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Abstract 
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Abstract 

The development of alternative energy sources aims to tackle the energy crisis and climate 

change. Due to the intermittent nature of renewable energy, energy storage systems find 

antidotes to the current flaws for ensuring a stable and consistent power supply and 

reducing our reliance on fossil fuels. Lithium-ion batteries are the most used energy 

storage unit and have been applied in many fields, such as portable devices, building 

infrastructure, automotive industries, etc. Nevertheless, there remain significant safety 

concerns and fire risks. Thus, this has created much interest particularly in developing a 

comprehensive numerical tool to effectively assess the thermal behaviour and safety 

performance of battery thermal management systems (BTMs). 

In this thesis, a modelling framework was built by integrating the artificial neural network 

model with the computational fluid dynamics analysis. This includes (i) a comparison of 

natural ventilation and forced air cooling under various ambient pressures; (ii) an analysis 

of thermal behaviour and cooling performance with different ambient temperatures and 

ventilation velocities; and (iii) optimisation of battery pack layout for enhancing the 

cooling efficiency and reducing the risks of thermal runaway and fire outbreak. The 

optimal battery design achieved a 1.9% decrease in maximum temperature and a 4.5% 

drop in temperature difference. Moreover, this thesis delivered an overall review of BTMs 

employing machine learning (ML) techniques and the application of various ML models 
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in battery fire diagnosis and early warning, which brings new insights into BTMs design 

and anticipates further smart battery systems. In addition, the battery thermal propagation 

effect under various abnormal heat generation locations was demonstrated to investigate 

several stipulating thermal propagation scenarios for enhancing battery thermal 

performances. The results indicated that various abnormal heat locations disperse heat to 

the surrounding coolant and other cells, affecting the cooling performance of the battery 

pack. 

The feasibility of compiling all pertinent information, including battery parameters and 

operation conditions, was studied in this thesis since ML models can build non-related 

factors relationships. The integrated numerical model offers a promising and efficient tool 

for simultaneously optimising multiple factors in battery design and facilitates a 

constructive understanding of battery performance and potential risks. 
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Chapter 1 

1 

Chapter 1 Introduction 

 

1.1 General Background 

The global energy crisis and climate change have come to a historic turning point, and 

people have already been influenced by and felt the changes in our daily lives. Net zero 

and energy security are two sides of the same coin for developing clean-energy 

innovations. Nowadays, advanced technology can convert nuclear, wind or solar energy 

into electric energy with cleaner processes and higher efficiency [1], where the energy 

storage system is an essential component of the energy transition. Lithium-ion battery 

(LIB) is one of the most commonly used energy storage devices in the current market [2], 

which Yoshino first proposed in 1985 [3]. LIBs as a source of alternative energy 

respecting the environment through the use of renewable energies have been proposed in 

industries for innovative applications. LIBs are the batteries of choice for portable 

consumer electronic devices, including cell phones, tablets, laptop computers, digital 

cameras, power tools, and toys, due primarily to their durability, high specific energy 

(100 to 200 Wh/kg), and ability to operate at reasonably high power [4]. Subsequently, 

the discovery and development of each battery component have been carried out, 
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including the positive/negative electrode, the electrolyte, and the separator [5, 6]. 

Recently, LIBs have begun to enter the automotive market as power packs for electric 

vehicles (EVs), such as fully EVs, hybrid EVs, plug-in hybrid EVs, mild hybrid EVs, fuel 

cell EVs, etc. In addition to the high specific energy, the automotive market also benefits 

from this chemistry’s high power, efficiency, and long cycle life capability. As the 

automotive market drives the expansion of lithium-ion production, these batteries may 

also enter stationary service as well, facilitating the implementation of renewable energy 

technologies such as solar and wind. 

Nevertheless, although these batteries have become quite common for consumer market 

applications like cell phones, laptops, or EVs, the widespread use of this technology for 

emerging markets like electromobility or smart grids requiring stronger energy and power 

capacities must be examined from a safety point of view. Compared to many other battery 

technologies, LIB is less thermally stable, and many accidents happened before. For 

example, Figure 1.1 (a) shows an EV fire incident in Australia [7]. If the cell temperature 

is increased beyond a certain threshold, a thermal runaway (TR) can occur, resulting in a 

rapid temperature increase and possibly other related adverse effects such as the release 

of gas and smoke, fire, and rupture/explosion. Figure 1.1 (b) - (d) shows FM Global client 

losses involving batteries over a recent 20-year period [8]. The majority of the battery 

incidents are due to battery fire and mechanical breakdown, and these two issues lead to 

over third quarters of the total gross. Numerous types of abuse situations can result in an 

overtemperature inducing a TR, such as over-heating [9-12], over-charged [13], short 
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circuit [14], and mechanical shock [15]. On the cell level, the TR response during abuse 

conditions depends on cell chemistry, cell design, size of battery and abuse type. It is vital 

to alleviate the TR propagation from the single cell to several modules or a complete 

battery pack to avoid severe consequences. Thus, the temperature of the battery cell itself 

and the whole ambient environment become a key parameter of battery working and 

safety performances. 

 

 

Figure 1.1 Tesla Model S crashed and started a fire in Australia [7]; (b) - (d) FM Global battery-related 

losses from 2000-2019 [8]: (b) Overall details of numbers, (c) Percentage distribution for number of loss, 
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(d) Percentage distribution for total gross. 

 

Furthermore, an efficient cooling battery thermal management system (BTMs) is crucial 

to maintain battery cell temperature within the proper range and to balance the 

temperature variance among the whole battery system. The previous studies demonstrated 

two main criteria to evaluate the performance of the BTMs, which are the maximum 

temperature and the temperature difference. Also, the temperature range between 20 ̊C 

and 40 ̊C maintains the optimal battery performance and prolongs the battery lifespan, 

and the temperature difference among all the cells controls less than 5 ̊C [16]. Based on 

the cooling medium, BTMs are divided into five main types, which are air-based cooling  

[17-19], liquid-based cooling [20-23], heat pipe-based cooling [24-26], phase change 

material (PCM)-based cooling [27-32] and hybrid cooling with the combination of the 

above methods [33-36]. Liquid-based cooling BTMs can be further divided into direct 

and indirect systems. For the direct type of cooling systems, the whole battery is 

submerged in the liquid coolant, while in the indirect style, the cooling medium is 

circulated on the battery cell surfaces via cold plate, heat pipe, etc. PCM-based cooling 

applies passive strategies for heat dissipation. Based on different types of phase transition 

(i.e., solid-liquid, liquid-vapour, and solid-vapour) and the material composition, 

including organic, inorganic, etc., the PCM-based cooling BTMs can be further classified. 

Air-based cooling BTMs performed many advantages over the other BTMs applied in 

electric vehicles [37], such as relatively low cost, simple structure, easy maintenance, no 
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liquid leakage, no additional weight, etc. Therefore, air-based cooling BTMs have been 

applied in many commercial EVs due to the advantages mentioned above. On the contrary, 

there are also some shortcomings for air-based cooling BTMs, namely, the low heat 

capacity of air and the requirement for a massive volumetric flow rate. The optimisation 

and development of air-based cooling BTMs are still to be carried out to provide EVs 

with a safer BTMs solution.  

Characterising the detailed temperature distribution of the battery cell and the whole 

fluid domain of the battery system is essential for analysing, optimising and predicting 

the thermal behaviour, cooling performance and safeness of the battery energy storage 

system. Additionally, numerical models, especially the computational fluid dynamics 

(CFD) model, applied mathematical techniques for solving complex thermal problems, 

have been used in analysing battery thermal performance and fire safety in the recent 

decades. As a solution to the limitations of battery thermal and fire experiments, 

numerous models at various length scales have been developed to investigate the internal 

and external thermal behaviour of battery cell or systems [38-41]. The detailed 

temperature distribution of both the inside and outside of the battery can be represented 

by the CFD models efficiently and cost-effectively compared to the experiments. Mainly, 

it is very competitive in changing different battery properties and operation parameters. 

On the same note, the development of machine learning techniques has profoundly 

influenced the engineering system design. For example, the artificial neuron network 

(ANN) technique is able to learn and adapt to find potential correlations among different 
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properties, which has been applied in battery optimisation design by evaluating multiple 

factors simultaneously [42-44]. Furthermore, ANN can also optimise on multi-parameters 

simultaneously, balancing many factors and providing rational solutions. For optimal 

battery modelling and thermal safety, many operating parameters and ambient boundary 

conditions need to be assessed and balanced at the same time. Therefore, it is crucial to 

investigate the LIB thermal runaway process by accurately monitoring and predicting 

temperature dynamics during thermal propagation and implementing some effective 

methods during the LIB fire to improve its fire safety. 

Understanding thermal propagation and heat transfer mechanism among battery cell 

to cell and battery cell to ambient coolant or environment is also crucial for accurately 

predicting the thermal runaway and optimising the BTMs. The key points that need to be 

addressed include (i) the heat generation from multiple mechanisms, such as joule heat, 

polarization heat, reaction heat, and side reaction heat, etc., (ii) the heat exchange of 

different parts in the battery system due to convection, conduction and radiation from the 

generated heat, (iii) the different external conditions, such as normal conditions and 

extreme conditions (e.g., abnormal heat generation, thermal runaway, etc.). Most of the 

research work relies on the thermal model which predicted the average temperature for a 

LIB [45] and many experimental studies on the thermal propagation, which are hard to 

capture more detailed information, have been done [46-48]. These assumptions limit the 

safety margin of the battery numerical model. 
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The establishment of the integrated battery thermal system firstly provides a risk 

assessment methodology stemming from unforeseen thermal hazards; secondly, delivers 

a solution to capture the critical information from challenging physical environments, 

even real-time environment changes, for monitoring the performance of the whole 

system; thirdly, prevents the potential loss of fortune and injury of people from battery 

fire risk. For the first time, integrate the multi-scale multi-physics model, including CFD 

and ANN, and study the all-inclusive coupled internal/external phenomena of LIB 

thermal risks and fires. These contribute to improving the fire resilience of our energy 

storage system and responding to the energy crisis. 

1.2 Aim and Scope 

This thesis aims to develop an integrated CFD-ANN framework that simultaneously 

evaluates and optimises system performance. More specifically, a three-dimensional 

thermo-electrochemical model to effectively assess the thermal behaviours and detailed 

temperature distribution of the battery energy storage system. Moreover, the ANN 

techniques will be coupled with the proposed model. The generated CFD simulation 

results will be established as a dataset to train the ANN model, and the ANN model will 

generate a massive number of different combinations with all the parameters staying at a 

specific range in a short time. Ultimately, this framework will provide an optimised 

combination by evaluating the multiple operating and ambient conditions. Additionally, 

the thermal behaviour during the battery working process will be further investigated, 
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considering both normal working conditions and abnormal heat generation scenarios. The 

entire framework of this thesis is presented in Figure 1.2. 

To address the challenges mentioned above, the following objectives are derived: 

(i) To capture and replicate the whole temperature distribution and thermal 

behaviour during the battery charging/discharging cycles via the proposed 

thermo-electrochemical model. 

(ii) To consider the cooling performance and thermal behaviour under different 

operating parameters and ambient environment conditions with the proposed 

model from (i).  

(iii) To apply the numerical data from (ii) into an ANN model as a training dataset, 

generating more scenarios and optimizing the performance with different 

combinations of all the operating parameters and ambient conditions. 

(iv) To investigate the effect of various abnormal heat generation locations on the 

thermal behaviour and cooling performance of the battery pack. Based on the 

results of (iii), predict the potential thermal hazards of the battery pack. 
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Figure 1.2 The framework of this thesis. 
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1.3 Thesis Outline 

This thesis is sub-divided into six chapters in total with a structured, logical flow, 

including background, motivation and knowledge gap, research aim and objectives, 

literature reviews, methodology, results, and conclusions. The summary of each chapter 

is briefly outlined in this section. Firstly, this chapter presents the background and current 

research stage about alternative and renewable energy technologies, mainly LIB, as well 

as their advantages and disadvantages. The applications of LIB have been presented in 

this chapter, accompanied by potential fire safety issues. Concurrently, the TR process of 

LIB and the various BTMs have been mentioned. Moreover, the aim and scope of this 

research are elaborated in this chapter before the description of the thesis outline. 

Chapter 2 presents a comprehensive literature review on the subjects of BTMs employing 

machine learning (ML) models. Some typical ML models have been introduced with 

samples and applications in section 2.3. Moreover, the potential applications of ML 

techniques applied to analysing the thermal behaviour of battery systems, enhancing the 

performance of BTMs, predicting battery hazards, and controlling battery safety have 

been reviewed and discussed in sections 2.4 and 2.5, respectively. Lastly, the overview 

of the ML application on BTMs is summarised in section 2.6. 

The methodology of this thesis is introduced in Chapter 3. Section 3.2 demonstrated the 

CFD models applied in this work including electrochemical model and thermal model. 

The machine learning model, especially multi-layer perceptron model, is presented in 
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section 3.3, followed by section 3.4 with the description of the user-defined function 

applied in Chapter 6. 

In Chapter 4, section 4.3 describes a novel approach to characterise the temperature 

distribution of a battery pack based on the three-dimensional thermo-electrochemical 

model, and the application of the CFD-ANN framework. The different forced air-cooling 

directions (axial and radial of the battery cell) and various ambient environment pressures 

are investigated. Also, the optimal configuration design is proposed in this section by the 

numerical analysis of the CFD-ANN framework comparing the maximum temperature 

and temperature difference among the battery pack. 

On top of the work conducted in Chapter 4, to further study the operating setups and 

ambient environment conditions, more parameters natural ventilation scenarios are 

demonstrated and analysed in Chapter 5. Section 5.3 sheds light on the detailed numerical 

model descriptions and validation. In this section, various parameters are investigated 

related to the battery cooling performance, including the gap between each cell along 

different directions, the ambient temperatures, and the natural ventilation velocities. The 

integrated CFD-ANN model delivers the optimisation of the battery pack layout with the 

balancing of the mentioned parameters. 

After the investigation of the normal working environment for the battery pack in 

Chapters 4 and 5, Chapter 6 conducts the study of the battery pack thermal behaviour 

under extreme conditions. The section 6.2 highlights the extreme conditions that cause a 

detrimental effect on the battery cooling performance. The abnormal heat generation has 
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been adopted into the thermal propagation model to analyse the battery thermal behaviour. 

Furthermore, the different abnormal heat generation locations have been studied and the 

heat exchange mechanism has been investigated in section 6.3. 

Finally, Chapter 7 concludes the results and summarises the key findings of this thesis, 

and the highlighted contributions have been put forward in section 7.2. Additionally, the 

limitations of the current works are clarified with the suggested recommendations for 

future works in section 7.3. 

It should be noted that the main contents in Chapters 4 to 6 are constructed from the 

published journal articles with modifications and reorders (shown in the List of 

Publications), and the main contents of Chapter 2 are based on a submitted draft, which 

is currently under major revision. These mentioned drafts and articles are specified at the 

beginning of each chapter. 
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Chapter 2 Literature Review 

This chapter includes the contents from two published journal articles [49, 50]: Li, A., 

Yuen, A. C. Y., Wang, W., De Cachinho Cordeiro, I. M., Wang, C., Chen, T. B. Y., Zhang, 

J., Chan, Q. N., & Yeoh, G. H. (2021) "A Review on Lithium-Ion Battery Separators 

towards Enhanced Safety Performances and Modelling Approaches," Molecules, 26(2), 

478. and Li, A., Weng, J., Yuen, A. C. Y., Wang, W., Liu, H., Lee, E. W. M., Wang, J., 

Kook, S., & Yeoh, G. H. (2023) "Machine Learning Assisted Advanced Battery Thermal 

Management System: A State-of-the-art Review," Journal of Energy Storage, 60, 106688. 

with modifications and reorders to better fit the structure of this thesis. 

 

2.1 General Description 

With an increasingly wider application of the LIB, specifically the drastic increase of 

electric vehicles in cosmopolitan cities, improving the thermal and fire resilience of LIB 

systems is inevitable. Thus, in-depth analysis and performance-based study on BTMs 

design have arisen as a popular research topic in energy storage systems. Amongst the 

LIB system parameters, such as battery temperature distribution, battery heat generation 

rate, cooling medium properties, electrical properties, physical dimension design, etc., 



Chapter 2 

14 

multi-factor design optimisation is one of the most difficult experimental tasks. 

Computational simulations deliver a holistic solution to the BTMs design, yet it demands 

an immense amount of computational power and time, which is often not practical for the 

design optimisation process. To summarise the state-of-the-art numerical models used in 

battery research, a review of multi-scale multi-physics models is needed. Meanwhile, the 

battery numerical simulations involved a large number of parameters, such as electrical 

properties, thermal properties, operating conditions, physical configurations, etc.; ML 

techniques are able to find not only the connection among various factors but also 

improve the efficiency of simulations. Therefore, ML models play a non-substitute role 

in the safety management of battery systems. They also aid in temperature prediction and 

safety diagnosis, thereby assisting in the early warning of battery fire and its mitigation.  

In this chapter, extensive lists of literature on BTMs employing ML models and 

identifying the current state-of-the-art research are summarised, which is expected to 

serve as a much-needed guideline and reference for future design optimisation. Following 

that, the application of various ML models in battery fire diagnosis and early warning is 

illustrated. Finally, improved approaches are proposed to advanced battery safety 

management with ML. This review chapter aims to bring new insights into the application 

of ML in the LIB thermal safety issue and BTMs design and anticipate boosting further 

advanced battery system design not limited to the thermal management system, as well 

as proposing potential digital twin modelling for BTMs. 
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2.2 Introduction 

2.2.1 Overview of battery research 

As mentioned in Chapter 1, greenhouse gas emissions and global warming remain the 

utmost concerning issues around the globe, countries worldwide have taken proactive 

countermeasures attempting to mitigate waste emissions to advocate a cleaner future [51]. 

As accordingly, there is a seek for a secondary energy source for public transportation 

and logistic purposes. One example is the uprising blooming application of EVs, which 

are powered by cleaner fuel sources. Rechargeable batteries, particularly LIBs with high 

energy density, long life-span and high efficiency, have been used extensively in EVs and 

other energy storage solutions [52, 53]. Lithium-ion based battery energy storage systems 

also have become the most competitive choice for various applications [54-57]. 

Nonetheless, the high energy density and thermal instability of LIBs bring key challenges 

to battery thermal safety, such as thermal management [58]. Furthermore, it is worth 

mentioning an extreme condition called battery TR, which is a potential risk in the battery 

pack [59, 60]. In addition, battery TR propagation has become one of the greatest 

challenges for battery safety and often aggravates the thermal hazards through the domino 

effect during TR propagation [61]. Many experimental studies have characterised the 

battery TR, including initial conditions, materials, and configurations [62, 63]. The 

majority of TR initiates with the solid-electrolyte interphase (SEI) layer decomposition. 

With this trigger point, other exothermic reactions and an internal short circuit start, 

followed by the accumulated heat and gases. The whole process looks like a domino effect, 
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and once it starts, it will not go back. Due to the increasing temperature and pressure, TR 

and battery fire hazards occur. Figure 2.1 shows a series of chain reactions corresponding 

to the battery TR process, and the three-stage profile was presented by Wu et al. [64]. 

Researchers have conducted studies for the module design concerning fire protection and 

thermal insulation functions. 

 

Figure 2.1 Domino effect of battery TR and the corresponding temperature profile along different stages. 

 

Given that LIBs are sensitive to working temperature [16, 65, 66], it is essential to ensure 

the battery works in a suitable temperature range to guarantee working efficiency and 

thermal safety [67]. Therefore, it is imperative to develop effective BTMs, which require 

a comprehensive system design with multi-factors considered. 
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2.2.2 Numerical techniques and research gap 

With the development of computer science, numerical simulations are gradually applied 

in many assessments for battery performance evaluation and safety designs. Numerical 

simulation validates experiment results with fewer physical resources than standard 

experiments and reveals in-depth key performance parameters, including temperature, 

pressure, and electrochemical properties. Furthermore, simulation results visualize the 

battery system internally to effectively diagnose the problems that may lead to potential 

battery failures. The development of numerical battery models has facilitated a better 

understanding of the underlying principles of the battery circuit and its associated 

influence towards the ambient environment. 

Benefiting from the rapid development of numerical algorithms alongside data 

acquisition, ML has become more versatile and efficient with wide applications including 

electronic devices [68, 69], machinery [70, 71], and advanced materials [72-74]. The ML 

technique plays a substitutable role in system design and optimisation since it has strong 

functions in figuring out an optimal solution among multi-factors within a quite limited 

time [75]. This undoubtedly is not an easy task to fulfil via experiments and numerical 

simulation. Usually, the experiments can only aid in determining the optimal solution 

among some limited previous settings. Meanwhile, numerical simulations, such as CFD 

simulations, demand intense computational power and time to deliver a single solution 

for one case scenario. Therefore, the implementation of ML techniques in the BTMs, to 

some extent, addresses this issue by being able to almost instantly provide an optimised 
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parameter value provided with sufficient training of data. In addition, ML is expected to 

assist the temperature prediction at a certain time, enhancing the BTMs' function and 

giving an early warning before battery TR. For instance, according to time series data, 

the temperature change during the battery operation can be distinguished by the reversible 

heat and the irreversible heat, which is also linked to the charge/discharge current. To 

understand this, researchers attempted to implement ML models, such as artificial neural 

networks (ANN) [76], convolutional neural networks (CNN) [77], long short term 

memory (LSTM) [78], deep reinforcement learning (DRL) [79], etc., to assist the BTM 

system for enhanced battery thermal safety and resilience. For example, Jaliliantabar et 

al. [80] developed an ANN model for the prediction of LIB temperature equipped with 

BTMs and proved the capability of ANN to predict battery temperature in various 

operating conditions of BTMs. Kalkan et al. [81] built an ANN model, whose inputs 

involve the coolant flow rate, discharge rate, and coolant inlet temperature, for designing 

a novel serpentine tube cold late and mini channelled one. Jiang et al. [82] proposed a 

novel data-driven method for LIB fault diagnosis and TR warning based on state 

representation methodology.  

Nevertheless, ML algorithms for BTMs remain an ongoing development and 

comprehensive studies with a vast amount of training database are both required to 

empower their industry applications. Furthermore, to the best of our knowledge, there are 

few relevant review articles summarizing the state-of-the-art literature using ML in the 

BTMs and battery fire prediction, which leads to a research gap in classifying ML models 
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in thermal safety issues applications. At the same time, considering the complicated 

battery properties, operation parameters and different types of battery cells, a numerical 

dataset for battery and BTMs performance is lacking. This review section summarises the 

current ML techniques applied in battery safety studies and demonstrates a potential 

solution for battery optimisation design. In this section, by revealing past and current 

research works on ML-assisted battery systems, we aim to develop insights and future 

perspectives on the development of both intelligent BTMs optimisation and safety design. 

 

2.2.3 Contribution and structure 

On the basis of the aforementioned research gap, this section summarizes the numerical 

models of battery thermal studies and the state-of-the-art publications regarding the ML 

application in the battery thermal safety issue, including battery thermal management and 

battery fire. Also, the potential improvement directions with ML models applied in the 

battery are highlighted in the graphical abstract, including building and infrastructure, 

EVs and power stations, electrical transportation systems, portable devices, and rural 

region power supply hubs. In addition to the literature review, this review section has 

proposed some critical thinking in the potential combination of ML techniques with the 

battery system, particularly from the thermal safety perspective. The structure of this 

section is summarized as follows:  
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Section 2.3 reviews CFD modelling developments for LIBs. The basics of CFD models 

that contribute towards the establishment of battery thermal propagation modelling are 

introduced. Also, how electrochemistry is being studied eventually in a numerical way is 

demonstrated. 

Section 2.4 briefly introduces ML, where most ML models (such as ANN, CNN, and 

LSTM) used in the current related works are demonstrated in a certain category. 

Section 2.5 summarizes the related literature using ML to solve problems, where the 

applications are generally divided into section 2.5.1 Heat generation and temperature 

prediction/Thermal data prediction and section 2.5.2 System optimisation with machine 

learning. 

Following that, Section 2.6 lists the previous publications about battery fire (treated as 

the extreme state of thermal hazards) and ML applied in battery fire prediction. Compared 

to section 2.5, which focuses on the thermal behaviour and cooling performance, this 

section concentrates on the battery hazards and fire. These two sections cover the normal 

working conditions of battery systems and the extreme scenarios of battery fires, 

respectively. 

Finally, in the section 2.7, conclusions and potential contributions of this chapter are 

summarised based on the current development. Besides, some novel ideas on the way 

forward for future applications are proposed, hoping to give guidance and references for 

further probe into this field. Last but not least, this review chapter can give more 
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references for researchers in designing and/or optimizing future BTMs. The booming 

artificial intelligence technology can further boost the development of BTMs. 

2.3 LIB Numerical Model 

Mathematical models have been widely used in the battery property investigation and 

battery working procedure [83-85]. The development of a detailed mathematical model 

is important to design and optimise the batteries. Simulation results provide intuitive data 

on the performance of the battery. A suitable mathematical model can describe a few 

parameters which are not known experimentally and regulate parameter adjustment. For 

example, the direct experimental data for tortuosity or liquid-phase transport resistance is 

lacking, which can be simulated from mathematical models [86, 87]. 

CFD is a practical tool to study different thermal fluid dynamic parameters and simulate 

multiple physics fields [88], and CFD makes it possible to use the equations governing a 

fluid motion for an extensive range of complex situations, providing both insight and 

quantitative predictions. CFD simulation can provide detailed information about the 

electrical and thermal field inside the battery that is often difficult to be assessed by 

experimental means. Model-based investigations promote theoretical understanding of 

battery physics beyond what is possible from experiments only. In this section, the LIB 

numerical models are reviewed by different battery scales, as shown in Figure 2.2. 
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By considering specific equations and processes, complex fluid mechanics and 

electrochemical reactions can be simulated. The significant advances compared to 

experiments are expressed with the development of multi-scale multi-domain models. 

Meanwhile, the escalating trend of fast computing makes the CFD models a reliable and 

efficient tool to reveal complicated phenomena and analyse the mechanisms. For various 

scales of battery setup, CFD models allow engineers and researchers to predict and assess 

the LIB performance through the design process. 

 

Figure 2.2 LIB battery types and numerical models. 

 

2.3.1 Battery cell models 

In the early 1990s, Newman and his colleagues suggested a LIB model utilizing porous 

electrode theory [84]. The model solves lithium diffusion dynamics and charges transfer 

kinetics to predict the electrical response of a cell in a paired intercalation electrode 
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system. This model has been widely used in academia and industry to describe the 

performance of a LIB based on material properties and electrode design. With the 

application of a two-dimensional battery cell model, Kim et al. [89-92] investigated 

thermal behaviour of LIB under various electrode configurations, as well as during 

discharge and charge. The potential, current density distribution and temperature 

distribution were predicted. Also, the scale-up battery and low environment temperature 

were considered. Xu et al. [93] developed a two-dimensional electrochemical-thermal 

model, considering the effect of current collecting tabs on cell performance. Cheng et al. 

[94] built a thermo-electrical model to investigate the surface temperature distribution of 

a LIB cell. Larsson et al. [95] presented a thermal model to allow a fast evaluation of 

several different preventive means of thermal insulation and predict the propagation of a 

thermal runaway in a cell to neighbouring. In order to study the thermal abuse behaviour 

of large format LIBs, Kim et al. [96] studied a three-dimensional model based on a one-

dimensional model formulated by Hatchard et al. [97]. Their model demonstrates 

multidimensional behaviours of thermally abused cell. Kim and his colleagues developed 

a Multi-Scale Multi-Dimensional model, which addresses the interplay among the 

physics in varied scales [98], and this model is applied to resolve electrochemical-, 

electrical-, and thermal-coupled physics in large-format stacked prismatic cell designs. 
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2.3.2 Battery module and pack models 

Based on different shapes and forms, there are three most common ones for LIB cells, 

which are prismatic, pouch and cylindrical. Multiple battery cell arranged in modules to 

achieve serviceable units. Yi et al. [99] demonstrated a three-dimensional model for LIB 

module, the potential, current density distribution were predicted as a function of 

discharge time. Cicconi et al. [45] proposed thermal simulation of one battery cell, and 

the CFD analysis of a battery module. The air-cooling system has been evaluated. 

However, each battery cell was simulated as an average temperature, which can be further 

investigated. 

Moreover, battery cells are connected in series and in parallel into battery packs to achieve 

the desired voltage and energy capacity. Feng et al. [100] studied and designed substantial 

quantified solutions to prevent thermal runaway propagation via applying battery pack. 

They predicted that inserting thermal resistant layer between adjacent batteries can be 

helpful. Chen et al. built a detailed three-dimensional thermal model to examine the 

thermal behaviour of the LIB, and it precisely considered the layered-structure of the cell 

stacks, the case of a battery pack, and the gap between both elements [101]. Lin et al. 

[102] developed a three-dimensional model of battery pack with the passive thermal 

management system, and the temperature rising curves of this model matched very well 

with the experimental results. 
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2.3.3 Other models 

Abada et al. developed a 3D physical model of electro-thermal behaviour at thermal 

runaway conditions, which also provides a better understanding of the ageing influence 

on the thermal runaway process [103]. Cai et al. [104] studied a mathematical model on 

the thermal behaviour of LIB during the galvanostatic discharge process with and without 

a pulse. Xie et al. [105] developed a resistance-based thermal model to simulate the ohmic 

resistance, polarization resistance, and entropy change, considering effects of the state of 

charge (SOC) and temperature on heat generation. Fang et al. [106] proposed a prediction 

model based on artificial neural network for surface temperature simulation of nickel–

metal hydride battery. With a good agreement to experimental data, battery surface 

temperature is calculated with various ambient temperature and charging rates. 

In this section, numerous studies related to LIB numerical modelling have been reviewed. 

From the safety perspective, most of the research work relies on the thermal model, which 

predicted the average temperature for a LIB cell [45, 93, 95], and many experimental 

studies on the thermal propagation have been done [107, 108]. The battery fire risks and 

potential hazards demonstrated a close relationship with the temperature. However, the 

non-uniform temperature distribution in the LIBs leads to an electrical imbalance, lower 

battery performance and shorter battery life. The models that can replicate the 

comprehensive battery temperature distribution should be further addressed. 
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2.4 Machine Learning Overview 

Based on the prementioned LIB numerical models, the various battery properties and 

operating conditions were adopted for the CFD approaches. Achieving an optimal balance 

among these parameters is crucial from an optimization standpoint. Furthermore, most of 

these parameters lack a clear relationship, so employing a methodology to establish 

connections between them is required. As the world is rapidly transiting towards 

electrification and automation, artificial intelligence (AI) systems are increasingly 

integrated into our daily lives (telecommunication networks, infrastructures, 

transportation systems, etc.). Concurrently, our current age is deemed a digital world, and 

various data types are ubiquitous. Implementing AI, particularly ML approaches, is the 

key to intelligently analysing the data and constructing correlative smart applications. 

With the revolutionary developments of computer science and processing power over the 

last decades, ML algorithms have been widely applied in different fields, such as building 

[109, 110], chemistry [111], manufacturing [112], agriculture [113, 114], etc. ML is a 

computer program that learns from experiences concerning some class of tasks and 

performance measures if its performance at tasks improves with the experiences [115]. 

Figure 2.3 shows the schematic of ML. Samples train the machine, and then when input 

comes to the machine, the machine's structure and/or parameters are updated by the new 

samples. The approximated output will be generated afterwards.  

Also, many previous reviews of ML have been done [116-118]. Normally, ML techniques 

are categorised into four major types: Supervised learning, Unsupervised learning, Semi-
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supervised learning, and Reinforcement learning [119], shown in Figure 2.4. Supervised 

and unsupervised learning depends on whether the data is labelled. The semi-supervised 

learning is a hybridisation of the first two types, while reinforcement learning enables 

machines to evaluate the behaviour or environment to improve efficiency. 

 

Figure 2.3 The synthetic route of DMOP. 

 

 

Figure 2.4 Major types of ML techniques [119]. 
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This review mainly focuses on the ML applied in the battery thermal safety issues field. 

The applied algorithm depends on many factors, including the problem to be addressed, 

the number of variables, the chosen model, and so force. In line with the overall reviewed 

papers, the ML algorithms in this review are summarised in three components: ANN, 

deep learning (DL) and other methods. In this section, we briefly outline the ML 

algorithms used in the battery thermal safety issues and provide the potential of the 

applied ML models to improve the intelligence and capabilities of BTMS applications. 

 

2.4.1 Artificial neural network (ANN) 

Artificial neural networks, normally called neural networks (NNs), are computing 

systems inspired by the biological neural networks that form animal brains. ANN has 

rapidly developed as a common tool to model a broad range of engineering systems due 

to its capability to learn and adapt to find potential correlations among different properties. 

ANN-based models are empirical. However, they can contribute to practical, accurate 

solutions for accurately or imprecisely formulated problems and phenomena only 

identified with experimental data and field observations. ANNs have been used in various 

applications, including modelling, classification, pattern recognition, multivariate data 

analysis, etc. Owing to the high precision and outstanding data noisy tolerance, ANN has 

been successfully utilised in studying battery-related topics, such as the state of charge 
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estimation, state of health assessment, battery temperature prediction, BTMs optimisation, 

etc. 

ANN is a non-program, adaptive, brain-style information processing that functions 

through network transformation and dynamic behaviour [120]. An ANN model has five 

main components: inputs, summation functions, weights, activation functions, and 

outputs, which the early researchers propose to model the operation of the artificial 

neurons. The working process of a typical ANN model is straightforward. Inputs of ANN 

were received by an artificial processing neuron and were combined to generate a net 

input. The neuron passes that through a threshold gate and transmits the output to another 

neuron or the environment. 

The artificial neuron in the hidden layer works as a biological neuron in the brain. To 

form a directed and weighted graph, the network is shaped by linking the output of 

specific neurons to the input of other neurons. A learning process can adapt the activation 

functions and weights. The learning rule or training approach controls the certain learning 

process. The activation function of a node governs the output of that node, or "neuron," 

provided input or set of inputs. The activation function presents a functional relationship 

between the input and output layers. Step activation, threshold, sigmoid, and hyperbolic 

tangent are frequently applied activation functions. 

ANN approaches are applied in the control or modelling of systems with unknown or 

complex internal structures by achieving the advantage of learning and the stability of 
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facing minor disturbances. This section focuses on multilayer perceptron and support 

vector regression applied for BTMs. 

2.4.1.1 Multilayer perceptron (MLP) 

Multilayer Perceptron (MLP) is known by its architecture, which is also a feed-forward 

ANN [119]. A typical MLP contains at least three layers of nodes: an input layer, a hidden 

layer and an output layer. Except for the input layer, each node of other layers is a neuron 

that utilises a nonlinear activation function to connect. MLP utilises a supervised learning 

technique called back-propagation for training. Its multiple layers and nonlinear 

activation separate MLP with a linear perceptron, which can distinguish data that is not 

linearly separable. A hidden layer is a layer located between the input and output of the 

ANN model, in which artificial neurons apply a set of weights to the inputs and direct 

them through an activation function as the output. Hidden layers of ANN allow for a 

neural network's function to be taken apart for specific data transformations. For example, 

images and documents are treated as initial inputs from external data. The ultimate 

outcomes, such as recognizing objects in a snap, complete the task. 

2.4.1.2 Support vector regression (SVR)  

Support Vector Regression (SVR) is popularly and widely applied for classification 

problems in ML. SVR is an analytical approach to investigating the relationship between 

one or more predictor parameters and a real-valued (continuous) dependent variable [121]. 

As a significant branch of support vector machine (SVM), SVR only has one kind of 
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sample point [122]. Compared to SVM, SVR is less popular, but it is an effective tool for 

estimating real-value functions. SVR uses kernel functions to outline the nonlinear 

regression problem for nonlinear problems. The optimal hyperplane it pursues is not to 

maximize the separation length between two or more types of sample points like SVM 

but to minimize the total variation between sample points and hyperplane. And the sample 

points can be separated by an optimal hyperplane in high-dimensional spaces. For 

example, for a linear situation of SVM, the points outside the middle shaded tube region 

affect the cost insofar as the deviations are penalized linearly [123], shown in Figure 2.5.  

 

Figure 2.5 The soft margin loss setting for a linear SVM [123]. 

 

2.4.2 Deep learning (DL) 

Deep learning (DL) is a subfield of ML, typically a neural network with three or more 

layers of neurons, as shown in Figure 2.6. DL attempts to replicate the behaviour of the 

human brain, allowing numerical models with multiple layers to learn multiple levels of 

large amounts of data. While a neural network with a single layer can still make 
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approximate predictions, additional hidden layers contribute to optimising and refining 

accuracy. 

Compared to traditional neural networks, DL shows a better performance in everyday 

products and service cases with large datasets, such as voice-enabled TV remotes and 

credit card fraud detection. Observing patterns in the data allows a DL model to cluster 

inputs appropriately. Therefore, a DL model would require more data points to improve 

its accuracy. Furthermore, DL has some limitations: data amount, computational power, 

and training time. Typical types of DL related to BTMs in this section are listed as follows. 

 

Figure 2.6 Relationship among AI, ML and DL [124]. 

 

2.4.2.1 Convolutional neural networks (CNNs) 

Convolutional neural networks (CNNs) are applied primarily in image and video 

recognition, classification, natural language processing, etc. CNN can take advantage of 

the two-dimensional structure of the input data for detecting features and patterns and 
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achieving tasks like object detection or recognition. Many successful applications of CNN 

models in the field. For example, CNN first bested a human in an object recognition 

challenge in 2015.  

2.4.2.2 Long short-term memory (LSTM) 

Long short-term memory (LSTM) is a recurrent neural networks (RNNs) architecture, 

which is typically applied in natural language and speech recognition as it leverages 

sequential or time-series data. LSTM can overcome the training difficulty caused by the 

exploding/vanishing gradient problem. The learning advantage of LSTM impacted 

several fields from both a practical and theoretical viewpoint, so it became a state-of-the-

art model [125]. Figure 2.7 shows the architecture of a typical LSTM block, including 

gates, inputs and outputs. The output of the block will be connected back to the block 

input and all of the gates for the calculation. Also, researchers keep studying the 

possibilities to improve the performance of the typical LSTM. 

 

Figure 2.7 The architecture of a typical vanilla LSTM block [125]. 
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2.4.3 Other machine learning methods 

Due to the battery itself combining electrical, chemical and mechanical parameters, many 

different perspectives should be involved, such as voltage, temperature, State of Charge 

(SOC), Depth of Discharge (DOD), resistance, cycle life, State of Health (SOH), etc. 

Therefore, besides the prementioned ML techniques, some other ML algorithms are still 

applied in battery thermal and safety research. In addition, the combined ML methods 

will be listed in the next section. 

2.4.3.1 k-nearest neighbours algorithm (KNN) 

k-Nearest neighbours (KNN) is an uncomplicated algorithm that allocates new data based 

on a similarity measure (e.g., distance functions) with the input data, also known as a 

'lazy' learning model. KNN has been applied in some analysis fields, such as statistical 

estimation and pattern recognition. The concept behind nearest neighbour methods is to 

catch a pre-determined number of training objects closest to the new point and utilise 

them to predict its label. KNN is quite robust to noisy training data, and accuracy depends 

on the data quality. The number of cases can be a user-defined constant, which can also 

vary locally depending on the density of points. 

2.4.3.2 Gaussian process regression (GPR) 

Gaussian process defines a distribution over functions and inferences taking place directly 

in the space of functions. Gaussian processes often have characteristics that can be 

changed by setting certain parameters. The algorithm is applied to estimate the SOH and 
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SOC of LIBs. Also, the GPR model has a straightforward parameterization. The model 

parameters can be computed by maximizing a marginal loglikelihood function, which is 

easy to implement and flexible to use, in contrast to commonly used grid-searching trial-

and-error methods used to optimise the SVM [126]. 

2.4.3.3 Digital twin (DT) 

With the wave of the digital economy, the application of the Internet of Things (IoT), 

cloud computing, big data and other technologies have become a future trend in battery 

management and production [127]. To overcome the increase in battery cell number, 

algorithm complexity, and new functionalities, a digital twin (DT) was built to improve 

the computation and data storage capabilities. All battery-relevant data can be measured 

and transmitted seamlessly to the cloud platform at a DT [128]. DT uses massive twin 

data and real-time coupling to achieve simulation, prediction, diagnosis, etc., while ML 

can be matched with intelligent algorithms for multiple needs [129]. DT can improve the 

accuracy and responsiveness of different functions with ML algorithms. 

To sum up, in the field of battery research, ML has emerged as a potential modelling 

method and has already been applied in many perspectives of this area. Figure 2.8 shows 

the trend of applying ML methods in battery research continually increases. The number 

of publications on battery fire (BF) and BTMs in 2021 is double that in 2020, 

demonstrating that ML has great potential in the application on BF and BTMs. Meanwhile, 

it has specific advantages in fast and accurate real-time battery state predictions. In this 

section, we summarise the most used ML methods for battery thermal and safety issue. 
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Figure 2.8 Publication amount trend of ML applied in battery in recent years. 

2.5 Machine Learning and Battery Thermal Management 

As mentioned in Section 1, it is imperative to design ideal BTMs due to the strict 

temperature requirement of LIBs. Currently, there are numerous studies concerning 

BTMs emerging fast, which employ air cooling, liquid cooling, phase change material 

(PCM) cooling, etc. Among them, many parameters must be determined or optimised 

before establishing effective BTMs. These parameters optimisation include air velocity 

in the forced air cooling [130, 131], the ambient temperature in the forced air cooling 

[132], the flow rate of the liquid [133, 134] and cooling liquid temperature [135, 136]. 

However, it is not an easy task to optimise so many parameters via experiments or 

simulations only. For one thing, most experimental studies adopt the method of 
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determining the most optimum one among many options. For another, even though the 

numerical studies mostly follow this pattern, whose results are indeed superior but 

operated under a recommended range. Rare studies proposed the most optimum values 

applying the optimisation progress with ML methods [137], which are considered a 

superior tool in optimizing and predicting parameters [138-140]. 

 

2.5.1 Heat generation and temperature prediction/Thermal data 

prediction 

Kleiner et al. [141] developed a lumped thermal model with a novel neural network and 

proposed a direct comparison of a physics-based and a data-driven thermal battery 

module for the first time. In their study, the temperature estimation of both modelling 

approaches is in good agreement with the reference temperatures for multiple locations. 

Afzal et al. [142] compared single layer NN with deep NN to figure out an optimised 

number of hidden layers to predict Nu coupling with neurons and activations functions 

(See Figure 2.9). They concluded that the deep NN provided a much better prediction 

than the single layer NN model. 
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Figure 2.9 Schematic figures of the ANN model structure [142] (a) single hidden later NN, (b) deep 

hidden layer NN. 

 

Kleiner et al. [143] proposed a novel simplified modelling approach for predicting the 

jelly roll temperature of large format prismatic cells based on ANN. Arora et al. [144] 
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also proposed a new computational model based on ANN for estimating battery heat 

generation rate with cell nominal capacity as one of its key inputs, along with ambient 

temperature, discharge rate and depth of discharge. Their trained ANN accurately 

simulates the thermal behaviour of LiFePO4 pouch cells of the nominal capacities from 

8 to 20 Ah under varied conditions. 

Except for ANN, CNN and LSTM are also popular ML models for evaluating the 

effectiveness of the BTMs. To highlight the accuracy and application prospect of CNNs 

to substitute complex, time-consuming finite element method (FEM) modelling, 

Kolodziejczyk et al. [145] first modelled composited phase change material (CPCM) 

microstructures with FEM, whose image dataset is subsequently used to train CNN 

models. After that, the CNN was used to predict the temperature evolution of the CPCM-

based BTMs during charging/discharging currents, as shown in Figure 2.10. Wang et al. 

[146] applied CNN and virtual thermal sensors to predict a ternary battery’s internal 

temperature and highlighted this method needs no knowledge of battery thermal 

properties, heat generation or thermal boundary conditions. Besides, Zhu et al. [147] used 

time-series data to train the LSTM model and found that battery temperature fluctuation 

can be efficiently predicted over a long period, serving as a battery temperature prognostic. 

Huang et al. [148] propose a deep reinforcement learning model to optimise the battery 

energy management strategy considering battery thermal effects. By comparing the 

numerical results to two conventional reinforcement learning algorithms, the proposed 
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method demonstrates a more than 6.7% energy reduction, which saves the cost for 

training and makes the data sets close to the practical scenario. 

 

Figure 2.10 (a) the developed modelling strategy for creating the dataset of CPCMs, (b) two CPCM 

samples with their cross-section images and time evolution of surface temperature [145]. 
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2.5.2 System optimisation with machine learning 

ML is a smart tool to assist multi-factor design. For example, ANN can be applied to 

describe the relationship between BTMs parameters [149] and provides a time-saving and 

efficient method for optimal design. 

2.5.2.1 Multi-factor design 

Mokashi et al. [150] applied ANN model to analyse the heat removal from the battery 

pack using a different flowing fluid with an average Nusselt number. In their work, three 

different types of multi-layered feed-forward (FF) networks with back-propagation were 

developed, i.e., the multiple back propagation (MBP) 1-3 (Figure 2.11 (d-f)). The multiple 

back-propagation algorithms assist the regression analysis of the average Nusselt number.  

Lin et al. [149] utilise an ANN network combined with a genetic algorithm to optimise 

the thermal performance of air-PCM BTMs regarding the inlet air velocity, inlet air 

temperature, PCM thickness, and battery unit spacing and discharge rate. Their results 

showed that the PCM thickness and battery unit spacing affect the battery temperature. 

The optimal parameter combinations help slow the temperature rise and delay the PCM 

phase transition. 
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Figure 2.11 (a) 3 D and (b) 2 D diagrams of the BTMs, (c) computational domain of the conjugate 

problem, (d) MBP 1, (e) MBP 2, and (f) MBP 3 [150]. 

 

Xu et al. [151] proposed a novel digital twin virtual model-based BTMs parameter 

optimisation (including microchannel plate width or cell internal spacing d1, side spacing 

d2, microchannel height l and coolant flow rate V). Finally, they developed a new type 
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of microchannel liquid cooling BTMs, which has a better cooling effect but smaller 

volume. Similarly, Talele et al. [152] applied ANN to investigate the delay effect caused 

by the battery pack to resist the set limit of the threshold temperature range, where a multi-

objective optimisation strategy is proposed between the battery pack delay effect for 

selected paraffin wax and RT-18 PCM against its given C-rate. Kalkan et al. [81] applied 

the ANN model to study the thermal performance when developing a cold plate (Figure 

2.12), including some key parameters like coolant flow rate, the inlet temperature of 

coolant and discharge rate. By considering 270 data sets, the average temperature and 

maximum temperature difference are evaluated and predicted accurately. 

 

Figure 2.12 Section views of (a) serpentine tube cold plate (STCP) and (b) mini channel cold plate 

(MCCP) [81]. 

 

Genetic programming (GP) models are also popular in system optimisation. For example, 

Su et al. [153] applied genetic programming (GP) when optimizing the inlet coolant 
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temperature in the BTMs. The GP model process is illustrated in Figure 2.13, and the 

iterative optimisation is demonstrated as well, including model generation, evaluation, 

selection, and modification. This process aims to minimise the objective function value 

of the model to optimise the predictive performance. 

There are also some newly developed models by the researchers to investigate the specific 

scenarios. Shi et al. [154] developed a fully connected deep network to optimise the air 

cooling model regarding different shell structure features, including various numbers, 

positions, and sizes of the additional outlet in the U-type cooling BTMs.  

Besides, SVR models can also be applied to predict battery temperature changes. For 

example, Tang et al. [155] used the system coefficient performance-support vector 

regression (PSO-SVR) model to investigate the influence of ambient temperature, air 

flow rate of the external heat exchanger and compressor speed on performances of the 

liquid-cooled BTMs and proved the PSO-SVR model can be used as a new method to fit 

the complex nonlinear relationship among the system coefficient of performance (COP). 
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Figure 2.13 Illustration of the GP process [153]. 
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2.5.2.2 Cooling efficiency determination 

Except for the simultaneous design of multi-factor optimisation in the BTMs, there is also 

an important but seldom investigated issue, namely the coordination among (fast) 

charging, effective cooling and energy efficiency. This task can be extremely tough to 

realize via limited experiments, while machining learning models can help. Chen et al. 

[156] proposed the NN model to assist in combining fast-charging process scheduling 

with thermal management and figure out a trade between the charging speed, cooling 

efficiency and energy consumption, as shown in Figure 2.14. In their study, the regression 

model could predict three target values for all of the combinations among a wide range 

of charging current rates (0.5C, 1C, 1.5C, 2C and 2.5 C) at three different charging stages 

and a range of coolant rates (0.0006, 0.0012 and 0.0018 kgs-1). The maximum temperature 

and temperature standard deviation (TSD) were lower than 33.35 and 0.8 °C. Similarly, 

Park et al. [157] first proposed an optimal TM strategy and then used an ANN-based 

model to reduce the total energy consumption while maintaining the battery temperature 

within an acceptable range.  

In this section, the related literature with the applications of ML techniques to solve 

problems of battery thermal prediction and system optimisation are reviewed. Table 2.1 

summarises the reviewed research works that applied ML techniques for BTMs, and it is 

concluded that ANN is applied the most in this area. At the same time, other methods, 

including CNN, SVR, and LSTM, also have the potential to enhance BTMs. 
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Figure 2.14 Diagram of (a) LC-based BTMs (b) mini-channel-based cooling plate, (c) proposed NN 

model [156]. 

 

Table 2.1 Summary of the ML applied in the battery thermal management design and thermal data 

prediction. 

ML approach Target object Reference 

ANN PCM design [80] 

Cold-plate design [81] 

Optimisation of battery pack enclosure [138] 

Battery pack configuration [139] 

Temperature prediction [143] 

PCM-based BTMs design [149] 

PCM delay [152] 
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BTMs design [157] 

Energy efficiency optimisation [158] 

Surface temperature [159] 

Liquid cooling based BTMs [160] 

Thermal coupled equivalent circuit model [161] 

Heat generation rates [162] 

MLP Liquid cooling [156] 

CNN PCM design in thermal management [145] 

LSTM Thermal effects and temperature changes [147] 

DRL Battery temperature and energy consumption [148] 

SVR Liquid-cooled battery thermal management [155] 

2.6 Battery Safety and Machine Learning 

Batteries, as complex materials systems, pose unique challenges for the application of 

ML [163]. In recent decades, LIBs have been widely used in our daily life, such as electric 

vehicles (EVs), battery energy storage systems (BESSs), and small portable devices. 

Many battery fire accidents happen now and then, even some explosions leading to people 

injured and fortune lost [164, 165]. Ghiji et al. [166] demonstrated more than 300 fires or 
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fire-related incidents with 40 fatalities reported over the past two decades. Although a 

shift to data-driven, ML-based battery safety research has started, new initiatives in 

academia and industry are still needed to exploit its potential fully. 

 

2.6.1 Battery safety 

LIBs with high energy density materials are sensitive to abusive conditions whose thermal 

stability is low, and some inside chemical reactions are prone to happen when the internal 

temperature is high, including the chemical reactions between electrolyte and electrode 

materials [167-169], and safety problems like TR and its propagation [170, 171]. These 

papers have reviewed and summarised many representative incidents of LIBs failure 

accidents [172, 173]. Due to the typical explosive components of a battery, such as plastic 

packing, separator and electrolyte, LIB accidents happen in various applications, from 

mobile telephones to EVs and even aeroplanes. Based on these reviews, the various 

abusive conditions, such as over-heating, over-charged, short circuit and mechanical 

shock, have been studied, and it is easy to conclude that thermal abuse is the root cause 

of battery TR [61]. Moreover, the abuse conditions can be categorized into three sections: 

mechanical abuse, electrical abuse and thermal abuse, whose common features are smoke, 

fire and explosion, as shown in Figure 2.15 (a). 
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Figure 2.15 (a) Accidents related to LIB failure and correlated abuse conditions [61]; (b) Thermal digraph 

of a reaction and heat loss from a vessel at three ambient temperatures, where B is at the critical 

temperature [174]. 

 

As for the necessary components of combustion, fuel, oxygen, and an ignition source 

consist of the combustion triangle. For LIB fire, these three parts are also necessary. The 

main fuel is the electrolyte, which is made of organic solvent and inorganic salt. 

Furthermore, LIBs are separated from the air in a normal situation without an explosion 

or fire danger as a closed system. However, due to the TR, the positive electrode 

decomposes and releases O2, which is one of the contributions to the combustion triangle 

and chemical reactions at the negative electrode. Meanwhile, all these decompositions 

are exothermic processes that serve as the ignition source. Consequently, the LIB is under 

fire hazard risks. 

As shown in Figure 2.15 (b), the TR process can be described as follows: with the increase 

of the battery temperature and more exothermic chemical reactions happening, more heat 
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was generated. The curved line 4 stands for the generated heat owing to an exothermic 

reaction, while the straight lines stand for heat removal, which is a linear function at 

various coolant temperatures. Straight line 2 has one tangent point D with curved line 4. 

This point is a critical point, as heat removal equals heat generation; thus, this critical 

equilibrium temperature is named the “Temperature of No Return”. The temperature B is 

called the self-accelerating decomposition temperature. If the TR happens, once the 

temperature is over the critical point, all the exothermic chemical reactions will contribute 

to the self-heating and will not return. Then the temperature and pressure in the LIB are 

cumulated until it exceeds the battery endurance. The fire and explosion are inescapable, 

and the whole process can be described as the Domino effect of the reaction chain. For 

the sake of fire protection, it is important to take measures to break the Domino chain to 

avoid TR and fire hazards. 

The battery TR is similar to a series of chain reactions, which can be described as the 

domino effect, shown in Figure 2.1. The battery TR process can be generally divided into 

three stages, summarised as follows. Stage 1: In this stage, self-heating and micro inner 

short circuits happen, during which period the SEI decomposes. Stage 2: With the heat 

generated in Stage 1, the separator melts coupled with an internal short-circuit, followed 

by anode oxidation. Stage 3: Because of the increasing heat accumulated inside the 

battery, more chemical reactions, including cathode decomposition and electrolyte 

oxidation, happen. Consequently, battery fire hazards arise with fire ejection and a large 

amount of heat released, which is difficult to be extinguished. Under the common battery 
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working conditions, the battery temperature is no more than 40 °C, which is relatively 

low. Still, the abuse situations, such as short circuit, overcharge, applying reverse polarity 

or exposure to extreme temperature, will lead to a sharp increase in the temperature. In a 

situation with a temperature exceeding 66.5 °C, more reactions trigger, generating more 

heat to quicken up self-heating reactions. After that, the reaction will not return when the 

temperature is over 75 °C. Along with more chain reactions, the generated gas and heat 

are cumulated. Once the inner environment pressure exceeds the battery endurance, the 

explosion is inevitable, and the battery components are easily ignited and thus leading to 

a LIB fire. The BTMs control and maintain the battery pack under the usual conditions. 

When the TR happens, it may not cool down the battery temperature. Therefore, it is 

essential to monitor the battery temperature with early detection of abnormal heat 

generation or predict the battery fire risks by applying ML techniques to mitigate them. 

Kriston et al. [175] investigated the impact of TR initiation conditions on the severity of 

TR of Graphite-NMC (111) cells, which comprises graphite anodes and lithium Nickel-

Manganese-Cobalt oxide cathodes (written as NMC(111)). Seven hundred eighty various 

TR events are simulated, and the output is studied by ML techniques such as principal 

component analysis and clustering.  

Similarly, Li et al. [176] employed a high-accuracy finite element model of a pouch cell 

to generate over 2,500 simulations and analysed the data with ML methods, shown in 

Figure 2.16. The safety envelope was visualized with two types of phase diagrams, a 

classifier that predicts a fast speed on the short circuit or safe to a given loading condition 
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and a regressor that quantitatively tells the amount of deformation needed to develop a 

short. The safety envelope provides important guidelines for the design of EVs and 

batteries. The regression model provided the ranges of the safe and electric short circuit 

ranges, and also predict the quantity of intrusion, force, and energy absorption to which 

the short circuit happens. 

 

Figure 2.16 Flowchart of the Data-Driven Safety Envelope Using ML Algorithm [176]. 

 

From the electrochemical perspective, Seo et al. [177] demonstrated a method for 

detecting the internal short circuit in the LIB using CNN, which is used to classify the 

degree of the internal short circuit faults. The proposed method shows classification 
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results with high accuracy of 96.0% and consequently contributes to detecting the internal 

short circuit in the early battery state. 

Furthermore, Petrich et al. [178] used MLP to detect cracks in the anode of a LIB after 

the TR. The classifier studies pairs of particles and distinguishes three causes for their 

separation: breakage during the TR, image segmentation and disjointness in the pristine 

cell. For the dataset of the hand-labelled data from a real electrode, an overall accuracy 

of 73% is achieved. 

 

2.6.2 Hazard prediction 

Due to the wide applications of LIBs, the safety and reliability of LIBs are crucial for 

people's lives. Yet, our capability to predict failure through online and offline diagnostics 

still has space to improve [72]. LIBs hazardous failure is rare, but the consequences are 

relatively severe. LIBs can be treated as highly complex and nonlinear systems. Worse, 

similar battery cells or packs may perform differently towards identical mechanical, 

electrical, or thermal stimuli, limiting the performance of classical deterministic 

numerical approaches. For supporting decisions in design and control, a probabilistic 

method can be applied to quantify uncertainty. For example, Figure 2.17 demonstrates an 

overview of data from battery cells can be applied to interpret and perhaps to enhance the 

prediction accuracy by data-driven techniques, where spatial surface temperature profiles 

can also be monitored as a thermal data input. 
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Figure 2.17 Record-keeping the related data of LIB for data-driven prediction and physical interpretations 

[179]. 

 

ML algorithms are well fitted for predicting nonlinear systems like lithium-ion cells. ML 

is typically agnostic to underlying physics even if the algorithms predict accurately. It 

thus demonstrates limited value in informing researchers and engineers on design 

opportunities to improve the cells' performance. Still, training and validation of models 

are challenging for safety applications since large amounts of failure data are essential. 

Battery researchers have a high interest in conquering these challenges. This perspective 

offers suggestions on the potential ways of study to manage precise predictions of the 

hazards of cell failure while obtaining some physical insights into the predicted 

behaviours. 

Lee et al. [180] mapped partial charging data into a distinct statistical entity called the 

likelihood vector, as shown in Figure 2.18. Then the likelihood vectors are computed by 
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referring to possibility distribution functions of experimental voltage and current 

simulating different degradation/abuse conditions for LIBs. Compared with the brute-

force training method utilizing partial charging curves to train MLP classifier models, 

training assisted by likelihood vectors leads to improvements in test set classification 

accuracy by 26-85%, according to the size of neural networks. Furthermore, by 

monitoring the failure index calculated from the cumulated list of detections made, it is 

experimentally presented that the TR and resultant fatal explosion event of lithium pouch 

cell under operando dent test can be predicted before the event occurs. 

 

Figure 2.18 Schematic diagram explaining artificial neural network enhanced by likelihood mapping 

approach [180]. 

 

Besides, Jiang et al. [82] propose a novel data-driven method for LIB pack fault diagnosis 

and TR warning based on state representation methodology. The results show that the 

proposed method can perform not only the accurate identification of the faulty cells and 

accurate determination of the voltage fault type but also the early detection of faults and 

early warning of TR. Also, Ding et al. [181] proposed a novel data-driven approach to 
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perform multistep ahead forecast accurately for battery TR state at cell-level by applying 

meta TR forecasting neural network (Meta-TRFNN). Both simulated and real-world 

samples were tested, demonstrating the forecasting ability of Meta-TRFNN, the benefit 

of embracing high-dimensional thermal images, and the efficacy of the meta-learning 

framework. 

Additionally, Yang et al. [182] applied an extreme learning machine (ELM)-based 

thermal (ELMT) model to depict battery temperature behaviour under an external short 

circuit, where a lumped-state thermal model was chosen to replace the activation function 

of conventional ELMs. Compared the ELMT model with a multi-lumped-state thermal 

(MLT) model parameterized by the genetic algorithm using the experimental data from 

various sets of battery cells, it is demonstrated that the ELMT model can achieve higher 

computational efficiency than the MLT model and better fitting and prediction accuracy. 

Moreover, Ojo et al. [183] introduced an LSTM-based NN model in conjunction with the 

newly developed stretch-forward technique and residual monitor to detect these faults. 

The experimental results showed that this approach could estimate the surface 

temperature of the cell, which means that it achieved a good predictive accuracy and fault 

detection performance. Da Li et al. [184] proposed an enabling TR prognosis model based 

on abnormal heat generation, which combines the long short-term memory neural 

network (LSTM) and the convolutional neural network (CNN), shown in Figure 2.19. 

The verification results conclude that the presented scheme exhibits accurate 48-time-

step battery temperature prediction with a mean-relative error of 0.28% for all four 
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seasons, which verifies its robustness and adaptability. Also, the proposed model can 

realize a 27-min-ahead TR prognosis, including 19 mins ahead by abnormal heat 

generation (AHG) diagnosis method and 8 mins in advance by CNN-LSTM. 

 

Figure 2.19 Configuration of the proposed battery TR prognosis method based on the CNN-LSTM [184]. 

 

Furthermore, Garg et al. [185] proposed an intelligent system framework based on DT to 

provide access to real-time big data cloud storage and address some serious issues, such 
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as switching malfunction, heat generation, changing temperature rise, SOC/SOH 

estimation, etc. Based on the proposed system, the hardware and software design for the 

reconfiguration battery system can be further integrated. 

This section lists previous publications about battery fire and ML applied in battery fire 

prediction. It can be concluded that increasing ML methods are applied and developed in 

battery safety issues from many perspectives, such as TR, internal or external short 

circuits, temperature prediction, failure diagnosis, etc. Table 2.2 summarises the related 

research works that applied ML to improve battery thermal performance and enhance 

battery fire safety. 

Table 2.2 Summary of the ML applied in battery fire safety research. 

ML approach Achievement Reference 

K-means clustering TR initiation conditions  [175] 

Decision tree; SVM; ANN Mechanical loading conditions [176] 

CNN Internal short circuit [177] 

MLP Crack detection [178] 

MLP Failures diagnose [180] 

Meta-TRFNN Forecast TR [181] 

ANN External short circuit [182] 
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2.6.3 Hazard mitigation and safety control 

Safety is the utmost priority in LIB applications in energy storage systems. Recent 

accidents with different failure mechanisms undermine the industry's confidence in using 

LIBs. To our knowledge, the TR mechanism has been studied using a time sequence map. 

The state transition in the time sequence map explains the potential mechanisms for all 

types of observations in TR tests. Effective hazard mitigation approaches have been 

investigated by understanding the TR mechanisms. Battery failures and TR hazards can 

be properly alleviated by researchers applying safety control actions under various 

practical scenarios, such as material, cell and system levels. 

Mitigation strategies are fulfilled by cutting off a specific transformation flow between 

the states in the time sequence map. Figure 2.20 outlines the battery TR mechanisms and 

the thought of time sequence regulation. The safety design of battery systems aims to 

lower the possibility of abuse, eliminate abuse once it happens, and build TR alert systems 

at the earliest stage. A competent mitigation strategy that helps avoid the occurrence of 

TR is founded on the mechanisms of abuse conditions. Charging and temperature control 

are critical for battery safety and the TR system. The mitigation strategies work at 

LSTM Temperature prediction [183] 

LSTM & CNN Temperature prediction; TR prognosis [184] 

DT Heat generation; charging temperature [185] 
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different levels and guarantee the global safety of an electric energy storage system using 

LIBs.  

 

Figure 2.20 TR states of LIB pack and correlated mitigation strategies [186]. 
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ML techniques have already been used in fire modelling [187], safety assessment [188] 

and fire prediction [189]. Yamanaka et al. [190] introduced a framework for performing 

multi-objective optimisation using ML methods at a reasonable computational cost. An 

analysis of the relationship between descriptors and predictors confirms a high correlation 

between fire spread and negative electrode active material diameter. Battery fire safety 

applied ML methods for mitigation and control is a potential direction that should be 

encouraged for the future direction. 

2.7 Chapter Summary 

Owing to the global interest in clean energy, electrification and net zero emissions, there 

is a rapid usage increase of battery systems with LIB systems being one of the largest 

applications. With overwhelming public expectations and more complex application 

scenarios, LIBs are experiencing unprecedented challenges including concerns regarding 

thermal resilience, fire and explosion risks.  

This chapter aims at bringing new insights into the further application of ML in the field 

of battery thermal safety, shown in Figure 2.21. The emphasis was made on the three 

mostly used ML models including ANN, CNN, and LSTM. This chapter firstly 

introduced battery thermal models. After that, considering the application of ML 

techniques, this chapter reviewed two major topics: battery thermal management and 
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battery system safety. The following are the conclusive summaries that were drawn based 

on this literature review: 

ANN, CNN and LSTM are three major ML models used in state-of-the-art publications 

for battery thermal stability and resilience studies. Due to multivariate analysis function, 

high precision, and excellent data noise tolerance, ANN is advantageous for parameters 

optimisation contributing to better and highly efficient BTMs design. CNN is utilised for 

pattern recognition in scenarios with thermal images involved in BTMs. LSTM leverages 

sequential or times series data and can be served a role in temperature prediction, 

monitoring, and early fire diagnostics and prevention. 

 

Figure 2.21 Summary of ML techniques potential applications. 

 

Owing to the dramatic influence of the input data on the training process and output, the 

aforementioned ML models have their respective areas of expertise. Due to its high noise 
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tolerance, ANN is more suitable for experimental data with noise data. While for the 

numerical data, dimensionality and training time are two crucial factors in choosing. 

When it comes to temperature prediction or thermal hazards diagnosis with time series, 

LSTM is the first option to establish models, but vanishing gradients may appear owing 

to long series. Furthermore, DT technique, as a relatively new technology, is also applied 

in battery safety and BTMs. It shows great potential for computation power, data storage 

capability, and reliability of real-time simulation and responsiveness. 

In general, these models were used in the thermal safety issue, but further development 

is imperative with a more flexible combination and more advanced models. Chapter 3 

will introduce the methodology applied in this thesis with the related theory and 

formulations. The following two chapters will demonstrate the detailed applications of 

the integrated ANN-CFD framework in this thesis. Chapter 4 will present the analysis of 

the forced air-cooling directions (axial and radial of the battery cell) and various ambient 

environment pressures, while Chapter 5 will focus on the investigation of battery pack 

configuration, the ambient temperature, and the natural ventilation velocity based on the 

proposed framework. 
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Chapter 3 Methodology 

 

3.1 General Description 

In Chapter 1 and Chapter 2, the numerical modelling techniques and machine learning 

approaches have been demonstrated and reviewed. This chapter presents all the related 

models and methods for simulating and evaluating battery performances. As the multiple 

components comprise a single LIB cell, capturing all the physics and reactions in one 

model is difficult. Many numerical models focused on a specific character. For example, 

electrochemical performance is required for electrodes, and thermal stability is essential 

for the separator. Also, battery cells can work under various modes, such as single cells, 

battery modules, and battery packs. As per the previous review in Chapter 2, a single cell 

can be used for a small portable device, and the battery module can be applied for EVs 

and infrastructure energy storage systems. The thermal analysis for various working 

scenarios can be simulated through numerical models. Numerical simulations have 

advantages in delivering battery behaviour insights effectively and low-costly. CFD is a 

practical tool to study different thermal fluid dynamic parameters and simulate multiple 

physics fields with varying working domains. In this chapter, the three-dimensional 
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thermo-electrochemical battery model is introduced to characterise multiple parameters 

and performances during the battery working process. Moreover, machine learning 

technique, especially the MLP model, is adopted to find complex interrelations between 

various properties, and an integrated modelling framework is proposed. The mathematical 

theory of the governing equations of physical quantities is explained, including mass, 

momentum, and energy. The formulations of the electrochemical, thermal, and turbulence 

models are also discussed. 

3.2 CFD Model 

CFD is mainly dedicated to fluids in motion and how the fluid flow behaviour influences 

processes, including heat transfer and possibly chemical reactions in combusting flows 

[88]. Mathematical equations are applied to describe the fluid motion by physical 

characterisation, usually in partial differential form and called governing equations. CFD 

modelling is fundamentally based on the governing equations of fluid dynamics. These 

equations represent the mathematical statement of the conservation laws of physics. Also, 

the CFD model stands for the basic description of the fluid flow processes [191]. The 

appropriate numerical form of the physical boundary condition depends on the 

mathematical form of the governing equations and the numerical algorithm used [192]. 

Generally, the governing equations include mass, momentum, and energy conservation, 

which are expressed below: 

Mass is conserved for the fluid, and the mass conservation equation: 
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𝜌𝜌𝑎𝑎 �
𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇�⃗�𝑣� = 0 (3.1) 

Based on Newton's second law, the momentum change rate equals the sum of forces 

acting on the fluid. The momentum conservation equation: 

𝜕𝜕(𝜌𝜌𝑎𝑎�⃗�𝑣)
𝜕𝜕𝜕𝜕

+ ∇(𝜌𝜌𝑎𝑎�⃗�𝑣�⃗�𝑣) = −∇𝑃𝑃𝑎𝑎 (3.2) 

From the first law of thermodynamics, the rate of change of energy equals the sum of the 

heat added to and the rate of work done on the fluid. The energy conservation equation: 

𝜕𝜕�𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝𝑎𝑎𝑇𝑇𝑎𝑎�
𝜕𝜕𝜕𝜕

+ ∇ ∙ �𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝𝑎𝑎�⃗�𝑣𝑇𝑇𝑎𝑎� = ∇ ∙ (𝐾𝐾𝑎𝑎∇𝑇𝑇𝑎𝑎) (3.3) 

These governing equations are used for computational procedures in finite difference or 

finite volume methods. In these equations, ρ, Cp, T, P, and K stand for the density, specific 

heat, temperature, pressure, and heat conductivity coefficient, respectively. The subscript 

a denotes the cooling air. 

For the battery cell, the governing equations also can be applied. More specifically, the 

energy equation can be written as follows: 

𝜌𝜌𝑏𝑏𝐶𝐶𝑝𝑝𝑏𝑏
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝐾𝐾𝑏𝑏∇𝑇𝑇) + 𝑞𝑞 (3.4) 

where q represents the heat generation rate per unit volume of a single battery, and the 

subscript b denotes the battery cell. 

Moreover, the CFD methodology provides a numerical solution for turbulence flow. 

Compared to the other two-equation models, the k-ω model is the model of choice in the 

sublayer of the boundary layer, which demonstrates the advantage of treatment of low 

Reynolds number applications near the wall. However, it does not work well for 
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simulating the free stream flow as it tends to be dependent on an assumed value of ω 

[193]. The shear-stress transport k-ω model was suggested by Menter [194], which is a 

hybrid model that blends the advantages of both the standard k-ε model (the mainstream 

flow) and the k-ω model (near wall region). The shear-stress transport k-ω model has 

been widely used and was chosen to simulate the turbulence flow during the battery pack 

cooling process. The k-ω model has improved the accuracy of the turbulence model for 

predicting free shear flows. The major two components, turbulence kinetic energy k and 

the specific dissipation rate ω, are calculated from the following transport equations [195]:  

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Г𝑘𝑘
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝐺𝐺𝑘𝑘 − 𝑌𝑌𝑘𝑘 + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑏𝑏 (3.5) 

 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Г𝜔𝜔
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝐺𝐺𝜔𝜔 − 𝑌𝑌𝜔𝜔 + 𝐷𝐷𝜔𝜔 + 𝑆𝑆𝜔𝜔 + 𝐺𝐺𝜔𝜔𝑏𝑏 

 (3.6) 

where Gk represents the production of turbulence kinetic energy. Gω represents the 

generation of specific dissipation rate ω. Г is the effective diffusivity and is calculated by 

the following equations (3.7) – (3.8). Y and S represent the dissipation, and user-defined 

source terms, respectively. Dω stands for the cross-diffusion term. Moreover, Gb and Gωb 

account for buoyancy terms. All the terms are calculated by the CFD software during the 

simulation process: 

Γ𝑘𝑘 = 𝜇𝜇 +
𝜇𝜇𝑡𝑡
𝜎𝜎𝑘𝑘

 (3.7) 
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Γ𝜔𝜔 = 𝜇𝜇 +
𝜇𝜇𝑡𝑡
𝜎𝜎𝜔𝜔

 (3.8) 

where σk and σω are the turbulent Prandtl numbers for turbulence kinetic energy k and the 

specific dissipation rate ω, respectively, as well as the turbulent viscosity, μt, is calculated 

by k and ω. The normal model constants are σk=2.0 and σω=2.0. 

In Equations 3.5 and 3.6, the exact equation for the production of turbulence kinetic 

energy Gk and the production of specific dissipation rate Gω are defined as follows. 

G𝑘𝑘 = −𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������� 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 (3.9) 

G𝜔𝜔 = 𝛼𝛼
𝜌𝜌
𝜌𝜌
𝐺𝐺𝑘𝑘 (3.10) 

where the coefficient α is given by Equation 3.11. 

𝛼𝛼 =
𝛼𝛼∞
𝛼𝛼∗

�
𝛼𝛼0 + 𝑅𝑅𝑅𝑅𝑡𝑡/𝑅𝑅𝜔𝜔
1 + 𝑅𝑅𝑅𝑅𝑡𝑡/𝑅𝑅𝜔𝜔

� (3.11) 

where the constant α* and Ret are calculated by the below equations, and Rω=2.95. In 

addition, in the high Reynolds number form of the k-ω model, α=α∞=0.52, and α*=α*
∞=1. 

𝑅𝑅𝑅𝑅𝑡𝑡 =
𝜌𝜌𝜌𝜌
𝜇𝜇𝜌𝜌

 (3.12) 

𝛼𝛼∗ = 𝛼𝛼∗∞ �
𝛼𝛼∗0 + 𝑅𝑅𝑅𝑅𝑡𝑡/𝑅𝑅𝜔𝜔

1 + 𝑅𝑅𝑅𝑅𝑡𝑡/𝑅𝑅𝜔𝜔
� (3.13) 

𝛼𝛼∗0 =
𝛽𝛽𝑖𝑖
3

 (3.14) 

𝛽𝛽𝑖𝑖 = 0.072 (3.15) 

Also, the constant α* is the coefficient that damps the turbulent viscosity and causes a 

low-Reynolds number correction. βi is the constant. 
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3.2.1 Electrochemical battery model 

The electrochemical model applied in Chapters 4 and 5 could be seen as a lumped version 

of a single particle model [196], simulating the transport of intercalated lithium in one of 

the electrodes. The single particle model predicts the temperature distribution and voltage 

changes in a single LIB cell during galvanostatic operations. The simplification of this 

model can be conducted when the battery is mainly controlled by the diffusion process in 

one of the electrodes only. The model is based on a complete model of a LIB working 

process cycle [85]. In this model, the lumped battery interfaces are utilised, and the battery 

cell voltage Ecell is calculated by applying time-dependent cell current Icell. Additionally, 

the single battery cell is modelled by ohmic, exchange current and concentration losses. 

The battery open circuit voltage (OVC) is required, which has a relationship with battery 

state-of-charge (SOC). 

The electrochemical model can represent the LIB performance, considering the internal 

migration of the lithium ion movements during the charging and discharging process. 

With an understanding of electrochemical mechanisms, the physical quantities, including 

voltage and current, can be fully described. The three-dimensional thermo-

electrochemical model built in this section is based on a typical cylindrical 

LiFePO4/Carbon power battery, considering the physical and electrical conservations, as 

well as thermal principles and electrochemical kinetics. The electrochemical reactions of 

common LIBs can be described as the following Equations (3.16) - (3.18), where M stands 
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for a metal, which is used as a cathode material such as cobalt or nickel, and C is 

recognised as the anode material [197]. 

The reaction at the positive electrode is described as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 ↔  𝐿𝐿𝐿𝐿1−𝑥𝑥𝐿𝐿𝐿𝐿2 + 𝑥𝑥𝐿𝐿𝐿𝐿+ + 𝑥𝑥𝑅𝑅− (3.16) 

The chemical reaction at the negative electrode is expressed as: 

𝐶𝐶 + 𝑥𝑥𝐿𝐿𝐿𝐿+ + 𝑥𝑥𝑅𝑅− ↔  𝐿𝐿𝐿𝐿𝑥𝑥𝐶𝐶 (3.17) 

The overall reaction can be presented as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 + 𝐶𝐶 ↔  𝐿𝐿𝐿𝐿1−𝑥𝑥𝐿𝐿𝐿𝐿2 + 𝐿𝐿𝐿𝐿𝑥𝑥𝐶𝐶 (3.18) 

During the discharging process, lithium is oxidized from Li to Li+, and the released 

lithium ions migrate through the electrolyte medium to the cathode. As stated in Equation 

(3.18), the reaction can be run reverse to recharge the cell.  

Figure 3.1 demonstrates the working process of a typical LIB, and the fundamental cell 

unit is considered a sandwich structure, including the positive electrode, the separator, 

the negative electrode, and the current collectors located at both electrodes. The metal tab 

is joined at each correlated current collector and electrode. The separator is located 

between the cathode and anode, a porous polymer membrane to prevent physical contact 

of electrodes. The electrolyte is the medium that enables the ion transport mechanism 

between electrodes. It requires specific working conditions, such as significant ion 

conductivity, low-set electrical conductivity, extended temperature range of operation, 

thermo-dynamically stability at a certain range of voltages, environmentally friendly, etc. 
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Figure 3.1 The principle of operation for a typical LIB and its structure. 

 

Each electrode and separator are impregnated with electrolyte, achieving transportation 

of lithium ions. The material parameters for the electrolyte refer to a plasticised ethylene 

carbonate/dimethyl carbonate (EC/DMC) electrolyte remaining in a polymer matrix. 

Therefore, the stated electrolyte volume fraction points to this model's total liquid 

electrolyte and polymer matrix volume fractions. In this model, the potential losses ηIR 

due to ohmic and charge transfer processes are given as follows: 

𝜂𝜂𝐼𝐼𝐼𝐼 = 𝜂𝜂𝐼𝐼𝐼𝐼,1𝐶𝐶
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐼𝐼1𝐶𝐶

 (3.19) 

where ηIR,1C represents the potential losses under the 1C current. The 1C current I1C means 

that the discharge current will discharge the entire battery in one hour, and it is calculated 

as: 

𝐼𝐼1𝐶𝐶 =
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,0
3600 s

 (3.20) 

The overpotential associated with ohmic losses inside the cell, ƞohm (V), is calculated by: 

𝜂𝜂𝑜𝑜ℎ𝑚𝑚 = 𝑅𝑅𝑜𝑜ℎ𝑚𝑚𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3.21) 
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The SOC is defined by the battery current [198], shown as: 

dSOC
dt

=
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,0

 (3.22) 

Waag et al. [199] demonstrated that the accuracy of state-of-power assessment models 

could be improved by bringing in a non-linear value in the current-voltage dependency. 

The dimensionless charge exchange current J0 is introduced to calculate the activation 

overpotential inside the battery, ƞact (V), given as: 

𝜂𝜂𝑎𝑎𝑐𝑐𝑡𝑡 =
2𝑟𝑟𝑇𝑇
𝐹𝐹

𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎ℎ �
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2𝐽𝐽0𝐼𝐼1𝐶𝐶
� (3.23) 

Other voltage losses are caused by diffusion in an idealised particle or by applying a 

resistor-capacitor pair. Wang et al. [200] concluded that adding a stemming from a 

diffusion impedance can improve power prediction. In this section, with the assumption 

that only one of the electrodes affect the potential loss on the cell level, just one particle 

is considered. The diffusion of a dimensionless SOC variable is calculated for a 1D 

geometry with a dimensionless spatial variable X between 0 and 1 using spherical 

symmetry, given as: 

𝜏𝜏
𝜕𝜕𝑆𝑆𝐿𝐿𝐶𝐶
𝜕𝜕𝜕𝜕

= −𝛻𝛻 ∙ (−𝛻𝛻𝑆𝑆𝐿𝐿𝐶𝐶) (3.24) 

The interval stands for an average particle of the electrode controlling the battery, where 

ranging from 0 to 1 representing from the centre to the surface of the particle. 

Then, the boundary conditions of the limitation positions are as follows: 

𝛻𝛻𝑆𝑆𝐿𝐿𝐶𝐶 = 0|𝑋𝑋=0 (3.25) 
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𝛻𝛻𝑆𝑆𝐿𝐿𝐶𝐶 =
𝜏𝜏𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,0𝑑𝑑

�
𝑋𝑋=1

 
(3.26) 

where d equals 3 for spherical particles. The surface SOC is identified at the surface of 

the particle. The average SOC is described by integrating over the volume of the particle, 

appropriately considering spherical coordinates, and is defined as: 

𝑆𝑆𝐿𝐿𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 =
∫ 𝑆𝑆𝐿𝐿𝐶𝐶4∏𝑋𝑋2 𝑑𝑑𝑋𝑋1
0

∫ 4∏𝑋𝑋2 𝑑𝑑𝑋𝑋1
0

= 3� 𝑆𝑆𝐿𝐿𝐶𝐶𝑋𝑋2𝑑𝑑𝑋𝑋
1

0
 (3.27) 

The lumped potential losses associated with concentration overpotential are shown as, 

𝜂𝜂𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑜𝑜𝑐𝑐𝑎𝑎�𝑆𝑆𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠� − 𝐸𝐸𝑜𝑜𝑐𝑐𝑎𝑎(𝑆𝑆𝐿𝐿𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎) (3.28) 

Ultimately, the battery cell voltage Ecell is defined as: 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑜𝑜𝑐𝑐𝑎𝑎(𝑆𝑆𝐿𝐿𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎) + 𝜂𝜂𝑜𝑜ℎ𝑚𝑚 + 𝜂𝜂𝑎𝑎𝑐𝑐𝑡𝑡 + 𝜂𝜂𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐 (3.29) 

Replacing the expression for ηconc, Ecell can also be defined as: 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑜𝑜𝑐𝑐𝑎𝑎�𝑆𝑆𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠� + 𝜂𝜂𝑜𝑜ℎ𝑚𝑚 + 𝜂𝜂𝑎𝑎𝑐𝑐𝑡𝑡 (3.30) 

For the lumped battery interface model, Arrhenius expression is applied to model each 

battery cylinder, with temperature-dependent ohmic, exchange current, and diffusion 

time-constant parameters. Applying axial symmetry to the model is because some 

simplification can be achieved for a spirally wound cylindrical battery. For example, the 

heat conduction in the spiral direction can be neglected. Furthermore, rather than 

modelling the heat conduction in each layer of the wound sheets in the radial direction 

(e.g., in each positive electrode layer, each separator layer, and so on), the wound sheets 

are modelled as one active battery material domain. These approximations are reasonable 
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for spiral wound battery cells cooled by natural convection [201, 202]. The thermal model 

also accounts for the conservation laws, which applies Navier–Stokes equations to 

characterise the flow behaviour [203, 204], including conservation of mass, conservation 

of momentum and conservation of energy. 

A cylindrical coordinate system is introduced to solve the orthotropic thermal 

conductivity in the combination cell material. Since the cylindrical battery has a spiral 

winding structure, the thermal conductivity of the electrolyte is anisotropic. Considering 

the enthalpy equation and the temperature equation, the energy conservation for 

incompressible fluid can be simplified to: 

𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐶𝐶𝑝𝑝v ∙ 𝛻𝛻𝑇𝑇 = 𝛻𝛻 ∙ (𝜌𝜌𝛻𝛻𝑇𝑇) + 𝐻𝐻 (3.31) 

where H represents the domain and boundary heat sources based on the sum of 

irreversible heat, such as Joule heating (charge transport in the electrolyte and the solid 

conductor materials) and activation losses (overpotentials in the electrode reactions), and 

reversible heat in an electrochemistry interface (entropy changes in the electrode 

reactions). 

 

3.2.2 Thermal battery model 

In this study, the thermal model is based on a previous two-dimensional axial symmetry 

approach, simulated by the Heat Transfer in Solids module. A spirally wound type of 

battery is chosen for this simulation, and the simplification of the heat conduction can be 
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achieved along the spiral direction. Moreover, instead of simulating the heat conduction 

in each layer along the radial direction, the wound sheets are acted as a combination cell 

material domain. These approximations are understandable for spiral wound battery cells 

cooled under natural convection. The model configuration comprises three connection 

sections: 1) Battery outer can; 2) A combination cell material domain; 3) Central axis 

(mandrel where the battery cell sheets are wound). The geometry of the model is shown 

in Figure 3.2. 

 

Figure 3.2 Configuration of the applied thermal model for a cylindrical LIB. 

 

For this model, several equations and parameters are considered. Considering the 

anisotropic thermal conductivities in this model and differences among various directions 

[205], the thermal conductivities along the radial path, κT,r, and along the cylinder length 

direction, κT,ang, are defined separately as follows: 
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𝜅𝜅𝑇𝑇,𝑎𝑎 =
∑𝐿𝐿𝑖𝑖

∑ 𝐿𝐿𝑖𝑖 𝜅𝜅𝑇𝑇,𝑖𝑖⁄  (3.32) 

𝜅𝜅𝑇𝑇,𝑎𝑎𝑐𝑐𝑎𝑎 =
∑𝐿𝐿𝑖𝑖 𝜅𝜅𝑇𝑇,𝑖𝑖

∑ 𝐿𝐿𝑖𝑖
 (3.33) 

The density 𝜌𝜌𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡  and heat capacity 𝐶𝐶𝑝𝑝,𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 for the combination cell material domain is 

defined as stated by the following equations: 

𝜌𝜌𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 =
∑𝐿𝐿𝑖𝑖 𝜌𝜌𝑖𝑖
∑ 𝐿𝐿𝑖𝑖

 (3.34) 

𝐶𝐶𝑝𝑝,𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 =
∑𝐿𝐿𝑖𝑖 𝐶𝐶𝑝𝑝,𝑖𝑖

∑ 𝐿𝐿𝑖𝑖
 (3.35) 

The heat source produced by the combination cell material domain is identified by 

employing the Electrochemical Heating Multiphysics coupling module. However, the 

heat source term in the combination cell material domain is scaled to solve the lack of 

heat generation in the current collectors and the canister thickness. This mounted heat 

source is acquired by multiplying two factors of the volumetric heat source from the 1D 

LIB model. The former factor is the fraction of the total 1D model in which heat is 

produced. That is the total length value of electrodes and the separator, divided by the 

total battery length, including the measurements of both current collectors. The latter 

factor is the fraction of the entire 3D cylindrical battery. The volume in which heat is 

produced is the cell's total volume, including the homogenized wound layers of the cell 

material, the centre axis, and the battery case, minus the volume of the outer case and the 

volume of the battery centre axis. This heat source is then divided by the total volume of 

the battery cell domain, which is the difference between the whole battery volume and 
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the centre axis volume. Thereby, the following equation for the 3D heat source is 

demonstrated: 

𝑄𝑄ℎ,3𝐷𝐷 = 𝑄𝑄ℎ,1𝐷𝐷
𝐿𝐿𝑐𝑐𝑐𝑐𝑎𝑎 + 𝐿𝐿𝑠𝑠𝑐𝑐𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑜𝑜𝑠𝑠

𝐿𝐿𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡

((𝑟𝑟𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 − 𝑑𝑑𝑐𝑐𝑎𝑎𝑐𝑐)2 − 𝑟𝑟2𝑚𝑚𝑎𝑎𝑐𝑐𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐)(ℎ𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 − 2𝑑𝑑𝑐𝑐𝑎𝑎𝑐𝑐)
(𝑟𝑟2𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 − 𝑟𝑟2𝑚𝑚𝑎𝑎𝑐𝑐𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐)ℎ𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡

 

(3.36) 

where the subscripts express the specific parts in the battery model, including the total 

battery (batt), negative electrode (neg), positive electrode (pos), the battery outer can 

(can), and the battery central mandrel (mandrel). In addition, Qh stands for the heat source 

with subscripts of one-dimensional model (1D) and three-dimensional model (3D).  

For the lumped battery interface model, Arrhenius expression is applied to model each 

battery cylinder, with temperature-dependent ohmic, exchange current, and diffusion 

time-constant parameters. The cell battery model and thermal model are coupled by using 

the average values for the temperature and generated heat, shown in Figure 3.3. The 

thermal conductivity in the combination cell material domain is anisotropic due to the 

spiral type of the battery. The orthotropic thermal conductivity in the combination cell 

material domain is solved by introducing a cylindrical coordinate system in the model. 

The zero-Mach-number limit of the compressible conservation equations was applied to 

depict the flow movement and heat transfer. Heat convection, conduction and radiation 

are considered to model the heat transfer between the battery pack and the ambient 

environment. The average heat source calculated from the cell model contributes to the 

temperature equation in fluid domains. Regarding the enthalpy equation and the 



Chapter 3 

79 

temperature equation, the energy conservation for incompressible fluid can be simplified, 

which is shown in Equation (3.31). 

 

Figure 3.3 Coupling between the cell and thermal model. 

 

3.3 ANN Model 

Artificial intelligence has been rapidly developed in recent decades. ANN approach as a 

popular tool is able to model a wide range of engineering systems contributed by its ability 

to learn and adapt to find complex interrelations between various properties. This 

approach is based on the way neurons interacts and function in the human brain. In 

Chapters 4 and 5, Multi-Layer Perceptron (MLP) model is applied to optimise the 

operating parameters and ambient conditions based on CFD numerical results. In Chapter 

2, a brief introduction to ANN has been demonstrated. This section presents detailed 

information on the applied ANN model for this study. 
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The ANN approach for solving problems has seven primary steps, similar to the standard 

working steps of neural networks, including collecting data, creating the network, 

configuring the network, initialising the weights and biases, training the network, 

validating the network, and using the network. These steps are also applied in this thesis. 

Multi-Layer Perceptron (MLP) is one of the most popular ANNs, which utilises a 

supervised training process using examples of data with known outputs [156]. A hidden 

layer in an ANN is a layer in the middle of input layers and output layers, where artificial 

neurons take in a set of weighted inputs and generate outputs through an activation 

function. The initial inputs are external data, such as images, values and documents. The 

ultimate outcomes complete the task, such as identifying an object from a snap.  

An ANN model has five main components: inputs, summation functions, weights, 

activation functions, and outputs, as shown in Figure 3.4. The network is constructed by 

connecting the result of specific neurons to the input of other neurons, generating a 

directed, weighted graph. The weights and the functions that compute the activation can 

be adjusted by a procedure called learning, which is controlled by a learning rule or 

training method. The summation function (denoted by E) is a function that calculates the 

net inputs expressed as [206, 207]: 

𝐸𝐸 = �𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑤𝑤𝑏𝑏𝑖𝑖

𝑐𝑐

𝑗𝑗=1

 (3.37) 
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Figure 3.4 A typical multilayer perceptron neural network architecture. 

 

The activation function of a node formulated the output of that node, or "neuron," 

specified an input or set of inputs. The activation function provides a curvilinear 

interrelation between the input and output layers. Commonly used activation functions 

are the threshold function, step activation function, sigmoid function and hyperbolic 

tangent function [208, 209]. The logistics sigmoid function is adopted in this study and is 

given by: 

𝑓𝑓(𝐸𝐸) =
1

1 + 𝑅𝑅−𝐸𝐸
 (3.38) 

The number of hidden neurons determined by the formulation according to neural 

network design [210, 211] is given by: 

𝑁𝑁ℎ =
𝑁𝑁𝑠𝑠

�𝛼𝛼(𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑜𝑜)�
 (3.39) 
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where α is a scaling factor ranging from 2-10. In this study, α is prescribed as 2 to achieve 

an optimal solution without overfitting, and ten hidden neurons were applied in the ANN 

model. 

Compared to a single-layer network, the MLP can be used for arbitrary classification 

problems [212]. On the other hand, some limitations of MLP also exist, such as 

underfitting or overfitting. Early stopping and retraining are also applied to ensure the 

generalisation of MLP. The MLP algorithm has been widely used in various engineering 

applications with the advantages of fast convergence and strong versatility. In this thesis, 

to solve nonlinear functions and value optimisation, the optimal function is fitted by the 

backpropagation networks learning algorithm. As shown in Figure 3.5, the ANN training 

procedure is demonstrated and explained. The network learns about internal 

characteristics and structures by comparing the output processed from the input with the 

target. Moreover, the training process is reflected in adjusting the connection weights of 

the neural network, and the network weights should gradually converge to the target value. 

The iteration of the training algorithms can be written as: 

𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝛽𝛽𝑘𝑘𝑔𝑔𝑘𝑘 (3.40) 

where Xk is the vector of the current weight and bias, βk is the learning rate, and gk is the 

current gradient. The iteration stops until the network comes to converge. 
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Figure 3.5 Neural network training procedure. 

 

In this section, the training function updates weight and bias values based on the 

Levenberg-Marquardt optimization. The training stops when the maximum number of 

epochs is reached or the maximum time is exceeded. After training the data, the validation 

should be carried out. Firstly, the network performance should be checked, which was the 

second argument returned from the training function, including the value of the 

performance function, the magnitude of the gradient, etc. After that, a regression plot is 

created to validate the network, demonstrating the relationship between the outputs of the 

network and the targets. The regression plots show the training, validation and testing 

data, proving the network is sufficiently accurate. 
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In addition, there are different ways to improve the training and validation results. First 

of all, the network can be initialised and trained multiple times; different network 

parameters may produce different solutions each time. On the other hand, increasing the 

number of hidden neurons (no more than 20) is another method to improve the training 

results due to the increased flexibility for the network can generate more parameters to 

optimise. Moreover, applying a different training function may produce different results 

as well. Finally, using more training data is more likely to result in a better functioning 

network. 

The validation results of the applied ANN model will be demonstrated in sections 4.3.5 

and 5.3.2. Various parameters of battery operating and working conditions are considered 

in this thesis. By viewing the evaluation of the battery cooling performances, the 

maximum temperature of the battery pack and the temperature difference among the 

battery pack are selected as the outputs of the ANN model. To study the battery operation 

conditions and other ambient conditions, these parameters are set as the inputs from the 

numerical cases in a specific range. The detailed numerical data and optimisation results 

will be demonstrated and discussed in Chapters 4 and 5. The overall optimisation 

flowchart is shown in Figure 3.6. 



Chapter 3 

85 

 

Figure 3.6 The flowchart of MLP optimisation algorithm. 
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3.4 Chapter Summary 

In this chapter, all the numerical methodologies involved in this thesis were demonstrated. 

The electrochemical battery model and thermal battery model were introduced. A three-

dimensional thermo-electrochemical was established using the CFD framework. Based 

on the fundamentals of fluid dynamics and thermal dynamics, three conservations were 

considered, including mass, momentum, and energy. The connection between the battery 

and thermal models was explained as well. After that, the commonly used ANN model in 

machine learning techniques was introduced. The architecture of the typical ANN model 

was demonstrated, and the activation function was shown, as well as the expression of 

the determination function of the hidden layer. The overall working process of the ANN 

model was demonstrated at last. The training and validation results were presented in the 

following chapters. 
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Chapter 4 Lithium-ion Battery Thermal Management 

Systems and Cooling Systems 

This chapter includes the contents from a published journal article [131]: Li, A., Yuen, 

A. C. Y., Wang, W., Weng, J., & Yeoh, G. H. (2022). Numerical investigation on the 

thermal management of lithium-ion battery system and cooling effect optimisation. 

Applied Thermal Engineering, 215, 118966. with modifications and reorders to better fit 

the structure of this thesis. 

 

4.1 General Description 

On the basis of the literature review in Chapter 2, the widespread application of lithium-

ion batteries as the practice facility of energy storage has come alongside many 

unforeseen fire safety and thermal runaway issues that leads to increasing research 

interests. A comprehensive understanding of the thermal features of battery packs and the 

heat exchange process of energy storage systems is imperative. In this chapter, a three-

dimensional thermo-electrochemical model has been developed to simulate the detailed 

temperature distribution of battery packs applying the methodology in Chapter 3. The 

numerical analysis of the cooling effect with both natural and forced air ventilation 
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configurations is compared as well. Moreover, the ANN model was coupled with the CFD 

simulation results to perform an optimisation of a specific configuration battery system 

considering configuration dimensions and operating conditions simultaneously. The 

ANN model builds a relationship between battery spacing and ambient cooling properties. 

It was found that the changing of ambient pressure creates a larger temperature drop under 

forced air cooling than that under natural ventilation. The optimum design for the battery 

pack can decrease the maximum temperature and the temperature difference by 1.94% 

and 17%, respectively. Overall, the present modelling framework presents an innovative 

approach to utilising high-fidelity CFD numerical results as inputs for establishing ANN 

training dataset, potentially enhancing the state-of-art thermal management of lithium-

ion battery systems and reducing the risks of thermal runaway and fire outbreaks. 

4.2 Introduction 

In the previous chapters, the background of LIB has been introduced, and a better 

understanding of the battery thermal behaviour should address the unforeseen fire safety 

concerns. When compared to other kinds of batteries, LIB shows less thermal stability, 

which may drive thermal runaway, and many accidents have happened in recent years 

[213, 214]. Once a thermal runaway happens, it is easy to propagate from one cell to the 

whole energy system, while it is difficult to be detected and isolated. Therefore, it is 

crucial to investigate the LIB thermal runaway process by accurately monitoring and 
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predicting temperature dynamics during thermal propagation and implementing effective 

methods to prevent LIB fire accidents and improve fire safety.  

Pioneer researches demonstrate that an overtemperature causes thermal runaway, then the 

heat is accumulated, and other exothermic chemical reactions are triggered [215]. There 

are two major focal points of thermal management in battery systems, which are handling 

the charge/discharge cycle and governing the battery heat growth [216]. Usually, the latter 

has a close relationship with the former. Air cooling of the battery system has been studied 

intensively as the most traditional cooling approach and is widely applied in the 

commercial field [217]. The following research works further addressed the advantages 

and shortcomings of the air-based cooling BTMs, which have been introduced in Section 

1.1. Tong et al. [218] established a 2D dimensional thermo-electrochemical coupled 

model to study the thermal behaviour of forced air cooling with various operation 

parameters, containing air inlet velocity, cell configuration, cell-to-cell distance and 

presence of reversal airflow. Yang et al. [219] presented a study of the thermal capability 

of axial flow air cooling for LIB. Factors including power consumption, space efficiency 

and temperature uniformity were assessed. Saw et al. [220] numerically studied the 

thermal capabilities of the battery pack with different air mass flow rates, and the 

interrelationship between the Nu number and Re number was deduced and validated. 

Moreover, the proposed method provides an easy way to assess the thermal performance 

of the LIB pack. E et al. [221] applied a numerical study on the various air cooling plans 

by shifting the inlet and outlet location, and the application of the baffle plate was 

considered as well. A parametric study on forced air cooling for the thermal behaviour of 
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the LIB pack was demonstrated by Lu et al. [222]. It also concluded that packing more 

batteries along the flow direction is appropriate for battery cooling requirements. Li et al. 

[223] proposed a complete method to form an efficient air-cooling system, which 

improved the thermal performance of the battery module. Although the performance of 

the air cooling method has been investigated and optimised, the optimised parameters 

were achieved by a trade-off in a specific consideration. Few studies focus on a wider 

balance of multiple parameters simultaneously and provide a particular solution for 

various LIB working scenarios, especially for different pressure conditions. Severino et 

al. [224] proposed a battery thermal management system design to achieve several goals, 

including cost reduction, increasing lifetime and capacity, and higher safety, using a novel 

Multi-Objective Particle Swarm Optimisation approach. Furthermore, battery thermal 

management is affected by many cooling conditions, which benefit the working 

performance, safety performance and lifecycle of LIBs [225-227]. With the wide 

application of the LIB energy storage system, the ambient environment also plays an 

important role in the LIB thermal performance, such as LIB applied on plateau, aircraft, 

and spacecraft. Chen et al. [228] carried out an experimental investigation to evaluate the 

fire risks of LIB at various ambient pressures. Liu et al. [229] analysed the effect of 

pressure and pile sizes on battery thermal runaway. Wang et al. [230] found that with the 

lower ambient pressure, a longer thermal runaway trigger time and a lower maximum 

battery surface temperature will achieve. Compared to other cooling methods, the 

ambient pressure directly affects the air cooling efficiency and the occurrence and 
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development of LIB fires. Pressure influences on the cooling performance can be further 

studied, and comprehensive optimisation can be achieved. 

With the blowout development of computer science, machine learning, which is able to 

construct the relationship between the driving factors, has been widely applied in many 

fields, such as industry and agriculture. The application of machine learning gives us 

confidence in battery thermal management investigation and optimisation. Qian et al. 

[231] applied a Bayesian neural network to optimise cell arrangement to enhance the 

cooling performance of the battery pack. However, pioneering studies have proved the 

potential of applying a machine learning approach to LIB thermal management problems. 

The ambient pressure effect on the cooling performance has not been fully addressed. 

Moreover, the battery spacing and other parameters, such as the cooling direction and the 

ambient pressure, should be considered simultaneously to enhance battery thermal 

performance further. ANN model is able to characterise the interrelation between inputs 

and outputs by using a collection of interconnected nodes (perceptron). The combination 

of ANN and CFD models for battery research is still relatively new. Hence, the approach 

with coupling thermo-electrochemical model and ANN model is proposed to analyse the 

LIB cooling performance and optimise the LIB configuration design by enhancing the 

fire performance. Figure 4.1 illustrates the schematic figure of the proposed model in this 

research. 

To this end, the battery temperature distributions of the battery pack should be analysed, 

which can also be represented as a prediction at the early stage of the LIB thermal 

runaway. Furthermore, a better understanding of thermal behaviour can be achieved with 
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the numerical analysis of different cooling directions. In this chapter, the following points 

are addressed:  

 

Figure 4.1 Schematic of the proposed approach with coupling thermo-electrochemical model and ANN 

model. 

 

(i) Develop a 3D thermo-electrochemical model to capture the temperature 

distribution of both single-cell and LIB packs under normal working 

conditions. 

(ii) Analyse the LIB pack thermal behaviour under various working conditions, 

including cell space, ambient pressure, and cooling air directions. 

(iii) Coupled thermo-electrochemical model with the ANN model to optimise the 

LIB energy storage system configuration design and improve the cooling 

efficiency. 
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The outline of this chapter is summarized as follows: Section 4.3 demonstrates the 

numerical setup, simulation results with validation, and optimisation results. Finally, 

Section 4.4 summarises the numerical analysis of this section. 

4.3 Results and Discussions 

4.3.1 Thermo-electrochemical model setups 

The three-dimensional thermo-electrochemical model built in this work is based on a 

battery pack with 48 cylindrical cells, as shown in Figure 4.2. The battery space is defined 

by Gap_x and Gap_y. The dimensions of every single cell are 70 mm (height) and 21 mm 

(diameter). In describing batteries, C-rate is applied to express discharge current, which 

measures the rate at where a battery is discharged relative to its maximum capacity. The 

nominal capacity for each cylindrical cell is 4 Ah, and the nominal voltage is 3.6 V. Each 

cell also has two terminals on both electrodes with dimensions of 3 mm (terminal radius) 

and 1mm (terminal thickness). The cylindrical cells are connected by aluminium strips. 

The connection type of this battery pack is coupling two cells in parallel. Then the coupled 

pairs are connected in series. The height and depth of serial connectors are 1 mm and 2 

mm, while the dimensions of parallel connectors are 0.5 mm in height and 1 mm in width. 

The other parameters of the LIB are listed in Table 4.1. 
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Table 4.1 Parameters of the single cell applied in the LIB pack. 

Parameter Value Description 

C_rate 4 C rate 

κT_batt_ang 30[W/m/K] Thermal conductivity, in 

plane 

κT_batt_r 1[W/m/K] Thermal conductivity, cross 

plane 

Ea_eta1C 24[kJ/mol] Activation energy 

Ea_J0 -59[kJ/mol] Activation energy 

Ea_Tau 24[kJ/mol] Activation energy 

T0 20[°C] Reference temperature 

J0_0 0.85 J0 at reference temperature 

tau_0 1000[s] tau at reference temperature 

eta_1C 4.5[mV] eta_1C at reference 

temperature 

rho_batt 2000[kg/m3] Battery density 

Cp_batt 1400[J/kg/K] Battery heat capacity 

ht 30[W/m2/K] Heat transfer coefficient 

T_init 20[°C] Initial/external temperature 
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Figure 4.2 Schematic of the LIB pack configuration. 
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As the model described in Section 3.2.2, the lumped battery interface is applied to model 

each battery cell with temperature-dependent ohmic, exchange current and diffusion 

time-constant parameters. With the assumptions and cell nominal capacity, the generated 

heat is simulated by the thermos-electrochemical model according to Arrhenius 

expressions. 

4.3.2 Model validation 

In this section, a finite element based industrial software, COMSOL Multiphysics 5.5, 

was chosen to solve the three-dimensional thermal-electrochemical model. The mesh was 

generated by the default mesh module and solutions for mesh independence were 

examined. For battery variables, the MUMPS time-dependent solver was applied, and for 

heat transfer variables, the PARDISO solver was chosen. The validation of the 

electrochemical model is on the basis of a Type 38120 battery cell with a nominal voltage 

of 3.2 V and capacity of 10 Ah, as well as the thickness of the cathode, the separator and 

the anode are 91 µm, 40 µm and 142 µm, respectively. The positive electrode is made of 

iron phosphate (LiFePO4) and the active material particles of amorphous carbon (LiC6) 

are applied to the negative electrode. The electrolyte is a mixture of lithium 

hexafluorophosphate (LiPF6), which is dissolved in a nonaqueous liquid mixture of 

ethylene carbonate (EC) and dimethyl carbonate (DMC) with a proportion of 1:2. The 

base case of the thermal model is a cylindrical 18650 LIB. The dimensions of the thermal 

model include the working battery material domain, which is the wound layers of battery 
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material with a height of 65 mm and 9 mm radius; the mandrel represents the nylon 

isolator next to the wounded battery material layers with about 2 mm radius; steel 

connector of the battery located on the top of the cell with the thickness of 3 mm. The 

battery pack investigation for the three-dimensional thermo-electrochemical model is 

modelled by 21,700 battery cylinders with the same nominal capacity and voltage as the 

single cell of the battery pack. 

A fully charged state is set for the initial condition of the LIB. The discharge cycle is 

simulated, and the various discharge currents are modelled as well. Figure 4.3 

demonstrates the simulation results of the 1C discharge rate agree well with the 

experimental results [93] during the entire discharge process. It can be seen that when the 

battery voltage decreases to 3 V, the discharge process ends. Before the discharge 

capacity is over 8 Ah, the maximum error of the working voltage is 2.94%. When the 

discharge capacity increases, the deviations of the working voltage are more significant 

due to an uneven reaction current density distribution over the porous electrodes, leading 

to electrolyte transport limitations and potential drops. Yet, the results around the end of 

discharge have slight differences caused by thermodynamic data, battery design, and the 

single particle assumption. 

As mentioned in the thermal method, the thermal model applied in this work was similar 

to the two-dimensional thermal model. The single battery cell forms the battery pack 

consisting of a matrix of batteries. The two-dimensional thermal model has been validated 

by Parthasarathy et al. [201]. In the current work, the single battery three-dimensional 

was tested under the k-epsilon turbulence model. Mesh independence verification was 
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performed to avoid the grid number and mesh quality impacting the simulation results. 

The total number of meshes is about 43,486 elements chosen for the validation case, 

considering the efficiency and accuracy. The most appropriate grid amount for the battery 

pack simulation is around 211,907 elements. The grid independent study is applied to 

analyse the suitability of the grid and to estimate the numerical errors in the simulation. 

A more detailed grid independent study is described in Section 5.3.1. 

 

Figure 4.3 Comparison results of working voltage during 1C discharge under natural convection 

conditions. 

 

Figure 4.4 demonstrates the contour of the battery temperature distribution and airflow 

streamlines. This usage of the Nonisothermal Flow Multiphysics feature in a one-way 

coupled study to compute fluid properties, energy, and electrochemistry features shows 
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one necessary simplification that is potentially applied in battery thermal models. This 

model can replicate the detailed battery temperature distribution, and the internal and 

external temperature during the battery working process can be simulated. On the one 

hand, different types of battery cells can be simulated by changing the battery materials. 

On the other hand, the same battery cells with various operating conditions can be 

investigated by changing the boundary conditions. 

 

Figure 4.4 (a) Temperature contour of battery cell with velocity streamline at t=1500s; (b) Temperature 

contour of the whole flow domain. 

 

4.3.3 Simulation results under various pressure conditions 

Based on the prementioned battery pack setting, the thermal behaviour of the battery pack 

has been investigated under various cell spacing configurations and different ambient 

pressure. Meanwhile, the cooling performance of the battery pack is also evaluated. The 

battery pack spacing is investigated by this lumped battery model to furtherly understand 
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the thermal behaviour and cooling performance of the LIB pack. The battery spacing is 

determined by the previous experimental study by Lopez et al. [232]. The gap along the 

X-axis direction has been defined with three scenarios, including a 0 m gap (no gap), 0.01 

m gap (half diameter of a single cell) and 0.02 m (one single cell, equal to the diameter 

of a cell). For the y-direction, the scenario setups are the same. Moreover, the ambient 

pressure is also studied, ranging from 0.2 bar to 1.4 bar.  

Under natural ventilation, 63 cases have been investigated. Considering the reliability, 

consistency, lifespan and other battery performance, the maximum temperature and the 

temperature difference among the battery pack were extracted from all the cases. Figure 

4.5 demonstrated the maximum temperature trending on the left column, and the right 

column presented the temperature difference. Comparing the maximum temperature trend, 

ambient pressure has a slight influence on the temperature change. With the pressure 

decrease, the maximum temperature shows a reverse trend under the current cooling 

scenario. Since the heat transfer coefficient and heat dispersion rate are increased via the 

ambient pressure increase, the heat exchange and battery cooling process are enhanced at 

higher temperatures, and the maximum temperature will be decreased at relatively high 

pressure. 



Chapter 4 

101 

 

Figure 4.5 Comparison results of maximum temperature and temperature difference under various 

operation conditions. 
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Figure 4.6 showed the whole 63 cases plots of the maximum temperature and temperature 

difference of the battery pack under natural ventilation. From Figure 4.6 (a), the X-

direction gap significantly influences the maximum temperature compared to the 

influence of the Y-direction gap. Also, the X gap of 0.01 m and Y gap of 0.01 m show a 

better cooling performance than the other two cases with the same X gap value. Along 

the X direction, the maximum temperature is decreased by increasing the battery gap, 

shown in Figure 4.6 (a). Since the battery pack is assumed with an X-direction air velocity, 

the change of the Y-direction gap does not affect the temperature difference much. From 

the battery spacing point of view, the middle choice is the optimal one by saving the 

overall battery pack volume. Figure 4.6 (b) illustrates that both direction gaps have a 

similar effect on the temperature difference under natural ventilation. Considering both 

performances, the X gap of 0.01m gains a good cooling performance with less space 

wasting. 
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Figure 4.6 Maximum temperature and temperature difference plots of 63 cases. 

 

4.3.4 Simulation results under various air cooling directions 

With the establishment of the three-dimensional thermo-electrochemical model, 

simulation results indicate the thermal behaviour of LIB by the detailed temperature 

configuration. In order to improve the cooling efficiency and fire safety of LIB packs. 

Forced air cooling was introduced and compared with natural cooling. The forced air is 

applied to the battery pack from top to bottom with a constant velocity. In the previous 

section. Sixty-three cases have been built. In this section, another 63 cases have been 

completed with the same operating conditions and different cooling approaches. Figure 8 

compared the simulation results of two air cooling methods. Figures 4.7 (a) and (b) 

showed the surface temperature distribution under the discharge time of 0.2 h. The 

maximum temperature of the natural ventilation is slightly higher than the forced air 

method, which is about 0.652 °C and the temperature difference increases from 1.087 °C 

to 2.978 °C. Figures 4.7 (c) and (d) demonstrated the streamline of the temperature 

gradient for both methods. It can be concluded that natural ventilation performs a 
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relatively average temperature distribution, while forced air cooling takes away more heat 

generated from the battery working process. 

 

Figure 4.7 Simulation results of temperature distribution contour and temperature gradient streamline for 

natural ventilation (a) & (c) and forced air cooling (b) & (d). 

 

The influence of battery pack configuration on thermal management and cooling 

performance has also been discussed between natural ventilation and forced air cooling. 

As mentioned, the battery spacing combination group is nine, which equals three types of 

X-direction gap multiplied by 3 types of Y-direction gap. The maximum temperature and 

temperature difference of nine groups with the same operating conditions were compared, 

shown in Figure 4.8. From Figure 4.8 (a) and (b), it is easy to find that the increase of the 

battery gap has a better impact on the drop of maximum temperature for forced air cooling. 

Comparing Figure 4.8 (c) and (d), the temperature distribution of natural ventilation is 



Chapter 4 

105 

more average. Also, for forced air cooling, the growth of the battery gap will increase the 

temperature difference, which means the stability of the battery pack can be affected. 

Although the maximum temperature was decreased, the design of battery spacing should 

be considered more carefully and comprehensively. Under forced ventilation, the heat 

transfer from top to bottom is ineffective because the battery height (Y-direction) is too 

short for sufficient heat exchange. Thus, only the top side of the battery gets cooled. 

Cooling along the X-direction is preferable for a more economical and balanced design. 

 

Figure 4.8 Comparison results of maximum temperature and temperature difference for natural ventilation 

(a) & (c) and forced air cooling (b) & (d). 

 

Moreover, the influence of the ambient pressure on the battery's thermal behaviour and 

cooling efficiency is also studied. Figure 4.9 compared the simulation results of 

temperature and temperature differences under different ambient pressures for natural 
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ventilation and forced air cooling. The chosen 21 cases combine seven ambient pressures 

to multiply three Y-direction gap groups under the same X-direction gap. The trend of 

changing the X-direction gap under the same Y-direction gap is similar. From Figure 4.9, 

it is clear to conclude that the ambient pressure has more impact on the forced air cooling 

situations compared to the natural ventilation scenarios. Under forced air cooling, the heat 

transfer between LIB cells and cooling air is much more than that between cells, which 

can be affected by ambient pressure change, while the temperature is more average by 

natural ventilation. 
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Figure 4.9 Comparison results of maximum temperature and temperature difference under different 

ambient pressures for natural ventilation (a) & (c) and forced air cooling (b) & (d). 

 

4.3.5 Optimum results coupled MLP model 

As mentioned in Chapters 2 and 3, the ANN approach is a convenient and effective way 

to analyse multiple parameters simultaneously by characterizing the interrelation between 

inputs and outputs. With the simulation results generated by the thermo-electro model, a 

dataset can be established. In this section, ambient pressure is a new parameter for the 

evaluation of battery pack thermal performance. There are 124 cases generated before, 

which are operated with various heat transfer coefficients and ambient temperature, were 

also added to the current dataset. The overall dataset consists of 187 cases with seven 

parameters, divided into five inputs and two outputs, which is shown in Table 4.2. 
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Table 4.2 Parameter details of the ANN dataset. 

Inputs Outputs 

Gap

_x 

 

Gap

_y 

 

Heat 

transfer 

coefficient  

Ambient 

temperature  

Ambient 

pressure  

Maximum 

temperature  

Temperature 

difference  

m m W/m2/K °C bar °C °C 

 

The data of seven parameters extracted from the 187 cases formed a database for training 

the ANN model. MATLAB was applied to train the dataset, generate the function code, 

and optimise the combination groups. The Levenverg-Marquardt (LM) optimisation 

approach was applied to train the dataset, which was originally described by Marquardt 

[233]. This algorithm appears to be the most efficient training algorithm for training 

moderate-sized feedforward neural networks. The approximation of the Levenberg-

Marquardt algorithm is given as follow: 

𝑥𝑥𝑚𝑚+1 = 𝑥𝑥𝑚𝑚 − [𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜓𝜓𝐼𝐼]−1𝐽𝐽𝑇𝑇𝑅𝑅 (4.1) 

The training process starts from setting aside the samples for validation and testing. In 

this model, 70% of samples are used to do the training, which is presented to the network 

to adjust according to its error. Validation and testing samples are 15% each. Validation 

samples are applied to examine network generalisation and halt training when 

generalisation stops improving. The testing samples are also important owing to that they 

can provide an independent measure of network performance. Figure 4.10 illustrates the 
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whole training results, including the error histogram and regression result. Figure 4.10 (a) 

demonstrated that the majority of the error lies in the scope of -0.03686 to 0.04011. Figure 

4.10 (b-e) present the regression relation between outputs and targets. The training, 

validation and testing data attained very impressive R values. The coefficient of 

determination, which is the R square value, can be achieved with the value of 0.99998, 

0.99994 and 0.99994, respectively. It is clear that the agreement of the applied ANN 

model with the built dataset is good, and the prediction accuracy is excellent. The 

simulation results achieve a good fit with the targets, and the overall fitness is 0.99998. 

Also, the other prediction errors are less than 1%. 
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Figure 4.10 (a) Error histogram of the ANN model; (b-e) Regression analysis of the ANN model. 

 

The training results of the ANN model are evaluated by the mean absolute error (MSE). 

The minimum error for the modelling estimation was determined by the number of nodes 

per output parameter computation layer set as two. Figure 4.11 demonstrates the 

validation of the applied ANN model, which is the best validation performance of the 

model with a very low MSE value attained at epoch 163. Figure 4.12 demonstrates the 

training process of the ANN model by showing the gradient, mu and validation checks. 
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The gradient indicates the learning rate and step size of the training process. The gradient 

showed a continuous drop trend till epoch 169, where mu decreased to 1e-06. A low mu 

represents the LM methods have a faster and more accurate convergence [233]. The 

validation check was also depicted in Figure 4.12, and there was no validation fail till 

epoch 169. 

 

Figure 4.11 Validation performance of the ANN model. 
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Figure 4.12 Training states of the ANN model. 

 

After training the ANN model, a neural network simulation function can be built. This 

function can be applied to predict the battery thermal performance under various 

operating parameters. During the ANN model training, maximum temperature and 

temperature differences are defined as the outputs. The reason is that these two parameters 

can indicate the temperature imbalance, which has a huge impact on many battery 

performances, such as working performance, safety performance and lifecycle of LIBs. 

The optimisation applied ANN model is to select the optimum case under all the 

combination groups of operating parameters, including battery spacing at various 

directions, environmental temperature, ambient pressure and cooling air velocity. The 
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comprehensive consideration of all the operating conditions can provide a better solution 

of the battery pack with enhanced performance. 

The trained 187 cases demonstrate a range of operating conditions. The extracted seven 

parameters consist of five inputs and two outputs. Meanwhile, five inputs include 

configuration dimensions and operating parameters. The inputs with a certain range are 

divided into 20 internals separately to combine with each other freely. Therefore, 

3,200,000 combination groups were generated. The optimum results can be evaluated 

among these combination groups by comparing the outputs. Figure 3.14 shows the 

maximum temperature and temperature difference trends from all the potential 

combination groups generated in MATLAB. From Figure 3.14, the wave peak of the 

maximum temperature showed a slightly increasing trend, while the peak of the 

temperature difference had a decrease before an increase. The optimum design for the 

battery pack can be achieved among these combination groups, and the thermal behaviour 

and cooling efficiency can be calculated as well. Compared to the base case, the 

maximum temperature of the optimum case dropped by 1.94% to 36.19 °C. For the 

temperature difference optimisation, a 17% decrease can be achieved from 0.966 °C to 

0.802 °C. Additionally, the ambient pressure was treated as an input in the coupled model, 

and it can also be treated as a pre-set qualification. Then the rest inputs can be applied in 

this model for the optimisation design. 
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Figure 4.13 Numerical results of various operation parameter combination groups (a) Maximum 

temperature; (b) Temperature difference. 
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4.4 Chapter Summary 

In this chapter, a three-dimensional thermo-electrochemical model was developed by 

coupling a lumped version of a single particle model, and it was coupled with an ANN 

model to achieve the optimisation design of thermal management for the LIB pack. Also, 

the different cooling approaches of the LIB pack were compared between natural 

ventilation and forced air cooling. Moreover, the ambient pressure was considered as an 

operating parameter and its influence on the battery thermal management were 

investigated. Compared to natural ventilation, ambient pressure had more influence on 

forced air cooling. The numerical results of the parametric study were applied to build an 

ANN dataset to train the ANN model. The relationship among the multiple parameters 

was built and analysed. The proposed coupled model provided an optimal design by 

filtering among 3.2 million combination groups. The result indicated that the maximum 

temperature and the temperature difference can be decreased by the optimal design with 

the value of 1.94% and 17%, respectively. 

A valuable perspective of battery working performance, thermal performance and safety 

performance was demonstrated. The results provided an effective and efficient way to 

improve the battery thermal performance, and it also demonstrated the significant 

advantage of a numerical investigation by optimizing multiple parameters simultaneously. 

More aspects can be considered with the proposed coupled model in the future. The model 

can be applied to other battery cooling methods and different battery types can be 

evaluated and optimised as well. Furthermore, more battery configuration parameters and 
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operating parameters can be introduced, such as various materials of different battery 

components, battery cell numbers, connection types, and so force. All the mentioned 

points can be contributed to forming a comprehensive battery parameter dataset for 

battery thermal management systems and energy storage system safety. Chapter 5 will 

assess some other parameters based on this ANN-CFD framework. The optimisation of 

the configuration design and operating conditions will be presented considering different 

ambient temperatures and nature ventilation velocity. 
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Chapter 5 Coupling ANN with CFD for Optimisation 

Design of Battery Thermal Management Systems 

This chapter includes the contents from a published journal article [139]: Li, A., Yuen, 

A. C. Y., Wang, W., Chen, T. B. Y., Lai, C. S., Yang, W., Wu, W., Chan, Q. N., Kook, 

S. & Yeoh, G. H. (2022). Integration of Computational Fluid Dynamics and Artificial 

Neural Network for Optimization Design of Battery Thermal Management 

System. Batteries, 8(7), 69. with modifications and reorders to better fit the structure of 

this thesis. 

 

5.1 General Description 

As briefly discussed in Chapter 2, many operating parameters and ambient environment 

conditions affect the performance of the BTMs simultaneously. Chapter 4 studied the 

different air cooling modes and directions, as well as the influence of the ambient pressure 

on the cooling performance. In this Chapter, a three-dimensional thermo-electrochemical 

model coupled with fluid dynamics module has been developed to comprehensively 

analyse the temperature distribution of battery packs and the heat carried away. The 

computational fluid dynamics (CFD) simulation results of the lumped battery model were 
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validated and verified by considering natural ventilation speed and ambient temperature. 

In the artificial neural networks (ANN) model, the multilayer perceptron was applied to 

train the numerical outputs and optimal design of the battery setup, achieving a 1.9% 

decrease in maximum temperature and a 4.5% drop in temperature difference. The 

simulation results provide a practical compromise in optimizing the battery configuration 

and cooling efficiency, balancing the layout of the battery system and safety performance. 

The present modelling framework demonstrates an innovative approach to utilizing high-

fidelity electro-thermal/CFD numerical inputs for ANN optimisation, potentially 

enhancing the state-of-art thermal management and reducing the risks of thermal runaway 

and fire outbreaks. 

5.2 Introduction 

As per the previous discussion, temperature plays a critical role in many aspects of the 

performance of LIBs, including charge acceptance [234], energy capability [235], 

reliability [236], and so on. However, the abuse of LIB will generate the threat of thermal 

runaway and overheating. Both positive and negative electrode decomposition are 

exothermic processes. Also, oxygen can be generated during the decomposition reactions. 

The generated heat and oxygen are the contributions to the combustion triangle. If the 

battery experiences harsh working conditions during electric transportation, the generated 

heat triggers electrodes’ decomposition. As a result, the battery potentially faces thermal 

issues. Suppose the cell temperature is rising over a certain threshold. In that case, a 
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thermal runaway may turn up, leading to a quick temperature rise and potentially other 

related undesirable consequences such as the generation of toxic gas and smoke. With the 

rising battery temperature over a critical point, the other chain exothermic reactions 

happen. The temperature and pressure in the LIB are cumulated until it exceeds the battery 

endurance. Eventually, the fire and rupture/explosion are inescapable. Therefore, the 

thermal management of LIB is essential during the battery working process or battery 

application. It is also crucial to investigate the LIB thermal runaway process by accurately 

monitoring and predicting temperature dynamics during thermal propagation and 

implementing functional methods to improve the cooling efficiency of the battery itself 

and the battery system. 

There are two key topics of concern in battery thermal management: handling the 

charge/discharge cycle and governing the battery heat growth, which is mentioned in 

Chapter 4. Many pieces of research focused on the battery thermal management system 

of EVs have been done [237, 238]. The heat produced during the operating process has 

been established as the major rise in the working temperature. Model-based investigations 

promote a theoretical and comprehensive understanding of battery physics beyond what 

is possible from practical methods only. For example, Kirad and Chaudhari [239] applied 

numerical models for studying the selection of the battery module spacing with an 

improvement in cooling performance. Due to the development of computing capability, 

numerical simulations are gradually applied in battery models, battery components and 

materials studies, and battery safety engineering [240-242]. Most numerical studies rely 

on the thermal models, which predict the average surface temperature for a LIB cell [243, 
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244], and lots of experimental investigations on thermal propagation have been carried 

out [245, 246]. Nevertheless, to achieve a proper estimation of the thermal behaviour of 

a battery, many aspects, including the shape, layout, and physical and electrochemical 

properties, should be illustrated as closely as possible in the simulation. For instance, the 

asymmetric surface temperature of a battery cell should be considered in the model. The 

non-uniform temperature distribution in the LIBs leads to an electrical imbalance, lower 

battery performance, and shorter battery life [247, 248]. Regarding the detailed 

temperature distribution, an electric-thermal model with the non-uniform feature should 

be built. 

Moreover, battery thermal management systems have been classified in various ways 

based on different criteria [249, 250]. For example, battery thermal management systems 

can be branched into three kinds based on various mediums: air-based, liquid-based, and 

phase change materials-based. Several optimisation studies on the battery thermal 

management system have been previously done [251-254]. The air-cooling method is 

considered the most traditional approach and is a favoured option for HEVs and EVs. It 

is clear that the optimisation of battery packs or systems depends on many parameters, 

such as geometry structure, coolant properties, operating conditions, and so force. Still, 

few researchers focus on multiple parameters simultaneously. 

As a part of artificial intelligence, machine learning focuses on the study of accuracy 

improvement by computer algorithms and data to imitate how humans learn [80, 255]. 

Because LIBs are highly complex, nonlinear systems, applying a probabilistic approach 

allows for quantification of uncertainty, which positively impacts making decisions in 
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design and control. ANN model is a kind of model that characterises the interrelation 

between inputs and outputs by using a collection of interconnected nodes (perceptron). 

The application of ANN to battery research is still relatively new. Wu et al. [256] 

generated a design map that fulfils both specific energy and specific power requirements 

using a systematic approach based on ANN. Feng et al. [257] developed an 

electrochemical-thermal-neural-network method used for the co-estimation of LIB SOC 

and state of temperature. However, pioneering studies have highlighted the possibility of 

using ANN for battery thermal problems. These studies include modelling battery spacing, 

specific format, and some battery performances. The detailed temperature distribution of 

LIB and battery pack have not been fully investigated. Besides, the ambient pressure and 

cooling direction have been studied in Chapter 4. The ambient temperature and natural 

ventilation should be considered during the battery working process to characterise the 

thermal behaviour of batteries further and identify the battery fire risks. Therefore, the 

combination between ANN analysis and the thermo-electrochemical battery model is 

proposed to investigate further the battery system's cooling efficiency and battery fire 

safety performance. Figure 5.1 shows the schematic figure of the integrated CFD-ANN 

model proposed in this study. 
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Figure 5.1 Schematic of the proposed CFD-ANN model. 

 

Accordingly, the non-uniform distributions of the battery cell should be investigated for 

the thermal analysis, which can be treated as a measurement and prediction at the early 

stage of the LIB thermal runaway fires. Furthermore, with the numerical analysis, a better 

understanding of battery pack configuration design can be achieved. In this section, the 

contributions are:  

(i) Establishment and development of a three-dimensional thermo-

electrochemical model capable of considering temperature distribution of 

battery packs and heat exchange with the ambient environment.  

(ii) Utilise the numerical results to comprehensively describe and predict the 

battery system's thermal behaviour to improve battery safety during the 

designing and working stages. 

(iii) Coupled the thermo-electrochemical model with the ANN model to optimise 
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the battery system configuration design and enhance the cooling performance 

of the battery system. 

The outline of this chapter is summarized as follows: Section 5.3 demonstrates the 

numerical results of the proposed model with validation and verification. Also, the 

training process and optimisation results are listed in this section. Finally, Section 5.4 

presents some conclusions and proposed the future perspectives on this field in the chapter 

summary section. 

5.3 Results and Discussions 

As mentioned in Chapter 3, a three-dimensional thermo-electrochemical model has been 

built. In this section, a corporate software applied finite element, COMSOL Multiphysics 

5.5, was employed to study the proposed model. The battery model involves these three 

steps. At first, a lumped battery model is set up and run for a time-dependent battery 

current. Then, parameter estimation of the parameters ηIR,1C, τ, and J0 is demonstrated 

using experimental data. This is achieved using the Global Least-Squares Objective node 

in the optimisation interface, combined with the optimisation study step using a 

Levenberg-Marquardt optimisation solver. Lastly, cell voltage prediction is performed 

using the optimised lumped parameter values obtained in the previous parameter 

estimation study compared with experimental data. 
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5.3.1 Numerical simulation results 

The default mesh component was applied for generating the mesh, and mesh 

independence was examined as well. The MUMPS time-dependent solver was applied 

for battery variables, and the PARDISO (Parallel Direct Sparse Solver for Cluster) solver 

was chosen for heat transfer variables. The mesh applied for this study consists of 

triangular and quadrilateral elements developed by COMSOL Multiphysics 5.5. In order 

to obtain the thermal behaviour and boundary layer spread, the refined mesh is achieved 

at the connections of the battery boundary. Mesh independence verification was 

performed to avoid the grid number and mesh quality impact on the simulation results, 

shown in Table 5.1. According to Table 5.1, 43,486 elements show reliable and efficient 

results, and more elements lead to larger computation time. Therefore, the total number 

of meshes is about 43,486 elements chosen for the validation case, considering the 

efficiency and accuracy. For the battery pack simulation, the most appropriate grid 

amount is around 211,907 elements. Subsequently, more simulation results are produced 

to feed the machine learning model to training. 

Table 5.1 Table of mesh independence analysis. 

Grid Resolution Elements Number Calculation Time Maximum Electrolyte 

Temperature 

Finer 114273 75.6 min 20.250 °C 

Fine 43486 30.5 min 19.829 °C 

Normal 23986 18.7 min 19.810 °C 

Coarse 9708 10.6 min 18.910 °C 
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The validation of the electrochemical model and thermal model is established on the Type 

38120 battery cell, in which the nominal voltage is 3.2 V and capacity is 10 Ah, as well 

as the thickness of the cathode, the separator, and the anode are 91 µm, 40 µm and 142 

µm, respectively. The type we choose is one of the most commonly used in the current 

commercial market. It is developed based on physical and electrical conservations, as 

well as thermal principles and electrochemical kinetics. The battery pack investigation 

for the three-dimensional thermo-electrochemical model is built by Type 21,700 battery 

cylinders with a nominal capacity of 4 Ah and a nominal voltage of 3.6 V. The whole air 

domain is built with 136 mm (X direction) × 168 mm (Y direction) × 75mm (Z direction), 

and 48 battery cells are assembled in the domain. For the base case, the gap between each 

cell is zero. The battery cell spacing increases by half the cell diameter and the whole 

diameter for both X and Y directions. With the changing of the cell gaps, the largest air 

domain is 245 mm along the X direction and 328 mm in the Y direction. The Z direction 

keeps the same for all the scenarios. The battery pack is constructed by coupling two 

cylindrical batteries in parallel. Then the mated battery pairs are connected in series. The 

geometry and battery parameters are listed in Table 5.2. The geometry specifications are 

used to build the battery domain for thermal simulations, while the battery parameters are 

applied for the simulation of the electrochemical model. 
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Table 5.2 Geometry dimension and electrochemical parameters of the battery cell. 

Geometry Parameters Battery Parameters 

d_batt 
21 

[mm] 

Battery 

diameter 

C_rate 4 C rate 

Q_cell 4[Ah] Battery cell capacity 

h_batt 
70 

[mm] 

Battery 

height 

I_1C Q_cell/1[h] 1C current 

κT_batt_ang 30[W/m/K] 
Thermal conductivity, in 

plane 

h_term 1[mm] 
Terminal 

thickness 

κT_batt_r 1[W/m/K] 
Thermal conductivity, 

cross plane 

Ea_eta1C 24[kJ/mol] Activation energy 

r_term 3[mm] 
Terminal 

radius 

Ea_J0 -59[kJ/mol] Activation energy 

Ea_Tau 24[kJ/mol] Activation energy 

d_sc 2[mm] 

Serial 

connector 

depth 

T0 20[°C] Reference temperature 

J0_0 0.85 
J0 at reference 

temperature 

h_sc 1[mm] 

Serial 

connector 

height 

tau_0 1000[s] 
tau at reference 

temperature 

eta_1C 4.5[mV] 
eta_1C at reference 

temperature 

h_pc 
0.5 

[mm] 

Parallel 

connector 

height 

rho_batt 2000[kg/m3] Battery density 

Cp_batt 1400[J/kg/K] Battery heat capacity 
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w_pc 1[mm] 

Parallel 

connector 

width 

ht 30[W/m2/K] Heat transfer coefficient 

T_init 20[°C] 
Initial/external 

temperature 

 

The initial battery state is fully charged. The discharge process at different current 

densities is simulated, and the discharge curves during the process are demonstrated. The 

battery capacity under various discharge rates is built through the modelling. The 

simulation will be stopped when the cell potential decreases under 3 V, which is the state 

of end-of-discharge. The simulation result of the nominal discharge current density 

representing case 1C, is shown in Figure 5.2 (a). The numerical result shows a good 

agreement with the experiment data. Meanwhile, there are a few deviations in the usual 

discharge voltage plateau related to thermodynamic analytics and battery prototypes. The 

thermal model is validated, and the results are shown in Figure 5.2 (b). The experimental 

data is extracted from the surface of the battery along the axis to track the surface 

temperature development. The simulation results in the same location of the testing point 

have similar growth trends. The slight difference between the experimental and numerical 

results is because of the temperature rise of the experiment due to the local ohmic heat 

generation, where the electrical contact resistance among the connectors and terminals of 

the battery. 
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Figure 5.2 Comparison of numerical results of (a) working voltage and (b) temperature with experimental 

results [93] during 1C galvanostatic discharge under natural convection conditions. 

 

Considering the electrochemical performance, the current flows inside the battery cell 

and battery pack remain similar due to applying a single particle model. The Single 
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Particle Battery interface answers for solid diffusion in the electrode particles and the 

intercalation reaction kinetics. A lumped solution resistance term is used for covering the 

ohmic potential drop inside the electrolyte. The cell capacity is specified through 

fractional volumes of both electrodes in the battery. The individual electrode operational 

state-of-charges are used to identify the initial charge distribution in the battery. The 

temperature contour and heat flux streamline of the proposed battery pack shows the 

temperature distribution of the whole battery pack during its working process by the 

proposed thermo-electrochemical model. The maximum temperature of the battery's 

innermost parts is around 2 °C higher than the outermost parts. It also provides the 

temperature difference of the whole battery pack. With the utilization of this lumped 

model, the broad temperature distribution of battery cell surfaces can be represented. 

Besides, the heat flux generated inside the battery cell can be simulated, as well as the 

heat exchange between battery surfaces and the ambient cooling air can be simulated 

numerically. 

Through the numerical study for the whole battery pack, the configuration setup of the 

battery pack is also investigated. The two-dimensional parameters are defined by different 

directions with various gaps, which are no gap (0 m), half of a cell (0.01 m) and one cell 

(0.02 m). Through permutation and combination, nine sets of collocations are formed. 

Figure 5.3 shows that all the battery cells are constructed together with various gap setups 

among the parallel-coupled battery pairs, which are the first 9 cases. The gap enhances 

the convective and conductive between battery cells and ambient air from the battery 

safety perspective, improving battery pack cooling efficiency and fire safety. 



Chapter 5 

131 

 

Figure 5.3 Temperature contours of different battery pack configurations. 



Chapter 5 

132 

 

To further understand the battery temperature distribution, air velocity and ambient 

environment are considered as well. Buoyancy forces cause natural convection as a 

consequence of density changes ascribed to temperature differences in the fluid. At 

heating, the fluid will get up because of the density variation in the boundary layer. 

Meanwhile, the cooler fluid, which will heat and increase, will replace the raised fluid. 

This continuous phenomenon is named free or natural convection. Thus, this study 

selected four sets of air velocities. Moreover, the temperature difference (The difference 

between the highest and the lowest temperature of the battery pack) and maximum 

temperature (The maximum temperature of a battery cell) are also considered. Figure 5.4 

plots the maximum temperature and temperature difference profiles under various 

operating conditions, where the geometry conditions remain the same. From Figure 5.4 

(a) and (c), air velocity positively impacts decreasing the maximum temperature and 

temperature difference. Under the same ambient temperature, shown in Figure 5.4 (b), 

increasing the air velocity can enhance the cooling efficiency, but the drop in maximum 

temperature is not much. Figure 5.4 (c), cases with air velocity of 4 m/s achieve 36%, 

which is the maximum percentage of temperature difference drop compared to other cases 

in this configuration. It is demonstrated that when the minimum values of maximum 

temperature and temperature difference are reached, the format set up is the best and 

optimisation results. 
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Figure 5.4 The profile of maximum temperature (a, b) and temperature difference (c) under various 

operation conditions. 

 

5.3.2 Training and results analysis 

In this study, the multilayer perceptron (MLP) neural network was applied. It is one of 

the most competitive types of ANN for regression in various research fields. Because this 

approach shows a considerable capability for universal approximation, it is regularly 

applied to model quite highly complex and disordered phenomena. As mentioned 

previously, the ANN utilises the battery thermal distribution simulation dataset obtained 

through numerical simulations of a typical battery pack configuration on two cylindrical 

batteries in parallel and six-coupled battery pairs in series. In summary, it consists of 130 

data sets of six parameters (four inputs and two outputs) prepared for the training and 

testing of the ANN. The detailed inputs and outputs of each dataset are illustrated in Table 
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5.3. Note that the heat transfer coefficient was replaced with the air velocity more 

effectively presentative by the ANN. It is possible to extend the ANN model to 

predictions on other heat transfer methods not considered in the datasets by analysing 

their coolant velocity. The heat transfer coefficient of air can be estimated to: 

ℎ𝑡𝑡 = 10.45 − 𝑣𝑣 − 10𝑣𝑣1/2 (5.1) 

where ht represents the heat transfer coefficient, and v is the relative speed between the 

object's exterior and air. This equation is empirical and can be applied to the velocity 

range from 2 to 20 m/s [258]. 

Table 5.3 Details of the inputs and outputs for the ANN model. 

 Inputs Outputs 

Parameters X_Gap Y_Gap 
Air 

velocity 

Ambient 

temperature 

Maximum 

temperature 

Temperature 

difference 

Units m m m/s °C °C °C 

Range 0-0.02 0-0.02 30-39.96 20-30 - - 

 

The proposed ANN model has been trained using the Levenberg-Marquardt (LM) 

optimisation technique [259]. The LM method based on Levenberg [260] and Marquardt 

[261] combines Newton’s method and gradient descent. It is one of the most efficient 

training algorithms for neural network modelling [262]. Generally, this algorithm 

demands more storage space but less time. The training process will be terminated 

spontaneously when generalisation ends improving, as represented by a growth of the 
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mean square error of the validation samples. In the LM method, the Hessian matrix can 

be approximated as: 

𝐻𝐻𝑓𝑓 = 𝐽𝐽𝑓𝑓𝑇𝑇𝐽𝐽𝑓𝑓 (5.2) 

The gradient is given by: 

∇𝑓𝑓 = 𝐽𝐽𝑓𝑓𝑇𝑇𝑅𝑅 (5.3) 

where Jf is the Jacobian matrix and e is the vector of a network error. 

The LM working function or the fitness function is based on the mean square error (MSE) 

between the network output and the target output: 

𝐹𝐹 = 𝐿𝐿𝑆𝑆𝐸𝐸 =
1
𝑁𝑁
��𝑅𝑅𝑖𝑖,𝑐𝑐𝑐𝑐𝑡𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑘𝑘 − 𝑅𝑅𝑖𝑖,𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡�

2
𝑁𝑁

𝑖𝑖=1

 (5.4) 

where N is the number of datasets, Ri,network is the network output and Ri,target is the target 

output from the simulation data. The number of hidden neurons has been mentioned in 

Equation (3.32) from the previous chapter, and the configuration structure of the proposed 

ANN model is shown in Figure 5.5. 

Figure 5.6 demonstrates the ANN regression results, and it plots the regression relation 

between the physical outputs and the targets, which indicates that this ANN model has 

achieved a good fit with the training datasets. From Figure 5.7, the error histogram plot 

shows that most errors reside in the range of −0.03688 to 0.0292. The majority of the 

predictions had a root mean square (RMS) error of approximately 0.088%, with around 

10% of the predictions within ± 25% RMS error. The ANN was successfully trained with 

an overall R (fitness) of 0.999, with most prediction errors within 1% RMS error. In future 
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works, the ANN model can be further refined to achieve even higher reliability and 

accuracy. This can be done by adding more simulation results considering a wider range 

of configurations or applying more advanced ANN training techniques. 

 

Figure 5.5 The configuration structure of the proposed ANN model. 

 

Figure 5.6 Regression results of ANN model. 
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Figure 5.7 RMS error histogram of the ANN model predictions. 

 

5.3.3 Optimisation analysis and discussions 

The optimisation configuration has been proposed further to investigate the designed 

system with various working temperatures to improve the battery system's fire safety 

performance and cooling efficiency. These simulation results have investigated the air 

velocity and ambient temperature after successfully training the ANN model. A battery 

pack comprises many single battery cells, and the operation temperature difference for 

the single battery cell inside the battery pack will be sourced by the temperature 

imbalance of the battery pack. This will result in the cell's inconsistency and over the 

normal state during the charge and discharge process, harming battery pack service life. 
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Consequently, an appropriate battery thermal management system should simultaneously 

lower the maximum temperature and temperature difference of the battery packs to ensure 

the reliability and consistency of EVs and HEVs battery performance. 

The 6,250,000 groups of structure and operation features are created in MATLAB. Inputs 

1 and 2 are the configuration features, and Inputs 3 and 4 are the operating conditions. 

The CFD-ANN model calculates the optimal combination to achieve the perfect battery 

performance under the existing case arrangement with the current four inputs and two 

outputs.  

After successful training of the ANN model, four inputs are divided into 50 intervals 

separately in a specific range. Then, 6,250,000 groups of structure features are processed 

in MATLAB, and the optimal result can be selected. According to Figure 5.8, the 

batteries' maximum temperature and temperature difference are greatly affected by the 

battery configuration and operating conditions, with a fluctuation as high as about 7 °C 

for the maximum temperature and 1.5 °C for the temperature difference. It can be 

obtained that the instability of the maximum temperature shows a different trend with the 

fluctuation of the temperature difference under the current range of various inputs. 

Therefore, the maximum temperature is chiefly influenced by the battery properties. The 

temperature difference can be treated as an indicator to evaluate the batter cooling 

performance of the battery pack. 
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Figure 5.8 (a) Maximum temperature and (b) temperature difference of the battery pack for different input 

combinations. 
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From the CFD-ANN model simulation results, the six million sample results are sorted 

in ascending order of the battery spacing. In order to find the optimal combination, a 

selection process is set, considering the maximum temperature and temperature 

difference. Regarding achieving a battery cooling performance, it can be concluded that 

the optimal case is the 0.02 m X-direction gap and 0.01 m Y-direction gap under 20 °C 

ambient temperature and the air velocity of 16 m/s. Compared to the original 

configuration with the same operating conditions, the maximum temperature decreases 

by 1.9%, which is from 36.9 °C drop to 36.2 °C. The temperature difference drops by 

4.5%, compared to the original 1.1 °C temperature difference. The results demonstrated 

the CFD-ANN model optimisation has improved both the cooling efficiency and battery 

performance. The proposed framework demonstrates an efficient way to improve the 

thermal performance of the battery pack by optimizing the configuration under different 

operating conditions. 

 

5.3.4 Verification of the optimal spacing combination 

Within the four input ranges, the ANN model can directly calculate the maximum 

temperature and the temperature difference. Considering the original 16 cases, the best 

combination is achieving a maximum temperature of 36.2 °C and a temperature 

difference of 1.1 °C. With this optimal result, both the maximum temperature and 

temperature difference are the smallest compared with the other 15 cases. Using the four 
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inputs from the optimal case, the outputs obtained from the ANN model are maximum 

temperature (36.2027 °C) and temperature difference (1.119 °C). Compared with the 

CFD simulation results, the absolute error is 0.019 °C, and the relative error is 1.7%. It 

can be concluded that this ANN model can provide the optimal configuration combination 

and enhance the heat dissipation effect of the battery system. Furthermore, the relative 

error is improved compared to the relative error (1.995%) generated by Qian et al. [231], 

proving that the proposed framework improves the temperature uniformity of the current 

battery system. 

5.4 Chapter Summary 

In this chapter, an optimal design of battery thermal management systems was achieved 

by applying a three-dimensional thermo-electrochemical model coupled with the ANN 

model. Utilizing numerical simulations via CFD, different battery pack configurations 

were investigated in a simulation environment to positively impact cooling efficiency, 

battery performance, and battery fire safety. The three-dimensional thermo-

electrochemical model was introduced to calculate the temperature distribution and 

validated with the previous experimental data. The numerical case studies were applied 

to train the proposed ANN model, demonstrating the relationship among geometric 

parameters, operating conditions and cooling efficiency. The CFD-ANN model compared 

6,500,000 combinations with various configurations and boundary conditions. The 

optimal design for the current battery setup was the case with a 0.02 m X-direction gap 
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and a 0.01 m Y-direction gap, which lower the maximum temperature and temperature 

difference by 1.9% and 4.5%.  

The results highlighted one significant advantage of numerical simulations. All the 

pertinent information like structural parameters and operation requirements can be 

derived from the model. Furthermore, different factors can be simulated and optimised 

simultaneously in a simulation environment to deliver a constructive perception of the 

battery's performance and thermal behaviour. In the future, more parameters can be 

introduced with the current CFD-ANN model, such as electrode materials, electrolyte 

materials, cell numbers, different coolants, and so force. A universal database of 

parameters and repercussions for the battery thermal management system can be prepared, 

which can then be processed by foresight models to make outlooks and predictions of the 

fire risks of the LIB energy storage system on a set of input variables.  

Both Chapters 4 and 5 study the performance of BTMs for the battery pack under normal 

working conditions. Many different operating parameters and ambient conditions are 

considered. Nevertheless, the thermal behaviour of the BTMs within some extreme 

conditions should be also investigated. In the following Chapter 6, the abnormal heat 

generation will be introduced with an inhouse written user-defined function code to 

analyse the thermal propagation and heat exchange mechanism, which contributes to 

comprehensively evaluating the performance of BTMs and improving the safety of 

battery packs. 
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Chapter 6 Thermal Propagation Modelling of 

Abnormal Heat Generation in Various Battery Cell 

Locations 

This chapter includes the contents from a published journal article [263]: Li, A., Yuen, 

A. C. Y., Wang, W., Weng, J., Lai, C. S., Kook, S. & Yeoh, G. H. (2022). Thermal 

Propagation Modelling of Abnormal Heat Generation in Various Battery Cell 

Locations. Batteries, 8(11), 216. with modifications and reorders to better fit the structure 

of this thesis. 

 

6.1 General Description 

In Chapters 4 and 5, the thermal behaviour and cooling performance have been analysed 

and optimised under normal working conditions. A better understanding of the heat 

exchange process under extreme conditions will improve a safer design and enhances 

battery thermal management performance. The heat transfer during serious scenarios, 

such as battery thermal runaway or abnormal heat generation, provides insight into 

thermal propagation and cooling efficiency. This chapter proposed a three-dimensional 

thermal model for the battery pack simulation by applying an in-house model to study the 
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internal battery thermal propagation effect under the CFD simulation framework. The 

simulation results were validated with the experimental data. The detailed temperature 

distribution and heat transfer behaviour were simulated and analysed. The thermal 

behaviour and cooling performance were compared by changing the abnormal heat 

generation locations inside the battery pack. The results indicated that various abnormal 

heat locations disperse heat to the surrounding coolant and other cells. According to the 

current battery pack setups, the maximum temperature of Row 2 cases can be increased 

by 2.93%, and the temperature difference was also increased. Overall, a new analytical 

approach has been demonstrated to investigate several stipulating battery thermal 

propagation scenarios for enhancing battery thermal performances. 

6.2 Introduction 

Electrification will be increasingly integrated into our daily lives with the rapid 

development of energy storage systems. LIBs, one of the most commonly used energy 

storage units, are now found everywhere owing to their high energy density, high power 

output, low self-discharge rate and little memory effect. Nevertheless, these 

advancements also have some counterparts, potentially causing a TR phenomenon due to 

its less thermal stability. Many LIB fires happened in the recent decade [264, 265], and 

battery safety has become an essential topic for the development of LIBs. Due to different 

energy demands, battery cells are usually packed in series or parallel to work as a battery 

pack or a battery system. Considering the performance of LIBs, the operating temperature 
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range stays from 15 ̊C to 40 ̊C based on battery types [266], while the temperature 

difference is under 5 ̊C. In order to keep the most suitable working temperature range and 

avoid thermal issues, such as battery cell dissimilarity [267], gradual ageing effects [268], 

etc., BTMs become an essential component for battery packs or systems [269]. In 

practical situations, some improper conditions, such as mechanical, electrical, and 

thermal abuse, cause an abnormal temperature. The exothermic reaction occurs when the 

battery temperature is over a specific value, leading to heat cumulation. Afterwards, the 

other chain reactions are triggered with more heat and gas, resulting in battery fire and 

explosion. This process is considered a battery TR. 

Based on various TR trigger conditions, overheating initiation can be generated by 

different situations: a) cooling systems fail to control the temperature, b) internal defects, 

such as short-circuiting, generate heat and transfer to adjacent cells, c) external heat leads 

to unexpected high temperature. Many research works have been done for the TR 

investigation. Goupil et al. [270] analysed the influence of the heating rate on the 

outgassing and cell casing temperature, as well as the comparison of produced flame and 

released smoke. The results showed that a high heating rate leads to a more violent TR, 

while it does not affect maximum cell and outgassing temperature too much. Chen et al. 

[271] applied the t2 fire principle to numerically predict the fire hazard and total heat 

release. The ignition time difference parameter was also investigated for the application 

of battery fire analysis. Huang et al. [272] studied the feature of battery TR under a 

different SOC. The safe, critical, and hazardous regions were defined based on the 
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response to thermal behaviour. The TR mechanism is still the current research focus in 

battery thermal safety. 

In most scenarios, a single cell TR will propagate to the neighbour cells, accelerating the 

heat cumulations and leading to a serious situation. Therefore, effective and efficient 

BTMs keep the battery or battery systems working under a suitable condition and provide 

a fire-safe environment before the TR occurs. Depending on the cooling medium, BTMs 

can be categorized into several types, air cooling BTMs [273, 274], liquid cooling BTMs 

[275-277], heat pipe cooling BTMs [278-280], phase change material (PCM) cooling 

BTMs [281-284], and hybrid cooling BTMs [285-287]. The performance and 

effectiveness of the BTMs play an important role in battery thermal safety. 

Compared to other cooling BTMs, air cooling BTMs are one of the most suitable cooling 

methods due to their relatively low cost of manufacturing and maintenance, simple 

configuration, high reliability, etc. Numerous studies have been done in this area from 

both experimental and numerical perspectives. Lopez et al. [232] focused on experimental 

elucidation and analysis of various LIB module configurations. The TR propagation has 

been characterised, and the safe practices were achieved by increasing the inner cell 

spacing. With the development of computer science, the CFD technique has become a 

mature and effective tool to analyse many perspectives of battery studies, such as the 

single battery thermo-electrochemical performance [288-290], each component of the 

battery cell [291, 292], multi-scale multi-domain thermal analysis [293], the battery 

pack/module overall performances [294-296], etc. Behi et al. [297] compared natural 

ventilation and forced-air cooling based on a battery module consisting of cylindrical cells. 
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Also, a comparison among natural ventilation air cooling, forced-air cooling, heat pipe, 

and heat pipe with copper sheets was demonstrated. The numerical results show that the 

heat pipe with copper sheets provides the most excellent maximum temperature and the 

best temperature uniformity of the battery module. Tang et al. [298] built an 

electrochemical-thermal model to optimise the structural design of the battery module. In 

addition, various modes of heat transfer were investigated during the TR propagation. 

Heat conduction is the primary heat transfer mode for the direct-connect cell mode, while 

heat radiation is the primary mode for the indirect-connect cell mode. Wang et al. [299] 

built air-based BTMs with uneven cell spacing configurations. A neural-network-based 

model presented the multi-objective optimisation, and the results showed that the energy 

consumption was reduced to 41.19% of the original layout. Chen et al. [300] introduced 

three novel schemes, hollow spoiler prisms, added PCM, and fins, to enhance the heat 

transfer capacity and safety of a battery pack. The numerical comparison results showed 

that compared to the conventional air cooling system, all the proposed three schemes 

improved the cooling performance, where the case with a fin and PCM filled spoiler prism 

demonstrated the best result and prevented the TR propagation among battery cells. Yang 

et al. [301] investigated the battery cooling performance of the reverse-layered stagger-

arranged battery pack configuration using CFD simulations and optimised the 

temperature distribution by adding a spoiler. The maximum temperature of the battery 

pack decreased by 1.85 K compared to the one without a spoiler. Zhai et al. [302] 

proposed an experimental-based Domino prediction model to predict the TR propagation 

path and probability. Meanwhile, the thermal analysis of three different trigger TR battery 
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locations was demonstrated, and the whole TR propagation process was divided into four 

stages. 

The cell TR or abnormal heat generation is an essential factor for BTMs. It also affects 

the temperature distribution of the whole battery system, which links to the battery energy 

density. Additionally, understanding the TR occurrence reduces the risks of battery fires. 

In essence, the in-depth characterisation of battery internal thermal propagation and heat 

transfer behaviours are key to fully realise the effectiveness of BTMs and improving the 

battery performance without sacrificing safety risks. Figure 6.1 demonstrates a brief 

schematic picture of the whole idea for this chapter. This section aims to investigate the 

influence of different TR cell locations on TR propagation based on the forced-air cooling 

BTMs. Based on previous research works and the aforementioned research motivations, 

the key objectives of this chapter are constructed as follows: 

(i) A three-dimensional thermal model with an in-house written code will be 

developed, and the detailed temperature distribution will be replicated by CFD 

simulations. 

(ii) The numerical results will be validated against the previous experimental 

results, and more scenarios with various conditions will be presented and 

compared. 

(iii) The heat transfer mechanism will be analysed, and this will provide insight 

into the design of BTMs and the improvement of battery safety. 

(iv) The potential application of this work and the future perspectives will be 

presented. 
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Figure 6.1 Schematic picture of the structure of this chapter. 

 

This chapter is constructed as follows. The overall numerical model framework is 

introduced in Section 6.3, and the model validation and verification are described as well. 

After that, the numerical analysis and results are exhibited in Section 6.4. In section 6.5, 

the chapter summary is demonstrated. 

6.3 Model Configuration 

6.3.1 Model description 

In this section, the commercial CFD software (ANSYS-Fluent) with an in-house written 

code is employed to simulate the battery thermal behaviour and replicate the temperature 

distribution across the battery pack. A battery pack with 24 × 18,650 cells was utilised, 

which uses air cooling BTMs by a fan located at the outlet, shown in Figure 6.2. The 
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experiments were carried out by Behi. et al. [297] under the case with cell spacing of 2 

mm and air velocity of 2 m/s. The battery pack comprises 24 cylindrical cells in parallel-

series connection, and 54 holes (6 rows × 9 columns) were embedded in the inlet surface. 

The configuration is aligned with the experiment setup to validate the simulation results 

with the experimental data. The whole battery pack is set as 130 mm × 90 mm × 70 mm, 

and the diameter of each inlet hole is 5 mm, which is one-tenth of the suction fan diameter 

designed by Behi et al. [297]. Besides, the main parameters of the single battery cell, the 

ventilation fan and the outer polyvinyl chloride (PVC) case are summarized in Table 6.1, 

respectively. 

Table 6.1 Parameters and properties of the battery cell, ventilation fan and outer case. 

Parameters of battery 

cell 

Parameters of 

ventilation fan 

Parameters of outer case 

Specific heat 

capacity 

1200  

[J/kg/K] 

Outlet 

diameter 

50 mm Specific heat 

capacity 

600  

[J/kg/K] 

Density 2722  

[kg/m3] 

Inlet air 

temperature 

299.15 K Density 100  

[kg/m3] 

Anisotropic 

thermal 

conductivities 

kr = 0.2 

[W/m/K], 

kz = 37.6 

[W/m/K] 

Pack size 

(length × 

width × 

height) 

130 mm × 

90 mm × 

70 mm 

Thermal 

conductivities 

0.1  

[W/m/K] 
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Figure 6.2 Schematic figure of the battery pack with 24 18,650 cells. 

 

6.3.2 Model verification and validation 

Typically, the cooling performance of the BTMs is evaluated by three index parameters: 

the maximum temperature, temperature difference and energy consumption [299]. To 

validate the numerical results of this work, the experimental data generated by Behi et al. 

[297] is chosen. The simulation configuration is the same as the experiment setup, which 

consists of a 24 cells battery pack, a polyvinyl chloride (PVC) case and a cooling fan, 

shown in Figure 6.1. The testing point of the K-type thermocouple is designated at the 

specific position, which is the position of cell 5 (C5) and cell 15 (C15), shown in Figure 

6.3. The thermocouples were calibrated, and the accuracy and uncertainty were evaluated 

by Behi et al. [297] during the experimental data collection. 
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Figure 6.3 Schematic figure of thermocouple testing point. 

 

Under normal working conditions, the battery pack completed the discharge cycle with a 

1.5 C discharge rate, which could be considered a heat source equal to 48,750 W/m3. The 

air inlet velocity is 2 m/s with coupled boundary conditions among air-battery and air-

PVC case interfaces. The boundary walls are specified as adiabatic non-slip walls. The 

second-order upwind spatial discretization is applied for pressure, momentum, energy, 

turbulent kinetic energy and specific dissipation rate. 

To achieve a credible CFD solution, mesh independence analysis is required to quantify 

the numerical errors and uncertainties. Based on the experimental layout, the geometry 

of the whole battery pack was built, and the computational region was mapped by an 

unstructured mesh, shown in Figure 6.4 (a). The maximum volume temperature and the 

surface weighted average temperature specified by C5 and C15 under various mesh 
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element sizes to evaluate the mesh independence were illustrated in Figure 6.4 (b). 

Compared to the different grid size and element numbers, it is observed that the maximum 

volume temperature and the surface weighted average temperature of both cells stabilizes 

when the grid amount reaches 1.99 million. Hence, the medium element number of 1.99 

million grids is applied for this battery pack simulation. 

 

(a) 
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(b) 

Figure 6.4 (a) Schematic of the computational domain and mesh; (b) Mesh independence analysis. 

 

As shown in Figure 6.3, the experimental temperature data was collected from the testing 

points and used to validate the numerical results. Validation of the CFD model means 

validating the numerical calculations by establishing a range of physical conditions 

obtained from the calculations and performing comparisons of the results from the CFD 

code with experiments that span the range of conditions. The comparison between the 

experimental data (black) and predicted temperature from the CFD model (red) is 

presented in Figure 6.5 (a), which demonstrates that the numerical results achieve an 

acceptable agreement with the experimental data. The relative error between the 

experimental and numerical results is approximately less than 0.3%. Thus, the error is 
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acceptable, and the numerical model can capture the thermal behaviour and demonstrate 

proper prediction for the current setups.  

Based on this setup, the overall thermal behaviour of the battery pack can be replicated 

by the CFD simulation. Figure 6.5 (b) shows the temperature distribution of the cross-

section plane for the whole computational domain. It is easy to conclude that the cooling 

effect drops due to the heat exchange upstream when the cooling air goes through the 

battery pack. The cooling effect near the inlet is better than that next to the outlet. 

Additionally, the whole battery pack is symmetry along the moving direction of the 

cooling air, and the battery temperature of the upper row is slightly lower than the middle 

row. To be easily identified, the upper row is defined as Row 1, where C5 is located. 

Similarly, the row with C15 is named Row 3. The middle row between Rows 1 and 3 is 

defined as Row 2. 
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Figure 6.5 (a) Numerical model validation, the error bar is 0.3%; (b) Temperature distribution in the 

cross-section plane. 

6.4 Results and Discussions 

6.4.1 Applied extreme heat to the model 

During the thermal runaway propagation, extra heat is generated due to complex 

exothermic reactions, and the temperature of the thermal runaway cell will increase 

dramatically. This feather was captured experimentally by Lopez. et al. [232]. Based on 

the experimental data, we applied an in-house written user-defined function to replicate 

the temperature change of the thermal runaway cell. By using this code in the previously 

validated model, the current case successfully simulates the scenario with a cell 
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experiencing thermal runaway. The case layout is the same as the pre-mentioned case, 

and an abnormal heat generation is applied in cell 6, shown in Figure 6.6 (a). 

The heat propagation inside the battery pack under the addition of abnormal heat 

generation was presented in Figure 6.6 (b). Compared to Figure 6.5 (b), the added 

abnormal heat generation increased the maximum temperature with the value of 12 K. 

Additionally, the temperature difference also increased from 11.7 K to 23.3 K, which 

changed the original temperature distribution of the force-air cooling case.  
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Figure 6.6 (a) Schematic figure of the battery with a thermal runaway cell; (b) Temperature distribution in 

the cross-section plane under this scenario. 

 

The temperature contours of the various vertical cross-section planes along each row are 

demonstrated in Figure 6.7. It is easy to know that the temperature distribution along the 

vertical cross-section planes is followed the heat exchange mechanism. The temperature 

distribution at the horizontal cross-section, the top view of the battery pack, demonstrates 

a similar behaviour. Therefore, the top-view temperature contours will be further 

investigated in the section. 
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Figure 6.7 The temperature distribution of the different rows’ vertical cross-section under C6 conditions, 
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(a) The whole pack; (b) Row 2. 

 

In this case, the abnormal heat generation is applied, and the neighbouring cell 

temperature is calculated and compared with the experimental data extracted from Lopez. 

et al. [232]. The comparison results between the numerical and experimental data are 

demonstrated in Figure 6.8, indicating a satisfactory agreement. The error of the 

maximum temperature for the neighbouring cell is less than 1 K. Therefore, this case can 

be further expanded to analyse the heat transfer mechanism under the abnormal heat 

generation scenarios. 

 

Figure 6.8 Comparison between the numerical and experimental data for a temperature change of the 

neighbouring cell. The error bar is 2.5%. 
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6.4.2 Different abnormal heat generation locations 

Many previous studies focused on the design feature, such as channel configuration and 

coolant properties, to investigate the thermal behaviour of the battery pack and the cooling 

process. Different thermal runaway locations play an essential role in battery heat transfer 

and battery safety. Moreover, the heat propagation also affects the trigger of the thermal 

runaway for neighbouring battery cells, which determines whether the abnormal heat 

generation transfer to a severe battery fire or explosion. Experimental study on this point 

will cover an expensive expense, and it is hard to compare with various conditions. Hence, 

numerical investigation demonstrates an effective and efficient way to carry out the 

comparison study. It is safer and less polluted than heating or burning real battery cells 

and packs. 

The current battery pack configuration from the top view of the battery pack consists of 

six cells in a row, the longitudinal direction along the forced-air cooling path, and four 

cells in a column, which is the transverse direction. Therefore, the battery pack can be 

treated as a symmetry set up along the air velocity direction, as shown in Figure 6.6 (a). 

The battery cell is arranged from up to bottom and left to right, with serial numbers from 

one to twenty-four. The total four rows can be divided into two rows near the outer case 

wall (Rows 1 & 4), and another two in the middle (Rows 2 & 3). Also, the top half with 

Row 1 & 2 can be mirrored to the bottom half with Rows 3 & 4.  

With the application of the in-house written user-defined function code, abnormal heat 

generation can be applied to the battery pack directly. The comparison of the various 
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locations along the same row can be observed. For Row 2, the abnormal heat generation 

was applied from C2 (the nearest cell located to the air inlet) to C22 (the nearest cell 

located to the air outlet). The temperature distribution is shown in Figure 6.9. The applied 

abnormal heat generation was controlled as a thermal runaway in a single cell, but the 

heat did not trigger the thermal runaway of adjacent cells. The heat propagation was 

shown that the abnormal heat was transferred to the adjacent cell most along the 

longitudinal direction due to the forced-air cooling. 

 

(a) 
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(b) 

  

(c) 
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(d) 

 

(e) 
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(f) 

Figure 6.9 Comparison of the temperature distributions among the applied abnormal heat generation on 

different cells in Row 2. 

 

Due to the forced-air cooling, the abnormal heat was pushed to one dimension. For 

example, the case on the right of the top line showed that the cooling was efficient for the 

first two columns since the cooling air had not been heated up by the thermal runaway 

cell. Moreover, the location of the thermal runaway or abnormal heat generation affected 

the BTMs performance related to the maximum temperature and temperature difference. 

The thermal runaway cell not only heated the adjacent cells but also heated the cooling 

air, reducing the cooling performance of the downstream cells. From Figure 6.9, it is easy 

to find that the cells located upstream of the cell with abnormal heat generation were 
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similar to the base case without extra heat. The temperature of the downstream cells was 

increased due to the abnormal heat generation, and the temperature difference was also 

increased.  

According to the various locations of the thermal runaway cell, the maximum and 

minimum temperatures of C15 were compared and demonstrated in Figure 6.10. C15 is 

the cell in the same column as C14 and is also in Row 3. It can be concluded that the 

temperature of C15 was stabilized since the thermal runaway cell moved downstream of 

itself. Also, both the maximum and minimum temperatures increased by 9.1 K and 7.7 K, 

respectively, which illustrates that when abnormal heat is generated, or thermal runaway 

occurs, at the early stage, which is before the thermal runaway is triggered of adjacent 

cells, the increasing temperature is due to the cooling air was heated up and the cooling 

efficiency was reduced. Compared to cases C2 and C22, the maximum temperature was 

increased by 2.93%, and the minimum temperature was increased by 2.52%. 

 

Figure 6.10 Temperature changes of cell 15 among the applied abnormal heat generation on different cells 
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in Row 2. 

 

For Row 1, the thermal behaviour was similar to the Row 2 scenarios, shown in Figure 

6.11. The demonstrated cases have abnormal heat generation at C5, C13 and C21. 

Considering the temperature change of C15, Row 2 (C6, C14, C22) has more influence 

on the temperature change than Row 1 (C5, C13, C21), and C15 is closer to Row 2. 

Additionally, comparing the C5 case with C13 and C21, the corner temperature is higher, 

which is the same reason that the cooling air was heated up and the cooling performance 

is not enough for the corner cell. 

 

(a) 
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(b) 

 

(c) 

Figure 6.11 Comparison of the temperature distributions among the applied abnormal heat generation on 

different cells in Row 1. 
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6.4.3 Further discussions 

The numerical analysis of this chapter not only can be linked to battery thermal 

management but also can be applied to the early detection analysis of battery fire risks. 

From the external of the battery cell, the abnormal heat generation should be cooled down 

to reduce the temperature imbalance, which can further extend the life span of the battery 

system. On the other hand, abnormal heat generation can be linked to the battery material 

development, which can be an indicator to evaluate the performance of the battery 

materials and enhance the fire resilience of different batteries. A better understanding of 

the abnormal heat generation mechanism will contribute to constructing a comprehensive 

battery safety analysing tool to predict the potential battery fire risk and deliver efficient 

battery thermal management solutions. Also, by coupling this numerical model with other 

models, i.e., ANN model, an intelligent battery alerting system can be further developed. 

6.5 Chapter Summary 

This chapter developed a three-dimensional thermal model for the battery pack simulation 

by applying an in-house written code by ANSYS Fluent. The detailed temperature 

distribution of the whole battery pack was demonstrated under normal operating 

conditions and severe conditions, such as thermal runaway or abnormal heat generation. 

After validating both scenarios, the comparison study of various extreme heat locations 

was carried out. The heat transfer mechanism inside the battery pack was investigated. 

The battery cell with abnormal heat generation not only increases the temperature of 
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adjacent cells but also can heat the cooling air and leads to relatively poor cooling 

performance. Take Row 2 cases as an example, the maximum temperature can be 

increased by 2.93%, and the cell temperature unbalancing was also increased. 

The results highlighted one significant advantage of the numerical analysis, which is the 

capability to simulate severe scenarios and ease of comparison with many different setups. 

The proposed model can be further applied to battery performance evaluation and 

optimisation design. For future perspectives, more parameters can be involved and 

analysed at the same time. Moreover, these numerical results can be built as a dataset for 

coupling with machine learning techniques, such as artificial neural networks, to 

comprehensively enhance both the battery cell/pack and the BTMs performance 

simultaneously, as well as improve the safety of the battery and energy storage system. 
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Chapter 7 Conclusions and Future Works 

 

7.1 Conclusions 

Nowadays, the increasing popularity of lithium-ion battery systems, particularly in 

electric vehicles and energy storage systems, has gained broad research interest regarding 

performance optimisation, thermal stability, and fire safety. With the emerging 

electrification taking place across different industry sectors, the critical aspect of 

containing and isolating lithium-ion battery (LIB) fires as well as other fires resulting 

from the auxiliary electrical systems, has heightened focus on the increasing dangers 

associated with the use of electrification technologies. Moreover, due to the complex 

chemical reactions, the potential loss of fortune and the injury of people from battery fires, 

a comprehensive investigation of the thermal behaviour and heat exchange process of the 

battery system is paramount. In addition, assessing battery safety and studying thermal 

behaviour by carrying out battery fire tests is not only costly and dangerous, but also it 

generates toxic gases or pollution. Therefore, to address these limitations, this thesis 

focuses on building a high-fidelity computational approach for analysing thermal 

behaviour, improving the cooling efficiency of the battery thermal management system, 
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and enhancing the fire safety performance of the battery system. Chapter 1 briefly 

introduced the background of the LIB and battery fires. The knowledge gap in the battery 

thermal model and battery thermal management system (BTMs) evaluation was 

elaborated. The aims and objectives of this research work were also demonstrated. The 

outline structure of this thesis was also presented. 

An extensive literature review was performed on the current machine learning (ML) 

assisted advanced BTMs in Chapter 2. The ML models applied in BTMs and battery 

system safety were summarised. The artificial neuron network (ANN) approach, with the 

advancements of multivariate analysis function, high precision, and excellent data noise 

tolerance, was found to be advantageous for parameter optimisation contributing to better 

and highly efficient BTMs design. Other techniques, such as convolutional neural 

networks (CNN), Long short-term memory (LSTM), etc., were also introduced and 

reviewed. The corresponding gaps in the existing methods demonstrated the motivation 

for this thesis. 

In Chapter 3, a comprehensive methodology demonstration was provided to explain all 

the involved numerical models. The computational fluid dynamics (CFD) modelling 

technique was introduced with the fundamental knowledge of conservation laws at the 

beginning. After that, the battery structure and basic electrochemical reactions were 

described. The electrochemical model was presented, including the lumped battery model. 

Then, the thermal model was elaborated, and the coupling between the battery cell model 

and the thermal model was also explained. In addition, a detailed description of the ANN 

model was delivered in this chapter as well. All the applied equations in this research 
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work were presented. The coupling and optimisation processes were explained by 

flowcharts. 

A three-dimensional thermo-electrochemical model was developed to simulate the 

detailed temperature distribution of battery packs in Chapter 4 with the description of the 

conservation laws and other scalar properties governing the fluid motion and heat transfer. 

The model was validated with the experimental data, and the agreement agreed well. With 

the application of this model, the scenarios with different ambient pressures were set up 

and analysed. It was found that changing ambient pressure created a more significant 

temperature drop under forced air cooling than natural ventilation. Moreover, cases with 

various air-cooling directions were also studied. With the application of the ANN model, 

the relationship between the cooling direction and the ambient pressure was built, and an 

optimal combination was demonstrated, where the maximum temperature was dropped 

by 1.94%, and the temperature difference could be decreased by 17%. 

Next, the thermal behaviour of the battery pack was further investigated by the three-

dimensional thermo-electrochemical model. The integrated CFD-ANN framework was 

applied to the influence of natural ventilation speed and ambient temperature on the 

thermal performance of the battery pack. The optimisation design based on the CFD-

ANN framework considered multiple nonlinear parameters simultaneously, which 

contributed to analysing and predicting the performance of BTMs. The simulation results 

provided a practical pathway to optimise the battery configuration and cooling efficiency, 

balancing the layout of the battery system and safety performance, as well as achieving a 

1.9% decrease in maximum temperature and a 4.5% drop in temperature difference. 
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Additionally, the ANN model established through CFD simulation results can accurately 

describe the relationship between the configuration dimensions and operating conditions, 

with a relative error as low as 1.727%. 

Since the battery thermal runaway involved thermal abuse conditions during the battery 

working process, an extreme situation such as abnormal heat generation was further 

investigated. A three-dimensional thermal model for the battery pack simulation by 

applying an in-house model to study the internal battery thermal propagation effect under 

the CFD simulation framework was delivered in Chapter 6. The thermal behaviour and 

cooling performance were compared by changing the abnormal heat generation locations 

inside the battery pack. The results indicated that various abnormal heat locations disperse 

heat to the surrounding coolant and other cells, and the maximum temperature of outer 

row cases could be increased by 2.93% based on the current battery pack layout. 

With the advancement summarised above, this thesis brought great contribution in 

numerical solutions of analysing and predicting the battery or battery pack thermal 

performance, as well as evaluating BTMs performance and optimising the configuration 

of the battery storage system. In particular, the proposed integrated CFD-ANN framework 

not only balanced the operating parameter and ambient conditions simultaneously, but 

also enhanced the cooling performance and mitigates the fire risk of the battery storage 

system. On the other hand, the current data sets were built based on the cylindrical battery 

cell with an air-cooling system. Further, various battery types (i.e., prismatic cell and 

pouch cell) and different cooling methods (i.e., liquid cooling, PCM cooling and hybrid 

cooling system) can be considered to build a more extensive battery data set. Also, for the 
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current cylindrical type of battery, other sizes can be involved to provide a comprehensive 

insight for the battery system design. This proposed integration framework has proven to 

be a useful numerical tool for performance-based battery storage system designs and 

future real-time fire detection alarm systems. 

7.2 Suggestions for Future Works 

Because of the prevailing and new fire risks, there is a demand and a need to develop an 

integrated system approach that uniquely and holistically tackles the critical areas of fire 

prevention, protection, intervention, and risk management and mitigation to not only 

effectively eliminate or minimise the exposure of battery energy storage systems to fire 

threats but also better transform and promote safe industry operations. 

While the industry applications for LIB are still relatively new, there is room for further 

improvement and unrevealed new technological explorations, such as thermally stable 

components, smart material design, safety monitoring BTMs, battery system safety 

design model, thermal management system, battery safety evaluation system, etc. While 

researchers are developing new energy materials with high energy density, fast electric 

cycle speed, and excellent longevity, the safety perspective, if not more important, is 

crucial as well. Researchers are expected to collaborate and develop future LIBs or BTMs 

with guaranteed overall safety performance. CFD models can be further applied to the 

battery design and risk predictions, i.e., a battery monitoring system can be coupled with 

CFD simulations to reproduce the real time battery performance and predict potential fire 
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risks. The abnormal heat generation can be predicted and analysed for an early warning 

of battery failure. The potential directions of ML applied in BTMs are listed in the 

following: a) ML techniques, such as ANN, CNN, LSTM, support vector regression 

(SVR), digital twin (DT), and so force, can be further investigated for LIB and BTMs 

optimal design, risk prediction, fault diagnosis, and hazard mitigation; b) Multiphysics 

numerical simulations can be coupled to build more performance-oriented datasets for 

ML training; c) Other potential ML methods can be included for improving LIB safety 

research with various data types and amounts; d) ML techniques can be further applied 

to other energy storage systems for improving the performance and mitigating the 

potential risks.  

In addition, since the development of each battery component with high performances is 

undergoing, such as separator, electrolyte, and electrodes, the investigation of new 

materials and performances is mainly based on experiments. Numerical simulations can 

provide reliable results compared to experiments and contribute to studying the 

mechanism of some effects. Meanwhile, numerical simulations provide an efficient and 

economical way to develop better batteries or battery systems. Furthermore, the 

integration of multi-domain multi-scale models, including ML, CFD, and molecular 

dynamics (MD), has the potential to study the all-inclusive coupled internal/external 

phenomena of LIB fires. With increase understanding from the numerical investigation, 

a smart material design and intelligent BTMs can be further developed. 
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In the longer term, these further works shall benefit battery safety research by contributing 

a comprehensive and multifunctional model for practical applications in battery energy 

storage design.  
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