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Abstract

Multiple imputation and maximum likelihood estimation (via the expectation-

maximization algorithm) are two well-known methods readily used for analyzing

data with missing values. While these two methods are often considered as being

distinct from one another, multiple imputation (when using improper imputation)

is actually equivalent to a stochastic expectation-maximization approximation to

the likelihood. In this thesis we show how these two methods are equivalent, and

further, exploit this result to show that familiar likelihood-based approaches can

be used to enhance multiple imputation’s performance in: (1) model selection,

where familiar Akaike’s Information Criterion (AIC) and the Bayesian Informa-

tion Criterion (BIC) can be used to choose the imputation model that best fits the

observed data; (2) hypothesis testing, where the familiar likelihood-ratio statis-

tic can be used to perform composite hypothesis testing with multiple imputed

data; (3) measurement error modelling, where familiar functional methods, such

as Simulation-extrapolation and Corrected score, can be used to account for mea-

surement error with multiple imputed data. We verify these results empirically and

demonstrate the use of the methods on several classical missing data examples.
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Abbreviation

The following table is a list of the most persistent abbreviation and the reader may

find it useful for reference. However, abbreviation will be introduced in the text

as needed.

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

CS Corrected score

EM Expectation-maximization algorithm

MAR Missing at random

MCAR Missing completely at random

MCEM Monte Carlo Expectation-maximization algorithm
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Notation

The following table is a list of the most persistent notation and the reader may

find it useful for reference. However, notation will be introduced in the text as

needed.

I Identity matrix

I(θ) Fisher information matrix

J(θ) Observed information matrix

KL(.∣∣.) Kullback-Leibler divergence

l(θ ∣ y, r) Observed log-likelihood, also denoted by l(θ) for short when (y, r) is

obvious

m Number of missing observations

M Number of multiple imputations

n Sample size

o(an) bn = o(an), for sequences an and bn indexed by n, means ∀ε > 0,

∃n0 such that for n > n0, bn/an < ε;

O(an) bn = O(an) means ∃C > 0, C constant, and ∃n0 such that for n > n0,

bn < Can;

op(an) Xn = op(an), Xn random variables indexed by n, means Xn/an → 0

in probability;

Op(an) Xn = Op(an) means ∀ε > 0 ∃C > 0 such that P (∣Xn∣ ≤ Can) ≥ 1 − ε.

p(. ∣ .) Conditional distribution

r Missingness indicator vector
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U Measurement error variance
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to its stationary distribution

θ Model parameters

∣θ∣ Number of model parameters

U Measurement error

W Error-contaminated explanatory variable
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Chapter 1

Introduction

1.1 What are missing data?

“Can nothing be something?” When the Indians in the fifth century A.D. reached

the idea of quantifying the absence of all quantity by zero that played a signif-

icant role in the history of mathematics. To brilliantly imagine a number of its

own to denote absence revolutionalized the number system and gave rise to the

fundamentals of mathematics we use today such as algebra and calculus (Kaplan,

2000).

In a similar spirit, Rubin (1976) proposed to recognize values that are not ob-

served as “missing” values and introduced a random variable of its own to denote

missingness. That is, we assume that if we had better techniques for data col-

lection we would have observed their actual underlying values (Little and Rubin,

2002). Missingness is denoted by an indicator variable for whether or not a value

is observed and, conditional on other variables in the dataset, comes from an un-

derlying distribution i.e., missingness mechanism, that captures the probabilistic

reason for missing a value.

Missing data are planned observations not available for use in the analysis of a

study. These values are missing from the intended sample of the population study

after data collection and their presence in a data frame changes its shape away

from a rectangular matrix, resulting in an “incomplete” data. Missing data are



2 CHAPTER 1. INTRODUCTION

surprisingly very common in quantitative research studies due to the limitations

of the available techniques for data collection. Below, we look at some of the

situations where missing data can appear, and further, discuss why the presence

of missing data makes the statistical analysis special.

1.2 Where does missingness appear?

Missing data commonly arise in almost any quantitative research area. Examples

include epidemiological, biological, agricultural, experimental and environmental

studies as well as in social sciences, economics, psychology and criminology. Data

can be missing on human subjects as well as on non-human ones, across time in

longitudinal studies as well as cross-sectionally, confined to a single variable as

well as to multiple variables, on response variables as well as on explanatory or

auxiliary variables, for an entire unit of analyses as well as for single items mea-

sured on particular variables, from an interval on the unit of measurement as well

as below or above a specified threshold, at individual levels as well as at group

levels or at community levels. For example, suppose that we are interested in fol-

lowing up the mental health status of Australian adolescents in the state of New

South Wales from secondary school year to their mid 20s in order to understand

how mental disorders, such as depression and anxiety, persist into adulthoods.

Furthermore, suppose that data were collected on a group that frequently moved

their residential place and this posed difficulty in tracking some of the participants

for at least once in adolescence as well as once in adulthood. For these partici-

pants who missed a whole wave (time point), data were missing for an entire unit

of analysis (or unit nonresponse). Or, suppose that among the remaining partici-

pants in a particular wave, some of the depression scores (response) were missing

because some of the more depressed participants were not motivated enough to

answer the questionnaire. For others, some of the household incomes (explana-

tory) were missing due to sensitivity of the question. In these cases, data were

missing for single items measured on particular variables (or item nonresponse).

Furthermore, missingness can occur when collecting data directly from the study

subjects as well as when collecting data from existing records; at different stages
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of a study i.e., at the recruitment stage prior to the implementation of study, at the

implementation stage, or at the follow-up stage in randomized clinical trials as

well as in longitudinal studies (McKnight et al., 2007, p. 5); can be related to the

study subjects, the study design, and the interaction between the two (McKnight

et al., 2007, p. 5) as well as to administrative errors and measurement instru-

ments’ failures (Molenberghs and Kenward, 2007, p. 6). For example, suppose

that we are interested in developing a housing price prediction model based on

the property records of the past year in Darwin, Northern Territory of Australia.

Furthermore, suppose that data were collected from the existing records of the

individual real estate agencies. Since the property data are entered manually by

the real estate agents, in a few records the listing or closing price was recorded

as less than $1000, or either one or both prices were missing. In others, the total

square meters of the house is recorded as smaller than the lot size, or the closing

date is earlier than the listing date. These values are examples of missing data

from existing records as well as missing data due to administrative errors.

Below, we discuss several motivating real-data examples in detail to elaborate

further on where the missing data can appear. We will use the following examples

as a basis for our numerical works in later chapters.

1.2.1 Motivating examples

We are motivated by three real-data examples in health research and by another

two real-data examples in ecological research studies which consist of missing

data. These datasets are quite different from each other varying in samples size,

in the number of covariates and in response type. Furthermore, we are inspired

by a food-safety research study where missingness occurs below a certain thresh-

old and construct a simulation study based on these types of missingness later in

Section 3.3.1. Below, we discuss these examples in details.

Pima Indian Women data. In our first example we analyze data collected on

n = 768 Pima Indian women of at least 21 years of age living near Phoenix, Ari-

zona who were tested for diabetes according to the World Health Organization
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criteria. These data were collected by the US National Institute of Diabetes and

Digestive and Kidney Diseases, and are available in the mlbench R-package. These

data were analyzed in Miller et al. (1965) and further in Smith et al. (1988) and

in Ripley (1996). The dichotomous response variable indicates whether or not

diabetes was diagnosed within five years of the examination (positive/negative).

The explanatory variables are

1. number of pregnancies,

2. plasma glucose concentration at 2 hours in an oral glucose tolerance test,

3. diastolic blood pressure (mm Hg),

4. triceps skin fold thickness (mm),

5. 2-hour serum insulin (µU/ml),

6. body mass index (kg/m2),

7. diabetes pedigree function,

8. age (years).

Figure 1.1 shows the proportion of missingness for each pattern of multivariate

missing data in the explanatory variables. There are 5 values missing (0.6%)

for plasma glucose concentration, 11 values (1.4%) for body mass index, 35 val-

ues (4.6%) for diastolic blood pressure, 227 values (30%) for triceps and 374

values (49%) for serum insulin. Also, there are 192 values (25%) jointly missing

for triceps and serum insulin. The relatively high proportion of joint missingness

in triceps and serum insulin suggests that there might be a potential association

between the variables that cause missingness in these two. Here, our interest is in

predicting diabetes given all the explanatory variables whilst accounting for mul-

tivariate missing data in the predictors. In particular, we are not certain whether

we should account for the missingness mechanism in the analysis or deem it to be

ignorable. We address this problem in Section 3.6.
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Figure 1.1. Missingness proportion (left) and missingness pattern (right) for the multivariate miss-
ing data in Pima Indian data. Most of the data is missing (in red) in serum insulin followed by
triceps, where 49% of the data is missing in serum insulin and 30% in triceps, and with 25% of the
data jointly missing in these two variables. About 51% of the data is fully observed (in blue).

Ozone data. In this example we analyze Los Angeles ozone pollution data col-

lected on 366 observations in 1976 available in the mlbench R-package. This

dataset was first analyzed in Breiman and Friedman (1985) and later in many

studies such as in Buja et al. (1989) and in Friedman and Silverman (1989), and

more recently, in Eugster and Leisch (2011) and in Wang et al. (2015). It consists

of a response variable – the daily maximum one-hour average ozone reading, and

of 9 meteorological explanatory variables. The meteorological variables are

1. temperature (degrees F) measured at

• El Monte, CA

• Sandburg, CA

2. inversion base height (feet) measured at Los Angeles International Airport

(LAX)

3. humidity (%) measured at LAX

4. visibility (miles) measured at LAX

5. wind speed (mph) measured at LAX
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6. pressure gradient (mm Hg) from LAX to Daggett, CA

7. inversion base temperature (degrees F) at LAX

8. 500 millibar pressure height (m) measured at Vandenberg AFB

There are 139 missing observations for temperature recordings at El Monte, in-

dicating about 38% missing proportion in this variable. Measurements of climate

variables (such as, temperature, humidity, rainfall, etc.) are usually susceptible

to some uncertainty, see Stoklosa et al. (2015) for further details and references.

We therefore assumed that temperature is subject to classical measurement er-

ror (see Section 1.5.3). Different studies have shown that temperature is the

most influential predictor of ozone reading (Breiman and Friedman, 1985; Efron

and Tibshirani, 1986; Casella and Moreno, 2006; Miller, 2002). Here, for our

purposes, we are interested in predicting ozone reading given temperature at El

Monte, inversion base height and humidity whilst accounting for both missingness

and measurement error in the temperature variable. We address this problem in

Section 5.4.

Survival of infants data. The following example is taken from Example 9.8

of Little and Rubin (2002) where a 23 contingency table on the survival of infants

is analyzed in the presence of missing data. Suppose we have three dichotomous

variables of Prenatal care (i = {Less,More}), Survival (j = {Died,Survived}), and

Clinic (k = {A,B}).

Let nijk denote the total count of the ijkth cell, and n = ∑i∑j∑k nijk be the total

sample size. Table 1.1 is (artificially) partially classified for about 26% of the data

(255 cases out of n =970) where we observed only the sums nij. instead of all

nijk values. The remainder of the data (715 cases out of 970) are completely

observed. Also, let πijk denote classification probability for the ijkth cell. The

response variable is the cell counts, nijk. Subject to missingness, these cell counts

can be modelled by assuming different associations between the three predictors:

Survival (S), Prenatal care (P), and Clinic (C). Here, our objectives are (1) to

select the best association between predictors that explains the missingness in the



1.2. WHERE DOES MISSINGNESS APPEAR? 7

cell counts and (2) to select the best association between predictors that explains

the data whilst accounting for the missing cell counts. We address both of these

problems in Sections 3.4 and 4.4, respectively.

Table 1.1. Survival of infants taken directly from Example 9.8 of Little and Rubin (2002).

Clinic (C) Prenatal care (P) Survival (S)
Died Survived

A Less 3 176
More 4 293

B Less 17 197
More 2 23 complete = 715

? Less 10 150
More 5 90 partial = 255

Left-censored data. Nitrate is a chemical element that is part of the nitrogen

cycle in nature and can be found in soil, water, and biomass. In addition, high

levels of nitrate can also be found in plants and vegetables due to its signifi-

cant role as a fertilizer in agriculture. However, consumption of high amounts

of nitrates from vegetables as well as inappropriate storage of cooked vegetables

can potentially lead to adverse health effects such as methaemoglobinemia and

carcinogenesis (EFSA, 2008, 2010). Quijano et al. (2017) studied a total of 533

samples of seven vegetable species in order to investigate the toxicological risk

associated with the intake of vegetables exposed to nitrate. The vegetable species

included carrot, lettuce, ice-berg lettuce, artichoke, chard, spinach and potato.

Data on nitrate levels were collected from the Valencia Region, Spain from 2009

to 2013. However, between 0%− 62.5% of the measured nitrate concentration lev-

els were missing below a limit of detection (80 mg/kg) among the seven vegetable

species. Observations that are missing below the limit of detection of the instru-

ment or technique used to measure observations are referred to as left-censored in

the literature. The terminology of left censoring emerges from the fact that the

left side of the distribution of sample values is truncated at the limit of detection.

Left-censoring commonly occurs in agricultural, environmental, epidemiological,

biological and occupational studies. We did not have access to this dataset, but

we used it as an inspiration for a simulation study with left-censored values in

Section 3.3.1.
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Eastern barred bandicoot data. In this example we analyze data on n = 77

Eastern barred bandicoots Perameles gunnii in Hamilton, South-eastern Victoria,

Australia collected in November, 2012. We considered two covariates that were

collected during trapping: gender, which was correctly identified each time an

individual was seen; and body weight (weight), which was missing on some oc-

casions upon capture. There were 50 unique females and 27 males captured in

this study period. There were 14 individuals without the record of body weight,

hence the proportion of missing data was 18.2%. The same dataset was used

in Stoklosa et al. (2019) where the interest was in estimating the population size

of bandicoots via capture-recapture methods. Here, our interest is in predicting

body weight given the bandicoot gender whilst accounting for missing data in the

body weights. However, we are not certain whether we should account for the

missingness mechanism in the analysis or deem it to be ignorable. We address this

problem in Section 3.5.

1.3 Why does missigness make statistical analysis

special?

Missing data hinders the ability to apply standard statistical analyses designed for

complete datasets (Schafer and Graham, 2002). The presence of missing data in a

dataset makes the data matrix to lose its shape as a rectangular matrix. Since most

of the standard statistical analyses were designed for handling data in rectangular

matrix shapes, e.g., regression analysis, missing data makes the data unsuitable

for standard statistical analyses and complicates the analysis.

Moreover, missing data can restrict the ability to draw final conclusions from a

study and could lead to incorrect inferences (Graham, 2009). Missing data, in

particular in medium to high proportions, can affect the conclusions from a study

and will compromise their validity unless missingness is completely due to chance,

a strong assumption that is not always met. This is because the study aimed to

make inferences about some aspects of an intended sample which would be fully

observed if we had better techniques for collecting data. More specifically, missing



1.4. STRUCTURE OF THE REMAINING CHAPTERS 9

data can lead to incorrect inferences by (1) producing bias in parameter estima-

tion (Rubin, 1987; Schafer, 1997; Little and Rubin, 2002, p. 19) and (2) resulting

in efficiency loss (Little and Rhemtulla, 2013; Little and Rubin, 2002, p. 19). Miss-

ing data can lead to biased estimates of parameters if they systematically differ

from observed data in terms of one or more key variables (Raghunathan, 2004),

that is, if they reduce representiveness of the samples for analysis. Bias hinders the

ability to generalize the results of a study, since the result would be different if we

had observed the missing values. Furthermore, missing data can cause efficiency

loss and increased standard errors if they carry some information about the pa-

rameters that is not captured in the observed values. The magnitude of efficiency

loss depends on the proportion of missing information due to missingness as well

as on the objective of the analysis (Carpenter and Kenward, 2012, p. 9).

Finally, it should also be pointed out that missing data can decrease statistical

power of a study (Peng et al., 2006). Statistical power is the probability of rejecting

the null hypothesis when is it false. Unless the number of observed data is still

substantially large, the lost data will result in fewer observations available for

analysis and this reduction in sample size will reduce statistical power to detect a

significant effect depending on the proximity of the effect size to the null value.

1.4 Structure of the remaining chapters

In this thesis, we establish the close link between two different missing data anal-

ysis approaches commonly used in the literature to handle missingness, namely

multiple imputation and maximum likelihood estimation. This connection is fur-

ther exploited by showing that standard likelihood-based tools available in the

maximum likelihood estimation literature are applicable to problems in the mul-

tiple imputation literature. Specific contributions contained in this thesis focus

on addressing the question of: (1) selecting an imputation model to use to im-

pute missing values with multiple imputation, (2) hypothesis testing and testing

of goodness-of-fit with multiple imputation, and (3) measurement error modelling

with multiple imputed data.
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The following section 1.5 in this chapter introduces some topics relevant to the

remaining chapters and is included for general reference. The rest of the thesis

is organized as follows. Chapter 2 looks at two well-known missing data analysis

methods in the literature, namely multiple imputation and stochastic expectation-

maximization algorithm as stochastic approximation to maximum likelihood esti-

mation, and shows how these two methods are equivalent. Chapters 3–5 explore

some of the contexts in which this equivalence allows access to likelihood-based

tools for enhancing multiple imputation’s performance. Chapter 3 investigates ac-

cess to likelihood-based tools such as information criteria for imputation model

selection. Chapter 4 investigates access to likelihood-based tools such as likeli-

hood ratio statistic for hypothesis testing and testing of model goodness-of-fit with

multiple imputed data. Chapter 5 numerically investigates access to likelihood-

based tools such as Simulation extrapolation and Corrected score to be combined

with multiple imputation in order to account for the combined effect of missing-

ness and measurement error in explanatory variables. Finally, Chapter 6 provides

a summary discussion and outlines avenues for future research.

1.5 Toolbox for the remaining chapters

In this section we provide a brief outline of some well-known methods which

will be used in various chapters throughout the thesis. The methods presented

in this toolbox are not new and are simply intended to give the reader a clearer

exposition and quick referral of the methods used. We will not review standard

statistical methodology like Akaike’s Information Criterion and likelihood ratio

tests but will refer the reader to various citations if they appear throughout this

thesis. All coding in this thesis was done in R (R Development Core Team, 2019).

1.5.1 Missing data analysis

Suppose y is a vector of observed data, z is a vector of the missing data, and r

is a vector of missingness indicators where each component of r is either 0 if the

data point is missing or 1 if the data point is observed. Also, θ denotes a vector

of unknown model parameters. For now we assume that these data are missing
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not at random (MNAR) but note that the methods presented below are also ap-

plicable for missing at random (MAR) data, since this is a special case of MNAR

where missingness is ignorable, see Rubin (1976) and Little and Rubin (2002, pp.

11–12) for a detailed discussion on the types of missingness mechanisms. Data

are MAR if missingness depends only on the observed variable whereas data are

MNAR if missingness depends on the observed variable as well as the missing

variable itself. Missingnes is ignorable if the observed variable is considered to be

sufficient to offset the effects of missingness i.e., data are MAR. Under the ignor-

ability assumption, the conditional distribution of the missing variable given the

observed variable and the missingness indicator, p(z ∣ y, r, θ), will not depend on

the missingness model anymore and can be simplified as p(z ∣ y, θ).

Let p(y, r ∣ θ) be the observed data likelihood and p(y, z, r ∣ θ) be the complete data

likelihood. To estimate θ, we maximize the observed data likelihood, p(y, r ∣ θ),

which, in the presence of missing data, is obtained by integrating out the missing

data from the complete-data likelihood, p(y, z, r ∣ θ):

L(θ; y, r) = p(y, r ∣ θ) = ∫ p(y, z, r ∣ θ)dz. (1.1)

However, the likelihood (1.1) may not be available in a closed form because of

analytically intractable integration or can be difficult to solve for many situations

in practice, such as for complex models or when the data are of high dimension.

We point out that in (1.1) and further in the thesis, we will avoid specifying the

region of integration when there is no confusion arising by doing that.

A common approach to missing data problems is to impute (fill-in) missing data,

z, with some plausible values that are a good summary of z, to which we obtain

a (pseudo-) complete dataset. The rationale underlying imputation of the missing

values is to edit an incomplete dataset into a complete dataset (rectangular ma-

trix) in order to be able to apply standard statistical analysis methods. The goal

of imputation is to combine available information from the observed data with

statistical assumptions about the missingness mechanism in order to obtain valid

inferences about a population (Dong and Peng, 2013). Note that, the goal of im-

putation is to obtain valid inferences from the data rather than estimation of the
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missing values. In Chapter 2, we discuss two well-known missing data analysis

methods that use (multiple) imputation to account for missingness in the analysis.

1.5.2 Variational approximation

Variational approximation (Jordan et al., 1999) refers to a class of determinis-

tic approximation techniques that are based on variational methods. The root

of variational methods lies in the “calculus of variations”, hence the terminology.

Calculus of variations is a field of mathematical analysis that seeks to optimize

a functional over a class of functions on which that functional depends, using

variations (small changes) in the functions and the functional itself. Although

there are no approximations in the variational theory, variational methods can be

used to find approximate solutions in statistical inference and estimation when

some restriction is imposed on the class of functions, usually in a way to enhance

tractability (Ormerod and Wand, 2010). Variational methods as approximation

techniques are readily applied in a wide range of settings, including regression

models with missing data (Faes et al., 2011), hidden Markov models (Foti et al.,

2014), time series models (Archambeau et al,, 2007), hierarchical models (Wool-

rich et al., 2004), and Gaussian process models (Hensman et al., 2013).

The key idea underlying variational approximation is to allow for an optimization

problem to be relaxed by approximating the function to be optimized. Variational

approximation can be defined as a (trade-off) method for optimizing a likelihood

function while enhancing its tractability, hence, making approximate inference for

model parameters. Variational approximation approximates a likelihood function

by other likelihood functions for which inference is more tractable while the ap-

proximations are guided by a discrepancy measure. Ormerod and Wand (2010)

and Blei et al. (2017) gave detailed explanations of variational approximation us-

ing familiar examples for statisticians and pointed out to some relevant literature

on variational approximation.

We make use of variational approximation techniques in the missing data context.

We briefly discuss variational approximation here and see its use in imputation
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model selection in Chapter 3.

One particular situation where variational approximation is useful is when the

likelihood specification involves integrating out a latent variable z, as given in

equation (1.1). Suppose that our interest is in obtaining θ̂ = arg maxθ log p(y, r ∣ θ)

where

log p(y, r ∣ θ) = log∫ p(y, z, r ∣ θ)dz,

however, evaluating log p(y, r ∣ θ) by a tractable marginalizing over the latent vari-

able z is difficult. Our motivation for using variational approximation in the miss-

ing data context stems from this.

Denote p(z ∣ y, r, θ) as the exact conditional distribution of the latent variable z

given the observed variables (y, r) and let q(z) be a variational distribution over

the latent variable z. Define an approximate function Q, for which local optimiza-

tion is computationally easier, as

Q = −KL(q∣∣p) + log p(y, r ∣ θ),

where KL(.∣∣.) denotes the Kullback–Leibler divergence (Kullback and Leibler,

1951) and KL(q∣∣p) measures the discrepancy of the arbitrary approximation q(z)

of the likelihood from the exact likelihood p(z ∣ y, r, θ). Kullback–Leibler diver-

gence is given by

KL(q∣∣p) = ∫ q(z) log
q(z)

p(z ∣ y, r, θ)
dz.

The approximate function Q has the following characteristics:

1. ∀q(z), we have Q ≤ log p(y, r ∣ θ) i.e., Q is the lower bound for log p(y, r ∣ θ)

over z

2. the slack in the bound is given by KL(q∣∣p), more specifically:

• if KL(q∣∣p) = 0 then Q = log p(y, r ∣ θ) i.e., the exact observed log-

likelihood function log p(y, r ∣ θ) is recovered when there is no diver-

gence between the variational likelihood function q(z) and the exact

likelihood function p(z ∣ y, r, θ), that is, when q(z) = p(z ∣ y, r, θ)
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• for KL(q∣∣p) > 0, the larger KL(q∣∣p) the more q(z) diverges from the

exact likelihood p(z ∣ y, r, θ).

We approximate the log-likelihood function log p(y, r ∣ θ) by a q(z) for which a

lower bound Q is more tractable than log p(y, r ∣ θ) and obtain a variational ap-

proximation to arg maxθ log p(y, r ∣ θ) by solving a new maximization problem over

the lower bound arg maxθQ, where tractability is achieved by restricting q(z) to a

more manageable class of distributions. Clearly, maximization of the lower bound

Q is equivalent to minimization of the Kullback–Leibler divergence of q(z) from

p(z ∣ y, r, θ).

1.5.3 Measurement error modelling

Measurement error (or errors-in-variables) modelling is a well-known technique

used to correct for measurement uncertainty in explanatory (or predictor) vari-

ables (Carroll et al., 2006). As discussed in the Ozone data example in Sec-

tion 1.2.1, temperature variables in the study were subject to uncertainty in the

measurement and consisted of missing values. We give a brief outline and some

generic notation used in measurement error modelling, we then present some new

methods which incorporate missing data into this framework in Chapter 5.

Consider a random variable X which is usually the predictor variable for a re-

gression model. We suppose that X is subject to zero-mean measurement error

U when we are unable to observe it directly and instead we observe an error-

contaminated measurement for X, which we denote as W . Let σ2
U be the measure-

ment error variance associated with U . This quantity is usually assumed known

but can also be estimated from repeated measurements of X or from validation

data (if available). Measurement errors can have two underlying structures for

relating W to X (Carroll et al., 2006, p. 26–32):

• classical measurement error models, which model the conditional distribution

of W given X. This model assumes that W = X + U , where U is the mea-

surement error, a random variable with mean 0 and variance σ2
U > 0 and is

independent from X. This model assumes that W is an unbiased measure-
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ment of X, and that W has larger variability than X.

• Berkson measurement error models, which model the conditional distribution

of X given W . This model assumes that X = W + U , where U is the mea-

surement error with mean 0 and variance σ2
U > 0 and is independent from

W . This model assumes that X has larger variability than W .

The classical measurement error is identified through the assumption that a mea-

surement error is independent from the true unobserved variable. Otherwise, the

measurement error is a Berkson error. Classical measurement errors are more

commonly studied in the literature due to the wide range of examples associated

with this type of error. The implication of a classical measurement error is perhaps

easily demonstrated in a simple linear regression analysis with explanatory vari-

able subject to measurement error. Suppose that Y = (Y1, . . . , Yn)⊺ is the response

variable and we are interested in the following linear model

Yi = β0 + β1Xi + εi, with E(εi) = 0, Var(εi) = σ2
ε , (1.2)

i = 1, . . . , n, where Xi is observed with an additive, independent measurement

error,

Wi =Xi +Ui, with E(Ui) = 0, Var(Ui) = σ2
U . (1.3)

From (1.2) and (1.3), the regression of Y on X may be written as

Yi = β0 + β1Wi + ηi, ηi = εi − β1Ui. (1.4)

This model resembles an usual simple linear regression model except that the

error term is clearly dependent on β1. Let β̂Y ∣X and β̂Y ∣W be the least square

estimators of the slope coefficient β1 from regression of Y on X in (1.3) and from

regression of Y on W in (1.4), respectively. Since Wi and Ui are correlated with

cov(Wi, Ui) = −β1σ2
U , it can be shown that

β̂Y ∣W = λ̂ β̂Y ∣X + op(1), λ̂ =
s2
X

s2
X + s2

W

,

where s2
X and s2

W denote the sample variances ofX andW , respectively (Stefanski,
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2000). Hence, ignoring the measurement error will result in bias attenuation (bias

towards 0) in the slope estimator due to the fact that 0 < λ̂ < 1. This result can

easily be extended to multiple linear regression models. For more technical details

in linear models see Fuller (1987) and Cheng and Van Ness (1999). For technical

details in nonlinear models see Carroll et al. (2006), and in nonparametric models

see Hall et al. (2018).

Besides error structure, the properties of the unknown values of X is a defining

characteristic in the measurement error analysis (Carroll et al., 2006, p. 25). Data

structure of X can be modelled by

• functional modelling methods, where X can be either fixed or random with

no distributional assumptions, or by

• structural modelling methods, where X is random with distributional as-

sumptions (usually Gaussian).

In this thesis, we strictly focus on classical measurement error structures in ex-

planatory variables. Various methods have been developed to handle measure-

ment error in explanatory variables, see Carroll et al. (2006). In Chapter 5 we

review two of these methods but focus on functional likelihood-based approaches

known as Simulation extrapolation (Cook and Stefanski, 1994) and Corrected score (Naka-

mura, 1990) which we use within a missing data framework.

1.5.4 Metropolis-within-Gibbs sampler

Metropolis-within-Gibbs sampler is a hybrid of two well-known Markov chain

Monte Carlo (MCMC) methods, namely the Metropolis algorithm (Metropolis and

Ulam, 1949; Metropolis et al., 1953) and Gibbs sampling (Geman and Geman,

1984; Gelfand and Smith, 1984). This is a powerful method used in various ap-

plications which allows for fitting sophisticated models. More specifically, MCMC

methods are useful in situations where it is difficult to sample directly from a

target distribution, such as in missing data problems, as in equation (1.1).

A Markov Chain is a sequence of steps, in which the next step of the chain depends
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only on the current step so that we may forget the past. Under certain regularity

conditions, the chain, with each step, gets closer to stabilising at a unique proba-

bility distribution, called the stationary or equilibrium distribution (Gelman et al.,

2013b, p. 275). Monte Carlo is a general term for a simulation technique based on

Monte Carlo integration. The Monte Carlo component is responsible for sampling

from approximate distributions at each step and ensures that the random draws of

missing data are independent (Schafer, 1999). A thorough discussion on MCMC

methods is given in Tanner and Wong (1987).

We will apply the Metropolis-within-Gibbs sampler in our numerical works in Sec-

tions 3.2.4 and 3.3.2 to simulate values for missing data in multivariate missing

data problems. We therefore provide the reader with some brief details here.

Metropolis algorithm. Suppose our goal is to generate samples from some dis-

tribution q(z) where q(z) = f(z)/c, and the positive normalizing constant c is not

known or is very difficult to compute. The Metropolis algorithm generates a se-

quence of samples from this distribution as follows. The algorithm starts from

some arbitrary initial value z0 that satisfies f(z0) > 0. Given current value of z′,

(a) sample a value z′′ from some proposal distribution g(z′′ ∣ z′), which is sym-

metric and denotes the probability of returning a value of z′′ given a current

value of z′,

(b) accept z′′ with probability min{f(z
′′)

f(z′)
,1}, otherwise retain z′.

The sequence (z0, z′, z′′, . . .) generates a Markov chain and when the steps (a)–(b)

are repeated a sufficiently large number of times, the chain eventually provides

samples from q(z), which do not depend on the starting values. The choice of

a symmetric proposal distribution can, for example, be based on a random walk

chain with z′ = z′′ + ε, where ε ∼ N(0, σε). In this context, σε is referred to as the

tunning parameter and can be adjusted so that the chains are mixed well i.e., the

space is explored.
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Gibbs sampling. Suppose our goal is to generate samples from some joint distri-

bution p(z1, . . . , zk), where it is far easier to sample from a sequence of univariate

conditional distributions, rather than to obtain the marginals by integration of the

joint density. The Gibbs sampler draws from univariate conditional distributions

in an iterative manner to eventually sample from the distribution of a multivari-

ate variable and proceeds as follows. Starting from some arbitrary initial values,

at iteration t, generate a multivariate sample (z(t)1 , . . . , z
(t)
k ) by randomly drawing

the random variable zj, j = 1, . . . , k, in a successive manner, from its univariate

conditional distribution given the current values of all the other variables:

z
(t)
1 ∼ p(z1 ∣ z(t−1)

2 , . . . , z
(t−1)
k )

⋮

z
(t)
j ∼ p(zj ∣ z(t)1 , . . . , z

(t)
j−1, z

(t−1)
j+1 , . . . , z

(t−1)
k )

⋮

z
(t)
k ∼ p(zk ∣ z(t)1 , . . . , z

(t)
k−1).

This process is iterated for a sufficiently large number of times until the Gibbs

sampler eventually provides a sample from p(z1, . . . , zk), which would not depend

on the starting values.

Metropolis-within-Gibbs sampler. The Metropolis-within-Gibbs sampler aims

to generate samples from a multivariate distribution by successively sampling from

associated univariate conditional distributions (the Gibbs part) and by using one

Metropolis step instead of a direct sampling from each conditional distribution

(the Metropolis part) (Gamerman and Lopes, 2006, p. 211-214). This algorithm

performs Metropolis within each iteration of Gibbs sampling as follows. Suppose

our goal is to generate samples from p(z1, . . . , zk ∣ y, r, θ), where y and r are vectors

of size (k×1). Furthermore, suppose that a current approximation to the univariate

conditional distribution of zj, j = 1, . . . , k, up to a normalizing constant, is known:

p(zj ∣ z1, . . . , zj−1, zj+1, . . . , zk, yj, rj, θ) ∝ p(z1, . . . , zk, yj, rj ∣ θ).
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At iteration t of the Metropolis-within-Gibbs sampler, for each jth component of z,

in a successive manner we

(a) candidate a value z′j by randomly drawing from a proposal distribution g(z′j ∣

z
(t−1)
j ) that is symmetric, such as a normal distribution,

z′j ∼ g(z′j ∣ z
(t−1)
j )

(b) accept z(t)j = z′j with probability

min

⎧⎪⎪⎨⎪⎪⎩

p(z(t)1 , . . . , z
(t)
j−1, z

′
j, z
(t−1)
j+1 , . . . , z

(t−1)
k , yj, rj ∣ θ(t−1))

p(z(t)1 , . . . , z
(t)
j−1, z

(t−1)
j , z

(t−1)
j+1 , . . . , z

(t−1)
k , yj, rj ∣ θ(t−1))

,1

⎫⎪⎪⎬⎪⎪⎭
,

otherwise keep z(t)j = z(t−1)
j .

In the same way as with the original Gibbs sampler, this process is iterated for a

sufficiently large number of times until the algorithm eventually provides a sam-

ple from p(z1, . . . , zk), which does not depend on the starting values. For more

technical details see Tierney (1994), Gilks et al. (1995) and Gamerman and Lopes

(2006).



Chapter 2

Multiple imputation and access to

likelihood-based tools

2.1 Background

Multiple imputation (MI, Rubin, 1987) and maximum likelihood estimation (MLE)

via the expectation-maximization algorithm (EM, Dempster et al., 1977) are per-

haps the most well-known methods used to account for missing values in partially

observed datasets. MI is a Monte Carlo approach developed for handling missing

data in sample surveys where missing values are imputed to create a complete

dataset, whereas the EM algorithm is an iterative method developed for finding

the MLE in the presence of missing data. Stochastic versions of EM, in particular

Monte Carlo EM (MCEM, Wei and Tanner, 1990) and stochastic EM (StEM, Broni-

atowski et al., 1983; Celeux and Diebolt, 1985, 1987), are numerical approaches

of EM to compute a Monte Carlo approximation to MLE. Due to the differences

in the computation mechanics and several theoretical properties, MI and MLE are

often recognized as two distinct approaches in the missing data literature.

Surprisingly, the connection between MI and MLE has been seldom addressed

in the literature. There exists a type of MI, improper MI, which does not result

in statistically valid inference when based on Rubin (1987)’s combination rules

of MI. Wang and Robins (1998) identified a class of stochastic versions of EM

as improper (or obviation from full Bayesian) MI, and compared their asymp-
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totic properties with MI’s. von Hippel (2012) used these results and developed a

simpler variance estimator for non-iterative StEM based on within- and between-

imputation variances defined in Rubin (1987)’s combination rules. Also, Biscarat

et al. (1992) stated that MI can be understood as a Bayesian version of StEM, and

StEM can be recovered from an MI algorithm with non-informative priors. Ad-

ditionally, Wei and Tanner (1990) proposed MCEM and compared it to a type of

MI (Data Augmentation), and pointed out their difference in the computation of

posterior distribution. So far, the main emphases have been on studying the differ-

ences between MI and stochastic versions of EM, rather than on their connection.

In this chapter, we exploit the connection between MI and StEM and discuss how

these two methods are equivalent. The importance of this connection is in the way

it changes our point of view towards the relationship between these two methods.

This new point of view, which is the novel contribution of this chapter, allows ideas

to move between the two literatures in order to enhance and improve these meth-

ods’ performances. Specifically, due to a range of available likelihood-based tools

and their desirable statistical properties, MI’s performance could be improved by

borrowing ideas from the maximum likelihood literature and accessing likelihood-

based tools.

The outline of this chapter is as follows. We begin by giving details of both meth-

ods, specifically focusing on some theoretical properties, obtaining standard errors

via combinations rules and discussing how to choose the number of imputations.

Although choosing the number of imputations is not the focus of this thesis, it is

important to know how the asymptotic properties of MI and StEM estimators com-

pare for finite number of imputations, and further, how the number of imputations

is chosen in both the MI and the ML literature. These details are given as litera-

ture reviews on MI in Section 2.2 and on StEM in Section 2.3. Finally, we briefly

discuss a few areas where we could gain from this connection. We will study these

potential gains in more detail in later chapters. Also, we reserve applications to

real-data until later chapters. The novel contributions of this chapter are drawing

on the close connection between MI and StEM in Section 2.4 and the potential

gains from their connection discussed in Section 2.5.



22 CHAPTER 2. MULTIPLE IMPUTATION AND ACCESS TO LIKELIHOOD-BASED TOOLS

2.2 Multiple imputation

2.2.1 Definition

Multiple imputation is a Monte Carlo method originally proposed by Rubin (1976,

1987) where every missing observation in the dataset is imputed with a simulated

value to create a complete dataset. The imputation step is repeated M ≥ 2 times,

such that M -completed datasets are generated. That is, we impute z with a set

of plausible values, z∗ = (z(1), z(2), . . . , z(M)), for some M ≥ 2. Each (pseudo-)

complete dataset is then separately analyzed by standard complete-data analysis

methods. In order to achieve asymptotically valid statistical inference, the re-

sulting estimates from each M -completed dataset need to be pooled according to

Rubin’s rule (Rubin, 1987) as discussed in this chapter (see Section 2.2.2).

Rubin (1976, 1987) proposed MI in response to the shortcomings of single imputa-

tion methods when dealing with nonresponse in surveys and provided a thorough

justification of the method. The main difference between MI and single imputa-

tion lies in the way they treat imputed data. Inferences based on single imputation

treat imputed data as if they were true observed data whereas in reality we do not

have as much certainty in the imputed values as we would have were they ob-

served. Inferences based on MI allows us to reflect the uncertainty in the missing

data by combining the results of the multiple imputations. However, MI is not

restricted to survey analysis and can also be used to impute missing data in any

setting.

The foundation for creating MI arises from a Bayesian framework. The work

needed to create multiple imputations can be divided into three tasks, which con-

sist of the modelling, the estimation, and the imputation task (Rubin, 1987). The

modelling task chooses a Bayesian model for the complete data and missingness

mechanism. The estimation task formulates the posterior distribution of the pa-

rameters of the chosen model. The imputation task draws a value from the pos-

terior parameter distribution, and given this value takes a random draw from the

posterior predictive missing data distribution.
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Estimation for θ is carried out as follows. Consider a complete dataset (y, z, r),

the complete-data model p(y, z, r ∣ θ), and the posterior predictive distribution of

missing data given the observed data p(z ∣ y, r). Multiple imputations are repeated

random draws from p(z ∣ y, r). The Monte Carlo average of the completed-data

posterior distributions gives an approximation to the observed posterior,

p(θ ∣ y, r) = ∫ p(θ ∣ y, z, r)p(z ∣ y, r)dz ≃M−1
M

∑
j=1

p(θ ∣ y, z(j), r). (2.1)

In practice, we often do not know p(z ∣ y, r), which in turn, can be approximated

based on its relationship to the observed posterior of θ,

p(z ∣ y, r) = ∫ p(z ∣ y, r, θ)p(θ ∣ y, r)dθ

where p(z ∣ y, r, θ) is the predictive distribution of missing data given the observed

data and a current estimate of θ. We refer to p(z ∣ y, r, θ) as the imputation model

throughout this chapter. Therefore, MI is commonly performed in an iterative

manner to approximate the observed posterior of θ as outlined below.

In order to simulate from the posterior distribution of θ, we first draw missing val-

ues from the current approximation to the imputation model, p(z ∣ y, r, θ(0)), based

on some initial guess for θ, and use the drawn values to complete the dataset.

Then, we draw θ(t), t = 1, . . . , T , from its completed-data posterior distribution

given the current imputed values p(θ ∣ y, z(t−1), r). These two steps of imputa-

tion (I-step) and posterior estimation (P-step) are iterated a large number of times

(t = T ) to eventually produce a draw of (z, θ) from their joint observed posterior.

Finally, the next M imputations are implemented as multiple imputations in Equa-

tion (2.1) to approximate the posterior of θ by averaging over repeated draws of

θ. These steps can be summarized in the following algorithm:

MI algorithm

0. Fix θ(t) in Θ, t = 0
1. Draw z(t+1) from p(z ∣ y, r, θ(t))
2. Draw θ(t+1) from p(θ ∣ y, r, z(t+1))
3. Set t = t + 1 and repeat steps 1–2 until convergence at t = T
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4. Repeat steps 1–2 for extra M ≥ 2 iterations, t = T + 1, . . . , T +M , to create
multiple imputations
5. Combine the results of the final M iterations by Rubin’s rule

Iterative MI can be understood as a special case of Data Augmentation (Tanner

and Wong, 1987). Data Augmentation is an iterative method developed for ap-

proximating the posterior distribution in the presence of missing data, where in

the I-step, M ≥ 1 imputations are created (augmented) and in the P-step the pos-

terior of θ is updated as the mixture of the M -completed posteriors. The value

for M can change at each iteration of Data Augmentation. Although this thesis

focuses on the case where the missing data are imputed only once in the I-step

of MI until the algorithm converges, if using Data Augmentations, it is possible to

run MI by setting M > 1 in the I-step. It is worth noting that Data Augmentation

was motivated by the EM algorithm offering a Bayesian alternative for situations

when statistical inference based on MLE and the associated standard error cannot

be reliable because the likelihood cannot be approximated accurately. Analogous

to Data Augmentation, MI approximates posterior distributions.

Equation (2.1) substantially simplifies the process of obtaining the posterior distri-

bution of θ by enabling us to draw from a combination of two simpler posteriors.

It follows that by using simulated values of z, the posterior mean and variance

of θ can similarly be approximated, for large M . This result is used in Rubin’s

combination rules to make inference about the model parameters. Note that MI’s

three tasks can create multiple imputed datasets in trivial situations by doing ex-

plicit computations provided, however, in nontrivial situations more sophisticated

computational techniques such as MCMC are required.

2.2.2 Combination rules

MI’s combination rules (or Rubin’s rule) are derived based on the Bayesian frame-

work where θ and its estimate θ̂ are treated as unobserved random variables where

θ̂ denotes an estimate of θ in the absence of missing data. Further, with complete

data, inferences about θ would be based on a normal approximation assumption

(θ − θ̂) ∼ N(0,W) whereW is the associated variance of (θ − θ̂). In the presence of
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missing data, the mean and variance of the posterior distribution of θ are given by

E(θ ∣ y, r) = E[E(θ ∣ y, r, z) ∣ y, r]

and

Var(θ ∣ y, r) = E[Var(θ ∣ y, r, z) ∣ y, r] +Var[E(θ ∣ y, r, z) ∣ y, r], (2.2)

respectively. Based on this result, in the presence of missing data, the posterior

mean and variance of θ can be approximated as described below.

Suppose that under a particular Bayesian model, θ̂1, . . . , θ̂j andW1, . . . ,Wj are the

obtained values of θ̂ and W for each of j = 1, . . . ,M imputed datasets which sim-

ulate features of the posterior distribution of θ̂. In addition, let θ̄ and B denote

the posterior mean of θ̂ and its associated variance over multiple imputations, re-

spectively. Then, for very large number of imputations M , the combined estimate

gives the MI estimator θ̄ which is the posterior mean of θ̂,

θ̄ = 1

M

M

∑
j=1

θ̂j ≈ E(θ̂ ∣ y, r, z).

The total variability associated with this estimate is the sum of two components:

the mean of the posterior variance W over multiple imputations and the variance

of the posterior mean θ̄ over multiple imputations. The first component is obtained

by the within-imputation variance

W = 1

M

M

∑
j=1

Wj,

and the second component is obtained by the between-imputation variance

B = 1

M − 1

M

∑
j=1

(θ̂j − θ̄)(θ̂j − θ̄)⊺ ≈ Var(θ̄ ∣ y, r, z),

hence, the poeterior variance of θ in (2.2) can be obtained byW+ B. Thus, the

trio statistic (θ̄,W,B) from the multiple imputed datasets provides the information

needed to estimate the pair (θ̂,W), and so to estimate θ (Van Buuren, 2012).
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2.2.3 Theoretical properties

Proper MI. The goal of MI is to make a valid inference about θ. The Bayesian

framework is useful for creating a MI procedure, however, multiple imputations

are derived based on the assumption that models are correctly specified. That is,

the validity of MI depends on how the imputations are created. For example, if

multiple imputations are created arbitrarily, one is not likely to obtain valid infer-

ences (Schafer, 1999). The imputations should, on average, give reasonable pre-

dictions for the missing data, and the associated variability between them should

properly reflect the amount of uncertainty we have about them.

Recall that inferences based on MI are derived from the Bayesian framework treat-

ing θ and θ̂ as unobserved random variables that asymptotically follow the normal

distribution given the observed values θ̂1, . . . , θ̂j and W1, . . . ,Wj. Thus, for an in-

finitely large M , inference based on MI is valid if the inference from the complete

data is valid. The second requirement for MI inference to be valid is that the MI

procedure is proper (Rubin, 1987).

MI is proper if

1. θ̄ is approximately unbiased for θ̂ averaged over missingness mechanism:

E(θ̄ ∣ y, z, r) = θ̂.

2. The between-imputation variance is approximately unbiased: E(B ∣ y, z, r) =

Var(θ̄ ∣ y, z, r).

3. The within-imputation variance (W) is approximately unbiased averaged

over the missingness mechanism: E(W ∣ y, z, r) = W.

This means that, for infinitely large M , the trio statistic (θ̄,W,B) of the incomplete

data must provide valid inference for the pair statistic (θ̂,W) of the observed data.

Therefore, for a multiple imputation method to belong to the class of proper MI,

multiple imputations must yield a consistent asymptotically normal estimator of

θ and an unbiased estimator of its asymptotic variance when based on Rubin’s

rule. By using heuristic arguments and several examples, Rubin (1987) concluded
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that “Conclusion 4.1. If imputations are drawn to approximate repetitions from a

Bayesian posterior distribution of missing data under the posited response (missing-

ness) mechanism and an appropriate model for the data, then in large samples the

imputation method is proper", where the posterior distribution of missing data is

defined as

p(z ∣ y, r) = ∫ p(z ∣ y, r, θ)p(θ ∣ y, r)dθ. (2.3)

In other words, if the multiple imputations are created to approximate the ob-

served posterior distribution of θ, then the advantageous properties of MI can

be guaranteed (Van Buuren, 2012, p. 47) and the complete data inferences can

be properly combined according to Rubin’s rule. In summary, non-Bayesian MI

(where its θ̂js are non-random draws from their observed posterior distribution)

is an improper MI and its inference may not be based on Rubin’s rule.

Choosing M . In practice, it is not feasible to produce infinite number of im-

putations. Hence, when M is finite, θ̄ and its variance estimate are subject to

simulation error. Rubin (1987) recommended to account for this simulation error

by adding a third component (B/M) to the total variance estimate in Rubin’s rule:

W+ (1 + 1

M
)B.

The choice of M could be interpreted as a trade-off between statistical efficiency

versus computational efficiency. Clearly, the larger M is, the smaller the effect of

simulation error to the total variance and the lower the computational efficiency.

Rubin (1987) suggested to choose M based on the fraction of information that

is missing about θ due to missingness in order to achieve a reasonably small effi-

ciency loss. Denote by γ the fraction of missing information matrix due to missing-

ness. Based on the missing information principle (Orchard and Woodbury, 1972),

the information matrix, I(θ), may be written as I(θ) = Ic(θ) − Eθ[Iz∣y(θ)] where

Ic(θ) is the complete data information and Iz∣y(θ) is the missing data information,
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and γ may be written as

γ = Eθ[Iz∣y(θ)]I−1
c (θ). (2.4)

When θ contains a single parameter then γ is a scalar. Since MI inference is based

on finite-M , this will result in a factor of γ/M efficiency loss (Rubin, 1987, p. 114).

In the MI literature, γ can be estimated by γ̂ = (1 + 1/M)B/(W+ (1 + 1/M)B) (Lit-

tle and Rubin, 2002, p. 257). Also, Harel (2007) proposed to use the fraction

of missing information for choosing M and derived asymptotic distribution of γ̂

under MAR assumption. For scalar θ, this reduces to

√
M(γ̂ − γ) ∼ N(0,2γ2(1 − γ)2).

They proposed that γ̂’s asymptotic distribution can be used to help choosing the

number of imputations required to achieve reliable estimates for the fraction of

missing information.

However, Graham et al. (2007) showed that the fraction of missing information

cannot be reliably estimated unless M is sufficiently large, and furthermore, statis-

tical power is more influenced by M rather than efficiency. They provided a prac-

tical guide for choosing M where they focused on the impact of different values of

M on statistical power, especially in complicated situations where high statistical

power is required, such as, for detecting a very small effect size (< 0.1). Further-

more, they concluded that for a missing proportion as high as 70%, only M = 100

imputations are required in order to obtain a power within 1% of the theoretical

power. These results were used as a guide for selecting M in our applications in

later chapters.

2.3 MLE via EM algorithm

The EM algorithm (Dempster et al., 1977) was designed to find MLE estimates

of parameters of a parametric model in an iterative manner when the observed

data are incomplete. This procedure makes use of Fisher’s identity, where the

maximization of the unknown observed log-likelihood is replaced with the maxi-
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mization of the conditional expectation of an associated complete log-likelihood:

∂l(θ; y, r)
∂θ

= Eθ {
∂l(θ; y, z, r)

∂θ
∣ y, r} .

An EM iteration θ(t) → θ(t+1) consists of two steps. The E-step computes the expec-

tation of conditional complete-data log-likelihood given the observed data (with

respect to the imputation model at the current estimate of parameters),

Q(θ ∣ θ(t)) = ∫ log {p(y, z, r ∣ θ)}p(z ∣ y, r, θ(t))dz.

The M-step updates the estimates of parameters by maximization of the expecta-

tion function computed in the E-step,

θ(t+1) = arg max
θ∈Θ

Q(θ ∣ θ(t)).

2.3.1 Stochastic EM algorithm

In situations where Q(θ ∣ θ(t)) is either analytically intractable (McCullagh, 1998)

or computationally intensive (Ng and McLachlan, 2003), it is possible to replace

analytical computation of Q(θ ∣ θ(t)) by a suitable approximation to this function,

commonly via simulation methods such as MCMC. In this paradigm, stochastic

versions of the EM algorithm were designed to numerically compute Q(θ ∣ θ(t)) by

Monte Carlo approximation. As such, the E-step in the EM algorithm simplifies

to the computation of the imputation model, p(z ∣ y, r, θ(t)), and simulation of the

missing data z(t). In other words, the E-step turns into an imputation step (I-step)

where multiple imputations are drawn from

z(j) ∼ p(z ∣ y, r, θ(t)), j = 1, . . . ,M,

given a current approximation to MLE (θ(t)), to approximate Q(θ ∣ θ(t)) as a Monte

Carlo average,

Q(θ ∣ θ(t)) ≃ 1

M

M

∑
j=1

log p(y, r, z(j) ∣ θ).
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A popular stochastic version of EM is the Monte Carlo EM (MCEM, Wei and Tanner,

1990) where M ≥ 2 is fixed throughout the iterations of the I-step and M-step.

The MCEM algorithm, under mild conditions, converges to the MLE, and inference

about θ may be made based on the finalM imputations. It has also been suggested,

instead of a fixed value for M , to start the MCEM algorithm with small number

of imputations and increase M with the number of iterations. This approach will

ensure higher computational efficiency in cases where the initial estimates of θ

might be far from the true value.

A special case of the EM algorithm is the Stochastic EM (StEM, Broniatowski et al.,

1983; Celeux and Diebolt, 1985, 1987), summarized below. StEM, without aiming

to produce any approximate computation of Q(θ ∣ θ(t)), imputes the missing data

only once in the I-step until the algorithm converges to its stationary distribution,

whose mean is close to the MLE (Diebolt and Ip, 1996). The random sequence of

{θ(t)} generated by the StEM does not converge pointwise to the MLE, but, under

mild conditions, does converge in distribution (Diebolt and Celeux, 1993). After

the algorithm converges, multiple imputations are generated by running extra

M ≥ 2 iterations to sample from the stationary distribution, and the sample mean

gives an approximate MLE of the observed likelihood.

StEM algorithm

0. Fix θ(t) in Θ, t = 0
1. Draw z(t+1) from p(z ∣ y, r, θ(t))
2. θ(t+1) = arg max p(y, r, z(t+1) ∣ θ)
3. Set t = t + 1 and repeat steps 1–2 until convergence at t = T
4. Repeat steps 1–2 for extra M ≥ 2 iterations, t = T + 1, . . . , T +M , to create multiple
imputations
5. Combine the results of the final M iterations by Louis’ method

The StEM estimator has been shown to be an asymptotically normal, unbiased,

and consistent estimator of θ when considering models from the exponential fam-

ily (Diebolt and Celeux, 1993) and in mixture models on the basis of numerical

experiments (Celeux et al., 1996). Asymptotic properties of the StEM estimator

are given in Wang and Robins (1998) and in Nielsen (2000).
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2.3.2 Combination rules

StEM’s combination rules are carried out as follows. At each iteration, multiple im-

putations are randomly drawn from the imputation model given the current MLE

of θ. Let θ̂1, . . . , θ̂j and W1, . . . ,Wj, j = 1, . . . ,M , be the MLEs of θ and their vari-

ances, respectively, obtained from the next M iterations after the StEM algorithm

converges. These final M imputations are implemented as multiple imputations

in combination rules as shown in Diebolt and Ip (1996) in a manner discussed

below.

Let θ̄ =M−1∑M
j=1 θ̂j be the StEM estimator which is the average of θ̂js over multiple

imputed datasets. Wang and Robins (1998) and Nielsen (2000) showed that, for a

sufficiently large M , (θ̄ − θ) ∼ N(0, I−1(θ)) where I(θ) denotes the Fisher informa-

tion matrix. As such, the variance of the StEM estimator may be obtained based

on the Louis’ method (Louis, 1982),

I(θ) = E[ −∂2

∂θ∂θ⊺
log p(y, z, r ∣ θ)∣y, r] −Var[ ∂

∂θ
log p(y, z, r ∣ θ)∣y, r], (2.5)

and by replacing E[. ∣ y, r] and Var[. ∣ y, r] with their bootstrap estimates: from

the difference between the complete information matrices of the θ̂js averaged over

multiple imputed datasets and the variance of their respected score functions be-

tween multiple imputed datasets. von Hippel (2012) showed that the variance of

θ̄ based on the inverse of I(θ) in Equation (2.5) can be simplified into

I−1(θ) =W
⊺

(W− B)−1W

whereW and B denote the within and between-imputation variances of θ̂js, re-

spectively.

2.3.3 Theoretical properties

Stochastic versions of EM are motivated by overcoming the limitations of the EM

algorithm. The EM algorithm strongly depends on its starting value, furthermore,

it can have a very slow convergence rate and can converge to a saddle point of
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the loglikelihood function rather than a local maxima (McLachlan et al., 2004;

Ng et al., 2012). Stochastic versions of EM, on the other hand, can avoid these

limitations due to their underlying stochasticity (Celeux et al., 1996). In addition

to these advantages, the StEM algorithm is computationally more efficient since

it is motivated by simulation of complete loglikelihoods instead of providing a

Monte Carlo approximation of Q(θ ∣ θ(t)). However, the StEM algorithm loses

some efficiency for small values of M due to its maximize-then-average strategy.

Choosing M . Nielsen (2000) studied asymptotic behaviour of stochastic ver-

sions of EM and showed that for finite M , the asymptotic variance of their estima-

tor, θ̄, is

(θ̄ − θ) ∼ N(0, I−1(θ) + 1

M
I−1(θ)(I − {I + γ}−1) + η) (2.6)

where γ is the fraction of missing information as defined in (2.4), η = 0 for the

MCEM estimator, and for the StEM estimator we have

η = 2

M
I−1(θ) (I − {I + γ}−1)γ(I − γ)−1

− 2

M2
I−1(θ) (I − {I + γ}−1)γ(I − γ)M(I − γ)−2.

Again, it is not straightforward how to choose M , as it will require a reliable esti-

mate of γ to obtain an acceptable efficiency loss. Meng and Rubin (1991) proposed

an approach to estimate γ in the context of assessing the convergence rate of the

EM algorithm. To estimate γ they proposed to run the EM algorithm after conver-

gence (supplementary EM) and compute each ijth element of γ in turn by keeping

constant all the other elements at the MLE and using the following ratio

γ̂ij =
θ
(t+1)
j − θ̂i
θ
(t)
j − θ̂i

.

Nielsen (2000) proposed to estimate the largest eigenvalue of γ for choosing M .

For example, they showed that, based on their result in (2.6), the asymptotic



2.4. EQUIVALENCE OF MI AND STEM 33

relative efficiency of the MCEM estimator is bounded by

[1 − 1/(1 + λ)]/M ≤ 1/(2M)

where λ is the largest eigenvalue of γ. Let λ∗ be an upper bound on λ. By speci-

fying how small the efficiency loss that we are willing to accept, say δ, should be,

we may choose M by

M ≥ 1/{δ[1 − 1/(1 + λ∗)]}, (2.7)

which ensures that the loss in efficiency is bounded by δ.

There are a few studies in the literature that have discussed the estimation of λ

(e.g., in Fraley (1991)), however, Nielsen (2000) suggested that it would be pos-

sible to use a looser bound for choosing M . Based on the closer bound in (2.7), a

loose bound for M could be M ≥ 1/(2δ) in the MCEM algorithm, and analogously

derived from (2.6), M ≥ 2/(3δ) in the StEM algorithm (Nielsen, 2000, proposi-

tion 4).

So far, estimation of the fraction of missing information (either using the largest

eigenvalue or the above matrix) seems to be the most important criteria in choos-

ing M in both MI and MLE literatures. However, this estimation itself is de-

pendent on M based on both Rubin’s rule or the missing information principle,

where MI and MLE offer two different estimators for γ. Throughout this the-

sis, we combined Graham et al. (2007)’s heuristic guidelines form the MI litera-

ture with Nielsen (2000)’s loose bound approach from the MLE literature and set

M = 100 for our simulation studies and examples in later chapters. This value was

selected since we have missing proportions of < 70% everywhere, which results

in only 0.0067 asymptotic efficiency loss following Nielsen (2000)’s loose bound

approach.

2.4 Equivalence of MI and StEM

Studying Box 1 below, it is evident that the MI and StEM algorithms described

above are almost identical – both iterate between imputation from the current
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Box 1. MI (proper) and StEM (improper) algorithms, note that they only differ at step 2.

MI (“proper”): StEM (“improper”):

0. Fix θ(0) in Θ 0. Fix θ(0) in Θ
1. z(t+1) ∼ p(z ∣ y, r, θ(t)) 1. z(t+1) ∼ p(z ∣ y, r, θ(t))
2. θ(t+1) ∼ p(θ ∣ y, r, z(t+1)) 2. θ(t+1) = arg max p(y, r, z(t+1) ∣ θ)
3. Repeat steps 1–2 until convergence 3. Repeat steps 1–2 until convergence

(at t = T ) (at t = T )
4. θ̄ = 1

M ∑
T+M
j=T+1 θ

(j) 4. θ̄ = 1
M ∑

T+M
j=T+1 θ

(j)

model (Step 1: “I step”) and updating the imputation model (Step 2: “P step”),

then following convergence at iteration t = T . Finally, both algorithms involve

averaging estimates obtained from a set of M ensuing iterations as the finial point

estimate of θ:

θ̄ = 1

M

T+M

∑
j=T+1

θ(j).

The only difference between the two algorithms is in how θ is updated at Step 2

– by using random draws from the current posterior, or by using the maximizer

of the current estimate of the likelihood function. Thus, reviewing the underlying

drive for this difference could be helpful to understand how similar these two

algorithms can actually be.

MI views θ as random (with a prior distribution) and samples values from the ob-

served posterior. These samples, which are obtained from the posterior are used

to impute the missing values z, and are eventually averaged to approximate the

mean of the posterior distribution of θ. StEM views θ as fixed, and at each step

uses an estimate of it in the model that imputes missing values z, and eventually

averages these for a final estimate of θ. From the MI point of view, this can be

understood as approximating the mode of the posterior distribution with flat pri-

ors, rather than approximating the mean. However, both algorithms assume their

estimators are asymptotically normal (Rubin, 1987; Diebolt and Celeux, 1993),

which would imply that the mean and mode would converge asymptotically.

The combination of Step 1 and 2 in both algorithms serves the purpose of creating
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multiple imputations by randomly drawing from the conditional predictive distri-

bution of missing data p(z ∣ y, r). Since p(z ∣ y, r) is usually unknown, multiple

imputations are drawn from p(z ∣ y, r, θ(t)), where θ(t) is the current approxima-

tion to θ. MI uses random draws from the current posterior to obtain a current

approximation to p(z ∣ y, r) whereas StEM draws from p(z ∣ y, r, θ(t)) where θ(t) is

the current approximation to the maximizer of the likelihood function. While the

former is a proper MI (Rubin, 1987), the latter is not since Equation (2.3), and

therefore Equation (2.2), will no longer be satisfied.

While Rubin’s combination rule (Rubin, 1987) enables calculation of approximate

standard errors when using proper MI, these are not available in the improper

case. StEM nevertheless comes with standard approaches to estimate standard

errors via Louis’ method, which interestingly, has a similar form as Rubin’s rule

(see Sections 2.2.2 and 2.3.2). Hence, if we create multiple imputations by ran-

domly drawing from the conditional predictive distribution of the missing data

p(z ∣ y, r, θ(t)), θ(t) being the approximation to current MLE of θ, StEM and im-

proper MI are equivalent.

2.5 Gains from the equivalence

The equivalence between StEM and improper MI allows standard likelihood ma-

chinery to be used to improve MI’s performance. This connection changes our view

of MI and provides the possibility of accessing a range of likelihood-based tools in

situations where MI’s performance could be improved in a likelihood-based frame-

work.

One important gain, for example, is when a maximum likelihood framework can

provide the analyst with model selection tools for choosing the best imputation

model, and can enable further insights into the consequences of imputation model

misspecification. In the MI literature, there are no diagnostic criteria for how to

choose between imputation models. In a heuristic manner, it is recommended

to either specify a multivariate normal distribution as a joint model for missing

data (Schafer, 1997) or specify a univariate conditional imputation model for each
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missing variable (Van Buuren, 2012). Also, it is recommended to add as many

variables in the imputation model as possible, with at least as many variables as

presented in the substantive analysis model of interest (Rubin, 1996; Collins et

al., 2001). Furthermore, it is not clear how to choose between different miss-

ing data mechanisms except for performing a sensitivity analysis to explore the

impact of the different assumptions for missingness mechanism (Carpenter et al.,

2007; Sterne et al., 2009). In Chapter 3 we show that available and well-known

information-based criteria in the maximum likelihood literature, which enjoy good

statistical properties, can be used to select an imputation model. We investigate

these tools using simulation studies and apply it to several real-data examples.

Another gain from the equivalence is in hypothesis testing and in goodness-of-fit

where likelihood ratio tests (LRT) are commonly used. Under a maximum like-

lihood framework, these inferential tools could then be easily employed when

missing data are present. In the MI literature, hypothesis testing based on multi-

ple imputed datasets was proposed to obtain a modified Wald test statistic (Rubin,

1987). Subsequent work by Meng and Rubin (1992) developed a pooling pro-

cedure for a likelihood ratio test with MI for nested models, using the asymptotic

relationship between the Wald test and the likelihood ratio test statistics. Although

this approach works well, it can be quite cumbersome to implement in practice.

Using connections with maximum likelihood, a likelihood ratio statistic could be

directly constructed for MI. In Chapter 4, by means of simulation studies, we show

that this likelihood ratio statistic has improved performance over other statistics

in the MI literature.

Furthermore, in the presence of both missingness and measurement error in ex-

planatory variables, the equivalence allows us to combine MI with functional mea-

surement error models to account for both missingness and measurement errors

in the inference. The combined presence of missingness and measurement error in

explanatory variables may have a double effect on statistical analyses if not dealt

with, since both missingness and measurement error may cause bias in estimates

of regression coefficients and loss of power if not dealt with. In the MI literature,

there are few studies on how to deal with this double effect. The likelihood-based
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framework for dealing with both missingness and measurement error is very at-

tractive. For example, Blackwell et al. (2017a,b) applied EM-type algorithms to

account for both missingness and measurement errors where they treated vari-

ables subject to measurement error as missing while incorporating available infor-

mation about their error contaminations in the model. Specifically, Blackwell et al.

(2017a) used EM with bootstrapping as a multiple imputation method. However,

they used Rubin’s combination rules in inferences. These studies were restricted

to the assumption of missingness/measurement mechanism ignorability. In Chap-

ter 5 we show that the equivalence between StEM and improper MI allows us

to combine functional measurement error modelling methods such as Simulation

extrapolation and Corrected score with MI to deal with the combined effect of

missingness with measurement error in explanatory variables in a simpler manner.

Again, we investigate this result using simulation studies and real-data examples.

It is worth noting that the gains from this connection are not limited to the appli-

cations studied in this thesis. There are other potential areas where ideas from the

maximum likelihood literature can be taken across to MI. For example, suppose

that we would like to predict myocardial infarction in patients with observed blood

pressure, body mass index, age and gender, but with missing cholesterol levels. In

the MI literature, there are no guidelines on how to approach prediction in the

presence of missing data, and most of the methods suggested are ad hoc (Wood et

al., 2015). However, there is a clear guidance on how to carry out prediction in a

likelihood based framework and the close connection between MI and StEM could

provide clarity in this field. Also, as mentioned in Section 2.2, currently there are

only heuristic approaches for choosing M in the MI literature. However, StEM’s

asymptotic results studied by Nielsen (2000) and Wang and Robins (1998) could

provide complementary tools on this topic.



Chapter 3

Imputation model selection with

missing data

3.1 Background

The literature on imputation model selection within the MI framework is surpris-

ingly sparse given its potential application range. When using MI, careful consider-

ation of which imputation model to select is needed, because using the wrong im-

putation model can result in incorrect inferences and misleading conclusions (Fay,

1991, 1996; Schomaker and Heumann, 2014). There are several guidelines for

the specification of the imputation model but they tend to be ad hoc and based

on heuristic arguments (Schafer, 1997; Graham, 2009; Van Buuren, 2012) rather

than providing an overall valid framework for imputation model selection.

Rubin (1987) suggested an analysis to assess the sensitivity of MI inference to

alternative models for missingness. For this procedure, imputations are created

under different assumptions of missingness and a sensitivity analysis is carried out

to see how inferences may vary (Van Buuren, 2012). Sensitivity of MI results are

often assessed using a weighting approach (Carpenter et al., 2007) or the pattern-

mixture approach (Little, 1993; Little and Rubin, 2002). Recently, Andridge and

Thompson (2015) proposed a variable selection procedure to select the best impu-

tation model using the fraction of missing information as the selection criterion.

The fraction of missing information of the imputation model is estimated from
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an appropriate Proxy pattern-mixture model, as a function of estimates of first–

and second order moments. The Proxy pattern-mixture technique reduces a set of

variables to a single proxy variable, which is then used for imputation.

A key focus of this chapter is to provide a flexible, data-driven approach for choos-

ing the imputation model. Specifically, we exploit the equivalence between MI and

StEM to propose imputation model selection using standard information criteria

such as Akaike’s Information Criterion (AIC) and Bayesian Information Criterion

(BIC), computed using the observed data likelihood. We develop a theorem which

shows that BIC preserves its usual property of consistency in model selection when

selecting an imputation model. We also illustrate this property via simulation.

In Section 3.2 we develop AIC and BIC for choosing the best imputation model and

study their properties. We then apply the methods and present the results for three

real data examples in health and ecological research studies (see Section 1.2.1 for

further details). Two simulation studies are given in Section 3.3. Finally, we

provide a proof for Theorem 1 in Section 3.8.

3.2 Information criteria

The connection between StEM and improper MI enables application of well-known

information criteria such as AIC and BIC for choosing the best imputation model

among a set of candidate imputation models. In the absence of missing data, AIC

aims to find the best approximating model to the unknown correct model, whereas

BIC aims to identify the correct model among a set of candidates (Acquah, 2010).

Both AIC and BIC use the observed log-likelihood for some candidate model fit

to assess its goodness-of-fit with the addition of a penalty term to account for

model complexity. Let p(y, r ∣ θ) be the observed likelihood and denote ∣θ∣ as the

number of model parameters. We write AIC = −2 supθ log p(y, r ∣ θ) + 2∣θ∣, and

BIC = −2 supθ log p(y, r ∣ θ) + log(n) × ∣θ∣. Below, we will present a key property

when applying BIC to imputation model selection.

In Section 3.8 we give a proof of the following theorem, which shows that BIC is

consistent for imputation model selection, that is, it chooses the correct imputation
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model with probability approaching 1 as the sample size n goes to ∞:

Theorem 1. Suppose M0 is the imputation model chosen by BIC and Mp is a finite set

of the most parsimonious correct models. If Assumptions A1–A4 (see Section 3.8) are

satisfied, then

Pr(M0 ∈ Mp) → 1 as n→∞.

3.2.1 Why do information criteria work?

We can explain how the observed log-likelihood is informative about the impu-

tation model using an approximation technique that, interestingly, is equivalent

to that used in variational approximation of likelihood functions (Ormerod and

Wand, 2010). Variational approximation is a (trade-off) method for optimizing

a log-likelihood function while enhancing its tractability, hence, making approx-

imate inference for parameters of a model (see Section 1.5.2). In the missing

data context, an incorrect imputation model can be understood as a variational

approximation to the observed log-likelihood. The approximations are indicated

by the Kullback–Leibler divergence (Kullback and Leibler, 1951) of the specified

imputation model from the true imputation model.

Suppose q(z ∣ y, r, θ) is a specified imputation model and p(z ∣ y, r, θ) is the true

imputation model. Misspecification of the imputation model implies that q(z ∣

y, r, θ) diverges from p(z ∣ y, r, θ). The divergence of q(z ∣ y, r, θ) from p(z ∣ y, r, θ) is

assessed by the Kullback–Leibler divergence, denoted by KL(q∣∣p), and is always

nonnegative. A zero value would only occur when the imputation model is not

misspecified, whereas a positive value would imply that the imputation model

is misspecified, and the further q(z ∣ y, r, θ) is from p(z ∣ y, r, θ), the larger this

divergence is, i.e., the greater is KL(q∣∣p).

Following a similar approach as given in Ormerod and Wand (2010), we have
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log p(y, r ∣ θ) = log p(y, r ∣ θ)∫ q(z ∣ y, r, θ)dz

= ∫ q(z ∣ y, r, θ) log p(y, r ∣ θ)dz

= ∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

q(z ∣ y, r, θ)
p(z ∣ y, r, θ)

)dz

= ∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

)dz − ∫ q(z ∣ y, r, θ) log(p(z ∣ y, r, θ)
q(z ∣ y, r, θ)

)dz

= ∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

)dz + ∫ q(z ∣ y, r, θ) log(q(z ∣ y, r, θ)
p(z ∣ y, r, θ)

)dz

= ∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

)dz +KL(q∣∣p)

≥ ∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

)dz. (3.1)

The maximum value of the lower bound in (3.1) over q is obtained when q(z ∣

y, r, θ) = p(z ∣ y, r, θ) (that is, when the Kullback–Leibler divergence of q from p is

at a minimum, or KL(q∣∣p) = 0), since

∫ q(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
q(z ∣ y, r, θ)

)dz = ∫ p(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
p(z ∣ y, r, θ)

)dz = log p(y, r ∣ θ).

Therefore, the better the specified imputation model, the lower KL(q∣∣p), and

hence, the higher ∫ q(z ∣ y, r, θ) log (p(y,z,r∣θ)q(z∣y,r,θ))dz. As such, information criteria AIC

and BIC based on observed log-likelihoods would be able to reflect the goodness-

of-fit of the chosen imputation model.

3.3 Simulation study

We present two simulation studies to investigate the performance of AIC and BIC

as imputation model selection criteria where we have: (I) univariate missing vari-

able; and (II) multivariate missing variables.
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3.3.1 Univariate missing variable

We are interested in a linear regression model, Yi = β0 + β1X1i + εi, where Yi,

i = 1, . . . , n, is the response variable and the errors are εi
i.i.d.∼ N(0,1). The predictor

X1i is partially observed, and suppose that X2i and X3i are two fully observed

auxiliary variables where (logX1i, logX2i, logX3i) ∼ N3(µ,Σ) with a mean vector

µ = (0,0,0)⊺ and a covariance matrix

Σ =

⎛
⎜⎜⎜⎜⎜
⎝

1 0.5 0

0.5 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

.

In this scenario, X1i is correlated with X2i with a moderate correlation of 0.5, but

is independent of X3i. Furthermore, Yi is conditionally independent of X2i given

X1i.

We imposed 30% left-censoring in X1 where the limit of detection (L) is treated as

a fixed number and set equal to the corresponding quantile. Observations below

this threshold were removed by setting them to NA. Because the limit of detection

is fixed and not stochastic, this type of censoring belongs to the class of Type-I

censoring which Heitjan and Rubin (1991) showed to be MAR (more specifically,

coarsened at random), and thus, the missingness mechanism is ignorable. In other

words, although we use a truncated lognormal distribution to draw imputations

for missing values, the missingness mechanism can be ignored in the imputation

model as the missingness within the truncated threshold does not depend on X1

once we have a reasonable estimate of the limit of detection. See Heitjan and

Rubin (1991) for more details.

We ran 500 simulations and set β = (1,1)⊺. We used the squared distance of pa-

rameters between the (t + 1)th and the tth iterations as a convergence criterion for

the StEM algorithm, and set the convergence threshold to 10−4. Furthermore, the

number of multiple imputations was set to M = 100. To investigate the perfor-

mance of information criteria for imputation model selection, the missing values

Xmis,1 were imputed under the following three candidate models:
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Model 1: p(Xmis,1i ∣Xmis,1i ≤ L,Xobs,1i, Yi,X2i,X3i),

Model 2: p(Xmis,1i ∣Xmis,1i ≤ L,Xobs,1i, Yi,X2i),

Model 3: p(Xmis,1i ∣Xmis,1i ≤ L,Xobs,1i, Yi,X3i),

Model 4: (Xmis,1i ∣Xmis,1i ≤ L,Xobs,1i, Yi,X2i) is truncated normal.

Results in Table 3.1 show the proportion of times the corresponding model is cho-

sen based on each information criterion for various sample sizes of n = {50,100,1000}.

These results indicate that for even a small sample size of 50, both AIC and BIC

are able to choose the correct model (Model 2) at least 89.6% of the time, with

misspecified models (Model 3 and Model 4) selected rarely, and selected at a rate

that went to zero as sample size increased. The over-fitted model (Model 1) was

chosen by AIC 7-15% of the time, increasing with sample size. For BIC, the rate

at which the over-fitted model was chosen by BIC went to zero as sample size in-

creased, as expected from Theorem 1. These results align with classical results for

complete data cases, where several studies have shown that AIC overfits (asymp-

totically) (Shibata, 1976; Bozdogan, 1987; Hurvich and Tsai, 1989) while in con-

trast, BIC can be consistent for model selection (Schwarz, 1978; Nishii, 1984).

Table 3.1. Proportion of times (%) the information criterion chooses the fitted imputation model
for different sample sizes in 500 simulated datasets. Model 2 (in bold) is the correct model, which
was selected most of the time in each simulation. Note that the proportion of times this model was
chosen by BIC went to one as sample size increased, as expected under Theorem 1.

Model 1 Model 2 Model 3 Model 4

n=50 AIC 7.6 89.6 2.8 0.0
BIC 1.0 95.4 3.6 0.0

n=100 AIC 8.8 91.2 0.0 0.0
BIC 0.0 99.8 0.2 0.0

n=1000 AIC 15.6 84.4 0.0 0.0
BIC 0.0 100 0.0 0.0

3.3.2 Multivariate missing variable

Next we investigated the case where missingness was of a higher dimension, and

the response was non-normal. Following Example 4.1.2 from Ibrahim et al. (1999)

we now suppose that the response variables Yi, i = 1, . . . , n, are independent fully
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observed Bernoulli variables and we are interested in the analysis of a logistic re-

gression model E(Yi ∣X1i,X2i, β) = exp(Xiβ)/{1+exp(Xiβ)} where β = (β0, β1, β2)⊺

and Xi = [1 X1i X2i]. Suppose that the predictors, Xi = (X1i,X2i), i = 1, . . . , n, are

partially observed variables from a bivariate normal distribution N2(µ,Σ) with

µ = (
0.5

−0.5
) and Σ = (

0.25 0.125

0.125 0.25
).

Also, suppose that ri = (r1i, r2i) is the missingness indicator vector of (X1i,X2i)

– e.g., ri = (0,0) if X1i and X2i are both missing and ri = (0,1) if X1i is missing

and X2i is observed. Let φ1 and φ2 be the probabilities of r1i = 1 and of r2i = 1,

respectively, which satisfy

logit(φ1) = log(φ1)/ log(1 − φ1) = φ10 + φ11X1i + φ12X2i + φ13Yi

and

logit(φ2) = φ20 + φ21X1i + φ22X2i + φ23Yi + φ23r1i.

We are interested in the comparison of the following two imputation models:

Model 1: p(Xmis,i ∣Xobs,i, Yi, ri) and

Model 2: p(Xmis,i ∣Xobs,i, Yi),

where Model 1 assumes that the data are MNAR and missingness is nonignorable

whereas Model 2 assumes that data are MAR and ignores the missingness.

We ran 500 simulations with n = 250, β = (1,1,−1)⊺, φ1 = (1,−1,1,1)⊺ and φ2 =

(1,−1,1,1,−0.5)⊺ where on average we obtained about 19% missing data in X1,

25% in X2 and 6% in both. Also, to draw imputations at the ith iteration of StEM,

we used Metropolis-within-Gibbs sampler (Tierney, 1999), see also Section 1.5.4,

to generate a sample from

p(Xmis,i ∣Xobs,i, Yi, ri, γ
(t)
1 ) ∝ p(ri ∣ Yi,Xmis,i,Xobs,i, φ(t))p(Yi ∣Xmis,i,Xobs,i, β(t))p(Xmis,i,Xobs,i ∣ α(t)) (3.2)
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for Model 1, and a sample from

p(Xmis,i ∣ xobs,i, Yi, γ(t)2 ) ∝ p(Yi ∣Xmis,i,Xobs,i, β
(t))p(Xmis,i,Xobs,i ∣ α(t))

for Model 2 where α = (µ,Σ), γ1 = (φ,β,α) and γ2 = (β,α).

Once again, we used the squared distance of the parameters between the (t + 1)th

and tth iterations as the convergence criterion and set the convergence threshold

to 10−4 with the number of multiple imputations set to M = 100.

Table 3.2 shows the proportion of times each model was chosen based on the cor-

responding information criterion. This table shows that AIC and BIC were able to

choose the correct model (Model 1) 99.4% and 95.2% of the times, respectively.

These results are consistent with the previous simulation results (cf. Section 3.3.1)

as well as with our theoretical result (cf. Section 3.2), indicating that in situa-

tions where AIC and BIC are applicable, they perform satisfactorily for imputation

model selection.

Table 3.2. Proportion of times (%) the information criterion chooses the corresponding model
across 500 simulated datasets. Data were generated under Model 1, which assumes MNAR,
whereas Model 2 assumed data were MAR. Note that both approaches were able to recover the
correct model with high probability.

Model 1 Model 2
AIC 99.4 0.6
BIC 95.2 4.8

Perhaps the importance of imputation model selection is better demonstrated by

investigating its impact on the post-selection inference of data. Table 3.3 shows

the sample average of estimates of βj, denoted as β̄j, j = 0,1,2, for the correspond-

ing imputation model averaged over 500 simulations and its mean square error,

MSEj = (β̄j − βj)2 + s2
j , where sj is the simulated standard error of β̄j. This table

shows that more accurate estimates and smaller mean squared errors are obtained

when using the correct imputation model (Model 1).
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Table 3.3. β̄j and mean square error (in parenthesis) for different imputation models across 500
simulations.

β0 = 1 β1 = 1 β2 = −1
Model 1 1.008 (0.027) 1.014 (0.083) -1.018 (0.084)
Model 2 1.521 (0.342) 1.288 (0.177) -1.295 (0.186)

3.4 Survival of infants data revisited

Assuming that these data are MAR and the missingness is ignorable, Little and Ru-

bin (2002) applied the EM algorithm to fit various models, such as {SC,SP,PC},

{SP,SC}, and {SC,PC} where, for example, {SC} denotes a model with all the

main effects of Survival, Prenatal and Clinic and the interaction effect between

Survival and Clinic. The goodness-of-fit using likelihood-ratio tests was then as-

sessed for each candidate model. Meng and Rubin (1992) applied Bayesian MI

with a full (saturated) model where they tested the null models {SC,PC} and

{S,P,C} (a main effects only model) against the full model using their proposed

pooled likelihood-ratio test developed for MI. Both approaches concluded that

Survival is related to Clinic, but conditional on Clinic, Survival and Prenatal care

are independent indicating that {SC,PC} is the best parsimonious fitted model.

This example can also be viewed as a problem of imputation model selection,

where the response variable is the missing variable. Thus, the model that we

choose to fit to the data can be used as the imputation model in the MI algorithm.

As such, we will have imputation model candidates {SC,SP,PC}, {SP,SC},

{SC,PC}, and so on. We fitted five competing imputation models as follows:

Model 1: {SC,SP,PC},

Model 2: {SC,PC},

Model 3: {SP,PC},

Model 4: {SP,SC},

Model 5: {S,P,C}.

To demonstrate the model fitting procedure, the StEM/improper MI algorithm (see
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Section 2.3.1) can be applied to this problem by the following iterative steps:

1. Estimate initial value π̂(0)ijk based on the observed counts.

2. For tth iteration, t = 1, . . . , T ,

• Simulate n̂(t)ijk from Bin(nij., π̂(t−1)
ijk ).

• Re-estimate πijk as π̂(t)ijk = arg max `(π),where `(π) = ∑i∑j∑k nijk logπijk

is the complete log-likelihood of a multinomial model. For instance, un-

der Model 2, imputations for the partially classified counts of the ij1th

cell are drawn from n̂ij1 ∼ Bin(nij., π̂ij1) where π̂ij1 = µ̂ij1/(µ̂ij1 + µ̂ij2)

and n̂ij2 = nij. − n̂ij1.

3. Calculate the AIC/BIC for the fitted model using criteria presented in Sec-

tion 3.2.

Table 3.4 shows the AIC and BIC for the above-mentioned imputation models

based on M = 100 multiple imputations. Also, the convergence threshold for the

algorithm was set to 10−4. AIC and BIC both favoured Model 2, in line with the

results of Little and Rubin (2002) and Meng and Rubin (1992).

Table 3.4. Information criteria for candidate imputation models in Survival of infants data. Both
AIC and BIC favoured Model 2, {SC,PC}, in line with previous analyses (Little and Rubin, 2002;
Meng and Rubin, 1992).

Model 1 Model 2 Model 3 Model 4 Model 5
AIC 27.02 25.12 33.29 156.71 168.28
BIC 63.60 57.13 65.30 188.71 191.14

Table 3.5 shows the estimated cell probabilities for the above-mentioned imputa-

tion models. These estimates differ under each imputation model. For example,

the percentage of infants dying with less prenatal care in clinic A, π111 × 100, is

estimated at 0.45 and 0.49 under the correct imputation model and under the

overfitted imputation model, respectively. However, this percentage is estimated

to be much higher under Model 3 (at π̂111 × 100 = 0.82), and even higher under

Model 4 (at π̂111 × 100 = 1.41) and under Model 5 (at π̂111 × 100 = 1.60). This

result shows that the cell probabilities are estimated more similarly the correct

model {SC,PC} and under the overfitted model {SC,SP,PC}. However, there
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is a clear difference between π̂ijks under Model 3, Model 4 and Model 5 and π̂ijk

under the correct imputation model {SC,PC}. The estimated cell probabilities in

Table 3.5 can be compared with their ML estimates via the EM algorithm obtained

in Little and Rubin (2002, Table 9.9).

Table 3.5. Estimated cell probabilities π̂ijk × 100 for candidate imputation models in Survival of
infants data. These estimates differ under each model. Although cell probabilities are estimated
more similarly under the overfitted model {SC,SP,PC} and the correct model {SC,PC}, there
is a clear difference between π̂ijks under Model 3, 4 and 5 and π̂ijk under the correct imputation
model {SC,PC}.

Clinic (C) Prenatal Care (P) Survival (S)
Died Survived

Model 1: {SC,SP,PC} A Less 0.45 25.35
More 0.79 38.78

B Less 2.64 28.57
More 0.34 3.07

Model 2: {SC,PC} A Less 0.49 25.27
More 0.76 38.79

B Less 2.68 28.57
More 0.30 3.15

Model 3: {SP,PC} A Less 0.82 36.66
More 0.30 28.46

B Less 2.27 17.26
More 0.83 13.40

Model 4: {SP,SC} A Less 1.41 24.64
More 1.05 38.59

B Less 1.68 29.27
More 0.09 3.23

Model 5: {S,P,C} A Less 1.60 36.34
More 1.21 27.41

B Less 0.81 18.26
More 0.09 3.27

3.5 Eastern barred bandicoot data revisited

To approach this example, we fitted a logistic regression generalized linear model

and assumed that body weights measurements are independent and normally dis-

tributed. Also, we let the missigness indicator ri be a binary variable with the
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parameters φi, i = 1, . . . , n. We applied StEM/improper MI algorithm for handling

the missing data under four different imputation model assumptions:

• Model 1: logit(φi) = β0 + β1weighti + β2genderi.

• Model 2: logit(φi) = γ0 + γ1weighti.

• Model 3: logit(φi) = η0 + η1genderi.

• Model 4: logit(φi) = α0 = const.

Table 3.6. Information criteria for candidate imputation models in Eastern barred bandicoot data.

Model 1 Model 2 Model 3 Model 4
AIC 2.879 0.986 0.921 -1.207
BIC 16.941 12.706 12.640 8.168

Table 3.6 shows the results based on the two information criteria AIC and BIC.

Here, we set M = 100. Based on these results, the MCAR model is the best im-

putation model among the candidates, that is, missingness occurs due to chance

and does neither depend on gender nor on body weight itself, and therefore, may

be ignorable. Note that these results might change if we have more information

about the data – i.e., if more covariates on individuals were collected in the dataset

and were used for modelling.

3.6 Pima Indian Women data revisited

Once again, we fitted a logistic regression generalized linear model assuming three

different imputation models. These are

Model 1: the missingness mechanism is nonignorable (MNAR),

Model 2: the missingness mechanism is ignorable (MAR),

Model 3: complete case estimation (MCAR).

Using the StEM/improper MI via Metropolis-within-Gibbs sampler (Tierney, 1999)

similar to Section 3.3.2, we assume that under Model 1 the missingness mecha-

nism is p(ri ∣ Xmis,i,Xobs,i, Yi), and under Model 2 the missingness mechanism is
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p(ri ∣Xobs,i, Yi) where ri is the joint missingness indicator and Xi is the joint repre-

sentation of all explanatory variables. Under the complete case model, we assume

that ri is independent of Xi and Yi.

Table 3.7. Information criterion for different imputation models fitted to the Pima Indian women
data. The data strongly favoured Model 1, suggesting a non-ignorable missing data mechanism.

Model 1 Model 2 Model 3
AIC 7231.142 7660.071 10544.15
BIC 7714.096 8026.931 10818.13

Table 3.7 shows the AIC and BIC values compared for each fitted model where

both information criteria choose Model 1 over the other models. This strongly

suggests that the missingness mechanism is nonignorable. Also, Table 3.8 shows

the estimates of regression parameters for each imputation model. Note that re-

sults given in this table are based on log-transformations of insulin, pregnancy,

pedigree and age as well as standardization on all predictors, and its interpre-

tation here is only used for drawing comparison between the three imputation

models. We see that quite different results are obtained for these three models.

For example, the regression parameter for 2-hour serum insulin is estimated at

0.321 for Model 1, 0.022 for Model 2 and 0.084 for Model 3. This result suggests

how different conclusions can be drawn depending on whether we include the

missingness mechanism in the model and whether or not it is worth doing so.

Table 3.8. Estimates of regression parameters and their standard errors (in parentheses) for differ-
ent imputation models in the Pima Indian women example. Note that pregnancy, insulin, pedigree
and age are log-transformed.

intercept pregnancy glucose pressure triceps insulin bmi pedigree age

Model 1
-0.912
(0.102)

0.282
(0.113)

0.918
(0.143)

-0.034
(0.107)

0.163
(0.152)

0.321
(0.208)

0.503
(0.139)

0.328
(0.098)

0.284
(0.120)

Model 2
-0.890
(0.100)

0.290
(0.113)

1.080
(0.185)

-0.124
(0.110)

0.088
(0.199)

0.022
(0.267)

0.606
(0.179)

0.322
(0.098)

0.315
(0.119)

Model 3
-1.055
(0.154)

0.076
(0.187)

1.055
(0.178)

-0.025
(0.146)

0.114
(0.180)

0.084
(0.181)

0.449
(0.190)

0.407
(0.147)

0.628
(0.211)

The nonignorability of the missingness mechanism necessarily relies on parametric

assumptions. In this example, we have assumed that [ri ∣Xi, Yi] follows a multi-

variate Bernoulli distribution with a logit link function. Also, for Model 1 we

assume nonignorability of missingness mechanism for all the missing variables. A

further investigation of different parametric assumptions for ri (or whether non-
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(a) (b)

Figure 3.1. Density curve plots of (a) observed triceps skin fold thickness (blue) and multiple im-
puted values of triceps skin fold thickness (red) and (b) observed 2-hour serum insulin (blue) and
multiple imputed values of 2-hour serum insulin (red) for Model 1 in Pima Indian Women exam-
ple. Similarity between the observed curve and imputed curves in (a) suggests that triceps skin
fold thickness might be missing at random. Difference between the observed curve and imputed
curves in (b) suggests that 2-hour serum insulin is missing not at random.

ignorability assumption can be relaxed for some of the missing variables) may be

carried out if one has a reasonable argument for considering these in the study.

For example, a visual inspection of the density plots of the observed and imputed

data of triceps skin fold thickness and 2-hour serum insulin for Model 1 in Fig-

ure 3.1 might suggest further investigations into whether missingness mechanism

for triceps skin fold thickness can be ignored.

3.7 Discussion

In this chapter, we investigated imputation model selection and developed new

criteria from methods established in Chapter 2. We investigated whether access

to familiar likelihood-based approaches to model selection, such AIC and BIC,

allows us to choose the imputation model that best fits the observed data. We

tested the performance of the proposed methods on several real data and some

simulation studies, and evaluated the post-imputation effect of imputation model
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selection on the parameter estimates. We provided insights into imputation model

misspecification with the help of variational approximation, and further, examined

some theoretical properties of BIC. We showed that BIC can be consistent for the

correct imputation model, and that this can even be the case when the correct

model is missing not at random.

The fitted models used in this chapter were quite simple so it would be of interest

to see how the criteria performs for more complicated scenarios such as in high-

dimensional settings where the number of variables or components available for

use in the analysis is larger than the number of observations, or when including

random effects in the model. We leave these extensions as future work.

3.8 Theoretical arguments: Proof of Theorem 1

Let y = (y1, y2, . . . , yn−m) and z = (z0, . . . , zm), where n ∈ N and m ∈ {0,1, . . . , n −

1}, and denote r = (r1, . . . , rn) as the missingness indicator. Let S denote the

set of all possible imputation models, S = {Mk = q(z ∣ y, r, θk);k = 0,1,2, . . . ,K}

with ∣θk∣ denoting the total number of parameters for model Mk, and K being the

number of competing imputation models. Also, define a subset M ⊂ S of models

which minimize KL(q∣∣p). Furthermore, Mp ⊂ M denotes the subset of the most

parsimonious correct imputation models, Mp = {Mk ∈ M ∶ ∣θk∣ ≤ ∣θk∗ ∣,∀Mk∗ ∈ M}. For

simplicity, we denote qk(z) = q(z ∣ y, r, θk) throughout this section.

To prove consistency of BIC for imputation model selection, we require a set of

regularity conditions that consist of the following assumptions:

Assumption A1. Observations z0, z1, . . . , zm are independent, and densities qk(zi)

exist.

Assumption A2. m = op(n) so that the number of observed data points n − m

grows faster than the number of missing data m in probability as n→∞.

Assumption A3. The derivatives of the likelihood function ∫ qk(z) log (p(y, z, r ∣

θk)/qk(z))dz up to order three exist w.r.t. θk, and are continuous and uniformly
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bounded for all θk ∈ Θ(k).

Assumption A4. The derivatives of observed likelihood function up to order three

exist w.r.t. θ and are continuous and uniformly bounded for all θ ∈ Θ.

We also need Lemmas A.1 and A.2:

Lemma A.1. Let qt(z) ∈ M be an arbitrary correct imputation model and qw(z) ∈ Mc

be an arbitrary wrong imputation model where Mc denotes the complement of M.

Then, we have

∫ qt(z) log(p(y, z, r ∣ θt)
qt(z)

)dz > ∫ qw(z) log(p(y, z, r ∣ θw)
qw(z)

)dz.

Proof. The proof is straightforward by using the relationship between the impu-

tation model and observed log-likelihood in (3.1). Suppose qk(z) is any specified

imputation model in S. Let Q be a class of lower bounds based on various impu-

tation models,

Q = {∫ qk(z) log(p(y, z, r ∣ θk)
qk(z)

)dz, ∀qk(z) ∈ S} .

The maximum value of

∫ qk(z) log(p(y, z, r ∣ θk)
qk(z)

)dz

over qk is obtained when qk(z) = p(z ∣ y, r, θ) ∈ M, since the bound from above

in (3.1) is attained for p(z ∣ y, r, θ):

∫ q(z) log(p(y, z, r ∣ θ)
q(z)

)dz = ∫ p(z ∣ y, r, θ) log(p(y, z, r ∣ θ)
p(z ∣ y, r, θ)

)dz = log p(y, r ∣ θ).

Therefore, ∀qt(z) ∈ M,

∫ qt(z) log(p(y, z, r ∣ θt)
qt(z)

)dz ≥ max
qk∈Mc∫ qk(z) log(p(y, z, r ∣ θk)

qk(z)
)dz.

Now, suppose ∃qw∗(z) ∈ Mc which maximizes Q over the set of wrong imputation

models, and for which the equality holds in the above equation. This would imply
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that qw∗(z) ∈ M /⊆ Mc which would contradict with the assumption of qw∗(z) ∈ Mc.

Thus, ∀qt(z) ∈ M and ∀qw(z) ∈ Mc,

∫ qt(z) log(p(y, z, r ∣ θt)
qt(z)

)dz > ∫ qw(z) log(p(y, z, r ∣ θw)
qw(z)

)dz.

Lemma A.2. Let q0(z) ∈ Mp be the most parsimonious correct imputation model and

q1(z) ∈ M/Mp be an overfitted correct imputation model. Partition

θ1 =
⎡⎢⎢⎢⎢⎢⎣

θ0

θs

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

u × 1

s × 1

⎤⎥⎥⎥⎥⎥⎦

and consider the hypothesis test H0 ∶ θs = 0 vs. H1 ∶ θs ≠ 0. Then, under H0 and as

n→∞,

2{sup
θ1
∫ q1(z) log(p(y, z, r ∣ θ1)

q1(z)
)dz − sup

θ0
∫ q0(z) log(p(y, z, r ∣ θ0)

q0(z)
)dz} dÐ→ χ2

s.

(3.3)

Proof. Rewrite the null hypothesis as H0 ∶ θ1 = g(θ0) = (θ0,0)⊺ such that G(θ0) =

∂g(θ0)/∂θ0 = (Iu,0)⊺ where Iu is the u × u identity matrix and 0 is a s × u matrix

of zeros. Let θ̂1 and θ̂0 be the MLEs of θ1 and θ0, respectively. Also, let S(θ), I(θ)

and J(θ) denote the full score function, Fisher and observed information matrix,

respectively. Following Sen and Singer (1994, p. 205-207), if Assumptions A3–A4

are satisfied and as n→∞, then a Taylor expansion around θ̂1 yields

2∫ q1(z) log(p(y, z, r ∣ θ1)
q1(z)

)dz = 2∫ p(z ∣ y, r, θ̂1) log
⎛
⎝
p(y, z, r ∣ θ̂1)
p(z ∣ y, r, θ̂1)

⎞
⎠

dz

− S⊺(θ1)[I(θ1)]−1S(θ1) + op(1),

since [I(θ1)]−1J(θ̂1)
pÐ→ Iu+s (Slutsky’s theorem) where Iu+s is the identity matrix.

Let S∗(θ), I∗(θ) and J∗(θ) denote the restricted score function, Fisher and ob-

served information matrix, respectively. Similarly, since [I∗(θ0)]−1J∗(θ̂0)
pÐ→ Iu,
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we may write

2∫ q0(z) log(p(y, z, r ∣ θ0)
q0(z)

)dz = 2∫ p(z ∣ y, r, θ̂0) log
⎛
⎝
p(y, z, r ∣ θ̂0)
p(z ∣ y, r, θ̂0)

⎞
⎠

dz

− S∗⊺(θ0)[I∗(θ0)]−1S∗(θ0) + op(1).

Now, let Eθk [. ∣ θk] be the expectation w.r.t. the correct imputation model p(z ∣

y, r, θk). Since Eθ1 [log p(y, r ∣ θ1)] −Eθ0 [log p(y, r ∣ θ0)] = 0 under H0, we have

2

⎧⎪⎪⎨⎪⎪⎩
∫ p(z ∣ y, r, θ̂1) log

⎛
⎝
p(y, z, r ∣ θ̂1)
p(z ∣ y, r, θ̂1)

⎞
⎠

dz − ∫ p(z ∣ y, r, θ̂0) log
⎛
⎝
p(y, z, r ∣ θ̂0)
p(z ∣ y, r, θ̂0)

⎞
⎠

dz

⎫⎪⎪⎬⎪⎪⎭
= S⊺(θ1)[I(θ1)]−1S(θ1) − S∗⊺(θ0)[I∗(θ0)]−1S∗(θ0) + op(1). (3.4)

Note that, under H0,

S∗(θ0) = G⊺(θ0)S(θ1).

Also, since

S∗(θ0)
dÐ→ N(0, I∗(θ0))

and

G⊺(θ0)S(θ1)
dÐ→ N(0,G⊺(θ0)I(θ1)G(θ0)),

under H0 we may write

I∗(θ0) = G⊺(θ0)I(θ1)G(θ0). (3.5)

It follows that (3.4) may be simplified to

S⊺(θ1)[I−1(θ1) −G(θ0)[I∗(θ0)]−1G⊺(θ0)]S(θ1) + op(1). (3.6)
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Furthermore,

tr{I−1(θ1) −G(θ0)[I∗(θ0)]−1G⊺(θ0)}I(θ1) = tr{Iu+s −G(θ0)[I∗(θ0)]−1G⊺(θ0)I(θ1)}

= u + s − tr{[I∗(θ0)]−1G(θ0)I(θ1)G⊺(θ0)}

= u + s − tr{[I∗(θ0)]−1I∗(θ0)} = s (3.7)

Thus, using (3.6) and (3.7), and having [I∗(θ0)]−1/2S∗(θ0)
dÐ→ N(0, Iu) and

[I(θ1)]−1/2S(θ1)
dÐ→ N(0, Is+u) by Slutsky’s theorem, we obtain (3.3).

Theorem 1. Suppose M0 is the imputation model chosen by BIC and Mp is a finite

set of the most parsimonious correct models. If Assumptions A1–A4 are satisfied,

then

Pr(M0 ∈ Mp) → 1 as n→∞.

Proof. Let M1 ∈ S/Mp be an arbitrarily chosen model which is not in the class of the

most parsimonious models. To prove Theorem 1, it is sufficient to show that

Pr(BIC(M0) −BIC(M1) < 0) → 1 as n→∞. (3.8)

We have S = M⋃Mc, where Mc is the complement of M. Thus, either M1 ∈ M/Mp or

M1 ∈ Mc. We show that (3.8) holds under both of the following possible cases:

i. M1 ∈ M/Mp

We need to show that the logarithmic penalty term in BIC outgrows the

difference in the log-likelihood terms as n→∞. In this case, both M0 and M1

are correct, but M1 is overfitted w.r.t. to M0, that is, ∣θ1∣ − ∣θ0∣ > 0.
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Based on Lemma A.2, we may write

lim
n→∞

Pr (BIC(M0) −BIC(M1) < 0)

= lim
n→∞

Pr
⎛
⎝

2{sup
θ1
∫ q1(z) log(p(y, z, r ∣ θ1)

q1(z)
)dz − sup

θ0
∫ q0(z) log(p(y, z, r ∣ θ0)

q0(z)
)dz}

< log(n) × (∣θ1∣ − ∣θ0∣)
⎞
⎠

= lim
n→∞

Pr (χ2
∣θ1∣−∣θ0∣

< log(n) × (∣θ1∣ − ∣θ0∣)) = 1.

ii. M1 ∈ Mc

Denote KL(qk∣∣p) as the relative Kullback–Leibler divergence of model qk(z)

from p(z ∣ y, r, θk). In this case, M0 is correct and M1 is not, that is, KL(q1∣∣p) >

KL(q0∣∣p). Thus, we need to show that the difference in the log-likelihood

terms in BIC outgrows the logarithmic penalty term as n→∞.

If Assumptions A1–A2 are satisfied, then

1

2
{BIC(M1) −BIC(M0)}

= − sup
θ1

⎡⎢⎢⎢⎢⎣
(n −m){ 1

n −m ∫ q1(z) log(p(y, z, r ∣ θ1)
q1(z)

)dz}

+m{ 1

m ∫ q1(z) log( q1(z)
p(z ∣ y, r, θ1)

)dz}
⎤⎥⎥⎥⎥⎦

+ sup
θ0

⎡⎢⎢⎢⎢⎣
(n −m){ 1

n −m ∫ q0(z) log(p(y, z, r ∣ θ0)
q0(z)

)dz}

+m{ 1

m ∫ q0(z) log( q0(z)
p(z ∣ y, r, θ0)

)dz}
⎤⎥⎥⎥⎥⎦

+ 1

2
log(n) × (∣θ1∣ − ∣θ0∣)

= (n −m)
⎧⎪⎪⎨⎪⎪⎩

1

n −m ∫ q0(z) log(p(y, z, r ∣ θ0)
q0(z)

)dz

− 1

n −m ∫ q1(z) log(p(y, z, r ∣ θ1)
q1(z)

)dz

⎫⎪⎪⎬⎪⎪⎭
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−m
⎧⎪⎪⎨⎪⎪⎩

1

m ∫ q1(z) log( q1(z)
p(z ∣ y, r, θ1)

)dz

− 1

m ∫ q0(z) log( q0(z)
p(z ∣ y, r, θ0)

)dz

⎫⎪⎪⎬⎪⎪⎭
+ op(1)

+ 1

2
log(n) × (∣θ1∣ − ∣θ0∣)

= (n −m)
⎧⎪⎪⎨⎪⎪⎩

1

n −m ∫ q0(z) log(p(y, z, r ∣ θ0)
q0(z)

)dz

− 1

n −m ∫ q1(z) log(p(y, z, r ∣ θ1)
q1(z)

)dz

⎫⎪⎪⎬⎪⎪⎭
−m{ 1

m
KL(q1∣∣p) −

1

m
KL(q0∣∣p)} + op(1)

+ 1

2
log(n) × (∣θ1∣ − ∣θ0∣)

= Op(n −m) −Op(m) ±O(log(
√
n))

= Op(n −m)

which tends to be positive since, according to Lemma A.1 and the Law of

Large Numbers, the term

(n −m)
⎧⎪⎪⎨⎪⎪⎩

1

n −m ∫ q0(z) log(p(y, z, r ∣ θ0)
q0(z)

)dz − 1

n −m ∫ q1(z) log(p(y, z, r ∣ θ1)
q1(z)

)dz

⎫⎪⎪⎬⎪⎪⎭

is positive and grows with probability approaching one as n → ∞, with rate

Op(n −m). Thus,

Pr(BIC(M0) −BIC(M1) < 0) = Pr(BIC(M1) −BIC(M0) > 0) → 1 as n→∞.

Furthermore, to prove the following corollary, we require the following regularity

condition:

Assumption A5. The initial values θ(0) in the StEM algorithm is consistent asymp-

totically linear estimate of θ.

Corollary. If the Assumptions A1–A5 are satisfied, the BIC (see Section 3.2) computed
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at θ = θ̄ is consistent for imputation model selection.

Proof. Suppose θ̂ is the MLE of θ. It follows that

√
n(θ̂ − θ) = n− 1

2

n

∑
i=1

[I(θ)]−1Si(θ) + op(1) (3.9)

as the sample size n→∞ (Sen and Singer, 1994, p. 205-207).

Also, let θ̄ denote the StEM estimator of θ. Following Wang and Robins (1998, eq.

A7) and the regularity condition in Assumption A5, we have

√
n(θ̄ − θ) = n− 1

2

n

∑
i=1

[I(θ)]−1Si(θ) + op(1) (3.10)

as n→∞ and the number of imputations M →∞.

From (3.9) and (3.10) it follows that

√
n(θ̄ − θ) =

√
n(θ̂ − θ) + op(1) (3.11)

as n→∞ and M →∞.

Hence, given the Assumptions A1–A5 and from (3.11), the results of Lemma A.2,

and consequently the result of Theorem 1, we may conclude that for sufficiently

large number of imputations the BIC obtained from the StEM algorithm is consis-

tent for imputation model selection.



Chapter 4

Likelihood ratio tests with missing

data

4.1 Background

Like model selection, hypothesis testing on model parameters and testing for

model goodness-of-fit are essential tools in statistical inference. In the absence

of missing data, there are three common test statistics for hypothesis testing of

model parameters: likelihood ratio statistic (Neyman and Pearson, 1928), Wald

statistic (Wald, 1943), and the score statistic (Rao, 1948). Due to their key role in

statistical inference they are sometimes referred to as the “Holy Trinity" in the liter-

ature (Rao, 2005). Several studies in statistical inference have reviewed these, ei-

ther theoretically e.g., Sen and Singer (1994), Casella and Berger (2002) and Boos

and Stefanski (2013), illustratively e.g., Buse (1982) and Rayner (1997), or geo-

metrically e.g., Muggeo and Lovison (2014).

The so-called Holy Trinity measures the discrepancy between the null model and

sample evidence based on different scales. The likelihood ratio statistic measures

the difference between loglikelihoods estimated under the null and alternative

models, the Wald statistic works on the parameter scale and measures infeasibil-

ity of estimated parameters under the alternative model, and the score statistic

works on the score function scale and measures the squared slope at parame-

ters estimated under the restrictions of the null model (Boos and Stefanski, 2013).
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Likelihood ratio statistics are also commonly used for checking model goodness-of-

fit. Interestingly, these three statistics are asymptotically equivalent (Rao, 1973).

However, they differ in second-order properties and may differ in small samples,

and thus, possess different advantages and disadvantages. We highlight some of

these advantages and disadvantages for cases where data are partially missing,

although the main focus of this chapter is on using likelihood ratio statistics.

Wald and score statistics are computationally more efficient than the likelihood

ratio statistic. Likelihood ratio statistics are functions of both parameters estimated

under the null and alternative models, and in some cases it may be difficult to

compute one or the other of these estimates. However, Wald statistics require

only parameters under the alternative model to be estimated whereas the score

statistic is only a function of estimated parameters under the null model. Thus,

the Wald statistic is more convenient when the restricted estimate of θ is difficult to

compute and the score statistic is more convenient when the unrestricted estimate

of θ is difficult to compute. For example, in situations where significance testing

on multiple regression coefficients is of interest – i.e., where they share the same

alternative model, then a Wald statistic is computationally preferable because it

does not require additional fitting of the null models, and can be computed as a

function of only one alternative model (Warton, 2008).

A key drawback of the Wald statistic is its parametrization on the variance (Barndorff-

Nielsen and Cox, 1994, p. 120) whereas the likelihood ratio and the score statistic

are invariant under reparametrizations. The Wald statistic can perform in an aber-

rant manner when parameters approach the boundary of a parameter space. For

example, Vaeth (1985) showed that the Wald statistic may have poor properties

when used with logistic regression models where the power of the test can tend

to zero with increasing effect size. Furthermore, reparametrization has a negative

effect on the power of Wald statistic when used with generalized estimation equa-

tion models, in particular for overdispersed count data (Warton, 2008). A review

of the Holy Trinity and a detailed comparison of their advantages and disadvan-

tages are given in Rao (2005).

In the MI literature and in the presence of missing data, methodology for perform-
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ing hypothesis tests and checking model goodness-of-fit are not as straightforward

to develop. Rubin (1987) proposed to obtain a modified Wald test statistic approx-

imated by the F distribution. However, due to the differences in pros and cons of

the Holy Trinity, developing alternative statistics such as the likelihood ratio statis-

tics can be advantageous for small samples. Therefore, subsequent work by Meng

and Rubin (1992) developed a pooling procedure for a likelihood ratio test with

MI for nested models. They used an approximation based on the asymptotic rela-

tionship between the Wald and likelihood ratio statistics. This pooled likelihood

ratio statistic was developed as a function of the likelihood ratio statistic averaged

across multiple imputed data and the likelihood ratio statistic evaluated at θ̄ – i.e.,

the parameter estimates averaged across multiple imputed data. Although this ap-

proach works well for large samples, it can be quite cumbersome to implement in

practice due to its multi layered computational requirements. Thus, for example,

after reviewing MI’s performance in practice, White et al. (2011) recommended

opting for Rubin’s modified Wald statistic for its simplicity.

In this chapter, we focus on likelihood ratio test statistics due to the aforemen-

tioned advantages over other test statistics. We develop a likelihood ratio statistic

in the presence of missingness and with multiple imputed data and show that

asymptotically, it follows a χ2 distribution for a sufficiently large number of impu-

tations. A theorem is developed to elucidate this result. We achieve this by, once

again, exploiting the equivalence between StEM and improper MI. We compare

this likelihood ratio statistic, which is obtained from the StEM/improper MI algo-

rithm (see Chapter 2) with the Meng and Rubin (1992) pooled likelihood ratio

statistic. We show that a likelihood ratio statistic (when using StEM), is com-

putationally more efficient and outperforms the Meng and Rubin (1992) pooled

likelihood ratio statistic for small sample sizes as well as small effect sizes. We

demonstrate its numerical performance on simulated and real-data. Following on

from previous chapters, our aim is also to show that MI’s performance can be

improved by accessing likelihood-based tools.
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4.2 Likelihood ratio statistic

In this section we provide a brief review of the familiar likelihood ratio statistic in

the ML literature, and thereof, develop a likelihood ratio statistic for StEM/improper

MI.

4.2.1 Hypothesis testing with MLE

In practice, most of the time we have uncertainty about the true underlying prob-

ability distribution of the data, hence, our specified models involve unknown pa-

rameters. This uncertainty may be represented by specifying a set of possible

models, indexed by a 1×s parameter vector in the parameter space, θ ∈ Θ ⊂ Rs, for

each hypothesis:

H0 ∶ h(θ) = 0

H1 ∶ h(θ) ≠ 0

where h ∶ Rs → Ru is a function such that the (s× u) matrix of its derivative w.r.t. θ

exists and is continuous in θ with rank[(∂/∂θ)h(θ)] = u.

Denote Θ0 = {θ ∶ h(θ) = 0}, Θ0 ⊆ Θ. An appropriate and well known test statistic

for testing H0 versus H1 is Wilks’ likelihood ratio statistic, given by

Λ = 2[sup
θ∈Θ

`(θ) − sup
θ∈Θ0

`(θ)].

If both supremums are attainable by some estimates, θ̂ and θ̂0, respectively, then

we have

Λ = 2{`(θ̂) − `(θ̂0)}

where the larger Λ is, the more probable H1 is compared to H0. If H0 is true,

under certain regularity conditions, Λ follows an asymptotic χ2
u distribution (Sen

and Singer, 1994, Theorem 5.6.1). We consider the above result for cases where

data is multiply imputed due to missingness.
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4.2.2 Hypothesis testing with multiple imputed data

We draw on the equivalence between StEM and improper MI, discussed in Chap-

ter 2, to develop a likelihood ratio statistic in the presence of missingness and with

multiple imputed data. This allows us to conduct (composite) hypothesis tests and

check for the goodness-of-fit for models of interest. The key result presented in this

chapter is given in the following theorem for which we give a proof in Section 4.6:

Theorem 2. Let θ ∈ Θ ⊂ Rs. Consider the hypothesis test

H0 ∶ h(θ) = 0

H1 ∶ h(θ) ≠ 0
(4.1)

where h ∶ Rs → Ru is a function such that the (s × u) matrix of its derivative w.r.t.

θ exists and is continuous in θ with rank[(∂/∂θ)h(θ)] = u. Let ω ∈ Rs−u = {θ ∈

Θ ∶ h(θ) = 0}. Denote θ̄ and ω̄ as the StEM estimators of θ and ω, respectively. If

Assumptions B1–B4 (see Section 4.6) are satisfied, the likelihood ratio statistic for

the hypothesis test of interest is

Λst(y, r) = 2{`(θ̄; y, r) − `(ω̄; y, r)} ,

and its asymptotic distribution is χ2
u under H0.

4.3 Simulation study

To assess the performance of the likelihood ratio statistic under StEM and to nu-

merically investigate Theorem 2, we conducted a simulation study. The focus of

this simulation study is on hypothesis testing and examining statistical power un-

der various parameter settings as well as for various sample sizes.

In this simulation study we investigated the performance of the pooled likelihood

ratio statistic by MI (throughout, we denote this as the Pooled LR, Meng and

Rubin, 1992) and the likelihood ratio statistic obtained from the StEM algorithm

(denoted by StEM LRT, see Section 4.2). For simplicity, we constructed a linear

regression model simulation where only one predictor was used, however, the
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following simulation study can easily be extended to multiple predictors.

Let Xi ∼ N(0,1), i = 1, . . . , n, be the predictor which is fully observed, and Yi be

the response variable, where E(Yi ∣ Xi, β) = β0 + β1Xi. Suppose that Yi is partially

observed with probability

p(ri = 1 ∣ Yi,Xi, γ) =
exp(γ0 + γ1Xi)

1 + exp (γ0 + γ1Xi)

of Yi being observed, where ri denotes the missingness indicator. We set the sam-

ple size n to be between 30 and 1000, with β0 = −1, and various values for the

slope β1 ∈ [−1,1]. Also, we set γ = (−1,−0.1)⊺ to achieve approximately 25% miss-

ing proportion in Yi. The number of multiple imputations was set to M = 100, see

Section 2.4.2 for further details on selecting M for StEM. We then considered the

following two models:

Model 1: E(Yi ∣Xi, β) = β0 + β1Xi,

Model 0: E(Yi ∣Xi, β) = β0,

such that Model 0 is nested within Model 1. Under this setting, we considered the

following hypothesis test:

H0 ∶ β1 = 0

H1 ∶ β1 ≠ 0.

We ran 500 simulations for each combination of n and β1, and compared the

performance of the LRT using the original (complete) dataset with the StEM LRT

and the Pooled LR based on p-values and statistical power of tests. Figure 4.1

shows the median p-values of each method for different values of β1 and n. The

true effect size (β1) is on the x-axis and ranges from -1 to +1. The sample size

(n) is on the y-axis and ranges from 30 to 1000. Furthermore, the shades of

colour from dark grey to pink show the median p-values of 0 and above: the closer

the median p-value to 0 the darker the shade. For β1 = 0, we would expect the

average p-values to be 0.5, thus we would expect to see pink shades when β1 = 0

and as β1 shifts away from 0 we would expect to see darker greys. Ideally, this

will show a close resemblance to the shades (median p-values) of the original
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LRT in Figure 4.1a.We see that the StEM LRT in Figure 4.1c performed similarly

to the LRT based on the original dataset, whereas the Pooled LR in Figure 4.1b

performed poorly for small effect sizes even when the sample size was moderate

to large (pink/light grey shade). Also, there is more spread in the Pooled LR’s

p-values ranging from 0 to 0.7 compared to StEM LRT’s 0 to 0.48. The latter are

closer to the original LRT’s 0 to 0.5, and both increase more sharply as the effect

size decreases.

(a) (b)

(c)

Figure 4.1. Median p-values of the tests
in 500 simulated datasets. (a) shows me-
dian p-values of LRT based on original (com-
plete) datasets. (b) shows median p-values
of Pooled LR based on the MI algorithm. (c)
shows median p-values of LRT based on the
StEM algorithm.

Furthermore, based on the power of the test at significance level of 0.05, StEM

outperformed MI as is shown in Figure 4.2. The power of the StEM LRT ranged

from 0.12 to 0.992 and again the test performed more similarly to the original

LRT’s 0.07 to 0.998. The power of Pooled LR ranged from 0 to 0.614 and the test

performed poorly particularly for small sample sizes even when the effect size is

large; as well as for small effect sizes even when the sample size is large (pink

shade). Our simulation results show that StEM LRT outperforms Pooled LR for

small samples as well as for small effect sizes in terms of both the average p-values

and the statistical power of the test.
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(a) (b)

Figure 4.2. Power of the tests in 500 sim-
ulated datasets at a significance level of
0.05. (a) shows power of LRT based on orig-
inal (complete) datasets. (b) shows power
of Pooled LR based on the MI algorithm. (c)
shows power of LRT based on the StEM al-
gorithm.

(c)

4.4 Survival of infants data revisited

Next, we explored the usefulness of the likelihood ratio statistic under StEM using

the survival of infants data, see Section 3.2.1 for further details. We compared

the null models {SC,SP,PC}, {SC,PC}, {SP,SC} and {S,P,C} against the sat-

urated model {SCP} using the StEM LRT discussed in Section 4.2. Recall that this

example was analyzed in Little and Rubin (2002, p. 192) and Meng and Rubin

(1992) based on likelihood ratio obtained from the EM algorithm and Pooled LR,

respectively, where both studies shared the same conclusion that {SC,PC} is the

preferred parsimonious fitted model.

Table 4.1 shows the value of likelihood ratio statistic and the p-value of the StEM

LRT for each null model. Based on these results, we fail to reject the null mod-

els {SC,SP,PC} (p−value = 0.396 > 0.1) and {SC,PC} (p−value = 0.556 > 0.1)

against the saturated model {SCP}. Hence, we can conclude that the conditional

independence model given Clinic i.e., {SC,PC}, is the preferred parsimonious fit-

ted model. This conclusion based on our proposed likelihood ratio test method is
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consistent with those of Little and Rubin (2002) and Meng and Rubin (1992).

Table 4.1. Likelihood ratio test for different null models against the saturated Model {SCP} in the
survival of infants example.

{SC,SP,PC} {SC,PC} {SP,SC} {S,P,C}
∆st 0.72 1.17 132.32 151.24

p-value 0.396 0.556 0.000 0.000

4.5 Discussion

As discussed earlier, hypothesis testing for model parameters when using multiple

imputed data is more difficult compared with the complete data case. However,

since the likelihood function is available to us through the StEM framework, we

found that producing theoretical results (that is, Theorem 2) for the likelihood

ratio statistic was a lot easier compared with Wald or score test statistics.

The StEM likelihood ratio statistic is easy to implement and our simulation study

shows that it performs well for small samples as well as for small effect sizes.

This approach may also be applied in a wide range of situations where Wilk’s

likelihood ratio statistic is applicable e.g., to evaluate goodness-of-fit of a model of

counts when comparing Poisson and negative binomial models, or, to test for the

order of a finite Markov chain (Anderson and Goodman, 1957).

In the same spirit as in this chapter, investigating other extensions such as de-

veloping a score test statistic using StEM may be possible. As discussed earlier,

score statistics have some nice advantages such as computational efficiency that

makes them attractive when conducting hypothesis tests and testing for goodness-

of-fit, for example, in the context of generalized linear models to test for ad-

equacy of the link function (Pregibon, 1980), overdispersion (Dean, 1992), or

zero-inflation (Deng and Paul, 2000). Score statistics can also handle multivari-

ate correlated data well, see Shen and Chen (2012) for cases involving drop-out

missingness and Stoklosa et al. (2014) for cases where there are many predictor

variables.

Furthermore, there is little work in the MI literature about hypothesis testing and
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checking model goodness-of-fit in high dimensions where the number of variables

may largely exceed the number of observations. However, this is an active area

of research in the likelihood-based literature. For example, recently Shah and

Bühlmann (2018) have developed a model goodness-of-fit checking tool for linear

high dimensional data that is based on residual prediction test and is amenable to

a wide range of prediction methods such as lasso, ridge regression, elastic net and

ordinary least squares (Hastie et al., 2015). Again, it is possible to implement and

access likelihood-based tools such as these, which can improve MI’s performance

in goodness-of-fit tests for high dimensional data. We leave these extensions as

future work.

4.6 Theoretical arguments: Proof of Theorem 2

Let `(θ; y, r) = log p(y, r ∣ θ) be the observed log-likelihood function, S(θ) be the

score function of the observed log-likelihood, I(θ) be the Fisher information ma-

trix, and J(θ) be the observed information matrix. MLEs are solutions to S(θ) = 0.

To prove Theorem 2, we require the following regularity conditions:

Assumption B1. The derivatives of observed likelihood up to order three exist

w.r.t. θ and are continuous and bounded for all θ ∈ Θ.

Assumption B2. The Fisher information matrix, I(θ), is finite and positive defi-

nite.

Assumption B3. For every ω in the closure of a neighbourhood of θ, I∗(ω) is finite

and positive definite.

Assumption B4. The initial values θ(0) and ω(0) in the StEM algorithm are consis-

tent asymptotically linear estimates of θ and ω, respectively.

Proof. First, following along the lines of Sen and Singer (1994, p. 239), hypothesis

test (4.1) may be written as

H0 ∶ θ = g(ω)

H1 ∶ θ ≠ g(ω)



70 CHAPTER 4. LIKELIHOOD RATIO TESTS WITH MISSING DATA

where ω ∈ Rs−u, and g ∶ Rs−u → Rs such that the (s × s − u) matrix of its derivative

w.r.t. ω exists with

rank[(∂/∂ω)g(ω)] = s − u.

Suppose θ̂ is the full MLE of θ and ω̂ the MLE of ω. It follows that

√
n(θ̂ − θ) = n− 1

2

n

∑
i=1

[I(θ)]−1Si(θ) + op(1) (4.2)

as the sample size n→∞ (Sen and Singer, 1994). Similarly, as n→∞ we have

√
n(ω̂ − ω) = n− 1

2

n

∑
i=1

[I∗(ω)]−1S∗i (ω) + op(1) (4.3)

where S∗(ω) = n− 1
2∂`(ω; y, r)/∂ω and I∗(ω) = E{∂2`(ω; y, r)/∂ω∂ω⊺}.

Also, denote θ̄ as the full StEM estimator of θ and ω̄ the StEM estimator of ω.

Following Wang and Robins (1998) and the regularity condition in Assumption B4,

we have
√
n(θ̄ − θ) = n− 1

2

n

∑
i=1

[I(θ)]−1Si(θ) + op(1) (4.4)

as n→∞ and the number of imputations M →∞. Similarly, we may write

√
n(ω̄ − ω) = n− 1

2

n

∑
i=1

[I∗(ω)]−1S∗i (ω) + op(1) (4.5)

as n→∞ and M →∞.

From (4.2) and (4.4) it follows that

√
n(θ̄ − θ) =

√
n(θ̂ − θ) + op(1) (4.6)

as n→∞ and M →∞. Similarly, from (4.3) and (4.5) it follows that

√
n(ω̄ − ω) =

√
n(ω̂ − ω) + op(1) (4.7)

as n→∞ and M →∞.
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Now, consider the following second-order Taylor expansion

2`(θ̄; y, r) = 2`(θ̂; y, r) + (θ̂ − θ̄)⊺ ∂2

∂θ∂θ⊺
`(θ; y, r)∣θ=θ̂ (θ̂ − θ̄) + op(1)

= 2`(θ̂; y, r) − n(θ̂ − θ̄)⊺J(θ̂)(θ̂ − θ̄) + op(1)

= 2`(θ̂; y, r) −
√
n{(θ̂ − θ) − (θ̄ − θ)}

⊺

I(θ)[I(θ)]−1J(θ̂)
√
n{(θ̂ − θ) − (θ̄ − θ)}

+ op(1)

= 2`(θ̂; y, r) + op(1) I(θ) op(1) + op(1)

= 2`(θ̂; y, r) + op(1)

by (4.6) and since [I(θ)]−1J(θ̂) pÐ→ Is (Slutsky’s theorem) where Is is the (s × s)

identity matrix.

Similarly, using a second-order Taylor expansion around ω̂ we have

2`(ω̄; y, r) = 2`(ω̂; y, r) + (ω̂ − ω̄)⊺ ∂2

∂ω∂ω⊺
`(ω; y, r)∣ω=ω̂ (ω̂ − ω̄) + op(1)

= 2`(ω̂; y, r) − n(ω̂ − ω̄)⊺J∗(ω̂)(ω̂ − ω̄) + op(1)

= 2`(ω̂; y, r) −
√
n{(ω̂ − ω) − (ω̄ − ω)}⊺ I∗(ω)[I∗(ω)]−1J∗(ω̂)

√
n{(ω̂ − ω) − (ω̄ − ω)}

+ op(1)

= 2`(ω̂; y, r) + op(1)

by (4.7) and since [I∗(ω)]−1J∗(ω̂) pÐ→ Is−u (Slutsky’s theorem) with Is−u being the

(s − u × s − u) identity matrix, and where J∗(ω) = −n−1∂2`(ω; y, r)/∂ω∂ω⊺ is the

observed information matrix under H0.

Hence,

Λst(y, r) = 2{`(θ̄; y, r) − `(ω̄; y, r)}

= 2{`(θ̂; y, r) − `(ω̂; y, r)} + op(1)

= Λ(y, r) + op(1),

as n and M both approach ∞, with Λ(y, r) = 2{`(θ̂; y, r) − `(ω̂; y, r)} being the

log-likelihood ratio statistic computed at the MLEs.
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Finally, since Λ(y, r) dÐ→ χ2
u (Wilks, 1938; Chernoff, 1954; Sen and Singer, 1994),

we may write

Λst(y, r)
dÐ→ χ2

u

under H0 as n→∞ and M →∞.
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Chapter 5

Measurement error modelling with

missing data in covariates

5.1 Background

This chapter is designed to address the problem of parameter estimation when

explanatory variables are subject to measurement error and missingness. We pri-

marily focus on computational aspects rather than theory. Also, unlike previous

chapters where missingness can occur in the response or in the explanatory vari-

able, here, the missingness can only be in the explanatory variable. Borrowing

ideas from Chapter 2, the aim of this chapter is three-fold: (1) we propose a new

approach to deal with measurement error and missingness, (2) examine model

performance through simulation studies and a real example, and (3) demonstrate

the simplicity in fitting these methods (i.e., by using existing and well-known soft-

ware) and examining computational efficiency by comparing computational times.

The combined presence of missingness and measurement error in explanatory

variables may have a double effect on statistical analyses when not accounted for.

On the one hand, the presence of missing data, in particular, when the missingness

does not arise due to chance, can complicate statistical analyses as many methods

are primarily designed for complete datasets, see Section 1.3 for further details on

the impacts of missing data on inference. Moreover, numerous studies have shown

that ignoring missing observations, particularly in explanatory variables, may re-
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sult in bias in estimates of regression coefficients and loss of power (Schafer, 1999;

Little and Rubin, 2002; Arunajadai and Rauh, 2012). On the other hand, uncer-

tainty in explanatory variables due to measurement error may also result in bias

in estimates of regression coefficients and loss of power; a phenomena that is re-

ferred to in the literature as the double whammy (Carroll et al., 2006). To avoid

misleading conclusions and poor inference, it is therefore of high importance to

correct for both.

Methods developed specifically for handling missing data or measurement error in

explanatory variables have been extensively addressed in the literature, however,

fewer studies have addressed these simultaneously. Motivated by an example in

nutritional epidemiology, Carroll et al. (1997) compared model robustness of max-

imum likelihood estimation with method of moments when explanatory variables

are both subject to missingness and measurement error. Wang et al. (2008) pro-

posed an approach based on expected estimation equations as a unified solution

to missingness, errors-in-variables and missclassification in explanatory variables,

and studied their asymptotic properties. In order to fit these models however one

requires either calibration data or a validation subset, which may not always be

available. Yi et al. (2012) considered longitudinal data and developed a corrected

score function with inverse probability weights (IPW) to incorporate measurement

error and missingness effects, respectively, followed by the generalized method of

moments to combine their results. Although IPW is commonly applied to missing

data problems, the method is sensitive to outliers which can result in very large

weights and obscure inference, see Seaman and White (2011). Finally, Shen and

Chen (2016) used generalized method of moments to handle both measurement

error and missing values for generalized linear models (GLMs) but the focus there

was on model selection of explanatory variables.

As discussed in Section 1.5.3 there are two types of measurement error models

that incorporate uncertainty in explanatory variables in the analyses: functional

or structural. For functional measurement error models, the distribution of the

true covariate need not be specified whereas structural measurement error mod-

els rely on distributional assumptions for the true covariate. Therefore, functional
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measurement models are advantageous over structural types in many practical sit-

uations where there is little knowledge available about the distribution of the true

covariate. Two well-known functional measurement error models that account

for measurement errors in explanatory variables in the analyses are Simulation

extrapolation and Corrected score. In this thesis we specifically focus on these two

methods but we note that there exists many measurement error methods that

could similarly be used, see Carroll et al. (2006) for more details. We chose these

methods due to their simplicity, convenient form (in the sense that these meth-

ods are directly applicable with the approach presented in Chapter 2) and their

accompanying software.

Simulation extrapolation (SIMEX, Cook and Stefanski, 1994; Stefanski and Cook,

1995) is a Monte Carlo approach used for finding a relationship between the

measurement error variance and the measurement error-induced bias in order

to estimate and correct for this bias. Although SIMEX was originally designed for

continuous explanatory variables, it was later developed for discrete explanatory

variables (Gustafson, 2003; Küchenhof et al., 2006). SIMEX is a general method-

ology in the sense that it can be applied to almost any measurement error model

and results in approximately unbiased and consistent estimates of regression pa-

rameters (Carroll et al., 2006). A key advantage in using SIMEX is its simplicity

in fitting models when the response is non-normal (i.e., for a known value of the

measurement error variance, GLMs with a parametric form can be flexibly and

easily fitted).

Corrected score (CS, Stefanski, 1989; Nakamura, 1990) is an alternative func-

tional approach that is based on finding the so-called “corrected score” as a dif-

ferential of a corrected log-likelihood function. For example, Nakamura (1990)

and Stefanski (1989) identified corrected scores for certain models such as Pois-

son and gamma regression models. Further extensions to CS include the weighted

corrected score to fit logistic regression models (Chen et al., 2015), rare-event lo-

gistic and extreme-value binary regression models (Buzas and Stefanski, 1996),

and stochastic version of CS for approximating corrected scores based on Monte

Carlo averaging (Novick and Stefanski, 2002). For a detailed discussion on CS
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(which details calculation of standard errors, etc.) see Carroll et al. (2006). Gen-

erally, CS is simple to program and is computationally faster than SIMEX.

In this chapter, we use the connection between MI and StEM (see Section 2.4)

and combine the improper MI/StEM approach with SIMEX and CS to deal with

the combined problem of missingness and measurement error in explanatory vari-

ables. We give a brief overview of the two measurement error models mentioned

above throughout Section 5.2.1. A heuristic explanation of the proposed com-

bined methods is given in section 5.2.2. We then investigate their performance

in two simulation studies in Section 5.3, and apply the methods to real data in

Section 5.4. Finally, we provide a summary discussion in Section 5.5.

5.2 Methodology

5.2.1 Available functional methods

In this section, we discuss two statistical approaches that reflect uncertainty in the

explanatory variables due to measurement errors. As mentioned in Section 1.5.3,

the underlying error in the explanatory variables can be classified into classical

error and Berkson error (Fuller, 1987; Carroll et al., 2006). Throughout this chap-

ter, we focus on classical error, however, the methods presented in the next section

can be applied to Berkson error as well.

A classical measurement error model assumes that the observed explanatory vari-

able (W ) captures the true explanatory variable (X) with some additive noise,

that is, W = X + U , where U is the measurement error with mean 0 and variance

σ2
U > 0 and is independent from X and the response variable Y . Naïve estimators

of model parameters which substitute W with X without making any adjustments

for this substitution are often inconsistent (Armstrong, 1985; Stefanski and Car-

roll, 1985; Fuller, 1987) and would result in bias (Stefanski and Carroll, 1985;

Penev and Raykov, 1993; Carroll et al., 2006) for large σ2
U .
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Simulation extrapolation (SIMEX). The basic idea of SIMEX is to experimen-

tally find the effect of measurement error on an estimator via a reasonably large

number of simulations in order to correct for this effect without the need for

model-fitting the error (Carroll et al., 2006). The SIMEX estimation proceeds as

follows.

Suppose that U ∼ N(0, σ2
U) where σ2

U is known or can be reasonably well estimated

from auxiliary data or a validation dataset. Consider an arbitrary sequence 0 =

λ1 < ⋯ < λk < ⋯ < λK . For each λk, create a new dataset by adding inflated

errors U∗ ∼ N(0, λkσ2
U) to the observed explanatory variable (W ). This creates

additional datasets with increasingly larger measurement error variance σ2
U+λkσ2

U .

Using these new datasets, estimate the model parameters. Repeat the two steps of

simulation and estimation a large number of times, say B times. Obtain the Monte

Carlo average of estimates of model parameters over B simulated datasets. Plot

these averaged, error contaminated estimates against λk, k = 1, . . . ,K, in order

to find a model that represents the relationship between the two. Finally, since

the true error variance is equal to σ2
U + λkσ2

U , the SIMEX estimation is achieved by

extrapolating back to λ = −1 which is the ideal case of no errors.

What makes SIMEX attractive is the fact that it is very simple to implement, in

particular, due to the current software readily available, such as R (using the simex

R-package, see Lederer and Kuchenhoff, 2006) and STATA, to fit generalized linear

models. However, it is computationally intensive and could be computationally

inefficient under certain circumstances such as in high dimensional data settings.

Also, care must be given to the extrapolant function in complicated situations such

as when measurement errors are correlated. For a detailed discussion on SIMEX

see Carroll et al. (2006) and the references therein.

Corrected score (CS). An alternative approach for dealing with errors-in-variables

is to correct for the effects of contaminated explanatory variables via the score

function. The key idea underlying CS is to take advantage of the fact that the

conditional distribution of an unbiased estimator, such as MLE, given the true ob-

served variables is centered around the true parameter values and thus, to center
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the conditional distribution of the corrected estimator given the measurement er-

ror around the unbiased estimator (Stefanski, 1989; Nakamura, 1990).

The CS estimation proceeds as follows. Recall that U ∼ N(0, σ2
U). Let θ and

S(θ;X,Y ) denote the model parameters and an unbiased measurement error-free

score function, respectively. Since X is not observed, S(θ;X,Y ) cannot be used

for estimation. Thus, with a corrected score function we opt to obtain an unbiased

estimator of S(θ;X,Y ) based on the observed data. A corrected score function,

S∗(θ;W,Y ), is a function whose conditional expectation w.r.t. the measurement

errors, E[S∗(θ;W,Y ) ∣ Y,X], coincides with the true score function, S(θ;X,Y ),

for all Y , X and θ. The CS estimate is a solution to S∗(θ;W,Y ) = 0, see Nakamura

(1990).

CS can be used for parameter estimation as well as for inference. Also, under mild

regularity conditions, CS results in fully consistent estimates as opposed to SIMEX

whose estimator is only approximately consistent in many complex cases such as

in logistic regression models (Chen et al., 2015). Furthermore, CS is simple to

program and is computationally fast. A drawback for using CS is that it is not

always easy to identify a corrected score.

5.2.2 Functional methods with multiple imputation

To simultaneously account for both missingness and measurement error in ex-

planatory variables, we combine the improper MI/StEM approach, with the above

measurement error models. In this method, we first apply MI to create multiple

imputed datasets. Next, we implement a measurement error model either SIMEX

(MI-SIMEX) or CS (MI-CS) to each imputed dataset. Finally, the results, i.e.,

SIMEX estimates or CS estimates, are combined over multiple imputed datasets

following MI’s combination rules. Since we propose to apply an improper version

of MI (as in Chapter 2), MI’s combination rules need to be modified for improper

MI as shown in Diebolt and Ip (1996). Here, the point estimates of MI-CS and MI-

SIMEX are the CS and SIMEX estimates averaged over multiple imputed datasets,

respectively. Also, based on the Louis’ method (Louis, 1982), their auxiliary esti-
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mates are derived from the difference between the information matrices of the CS

and SIMEX estimates averaged over multiple imputed datasets and the covariance

of their respected score functions between multiple imputed datasets.

The choice of a measurement error modelling method can proceed based on their

pros and cons available in the measurement error literature, that is, as if there

were no missing data. MI-SIMEX is easy to implement since software is currently

available to perform SIMEX for generalized linear models. However, MI-CS is com-

putationally more efficient since it does not require large amounts of resampling

as in SIMEX. No calibration data or a validation subset is required for fitting each

of these methods.

5.3 Simulation study

To investigate the performances of MI-SIMEX and MI-CS in handling both the

missingness and errors-in-variables in explanatory variables, we conducted two

simulation studies where (1) the response variable is normal; and (2) the re-

sponse variable is non-normal. These two simulation studies and their results are

discussed in the following sections.

5.3.1 Normal linear model

First, we consider the following linear regression model,

Yi = β0 + β1Xi + εi, εi
i.i.d.∼ N(0,1), i = 1, . . . , n,

where the partially observed and error-contaminated explanatory variable (Xi)

was generated under two scenarios: from (a) the normal distribution with mean 0

and variance 1 and (b) the uniform distribution on the interval (−1,1). The latter

investigates the case where the distribution of the true covariate is non-normal.

We assumed the error (Ui) in the explanatory variable to be normally distributed

with mean 0 and variance σ2
U . In addition, we assumedXi to be missing at random

where the probability of missingness was generated from a logistic model condi-
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tional on the response variable only. To see an example on how we simulated

missing data, see Section 3.3 in the error free case.

By considering the model structure above, and using both scenarios for Xi, i =

1, . . . , n, we evaluated model performance based on the magnitude of bias and

the mean squared error (MSE) of the slope coefficient (β1) for different values of

σU ∈ {0.1,0.25,0.5} as well as for various missing proportions for the explanatory

variable values, set to 25%, 35% and 45%. We set the true regression coefficients

to β = (β0, β1)T = (−0.5,1)T . For each scenario, we then generated the response

variable Yi, i = 1, . . . , n, added measurement error to Xi and imposed missingness

on it. We fitted the naïve model and the four linear regression MI models (see

Chapter 2), SIMEX (see Section 5.2.1), MI-SIMEX and MI-CS (see Section 5.2.2)

The naïve model refers to the complete-case analysis where neither missingness

nor measurement error are accounted for.

We performed 100 simulations under each scenario for various sample sizes over a

range of values of n ∈ {50,100,1000}. In addition, throughout this section, we use

the results of the fully observed and error-free dataset (complete) as a baseline

measurement in the visual inspection of the above mentioned compared methods.

We used the mice R-package (Buuren and Groothuis-Oudshoorn, 2011) for mul-

tiple imputation using the packages default settings; the simex R-package when

fitting SIMEX models; and wrote our own code for fitting CS models. Finally,

for MI we set M = 100 (see Section 2.3.2), and for SIMEX we set B = 100,

λk = {0.25,0.5,1,1.5} and used a quadratic function for the extrapolation step.

In Figure 5.1 (and Figures A.1–A.2 in Appendix) and Figure 5.2 (and Figures A.3–

A.4 in Appendix), we plotted parallel boxplots of the estimates of the slope co-

efficient obtained from each fitted model against increasing missing proportions

and increasing values of σU for various n under the first and the second scenarios,

respectively. For example, for n = 100, Figure 5.1 and Figure 5.2 show that MI,

MI-SIMEX and MI-CS outperformed the other methods in terms of the magnitude

of bias as the missing proportion increases (top to bottom). However, as σU in-

creases (from left to right) MI fails to perform well compared to MI-SIMEX and
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Figure 5.1. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ N(0,1) and n = 100. Different methods are compared with the original
dataset (complete, in red) based on the accuracy of their estimators as the missing proportion and
the error variance increase from the top-left corner to the bottom-right. Note that the true value
of the slope coefficient is 1.

MI-CS. Also, as expected, for both scenarios the bias was worst for large σU and

higher missing proportion when using the naïve model. In summary, MI-SIMEX

and MI-CS outperform the other methods in terms of the magnitude of bias for

both higher values of σU as well as higher missing proportions where in most

caese MI-SIMEX showed better performance than MI-CS, in particular, for smaller

sample sizes. However, the performance of MI-CS improved as the sample size

increased. Finally, the results were similar for scenarios (a) and (b).

In Figure 5.3a (and Figures A.5a–A.6a in Appendix) and Figure 5.3b (and Fig-

ures A.5b–A.6b in Appendix), we evaluated the predictive performances of the

compared methods for various n under the first and the second scenario, respec-

tively, where we plotted the MSE of the slope estimators against increasing miss-

ing proportions and increasing σU . As expected, for both scenarios the MSE for
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Figure 5.2. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ U(−1,1) and n = 100. Different methods are compared with the original
dataset (complete, in mint) based on the accuracy of their estimators as the missing proportion
and the error variance increase from the top-left corner to the bottom-right. Note that the true
value of the slope coefficient is 1.

the naïve model had substantially increased with the missing proportion and σU ,

and was largest among the compared methods. Not surprisingly, MI reported low

MSEs for small values of σU but started to increase with larger σU . MI-CS showed

relatively high MSE for small sample sizes of n = 50, however, the predictive per-

formance of MI-CS improved substantially as the sample size increased (e.g., for

n = 100). In summary, MI-SIMEX shows the best predictive performance among

the compared methods under both scenarios and across all sample sizes.

Table 5.1. Normal linear model: Computational time (in seconds) of compared
methods when n = 100.

complete naive SIMEX MI MI-SIMEX MI-CS

0.002 0.001 0.326 8.200 41.084 8.263

Finally, for all methods we compared computational efficiency. Table 5.1 shows the
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(a)

(b)

Figure 5.3. Normal linear model: Mean squared error of the slope coefficient estimates for
different methods with n = 100 when (a) X ∼ N(0,1) and (b) X ∼ U(−1,1). Different methods
are compared with the original dataset (complete, in dotted green line) for different values of error
variance as the missing proportion increases.

average computational time required by each of the compared methods. Recall

that the number of multiple imputations is set to M = 100 and the number of

SIMEX resamples is set to B = 100 for a sample size of n = 100. As expected

(see Section 5.2.2), MI-CS is computationally more efficient than MI-SIMEX, being

about 4.97 times faster under the settings given in this simulation study. It is clear

that under different parameter settings, these computational times may vary.

5.3.2 Poisson log-linear model

Next, we considered the following regression model

Yi ∣Xi
i.i.d.∼ Poisson(λi), logλi = β0 + β1Xi, i = 1, . . . , n,

such that the response variable is represented as counts. We used a similar simula-

tion setting as in Section 5.3.1 for the cases where Xi was generated from (a) the
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normal distribution with mean 0 and variance 1 and (b) the uniform distribution

on the interval (−1,1). We only considered n = 100 for this simulation study. Once

again we used the simex R-package for fitting SIMEX models but now wrote our

own code for fitting multiple imputation and fitting corrected score models. The

coding required to fit these models was very minimal as the corrected score for

the Poisson model is provided in Nakamura (1990).

Figure 5.4. Poisson log-linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ N(0,1). Different methods are compared with the original dataset (complete,
in mint) based on the accuracy of their estimators as the missing proportion and the error vari-
ance increase from the top-left corner to the bottom-right. Note that the true value of the slope
coefficient is 1.

We fitted the same models as in Section 5.3.1. Figures 5.4–5.5 show parallel

boxplots for the slope coefficient estimate from each fitted model for (a) and (b),

respectively. Figure 5.6 shows the MSE for both (a) and (b). The results were

very similar to the simulation study in Section 5.3.1 where MI-CS and MI-SIMEX

outperformed the other methods in terms of the magnitude of bias and smaller

MSE as the missing proportion and σU increased (from top-left to bottom-right).
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This demonstrates that non-normal data (or at the very least, count data) can

be modelled using the proposed MI-SIMEX and MI-CS, which yielded small bias

compared to naïve models.

Figure 5.5. Poisson log-linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ U(−1,1). Different methods are compared with the original dataset (com-
plete, in mint) based on the accuracy of their estimators as the missing proportion and the error
variance increase from the top-left corner to the bottom-right. Note that the true value of the slope
coefficient is 1.

5.4 Ozone data revisited

We fitted the same models as in our simulation studies (see Section 5.3.1) and used

the same (default) setting for the mice and simex R-packages. Also, as Breiman

and Friedman (1985) showed, there are no transformations required for the ozone

response variable, hence we focus on the analysis on the raw data. This also makes

interpretation much easier. Furthermore, we consider temperature at Sandburg

as a replication of temperature measurements in order to obtain an estimate of

the measurement error standard deviation at σ̂U = 0.2274. Figure 5.7a shows a
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(a)

(b)

Figure 5.6. Poisson log-linear model: Mean squared error of the slope coefficient estimates
for different methods when (a) X ∼ N(0,1) and (b) X ∼ U(−1,1). Different methods are
compared with the original dataset (complete, in dotted green line) for different values of error
variance as the missing proportion increases.

sensitivity analysis on the estimates of the regression coefficient of temperature

for different values of known measurement error standard deviations (σU) based

on various methods. First, if measurement error in the temperature covariate is

ignored, it is evident that some consideration is needed to account for missing

values in temperature (notice the difference in estimates between naïve and MI

for σU = 0.1). This is likely due to the large rate of missingness. Second, as

σU increases, the difference between measurement error model estimates and the

naïve model becomes more apparent.

At σ̂U = 0.2274 (that is, the estimated measurement σU), the MI-SIMEX and MI-

CS estimates almost coincide where they estimate this coefficient at 0.642 and

0.644 with standard errors 0.043 and 0.039, respectively. However, based on their

standard errors as shown in Figure 5.7b, MI-CS seems to be slightly more efficient

than MI-SIMEX for this large dataset of 366 observations. However, the spreads
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(a) (b)

Figure 5.7. (a) Estimates of the slope coefficient for temperature for different methods against
increasing σU . The grey vertical dashed line is the estimated measurement error standard devia-
tion σ̂U = 0.2274. Notice the similarity between MI-SIMEX and MI-CS. (b) Estimates of the slope
coefficient (with error bars) when σ̂U = 0.2274 for each method.

were quite similar for all models based on the given error bars.

As shown here, care needs to be taken when fitting models with climate vari-

ables as we would get different results if we do not account for both missingness

and measurement error. See Foster et al. (2012) and Stoklosa et al. (2015) for a

discussion on errors-in-variables for climate data modelling in the complete data

case. Also, it was very easy to fit the proposed models, which with the available

packages, are also computationally feasible in practice.

5.5 Discussion

Our findings suggest that combining MI with measurement error modelling meth-

ods makes it possible to deal with the combined problem of missingness and

measurement error in explanatory variables in a reasonably accurate and efficient

manner. In particular, MI-SIMEX showed a reasonably good performance in deal-

ing with such combined effect on regression coefficient estimation in linear regres-

sion setting even for small sample sizes of 50 and for high missing proportions of

45%. We also investigated the case where the response variable was non-normal

(count data). Again, we observed small bias and MSE compared to the naïve

model fit. We note that binary data (or logistic regression models) could also be

employed here using the methods proposed by Chen et al. (2015) and Song et al.

(2018).
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Although we primarily focused on error-contaminated explanatory variables, how-

ever, measurement error modelling methods available for error-contaminated re-

sponse variables may similarly be combined with MI when missingness and mea-

surement error both occur in the response variable. Also, this work could easily

be extended to cases where one variable is subject to missingness and the other

subject to measurement error by applying MI for the partially observed variable

and combining it with a suitable measurement error model for the contaminated

variable in a manner discussed in Section 5.2.2. Moreover, we specifically con-

sidered numerical work in this chapter and a future study could investigate the

theoretical properties of the proposed methods.



Chapter 6

Discussion

6.1 Summary

Missing data problems are embedded in many research areas due to a wide variety

of reasons. Perhaps, one could argue that missing data are hardly ever missed

in a dataset. In Chapter 1, we introduced two datasets collected from health

research studies as well as two ecological datasets where missingness appears,

which we analyzed in later chapters. We also discussed the effects of missing data

on statistical analysis. We found that missing data can: (1) complicate the analysis

since most standard statistical analyses are designed for complete datasets, (2)

cause bias in parameter estimation when missingness in not entirely due to chance,

(3) cause efficiency loss due to the missing information, and (4) reduce statistical

power due to the reduction in the sample size.

Two well-known missing data analysis methods are MI and MLE via EM algorithm

that are often treated as distinct in the literature. For example, the difference in

their performance has been the focus of several applied research studies, such as

in Ho et al. (2001); Lynn (1982); Newman (1928); Messer and Natarajan (2008)

and Lin (2010) to name but a few. However, in Chapter 2, we showed that there

is a close connection between MI and MLE. In particular, there is a type of MI

(improper MI) that is equivalent to a stochastic type of EM (Stochastic EM). The

proper MI and the Stochastic EM algorithms proceed very similarly, the two al-

gorithms: (0) initially, specify a model for the complete data and make a guess
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on the model parameter estimates, usually based on observed data, (1) impute

missing values by randomly drawing from the conditional distribution of missing

data given the observed data and an assumption for missingness mechanism, (2)

update estimates of unknown parameters of the specified complete data model

with missing values substituted with the imputed values, (3) iterate steps 1–2 un-

til convergence, (4) continue steps 1–2 for extra M > 1 times to generate multiple

imputations, (5) finally, combine the results over multiple imputations in a manner

that yields valid inferences about model parameters.

The key difference between a proper MI and the stochastic EM algorithm is in

step 2. A proper MI algorithm treats the model parameters θ as random and

estimates them in step 2 by randomly drawing from a current approximation to

their posterior distribution. The underlying reason for treating θ as random is to be

able to take advantage of the law of iterated variances and to sum the within and

between–imputation variances in Equation (2.2) in order to reflect the uncertainty

we have about the true values of the missing data in the total variance. Also, as

the MI algorithm approaches its stationary distribution, the sequence of random

draws for θ provides an approximation to the mean of its posterior. The Stochastic

EM algorithm treats the model parameters θ as fixed and estimates them in step 2

by a current approximation to their MLE.

In order to reflect uncertainty we have about the true values of the missing data in

the total variance, Stochastic EM takes advantage of the available methods in the

ML literature, e.g., the Louis’ method, which are based on the missing information

principle. Also, as the Stochastic EM algorithm approaches its stationary distribu-

tion, the sequence of estimates for θ provides an approximation to the MLE, which

can be interpreted as the mode of its posterior, if θ were treated as random with

flat priors.

Improper MI belongs to a class of MI that fails to be proper because it does not

yield a consistent asymptotically normal estimator of θ and a weakly unbiased es-

timator of its asymptotic variance when based on Rubin’s rule (see Section 2.2.3).

This class of MI includes imputing from a model when treating θ as fixed. For

example, by plugging in the MLE (Rubin, 1987, chapter 4), this leads to an asymp-
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totically biased between–imputation variance and so it will incorrectly reflect the

sampling variability in Rubin’s rule, leading to invalid inferences. However, in

the MI algorithm, if we treat θ as fixed and plug in the MLE in step 2 (improper

MI) but combine the results in step 5 based on the Louis’ method, this would be

equivalent to the Stochastic EM, which has desirable properties and yields valid

inferences. As a result, the equivalence allows us to understand MI as a stochastic

EM approximation to the MLE. Therefore, it provides potential gains as it opens

avenues to access likelihood-based tools and to enhance MI’s performance.

In Chapter 3, by exploiting the connection between MLE and MI, we explored

the application of a range of likelihood-based tools in the multiple imputation

context for imputation model selection. Our findings show that we can diagnose

imputation models for misspecification using standard likelihood-based informa-

tion criteria such as AIC and BIC. Furthermore, we showed that BIC is consistent

for selecting an imputation model given a set of competing models. We analyzed

an ecological dataset as well as two health research datasets to demonstrate the

method’s flexibility for imputation model selection in the presence of missing data.

Moreover, we demonstrated the performance of our methods on simulated data in

the presence of univariate missing data as well as of multivariate missing data.

Another example demonstrating where access to likelihood-based tools improves

MI’s performance is in hypothesis testing. In the MI literature, hypothesis testing

based on multiple imputed datasets was proposed to obtain a modified Wald test

statistic (Rubin, 1987). Subsequent work by Meng and Rubin (1992) developed

a pooling procedure for a likelihood ratio test with MI for nested models, using

the asymptotic relationship between the Wald test and the likelihood ratio test

statistics. Although this approach might work well for large samples, it can be

quite cumbersome to implement in practice. In Chapter 4, using connections with

maximum likelihood, we developed a StEM likelihood ratio statistic that could be

directly constructed for MI. The StEM likelihood ratio statistic is easy to implement

and our simulation study shows that it performs well for small samples as well as

for small effect sizes. We analyzed a health research dataset to demonstrate the

method’s flexibility for hypothesis testing in the presence of multiple imputed data.
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Another application of the equivalence between MI and StEM is where explana-

tory variables (or covariates) used in regression analysis are imprecisely measured

in addition to containing missing values. Methods that simultaneously address

both have rarely been addressed in the literature. In Chapter 5, again, by exploit-

ing the connection between MLE and MI, we combined the likelihood-based MI

with two well-known measurement error methods: SIMEX and CS. This unified

approach has several appealing characteristics: the fitting procedure is easy to un-

derstand and an off-the-shelf software can be incorporated into the model fitting

procedure; no calibration data or a validation subset is required; both measure-

ment error methods are functional (i.e., the distribution of the true covariates need

not be specified). We demonstrated our methods on simulated data under differ-

ent scenarios as well as on an ecological dataset. Our numerical work suggests

that combining MI with measurement error modelling methods makes it possi-

ble to deal with the combined problem of missingness and measurement error in

explanatory variables in a reasonably accurate and efficient manner.

6.2 Future work

The application of our findings may be extended to other areas where MI’s per-

formance could be improved in a likelihood based framework. One important

potential extension can be in understanding how to make predictions. Currently,

there is no clear guidance in the MI literature as to how to carry out prediction

with multiple imputed data based on Rubin’s rules except for some ad hoc sug-

gestions (Vergouwe et al., 2010; Wood et al., 2015). For example, Wood et al.

(2015) compared pooled predictions with predictions based on pooled linear pre-

dictors over multiple imputations. By distinguishing between the situations where

both response and explanatory variables are partially observed and where only

response variables are partially observed, they concluded that, based on their nu-

merical work, the choice between the two approaches should be justified within

the context of the prediction model: either from a second set of multiple impu-

tations which do not include the observed response variables, or from a set of

partial prediction models constructed for each potential pattern of observed ex-
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planatory variables. These approaches are not straightforward and cannot be eas-

ily generalized. Thus, due to the limitations of ad hoc approaches and the lack

of consensus in this area, applied researchers often feel confused how to perform

prediction with MI. The equivalence bettwen MI and StEM can provide an oppor-

tunity to address this problem, since carrying out prediction in the ML literatue is

a straightforward activity.

Another potential extension is in measurement error modelling when errors-in-

variables can occur in any type of variable. In this thesis, we primarily focused

on contaminated explanatory variables. Measurement error modelling methods

available for contaminated response variables may similarly be combined with MI

when missingness and measurement error both occur in the response variable.

For example, in a survey analysis of population income poverty, Nicoletti et al.

(2011) provided bounds on the poverty rate based on previous studies that deal

with the combined problem of missingness and measurement errors in the re-

sponse variable. Liang et al. (2007) considered the case where the explanatory

variable is subject to measurement error but missingness occurs in the response

variable in partially linear models and proposed a kernel-based imputed empirical

likelihood approach to estimate regression coefficients. This work could easily be

extended to the cases where one variable is subject to missingness and the other

is subject to measurement error by applying MI for the partially observed variable

and combining it with a suitable measurement error model for the contaminated

variable in a manner discussed in Chapter 5. Other extensions include modelling

overdispersion in counts (say, using the negative binomial distribution), and inves-

tigating spatial models where covariates are missing and are measured with error,

see Huque et al. (2016). It would also be of interest to examine the theoretical

properties of both SIMEX and CS methods in the missing data context.

Furthermore, we primarily focused on the StEM algorithm in this thesis. How-

ever, an alternative Monte-Carlo approximation to the EM algorithm, known as

MCEM (Wei and Tanner, 1990), could similarly be used. This algorithm obtains

an (approximate) MLE by averaging likelihood estimates across the multiple im-

putations, then maximizing. The approach can be as opposed to StEM which
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maximizes on each imputation and then averages the estimates. The MCEM al-

gorithm is more efficient than the StEM algorithm for finite sample sizes and for

finite number of imputations (Nielsen, 2000). This is due to the fact that StEM

loses some efficiency due to the maximize-then-average strategy. Therefore, in sit-

uations where there exists little concern for computational efficiency, it would be

beneficial to apply MCEM instead of StEM without having to compromise any of

the results discussed in this thesis.

Finally, for imputation model selection (see Chapter 3), we focused on using a

fixed value of θ rather than a random θ. Future work could study whether similar

arguments apply for random parameters. One possible adjustment to the proposed

approaches when θ is random is to use Bayesian information criteria instead, such

as the deviance information criterion (Spiegelhalter et al., 2002). Another possi-

ble extension of Chapter 3 is to consider cases where informative missingness is

assumed. Here, the probability of missingness depends on the unobserved out-

come. This is a case of MNAR and is commonly approached by sensitivity analysis

methods under a range of assumptions reflecting different degrees of informa-

tive missingness. An example of this is seen in longitudinal data settings with

dropouts where the probability of dropout depends on the unobserved outcome.

Dropouts are informative about the measured outcome. Therefore, a class of mod-

els for informative missingness can be specified as a random effects model for the

primary outcome. This is combined with a model for the dropout component

where the random effects are treated as covariates or with a model for time to

dropout, and then, a combined likelihood is used for inference (Folmann and Wu,

1995; Bartolucci and Farcomeni, 2019). In summary, the approaches presented

in Chapters 3 and 4 can be studied to investigate whether they can be used in an

informative missingness setting with multiple imputed data.



Appendix A
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Figure A.1. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ N(0,1) and n = 50. Different methods are compared with the original dataset
(complete, in mint) based on the accuracy of their estimators as the missing proportion and the
error variance increase from the top-left corner to the bottom-right. Note that the true value of the
slope coefficient is 1.
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Figure A.2. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ N(0,1) and n = 1000. Different methods are compared with the original
dataset (complete, in mint) based on the accuracy of their estimators as the missing proportion
and the error variance increase from the top-left corner to the bottom-right. Note that the true
value of the slope coefficient is 1.
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Figure A.3. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ U(−1,1) and n = 50. Different methods are compared with the original
dataset (complete, in mint) based on the accuracy of their estimators as the missing proportion
and the error variance increase from the top-left corner to the bottom-right. Note that the true
value of the slope coefficient is 1.
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Figure A.4. Normal linear model: Boxplot of the slope coefficient estimates for different
methods when X ∼ U(−1,1) and n = 1000. Different methods are compared with the original
dataset (complete, in mint) based on the accuracy of their estimators as the missing proportion
and the error variance increase from the top-left corner to the bottom-right. Note that the true
value of the slope coefficient is 1.
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(a)

(b)

Figure A.5. Normal linear model: Mean squared error of the slope coefficient estimates for
different methods with n = 50 when (a) X ∼ N(0,1) and (b) X ∼ U(−1,1). Different methods
are compared with the original dataset (complete, in dotted green line) for different values of error
variance as the missing proportion increases.
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(a)

(b)

Figure A.6. Normal linear model: Mean squared error of the slope coefficient estimates for
different methods with n = 1000 when (a) X ∼ N(0,1) and (b) X ∼ U(−1,1). Different methods
are compared with the original dataset (complete, in dotted green line) for different values of error
variance as the missing proportion increases.
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