EV charging post, respectively.

The objective function Eq.(3.28) is to maximise profit while maximising the captured

charging demand. The term c1,i,kζm
i,k + c2,i,knm

i,k in Eq.(3.28) is the total cost of building

EVCSs. This cost includes the expense of each EVCS and a variable expense determined

by the number of EV charging posts and the location. Term
∑

q∈Q cpλq
ODSq in Eq.(3.28)

is the penalty cost for unsatisfied charging demand. Eqs.(3.29) and (3.30) are traffic flow

constraints. Eq.(3.31) guarantees that the charging demand at each node is less than its

serviceability. Eq.(3.32) gives the upper limit of the number of EV charging posts, and

ensures that EV charging posts can only be built given a corresponding EVCS at the node.

The budget constraint is represented with Eq.(3.33), in which x̂m,i is derived from the

budget allocation step in the previous section.

Eqs.(3.34)-(3.37) are DN constraints with the SOCP relaxation. Futher details can be

found in [246] and [247]. Eqs.(3.38) and (3.39) are the capacity constraints of line currents
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Figure 3.4: The missing traffic flow imputation in 2018.

and nodal voltages. Moreover, Eqs.(3.41) and (3.42) calculate the EV charging loads at

nodes of DN, where ϑ is the phase angle between EV charging voltage and current. The

power factor is cos ϑ. Since the power factor of EV charging posts are very close to 1, then

cos ϑ = 1 and tan ϑ = 0.

3.5 Experiments and Results

This section uses the real-world data set of Sydney, Australia to validate the proposed

framework. The TN data were collected by the hourly traffic volume sensors. The dis-

tribution of sensors covers the CBD area and its neighbouring suburbs. The economic
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(a) 10-day prediction of one direction traffic flow (b) 1-day prediction of bi-direction traffic flow

Figure 3.5: Traffic flow prediction by the multi-raltion GCN-GRU architecture.

indicators were collected by the Australian Bureau of Statistics2. The experiments in this

section are implemented with Python 3.6 and Pytorch 1.2 on a Ubuntu computer with

64 GB RAM and a RTX 2080 Ti GPU. The optimization simulations are conducted with

Matlab R2018b and CPLEX through Yalmip toolbox.

3.5.1 Missing Traffic Flow Imputation

In this subsection, the effectiveness of the proposed data imputation approach is demon-

strated with a simulation. First, for a chosen node, 30% of the daily traffic flow data in a

12 month period are randomly set to 0. Then the temporal matrix factorisation method

introduced in Section 3.3.2.1 is applied to the set with missing data. Let K = 12 and

α = 0.1. The imputed daily average traffic flow on a monthly basis is shown in Fig.3.4.

The ground truth is plotted in blue while the recovered values are plotted in red. The

black stars represent the instances of the artificially induced missing values. The discrep-

ancy, the absolute value of the difference, between the original set and the set with missing

data is 5547.4. The discrepancy between the original set and the recovered set is 198.4.

3.5.2 EV Charging Demand Prediction

To demonstrate the effectiveness of the EV charging demand prediction method, 164 TN

nodes, located in the Sydney region, are used to construct the multiple relationship graphs

as defined in Section 3.3.2.2, namely the geographical neighbours (3.2), the similarity of re-

gions (3.3) and the transportation network (3.5). The parameters for the encoder-decoder

2https://www.abs.gov.au/AUSSTATS/abs@.nsf/mf/1345.0?opendocument
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Figure 3.6: The prediction result over the whole city of Sydney.

Table 3.3: Key parameters for the neural network

Parameter name Value
Layers of GCN 3
Layers of GRU 2
Learning rate 0.001

Batch size 128
Epoch 200

Dropout 0.2
Weight decay 0.0001

Time step 24
Dimension of input 34

architecture are determined by the grid search method. Table 3.3 lists parameter setting

for the GRU-GCN architecture. The following metrics are used to evaluate algorithm

performance

MAE = 1
N

N∑
n=1

|Yn − Ŷn|,

MAPE = 1
N

N∑
n=1

|Yn − Ŷn|
Yn

,

RMSE =

√√√√ N∑
n=1

(Yn − Ŷn)2

N

where Yn is the original value. Ŷn is the predicted value. N is the number of samples.

The input is one-week (7 × 24 hours) traffic flow data. The output is the predicted traffic

flow for the next day. The predicted result of a single node is shown in Fig.3.5. In
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Table 3.4: Comparison Results of Different Prediction Algorithms

Model MAE MAPE RMSE
ARIAM 256.8677 24.36% 421.3162
RF 234.8679 21.03% 390.3182
XGboost 165.4877 16.86% 230.3527
LSTM 203.9898 20.55% 331.9577
DeepAR 188.6075 18.62% 249.8043
T-GCN 183.0239 15.45% 217.2420
Ours 165.1412 14.88% 206.4713

Fig.3.5(a), a 10-day prediction result of the traffic node is presented, with the true values

in blue and the predicted ones in red. The aforementioned metrics for this experiment

are as follows: RMSE is 235.7, MAE is 119.3 and MAPE is 21.39%. An example of

bidirectional hourly traffic flow prediction is presented in Fig.3.5(b). In this case, the

total RMSE is 198.8, MAE for each direction is 149.2 and 104.2, MAPE for each direction

is 34.03% and 13.3%.

For the EVCS planning, it is desirable to cover the maximal EV charging demand. It can

be concluded from Fig. 3.4 that the traffic flow of the same day in various months oscillates

around a fixed value. Hence, the future maximum monthly traffic flow can be predicted

solely based on the present maximum monthly traffic flow. From this predicted maximum

traffic flow, the EV charging demand can be estimated with high confidence. The monthly

maximum traffic flow for the next five years is projected based on the economic features

in NSW and the traffic flow data from the last sever years. The traffic flow projection for

all nodes in 2025 is shown in Fig.3.6. It takes 6, 153s to train the proposed deep network

while the prediction time is 32s.

The following state-of-art algorithms are selected as references in the comparison:

• ARIAM [248] is one of the most established time series prediction methods.

• Random forests (RF) model [249] is an ensemble decision tree algorithm, and

has been widely adopted in the field of machine learning.
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Figure 3.7: The optimal strategy of budget allocation on each zone for EV charging
infrastructure over the city of Sydney.

• XGboost [250] is a decision tree algorithm based on the technique, gradient boost-

ing. It has the ability of fast training, low memory consumption and high efficiency.

• LSTM [251] is a RNN architecture featuring feedback connections.

• DeepAR [252] is a RNN-based approach. It is the most applicable in the situations

where the time series in the data set are highly correlated.

• T-GCN [253] has a hybrid GCN and GRU architecture, being able to extract the

spatial and temporal distributions of traffic flow.

The result of the comparison experiment in Table 3.4 illustrates that the proposed algo-

rithm achieved better prediction results than the other methods in the aforementioned

metrics.
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3.5.3 The Optimal Strategy of Budget Allocation

This experiment assumes that there are three private companies (m = 1, 2, 3) competing

in the task of EVCS construction. The corresponding budget for each company is 100, 200,

300 million AUD, respectively. Additionally, it is assumed that the serving capabilities

of a Level-1, a Level-2, a Level-3 charging posts are 3, 12 and 72 EVs per post per day,

respectively. Let the charging time parameter µm be 1000 for all three companies. Based

on the postcodes of TN nodes, Sydney is partitioned into I = 167 zones. Let the waiting

time parameter θi = 0.01Si. This means that the traffic flow will have a notable effect

on the waiting time. The construction expense parameter νi at zone i is calculated from

the base installation cost and commercial property sale price. The service benefit basic

price πi is extrapolated from the average property rent. Emin
i is set to 0. Emax

i is set by

the maximal capacity of surrounding DN. To obtain the different budget allocations for

individual company, Algorithm 1 was run for each company. Fig. 3.7 illustrates the

optimal budget for each service provider. As expected, all companies allocate majority of

their budget in urban nodes.

3.5.4 Optimal Sizing of EVCSs

This section investigates the effect of DN constraints on EVCS planning with a subset

of nodes. The DN is a simplified version for west side of Sydney. Fig. 3.8a shows the

distributions of these substations and the feeders connecting them. The TN is made of

41 transportation nodes. Fig. 3.8b also plots the connections between TN nodes. It is

assumed that the EVCSs at each TN node draw power from their nearest zone substation.

Two simulations are carried out in this experiment. The first takes the DN constraints

Eqs.(3.34)-(3.39) into account. In Figs.3.9(a)-3.11(a), with DN constraints, all providers

built Level-1 EV charging post the most. This is due to the fact that the available

capacities at several substations are not able to support Level-2 and 3 EV charging posts.

Therefore, only Level1 charging posts can be built in surrounding TN nodes, as a result

of Level1’s low power consumption. Company m = 1, under the lowest budget, builds the
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Figure 3.8: Topology of DN and TN used for the simulation
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Figure 3.9: Comparison result: the number of different EV charging posts built by com-
pany m = 1 at each TN node

0 5 10 15 20 25 30 35 40
0

100

200

N
o
. 
o
f 
L
e
v
e
l-
1

 E
V

 C
h
a
rg

e
r

0 5 10 15 20 25 30 35 40
0

100

200

N
o
. 
o
f 
L
e
v
e
l-
2

 E
V

 C
h
a
rg

e
r

0 5 10 15 20 25 30 35 40

Index of transportation zones

0

100

200

N
o
. 
o
f 
L
e
v
e
l-
3

 E
V

 C
h
a
rg

e
r

(a) With DN constraints

0 5 10 15 20 25 30 35 40
0

100

200

N
o
. 
o
f 
L
e
v
e
l-
1

 E
V

 C
h
a
rg

e
r

0 5 10 15 20 25 30 35 40
0

100

200

N
o
. 
o
f 
L
e
v
e
l-
2

 E
V

 C
h
a
rg

e
r

0 5 10 15 20 25 30 35 40

Index of transportation zones

0

100

200

N
o
. 
o
f 
L
e
v
e
l-
3

 E
V

 C
h
a
rg

e
r

(b) Without DN constraints

Figure 3.10: Comparison result: the number of different EV charging posts built by
company m = 2 at each TN node

least number of Level-3 EV charging posts amounting at 108. Conversely, company m = 3

has the largest amount of investment. Thereby, the most number of Level-3 charging posts

are installed by company m = 3.

In Figs. 3.9(b)-3.11(b), when DN constraints are ignored, both companies m = 1 and 2
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Figure 3.11: Comparison result: the number of different EV charging posts built by com-
pany m = 3 at each TN node
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Figure 3.12: Comparison result between with and without DN constraints. Power drawn
at substation is plotted with solid line. The capacity is drawn with dashed line at each
zone substation. (a) is simulation results for power consumption at each substation with
DN constraints. (b) is simulation results withou DN constrains.

choose to allocate most of their budgets for construction of Level-2 EV charging posts.

This is because, the service ability of Level-2 EV charging posts is around the half of Level-

3, with only 1/20th of the cost. Consequently, both companies m = 1 and 2 operating

under smaller budgets are incentivised to deploy Level-2 EV charging posts. Whereas,

company m = 3, with a more generous budget, puts a considerable amount of its resource

into building Level-3 EV charging posts. This is a result of the increased serviceability of

Level-3 charging posts, enabling company m = 3 to capture more charging demands and

generate increased profits in the process.

Figs. 3.12(a) and (b) show that, when the planning is carried out with DN constraints,

the loads at all the zone substations are within their capacity. This means the current

DN is able to support the obtained EVCS planning results. However without including
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DN constraints in the planning phase, the capacity of 5 zone substations is exceeded,

indicating that additional investments are needed to upgrade the DN to accommodate for

the planned deployment of EVCSs.

3.6 Conclusion

This chapter proposed a data-driven framework for addressing the EVCS planning prob-

lem in a competitive market environment through a predict-then-optimize diagram. The

missing traffic data are imputed through a spatial-temporary analysis of the TN,leveraging

the matrix factorisation technique. Moreover, the EV charging demand is projected by

an encoder-decoder architecture, in which the multi-relation GCN is utilised. This deep

learning technique lead to a better prediction result. To obtain the optimal budget alloca-

tions for individual companies, a Cournot competition model is introduced after the data

pre-processing steps. A parallel algorithm is developed to find the Cournot competition

equilibrium in a timely manner. Moreover, the optimal sizing problem of EVCS at each

zone is formulated as an MILP, in which local DN constraints are considered to make the

model more realistic. The effectiveness of the proposed framework is validated through a

series of simulation experiments.
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3.7 Appendix

3.7.1 Proof of Theorem 1

Proof: Convexity check of payoff functions is performed by minimising the negative payoff

function of each company as follows

Revm = −
I∑

i=1

{
πi(1 −

xm,i +
∑M

j=1,j ̸=i xj,i

Si
))xm,i

−Cm,i(xm,i)
}

, (3.46)

The Hessian matrix is

∇2Revm =



2( π1
S1

− 1
µm

) π2
S2

· · · π
SI

π2
S2

2( π2
S2

− 1
µm

) · · ·
...

...
... . . . ...

πI
SI

· · · · · · 2( πI
SI

− 1
µm

)


.

Considering the positiveness of the Hessian matrix ∇2Revm, following condition holds

4( πi

Si
− 1

µm
) ≥ 1

I − 1

I∑
j=2

πj

Sj
, ∀i ∈ {1, 2, · · · , I}, ∀m ∈ {1, 2, · · · , M}. (3.47)

Thus, all payoff functions are strongly convex, implying the existence of Cournot compe-

tition equilibrium. ■
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3.7.2 Proof of Theorem 2

Proof. In view of the new best response dynamics, the fixed-point mapping 3.23 is

accelerated by the momentum. Note that ζ
(
x(n) − x(n − 1)

)
involves in the difference

operators which is the approximation of the gradient ∂xF(·). Thus, the gradient is given

by ∇y⊤(x∗) = G−1H − G−1J(J⊤G−1J)−1J⊤G−1H where

G := −∇2
yyΦ(x, y(x))

= 2A† ⊗ EM + ρEIM ,

H := ∇2
xyΦ(x, y(x))

= ρB† ⊗ EM ,

J := ∇g(y(x)),

A† =



π1
S1

− 1
µm

0 · · · 0

0 π2
S2

− 1
µm

· · ·
...

...
... . . . ...

0 · · · · · · πI
SI

− 1
µm


,

B† =



0 π2
S2

· · · π
SI

π2
S2

0 · · ·
...

...
... . . . ...

πI
SI

· · · · · · 0


.

⊗ is Kronecker product. g(y(x)) ≤ 0 is the constraint set of Eqs. (3.18)-(3.20). The

optimal preconditions of the multi-step update (3.24) to accelerate the best response

dynamics are given in (3.25) and (3.26) according to the heavy ball method. ■
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Chapter 4

Planning of Electric Vehicle

Charging Stations and

Distribution System with High

Renewable Penetrations

4.1 Relationship to the Thesis

As noted in Chapter 1, current methods in probabilistic modelling of EV charging be-

haviours require MCSs and time consuming scenario reduction steps. In this chapter

a multi-objective EVCS planning model is developed while a novel scenario generation

approach is deployed to skip the scenario reduction step entirely.

This Chapter has been published.

© [2021] IET. Reprinted, with permission, from: J. Zhang, S. Wang, C. Zhang, F. Luo, Z.

Y. Dong, and Y. Li, “Planning of electric vehicle charging stations and distribution system

with highly renewable penetrations,” IET Electrical Systems in Transportation,2021.
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4.2. ABSTRACT

This chapter has been edited to incorporate thesis reviewers’ comments.

4.2 Abstract

With the increasing prevalence of Electric Vehicle (EV), the EV Charging Station (EVCS)

and power distribution have been becoming a coupled physical system. In this chapter,

a multi-objective planning model is developed for the sizing and sitting of EVCSs and

the expansion of power distribution network with high wind power penetrations. The

objectives of the planning model are to minimize the total cost of investment and energy

losses of the distribution system while maximizing the total captured traffic flow. The

uncertainties associated with wind power sources are considered. Additionally, the uncer-

tainties in EV daily charging loads are also important concerns in the optimisation of the

planning model. To model the EV load uncertainties, a recent Scenario Generation (SG)

method is adopted. Further, a multi-objective optimization tool, Multi-Objective Natural

Aggregation Algorithm (MONAA), is introduced to obtain the final solutions of the plan-

ning model. The simulations based on coupled 54-node distribution network and 25-node

traffic network systems are conducted to verify the efficiency of the proposed model and

the effectiveness of SG-based MONAA.

Nomenclature

ND, NT The node set of distribution network and transportation network;

NEV Total number of EVs;

T Set of the time steps;

ΩDL Set of the feeders;

ΩSR, ΩSE Set of existed substations with and without reinforcement;

ΩT L, ΩSC Set of traffic network links and candidate location of substations;

Ωa, ΩI Set of different feeder types and candidate location of EVCSs;

Ωb, Ωc Set of substation capacity with reinforcement/construction;
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ΩI
q Set of candidate EVCSs that can capture the traffic flow on path q;

Qrs Set of paths connecting O-D pair rs;

Parameters

m Year index;

Cap EV battery capacity;

ω The power consumption of EV battery per 100 km;

SSOC0, SSOC1 The initial state of charge (SOC) and end state of charge of the EV battery

capacity;

η EV charging efficiency;

f1,m The total annual cost of the investment and energy losses of year m;

P CP
i,t Total charging demand of ith charging station at time t;

P D
i,t, QD

i,t Active power and reactive power of node i at time t;

P T otal
i,t,m Total load of ith node at time t of year m;

cL
i,j , li,j Construction cost and length of feeder ij;

cSC
i , cSR

i Construction and reinforcement cost of new substation i;

zmin, zmax Size limits of EVCSs;

SSR
t ; So

t Apparent power of the substation with and without reinforcement at node i;

sSC
t , slj Apparent power of candidate substation at node i and feeder ij;

gij,bij
Conductance and susceptance of feeder ij;

Gij , Bij Real and imaginary parts of the admittance matrix;

Umin
t , Umax

t Upper and lower voltage limits of node i;

cE , dannual Energy cost and the number of the days for one year;

cCH Capital cost of each charging pile;

cF
i , cother

i Initial investment cost of ith EVCS and other costs according to the size of

EVCS;

nDS , nSub Total nodes numbers of distribution system and substation;

Nwind, P wind
w,t Number of wind turbine units and wind power output of wth wind turbine

units at time t;

µs, σs Expectation and standard deviation value for EV start charging time;

µd, σd Expectation and standard deviation value for EV travel distance.
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4.3 Introduction

The optimal planning of Electric Vehicles (EVs) charging infrastructure will play an irre-

placeable role for better catering for the increasing number of EVs. An effective planning

strategy will help the network operator to reduce cost, allow the policy makers to make

informed decisions, and provide EV users with more places to charge their vehicles. How-

ever, the planned EV Charging Stations (EVCSs) will inevitably add stress to the existing

distribution network. Some papers can be found to consider the expansion planning of

the distribution network and EVCSs simultaneously.

Table 4.2 presents the comparison of a few of these works with this chapter. [32] proposed

a planning strategy for distribution network, EVCSs and wind power, and was expanded

in [33] to also consider solar and battery energy storage. In [26,32,33], the EV charging

demand was calculated based on historical data of fossil-fuelled cars, under the assumption

that EVs and fossil-fuelled cars have similar driving patterns. However, in cases where the

driving patterns are different, probabilistic models might be more suitable. Furthermore,

[32–37] utilized commercial solvers to obtain the final solutions. But it has been shown in

various applications that genetic algorithms can achieve comparable results in similar or

less time [254–256] Some examples of using genetic algorithm in the context of distribution

network and EVCSs are [26–31]. The distribution network and EVCSs planning were often

considered in absence of a corresponding transportation network [27,31–33,257]. But the

EV charging demand is inevitably affected by flow of traffic, which is in turn correlated

to the layout of the transportation network. A joint planning strategy of EVCSs together

with distribution network expansion was introduced in [28], by considering the impact of

traffic flows. Though, [28] did not consider the stochastic nature of EV driving patterns.

In work [29], the planning of EVCSs and distribution network was proposed by considering

the uncertainty of EV charging behaviours as well as captured traffic flow, yet the load

increments over multiple years were not taken into account. Moreover, [28,29,31] did not

include the penetration of renewable generation, which is a non-negligible consideration

in modern distribution networks.
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Table 4.2: Comparison of joint planning approaches of EVCSs and distribution network
expansion

Approach Renewable
energy source

EV demand
modelling

Solver/Optimization
algorithm

Case study

[32] Wind Historical data CPLEX 24-node distribution
system

[33] Wind & Solar Historical data &
K-means++

clustering

CPLEX 54-node distribution
system

[26] Solar Historical data NSGA-II Hybrid AC/DC 38-node
system

[34] None Robust optimisation CPLEX 18-node and 54-node
distribution system

[35] Wind & Solar Probalistic model &
MSCS

CPLEX 18-node distribution
system

[36] Solar Probalistic model &
Queuing theory

Gurobi Coupled 4 × 4-node
distribution and 39-node

transportation system
[37] None Deterministic model GAMS Coupled 33-node

distribution and 14-node
transportation system

[27] Wind Probabilistic model
& MCS

NSGA-II 9-node distribution and
33-node distribution

system
[28] None Deterministic model MOEA/D 1) Coupled 23-node

distribution and 20-node
transportation system
2) Coupled 54-node

distribution and 25-node
transportation system

[29] None Probabilistic model
& MCS

MOEA/D Coupled 54-node
distribution and 25-node

transportation system
[30] Wind Probabilistic model

& MCS
ICA 33-node distribution with

a logistics distribution
system connected

[31] None Probabilistic model
& 2 stage estimation

NSGA-II 33-bus distribution
system

Proposed
approach

Wind Probabilistic model
& SG method

MONAA Coupled 54-node
distribution and 25-node

transportation system
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Additionally, for the randomness of EV driving behaviours and wind generation, [30] pre-

sented a scenario-based stochastic program to model the uncertain nature of EV charging

demand. In [27, 29, 30, 35] the EV charging model is based on Monte-Carlo Simulations

(MCS) of multi-dimensional joint probability distribution, and the representative scenar-

ios with high precision results can only be obtained when the size of initial generated

scenarios is large enough. Yet, the large initial scenario set will considerably raise the

computational cost of the scenario reduction procedure, thus decreasing the efficiency of

stochastic optimization planning. To address this issue, a recent work [258] developed

a high efficiency Scenario Generation (SG) method to generate a small number of rep-

resentative scenarios to accurately model real-time uncertain variations from PV power

generation and loads. However, it has not been used for modelling the EV charging un-

certainties. In contrast to the isolated distribution systems in [26,27,31–35], this chapter

considers a coupled system, which consists of a traffic network and a power distribution

network. Unlike [28,29,31,34] , the power distribution network in this chapter takes high

wind power penetration into account. A multi-objective joint planning model of EVCSs

and distribution network expansion is developed based on this coupled system, as follows.

Firstly, the wind power generation is modelled. The uncertainty of wind generation based

on Markov Chain Monte-Carlo (MCMC) method is proposed in this study. Secondly,

different from the literatures listed in Table 4.2, the SG method is adopted for modelling

the uncertain charging duration and start charging time of the EV slow charging, thereby

the stochastic EV charging demand is predicted. Thirdly, the joint planning model is

formulated to determine the location and sizing of EVCSs and the expansion of distribu-

tion network. Lastly, the optimal solutions to the joint planning model are obtained by

a multi-objective optimization tool which is called Multi-Objective Natural Aggregation

Algorithm (MONAA).

The main contribution of this chapter is the investigation of a new approach to solve the

joint planning problem of EVCSs and distribution network expansion while considering the

effect of traffic and wind generation. In this approach, the SG-based MONAA is proposed

to obtain the final solutions to the joint planning problem. To efficiently generate a small

number of representative scenarios of EV charging profiles, the SG method is used. Given
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Figure 4.1: Representation of transitions between different states of wind speed

these scenarios and other inputs, MONAA is adopted for optimization. The efficiency and

effectiveness of SG-based MONAA are validated by comparison experiments.

The rest of this chapter is organized as follows: Section 4.4 presents the stochastic mod-

elling of wind power; the scenario-based EV charging demand prediction model is intro-

duced in Section 4.5; Section 4.6 presents the planning model of coupled distribution and

EVCSs; Section 4.7 presents the MONAA algorithm used for solving the planning model;

the case study and comparison experiments are given in Section 4.8; Section 4.9 gives the

conclusions and Section 4.10 provides some directions for future works.

4.4 Stochastic Wind Power Model

In this study, the EV charging energy is provided by both wind and thermal energy sources.

The wind power can be treated as a stochastic model, and an MCMC approach is used in

this study to obtain the temporal series of wind power output. The application of MCMC

method involves two steps, discretising the random process (e.g., wind speed) into different
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4.4. STOCHASTIC WIND POWER MODEL

states and calculating the transition probabilities between these states [259].

Fig. 4.1 illustrates the states of wind speed and their transitions between different states,

where αj−1,j represents the transition probability from state j−1 to j. [260] noted that the

representation in wind speed domain is complicated due to the large number of possible

states. To alleviate this problem, [260] proposed to transform from wind speed domain

to wind power domain and managed to achieve a considerably lower uncertainty in the

matrix entries without losing any information in the transformation process. Therefore,

the historical wind speed data are used to estimate the wind power pw(v) in our work.

Wind speed can be transformed to pw(v) according to the wind turbine curve which results

in a general accuracy of the uncertainty model [260]. Wind power pw(v) is estimated with

Eq. (4.1): 
0 v < vin, v > vout

v−vin
vr−vin

Prated vin ≤ v ≤ vr

Prated vr ≤ v ≤ vout

(4.1)

where Prated represents the rated power of the wind turbine; v, vin and vout are the wind

speed, the cut-in wind speed, cut-out wind speed and rated wind speed, respectively.

Therefore, a Markov chain of wind power can be expressed by an associated transition

probability matrix A, which is defined by Eq.(4.2)-(4.4).

A =


a11 · · · a1m

... . . . ...

am1
... amm

 (4.2)

where aij denotes the transition probability between states i and j. The entries of a certain

row sum up to one because the sum represents the transition probability from a certain

state to any states. aij is calcualted by Eq. (4.3) and satisfies Eq. (4.4).

aij = nij∑m
j=1 nij

i, j = 1, 2, . . . m (4.3)
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
aij ≥ 0∑m

j=1 aij = 1

i, j = 1, 2, . . . m

(4.4)

where nij denotes the number of the transitions between state i and j.

For a given A, we can build a cumulative probability transition matrix Acum as

Acum,i,i =
m∑

j=1
Aij . (4.5)

A standard normal random variable u can be used for sampling. u is compared to the

elements in row i of Acum. If u sits between the elements from j − 1 to j, i.e.:

Acum,i(j−1) ≤ u ≤ Acum,ij (4.6)

state j is selected as the next state. The wind power of state j is computed as

X = Xi,min + u(Xj,max − Xi,min) (4.7)

where X is the estimated power of state j, Xj,max and Xj,min are the bounding values of

wind power corresponding to state j, calculated according to Eq.(4.1). The same sampling

procedure is repeated until enough samples have been generated.

4.5 EV Charging Demand Prediction

In this chapter, the slow charging station serves as the main charging facility due to its

low cost and small size. The location and size of the charging stations are determined

by the charging demand. In this chapter the EV charging demand is predicted in a

probabilistic manner, in which two variables are considered, namely EVs’ charging duration

and start charging time. The SG method [258] is employed to discretise each variable into

scenarios, due to its efficiency and simplicity. Joint states are constructed by pairing up

the discretised charging duration and start charging time. Given these joint states, the

charging demand at each time interval can be derived.
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4.5.1 Probabilistic modelling

For the charging duration, it is associated with vehicle daily travel distance which is subject

to the lognormal distribution [261]:

fδ(δ) = 1
xσδ

√
2π

exp(−(ln δ − uδ)2

2σ2
δ

) (4.8)

where δ denotes the distance that the EV travelled. Sequentially, the charging duration

can be calculated based on Eq. (4.9).

tcs = δω

pslowη
(4.9)

The EV start charging time (tss) follows the subnormal distribution [262]:

fss(tss) =


1

σs

√
2π

exp(− (tss−us)2

sσ2
s

), us − 12 < tss < 24

1
σs

√
2π

exp(− (tss+24−us)2

sσ2
s

), 0 ≤ tss ≤ us − 12.

(4.10)

4.5.2 SG method

Given the probabilistic modelling of charging duration and start charging time, the SG

method is deployed in this chapter to generate a small set of representative scenarios for

these two variables.

For EV start charging time tss, the SG method discretises tss into V states. Each state v

has a lower bound tss,v and an upper bound tss,v. The occurrence probability correspond-

ing to each state v is

ρss,w =
∫ tss,v

tss,v

fss(tss)dtss, v = 1, 2, . . . , V. (4.11)

Thus, the EV charging start time is modelled within these states: for a specific state v, the

probability of start charging time between tss,v and tss,v is ρss,v over the whole planning

horizon.

Similarly, for the charging duration, the SG method begins with discretising the uncertain

daily travel distance d into W states. For each state w, the lower and uppder bound are
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δw and δw, respectively. The occurrence probability ρδ,w for the interval between δw and

δw can be calculate by the integral of Eq. (4.8). Then based on Eq. (4.9), the mean value

of each charging duration state can be calculated as:

tcs,w =
ω
∫ δw

δw
δfδ(δ)dδ

pslowη
∫ δw

δw
δfδ(δ)dδ

, w = 1, 2, . . . , W. (4.12)

For a specific charging duration state w, the mean value δ represents the uncertain daily

travel distance between δw and δw; state w would occur with the probability of ρδ,w over

the whole planning horizon.

4.5.3 Construction of joint state

These states of start charging time and charging duration can be combined to construct

R(= V × W ) joint uncertainty states {(tss,v), tcs,w, ρr}. Each joint state consists of a pair

of tss,v and tcs,w as well as the occurrence probability ρr. The joint uncertainty state

is constructed by following steps. Firstly, the charging start time and charging duration

make up two separate state sets Ψss and Ψcs:

Ψss = tss,v, Ψcs = tcs,W (4.13)

Secondly, the start charging time and charging duration states are paired by computing

the Cartesian product of Ψss and Ψcs as Eq. (4.14). The probability ρr of the occurrence

of each joint uncertain state is then derived by Eq.(4.15).

{(tss,v, tcs,w)} = Ψss × Ψcs (4.14)

ρr = ρss,v × ρδ,w (4.15)

These joint uncertainty states represent the probability distribution characteristics of the

uncertain EV charging start time and charging duration. According to probabilistic func-

tion given above, the total charging load at each time interval can be calculated by:

P cp
t = λi

∑N
k=1

∑24
t=1(ρrNEVPslow)

N
(4.16)
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where ρr is sampled based on the MCS; N denotes the total number of samples. λi denotes

the ratio of the charging demand on ith node, of which the EV total charging demand

can be computed based on the objective function in [28]. The number of charging posts

which should be deployed at ith station (µi, i ∈ ΩI) could be determined accordingly:

Zi = λi

γ
(4.17)

where γ represents the average service capability of a charging post.

4.6 Stochastic Joint Planning Model

The planning model for EVCS and distribution network expansion proposed can be ex-

pressed with two objectives, namely minimization of annual investment cost and energy

losses as well as maximization of captured EV traffic flow.

4.6.1 The first objective: Annual investment Cost and energy losses

Minimization

minf1 = f1,1
(1 + ϵ) + f1,2

(1 + ϵ)2 + . . .
f1,m

(1 + ϵ)m
(4.18)

f1,n =
∑

(i,j)∈ΩDL

∑
a∈Ωa

cL
ijxijlij +

 ∑
(i,j)∈ΩDL

∑
a∈Ωb

cSR
i ySR

i +
∑

(i,j)∈ΩDL

∑
a∈Ωc

cSC
i ySC

i


+
∑

i∈ΩI

{µi(cCHzi + cother
i zi + cF

i )}

+ dEdannual ∑
(ij)∈ΩDL

∑
a∈Ωa

∑
t∈ΩT

[gijxij(U2
i,t + U2

j,t − 2Ui,tUj,t cos(θij,t)] (4.19)

P Total
i,t,m =

P D
i,t +

∑
i∈ΩI

P CP
i,t

 (1 + τ)m (4.20)

subject to:

P S
i,t,m = P Total

i,t,m −
Nwind∑
w=1

Pw,t + Ui,t ×
∑

j∈ND

Uj,t(Gij cos θi,j,t − Bij sin θi,j,t)
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∀i ∈ ND, ∀t ∈ T
′ (4.21)

QS
i,t,m = QD

i,t,m + Ui,t

∑
Uj,t(Gij(xij) sin θi,j,t − Bij(xij cos θi,j,t)

∀i ∈ ND, ∀t ∈ T
′ (4.22)

zmin ≤ zi ≤ zmax ∀i ∈ ΩI (4.23)∑
ij∈ΩDL

xij = nDS − nSub (4.24)

Umin
i ≤ Ui,t ≤ Umax

i (4.25)

P 2
i,j,t + Q2

i,j,t ≤ (xijSij)2∀ij ∈ DDL, ∀t ∈ T
′ (4.26)

Pi,j,t = xij

[
U2

i,tgij − Ui,tUj,t(gij cos θij,t+bij sin θij,t
)
]

(4.27)

Qi,j,t = xij

[
−U2

i,tbij − Ui,tUj,t(gij sin θij,t−bij cos θij,t
)
]

(4.28)

0 ≤ Pw,t ≤ Prated (4.29)

Objective (4.18) calculates the present value of the total cost of investment and energy

losses over the m years planning horizon. Considering the effect of inflation, the present

value of cost in the k-th year is depreciated by (1 + ϵ)k, where ϵ denotes the interest

rate. In year n the annual investment cost and energy losses are given by Eq. (4.19),

the investment cost of feeder, substation construction cost, and EVCS investment cost are

represented by the first three terms, respectively. The cost of annual energy loss is the

4th term.. In Eq. (4.19), the investment cost of feeder, substation construction cost, and

EVCS investment cost are represented by the first three terms, respectively. The cost of

annual energy loss is the 4th term. The total active power is given in Eq. (4.20). The

EV Charging power demand is computed as described in Section 4.5. All the decision

variables can be found in Table 4.3.

The final planning solutions should satisfy DN constrains which are formulated as Eq.(4.21)-

(4.29). Eq.(4.21) and (4.22) represent the network power flow constraints. The wind power

generation of wth wind turbine of time t, Pw,t can be found according to the stochastic

wind power model in Section 4.5. Eq.(4.23) corresponds to the size constraint of EVCSs.

Eq.(4.24) is the radiation topology constraint of power distribution network. Eq.(4.25) is

upper and lower voltage constraints for buses. The constraints of transmission power of
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4.6.2 The second objective: Captured EV Traffic Flow Maximization

Table 4.3: Variables overview

Variable Definition
xij , ui, ySC

i , ySR
i Binary decision variables; value of 1 means construction of feeder, EVCS,

new substation, and reinforcement of existing substation.
Pi,j,t, Qi,j,t Active power and reactive power on feeder ij at t;

P S
i,t,m, QS

i,t,m Active power and reactive power supplied by ith substation at time t of
year m;

Ui,t, Uj,t Voltage on bus i and bus j at time t

θij,t Phase distribution on feeder ij at time t

feeders are represented in Eqs.(4.26)-(4.28). Eq.(4.29) limits the wind power generation

of the wth wind turbine unit not exceeding the rated capacity.

4.6.2 The second objective: Captured EV Traffic Flow Maximization

A desirable EV charging system should meet as many EV charging demands as possible.

For this purpose, the second goal is to maximize the captured traffic flow by EVCSs, which

is expressed as the following equation:

maxf2 =
∑

t∈Nt

∑
s∈Nt

∑
q∈Qrs

T rsq, annualτ rs
q (4.30)

subject to:

∑
k∈ΩK

q

uk ≥ τ rs
q (4.31)

T rs
q,annual = dannual∑

t∈T

f rs
q,t (4.32)

Eq.(4.31) ensures there is at least one EVCS on path q to capture its traffic flow, where

path q is the path connection an O-D pair rs. τ rs
q is the binary decision variable indicating

if the traffic flow can be captured. T rs
q,annual in Eq. (4.32) is the annual traffic flow of each

path and f rs
q,t denotes the traffic on path q at time t, the FISK’s traffic model is used to

find its numerical value [263].
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4.7 Solving Approach

In this study, a multi-objective optimization algorithm, MONAA, is deployed to solve

the proposed joint planning model. MONAA is based on the stochastic migration model,

Natural Aggregation Algorithm (NAA) [264]which allows individuals to migrate in sub

populations. For each generation, the probability of an individual leaves its present shelter

s, Qs can be calculated as follows:

Qs = θs

1 + ( xs

CpS )2 . (4.33)

where θs denotes the standardised quality for shelter s. xs represents the number of

individuals; the maximum number of individuals the shelter can contain is represented by

the capacity CpS . The individual chooses if to leave the present shelter or not based on

Qs. For an individual outside any shelters, it chooses a shelter s randomly and calculates

the possibility of its entry as below:

Rs = (1 − θs)(1 − xs

CpS
) (4.34)

An individual then decides to enter the chosen shelter or not based on Rs. After the

migration decisions are made, individuals that are inside a shelter can conduct a location

search. However, the individuals outside of all shelters conduct a generalized search. In

NAA, following strategy is used to calculate the normalized quality of shelter s(θs):

θs = fitness(siteS
s ) − fnbase (4.35)

θs =


1

NS

∑Ns

j=1 θj = 0

1 − θs∑NS

j=1 θJ

otherwise
(4.36)

where siteS
s represents the position for shelter s; fnbase denotes the fitness value of the

corresponding individual with minimum fitness value of (NS + 1)th; fitness() is the fitness

calculation function. For K-objective optimization, the fitness of the ith individual can be

represented as an array fni = [fni,1, . . . , fni,K ], where the item fni,k represents the fitness

value of the kth objective of the ith individual. In MONAA, the distance calculation in
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Eq.(4.35) is therefore changed as:

θs = Eucli(fitness(siteS
s ), fnbase) (4.37)

where Eucli(a, b) denotes the Euclidean distance between two K-dimension points a and

b.

In MONAA, after each generation, a new set of positions for individuals will be generated.

Only when the fitness values of every objective in the new position are better than the

ones in the previous position, will the individual move to the new position. Fig. 4.2

demonstrates the key steps of MONAA algorithm. To begin, all decision variables in

Table 4.3 are coded as an individual of MONAA, indicating a possible solution. Next, the

wind power generation, EV charging profiles, the traffic network and distribution network

are input into the proposed planning model. MONAA algorithm is then used to obtain

all the nondominate solutions and Pareto frontier. In order to guarantee that the EVCSs

provide service to at least a certain number of EVs, the nearest solution which is above

a predefined minimum captured traffic flow (8.5 × 107Veh) is chosen as the final solution.

The MONAA algorithm is terminated either the maximum iteration number is reached,

or the nondominated solutions do not change for a set number of successive iterations.

4.8 Simulation Study

4.8.1 Case Description

A 54-node distribution system [265] coupled with a 25-node transportation system [136]

is used as the case study to test the proposed model. The cost of EVCSs investment and

the cost of feeders, substations reinforcement and construction can be found in study [28].

Table 4.4 lists the key parameters used in this simulation. The graphical structure of com-

bined distribution network and transportation network is shown in Fig.4.5. Additionally,

there are 13020 vehicles in the studied metropolitan area based on the survey [262]. The

EV penetration rate is 35%. The upper and lower voltage are set to ±5%. In this study
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Figure 4.2: Flow chart of the solving process

the placement (node 4 and 30) and sizing (550MW and 800MW) of wind power sources are

chosen as an example to investigate the effect of wind power on the joint planning model.

The maximum wind penetration level is nearly 20%. Each wind energy source consists of

Vestas V52 − 850kW wind turbines, the rated speed of which is 17 m/s. This simulation

uses the wind data set from the National Renewable Energy Laboratory (NREL) [266]

and the width of states for discretising the wind speeds is set to 1m/s, resulting in 35

states. The increasing rate of charging demand is set to 10% per year within the 20-year

planning horizon considered. There is yet to be an industry-wide or national standard

for EV charging power, let alone a unified plan for EV charging standards in the future.

Thus, in this sturdy it is assumed that the charging power of a single charging post does

not vary within the planning horizon.
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4.8.2 Comparison Results of SG and Other Methods

Table 4.4: Values of key parameters

Parameter Value Parameter Value
p1 3.5kW p2 35kW
η 0.9 β 80%
ω 15km·h zmax 10

zmin 6 nFCS 20
Prated 0.85MW vin 4 m/s
vout 25 m/s cCH[108US$] 8

Figure 4.3: Starting Charging Time (hour)

Figure 4.4: Charging Duration (hour)

4.8.2 Comparison Results of SG and Other Methods

The probabilistic models of the uncertain EV start charging time and charging duration

for the slow charging are established according to the methodology detailed in Section

4.5. The charging start time and charging duration are divided into 24 and 15 states,

respectively. The modelling results are shown in Fig. 4.3 and 4.4. By applying Eq.(4.13)

and (4.14), 360 joint uncertainty states are constructed, which are used to model the EV

uncertainty and calculate the daily charging demand.
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Table 4.5: Comparison among FFS, BR and the SG method

Approaches FFS BR SG
method

Number of scenario groups 1 2 3 4 5
Initial scenario number 500 1000 500 1000 N/A

Scenario reduction time (s) 175 574 161 543 0.31
Approximated cost of investment and

energy losses (107US$)
7.20 7.01 7.13 6.96 6.95

Approximated error 8.50% 5.57% 7.52% 4.97% 4.71%
Computation time (s) 3321 4451 3234 4325 2057

To measure the performance of the SG method, we compared it with two conventional

MCS based scenario generation methods: Backward Reduction (BR) and Fast Forward

Selection (FFS). Table 4.5 shows the comparison results. MCS is used to generate four

scenario groups (denoted as group 1 − 4). The groups are then used for constructing joint

probability states of start charging time and charging duration; then, the reduced scenario

set (R) is constructed by applying BR and FFS algorithms. Group 5 is constructed by

the SG method. In this test, R is set as 50 for the scenario groups.

The time required to build reduced scenarios is represented by scenario reduction time

in Table 4.5. As shown in Table 4.5, the SG method only costs 0.31s, which is much

more efficient than MCS based FFS and BR. This is due to the fact that the SG method

directly generates a small number of representative scenarios, thus eliminating the need for

a scenario reduction step. It also shows that for Group 1 − 4, the time required for FFS

and BR calculations increased significantly as the number of initial scenarios increases,

when original scenarios vary from 500 to 1000, the time rises from 175s to 574s and 161s

and 543s, respectively.

We then input the predicted EV charging profiles into the joint planning model and

use MONAA to solve the model. In Table 4.5, the approximated error represents the

difference between “the realistic cost of investment and energy loss” (in which the EV

charging profile is obtained by 8000 constructed scenarios from MCS based FFS reduction

approach) and the cost from Group 1 − 5. The approximated error resulting from the

proposed method is 4.71%, suggesting that the uncertainty is well approximated by the

constructed representative scenarios. For MCS based BR and FFS approaches, it is clear
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to see that when the number of random scenarios increased the error rate decreased.

However, the SG method still gives a smaller approximated error when compared with

the 1000 original scenarios. This is because that the SG-based scenarios tend to cover the

whole range of possible values, while MCS-based scenarios might be prone to aggregate

to the values with high probabilities, especially with smaller number of initial samples.

The computational cost comparison of the proposed EVCS planning model is shown in

the last row of Table 4.5. It can be observed that the computation time of SG method

is 2057s, which is around half the time of MCS based FFS or BR method. To sum up,

using the scenarios generated by the SG method, MONAA can achieve better uncertainty

approximation accuracy and require significantly less computation time.

4.8.3 Comparison of Planning Results With/Without Wind Using MONAA

MONAA and curve fitting method are developed to find the Pareto frontier and all non-

dominated solutions for the joint planning model. For a non-dominated solution, the value

for one of the objectives cannot be improved without negatively impacting the other. Fig.

4.5(a) and (b) show the final planning decisions for the cases without/with wind power.

In Fig.4.5, the sizes of EVCSs are given by the numbers under the EVCS icons. As shown

in Fig. 4.5 six EVCSs are built in the distribution system considering the wind power

penetration, but in the system without wind power, there are only four EVCSs. Also, the

number of the charging piles for most EVCSs are increased, which means that the wind

power integration allows the system to serve more EVs and thus increase the charging

service level of the system.

The final pareto frontiers obtained from the stochastic planning model with and without

wind power are shown in Fig. 4.6. The selected solution meets a specified minimum traffic

flow (8.5 × 107 vehicles) to make sure that the proposed system can provide satisfied EV

charging services to users. Under the final selected planning strategy, the total cost of

investment and energy losses is 6.6398×107 US$ and the captured traffic flow is 8.50453×

107 vehicles. The captured traffic flow is in the range between 4.224 × 107 to 8.882 × 107
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Figure 4.5: The graphical structure of combined distribution network and transportation
network (a) case without wind power (b) case with wind power
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Table 4.6: Summary of the selected solutions to model with/without wind power

Wind power Without wind power
Traffic flow [107Veh] 8.50453 8.48711

Costs [107US$]

Lines 1.4425 2.1151
Substations 4.3271 4.6142

EVCSs 0.2557 0.2031
Energy losses 0.6145 0.7504

Overall 6.6398 7.6828

Figure 4.6: Optimization results obtained with and without wind power

Figure 4.7: Results of MONAA, MOEA/D and NSGA II a lgorithm.

vehicles. In the meantime, the total cost of investment and enerfy losses varies in the range

between 5.140 × 107 to 7.212 × 107 US$. It is clearly shown in Fig. 4.6 that inclusion

of wind power in the model lowers the investment cost compared to the model without

wind power. The main reason for this is that wind farms are located at nodes with high

power demand, and supply electricity and serve the local demands directly, consequentially

reducing the feeder construction cost. Table 4.6 summarizes the cost and total captured

traffic flow within the 20-year horizon, for the layouts of final chosen solutions for model

with/without wind power.
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4.8.4 Comparison of Planning Results Using MONAA and Other Op-

timization Algorithms

Finally, the efficiency of MONAA solver on the EVCS model is tested by comparing with

two common multi-object optimization solvers, Nondominated Sorting Genetic Algorithm

(NSGA-II) [267] and Multiobjective Evolutionary Algorithm Based on Decomposition

(MOEA/D) [268]. Fig. 4.7 shows the performance comparison results. It can be concluded

that the Pareto frontier obtained by MONAA outperforms those obtained by MOEA/D

and NSGA-II due to the higher investment efficiency and EV charging service. In addition,

MONAA shows faster convergence speed than the other two algorithms. The average

execution time of MONAA is 2147.81s, significantly less than that of MOEA/D (4562.11s)

and NSGA-II (4453.71s). The reason that MONAA was able to obtain a better Pareto

frontier than NSGA-II might be that MONAA uses a parameter-based diversity preserving

mechanism, the maximum shelter size. In terms of execution time, the computational

complexity of MOEA/D is O(mNT ) [268], where m is the number of objective, N is

the population size and T is the number of solutions. Using the same terminology, the

computational complexity of NSGA-II is O(mN2) [267]. Compared to MOEA/D and

NSGA-II, the computational complexity of MONAA is only O(mN), resulting in a faster

execution time.

4.9 Conclusion

A multi-objective EVCS planning model is suggested in this study, the goal of which is

to optimize the size and sitting of the EVCSs and the expansion plans of the distribution

system. Wind power penetrations are considered. High efficiency scenario based stochastic

models of EV charging demand are established using the SG method. The suggested

model is solved with a multi-objective optimization tool, MONAA. As shown in Section

4.8.2, compared to FFS and BR, the SG method not only significantly reduced overall

computation time, but also lowered the error in approximating the cost of investment

and energy loss. Moreover, Section 4.8.3 demonstrated the benefit of including wind
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generation, which is that the overall cost was reduced. Furthermore, the efficiency for

the developed algorithm is highlighted in Section 4.8.4 where MONNA outperformed the

commonly used NSGA-II and MOEA/D. To sum up, the final planning strategy calculated

from the proposed model using SG-based MONAA improves computation efficiency and

approximation accuracy, increases the charging service level, and reduces the investment

cost and energy losses.

4.10 Future Works

Here are some of the aspects in our planning approach that can be improved. 1) Currently,

the location and capacity of wind generation is pre-determined. To improve the obtained

Pareto frontier, one can include the optimization of renewable generation in the planning.

Additionally, more types of renewable generation, e.g., solar and hydro, may also be

considered. 2) Battery Energy Storage Systems (BESS) can be used to mediate the

stochastic nature of renewable generation and EV charging demand, as well as improve

network stability. The optimization model could include the location and sizing of BESS

in future iterations. 3) Real-world transportation and distribution network data could be

used in the optimization to obtain planning results that are more practically relevant. 4)

One might also consider the issues in real-time operation of the EVCSs, such as missing

data, data latency and sensor failure. In some cases, these issues might be alleviated by

data processing techniques, e.g., deep learning [44].
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Chapter 5

Planning of Hydrogen Refuelling

Stations in Urban Setting While

Considering Hydrogen

Redistribution

5.1 Relationship with the thesis

In Chapter 1, it is recognized that there is a lack of studies focusing on the profitability

of HRSs during planning phase. In this chapter, a planning model that aims to maximize

the captured traffic flow and profit while sizing and sitting HRSs is presented.

This Chapter has been published.

© [2021] IEEE. Reprinted, with permission, from: J. Zhang, C. Li, G. Chen, and Z.

Dong, “Planning of hydrogen refueling stations in urban setting while considering hydrogen

redistribution,” in IEEE Transactions on Industry Applications,2022.
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5.2. ABSTRACT

This chapter has been edited to incorporate thesis reviewers’ comments.

5.2 Abstract

Electrified transportation systems and renewable energy resources have been recognized as

effective environmental-friendly technologies against global warming contributed by green-

house gas (GHG). Remarkably, hydrogen fuel cell-powered electric vehicles (FCEVs) can

outperform battery-powered electric vehicles (BEVs) largely in the sense of the driving

range and the refueling time. However, both of them requires a better coordination of

infrastructure system and renewable energy resources to achieve a significant reduction of

GHG emissions. This chapter aims to maximize the long term profitability for the plan-

ning model of hydrogen refueling stations where the Capacitated Flow Refueling Location

Model (CFRLM) is leveraged for maximal traffic flow coverage. Furthermore, we discuss

various real-world constraints, such as Traffic Network (TN) constraints, Distribution Net-

work (DN) constraints, hydrogen balance constraints, and energy constraints for EVs, to

make the planning model more practical. By considering the uncertainty of the short-term

refueling demand across the city, an approach for geographically redistributing hydrogen

among the stations is also presented where the minimal cost of redistribution is modelled

by One-commodity Pickup-and-Delivery Traveling Salesman Problem. A real-life case

study of western Sydney is adopted to testify the efficiency of the planning model under

current and future cost levels. Finally, a numerical simulation is utilized to demonstrate

the validity of the hydrogen redistribution method.

Nomenclature

Parameters

β Charging/discharging efficiency of BES

cB Per kWh cost of BES

cC Per kWh penalty of using grid power
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cE,t Per kWh cost of buying electricity from the grid at time t

cfixed Per station fixed cost for hydrogen refuelling stations

cH Per kg/h production capacity cost of hydrogen electrolyser

cp Penalty cost for unsatisfied traffic flow

cP V Per kW cost of PV module

cT Per kg capacity cost of the hydrogen storage tank

Ctotal Max budget for capital investment

D Total number of days in the planning horizon

EH Amount of energy required to produce 1 kg of hydrogen

η PV module efficiency

F q
t Traffic flow on path q at time t

ĝB,i Max BES size at node i

ĝH,i Max hydrogen production capacity at node i

ĝP V,i Max capacity of PV size at node i

ĝT,i Max Hydrogen storage tank size at node i

Im,n Upper limit of current on feeder m, n

κ Amount of hydrogen required by each FCEV for a full refill

mi Profit modifier at node i

pB
max Max power output of the BES

ri Per kg revenue for selling hydrogen at node i

SIt Solar irradiance during time t

sm,t Power injection at bus m during time t

sb
m,t Base-load at bus m during time t

V m/V m Lower/upper limit of nodal voltage at bus mr

zm,n Impedance of feeder m, n

Variables

Bi,t Amount of energy stored by the BES at node i during time t

gB,i BES size at node i

gH,i Production capacity of hydrogen electrolyser at node i

gP V,i Name plate capacity of PV module at node i
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gT,i Capacity of the hydrogen storage tank at node i

Hi,t Amount of hydrogen produced by the electrolyser at node i during time t

λq
ij,t Fraction of traffic travelling from i to j on path q at time t

lm,n,t Square of the magnitude of the current in feeder m, n during time t

µi Binary variable indicating if a station is built at node i

pB
i,t Power output of the BES at node i during time t

pH
i,t Net power required for hydrogen production at node i during time t

pH
i,t Net power for hydrogen production at node i during time t

pP V
i,t PV output at node i during time t

pH
m,t Active hydrogen production load at bus m during time t

Sm,n,t Apparent power flow from bus m to bus n during time t

sH
m,t Hydrogen production load at bus m during time t

Ti,t Amount of hydrogen in the storage tank at node i during time t

vm,t Square of the magnitude of the nodal voltage at bus m during time t

5.3 Introduction

Almost all world-class metropolises are densely populated which requires a considerable

amount of energy to maintain the daily commute and the road traffic contributing to

a large proportion of carbon dioxide emissions [269]. Electrified transportation systems

and renewable energy resources are considered as one of most effective green technologies

to reduce the effect of global warming and climate change attributed to greenhouse gas

emissions [270]. In comparison to internal combustion vehicles (ICVs), electric vehicles

(EVs) including cars and metro trains not only can bring about better energy efficiency,

but also can introduce a great benefit of not emitting any GHGs in driving.

With the high proliferation of EVs, fast-Charging infrastructure is essential. A fast charg-

ing station planning strategy is investigated in [228] where the interactions of the traffic

and the flows are considered to construct the capacitated-flow refuelling location model

(CFRLM). By considering traffic constraint [271], an EV flow capturing location model is
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introduced for maximizing the traffic flow where the battery capacity is also considered.

To further refine the practicality of the fast-charging station planning, the practical con-

straints of the power network with AC power flow is modeled into a modified CFRLM

which can be efficiently solved by the second-order cone programming [247]. A data-driven

planning approach is studied in [44] where graph neural network is leveraged for the long-

term charging demand forecasting in Sydney city. To achieve the purpose of EV’s faster

charging, the battery charging/swap stations can be considered as a promising solution

When power is collected from renewable energy. In [272], an optimal framework for bat-

tery charging/swap stations planning is presented in distribution systems where the life

cycle cost is modelled into the battery charging/swap station and renewable energy can be

used to charge the battery in advance. A similar idea of battery charging/swap stations

planning can be found in [273] where the utilization of solar energy is maximized.

The controversy between battery-powered electric vehicles (BEVs) and hydrogen-powered

electric vehicles (HEVs) has lasted more than one decade. Despite being an environmen-

tally favored transportation tool, EVs still pale compared with fossil fuel-powered vehicles

in terms of popularity. This is probably because of the inconvenience caused by a short

driving range and a long refuelling time. As hydrogen is a high-efficient clean energy source

with a higher energy density, both academia and industry are increasingly interested in

developing and deploying hydrogen Fuel Cell Electric Vehicles (FCEVs) for electrified

transportation systems [274]. Moreover, in terms of the driving range and the refuelling

time, FCEVs are advantageous over Battery Electric Vehicles (BEVs). Yet, the planning

and profitability of electric vehicles’ charging stations [228, 275] have been well studied,

less so for hydrogen refuelling stations. To simultaneously provide services for both FCEVs

and BEVs, a combo station involving a fast EV charging station and a hydrogen refuelling

station is introduced in [42]. Although the concept of the planning approaches of EV

charging stations can be used to design Hydrogen refuelling stations, unique attributes of

hydrogen refuelling stations should be identified for practicality. There have been several

studies focused on the location and size of hydrogen refuelling stations. For example, [38]

proposed a multi-stage planning strategy to plan hydrogen stations for South Korea, in

which the Maximal Covering Location Problem and the P-median problem are solved in
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sequence to obtain the final result. In [25] the authors used information from several

data sources to estimate the refuelling demand and deployed genetic algorithm to solve

the P-median model. In [276], the authors developed a mathematical model to optimize

the hydrogen supply system as well as hydrogen refuelling stations. Although the authors

compared different hydrogen production methods in [276], certain aspects of electrolysis

were overlooked. For instance, the impact [277] on the distribution network contributed

by the hydrogen electrolyser where the constraints on distribution network should be con-

sidered in the planning. The desirable planning should consider practical constraints,

thereby real-world case studies are preferably over synthetic ones.

The optimization objective of [25, 38, 276] are focused on social benefit,like covering the

most of demand, minimizing the travel cost for customers, or minimize the overall cost

of hydrogen. To promote FCEVs and widely deploy hydrogen refuelling stations, the

participation of private companies is essential while profitability is the main concern of

private investment. Although centralized hydrogen generation can lower production costs,

a significant amount of energy and cost is consumed in the process of hydrogen trans-

portation [278]. It is indispensable to take the long-term profit for private investment into

account in the planning. In [38] and [25] the authors do not consider hydrogen production

in their model, which may reduce the profitability of the stations due to high hydrogen

delivery costs.

Currently, most of the world’s hydrogen supply is produced from fossil fuels, with Steam

Methane Reforming (SMR) being the most common method [20]. However, these fossil fuel

based methods still generate large amount of GHG when producing hydrogen [276]. While

water electrolysis does not generate any GHG when producing hydrogen, the electrolyzers

does require electricity to run. There for, rather than depending on the fossil fuels to

produce hydrogen, FCEV’s true success of emission reductions significantly relies on the

successful integration of electrolysis with the renewable energy resources and the charging

infrastructure systems. Renewable energy resources can be leveraged to power hydrogen

production in order to reduce emissions. That is why the electrolyzer capacity around the

world is ramping up very quickly. According to a recent report by the International Energy
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Agency (IEA) electrolysis capacity becoming operational in 2019 was 25.4MW , and in

2023 the additional electrolysis capacity becoming operational will be 1143.1MW [20].

Therefor, in this chapter we choose on site electrolyzers to be the production method for

hydrogen.

In [25,38,276] only long term demands are considered in the planning models. However,

the short-term demand of hydrogen refuelling can be volatile which leads to an imbalanced

distribution of the reserved hydrogen across the city. Eventually it creates a large supply-

demand imbalance. It is critical to investigate how to optimally coordinate the renewable

energy resources and the charging infrastructure systems for supporting the electrified

transportation system. Thus, to maximize the profit, we not only plan for long term

demand coverage but also seek to address short term demand uncertainty.

Therefore, the contributions of this chapter address the aforementioned concerns as follows:

1) The profit is considered in the planning of hydrogen fueling station with the coordination

of renewable energy resources. To eliminate the transportation cost, in this chapter the

hydrogen is generated by an on-site electrolyser.

2) On-site renewable generation, Photostatic (PV), is used to power the hydrogen electrol-

yser along with Distribution Network (DN). In addition, the economic feasibility of on-site

Battery Energy Storage (BES) is also investigated. DN constraints are also included in

the optimization model to make the planning results more practical.

3) The proposed planning model is validated with a case study, in which western Sydney

transportation data are used for the maximal coverage test.

4) To compensate the discrepancy of the projected and the actual hydrogen demands, a

separate redistribution step is considered. For this purpose, the uncertainty of the short-

term refuelling demand is addressed as a One-commodity Pickup-and-Delivery Traveling

Salesman Problem, and solved by the mixed-integer linear programming.

The system diagram is shown in Fig. 5.1. We organize the rest of this chapter as follows. In
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Electricity
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Figure 5.1: System diagram of hydrogen refuelling station with renewable energy resources

Section 5.4, the underlying problem of the planning of hydrogen refuelling stations is first

formulated and then the algorithm for the problem is designed. The problem description

and formulation of hydrogen redistribution are given in Section 5.5. The experimental

settings are given in Section 5.6. Several numerical experiments are displayed in Section

5.7. Section 5.8 concludes this chapter.

5.4 Hydrogen refuelling station planning model

This section introduces a planning model, Capacitated Flow refuelling Location Model

(CFRLM) [228], which is modified for sizing and sitting of hydrogen refuelling stations.

The CFRLM has the advantage of maximizing serviceability under limited resources. Ad-

ditionally, we also consider the optimal sizing of hydrogen storage tanks, BES and PV

modules, plus DN constraints.

5.4.1 Capacitated Flow refuelling Location Model

To use the CFRLM the Traffic Network (TN) needs to be expanded first. Fig.(5.2) shows

an example of TN expansion. The TN in (5.2a) contains one single path from node 1 to

109



CHAPTER 5. PLANNING OF HYDROGEN REFUELLING STATIONS IN URBAN
SETTING WHILE CONSIDERING HYDROGEN REDISTRIBUTION

1 2 3 4
40Km 70Km 30Km

(a) A 4-node traffic network with a single path.

o d

(b) The corresponding expanded traffic network

Figure 5.2: Transportation network expansion example

node 4 with arcs a12, a23 and a34. (5.2b) is the corresponding expanded TN of (5.2a), by

adding virtual nodes o and d and assuming driving range is 100 km ∀i < j and dij ≤ 100,

aij is added if aij ̸∈ A, where A is the set of arcs of the TN. Note that o is considered

as node 0 and d is node 5, in the example. For a network with more than one path, the

process is repeated for each path.

In this chapter, CFRLM is modified to account for the specific constraints of hydrogen

production. Note that Equ. (5.1) is the objective function, which consists of four terms.

The first term is the overall investment cost, which is made of BES cost, hydrogen electrol-

yser cost, PV cost, hydrogen storage tank cost, and a fixed per station cost. The second

term is the penalty for unsatisfied traffic flow. The third term is the cost of purchasing

electricity from the grid, while the last term captures the gross profit of the hydrogen

stations.

min
{∑

i∈Ψ
(cBgB,i + cHgH,i + cP V gP V,i + cT gT,i + cfixedµi)︸ ︷︷ ︸

capital investment

+ D
24∑

t=1
(

∑
q∈Q

cpλq
od,tF

q
t︸ ︷︷ ︸

penalty for unsatisfied traffic

+
∑
i∈Ψ

(cE,t+cC)pH
i,t︸ ︷︷ ︸

electricity cost

−
∑
q∈Q

∑
{j|(i,j)∈Âq}

riλ
q
ji,tF

q
t κ

︸ ︷︷ ︸
total revenue

)
}

, (5.1)

subject to
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∑
{j|(i,j)∈Âq}

λq
ij,t −

∑
(j|(j,i)∈Âq)

λq
ji,t =


1, i = o

−1, i = d

0, i ̸= o, d

, ∀q ∈ Q, ∀i ∈ Ψ̂q, ∀t, (5.2)

0 ≤ λq
ij,t,∀q ∈ Q, ∀(i, j) ∈ Âq, ∀t, (5.3)

0 ≤ gB,i ≤ µiĝB,i, ∀i ∈ Ψ, (5.4)

0 ≤ gH,i ≤ µiĝH,i, ∀i ∈ Ψ, (5.5)

0 ≤ gP V,i ≤ µiĝP V,i, ∀i ∈ Ψ, (5.6)

0 ≤ gT,i ≤ µiĝT,i, ∀i ∈ Ψ, (5.7)

∑
i∈Ψ

(
cBgB,i + cHgH,i+cP V gP V,i + cT gT,i + cfixedµi

)
≤ Ctotal, (5.8)

µi ∈ {0, 1}, ∀i ∈ Ψ. (5.9)

Equs. (5.2) and (5.3) represent the traffic flow constraints, where the supply and demand

must be met. Equs. (5.4)-(5.7) are the size constraints for BES, hydrogen electrolyser,

PV panels, and hydrogen storage tanks, respectively, ensuring the size of each of the

components does not exceed its limit. Equ. (5.8) is the budget constraint, which is the

main limiting factor for a private company.

5.4.2 Additional constraints

5.4.2.1 Hydrogen balance

The following constraints couples the hourly hydrogen production and tank reserve at each

station with the traffic flow.

∀i ∈ Ψ, ∀t :

Ti,t = Ti,t−1 + Hi,t −
∑
q∈Q

∑
{j|(i,j)∈Âq}

λq
jiF

q
t κ, (5.10)

Ti,1 = Ti,24 + Hi,1 −
∑
q∈Q

∑
{j|(i,j)∈Âq}

λq
jiF

q
1 κ, (5.11)
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0 ≤ Ti,t ≤ gT,i, (5.12)

0 ≤ Hi,t ≤ gH,i. (5.13)

Equ. (5.10) balances the supply and demand of hydrogen at each site over time, ensure

that the traffic can only be captured if there is enough hydrogen supply at a given station.

. Equ. (5.11) is the special case of Equ. (5.10) introduced to avoid depletion of hydrogen

at the end of each day. Equs. (5.12) and (5.13) ensure the storage and production cannot

exceed their limit at each site.

5.4.2.2 Battery energy balance constraints

the constraints concerning the charge/discharge of the BES are similar to the hydrogen

balance constraints for hydrogen tanks. The energy balance constraints of BES are for-

mulated as Equs. (5.14)-(5.17).

∀i ∈ Ψ, ∀t :

Bi,t =

 Bi,t−1 − βpB
i,t, pi,t < 0

Bi,t−1 − 1
β pB

i,t, pi,t ≥ 0
, (5.14)

Bi,1 =

 Bi,24 − βpB
i,1, pi,1 < 0

Bi,24 − 1
β pB

i,1, pi,1 ≥ 0
, (5.15)

0 ≤ Bi,t ≤ gB,i, (5.16)

|pB
i,t| ≤ pB

max. (5.17)

Equ. (5.14) links the BES’s energy reserve with the hourly charge/discharge. Equ. (5.15)

ensures the BES is not drained at the end of the day. Equ. (5.16) make sure the BES

cannot store more energy than its capacity, and it will not create energy. Equ. (5.17)

is included such that the charge/discharge power does not exceed the rated power of the

BES.

112



5.4.2 Additional constraints

5.4.2.3 DN constraints

In practical settings, the DN is also a limiting factor on the location and size of the hy-

drogen refuelling stations. Thus the Second-Order Cone Programming (SOCP) modeling

of DN constraints [246] is incorporated into the planning model as follows.

∀m, n ∈ Φ, ∀i ∈ Ψ, ∀t :

Sm,n,t = sm,t +
∑

h∈M�m

(Sh,m,t − zh,mlh,m,t), (5.18)

0 = s0,t +
∑

h∈M�0

(Sh,0,t − zh,0lh,0,t), (5.19)

vm,t − vn,t = 2Re(z∗
m,nSm,n,t) − |zm,n|2lm,n,t, (5.20)

|Sm,n,t|2 ≤ lm,n,tvm,t, (5.21)

lm,n,t ≤ |Im,n|2, (5.22)

|V m|2 ≤ vm,t ≤ |V m|2, (5.23)

sm,t = −sH
m,t − sb

m,t, (5.24)

sH
m,t = pH

m,t + j tan θpH
m,t, (5.25)

pH
m,t =

∑
i∈Im

pH
i,t, (5.26)

pH
i,t = HP

i,tEH − pP V
i,t − pB

i,t, (5.27)

pP V
i,t = ηnP V,iSIt, (5.28)

0 ≤ pH
i,t. (5.29)

Equs. (5.18)-(5.21) are the AC power flow constraints, in which Equ. (5.21) is a SOC

relaxation of the exact constraint. Equs. (5.22) and (5.23) ensure the feeder current

and nodal voltage do not violate their limits, respectively. The PV generation, BES

output, and electrolyser loads are coupled to the DN as shown in Equs. (5.24)-(5.28).

Constraint (5.29) is introduced so that the hydrogen refuelling stations do not feed back

to the grid. Note that generally speaking the more standard semidefinite programming

(SDP) formulation is a stronger relaxation than SOCP [279]. However, in this chapter the

DN is made of radial networks that have unidirectional power flows, therefore the SOCP
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relaxation is exact [246].

5.5 Hydrogen redistribution

For onsite storage at the refuelling stations, hydrogen can be easily stored and quickly

refuelled as a compressed gas [96]. Storing hydrogen as a compressed gas at room tem-

perature also have low energy loss [85] When the projected hydrogen demand during the

planning phase and the actual hydrogen refill demand in operation does not match, certain

stations may not be able to meet the hydrogen refuel demand while other stations will

have an excess of production, thus there would exist a need to redistribute the hydro-

gen. As an underground hydrogen pipe network connecting all hydrogen stations requires

both a large amount of investment and extended period of time to build, the hydrogen

tube trailer is the only viable option for the hydrogen redistribution among the refuelling

stations in the early stages.

In this chapter, we assume that all of the hydrogen refuelling stations, as well as the tube

trailer, are operated by the same entity, thereby allowing coordination among the stations.

Moreover, since in the early stages of hydrogen station deployment both the number of

stations and the amount of hydrogen requiring pick-up/delivery at each station will be

small, it is within reason to assume a single tube trailer will be able to service all the

stations. With these assumptions, the redistribution of hydrogen can be formulated as

a special case of the traveling salesman problem, known as the “One-commodity Pickup-

and-Delivery Traveling Salesman Problem” (1-PDTSP). We use the mixed-integer linear

programming (MILP) reformulation in [280] to solve this problem.

Define a set of locations Ψd, which contains the depot (denoted as node 0) and all

customers (in this case hydrogen refuelling stations). Next, define Ad as the set of

arcs connecting the node pairs. Then the 1-PDTSW is defined under a complete graph

G = (Ψd, Ad), which is a subgraph of the TN. Let eij denote the distance between node

pairs. hi is the quantity of hydrogen at node i, where a negative value means a surplus
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of hydrogen for pick-up, and a positive value means a shortage of hydrogen that needs

to be filled. hcapis the capacity of the tube trailer. Define a binary variable yij , where

yij = 1 means that the tube trailer traveled from node i to j, and zero otherwise. Define

a continuous variable xij which corresponds to the weight of hydrogen onboard the tube

trailer when traveling from i to j. Define oijto be the order of arcs the trailer traveled in

the solution.

The objective, shown in Equ. (5.30), is to minimize the distance traveled by the tube

trailer.

min
∑

(i,j)∈Ad

eijyij (5.30)

subject to ∑
j∈N,i̸=j

yij = 1, ∀i ∈ Ψd, (5.31)

∑
i∈Ψd

yij =
∑

i∈Ψd

yji, ∀i ∈ Ψd, (5.32)

xij ≤ hcapyij , ∀(i, j) ∈ Ad, (5.33)∑
j∈Ψ

xji −
∑
j∈Ψ

xij = hi, ∀i ∈ Ψd, (5.34)

∑
j∈Ψ

oji −
∑
j∈Ψ

oij = 1, ∀i ∈ Ψd\{0}, (5.35)

oij ≤ n(Ψd)yij , ∀(i, j) ∈ Ad, (5.36)

xij , oij ≥ 0, ∀(i, j) ∈ Ad. (5.37)

Equ. (5.31) ensures that each node is visited once and once only. Constraints (5.32) forces

the trailer to leave a node after visiting it. The capacity constraint of the tube trailer is

enforced by Equ. (5.33). Equ. (5.34) guarantees the hydrogen demand of each node is

met. Equ. (5.35) and (5.36) are used to prevent subtours.

Please note that 1-PDTSP is a special case of Pick-up and Delivery Problems (PDPs),

which have many variations and is an area of active research. For example, as the number

of hydrogen stations and the hydrogen imbalance increases, multiple tube trailers may be

required for the redistribution of hydrogen. In this case, one can either split the planning
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area as different smaller partitions which can be solved by 1-PDTSP for each partition,

or formulate the problem as a multi vehicle PDP (MVPDP). Another variation is when

time constraints are added to each pick-up/delivery order, such problems are referred as

PDP with Time Window (PDPTW). Interested readers can find a detailed review of PDPs

in [281], which include different formulations for both MVPDP and PDPTW.

5.6 Experimental setup

The experiments for validating the optimization models include two parts. Section 5.6.1

describes the case study used to verify the effectiveness of the planning model. Section

5.6.2 gives the detailed settings of hydrogen redistribution simulation.

5.6.1 Case study: hydrogen refuelling station planing

The case study in this chapter uses the real-world TN and DN data of Western Sydney [44].

The data include 24-hour bidirectional traffic flow through each traffic node as well as 24-

hour power consumption at each distribution node. The TN consists of 41 transportation

nodes with each node being an equally valid candidate for hydrogen refuelling stations. The

DN is a simplified version of the Endeavour Energy 33kV network that has 7 transmission

substations and 35 zone substations, in the vicinity of the TN nodes. Fig. 5.3 shows the

locations of these traffic nodes and substations. The connections of TN and DN nodes are

shown in Fig. 5.4. We assume that the hydrogen station at each TN node is supplied by

the nearest zone substation. The Time Of Use (TOU) pricing of grid electricity is obtained

from [282] for and is shown in Fig. 5.5. It has three levels namely off-peak 0.1 $/kWh,

peak 0.43 $/kWh and shoulder 0.19 $/kWh. Please note that additional costs for using

grid power, cC , is added to simulate the effect of carbon tax, thereby further penalize

GHG emissions and incentives the use of renewable energy. However, in this study such

penalty is set to 0 $/kWh as Australia currently does not have a carbon tax scheme. The

solar irradiance data used is from [283], we assumed the all the TN nodes have the same
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Figure 5.3: Real world location of TN and DN nodes

amount of solar irradiance.

(a) (b)

Figure 5.4: Scatter plot of TN and DN, showing transportation connections (a) and
distribution connections (b)

In this experiment, we used the first generation of Toyota Mirai as an example, which

has a range of 502 km and the onboard hydrogen tank has a capacity of 5.0 kg [284].

We assume that drivers will refuel their FCEVs every 400 km to avoid range anxiety.

Additionally, to account for the non-optimal driving conditions of Sydney, we assume that

FCEVs will require 4.5 kg of hydrogen each time they are refilled. The FCEVs enter

the transportation network with enough hydrogen to travel 140 km. To study the effect

of different parameters (e.g. the cost and the efficiency of electrolyser) on the planning

result, two different experiments were conducted, one using the current values while the
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Figure 5.5: TOU pricing of electricity from Ausgrid [6]

Table 5.2: Key parameters for the planning model

Current value Projected value

cP V 100 $/m2 [285] 70 $/m2 [68]

cH
123,390

$/kg · h−1 [68]
55,000

$/kg · h−1 [68]
cB 540 $/kW h [68] 200 $/kW h [68]
cT 400 $/kg [286] 350 $/kg [286]
EH 54 kW h/kg [68] 50 kW h/kg [68]
ri 23 $/kg [287] 15 $/kg

cfixed $ 250,000 [53]
Ctotal $ 100 millions

cp 1000 $/veh

η 4%
β 90%

ĝB,i 300 kW h

ĝH,i 100 kg/h

ĝP V,i 500 m2

ĝT,i 500 kg

pB
max 100 kW

other using projected values that can be achieved by technological development in the

next 10-15 years. The planning horizon is set to 25 years in both experiments [68]. The

key parameters are summarized in Table.5.2. Note the parameters are for demonstrative

purpose only because in real life some of the parameters, such as the size limit for each of

the components, are determined by a plethora of factors (national/local regulations, site

specific constraints, company policies, etc) while others, such as the cost of components,

are constantly changing as a result of development, thus readers can choose and modify

the parameters to suit their specific circumstances.
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5.6.2 Hydrogen redistribution

Once the planning of hydrogen refuelling stations have been completed under the setup

mentioned in the above section, we can then validate the hydrogen redistribution method

described in Section 5.5. Firstly the complete graph G is constructed by selecting all the

TN nodes with hydrogen refuelling stations built on them (Ψd) and connecting them by

arcs (Ad) corresponding to the minimum distance between them in the TN. It is worth

pointing out that in this step all the intermediate nodes are excluded. For example, if node

1 and node 5 are not directly connected and the path of minimum distance is 1−3−7−5,

then arc a15 will be added whose length is equal to path 1 − 3 − 7 − 5. Node 3 and 7

will not be included in G unless they have hydrogen refuelling stations on them. After

constructing G, we randomly assigning hydrogen quantities in the range of -100 to 100 kg

to each station and ensure the net request is zero. In other words hi ∈ [−100, 100], ∀i ∈ Ψd

and
∑

i∈Ψd
hi = 0. We assume the hydrogen tube trailer has a capacity of 200 kg. The

trailer will start and end the route at one of the stations that require hydrogen pickup (

hi ≤ 0), meaning one of the stations is both a customer and the depot.

Both of the models in Section 5.4 and 5.5 are implemented with YALMIP and MATLAB,

which are then solved with CPLEX on a desktop computer with a 4-core Intel Core i7-

6700K processor and 16 GB of RAM. Each simulation is stopped when the optimization

gap is below 5%.

5.7 Simulation Results

The simulation results in this section are based on the experiment setup in the afore-

mentioned Section 5.6. The planning results of hydrogen refuelling stations are given in

Section 5.7.1 while Section 5.7.2 presents the validation of the 1-PDTSP model in the

context of hydrogen redistribution.
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Table 5.3: Comparison of optimization results using current and projected parameters

Current
case

Projected
case

Number of stations 11 19
Hydrogen production

capacity
766 kg/h 1616 kg/h

Max captured traffic flow 170 veh/h 359 veh/h

PV module 4,820 m2 7,796m2

Hydrogen tank capacity 3,064 kg 5,921 kg

BES 0 kW h 0 kW h

Total revenue
$ 944.5
millions

$ 1,229
millions

5.7.1 Results of hydrogen refuelling station planning

The comparison of planning results using current and projected parameters is summarized

in Table 5.3. Comparing to the current case, the component cost for electrolysers is

reduced due to technology development in the next 10-15 years. As a result, there are

7 more hydrogen refuelling stations built in the future with more than double the total

production capacities. The increase in production capacities, from 766 to 1616 kg/h,

enables the station to refuel additional 189 vehicles per hour in rush hours. Moreover,

the lower component cost also leads to the rise in the total area of PV modules and total

storage capacity of hydrogen tanks, from 4820 m2 and 3064 kg to 7796 m2 and 5921 kg,

respectively. The aforementioned changes in the projection contribute to a roughly 30 %

increase in total revenue to 1229 million dollars with the same investment budget.

It should be noted that there are zero BES installed at the hydrogen refuelling stations in

both cases. In fact, the BESs are only included in the hydrogen stations when we lowered

their cost to about 100 $/kWh, which is not a reasonable level that can be achieved in

the next 10-15 years, meaning unless the battery technology advances drastically including

BES in hydrogen refuelling stations may not viable in a purely economical sense. The BES

does offer other benefits such as load leveling and increasing resilience to grid disturbances,

but these benefits are not within the scope of this study and thus are not included in the

model.
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Figure 5.6: Optimized hydrogen production capacity using current (a) and projected (b)
parameters at each traffic node. The node with an electrolyser means that there is a
hydrogen refuelling station

Fig. 5.6 and 5.7 show the hydrogen production capacity and size of the hydrogen storage

tank at each node after optimization using the current and projected parameters. Note

that in Fig. 5.6a only 2 stations at node 2 and 11 have the maximum allowed production

capacity installed, while other stations have an electrolyser with production capacity in

the range of 31-90 kg of hydrogen per hour. Additionally, all of the stations have hydrogen

storage tanks built (see Fig. 5.7a), and the sizes of the tanks are proportional to the sizes

of electrolysers where each tank can hold about 4 hours worth of hydrogen produced at

the installed capacity. Given the same demand profile, a station with a small electrolyser

would need to produce hydrogen continuously and store the hydrogen in its tank to meet

rush-hour demand, while a station equipped with a large electrolyser can ramp up/down

the production of hydrogen according to demand and/or energy cost. At the current cost

level, it seems that it is more economically favorable to build a small electrolyser than a

large one. This is confirmed when we plotted the hourly hydrogen production at stations

in the current case. All of the stations are production hydrogen near capacity and did not

show variation though out the day. One of the example of hourly hydrogen production at

node 35 is shown in Fig. 5.8a .

Whereas in the projected case (Fig. 5.6b), 12 out of the 19 stations built are at maximum

allowed production capacity as the result of reduced electrolyser cost. More interestingly,

in Fig. 5.7b there are a few stations that do not have a hydrogen storage tank built. For

instance, as shown in Fig. 5.8b the production of hydrogen at one of the stations without
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Figure 5.7: Optimized hydrogen storage tank size using current (a) and projected (b)
parameters at each traffic node.
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Figure 5.8: Hourly hydrogen production at the refuelling station on node 35 in the current
(a) and projected (b) case.

a tank, still at node 35, is actually varying according to the hydrogen demand which is

proportional to traffic flow. This means the reduction in component cost can affect how a

hydrogen refuelling station operates. Although at a real-life hydrogen station, a hydrogen

buffer tank is always needed to at least temporarily store the hydrogen produced by the

electrolyser.

In Fig. 5.9, for both the current and projected cases, the majority of the stations have built

the maxim allowed size of PV modules. The economical reason for installing PV modules is

that the time window of PV output (around 7:00-20:00) coincides with the peak(between

14:00-21:00) and shoulder (7:00-14:00) TOU pricing of the grid supply, thus significantly

offsetting the increase in hydrogen production costs caused by TOU pricing. The amount

of money spent buying electricity from the grid with and without PV at the hydrogen

refuelling station (node 35) in the current case is shown in Fig.5.10. It can be seen that

during 14:00-1500 the PV module reduced the energy cost by around 300 $/h, and the

122



5.7.1 Results of hydrogen refuelling station planning

0 5 10 15 20 25 30 35 40

Index of traffic node

0

100

200

300

400

500

P
V

 s
y
s
te

m
 s

iz
e
 (

m
2
)

(a)

0 5 10 15 20 25 30 35 40

Index of traffic node

0

100

200

300

400

500

P
V

 s
y
s
te

m
 s

iz
e
 (

m
2
)

(b)

Figure 5.9: Optimized solar module size using current (a) and projected (b) parameters
at each traffic node.
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Figure 5.10: Hourly energy cost at node 35 with and with out PV in the current case

over cost saving is about 1750 $ for the entire day. The significance of this offsetting effect

is that, even at the current cost level, a private company has a tangible monetary incentive

to include PV generation when planning for hydrogen refuelling stations in addition to

the social/environmental benefit in reducing carbon emission.

In order to better understand the impact of different component on the total profit. A

sensitivity analysis is also conducted based on the cost level of the current case. In this

analysis the cost of each of the major component, namely the electrolyzer, PV module,

storage tank, BES and the fixed per station cost were increased/decreased by 30% each,

the values of the changed cost levels are given in Table 5.4. The impact of varying cost

levels on the total revenue is plotted in Fig. 5.11. Please note that since the increase of

electrolyzer cost resulted in a 100% reduction of total revenue, we have to truncate the

plot to better visualize the effect of other components. As it can be seen in Fig. 5.11,

the changes in electrolyzer cost has the most significant effect on the total revenue. For

instance, if the electrolyzer cost increase by 30%, hydrogen refuelling stations become
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Figure 5.11: Tornado chart of the impact on total profit, with the negative impact of
electrolyzer truncated.

Table 5.4: The decreased and increased cost levels of the current case for sensitivity
analysis

Decreased Base Increased

cT 280 $/kg 400 $/kg 520 $/kg

cH

86,400
$/kg · h−1

123,390
$/kg · h−1

16380
$/kg · h−1

cP V 70 $/m2 100 $/m2 130 $/m2

cB 380 $/kW h 540 $/kW h 700 $/kW h

cfixed $ 175,000 $ 250,000 $ 325,000

economically unfeasible under the current setting. This is unsurprising as electrolyzer

dominates the total cost of all the hydrogen refuelling stations. In addition, the variation

in BES cost does not have any impact on the total revenue. As mentioned before, BES

only become financially viable if the cost lowers to 100 $/kWh, thus BESs are still not

built this analysis. The effect of PV cost is also notable, as it has the second greatest

negative impact on revenue when increased. However, when the PV cost decreased, it has

the least effect on revenue. This is due to the fact that in the base case most stations

already have the maximum (or near maximum ) allowed PV built, thus further reduction

in PV cost does not significantly affect total revenue.

An additional comparison experiment is conducted to evaluate the benefit of using SOCP

formulation over the more standard SDP formulation for DN constraints. Please note

that this part of the experiment is solved using MOSEK under YALMIP and MATLAB,

as CPLEX cannot be used to solve SDP. The SDP formulation of DN in [279] is used as
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Table 5.5: Comparison of computation time and final result of SOCP and SDP formula-
tions

SOCP SDP

Optimization gap 5% 5%
Computation

time
2728s 6805s

Total profit
$945.2
million

$945.6
million

Figure 5.12: Hydrogen redistribution result

an example. The result for this experiment is shown in Table 5.5. It can be seen that the

difference in objective value is about 0.05% but the computation time of SDP formulation

is more than double that of SOCP formulation. In other worlds the SOCP formulation

can achieve comparable results in much less time than SDP formulation.

5.7.2 Results of hydrogen redistribution

The simulation result for hydrogen redistribution in the projected case is shown in Fig.

5.12. The blue dots are the hydrogen refuelling stations. The arrows indicate the path and

direction the tube trailer travels. The red numbers are the amounts of hydrogen that need

to be picked up/delivered at each station in kg, while the numbers in black are the amount

of hydrogen on the tube trailer when it arrives at each of the stations. It is clear that all

the pickup and delivery requests have been fulfilled, thus proving the effectiveness of the

implemented model. Furthermore, the network of hydrogen refuelling stations acquired

greater flexibility and resilience to fluctuations in hydrogen demand. In this case study

the amount of hydrogen that needs redistribution is 475 kg/day, or about 15 % of the
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daily hydrogen production in the current case. Assuming the levelized transportation cost

for hydrogen is about 1$/kg [288], then the annual redistribution cost is 173375 $/y.

5.8 Conclusion and Future works

In this chapter, we formulated a planning model for hydrogen refuelling station that can

simultaneously optimize the sizing and sitting of the hydrogen stations. The planning

model is based on the CFRLM, while considering additional constraints specific to the

hydrogen refuelling stations as well as DN constraints. The main components considered

when sizing the hydrogen refuelling stations include the electrolyser, the hydrogen storage

tank, PV panels, and BES. The main novelty of this chapter is that the planning model

also includes the profitability of the stations. Furthermore, this chapter also analyzed

the effect of the change in component cost on the profitability of stations. Additionally,

during the operation of the hydrogen refuelling stations, a number of factors can cause

an imbalance in hydrogen production and demand. For instance, the traffic flow patterns

might change after the stations have been built, thus altering the hydrogen demand at

each location. In this chapter, the hydrogen redistribution issue is treated as a 1-PDTSP

under mild assumptions.

A case study using real-life TN and DN data of western Sydney is conducted to validate

the planning model. The validation is performed under two settings. These two settings

represent the current level of cost associated with building hydrogen stations and the

level of cost that could be reached in the next 10-15 years. Experimental results show

that, as expected, the profitability of the hydrogen refuelling stations will increase which

is attributed to the reduced cost in the future. In addition, the reduction in cost level

may alter how some of the stations operate. Moreover, the experiments revealed that

even under current cost levels PV panels can reduce the operational cost of the stations.

However, the BES is not economically viable in neither the present nor the future case.

The experiment in Section 5.7.2 presents an instance of hydrogen redistribution in the

case of an imbalance between hydrogen production and demand.
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To sum up, the proposed planning model is able to optimise the sizing and sitting of

hydrogen refuelling stations, while considering the TN and DN constraints, by trying

to minimize the overall cost and maximise revenue at the same time. Through the case

study, the effect of reduced cost on the operation of hydrogen stations is revealed, allowing

companies to optimally allocate budget.

There are several areas of our work that can be improved in future works. To begin with,

one can study the impact of the composition of different type of demand at each TN and

DN node on the planning of hydrogen refuelling stations.
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Chapter 6

Conclusion and Future Directions

6.1 Thesis conclusion and contributions

With transportation being the second largest GHG emitting sector [1], reducing emissions

from transportation is pivotal in the fight against the climate crisis. Both BEVs and

FCEVs are effective tools in reducing GHG emissions from road transport, but the lack

of supporting infrastructure, particularly the insufficient number of EVCSs and HRSs,

hinders the deployment of BEVs and FCEVs. To address this issue and promote adoption

of BEVs and FCEVs, this thesis proposed three EVCS and HRS planning models and

frameworks. The major contributions of this thesis are as follows:

The current status of technology and research related to the hydrogen life cycle from the

literature is summarised in Chapter 2 (under review), with a focus on using hydrogen as

an energy carrier for transportation. Hydrogen production techniques (including reforms

and electrolysis), hydrogen storage and transport methods for pure hydrogen and hydrogen

carriers, point-based and flow-based HRS planning models, and all major types of fuel cell

technologies are covered in this chapter. The limitations and technical challenges faced by

each of these techniques,methods,models and technologies are detailed, such that future

researchers can focus on addressing these issues. Since it is not possible to cover all
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the details of every topic, additional references are provided for readers that may have a

particular interest.

In Chapter 3 (published), a market-based planning model for EVCSs is developed,

in which different service providers compete with each other in the same region. A

data-driven framework of EVCS planning is proposed. In this frame work, a matrix

factorisation-based spatial-temporal analysis is used to impute the missing data in the

traffic flows. To predict the EV charging demand, a deep learning approach is developed

with a multi-relation GCN encoder-decoder architecture. The optimal budget allocations

for each competing company are derived from a Cournot competition model. A parallel

algorithm is deployed to find the equilibrium. To make the planning framework more

practical, DN constraints are considered in the final step of sizing each of the EVCSs. A

real world case study of Sydney, Australia, is used to validate the proposed framework.

In Chapter 4 (published), a multi-objective optimisation model that can simultaneously

plan the sizing and sitting of EVCSs as well as the local DN expansion is developed while

adopting a novel scenario generation to speed up computation and improve accuracy. Wind

power is included in this planning model. EV charging demand is calculated with a prob-

abilistic model using the SG method. Finally, the optimal planning results are obtained

with MONAA. Comparison experiments show that the SG method outperforms commonly

used FFS and BR approaches in terms of both computation time and approximation accu-

racy. The inclusion of renewable generation lowered the overall cost. Moreover, simulation

studies show that MONAA can achieve better results in less time compared to widely used

multi objective optimisation tools, namely NSGA-II and MOEA/D.

A planning model that optimise the location and capacity of HRSs and their components

(electrolysers, solar panels and storage tanks) while maximizing the captured traffic flow

and profit is developed in Chapter 5 (accepted for publication). The formulation of the

planning model is modified from CFRLM with HRS specific constrains and DN constraints.

A sensitivity study is conducted to examine the profitability of the HRSs under varying

component costs. To address the issue of hydrogen imbalance during HRS operation, a

hydrogen redistribution method under mild assumption is adopted based on the 1-PDTSP.
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A case study of western Sydney is carried out with real-life TN and DN data. Two different

experiment with current and projected component costs are conducted. The case study

shows that, as expected, the profitability of HRSs will increase as the component costs

decrease. Additionally, it is observed that the lowered component cost resulted in different

operating modes in some of the HRSs. It is also noted that even with current cost levels,

PV modules will reduce the overall cost of HRSs thereby increasing profitability, while

BESs are not feasible-even at the projected (reduced) cost level.

6.2 Future works

The research covered in this thesis still has many areas for improvement. Specifically, in

terms of coordinated planning of EVCSs and DN expansion (Chapter 4), here are some

working directions

• Currently, capacity and the placement of renewable generation (if any) are chosen

in advance. The Pareto frontier can be further improved if the optimization of the

renewable generation can also included in the planning step. Further studies can

also include other forms of renewable generations,such as Solar and hydro.

• Battery Energy Storage System (BESS) is often considered as a potential solution to

alleviate the uncertainty problem of EV charging demand and renewable generation.

Another advantage of BESS is its ability to improve distribution network stability.

Hence, BESSs should be included in the next iteration of the planning model.

• More parochially relevant planning results can be obtained by using real WORLD

DATA FOR transportation network and distribution network

• Several issues may arise during the operations of the EVCSs, for example, sensor fail-

ure, latency problems and packet loss. One can leverage data processing approaches

like deep learning to address these issues.

Here are some directions for future research regarding the whole thesis.
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• In this thesis the planning models only considers HRSs or EVCSs. In reality both

BEVs and FCEVs are going to be mass adopted in order to reduce GHG emissions.

HRSs and EVCSs will likely coexist in the same area. Thus, there is an imperative

for a coordinated planning model that optimally locates and sizes both EVCSs and

HRSs in the same region while considering other practical problems such as DN

expansions.

• EVCSs and BEVs have long been viewed as useful tools for peak shaving [289]. With

the advance of reversible fuel cell systems [290], there exists the potential for using

HRSs as peak shaving and load levelling devices by producing and storing hydrogen

from grid power during off-peak hours, then releasing electricity from said hydrogen

to the grid in peak hours.

• The BEVs or FCEVs in each study are assumed to be homogeneous; in other words,

all BEVs have the same battery capacity and all FCEVs have the same fuel tank size.

But, as the market shares of BEVs and FCEVs grow, the homogeneous assumption

will no longer be valid due to the increased number of models and makes of BEVs

and FCEVs. Consequently, future planning models should consider heterogeneous

traffic flows or even use the detailed traffic flow breakdown.
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