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Abstract 

Dynamic behaviour of vehicle-bridge interaction systems with uncertain properties is 

presented in this thesis. The motivation of the research is the growing need of engineers 

and researchers to understand the vehicle-bridge coupling dynamics accounting for the 

unavoidable variations in the system parameters. Anticipation of the dynamic responses 

of a bridge excited by moving vehicles is crucial to the bridge design as bridge vibration 

is a significant cause of its deterioration and reduction in long-term serviceability. It is 

vital to provide insight into the influences of existing uncertainties on the dynamic 

behaviour of vehicle-bridge coupling systems which are commonplace in structural 

engineering. The PhD study aims to develop a rational non-deterministic framework for 

dynamic analysis of a vehicle-bridge interaction system considering the uncertainties in 

all the system parameters.  

Probabilistic analyses are firstly implemented to calculate the statistical moments of 

bridge responses considering all the system parameters as random variables. Moving 

spring-mass and quarte-car models are adopted to represent a moving vehicle. Euler-

Bernoulli beam is employed to model the bridge. Random variable functional moment 

method, combined with modal analysis, is extended to develop the mathematical 

expressions for calculating the mean value and variance of bridge dynamic response. 

Investigations into the effects of the individual system parameters and the road surface 

roughness on the bridge response are carried out.  

Non-probabilistic approaches are proposed to account for the uncertainties in the 

vehicle-bridge interaction systems when sufficient statistical data are unavailable. Half-

car model is adopted to describe a moving vehicle. Interval operations, Taylor 
v 

 



expansions and perturbation theory are integrated to analyse the vehicle-bridge 

interaction dynamic problem with predefined small intervals of system parameters. 

Mathematical formulations are formed for the midpoint value, interval width, lower and 

upper bounds of interval bridge dynamic response. Furthermore, a heuristic 

optimization method, improved particle swarm optimization algorithm with low-

discrepancy sequence initialized particles and high-order nonlinear time-varying inertia 

weight and constant acceleration coefficients (LHNPSO), is developed to capture the 

extreme values of bridge responses regardless of the interval width of system 

parameters. 

Hybrid probabilistic and non-probabilistic analysis is introduced into the vehicle-bridge 

interaction dynamic system considering a mixture of random and interval uncertainties 

in the system. The random interval moment method is incorporated in the 

implementations to obtain the intervals of the first two statistical moments of bridge 

response. Random interval perturbation method is further developed while the bridge is 

represented by a finite element model. 

The effectiveness and accuracy of the presented approaches are demonstrated by 

Monte-Carlo simulations and hybrid simulations combining direct simulations for 

interval variables and Monte-Carlo simulations for random variables. The research 

reported in this thesis will assist engineers to perform the cost effective design and 

assessment of non-deterministic dynamic response of vehicle-bridge interaction systems 

with uncertain properties. 
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Chapter 1 Introduction 

1.1 Background 

The dynamic behaviour of a bridge under the effect of moving vehicle induced loadings 

has drawn considerable research and practical interests. The problem of a vehicle or 

multiple vehicles travelling over a bridge is commonly encountered in transportation 

infrastructures such as highway bridges, railroad bridges, aircraft/taxiway bridges in 

airports, and many others. When a vehicle passes over a bridge, certain impact or 

dynamic amplification effect will be imposed on the bridge, which needs to be taken 

into account in their design and construction considerations. Prediction of the dynamic 

responses of bridges resulted from moving vehicles is of significance in bridge design 

because moving vehicles usually produce more destructive loadings than static vehicles 

do. Although major bridge failures are not usually caused directly by moving vehicles, 

vehicle induced the dynamic loading has become one of the important causes of 

deterioration and reduction in long-term serviceability of bridges. Theoretic and 

experimental investigations had indicated that the vehicle impact on a bridge mainly 

depends on several factors including the type of bridge and its natural frequencies of 

vibration, vehicle characteristics and the speed of the vehicle [1].  

In the conventional dynamic analysis of a vehicle-bridge interaction system, vehicle and 

bridge parameters are treated as deterministic ones [2-5]. Although some variations 

around those base line parameters are taken into account, designs and analyses are 

performed using deterministic model of which some parameters are varied with pre-
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specified ranges for a set of combined analyses. However, generally speaking, vehicles 

moving on a bridge have nondeterministic characteristics because the parameters of 

different kinds of vehicles are different.  For instance, mass and tire stiffness of a light 

passenger car are obviously different from those of a heavy vehicle. Parameters of a 

bridge, i.e. mass, Young’s modulus and moment of inertial, usually have uncertainties 

resulting from construction and manufacturing processes as well as due to aging. 

Therefore, their values are no more equal to the nominal values given in the design. 

Uncertainty can be described by randomness, fuzziness and interval. The most common 

solution to problems of uncertainty is to model the system parameters as random 

variables. On the other hand, probabilistic approach is the most popular method to solve 

random problems, and the probabilistic analysis of structures is becoming a significant 

and hot research field in engineering [6]. Over the past 20 years, probabilistic methods 

based on the finite element analysis (FEA), such as Monte-Carlo simulation method 

(MCSM) [7], perturbation method (PM) [8] and stochastic finite element method [9], 

are widely used in the static and dynamic analysis of structures with random parameters. 

Probabilistic analysis of structures can provide not only the mean value but also the 

variance or standard deviation, thus, a better description of structural responses.  

Uncertainty analysis is primarily based on probability theory, with the premise that a 

large number of experimental samples are available to construct the precise probability 

distributions of parameters. However, for some real engineering problems, it is 

challenging to obtain sufficient information from parameter sampling. The probabilistic 

method becomes difficult to use in this context. When objective information on the 

uncertainties is limited, results from the subjective probabilistic analysis prove to be of 

little value, and does not justify its high computational cost (see, e.g. [1] and [2]). 
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Consequently, alternative non-probabilistic concepts have been introduced into non-

deterministic numerical modelling. Non-probabilistic approaches such as interval FEA 

and fuzzy FEA for non-deterministic analysis of structures with uncertain parameters 

are emerging. Static response, free vibration and forced vibration of structures with 

interval parameters have been investigated by using interval and/or fuzzy FEA. In the 

interval approach, uncertainties are considered to be confined within a predefined range. 

For each uncertain parameter, only its lower and upper bounds need to be provided. 

However, this approach may be too conservative due to the inherent dependency issues. 

The fuzzy approach extends this methodology by introducing a level of membership 

that represents to what extent that a certain value is in the range of possible input values. 

This concept provides the analyst with a tool to express a degree of possibility for a 

certain value. 

In order to reduce the computational effort and simultaneously investigate the effect of 

the individual system parameters on the structural responses, Gao et al. [10-12] have 

proposed the random factor method, fuzzy factor method and interval factor method. 

These methods have been applied to the analysis of engineering structures with 

uncertainty. 

A few researchers [13-15] have attempted to develop stochastic approaches for the 

dynamic analysis of vehicle-bridge system with uncertainty. The probabilistic analysis 

of a bridge under moving loads is usually performed by assuming the characteristic of 

the bridge as deterministic and the moving forces as stochastic. In general, this kind of 

analytical model is limited to bridge response assessment and the effect of the 

randomness of moving vehicles on responses of a bridge have not been investigated 

extensively. However, little concern has been engaged to identify which random 
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variable has to be considered in the probabilistic analysis and what criteria should be 

selected to determine the probabilistic safety or serviceability. In particular, 

probabilistic modelling of a moving vehicle and probabilistic analysis of the interaction 

between vehicle and bridge systems have not been thoroughly and qualitatively 

investigated. In addition, sometimes, a complete probabilistic specification of the 

vehicle-bridge interaction systems uncertainty is impossible, and the capability for the 

development of reliable predictions, in terms of probability, is fundamentally limited. 

Consequently, non-probabilistic approaches should be developed to account for the 

uncertainties in the vehicle-bridge interaction systems when sufficient statistical data are 

unavailable. Based on the literature, non-probabilistic analysis has not been conducted 

for the dynamic response of the vehicle-bridge interaction system with uncertain 

properties. A rational framework for non-deterministic dynamic analysis of vehicle-

bridge interaction systems, including the uncertainties in all the system parameters, 

should be developed. For real engineering applications and the quantitative analysis of 

vehicles and bridges, the uncertainties in all system parameters should be considered in 

the analytical model.  In addition, it is very important to investigate the effect of the 

individual parameters on the bridge response and/or vehicle dynamic performance. 

1.2 Literature Review 

The aim of this section is to critically review the argumentation, and to study what 

extent to the non-probabilistic methods can be considered as useful alternatives to the 

existing probabilistic approach. 
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1.2.1 Uncertainty modelling 

Uncertainty can enter mathematical models and experimental measurements in various 

contexts.  A popular way of categorization is to classify uncertainty into two categories: 

aleatory uncertainty and epistemic uncertainty. They are distinguished respect to its 

sources [16]. 

Aleatory uncertainty, also known as statistical uncertainty, is typically irreducible as a 

property of the system associated with fluctuations/variability; examples include 

inherent variations in physical processes, such as weather conditions [17]. Therefore, 

aleatory uncertainties are something not controllable by an experimenter: they exist, and 

they cannot be suppressed by more accurate measurements. Consequently, aleatory 

uncertainty can be modelled and processed appropriately with the aid of pure 

probabilistic methods. 

Epistemic uncertainty represents a lack of knowledge about the system due to limited 

data, measurement limitations, or simplified approximations in modelling system 

behaviour. This type of uncertainty can be typically reduced by gathering more 

information. Epistemic uncertainty can be viewed in two ways. It can be defined with 

reference to a stochastic but poorly known quantity or with reference to a fixed but 

poorly known physical quantity [18]. The term “stochastic but poorly known” refers to 

the uncertainty about the distribution type and parameters of a random variable. 

Epistemic uncertainty may be regarded as subjective uncertainty, the reason may be 

initiated against the probability of pure model range. These causes involve a lack of 

information, which hinders the probability model of a unique and potential power 

generation plan deviating from pure randomness qualitative observation specification. 
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In many engineering practical cases, however, not even subjective probabilistic 

information is available. Examples are uncertain quantities for which only bounds or 

linguistic expressions are known. A probabilistic modelling would then introduce 

unwarranted information in the form of a distribution function that is totally unjustified. 

Even the assumption of a uniform distribution ascribes a certain probabilistic regularity 

and, thus, much more information than that is given by just bounds for a quantity. In 

more frequent cases, the knowledge about the fluctuations of the structural parameters is 

very limited so that a clear probabilistic specification of their associated uncertainty is 

impossible, and the capability for the development of reliable predictions, in terms of 

probability, is fundamentally limited.  

Epistemic uncertainty generally requires further specific models oriented to particular 

characteristics of the uncertainty associated with the available information. These 

uncertainty models are constituted on a non-probabilistic or on a mixed 

probabilistic/non-probabilistic mathematical basis. 

This thesis focuses on handling aleatory uncertainty and the first definition of epistemic 

uncertainty, i.e., epistemic uncertainty with reference to a stochastic but poorly known 

quantity in a straightforward manner. Therefore, the uncertainty representation methods 

proposed in this thesis are purely probabilistic, non-probabilistic or a mixture. 

1.2.2 Vehicle-bridge interaction system model 

a) Bridge model 

In dynamic analysis of bridge-vehicle interaction system, the bridge model is one of the 

three most important factors (the other two being the vehicle model and bridge deck 
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roughness). In the literature, several bridge models have been developed to analyse the 

bridge response.  

The first type of bridge model is Euler-Bernoulli beams.  In the beam theories, the 

simplest model is the Euler-Bernoulli beam model in which cross sections are 

perpendicular to the neutral axis prior to bending remain plane and perpendicular to the 

neutral axis posterior to bending, i.e. the so-called Euler-Bernoulli hypothesis holds. For 

bridge decks modelled as Euler-Bernoulli beams in an early model developed by 

O’Connor and Chan [19], the bridge was modelled as an assembly of lumped masses 

interconnected by massless elastic beam elements. This model is usually referred to as 

the Beam-Element Model. Green and Cebon [20] gave the solution on the dynamic 

responses in the frequency domain under a quarter-car vehicle model using an iterative 

procedure. The algorithm was validated by extensive experiments on a typical highway 

bridge. The vibration behaviour of an elastic homogeneous isotropic beam with 

different boundary conditions due to a moving harmonic force was studied by Abu-Hilal 

and Mohsen [21]. Foda and Abduljabbar [22] used the Green function approach to 

determine the dynamic response of an Euler-Bernoulli beam subjected to a moving mass. 

Ichikawa et al. [23] investigated the dynamic behaviour of the multi-span continuous 

Euler-Bernoulli beam traversed by a moving mass at a constant velocity, and solution to 

this system is obtained by using both eigenfunction expansion and the direct integration 

method in combination. Michaltsos and Kounadis [24] performed the dynamic analysis 

of a simply-supported beam subjected to a moving mass including the effects of the 

centripetal and the Coriolis forces. Law and Zhu [25] investigated the influence of 

braking on a multi-span non-uniform bridge deck under moving vehicle axle forces. 

Results showed that vehicle braking generated an equivalent impulsive force covering a 

wide range of frequency spectrums. Mahmoud and Abou Zaid [26] developed an 
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iterative modal analysis to determine the effect of transverse cracks on the dynamic 

response of a simply-supported Euler-Bernoulli beam under a moving mass. A large 

number of vibration modes are excited and they are required in the computation for a 

high accuracy in the dynamic response of the structure. Nikkhoo et al. [27] investigated 

the dynamic response of an Euler-Bernoulli beam subjected to a moving mass and used 

a linear classical optimal control algorithm with a time varying gain matrix with 

displacement-velocity feedback to control the response of the beam.  

It is well known that the Euler-Bernoulli beam is more suitable for slender beams and 

lower modes of vibration. This theory is inadequate to characterize higher modes of 

vibration, in particular for short composite beams due to lower shear modulus or shear 

rigidity. By taking into account the effects of shear deformation, Timoshenko proposed 

a further improvement of the beam theory. Timoshenko beams are the second type of 

bridge model which have been widely used. The vibration of a continuous bridge deck 

modelled as a multi-span Timoshenko beam under a vehicle modelled by a mass-spring 

system with two DOFs was studied by Chatterjee et al. [28]. Lee [29] obtained the 

dynamic deflections of a Timoshenko beam under a moving mass by using the 

Lagrangian approach and the assumed mode method. Wang [30] proposed a method for 

modal analysis to investigate the vibration of a multi-span Timoshenko beam under a 

moving force. The ratio of the radius of gyration of the cross-section to the span length 

was defined as a parameter and the effect of this parameter on the first modal frequency 

of the beam was studied [31]. Wang and Chou [32] employed the large deflection 

theory to derive the equation of motion of the Timoshenko beam due to the coupling 

effect of an external force with the weight of the beam. Results showed that the 

fundamental natural frequency of the structure increases with the weight of the beam. 

Esmailzadeh and Ghorashi [33] dealt with the problem of a Timoshenko beam traversed 
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by uniform partially distributed moving masses by using a finite difference based 

algorithm. Both the dynamic deflection and moment of the beam predicated by the 

theory, including the effect of weight of the beam, are less than those predicated either 

by the small deflection theory or by the large deflection theory without including the 

effect of weight of beam. It can be recognized that a beam model cannot truly represent 

the three dimensional behaviour of the bridge, particularly a moving vehicle has a path 

that does not follow the centreline of the bridge. 

The third type of bridge models are plates.  It is obvious that a simple beam model 

cannot precisely represent three dimensional behavior particularly in the case of a 

moving vehicle with paths that are not along the centreline of the bridge. For those 

reasons, the bridges will be modeled here with plates while the vehicles will be 

modelled with two or three dimensional models [34]. Marchesiello et al. [35] presented 

an analytical approach to the vehicle-bridge dynamic interaction problem with a seven 

DOFs vehicle system moving on a multi-span continuous bridge deck modelled as an 

isotropic plate. Both the flexural and torsional mode shapes were included in the study. 

An iterative method was adopted to calculate the responses of the bridge deck and 

vehicle separately, i.e., the equations of motion of the bridge and vehicle system 

respectively are not coupled. The theoretical modes, defined by means of the Rayleigh-

Ritz approach, had been found to be in good agreement with that from finite element 

model. Zhu and Law [36] investigated the dynamic behaviour of orthotropic rectangular 

plates under moving loads. Results showed that the impact factor of the orthotropic 

plate increased with the ratio between the flexural and torsional rigidities of the plate, 

and an equivalent beam model of the bridge deck could give an estimate on the impact 

factor along the centreline of the deck with an under-estimation of the dynamic response 

at the edge of the structure. The dynamic behaviour of the bridge deck under single and 
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several vehicles moving in different lanes was analysed using the orthotropic plate 

theory and modal superposition technique. The impact factor was found varying in an 

opposite trend with the dynamic responses in the different loading cases studied. 

b) Dynamic vehicle load model 

In studying bridge vibrations, the simplest model of vehicle is assumed as the moving 

load that can be conceived for a vehicle [37] and [38]. Yang et al. [4] investigated the 

dynamic response of the beam by using the moving load assumption. The moving loads 

can be simplified into a moving force for vibration analysis. From this model, the 

primary bridge dynamic features can be taken due to the vehicle motion. However, the 

ignorance of the interaction between the bridge and moving vehicle is the main 

drawback. Therefore, when the mass of the vehicle is small relative to that of the bridge, 

and only when the vehicle response is not desired, the moving load model is absolutely 

valid and can be used. 

 Compared to the moving load model, the moving mass model is an improvement of the 

moving load model when the effect of the vehicle needs to be taken into account [39]. 

Sadiku and Leipholz [40] compared the solutions for both the moving mass and moving 

force problem and the equivalent moving force problem and concluded that the 

approximate solution for the moving force problem was not always an upper bound 

solution in terms of the deflection. Whereas, the limitation of this model is that the 

bouncing action of the moving vehicle relative to the bridge cannot be considered. Such 

an effect is expected to be significant in the presence of pavement roughness or for 

vehicles moving at rather high speeds. 
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The sprung mass model, that a spring can be attached to the moving mass, is developed 

to investigate the suspension action of the moving vehicle. This is the simplest model 

that can be used to study the dynamic interaction between the moving vehicle and the 

supporting bridge. The vehicle is modelled as a single degree-of-freedom (DOF) or two 

DOFs sprung-mass system which is very useful for modelling multiple vehicles. They 

are modelled as a set of independent discrete units moving with the same velocity [41]. 

This eliminates the inertia effects due to roll, pitch and yaw motions of the vehicle. The 

masses of the vehicles are lumped on the suspension systems which are modelled as 

linear springs and dashpots. All movements of the suspensions, except the vertical 

motions, are constrained. Pesterev et al. [42] studied the dynamic response of a one-

dimensional distributed parameter system carrying multiple moving oscillators.  

It is true in the past two decades that researchers continue to develop vehicle models of 

various complexities to account for the dynamic properties of the vehicle, for instance, 

Yang and Wu [4] researched the dynamic interaction response by using a versatile 

element model.  Li et al. [43] considered the influence of the surface profile on the 

dynamic amplification of a simply supported bridge when it subjects to a quarter-car 

vehicle model. 

The half-car model is usually represented by a planar, two-axle or three-axle and sprung 

mass system with frictional device. This model was used to study the effects of vehicle 

braking on the bridge [44]. The effect of the bridge transverse flexibility is considered 

firstly by including an additional degree-of-freedom in the simple beam representation. 

The response studies are extended into the braking of vehicle on the bridge approach as 

well as on the span. The effect of the bridge transverse flexibility on the bridge response 

is studied by obtaining the response for symmetric as well as eccentric vehicular loading 
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on the bridge. Bridge idealization as an orthotropic plate was used to simulate the 

transverse flexibility of the bridge deck. The three-axle half-truck model was also used 

to identify the effect of various parameters on the dynamic load [45]. 

In most works the bridge was modelled as a line beam (or one-dimensional beam). As a 

result, the vehicle model was usually limited to a single DOF system or two DOFs 

system. All the beam-model-based methodologies would become impractical if the 

entire bridge system is to be modelled for applications. Moreover, the over-simplified 

vehicle models may not be able to represent well the real vehicles travelling on bridges. 

Therefore, more sophisticated car models have been developed to analyse the vehicle-

bridge interaction system. Deng and Cai [46] presented a method for identifying the 

parameters of vehicles moving on bridges, In their paper, a single-degree-of-freedom 

model and a full-scale vehicle model are used. 

Tan et al. [47] developed three-dimensional (3D) vehicle model having seven DOFs and 

analysed the bridge-vehicle interaction problem. The influence of various parameters on 

the behaviour of the coupled system is studied in three numerical examples. Henchi et al. 

[31] presented a 3D vehicle model with seven DOFs for the solution of the dynamic 

interaction problem between the bridge and vehicles. Huang et al. [48] developed a 

procedure for obtaining the dynamic response of thin-walled curve box girder bridges 

due to truck loading. The truck simulated as a nonlinear vehicle model with 11 DOFs. 

Xia et al. [49] proposed a 15-DOF vehicle model and analysed the passage of the high 

speed train on a concrete box-girder bridge. Zhang et al. [50] developed the space model 

for dynamic analysis of bridge-train interaction and the train can have one carriage or 

any amount of carriages. Liu et al. [51] studied the impact behaviour of a multi-girder 

concrete bridge under single and multiple moving vehicles and presented a 3D nonlinear 
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vehicle model with 11 DOFs. Zhu and Law [36] investigated the dynamic loading on a 

multi-lane continuous bridge due to vehicles moving on top of the bridge deck. The 

analytical vehicle is simulated as a two-axle 3D vehicle model with seven DOFs. Song 

et al. [52] proposed a high-speed train model with 38 DOFs for the 3D finite element 

analysis of high-speed train-bridge interactions. Kim et al. [53] proposed a three-

dimensional means of analysis for the bridge-vehicle interaction to investigate the 

dynamic responses of a steel girder bridge and vehicles. The governing equations of 

motion for a three-dimensional bridge-vehicle interaction system taking the roadway 

surface into account are derived using the Lagrange equation of motion while the 

coupled bridge-vehicle interaction system is solved using Newmark-β method.  

1.2.3 Dynamic analysis of vehicle–bridge interaction 

system 

For dynamic analysis of vehicle-bridge interaction system, various methods have been 

developed to predict the dynamic response of bridges. In basic and simple cases, where 

the moving load or moving mass models are considered together with basic beam 

models, closed-form solutions are available. For more complex vehicle-bridge 

interaction models, the modal superposition method has been extensively used. The 

modal superposition methods are typically used to decompose the equation of motion of 

a bridge–vehicle system in which the response of structure is represented in terms of a 

set of modal shapes with different amplitudes. The equations of motion of the dynamic 

system, which are partial differential equations, are transformed into a set of ordinary 

differential equations which can be easily solved by numerical methods. 
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Yang and Lin [3] investigated the dynamic interaction between a moving vehicle and 

the supporting bridge using the modal superposition method with closed-form solution. 

Zheng et al. [54] studied a multi-span non-uniform beam subjected to a moving load by 

using model superposition methods. The modal superposition methods have been used 

by other researchers [55-57]. The modal superposition method can represent the 

equation of motion in modal coordinate space and therefore can further reduce the size 

of the problem. 

In addition, some direct integration methods have been developed to investigate the 

dynamic response of vehicle-bridge interaction system such as Newmark- β  method 

[58-60], Runge-Kutta method [61] and others. Moreover, the Fourier transformation 

method has also been used [62]. In the vehicle–bridge interaction analysis based on the 

time history, most of the methods are iterative incremental analyses where a 

convergence criterion is verified in each time increment. 

 In the modal superposition technique, mode shapes are required to decompose the 

system equation and they may be difficult to obtain for complex structures. As 

analytical methods are often limited to simple moving load problems, many researchers 

have resorted to various numerical methods, such as the finite element method. The 

finite element method is capable of handling more complex vehicle–bridge models with 

complex boundary conditions in the dynamic analysis. Research work conducted on 

simple finite element model of the bridge–vehicle system has already been summarized 

in the monograph by Fryba [63].  

Researchers have often used numerical methods such as FEM to analyse the vibration of 

slab bridges under moving vehicles [64, 65]. In these studies, the continuous plate was 

14 
 

http://www.sciencedirect.com.wwwproxy0.library.unsw.edu.au/science/article/pii/S0266892010000378?np=y%23b3


first modeled as an assemblage of suitable plate elements and then direct integration 

methods were employed to find the dynamic response. Yang and Yau [66] also analysed 

the dynamic responses of the vehicle (train)-bridge system using finite element method 

and Newmark finite difference formula. Henchi et al. [67] proposed an algorithm for 

dynamic analysis of bridges under moving vehicles, using a coupled modal and physical 

components approach. In their study, a bridge was discretized by two- or three-

dimensional finite elements. The vehicular axle loads acting on the bridge deck were 

represented as nodal forces using shape functions. Numerical simulation showed that 

the proposed coupled method was much more efficient than the uncoupled iterative 

method. It also emphasized that there is no limitation concerning the complexity 

(number of degrees-of-freedom) of the bridge structure in this method if the stability 

criterion was satisfied. Law and Zhu [68] investigated the dynamic response of long-

span box-bridges subject to moving vehicles by using numerical simulations and the 

results also are verified by experiments. Ju and Lin [69] analysed the dynamic response 

of the vehicle-bridge interaction system with a finite element model while the effect of 

braking and acceleration of vehicle were considered. Numerical examples indicated that 

the bridge longitudinal response was more sensitive than the bridge vertical response 

when the vehicle braking or acceleration was active, especially for higher piers. 

There are other methods based on a finite element model of the structure, especially for 

the interaction problems. Yang and Wu [4] firstly introduced a vehicle-bridge 

interaction element to solve the vehicle-bridge interaction problem. This element is 

versatile to represent vehicles of various complexities, ranging from the moving load, 

moving mass, sprung mass to the suspended rigid bar. Wu [70] examined the dynamic 

behaviour of inclined beams subjected to moving masses by using finite element 

method and by considering the effects of the centripetal and Coriolis forces. Pan and Li 
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[71] solved the transient response of a vehicle–structure interaction system in time 

domain. A car of the moving train was modelled as a three DOFs mass-spring-damper 

system. The rail was modelled as an infinite Euler-Bernoulli beam so that the element 

would never reach the end of the beam. Contrasting with the finite element method, the 

moving vehicle always acts at the same point in the numerical model, thereby 

eliminating the need for keeping track of the contact point with respect to individual 

elements. Mohebpour et al. [72] developed a beam finite element based on the first-

order shear deformation theory to study the dynamic response of laminated composite 

beams subjected to moving oscillators.  

1.2.4  Vehicle-Bridge interaction dynamics with 

uncertainties 

In practice, uncertainty in the vehicle-bridge interaction problem is usually substantial 

and cannot be neglected. When performing deterministic dynamic analysis of the 

bridge-vehicle interaction system, different samples of response data are obtained in 

different computations for a full description of the response statistics of the bridge-

vehicle system. Besides, the bridge structure often exhibits with inherent uncertainty. 

For example, the values of system parameters in the bridge model such as the Young's 

modulus, mass density, etc. are often varying at different locations. Moreover, concrete 

bridges in use often contain local damages. Uncertainties also exist in the modelling of 

the prestressing effect and in the constraints of bridge structures. 

Generally speaking, vehicles moving on a bridge have nondeterministic characteristics, 

because the parameters of different types of vehicles are different. Parameters of a 

bridge, i.e. mass, Young's modulus, and moment of inertial and others, usually have 
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uncertainty resulting from construction and manufacturing tolerances or caused by 

corrosion of steel and deterioration of concrete during its lifetime. The contact forces 

between the bridge and the vehicle are random due to the road surface roughness. The 

road pavement roughness also has significantly random characteristics in vehicle-bridge 

interaction system.  

Road surface roughness is usually the key point source of dynamic excitation and 

affects the dynamic behaviour of a vehicle-bridge interaction system. This is also a 

critical point for vehicle–bridge dynamic analysis. It is generally accepted that road 

profiles can be represented with a zero-mean normal stationary ergodic random process 

described by their power spectral density (PSD) [73]. Chatterjee et al. [28] modelled the 

pavement surface irregularity as a stationary random process characterised by a power 

spectral density function and it was generated from Monte-Carlo simulations in their 

study of vehicle–bridge interaction. 

Over the years different bridge-vehicle models have been proposed to study the 

dynamic interaction between bridges and vehicles, and a number of analysis methods 

have been proposed [74-76]. Among all the methods of identifying dynamic vehicle 

loads, existing research on the bridge–vehicle interaction problem can mainly be 

grouped into two categories. Although deterministic analyses of vehicle-bridge 

interaction problems have been extensively implemented, non-deterministic vehicle-

bridge coupled problems need to be studied deeply.  

a) Probabilistic Method 

According to the conventional structural analysis procedures, external excitations and 

structural parameters should be modelled as random variables or processed with a 
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probability distribution representing the distribution of the measured values. This 

modelling results in random response of structural systems in question. When the 

system uncertainties parameters are expressed as random variables with probability 

distributions, probabilistic methods are widely employed to analyse the uncertainty 

problems and can be developed by three main ways: 

Firstly, Monte-Carlo simulation (MCS) method is one of the most popular methods used 

for the simulation of engineering models in past studies due to its effectiveness. Though 

this method requires a large amount of computation, it becomes more popular especially 

in structural dynamic analysis as it can be computed by some widespread and 

inexpensive computational systems [77]. Moreover, Lu et al. [78] presented that MCS is 

usually a reference method to check the correctness of the new simulation method as it 

can provide a certain range of the result. In vehicle-bridge interaction system, MCS may 

be adopted to obtain a group of structural uncertain parameters. For example, Soyoz et 

al. [79] used the MCS to generate random value of the bridge surface roughness based 

on mean and standard deviation. Currently the stochastic analysis of a structural system 

with uncertain system parameters is usually performed with the Monte-Carlo simulation 

method which is very versatile but comparatively time-consuming [80]. This technique 

often serves to validate other approximate analytical and numerical methods. 

Secondly, perturbation based methods are the other alternative approaches widely used 

for evaluating the stochastic characteristics [81]. The principle of the perturbation 

method is to replace the equations which describe the random part of a dynamic 

system with an infinite series of deterministic equations. In order to evaluate this 

infinite series, it is often reduced into a Taylor series with only one or two terms 

[82]. A random parameter of the stochastic system is expressed as a sum of a 
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deterministic component and a random component. The random component usually 

consists of one or two terms, depending on the order of the perturbation, which 

represents the randomness in the system. This method has the advantage of 

making use of existing deterministic modelling techniques such as finite element 

analysis. It is however restricted by the fact that the uncertainties must be small in 

order for the assumption in reducing the infinite series to that of a finite one to be 

accurate. An overview of the method applied to static and dynamic systems and 

specific examples have been presented by Benaroya and Rehak [83]. These include 

applications to a quadratic isoparametric triangular element and an axially loaded rod. 

Thirdly, stochastic finite element method is another traditional probabilistic approach.  

This method usually is identified as the traditional finite element method coupled with 

the perturbation technique. Fryba et al. [84] evaluated the statistics of the dynamic 

response of a beam under a single moving force using the stochastic finite element 

analysis by means of the first order perturbation in which the stiffness and damping 

ware modelled as Gaussian random variables. Wang et al. [85] investigated the dynamic 

loading on girder bridges with different number of girders and span lengths due to 

several vehicles moving across rough bridge decks. The maximum impact factors from 

different bridge girders are obtained for different numbers of loading trucks, road 

surface roughness, transverse loading positions and the vehicle speeds. Law and Zhu 

[86] also investigated the random dynamic behaviour of bridges subject to moving 

vehicles with numerical simulation and experimental verification. The stochastic finite 

element method [89, 90] is powerful in solving the random eigenvalue problem, static 

analysis problem and structural stability problem, but the method is haunted by the 

notorious secular term in structural random dynamical response analysis. 
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b) Non-Probabilistic Methods 

Elishakoff [91] revealed that unjustified assumptions in constructing a probabilistic 

model for input quantities may be dangerous, and even small Differences between the 

assumed distribution data and the real ones may yield misleading predictions in the 

probabilistic reliability analysis. Therefore, non-probabilistic uncertainty models have 

been considered as beneficial supplements to the traditional probabilistic models [92,93], 

in particular, when sufficient samples are not available and thus the probabilistic 

distribution data of the inputs cannot be readily extracted from the results of physical 

tests or measurements. Recently, a number of non-probabilistic approaches for non-

deterministic analysis are emerging. Interval and fuzzy approaches are becoming 

increasingly popular for the analysis of numerical models that incorporate uncertainty in 

their description. However, based on the literature review, those non-probabilistic 

methods for non-deterministic analysis have not been applied to vehicle-bridge 

interaction systems. Non-probabilistic methods need be extended to analyse the 

dynamic response of vehicle-bridge interaction system, because of inherent 

uncertainties in vehicle-bridge interaction system which have been discussed previously. 

Interval analysis was first developed by Moore [94] in 1960’s. Moore [95] and Alefeld 

and Herzberger [96] discussed the application of interval properties to various systems. 

It is useful to describe a property in terms of its upper and lower bounds in engineering 

analysis and design, especially in the early stage. In the interval approach, uncertainties 

are considered to be contained within a predefined range, where this range is denoted by 

upper and lower limits. For each of structural system parameters, the lower and upper 

bounds need to be provided. The interval method only predicts the response within an 
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interval and no information is given regarding the likely distribution of the response 

within that interval. 

Gao [97] used interval method to investigate the uncertain response of truss structures 

with varying geometric and material properties. Chen et al. [98] applied interval 

approach with matrix perturbation technique to investigate the eigenvalues of frame-

type structures with uncertain-but-bounded uncertainties. Qiu and Wang [99] also used 

interval methods based on perturbation theory to analyse structures with uncertain 

properties. To date, interval finite element analysis, integrating interval concepts and 

numerical methods for the description of non-deterministic properties in structures and 

mechanics, has been studied on academic level only. It is should be noted that the 

interval finite element method is incapable of solving large scale engineering problems 

due to the dependency issue. 

The fuzzy approach extends this methodology by introducing a level of membership 

that represents the range of possible input values [100]. This concept provides the 

analyst with a tool to express a degree of possibility for a certain value. Current research 

activities on this subject mainly concentrate on the actual solution and implementation 

of interval analysis. The Fuzzy FEA is basically an extension of the interval finite 

element analysis, and has been studied in a number of specific research domains: static 

structural analysis [101], dynamic analysis [102, 103]. Recently, Rao et al. [104] used a 

procedure similar to Fuzzy FEM to derive a fuzzy boundary element method. The 

numerical procedures developed for the non-probabilistic approaches are all strongly 

influenced by the specific properties of the analysed physical phenomenon, and only 

academic examples with very limited size and complexity are considered. Also, the non-
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probabilistic concepts are almost exclusively applied for the representation of random 

variables.  

The growing interest for non-probabilistic methods for non-deterministic numerical 

analysis mainly originates from criticism on the credibility of probabilistic analysis 

when it is based on limited information. Especially when extremely high reliabilities are 

analysed based on numerical models, design engineers often remain very sceptic 

regarding the trustworthiness of the numerical predictions. The recent development of 

the non-probabilistic approaches stems from the argumentation that this lack of 

credibility is always present in probabilistic analysis results. It is argued that the non-

probabilistic concepts could be more appropriate to model certain types of non-

deterministic information, resulting in a better representation of the simulated non-

deterministic physical behaviour. Especially in early design stages when objective 

probabilistic information often is not available, non-probabilistic concepts are believed 

to be of great value.  

1.3 Objectives 

Non-deterministic analysis of vehicle-bridge interaction system with uncertainty and 

predictive techniques for the dynamic response of bridge are growing research fields. In 

the thesis, a vehicle-bridge system model is considered as nondeterministic due to the 

uncertainties existing in the vehicle and bridge parameters. The displacement responses 

of bridge are assessed quantitatively using the nondeterministic model and methods. 

The specific objectives of this thesis are: 

1) Developing a theoretical base for the quantitative analysis of dynamic response 
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of a vehicle-bridge interaction system with uncertain parameters. 

2) Developing a rational non-deterministic framework for dynamic analysis of 

vehicle-bridge interaction problem. 

3) Deriving probabilistic, non-probabilistic and hybrid uncertain methods to predict 

the dynamic responses of the bridge considering different types of uncertainties 

in all the system parameters. 

4) Investigating the effects of system uncertainties on bridge responses. 

1.4 Contributions 

The proposed quantitative analysis of dynamic response of vehicle-bridge system with 

uncertainties, to our knowledge, is the worldwide first of its kind and the key theoretical 

novelties include: 

1) Developing rational non-deterministic methodologies for dynamic analysis of a 

vehicle-bridge interaction system considering the different types of uncertainties 

in all the system parameters. Considering the vehicle-bridge interaction system 

model as non-deterministic due to the uncertainties existing in the vehicles and 

bridge parameters. 

2) Developing a probabilistic approach by extending the random variable 

functional moment method (RVFMM) to analyse the dynamic response of 

bridge when the system parameters are considered as random variables. 

3) Integrating the interval arithmetic, Taylor expansions and perturbation theory to 

study the dynamic response of bridge when the system parameters are 

considered as interval variables. 
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4) Developing a heuristic optimization method, namely improved particle swarm 

optimization algorithm with low-discrepancy sequence initialized particles and 

high-order nonlinear time-varying inertia weight and constant acceleration 

coefficients (LHNPSO), to capture the extreme values of bridge displacement 

regardless of the interval width of system parameters.  

5) Extending the hybrid probabilistic and non-probabilistic methods, random 

interval moment method (RIMM) and random interval perturbation method 

(RIPM), to predict the interval random dynamic response of bridge when the 

system parameters are considered as a mixture random and interval variables. 

6) Investigating the effects on the bridge response produced by the individual 

system parameters and the road surface roughness.  

7) Demonstrating the effectiveness and accuracy of the presented approaches by 

using Monte-Carlo simulation method and a hybrid simulation method 

combining direct simulation for interval variables and Monte-Carlo simulations 

for random variables. 

1.5 Thesis Outline 

The main objective of this dissertation is to develop methodologies for systematically 

studying the vibration response of bridge-vehicle coupled systems with uncertainties. A 

brief summary of the content in each chapter of this thesis is provided in the following.  

Chapter 2 presents the random variable functional moment method (RVFMM) used in 

this thesis to investigate the dynamic response of vehicle-bridge interaction system with 

uncertainty. The vehicle is modelled as moving spring-mass and quarter-car subsystems, 
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as well as the bridge is modelled as a simply supported beam. Two kinds of surface 

conditions are considered for the bridge deck: smooth and roughness. Monte-Carlo 

simulation method (MCSM) is adopted as the reference method to verify the results 

obtained by the RVFMM. 

Chapter 3 studies the analytical and computational models used to obtain the dynamic 

responses of vehicle-bridge interaction system with uncertainties. A non-probabilistic 

approach called interval method is adopted to address the uncertain problem. The 

vehicle is represented by a half-car model and the bridge is assumed as a beam. All 

system parameters are considered as interval variables and the effect of individual 

system parameter is investigated. In addition, a stochastic optimization method, that is 

the particle swarm optimization (PSO) method, has been improved to obtain the sharp 

bounds of bridge displacement response. MCSM is also referred to verify the results 

obtained from interval method and PSO method. 

Chapter 4 presents the analytical and computational results for the vehicle-bridge 

interaction system and with application of a new hybrid method. In this chapter, the 

vehicle-bridge interaction model is same as that presented in chapter 3.  However, the 

system parameters are assumed as a mixture type of uncertainties. A non-probabilistic 

method called random interval moment method is adopted to analyse the dynamic 

response of the bridge.  

In Chapter 5, another method, namely random interval perturbation method (RIPM), is 

used. The vehicle-bridge interaction system is modelled by the finite element model. 

Simulation results are also presented to validate the computational results produced by 

RIPM.  
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Chapter 6 provides a summary of and a discussion on the work presented in this thesis. 

The scope for further work is also anticipated. 
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Chapter 2 Probabilistic Dynamic 

Analysis of Vehicle-

Bridge Interaction 

System 

2.1 Introduction 

Dynamic response analysis of vehicle-bridge system is one of the most crucial steps in 

bridge design as moving vehicles induced vibrations are significant causes of bridge 

fatigues. Over the past few decades, the interactive problem between vehicles and 

bridge structures has attracted much more attention due to the rapid increase in the 

proportion of vehicles and high-speed vehicles in highway and railway traffic [4, 105-

107]. Fryba [63] presented the analytical solutions for simply supported and continuous 

beams with uniform cross-section under moving loads. Green and Cebon [20] gave the 

solution on the dynamic response of an Euler-Bernoulli beam under a ''quarter-car'' 

vehicle model in the frequency domain using an iterative procedure with experimental 

verification. Yang and Lin [3] investigated the dynamic interaction between a moving 

vehicle and the supporting bridge by means of the modal superposition technique with 

closed-form solution. The beam bridge model was extended by Law and Zhu [25] to an 

orthotropic rectangular plate simply supported on a pair of parallel edges under a stream 
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of moving loads based on the Lagrange equation and modal superposition. Yang and 

Chang [108,109] studied the extraction of the bridge frequencies from the dynamic 

response of a passing vehicle using the beam and moving spring-mass model. 

The traditional deterministic analysis provides only an ''approximation'' of the results 

due to uncertainties in the structural properties as well as in the loading processes. 

Generally speaking, vehicles moving on a bridge have nondeterministic characteristics 

because the parameters of different types of vehicles are different. Parameters of a 

bridge are also having uncertainties resulting from construction and manufacturing 

tolerances or caused by corrosion of steel and deterioration of concrete during its 

lifetime. The road pavement roughness also has significantly random characteristics in 

vehicle-bridge interaction system. Some studies have been carried out on the dynamic 

response of a bridge deck with the road surface roughness. Gupta [110] used a sine 

function to simulate the road surface roughness. In order to take into account its random 

characteristics, a stationary Gaussian random process with certain power spectral 

density function is used to describe the road roughness profile [15, 25, 111, 112]. 

Recently, some pioneering research on stochastic dynamic analysis of vehicle-bridge 

interaction systems have been conducted considering uncertainties in bridge parameters 

or in moving loadings [15, 25]. The uncertainties of the moving loadings are caused by 

the road surface roughness and/or vehicle speed. However, for practical engineering 

applications and the quantitative dynamic analysis response of bridges, the uncertainty 

of both vehicle and bridge parameters should be included in the analytical model at the 

same time, which has rarely been investigated in the vehicle-bridge interaction problem. 

In addition, it is very important to investigate the effect of an individual system 

parameter on the bridge response. 
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The most popular approaches to deal with the problems of uncertainty are the 

probabilistic methods. In the probabilistic approaches, the system parameters are 

modelled as random variables. Monte-Carlo simulation method [7] is the simplest 

method for uncertain analysis from a theoretical point of view and is applicable to many 

different types of systems. This method may suffer from high computational costs if a 

structural system has a large number of degrees of freedom and/or uncertain parameters. 

Monte Carlo simulation method is still considered as the most robust probabilistic 

method and is usually used as a reference method to test the accuracy of other 

probability approaches [113]. Perturbation method (PM) [8] is also a very popular 

method to handle the uncertain problems. Perturbation based methods involve first- and 

second-order Taylor expansions normally. Mean and variance of the response can be 

found in terms of mean and variance of the basic random variables, thus, distribution 

information is not required. To increase the accuracy of the statistical moments of the 

system response, higher order items of the Taylor expansions may be adopted, but more 

computational efforts are required. For stochastic finite element method [9,114] and 

spectral stochastic finite element method (SSFEM) [115, 116], the main advantage of 

this kind approaches is that the complete probability distributions of random variables 

can be provided. The limitation is that the computational burden increases sharply when 

the number of random variables increases. This is why the application of SSFEM has 

been limited to the stochastic systems with a small number of degrees of freedom in the 

past time. Furthermore, the application range of SSFEM is strongly depended on the 

approaches adopted to calculate the coefficients of expansion. To reduce the 

computational effort and simultaneously investigate the effect of the individual system 

parameters on the structural responses, the random variable functional moment Method 
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(RVFMM) has also been developed to analyse structures with uncertain parameters [10-

12]. 

In this chapter, the random variable functional moment method is employed to study the 

dynamic response of vehicle-bridge interaction system by considering the effect of the 

road surface roughness and the uncertainties in bridge and vehicle parameters. A 

moving mass and a two-degree-of-freedom vehicle model are used to represent the 

moving vehicle and the bridge is treated as a simply supported Euler-Bernoulli beam. 

The expressions for the mean value and standard deviation of bridge response are 

developed. The effects produced by the road surface roughness, bridge and vehicle 

parameters on bridge response are also investigated. 

The work presented in this chapter is mainly dependent on the research reported by Liu 

et al. in Computer Modeling in Engineering & Sciences (CMES), 72 (2011) 79-102. 

2.2 Road Surface Roughness 

In this study, the road surface roughness is regarded as a periodic modulated random 

process. In ISO-8608 [117] specifications, the road roughness is related to the vehicle 

velocity by a formula between the velocity power spectral density (PSD) and the 

displacement PSD. The common formulation of displacement PSD of the roughness is 

[118] 

( ) ( ) as
r s r

so

wS w A
w

−= ⋅                                                      (2.1) 

where ( )r sS w is the displacement PSD of the road surface roughness, rA is the 

roughness coefficient in 2m  /cycle/m, sow  is the reference spatial frequency, a is an 
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exponent of the PSD and  sw  is the spatial frequency in cycle/m, respectively. In the 

time domain, the road surface roughness function ( )r x  is given by 

2 1/2

1

(2 )( ) ([4 ( ) ] cos( ))
N

r sk k
k c so

kr x A w x
L w
π ϕ−

=

= ⋅ −∑      (2.2) 

where 

, 1,2, , 2 /sk s s cw k w k N w Lπ= ⋅∆ = ∆ =                                                                      

1
2sow
π

=  

cL is twice of the length of the bridge, kϕ  is generated between 0 and 2π  by using the 

Monte Carlo simulations. 

2.3 Bridge and Vehicle Models 

2.3.1  Moving mass on bridge 

The bridge is modelled as a simply supported beam and the vehicle is represented as a 

concentrated mass vm supported by a spring of stiffness vk with the effect of damping of 

the suspension system neglected as shown in Figure 2.1. The damping property or 

pavement irregularity of the bridge is not considered in this study. The beam is assumed 

to be of the Euler-Bernoulli type with constant cross sections. ρ , E , I , L  and C are 

the mass per unit length, elastic modulus, moment of inertia, length and damping of the 

beam, respectively. 

The equation of motion governing the transverse or vertical vibration of the bridge and 

moving vehicle can be written as 
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( ) ( ( ) )v v v x vt
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=
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Figure 2.1 Vehicle moving on a simply supported bridge. 

where ( , )W x t is the vertical displacement of the bridge, ( )vx t is the vertical 

displacement of the moving vehicle, ( )f t is the contact force, ( )x vtδ − is the Dirac 

delta function evaluated at the contact point at position x vt= , and v is the speed of the 

moving vehicle. 

Using the modal superposition method, the solution to Eq. (2.3) can be expressed in 

terms of the mode shapes ( )j xϕ and associated modal coordinates ( )bjx t  

1

( , ) ( ) ( )j bj
j

W x t x x tϕ
∞

=

= ∑                                                        (2.5) 

For simply supported beam, the mode shapes of the bridge are given by 

( ) sinj
j xx
L
πϕ =                                                           (2.6) 

Substituting Eq. (2.6) into Eq. (2.5) yields 

v
 

vm
 

vk  

 

vx
  

bx
 

ρ , EI  

L   
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( , ) sin ( )bj
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L
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=

= ∑                                                 (2.7) 

Substituting Eq. (2.7) into Eq. (2.3), multiplying both sides of the equation by ( )T
j xϕ , 

and integrating with respect to x over the length L  of the beam, obtains 
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where 
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Eq.(2.8) can also be rewritten as 
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In this chapter, the Wilson’s damping hypothesis is adopted, that is 

2 bj bjC ρζ ω=                                                           (2.11) 

where bjζ  is the damping ratio of the jth vibration mode, and bjω  is the corresponding 

natural frequency of the bridge 

2 2

2bj
j EI
L
πω

ρ
=                                                           (2.12) 
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Using the orthogonality conditions for the mode shapes, Eq.(2.8) becomes 
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The frequency of vibration of the vehicle is 

v
v

v

k
m

ω =                                                                    (2.14) 

Substituting Eq.(2.14) into Eq.(2.13) yields 

( )bjx t + 2 ( )bj bj bjx tζ ω  + 2 ( )bj bjx tω   

= 2 sinvm g j vt
L L

π
ρ

− +
22 ( )sinv v

v
m j vtx t
L L

ω π
ρ

-
2

1

2 sin ( ) sinv v
bj

j

m j x j vtx t
L L L

ω π π
ρ

∞

=

 
 
 
∑         (2.15) 

If we assume that the vehicle mass vm  is much less than the bridge mass Lρ , Eq.(2.15) 

can be approximated as 

( )bjx t + 2 ( )bj bj bjx tζ ω  + 2 ( )bj bjx tω = 2 sinvm g j vt
L L

π
ρ

−                                   (2.16) 

Assuming zero initial conditions, the solution to Eq.(2.16) is 

( )

0

2( ) sin ( )sinbj bj
t tv

bj dbj
dbj

m g j vtx t e t d
L L

ζ ω τ πω τ τ
ρ ω

− −= − −∫                             (2.17) 

where 

21dbj bj bjω ζ ω= −                                                              (2.18) 
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Substituting Eqs.(2.12) and (2.18) into Eq.(2.17) yields 

2 2

2
2 2( )

2
2 2 20

2
2

2( ) sin 1 ( ) sin
1

bj
j EI tt Lv

bj bj

bj

m g j EI j vtx t e t d
j L LL EI
L

πζ τ
ρ π πζ τ τ

π ρζ ρ

− −  
= − −  

 −
∫

                  (2.19) 

Then, the vertical displacement of the bridge can be expressed as 

1

( , ) sin
j

j xW x t
L
π∞

=

= −∑  

2 2

2
2 2( )

2
2 2 20

2
2

2 sin 1 ( ) sin
1

bj
j EI tt Lv

bj

bj

m g j EI j vte t d
j L LL EI
L

πζ τ
ρ π πζ τ τ

π ρζ ρ

− −  
⋅ − −  

 −
∫         

(2.20) 

2.3.2  Quarter-car moving on bridge 

In the vehicle-bridge interaction system demonstrated in Figure 2.2, the bridge is 

modelled as an Euler-Bernoulli beam; the vehicle is represented by a quarter-car model. 

Over the years various types of bridge models have been used in studies on bride-

vehicle dynamics. Continuum models of simply supported Euler-Bernoulli beams are 

the most popular ones, mainly due to its simplicity and ability to obtain closed-form 

solution. The two-degree-of-freedom quarter-car model is generally reputed to be 

sufficiently accurate for capturing the essential features of dynamic performance of a 

moving vehicle. Here, sm and um  denote the sprung mass and unsprung mass 

respectively; a linear spring of stiffness sk and a linear damper with damping rate sc  is 
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used to represent the unsprung system, the tire is also modelled by a linear spring of 

stiffness tk , and a linear damper with damping rate tc . 

 

 

 

 

 

 

 

Figure 2.2 Quarter-car moving on a simply supported bridge. 

The equation of motion for the bridge can be expressed same as Eq. (2.1). For vehicle 

moving on a smooth road surface, ( , )f x t  can be expressed as 

.
( , ) [ ] [ ] ( )t u t u u sf x t k x w c x w m m g= − + − − +                                                          (2.21) 

where , ,t t uk c m  and sm are the tire stiffness, tire damping, sprung mass and unsprung 

mass of the vehicle, respectively.  

Considering the roughness of the road surface, ( , )f x t  can be expressed as 

.
( , ) [ ( )] [ ( )] ( )t u t u u sf x t k x w r x c x w r x m m g= − − + − − − +                                         (2.22) 

where ( )r x  is the road surface roughness of the bridge. 

Using the modal superposition method, the bridge response can be calculated with the 

following equation 

4

40 0 0
1 1 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L L L jT T T
j j bj j bj j bj

j j j

x
x x x t dx C x x x t dx EI x x t dx

x
φ

ρφ φ φ φ φ
∞ ∞ ∞

= = =

∂
+ + ⋅

∂∑ ∑ ∑∫ ∫ ∫   

L  

w 

, ,E Iρ
 

cs ks 

kt ct 

ms 

v 

mu 
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0
( )[ [ | ] [ | ( ) ] ( )

L T
j t u x vt t u x vt s ux k x W c x W m m g x vt dxρφ δ= == − + − − + −∫                        (2.23) 

and  

4( ) ( ) ( ) ( ) ( ) sin
2 2 2bj bj bj s u
L L j L j vtx t Cx t EI x t m m g

L L
π πρ ⋅ + ⋅ + ⋅ ⋅ ⋅ = − + ⋅   

( | ) sin ( | ) sint u x vt t u x vt
j vt j vtk x W c x W
L L
π π

= =+ − ⋅ + − ⋅                                                     (2.24) 

Dividing the two sides of Eq.(2.24) by 
2
Lρ ⋅ , we have 

4 2( )( ) ( ) ( ) ( ) sins u
bj bj bj

C EI j m m g j vtx t x t x t
L L L
π π

ρ ρ ρ
+

+ + ⋅ ⋅ = − ⋅   

                               
2 ( | ) 2 ( | )sin sint u x vt t u x vtk x W j vt c x W j vt

L L L L
π π

ρ ρ
= =− −

+ ⋅ + ⋅


              (2.25) 

Assuming that the vehicle mass is much less than the bridge mass, Eq. (2.25) can be 

approximated as 

2 2( )( ) 2 ( ) ( ) sins u
bj bj bj bj bj bj

m m g j vtx t x t x t
L L

πζ ω ω
ρ
+

+ ⋅ + ⋅ = − ⋅                                       (2.26) 

The solution of Eq.(2.26) can be obtained by using the Convolution Integral (Duhamel 

Integral) 

( )

0

1 2( )sin ( ) ( sin )bj bj
t t s u

bj dbj
bj

m m g j vx e t d
L L

ζ ω τ π τω τ τ
ω ρ

− − +
= − ⋅ − ⋅∫                               

(2.27) 

Eq.(2.27) can be rewritten as 

( )

0

2( ) sin ( ) sinbj bj
t ts u

bj dbj
dbj

m m g j vx e t d
L L

ζ ω τ π τω τ τ
ρ ω

− −+
= − − ⋅∫                                       (2.28) 

Therefore, the bridge response can be calculated by 

( )

0
1

2( )( , ) sin sin ( ) sinbj bj
t ts u

dbj
jdbj

m m g n x j vW x t e t d
L L L

ζ ω τπ π τω τ τ
ρ ω

∞
− −

=

+
= − − ⋅∑ ∫                (2.29) 
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2.3.3 Dynamic response of bridge considering road 

surface roughness 

Accounting for the road surface roughness of the bridge, Eq. (2.23) becomes 
 

4

40 0 0
1 1 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L L L jT T T
j j bj j bj j bj

j j j

x
x x x t dx C x x x t dx EI x x t dx

x
φ

ρφ φ φ φ φ
∞ ∞ ∞

= = =

∂
+ + ⋅

∂∑ ∑ ∑∫ ∫ ∫   

0
( )[ [ | ( )] [ | ( ) ( ) ] ( )

L T
j t u x vt t u x vt s ux k x W r x c x W r x m m g x vt dxρφ δ= == − − + − − − + −∫     (2.30) 

Eq. (2.30) can be rewritten as 

2 2 4 2

0 0 0
( ) sin ( ) sin ( ) ( ) sin

L L L

bj bj bj
j x j x n j xx t dx Cx t dx EI x t dx
L L L L
π π π πρ + +∫ ∫ ∫   

( )
0 0

( ) sin ( ) ( | ) sin ( )
L L

s u t u x vt r xj x j xm m g x vt dx k x W x vt dx
L L
π πδ δ= −= − + − + − −∫ ∫  

( )
0

( | ) sin ( )
L

t u x vt
j xc x W x vr t dx
L

x π δ= −+ − −∫                                                                   (2.31) 

Similarly as Eq.(2.25) is derived from Eq.(2.22), Eq. (2.31) can be further developed as 

2 2( )( ) 2 ( ) ( ) sins u
bj bj bj bj bj bj

m m g j vtx t x t x t
L L

πζ ω ω
ρ
+

+ ⋅ + ⋅ = − ⋅                   

2[ ( ) ( )] sint tk r x C r x j vt
L L

π
ρ
+

− ⋅


                                                                                             (2.32) 

Then, the jth  modal displacement can be obtained as 

( )

0

2 (( ) [ ( ) ( )]) sin ( ) sinbj bj
t t

bj s u t t dbj
dbj

j vx m m g k r x c r x e t d
L L

ζ ω τ π τω τ τ
ρ ω

− −= − + − + − ⋅∫ 

(2.33) 

Therefore, the bridge response can be expressed as 
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0
1

2( , ) sin (( ) [ ( ) ( )])
t

s u t t
jdbj

j xW x t m m g k r x c r x
L L

π
ρ ω

∞

=

= − + − +∑ ∫   

( ) sin ( ) sinbj bj t
dbj

j ve t d
L

ζ ω τ π τω τ τ− −⋅ − ⋅                                                            (2.34) 

 

2.4 Mean Value and Variance of Random 

Bridge Response 

In this study, the vehicle and bridge parameters, such as , , ,s um m Eρ  and I , are 

considered as random variables. The mean value (µ) and standard deviation (σ ) of the 

each random variable are given respectively. The coefficient of variation (Cov) 

/ν σ µ= is also used to describe the dispersal degree of a random variable. In the 

following, the expressions for the mean value and variance of bridge displacement 

response are developed by means of the random variable functional moment method 

(RVFMM). The uncertainty of bridge parameters will lead to the randomness of its 

natural frequencies. Consequently, the combination of uncertainties in bridge dynamic 

characteristics, system parameters and road surface will result in the randomness of 

bridge response. 

2.4.1  Numerical characteristics of bridge response with 

smooth road surface under moving mass 

Vehicle and bridge parameters, vm , ρ , E  and I , are considered as random variables.  

Uncertainty of bridge response introduced by random system parameters can also be 
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described by randomness. The expressions for mean value and standard deviation of 

bridge displacement response can be derived by means of the random variable 

functional moment method [12]  

( )( , ) 2 30
1 1

2
sin sin sinv

tm
W x t

j E I

gj x j vtS S d
L LS ρ

µπ πµ τ
µ µ µ

∞

=

= −∑ ∫                                       (2.35) 

( , )
1

sinW x t
j

j x
L
πσ

∞

=


= −

∑  

( ) 2 2
2 30

1

2{ sin sin }
v

t

m
E I

g j vtS S d
LS ρ

π τ σ
µ µ µ ∫  

+ ( ) 2 2
2 33 0

1

{ sin sin }v
tm

E I

g j vtS S d
LS

ρ

ρ

µ π τ σ
µ µ µ ∫  

+ ( )
2 2

2 2
2 32 30

1

2 1{ ( )sin sin }
2

v
tm E I

bj
E I

g j j vtS t S d
L LS ρ

ρρ

µ µ µπ πζ τ τ σ
µµ µ µ

−∫  

+ ( )
2 2

2 2 2
2 3 2 30

1

2 1{ cos 1 ( )sin }
2

v
tm E I

bj
E I

g j j vtS S t d
L LS ρ

ρρ

µ µ µπ πζ τ τ σ
µµ µ µ

− −∫  

+ ( ) 2 2
2 33 0

1

{ sin sin }v
tm

E

E I

g j vtS S d
LS ρ

µ π τ σ
µ µ µ ∫  

+ ( )
2 2

2 2
2 320

1

2 1{ ( )sin sin }
2

v
tm I

bj E
EE I

g j j vtS t S d
L LS ρρ

µ µπ πζ τ τ σ
µ µµ µ µ

−∫  

+ ( )
2 2

2 2 2
2 3 20

1

2 1{ cos 1 ( )sin }
2

v
tm I

bj E
EE I

g j j vtS S t d
L LS ρρ

µ µπ πζ τ τ σ
µ µµ µ µ

− −∫  

+ ( ) 2 2
2 33 0

1

{ sin sin }v
tm

I

E I

g j vtS S d
LS ρ

µ π τ σ
µ µ µ ∫  
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+ ( )
2 2

2 2
2 320

1

2 1{ ( )sin sin }
2

v
tm E

bj I
IE I

g j j vtS t S d
L LS ρρ

µ µπ πζ τ τ σ
µ µµ µ µ

−∫  

+ ( )

1
22 2

2 2 2
2 3 20

1

2 1{ cos 1 ( )sin }
2

v
tm E

bj I
IE I

g j j vtS S t d
L LS ρρ

µ µπ πζ τ τ σ
µ µµ µ µ

− − 


∫           

(2.36) 

where symbol ( )µ •  and ( )σ • denote the mean value and standard deviation of the 

random variable ( )•  respectively.  The items 1S , 2S and 3S are given by 

2 2
2

1 21 bj
jS L
L
πζ= − ,

2 2

2 ( )

2

E I
bj

j t
LS e ρ

π µ µζ τ
µ

− −

= ,
2 2

2
3 21 ( )E I

bj
jS t
L ρ

π µ µζ τ
µ

= − −          (2.37) 

2.4.2 Numerical characteristics of bridge response with 

smooth road surface under moving quarter-car 

model 

From Eq. (2.29) and by using the RVFMM, the mean value of the bridge displacement 

can be expressed as 

( , ) 2 30
11

2( )
sin sin( ) sins u

tm m
W x t

j L LE I

g j x j vS S d
S ρ

µ µ π π τµ τ
µ µµ µ µ

∞

=

+
= − ⋅∑ ∫                                    (2.38) 

where 

                                                  

3

2 2 2

2

1
12

,
12bj

I b h

E h

L

j
ω

ρ

µ µ µ

π µ µµ
µ µ

=

=
 

The variance of bridge displacement response can be calculated by 
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( , ) ( , ) ( , )2 2 2 2 2 2 2 2 2
( , )

( , )[ ] [ ] [ ] [ ]
s u

x t x t x t
W x t m m L

s u

W W WW x t
m m Lρσ σ σ σ σ

ρ
∂ ∂ ∂∂

= ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂  

            ( , ) ( , )2 2 2 2[ ] [ ]x t x t
E I

W W
E I

σ σ
∂ ∂

+ ⋅ + ⋅
∂ ∂

                                                                       (2.39) 

where 

2 30
11

2(1 )( , ) sin sin( )sinu
tm

js L LE I

gW x t j x j vS S d
m S ρ

µ π π τ τ
µ µµ µ µ

∞

=

+∂ ⋅
= −

∂ ∑ ∫                                  (2.40) 

( )

0
1

2(1 )( , ) sin sin ( )sintbj bjs

dbj

dbj

tm

ju A L L L

gW x t j x j ve t d
m

ζ ω τµ µ
ω

ρ ω

µ π π τµ τ τ
µ µ µ µ µ µ

−
∞

−

=

+∂ ⋅
= − −

∂ ∑ ∫           (2.41) 

( )

0
1

4( )( , ) sin sin ( )sintbj bju s

dbj

dbj

tm m

jA L L L

gW x t j x j ve t d
E

ζ ω τµ µ
ω

ρ ω

µ µ π π τµ τ τ
µ µ µ µ µ µ

−
∞

−

=

+∂ ⋅
= −

∂ ∑ ∫          (2.42) 

2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
I S ρ

µ µ π π τ τ
µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫  

2 2

2 320
1

( )
( )sin( )u s

tm m E
bj

L IE I

g jS t S
S ρρ

µ µ π µζ τ
µ µ µµ µ µ

+
+ ⋅ −∫                                                     (2.43) 

2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
S ρ

µ µ π π τ τ
ρ µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫  

2 2

2 32 30
1

( )
( )sin( )sin sinu s

tm m E I
bj

L L LE I

g j j v j vS t S d d
S ρρ

µ µ π µ µ π τ π τζ τ τ τ
µ µ µ µµ µ µ

+
+ ⋅ −∫               (2.44) 

2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
L S ρ

µ µ π π τ τ
µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫  

2 2

2 32 30
1

( )
( )sin( )sinu s

tm m E I
bj

L LE I

g j j vS t S d
S ρρ

µ µ π µ µ π τζ τ τ
µ µ µµ µ µ

+
+ ⋅ −∫                                 (2.45) 
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2.4.3 Numerical characteristics of bridge response with 

road surface roughness under moving quarter-car 

model 

 Similarly, from Eq. (2.34) and by using the RVFMM, the mean value of the bridge 

displacement considering the road surface roughness can be expressed as 

( , ) ( ) ( )0
11

2 sin (( ) [ ])
s u t t

t

W x t m m k r x c r x
j LE I

j x g
S ρ

πµ µ µ µ µ µ µ
µµ µ µ

∞

=

= − + − +∑ ∫   

2 3sin( ) sin
L

j vS S dπ τ τ
µ

⋅ ⋅                                                                                                (2.46) 

The variance of the bridge displacement can be computed by 

( , ) ( , ) ( , ) ( , )2 2 2 2 2 2 2 2 2 2 2
( , )

( , )[ ] [ ] [ ] [ ] [ ]
s u

x t x t x t x t
W x t m m L I

s u

W W W WW x t
m m L Iρσ σ σ σ σ σ

ρ
∂ ∂ ∂ ∂∂

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

          

  ( , ) ( , ) ( , ) ( , )2 2 2 2 2 2 2 2[ ] [ ] [ ] [ ]
t t

x t x t x t x t
E k c

t t

W W W W
E k c ϕσ σ σ σ

ϕ
∂ ∂ ∂ ∂

+ ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

                              (2.47) 

where 

( ) ( )
2 30

11

2((1 ) [ ])( , ) sin sin( )sinu t t
tm k r x c r x

js L LE I

gW x t j x j vS S d
m S ρ

µ µ µ µ µ π π τ τ
µ µµ µ µ

∞

=

+ − +∂ ⋅
= − ⋅

∂ ∑ ∫

(2.48) 

( ) ( )
2 30

11

2((1 ) [ ])( , ) sin sin( )sins t t
tm k r x c r x

ju L LE I

gW x t j x j vS S d
m S ρ

µ µ µ µ µ π π τ τ
µ µµ µ µ

∞

=

+ − +∂ ⋅
= − ⋅

∂ ∑ ∫  

(2.49) 

( )

0
1

4( )( , ) sin sin ( )sintbj bju s

dbj

dbj

tm m

jA L L L

gW x t j x j ve t d
E

ζ ω τµ µ
ω

ρ ω

µ µ π π τµ τ τ
µ µ µ µ µ µ

−
∞

−

=

+∂ ⋅
= −

∂ ∑ ∫                  

( )

( ) ( )0

2 sin ( ) [ ]tbj bj

dbj t t

dbj

t

k r x c r x
A L

e t dζ ω τµ µ
ω

ρ ω

µ τ µ µ µ µ τ
µ µ µ µ

−−
+ ⋅ − ⋅ +∫                               (2.50) 
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2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
I S ρ

µ µ π π τ τ
µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫
 

2 3 ( ) ( )3 0
1

2 sin( ) [ ]
t t

t

k r x c r x
E I

S S d
S ρ

µ µ µ µ τ
µ µ µ

+ ⋅ ⋅ +∫ 

 

2 2

2 320
1

( )
( )sin( )sinu s

tm m E
bj

L I LE I

g j j vS t S d
S ρρ

µ µ π µ π τζ τ τ
µ µ µ µµ µ µ

+
+ ⋅ −∫

 

2 2

3 ( ) ( )20
1

2 1 ( )sin( ) [ ]
2 t t

t
E

bj k r x c r x
L IE I

j t S d
S ρρ

π µζ τ µ µ µ µ τ
µ µ µµ µ µ

+ ⋅ ⋅ − ⋅ +∫ 

 

2 2

2 320
1

( )
( )cos( )sinu s

tm m E
bj

L I LE I

g j j vS t S d
S ρρ

µ µ π µ π τζ τ τ
µ µ µ µµ µ µ

+
+ ⋅ −∫

 

2 2

3 ( ) ( )20
1

2 1 ( )cos( ) [ ]
2 t t

t
E

bj k r x c r x
L IE I

j t S d
S ρρ

π µζ τ µ µ µ µ τ
µ µ µµ µ µ

+ ⋅ ⋅ − ⋅ +∫                  (2.51) 

2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
S ρ

µ µ π π τ τ
ρ µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫

2 3 ( ) ( )3 0
1

2 sin( ) [ ]
t t

t

k r x c r x
E I

S S d
S ρ

µ µ µ µ τ
µ µ µ

+ ⋅ ⋅ +∫ 

2 2

2 32 30
1

( )
( )sin( )sinu s

tm m E I
bj

L LE I

g j j vS t S d
S ρρ

µ µ π µ µ π τζ τ τ
µ µ µµ µ µ

+
+ ⋅ −∫  

2 2

2 32 30
1

( )
( )cos( )sinu s

tm m E I
bj

L LE I

g j j vS t S d
S ρρ

µ µ π µ µ π τζ τ τ
µ µ µµ µ µ

+
+ ⋅ −∫

2 2

3 ( ) ( )2 30
1

2 1 ( )cos( ) [ ]
2 t t

t
E I

bj k r x c r x
LE I

j t S d
S ρρ

π µ µζ τ µ µ µ µ τ
µ µµ µ µ

+ ⋅ ⋅ − ⋅ +∫               (2.52) 

2 33 0
11

( )( , ) sin sin( )sinu s
tm m

j L LE I

gW x t j x j vS S d
L S ρ

µ µ π π τ τ
µ µµ µ µ

∞

=

+∂ ⋅
=

∂ ∑ ∫  

2 3 ( ) ( )3 0
1

2 sin( ) [ ]
t t

t

k r x c r x
E I

S S d
S ρ

µ µ µ µ τ
µ µ µ

+ ⋅ ⋅ +∫   
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2 2

2 32 30
1

( )
( )sin( )sinu s

tm m E I
bj

L LE I

g j j vS t S d
S ρρ

µ µ π µ µ π τζ τ τ
µ µ µµ µ µ

+
+ ⋅ −∫  

2 2
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2.5 Numerical Simulations 

2.5.1  Example 1: Moving mass on the bridge 

The nominal values of vehicle and bridge parameters are listed in Table 2.1. To 

investigate the influence of vehicle speed on bridge response, two different moving 

speeds, 5 /v m s=  and 10 /v m s= , are taken into account. The corresponding vertical 
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displacement responses of the bridge midpoint are plotted in Figures 2.3 and 2.4, 

respectively. 

Table 2.1 Parameters of the vehicle-bridge interaction system 

Description Notation Value 

Length of the bridge L  40m 

Moment of inertia I 0.16m4 

Young’s modulus E 2.3 × 1010N/m2 

Mass density ρ  5000kg/m3 

Vehicle mass vm  1500kg 

Stiffness vk  550kN/m 

The amplitude of the bridge vertical displacement in Figure 2.4 is larger than that in 

Figure 2.3, which means the amplitude of the bridge response increases along the speed 

of moving vehicle. Meanwhile, the period of periodic displacement response of the 

bridge is longer for lower moving speed of the vehicle. 

It can also be observed from Figures 2.3 and 2.4 that the maximum amplitudes of bridge 

response at its midpoint do not occur at the time when the vehicle pass this position. 

The similar phenomenon can also be found in research literature [4]. 

To investigate the effects of system parameters on the bridge response, the randomness 

of each of parameters is considered separately first and then simultaneously. The 

coefficient of variations (Cov, that is the ratio of the standard deviation to mean value of 

a random variable) of vm , ρ , E  and I is taken as 0.1. The vehicle speed is constant and 

10 /v m s= . The standard deviations (SD) of the vertical displacement response of 
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bridge midpoint are given in Figures 2.5-2.9 to demonstrate the changes of bridge 

responses produced by the uncertainties of system parameters.  

Figure 2.3 Vertical displacement response of bridge midpoint  

( 5 /v m s= ). 
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Figure 2.4 Vertical displacement response of bridge midpoint  

( 10 /v m s= ). 

Figure 2.5 Standard deviation of displacement response of bridge midpoint  

( ( )Cov m = 0.1). 
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Figure 2.6 Standard deviation of displacement response of bridge midpoint  

( ( )Cov ρ =0.1). 

 

Figure 2.7 Standard deviation of displacement response of bridge midpoint  

( ( )Cov E = 0.1). 
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Figure 2.8 Standard deviation of displacement response of bridge midpoint 

( ( )Cov I =0.1). 

Figure 2.9 Standard deviation of displacement response of bridge midpoint 

( ( )Cov all parameters = 0.1). 
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Comparing Figure 2.5 with Figures 2.6-2.8, it can be found that the uncertainty of 

bridge parameters produces greater effects on bridge displacement response.  In another 

word, bridge response is more sensitive to the changes of its own parameters. The 

elastic modulus and inertia moment of area of the bridge have quite similar influences 

on the bridge response, and the changes of the bridge response caused by their 

uncertainties are bigger than that caused by the mass per unit.  The standard deviation of 

bridge response becomes significantly large if the randomness of all parameters is 

considered simultaneously. 

The differences of periods between the standard deviations shown in Figures 2.5-2.9 

and the mean value shown in Figure 2.5 of displacement response are mainly caused by 

the random variable functional moment method employed in this study. 

2.5.2  Example 2: Quarter-car moving on the bridge 

Vehicle and bridge parameters are considered as random variables in the following 

examples. The mean values of system parameters used in the numerical simulations are 

given in Tables 2.2 and 2.3. The vehicle parameters are typical for a lightly damped 

passenger car [118]. 

Table 2.2 Parameters of the bridge model 

Description Notation Value 

Length of the bridge L   40m 

Moment of inertia I  0.15m4 

Damping ratio ζ  0.05 

Young’s modulus E   3.2 × 1010N/m2 

Mass density ρ  5200kg/m3 

51 
 



 

Table 2.3 Parameters of the vehicle model 

Description Notation Value 

Sprung mass 
sm   1600kg 

Unsprung mass 
um  160kg 

Suspension damping 
sc   960Ns/m 

Tire damping 
tc   960Ns/m 

Suspension stiffness 
sk  1.8 × 107N/m 

Vehicle stiffness 
tk   7.2 × 107N/m 

 

2.5.2.1 Random response analysis of vehicle-bridge system with smooth 

road surface (Quarter-car model) 

Two different vehicle speeds, 5 /v m s= and 20 /v m s= , are used to investigate the 

influence caused by vehicle speed on bridge response. The corresponding bridge 

displacement responses at mid-span are shown in Figures 2.10 and 2.11, respectively. 

Again, the amplitude of the bridge mid-span displacement in Figure 2.11 is bigger than 

that in Figure 2.10, which means the bridge displacement response increases along with 

the increase of the vehicle speed. Meanwhile, the period of periodic displacement 

response of the bridge is longer for lower moving speed of the vehicle. Again, it can 

also be observed from Figures 2.10 and 2.11 that the maximum amplitudes of bridge 

response at its mid-span do not occur at the time when the vehicle pass this position. 

The similar phenomenon can also be found in research literature [3]. 
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To investigate the effects of system parameters on the bridge response, the randomness 

of each of parameters is considered separately first and then simultaneously. The 

coefficient of variation (COV) is assumed as 0.05 for random variables , , , ,s um m E Iρ . 

The velocity of vehicle is constant ( 5 /v m s= ). The standard deviations (SD) of the 

bridge mid-span displacement response are given in Figures 2.12(a)-(f) to demonstrate 

the changes of bridge responses produced by the uncertainty of system parameters.  

From Figures 2.12(a) and 2.12(b), it can be seen that the vehicle sprung and unsprung 

masses produce the similar effects on the bridge response. The elastic modulus and 

inertia moment of area of the bridge have quite similar influences on the bridge 

response, and the changes of the bridge response caused by their uncertainties are bigger 

than that caused by the mass per unit, which can be found from Figures 2.12(c)-(e). 

Comparing Figures 2.12(a)-(b) with 2.12(c)-(e), it can be observed that the standard 

deviations of bridge response caused by the randomness of its own parameters are 

greater than those caused by vehicle parameters. In other words, vehicle response is 

more sensitive to the uncertainty of bridge parameters. Figure 2.12(f) shows that the 

standard deviation of bridge response is much bigger if the randomness of all 

parameters is considered simultaneously. 
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Figure 2.10 Displacement response of bridge mid-span (v=5m/s, x=20m) 

 

Figure 2.11 Displacement response of bridge mid-span (v=20m/s, x=20m) 
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(a) COV of sprung mass =0.05 

 

(b) COV of unsprung mass =0.05 
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(c) COV of density =0.05 

 

(d) COV of Young’s Modulus =0.05 
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(e) COV of moment inertia =0.05 

 

(f) COV of all parameters =0.05 

Figure 2.12 Standard deviation of bridge mid-span displacement. 

57 
 



 

Figure 2.13 Standard deviation of bridge mid-span displacement 

 (COV of all parameters is 0.1) 

 

Figure 2.14 Mean value of bridge mid-span displacement  

(COV of all parameters is 0.1) 
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In order to validate the method presented in this chapter, Monte Carlo simulation 

method is used as a reference approach. The standard deviations obtained by 10000 

Monte Carlo simulations are also shown in Figures 2.12(a)-(f). In addition, the mean 

value and standard deviation of bridge mid-span response calculated by the proposed 

method and Monte Carlo simulations are given in Figures 2.13 and 2.14, respectively, 

when the coefficient of variation of all random parameters is taken as 0.1. The 

differences between the results obtained by the two methods and the consumed time are 

listed in Tables 2.4-2.10. 

In general, computational results obtained by the proposed method (RVFMM) are in 

good agreement with those computed by the Monte-Carlo simulation method. The 

results obtained by the two methods agree with very well when the coefficient of 

variation of random system parameters is small as shown in Figure 2.12 and Tables 2.4-

2.9. The difference is increased when the variations of random parameters become 

bigger as shown in Figure 2.13 and Table 2.10. In Table 2.10, the difference is still 

acceptable when the vehicle and bridge parameters are considered as random variables 

simultaneously and their coefficients of variation are equals to 0.1. The accuracy of the 

RVFMM can be improved if the second-order Taylor expansion is used. It can be 

expected that the differences will be smaller if more simulations are also used in the 

Monte Carlo method. From Tables 2.4-2.10, it can be also found that the time consumed 

by the Monte Carlo simulation is much greater than that used by the proposed method, 

the computer, which is used to simulate this example, is HP Compaq dc7800, CPU is 

Intel  Core 2 Duo E8400. 

 

 

59 
 



 

 

Table 2.4 Comparison of results obtained from two different methods 

COV ( 1m ) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  
RVFMM 1.12e-05 1.71e-05 1.86e-05 1.79e-05 6.25s 

COV (m1) = 0.05 MCSM 1.13e-05 1.71e-05 1.86e-05 1.79e-05 7.53hrs 

Difference 0.17% 0.18% 0.22% 0.15%  

 

Table 2.5 Comparison of results obtained from two different methods 

COV ( 2m ) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  
RVFMM 1.72e-04 1.07e-04 2.54e-04 2.81e-04 6.38s 

COV (m2) = 0.05 

  

MCSM 1.72e-05 1.07e-05 2.55e-05 2.82e-05 7.86hrs 

Difference 0.09% 0.08% 0.39% 0.35% 
  

 

Table 2.6 Comparison of results obtained from two different methods 

COV (E) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  
RVFMM 4.96e-05 1.12e-03 1.15e-03 6.62e-04 5.486s 
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COV (E) = 0.05 
  

MCSM 4.95e-04 1.11e-03 1.15e-03 6.64e-04 6.29hrs 

Difference 0.20% 0.90% 0.09% 0.30% 
  

Table 2.7 Comparison of results obtained from two different methods 

COV ( ρ ) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  RVFMM 3.33e-04 9.15e-04 9.98e-04 7.33e-04 4.256s 

COV (ρ) = 0.05 

  

MCSM 3.33e-04 9.12e-04 9.98e-04 7.35e-04 5.29hrs 

Difference 0.06% 0.33% 0.07% 0.27%   

 

Table 2.8 Comparison of results obtained from two different methods 

COV (I) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  
RVFMM 4.96e-05 1.11e-03 1.16e-03 6.62e-04 4.569s 

COV (I) = 0.05 

  

MCSM 4.96e-04 1.11e-03 1.15e-03 6.63e-04 5.97hrs 

Difference 0.09% 0.13% 0.86% 0.15%   

 

Table 2.9 Comparison of results obtained from two different methods 

COV (all) = 0.05 

Time(s) 1.6 2.8 3.6 4.4 time 

  
RVFMM 7.70e-04 1.81e-03 2.15e-03 1.32e-03 12.138s 
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COV (all) = 0.05 
  

MCSM 7.66e-04 1.81e-03 2.16e-03 1.32e-03 10.58hrs 

Difference 0.52% 0.08% 0.46% 0.12% 
  

Table 2.10 Comparison of results obtained from two different methods 

COV (all) = 0.1 

Time(s) 1.6 2.8 3.6 4.4 time 

  RVFMM 1.35e-03 3.96e-03 3.33e-03 1.79e-03 13.486s 

COV (all) = 0.1 
  

MCSM 1.33e-03 3.94e-03 3.30e-03 1.77e-03 11.29hrs 

Difference 1.35% 0.53% 1.06% 1.18%  

 

2.5.2.2 Random response analysis of vehicle-bridge system with road 

surface roughness (Quarter-car model) 

The road surface roughness of bridge can significantly change the force exerted on 

the bridge by the moving vehicle. According to ISO8068 and Honda et al. [117], the 

road surface is considered as a random process with a Gaussian probability 

distribution and the road roughness coefficient is assuming as 2 × 106 m2/rad/m. The 

interactive force caused by the road roughness and the moving vehicle is shown in 

Figure 2.15 when the velocity of vehicle is 5m/s. It should be noted that this force is 

a random process but the effects of the randomness of vehicle and bridge parameters 

are not included. 
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Figure 2.15 interactive forces with road surface roughness. 

 

Figure 2.16 Mean value of bridge mid-span displacement with different road conditions 

( 5 / , 20v m s x m= = ) 
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Figure 2.17 Mean value of bridge mid-span displacement with different road conditions 

( 20 / , 20v m s x m= = ) 

 

Figure 2.18 Standard deviation of bridge mid-span displacement 
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The bridge Young’s modulus, mass density and moment of inertia as well as vehicle 

sprung mass, unsprung masses, tire stiffness and damping are considered as random 

variables in this part. The mean value and standard deviation of the displacement response 

of the bridge mid-span for smooth and rough road conditions are shown in Figures 2.16, 

2.17 and 2.18, respectively. It can be easily observed that the bridge response is greatly 

increased when the road surface roughness is considered as shown in Figures 2.16 and 2.17. 

The standard deviation of the rough road condition is also bigger than that of the smooth 

road condition in Figure 2.18 as expected. 

2.6 Conclusions 

The dynamic response of bridge under moving vehicle is investigated in this chapter. 

The uncertainties in the vehicle-bridge interaction system are considered and vehicle 

and bridge parameters are modelled as random variables. Two different road conditions, 

smooth road surface and rough road surface, are also included in the model for the 

dynamic analysis of the vehicle-bridge coupled system. The modal superposition 

method and random variable functional moment method are employed to predict the 

first and second moments of the bridge response. The effects produced by the individual 

system parameters and road roughness on the bridge response are demonstrated by 

numerical examples. The effectiveness of the presented method is validated by the 

Monte Carlo simulation method. 

The accuracy of the presented method can be improved if the second-order Taylor 

expansion is adopted in the RVFMM but it requires more computational efforts. The 

method can be further developed for dynamic analysis of vehicle-bridge interaction 
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system using complex models such as bridge and full car-bridge and multi vehicle as 

well as vehicle and multi-span bridge models. The RVFMM could be combined with 

other methods rather than superposition method for the dynamic analysis of train-bridge 

system if it is modelled as a time-dependent system. 
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Chapter 3 Interval Dynamic 

Analysis of Vehicle-

bridge Interaction 

System With 

uncertainty 

3.1 Introduction 

Probabilistic approaches have been widely used to account for uncertainties, under the 

premise that the statistical characteristics of uncertain quantities are presumed to be 

known [13]. The key point to justify the probability densities of the random variables is 

to obtain appropriate measurement data and sufficient statistical information. However, 

the major obstacle is lack of available data of such measurements and statistical 

information is scarce to permit a probabilistic analysis. Meanwhile, loads of many 

scenarios can hardly be modelled as random variables due to large changes in their 

magnitudes. Alternatively, a discipline, called interval analysis [10, 95-97], has been 

developed for structural analyses and for applied mechanics problems to account for the 

uncertainties. In interval analysis, the uncertain input variables are defined in closed 

bounded intervals. The bounds on system response are sought through various interval 

67 
 



analytical and numerical approaches. It should be noted that, for complex systems, it is 

very hard to use interval methods to determine the tight bounds of system response due 

to their inherent drawbacks, i.e. dependency issue.  

Actually, in interval analysis, lower and upper bounds are the minimum and maximum 

of system outputs respectively. Then, interval analysis problems can be converted to 

optimization problems. In the recent two decades, a bio-inspired optimization algorithm 

called particle swarm optimization (PSO) has been proposed and developed to solve 

optimization problems and find the global optimum [120-122]. PSO is a population-

based heuristic optimization technique motivated by animal social behaviours such as 

bird flocking and fish schooling. Although PSO has attracted comprehensive attention 

and has been applied in many areas, very little research has been conducted for solving 

structural optimization problems [123-125].  

In this chapter, the dynamic response of a bridge under a moving vehicle with uncertain 

but bounded system parameters is studied. The vehicle is represented by a half-car 

model [13] and the bridge is modelled as an Euler-Bernoulli beam [3] same as the 

previous chapter. The vehicle masses and the bridge parameters corresponding to 

Young’s modulus, mass and moment of inertia, are all considered as interval variables. 

The computational expressions for the midpoint, interval width, lower and upper bounds 

of the vertical responses of the bridge are developed by using the modal superposition 

method and interval operations. Meanwhile, an improved PSO algorithm called 

LHNPSO is developed to determine the lower and upper bounds of bridge displacement 

response. The LHNPSO algorithm, with low-discrepancy sequence initialized particles 

and high-order nonlinear time-varying inertia weight and constant acceleration 

coefficients, can converge fast and generate accurate solutions. Through the 
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comparisons between the results computed by interval analysis method and LHNPSO, 

the effectiveness of them is demonstrated. Monte-Carlo simulations are also 

implemented to validate the presented methods. In addition, the effects of the vehicle 

and bridge parameters on bridge response are investigated.  

This chapter is organized as follows. Section 3.2 provides a brief introduction of the 

interval analysis method. Section 3.3 presents the model of a vehicle-bridge interaction 

system. In Section 3.4, the dynamic response analysis of the bridge based on the interval 

analysis method is presented. The improved LHNPSO algorithm is implemented to 

determine the intervals of bridge response in Section 3.5. Numerical examples and 

calculated results are given in section 3.6. Conclusions are stated in the last section. 

The work presented in this chapter is mainly dependent on the research reported by Liu 

et al. in Journal of Sound and Vibration, 332 (2013) 3218-3231. 

3.2 Interval Analysis Method 

Let ( )I R , ( )nI R and ( )n nI R × denote the sets of all closed real interval numbers, n

dimensional real interval vectors and n n×  real interval matrices, respectively. R is the 

set of all real numbers. { }[ , ] , ,Ix x x l x l x x x R= = ≤ ≤ ∈  is an interval variable of 

( )I R . x  and x  are the lower and upper bounds of Ix , respectively. Interval variable Ix  

can also be expressed as 

[ , ]I c Ix x x x x= = + ∆                                                      (3.1a) 

[ , ]Ix x x∆ = −∆ +∆                                                          (3.1b) 
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2
c x xx +
=                                                                  (3.1c) 

F c
xx

x
∆

∆ =                                                                   (3.1d) 

where cx , x∆ , Ix∆ and Fx∆ represent the midpoint value, maximum width (interval 

width), uncertain interval and interval change ratio of the interval variable 𝑥𝐼 , 

respectively. 

The core of interval arithmetic consists of a generalization of operations [94-96] 

I IX Y+ =[ , ] [ , ]x x y y+ =[ , ]x y x y+ +                                            (3.2a) 

I IX Y− =[ , ] [ , ]x x y y− =[ , ]x y x y− −                                            (3.2b) 

I IX Y× =[ , ] [ , ]x x y y× [min( , , , ),max( , , , )]x y x y x y x y x y x y x y x y= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    (3.2c) 

[ , ]
[ , ]

I

I
X x x
Y y y

= = 1 1[ , ]x x
yy

 
 
  

                                                   (3.2d) 

The general form of equation of a vehicle-bridge interaction system with interval 

variables can be taken as  

( , )Iy f x t=                                                                  (3.3) 

Based on the first-order Taylor series expansion, from Eq. (3.3), we have 
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( , )( , ) ( , ) ( )
c

I c I cf x ty f x t f x t x x
x

∂
= = + ⋅ −

∂
                                   (3.4) 

From Eq. (3.4), the midpoint and interval width of ( , )If x t  can be obtained as 

( , ) ( , )c I cf x t f x t=                                                             (3.5) 

( , )( , )
c

I f x tf x t x
x

∂
∆ = ⋅∆

∂
                                                       (3.6) 

Then, the lower and upper bounds of ( , )If x t can be calculated by 

( , )( , ) ( , ) ( , ) ( , )
c

I c I c f x tf x t f x t f x t f x t x
x

∂
= − ∆ = − ⋅∆

∂
                              (3.7)  

( , )( , ) ( , ) ( , ) ( , )
c

I c I c f x tf x t f x t f x t f x t x
x

∂
= + ∆ = + ⋅∆

∂
                               (3.8) 

3.3 Vehicle-Bridge Interaction Model 

In the vehicle-bridge interaction system, the bridge is modelled as a simply supported 

beam and the vehicle is represented by a half-car model as shown in Figure 3.1. Here, 

a1 and a2 are the position parameters; S is the axle spacing ; vm , 1m and 2m  denote the 

sprung mass and suspension masses respectively; the suspension system is represented 

by two linear springs of stiffness 1sk , 2sk and two linear dampers with damping rates 1sc , 

2sc  ; the tires are also modelled by two linear springs of stiffness 1tk , 2tk  and two linear 

dampers with damping rates 1tc , 2tc  ; ρ , E , I and L  are the mass per unit length, elastic 

modulus, moment of inertia and length of the beam respectively.  
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Figure 3.1 Model of vehicle-bridge interaction system (half-car model) 

The equation of motion governing the transverse or vertical vibration of the bridge 

under the moving vehicle can be written as 

2 4

1 22 4
( , ) ( , ) ( , ) ( ( , ) ( , )) ( )W x t W x t W x tC EI f x t f x t x vt
t t x

ρ δ∂ ∂ ∂
+ + = + −

∂ ∂ ∂
                      (3.9) 

1 1 2 1 1 1 1

2 2 1 2 2 2 2

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

v t tx vt x vt

v t tx vt x vt

f x t m a m g k y W c y W

f x t m a m g k y W c y W
= =

= =

 = − + − − − −


= − + − − − −




                             (3.10) 

where ( , )W x t  is the vertical displacement of the bridge, 1y and 2y  are the vertical 

displacement of the suspension system of the vehicle, 1( , )f x t  and 2( , )f x t are the 

contact forces, ( )x vtδ − is the Dirac delta function evaluated at the contact point at 

position x vt= , and v  is the speed of the moving vehicle. 

Using the modal superposition method [3], the solution to Eq. (3.9) can be expressed as 

in terms of the mode shapes ( )j xϕ  and associated modal coordinates ( )bjx t of the bridge 
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1

( , ) ( ) ( )j bj
j

W x t x x tϕ
∞

=

= ∑                                                     (3.11) 

For simply supported beam, the mode shapes of the bridge are same as Eq. (2.9). From 

Eqs. (2.9), (3.9) and (3.11), it obtains 
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m a m g k x t W c x t W

= =
+ + + − + −  ( )x vt dxδ⋅ −                      (3.12)          

As vehicle mass is much less than the bridge mass and the tires’ damping is quite small, 

Eq. (3.12) can be approximated as [3] 

( )bjx t + 2 ( )bj bj bjx tζ ω  + 2 ( )bj bjx tω  = 1 2 1 22( ( ) ) sinvm m a a m g j vt
L L

π
ρ

+ + +
−                    (3.13)                                                                         

where  

1 2a a+ =1 

Assuming zero initial conditions, the solution to Eq. (3.13) is 

( )1 2 1 2

0

2( ( ) )( ) sin ( )sinbj bj

t
tv

bj dbj
dbj

m m a a m g j vtx t e t d
L L

ζ ω τ πω τ τ
ρ ω

− −+ + +
= − ⋅ −∫                (3.14) 
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 where 

21dbj bj bjω ζ ω= −                                                        (3.15)                                                

Then, the displacement response of the bridge can be calculated by 

2 2
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 
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 

∑

∫

             (3.16)    

The contribution of tires’ stiffness to bridge vertical displacement response is omitted 

due to the assumption that the bridge mass is much greater than that of the vehicle. 

Actually, it is not difficult to include the vehicle stiffness in the bridge response using 

the Duhamel integral solution.  

3.4 Interval Dynamic Responses Analysis 

of the Bridge Using the Interval 

Analysis Method 

Vehicle and bridge parameters, 1m , 2m , vm , ρ , E  and I , are considered as interval 

variables. By means of the interval operations, the interval dynamic response of 

structures with uncertain-but-bounded parameters can be determined by using the 
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interval analysis method. The midpoint value and interval width of the interval bridge 

response can be computed by 
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2 3

1 01

2( )( , ) sin ( ) sin sin
tc c c

c v
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where ( , )cW x t and ( , )W x t∆  denote the midpoint value and interval width of the 

interval bridge response ( , )IW x t  , respectively. The items 1S , 2S and 3S have been 

given in Chapter 2. 

The lower and upper bounds of the interval bridge response can be calculated by 

( , ) ( , ) ( , )cW x t W x t W x t= − ∆
                                        

(3.19a) 

  
( , ) ( , ) ( , )cW x t W x t W x t= + ∆

                                        
(3.19b) 

3.5 Optimization Algorithm 

3.5.1  Particle swarm optimization algorithm 

 Particle swarm optimization (PSO) algorithm is a simple and robust strategy based on 

the social and cooperative behaviour shown by various species like flock of bird, school 

of fish and so on. The concept of PSO was proposed by Kennedy and Eberhart in 1995 

[96]. It has become one of the most promising techniques for solving global 

optimization problems. The PSO system consists of a population (swarm) of potential 

solutions called particles. These particles move through the search space with a 

specified velocity in search of optimal solution. Each particle maintains a memory 

which helps it in keeping the track of its previous best position. The positions of the 

particles are distinguished as personal best and global best. In the recent years, PSO has 

been successfully applied in many areas. It has been demonstrated that PSO can get 

better results in a faster and cheaper way in comparison with other heuristic methods 

like genetic algorithm (GA) and simulated annealing (SA) [130]. 
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Mathematically, the PSO algorithm is described by the following expressions 

,, 1 , 1 , , 2 ,( ) ( )j kj k j k g k j k j kV V C W W C W Wω+ = + − + −                                   (3.20)  

, 1 , , 1( )j k j k j kW W V+ += +                                                       (3.21) 

where ,j kV  represents the previous velocity of particle j , which serves as a memory of 

the previous flight velocity and direction.ω  is the weighting factor employed to control 

the impact of previous velocity on the current velocity [104-106]. 1C and 2C  are 

acceleration coefficients indicating the weighting of the stochastic acceleration terms 

that pull each particle towards personal best and global best positions. They are random 

numbers in 1,max(0, )U C and 2,max(0, )U C . ( )U ⋅  stands for a uniform distribution, 1,maxC is 

the maximum value of 1C and 2,maxC is the maximum value of 2C  .  Position ,g kW  is the 

global best one in the group of all particles while ,j kW  is a record of the best solution of 

particle j  over the past iterations. 1 , ,( )g k j kC W W−  is named as the social component 

because it represents the cooperation among particles. The effect of this term is that 

each particle is to be drawn towards the best position which is found by its neighbour 

particles. ,2 ,( )j k j kC W W−  represents the personal experience of particle j  and is called 

cognitive parameters. The effect of this term is to draw individual particles back to their 

own best positions that were most satisfying in the past. ,j kW  represents the position of 

the jth particle at the kth iteration. The main parameters of the PSO algorithm are given 

in Table 3.1. Figure 3.2 shows the pseudo code of the general PSO algorithm. 
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Table 3.1 Main PSO parameters 

Symbol Description Details 

n  Dimension of particles Determined by the problem to be optimized 

ω  Inertia weight factor Usually less than 1 

1C  Social parameters 
Usually 1 2 2C C= =  , other values can also be 

used 

2C  Cognitive parameters 1 20 4C C< + ≤  (Perez and Behdinan [130]) 

 

The PSO algorithm 

For each particle do 

       Initialize the particle position and its velocity randomly 

End for 

Set a finite number of iterations 

Set iteration count to 0 

While not terminate do 

   For  each particle do 

     Evaluate fitness value 

     If the fitness value is better than the local best fitness value in history then 

          Update the local bests and their fitness 

     End if 

  End for 

  Choose the particle with the best fitness value of all the particle as the global best 

  For each particle do 
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        Calculate particle velocity 

        Update particle position 

  End for 

End while 

Terminate if generation count expires   

Figure 3.2 The pseudo code of the general PSO algorithm  

3.5.2  LHNPSO 

Although numerous variants of PSO algorithms have been developed, solving 

optimization problems with high accuracy and fast convergence speed is still an 

important task. A novel PSO method, called low-discrepancy sequence initialized 

particle swarm optimization algorithm with high-order nonlinear time-varying inertia 

weight (LHNPSO), has been proposed recently [131]. In the LHNPSO, particles are 

initialized by using low-discrepancy sequences rather than pseudo random numbers 

which are widely used in other PSO algorithms. These deterministic sequences can fill 

the sample area efficiently and uniformly [132], and have been successfully used to 

solve globally optimal problems [132,133]. The LHNPSO uses the constant acceleration 

coefficients 1 2 2C C= = , and the nonlinearly decreasing inertial weight is varied 

according to the following formulation 

2
1

max max min
max

( 1) ( ) kk
k

π
ω ω ω ω

 
+ = − −  

 
                                        (3.22) 

where  max 0.9ω =  and min 0.4ω = . 
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It has been verified that the easily implemented LHNPSO can converge faster and give 

a much more accurate final solution for a set of benchmark optimization problems, in 

comparison with the classical and a couple of improved PSO algorithms. 

In this chapter, LHNPSO is adopted to determine the change range of bridge response. 

The interval bridge response ( , )W x t  is used as the fitness function and the lower and 

upper bounds of this fitness function are respectively the maximum and minimum 

values of the objective function  

               
min

max

( , ) min ( , )
( , ) max ( , )

F x t W x t
F x t W x t

=
 =

                                                     (3.23) 

3.6 Numerical Examples 

The vehicle and bridge parameters are considered as interval variables, and their 

nominal values (midpoints) taken in the numerical simulation are listed in Table 3.2. 

The moving velocity of vehicle is 10 /v m s= . The unit of the bridge displacement 

response used in this chapter is meter. 

 

 

 

 

 

 

80 
 



Table 3.2 Data of the bridge and vehicle models 

Data of the bridge Data of the vehicle 

𝐿 = 40𝑚 𝑚1 = 1000𝑘𝑔 𝑚2 = 1500𝑘𝑔 

E=33𝐺𝑁 𝑚2⁄  𝑚𝑣 = 17800𝑘𝑔 𝐼𝑣 = 1.5 × 105𝑘𝑔.𝑚2 

𝐼 = 0.16𝑚4 𝑘𝑠1 = 2.5 × 106𝑁/𝑚 𝑘𝑠2 = 4.2 × 106𝑁/𝑚 

7800 /kg mρ =  6
1 5.2 10 /tk N m= ×  6

2 7.2 10 /tk N m= ×  

 𝑎1 = 0.52 𝑎2 = 0.48 

 𝑐𝑠1 = 9000𝑁/𝑚 𝑐𝑠2 = 9600𝑁/𝑚 

 𝑐𝑡1 = 920𝑁/𝑚 𝑐𝑡2 = 960𝑁/𝑚 

 𝑆 = 4.27𝑚  

3.6.1  Interval analysis method 

To investigate the influences of system parameters on the bridge response, the interval 

change ratio (ICR) of them changes from 0 to 0.1. The midpoint value and interval 

width of the bridge displacement response at its mid-span are given in Figures 3.3 and 

3.4, respectively. Figure 3.4(a) shows that the changes of vehicle masses 1m  and  2m  

produce the similar effect on the interval width of the bridge response as expected from 

Eq. (3.17). The effects caused by suspension (unsprung) masses 1m  and  2m  are smaller 

than that produced by the sprung mass vm  as their interval width is smaller when the 

interval change ratios of these three masses are same. Figure 3.4(b) shows that bridge 

Young’s modulus and moment of inertia produce the same effects on the bridge 

response too, which is greater than that caused by the density. From Figures 3.4(a) and 

(b), it can be easily observed that the bridge response is more sensitive to the change of 
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its own parameters. Figure 3.4 also shows that when the dispersal degree of system 

parameters increases, the interval width of bridge displacement increases too. 

Figure 3.3 Midpoint of bridge displacement at mid-span. 

(a) Vehicle parameters are interval variables 
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(b) Bridge parameters are interval variables 

Figure 3.4 Interval width of bridge displacement at mid-span (x=20m,t=2s) 

 

Figure 3.5 Verification by Monte-Carlo simulation method 
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To verify the results obtained by the presented method IAM, 10,000 Monte-Carlo 

simulations are also implemented when the interval change ratios of all parameters are 

0.1. Figure 3.5 shows that the results calculated by the interval analysis method (IAM) 

agree very well with those are obtained by the Monte-Carlo simulation method 

(MCSM), however, the later one requires much more computational efforts.  

3.6.2  LHNPSO 

In this section, LHNPSO algorithm is used to solve the interval problem. The particle 

size is 50 and the iteration times are 200. Young’s modulus is considered as an interval 

variable. The lower and upper bounds of bridge displacement at mid-span found by the 

LHNPSO are listed in Table 3.3. Results computed by 10,000 Monte-Carlo simulations 

are also given in this table for comparison. To further illustrate the effectiveness of 

LHNPSO, the lower and upper bounds of bridge displacement at mid-span versus the 

iteration times are given in Figures 3.6-3.12 while individual parameters are considered 

as interval variables in turn and then all system parameters are treated as interval 

variables.  

From Table 3.3, it can be easily observed that the results obtained by LHNPSO are in 

good agreement with those calculated by MCSM as the differences are not big. The 

lower bounds determined by LHNPSO are less than what are generated by MCSM, 

whereas, the upper bounds found by LHNPSO are greater than those searched by 

MCSM. The intervals obtained by LHNPSO contain the change ranges by MCSM, 

hence, LHNPSO can give more accurate results. The main reason is that 10,000 Monte-

Carlo simulations cannot give reliable results and are not able to capture the minimum 

and maximum values. Theoretically, MCSM will provide exact intervals of bridge 
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response if infinite simulations are implemented. Therefore, the differences will be 

decreased, and the intervals obtained by MCSM will become bigger and tends to reach 

those determined by LHNPSO, if more simulations are performed.   

Figures 3.6-3.12 show that convergence speed of LHNPSO is quite fast. Generally, the 

lower and upper bounds can converge at 200 iterations. In some cases, it can even 

converge at 100 iterations. For 50 particles and 200 iterations, the total calculation times 

for determining the minimum and maximum of bridge response are equal to

200 50 10000× = . Certainly, the results produced by the same number of Monte-Carlo 

simulations are not accurate enough. The computational effort requested by LHNPSO is 

much less than MCSM.  

 

(a) Lower bound 

0 20 40 60 80 100 120 140 160 180 200
6.0265

6.027

6.0275

6.028
x 10

-3

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

85 
 



 

(b) Upper bound 

Figure 3.6 Interval bridge displacement at mid-span ( 1 0.1Fm∆ = ) 
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(b) Upper bound 

Figure 3.7 Interval bridge displacement at mid-span ( 2 0.1Fm∆ = ) 

 

(a) Upper bound 
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(b) Lower bound 

Figure 3.8 Interval bridge displacement at mid-span ( 0.1vFm∆ = ) 

 

 

(a) Lower bound 
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(b) Upper bound 

Figure 3.9 Interval bridge displacement at mid-span ( 0.1Fρ∆ = ) 
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(b) Upper bound 

Figure 3.10 Interval bridge displacement at mid-span ( 0.1FE∆ = ) 
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(b) Upper bound 

Figure 3.11 Interval bridge displacement at mid-span ( 0.1FI∆ = ) 
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(b) Upper bound 

Figure 3.12 Interval bridge displacement at mid-span 

( 1 2 0.1F F vF F F Fm m m E Iρ∆ = ∆ = ∆ = ∆ = ∆ = ∆ = ) 

 

Table 3.3 Comparison of results by LHNPSO and MCSM  
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Lower bounds   
Difference 

Upper bounds   
Difference LHNPSO MCSM PSO MCSM 

0.05 5.67591E-03 5.69459E-03 0.32918% 6.39404E-03 6.36210E-03 0.49949% 

0.08 5.50036E-03 5.57430E-03 1.34439% 6.59301E-03 6.52330E-03 1.05725% 

0.1 5.34117E-03 5.44117E-03 1.87225% 6.76946E-03 6.70936E-03 0.88781% 
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3.6.3  Comparison of results obtained by IAM and 

LHNPSO 

To further evaluate the performances of IAM and LHNPSO, the lower and upper 

bounds of bridge displacement at mid-span are given in Figures 3.13(a)-(g) when the 

interval change ratios of system parameters are changing.  The differences are listed in 

Tables 3.4-3.10. 

From Figures 3.13(a)-(g), it can be easily seen that the ranges of changes in bridge 

response computed by IAM are smaller than those determined by LHNPSO. As the first 

order Taylor expansion is used in IAM to calculate the interval width, IAM cannot give 

a conservative result. However, IAM requires only one time calculation to get the result.  

From Tables 3.4-3.10, it can be also easily observed that the results obtained by the two 

methods agree well as the differences are not big. The difference becomes bigger and 

bigger along with the increase of change ranges of system parameters. When the 

interval change ratio is 0.1, the biggest difference is 4.7947% when all system 

parameters are considered as interval variables, but it is much smaller if the uncertainty 

of only one system parameter is under consideration. 

In summary, when the ranges of change in system parameters become bigger, the 

differences between the results obtained by the two methods become more obvious. 

LHNPSO can give more accurate results but requires more computational effort. For 

important structures, it is better to use LHNPSO to predict the change ranges of 

structural response. Interval analysis method (IAM) is also available for many structures 

as it is much time-saving and its accuracy is acceptable especially when the intervals of 

system inputs are not too big. 
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(g) 

Figure 3.13 Lower and upper bounds obtained by IAM and LHNPSO  
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1Fm∆
 

Lower bounds 
 Difference 

Upper bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.03889E-03 6.03917E-03 0.0046% 6.03711E-03 6.03677E-03 0.0056% 

0.02 6.03979E-03 6.04017E-03 0.0063% 6.03621E-03 6.03564E-03 0.0095% 

0.04 6.04158E-03 6.04234E-03 0.0126% 6.03442E-03 6.03334E-03 0.0179% 

0.05 6.04247E-03 6.04396E-03 0.0247% 6.03353E-03 6.03198E-03 0.0257% 

0.08 6.04515E-03 6.04652E-03 0.0226% 6.03085E-03 6.02919E-03 0.0275% 

0.1 6.04694E-03 6.04876E-03 0.0301% 6.02906E-03 6.02654E-03 0.0418% 
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Table 3.5 Comparison of the results by IAM and LHNPSO 

 

 

Table 3.6 Comparison of the results by IAM and LHNPSO 

 

 

2Fm∆
 

Lower bounds 
Difference 

Upper bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.03934E-03 6.03961E-03 0.00442% 6.03666E-03 6.03603E-03 0.01050% 

0.02 6.04068E-03 6.04144E-03 0.01260% 6.03532E-03 6.03410E-03 0.02013% 

0.04 6.04336E-03 6.04432E-03 0.01594% 6.03264E-03 6.03061E-03 0.03363% 

0.05 6.04470E-03 6.04668E-03 0.03278% 6.03130E-03 6.02843E-03 0.04762% 

0.08 6.04872E-03 6.05287E-03 0.06867% 6.02728E-03 6.02389E-03 0.05630% 

0.1 6.05140E-03 6.05603E-03 0.07659% 6.02460E-03 6.02013E-03 0.07418% 

vFm∆
 

Lower bounds 
Difference 

Upper bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.05390E-03 6.06495E-03 0.18250% 6.02210E-03 6.00722E-03 0.24715% 

0.02 6.06980E-03 6.08969E-03 0.32770% 6.00620E-03 5.98247E-03 0.39502% 

0.04 6.10160E-03 6.13505E-03 0.54824% 5.97440E-03 5.93299E-03 0.69313% 

0.05 6.11750E-03 6.15773E-03 0.65765% 5.95850E-03 5.91237E-03 0.77417% 

0.08 6.16520E-03 6.21959E-03 0.88217% 5.91080E-03 5.86196E-03 0.82631% 

0.1 6.19700E-03 6.25874E-03 0.99634% 5.87900E-03 5.80278E-03 1.29642% 
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Table 3.7 Comparison of the results by IAM and LHNPSO 

 

 

Table 3.8 Comparison of the results by IAM and LHNPSO 

 

Fρ∆
 

Upper bounds 
Difference 

Lower bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.06215E-03 6.06957E-03 0.1224% 6.01385E-03 6.00584E-03 0.1332% 

0.02 6.08630E-03 6.09988E-03 0.2232% 5.98970E-03 5.97242E-03 0.2885% 

0.04 6.13460E-03 6.15739E-03 0.3716% 5.94140E-03 5.90480E-03 0.6159% 

0.05 6.15875E-03 6.19392E-03 0.5711% 5.91725E-03 5.87760E-03 0.6700% 

0.08 6.23120E-03 6.27475E-03 0.6989% 5.84480E-03 5.80133E-03 0.7437% 

0.1 6.27950E-03 6.34158E-03 0.9887% 5.79651E-03 5.74625E-03 0.8670% 

FE∆  
Upper bounds Differen

ce 

Lower bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.09409E-03 6.10337E-03 0.1522% 5.98191E-03 5.96969E-03 0.2043% 

0.02 6.15018E-03 6.17176E-03 0.3509% 5.92582E-03 5.89819E-03 0.4663% 

0.04 6.26235E-03 6.30389E-03 0.6633% 5.81365E-03 5.75518E-03 1.0057% 

0.05 6.31844E-03 6.39404E-03 1.1965% 5.75756E-03 5.67591E-03 1.4182% 

0.08 6.48670E-03 6.59301E-03 1.6388% 5.58930E-03 5.50036E-03 1.5913% 

0.1 6.59888E-03 6.76948E-03 2.5852% 5.47712E-03 5.34117E-03 2.4822% 
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Table 3.9 Comparison of the results by IAM and LHNPSO 

 

 

Table 3.10 Comparison of the results by IAM and LHNPSO 

FI∆  

Upper bounds 
Difference 

Lower bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.09409E-03 6.10257E-03 0.1391% 5.98191E-03 5.97569E-03 0.1040% 

0.02 6.15018E-03 6.16266E-03 0.2029% 5.92582E-03 5.89672E-03 0.4911% 

0.04 6.26235E-03 6.30379E-03 0.6617% 5.81365E-03 5.77518E-03 0.6617% 

0.05 6.31844E-03 6.36540E-03 0.7433% 5.75756E-03 5.70991E-03 0.8277% 

0.08 6.48670E-03 6.58623E-03 1.5344% 5.58930E-03 5.51854E-03 1.2661% 

0.1 6.59888E-03 6.72677E-03 1.9381% 5.47712E-03 5.38120E-03 1.7513% 

ICR 

of all 

Upper bounds 
Difference 

Lower bounds 
Difference 

IAM PSO IAM PSO 

0.01 6.19247E-03 6.21901E-03 0.4286% 5.88353E-03 5.84539E-03 0.6483% 

0.02 6.34693E-03 6.42562E-03 1.2398% 5.72907E-03 5.66405E-03 1.1349% 

0.04 6.65587E-03 6.80579E-03 2.2524% 5.42013E-03 5.26994E-03 2.7709% 

0.05 6.81033E-03 7.02066E-03 3.0884% 5.26567E-03 5.08843E-03 3.3660% 

0.08 7.27373E-03 7.56612E-03 4.0197% 4.80227E-03 4.61136E-03 3.9755% 

0.1 7.58266E-03 7.94623E-03 4.7947% 4.49334E-03 4.29587E-03 4.3948% 
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3.7  Conclusions 

In this chapter, dynamic response of vehicle-bridge interaction system with uncertain 

but bounded parameters is investigated by using the interval analysis method and 

LHNPSO. The expressions for calculating the lower and upper bounds of bridge 

response have been derived by using the interval analysis method. Using these 

formulations, the intervals can be very easily obtained by one time calculation. 

LHNPSO requires more computational effort but it can provide more accurate results. 

The results obtained by these two methods are in very good agreement with those 

determined by Monte-Carlo simulation method. The differences of IAM and LHNPSO 

are quite small when the change ranges of system parameters are not big. In the future, 

the IAM and LHNPSO will be further developed to investigate the non-deterministic 

behaviour of a bridge under dynamic loadings induced by multi-vehicles.  

 

 

 

  

101 
 



Chapter 4 Hybrid probabilistic 

interval dynamic 

analysis of vehicle-

bridge interaction 

system with 

uncertainties 

4.1 Introduction 

Powerful probabilistic approaches have been widely used to predict responses and to 

implement reliability assessment of structural systems with uncertainties [7-11]. In 

probabilistic methods, uncertain parameters are modelled as random variables/fields and 

uncertainties of loads are described by random processes/variables. The most important 

factor for correctly using probabilistic methods is to justify the probability densities of 

the random variables and is to obtain appropriate measurement data and sufficient 

statistical information. Probabilistic methods are the first choice when information 

about an uncertain parameter in the form of a preference probability function is 

available. Over the lifetime of a structure, the progressive deterioration of concrete and 

corrosion of steel will lead to significant variations of structural parameters. Sometimes 

it is hard to get the enough probabilistic information for structural parameters as their 

values are affected by a lot of non-deterministic factors such as time, temperature, 
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humidity, cracks and so on. Meanwhile, loads of many scenarios can hardly be 

modelled as random variables due to large changes in their magnitudes. Therefore, 

interval analysis has been developed to handle this kind of uncertainties. Interval 

methods can be used when the probability function is unavailable but the range of the 

uncertain parameter can be defined.  

It is desirable to model structural parameters/loads as random variables if sufficient 

information can be obtained to form the probability density functions. Meanwhile, some 

structural parameters/loads might be best considered as interval variables if the 

information/data are not enough to model uncertain structural parameters and loadings 

as random variables, especially in the early design stages. Consequently, hybrid 

probabilistic interval analysis and reliability assessment of structures with a mixture of 

random and interval properties has been conducted [134-136]. The random interval 

moment method has been developed to determine the mean value and standard 

deviation of random interval responses of structures under static forces [10]. 

Efforts have been made on dynamic response of a bridge under a moving vehicle/force 

considering the uncertainties in the system [13, 15,137,138]. Stochastic approaches 

have been developed for the dynamic analysis of vehicle-bridge interaction system with 

random parameters in the past decade. As aforementioned, some parameters of vehicle-

bridge interaction system could be considered as random variables and some of them 

might be assumed as interval variables. Therefore, a hybrid probabilistic interval 

analysis model for vehicle-bridge coupled systems needs to be developed. 

In this chapter, dynamic response of a bridge under a moving vehicle with uncertain 

parameters is studied. The vehicle is represented by a half-car model and the bridge is 
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modelled as an Euler-Bernoulli beam as Chapter 3. The vehicle parameters are assumed 

as interval variables, and the bridge parameters corresponding to Young’s modulus, 

mass and moment of inertia, are considered as random variables. Random interval 

moment method proposed for static probabilistic interval analysis is extended to derive 

the computational expressions for the lower and upper bounds of expectation and 

variance of the random interval dynamic responses of the bridge. Monte-Carlo 

simulations are also implemented to validate the presented method. In addition, the 

effects of the vehicle and bridge parameters on the bridge response are investigated. 

This chapter is organized as follows. Section 4.2 introduces the random interval 

moment method briefly. Section 4.3 presents the random interval model of a vehicle-

bridge interaction system. In Section 4.4, the dynamic response analysis of the bridge 

based on the random interval moment method is presented. Numerical examples and 

computational results are given in section 4.5. Conclusions are stated in the last section.  

This work presented in this chapter is mainly dependent on the research reported in by 

Liu et al. in International Journal of Structural Stability and Dynamics, 14 (2014), 

1350069, 25 pages. 

4.2  Random Interval Moment Method 

Let ( )X R  be the set of all real random variables on a probability space ( , , )A PΩ , Rx is 

a random variable of ( )RΧ . R  denotes the set of all real numbers. xµ  (or x ) and xσ  

are the mean (deterministic) value and standard deviation of Rx , respectively. 

{ }[ , ] , ,Iy y y t y t y y y R= = ≤ ≤ ∈  is an interval variable of ( )I R  which denotes the 

104 
 



set of all the closed real intervals. y  and y  are the lower and upper bounds of interval 

variable Iy , respectively. For the purpose of completeness, the basic information of 

interval variable Iy is repeated here 

I c Iy y y= + ∆ ; [ , ]Iy y y∆ = −∆ +∆ ; 
2

c y y
y

+
= ; 

2
y y

y
−

∆ =  F c
yy

y
∆

∆ =        (4.1) 

where cy , y∆ , Iy∆  and Fy∆  represent the midpoint value, maximum width (interval 

width), uncertain interval and interval change ratio of the interval variable 𝑦I.  

Without loss of generality, random interval variable RIZ is the function of multiple 

random and interval variables, which are respectively represented by random vector 

1 2( , , , )R R R R
nX x x x=


  and interval vector 1 2( , , , )I I I I

mY y y y=


 . The deterministic values 

of RX


 and IY


are 1 2( , , , )nX x x x=


  and 1 2( , , , )c c c c
mY y y y=


 , respectively. 

The Taylor series to the first-order of the random interval variable ( , )RI R IZ f X Y=
 

 

about ( ,R IX Y
 

) is expressed as 

1 ,

( , ) ( , ) ( )
I

n
RI R I I R

i iR
i i X Y

fZ f X Y f X Y x x R
x=

 ∂ = = + ⋅ − + ∂  
∑

 

   
 

    
1 ,

( , )
c

m
c I

jI
j j X Y

ff X Y y
y=

 ∂ = + ⋅∆ ∂  
∑

 

 
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2

1 1, ,

( )
c c

n m
I R
j i iR R I

i ji i jX Y X Y

f f y x x R
x x y= =

  ∂ ∂   + + ⋅∆ ⋅ − +   ∂ ∂ ∂     
∑ ∑

   

      (4.2) 

where R is the remainder term. 

From this equation, ignoring the higher order terms represented by R , the expectation 

and variance of random interval variables ( , )RI R IZ f X Y=
 

 can be calculated as [33]  

1 ,

( ) ( , ) { }RI

c

m
RI c I

jIZ
j j X Y

fE Z f X Y y
y

µ
=

∂
= = + ∆

∂∑
 

 
                      (4.3) 

( ) 22 ( )RI
RI RI

Z
E Z E Zσ = −

2

1 1 1, ,c c

n n m
I
jR R I

i k ji i jX Y X Y

f f y
x x y= = =

  ∂ ∂   = + ∆   ∂ ∂ ∂     
∑ ∑ ∑

   

 

                                  
2

1, ,

( , )
c c

m
I R R
j i kR R I

jk k jX Y X Y

f f y Cov x x
x x y=

  ∂ ∂   ⋅ + ∆   ∂ ∂ ∂     
∑

   

 

    ( )
2

2

1 1, ,c c

n m
I R
j iR R I

i ji i jX Y X Y

f f y Var x
x x y= =

  ∂ ∂   = + ∆ ⋅   
∂ ∂ ∂     

∑ ∑
   

 

( )

( )

2

1 1 1, ,

2

1, ,

,

c c

c c

n n m
I
jR R I

i k k ji i jX Y X Y

m
I R R
j i kR R I

ji i jX Y X Y

f f y
x x y

f f y Cov x x
x x y

≠ = = =

=

  ∂ ∂   + + ∆   
∂ ∂ ∂     

  ∂ ∂   ⋅ + ∆ ⋅   
∂ ∂ ∂     

∑ ∑ ∑

∑

   

   

                                                   (4.4) 
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4.3  Vehicle-Bridge Interaction Model 

In the vehicle-bridge interaction system, the bridge is modelled as a simply supported 

beam and the vehicle is represented by a half-car model as shown in Figure 3.1. In this 

chapter, parameters of the vehicle 
1

Im ,
2

Im , and 
v

Im , are considered as interval variables, 

meanwhile, bridge parameters, Rρ , RE  and RI , are treated as random variables. The 

equation of motion governing the transverse vibration of the bridge under the moving 

vehicle with uncertain parameters can be written as  

2 4

1 22 4
( , ) ( , ) ( , ) ( ( , ) ( , )) ( )

RI RI RI
R R R RI RIW x t W x t W x tC E I f x t f x t x vt

tt x
ρ δ∂ ∂ ∂

+ + = + −
∂∂ ∂     

(4.5) 

1 1 1 1

2 2 2 2

2

1

( , ) ( ) ( ( ) ( , ) ) ( ( ) ( , ) )

( , ) ( ) ( ( ) ( , ) ) ( ( ) ( , ) )

v t t

v t t

RI I I R RI RI R RI
v vx vt x vt

RI I I R RI RI R RI
v vx vt x vt

f x t m a m g k x t W x t C x t W x t

f x t m a m g k x t W x t C x t W x t
= =

= =

 = − + − − − −


= − + − − − −




                                                                     

(4.6) 

where ( , )IRW x t  is the random interval vertical displacement of the bridge, ( )RI
vx t is 

the random interval vertical displacement of the moving vehicle, 
1

( , )RIf x t  and 
2

( , )RIf x t

are the random interval contact forces, ( )x vtδ − is the Dirac delta function evaluated at 

the contact point at position x vt= , and v  is the speed of the moving vehicle. 

Using the modal superposition method, the solution to Eq. (4.5) can be expressed as in 

terms of the mode shapes ( )j xϕ  and associated modal coordinates ( )
bj

RIx t  of the bridge 
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1

( , ) ( ) ( )
bj

RI RI
j

j
W x t x x tϕ

∞

=

= ∑                                        (4.7) 

For the simply supported beam (Euler-Bernoulli beam), the mode shapes of the bridge 

are given by 

( ) sinj
j xx
L
πϕ =                                                   (4.8)  

Substituting Eq. (4.8) into Eq. (4.7) yields 

1

( , ) sin ( )
bj

RI IR

j

j xW x t x t
L
π∞

=

= ∑                                       (4.9)  

Substituting Eq. (4.9) into Eq. (4.5), multiplying both sides of the equation by ( )T
j xϕ , 

and integrating with respect to x  over the length L  of the beam, obtains 

1 10 0

( ) ( ) ( ) ( ) ( ) ( )
bj bj

L L
R T RI T RI

j j j j
j j

x x x t dx C x x x t dxρ ϕ ϕ ϕ ϕ
∞ ∞

= =

+∑ ∑∫ ∫  +

4

4
10

( )
( ) ( )

bj

L
jR R T RI

j
j

x
E I x x t dx

x
ϕ

ϕ
∞

=

∂
∂∑∫  

= 1 2
0

( )( ( , ) ( , )) ( )
L

T RI RI
j x f x t f x t x vt dxϕ δ+ ⋅ −∫  

= -
1 11 2

0

( )(( ) ( ( ) ( , ) ) ( ( ) ( , ) )
t t

L
T I I R RI RI R RI RI
j v v vx vt x vt

x m a m g k x t W x t C x t W x tϕ
= =

+ + − + −∫   

   
2 22 1( ) ( ( ) ( , ) ) ( ( ) ( , ) ))

t t

I I R RI RI R RI RI
v v vx vt x vt

m a m g k x t W x t C x t W x t
= =

+ + + − + − 
  

( )x vt dxδ⋅ −     (4.10) 
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In this chapter, the Wilson’s damping hypothesis is adopted. As vehicle mass is much 

less than the bridge mass and the tires’ damping is quite small, Eq.(4.10) can be 

approximated as 

( )RI
bjx t + 2 ( )

bj

R RI
bj bj x tζ ω  + ( )2

( )R RI
bj bjx tω  = 1 2 1 22( ( ) )

sinv

I I I

R

m m a a m g j vt
L L

π
ρ

+ + +
−

       
(4.11)  

where 

2 2

2

R R
R

bj R
j E I
L
πω

ρ
=                                                            (4.12) 

Assuming zero initial conditions, the solution to Eq. (4.11) is 

1 2
( )1 2

0

2( ( ) )
( ) sin ( )sin

R
bj bjv

bj dbj

dbj

I I I t
tRI R

R R

m m a a m g j vtx t e t d
L L

ζ ω τ πω τ τ
ρ ω

− −+ + +
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where 

21
dbj bj

R R
bjω ζ ω= −                                                           (4.14)  

where bjζ  is damping ratio of the jth  vibration mode. 

Substituting Eqs. (4.12) and (4.14) into Eq.(4.13) yields 
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                                       (4.15)      
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where 1 2a a+ =1. 

Then, the displacement response of the bridge can be calculated by 
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∑

∫

 (4.16)   

In this chapter, the contribution of tires’ stiffness to bridge vertical displacement 

response is omitted due to the assumption that the bridge mass is much greater than that 

of the vehicle [2]. Actually, it is not difficult to include the vehicle stiffness in the 

bridge response using the Duhamel integral solution. Additionally, bridge damping is 

treated as deterministic because the existing research outcomes show that the 

mechanism of structural damping is still not clear enough.  

4.4 Interval Statistical Moments of 

Random Interval Bridge Dynamic 

Response 

For the sake of simplicity, the random interval displacement response of the bridge 

given in Eq.(4.16) can be rewritten as 
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The items 1S , 
2

RS and 
3

RS are given by 
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By means of the random interval moment method, the mean value of the random 

interval bridge response can be computed by 
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The variance of the random interval bridge response can be calculated by 

( )
2

2

1 1 1, ,

( , )
c c

n n m
RI I

jR R I
i k ji i jX Y X Y

W WW x t y
x x y

σ
= = =

  ∂ ∂   = + ∆   
∂ ∂ ∂     

∑ ∑ ∑
   

 

                                     
2

1, ,

( , )
c c

m
I R R
j i kR R I

jk k jX Y X Y

f f y Cov x x
x x y=

  ∂ ∂   ⋅ + ∆   ∂ ∂ ∂     
∑

   

 

( )
2

2

1 1, ,c c

n m
I R
j iR R I

i ji i jX Y X Y

W W y Var x
x x y= =

  ∂ ∂   = + ∆ ⋅   
∂ ∂ ∂     

∑ ∑
   

 

111 
 



     
( )

2

1 1 1, ,c c

n n m
I
jR R I

i k k ji i jX Y X Y

W W y
x x y≠ = = =

  ∂ ∂   + + ∆   
∂ ∂ ∂     

∑ ∑ ∑
   

     

     ( )
2

1, ,

,
c c

m
I R R
j i kR R I

ji i jX Y X Y

W W y Cov x x
x x y=

  ∂ ∂   ⋅ + ∆ ⋅   
∂ ∂ ∂     

∑
   

                                            (4.20)

  
where 
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                                                                (4.21) 
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Furthermore, the lower and upper bounds of the mean value of the bridge displacement 

( )RIWµ  are given by 
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The lower and upper bounds of the variance of the bridge displacements ( )2 ( , )RIW x tσ  

are 
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m m m ρσρ ρ ρ ρ

  ∂ ∂ ∂ + ⋅∆ + ⋅∆ + ⋅∆ ⋅   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

  

                                                                                                                                     (4.38) 

4.5  Numerical Simulations 

In this chapter, the bridge parameters are considered as Gaussian random variables and 

the parameters of vehicle are treated as interval variables. The nominal values 

(mean/midpoint values) of system parameters taken in the numerical simulation are 

listed in Table 4.1. The unit of the bridge displacement response is meter. 
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In this study, the bridge damping ratios bjζ  for all modes are taken as 0.05. For the sake 

of simplicity, the coefficient of variation (COV, that is the ratio of the standard 

deviation to mean value of a random variable) of Rρ , RE  and RI  is also adopted to 

represent the dispersal degree of random variables. Meanwhile, the interval change ratio 

(ICR, that is the ratio of interval width to midpoint value of an interval variable) of 
1

Im ,

2

Im , and 
v

Im is used to describe the scatter level of interval variables. Two different 

vehicle speeds, 5 /v m s=  and 10 /v m s=  are taken into account to investigate the 

influence of vehicle velocity on the bridge response. 

Table 4.1 Data of the vehicle-bridge model 

Data of the bridge (mean value) Data of the vehicle (midpoint) 

𝐿 = 40𝑚 𝑚1
𝑐 = 1000𝑘𝑔 𝑚2

𝑐 = 1500𝑘𝑔 

E=33𝐺𝑁 𝑚2⁄  𝑚𝑣
𝑐 = 17800𝑘𝑔 𝐼𝑣 = 1.5 × 105𝑘𝑔.𝑚2 

𝐼 = 0.16𝑚4 𝑘𝑠1 = 2.5 × 106𝑁/𝑚 𝑘𝑠2 = 4.2 × 106𝑁/𝑚 

𝜌 = 7800𝑘𝑔/𝑚 𝑘𝑡1 = 5.2 × 106𝑁/𝑚 𝑘𝑡2 = 7.2 × 106𝑁/𝑚 

 𝑎1 = 0.52 𝑎2 = 0.48 

 𝐶𝑠1 = 9000𝑁/𝑚 𝐶𝑠2 = 9600𝑁/𝑚 

 𝐶𝑡1 = 920𝑁/𝑚 𝐶𝑡2 = 960𝑁/𝑚 

 𝑆 = 4.27𝑚  

 

The mean value of the random interval bridge displacement response at its mid-span is 

given in Figures 4.2(a)-(f) when different combinations of uncertain parameters are 
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taken. Figure 4.2(a) shows the mean bridge displacement response when the 

randomness of all random parameters is considered and all interval parameters are taken 

as their midpoint values. The bridge response is a pure random process and is a special 

case of the hybrid random interval problem. However, the mean value of the bridge 

response is an interval if the system has interval parameters as shown in Figures 4.2(b)-

(h). From Figures 4.2(e) and 4.2(h), it can be easily observed that the interval with of 

the mean value of the bridge response is same when the coefficients of variation of 

random variables are different, that is, the random variables do not affect the mean 

value of the random interval structural response.  

Figures 4.2(b) and 4.2(c) show that the interval widths of the bridge displacement are 

slightly different when the uncertainties of interval variables 
1

Im  and 
2

Im are accounted 

for. The effects caused by the changes of these two interval parameters on the bridge 

response are similar. Compared with Figures 4.2(b) and 4.2(c), it can be seen that the 

interval width produced by 
v

Im  is significantly larger as shown in Figure 4.2(d), which 

means bridge response is more sensitive to the change of sprung mass
v

Im . The change 

range of the bridge response is much larger when the uncertainties of all interval 

variables are included as shown in Figure 4.2(e). From Figures 4.2(e) and 4.2(f), it can 

be observed that the interval width of bridge response increases when the interval 

changes of interval variables become larger. Similarly the interval width of the mean 

bridge response is larger when the vehicle moves faster as shown in Figure 4.2(g). 

In summary, the mean value of the random interval bridge response is independent of 

the dispersal degrees of random system parameters as expected from Eq.(4.19). The 
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interval width of the mean value of bridge response is directly proportional to the 

uncertainties of interval variables and vehicle speed.  

 

(a) COV( , ,R R RE Iρ )=0.05, ICR(
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(c) ICR(
2

Im )=0.2, COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
v

Im )=0, 5 /v m s=  

 

(d) ICR(
v

Im )=0.2, COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
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Im )=0, 5 /v m s=  
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(e) COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=  

 

(f) COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1, 5 /v m s=  
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(g) COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 10 /v m s=  

 

(h) COV( , ,R R RE Iρ )=0.02, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=  

Figure 4.2 Mean value of random interval bridge displacement response at mid-span 
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The standard deviation (SD) of the random interval bridge displacement response at its 

mid-span is shown in Figures 4.3(a)-(f) when different conditions of uncertain 

parameters are under consideration. Figure 4.3(a) shows that the standard deviation of 

the bridge response is zero when only the uncertainties of interval parameters are taken 

into account, which is a pure interval problem and is also a special case of random 

interval problems. The Young’s modulus and moment of inertia produce the same 

effects on the bridge response as shown in Figures 4.3(b) and 4.3(c), which is greater 

than that caused by the density shown in Figure 4.3(d). In bridge design, changing 

moment of inertia of its cross-section will significantly affect the bridge behaviour. It 

can be easily seen from Figure 4.3(e) that the interval of the standard deviation of bridge 

response becomes much larger when the randomness of all bridge random parameters is 

included.  

From Figures 4.3(e)-(h), it can be also observed that the interval width of the standard 

deviation of the random interval bridge response is directly proportional to the 

uncertainties of random and interval variables and vehicle speed. 
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(c) COV( RI )=0.05, COV( Rρ , RE )=0, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=  

 

(d) COV( Rρ )=0.05, COV( RE , RI )=0, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=  
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(e) COV( Rρ , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=   

 

(f) COV( Rρ , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1, 5 /v m s=  
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(g) COV( Rρ , RE , RI )=0.05, ICR(.
1

Im ,
2

Im ,
v

Im )=0.2, 10 /v m s=  

 

(h) COV( Rρ , RE , RI )=0.02, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s=  

 Figure 4.3 Standard deviation of random interval bridge displacement at mid-span 
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To validate the accuracy of the random interval moment method (RIMM) presented in 

this chapter, a hybrid simulation method (HSM) is employed. This hybrid simulation 

method (HSM) combines direct simulation for interval variables and Monte-Carlo 

simulations for random variables. In every hybrid simulation, the first step is to 

arbitrarily generate values within the given intervals for all interval variables, and the 

second step is using 10,000 times Monte-Carlo simulations to determine the mean value 

and standard deviation of structural response. After repeat the whole procedure 10,000 

times, 10,000 mean values and 10,000 standard deviations can be obtained. Then the 

lower and upper bounds of them can be determined, respectively. More simulation 

times can be used for the two steps to improve the accuracy of the results. Hybrid 

simulations are implemented by using the MATLAB platform. The results obtained by 

the HSM are also given in Figures 4.2 and 4.3. It can be concluded that the results 

produced by the presented method are in very good agreement with those calculated by 

the HSM. 

To show the differences between the results generated by the RIMM and HSM in detail, 

the differences of mean value and standard deviation of bridge displacement are listed 

in Tables 4.2 to 4.3. Given the maximum difference is 1.10%, while the coefficients of 

variation for all random parameters are 0.05 and the interval change ratios of all interval 

parameters are 0.2, the mean values calculated by the two methods are very closed to 

each other. For the standard deviation, the maximum difference is 6.45%, which can be 

accepted because the hybrid simulation times used in this study are not enough to 

provide convergent results. 10,000 simulations used in the two rounds of HSM cannot 

yield convergent and reliable results although the total simulations are 106. The 

accuracy of the results obtained by the HSM can be improved if more simulations are 

implemented. 
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Table 4.2 Comparison of mean values  

(COV( Rρ , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 

Time (s) 
Upper bound 

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.02663 0.02671 0.29% 
 

0.01793 0.01790 0.17% 

2 0.04437 0.04461 0.55% 
 

0.02958 0.02947 0.36% 

3 0.05327 0.05353 0.49% 
 

0.03550 0.03549 0.02% 

4 0.05671 0.05680 0.16% 
 

0.03781 0.03768 0.35% 

5 0.05459 0.05467 0.14% 
 

0.03639 0.03610 0.81% 

6 0.04420 0.04436 0.37% 
 

0.02961 0.02929 1.10% 

7 0.02482 0.02506 0.97% 
 

0.01636 0.01625 0.68% 

 

 

Table 4.3 Comparison of standard deviations 

(COV( Rρ , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 

Time 
Upper bound 

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.00521 0.00547 4.72% 
 

0.00347 0.00339 2.33% 

2 0.01394 0.01415 1.50% 
 

0.00923 0.00894 3.22% 

3 0.00886 0.00894 0.91% 
 

0.00589 0.00577 2.14% 

4 0.03162 0.03182 0.62% 
 

0.02108 0.02095 0.63% 

5 0.00852 0.00854 0.19% 
 

0.00568 0.00549 3.54% 

6 0.02617 0.02797 6.45% 
 

0.01744 0.01713 1.83% 

7 0.01596 0.01638 2.57% 
 

0.01064 0.01024 3.87% 
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Generally, the accuracy of these results is satisfactory in practice. The presented random 

interval moment method has much less computational work than the simulation method. 

It should be noted that the accuracy of the results of random interval moment method 

can be further improved if second or higher order Taylor expansions are used. 

 

4.6 Conclusions 

In this chapter, non-deterministic dynamic response of vehicle-bridge interaction system 

with uncertain parameters is investigated by extending the random interval moment 

method to the dynamic coupling system. The uncertainties of system are modelled as 

random and interval variables. The expressions for calculating the bounds of 

expectation and variance of the random interval bridge response are derived. Using 

these formulations, the upper and lower bounds of mean value and standard deviation of 

bridge response can be very easily obtained.  

The results obtained by the presented random interval moment method are in very good 

agreement with those determined by Monte-Carlo simulation method. The differences 

of these two methods are quite small when the change ranges of system parameters are 

not large. The random interval moment method will be further developed to investigate 

the non-deterministic dynamic behaviour of a bridge under multiple moving vehicles. In 

addition, optimization methods can be embedded to obtain more accurate bounds of 

statistical moments of the random interval structural response.  
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Chapter 5 Dynamic Analysis of 

Vehicle-Bridge 

Interaction System 

with Uncertainties 

Based on Finite 

Element Model 

5.1 Introduction 

As mentioned in previous chapters, for dynamic analysis of vehicle-bridge interaction 

system, two kinds of methods are developed to analyse dynamic response of bridge 

structure subjects to moving vehicles. Analytical methods are suitable to solve the 

interaction dynamic problems derived from simplified vehicle-bridge models. 

Governing equations are not large number of partial differential equations which can be 

solved easily. Although assumptions and simplifications may be made, analytical 

methods have good capability to predict the system response based on the simple 

models [2-6]. Numerical methods have been widely used to treat more realistic models. 

Among these numerical methods, finite element method is one of the most versatile one 
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used by lots of researchers [64, 66, 69, 72, 75]. Finite element method enables handling 

more complex vehicle-bridge models for the dynamic interaction analysis. Henchi et al. 

[7] proposed an efficient algorithm for the dynamic analysis of a bridge discretized into 

three-dimensional finite elements with a stream of vehicles running on top at a 

prescribed speed. The vehicular axle loads acting on the bridge deck are represented as 

nodal forces using shape functions of the finite element. The coupled equations of 

motion of the vehicle bridge system are solved directly without the use of an iterative 

method. 

In this chapter, a finite element model is developed to calculate the dynamic response of 

a bridge under a moving vehicle with inherent uncertain parameters in the vehicle-

bridge interaction system. The algorithm, called random interval perturbation method, 

based on the proposed finite element model can handle a mixture random and interval 

uncertainties in the system parameters. A half-car model is used to represent the vehicle 

and beam elements are used to model the bridge. The vehicle parameters are assumed as 

interval variables, and the bridge parameters corresponding to Young’s modulus, mass 

and moment of inertia, are considered as random variables. The computational 

expressions for the lower and upper bounds of the first two statistical moments of the 

vertical responses of the bridge are developed by using the random interval perturbation 

method. Hybrid simulations are also implemented to validate the accuracy of the results 

produce by the presented method.  
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5.2 Random Interval Perturbation 

Method 

In this chapter, an approach called random interval perturbation method [10] is extended 

to calculate the mean value and variance of the random interval bridge response based 

on the finite element analysis framework. The finite element equilibrium equations of a 

structural system in displacement format is  

[ ] }{ }{K U f=                                                              (5.1) 

where [ ]K  is the global stiffness matrix, }{U  is the unknown displacement vector and 

}{ f  is the load vector. 

Let random vector 1 2( , , , )R R R R
na a a a=


  represent all random variables of the structural 

system, whereas, 1 2( , , , )I I I I
mb b b b=


  represent all interval variables. The structural 

stiffness matrix [ ]K  and load vector }{ f  are functions of Ra  and Ib


. Obviously 

structural displacement vector }{U  is also the function of Ra  and Ib


. Thus, the static 

equilibrium Eq.(5.1) can be written as 

}{ }{( , ) ( , ) ( , )R I R I R IK a b U a b f a b  = 
    

                                        (5.2) 

Using the Taylor expansion, the structural stiffness matrix and load vector can be 

expressed as 
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K a b K a b b
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 ∂     = + ∆    ∂∑


  
 

( )
2

1 1

( , ) ( , )c cn m
I R
j i iR R I

i ji i j

K a b K a b
b a a

a a b= =

    ∂ ∂    + + ∆ − ∂ ∂ ∂  
∑ ∑

  

 

2 3

1 1 1

( , ) ( , )1 ( )( )
2

c cn n m
I R R
j i i l lR R R R I

i l ji l i l j

K a b K a b
b a a a a R

a a a a b= = =

    ∂ ∂    + + ∆ − − + ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑

  

             (5.3) 
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  
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2

c cn n m
I R R
j i i l lR R R R I

i l ji l i l j

f a b f a b
b a a a a R

a a a a b= = =

 ∂ ∂ + + ∆ − − + ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑

  

                (5.4) 

where 1 2( , , , )na a a a=


  and 1 2( , , , )c c c c
mb b b b=


 . 

Neglecting the remainder term, the random interval matrix can be rewritten as 

1 2( , ) ( , ) ( , ) ( , )R I c R I R IK a b K a b K a b K a b       = + ∆ + ∆       
        

1 2dK K K= + ∆ + ∆                                                                                                        (5.5) 

where 

( )
2

1
1 1 1

( , ) ( , ) ( , )c c cm n m
I I R
j j i iI R R I

j i jj i i j

K a b K a b K a b
K b b a a

b a a b= = =

      ∂ ∂ ∂      ∆ = ∆ + + ∆ − ∂ ∂ ∂ ∂  
∑ ∑ ∑

    

 

( )
1 1 1

I R R I
j i i j

m n m
I I R
j j i ib a a b

j i j
K b K K b a a

= = =

 
′ ′ ′′= ∆ + + ∆ − 

 
∑ ∑ ∑                                                          (5.6) 
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2 3

2
1 1 1

( , ) ( , )1 ( )( )
2

c cn n m
I R R
j i i l lR R R R I

i l ji l i l j

K a b K a b
K b a a a a

a a a a b= = =

    ∂ ∂    ∆ = + ∆ − − ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑

  

1 1 1

1 ( )( )
2 R R R R I

i l i l j

n n m
I R R
j i i l la a a a b

i l j
K K b a a a a

= = =

 
′′ ′′′= + ∆ − − 

 
∑ ∑ ∑                                              (5.7) 

Similarly the load vector can also be expressed as 

}{ }{ }{ }{1 2( , ) ( , ) ( , ) ( , )R I c R I R If a b f a b f a b f a b= + ∆ + ∆
      

 

1 2df f f= + ∆ + ∆                                                                                                         (5.8) 

where 

}{ }{ }{ }{ ( )
2

1
1 1 1

( , ) ( , ) ( , )
( , )

c c cm n m
R I I I R

j j i iI R R I
j i jj i i j

f a b f a b f a b
f a b b b a a

b a a b= = =

 ∂ ∂ ∂ ∆ = ∆ + + ∆ − ∂ ∂ ∂ ∂  
∑ ∑ ∑

    


                      ( )
1 1 1

I R R I
j i i j

m n m
I I R
j j i ib a a b

j i j
f b f f b a a

= = =

 
′ ′ ′′= ∆ + + ∆ − 

 
∑ ∑ ∑                                     (5.9) 

}{ }{2 3

2
1 1 1

( , ) ( , )1 ( )( )
2

c cn n m
I R R
j i i l lR R R R I

i l ji l i l j

f a b f a b
f b a a a a

a a a a b= = =

 ∂ ∂ ∆ = + ∆ − − ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑

  

 

         
1 1 1

1 ( )( )
2 R R R R I

i l i l j

n n m
I R R
j i i l la a a a b

i l j
f f b a a a a

= = =

 
′′ ′′′= + ∆ − − 

 
∑ ∑ ∑                                     (5.10) 

Using the perturbation theory, we can get the following governing equation for static 

displacement response of the structure 

( ) ( )1 2 1 2 1 2d d dK K K U U U f f f+ ∆ + ∆ + ∆ + ∆ = + ∆ + ∆                                              (5.11) 
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where 

1
d d dU K f−=                                                                (5.12) 

                                   ( )1
1 1 1d dU K f KU−∆ = ∆ − ∆  

                                        ( )1 1
1 1d d dK f KK f− −= ∆ − ∆                                                      (5.13) 

( )1
2 2 1 1 2d dU K f K U KU−∆ = ∆ − ∆ ∆ − ∆                                           

( )( )1 1 1 1
2 1 1 1 2d d d d d dK f KK f KK f KK f− − − −= ∆ − ∆ ∆ − ∆ − ∆                                                   (5.14) 

The random interval structural displacement based on the first-order perturbation can be 

obtained as 

 1
1

RI
dU U U= + ∆                                                            (5.15) 

The structural displacement based on the second-order perturbation is given by 

2
1 2

RI
dU U U U= + ∆ + ∆                                                  (5.16) 

Substituting Eqs.(5.6), (5.9), (5.12) and (5.13) into Eq.(5.15) yields 

1 1RI
d dU K f−= ( )1

1 1 1
I R R I
j i i j

m n m
I I R

d j j i ib a a b
j i j

K f b f f b a a−

= = =

   ′ ′ ′′+ ∆ + + ∆ −  
  
∑ ∑ ∑  

             ( ) 1

1 1 1
I R R I
j i i j

m n m
I I R
j j i i d db a a b

j i j
K b K K b a a K f−

= = =

    ′ ′ ′′− ∆ + + ∆ −    
     
∑ ∑ ∑  
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            1
d dK f−= 1 1

1 1
I I
j j

m m
I I

d j j d db b
j j

K f b K b K f− −

= =

 
′ ′+ ∆ − ∆ 

 
∑ ∑  

          ( )1 1 1

1 1 1
R R I R R I
i i j i i j

n m m
I I R

d j d j d d i ia a b a a b
i j j

K f f b K K K b K f a a− − −

= = =

     ′ ′′ ′ ′′+ + ∆ − + ∆ −     
     

∑ ∑ ∑     (5.17) 

Substituting Eqs.(5.6), (5.7), (5.9), (5.10), (5.12), (5.13) and (5.14) into Eq.(5.16) gives 

2 1RI
d dU K f−=  

1 1

1 1
I I
j j

m m
I I

d j j d db b
j j

K f b K b K f− −

= =

 
′ ′+ ∆ − ∆ 

 
∑ ∑

1 1 1 1 1

1 1 1 1
I I I I
j j j j

m m m m
I I I I

d j d j d j d j d db b b b
j j j j

K K b K f b K K b K K b K f− − − − −

= = = =

′ ′ ′ ′− ∆ ∆ + ∆ ∆∑ ∑ ∑ ∑  

1 1 1

1 1 1
R R I R R I
i i j i i j

n m m
I I

d j d j d da a b a a b
i j j

K f f b K K K b K f− − −

= = =

     ′ ′′ ′ ′′+ + ∆ − + ∆    
    

∑ ∑ ∑  

1 1 1 1 1

1 1 1 1
I R R I I R R I
j i i j j i i j

m m m m
I I I I

d j d j d j d j d db a a b b a a b
j j j j

K K b K f f b K K b K K K b K f− − − − −

= = = =

   
′ ′ ′′ ′ ′ ′′− ∆ + ∆ + ∆ + ∆   

   
∑ ∑ ∑ ∑

1 1

1 1
R R I I
i i j j

m m
I I

d j d ja a b b
j j

K K K b K f b− −

= =

 
′ ′′ ′− + ∆ ∆ 

 
∑ ∑  

         ( )1 1 1

1 1
R R I I
i i j j

m m
I I R

d j d j d d i ia a b b
j j

K K K b K K b K f a a− − −

= =

  ′ ′′ ′+ + ∆ ∆ −  
  

∑ ∑  

1 1

1 1 1 1
R R I R R I
i i j l l j

n n m m
I I

d j d ja a b a a b
i l j j

K K K b K f f b− −

= = = =

     ′ ′′ ′ ′′+ − + ∆ + ∆    
    

∑ ∑ ∑ ∑  

                   1 1 1

1 1
R R I R R I
i i j i i j

m m
I I

d j d j d da a b a a b
j j

K K K b K K K b K f− − −

= =

   
′ ′′ ′ ′′+ + ∆ + ∆   

   
∑ ∑  

1 1 1

1 1

1 1 ( )( )
2 2R R R R I R R R R I

i l i l j i l i l j

m m
I I R R

d j d j d d i i l la a a a b a a a a b
j j

K f f b K K K b K f a a a a− − −

= =

    ′′ ′′′ ′′ ′′′+ + ∆ − + ∆ − −    
    

∑ ∑
  (5.18) 
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Using the random interval moment method, the mean value and variance of the 

random interval structural displacements based on the first-order perturbation can be 

obtained as 

1
1 1 1

1 1
RI I I

j j

m m
I I

d d d j j d dU b b
j j

K f K f b K b K fµ − − −

= =

 
′ ′= + ∆ − ∆ 

 
∑ ∑                                                    (5.19) 

1

2

2 1 1 1 2

1 1 1
RI R R I R R I R

i i j i i j i

n m m
I I

d j d j d dU a a b a a b a
i j j

K f f b K K K b K fσ σ− − −

= = =

     ′ ′′ ′ ′′= + ∆ − + ∆     
     

∑ ∑ ∑  

1 1 1

( ) 1 ( ) 1 1 1
R R I R R I
i i j i i j

n n m m
I I

d j d j d da a b a a b
i k k i j j

K f f b K K K b K f− − −

≠ = ≠ = = =

     ′ ′′ ′ ′′+ + ∆ − + ∆     
     

∑ ∑ ∑ ∑  

1 1 1

1 1

( , )R R I R R I
k k j k k j

m m
I I R R

d j d j d d i ka a b a a b
j j

K f f b K K K b K f Cov a a− − −

= =

     ′ ′′ ′ ′′⋅ + ∆ − + ∆     
     

∑ ∑                (5.20) 

2RIU  in Eq.(5.18) can be simply expressed as 

2 1RI
d dU K f−= 1 1

1 1
I I
j j

m m
I I

d j j d db b
j j

K f b K b K f− −

= =

 
′ ′+ ∆ − ∆ 

 
∑ ∑

 

1 1 1 1 1

1 1 1 1
I I I I
j j j j

m m m m
I I I I

d j d j d j d j d db b b b
j j j j

K K b K f b K K b K K b K f− − − − −

= = = =

′ ′ ′ ′− ∆ ∆ + ∆ ∆∑ ∑ ∑ ∑  

( )
1

( , )
n

R I R
i i i

i
A a b a a

=

+ −∑


( ) ( )
1 1

( , , )
n n

R R I R R
i l i i i i

i l
B a a b a a a a

= =

+ − −∑ ∑


                          (5.21) 

where 

1 1 1

1 1

( , ) R R I R R I
i i j i i j

m m
R I I I
i d j d j d da a b a a b

j j
A a b K f f b K K K b K f− − −

= =

   
′ ′′ ′ ′′= + ∆ − + ∆   

   
∑ ∑


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                   1 1

1 1
I R R I
j i i j

m m
I I

d j d jb a a b
j j

K K b K f f b− −

= =

 
′ ′ ′′− ∆ + ∆ 

 
∑ ∑

1 1 1

1 1
I R R I
j i i j

m m
I I

d j d j d db a a b
j j

K K b K K K b K f− − −

= =

 
′ ′ ′′+ ∆ + ∆ 

 
∑ ∑  

1 1

1 1
R R I I
i i j j

m m
I I

d j d ja a b b
j j

K K K b K f b− −

= =

 
′ ′′ ′− + ∆ ∆ 

 
∑ ∑ 1 1 1

1 1
R R I I
i i j j

m m
I I

d j d j d da a b b
j j

K K K b K K b K f− − −

= =

 
′ ′′ ′+ + ∆ ∆ 

 
∑ ∑   

(5.22) 

1 1

1 1

( , , ) R R I R R I
i i j l l j

m m
R R I I I
i l d j d ja a b a a b

j j
B a a b K K K b K f f b− −

= =

   
′ ′′ ′ ′′= − + ∆ + ∆   

   
∑ ∑


 

            1 1 1

1 1
R R I R R I
i i j i i j

m m
I I

d j d j d da a b a a b
j j

K K K b K K K b K f− − −

= =

   
′ ′′ ′ ′′+ + ∆ + ∆   

   
∑ ∑  

1 1 1

1 1

1 1
2 2R R R R I R R R R I

i l i l j i l i l j

m m
I I

d j d j d da a a a b a a a a b
j j

K f f b K K K b K f− − −

= =

   
′′ ′′′ ′′ ′′′+ + ∆ − + ∆   

   
∑ ∑                 (5.23) 

Similarly, the mean the mean value and variance of the random interval structural 

displacements based on the second-order perturbation can be developed. 

5.3 Formulation of the Vehicle-Bridge 

Model 

In the vehicle-bridge interaction system, the bridge is also modelled as an Euler-

Bernoulli beam consisting of a number of elements and the vehicle is represented by a 

half-car model as shown in Figure 5.1. Again, vm , 1m and 2m  denote the sprung mass 

and unsprung masses respectively; a1 and a2 are the position parameters; S is the axle 
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spacing; the suspension system is represented by two linear springs of stiffness 1sk , 2sk

and two linear dampers with damping rates 1sc , 2sc ; the tires are also modeled by two 

linear springs of stiffness 1tk , 2tk  and two linear dampers with damping rates 1tc , 2tc ;

ρ , E , I and L are the mass per unit length, elastic modulus, moment of inertia and 

length of the beam respectively. 

Iv

m2 m1

ks1cs2 cs1

y1

kt1ct2 ct1
kt2

a2S

mv, yv

a1S

f2(x,t)

ks2

y2

L

E,I,ρ

y3y4

f1(x,t)

 

Figure 5.1 Model of vehicle-bridge interaction system 

5.3.1 Equation of motion of the vehicle system 

The equation of motion of the vehicle are derived as follows 

1 1 3 2 2 4 1 1 3 2 2 4( ) ( ) ( ) ( ) 0v v s s s sm y c y y c y y k y y k y y+ − + − + − + − =               (5.24) 

1 1 1 3 2 2 2 4 1 1 1 3 2 2 2 4( ) ( ) ( ) ( ) 0v v s s s sI a Sc y y a Sc y y a Sk y y a Sk y yθ − − + − − − + − =            (5.25) 

1 3 1 1 3 1 1 3( ) ( )s sm y c y y k y y− − − −             

1 1 1 1 1 1 1 1( ( , ) ( , )) ( ( , ) ( , ))t tk y W x t r x t c y W x t r x t= − − − − − −                                          (5.26) 
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2 4 2 2 4 2 2 4( ) ( )s sm y c y y k y y− − − −     

                 2 2 2 2 2 2 2 2( ( , ) ( , )) ( ( , ) ( , ))t tk y W x t r x t c y W x t r x t= − − − − − −                       (5.27)

1 1v vy y a Sθ= −  ,  2 2v vy y a Sθ= +                                                  (5.28) 

2 1 1 2vy a y a y= +  ,  2 1( )
v

y y
S

θ −
=                                                      (5.29)

2 1 1 2 1 1 3 2 2 4 1 1 3 2 2 4( ) ( ) ( ) ( ) ( ) 0v s s s sm a y a y c y y c y y k y y k y y+ + − + − + − + − =                 (5.30) 

1 2
1 1 1 3 2 2 2 4 1 1 1 3 2 2 2 42

( ) ( ) ( ) ( ) ( ) 0v s s s s
y yI a c y y a c y y a k y y a k y y
S

− +
− − + − − − + − =

 
      (5.31) 

1 3 1 1 3 1 1 3 1 1 1 1

1 1 1 1

( ) ( ) ( ( , ) ( , ))

( ( , ) ( , ))
s s t

t

m y c y y k y y k y W x t r x t
c y W x t r x t

− − − − = − − −

− − −

  

                                   (5.32) 

2 4 2 2 4 2 2 4 2 2 2 2

2 2 2 2

( ) ( ) ( ( , ) ( , ))

( ( , ) ( , ))
s s t

t

m y c y y k y y k y W x t r x t
c y W x t r x t

− − − − = − − −

− − −

  

 
                            (5.33) 

The equation of motion for the vehicle can also be written in terms of matrices as 

[ ]{ } [ ]{ } [ ]{ } { }( , )v v v v v vM Y C Y K Y F x t+ + =                                            (5.34) 

{ }
1

2

0
0

( , )
( , )
( , )

F x t
f x t
f x t

 
  =  − 
 − 

                                          (5.35) 

where [ ]vM ,[ ]vC ,[ ]vK  are, respectively, the mass, damping and stiffness matrices of 

the vehicle system; { }vY  is the response vector of the vehicle. The details of the 

matrices in Eq. (5.34) are 
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[ ]

2
2 1 22 2

2
1 2 12 2

1

2

0 0

0 0

0 0 0
0 0 0

v v
v v

v v
v vv

I Im a m a a
S S
I Im a a m aM
S S

m
m

 + − 
 
 − +=  
 
 
   ; 

 [ ]

1 1

2 2

1 1

2 2

0 0
0 0

0 0
0 0

s s

s s
v

s s

s s

c c
c c

C
c c

c c

− 
 − =
− 
 − 

 

[ ]

1 1

2 2

1 1

2 2

0 0
0 0

0 0
0 0

s s

s s
v

s s

s s

k k
k k

K
k k

k k

− 
 − =
− 
 − 

; 

{ }

1

2

3

4

v

y
y

Y
y
y

 
  =  
 
  

;                                                             (5.36) 

The contact forces ),(
1

txf RI  and ),(
2

txf RI are  

1 1 1 1 1 1 1 1 1( , ) ( ( , ) ( , )) ( ( , ) ( , ))t tf x t k y W x t r x t c y W x t r x t= − − + − −                           (5.37) 

2 2 2 2 2 2 2 2 2( , ) ( ( , ) ( , )) ( ( , ) ( , ))t tf x t k y W x t r x t c y W x t r x t= − − + − −                         (5.38) 

5.3.2  Equation of motion of the bridge 

In this study, the bridge is modelled as a simply supported beam consisting of a number 

of elements. The equation of motion of the bridge is given by 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }( ( , )) ( , )b b b b b b bM Y C Y K Y L F x t F x t+ + =                              (5.39) 
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The equations of motion for a bridge in the modal space can be written as 

q q q Fχ+ +Ω =Φ                                                                        (5.40) 

where 

{ }2 ;i idiagχ ξω=       

( )
( )

( )

1

2 ;

N

q t
q tq

q t

 
 
 
 
 
 
 

=


 { }2 ;idiag ωΩ =  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

N

N

N N N N

x t x t x t

x t x t x t

x t x t x t

φ φ φ

φ φ φ

φ φ φ

 
 
 
 
 
 
 

Φ =



 
;  

( )
( )

2 1 1 3 1 1 1 3 1 1

1 2 2 3 1 1 2 3 1 1

( ( , ) ( , )) ( ( , ) ( , ))
( ( , ) ( , )) ( ( , ) ( , ))

v t t

v t t

m a m g k y W x t r x t c y W x t r x t
F

m a m g k y W x t r x t c y W x t r x t
 + + − − + − − =  + + − − + − −  

 

 
          (5.41) 

where [ ]bM ,[ ]bC ,[ ]bK  are, respectively, the mass, damping and stiffness matrices of 

the bridge; { }bY  is the response vector of the bridge. ( )iq t  is the i th modal coordinate 

of the bridge; N is the number of the modes; iξ  is the i th modal damping; ( )( )i jx tφ  is 

the i th modal shape function at ( )jx t , which is determined from the eigenvalue and 

eigenfunction analysis; iω  is the undamped circular frequency. [ ]{ }( ( , )) ( , )bL F x t F x t  is 

the equivalent nodal load vector of the vehicle-bridge interaction forces.           
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5.3.3 Equation of motion of the vehicle-bridge interaction 

system 

From Eqs.(5.34) and (5.39), the equation of motion of the vehicle-bridge interaction 

system can be developed as 

[ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( )M t Y t C t Y t K t Y t P t+ + =                                              (5.42) 

where 

( )
v
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M t

M
 

=  
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2
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0
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t
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 
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K vC K K K
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 ′− Φ − Φ − + 

 ; 
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0
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T
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s s
T

t s s t

M C M C
C t C C

C C C C

χ + Φ Φ − Φ
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 − Φ − + 
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0

n

g

M
P t P t

Φ 
 = ⋅ 
  

 

( ) 1 2 1 2 3 4NY t q q q y y y y  =                                                          (5.43) 

where ( ) ( ) ( ), ,M t C t K t  represent the coupled mass, stiffness and damping matrices 

respectively. ( ){ } ( ){ } ( ){ }, ,Y t Y t Y t   are the nodal acceleration, velocity and 

displacement vectors of the bridge deck respectively, and ( ){ }P t  is the equivalent nodal 

load vector from the bridge–vehicle interaction force . 

In order to account for uncertainties uncertainty in the bridge, the equation of motion 

governing the transverse or vertical vibration of the bridge under the moving vehicle 

with uncertainties in the system parameters can be written as 
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{ } { }( , , ) ( , , ) ( , , ) ( , , )R I RI R I R I RI R IM a b t Y a b t C a b t Y a b t   +   
                 

 { } { }( , , ) ( , , ) ( , , )R I RI R I R IK a b t Y a b t P a b t + = 
                         (5.44) 

( , , )R IM a b t


, ( , , )R IC a b t


, ( , , )R IK a b t


 are the stochastic mass, damping and stiffness 

matrices of the bridge and they can be further expressed as 
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bM M= + ∆                                                (5.45) 

1

( , )
( , , ) ( , )

cm
R I c I

jI
j j

C a b
C a b t C a b b

b=

 ∂   = + ∆  ∂∑


  

( )
2

1 1

( , ) ( , )c cn m
I R
j i iR R I

i ji i j

C a b C a b
b a a

a a b= =

    ∂ ∂    + + ∆ − 
∂ ∂ ∂  

∑ ∑
  

 

bC C= + ∆                                                                                         (5.46) 
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bK K= + ∆                                                                                                               (5.47) 

, ,M C K∆ ∆ ∆  are the uncertain components of the system mass, damping and stiffness 

matrices.  

In addition, the Rayleigh damping is assumed as 
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a bC c M c K= +                                                   (5.48) 

where ac  and bc are constants. 

Using the strategy of random interval perturbation method, mean value and variance of 

the bridge dynamic response can be obtained as 

( ) ( )( )
1
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( )( ) ( ) ( )( )( )2
, , , , , ,R I R I R IVar Y a b t E Y a b t Y a b tµ = −  

    

( ) 2

1 1 1
, ,

( , ), ,

c c

cR In n m
I
jR R I

i k ji i j
a b a b

Y a bY a b t
b

a a b= = =

   ∂∂    + ∆   ∂ ∂ ∂     
∑∑ ∑

  

 

          

( ) ( )
2

1
, ,

( , ), ,
,

c c

cR I m
I R R
j i kR R I

jk k j
a b a b

Y a bY a b t
b Cov a a

a a b=

   ∂∂    + ∆   ∂ ∂ ∂     
∑

  

 
 

                               (5.48) 

From above equations, mean value and variance of stochastic interval dynamic 

response can be evaluated by the first and second derivatives of dynamic response with 

respect to random and interval variables. 

5.4 The Procedure of Implementation 

The dynamic response of a bridge subjects to moving a vehicle can be calculated by the 

following procedure: 

Step 1. Calculate the random/interval mass, stiffness and damping matrices of the 

vehicle and bridge. 
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Step 2. Calculate the random frequencies ( iω ) and mode shapes ( (x (t))jφ  ) of the 

bridge. 

Step 3. Calculate the random interval displacement response of bridge using the 

Newmark- β  method. 

Step 4. Calculate the interval mean value and standard deviation of the random interval 

displacement response of bridge. 

5.5  Numerical Simulations  

In this chapter, bridge parameters are considered as Gaussian random variables and 

vehicle parameters are treated as interval variables. Their nominal values (mean values 

or midpoints) taken in the numerical simulation are listed in Tables 5.1 and 5.2. The 

unit of the bridge displacement response is meter. The beam elements are used and the 

bridge is divided into 50 equal segments/elements. The vehicle parameters are typical 

for a lightly damped passenger car [119]. 
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Table 5.1 Parameters of the vehicle model 

Description Notation Value 

Sprung mass 
𝑚1

𝑐 1000𝑘𝑔 

𝑚2
𝑐 1500𝑘𝑔 

Unsprung mass 𝑚𝑣
𝑐 

 

 

17800𝑘𝑔  

Suspension stiffness 
𝑘𝑠1 2.5 × 106𝑁/𝑚  

𝑘𝑠2 4.2 × 106𝑁/𝑚  

Tyre stiffness 
𝑘𝑡1 5.2 × 106𝑁/𝑚  

𝑘𝑡2 7.2 × 106𝑁/𝑚 

 

 𝑐𝑠1 9000𝑁/𝑚 
Suspension damping 

𝑐𝑠2 9600𝑁/𝑚 

Tyre damping 
𝑐𝑡1 920𝑁/𝑚 

𝑐𝑡2 960𝑁/𝑚 

 

Table 5.2 Parameters of the bridge model 

Description Notation Value 

Length of the bridge L 40m 

Moment of inertia I 0.16m4 

Damping ratio ζ  0.05 

Young’s modulus E 3.3 × 1010N/m2 

Mass density ρ  7800 kg/m3 

 

Similar as last chapter, the effect of each parameter (masses of the vehicle, elastic 

modulus and inertial moment of the area as well as the mass per unit of te bridge and so 
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on) on the dynamic response of vehicle-bridge interaction system are analysed. In 

addition, uncertainties of the parameters in the vehicle-bridge interaction system are 

considered simultaneously. In the current example, the road surface roughness is not 

considered. The following properties of the bridge are use in the simulation: damping 

ratio ζ = 0.05 for all modes; Gaussian random variables are employed to model all 

bridge parameters (elastic modulus E, mass density 𝜌 and second moment of inertia𝐼). 

The coefficients of variation of 𝐸, 𝐼 ,𝜌 are all assumed as 0.05 or 0.02, respectively. All 

parameters of vehicle are assumed as interval variables and the interval change ratios 

(ICR) are considered as 0.1 or 0.2, respectively. The vehicle is assumed to move on the 

bridge with two different velocities, smv /5=  and smv /10= , which are taken into 

account to investigate the influence of vehicle velocity on the bridge response. 

The mean values of the bridge displacement response under moving vehicle with sm /5  

at its mid-span are given in Figures 5.2-5.8, respectively. A special case of random 

interval perturbation method is shown in Figure 5.2 when all system parameters are 

assumed as random variables. From Figure 5.2, it can be obviously observed that the 

random variables of system parameters do not affect the mean value of the random 

interval structural response. In other words, the mean value of structural response is not 

an interval but a deterministic value if system structural parameters and loads are 

random variables. However, the mean value of bridge response is an interval if the 

structural has interval parameters or loads. The interval width of structural response 

depends on the dispersal degree of the interval parameters.  

The mean values of bridge displacement shown in Figures 5.3-5.7 consider the 

individual system parameter as a random variable in turn. From these figures, it can be 

easily obtained that the changes of vehicle masses 1m  and 2m produce the similar 
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effect on the bridge response. The effects caused by suspension (unsprung) masses 1m

and 2m are smaller than that produced by the sprung mass vm  as their upper bounds 

and lower bounds are smaller when the interval change ratios of these three masses are 

same. Figures 5.7 and 5.8 denote the displacement response of bridge when 

uncertainties of all parameters of system are included. It is obvious that the interval 

width of bridge response is much larger than those when only one uncertain parameter 

is addressed.  

 

Figure 5.2 Mean value of displacement response of bridge at mid-span  
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Figure 5.3 Displacement response of bridge at mid-span  

(COV( , ,R R RE Iρ )=0.05, ICR( 1
Im )=0.1, 5 /v m s= ) 

 

Figure 5.4 Displacement response of bridge at mid-span  

(COV( , ,R R RE Iρ )=0.05, ICR( 2
Im  )=0.1, 5 /v m s= ) 
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Figure 5.5 Displacement response of bridge at mid-span  

(COV( , ,R R RE Iρ )=0.05, ICR( I
vm )=0.1, 5 /v m s= ) 

 

Figure 5.6 Displacement response of bridge at mid-span  

(COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
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Im ,
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Im )=0.1, 10 /v m s= ) 
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Figure 5.7 Displacement response of bridge at mid-span 

(COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 

 

Figure 5.8 Displacement response of bridge at mid-span 

(COV( , ,R R RE Iρ )=0.02, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 
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The standard deviation (SD) of the vertical displacement response of bridge at midpoint 

are shown in Figures 5.9-5.19 to demonstrate the variations and intervals of the bridge 

response which are produced by the uncertainties of system parameters. Figures 5.9-

5.13 show the standard deviation of bridge response when vehicle parameters are 

considered as interval variables and the individual bridge parameter is assumed as a 

random variable.  

From Figures 5.9 and 5.10, it can be observed that the interval width of the standard 

deviation of the random interval bridge response becomes larger when the change 

ranges of interval parameters. From Figure 5.10 and Figure 5.11, it can be easily 

obtained that Young’s modulus and moment of inertia of the bridge produce the same 

upper bounds on the bridge response, which is greater than that caused by the density 

shown in Figure 5.12. Figures 5.13-5.16 show the standard deviation of bridge 

displacement when all system parameters are treated as uncertain variables and the 

velocity of the vehicle is 5m/s. In order to investigate the effect of vehicle velocity to 

bridge response, the velocity of vehicle is increased from 5m/s to 10m/s and the results 

are shown in Figure 5.17.  

From Figures 5.13-5.17, it can be obtained that the interval width of the standard 

deviation of the random interval bridge response is directly proportional to the dispersal 

degree of interval and random variables and vehicle velocity. In summary, it can be 

easily observed that the bridge response is more sensitive to the change of its own 

parameters. In addition, the upper bound and interval width of the standard deviation of 

the random interval bridge displacement will increase when the vehicle velocity 

increases. 
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Figure 5.9 Standard deviation of bridge displacement at mid-span 

(COV( RE )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1, 5 /v m s= ) 

  

Figure 5.10 Standard deviation of bridge displacement at mid-span 

(COV( RE )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 

0 1 2 3 4 5 6 7 8

0

0.005

0.01

0.015

0.02

0.025

Time(s)

S
D

 o
f d

is
pl

ac
em

en
t(m

)

 

 
Lower bound
Upper bound

0 1 2 3 4 5 6 7 8

0

0.005

0.01

0.015

0.02

0.025

0.03

Time(s)

S
D

 o
f d

is
pl

ac
em

en
t(m

)

 

 
Lower bound
Upper bound

156 
 



 
Figure 5.11 Standard deviation of bridge displacement at mid-span 

(COV( RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 

 
Figure 5.12 Standard deviation of bridge displacement at mid-span 

(COV( Rρ )=0.05, ICR(
1

Im ,
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Im ,
v

Im )=0.2, 5 /v m s= ) 
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Figure 5.13 Standard deviation of bridge displacement at mid-span 

(COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1, 5 /v m s= ) 

 

Figure 5.14 Standard deviation of bridge displacement at mid-span 

(COV( , ,R R RE Iρ )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 5 /v m s= ) 
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Figure 5.15 Standard deviation of bridge displacement at mid-span 

(COV( , ,R R RE Iρ )=0.02, ICR(
1

Im ,
2

Im ,
v

Im )=0.1, 5 /v m s=  )

 

Figure 5.16 Standard deviation of bridge displacement at mid-span 

(COV( , ,R R RE Iρ )=0.02, ICR(
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Im ,
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Im ,
v

Im )=0.2, 5 /v m s= ) 
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Figure 5.17 Standard deviation of bridge displacement at mid-span 

(COV( , ,R R RE Iρ )=0.02, ICR(
1

Im ,
2

Im ,
v

Im )=0.2, 10 /v m s= ) 

 

Table 5.3 Comparison of mean values of bridge displacement between RIPM and HSM 

(COV (E) =0.05, ICR(all)=0.2, v=5m/s) 

Time 
Upper bound 

 
Lower bound 

RIPM HSM Difference 
 

RIPM HSM Difference 

1 0.02673 0.02679 0.22%   0.01795 0.01791 0.22% 

2 0.04439 0.04463 0.54%  0.02958 0.02946 0.42% 

3 0.05327 0.05353 0.49%  0.035531 0.03549 0.12% 

4 0.05757 0.05768 0.19%  0.037821 0.03768 0.37% 

5 0.0546 0.05467 0.13%  0.036439 0.0361 0.94% 

6 0.04428 0.04436 0.18%  0.029516 0.02929 0.77% 

7 0.02489 0.02506 0.67%   0.016376 0.01625 0.78% 
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Table 5.4 Comparison of standard deviations of bridge displacement between RIMM 

and HSM (COV(E)=0.05, ICR(all)=0.2, v=10m/s) 

Time 
Lower bound 

 
Upper bound  

RIMM HSM Difference 
 

RIMM HSM Difference 

0.5 0.018461 0.018138 1.78% 
 

0.012218 0.012329 0.90% 

1 0.052795 0.052456 0.65% 
 

0.035042 0.035626 1.64% 

1.5 0.048893 0.048436 0.94% 
 

0.032506 0.033259 2.26% 

2 0.068011 0.064706 5.11% 
 

0.045772 0.046589 1.75% 

2.5 0.056501 0.054601 3.48% 
 

0.037383 0.038879 3.85% 

3 0.039919 0.039739 0.45% 
 

0.026849 0.027017 0.62% 

3.5 0.031141 0.030011 3.76% 
 

0.020996 0.021511 2.39% 

 

 

Table 5.5 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov(E)=0.02, ICR(all)=0.2, v=5m/s) 

Time 

Upper bound  
 

Lower bound 

RIMM HSM Difference 
 

RIMM HSM 
Differenc

e 

1 0.007967 0.008028 0.76% 
 

0.00291 0.00288 1.24% 

2 0.00803 0.008081 0.63% 
 

0.00986 0.00977 0.95% 

3 0.015356 0.015436 0.52% 
 

0.00519 0.00517 0.43% 

4 0.02546 0.025946 1.87% 
 

0.02022 0.01992 1.50% 

5 0.007083 0.007112 0.41% 
 

0.01365 0.01358 0.55% 

6 0.012198 0.012432 1.88% 
 

0.00449 0.00443 1.45% 

7 0.004809 0.004891 1.67% 
 

0.00658 0.00651 1.04% 
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Table 5.6 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov(I)=0.02, ICR(all)=0.2, v=5m/s) 

Time 
Upper bound  

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.007965 0.008028 0.78% 
 

0.00656 0.00651 0.74% 

2 0.008043 0.008081 0.47% 
 

0.00455 0.00443 2.71% 

3 0.015357 0.015436 0.51% 
 

0.01362 0.01358 0.28% 

4 0.025446 0.025946 1.93% 
 

0.02030 0.01992 1.93% 

5 0.00708 0.007112 0.45% 
 

0.00519 0.00517 0.52% 

6 0.012195 0.012432 1.91% 
 

0.00987 0.00977 1.02% 

7 0.004809 0.004891 1.68% 
 

0.00290 0.00288 0.78% 

 

 

Table 5.7 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov( ρ )=0.05, ICR(all)=0.2, v=5m/s) 

Time 
Upper bound  

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.009065 0.009087 0.24% 
 

0.0077404 0.007706 0.44% 

2 0.009028 0.009087 0.65% 
 

0.0067994 0.006596 3.08% 

3 0.014476 0.014535 0.40% 
 

0.0114549 0.011345 0.96% 

4 0.021905 0.022019 0.52% 
 

0.0181409 0.018014 0.70% 

5 0.000658 0.000666 1.15% 
 

0.0005096 0.000508 0.27% 

6 0.014426 0.014483 0.39% 
 

0.0115539 0.011426 1.12% 

7 0.005165 0.005202 0.70% 
 

0.004125 0.004101 0.58% 
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Table 5.8 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov(all)=0.05, ICR(all)=0.2, v=5m/s) 

Time 
Upper bound  

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.016003 0.016132 0.80% 
 

0.0107009 0.010522 1.70% 

2 0.015003 0.015187 1.21% 
 

0.0080997 0.00803 0.87% 

3 0.03061 0.030966 1.15% 
 

0.0204054 0.020021 1.92% 

4 0.044417 0.046014 3.47% 
 

0.0297097 0.028797 3.17% 

5 0.004698 0.004707 0.19% 
 

0.002397 0.002352 1.91% 

6 0.024307 0.024856 2.21% 
 

0.0164035 0.01603 2.33% 

7 0.0085 0.008585 0.99% 
 

0.0058987 0.005814 1.46% 

 

 

Table 5.9 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov(all)=0.02, ICR(all)=0.2, v=5m/s) 

Time 
Upper bound  

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.006443 0.006515 1.10% 
 

0.0042416 0.004203 0.92% 

2 0.005603 0.005676 1.30% 
 

0.003481 0.003402 2.33% 

3 0.011647 0.011984 2.81% 
 

0.0084848 0.008446 0.46% 

4 0.017772 0.017998 1.26% 
 

0.0118874 0.011719 1.44% 

5 0.00196 0.001969 0.45% 
 

0.0009991 0.000987 1.23% 

6 0.009846 0.009978 1.33% 
 

0.0064032 0.006326 1.22% 

7 0.003401 0.003418 0.50% 
 

0.0021601 0.002082 3.77% 
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Table 5.10 Comparison of standard deviation of bridge displacement between RIMM 

and HSM (Cov(all)=0.05, ICR(all)=0.1, v=5m/s) 

Time 
Upper bound  

 
Lower bound 

RIMM HSM Difference 
 

RIMM HSM Difference 

1 0.014727 0.014987 1.74% 
 

0.0118905 0.011829 0.52% 

2 0.012988 0.013063 0.57% 
 

0.0097861 0.009479 3.24% 

3 0.028085 0.028761 2.35% 
 

0.0214058 0.020914 2.35% 

4 0.041169 0.041653 1.16% 
 

0.033849 0.033185 2.00% 

5 0.003839 0.003898 1.53% 
 

0.003656 0.003577 2.22% 

6 0.022687 0.023527 3.57% 
 

0.0182951 0.01803 1.47% 

7 0.007773 0.007988 2.69% 
 

0.0061264 0.006091 0.58% 

 

Similarly as last chapter, a hybrid simulation method (HSM) is employed to verify the 

accuracy of the accuracy of the random interval perturbation method (RIPM) presented 

herein. These hybrid simulations are implemented in MATLAB platform. The results 

obtained by the HSM are given in Tables 5.3-5.10.  

A comparison of the results generated by the RIPM and HSM and the differences of 

mean values and standard deviations of bridge displacement are listed in Tables 5.3-

5.10. From Table 5.3, it is easily obtained that the mean values, calculated by RIPM and 

HSM, are very closed to each other, The maximum difference of mean value is only 

0.91% while the coefficients of variation for all random parameters are 0.05, the interval 

change ratios of all interval variables are 0.2 and the vehicle velocity is 5m/s. Tables 

5.4-5.10 show the standard deviations of bridge displacement while the parameters of 

the vehicle-bridge interaction system are considered as uncertain variables. From these 
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tables, the maximum difference of the standard deviation is 5.11%, while the 

coefficients of variation for all random parameters are 0.05, the interval change ratios of 

all interval parameters are 0.2 and the velocity of vehicle is 10m/s. The difference can 

be accepted because the hybrid simulation times used in this study are not enough to 

provide convergent results which have been mentioned in previous chapter. Generally, 

the accuracy of these results is satisfactory in real engineering. The presented random 

interval perturbation method has much less computational work than the simulation 

method, especially for complex structure. It can be concluded that the proposed method 

for vehicle-bridge interaction system with uncertainties can maintain a satisfactory 

accuracy. 

5.6 Conclusions 

In this chapter, the finite element model has been employed to describe vehicle-bridge 

interaction systems. The nondeterministic dynamic response of bridge subjects to 

moving vehicle with uncertain system parameters is investigated by using the random 

interval perturbation method. The uncertainties of vehicle are modeled as interval 

variables and the parameters of bridge are considered as randomness. The expressions 

for calculating the bounds of expectation and variance of bridge response have been 

derived by using the random interval perturbation method. Using these formulations, the 

upper and lower bounds can be very easily obtained. The effects of random and interval 

parameters on bridge response are also studied. 

The random interval perturbation method has good accuracy even the vehicle-bridge 

interaction system has different type of uncertain parameters simultaneously. The 
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random interval perturbation method will be further developed to investigate the non-

deterministic dynamic behaviors of a bridge under multiple moving vehicles based on 

finite element model, and this method will also be applied to other engineering 

structural system. In addition, optimization methods also can be used to obtain more 

accuracy result for some smart structure.  
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Chapter 6 Conclusion, Summary 

and Future Work 

This chapter summarizes the aims of this thesis, concludes the reported research work 

and discusses the potential tasks. 

6.1 Summary and Conclusions 

This thesis deals with the non-deterministic dynamic response of a bridge subjected to a 

moving vehicle with uncertain system parameters. The research is expected to serve as a 

base for further studies in the field of vehicle-bridge structure engineering and its 

application has potential to be extended to other types of structural systems. 

This thesis aims to provide predictive techniques for dynamic vibration analysis of 

vehicle-bridge interaction systems with uncertainties in the structural parameters. This 

has been achieved by developing a range of innovative and inter-disciplinary methods.  

The first part of this thesis is an extensive literature review on dynamic analysis of 

vehicle-bridge interaction system with/without uncertainties and innovative methods 

developed to address uncertain problems in structural dynamics.  In the second part of 

the thesis, dynamic behavior of vehicle-bridge interaction system with uncertain 

parameters is investigated by models represented by a moving-sprung-mass and a 

quarter-car moving on a simply supported beam. Different road surface conditions are 

considered. Random moment method is applied to analyze the dynamic response of 
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bridge subjected to moving vehicle with uncertainties. The vehicle and bridge 

parameters are treated as random variables and the road roughness is considered as 

random process. The effect of individual parameters is investigated.  

In Chapter 3, the moving vehicle is modeled as a half car. Vehicle and bridge 

parameters are considered as interval variables due to lack of sufficient data or large 

change ranges. Interval analysis method is employed to examine the variations of bridge 

responses induced by the moving vehicle with uncertain parameters. Young’s modulus, 

density and moment of inertia of the bridge as well as the sprung mass and suspension 

masses of the vehicle are set to vary within the predefined small change ranges. The 

limitations of this method are that it only predicts the upper and lower bounds of the 

displacement response of bridge. No information could be obtained for the statistical 

distribution of the response within these bounds. In addition, LHNPSO, a novel particle 

swarm optimization method with low-discrepancy sequence initialized particles and 

high-order nonlinear time-varying inertia weight and constant acceleration coefficients, 

is developed to find the sharp bounds of bridge displacement. The results obtained from 

interval analysis method and LHNPSO have been verified by Monte-Carlo simulations. 

Three methods have a good agreement mutually. 

After methods for dynamic response of vehicle-bridge interaction system with pure 

random or pure interval parameters are successfully developed, a mixture of different 

types of uncertainties are investigated ranging from randomness in the bridge material 

properties and interval uncertainties in the vehicle parameters of vehicle-bridge 

interaction system in Chapter 4. The random interval moment method is introduced into 

the dynamic analysis of vehicle-bridge interaction system when mixed random and 

interval parameters are under consideration. In this chapter, the verification of the 
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proposed method is implemented using a hybrid simulation method. This hybrid 

simulation method (HSM) combines direct simulation for interval variables and Monte-

Carlo simulations for random variables. In every hybrid simulation, the first step is to 

arbitrarily generate values within the given intervals for all interval variables, and the 

second step is using Monte-Carlo simulations to handle the random variables. 

Finally, finite element model integrating with the vehicle-bridge interaction system is 

presented in Chapter 5. The random interval perturbation method is used to investigate 

the bridge nondeterministic dynamic response under moving vehicle with a mixture of 

uncertain system parameters. The uncertainties of vehicle parameters are described by 

interval variables and uncertain parameters of the bridge are modeled as random 

variables. Using the formulations developed by the random interval perturbation 

method, the upper and lower bounds of expectation and variance of bridge response can 

be very easily determined. The effects of individual random and interval parameters on 

bridge response are also investigated. Results generated by the hybrid simulation 

method successfully confirmed the accuracy and efficiency of the proposed method in 

this chapter. 

In conclusion, this thesis systematically studied the non-deterministic dynamic 

properties of the vehicle-bridge interaction system with variety types of uncertainties. 

Probabilistic, non-probabilistic and hybrid probabilistic and non-probabilistic methods 

have been developed to analyze the dynamic response of a bridge under moving 

vehicles accounting for the uncertain parameters in the coupling system. In addition, 

LHNPSO has been presented to find the exact ranges of bridge response. All of the 

results obtained by the proposed methods have been verified by simulation methods. 
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6.2 Recommendations and Future Work 

The research in this thesis demonstrated the effectiveness of the proposed method 

for the dynamic response of vehicle-bridge interaction system with uncertain 

properties. There are a range of areas where the work could be extended in this 

thesis. The recommendations and future work are discussed as follows: 

1. It may be possible to establish more complicated vehicle-bridge interaction 

system models. The analytical model of vehicle should be further improved from 

a half-car model to more complicated 3D vehicle models. The bridge can be 

improved from simply supported beam to a more complex beam and plate.  

Future work can be conducted to construct a more accurate and reliable bridge-

vehicle model. Consequently, the corresponding solution methods need to be 

developed. 

2. Uncertainties of more parameters could be considered in the vehicle-bridge 

interaction system. It could include variations in material properties such as 

stiffness and damping of the vehicle, as well as other geometric parameters of 

the vehicle. Different types of uncertainties can be considered in each subsystem.  

In addition, the road surface conditions need to be deeply studied in the 

uncertain vehicle-bridge interaction dynamic models as they can significantly 

affect the system behavior. 

3. Optimization methods can be further developed to obtain more accurate 

solutions for interval dynamic problems involving uncertain-but-bounded 

system parameters. Non-deterministic finite element methods could be 

incorporated into the vehicle-bridge interaction system with different types of 
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uncertainties. 

4. Application of the methods presented in this thesis to other types of structures 

can be investigated. In the future, it may be possible to extend to train-bridge, 

train-rail-sleeper-foundation interaction systems and so on. 
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Appendix 

Dynamic response of structure with uncertainties by 

Newmark-β method  

The Newmark- β  method is a method of numerical integration used to solve differential 

equations. It is used in finite element analysis to model dynamic systems, recalling the 

continuous-time equation of motion. 

The relationships between the displacement, velocity and acceleration developed by 

Newmark (1959) are given by 

( ) ( ) ( ) ( ) ( )2 1
2

X t t X t tX t t X t X t tβ β  + ∆ = + ∆ + ∆ − + + ∆    
                                   (A.1)

( ) ( ) ( ) ( ) ( )1X t t X t t X t X t tγ γ + ∆ = + ∆ − + + ∆ 
                                                       (A.2) 

where parameters 𝛽 and 𝛾 determine the stability and accuracy of the solutions, and 

usually selections are 1 1
6 4

β≤ ≤  and 
1
2

γ =  . 

The constants 𝛿𝑖 are defined as 

𝛿0 =
1

𝛽 ∙ ∆𝑡2
 , 𝛿1 =

𝛾
𝛽 ∙ ∆𝑡

 , 𝛿2 =
1

𝛽 ∙ ∆𝑡
 , 𝛿3 =

1
2𝛽

− 1 , 𝛿4 =
𝛾
𝛽
− 1 , 

𝛿5 = ∆𝑡
2
�𝛾
𝛽
− 2�  , 𝛿6 = ∆𝑡 ∙ (1 − 𝛾) , 𝛿7 = ∆𝑡 ∙ 𝛾  (A.3) 

[𝐾∗]𝑋(𝑡 + ∆𝑡) = 𝐹∗(𝑡 + ∆𝑡)      (A.4) 

where 
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[ ] [ ] [ ]*
0 1K K M Cδ δ  = + +        (A.5) 

( ) ( ) [ ] ( ) ( ) ( )*
0 2 3F t t F t t M X t X t X tδ δ δ + ∆ = + ∆ + + + 

   

 [ ] ( ) ( ) ( )1 4 5C X t X t X tδ δ δ + + + 
         (A.5) 

The velocity and acceleration are 

( ) ( ) ( )( ) ( ) ( )0 2 3X t t X t t X t X t X tδ δ δ+ ∆ = + ∆ − − −      (A.6) 

and 

  ( ) ( ) ( ) ( )6 7X t t X t X t X t tδ δ+ ∆ = + + + ∆          (A.7) 

Differentiating Eq.(A.5) with respect to the random variable 𝑎𝑖𝑅 (or interval variable 𝑏𝑖𝑅) 

gives 

  
( ) ( ) ( )

**
*

R R R
i i i

KX t t F t t
K X t t

a a a
 ∂∂ + ∆ ∂ + ∆    = − + ∆  ∂ ∂ ∂

    (A.8) 

where 

  [ ] [ ] [ ]*

0 1R R R R
i i i i

K K M C
a a a a

δ δ
 ∂ ∂ ∂ ∂  = + +
∂ ∂ ∂ ∂

    (A.8) 

( ) [ ] ( ) ( ) ( )
*

0 2 3R R
i i

F t t M
X t X t X t

a a
δ δ δ

∂ + ∆ ∂
 = + + ∂ ∂

        

 [ ] ( ) ( ) ( )
0 2 3R R R

i i i

X t X t X t
M

a a a
δ δ δ
 ∂ ∂ ∂

+ + + ∂ ∂ ∂ 

 
 

[ ] ( ) ( ) ( )1 4 5R
i

C
X t X t X t

a
δ δ δ

∂
 + + + ∂

    

 [ ] ( ) ( ) ( )
1 4 5R R R

i i i

X t X t X t
C

a a a
δ δ δ
 ∂ ∂ ∂

+ + + ∂ ∂ ∂ 

 
                       (A.9) 
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Similarly, differentiating Eq. (A.6) and (A.7) with respect to the random variable 

𝑎𝑖𝑅 yields 

 
( ) ( ) ( ) ( ) ( )

0 2 3R R R R R
i i i i i

X t t X t t X t X t X t
a a a a a

δ δ δ
∂ + ∆ ∂ + ∆ ∂ ∂ ∂ 

= − − − ∂ ∂ ∂ ∂ ∂ 

  
  (A.10) 

and 

 ( ) ( ) ( ) ( )
6 7R R R R

i i i i

X t t X t X t X t t
a a a a

δ δ
∂ + ∆ ∂ ∂ ∂ + ∆

= + +
∂ ∂ ∂ ∂

   
  (A.11) 

Second time derivative of dynamic response (interval variable 𝑏𝑗𝐼) can be solved as 

 ( ) ( ) ( )
2 *2 2 *

*
R I R I R I
i j i j i j

KX t t F t t
K X t t

a b a b a b
 ∂∂ + ∆ ∂ + ∆    = − + ∆  ∂ ∂ ∂

  

 ( ) ( )* *

R I I R
i j j i

K KX t t X t t
a b b a
   ∂ ∂∂ + ∆ ∂ + ∆   − −
∂ ∂ ∂ ∂

  (A.12) 

where 

[ ] [ ] [ ]*

0 1R R R R
i i i i

K K M C
a a a a

δ δ
 ∂ ∂ ∂ ∂  = + +
∂ ∂ ∂ ∂

                          (A.13) 

( )2 *

R I
i j

F t t
a b

∂ + ∆
=

∂ ∂
 

[ ] ( ) ( ) ( ) [ ] ( ) ( ) ( )2 2 22

0 2 3 0 2 3R I R I R I R I
i j i j i j i j

X t X t X tM
X t X t X t M

a b a b a b a b
δ δ δ δ δ δ

 ∂ ∂ ∂∂
 + + + + +  ∂ ∂ ∂ ∂ ∂  

 
    

[ ] ( ) ( ) ( ) [ ] ( ) ( ) ( )
0 2 3 0 2 3I R R R R I I I

j i i i i j j j

X t X t X t X t X t X tM M
b a a a a b b b

δ δ δ δ δ δ
  ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

+ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

   
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[ ] ( ) ( ) ( ) [ ] ( ) ( ) ( )2

1 4 5 1 4 5R I I R R R
i j j i i i

X t X t X tC C
X t X t X t

a b b a a a
δ δ δ δ δ δ

 ∂ ∂ ∂∂ ∂
 + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 
    

[ ] ( ) ( ) ( ) [ ] ( ) ( ) ( )2 2 2

0 2 3 0 2 3R I I I R I R I R I
i j j j i j i j i j

X t X t X t X t X t X tC
C

a b b b a b a b a b
δ δ δ δ δ δ
   ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂      

   
  

  (A.14) 

Similarly, differentiating Eqs.(A.10) and (A.11) with respect to the interval variable I
jb , 

the  acceleration and velocity can be expressed as 

( ) ( ) ( ) ( ) ( )2 2 2 2 2

0 2 3R I R I R I R I R I
i j i j i j i j i j

X t t X t t X t X t X t
a b a b a b a b a b

δ δ δ
 ∂ + ∆ ∂ + ∆ ∂ ∂ ∂

= − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  
  (A.15) 

and 

( ) ( ) ( ) ( )2 2 2 2

6 7R I R I R I R I
i j i j i j i j

X t t X t X t X t t
a b a b a b a b

δ δ
∂ + ∆ ∂ ∂ ∂ + ∆

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   
    (A.16) 
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