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Abstract15

A large spread exists in both Indian and Australian average monsoon rainfall and in their16

interannual variations diagnosed from various observational and reanalysis products. While17

the multi model mean monsoon rainfall from 60 models taking part in the Coupled Model18

Intercomparison Program (CMIP3 and CMIP5) fall within the observational uncertainty,19

considerable model spread exists. Rainfall seasonality is consistent across observations and20

reanalysis, but most CMIP models have biases in monsoon season duration, with CMIP521

models generally performing better than CMIP3.22

Most models reproduce the observed ENSO-Australian monsoon teleconnection, with the23

strength of the relationship dependent on the strength of the simulated ENSO. However, over24

the Maritime Continent, the monsoon-ENSO connection is generally weaker than observed,25

depending on the ability of each model to realistically reproduce the ENSO signature in the26

Warm Pool region. The Indian monsoon-ENSO relationship is affected by overly persistent27

ENSO events in many CMIP models. It is also shown that models with stronger monsoon-28

ENSO relationships generally have a stronger monsoon-IOD relationship.29

Based on model fidelity in reproducing realistic monsoon characteristics and ENSO tele-30

connections, we objectively select 13 ”best” models to analyze projections in the rcp8.531

scenario. Twelve of these models are from the CMIP5 ensemble. In India and Australia,32

most of these models produce 5 to 20% more monsoon rainfall over the 21stcentury than33

during the pre-industrial period. By contrast, there is no clear model consensus over the34

Maritime Continent.35

36

2



1 Introduction37

The mechanisms that drive changes in the Indo-Pacific summer monsoon system are of con-38

siderable interest as this phenomenon affects many human activities and resources over broad39

areas. The Indo-Australian monsoon consists of the Indian and South-East Asian summer40

monsoon that occurs from June to September (JJAS), and of the monsoon that occurs in aus-41

tral summer (December to March, DJFM) over Australian and Maritime Continent (Neale42

and Slingo, 2003). Contrary to popular understanding, the Australian and Maritime Conti-43

nent monsoon does not appear to be primarily driven by land-ocean temperature contrast44

(Yano and McBride, 1998; Chao and Chen, 2001), and the importance of land-ocean contrast45

for the Indian monsoon is still a matter of debate (Liu and Yanai, 2001; Chao and Chen,46

2001). The presence of the Himalaya, however, plays a key role in the Indian Monsoon,47

essentially by insulating warm moist air over India from cold dry air further North (Boos48

and Kuang, 2010).49

On interannual timescales, the India-averaged monsoon rainfall tends to be relatively50

weak when it co-occurs with the development of an El Niño, and vice versa for La Niña.51

Other sea surface temperature (SST) patterns such as the Arabian Sea upwelling (Izumo52

et al., 2008) also seem to affect the regional distribution of monsoon within India on inter-53

annual timescales (Mishra et al., 2012). This picture is complicated by the Indian Ocean54

Dipole (IOD, Saji et al., 1999) that modulates ENSO influence on the Indian summer mon-55

soon (Ashok et al., 2001; Ummenhofer et al., 2011). Australian monsoon rainfall also tends56

to be weak during El Niños (Holland, 1986). The positive phase of the IOD (that peaks57

in September-November, SON) also tends to weaken the following monsoon over the Aus-58

tralian/Maritime continent (Cai et al., 2005).59

3



For the combined Indo-Australian monsoon system, Meehl (1997) and Meehl and Ar-60

blaster (2002) have described a tropospheric biennial oscillation (TBO) that seems to link61

the Indian and the Australian monsoons through ocean-atmosphere coupled mechanisms.62

On longer timescales, the impact of climate change on the monsoon system is a major63

concern. Climate change may directly affect the monsoon in two compensating ways: 1-64

warmer SSTs enable more evaporation and tend to increase the monsoon strength 2- SSTs65

warm more in the equatorial region than in the Tropics, which tends to weaken the monsoon66

circulation (Chung and Ramanathan, 2006; Krishnan et al., 2012). These two mechanisms67

are tightly linked to possible change in SST global modes of variability, in particular ENSO68

(El Niño Southern Oscillation) and the IOD (Indian Ocean Dipole) (Shi et al., 2008; Zhang69

et al., 2012). Other factors may also influence the monsoon, as, for instance, the upper70

tropospheric properties (Rajendran et al., 2012).71

Over the last few years, the ability of general circulation models (GCMs) to realistically72

simulate the Indo-Pacific monsoon and its teleconnections has been analyzed in the context73

of the Coupled Model Intercomparison Program 3 (CMIP3), contributing to the Intergovern-74

mental Panel on Climate Change (IPCC) Fourth Assessment Report (IPCC, 2007). While75

the link between ENSO and the Australian monsoon rainfall is rather well captured by the76

CMIP3 models (Colman et al., 2011), the ENSO-rainfall relationship is poorly captured near77

Papua-New Guinea (Cai et al., 2009). These authors have suggested that the ENSO-rainfall78

relationship is affected by the so called ”cold tongue bias” where SST is too cold along the79

equator, and positive SST anomalies extend too far West during El Niño events (with a80

significant impact on the Maritime Continent rainfall). In the CMIP3 ensemble, there is81

no model consensus on how interannual variability of tropical Australian precipitation will82
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change in future climate (Moise et al., 2012). By contrast, a clear increase of future monsoon83

rainfall has been found over the Maritime Continent (Smith et al., 2012). Finally, based on84

the CMIP3 models, the South-East Asian summer monsoon is likely to undergo a slight85

increase of precipitation in the future (IPCC, Meehl et al., 2007).86

In this paper, we evaluate the Indo-Australian monsoon and its teleconnections to ENSO87

and IOD in the CMIP simulations. We perform a combined analysis of simulations from 2488

CMIP3 models and from 35 models taking part in the new Coupled Model Intercomparison89

Program 5 (CMIP5). Results from 7 atmospheric reanalysis are also included as reanalysis90

are often used as a proxy for dynamical observations (e.g. wind, pressure) to evaluate the91

CMIP model dynamics, or to analyze mechanisms. Precipitation provides an integrated92

assessment of the reanalysis skills (atmospheric model and data assimilation system) since93

rainfall observations are generally not assimilated in the system (see section 2.2). Finally,94

we select a subset of models that represent the Indo-Australian monsoon and its connections95

to ENSO well, and we assess projected change in monsoon rainfall during the 21stcentury.96

2 Datasets97

2.1 Indices definition98

To get an overview of the models skill, we use box-averaged indices rather than maps. We99

use two land-only monsoon rainfall indices for Australia and India (LAUS and LIND, Tab. 1,100

Fig. 1), as land-based rainfall has a direct influence on many human activities and resources,101

and because long-term rainfall data are only available over the land. Two other monsoon102

indices are also examined: AMAR and ISAS (Tab. 1, Fig. 1) that include rainfall over103
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ocean and land over a larger domain. These indices are potentially better suited to examine104

climate teleconnections and have been used previously to examine the TBO (e.g. Meehl and105

Arblaster, 2002).106

In addition, standard SST indices are used to describe the major tropical modes of107

variability in the Indo-Pacific region (ENSO and IOD, see Tab.1 and Fig.1). It could be108

argued that indices based on fixed locations may not fully capture the model dynamics109

since simulated variability may have spatial biases compared to observations. However, it110

is also important to capture modes of variability at realistic locations as this may affect the111

propagation of teleconnection patterns to remote regions (Taschetto et al., 2009). For ENSO,112

most of the CMIP3 models are not able to realistically reproduce distinct central Pacific El113

Niño (also referred to as Modoki, or Warm Pool El Niño) and canonical El Niño (also referred114

to as Cold Tongue El Niño) (Yu and Kim, 2010). Thus, CMIP3 models produce too much115

coherence between NINO3, NINO34 and the El Niño Modoki Index (Cai et al., 2009). The116

models skills concerning the representation of these two kinds of ENSO have improved in117

CMIP5 (Kim and Yu, 2012; Taschetto et al., 2012). A majority of the CMIP3 and CMIP5118

models still fail to capture the variance associated with these statistical modes realistically119

(Roxy et al., 2012; Shamal et al. 2012, under preparation). For these reasons, we decide120

to use the NINO34 index in this paper. It captures both kinds of ENSO without giving121

too much importance to strong East Pacific (canonical) El Niño. The later have indeed122

been suggested to have a weaker influence on the Indo-Australian monsoon than the central123

Pacific El Niño (e.g. Taschetto and England, 2009; Kumar et al., 2006). For the IOD, Cai124

et al. (2009) have shown that most of the CMIP3 models produce a SST dipole pattern that125

is similar to observed, even though the amplitude of the cold tongue varies from model to126
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model (their Fig.10). Therefore, the simulated Indian Ocean Dipole Mode Index (DMI, as127

defined by Saji and Yamagata, 2003) makes a reasonable index to represent the model IOD.128

In this work, all the diagnostics related to the interannual variability of an index are made129

after removal of the trend (linear least mean square fit) and of the climatological seasonal130

cycle.131

2.2 Observation-based products and reanalysis132

In this paper, we analyze precipitation data from 7 atmospheric reanalysis (lower part of133

Tab.1) and from gridded observational products (upper part of Tab.1). Some gridded ob-134

servational products, such as GPCP, CMAP and TRMM-3B43, merge gauge analysis and135

satellite observations (available since the late 1970s). Before the satellite era, rainfall data are136

only available to any significant extent over land, and based on station measurements (GPCC,137

AWAP, APHRODITE). There are significant differences in the observation datasets, due to138

retrieval methods, treatments of uncertainties, and quality check (e.g. Yin et al., 2004).139

Among the 7 atmospheric reanalysis, only ERAinterim uses a 4D-VAR data assimilation140

scheme; the others use a 3D-VAR scheme. Rainfall from the various reanalysis is purely141

model-generated (i.e. a forecast), since observed rainfall is not assimilated (see references in142

Tab.1). An exception is MERRA whose atmospheric data assimilation has been developed143

with a special focus on the hydrological cycle. While reanalysis generally show some skills in144

reproducing the observed seasonal and interannual variability, their accuracy varies signifi-145

cantly across the regions (Bosilovich et al., 2008). Uncertainties in reanalyzed precipitation146

may come from limitations in the dynamical models (e.g. convection, cloud microphysics,147

complex topography), from uncertainties in the observations, and from the data assimilation148
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scheme itself.149

The interannual variability of the various rainfall datasets for summer monsoon seasons150

is compared to the observed variability in the Taylor Diagram in Fig. 2. Over Australia,151

the AWAP dataset is generally considered as a reference, while the APHRODITE dataset152

is chosen as a reference for South Asia and India because it has been developed with a153

special focus on this region. These two datasets are based on weather stations, as is GPCC,154

and cover a long time period. In general the observation and reanalysis datasets are more155

consistent over Australia. The spread of reanalysis precipitation is larger for the Indian156

monsoon, with outliers like NCEP-CFSR and, to a lower extent, NCEP-DOE-II. All the157

observation products are correlated to AWAP by at least 0.95 in Australia. Correlation158

coefficients between observations and APHRODITE are much lower over India, with, for159

instance, CMAP being correlated to APHRODITE by 0.66. Note that 3B43 and 3B42 are160

only weakly correlated to APHRODITE, but the overlap is only 10 years (their correlation161

to GPCC is greater than 0.9 over the period 1998-2011). The correlation coefficient between162

reanalysis and AWAP/APHRODITE is in the range 0.85-0.95 in Australia, and 0.35-0.85 in163

India. It is possible that this difference in consistency between India and Australia could164

be related to the Himalaya whose influence on the atmosphere is difficult to simulate, and165

where in-situ observations are sparse and difficult to assimilate. A stronger influence of SST166

for the Australian monsoon compared to the Indian monsoon may also improve consistency167

in the reanalysis given that they are forced by observed SST.168

Two SST datasets are used in this paper, HadISST and HadSST2 (Tab. 1). HadSST2169

has a coarser (5-degree) resolution than HadISST, but no interpolation is used to fill grid170

points where observations are missing. As both datasets lead to similar results, only results171
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from HadISST are shown here. For the sake of consistency, we also use SST from reanalysis172

when we produce diagnostics mixing SST and precipitation. It is important to keep in mind173

that the reanalysis use prescribed ocean SST, except for NCEP-CFSR which has a coupled174

ocean component.175

2.3 CMIP3 and CMIP5 simulations176

In this paper, we first analyze 24 CMIP3 simulations (Tab. 3) and 35 CMIP5 simulations177

(Tab. 4) based on the historical simulations (called 20C3M in CMIP3 and historical in178

CMIP5). The simulations start approximately in 1850 and end in approximately 2000 and179

2005 for CMIP3 and CMIP5 respectively. The CMIP3 models and experiments have been180

widely described in the literature over the last 5 years (e.g. Randall et al., 2007). Some181

institutes have increased the resolution of their models from CMIP3 to CMIP5 (e.g. CNRM,182

GISS, INMMRI). From CMIP3 to CMIP5 a large number of new experiments have been183

included (Taylor et al., 2011). Some experiments now include a biogeochemical component184

accounting for carbon cycles in the land, atmosphere, and ocean (Earth System Models, see185

”ESM”in model names of Tab. 4). It should be noted, however, that the historical experiment186

has prescribed gas concentrations (including CO2). Some of the CMIP3 and CMIP5 models187

have repeated historical (and future) experiments to form an ensemble with different initial188

conditions (the initial state is taken in different points of the pre-Industrial simulation).189

In section 3.3, we use a limited number of CMIP5 simulations to examine a future green-190

house gas and aerosols emission scenario. We use the representative concentration pathway191

rcp8.5 (Moss et al., 2010; Riahi et al., 2011). This scenario corresponds to a radiative forcing192

of approximately 8.5 W.m−2 higher in 2100 than in the pre-industrial period. This is the193
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most extreme scenario used to constrain the CMIP5 simulations in the sense that energy and194

industrial CO2 emissions increase continuously until at least 2100 (whereas such emissions195

decrease from ∼ 2080 in rcp6.0 and from ∼ 2050 in rcp4.5).196

Where we present information based on multi-model means, we first average across en-197

semble members of a given model, before averaging across the models. Where we consider198

correlations between several model results, we assume that each model is different enough to199

be considered independent (we thus probably over-estimate the significance since some mod-200

els are not strictly independent). A few of the CMIP3 models included water only (inmcm3-201

0) or water and heat (mri-cgcm2-3-2a, miub-echo-g, cgcm3 T47 and T63) flux adjustment.202

Finally, some institutes have produced simulations from two models run at two different203

resolutions (subscript LR/MR in model names of Tab. 3, 4), different cloud/convective pa-204

rameterization in the atmosphere model (e.g. IPSL-CM5A/IPSL-CM5B), or different ocean205

models (e.g. GFDL-ESM2M/GFDL-ESM2G). In such cases, the two models are considered206

separately, as independent models. Similarly, we consider that the CMIP3 version of a model207

is independent from the CMIP5 version (e.g. gfdl-cm2-0/GFDL-CM3), and we even refer to208

these two versions as ”two models” in the following.209

The acronyms used to refer to the institutes in Tab. 3 and Tab. 4 stand for the Environment Research210

& Technology Development Fund of the Ministry of the Environment, Japan (ERTDF), the Commonwealth211

Scientific and Industrial Research Organisation (CSIRO), the Bureau of Meteorology (BOM), the Beijing212

Climate Center (BCC) of the China Meteorological Administration (CMA), the Canadian Centre for Climate213

Modelling and Analysis (CCCMA), the Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC),214

the National Center for Atmospheric Research (NCAR), the Centre National de Recherches Meteorologiques215

(CNRM) of Meteo-France, the European Centre for Research and Advanced Training in Scientific Computa-216
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tion (CERFACS), the Queensland Climate Change Centre of Excellence (QCCCE), the European Centre for217

Medium-Range Weather Forecasts (ECMWF), the The National Key Laboratory of Numerical Modeling for218

Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), the Institute of Atmospheric Physics (IAP)219

of the Chinese Academy of Sciences, the China Environmental Science and Sustainability Research Group220

(CESS), the Tsinghua University (THU), the National Oceanic and Atmospheric Administration (NOAA),221

the Geophysical Fluid Dynamics Laboratory (GFDL), the National Aeronautics and Space Administration222

(NASA), the Goddard Institute for Space Studies (GISS), the Met Office Hadley Centre (MOHC), National223

Institute of Meteorological Research (NIMR), the Korea Meteorological Administration (KMA), the Institute224

for Numerical Mathematics in Moscow (INM), the Institut Pierre Simon Laplace (IPSL), the Atmosphere225

and Ocean Research Institute (AORI) at the University of Tokyo, the National Institute for Environmental226

Studies (NIES), the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), the Max Planck227

Institute for Meteorology (MPI-M), the Meteorological Research Institute (MRI), and the Norwegian Climate228

Centre (NCC).229

3 Results230

We first evaluate the mean summer monsoon rainfall, the amplitude of interannual variability,231

and the seasonal cycle in each model and reanalysis (section 3.1). Then, we assess the232

representation of the monsoon-ENSO and monsoon-IOD relationships (section 3.2). Based233

on these results, we select the most realistic models, and we show future projections of the234

monsoon (section 3.3).235
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3.1 Statistical properties of the historical Indo-Australian mon-236

soon237

The mean Indian and Australian summer monsoon rainfall is presented for each model and238

reanalysis in Fig. 3-a. The spread in the observed mean summer monsoon rainfall is quite239

large. For instance, the mean JJAS LIND is 6.8 mm/day in GPCC, versus 5.5 mm/day240

in APHRODITE. Furthermore, the uncertainty in the mean rainfall in reanalysis is very241

similar to the uncertainty in observations. We therefore choose to consider the multi obser-242

vation/reanalysis mean (black triangle in Fig. 3-a) as our reference here, with an uncertainty243

envelope given by the two-dimensional PDF (Probability Density Function) of observations244

and reanalysis (see caption of Fig. 3). The mean DJFM Australian monsoon rainfall based245

on the multi-model mean is very similar to observational estimates in both the CMIP3 and246

the CMIP5 models (triangles in Fig. 3-a). The mean JJAS Indian monsoon rainfall based247

on the multi-model mean is under-estimated by ∼ 15% in CMIP3, and by ∼ 19% in CMIP5248

(Fig. 3-a), though it lies within the 75% envelope of the observations/reanalysis. In both249

CMIP3 and CMIP5 simulations, the relatively good skill of the multi-model mean hides a250

wide spread in the mean monsoon rainfall, across individual CMIP3 and CMIP5 models:251

from nearly no rainfall to twice as much rain as observed. The spread, as estimated by the252

standard deviation, is 20% higher in the CMIP5 than the CMIP3 models for LIND, but 7%253

smaller for LAUS. Finally, there is a significant correlation between the average monsoon254

rainfall in India, and that in Australia (r=0.56, p < 0.0001) which suggests that discrepancies255

between models and observations are related to intrinsic model performance (e.g. convective256

scheme, land surface scheme), not only to regional issues in the models.257

The amplitude of the interannual variability is now evaluated through the standard de-258
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viation of summer-months-averaged rainfall, and presented in Fig. 3-b. The spread in the259

observed values is larger here than for the mean, and has already been discussed for non-260

detrended time series in section 2.2. Due to this spread, we still consider the multi ob-261

servation/reanalysis mean as a reference, with an uncertainty envelope given by the PDF.262

We nonetheless exclude two outliers from the multi observation/reanalysis mean and enve-263

lope calculation: NCEP-CFSR and NCEP-DOE-II (represented by µ), because these two264

reanalysis present a much stronger interannual variability than any other reanalysis or ob-265

servation dataset. The standard deviation of both the Indian and the Australian monsoon266

rainfall based on the multi-model mean is in remarkably good agreement with observations267

in CMIP3 and CMIP5 (triangles in Fig. 3-b). This again hides a wide spread in the simu-268

lated amplitude of the interannual variability in both CMIP3 and CMIP5. The spread, as269

measured by the standard deviation, is very similar in CMIP3 and CMIP5 for LIND, but270

30% higher in CMIP3 than in CMIP5 for LAUS. Finally, there is a significant correlation271

coefficient between the amplitude of the monsoon interannual variability in India and that in272

Australia (r=0.52, p < 0.0001). This is probably related to the fact that there are common273

drivers affecting the amplitude of the Indian and of the Australian monsoon (e.g. ENSO).274

For both the Indian and the Australian monsoons, the correlation between the mean275

and the interannual variability is relatively weak (r=0.12 for LIND and r=0.36 for LAUS).276

This emphasizes the importance of evaluating a model both with regard to its mean and its277

variability. For instance, the CMIP5 experiment from GFDL-ESM2M (represented by R)278

has a realistic mean Australian monsoon rainfall, but its interannual variability is far too279

strong.280

As many modes of climate variablity are phase-locked to the seasonal cycle, we also281
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evaluate the later for each CMIP model in Fig. 4. By contrast to the mean and to the282

interannual variability, the seasonal cycle is robust across the observations and reanalysis283

(see the small RMS errors in Fig. 3-c and 4). Based on the multi-model mean seasonal cycle,284

there is a clear improvement from the CMIP3 to the CMIP5 simulations (the RMS error285

is reduced by 25-30%, see triangles in Fig. 3-c). However, the simulated seasonal cycle are286

generally either too peaked in February (e.g. IPSL-CM5B-LR), or have an overly indistinct287

monsoon season with high rainfall extending into April-May and October-November (e.g.288

CCSM4). The maximum generally occurs on the right month, despite a few exceptions as289

mpi-echam5 (Fig. 4). In the 20 CMIP simulations that best represent the seasonal cycles290

(ranked by RMSE in Fig. 4), only 4 (3) are from CMIP3 for LAUS (LIND). It should also be291

noted that the best CMIP3 model both for LIND and LAUS (mri-cgcm2-3-2a, represented292

by t) has both heat and water flux corrections. Finally, there is also a significant correlation293

coefficient between the amplitude of the RMSE of the simulated seasonal cycle in India and294

that in Australia (r=0.55, p < 0.0001).295

A first model selection is made, based on the three statistical properties of the Indo-296

Australian monsoon depicted in Fig. 3. As mentioned above, the mean summer monsoon297

rainfall and its interannual variability show a significant spread in the observations. We298

take this into account, and select the models that are within the contour enclosing 99.9%299

of the observations/reanalysis PDF integrative (blue contour in Fig. 3-a,b). This value is300

found empirically, in such a way to keep a sufficient number of models in the selection pro-301

cess. We do the same selection with regards to the seasonal cycle (Fig. 3-c), except that302

we extend the contour so that it encloses 99.999% of the observations/reanalysis PDF in-303

tegrative. This extension is needed because the spread in the observed/reanalyzed seasonal304
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cycle is very weak, and because the CMIP simulated seasonal cycles are significantly distinct305

from the observed ones. Our overall method of selection allows eliminating models based306

on the observations, taking uncertainty into account. Using the contour values mentioned307

above leads to a selection of 19 models that are indicated in Tab. 5. Only one of these 19308

models (gfdl-cm2-0) is from the CMIP3 ensemble. It should be noted that these models are309

not entirely independent because some components are commonly used in several models.310

For instance, CESM1-CAM5, CESM1-FASTCHEM, CCSM4, FIO-ESM, NorESM1-M, and311

NorESM1-ME include an atmospheric component based on the NCAR Community Atmo-312

spheric Model (CAM), even though versions differ across the institutes. The Hadley Centre313

atmospheric model is also the base of the atmospheric component in ACCESS1-0, Had-CM3,314

and HadGEM2-AO. The models ACCESS1-0, GFDL-CM3, and gfdl-cm2-0 have an ocean315

component based on the GFDL Modular Ocean Model (MOM). Finally, the Parallel Ocean316

Program (POP), which originated from the same historical base as MOM in the 1990s, is317

also a common base for the ocean component in CESM1-CAM5, CESM1-FASTCHEM, and318

CCSM4.319

3.2 Relationship between SST modes and the Indo-Australian320

monsoon321

As mentioned in the Introduction, the effect of greenhouse gases and aerosols on the Indo-322

Pacific monsoon will be modulated by ENSO and the IOD. Therefore, it is essential to323

have a realistic representation of the monsoon-ENSO and monsoon-IOD relationships in324

the historical experiments. This is analyzed in the present sub-section, starting with the325

Australian monsoon-ENSO relationship. The TRMM observational products 3B42 and 3B43326
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are not shown here, given the short record period.327

Australian monsoon-ENSO relationship328

Both the CMIP3 and the CMIP5 simulations show a moderate anti-correlation (-0.3) to329

NINO34 (Fig. 5-a), i.e. an Australian monsoon occurring during an El Niño event tends330

to be weaker than normal. This anti-correlation is significant at the 90% level for most331

of the CMIP3 and CMIP5 models (see upper quartiles), and is in good agreement with332

long observation timeseries (GPCC or AWAP, and HadISST, also already noted by Holland,333

1986). Each model is shown separately in Fig. 6-a. As noted by Colman et al. (2011), a few334

CMIP3 models do not show significant ENSO-monsoon relationship at zero lag (e.g. giss335

models), while several CMIP3 simulations (e.g. csiro-mk3-5) produce too strong an anti-336

correlation at zero lag. This is still the case in the CMIP5 simulations, but correlations at337

zero lag are generally closer to GPCC and AWAP values. Thus, 33% of the CMIP3 models338

produce correlations in the range ±0.1 of the observed correlation coefficient (-0.35), while339

46% of the CMIP5 models do so. Surprisingly, this score is not better for the reanalysis,340

since only 3 of 7 are in this ±0.1 range (NCEP-CFSR, NCEP-NCAR-I, and MERRA). Cai341

et al. (2009) demonstrated that in the CMIP3 simulations, models which produce an ENSO342

with a strong interannual variability tend to have a strong rainfall-NINO34 anti-correlation343

at zero lag. This is also what we find considering CMIP3 and CMIP5 models together (see344

pink line and circles in Fig. 6-b). A few models, in particular from the CMIP3 ensemble,345

show that a strong monsoon is followed, one year after, by an El Niño event (vice versa for La346

Niña). This is probably generally attributed to the fact that some CMIP3 models produce347

an ENSO with too strong a quasi-biennial component (e.g. gfdl-cm2-0 and miub-echo-g,348

Fig. 6-b).349
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An interesting feature in Fig. 5-a is the anti-correlation peak (-0.15) that is found in350

the multi observations/reanalysis mean 2 years prior to the monsoon, but which is totally351

absent from the CMIP simulations. When considering AWAP only over 100 years (dashed352

blue curve), this peak is reduced by half and far from significant at the 90% level. This353

peak is nonetheless interesting because it is opposite as what is expected from ENSO, since354

the later is anti-correlated with itself 1.5-2.5 years before (Fig. 5-d). As ENSO has been355

suggested to have a strong inter-decadal to centennial variability (Wittenberg, 2009), we356

raise the question as to whether such a peak can be captured by the models over a 30-357

year period. We extract the 30-year period from each 150-year simulation among the several358

available ensemble members that gives the strongest anti-correlation at year−2. As shown in359

Fig. 5-c, most of the CMIP models are able to simulate at least one 30-year period presenting360

an anti-correlation peak similar to the observed one. We therefore suggest that this peak361

is an artifact originating from the low frequency variability. Over such 30-year periods,362

the probability of Australia to Australia successful TBO transition is slightly increased (not363

shown), though the predictability associated with this transition remains non significant (not364

shown, see also Li et al., 2012).365

We now expand the region used to define the Australian monsoon, by including the Mar-366

itime Continent (land and ocean, see Fig. 1). The relationship between ENSO and monsoon367

rainfall is now stronger: the anti-correlation between AMAR and the concomitant NINO34368

is -0.6 for the multi observations/reanalysis mean (Fig. 5-b), and even reaches -0.8 for CMAP369

and GPCP (Fig. 7-a). All the reanalysis have strong anti-correlations (moderately strong370

for NCEP-NCAR-I and ERA40), which is consistent with an oceanic control of the monsoon371

in this region as most of the reanalysis are forced by observed SST. It should nonetheless372
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be noted that shorter observational records are involved over the Maritime Continent (lim-373

ited to the satellite era). Such strong anti-correlations are generally not reached in CMIP374

simulations, with a multi-model mean of -0.1 and -0.3 for the CMIP3 and the CMIP5 mod-375

els respectively (Fig. 5-b). The CMIP5 models thus have better skills in capturing the376

AMAR-ENSO relationship, and more than 25% of CMIP5 models give anti-correlations that377

reach the range of reanalysis (see lower quartiles in Fig. 5-b). Comparing Fig. 7-a and 7-b,378

it is clear that most models that reproduce the observed AMAR-ENSO concomitant anti-379

correlation also simulate a realistic ENSO pattern along the equator, with a cold anomaly380

in the climatological warm pool region (i.e. approximately at the location of the Maritime381

Continent). This result is not surprising for this maritime region where convection is trig-382

gered by warm SSTs. Catto et al. (2012) have shown that only a few of the CMIP3 models383

are able to simulate a realistic relationship between NINO34 and SST North of Australia.384

Among their models, gfdl-cm2-0 has been shown to have the best skills. This is also what385

we find in Fig. 7-b, if we exclude csiro-mk3-5 which produces an unrealistic ENSO pattern386

as well as an unrealistic correlation between AMAR and ENSO 2 years in advance. Apart387

from these two CMIP3 models, the 19 CMIP models giving the strongest AMAR–NINO34388

anti-correlation (< −0.36) are from CMIP5.389

Indian monsoon-ENSO relationship390

We now evaluate the Indian monsoon-ENSO relationship. As shown in Fig. 8-a,b, the Indian391

and South-Asian monsoons tend to be weak when their development is concomitant with392

the development of an El Niño, and vice versa for La Niña. The correlation between the393

land-based Indian JJAS rainfall (LIND) and NINO34 reaches -0.60 in APHRODITE, and394

-0.45 in the multi observations/reanalysis mean. The same correlation but for ISAS instead395
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of LIND is slightly weaker (-0.35), and slightly less persistent (Fig. 8-b). The LIND-NINO34396

correlation at zero lag, based on the multi-model mean, is underestimated by the CMIP5397

models and even more by the CMIP3 models (Fig. 8-a). The ISAS-NINO34 correlation at398

zero lag is realistic in the CMIP5 models, and slightly underestimated in the CMIP3 models399

(Fig. 8-b). However, the most striking feature of CMIP correlation curves is that they present400

a very gentle slope the year before the monsoon, as compared to a very steep slope in the401

observations (Fig. 8-a,b). This is also true after the monsoon season for LIND. We link this402

bias to the ENSO characteristics in the following paragraph.403

In the observations and reanalysis, a positive (negative) anomaly of NINO34 in June-404

July, i.e. at the beginning of the Indian monsoon, is more related to a developing El Niño405

(La Niña) event than to a terminating event. Indeed, the correlation between NINO-34 in406

June-July (beginning of the Indian monsoon) and NINO34 in December prior to the mon-407

soon (December corresponds to the mature stage of ENSO) is only 0.15 (see black curve in408

Fig. 8-c); by contrast, the correlation between NINO-34 in June-July and NINO34 in Decem-409

ber following the monsoon is high (0.80, see Fig. 8-c). This asymmetry is much less marked410

in the CMIP simulations, in particular in CMIP5, where the equivalent correlation is 0.30411

in December before the Indian monsoon, and 0.70 in the following December (green curve412

in Fig. 8-c). In other words, the June-July NINO34 anomalies are mostly related to devel-413

oping El Niño or La Niña events in the observations, whereas they are also partly related to414

the termination of previous-boreal-winter events in CMIP5 (and CMIP3 to a lower extent).415

This can be explained by the too large spread in the seasonal cycle of NINO34 (and ENSO416

in general) in the CMIP5 simulations, as described by Taschetto et al. (2012). During the417

second half of the Indian monsoon (August-September), the NINO34 anomalies are good418
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precursors of developing El Niño or La Niña events (that will be mature in the following419

December) both in the observations and in CMIP models. Indeed, the correlation in Fig. 8-d420

is near zero in December prior to the monsoon, and 0.90 in the observations/reanalysis and421

CMIP5 simulations (0.80 for CMIP3) in December after the Indian monsoon. To summarize,422

as CMIP5 NINO34 June-July anomalies are too strongly related to previous-boreal-winter423

El Niño or La Niña events, they produce too large negative correlations between the In-424

dian monsoon and the previous-boreal-winter NINO34 (Fig. 8-a,b). This bias is slightly425

lower in the CMIP3 simulations, but the correlation between the Indian monsoon and the426

following-boreal-winter NINO34 is better in CMIP5 than in CMIP3 (Fig. 8-a,b), due to the427

better consistency between boreal-summer NINO34 anomalies and NINO34 anomalies in the428

following boreal winter (Fig. 8-c,d). We have to note that the discussion here is from the429

perspective of a periodic ENSO. There have been periods characterized by a string of El430

Niño Modoki events during the early 1990s (Ashok et al., 2007). Our description does not431

account for these particular periods, but holds on average.432

Results for individual models are shown in Fig. 9. By looking at the symmetry of the nega-433

tive correlation to each side of August at zero lag, it is possible to assess if a model produces434

monsoons mostly correlated to previous ENSO events (e.g. miroc3-2-hires, ACCESS-1.3,435

that sow strong asymmetric blue bar left of the year-0 line), partly correlated to previous436

ENSO events (e.g. FIO-ESM shows blue bar to either side of the year-0 line), or mostly437

correlated to developing ENSO events (e.g. HadGEM2-ES shows strong asymmetric blue438

bar right of the year-0 line).439
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Australian monsoon-IOD relationship440

We next evaluate the relationship between the IOD and Australian rainfall in the various441

datasets. There is a weak anti-correlation (hardly significant at the 90% level) between the442

DJF land-based Australian monsoon (LAUS) and the previous SON (September to Novem-443

ber) Indian Dipole Mode index (DMI) for both AWAP and GPCC (represented by δ and γ444

respectively in Fig. 10-a). This correlation is weaker and not significant for the reanalysis.445

Both CMIP3 and CMIP5 multi-model means indicate that the models, in average, produce446

an anti-correlation similar to that of AWAP and GPCC (-0.2). However, the spread across447

models is large. Interestingly, there is a clear relationship between the strength of the previ-448

ous DMI-monsoon relationship, and the concomitant ENSO-monsoon relationship in CMIP449

models (correlation of 0.73, see Fig. 10-a). Over the Maritime continent, models and reanal-450

ysis produce much stronger IOD-rainfall anti-correlation than with LAUS (Fig. 10-b), and451

there is also a clear relationship between the strength of the previous DMI-monsoon rela-452

tionship, and the concomitant ENSO-monsoon relationship in CMIP models (correlation of453

0.66). These results are consistent with the ENSO-IOD seasonal phase-locking relationship454

that has been described in the literature (Annamalai et al., 2005; Behera et al., 2006; Luo455

et al., 2010). We have also found that most of the CMIP models reproduce an Indian Ocean456

Basin-wide Warming (IOBW, Lau and Nath, 2003; Chowdary and Gnanaseelan, 2007; Saji457

et al., 2006; Ashok et al. under preparation 2012). The simulated IOBW-Australian mon-458

soon relationship is very similar to the ENSO-monsoon relationship shown in Fig. 5 (not459

shown). However, as the IOBW is essentially a forced response to ENSO, it is not possible460

to separate their relative contribution without specific idealized experiments (e.g. Taschetto461

et al., 2011).462
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Model selection463

In the previous subsection, we have selected a subset of models that have good overall464

monsoon skills in the historical period (Tab. 5). We now examine to what extent these specific465

models can reproduce the relationships to ENSO, in order to improve the model selection.466

In the previous analysis, it appears that the AMAR-ENSO relationship is the most robust in467

the observations (the strongest in terms of correlation). It is also an important area in terms468

of North-South monsoon connection, at least on the biennial scale (Meehl, 1997); further,469

there is a clear consensus among observations and reanalysis (Fig. 7). On this basis, we first470

want to reproduce the link between ENSO SST patterns near the climatological warm pool471

location and the convection over the Maritime Continent, i.e. we choose to exclude all the472

models below the 99% significance level for the concomitant ENSO-AMAR correlation (i.e.473

all the models below the horizontal dashed line in Fig. 7). Results are summarized in Tab. 5).474

Apart from GFDL-CM3, the excluded models suffer from an unrealistic cold anomaly during475

El Niño events (and vice versa during La Niña) in the Western Pacific. Then, we decide to476

allow a bias of ±0.3 in the DJF LAUS-NINO34 anti-correlation, i.e. we keep correlation477

values between -0.15 (90% significance level) and -0.75 (i.e. between the dashed lines in478

Fig. 6-a; see also Tab. 5). We also want some relationship between ENSO and the Indian479

monsoon. Models with insignificant LIND-NINO34 correlation in JJAS at zero lag (Fig. 9)480

are therefore excluded (Tab. 5). As the spread in the monsoon-IOD relationship is large in481

both the observations and models, it is difficult to find clear outliers. Therefore, we do not482

select the models on an IOD-monsoon relationship basis. Doing this, we select 13 models in483

the 19 previously selected. Twelve of them are from CMIP5.484
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3.3 Future monsoon projections485

Based on the subset of most realistic models, we now analyze the projected change of the486

Indo-Australian monsoon in the emission scenario rcp8.5 (see section 2.3). We do not an-487

alyze the simulations from the gfdl-cm2-0 CMIP3 model since the emission scenarios in488

CMIP3 were different from the rcp ones. Among the 12 selected CMIP5 models, all but489

CESM1-FASTCHEM were available for the rcp8.5 scenario at the time of writing, with490

several ensemble members for six of them (Tab. 5).491

The evolution of the monsoon rainfall in the different boxes used in this paper is shown in492

Fig. 11. We average the indices over 50-year periods to increase the statistical significance.493

The confidence interval for each period is thus proportional to s/
√
50N , where s is the494

interannual standard deviation and N the number of ensemble members (t-statistics, e.g.495

Von Storch and Zwiers, 2002). Two 50-year periods are considered significantly different if496

there is no overlap of the error bars in Fig. 11 (we consider a confidence interval at the 90%497

level).498

Only two of the 11 models show a significant increase in monsoon rainfall over Australia499

during the historical period (MIROC5 and FGOALS-s2, Fig. 11-a). This contrasts with500

the results from Shi et al. (2008) and Smith (2004) who have reported an increase of the501

observed land-based Australian monsoon rainfall in the 20thcentury. Now considering the502

future projections, we find that nine of the 11 CMIP5 models show a significant rainfall503

increase at the end of the 21stcentury as compared to the pre-industrial period. This increase504

is in the range 12-22%. The two remaining model do not show a significant trend from 1850505

to 2100.506

None of the selected CMIP5 models shows an increase in monsoon rainfall over the507
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Maritime Continent during the historical period (Fig. 11-b), but one model (HadGEM2-AO)508

produces less monsoon rainfall at the end of the 20thcentury than during the pre-industrial509

period. There is no clear consensus between the models concerning the future monsoon510

rainfall over the Maritime Continent: three models produce less rainfall in 2050-2099 than511

during the pre-industrial period (FGOALS-s2, HadGEM2-AO, CanESM2); two models show512

trends that are not significant at the 90% level (ACCESS1-0 and CESM1-CAM5); the six513

remaining models produce between 3 and 13% more monsoon rainfall at the end of the514

21stcentury as compared to the end of the 19thcentury.515

The picture is not clear either for the rainfall evolution over India and South-Asia over516

the historical period (Fig. 11-c,d). Indeed, the majority of models do not show a significant517

trend, while two models produce slightly more rainfall at the end of the 20thcentury, and518

2-3 models produce less rain during this period. These results must be considered in the519

perspective of Goswami et al. (2006)’s results: using observations, they have shown that the520

contribution from increasing heavy events had been offset by decreasing moderate events521

in the historical period, accounting for an insignificant rainfall trend to date. Contrasting522

with the absence of model consensus for the historical trend, 10 of the 11 selected models523

produce significantly more monsoon rainfall at the end of the 21stcentury than during any524

of the 50-year historical period. The remaining model (FIO-ESM) does not show any trend.525

The simulated increase in land-based rainfall ranges from 6 to 18%, except for FGOALS-s2526

that produces 46% more rainfall at the end of the 21stcentury (Fig. 11-c). The increase is527

in the range 7-15% when considering the whole South Asia domain, except for FGOALS-s2528

that produces 27% more monsoon rainfall after 2050 than in the 19thcentury (Fig. 11-d).529

Finally, we investigate potential trends in the amplitude of the interannual variability of530
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the summer monsoon rainfall. This analysis is done in a similar way as for the mean, but531

using 90% confidence intervals based on the χ2 statistics (suitable for tests on standard devia-532

tions, Von Storch and Zwiers, 2002). Only FGOALS-s2 produces a strengthened interannual533

variability over Australia (by 45%), the other models producing no significant trend until534

2100 (not shown). Over the Maritime Continent (AMAR), four of the 11 selected models535

show a significant increase of the interannual standard deviation (not shown). Interestingly,536

two of these models (FGOALS-s2 and HadGEM2-AO) are among the few models that cap-537

ture a decreased mean AMAR monsoon rainfall at the end of the 21stcentury (as already538

shown in Fig. 11-b). CCSM4 and FGOALS-s2 produce an increased interannual variability539

for LIND (by 17 and 60% respectively) and for ISAS (by 20 and 42% respectively), and540

CESM1-CAM5 produces a significantly increased interannual variability for ISAS (by 25%)541

but not for LIND (not shown). The remaining models do not show a significant change in542

the amplitude of the interannual variability.543

4 Discussion544

In this paper, we have adopted a large-scale point of view, which was needed to assess 60545

CMIP models in a concise way. We have found some agreement between the selected models546

for the Indian and Australian rainfall projections. Nonetheless, the spatial scale of concern547

for human activities is much narrower than the large-scale used in this paper. Therefore, we548

now assess the meaning, in term of regional climate, of the future increase in the large-scale549

precipitation. Historical summer monsoon rainfall and its change in the rcp8.5 scenario are550

shown on maps, in Fig. 12 and Fig. 13 for the Australian/Maritime Continent region and the551

Indian monsoon respectively. As already seen in Fig. 11, a majority of the models produce552
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more monsoon rainfall over North Australia in the future. Shi et al. (2008) have reported a553

larger rainfall increase in North-West Australia than in North-East Australia during the end554

of the 20thcentury. There is however no such consensus in the selected rcp8.5 simulations,555

some of them showing an East-West symmetry in the increase, or the opposite asymmetry556

(Fig. 12-c).557

In Austral summer, the Maritime Continent is at the intersection of three major conver-558

gence zones: the South Pacific Convergence Zone (SPCZ), the North Pacific Intertropical559

Convergence Zone (ITCZ), and the South Indian Convergence Zone (SICZ), their location560

being shown in Fig. 12-a. As such, the projections of monsoon rainfall over the Maritime561

Continent are probably sensitive to the evolution of these convergence zones. First, it should562

be noticed that some models tend to produce too much rainfall in the Western end of the563

ITCZ as compared to the Western end of the SPCZ during the historical period (e.g. CCSM4,564

FIO-ESM, MIROC5, NorESM-ME, in Fig. 12-b). Then, the striking thing is that the pattern565

of projected DJFM rainfall in these convergence zones is totally different from one model566

to another (Fig. 12-c). Moreover, the Maritime Continent is characterized by marked land-567

ocean heterogeneities, and by high and narrow mountain ranges, with the Central Range of568

Papua-New Guinea peaking at 4884 m, and with mountain ranges peaking between 1000 and569

3000 m in most of the Indonesian and Malaysian islands. It is worth mentioning that these570

heterogeneities lead to a very strong uncertainty in any of the observational products. Most571

of the selected models capture strong monsoon precipitation in Papua-New Guinea, and a572

few of them capture relatively realistic island-related patterns in Indonesia and Malaysia573

(CESM1-CAM5, ACCESS1-0, HadGEM2-AO in Fig. 12-b). While most of the models pro-574

duce an increase of precipitation in Papua-New Guinea during the 21stcentury, there is no575
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clear consensus across the selected models on the evolution of Indonesian and Malaysian576

DJFM monsoon rainfall (Fig. 12-c).577

As shown in section 3.3, 10 of the 11 selected models produce more summer monsoon578

rainfall in India and South Asia during the 21stcentury compared to the historical period.579

There are three regional spots that appear particularly intense in the observations (Fig. 13-580

a): the Western Ghats (South-Western part of the Indian peninsula), the Eastern coast of581

the Bay of Bengal, and the Eastern third of the Himalaya. The majority of the selected582

models simulate such spots in the historical simulations, but tend to produce much stronger583

rainfall than observed in the Central part of the Himalaya (Fig. 13-b). It should be noted,584

however, that the uncertainty in both satellite and station-based observations is very high585

in this region of complex orography. Interestingly, all the models that produce more land-586

based rainfall in the rcp8.5 scenario have most of the rainfall increase located in the Himalaya587

(Fig. 13-c). There is however no consensus across the selected models on how the summer588

monsoon rainfall could vary along the Eastern coast of the Bay of Bengal. Approximately589

half of the models produce slightly less rainfall in the Western Ghats during the 21stcentury590

(e.g. MIROC5, HadGEM2-AO, CESM1-CAM5), in qualitative agreement with Rajendran591

et al. (2012) who obtained such results from a high resolution atmospheric model.592

5 Conclusion593

In this paper, we have shown that a critical challenge in model rainfall assessment lies594

in the spread of observational data. Indeed, the mean summer monsoon rainfall and the595

amplitude of its interannual variability vary significantly across the observation datasets. The596

atmospheric reanalysis produce monsoon rainfall in the range of the observations uncertainty.597
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By building an envelope of the observations and reanalysis, it is possible to identify the598

outliers, i.e. the models that are significantly different from the observations. Most of the599

CMIP3 and CMIP5 models produce both Indian and Australian mean summer monsoon600

rainfall reasonably close to the observations/reanalysis envelope. This is also true for the601

amplitude of the interannual variability of the Indian and Australian summer monsoons.602

The seasonal cycle of both the Indian and the Australian monsoons is in good agreement603

across the observation products and reanalysis. Most of the CMIP3 and CMIP5 models604

capture a seasonal cycle with a maximum rainfall at the right season, but the seasonal cycle605

tends to be shorter or longer than observed in the CMIP5 simulations, and even more in the606

CMIP3 simulations. Based on the mean monsoon rainfall, on the amplitude of its interannual607

variability, and on the seasonal cycle, we select a subset of 19 models that statistically capture608

the main characteristics of the monsoon, taking the observations uncertainty into account.609

Then, we have evaluated the monsoon-ENSO and monsoon-IOD relationships in the610

CMIP models, because ENSO and IOD are likely to change in a future climate, with611

possible consequences for the monsoon. Because of their difference in seasonality, the612

Australian/Maritime Continent monsoon-ENSO relationship and the Indian/South Asian613

monsoon-ENSO relationship are affected by different kinds of biases in the CMIP models.614

As already noted in previous studies related to the CMIP3 models, we have confirmed that615

the intensity of the concomitant land-based Australian monsoon-ENSO relationship is cor-616

related to the intensity of simulated ENSO (this had already been noted by Cai et al., 2009617

and Colman et al., 2011 for the CMIP3 models). We have shown that the monsoon-ENSO618

relationship over the Maritime continent is rather influenced by the ability of the models to619

produce a cold anomaly in the climatological warm pool during El Niño events. In India620
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and South Asia, the monsoon-ENSO relationship strongly depends on the simulated sea-621

sonal cycle of ENSO, because El Niño or La Niña events are at their developing stage at622

the beginning of the monsoon (whereas the Australian monsoon co-occurs with ENSO at623

its mature stage). As the ENSO seasonal cycle is longer than observed in the CMIP sim-624

ulations (Taschetto et al., 2012), the CMIP models tend to produce monsoon rainfall that625

is too much influenced by the tails of ENSO events from the previous year. The SON IOD626

generally influences the monsoon rainfall over the Maritime Continent in the CMIP3 and the627

CMIP5 simulations, and to a lesser extent over Australia. The strength of the monsoon-IOD628

link in the models is correlated to the strength of the monsoon-ENSO link.629

Based on these findings, we have empirically chosen a few criteria to refine the model630

selection, towards models that do not present major biases with regards to the monsoon-631

ENSO relationship. We end up with 13 models that represent the statistical properties of632

the Indian and Australian monsoon well and have also relatively good skills in simulating633

ENSO-monsoon relationship. Twelve of these 13 models are from CMIP5. We have then634

analyzed the change of monsoon rainfall in the rcp8.5 emission scenario for the 11 available635

CMIP5 models. A large majority of these 11 models produce significantly more summer636

monsoon rainfall in India (10/11), in the South Asia region (10/11), and in Australia (9/11)637

at the end of the 21stcentury. Thus, the models generally produce 5 to 20% more summer638

monsoon rainfall in 2050-2099 as compared to the pre-industrial period (and much more in639

the FGOALS-s2 model). In India, most of the simulated increase takes place in the Himalaya.640

By contrast, only five of the 11 models produce significantly more monsoon rainfall over the641

Maritime Continent at the end of the 21stcentury. Two models (FGOALS-s2 and HadGEM2-642

AO) project slightly less monsoon rainfall over the Maritime Continent in the future, but643
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associated with a strengthened interannual variability. For the majority of the models, there644

is no significant change in the amplitude of the interannual monsoon rainfall variability.645

Considering maps of projected rainfall patterns, we find no consistency between the selected646

models over the Maritime Continent.647

Our concluding remark is that the best CMIP5 models have stronger skills than the648

best CMIP3 models, but the best models are still unable to resolve the complexity of the649

Maritime Continent. This leads to the absence of model consensus concerning the future650

monsoon rainfall in this region. It is likely that high-resolution modeling is needed to simulate651

the climate of this region, due to complex land/sea distribution and to complex orography652

and bathymetry.653
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Index Long name Var. References

LIND land-only Indian monsoon precip

ISAS South Asia / Indian monsoon precip Meehl and Arblaster, 2002

LAUS land-only Australian monsoon precip

AMAR Maritime Continent / Australian monsoon precip Meehl and Arblaster, 2002

NINO34 ENSO central index SST

DMI (Indian) Dipole Mode Index SST Saji and Yamagata, 2003

IOBW Indian Ocean Basin Wide Warming index SST Taschetto et al., 2011

Table 1: Indices used in this paper (see Fig. 1).

Acronym I Institute Spatial Start Resol References

D coverage date

CMAP α UCAR/NCAR/CISL/DSS Global 1979 2.5o Xie and Arkin, 1997

GPCP β NOAA/OAR/ESRL PSD, Global 1979 2.5o Adler et al., 2003

GPCC γ Boulder, CO, USA Global land 1901 0.5o Rudolf et al., 2011

AWAP δ BOM, Australia Austr. land 1900 0.25o Jones et al., 2009

APHRODITE δ ERTDF, Japan S-E Asia land 1951 0.25o Yatagai et al., 2012

TRMM-3B42 v6 ǫ NASA/GIES/DISC, 50oS -50oN 1998 0.25o Adler et al., 2000

TRMM-3B43 v6 ζ USA 50oS -50oN 1998 0.25o Adler et al., 2000

HadISST η Met Office, Global 1870 1.0o Rayner et al., 2003

HadSST2 θ Hadley Centre, UK Global 1850 5.0o Rayner et al., 2006

NCEP-NCAR I λ NOAA/OAR/ESRL PSD, Global 1948 2.5o Kalnay et al., 1996

NCEP-DOE II µ Boulder, CO, Global 1979 2.5o Kalnay et al., 1996

NCEP-CFSR π USA Global 1979 0.5o Saha et al., 2010

ERA-40 ρ ECMWF, UK Global 1957 2.5o Dee et al., 2011

ERAinterim τ ECMWF, UK Global 1979 0.7o Dee et al., 2011

JRA-25 ψ JMA/CRIEPI, Japan Global 1979 2.5o Onogi et al., 2007

MERRA σ NASA Global 1979 0.5o Rienecker et al., 2011

Table 2: Observations (precipitation in upper part, SST in the middle part) and atmospheric reanalysis

(lower part) used in this paper. If ”land” is not mentioned, precipitation datasets cover both land and ocean.

Most of the datasets cover up to the recent years (around 2010), except ERA40 that was stopped in 2002

and APHRODITE that is only available until 2007. The resolution mentioned here is the one of the gridded

dataset, even if most of the reanalysis are produced using spectral models.
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Ocean Atmos. Ens

Model I Institute horizontal horiz. O/A References

D resolution resol.

bccr-bcm2-0 a BCCR, Norway 1.0×1.0 (1.0) 2.8×2.8 1/1 Furevik et al., 2003

cccma-cgcm3-1 b CCCMA, BC, 1.9×1.9 (1.9) 3.7×3.7 2/5 Kim et al., 2002

cccma-cgcm3-1-t63 c Canada 1.4×0.9 (0.9) 2.8×2.8 1/1 Kim et al., 2002

cnrm-cm3 d CNRM, France 2.0×1.0 (1.0) 2.8×2.8 1/1 Salas-Mélia et al., 2005

csiro-mk3-0 e CSIRO, 1.9×0.9 (0.9) 1.9×1.9 1/2 Gordon et al., 2002

csiro-mk3-5 f Australia 1.9×0.9 (0.9) 1.9×1.9 1/1 Gordon et al., 2002

gfdl-cm2-0 g NOAA, GFDL, 1.0×1.0 (0.4) 2.5×2.0 1/1 Delworth et al., 2006

gfdl-cm2-1 h USA 1.0×1.0 (0.4) 2.5×2.0 1/3 Delworth et al., 2006

giss-aom i NASA/GISS, 4.0×3.0 (3.0) 4.0×3.0 1/2 Lucarini and Russell, 2002

giss-model-e-h j USA 1.0×1.0 (1.0) 5.0×4.0 4/5 Schmidt et al., 2006

giss-model-e-r k ” ” ” 5.0×4.0 (4.0) 5.0×4.0 9/9 Schmidt et al., 2006

iap-fgoals1-0-g l IAP, China 1.0×1.0 (1.0) 2.8×2.8 3/3 Yongqiang et al., 2004

ingv-echam4 m INGV, Italy 1.0×1.0 (1.0) 1.1×1.1 1/1 Gualdi et al., 2008

inmcm3-0 n INM, Russia 2.5×2.0 (2.0) 5.0×4.0 1/1 Volodin and Diansky, 2004

ipsl-cm4 o IPSL, France 2.0×1.0 (1.0) 3.7×2.5 1/1 Marti et al., 2005

miroc3-2-hires p CCSR, 1.2×0.6 (0.6) 1.1×1.1 1/1 K-1 Developers, 2004

miroc3-2-medres q Japan 1.4×0.9 (0.6) 2.8×2.8 1/3 K-1 Developers, 2004

miub-echo-g r MIUB, Germany 2.8×2.3 (0.5) 3.7×3.7 2/5 Min and Hense, 2006

& Korea

mpi-echam5 s MPI-M, Germany 1.0×1.0 (1.0) 1.9×1.9 1/3 Jungclaus et al., 2006

mri-cgcm2-3-2a t MRI, Japan 2.5×2.0 (0.5) 2.8×2.8 5/5 Yukimoto et al., 2001

ncar-ccsm3-0 u NCAR, CO, USA 1.1×0.5 (0.3) 1.4×1.4 2/8 Collins et al., 2006

ncar-pcm1 v NCAR, CO, USA 1.0×1.0 (1.0) 2.8×2.8 3/4 Washington et al., 2000

ukmo-hadcm3 w MOHC, UK 1.2×1.2 (1.2) 3.8×2.5 1/2 Gordon et al., 2000

ukmo-hadgem1 x MOHC, UK 1.0×1.0 (0.4) 1.9×1.2 1/2 Johns et al., 2004

Table 3: CMIP3 model names; ID for this paper; name of providing institutes; ocean mean zonal resolution

(at the equator in oE ) × mean 25oN -35oN resolution in latitude (in o), and mean equatorial refinement in

brackets (5oS -5oN ); atmospheric output resolution (in oE × oN ); the number of ensemble members for the

Ocean/Atmosphere components is shown in the Ens O/A column.

46



Ocean Atmos. Ens

Model I Institute horizontal horiz. O/A References

D resolution resol.

ACCESS-1.0 A CSIRO-BOM, 1.0×1.0 (0.3) 1.9×1.2 1/1 BOM, 2010

ACCESS-1.3 B Australia 1.0×1.0 (0.3) 1.9×1.2 1/1 BOM, 2010

BCC-CSM1-1 C BCC, CMA, China 1.0×1.0 (0.3) 2.8×2.8 3/3

CanESM2 D CCCMA, Canada 1.4×0.9 (0.9) 2.8×2.8 5/5

CESM1-CAM5 E NSF-DOE- 1.1×0.6 (0.3) 1.2×0.9 2/3 Vertenstein et al., 2012

CESM1-FASTCHEM F -NCAR, 1.1×0.6 (0.3) 1.2×0.9 3/3 Vertenstein et al., 2012

CESM1-WACCM G USA 1.1×0.6 (0.3) 2.5×1.9 1/1 Vertenstein et al., 2012

CCSM4 H NCAR, CO, USA 1.1×0.6 (0.3) 1.2×0.9 1/6 Gent et al., 2011

CMCC-CM I CMCC, Italia 2.0×1.9 (0.6) 0.7×0.7 1/1 Scoccimarro et al., 2011

CNRM-CM5 J CNRM-CERFACS, 1.0×0.8 (0.3) 1.4×1.4 10 Voldoire et al., 2012

France /10

CSIRO-Mk3-6-0 K CSIRO-QCCCE, 1.9×0.9 (0.9) 1.9×1.9 10 Rotstayn et al., 2012

Australia /10 Rotstayn et al., 2010

EC-EARTH L EC-EARTH, Europe 1.0×0.8 (0.3) 1.1×1.1 0/2 Hazeleger et al., 2010

FGOALS-g2 M LASG-CESS, China 1.0×1.0 (0.5) 2.8×2.8 2/3 Yongqiang et al., 2004

FGOALS-s2 N LASG-IAP, China 1.0×1.0 (0.5) 2.8×1.7 2/3 Yongqiang et al., 2004

FIO-ESM O FIO, SOA, China 1.1×0.6 (0.3) 2.8×2.8 1/1

GFDL-CM3 P NOAA 1.0×1.0 (0.4) 2.5×2.0 1/5 Donner et al., 2011

GFDL-ESM2G Q -GFDL, 1.0×1.0 (0.4) 2.5×2.0 1/3 Donner et al., 2011

GFDL-ESM2M R USA 1.0×1.0 (0.4) 2.5×2.0 1/1 Donner et al., 2011

GISS-E2-H S NASA/GISS, 2.5×2.0 (2.0) 2.5×2.0 5/5 Schmidt et al., 2006

GISS-E2-R T NY, USA 2.5×2.0 (2.0) 2.5×2.0 5/4 Schmidt et al., 2006

HadCM3 U MOHC, UK 1.2×1.2 (1.2) 3.7×2.5 9/4 Collins et al., 2001

HadGEM2-AO V NIMR-KMA,Korea 1.0×1.0 (0.4) 1.9×1.2 1/1 Martin et al., 2011

HadGEM2-CC W MOHC, UK 1.0×1.0 (0.4) 1.9×1.2 2/3 Martin et al., 2011

HadGEM2-ES X MOHC, UK 1.0×1.0 (0.4) 1.9×1.2 2/3 Collins et al., 2011

INMCM4 Y INM, Russia 0.8×0.4 (0.4) 2.0×1.5 1/1 Volodin et al., 2010

IPSL-CM5A-LR Z IPSL, France 2.0×1.9 (0.6) 3.7×1.9 4/4 Dufresne et al., 2012

IPSL-CM5B-LR Γ IPSL, France 2.0×1.9 (0.6) 3.7×1.9 1/1 Dufresne et al., 2012

IPSL-CM5A-MR ∆ IPSL, France 1.6×1.4 (0.6) 2.5×1.3 1/1 Dufresne et al., 2012

MIROC5 Π AORI-NIES- 1.6×1.4 (0.6) 1.4×1.4 3/3 Watanabe et al., 2010

MIROC-ESM Σ -JAMSTEC, Japan 1.4×0.9 (0.6) 2.8×2.8 3/3 Watanabe et al., 2011

MPI-ESM-LR Ω MPI-N, Germany 1.5×1.5 (1.5) 1.9×1.9 3/3 Raddatz et al., 2007

MPI-ESM-MR @ MPI-N, Germany 0.4×0.4 (0.4) 1.9×1.9 3/3 Raddatz et al., 2007

MRI-CGCM3 # MRI, Japan 1.0×0.5 (0.5) 1.1×1.1 3/3 Yukimoto et al., 2001

NorESM1-M $ NCC, Norway 1.1×0.6 (0.3) 2.5×1.9 3/3

NorESM1-ME & NCC, Norway 1.1×0.6 (0.3) 2.5×1.9 1/1

Table 4: CMIP5 model names; ID for this paper; name of providing institutes; ocean mean zonal resolution

(at the equator in oE ) × mean 25oN -35oN resolution in latitude (in o), and mean equatorial refinement in

brackets (5oS -5oN ); atmospheric output resolution (in oE × oN ); the number of ensemble members for the

Ocean/Atmosphere components is shown in the Ens O/A column.
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model ID ensemble AMAR LAUS LIND

name members -ENSO -ENSO -ENSO

gfdl-cm2-0 g –
√ √ √

ACCESS-1.0 A 1
√ √ √

CanESM2 D 5
√ √ √

CESM1-CAM5 E 3
√ √ √

CESM1-FASTCHEM F 0
√ √ √

CCSM4 H 6
√ √ √

CNRM-CM5 J 5
√ √ √

FGOALS-g2 M –
√ √

⌢

FGOALS-s2 N 3
√ √ √

FIO-ESM O 3
√ √ √

GFDL-CM3 P – ⌢ ⌢
√

GFDL-ESM2G Q – ⌢
√ √

HadCM3 U – ⌢
√ √

HadGEM2-AO V 1
√ √ √

MIROC5 Π 1
√ √ √

MPI-ESM-LR Ω – ⌢
√ √

MPI-ESM-MR @ – ⌢
√ √

NorESM1-M $ 1
√ √ √

NorESM1-ME & 1
√ √ √

Table 5: List of the CMIP models showing the best skills in term of Indo-Australian monsoon statistical

properties. The number of ensemble members used for the assessment of rcp8.5 projections is shown in

the third column. The symbol
√

indicates that the specified monsoon-ENSO relationship is well captured,

based on criteria described in section 3.2. The symbol ⌢ indicates a failure in the specified monsoon-ENSO

relationship. The models that are removed due to deficiency in the simulated ENSO-monsoon relationship

are in italic, the other are in bold.
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Figure 1: Boxes used to compute indices defined in Tab. 1 (DMI is calculated as DMIa-DMIb), with the

shaded areas showing the land-based indices.
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Figure 2: (a) Taylor (2001) diagram for the DJFM Australian monsoon rainfall index (LAUS). (b) same for

the JJAS Indian monsoon rainfall index (LIND). One standard deviation unit on the diagram is one standard

deviation of AWAP and APHRODITE in Australia and India respectively. Each dataset is compared to

AWAP/APHRODITE over the common period (e.g. 1948-2009 for NCEP-NCAR but 1998-2009 for TRMM-

3B43 in Australia). The distance from AWAP/APHRODITE represents the centered root mean square error

as compared to AWAP/APHRODITE (dashed lines, in AWAP/APHRODITE standard deviation units).
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Figure 3: (a) mean DJFM Australian monsoon rainfall (LAUS) as a function of mean JJAS Indian monsoon

rainfall (LIND). (b) Same as (a) but for interannual standard deviations of summer-months-averaged rainfall

instead of means. (c) RMSE of normalized LAUS seasonal cycles versus RMSE of normalized LIND seasonal

cycles, the RMSE being calculated with respect to AWAP in Australia and to APHRODITE in India (see

detailed seasonal cycles in Fig. 4). Each letter or symbol refers to a model/dataset from CMIP5 (green,

Tab. 4), CMIP3 (red, Tab. 3), or reanalysis/observations (black, Tab. 2). Triangles show the multi-model

mean. Units in (a) and (b) are mm/day, while (c) has no units. The number r (upper right of each

panel) is the correlation coefficient of the X − Y scatter plot, for CMIP3 and CMIP5 considered together

(without observations and reanalysis). The PDF contours are estimated from the sum up of Gaussian

functions attributed to each model point. The standard deviation of each individual Gaussian function is

chosen as 3s/
√
N in each direction, where s is the standard deviation of one group (CMIP3, CMIP5, or

observations/reanalysis), and N the number of elements within the group (such a standard deviation for the

Gaussian function enables to fill the average distance between two neighbor points among N points normally

distributed). Thick (thin) black, red, and green contours enclose 25% (75%) of PDF integrative. The blue

contour encloses 99.9% of the observations/reanalysis PDF integrative in (a) and (b), and 99.999% in (c).

In (b), NCEP-DOE-II (represented by µ) and NCEP-CFSR (out of the figure area, standard deviation of

1.5 and 2.0 mm/day for LAUS and LIND respectively) are not considered in the PDF computation. In (c),

JRA25 is not considered in the PDF computation.
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Figure 5: (a) Lag correlation between LAUS averaged in DJFM of year 0 and monthly NINO34 values

(months on the X-axis). Thick lines are the means over the observations/reanalysis (black), CMIP3 (red),

and CMIP5 (green). Semi-transparent areas show the upper and lower quartiles. The dashed blue thick

line in (a) and (d) represents AWAP-HadISST. The yellow area indicates the reference time (t=0), and its

width shows the DJFM months over which each index is averaged. (b) Same as (a) but for AMAR instead

of LAUS. (c) Same as (a), but selecting the 30 year period of each model (over the 150 years of each member

and among the ensemble members) that gives the strongest anti-correlation over the period shown by the

black double arrow. (d) Same as (a) but for NINO34 instead of LAUS.
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Figure 6: (a) Lag correlation between LAUS averaged in DJFM of year 0 and monthly NINO34 values

(months on the X-axis, M for March and J for June) for observations/reanalysis (black names), CMIP3 (red),

and CMIP5 (green) ranked by increasing correlation in year0 DJFM. (b) Same as (a) but for correlation

between NINO34 averaged in DJFM and lagged monthly NINO34 values. Pink circles indicate the standard

deviation of NINO34 produced by each model. The pink line is the least mean square linear fit of these

circles (correlation=0.45).
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Figure 7: (a) Lag correlation between AMAR averaged in DJFM of year 0 and monthly NINO34 values

(months on the X-axis, M for March and J for June) for observations/reanalysis (black names), CMIP3

(red), and CMIP5 (green) ranked by increasing correlation in year0 DJFM (indicated on the left hand side).

Names of land-only data are in gray. (b) Composite of equatorial Pacific SST anomalies (5oN -5oS average,

in K) for NINO34 greater than 1 standard deviation. The RMSE with regards to HadISST is indicated on

the right hand side.
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Figure 8: (a) Lag correlation between LIND averaged in JJAS of year 0 and monthly NINO34 values

(months on the X-axis). Thick lines are the means over the observations/reanalysis (black), CMIP3 (red),

and CMIP5 (green). Semi-transparent areas show the upper and lower quartiles. The dashed blue thick line

represents APHRODITE-HadISST. The yellow area indicates the reference time (t=0), and its width shows

the JJAS months over which each index is averaged. The black dashed lines represent the 90% significance

of correlation coefficients for a single time-series of 150 years (see caption of Fig. 5). (b) Same as (a) but for

ISAS instead of LIND. (c) Same as (a) but for June-July NINO34 instead of JJAS LIND. (d) Same as (c)

but for August-September NINO34.
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Figure 9: Lag correlation between LIND averaged in JJAS of year 0 and monthly NINO34 values (months

on the X-axis, M for March and J for June) for observations/reanalysis (black names), CMIP3 (red), and

CMIP5 (green) ranked by increasing correlation in year0 JJAS.
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Figure 10: (a) Scatter plot of the correlation between SON DMI and DJFM LAUS (Y-axis) as a function

of the correlation between DJFM NINO34 and DJFM LAUS (X-axis). Envelopes are PDF contours (see

Fig. 3). Multi-model means are shown by triangles. Gray bars along the axis show correlation values that

are below the 90% significance level for a 150-year time series. (b) Same but with AMAR instead of LAUS,

with land-based observations represented by gray letters.
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Figure 11: Summer monsoon rainfall averaged over 50-year periods and divided by the 1850-1899 mean for

LAUS (a), AMAR (b), LIND (c), and ISAS (d). Error bars show the confidence interval at the 90% level

(the uncertainty of the denominator not taken into account, so that bars have to be compared to each others

rather than to unity).
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Figure 12: DJFM rainfall in the observations (a) and in the historical CMIP5 simulations (b), and difference

between the 2006-2100 mean rainfall from rcp8.5 experiments and the 1850-2005 mean rainfall (c). Maps

from NorESM1-M are not shown since they are quite similar to the map from NorESM1-ME.
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Figure 13: JJAS rainfall in the observations (a) and in the historical CMIP5 simulations (b), and difference

between the 2006-2100 mean rainfall from rcp8.5 experiments and the 1850-2005 mean rainfall (c). Maps

from NorESM1-M are not shown since they are quite similar to the map from NorESM1-ME.
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