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Abstract

The ability of a robot to adapt in-mission to achieve an assigned goal is highly
desirable. This thesis project places an emphasis on employing learning-based
intelligent control methodologies to the development and implementation of
an autonomous unmanned aerial vehicle (UAV). Flight control is carried out
by evolving spiking neural networks (SNNs) with Hebbian plasticity. The
proposed implementation is capable of learning and self-adaptation to model
variations and uncertainties when the controller learned in simulation is de-
ployed on a physical platform.

Controller development for small multicopters often relies on simulations
as an intermediate step, providing cheap, parallelisable, observable and repro-
ducible optimisation with no risk of damage to hardware. Although model-
based approaches have been widely utilised in the process of development, loss
of performance can be observed on the target platform due to simplification
of system dynamics in simulation (e.g., aerodynamics, servo dynamics, sensor
uncertainties). Ignorance of these effects in simulation can significantly de-
teriorate performance when the controller is deployed. Previous approaches
often require mathematical or simulation models with a high level of accuracy
which can be difficult to obtain. This thesis, on the other hand, attempts to
cross the reality gap between a low-fidelity simulation and the real platform.
This is done using synaptic plasticity to adapt the SNN controller evolved in
simulation to the actual UAV dynamics.

The primary contribution of this work is the implementation of a procedu-
ral methodology for SNN control that integrates bioinspired learning mech-
anisms with artificial evolution, with an SNN library package (i.e. eSpinn)
developed by the author. Distinct from existing SNN simulators that mainly
focus on large-scale neuron interactions and learning mechanisms from a neu-
roscience perspective, the eSpinn library draws particular attention to em-
bedded implementations on hardware that is applicable for problems in the
robotic domain. This C++ software package is not only able to support
simulations in the MATLAB and Python environment, allowing rapid proto-
typing and validation in simulation; but also capable of seamless transition

iii
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between simulation and deployment on the embedded platforms.
This work implements a modified version of the NEAT neuroevolution

algorithm and leverages the power of evolutionary computation to discover
functional controller compositions and optimise plasticity mechanisms for on-
line adaptation. With the eSpinn software package the development of spik-
ing neurocontrollers for all degrees of freedom of the UAV is demonstrated in
simulation. Plastic height control is carried out on a physical hexacopter plat-
form. Through a set of experiments it is shown that the evolved plastic con-
troller can maintain its functionality by self-adapting to model changes and
uncertainties that take place after evolutionary training, and consequently
exhibit better performance than its non-plastic counterpart.
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Language Convention

The spelling in this thesis is mostly in the British/Australian style. However,
there are also some terms that have been originally or widely used in the
American spelling. For consistency purpose I will continue to use their orig-
inal forms. For instance, the author of the Boost Serialization1 software
package has chosen serialization over serialisation. Therefore, in this thesis,
serialization is used consistently.

In addition, the prefix neuro is usually joined to a word it describes,
conventionally without a hyphen. Therefore, in this thesis, neurocontroller,
neuroevolution and neuromorphic are preferred over neuro-controller, neuro-
evolution and neuro-morphic.

1https://www.boost.org/doc/libs/1_58_0/libs/serialization/doc/index.html
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Chapter 1

Introduction

1.1 Aim
This thesis project contributes to the field of autonomous unmanned aerial
vehicles (UAVs), i.e. aerial platforms that are capable of self-operation to
achieve an assigned mission under (partially) uncertain environmental con-
ditions [1, 2]. The aim of this thesis is to present a procedural methodology
for the design and implementation for UAV control using plastic spiking neu-
ral networks (SNNs). Artificial evolution is exploited in this work for the
training of functional network compositions based on a simplified simulated
model. Hebbian synaptic plasticity developed offline is utilised for controller
adaptation to model variations from simulation to on-board the platform.

A complete pathway for the control of a hexacopter UAV is proposed,
which comprises the following three stages:

• identification and modelling of the vehicle dynamics in simulation in
which only basic knowledge of the plant is required;

• controller development via artificial evolution based on the identified
model with regard to the network structure and configurations, as well
as bioinspired synaptic learning rules;

• controller deployment on the target platform, together with an algo-
rithm which facilitates further online adaptation to cross the gap be-
tween different platform representations.

Through a set of experiments it has been demonstrated that the evolved plas-
tic neurocontroller can maintain its functionality by self-adapting to model
changes and uncertainties that take place after evolutionary training, and
consequently exhibit better performance than its non-plastic counterpart.

1
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Figure 1.1: Development of flight control using plastic SNNs.

1.2 Motivation
1.2.1 Unmanned Aerial Vehicles
UAVs, or more conversationally known as “drones,” are a group of aerial
robotic platforms that have been widely employed in public services and
commercial and agricultural applications [3, 4], such as professional video
recording, disaster assistance as well as farming and pest control. They have
also been extensively used in research studies for developing and testing ad-
vanced control techniques due to the complexity of the system dynamics and
aerodynamics [5, 6].

Generally there are two types of UAVs: fixed-wing UAVs (FUAVs) and
rotary-wing UAVs (RUAVs) including single-rotor helicopters and multi-rotor
aircraft (i.e. multicopters) [7]. These two types have distinct aerodynamics
and specifications in terms of flight endurance, speed, payload and manoeu-
vrability, and thus have been applied in divergent flight scenarios for different
purposes. Fixed-wing aircraft are more power-efficient and can cover longer
flight distance as the vertical lift is produced by the forward thrust coupled
with the aerodynamics of the wings. On the other hand, vertical lift in an
RUAV is generated by the rotations of blades which cause a ‘downwash’ of
air in the opposite direction to the generated thrust.

Compared with FUAVs, RUAVs usually have smaller payload, but can
operate in a wider range of environments than fixed-wing aircraft because of
their VTOL (vertical take-off and landing) characteristics that allows them
to hover and take off in confined spaces. RUAVs are also able to cruise at a
lower speed and perform more aggressive manoeuvres than fixed-wing UAVs.
A multicopter platform (i.e. hexacopter) is chosen in this work to conduct
the experiments.

Multicopters are the most popular type of drones nowadays because of
their affordability and modular structure which is easy for manufacturing
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and maintenance. The multiple-rotor architecture is more able to provide
robustness than helicopters but requires more energy. Multicopters (and
helicopters) are naturally less stable than FUAVs, and therefore require a
well-tuned flight controller to achieve safe operations [8].

1.2.2 Spiking Neural Networks: Towards Neuroscien-
tific Intelligence

Machine Intelligence? Neuroscientific Intelligence?

During the past decades since computers were invented, humans have been
sharing fascination about future robotics where artificial general intelligence
(AGI)1 is realised. Although the development of artificial neural networks
(ANNs) and their recent revival with deep learning technologies have signif-
icantly advanced the research in the machine learning (ML) domain, we are
still very far away from what we have imagined. The fundamental problem
is we have not yet fully understood how human (or animal) brains learn and
generalise. Specifically, how is information represented and transmitted in
biophysical neural systems? How is knowledge gained and developed from
interactions with the environment?

From a neuroscientific point of view, information transmission in biophysi-
cal neural systems is in the form of timed discrete electrical pulses called spikes
[9]. Synaptic plasticity plays an essential role in the learning activities where
cognition builds up meaningfully [10]. An interestingly distinct characteristic
of biological brains is that learning in these organisms are considered via local
learning rules based on interactions between neighbouring neurons. Whilst
the prevailing ANN models utilise a supervised learning paradigm where mas-
sive labelled data (i.e. big data) is required for the training process; formation
and removal, strengthening and weakening of synapses in biophysical models
are through synaptic plasticity such as long-term potentiation and depression
(LTP and LTD) [11, 12]. Electrophysiological experiments have shown such
mechanisms are modulated by Dopamine (DA) as a delayed reward signal
[13].

Spiking Neural Networks

This thesis does not attempt to elaborate the theories and phenomenological
modelling of biophysical neurons and synapses, or give answers to questions
such as how learning is perceived in biophysical brains. Instead, a plausi-
ble way of developing autonomous robotics is presented here, by employing

1https://en.wikipedia.org/wiki/Artificial_general_intelligence

https://en.wikipedia.org/wiki/Artificial_general_intelligence
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computational spiking neural network (SNN) [14] models with bioinspired
learning mechanisms, with the hope of making a contribution to the devel-
opment of brain-like computing in robotic applications [15].

Spiking neural networks, often referred to as “the third generation of
artificial neural networks” [14], are computational systems inspired by the
structure of biological brains. Unlike the current, widely used, neuron mod-
els that carry out computation via summation of continuous-valued input
signals, information transmission in SNNs takes the form of discrete tempo-
ral spikes generated during a potential integration process. Each neuron has
a membrane potential as a measurement of neuronal excitement; receiving
multiple incoming spikes within a given time window raises the membrane
potential above some threshold, causing an outgoing spike being sent to any
forward-connected neurons.

Compared with discrete machine learning applications [16, 17], SNNs in
robotic control usually feature with online learning functionality and favour
smaller networks in size due to the requirement of real-time computing [18,
19, 20]. Recent SNN studies on robotic control problems [21] have emerged
in this area. Such implementations are more advantageous than conventional
neural network systems as: i) they are able to yield more powerful computa-
tion compared with non-spiking neural systems [14] due to their spatiotem-
poral dynamics, which can learn to interact internally over time and space
[22]; ii) biological learning rules with SNNs can provide additional learning
and adaptation to the system [23, 24, 25], which has become significant in
robotic applications where labelled data cannot be obtained. iii) their im-
plementations are power inexpensive on neuromorphic chips because of their
event-driven sparsity [26]. This makes them especially suitable to applica-
tions where payload weight and power budgets are very tight such as UAVs
or space applications.

1.3 Approach
The development of flight control often relies on simulations to provide ob-
servable and reproducible optimisation with no risk of damage to hardware.
However the system dynamics in simulations are usually simplified as some
of the characteristics cannot be easily modelled. A form of learning in au-
tonomous robotics, therefore, is the ability to maintain the robot’s function-
ality when the controller learned in simulation is deployed on the physical
platform. In this work, online adaptation is proposed to cross the reality gap
[2, 27, 28] by utilising Hebbian synaptic plasticity [29] in SNNs.

Controller development in this work is divided into three steps. First a
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lower-order simulation model is constructed from a system identification pro-
cess in which only the essential parts of the system dynamics are captured.
An improved neuroevolution algorithm (MoNEAT) is then used to evolve
effective network topology and weight configurations in simulation. Heb-
bian plasticity is also optimised via artificial evolution (evolution of learning
[30]), in which evolution takes place in the rules that govern synaptic self-
organisation instead of in the synapses themselves. The resulting controller
solution is finally transferred to a hexacopter platform, together with the al-
gorithm which facilitates further online adaptation. A C++ SNN software
package (eSpinn) is developed, providing seamless operations from simula-
tions to embedded hardware.

1.4 Contributions
This thesis draws attention to the implementation of a procedural methodol-
ogy for learning-based SNN flight control that integrates bioinspired learning
mechanisms with artificial evolution. The primary contributions of this thesis
include:

• the development of a C++ SNN software package (i.e. eSpinn), with
a particular focus on embedded implementations;

• the improvement of a popular neuroevolution algorithm (i.e. MoNEAT)
with an additional mutation operation to discover favourable network
topologies more efficiently.

• the construction of a hexacopter platform and the development of con-
troller source code in the ROS environment;

• an incremental evolutionary approach to developing spiking neurocon-
trollers for flight control in six degrees of freedom; and

• an adaptive approach for hexacopter height control that utilises Heb-
bian synaptic plasticity for controller online adaptation from simulation
to the target platform.

1.5 Thesis Layout
This thesis contains eight chapters. Organisation of the rest of this thesis
is as follows. In Chapter 2 a detailed literature review of the related work
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on UAV control, SNN learning and its applications to robotic control is pre-
sented. In Chapter 3 an SNN machine learning package developed by the
author (i.e. eSpinn) is introduced. An improved neuroevolution algorithm
(i.e. MoNEAT) is proposed for the training of SNNs, with several examples
that demonstrate the functionality of this library. Chapter 4 describes the ex-
perimental platform and systems used in this thesis, with an introduction to
the controller instantiation on the embedded hardware that integrates eSpinn
with the robot operating system (ROS). Chapter 5 provides a detailed sys-
tem description of a simulated hexacopter model that is utilised to validate
and analyse the proposed control algorithms. An incremental approach to
training SNN controllers for the full control of the hexacopter model is given
as well. In Chapter 6 the reality gap problem is addressed. A novel approach
is proposed for hexacopter height control by leveraging the power of artificial
evolution to optimise Hebbian plasticity for controller online adaptation. In
Chapter 7 this method is applied to the hexacopter platform described in
Chapter 4. Finally, conclusions and discussions are provided in Chapter 8.



Chapter 2

Literature Review

2.1 Introduction
This thesis place an emphasis on evolving plastic spiking neural networks (EP-
SNNs) as autonomous controllers for unmanned aerial vehicles (UAVs), which
involves multiple fields of research (i.e., adaptive and intelligent robotics, neu-
ral networks and evolutionary computation).

There are a variety of active research topics with regard to robotics (or
UAVs), ranging from the higher level mission or trajectory planning [31, 32,
33], to collision avoidance [34, 35], to sensing and mapping [36, 37], and finally
to the lowest control of the robot [5, 6]. This thesis work is on the development
of UAV flight controllers and therefore in this chapter the literature review is
confined to the control-related work only.

In this chapter, a short clarification of the primary disciplines will first
be provided in Section 2.2. Then a detailed review of the related areas will
be elaborated. Previous work on system identification is first detailed in
Section 2.3. An overview of flight control is then described in Section 2.4. A
study on the neural network theory is provided in Section 2.5, followed by
a discussion on SNN learning methods in Section 2.6. Finally, Section 2.7
discusses the benefits of SNN-based control approaches and reviews related
research in robotic applications.

2.2 Autonomous Robotics

2.2.1 Autonomous vs. Intelligent
The words autonomous and intelligent (as in autonomous/intelligent control,
robotics) have become extensively used in nowadays’ research community, yet

7
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there seem to be disputed views towards the definitions of these terms. Some
literature has used the phrase “intelligent control” to describe learning-based
AI-related control approaches [38, 5], such as neural networks, fuzzy logic,
evolutionary computing, reinforcement learning, etc, as a term opposite to
conventional control [39]. On the other hand, there are also some literature
stating that “autonomous” and “intelligent” are the terms to describe the
degree of autonomy [40]. As per [41], the autonomy level of a robotic system
is distinguished as automatic, autonomous and intelligent. An autonomous
system is capable of decision making and adaptation to achieve its preset goal,
while an intelligent system has the ability of reasoning and discovering its own
goals and thus has a higher level of autonomy compared with autonomous
agents.

From a practical view, I agree most of the existing research on robotics
does not involve agents with general artificial intelligence (AGI). However,
there factually exist modern control methodologies that are called intelligent
control approaches. Therefore, in this thesis, I use

• the term autonomous to describe the robots and their behaviours if
they are capable of learning and adaption during the interaction with
the environment;

• the term intelligent to describe the control techniques (neural networks,
fuzzy logic, etc) that these robots utilise.

2.2.2 Autonomous UAVs: from a Control Perspective
The underlying fundamentals of a control system incorporates: i) the mod-
elling of the system dynamics, and ii) the control law applied to the system.
For a discrete-time control system like robotics, the system can be well de-
scribed as [42]:

x(t+ 1) = f(x(t),u(t))

y(t) = h(x(t),u(t))
(2.1)

where x(t) is a vector of state variables, u(t) is a vector of control signals
and y(t) is a vector of state measurements. The modelling of the system is
represented by the functions f and h, which are generally nonlinear mappings
in a UAV application.

The control law u(t) relies on the feedback measurements and can be
formulated as:

u(t) = g(y(t)) (2.2)
From a control perspective, an autonomous robot possesses the ability of
learning and self-adaptation, generating a self-regulating control policy from
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the interactions with its environment, which enable it to perform a task under
uncertain conditions [2]. The autonomy of the system is reflected in

• that the control law is developed by a learning process other than ex-
plicit formulation;

• that the control system is able to adapt to uncertainties and improves
variation attenuation.

There are a number of fields that are directly related to this research,
e.g., neurorobotics [43], evolutionary robotics [44, 30], where robotic research
questions are emerging with the focus on interfacing with neuroscience and
computational intelligence that otherwise could not be addressed with con-
ventional approaches.

UAV platforms, especially small rotary wing and flapping wing micro
air vehicles (MAVs), are particularly challenging platforms for developing
and testing such control techniques [5]. Specifically, the two aspects of UAV
control (i.e. system modelling and controller development) are both complex
problems. In the following sections, these problems will be elaborated.

2.3 System Identification
Although pure-hardware approaches in UAV control have been demonstrated
as successful [45, 46, 47], extensive engineering efforts are required to safely
conduct the learning process in hardware. As such, learning-based control
development for UAVs invariably relies on simulations as an intermediate
step [48, 19, 49], providing cheap, parallelisable, observable and reproducible
optimisation with no risk of damage to hardware. This is especially the case
for evolutionary learning [44], where initial populations are random and the
learning process itself is stochastic.

It is not uncommon to derive UAV models mathematically from first prin-
ciples [50, 8, 51]. However, such models are ill-suited to capturing every aspect
of the system dynamics, because some of them cannot easily be modelled an-
alytically, e.g., actuator kinematic nonlinearities, servo dynamics, etc [52].
Ignoring these effects can significantly deteriorate the performance of the de-
signed controller when being deployed onto the physical platform. Loss of
performance is likely to arise because the real platform has somewhat differ-
ent dynamics – which is known as the reality gap [53]. Previous approaches
often require simulation models with a high level of accuracy. A common
practice is to apply a system identification process to obtain an “identified”
simulated model that reproduces the exact dynamics of the real plant. This
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is essentially a data-fitting process in which the exact dynamics are modelled
from the measured plant’s input and output data, such that the response of
the system can be predicted when given the input vector. Such implementa-
tions have been successful amongst previous research [54, 55, 52, 56, 57].

Data collection is the first and perhaps the foremost line of work in the sys-
tem ID process. It is usually accomplished with a range of on-board sensors,
e.g., inertial-measurement units (IMUs), global positioning system (GPS) sen-
sors or motion capture systems (MCS). In this project we use a VICON MCS
which uses infrared cameras to track the pose of the UAV (refer to Section
4.3 in Chapter 4). There are a number of issues to be noted with regard to
data collection. One is that the flight data can be noisy, due not only to the
structural vibration effects on the on-board sensors during flights, but also to
the uncertainties of electronic measurements. Common filtering methods in
signal restoration from on-board sensors include the extended Kalman filter
(EKF) [58] and the moving-average filter [59].

On the other hand, model structure is the most difficult aspect to de-
termine, as it requires a priori knowledge of the system dynamics [56]. A
variety of approaches have been carried out for system identification [60]. In
recent years, learning-based black-box approaches have gained popularity in
UAV systems, such as fuzzy logic [61], neural networks using the Levenberg-
Marquardt (LM) algorithm [62, 52, 63] and deep learning with ReLU [57],
as they are convenient ways to capture the system dynamics with only basic
knowledge of the system.

2.4 UAV Flight Control
Existing flight controllers can be mainly categorised into three groups [64]:
i) classic linear control (i.e. PID controllers); ii) modern model-based con-
trol approaches including linear control (e.g. LQR controllers) and nonlinear
control; and iii) learning-based intelligent control approaches.

2.4.1 Proportional-Integral-Derivative Control
The proportional-integral-derivative (PID) controller [65, 66] is the most ex-
tensively utilised control paradigm in the engineering world. PIDs are linear
feedback controllers in which the output u is a correction signal based on the
amount of the error e between the desired setpoint r and the measured value
of the system output y:

e = r − y (2.3)
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As its name indicates, a PID controller consists of the proportional, in-
tegral and derivative terms of the error value and the output (u) is the sum
of these three components, as formulated in Eq. 2.4. In some simpler cases,
use can also be made of proportional (P), proportional+integral (PI) and
proportional+derivative (PD) controllers, in which the integral or derivative
terms of Eq. 2.4 are omitted as appropriate.

u(t) = Kpey(t) +Ki

∫
ey(t)dt+Kd

d

dt
ey(t) (2.4)

P

e I

-D

u yG(s)r
-

+

Figure 2.1: A feedback control system using PID control

PID control has prevailed in UAV applications [67, 68] and has been widely
used as a benchmark [69, 70, 71, 72] because it is easily understandable and
straightforward to implement, yet generally delivers a fairly satisfactory per-
formance. The design and gain tuning can be carried out without knowing
the exact dynamics of the system, but by an iterative trial-and-error process.

The open-source flight control project PX4 Autopilot [73] used in this
thesis employs a cascaded PID control architecture. Flight control is organ-
ised in a nested layered paradigm, where the outputs of the controllers are
passed through from the higher-level position controller, to the velocity con-
troller, then to the attitude controller and finally to the innermost angular
rate controller.

Since the empirical gain tuning of the PID controllers could be time-
consuming, more recently there has also been a variety of work on the auto-
matic gain scheduling of these controllers based on other advanced algorithms,
such as neural networks [74], fuzzy logic [75, 76], artificial evolution [77] and
reinforcement learning [78].
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Figure 2.2: A cascaded PID control architecture in PX4 Autopilot, from
https://docs.px4.io/master/en/flight_stack/controller_diagrams.
html.

2.4.2 Model-Based Control Approaches
Linear-quadratic regulator

Another commonly used linear control approach is the linear-quadratic regu-
lator (LQR) [79], which is a model-based optimal control approach in which
the controller is developed by minimising a quadratic cost function. Given a
linear time-invariant (LTI) model

dx

dt
= Ax+Bu (2.5)

The cost function is formulated by:

J =

∫ ∞

0

(xTQx+ uTRu) (2.6)

where Q and R are weighting matrices of the state variables and the input
vector respectively. Optimal control can be achieved by minimising J and
the control output u turns out to be a linear state feedback with a constant
gain matrix [80]:

u = −Kx where K = −R−1BTP (2.7)

in which P is the solution matrix to the algebraic Riccati equation (ARE)
[42]:

PA+ ATP − PBR−1BTP +Q = 0 (2.8)
Further, for the linear-quadratic-Gaussian (LQG) problem where the state

measurements of the system are corrupted by Gaussian noise, the LQR con-
troller can be designed together with a combination of a state estimator (e.g.

https://docs.px4.io/master/en/flight_stack/controller_diagrams.html
https://docs.px4.io/master/en/flight_stack/controller_diagrams.html
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Kalman filter) [80]. This approach has been applied to the altitude control
of an UAV [81].

The LQR or LQG control has been successfully implemented in several
UAV applications [67, 82, 83, 70] and have shown to be tolerant against rotor
failure [83] and wind disturbance [70]. It has also been used as a training
reference for the design of a spiking neurocontroller for an insect-like robot
[84] in a supervised learning scheme. Some more discussions can be found in
Section 2.7.1.

Other Model-Based Control Approaches

H∞ control Apart from LQR, H∞ is another modern linear control method
that has appeared in the literature [85, 86, 87, 88], where a model of the
controlled system is also required [42].

Model-based nonlinear control approaches These set of control meth-
ods are generally developed with the nonlinear modelling of the aircraft ob-
tained from first principles, with parameter identification in some cases [41].
Common methods include feedback linearisation control [89, 90], backstep-
ping [91, 92], and model predictive control (MPC) [85, 93].

2.4.3 Intelligent Control Approaches

Conventional linear control methods (e.g. PID, LQR) are designed based on
the linearisation of the controlled system and therefore have restricted per-
formance in complex dynamic systems, while model-based approaches can be
too complex and sometimes impractical to acquire the mathematical repre-
sentation of the system, especially UAV applications that are operating under
a number of uncertainties [5].

Intelligent control techniques are superior to conventional approaches be-
cause: i) the development does not rely on the mathematical model of the
system; ii) the learning ability enables them to cope with model variations
and uncertainties. A summary of intelligent flight control methods can be
found in [5, 6]. Similar to the system identification process, learning-based
intelligent flight controllers also include fuzzy logic [94, 95, 71, 96, 97, 98],
neural network models [54, 48, 69, 52, 99, 49] and a combination of both
approaches (i.e. neuro-fuzzy control) [100, 101, 102, 103].
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Fuzzy Control

Fuzzy control (or sometimes referred to as fuzzy logic control) is a mathe-
matical methodology where the control law is gained from a heuristic un-
derstanding of the controlled system [104], imitating the way that human
experts aggregate information and develop a control strategy from practical
experience during a control design process. Essentially a fuzzy controller is a
decision maker that operates based on linguistic-like “if-then” rules. A fuzzy
controller has four main components: i) a fuzzifier that employs membership
functions to quantity and fuzzify (convert) the input signals to be interpreted
by the inference; ii) an inference mechanism that determines which control
rules should be applied given the fuzzified inputs; iii) a rule base that consists
of a set of fuzzy rules formulated in the form of “if-then” statements; and iv)
a defuzzification interface that decodes the fuzzy conclusions into numeric
outputs that are passed to the controlled plant.
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Figure 2.3: A fuzzy control architecture.

Fuzzy control has the advantage that the solution is in the form of human-
like reasoning that is well understandable, so that the experience of human
experts can be cast into the design of the controller. However, this type
of methods has no capability of generalisation [5]. Compared with neural
network based control, it can only provide limited learning intelligence [6].

Neural Network Control

Early implementations of neurocontrollers for aerial vehicles date back to
work such as that in [105], in which a feedforward neural network is trained
using backpropagation to achieve stable hovering of a helicopter with inertial
data inputs. Later full control of a quadcopter in four degrees of freedom
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(DoF) (i.e. roll, pitch, yaw and altitude control) was developed [106]. The
drone is capable of achieving vertical take off and landing, as well as sustaining
a predefined attitude using a set of onboard sensors (a tilt sensor, a compass
and a gyroscope).

More recently a large group of flight controllers have been designed based
on neural networks. With the development of other AI techniques (e.g., artifi-
cial evolution [48, 69], reinforcement learning [54, 55, 99, 49]), neural network
control has proven successful in a wide variety of UAV control applications.
Since the focus of this work is on the development of spiking neurocontrollers,
a review of these approaches will be elaborated in details in Section 2.7 after
an introduction to the neural network theory in Section 2.5.

2.5 Neural Network Theory

2.5.1 An Overview
Artificial neural networks (ANNs) (or simply neural networks (NNs)) are
computational systems inspired by the structure of human brains [107]. They
are designed to process and analyse information similar to the way biological
neural systems are stimulated.

A neural network is essentially a multi-input-multi-output (MIMO) sys-
tem with a graph structure, in which the computing units (i.e. neurons)
operating in parallel are linked by unidirectional edges called connections.
An NN is usually organised in layers that are made up of neurons and can
have different network topologies such as feedforward and recurrent structure.
As illustrated in Fig. 2.4, a typical NN consists of an input layer, an output
layer and in between layers which are called hidden layers. The input neu-
rons are sensing units perceiving the environment. Signals propagate from
the input layer and are passed through the hidden layers to the output layer,
via weighted connections. The process to iteratively update the connection
weights is called the learning or training process, such that the system can
learn to exhibit desired behaviour and perform some certain tasks.

2.5.2 A Brief History
ANNs and the other artificial intelligence (AI) techniques have become unpar-
alleled tools in modern life-changing applications. The development of ANNs
has come to an era in which AI can solve problems that would otherwise be
impossible for human brains.

However, taking a look back to history, the modern view of ANNs began
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Figure 2.4: Diagram of a feedforward NN with four inputs, two outputs and
two hidden layers, in which neurons are fully connected.

with simple concepts. The first generation of ANNs could date back to the
1940s, when the McCulloch-Pitts neuron was first proposed [108]. These units
are also referred to as perceptrons and can only deal with binary inputs/out-
puts (which can only be 1 or 0). This basic perceptron network can barely
solve a limited class of problems because it does not have much computation
capability and is not able to learn by itself.

The second generation of ANNs were based on neuron models which com-
prises two components as shown in Eq. (2.9): a weighted sum of inputs and
an activation function (also called transfer function) generating the output
accordingly.

a = f(Wp+ b) (2.9)

where a is the neuron output activated by the transfer function f ; p =
p1, p2, ..., pn is the input vector of the neuron; W is the corresponding weight
matrix and b is the bias. Both the inputs and outputs of these neurons are
real-valued. These models have gained popularity with the backpropaga-
tion (BP) algorithm [109], which is a gradient descent method that updates
connection weights backwards by the chain rule1. BP has become a key de-
velopment for training multilayer perceptron networks (MLPs) and they are
still widely used in a variety of applications nowadays.

Recent years have seen a revival of NN implementations in the machine
learning (ML) domain, with the development of deep learning (DL) research
[110]. DL has significantly improved the progress in image processing with
weight sharing convolutional neural networks (CNNs) [111], and in sequential

1https://en.wikipedia.org/wiki/Chain_rule

https://en.wikipedia.org/wiki/Chain_rule
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data stream applications (e.g., text classification, speech recognition) with
long short-term memory units (LSTMs) [112], in a way that traditional tools
have never been able to achieve.

The current widely used ANN models follow a computation cycle of “multiply-
accumulate-activate.” While these models have shown exceptional perfor-
mance in a variety of machine learning problems, they are highly abstracted
from their biological counterparts in terms of information representation,
transmission and computation paradigms.

In recent decades, experimental evidence has shown that the communica-
tion between biophysical neurons is by means of temporal discrete electrical
pulses called spikes. This finding has led to the investigation of the “third
generation of ANNs” – spiking neural networks (SNNs) [14]. Unlike the cur-
rent, widely used neuron models that carry out computation via summation
of continuous-valued input signals, information transmission in SNNs takes
the form of temporal discrete spikes and follow in accordance with the pattern
of “integration-threshold-firing & resetting.” Each neuron has a membrane
potential as a measurement of neuronal excitements; receiving multiple in-
coming spikes within a given time window raises the membrane potential
above some threshold, causing an outgoing spike being sent to any forward-
connected neurons.

∑

θ

v output spike

input spikes

t1
(1)

t2
(1) t2

(2)

Figure 2.5: Illustration of spike transmission in SNNs. Membrane potential v
accumulates as input spikes arrive and decays with time. Whenever it reaches
a given threshold θ, an output spike will be fired, and the potential will be
reset to a resting value.

Compared with conventional neural systems, SNNs are computationally
more powerful [14, 113]. They are also bioinspired learning architectures and
can provide faster information processing as observed in biological neural
systems [114, 115].
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2.5.3 Neuromorphic Chips

Neuromorphic microprocessors where large scale networks of bioinspired neu-
rons and synapses are realised (e.g. TrueNorth [116], the SpiNNaker project
[117, 118]) have paved a plausible way to explore low-power brain-like com-
puting. The pure-hardware implementation of spiking neural circuitry has
allowed massive parallel bioinspired computing to become a reality [119].
The Tianjic neuromorphic chip [120, 121] is an extremely interesting project
which is a configurable hybrid neuromorphic platform that supports SNNs as
well as ANNs (MLPs, CNNs and RNNs). It has been applied to balance an
unmanned bicycle, which has demonstrated promise for robotic applications.

In recent years, an emerging research interest has focused on integrations
of SNNs with event-based neuromorphic cameras called dynamic vision sensor
(DVS)[122, 123], where traditional computer vision algorithms are not appli-
cable due to its event-driven property. Such dynamics naturally pair with
SNNs. We can find SNNs have been utilised to process the signals for a ges-
ture recognition problem based on the Loihi processor [124] and a goalkeeper
project based on the SpiNNaker platform [125].

2.6 SNN Learning

The design of functional SNNs is considered to be difficult, because SNNs
behave as complex systems with transient dynamics [126, 127]. Information
representation in spiking neuron models is still not entirely resolved. More-
over, synaptic nonlinearities with transmission delay also act as a significant
component to the computation power of SNNs. Therefore, the understanding
of the learning ability and learning mechanisms of SNNs is still an open chal-
lenge in neuroscience [128]. Nevertheless, there is a well-recognised consensus
that synaptic plasticity is the key mechanism for learning and memory [129].
From a machine learning perspective, learning in SNNs is more complex than
traditional ANNs due to the augmented characteristics. There still does not
exist a general-purpose learning algorithm for SNNs [130].

Existing learning methods can be roughly distinguished into three direc-
tions: i) gradient-based methods that are derived from the equivalents for
traditional neural networks, ii) neuroevolution (NE) algorithms where the
gradient information is not required, iii) bioinspired local learning algorithms
that are developed for SNNs.
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2.6.1 Gradient-Based Methods
While gradient-based learning methods have been very successful in training
traditional MLPs [107], their implementations (e.g. SpikeProp [131], ReSuMe
[132]) on SNNs are not as straightforward when extracting gradient informa-
tion from internal spike events because of the discontinuous nature of spiking.
Such methods are still immature in SNN training and the convergence prop-
erties remain unknown [130]. More recently SNNs have also appeared in the
field of deep learning [133, 134, 135, 17]. However, such supervised learning
methods require the availability of labelled data and most of the research has
been focused on discrete applications (e.g. classification tasks) rather than
continuous problems.

2.6.2 Neuroevolution
Neuroevolution [136] is a neural network training methodology in which evo-
lutionary computing (EC) [137] is applied to locate feasible network config-
urations. Evolutionary algorithms (EAs) are a group of algorithms that are
mainly used to solve optimisation and machine learning problems through
the stochastic search in a space of possibilities. EAs are able to find out fea-
sible solutions in a huge search space and therefore are perceived as a great
tool in neural network training. Evolutionary approaches have also become
widely applied in SNN training [138, 139], as the search in the solution space
is random without the need for the acquisition of gradient information. The
characteristic of a neural network is encoded in artificial genomes and there-
fore EC is not only able to find out the suitable parameters of connection
weights, but also applicable to optimising the network topology itself, which
is an essential aspect which affects network functionality [140]. As well as
training SNNs before deployment, evolutionary learning has also been a major
tool in evolving spiking neural systems (i.e. ESNN) online, where the func-
tionality of the networks are evolved through a variety of continuous learning
mechanisms [141, 22]. Note the term evolving here by its definition [22], is
a broader concept that does not necessarily mean evolutionary, although can
be achieved by evolutionary approaches.

Evolutionary computing is an abstraction of the natural evolution process.
One of the cornerstones of EAs is competition based selection, which is widely
known as survival of the fittest – individuals that are more adapted to the
environment have a higher chance to survive and reproduce. Another basis
lies in phenotype variation which incurs diversity over the population. The
descendent of those survivors will inherit most of their parents’ traits but with
random variations that occur during the reproduction process, generating
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offspring that loosely resemble their ancestors. Variation operations include
recombination (also termed crossover) where traits of the two parents are
combined, and mutation, where a small bit of features of the offspring are
mutated and differ from any of the parents. The combination of variation
and selection thereby leads to a population that is better adapted to the
environment, or better able to complete a given task in a methodological
sense.

Four variants of EAs have been developed during history: genetic algo-
rithms, genetic programming, evolutionary strategies and evolutionary pro-
gramming [137]. Nevertheless, the general scheme of EAs is universal (given
in Algorithm 1).

Algorithm 1 A General Scheme of Evolutionary Algorithms
1: INITIALISE a population of candidate solutions
2: EVALUATE each individual & ASSIGN fitness values
3: while (terminate condition not met) do
4: SELECT parents
5: RECOMBINE parents
6: MUTATE offspring
7: EVALUATE new candidates
8: SELECT individuals to form the next generation
9: end while

2.6.3 Bioinspired Learning
Hebbian Plasticity

Synaptic plasticity is the key component for learning in biological neural
systems [10]. The idea of SNNs is to bridge the gap between neuroscience and
computational intelligence, by employing biologically realistic neuron models
to carry out computation. The intrinsic plastic feature of biological neural
networks has encouraged scientists to investigate the possibility of employing
biologically plausible learning mechanisms to computational spiking systems.
This class of learning rules are often referred to as “Hebbian learning” because
they are inspired by Hebb’s postulate [142, 29], in which the weight change
between neurons is driven by the causal correlations between presynaptic and
postsynaptic spikes:

∆wij ∝ ujui (2.10)
where ∆wij represents the weight change in the connection from neuron j to
neuron i; uj and ui represent the firing activity of j and i, respectively.
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A form of Hebbian plasticity from a temporal spike perspective is the
spiking-timing dependent plasticity (STDP) [9], which modulates synaptic
weights between neurons based on the temporal difference of spikes. As in-
dicated in Fig. 2.6 the change of weight is driven by the causal correlations
between the pre- and postsynaptic spike timings. Studies have shown that
STDP can be related to other forms of Hebbian learning rules [143, 144] such
as long term potentiation (LTP) and long-term depression (LTD), drawing
an intuition on the biophysical process of neural activities.
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Figure 2.6: STDP window

Reward-Modulated Hebbian Learning

During the studies of these phenomenological learning rules researchers have
been trying to understand how Hebbian plasticity is built up over time, i.e.,
what kind of plasticity can regulate the postsynaptic firing based on incoming
presynaptic activations in a desired manner?

Electrophysiological evidence shows that animals learn by rewards carried
by Dopamine (DA) [13]. Networks can be insensitive to the ongoing activ-
ity and the patterns are preserved in the case where reward signals are not
available. This neuroscientific concept called neuromodulation [145] has also
been studied in the machine learning domain which is usually combined with
Hebbian plasticity (i.e. reword-modulated Hebbian learning [146]). Generally
there are two options approaching the regulation of Hebbian rules: artifi-
cial evolution covered previously in Section. 2.6.2 and reinforcement learning
(RL) [147] – i.e., evolutionary Hebbian learning and Hebbian reinforcement
learning, respectively.
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Evolutionary Hebbian learning In this serial of work [148, 149, 150] the
authors describe a novel training method for ANNs with the introduction of
modulatory neurons. The purpose is to use additional neurons to separate
the determination of Hebbian rules that take part in the network configura-
tions from signal processing. In these implementations there are two sets of
neurons: the standard neurons calculate the outputs like normal sigmoidal
neurons do, while modulatory neurons will contribute to the modification of
weights of the surrounding connections. This concept of modulatory neurons
has also appeared in earlier work [151], where it is modelled with SNNs in
swarm applications.

j i

j

m

presynaptic 
neurons

postsynaptic 
neuron

modulatory 
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Figure 2.7: Neuromodulation. The connection between the pre- and post-
synaptic standard neurons (white circles) are governed by the activation of
the modulatory neuron (gray circle).

Connection weights are modified according to the modulatory activations
instead of standard activations. A Hebbian plasticity term is introduced in
the modulatory part:

∆wij = η(Aujui +Buj + Cui +D) (2.11)

in which the learning rate η and the scaling coefficients A,B,C and D are
determined by an evolutionary process. In addition, the modulatory neurons
introduce a multiplication factor m to the change of weight in Eq. (2.11).
The resulting Hebbian rule is:

∆wij = mη(Aujui +Buj + Cui +D) (2.12)

The weight change of the incoming connection to neuron ui (i.e. ∆wij) is
affected by the modulatory activations combined with a plastic term, in which
m is a tanh activation function of the activity of the modulatory neurons:

m = tanh(mi/2)

mi =
∑
j∈Mod

wjiuj (2.13)
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The Hebbian ABCD model described in Eq. (2.11) has also appeared in
other literature that is optimised by either artificial evolution [152, 153, 154]
or reinforcement learning [155]. Particularly in this recent work [154], it has
been applied to simulate a 2D car-racing task as well as a 3D locomotion task
for a quadruped robot, demonstrating that lifetime adaption can be achieved
with the evolved Hebbian rules.

Hebbian reinforcement learning The idea of reward modulation also
reflects a machine learning paradigm called reinforcement learning, which is
a goal-oriented learning process where an agent learns from rewards by the
continuous interactions with its environment rather than from a training set
of labelled data [156]. In RL, learning is to generate a mapping from the situ-
ations to actions by making use of a reward signal [147]. RL is mostly applied
in decision making problems where labelled data are not available for super-
vised learning. RL, with deep learning techniques has come to attract lots of
attentions since the birth of AlphaGo [157], a computer program developed
by Google DeepMind that learns to play Go by a combination of supervised
learning from human expert moves and reinforcement learning from self-play.
Later its descendent, AlphaGo Zero [158] which is capable of self-learning
without provided human knowledge, has become dominant and defeated all
elite professional Go players it played with.

actionaction
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statestate rewardreward
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tAtR

1tR +1tS +
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Figure 2.8: The agent-environment interaction in a reinforcement learning
paradigm.

Hebbian learning under the RL framework has also been applied to SNNs
[159, 160, 161, 162, 163] and other bioinspired neural networks [155, 164].
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The aforementioned Hebbian ABCD model is demonstrated successful with
RL [155].

2.7 SNN in Robotic Control
The previous section contains the general learning schemes applicable to the
training of SNNs. Over the past decades a lot of work has been carried
out to solve machine learning problems, most of which has been focused
on non-behavioural functionality, e.g., character recognition [165, 166], image
classification [167], and approximation [168]. Meanwhile, there is also a rising
interest in behaviourally functional SNNs (e.g. SNN in robotic control), which
addresses neural activities in closed-loop interaction with the environment
[169, 170, 19].

As successful records of spiking neurocontrollers implemented on UAVs
have been limited, this section has extended the scope to ground-based ve-
hicles as well. In recent years, SNN studies on robotic control problems [21]
have shown promise in this area. Compared with discrete machine learning
applications [16, 17], SNNs in robotic control usually require online learning
functionality and favour smaller networks in size due to the need to generate
control outputs with high frequency and low latency [18, 19, 20]. Recent stud-
ies on SNNs have shown their great potential in embedded control systems,
for three main reasons:

• Computationally, SNNs are able to yield more powerful computation
compared with non-spiking neural systems [14] due to their spatiotem-
poral dynamics [22], which are characterised by internal interactions
over time and space. As such, they can exploit spike timing as well as
frequency, and learn to associate data in the time domain as well as in
the space domain.

• Biological learning rules with SNNs can provide additional learning and
adaptation to the system [23, 24, 25]. These learning methods have
become significant in robotic applications where labelled data cannot
be obtained in robotic explorations in an environment.

• Binary signalling makes SNNs synergistic with upcoming neuromorphic
devices, e.g., where the network is instantiated on-chip [171]. These im-
plementations promise low power due to relatively sparse spiking events
[26], as well as fast compute in pure-hardware via analog electronic im-
plementations of spiking circuitry [172].
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2.7.1 Hebbian Learning
A major group of SNN neurocontrollers is to employ bioinspired local learn-
ing rules (e.g., Hebbian learning, STDP). This approach has been applied to
train a behavioural SNN controller for a mobile robot [173] that can avoid
obstacles in a simulated environment using sonar sensory signals. The spik-
ing controller has simpler structure compared with conventional ANNs. Later
work [174] has complemented the controller with target approaching function-
ality, which consists of three submodules: wall following, obstacle avoidance
and goal approaching. The behaviour of the robot was controlled by one of
the submodules at each state determined by a weight setting module.

Obstacle avoidance can also be seen using STDP/anti-STDP on a phys-
ical wheeled robot [175]. Provided a reward signal determined by whether
the robot moves forward or hits an obstacle, this learning rule is able to
perform online weight modification. The spiking neurons are evolved to a
semi-synchronous state which is beneficial to manage the coupling between
the environmental inputs and the behavioural output.

Hebbian plasticity is a way to synchronise the firing activities of the neu-
rons. The reward signal is used to tell if the changes are on the desired
direction and thus provide a benchmark to regulate the synchrony. Such
reward-based learning methods can be related to reinforcement learning [147]
which can also be found in other work. Reward-modulated STDP learning
methods have been introduced to solve basic classification (i.e. XOR) prob-
lems [176, 177]. In both papers, a reward signal is used to determine whether
the causal correlation of neuron spikes should be reinforced, e.g., the synaptic
weight is increased when the reward is positive. A series work has also been
carried out in Duke University on Hebbian-based indirect SNN training where
the synaptic weights of the networks are modulated using external stimuli.
A reward-modulated Hebbian algorithm [178] is used to train a critic flight
controller in which a reward function is defined based on the errors between
the SNN outputs and the desired outputs. Synaptic strengths of an action
controller is then modulated with provided spike inputs from the critic con-
troller, rather than by direct weight manipulation. Later in [179] this indirect
learning method is used to train the network to control a virtual insect to
seek for a target location. Similarly instead of directly changing the synaptic
weights, it seeks to optimise the input spikes by implementing a square-pulse
function using a radial basis function (RBF) spike model. Synaptic weight
change is driven by input stimuli forcing neurons to fire in desired patterns.
Neuromorphic hardware implementation of the SNN controller with STDP
learning rules is realised in [180] and [181].

A similar reward-based method is used to control a simulated insect-alike
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micro robotic bee [84] designed by Harvard Microrobotics Lab [182]. The
proposed controller is capable of achieving stable hovering and trajectory fol-
lowing. An SNN lateral controller is taught to mimic a target LQR controller
with known performance. During the training, the state of the robot is fed
back to the SNN controller and LQR controller respectively. The output
of the LQR controller is set as the reference value and a reward signal is
used to modulate connection weights based on the error between the refer-
ence output and the decoded network output. In the following work, the
authors develop an adaptive SNN controller that exhibits online adaptation
functionality [183] during a simulated hovering flight. The neurocontroller
comprises two components: an ideal term that is trained offline to approx-
imate a proportional-integral filter (PIF) controller developed against the
ideal model; and an adaptive term that is able to learn online to compensate
unmodelled system dynamics such as manufacturing variations and actuator
dynamics. The aim of the adaptive component is to minimise the steady-state
errors between the actual positional velocities and the reference signals in the
three translational dimensions.

In [184] the authors use a reward-modulated STDP learning rule to train
a target-approaching controller that has a similar structure to the above-
mentioned work [174]. The controller has two functionalities - obstacle avoid-
ance and goal approaching. The reward signal is calculated from the error of
the output from its reference. Rewards of each connection are backpropagated
through the layers.

In Section 2.6 it is mentioned that the intensity and even the direction
of synaptic modifications in biophysical neural systems can be modulated by
Dopamine. This reward-modulated behaviour can be associated with a class
of RL methods called temporal difference (TD) learning. A spiking controller
is proposed for a simulated wheeled robot to perform wall-following tasks [24].
The robot learns to associate the correct movement with appropriate input
conditions via the TD learning rule. In another work, an SNN is used as
an altitude controller trying to stabilise a simulated microrobotic bee while
performing a take-off manoeuvre [25], based on a reward-modulated STDP
via TD learning.

2.7.2 Evolutionary SNNs
This research field is also categorised in the domain of evolutionary robotics
(ERs) [44], where evolutionary algorithms (EAs) are applied to robotics em-
bedded in real-time and real environments (either physical or virtual) [185].
Such systems are very different from evolutionary implementations on static
ML problems such as classification and regression problems, which are fun-
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damentally optimisation from the evolutionary point of view.
Early implementation of evolutionary spiking neurocontrollers could be

found in the work of the Autonomous Systems Laboratory at EPFL [18,
45, 186]. This group has focused on vision-based neuroevolution controllers.
The authors first evolve a spiking controller for a mobile robot to perform
vision-based navigation tasks [18]. Then a similar method is used to steer an
indoor blimp [45] to navigate within a room. The proposed evolution here is
considerably simple, as only the signs (±) and presence or absence (1/0) of
connections are considered.

In another work, the authors employ simple networks which consist of only
four neurons to control a physical wheeled robot [187]. An adaptive online
EA is used to evolve both weights values and signs, which are represented
by five binary bits. A parallel architecture combining two spiking networks
is evolved to control the movement of a mobile robot [188]. Each network
processes information from the left/right-side sensor. At each step a selector
is used to select the more active network as the output network.

Hardware evolutionary implementation has also been applied to reconfig-
urable Field Programmable Analogue Arrays (FPAAs) [189]. Both synaptic
weights and neuron spiking thresholds are evolved. Mobile robot control can
also be seen by using SNN clusters of internally interacting neurons to act
collectively as individually operating neurons [20]. Such configurations can
be viewed as an approach of population encoding [9] that allows the neurons
to run parallelly in hardware implementations and therefore the processing
time can be reduced to gain the firing rates.

In UAV control, spiking controllers are evolved to navigate a dynamic
quadrotor to stay at a waypoint under challenging wind conditions [19]. EAs
are used to generate more satisfied topologies and weights. It is noted that
the mutation rate of each network is also self-adaptive. An incremental evolu-
tion strategy is employed. Population is first trained in simplified tasks, then
seeded as an initial population for more complex tasks. Simulated evidence
shows that the evolving spiking networks can stabilise the UAV more accu-
rately and more rapidly than PID controllers and MLP neural networks. A
significant finding in this research is that spiking controllers are more “evolv-
able” than traditional networks, thus are more able to cope with uncertainties.

From the above literature review it is worth highlighting some comments:

• Most of the spiking controllers are tailored for ground-based vehicles.
UAV control can only be found performing simulated basic manoeuvres
[19]. For ground-based robots, evolution is applied to the formation/re-
moval of connections, while in more complex situations, a larger search
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space with more parameter configurations is required to locate benefi-
cial solutions.

• Evolution is either carried out directly on hardware or in simulation
only. Physical hardware implementations are restricted to controlling
less-dynamic, error-tolerant systems [45]. Hardware SNN control for
dynamic UAVs can be problematic because randomly initialised net-
works are likely to crash UAVs. A common approach in ER is to em-
ploy offline evolution to optimise the controller and then deploy the
evolved pseudo-optimal controller onto the target platform. However,
as explained in Section 2.3, such controllers do not change after the evo-
lutionary training and therefore cannot adapt to unmodelled dynamics
and model changes and their performance will be degraded.

2.7.3 Evolving Plastic Neurocontrollers
Continuing the previous discussions, evolution can be perceived as learning
on a long-run time scale where the adaptation takes place across several gen-
erations [190]. Traditionally evolution in NE is taken as a way of searching for
the optimal network configurations. As a result, controllers that are evolved
in simulations have static network topologies as well as connection weights
when deployed [191]. Such controllers cannot adapt online reducing their
performance.

On the other hand, a form of learning in autonomous robotics is the
ability to maintain the robot’s functionality when the controller solution
learned in simulation is transferred to the physical platform, which is of-
ten referred to as the ability to cross the reality gap [2, 27, 28]. This is in
line with a special subset among neuroevolution called evolution of learning
[30] where evolution is applied to the plastic learning rules of the networks
that regulate the connection weights rather than the connections themselves
[192, 153, 193, 194, 163, 195, 154] (refer to evolutionary Hebbian learn-
ing in Section 2.6.3). The resulting robot is able to adapt to model changes
that take place after the evolutionary training [196, 197, 191] and therefore
exhibit a form of autonomy. Such methodology has also applied to SNNs (i.e.
evolving plastic SNNs (EPSNN)) to control simulated robots [198, 199].

2.8 Summary
There is a knowledge gap in SNN implementations for robotic control, as there
still does not exist a general-purpose learning algorithm for SNNs. Current
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SNN implementations are more focused on classic non-behavioural machine
learning problems, while at the same time, there have been emerging re-
search interests that investigate practical robotic applications. High perfor-
mance learning and adaptation can be achieved in spiking neurocontrollers
by integrating bioinspired plasticity with the power of evolutionary comput-
ing and reinforcement learning. In addition, neuromorphic microprocessors
where large scale networks are realised have paved a plausible way to explore
brain-like computing with high processing speed and low power consumption
features.
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Chapter 3

eSpinn – A Machine Learning
Package for Spiking
Neurocontroller Development

This chapter is partly based on the following publications:

H. Qiu, M. Garratt, D. Howard, and S. Anavatti. Evolving spik-
ing neurocontrollers for UAVs. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), Dec 2020, pp. 1928–1935.
https://doi.org/10.1109/SSCI47803.2020.9308275

H. Qiu, M. Garratt, D. Howard, and S. Anavatti. Evolving spiking
neural networks for nonlinear control problems. In 2018 IEEE Sym-
posium Series on Computational Intelligence (SSCI), Nov 2018, pp.
1367–1373. https://doi.org/10.1109/SSCI.2018.8628848

3.1 Introduction
Currently existing SNN simulators mainly focus on in-depth simulations of
biologically realistic neuron interactions [200, 201, 202, 203]. A few are de-
veloped for network implementations on discrete applications in the machine
learning domain [204], which is also difficult to apply in continuous robotic
control problems, because the latter usually require online learning function-
ality and favour smaller networks in size due to the need for real-time com-
puting with high frequency and low latency. The iSpike [205] library is the
only open source software package in the robot control domain. However
its main focus is on interfacing an SNN simulator (i.e. NeMo [206]) and a
humanoid robotic platform (iCub), i.e., how sensory information is encoded
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into spike patterns and how spike outputs are decoded into motor commands,
rather than the control of robots itself. Nevertheless, SNNs have shown great
potential in embedded control systems: a) they are able to yield more power-
ful computation compared with non-spiking neural systems [14] due to their
spatio-temporal dynamics; b) they are also believed to be power inexpen-
sive on neuromorphic chips because of their event-driven sparsity [26], which
perfectly suits embedded applications such as UAVs.

This chapter presents a C++ software package called eSpinn as a tool to
developing spiking flight controllers by integrating biological learning mecha-
nisms with neuroevolution algorithms. An overview of the eSpinn structure is
given in Fig. 3.1. This package allows for the flexible development of evolved
spiking controllers, which can be seamlessly transferred from MATLAB and
Python simulations of embedded deployment on the target robot. As well as
transferring the controller, the learning algorithm itself is transferred, which
opens up new possibilities in continuing a simulated learning process on-board
the robot.
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Figure 3.1: Diagram of the eSpinn system.

3.2 An Overview
The eSpinn library stands for Evolving Spiking Neural Networks. It is
designed to facilitate the development of spiking network controllers for non-
linear control problems via artificial evolution. Currently it supports two
popular spiking neuron models (i.e., LIF [126] and 4-parameter Izhikevich
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[207]), as well as conventional non-spiking neurons with linear or sigmoid
activation functions. It runs a modified version of the NEAT neuroevolution
algorithm [140], which has been altered to provide enhanced performance
when evolving small scale SNNs.

eSpinn is an open source software package released under the Apache
License 2.0. It is freely available on GitHub (https://github.com/hnqiu/
eSpinn). Currently eSpinn has only been tested on Ubuntu (≥ 14.04). It
is written in C++ and uses cmake to manage the build process, with two
third-party library dependencies (Boost Serialization1 and pybind112).

eSpinn is implemented in an object-oriented programming (OOP) style,
by making use of the C++ polymorphism feature. As such, it is able to
accommodate different network implementations (ANNs, SNNs and hybrid
models) with specific dataflow schemes. eSpinn features with easy-to-use
data archiving interfaces to save and construct data structure to or from files,
which is convenient in offline-online hybrid training. eSpinn also features
a Python wrapper using the pybind11 library. The C++ data types and
methods are exposed in Python, which enables the package to be callable as
a Python module.

This software package is organised as follows:
/--

|-- asset/
|-- archive/
|-- data/
|-- docs/

|-- game/
|-- scripts/
|-- src/

|-- Learning/
|-- Models/
|-- Plants/
|-- PyModule/
|-- Utilities/
|-- CMakeLists.txt
|-- eSpinn_def.h
|-- eSpinn.h
|-- files_def.h

|-- tasks/
|-- test/
|-- CMakeLists.txt
|-- eSpinnLog.md
|-- README.md

1https://www.boost.org/doc/libs/1_58_0/libs/serialization/doc/index.html
2https://github.com/pybind/pybind11

https://github.com/hnqiu/eSpinn
https://github.com/hnqiu/eSpinn
https://www.boost.org/doc/libs/1_58_0/libs/serialization/doc/index.html
https://github.com/pybind/pybind11
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The src/ folder contains the C++ source files of this package, which
are categorised into several sub-directories. src/Models/ contains defini-
tions of neuron models, connection models and the resulting network models,
while the src/Learning/ folder contains the modified NEAT (MoNEAT) as
the main learning algorithm. The src/PyModule includes Python wrappers
to bind the C++ data types to be called in Python programs located in
the tasks directory. src/Utilities/ contains interfaces for archiving data
structure, training data and variables during the learning process. Gener-
ated data will be saved in asset/data/ and asset/archive/, and can be
visualised by MATLAB and python scripts in the scripts/ folder.

src/Plants/ contains definitions of several plant models, with simula-
tion tasks provided in the tasks/ folder. The test/ folder contains testing
programs to debug and validate the source files.

3.3 Learning with Spikes

The current widely used ANN neuron models follow a computation cycle of
multiply-accumulate-activate. The neuron model consists of two components:
a weighted sum of inputs and an activation function generating the output
accordingly. Both the inputs and outputs of these neurons are real-valued.
While ANN models have shown exceptional performance in the artificial in-
telligence domain, they are highly abstracted from their biological counter-
parts in terms of information representation, transmission and computation
paradigms.

SNNs, on the other hand, carry out computation based on biological mod-
elling of neurons and synaptic interactions. Information transmission in SNNs
is by means of discrete electrical pulses called spikes generated during a poten-
tial integration process. As shown in Fig. 3.2, each neuron has a membrane
potential as a measurement of neuronal excitements. The dynamics of spiking
neurons are described as the response of internal membrane potential to in-
put spikes. Spikes are transmitted via synapses from the presynaptic neurons
to all forward-connected postsynaptic neurons. The membrane potential of
the postsynaptic neuron will accumulate upon receiving a spike, otherwise
it will decay with time until it reaches a resting potential. Whenever the
potential exceeds a given threshold, an output spike will be fired and deliv-
ered forwards. The information measured by spikes is in form of timing and
frequency, rather than the amplitude or intensity.
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Figure 3.2: Illustration of spike transmission in SNNs. Membrane potential v
accumulates as input spikes arrive and decays with time. Whenever it reaches
a given threshold θ, an output spike will be fired, and the potential will be
reset to a resting value.

3.3.1 Neuron Model
To date, there have been different kinds of spiking neuron models. The
Hodgkin-Huxley (HH) model [208] was presented to describe the biologically
accurate and detailed mechanism of neuron activities. Therefore, the simu-
lation of this type of model requires huge computational power. Instead, two
phenomenological alternatives, the integrate-and-fire (IF) model [9] and the
4-parameter Izhikevich model [207] have been widely used in computational
SNNs, due to their simplicity whilst being able to approximate the behaviour
of biological spiking neurons. A number of generalisations of I&F models
have been introduced, such as the leaky integrate-and-fire (LIF) model and
the quadratic IF (QIF) model [126].

One way to provide intuition into the complexity range of these neuron
models is by simulating the computational cost. Approximately 1200 float-
ing point operations per second (FLOPS) would be required to simulate the
activities of a HH model for 1ms, while only 5 are required for the LIF model
and 13 for the Izhikevich model [126]. When implementing a neuron model,
trade-offs must be considered between biological reality and computational
efficiency.

eSpinn currently supports two spiking neuron models (i.e., LIF and Izhike-
vich), as well as conventional non-spiking neurons with linear or sigmoid ac-
tivation functions.

The LIF model is a simple spiking neuron model that has been widely used
in the literature. Its dynamics can be represented by an elementary electrical
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circuit composed of a capacitor C in parallel with a resistor R (Fig. 3.3). The
response of the internal membrane potential v is driven by an input current
I, which is described as a first-order linear differential equation:

V

I(t)

R C

U(t)

input current

output spikes

Figure 3.3: Equivalent circuit model for a LIF neuron.

Cv̇ = I − 1

R
(v − vrest) (3.1)

namely,
τ v̇ = −(v − vrest) + RI (3.2)

where τ = RC is the passive membrane time constant measuring the voltage
leakage rate. The potential v will be reset to a resting value whenever a spike
is fired:

v = vrest if v ≥ vth (3.3)

where vth is a given voltage threshold.
On the other hand, the two-dimensional Izhikevich model has also gained

popularity because of its capability of exhibiting richness and complexity in
neuron firing behaviour with only two ordinary differential equations:

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)
(3.4)

with after-spike resetting following:

if v ≥ vth, then
{
v = c
u = u+ d

(3.5)

Here v represents the membrane potential of the neuron; u represents a
recovery variable; v̇ and u̇ denote their derivatives, respectively. I represents
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the synaptic current that is injected into the neuron. Whenever v exceeds the
threshold of membrane potential vth, a spike will be fired and v and u will
be reset following Eq. (3.5). a, b, c and d are dimensionless coefficients that
are tunable to form different firing patterns [207]. The membrane potential
response of an Izhikevich neuron is given in Fig. 3.4, with an injected current
signal.

 v(t)

 I(t)

Figure 3.4: Membrane potential response v(t) to an external current signal
I(t) of an Izhikevich neuron with the following settings: a = 0.02; b = 0.2; c
= -65; d = 2.

A spike train is defined as a temporal sequence of firing times:

s(t) =
∑
f

δ(t− t(f)) (3.6)

where δ(t) is the Dirac δ function; t(f) represents the firing time, i.e., the
moment of v crossing threshold vt from below:

t(f) : v(t(f)) = vt and v̇(t(f)) > 0 (3.7)

3.3.2 Rate Coding vs. Temporal Coding
Deciphering the information in spike train patterns is an important aspect
in SNN studies, not only in understanding the nature of biological neural
systems, but can also provides intuition in developing mechanisms of compu-
tational models.

Computationally, the information representation of spiking neural system
can be distinguished between rate coding and temporal coding schemes [209].
In a rate coding scheme, neural information is encoded into the number of
spikes occurring during a given time window, i.e. firing rate of spikes. In
a temporal coding scheme, the context is encoded into the timing between
presynaptic and postsynaptic spikes. Other different terminologies can be
found to describe these two information representation methods. In [9] they
are described as rate-based and spike-based coding approaches, while in [18]
they are described as connectionist models and pulsed models.
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In a rate coding scheme, neuron output is defined as the spike train fre-
quency calculated within a given time window. Loss of precision during this
process is likely to happen. eSpinn configures a decoding method with high
accuracy to derive continuous outputs from discrete spike trains. The im-
plementation involves direct transfer of intermediate membrane potentials as
well as decoding of spikes in a rate-based manner.

3.3.3 Network Structure
In eSpinn, networks are organised in a three-layer architecture that has
hidden-layer recurrent connections, as illustrated in Fig. 3.5. The input layer
comprises encoding neurons which act as information converters. Hidden-
layer neurons are connected via unidirectional weighted synapses among them-
selves. Such internal recurrence ensures a history of recent inputs is preserved
within the network, so that they can share weights over time. Output neurons
can be configured as either activation-based or spiking. A bias neuron that
has a constant output value is able to connect to any neurons in the hidden
and output layers. Connection weights are bounded within [-1, 1]. The MoN-
EAT (detailed in Sect. 3.4.3) topology and weight evolution algorithm is used
to form and update network connections and consequently to seek functional
network compositions.

The configuration of each layer is independent from each other. There-
fore, networks can be formed with different types of neurons with specific
dataflow. For instance, we may construct a spiking network which outputs
a binary spike status. We may also use spiking neurons in the hidden layer
and sigmoidal neurons as the output, in which information transmission is
real-valued, in the form of mean firing rates plus intermediate membrane
potential.

3.3.4 Hebbian Plasticity
In neuroscience, studies have shown that synaptic strength in biological neural
systems is not fixed but changes over time [210] – connection weights between
pre- and postsynaptic neurons change according to their degree of causality.
This phenomenon is often referred to as Hebbian plasticity as inspired by the
Hebb’s postulate [142], which is summarized as neurons that fire together,
wire together.

Modern Hebbian rules generally describe weight change ∆w as a function
of the joint activity of pre- and postsynaptic neurons:

∆w = f(wij, uj, ui) (3.8)
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Figure 3.5: Topology of an eSpinn network with 2 inputs (i) and 1 output
(o) that allows hidden-layer (h) lateral recurrence. The hidden layer consists
of spiking neurons whose outputs are derived from direct transfer of interme-
diate membrane potential as well as decoding of firing rate. A bias neuron
(b) is allowed to connect to any neurons in the hidden and output layer. Net-
work output is calculated as a weighted sum of connected neuron activations∑
wioi. Weights wi are bounded within [-1, 1].

where wij represents the weight of the connection from neuron j to neuron i;
uj and ui represent the firing activity of j and i, respectively.

In a spike-based scheme, we consider the synaptic plasticity at the level
of individual spikes. This has led to a phenomenological temporal Hebbian
paradigm: Spiking-Timing Dependent Plasticity (STDP) [9], which modu-
lates synaptic weights between neurons based on the temporal difference of
spikes.

While different STDP variants have been proposed [143], the basic princi-
ple of STDP is that the change of weight is driven by the causal correlations
between the pre- and postsynaptic spikes. Weight change would be more
significant when the two spikes fire closer together in time. In detail, if the
presynaptic neuron fires slightly before the postsynaptic neuron, it means
the presynaptic spike contributes to the postsynaptic firing. Therefore the
connecting weight between these two neurons is enhanced (the synapse is po-
tentiated). If the presynaptic neuron fires just after the postsynaptic firing,
it means the presynaptic spike has no influence on the postsynaptic neuron,
then a decrease of the weight will occur (the synapse is depressed). If the two
spikes are too distant, the weight remains unchanged. The standard STDP
learning window is formulated as:

W (∆t) =

{
A+e

−∆t
τ+ ∆t > 0,

A−e
∆t
τ− ∆t < 0.

(3.9)
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Figure 3.6: STDP window

where A+ and A− are scaling constants of strength of potentiation and depres-
sion; τ+ and τ− represent the time decay constants; ∆t is the time difference
between pre- and post-synaptic firing timings:

∆t = tpost − tpre (3.10)

In eSpinn I have introduced a rate-based Hebbian model derived from the
nearest neighbour STDP implementation [143], with two additional evolvable
parameters km and kc:

ẇ = ui(
A+

τ−1
+ + ui

+
km(uj − ui + kc) + A−

τ−1
− + ui

) (3.11)

Details of this local learning rule are discussed in Section 6.5.2 of Chapter 6.

3.4 Neuroevolution
While gradient methods have been very successful in training traditional
MLPs [107], their implementations on SNNs are not as straightforward be-
cause they require the availability of gradient information. Instead, eSpinn
has developed its own version of a popular neuroevolution approach – NEAT
[140], which can accommodate different network implementations and in-
tegrate with Hebbian plasticity, as the method to learn the best network
controller.
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3.4.1 Evolutionary Algorithms
A general scheme of evolutionary algorithms (EAs) is given in Algorithm 1.
EAs [137] have become an important set of algorithms in training neural net-
works, especially in cases where training reference is not immediately available
and thus gradient methods are not applicable. Instead, performance evalu-
ation in EAs are represented as a fitness function. Generally in neuroevolu-
tion, an encode mechanism is utilised to encode the connection weights and
the search for optimal parameters is carried out using stochastic variation
operations in a population that consists of a number of individuals. Such
methods are likely to converge around one single solution as evolution goes
on – a phenomenon known as genetic drift [137], which can lead to prema-
ture convergence and consequently getting stuck at a local optimum, because
the population may quickly converge on whatever network that happens to
perform best in the initial population. To address this issue, a population
management approach is desired where network diversities can be maintained
during the evolution. In this work a modified NEAT algorithm is employed,
which is discussed in the next sections.

3.4.2 NEAT
NeuroEvolution of Augmenting Topologies (NEAT) is a powerful evolutionary
approach for neural network learning which evolves network topologies along
with connection weights. The efficacy of NEAT is guaranteed by: (i) histor-
ical markings to solve the variable-length genome problem; (ii) speciation to
protect innovation and preserve network diversity, to avoid premature con-
vergence; and (iii) incremental structural growth to avoid troublesome hand
design of network topology.

Typical EAs are difficult to genetically crossover neural networks with
variant topologies, because they can only operate within fixed-sized genome
space. Recombination of divergent genomes tends to produce damaged off-
spring. However, similar network solutions sharing similar functionalities can
be encoded using completely different genomes – a phenomenon known as the
Competing Convention Problem [140]. To address this problem, NEAT uses
historical markings which act as artificial evidence to track the origin of genes.
When two genes share the same historical marking, they are categorised as
alleles. Therefore, NEAT can match up genomes representing similar network
structures and allow mating in a rationale manner.

NEAT also uses an explicit fitness sharing scheme [137] as a population
management approach to preserve network multimodality. Historical mark-
ings are used as a measurement of the genetic similarity of network topolo-
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gies, based on which, genomes are speciated into different niches (also termed
species). Individuals clustered into the same species will share their fitness
score together [137]. The fitness of each individual is scaled according to
the number of individuals falling in the niche. As competition within the
species becomes more intense, solutions will have a lower fitness. Thus, the
sparsely populated species will become more attractive, avoiding any one tak-
ing over. Therefore, innovations will be protected within niches to have time
to optimise.

Finally, an incremental growth mechanism is used in NEAT to discover
the least complex effective neural topology, by beginning searching minimal
network structure and gradually expanding to more complex networks during
evolution.

The NEAT algorithm has been successfully applied to different control
problems [140, 211, 69]. However, implementation of NEAT has been re-
stricted to traditional neural systems, with one exception [138] targeting
spiking networks.

3.4.3 MoNEAT
NEAT conventionally begins with minimal structure, i.e. inputs are directly
connected to the outputs with no hidden-layer neurons. As evolution carries
on, NEAT will expand network topologies through mutations. Two topologi-
cal mutation operators are proposed in NEAT to introduce innovation to the
population – an ‘AddNode’ mutation and an ‘AddConnection’ mutation. As
shown in Fig. 3.7, the ‘AddNode’ mutation (a) will insert a node to split an
existing connection into two; the ‘AddConnection’ mutation (b) will add a
new connection to link two existing nodes that are currently not connected.

These methods have been exceptional in considerably simple cases. How-
ever, in practice, it can be slow to evolve optimal structures for complex
problems because of the use of gradual topological expansion. In addition,
during our experiments, these mutations tends to generate deep networks
that have long chains of neurons, which is actually undesired. It will possibly
expand the search to unwanted space and consequently the process will be
stuck at local optima. A bypass to avoid this is to begin the search with a
population of intermediate topologies, either from manual design which re-
quires human experience [212], or via incremental evolution [213] in which the
networks solve a downgraded task first and take the intermediate population
as a starting point for further evolution to solve the harder task.

Therefore, eSpinn complements the original NEAT with an additional mu-
tation method so that the population can quickly expands to more complex
structures. Along with the original mutation operators, MoNEAT [214] also
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Figure 3.7: Topological mutations in MoNEAT. The “AddNode” mutation
inserts a node to split an existing connection into two. The “AddConnection”
mutation adds a new connection between two existing neurons that were
previously unconnected. The “AddFullyConnectedNode” mutation adds a
neuron that is fully connected from each input and to each output. In these
operations, newly created neurons and connections will be assigned the next
available node IDs and innovation numbers which are traced globally.
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preserves the possibility to discover minimal effective structures. The muta-
tion I propose in MoNEAT is an ‘AddFullyConnectedNode’ method (Fig. 3.7-
c) – a neuron is added to connect itself from each input neuron and to each
output neuron. These new connections will be assigned a weight of 0, which
will circumvent the initial effect of the mutation – the newly created network
will have the same functionality as its parent, with an expanded searching
area. By using speciation the innovation can be preserved and the child will
then have enough time to evolve its new structure.

Finally, eSpinn integrates the newly proposed mutation and keeps track
of all the innovations (i.e. structural variations) globally. Whenever an in-
novation occurs, it can be traced to see whether it has already existed. This
mechanism will ensure networks with the same topological growth will be
assigned the same innovation numbers, which is essential during the process
of network structural expansion.

3.5 Examples Using eSpinn
3.5.1 MoNEAT Evaluation
I first evaluate the performance of MoNEAT with a simple feedback control
task for a non-linear plant model. The task is to drive the plant to follow a
reference signal with its feedback measurements as inputs, shown in Fig. 3.8.
The entire problem is written in C++ to speed up the evaluations.

Reference
PlantSNN

Measurements

-

v

T

p

Figure 3.8: Diagram of the feedback control simulation. The SNN controller
takes two states as inputs: the position error ep and current velocity v, and
learns to generate a control command T that will be fed to the plant model.

The plant model is described in (3.12), which is a general linearised ap-
proximation of the heave dynamics of a hexacopter [212]. Acceleration of the
plant a is presented as a linear combination of the controller command T and
velocity v. v on the other hand is the integral of the acceleration, and finally
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position p is the integral of v:

a = kT T + kv v + b

v =

∫
a dt

p =

∫
v dt

(3.12)

where kT , kv and b are constant coefficients. The controller takes the position
error ep and current velocity v as inputs, and learns to generate a control
command T .

In this task a population is initialised with 150 networks that consist of
hybrid neuron models where: the hidden-layer neurons are Izhikevich spiking
neurons; and the output neuron is a sigmoidal activation unit that takes a
weighted sum of outputs from the hidden neurons and the bias. During eval-
uation, networks in the population will be activated one by one to drive the
plant model, and given a fitness value based on the system output error. Ten
runs of the task have been carried out using MoNEAT and NEAT respec-
tively. Each run lasts for 50 generations. Evolutionary parameters of the two
approaches are identical, except in MoNEAT the “AddFullyConnectedNode”
mutation is enabled with a probability of 0.005. The probabilities of the
“AddNode” and “AddConnection” mutations are 0.01 and 0.02 respectively
in both approaches. Table 3.1 shows the averaged best fitness values and the
standard errors among the 10 runs. The MoNEAT algorithm is statistically
superior to the original NEAT3.

Table 3.1: Best Fitness Values of MoNEAT vs. NEAT

Fitness MoNEAT NEAT
Mean 0.93824 0.92721

Std. Error 0.00634 0.01033

3.5.2 Flappy Bird
Games have been an effective and interesting way to study computational
intelligence algorithms. In eSpinn I have presented a Flappy Bird game
implementation as a testbed for the proposed algorithm.

3based on the Mann–Whitney U test
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The Flappy Bird game is a classic side-scrolling game4 that was prevalent
in 2014. The goal of the game is to fly a bird through gaps between columns
of pipes and avoid collisions for as long as possible. This game has become
a popular benchmark problem in the development of ML algorithms, where
a variety of reinforcement and evolutionary learning techniques have been
applied [215].

Figure 3.9: A successful AI Flappy Bird engined by the eSpinn package

In this work the game is implemented in Python. The physics of the
game is rather simple to understand: the bird will jump upwards whenever
the user taps the screen and descend otherwise. As shown in (3.13), vy is
used to represent the bird’s vertical speed. The Y axis is heading down so a
positive vy means the bird is descending. Velocity will increase by a steady
acceleration ay until reaching the maximum vm and will be set to a negative
flap speed vf when the bird flaps.

vyt =

{
vf , if (flapped)
vyt−1 + ay∆t until vm , otherwise (3.13)

Each bird takes two known states as inputs: the horizontal and vertical
distance between the bird and the gap ahead. An additional bias neuron
is connected to the output neuron. The bird controller is constructed with
saturated linear units as inputs, and LIF spiking neurons in the hidden (if

4https://en.wikipedia.org/wiki/Side-scrolling_video_game

https://en.wikipedia.org/wiki/Side-scrolling_video_game
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any) and output layer. The bird will flap if a spike is fired in the output
neuron.

At the beginning, a population of 50 birds will be initialised and evaluated
simultaneously. Fitness is defined as the steps the bird stays alive. When
all birds die out, MoNEAT will be called and a new population of 50 child
birds are formed from the best parents. The game will then restart and the
new population will be evaluated. Evolution will be terminated when the
champion bird successfully travels a distance of 10,000 steps.

During early stages of training the birds will die out easily, either crashed
to the ground or the pipes. After some generations there will be some (or
one) outperform the rest and they will start to multiply. Finally one or
several of their offspring will successfully accomplish the task. The evolution
largely takes around a dozen generations to find out a successful bird. The
smallest functional network turns out to be quite simple – inputs are directly
connected to the output with 0 hidden neurons.

3.5.3 Pole Balancing
Finally, the proposed SNN controllers are evaluated using a classic non-linear
control benchmark – the pole balancing problem (also known as the inverted
pendulum problem). The performance is compared with conventional sig-
moidal networks. The pole balancing problem is not only inherently unsta-
ble, but also capable of varying degrees of complexity by limiting the state
variables provided to the controller, which makes it ideal for designing and
testing nonlinear control methods.

Previous attempts to solve this problem using SNNs with fixed-topology
can be found in [216, 217]. In this section, a different approach is taken using
both the NEAT and MoNEAT algorithm to evolve network topologies and
connection weights. The purposes of this experiment are twofold:

• To benchmark spiking controllers against the original sigmoidal coun-
terpart. Therefore, the same evolutionary strategy (i.e. NEAT) is first
used in both type of networks: only the NEAT mutation components
(i.e. AddConnection & AddNode mutation) are activated to introduce
innovations; recurrence is only allowed within hidden layers.

• To compare MoNEAT with the original NEAT algorithm, i.e., how is
MoNEAT performing comparing with NEAT? In this task spiking con-
trollers are evolved using both methods and their performances are
compared against each other.
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The original NEAT C++ source code is available publicly5. All the ex-
periments are programmed in C++ and performance analysis is carried out
using MATLAB.

Benchmark Problem

Fig. 3.10 shows the cart-pole system to be controlled, which consists of a cart
that can move left or right within a bounded one-dimensional track, and a
pole that is hinged to the cart. The problem is to balance the pole upright
for as long as possible by applying a force Ft to the cart parallel to the track.
The system has four state variables:

x – cart position

θ – pole angle

ẋ – cart velocity

θ̇ – pole angular velocity

Figure 3.10: Cart-pole system, taken from [218].

For simplicity, we neglect the friction acting on the cart from the track
and that of the pole on the cart. The system is then formulated by two
nonlinear differential equations [218]:

5http://nn.cs.utexas.edu/?neat-c

http://nn.cs.utexas.edu/?neat-c
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θ̈t =

g sin θ + cos θ(
−Ft −mplθ̇

2 sin θ

mc +mp

)

l(
4

3
− mp cos

2 θ

mc +mp

)

(3.14)

ẍt =
Ft +mpl(θ̇

2 sin θ − θ̈ cos θ)

mc +mp

(3.15)

where g = 9.8 m/s2 denotes the gravitational acceleration; mc = 1.0 kg
denotes the mass of cart and mp = 0.1 kg denotes the mass of pole; l = 0.5 m
is half length of the pole.

The discrete form of state variables are updated following:
xt+1 = xt + τ ẋt
ẋt+1 = ẋt + τ ẍt
θt+1 = θt + τ θ̇t
θ̇t+1 = θ̇t + τ θ̈t

(3.16)

with τ representing the time step.
A force generated by the spiking controller at each time step will be used

to update the state variables following (3.14), (3.15) and (3.16). A failure
signal is generated when the cart reaches the track boundary, which is ±2.4
meters from the track centre, or if the pole tilts beyond the failure angle,
which is ±12 degrees (or around 0.21 radian) from the vertical.

Experimental Setup

I first start with the basic balancing task with complete state variables. This
Markovian problem can act as a base performance measurement before going
to the more challenging non-Markovian version without velocity information.
In both tasks the cart-pole system model is unknown to the spiking controller.

The controller contains a population of 150 networks, which will be evolved
using the NEAT algorithm. Per epoch, the champion of each species is du-
plicated when the number of networks in that species is larger than 5. The
best 20% of networks in each species are allowed to reproduce, after which,
all parents are discarded and the remaining 150 offspring will form the next
generation.

Each network will be evaluated and assigned a fitness value. Fitness is
defined as the number of time steps that the balanced criteria is not violated.
Otherwise a failure signal is generated and evaluation is moved on to the next
network.
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Pole Balancing with Velocity

The first task is to balance the pole with velocity information. Evolution
begins with minimal structure. At initialisation, each network consists of five
input nodes and one output node. A bias neuron and four encoding neurons
each receiving one state variable. Each input neuron including the bias is
connected to the output node. Input neurons will convert the measured data
into currents to be injected to spiking neurons. This is a common practice
which is called the ‘current coding’ method. In this task, hidden (if any) and
output neurons are configured as LIF neurons. A binary force (Ft = ±10
Newtons) is determined based on the output neuron spike status, which will
then be applied to the cart at each time step. The time step τ in (3.16) is set
to 0.01 seconds.

During evolution, hidden nodes are allowed to be added with a probability
of 0.03. Connections are added with a probability of 0.05. The ‘AddFully-
ConnectedNode’ mutation is disabled to provide benchmark comparison with
sigmoidal networks using the original NEAT package. Although mutations
are enabled, the minimal structure is already able to solve this simple task. A
successful solution is identified when it is able to balance the pole for 100,000
time steps, which is equivalent to around 15 minutes of simulated time.

NEAT is applied to evolve both SNNs and sigmoidal networks. Each test
is run for 60 episodes. Table 3.2 shows a summary of fewest generations
needed to complete the task. A failure run means the controller fails to find
a solution within 50 generations. We can see both approaches are able to
find out successful solutions in all 60 runs, but it is clear that the spiking
controller takes fewer generations to solve the task. Example runs of both
tests are shown in Fig. 3.11 and Fig. 3.12.

Table 3.2: Fewest Generations Required to Find A Successful Solution for
Markovian Pole Balancing Problem

Best Worst Median Mean Failure Rate
NEAT-sigmoidal 4 32 8 9.6 0/60

NEAT-SNN 1 7 3 3.28 0/60

Pole Balancing without Velocity

Our main task is to balance the pole without velocity information. Instead of
using bang-bang control, a continuous output force within [-10, 10] Newtons
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Figure 3.11: NEAT-sigmoidal: cart position x and pole angle θ of the pole
balancing task with velocity information.
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Figure 3.12: NEAT-SNN: cart position x and pole angle θ of the pole balanc-
ing task with velocity information.
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is used for this more challenging problem. A sigmoidal neuron is used as
the network output, in which a normalised force Fn is calculated based on
a weighted sum of firing rates from connected neurons following a modified
sigmoid function. Fn is then scaled and shifted to generate the force Ft:

Fn =
1

1 + exp(−σ
∑
wiri)

(3.17)

Ft = 10(2Fn − 1) (3.18)
where σ is a positive decay variable, which will be automatically tuned during
evolution; ri denotes the firing rate of the ith connected neuron and wi denotes
the corresponding connection weight.

Note NEAT use a compatibility distance function δ to determine the sim-
ilarity of network solutions. When the distance between any two individuals
is smaller than a threshold δt, they are categorised into the same species. The
compatibility distance δ is defined as:

δ =
c1E

N
+
c2D

N
+ c3W (3.19)

where E and D denote the number of excess and disjoint genes; W denotes
the average connection weight difference; N is the total number of genes; c1,
c2 and c3 are user-defined coefficients for altering the significance of these
factors. In this task a component of σ difference (denoted as Dσ) is added to
the original compatibility distance:

δ =
c1E

N
+
c2D

N
+ c3W + c4Dσ (3.20)

At initialisation, the cart position is randomised between [-0.3, 0.3] metres,
the pole angle is set between [-3.0, 3.0] degrees, while the cart velocity and the
pole’s angular rate are set to 0. Time step τ is set to 0.01 seconds. Successful
solutions are dictated if the pole is balanced for 5000 time steps.

Similarly, NEAT is applied to the spiking controller and the results are
compared against the original NEAT. Connections and nodes will be added
based on a probability of 0.05 and 0.03. Recurrence is only allowed within
the hidden spiking neurons6.

A summary is shown in Table 3.3. The proposed spiking controller is
essentially better than sigmoidal networks in solving this problem. It requires
fewer generations to find a functional solution. It also has a lower failure rate
over 20 runs. It is clear that SNNs are more able to solve this non-Markovian
problem. Further, the Mann-Whitney U -test is used to assess the statistic
difference between the two sets of samples. The result shows that the spiking
controller has significantly better performance at p < 0.01.

6Recurrent connections in the output layer are allowed in the original NEAT package.
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Table 3.3: Fewest Generations Required to Find A Successful Solution for
Non-Markovian Pole Balancing Problem

Best Worst Mediana Meana Failure Rate
NEAT-sigmoidal 2 45 20.5 22.7 2/20

NEAT-SNN 2 30 3 4.3 0/20
aValues are calculated assuming failure runs take 51 generations.

To visualise the evolution progress, the best networks’ fitness values are
averaged over the 20 runs. Fig. 3.13 shows the mean and standard deviation
of fitness values of both tests at successive generations. In the beginning, only
some of the networks can find a path to optimization, thus introducing a large
fitness deviation. As evolution goes on, individuals with higher fitness values
will gradually take over the entire population. Finally a successful network
will be identified.
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Figure 3.13: Best networks’ mean fitness values in progress over 20 runs, with
error bars denoting the standard deviation.

A further look is taken at how well both types of networks can solve the
non-Markovian task if we let the evolution continues. It turns out without
output node recurrence, the sigmoidal networks are only able to balance the
pole for around 9,000 steps. On the other hand, the SNNs can easily hold the
pole upright for a longer time period – feasible spiking controllers can still be
found even if the successful step is set to 100,000.
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Fig. 3.14 and Fig. 3.15 show the status of cart position, pole angle and the
output force applied to the cart during a successful run. In both approaches,
all these three variables are oscillating around some certain points. How-
ever, it is clear that in the SNN approach the pole is very likely to maintain
balanced even if the task continues.
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Figure 3.14: NEAT-sigmoidal: cart position x, pole angle θ and force Ft
applied to the cart of the non-Markovian pole balancing task (without velocity
information).

Now let us take a look at how a feasible solution looks like. Fig. 3.16
illustrates an evolved effective network topology that is able to balance the
pole for as long as 100,000 steps. Direct connection from the cart position
to the output is deactivated. A hidden node is instead inserted in between –
output force is less desired to be affected by the cart position. On the other
hand, the connection from the pole angle is much potentiated. Interestingly,
this topology can solve the problem even without recurrent connections to
calculate the derivatives. The membrane potential integration process can
be conceived as a way to share weights over time. Such dynamics are shown
to be able to yield more powerful computation than conventional sigmoidal
networks.

MoNEAT vs. NEAT: Pole Balancing without Velocity

Finally, a comparison is made between MoNEAT and NEAT. Spiking con-
trollers are evolved using both methods to balance the pole for a run of 100,000
steps. Statistics over 20 runs are shown in Table. 3.4. The MoNEAT approach
is essentially faster to discover functional solutions than NEAT. Among 20
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Figure 3.15: NEAT-SNN: cart position x, pole angle θ and force Ft applied
to the cart of the non-Markovian pole balancing task (without velocity infor-
mation).
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Figure 3.16: Effective spiking network topology that is able to balance the
pole for up to 100,000 steps. Network inputs consist of cart position xt and
pole angle θt. Output force Ft is calculated based on a weighted sum of firing
rates

∑
wiri, in which ri denotes the firing rate of the ith connected neuron

and wi denotes the corresponding connection weight.
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runs of MoNEAT tests only one instance failed to find out a successful so-
lution in 50 generations, while the NEAT approach has failed 16 runs. As
anticipated, effective MoNEAT solutions are more likely to be more complex
in structure than NEAT solutions, because MoNEAT does not necessarily
guarantee the minimal network structure.

Table 3.4: Fewest Generations Required to Find A Successful Solution for
Non-Markovian Pole Balancing Problem Using NEAT and MoNEAT

Best Worst Mediana Meana Failure Rate
NEAT-SNN 28 43 51 47.9 16/20

MoNEAT-SNN 12 40 20 22.75 1/20
aValues are calculated assuming failure runs take 51 generations.

A total of 100 runs per each method have been conducted across various
successful steps to provide more detailed statistics. Fig. 3.17 shows the gen-
erations in both methods that are required to identify a successful SNN to be
able to balance the pole. Each scenario is repeated 20 runs.

3.6 Discussion
The design of functional SNNs is considered to be difficult, because SNNs
behave as complex systems with transient dynamics [126]. In this work, we
present a general network structure that derives strength from topology evo-
lution, which has demonstrated to be a powerful tool in solving non-linear
problems. The potential integration dynamics of spiking neurons are es-
sentially different from conventional ANNs, which have provided additional
computational power apart from the proposed recurrent network topology.

The philosophy behind NEAT is that by expanding network topology
starting from a minimal structure, evolution will be faster in the search for
functional network compositions. Following this idea, MoNEAT is developed
to quickly escape away from less favourable search areas, at the cost of possible
missing discovery of the minimal effective structure. However, in a small-sized
network implementation, the negative effect is negligible.

In addition, I believe adaptive probabilities of mutation methods can of-
fer extra flexibility in the search for structural variations. We can base the
probabilities on the network’s fitness value, and decrease the probabilities if
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Figure 3.17: Generations required to find out a successful SNN to balance
the pole for various steps using both NEAT and MoNEAT. The grey shades
represent the areas between the minimal and maximum generations across 20
repeats. The thick lines represent the averaged generations calculated from
the 20 runs.

mutations are less likely desired, i.e. when evolution is close to finding feasible
solutions.
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3.7 Conclusion
This chapter presents an SNN machine learning package targeted for embed-
ded control applications, with support for MATLAB and Python simulations
as well as seamless operations on embedded hardware. Through a set of exper-
iments, I have demonstrated that SNNs are powerful computational systems
that can solve nonlinear control problems significantly better than traditional
sigmoidal networks. Sufficient evidence has shown that the eSpinn SNN im-
plementation with MoNEAT can be a general problem-solving framework. I
hope the library can contribute to the computational intelligence community
and benefit researchers and developers in these areas for other applications.



Chapter 4

System Overview

4.1 Introduction
This chapter provides an overview of the platform and systems used to con-
duct actual flight experiments using SNN. A hexacopter UAV is employed
as the platform to test the SNN control algorithms. Sensor data used as
input to the controllers is acquired from an indoor Vicon motion capture
system (MCS) and an onboard inertial-measurement unit (IMU). Prototyp-
ing of the controller is implemented in the Robot Operating System (ROS)
environment, in which message communication can be established wirelessly
between the UAV and the ground control station (GCS). Each of these sys-
tem components is described in this chapter (Section. 4.2–4.5). In addition,
this chapter will also describe the control system of the hexacopter platform,
including the controller architecture (Section. 4.6) and inner loop dynamics
(Section. 4.7).

4.2 Hexacopter Platform
Multirotor UAVs can operate in a wider range of environments than fixed-
wing aircraft because of their VTOL (vertical take-off and landing) character-
istics, enabling them to hover and take off in confined spaces. They are able
to perform more aggressive manoeuvres but are naturally less stable, which
requires a well-tuned flight controller to achieve great flight performance [8].

4.2.1 Hardware
Common multirotor frames are tricopter, quadcopter, hexacopter and octo-
copter. Irrespective of the type, a multirotor platform usually includes a

59
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body frame, an onboard flight controller, electronic speed controllers (ESCs),
motors, propellers and a battery. The experimental platform used in this
work is a hexacopter UAV shown in Fig. 4.1a, which employs the X geometry
airframe, as in Fig. 4.1b.

(a) Hexacopter assembled

(b) Hexacopter X geometry air-
frame, from https://docs.px4.io/
master/en/airframes/airframe_
reference.html

Figure 4.1: Hexacopter UAV platform used in this thesis

The body frame is a RotorBits Hexacopter, a commercial modular assem-
bly multirotor kit1. A Pixhawk 2 Cube autopilot system2 is fitted on top
of the body. An additional onboard companion computer (Odroid XU43) is
used as a higher level flight controller that is needed to provide sufficient com-
putation capability. The Odroid is interfaced with the Pixhawk via a USB
to UART RS232 adapter, which is wired to the Pixhawk TELEM2 port. It is
also equipped with a NetGear WNA3100M mini WiFi adapter to establish
wireless connections to the ground control stations (GCSs) and a Desktop
computer running the Vicon Tracker MCS software (refer to Section 4.3). An
FrSky X8R telemetry receiver is connected to the Pixhawk to receive control
commands from the radio controller, which in this setup is an FrSky 2.4GHz
Taranis X9D Plus RC Transmitter. The onboard controller configuration and
telemetry setup are shown in Fig. 4.2.

The hexacopter is equipped with six 11×4.5 propellers, which are powered
by Turnigy Aerodrive DST-1200 brushless DC (BLDC) motors controlled by

1https : / / hobbyking . com / en _ us / rotorbits - hexcopter - kit - with - modular -
assembly-system-kit.html

2https://docs.px4.io/master/en/flight_controller/pixhawk-2.html
3https://wiki.odroid.com/odroid-xu4/odroid-xu4

https://docs.px4.io/master/en/airframes/airframe_reference.html
https://docs.px4.io/master/en/airframes/airframe_reference.html
https://docs.px4.io/master/en/airframes/airframe_reference.html
https://hobbyking.com/en_us/rotorbits-hexcopter-kit-with-modular-assembly-system-kit.html
https://hobbyking.com/en_us/rotorbits-hexcopter-kit-with-modular-assembly-system-kit.html
https://docs.px4.io/master/en/flight_controller/pixhawk-2.html
https://wiki.odroid.com/odroid-xu4/odroid-xu4
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Figure 4.2: Hexacopter onboard controllers & telemetry radio setup. The
Pixhawk 2 Cube is the lower-level flight controller which essentially is a MIMO
control signal mixer decoding the control commands to PWM outputs for
each of the rotors. It is able to receive movement control channels from the
radio controller via the X8R telemetry receiver. Furthermore, it is interfaced
with an Odroid XU4 higher-level controller via a USB to serial port adapter.
The Odroid is responsible for attitude control, position control as well as
other high-level motion planning tasks (e.g., trajectory planning, obstacle
avoidance). It is equipped with a WiFi module to receive real-time flight
data from the Vicon system. It is also able to communicate with the GCS
via the ROS network (refer to Section 4.4).



62 CHAPTER 4. SYSTEM OVERVIEW

Turnigy Plush 30A Electronic Speed Controllers (ESCs). A Turnigy 5000mAh
3S Lipo battery is used to power up the aforementioned on-board electronics.

A single-layer power distribution board (Fig. 4.3) is manufactured to dis-
tribute the battery power to on-board electronics. An LED is added to indi-
cate the power connection. Copper trace width to ESCs is set as 5 mm with
a thickness of 1 oz/ft2, which is able to provide sufficient capacity for large
current loads of up to 8A. I have also 3D-printed a battery case to hold the
battery in a fixed position (Fig. 4.4). The container is attached to the bottom
of the hex center mount, so that the drone’s center of gravity can stay as low
as possible.

(a) 3D view of the power distribution
board (b) Power board assembled with

the Pixhawk flight controller

Figure 4.3: Hexacopter power distribution board

(a) 3D view of the battery case (b) 3D printing of battery case

Figure 4.4: Battery case
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4.2.2 Autopilot System
The Pixhawk Cube flight controller (shown in Fig. 4.3b) is selected as the
lower-level flight controller. It is responsible for control signal mixing, which
essentially is a MIMO (multiple-input multiple-output) device that mixes the
movement control commands (i.e., roll, pitch, yaw and throttle) to calculate
the pulse width modulation (PWM) outputs for each of the rotors. It also
acts as a signal router that passes on signal channels from the radio controller
to the Odroid.

Specifications

Pixhawk is an open-hardware framework4 which has hardware designs which
are publicly available. Cube is based on the FMUv3 hardware design and
runs the PX4 Autopilot firmware. It is featured with a 32-bit STM32F427
SoC and a STM32F103 fail-safe co-processor. It also has three sets of IMU
sensors, 14 PWM servo outputs and abundant peripherals.

PX4 Autopilot5 is an open source flight control software package released
under the BSD-3-Clause License. Firmware installation and vehicle setup and
calibration are carried out using the QGroundControl Desktop6.

Signal Mixing

Movement control commands will be translated to actuator commands in
Pixhawk that determine the PWM outputs controlling the servo motors. This
MIMO mixer has 4 input channels and 6 actuator outputs corresponding to
each rotor. The attitude control commands (i.e., roll, pitch and yaw) range
from -1.0 to 1.0, while the throttle command is in the range of [0, 1.0]. On
the other hand, the output group (actuator commands) ranges from -1.0 to
1.0.

IMU

The IMU in the Pixhawk Cube flight controller consists of a 3-axis gyroscope,
a 3-axis accelerometer and a magnetic compass, which is able to provide extra
redundancy to measure linear and angular rates of the body. In this work,
the linear motion will be captured using the Vicon system (detailed in the
following Section 4.3). The IMU is used to collect the orientation information
(specifically roll and pitch only). Orientation received from the IMU is in

4https://github.com/pixhawk/Hardware
5https://github.com/PX4/PX4-Autopilot
6https://github.com/mavlink/qgroundcontrol

https://github.com/pixhawk/Hardware
https://github.com/PX4/PX4-Autopilot
https://github.com/mavlink/qgroundcontrol
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the form of a quaternion, which is described as q = [q0 q1 q2 q3]
T . The

quaternion is subsequently converted into Euler angles, i.e., roll (ϕ), pitch (θ)
and yaw (ψ), using the following transformation:ϕθ

ψ

 =

atan2( 2(q0q1 + q2q3), q0
2 − q1

2 − q2
2 + q3

2)
asin(2(q0q2 − q3q1))

atan2( 2(q0q3 + q1q2), q0
2 + q1

2 − q2
2 − q3

2)

 (4.1)

4.2.3 Companion Computer
The onboard companion Odroid-XU4 is used for higher-level control, which
is based on a cascaded control architecture that includes attitude control at
the innermost layer, position control and trajectory planning in the outer.
The outputs of the Odroid are control commands of movement channels
(roll, pitch, yaw and throttle) that will be passed through the USB-to-UART
adapter to the Pixhawk.

Specifications

Odroid-XU4 (Fig. 4.5) is a small yet powerful single-board computer that sup-
ports Ubuntu and Android systems. It utilises two CPUs: an ARM Cortex-
A15 Quad core CPU (up to 2.0GHz) and a Cortex-A7 Quad core CPU (up to
1.4GHz), which is able to provide additional processing capability. Provided
with a 32GB eMMC memory module for system storage, the computer can
achieve high speed application launching and data transfer.

Figure 4.5: Odroid-XU4 specifications, from https://wiki.odroid.com/
odroid-xu4/odroid-xu4

https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://wiki.odroid.com/odroid-xu4/odroid-xu4


4.2. HEXACOPTER PLATFORM 65

Data Communications

The companion computer is equipped with a WiFi module so that it can
receive flight data from the Vicon system (detailed in the following Section
4.3) and communicate with the ground control station. On the other hand,
it is interfaced with the Pixhawk using a USB to serial port converter that is
connected to the Pixhawk TELEM2 port.

Data received from the Vicon system (through WiFi) as well as the on-
board IMU (via USB-to-UART) are fused before being fed into the control
algorithm. Outputs of the controller are movement control commands that
will be fed back to the Pixhawk. As illustrated in Fig. 4.6, data transmission
is accomplished using the ROS network (refer to Section 4.4). The commu-
nication is in the Micro Air Vehicle Link (MAVLink) format7, which is a
communication protocol for UAVs. It is usually used for communication be-
tween UAVs and/or GCSs, and between on-board components of the vehicle
as well.

IMU & radio signal
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 data
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radio signal

Radio Control
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Figure 4.6: Data communication among the subsystems

4.2.4 Servo Dynamics
The hexacopter has been fitted with six ESCs to steer each of the motors
on the platform. Actuator signals that are translated from the movement
commands will be linearly converted to PWM outputs in the Pixhawk, which
are processed by the speed controller and amplified by the MOSFETs in the
ESCs, as shown in Fig. 4.7.

7https://mavlink.io/en/

https://mavlink.io/en/
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Speed
Controller

Gate Driver

Gate Driver

Gate Driver M
ADC

Vdd

Sensing Resistors

Figure 4.7: Hexacopter PWM-based motor control diagram using ESCs

The PWM-based motor control is in a pull-push structure, which will incur
the dead time distortion effect [219] that causes torque ripples and reaction
delay. Conventionally the servo dynamics can be simplified as a first order
transfer function [91, 220, 52]:

G(s) =
1

τs+ 1
(4.2)

The time constant τ is estimated as 0.1 s in my test with a step response.

4.3 Vicon Motion Capture System
Flight tests are carried out in our indoor flight facility – a Vicon motion
capture system8 shown in Fig. 4.8. The flight testing area is 8.5m×5.5m×5m,
and is equipped with 21 motion capture cameras. Vicon is on the leading
solutions for robot localisation tasks [221]. The system is able to provide
accurate real-time positioning with a low-latency data stream, which can be
used for vehicle state estimation and conveniently fused into the UAV control
algorithm. In addition, the captured data can also serve as ground-truth for
controller performance analysis.

8https://www.vicon.com/

https://www.vicon.com/
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4.3.1 Vicon Tracking
The Vicon system uses optical-passive capture techniques to track object
movements, i.e., it is equipped with infrared cameras to track retroreflective
markers that are attached to objects to be tracked.

Figure 4.8: Vicon indoor flight facility

The Vicon Tracker application9 shown in Fig. 4.9 is the host software
in which objects are visualised and motion data are accessed. Firstly, the
hexacopter being tracked is attached with several markers in an asymmetrical
arrangement (Fig. 4.10). Then the object is created in Vicon Tracker to be
displayed, with a unique name as a reference provided to the following client
application when the state of the object is requested.

4.3.2 Vicon Data Streaming
Finally, with the Vicon DataStream Software Development Kit (SDK)10, a
C++ Vicon DataStream client program is created to collect the position and
orientation of the drone and broadcast the data packets through Wifi using
the user datagram protocol (UDP).

UDP is a lightweight connectionless protocol in which message-oriented
packets are broadcasted to all devices on an IP network. Handshaking com-
munications are not required to establish connections between the devices.

9https://www.vicon.com/software/tracker/
10https://www.vicon.com/software/datastream-sdk/

https://www.vicon.com/software/tracker/
https://www.vicon.com/software/datastream-sdk/
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Hexacopter

reference name

Vicon

DataStreaming

Hexacopter

visualized in the 3D

view pane of the
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Vicon

cameras

Figure 4.9: Vicon Desktop. Robot states are captured and visualised on the
Vicon Tracker application. Flight data are then broadcasted in the C++
Vicon DataStream program.

Figure 4.10: Markers are attached to the hexacopter in an asymmetrical
arrangement to be tracked by the Vicon Tracker application.
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There is no error correction and transmission delay, which is often used in
time-sensitive and data streaming applications.

Apart from a 3-byte header offset and a 1-byte error-checking tail, each
data packet contains the position, the velocity, the acceleration of the drone
in 3 dimensions, as well as the yaw angle and yaw rate. Each data field in the
packet occupies 4 bytes. The total size of a packet is 48 bytes. Flight data
are sent from the Vicon DataStream program at a rate of 100 Hz.

Positional velocities, accelerations and the yaw rate are estimated from
the captured positions and yaw angle. To minimise the estimation error, a
moving average filter is applied to each of the data fields to reduce the sensing
noise. The averaging window size is 10.

4.4 Robot Operating System
4.4.1 An Overview
Robot Operating System (ROS)11 is a widely used open source software
framework for robotics software development. It is not an operating sys-
tem (OS) in the traditional sense, but a structured framework above the
driver level of the host OS, which is able to provide language-independent
and network-transparent communication across a variety of robotic platforms
[222].

ROS originally operated on Ubuntu platforms. Currently newer versions
are still more or less “experimental” on other operating systems such as De-
bian and Windows 10 which are supported by the community. ROS is es-
sentially a collection of packages and libraries written in C++, Python and
Lisp, each of which provides specialised functionality.

4.4.2 ROS Package Organisation
In ROS, applications are organised in “packages” which may consist of all or
parts of the following items:

/--
|-- package.xml
|-- CMakeLists.txt
|-- include/
|-- launch/
|-- msg/
|-- scripts/
|-- src/

11http://wiki.ros.org/ROS/Introduction

http://wiki.ros.org/ROS/Introduction
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|-- srv/

Listing 4.1: ROS Package Organization

Specifically, package.xml and CMakeLists.txt are required files that must
be included in a ROS package. The package.xml file specifies the package
properties as well as the dependencies. The CMakeLists.txt file is cmake-
compliant that describes the package’s source files and dependencies as well
as instructions in generating targets.

4.4.3 Terminology
ROS is designed in a graph structure based on hardware abstraction. It is
a centralised system in which the ROS core service (i.e. roscore) must be
established at the startup of the system. The roscore12 command will launch
a ROS Master, a ROS Parameter Server and a rosout logging node. ROS
programs must be executed after the roscore service is established. The
fundamental concepts of ROS implementations are nodes, topics, messages
and services [222].

Node

ROS processes are represented as nodes in a graph structure, connected by
edges called topics. ROS nodes are modules that process a specific operation.
Therefore, a ROS package may contain multiple nodes. For instance, the
uav_comm package described in Section 4.5.3 contains two data processing
nodes: one is to process data from Vicon and the other is to process data
from the onboard IMU.

Topic

Nodes are able to communicate with each other via topics, whose contents are
described as messages. ROS topics are streamed in a unidirectional many-
to-many mechanism. Each node will be able to advertise messages to a topic
it publishes. On the other hand, a topic may also be subscribed by other
nodes and thus create a direct connection from the publishing node to the
subscribing node(s).

Message

ROS messages are formatted data that can be either of standard types or user-
defined. ROS uses a language-neutral interface definition language (IDL) to

12http://wiki.ros.org/roscore

http://wiki.ros.org/roscore


4.5. UAV CONTROL USING ROS 71

describe the fields of messages[222], which are defined in text files with the
.msg extension under the msg/ directory (shown in Listing 4.1).

Service

Unlike the ROS topic’s “broadcast” communication paradigm, ROS services
are intended for request-response interactions. A service is always defined by
a pair of message types in .srv files under the srv/ directory: one for the
request and the other for the response. One and only one node can advertise
a service. A client will then send the request message to the service and await
the reply.

Catkin

ROS uses catkin13 to manage the build process, which is a collection of cmake
macros and Python snippets that provide command line verbs to build the
system.

Other tools

Apart from the core infrastructure, the ROS ecosystem has also offered a
variety of tools that can be of great convenience during the development,
e.g., Rviz and rqt to visualise and plot data, as well as roslaunch14 to set
up ROS parameters and launch multiple ROS nodes in a single file, which is
in the XML format with the .launch extension under the launch/ directory.

4.5 UAV Control Using ROS
In this section the ROS UAV control packages will be detailed.

4.5.1 Network Setup
In these experiments, ROS is running across multiple devices (Fig. 4.11). The
ROS network uses the SSH protocol (refer to my post15 for details) to establish
connections among these machines. Therefore, we also need to specify the IP
address of the ROS master server and the declared local machine, as well as
the port to run the master process on:

13http://wiki.ros.org/catkin
14http://wiki.ros.org/roslaunch
15https://hnqiu.github.io/2019/04/30/using-ssh.html

http://wiki.ros.org/catkin
http://wiki.ros.org/roslaunch
https://hnqiu.github.io/2019/04/30/using-ssh.html
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1 export ROS_MASTER_URI=http://odroid:11311
2 export ROS_IP=odroid

In this setup the drone is configured as the master server. The ROS
Master which is run by the roscore command, is the entry point for naming
and registration services. The URI characters should be set the same across
all devices.

Odroid

ROS

GCS

192.168.1.61 192.168.1.8ROS Master URI: http://odroid:11311

Figure 4.11: ROS communication among multiple machines

4.5.2 Dependencies
The ROS network uses a MAVROS node for data communication among all
devices. Therefore, the UAV control packages used in this thesis rely on the
following packages:

• mavlink16

MAVLink is a communication protocol for UAVs. It is usually used
for communication between UAVs and/or GCSs, and between onboard
components of the vehicle as well.

• mav_comm17

This package manages message and service definitions for MAV com-
munication.

16https://github.com/mavlink/mavlink
17https://github.com/PX4/mav_comm

https://github.com/mavlink/mavlink
https://github.com/PX4/mav_comm
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• mavros18

MAVROS is the ROS gateway for MAVLink. In this package a mavros
node will be established, with MAVROS topics for data communication.
Some of the necessary topics are:
1 /mavros/actuator_control
2 /mavros/battery
3 /mavros/rc/in
4 /mavros/state

Installation instructions are provided in the MAVROS GitHub repository19.

4.5.3 UAV Control Package Arrangement
UAV control in this thesis is separated into three packages:

• uav_comm
This package is to process sensor data from the Vicon system and the
onboard IMU. The package contains two ROS nodes: one subscribes po-
sitional and yaw states from Vicon and publishes the processed data to
the "/drone/viconraw" topic; the other subscribes the angular states
of roll and pitch from the IMU and publishes the processed data to the
"/drone/imuraw" topic.

• uav_ctrl
This package is the main control node where the control algorithms
are implemented. It receives the sensor data from both of the afore-
mentioned topics ("/drone/viconraw" and "/drone/imuraw"). Con-
trollers are implemented in a nested layered paradigm, where the higher-
level controllers (velocity & position control) pass their results to the
attitude angle controllers; then the angle controllers pass the outputs
to the innermost angular rate controllers. The outputs of the rate con-
trollers are movement control commands that will be sent to the Pix-
hawk by broadcasting the message to the ROS topic "/mavros/actuator
_control". The attitude control commands are in the range of [-1.0
1.0], whilist the throttle command is in [0, 1.0]. These movement com-
mands are mapped to actuator channels, from which the PWM outputs
for the rotors are subsequently obtained.

• groundstation
This package is run on the user-side GCS. It collects and logs the flight
data into text files which can be later visualised using MATLAB.

18https://github.com/mavlink/mavros
19https://github.com/mavlink/mavros/blob/master/mavros/README.md

https://github.com/mavlink/mavros
https://github.com/mavlink/mavros/blob/master/mavros/README.md
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4.5.4 Importing eSpinn
The uav_ctrl package uses the aforementioned eSpinn library (in Chapter 3)
and boost serialization as dependencies. Since the eSpinn package is also
managed by cmake, it can be seamlessly integrated into the ROS build system.

• First eSpinn is built as a static library
1 # build eSpinn as STATIC lib
2 add_library(eSpinn STATIC ${SRC_LIST})
3 target_link_libraries(eSpinn ${Boost_LIBRARIES})

• Then the uav_ctrl package is built by linking to the eSpinn library as
well as the boost serialization library.
1 # find boost dependencies
2 find_package(Boost 1.54 REQUIRED COMPONENTS serialization)
3

4 ...
5

6 # include eSpinn & boost dir
7 include_directories(
8 include
9 ${eSpinn_INCLUDE_DIR}

10 ${Boost_INCLUDE_DIRS}
11 ${catkin_INCLUDE_DIRS}
12 )
13 # link eSpinn lib dir
14 link_directories( ${eSpinn_LIB_DIR} )
15

16 ...
17

18 # link executables to the appropriate libraries
19 target_link_libraries(uav_ctrl eSpinn boost_serialization

${catkin_LIBRARIES})

4.6 uav_ctrl Package
The uav_ctrl package is arranged to follow a conventional cascaded control
paradigm (as per in Fig. 4.12), where the higher-level controllers (velocity &
position control) pass their results (i.e. desired attitudes) to the inner atti-
tude controllers; then the inner controllers pass the outputs (i.e. movement
control commands) to a signal mixer that calculates appropriate rotor speed
commands. Control signal mixing will be discussed later in Section. 5.4.1.
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Figure 4.12: A cascaded control architecture adopted in this work. xsp, ysp
and zsp denote the position setpoints of the UAV in the Cartesian coordinate,
while ϕsp, θsp and ψsp denote the setpoints of roll, pitch and yaw angles respec-
tively. ϕr, θr, ψr and tr are the corresponding movement control commands.

To make the program structure clear, the uav_ctrl package is imple-
mented in an object-oriented programming (OOP) style and takes advantage
of the C++ inheritance feature to organise the package structure.

4.6.1 Sensor Data Collection
The base class (named UavCtrl) initialises a ROS node handle and establishes
the MAVROS connection. It subscribes drone states from the Vicon and the
onboard electronics, including the position and orientation of the drone and
electronic status (e.g., arming status, battery information).

Next the derived RadioControl class subscribes control signals from the
radio controller. Switches on the radio controller are used for flight mode
configuration, e.g., manual control mode, landing mode, termination due to
emergency, etc. Control signals from the movement channels (pilot sticks)
are real values. In manual flight mode, these raw data are converted to some
specified ranges. The attitude (roll, pitch and yaw) channels are used as
attitude setpoints, e.g., 10 degrees in yaw. The throttle channel is normalised
to fall into the range of [0 1], which is directly fed to the actuator command
topic "/mavros/actuator_control".

4.6.2 Controller Implementation
Flight control is implemented on top of the data collection class (i.e Radio
Control). AttitudeControl takes the attitude setpoints as inputs (either
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from the position controllers or from the radio controller directly), and gives
out the attitude control commands (ϕr, θr and ψr). Along with the throt-
tle command tr, they are sent to the signal mixing unit (in the Pixhawk
autopilot).

Finally the PositionControl class is inherited from the AttitudeControl
type, where the SNN controller is realised. The eSpinn facilities are initialised
in this class with the provided APIs. Outputs of x and y control are atti-
tude setpoints which will be passed to the pitch and roll control respectively.
Meanwhile height control outputs the throttle command directly.

4.7 Attitude Dynamics
4.7.1 Attitude Control
Attitude control is implemented on top of the RadioControl type, which uses
proportional-integral-derivative (PID) controllers [42]. In the implementation
used in this thesis, if the measured plant output is denoted y and the error
between the desired setpoint r and the measured value is denoted ey = r− y,
then the PID controller output (u) is the sum of proportional, integral and
derivative terms, as formulated in Eq. 4.3.

u(t) = Kpey(t) +Ki

∫
ey(t)dt+Kdẏ(t) (4.3)

Unlike the traditional PID control, the D term in this work employs the
derivative of the plant output instead of the derivative of the error. This is
to avoid a huge D term output when a sudden setpoint change incurs.

In a similar fashion, use can also be made of proportional (P), propor-
tional+integral (PI) and proportional+derivative (PD) controllers. In these
cases, the integral or derivative terms of Eq. 4.3 are omitted as appropriate.

Controller structure

Yaw control is implemented in a parallel PID form (Fig. 4.13), while the roll
and pitch control is a cascaded angle-rate controller which is implemented in
a P-PID structure (Fig. 4.14). The angle controller is a P-only controller,
the output of which is the corresponding rate setpoint. The angular rate
controller is at the innermost level with two independent PID controllers for
each of the axes, i.e., roll and pitch respectively. Compared with angle con-
trol only, in which the P term will have a sudden change when the setpoint
is specified, this angle-rate control scheme can achieve more stable flight per-
formance.
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Figure 4.13: Yaw (Ψ) control is implemented in a parallel PID form.
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Figure 4.14: Roll (Φ) and pitch (Θ) control is implemented in a P-PID struc-
ture. p and q are the angular rates of roll and pitch, respectively.
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PID tuning

Tuning of PID controllers is to infer the optimal P, I and D gains in a trial-and-
error manner, until the system response is as quick as possible but without
oscillations or excessive overshoots.

To tune the attitude control, the drone is set to fly in manual mode. Flight
data (including the PID terms) during the course of tests are recorded in a
text file and a MATLAB script is created to visualise the responses of the
hexacopter in each axis.

I first start with roll control and pitch control, and finally yaw control.
Initially the roll and pitch PID parameters use the same values, and fine-
tuning for each of the axes is left until the initial tuning is good enough.
Empirically the tuning of the controller begins with the P gain, then I gain
and D gain if necessary20. The tuning steps are as follows:

• First the angular P gain is set as 1. Then the rate P gain is slowly
increased until it has a fast response without introducing oscillations.
The gain is increased by around 20% per iteration, and decreased by
10% for final tuning.

• Secondly increase the angular P gain until the angular response is fast
but without oscillations.

• Thirdly increase the D gain to compensate overshoots. The P gains in
the above steps will need to be re-adjusted accordingly.

• Finally the I gain is set to be able to recoup drifts over time. It should
not be set too large as it will introduce slow oscillations if so.

A step response is measured to determine the performance of the PID
controllers [223]. To test the controller gains, first hover the hexacopter and
then rapidly push the pilot stick to one side to provoke a step input to the
attitude controller. A well-tuned controller should be able to steer the drone
to follow the input without oscillation or overshoot.

4.7.2 Inner loop dynamics
Flight tests have been carried out to gather data to analyse the system dy-
namics of the inner loops (i.e., roll and pitch). A data logging program is
created in the groundstation package (described in Section. 4.5.3) to collect

20https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.
html

https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.html
https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.html
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the responses of the channels to given attitude setpoints. Data is processed
using the MATLAB System Identification Toolbox21.

The relationship of the actual attitude Aa and the setpoint Asp can be
identified as a delayed first order transfer function:

Aa(s)

Asp(s)
= K

e−ts

Ts+ 1
(4.4)

The roll channel Φ and the pitch channel Θ are given as:

Φa(s)

Φsp(s)
= 0.921

e−0.24s

0.160s+ 1

Θa(s)

Θsp(s)
= 0.831

e−0.24s

0.115s+ 1

(4.5)

4.8 Summary
In this chapter a detailed description is presented on the UAV platform and
systems that are used to conduct flight experiments. Control algorithms
developed in this thesis can be replicated rapidly on other platforms as the
control package runs on the widely-used ROS environment that is supported
by a large variety of hardware [224, 225, 226].

21https://au.mathworks.com/products/sysid.html

https://au.mathworks.com/products/sysid.html
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Chapter 5

Simulated Control of a
Hexacopter Using SNN

This chapter is partly based on the following publication:

H. Qiu, M. Garratt, D. Howard, and S. Anavatti. Evolving spik-
ing neurocontrollers for UAVs. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), Dec 2020, pp. 1928–1935.
https://doi.org/10.1109/SSCI47803.2020.9308275

5.1 Introduction
Although learning from scratch approaches purely using physical hardware
have been demonstrated [45, 46], extensive hardware-in-the-loop training is
required which is time consuming, expensive and can result in equipment
damage. Simulation is still an important portion of work in learning-based
control development for autonomous robotics, as it is able to provide an
observable and reproducible development environment with no risk of damage
to hardware. This is especially the case for evolutionary learning, where initial
populations are random and the learning process itself is stochastic.

In this chapter the mathematical modelling of a simulated hexacopter
UAV is introduced. The hexacopter model incorporates full rigid body dy-
namics in six degrees of freedom (DoF), as well as nonlinear aerodynamic
rotor and fuselage models. Further, a solution is presented to simulate the
full control of a hexacopter UAV in six DoF via artificial evolution of spiking
neurocontrollers in a modular manner. By decomposing the neurocontroller
into modules, it is demonstrated that the development of UAV flight control
can be accomplished by an incremental evolutionary approach with MoN-
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EAT, a modified version of the NEAT neuroevolution algorithm [140] that
provides enhanced performance when evolving small-scale SNNs. The result-
ing neurocontrollers have simple structures yet are able to provide satisfactory
control which has been shown to outperform PIDs.

In the following sections, an overview of the hexacopter model is presented
first in Section 5.2. Mathematical modelling of the body dynamics will be
formulated in Section 5.3, followed by explanations of signal mixing and servo
dynamics in Section 5.4 as well as aerodynamics in Section 5.5. In Section
5.6 the controller development process will be detailed. Results are given in
Section 5.7. Discussions and conclusions are provided in Section 5.8 and 5.9.

5.2 System Overview
The system to be controlled is a Simulink hexacopter model derived from the
previous work of our group [71], which is constructed from first principles.
Such mathematical models have been commonly used in the literature [50,
8, 51, 87, 96]. The Simulink model used here incorporates full 6-DoF rigid
body dynamics, as well as nonlinear aerodynamic rotor and fuselage models.
Communication lags and servo dynamics are also included, while sensor noise
or the ground effect is omitted. The theory used in this modelling can be
found in [227, 228, 51].

The hexacopter model used in this chapter is based on a hierarchical
architecture. The top-level diagram of the system is given in Fig. 5.1, which
is divided into several subsystems. Many aspects of the hexacopter dynamics
are modelled with C/C++ S-functions1, which describe the functionalities of
Simulink blocks in C/C++ with MATLAB built-in APIs.

On the left side of Fig. 5.1 are control modules that have been decomposed
into 6 DoF, which include the following blocks:

• ‘Outer Loop Controller’ for translational x and y control,

• ‘Attitude Controller’ for roll and pitch control,

• ‘Yaw Controller,’ and

• ‘Height Controller’.

Each of the modules takes a reference signal from a random signal generator
and outputs a command signal bounded within realistic realms. Details of
the controller implementations will be explained in Section 5.6.

1https://au.mathworks.com/help/simulink/s-function-concepts-c.html

https://au.mathworks.com/help/simulink/s-function-concepts-c.html
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Figure 5.1: Top-level diagram of the hexacopter control model.

The ‘Control Mixing’ block then combines these controller commands to
calculate appropriate rotor speed commands using a linear mixing matrix Q
(refer to Eq. (5.18)) according to the position arrangement of rotors. Rotor
thrusts and moments of forces are calculated from the rotor speeds based
on the relative airflow through the blades [227] in the ‘Forces & Moments’
block (detailed in Section 5.5). Finally, forces and moments are fed to the
‘Hexacopter Dynamics’ block to obtain the linear and angular accelerations
of the plant based on Newton’s second law of motion (detailed in Section
5.3). Local states of the hexacopter will then be converted to the earth-based
coordinate system (North-East-Down, described in Section 5.3.1) that can be
visualised and archived in the ‘States’ block.

5.3 Hexacopter Dynamics

5.3.1 Aircraft Conventions
Conventionally in aerospace, the positioning frame of reference is North-East-
Down (NED). The x-axis points north horizontally; the y-axis points east
horizontally and the z-axis points downwards towards the centre of Earth.
This set of coordinate frame is used for aircraft positioning and navigation.
Another set of reference frame is fixed on the body of the vehicle that is
also necessary for state estimation with regard to the body (e.g. acceleration
estimate). As illustrated in Fig. 5.2, the body axes of the hexacopter are fixed
to the centre of gravity and rotate with the platform. The right-handed axes
systems is oriented such that when the hexacopter is in a level attitude, the
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x-axis (longitudinal) is pointing in a forward direction; the z-axis is pointing
downwards and the y-axis (latitudinal) is pointing laterally to the right.

X

Y
Z

x

y

z

Figure 5.2: Aircraft coordinate system: body-fixed frame (xyz) and earth-
based noninertial frame (XY Z).

The velocity along the axes x, y and z are denoted as u, v and w respec-
tively. Rotations of orientation around these axes, known as Euler angles,
(i.e. roll, pitch and yaw) are denoted as ϕ, θ and ψ respectively. Rotations are
carried out in the order yaw, then pitch, then roll. Meanwhile the rotation
rates about the axes x, y and z are given as p, q and r respectively. Orien-
tation of the vehicle with respect to the earth-based frame is parameterised
in terms of quaternions instead of Euler angles to avoid singularities when
solving trigonometric functions at angles close to ±90◦ (gimbal lock). The
quaternion is described as:

q = [q0 q1 q2 q3]
T (5.1)

in which the quaternion elements satisfy:

q20 + q21 + q22 + q23 = 1 (5.2)

The quaternions can be obtained with the following transformation Eq.(5.3)
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(5.3)

The transformation between the body-fixed coordinate and the earth-
based coordinate can be described by a rotation matrix B, which is given
as:

B =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q2 + q0q3)
2(q1q2 − q0q3) q20 + q21 − q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q1q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (5.4)

Note that the rotation matrix is orthogonal, therefore the transformation
between the two coordinates would be equally convenient as:

B−1 = BT (5.5)

5.3.2 Rigid Body Dynamics
Multicopter airframes are generally modelled as a rigid body mass acted upon
by the combined effect of gravity and forces generated by the propellers, as
well as moments of the forces. The body dynamics are implemented in the
‘Hexacopter Dynamics’ block in Fig. 5.1. Newton’s second law of motion is
used to calculate the linear and angular accelerations and hence the state of
the drone will be updated.

Linear Motion

Based on Newton’s second law, the net force F acting upon the hexacopter
is the product of object mass and its linear acceleration vector in the Euler
space:

F = mV̇ (5.6)

If V is given in the body-fixed frame, then

F = mV̇ + ω ×mV (5.7)
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where ω = [p q r]T is the vector of angular rate.
Let Fx, Fy and Fz be the components of force acting upon the vehicle

along the x, y and z axes in the earth-based frame, respectively. The linear
motion can be represented as:

 Fx
Fy
Fz

 = m

 u̇
v̇
ẇ

+m

 p
q
r

×

 u
v
w

 (5.8)

Angular Motion

The net moment of force M acting upon the body determines the rate of
change of the angular momentum L:

M = L̇ (5.9)

Similar to Eq. (5.7), if L is given in the body-fixed frame:

M = L̇+ ω ×L (5.10)
L = Iω (5.11)

where I is the inertia matrix. The hexacopter is symmetric with regard to
the xz and yz plane. Therefore, the inertia matrix I is diagonal:

I =

 Ix 0 0
0 Iy 0
0 0 Iz

 (5.12)

Let L,M,N be the angular momentum about the x, y and z axis re-
spectively in the earth-based frame. The angular motion can be represented
as:

 L
M
N

 =

 Ix 0 0
0 Iy 0
0 0 Iz

 ṗ
q̇
ṙ

+

 p
q
r

×

 Ix 0 0
0 Iy 0
0 0 Iz

 p
q
r

 (5.13)
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5.3.3 Summary
From Eq. (5.8) and Eq. (5.13), the status of the UAV can be obtained by
solving the following differential equations:

Fx = m(u̇+ qw − rv)

Fy = m(v̇ + ru− pw)

Fz = m(ẇ + pv − qu)

L = Ixṗ+ qr(Iz − Iy)

M = Iy q̇ + rp(Ix − Iz)

N = Iz ṙ + pq(Iy − Ix)

(5.14)

The orientation of the hexacopter is represented as a quaternion, of which
the derivatives is updated with a skew-symmetric matrix following Eq. 5.15.

q̇0
q̇1
q̇2
q̇3

 = −1

2


0 p q r
−p 0 −r q
−q r 0 −p
−r −q p 0



q0
q1
q2
q3

 (5.15)

The rotation matrix B in Eq. (5.4) is applied to convert the local velocities
of the UAV (denoted as [u v w]) to the earth-based coordinate. The global
velocities [Ẋ Ẏ Ż] are obtained with the following Eq. (5.16). [Ẋ Ẏ Ż] are
then integrated to obtain the global position [X Y Z]. Ẋ

Ẏ

Ż

 = B

 u
v
w

 (5.16)

The aforementioned formulations (i.e. Eq. 5.3, Eq. 5.4, Eq. 5.14, Eq. 5.15
and Eq. 5.16) are all implemented in a C++ S-function, which needs to be
built using the mex2 command into an callable object that is wrapped up in
Simulink as an S-function block.

To have an intuitive understanding of the attitudes of the drone, the
quaternion is subsequently converted into Euler angles, i.e., roll (ϕ), pitch
(θ) and yaw (ψ), using the following transformation. Similarly, Eq. 5.17 is
implemented in another C++ S-function.ϕθ

ψ

 =

atan2( 2(q0q1 + q2q3), q0
2 − q1

2 − q2
2 + q3

2)
asin(2(q0q2 − q3q1))

atan2( 2(q0q3 + q1q2), q0
2 + q1

2 − q2
2 − q3

2)

 (5.17)

2https://au.mathworks.com/help/matlab/ref/mex.html

https://au.mathworks.com/help/matlab/ref/mex.html


88 CHAPTER 5. SIMULATION OF HEXACOPTER

5.3.4 Model Parameters
A list of the hexacopter inertia properties is provided in Table 5.1.

Table 5.1: Inertia Properties of the Hexacopter Platform

Parameter Meaning Value Unit
m mass 3.0 kg
Ix moment of inertia about x-axis 0.04 kgm2

Iy moment of inertia about y-axis 0.04 kgm2

Iz moment of inertia about z-axis 0.06 kgm2

g gravitational acceleration 9.81 ms-2

5.4 Signal Mixing and Servo Dynamics

5.4.1 Control Signal Mixing
In Fig. 5.1, controller commands (i.e. roll (ϕ), pitch (θ) yaw (ψ) and thrust
(t)) are combined to calculate rotor speed commands in the ‘Control Mixing’
block. This is done with a linear mixing matrix Q:

W = QU (5.18)

where W = [W1 W2 W3 W4 W5 W6]
T is the vector of rotor speed

commands and U = [ϕr θr ψr tr]
T is the vector of control commands.

Essentially the mixing matrix Q denotes how much percentage of the control
commands should be given to the each of rotors. For example, a thrust
command increments the rotor speed command of each rotor equally, whereas
a roll to the right command will increase the rotor speed for rotors on the
left side of the craft whilst decreasing the rotor speeds on the right. Angular
velocities of the rotors Ω are then converted linearly from the rotor speed
commands:

Ω = kTW (5.19)

where kT is a constant scalar (refer to Table. 5.2).
To make the model more realistic, a communication delay of 0.1 s is in-

troduced to the rotor speed commands when obtaining the rotor thrusts and
torques (described in Section 5.5.1).
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5.4.2 Servo Dynamics
Meanwhile, the servo dynamic property is modelled as a first order transfer
function, with a time decay constant of 0.1 s:

Gs(s) =
1

0.1s+ 1
(5.20)

This modelling is a simple yet effective representation of the servo dynamics,
and is not uncommon in previous research [227].

5.5 Aerodynamics

5.5.1 Rotor Thrust and Torque
Rotor Thrust

The aerodynamics of rotors are described as per the momentum theory [229]
and Glauert’s induced flow model [230]. Details of the modelling are derived
in [227].

In brief, the rotor is modelled as an infinitely thin disc that induces a
pressure jump across the plate by the blades. Suppose the hexacopter velocity
V∞ can be decomposed into two components: Vn and Vt that are perpendicular
and tangential to the rotor disc respectively. The relationship between the
thrust T and induced velocity Vi is given as:

T =
ρa(ΩR)2Ab

2

[
1

3
θ0(1 +

3

2
µ2)− 1

2
λ′
]

(5.21)

where
λ′ =

Vi + Vn
ΩR

and µ =
Vt
ΩR

(5.22)

and

V 2
i =

√
(
V̂

2
)2 + (

T

2ρA
)2 − V̂ 2

2
(5.23)

where
V̂ =

√
V 2
T + (Vn + Vi)2 (5.24)

To solve Eq. (5.21) and Eq. (5.23) numerically, a binary search algorithm
[227] is made to iteratively infer the induced velocity, until the value of Vi
can make the difference of the thrust (∆T ) as close to zero as possible.
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Rotor Torque

Rotor torques are calculated by dividing the rotor power P by the angular
velocity:

N =
P

Ω
(5.25)

where P is composed of the sum of the induced power Pi = κTVi and the
power to overcome the profile drag of the rotor blades P0 as per equation 5.26.
The κ parameter is a correction factor to account for non-uniform inflow and
other effects. Profile power is calculated from the rotor blade drag coefficient
using blade element theory as per the textbook by Leishman [231].

P = Pi + P0 (5.26)

5.5.2 Fuselage Drag
A drag force is applied to the fuselage in a direction opposite to the velocity
vector of the aircraft. The magnitude of the drag term in each axis is:

Dx = 0.5ρSxCdu
2

Dy = 0.5ρSyCdv
2

Dz = 0.5ρSzCdw
2

(5.27)

where Cd is the drag coefficient that is roughly estimated as 1.0 for a flat
plate perpendicular to the air flow; ρ is the air density; Sx, Sy and Sz are the
equivalent flat plate areas of the fuselage in the respective directions.

5.5.3 Summary
Thrusts and torques of the rotors are summed with the fuselage drag to
provide the total forces (Fx, Fy and Fz) and moments (L,M,N) acting on the
aircraft, which are then used to update the states of the hexacopter according
to Eq. 5.14. Outputs of the ‘Forces & Moments’ block are:

• yawing torque, obtained by summing up the torque of each rotor.

• rolling and pitching torques, as the sum of products of rotor thrusts
and their corresponding torque arms.

• collective thrust, which equals to the sum of thrust of each rotor com-
bined with a drag term introduced on the fuselage caused by aircraft
climb/descent, of which the direction is opposite to the vector sum of
aircraft velocity.
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5.5.4 Aerodynamics Properties

A list of the properties of aerodynamics is provided in Table 5.2.

Table 5.2: Aerodynamics Properties

Parameter Meaning Value Unit
kT ratio of rotor command to rotation rate 66.5 rad/s
R radius of rotor blades 0.164 m
Sx area of fuselage about x-axis 0.01 m2

Sy area of fuselage about y-axis 0.01 m2

Sz area of fuselage about z-axis 0.015 m2

ρ air density 1.225 kgm-3

5.6 Hexacopter Control

The problem to be resolved in this chapter is the full control of the hexacopter
in 6 DoF. This is done by decomposing the flight control into sub-modules
and evolving them incrementally.

As shown in Fig. 5.3, yaw control and height control are implemented
separately; positional x-axis control is connected to pitch; y-axis control is
connected to roll. Each controller takes two known states as inputs: the
error between the reference and the actual value in that channel and the
current positional/angular velocity. Other than these, the rest are unknown
to the controllers. The output of each controller is updated at a rate of 50 Hz
(every 0.02 s), which is a command signal bounded within realistic realms.
Controller commands are then fed to the signal mixer to obtain the rotor
speed commands according to Eq. (5.18).

One of the main issues to be noted in state estimations is that the flight
data is usually noisy, due not only to the structural vibration effects on the
on-board sensors during flights, but also to the uncertainties of electronic
measurements. Therefore, a Gaussian distributed white noise (signal-to-noise
ratio is 20 dB) is added to each set of the controller inputs.

A random step signal is implemented in an S-function block to generate a
reference for each controller. Both the step values and durations are seeded
randomly within specified ranges.
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Figure 5.3: Hexacopter control diagram. Each controller takes two known
states as inputs: the error between the set point and the actual value (i.e.,
position errors eh, ex, ey and attitude errors eΨ, eΘ, eΦ); the current velocity
(i.e., positional velocities vh, vx, vy and angular velocities r, q, p).

5.6.1 Controller Development
PID controllers are first implemented on each DoF as a benchmark. Gains
of the PIDs are designed to display fast response and minimal steady state
output errors in a step response. The next phase is to incrementally develop
a neurocontroller for each DoF, by substituting the PIDs with SNNs and
evolving them using the MoNEAT algorithm. Such methodology has been
proven to work in the literature [48]. The direction of evolution is towards
networks that are able to drive the hexacopter to follow a random reference
signal with minimal error during the course of flight. Algorithmic flow of the
evolution for each DoF is similar:

• Networks are first initialised with minimal structure (2-1-0-1: input-
bias-hidden-output), with randomly assigned connection weights. A
population of 150 networks are created and categorised into species.

• Afterwards, each network will be evaluated iteratively and assigned a
fitness value based on its performance during a flight of 80 s. The fitness
calculation used is detailed in Section 5.6.2.

• Finally, these networks will be ranked in descending orders using a fit-
ness sharing scheme [137]. The best parent networks in each species
are allowed to reproduce and their offspring will form the next popula-
tion. Probabilities of the three types of mutations (“AddConnection”,
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“AddNode” and “AddFullyConnectedNode”) are 0.02, 0.01 and 0.01
respectively.

Evolution will terminate either when the population has been stagnant for
12 consecutive generations, or if it has reached a threshold of 50 generations.
These numbers are empirically determined to make sure the evolution will
most likely plateau in fitness performance without running indefinitely.

5.6.2 Fitness Evaluation
Note the control system to be solved is a Constraint Problem [232], because
the states of the UAV must be bounded within some certain range in the
real world. However, constraint handling is not straightforward in NEAT –
invalid solutions that violate the system’s boundary can be generated, even
if their parents satisfy these constraints. Therefore, in this experiment the
feasibility-first principle [232] is employed to handle the constraints.

The potential solution space is divided into two disjoint regions, the fea-
sible region and the infeasible, by whether the hexacopter is staying in the
bounded area during the entire simulation. For infeasible candidates, a pe-
nalised fitness function is introduced so that their fitness values are guaran-
teed to be smaller than those which are feasible.

Fitness of feasible candidates is defined based on the mean normalised
absolute error during the simulation:

f = 1− ¯|en| (5.28)

where |en| denotes the normalised absolute error between the actual and ref-
erence position. The desired solution will have a fitness value close to 1. For
infeasible candidates, penalised fitness functions are used so that their fitness
values will be smaller than those feasible.

Position & Yaw control

For position control (i.e. x, y and height control) and yaw control, fitness of
infeasible solutions is calculated from the time that the hexacopter stays in
the bounded area:

f = k(ti/tt) (5.29)

where ti is the steps that the hexacopter successively stays in the feasible
region, and tt is the total amount of steps the entire simulation lasts. A
penalty is applied using a scalar k of 0.2.
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Roll & Pitch Control

Solutions are harder to find for the inner loop controllers. During the early
stages, none of the networks are feasible as they die out similarly quickly.
The number of feasible steps the system lasts using different networks does
not differ significantly and thus it is difficult to tell which individuals are the
better ones simply from Eq. (5.29) that is used in position control. Therefore,
fitness in infeasible roll/pitch control is calculated by adding a penalty p on
top of Eq. (5.28):

f = 1− ¯|en| − p (5.30)
¯|en| here is the mean normalised absolute error during flight in the feasible

region. Penalty is defined based on the distance in time towards simulation
completion.

5.7 Results

5.7.1 Evolution in Progress
Flight control is decomposed into 6 modules and evolved incrementally. The
entire process can be roughly divided into four steps:

Yaw The first step is evolution of yaw control, during which, feedback con-
trols of the other controller modules are disabled and their outputs are set
to zero to eliminate the effects on the training controller. Euler angles are
kept in check during the whole simulation. The controller candidate will be
categorised as infeasible if any of the drone states goes beyond the specified
range.

Roll & Pitch The second step is evolution of roll and pitch control. Like-
wise, controller outputs of other channels are set as zero in each process.
Orientations of the hexacopter are bounded within specified ranges, other-
wise the simulation is terminated and the controller candidate is classified as
infeasible. Additionally, outer loop controls (x and y) are disconnected from
pitch and roll. A random reference generator for desired pitch and roll will
instead be connected to the attitude controllers during evolution.

Height Evolution of height control is similar to the development of yaw
control.
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X and Y Position Finally, the best roll and pitch controllers are activated
to train the X- and Y-axis controls. The outer loop controllers are connected
back to the inner loops and allowed to evolve.

The whole process has been run ten times in order to conduct a statistical
analysis. Table 5.3 shows the averaged fitness values of the evolved spiking
controllers in 6 DoF. Two-tailed Mann–Whitney U tests have been conducted
to assess the statistical significance between the two approaches. The SNN
controllers have better performance compared with the PIDs in all DoF. The
differences between the two approaches shown in this thesis are more apparent
than those from our earlier publication [214], which has demonstrated that
SNNs are more able to cope with system nonlinearities and uncertainties.

Table 5.3: Averaged Fitness in Ten Runs of SNN Controllers vs. PID Con-
trollers

DoF Mean Fitness
SNN PID

Yaw 0.85993 0.83987
Roll 0.88331 0.85875
Pitch 0.86909 0.84957

X 0.90563 0.89912
Y 0.90237 0.88961
Z 0.82525 0.80618

System responses of these channels using the final evolved controllers are
given in Fig. 5.4, 5.5 and 5.6. The hexacopter is able to track the reference
with smaller overshoots and stable state errors.

5.7.2 Evaluation
Finally, the evolved controllers are all activated and an evaluation signal is
used to validate their functionality. Performance of the resulting system is
plotted in Fig. 5.7. We can see the subsystems are actually coupled together.
When the hexacopter needs to move horizontally, the attitudes (roll or pitch)
will alter to tilt the rotor thrust forces and provide horizontal force compo-
nents to move the vehicle. As a result, vertical lift will decrease and the
hexacopter will descend a bit first and recover later with adjusted propeller
speed.



96 CHAPTER 5. SIMULATION OF HEXACOPTER

0 10 20 30 40 50 60 70 80
-4

-2

0

2

4

H
ei

gh
t, 

 z
 (

m
)

z_ref
z_snn
z_pid

0 10 20 30 40 50 60 70 80

Time,  t  (s)

-100

-50

0

50

100

Y
aw

 (
de

g)

yaw_ref
yaw_snn
yaw_pid

Figure 5.4: Response of the hexacopter to a random height (above) and yaw
(below) reference using the evolved controllers. Compared with PIDs, SNNs
have shown closer tracking to the reference signal with smaller overshoots.
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Figure 5.5: Response of the hexacopter to a random roll (above) and pitch
(below) reference using the evolved controllers. SNNs are able to follow the
reference more closely than the PIDs.
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Figure 5.6: Response of the hexacopter to a random X-position (above) and
Y-position (below) reference using the evolved controllers. SNN control fol-
lows the reference signal more rapidly than the PIDs in both axes. However,
their responses are quite similar, as is shown in their fitness values.
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Figure 5.7: Full control of the hexacopter using SNNs
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5.8 Discussions
The experiments shown above make a comparison between SNN (non-plastic)
and PID control. From Table 5.3 we can observe the attitude (roll, pitch and
yaw) and height control have seen clear improvements, while the changes in
X and Y control is less significant.

The reason behind this is that although a single PID controller only has
three parameters, the cascaded structure in the X and Y axes has introduced
extra degrees of flexibility in the system, so that it is still able to achieve
fairly good performance. In a real life example, the PX4 Autopilot [73] has
utilised a four layer structure (position-velocity-attitude-rate) which has 12
gain parameters in total to secure robust flight performance.

Similarly in SNN control, as the evolution of network topology continues,
the degree of variables (connections and neurons) will be able to expand
so that they can provide optimised control of the system, as SNNs (and
more generally ANNs) are proven universal function approximators [177, 113].
The proposed approach benefits us in that, on one hand, artificial evolution
casts an automatic mechanism to make the tuning of network configurations
painless, which has also become popular in the gain scheduling of PID control
[77]; whilst on the other hand, synaptic plasticity in SNNs empowers the
system to be adaptive online, so that the controller developed in simulations
will be able to be implemented on physical platforms directly.

5.9 Conclusion
In this chapter the mathematical modelling of a hexacopter UAV is presented.
A simulated hexacopter model is constructed in the MATLAB Simulink en-
vironment. The primary contribution of this chapter is the successful devel-
opment of spiking neurocontrol for the hexacopter, which is accomplished by
decomposing it into modular networks and evolving them incrementally with
the MoNEAT algorithm.



Chapter 6

Heave Control Using Plastic
Spiking Neurocontrollers

This chapter is partly based on the following publication:

H. Qiu, M. Garratt, D. Howard, and S. Anavatti. Towards crossing
the reality gap with evolved plastic neurocontrollers. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference, GECCO
’20. New York, NY, USA: Association for Computing Machinery,
2020, pp. 130–138. https://doi.org/10.1145/3377930.3389843

6.1 Introduction
A critical issue in evolutionary learning is the transfer of controllers learned in
simulation to reality [28]. Previous approaches often require simulation mod-
els with a high level of accuracy, otherwise significant errors may arise when
the well-designed controller is being deployed onto the targeted platform.
This chapter tries to overcome the transfer problem from a different perspec-
tive, by designing a spiking neurocontroller which utilises synaptic plasticity
to cross the reality gap via online adaptation. With the goal of simulation-to-
reality transfer, this chapter proves the concept in a time-efficient manner by
transferring from a simpler to a more realistic model, a transfer that encapsu-
lates some issues inherent in crossing the reality gap, i.e. incomplete capture
of true flight dynamics and oversimplification of true conditions. Through a
set of experiments, it is shown that the evolved plastic spiking controller can
maintain its functionality by self-adapting to model changes that take place
after evolutionary training, and consequently exhibit better performance than
its non-plastic counterpart.
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Organisation of the rest of this chapter is as follows. Section 6.2 intro-
duces the reality gap problem, followed by a brief description on the proposed
approach by evolving plastic learning rules in spiking neurocontrollers in sec-
tion 6.3. Section 6.4 presents the plant model to be controlled as well as
the system identification process, while Section 6.5 describes the controller
development process in detail. Results and analysis are given in Section 6.6.
Finally, discussions and conclusions are presented in Section 6.7 and 6.8.

6.2 The Reality Gap Problem
There still exist a large group of aerial robotic studies nowadays relying on
simulations as an intermediate step for developing control algorithms [41, 5].
On one hand, a simulation environment is convenient to provide control strat-
egy evaluation and performance analysis. On the other hand, many learning-
based approaches spend most of their time conducting large numbers of fitness
evaluations. The processing time for these evaluations can be significantly
reduced in simulations with no risk of damage to the hardware. This is espe-
cially the case for small UAVs, as these platforms are highly dynamic, with
strong couplings between different subsystems [5]. Controller design for these
agile platforms is naturally difficult, as a poorly-performing controller can
lead to catastrophic consequences, e.g., the UAV crashing.

Mathematical models of UAVs in simulations are generally ideal represen-
tations of the system dynamics, and thus are not capable of capturing every
aspect of the characteristics of the platforms. Such complex nonlinear systems
are arduous, and virtually impossible to formulate accurately, because some of
the dynamics cannot easily be modelled analytically, e.g., actuator kinematic
nonlinearities, servo dynamics, sensing lags, etc [52]. Ignoring these effects
can significantly deteriorate the performance of the designed controller when
being deployed onto the targeted platform. To address this issue, a common
practice is to develop control algorithms based on an identified model that is
obtained via a system identification process, in which a data-fitting process
is applied to model the exact dynamics from the measured plant’s input and
output data. Such implementations have been successful amongst previous
research [54, 55, 52, 41, 56].

While a lot of works have pursued a perfect model that well characterises
UAV platforms, a key issue is that loss of performance is still likely to happen
when transferring the well-designed (in simulation) controller onto the real
platform that has somewhat different dynamics – a phenomenon known as
the reality gap [53]. A form of learning in autonomous robotics, therefore, is
the ability to maintain the robot’s functionality when the controller solution
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learned in simulation is transferred to the physical platform, which is often
referred to as the ability to cross the reality gap [2, 27, 28]. The robot should
be robust enough to operate as anticipated even when model variations are
encountered.

6.3 Problem Description
In this chapter a novel approach is demonstrated to compensate the gap
across different platform representations, which works specifically with a spik-
ing neurocontroller that exhibits online adaptation ability through Hebbian
plasticity. An evolutionary learning strategy is proposed for SNNs, which in-
cludes artificial evolution of topology and weight configurations as per NEAT,
as well as integration of biological plastic learning mechanisms.

Plasticity evolution, as utilised in conventional ANNs [192, 148, 193] and
SNNs [194], takes place in the rules that govern synaptic self-organisation
instead of in the synapses themselves. The evolved controller is able to exhibit
online adaptation due to plasticity, which allows successful transfer from a
simple identified model to an accurate model that is built from first principles,
indicating that transfer to reality would be similarly successful.

The focus of this chapter is on the development of height control of a
hexacopter UAV. The controller takes some known states of the plant model
(i.e., error in z-axis between the desired and current position as well as the
vertical velocity) and learns to generate a functional action selection policy.
The output is a thrust command that will be fed into the plant so that its
status can be updated.

The proposed approach to resolve the problem is threefold. First, explicit
mathematical modelling of the aircraft is not required. Instead, system iden-
tification is carried out to construct a heave model to loosely approximate the
dynamics of the hexacopter, during which only basic assumptions are made
that the vertical acceleration of the UAV is linearly correlated with the input
thrust command and the vertical velocity at a given timestep. In reality, such
models are simple to develop and fast to run. Second, neuroevolution takes
place as usual to search through the solution space for the construction of
functional networks to control the identified heave model. Network topology
and initial weight configurations are determined. Finally, the best candi-
date controller with the highest fitness value is selected for further evolution.
Hebbian plasticity is activated and the plastic rule coefficients are optimised
by leveraging the power of evolutionary algorithms. The resulting Hebbian
plasticity is able to self-regulate connection weights online according to local
neural activations when the controller is deployed on the more realistic model.
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6.4 Identification of Heave Model
6.4.1 System Modelling
The hexacopter model is derived from first principles and constructed in
MATLAB Simulink, which contains 6-DoF rigid body dynamics and non-
linear aerodynamics. The detailed mathematical modelling of the hexacopter
is elaborated in Chapter 5. The top-level diagram of the system used in this
chapter is given in Fig. 6.1.
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Figure 6.1: Top-level diagram of the hexacopter control model

The ‘Control Mixing’ block combines controller commands from the ‘At-
titude Controller,’ ‘Yaw Controller’ and ‘Height Controller’ to calculate ap-
propriate rotor speed commands using a linear mixing matrix. In the ‘Forces
& Moments’ block rotor speeds are used to calculate the thrust and torque
of each rotor based on the relative airflow through the blades. Then the yaw-
ing torque will be obtained by simply summing up the torque of each rotor.
Rolling and pitching torques can also be calculated by multiplying the thrust
of each rotor by its corresponding moment arm. Meanwhile, a drag force is
also applied to the fuselage in a direction opposite to the velocity vector of the
aircraft. The rotor thrusts and torques are summed with the fuselage drag
to provide the total forces (Fx, Fy and Fz) and moments (L,M,N) acting on
the aircraft.

Afterwards, the thrust and moments are fed to the ‘Hexacopter Dynamics’
block. Assuming the UAV is a rigid body, Newton’s second law of motion
is used to calculate the linear and angular accelerations and hence the state
of the drone will be updated. To convert the local velocities of the UAV to
the earth-based coordinate a rotation matrix is applied to obtain the global
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velocities, which is parameterised in terms of quaternion to avoid singularities
when solving trigonometric functions at angles close to ±90◦.

Finally, closed-loop simulations have been tested to validate the function-
ality of the Simulink model. A random signal generator is implemented to
generate the height reference. A PID controller is used in the height control
loop that displays fast response and low steady output error as a benchmark.

6.4.2 Identification of Heave
At the first stage a loose approximation is built to resemble the heave dynam-
ics of the hexacopter. Essentially, this is to model the relationship between
the vertical velocity vz, collective thrust T and the vertical acceleration az.
Fig. 6.2 shows the nonlinear response of vertical acceleration with varying
thrust command when the vertical speed is at speeds between -3 m/s to 3 m/s.
Note here that the acceleration is actually the net effect of z-axis force act-
ing on the body, which is generated from the rotor thrust and vertical drag
caused by rotor downwash and fuselage. The net acceleration an would be az
plus the gravitational acceleration g.
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Figure 6.2: Nonlinear relationship between vertical velocity vz (-3 m/s to
3 m/s), thrust command T and vertical acceleration az.

In the identified model, vertical acceleration az is approximated as a linear
combination of the thrust command T and vertical speed vz. vz, on the other
hand, is obtained by integrating the net acceleration of z-axis an:
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az = kTT + kvvz + b

an = az + g

vz =

∫
an

(6.1)

where kT and kv are configurable coefficients; b is a bias that is also tunable
to make sure that the linear function will be expanded at the point where the
net acceleration equals zero, i.e., az = −g.

Let us take two of the acceleration curves from Fig. 6.2 (i.e., for vz =
0 m/s and vz = 1 m/s) to model the linear function. The resulting identified
linear model is given in Fig. 6.3. kT is identified as the slope of az against
T when vz = 0 at the point where an = 0. kv is then calculated from the
vertical distance between the two nonlinear curves. Finally, b is set to shift
the linear curve vertically, so that the identified model will be tangent with
the hexacopter curve at the point where an = 0.
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Figure 6.3: Acceleration curves of the identified model (aidz ) and the hex-
acopter model (az) with varying thrust command. The identified curve is
tangent with that of the hexacopter model at the point where the net accel-
eration an is 0. α is the slope angle of the identified linear curve, from which
kT is obtained. kv is calculated from the vertical distance between the two
nonlinear curves.

Finally, the same random thrust command is fed to the two different
models for validation of functional similarity. System response of the two
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models are given in Fig. 6.4. Clearly the response of the identified model
differs from the hexacopter model, which is desired, but still the identified
model approximates the original system to some extent.
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Figure 6.4: Validation of identified heave model. System response of the two
models when fed with the same thrust command signal.

6.5 Controller Development and Deployment

The controller is developed offline against the identified model. To speed
up the evolution process, the whole simulation during the development is
implemented in C++, with the eSpinn package described in Chapter 3.

Neuroevolution is first carried out to locate beneficial topology and weight
configurations of the non-plastic networks. Plasticity of the champion net-
work is then enabled and allowed to optimise with further evolution. Upon
completion of the previous steps, the final network controller is obtained and
ready for deployment. To construct the controller in the Simulink hexacopter
model, it is implemented as a C++ S-function block. The controller is trans-
ferred including the network structure as well as the plasticity learned in
simulation.
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6.5.1 Evolution of Non-plastic Controllers
Network Configuration

In this experiment the two-dimensional Izhikevich model described in Sec-
tion 3.3 is employed. The neuron model is formulated with two ordinary
differential equations:

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)
(6.2)

with after-spike resetting following:

if v ≥ vt, then
{
v = c
u = u+ d

(6.3)

Details of the variables are explained in Section 3.3.1.
A three-layer architecture that has hidden-layer recurrent connections is

employed, as illustrated in Fig. 6.5. The input layer consists of two neurons
which are position error in z-axis ez and vertical velocity vz, other than which,
the system’s dynamics are unknown to the controller. Hidden layer neurons
(h) are spiking, whose outputs oi are based on decoding of firing rates and
direct transfer of intermediate membrane potentials. Output of the controller
is thrust command that will be fed to the plant model, which is configured as
a linear unit to obtain real-value outputs from a weighted sum of activations
from hidden-layer neurons. A bias neuron that has a constant output value is
able to connect to any neurons in the hidden and output layers. Connection
weights are bounded within [-1, 1]. The NEAT topology and weight evolution
scheme is used to form and update network connections and consequently to
seek functional network compositions.

Encoding of sensing data is done by the encoding neurons in the input
layer. Input data are first normalised within the range of [0,1], so that the
standardised signal can be linearly converted into a current value (i.e., I in
Eq. (6.2)). This so-called “current coding” method is a common practice to
provide a notional scale to the input metrics.

Training Process

With the identified model developed according to Eq. 6.1, the first step is to
search for optimal network compositions by evolving SNNs using the NEAT
algorithm. By ‘optimal,’ the SNN controller is defined to be able to drive the
plant model to follow a reference signal with minimal error in height during
the course of flight. Each simulation flight lasts 80 s and is updated every
0.02 s.
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Figure 6.5: Spiking neurocontroller topological expansion using NEAT. Net-
work inputs (i) consist of position error in z-axis ez and vertical velocity vz.
Hidden layer neurons (h) are spiking, whose outputs oi involve direct transfer
of intermediate membrane potential and decoding of firing rate. A bias neu-
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Output thrust command T is calculated based on a weighted sum of incoming
neuron activations

∑
wioi, which will be fed to the hexacopter plant model.

Weights wi are bounded within [-1, 1].

At the beginning, a population of non-plastic networks are initialised and
categorised into different species. These networks are feed-forward, fully-
connected with random connection weights. The initial topology is 2-4-1
(input-hidden-output layer neurons), with an additional bias neuron that is
connected to all hidden and output layer neurons. After initialisation, each
network will be iterated one by one to be evaluated against the plant model.
A fitness value will be assigned to each of them based on their performance.
Afterwards, these networks will be ranked within their species according to
their fitness values in descending order. A newer generation will be formed
from the best parent networks using NEAT: only the top 20% of parents in
each species are allowed to reproduce, after which, the previous generation
is discarded and the newly created children will form the next generation.
During evolution, hidden layer neurons will increase with a probability of
0.005, connections will be added with a probability of 0.01.

The program terminates when the population’s best fitness has been stag-
nant for 12 generations or if the evolution has reached 50 generations1. During
the simulation, outputs of the champion will be saved to files for later visual-
isation. The best fitness will also be saved. Upon completion of simulation,
data structure of the whole population will be archived to a text file, which
can be retrieved to be constructed in later steps.

1empirically determined
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Constraint Handling

Similar to Section 5.6.2, fitness evaluation during the evolution is based on
a feasibility-first principle [232]. The potential solution space is divided into
two disjoint regions, the feasible region and the infeasible, by whether the
hexacopter is staying in the bounded area during the entire simulation. For
infeasible candidates, a penalised fitness function is introduced so that their
fitness values are guaranteed to be smaller than those which are feasible.

The fitness function of feasible solutions is defined based on the mean
normalised absolute error during the simulation:

f = 1− ¯|en| (6.4)

where |en| denotes the normalised absolute error between actual and reference
position. Since the error is normalised, the desired solution will have a fitness
value close to 1.

For infeasible solutions, the fitness is defined based on the time that the
hexacopter stays in the bounded region:

f = k(ti/tt) (6.5)

where ti is the steps that the hexacopter successively stays in the bounded
region, and tt is the total amount of steps the entire simulation has. Penalty
is applied using a scalar k of 0.2.

6.5.2 Enabling Plasticity
Hebbian Plasticity

Here a rate-based Hebbian model derived from the nearest neighbour STDP
implementation [143] is introduced, with two additional evolvable parameters
km and kc:

ẇ = ui(
A+

τ−1
+ + ui

+
km(uj − ui + kc) + A−

τ−1
− + ui

) (6.6)

where km is a magnitude term that determines the amplitude of weight
changes, and kc is a correlation term that determines the correlation between
pre- and postsynaptic firing activity. These factors are set to be evolvable so
that the best values can be autonomously located.

Fig. 6.6 shows the resulting Hebbian learning curve. The connection
weight has a stable converging equilibrium at uθ, which is due to the cor-
relation term kc. This equilibrium corresponds to a balance of the pre- and
postsynaptic firing, with which the network itself is able to regulate the post-
synaptic firing corresponding to incoming presynaptic spikes.
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Figure 6.6: Hebbian learning curve with A+ = 0.1, A− = -0.1, τ+ = 0.02 s,
τ− = 0.02 s

Evolution of Plasticity

Once the step is done to discover the optimal network topology, the cham-
pion network from the previous step is loaded from file, with the Hebbian
rule activated. It is spawned into a NEAT population, where each network
connection has randomly initialised Hebbian parameters (i.e., km and kc in
Eq. 6.6). An EA is used to determine the best plasticity rules by evolving
the two parameters.

Networks are evaluated as previously stated. The best parents will be
selected to reproduce. During this step, all evolution is disabled except for
that of the plasticity rules, e.g. the EA is only used to determine the optimal
configuration of the plasticity rules.

Each connection can develop its own plasticity rule. The above-mentioned
processes will be offline and only involve the identified model. The dynamics
of the accurate model are unknown to the controller. On completion of train-
ing, the champion network with the best plasticity rules will be deployed to
drive the hexacopter model, which is a more true-to-life representation of the
real plant.

6.6 Results and Analysis
Ten runs of the controller development process have been conducted to per-
form statistical analysis. Data are recorded to files and analysed offline with
MATLAB.
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6.6.1 Adaptation in Progress
Table 6.1 shows the fitness changes of the best controller during the course2.
From left to right are non-plastic networks controlling the identified model,
plastic networks controlling the identified model and plastic networks con-
trolling the hexacopter model, respectively. The fitness values are averaged
among the 10 runs.

Table 6.1: Best Networks’ Mean Fitness Values in Progress

Non-plastic on
id’d model

Plastic on id’d
model

Plastic on hexa
model

Fitness 0.8378 0.8699 0.8595

As stated in 6.5.1, evolution would be terminated if the performance does
not improve for 12 consecutive generations before the threshold of 50. For
non-plastic controllers, only one of the 10 runs has reached the threshold,
and its fitness has only increased by 0.0034 in the last 15 generations. This
indicates the evolutionary runs of non-plastic controllers have plateaued and
further evolution is unlikely to find better solutions. On the other hand,
when plasticity is enabled, an increase in fitness can be clearly observed when
controlling the same identified model. The plastic controllers demonstrate
better performance even when transferred to control the hexacopter model
that has different dynamics.

6.6.2 Plastic vs. Non-plastic
A second comparison is conducted between non-plastic and plastic controllers
on the hexacopter model. Results are given in Table 6.2. For 9 out of the 10
runs, we can see a performance improvement when plasticity is enabled. The
only one not being better, still has a close fitness value. Statistic difference
is assessed using the two-tailed Mann-Whitney U -test between the two sets
of data. The U -value is 21, showing the plastic controllers are significantly
better than the non-plastics at p < 0.05.

Fig. 6.7 shows a typical run using the non-plastic and plastic controller.
We can see the plastic control system has a faster response as well as smaller

2The figures here are different from our earlier publication [212] because there is a bit
difference in the fitness calculation. However, the relative conclusions made among these
approaches remain unchanged. Note the values in the following sections are updated as
well.
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Table 6.2: Fitness of Non-Plastic vs. Plastic Controllers on the Hexacopter
Model

Fitness Non-plastic Plastic
Run 1 0.8376 0.8701
Run 2 0.8149 0.8543
Run 3 0.8522 0.8793
Run 4 0.8559 0.8930
Run 5 0.8107 0.8324
Run 6 0.8092 0.8332
Run 7 0.8349 0.8676
Run 8 0.8375 0.8512
Run 9 0.8438 0.8732
Run 10 0.8422 0.8413
Mean 0.8389 0.8596

steady state error. It is clear that plasticity is a key component to bridge the
gap between the two models.

6.6.3 Validation of Plasticity

To verify the contribution of the proposed Hebbian plasticity, the evolved best
plastic rule is extracted and applied to other networks that have sub-optimal
performance. With plasticity enabled, a sub-optimal network is selected to
repetitively drive the hexacopter model to follow the same reference signal.
Fig. 6.8 shows the progress of 4 consecutive runs when a) plasticity is disabled;
b-d) plasticity is enabled.

We can see that in Fig. a), there is a considerable steady state system
output error. When plasticity is turned on, connection weights begin to
adjust themselves gradually. The system follows the reference signal with
a decreasing steady state error until around 0.005 m. Meanwhile a fitness
increase is witnessed from a) 0.84259, b) 0.85512, c) 0.86457 to d) 0.86784.

The same results can be obtained when the rule is assigned to other near-
optimal networks, while for those with poor initial performance, plasticity
learns worse patterns. This analysis has justified the proposed evolution-
ary approach to search for the optimal plastic function, demonstrating that
plasticity narrows the reality gap for evolved spiking neurocontrollers.
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6.6.4 Comparing with PID control
PID control is a classic linear control algorithm that has been dominant in
engineering. The aforementioned PID height controller is taken for compari-
son. Note here the PID controller is designed directly based on the hexacopter
model, whereas the SNN controller only relies on the identified model and
utilises Hebbian plasticity to adapt itself to the new plant model. System
outputs of the two approaches are given in Fig. 6.9. Evidently the spiking
controller has smaller overshoot and steady state output error. The PID con-
troller has a mean absolute error of 0.108 m during the course of flight, while
the plastic SNN controller has a value of 0.090 m.
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Figure 6.9: Height control using PID and plastic SNNs

6.6.5 Introducing Servo Dynamics and Sensor Noise
Finally, flight tests have been carried out to evaluate the performance of
plastic controllers on a more realistic model. A first order servo transfer
function with a time constant of 0.1 s and a communication delay of 0.1 s
are introduced in the model (refer to Section 5.4). Additionally, a Gaussian
distributed white noise is added to the sensor output to simulate actual flight
data. The signal-to-noise ratio (SNR) is 20 dB.

An additional reward signal γ is introduced to the Hebbian rules shown
in Eq. (6.6):

∆w = γ∆wH (6.7)

which is set based on the mean standard error in height.
A sub-optimal controller (trained against the linear approximation) is used

to simulate the model to follow a random reference for up to 160 seconds, with
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and without the plastic rules. The responses are shown in Fig. 6.10, as well
as the mean absolute errors accumulated within a moving window of 5 s.
Apparently the non-plastic version has a larger mean error across the course
of flight (0.4325 m), while the plastic one has a mean value of 0.3320 m. The
system is able to adapt online as the steady state error is decreasing until
minimum.
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Figure 6.10: Simulation against the model with servo dynamics and sensor
noise, where the mean absolute errors are obtained using a moving average
method with a window of 5 seconds. The plastic run is able to adapt to
the model variance in just a few dozen seconds and consequently has smaller
overshoots and steady state errors.

To visualise the adaptation process, a weight watcher is also introduced
to monitor connection weight changes during the simulation. The result is
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given in Fig. 6.11. We can see weight changes have become stationary in just
a few dozen seconds. Only a portion of the connections are modified during
the process, while others do not change significantly.

Figure 6.11: Adaptation of connection weights during a longer simulation

6.7 Discussion
When transferring the pseudo-optimal controllers to physical-world applica-
tions, one may argue we can still rely on evolution to tweak the connection
configurations. However, one main problem is that learning in evolution
is delayed because the fitness signal during the process is not immediately
available. What is proposed in this chapter is to evolve in advance the adap-
tive characteristics of the neurocontroller, such that the controller can be
self-organising and adaptive to model variations during the entire lifetime in
real-time.

Hebbian plasticity is used to learn to form local correlations among the
neurons, which controls the direction of neural synchronisation/desynchroni-
sation, e.g. if the presynaptic is firing more frequently, how the postsynaptic
neuron should be regulated. With the online reward signal used in Eq. (6.7),
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the network system is able to go back and forth to reach a balanced internal
state [175].

6.8 Conclusion
This chapter presents a solution to applied evolutionary aerial robotics, where
evolution is used not only in network initial construction, but also to formu-
late plasticity rules which govern synaptic self-modulation for online adap-
tation based on local neural activities. This work has proposed a plausible
strategy to overcome the reality gap problem. It is demonstrated that plas-
ticity can make the controller adaptive to model variations in a way that
evolutionary approaches cannot accommodate. With the goal of simulation-
to-reality transfer, this controller development strategy will be applied to a
real hexacopter platform in the next chapter.



Chapter 7

Experiment: Control of Height

7.1 Introduction

A noted lack of works in existing studies on evolutionary UAV controllers
are the transfer of these control techniques onto physical hardware, where
two main challenges are: i) traversal of the reality gap, and ii) the rede-
ployment of learned controllers onto embedded platforms. To address these
problems, in Chapter 6 an adaptive spiking neurocontroller is presented for
the height control of a simulated hexacopter model, which has proven the
plausibility of employing synaptic plasticity to cross the reality gap between
different model representations. In Chapter 3 the eSpinn SNN software pack-
age is introduced to facilitate the simulation-to-real-world development of
flight controllers, providing seamless reproductions of the learned controllers
on embedded hardware, together with their algorithms that allow further
optimisation to continue on-board the platform.

In this chapter the proposed methodology is applied to the hexacopter
platform described in Chapter 4. Neuroevolution with Hebbian plasticity
will be utilised to control the height of the vehicle. Similar to Chapter 6,
the process begins from the identification of the heave dynamics, to the of-
fline training of the controllers with regard to the network configurations and
Hebbian plastic rules, and finally to the deployment of the controller where
online adaptation takes place.

Organisation of the rest of this chapter is as follows. In Section 7.2 a
brief recapitulation of the systems and a description of the battery discharge
effect is provided. The control strategy is presented in Section 7.3. Each of
the aspects are detailed in Section 7.4 and Section 7.5. Flight test results are
given in Section 7.6. Finally conclusions are presented in Section 7.7.
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7.2 System Overview

7.2.1 Flight Controller Setup

Details of the platform and systems used to conduct actual flight tests are
given in Chapter 4. To recap, flight control is separated into two components
as shown in Fig. 4.2:

• A Pixhawk Cube: the lower level controller that is responsible for data
acquisition from onboard sensors (e.g. IMUs, a battery reader) and
a remote radio controller, as well as signal mixing, manipulation and
forwarding of control commands to rotors.

• An Odroid XU4 companion computer: the higher level module that
runs an Ubuntu system with the ROS environment (refer to Section
4.4). It is responsible for the implementation of attitude control, po-
sition control as well as other higher-level motion planning tasks (e.g.,
trajectory planning, obstacle avoidance). It is also in charge of the
communication with the ground control station (GCS) and the Vicon
system (refer to Section 4.3) via the MAVROS network.

7.2.2 eSpinn in ROS

The robot operating system (ROS) is a popular development environment for
robot control applications [224, 151, 233, 225, 234, 226] and is supported by a
large variety of hardware. In this work ROS is utilised to facilitate controller
implementation with the eSpinn library. The control node is realised in
the uav_ctrl package (refer to Section 4.5.3) where spiking controllers are
constructed from a text file in the boost serialization format. This text
archive contains the saved controller configurations trained during the offline
period, which consists of:

• the network topology and parameters of the neuron model and connec-
tion weights (types of neurons can be configured independently in the
input, hidden and output layers);

• characteristics of the plastic rules that will incur online weight modifi-
cations.
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7.2.3 Hover Value Estimation with Battery Compen-
sation

As discussed earlier in Section 4.2.2, the Pixhawk autopilot will mix the move-
ment control commands (i.e. roll, pitch, yaw and throttle) to compute the
PWM outputs for the rotors. This is done by introducing a linear transforma-
tion matrix Q as shown in Eq. (7.1) that is established based on the position
of each rotor and the contributions each rotor therefore makes to the total
rolling, pitching and yawing moments acting on the UAV.

W = QU (7.1)

where W = [W1 W2 W3 W4 W5 W6]
T is the vector of rotor control

commands and U = [ϕr θr ψr tr]
T is the vector of movement control

commands. More details can be referred to Section 5.4.1.
In the simulations carried out in previous chapters, rotor speeds Ω are then

converted linearly from the motor control commands W , as per Eq. (7.2).

Ω = kTW (7.2)

where kT is a constant scalar.
In the case of hovering when ϕr, θr and ψr are zero ideally, the PWM duty

cycle (η) of the motor control signal is proportional to the throttle command
(tr):

η ∝ tr (7.3)
However in reality, mapping between the PWM control signal and the

rotor speed (and consequently the thrust) is not fixed over time, i.e. kT in
Eq. (7.2) is not a constant. From the motor control diagram shown in Fig. 4.7,
we can know their relation is also affected by the supply voltage, which in
almost every simulation appeared in the literature is not considered as an
affecting factor; yet in reality, the battery voltage will decrease gradually
during the course of flight due to discharge causing significant changes to kT .

Therefore, the throttle command should be compensated based on the
battery remaining capacity. In this work the hover throttle value hr is esti-
mated as a linear function of the battery voltage Vb:

hr = khVb + bh (7.4)

where kh and bh are constant coefficients. This is only a basic estimation
based on the assumption that the battery current stays the same. In my test,
the relationship between the hover throttle value and the battery voltage is
more like an inverse proportional function. However, as the voltage Vb does
not vary too much, it is safe to model it as linear.
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7.3 Approach
The strategy used in this chapter is similar to the process proposed in Chap-
ter 6 that is composed of three steps. It begins from identification of the
height dynamics from measured data obtained from actual flight runs. The
identification process is carried out based on the assumption that the vertical
response of the vehicle is instantaneous given the input throttle command.

More thoroughly, the hover throttle value hr is first estimated as a linear
function of the battery voltage. As the voltage will drop due to load increase
and there is also sensing noise that incurs measurement corruption, the cap-
tured battery voltage is filtered using a moving average algorithm. The hover
throttle value is then modelled with the following equation:

hr = khV̄b + bh (7.5)

where V̄b is the averaged battery voltage over a moving time window.
Then the throttle command captured during the flight tr is trimmed by

the hover value. Together with the vertical speed vz it is used to approximate
the vertical acceleration az in the identified model. The resulting model is
given as:

az = kt(tr − hr) + kvvz + b

vz =

∫
az

(7.6)

kt, kv and b in Eq. (7.6), as well as kh and bh in Eq. (7.5) are all constant co-
efficients needed to be identified. This identified model does not incorporate
servo dynamics as modelled in Section 4.2.4, nor communication lags with
sensors and actuators. Further, it is only a basic approximation of the aero-
dynamics of rotors and flight dynamics (i.e. aerodynamic force drag acting
upon the fuselage).

Secondly, to construct a feasible controller, the development process is
conducted against the identified model, with the support of eSpinn. At the
first stage, MoNEAT is used to determine beneficial network configurations.
The champion network is then spawned into a population with randomly
initialised plastic rules, which are determined by further evolution. The fi-
nal compositions of the controller is then saved as a text file in the boost
serialization format.

Finally, the text archive is directly duplicated on Odroid, from which a
spiking neurocontroller can be constructed and allowed to optimise on-board
the platform.
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7.4 Identification of Heave Dynamics

7.4.1 Flight Data Collection
Training data for the identified model is collected from manual control flights.
Two sets of flights are carried out to gather the data:

• The first scenario is to hover the drone at a setpoint for a couple of min-
utes, during which minimal variations of input commands are required.
The objective of this flight is to take the input throttle command as the
hover value and a linear mapping is approximated between it and the
battery voltage. kh and bh in Eq. (7.5) are then determined.

• In the second scenario, the drone is manoeuvred up and down con-
tinuously with varying input throttle commands, whilst the attitude
commands (roll, pitch and yaw) are kept minimal (as close to zero as
possible), yet is still enough to hold the vehicle vertical. The objective
of this flight is to model a mapping between the vertical acceleration
and the combination of throttle command and vertical velocity, so that
kt, kv and b in Eq. (7.6) can be identified.

A ROS package is created on the GCS for data logging with a sample
rate of 10 ms. Flight data are gathered via the MAVROS network, then
saved as a text file that can be read later in MATLAB to carry out the
identification process. Messages from the following ROS topics are recorded
for identification:

1 /mavros/battery
2 /mavros/actuator_control
3 /drone/viconraw

Battery Voltage

The power source of the Pixhawk Cube is provided by an adaptor that con-
verts the battery voltage to its operating power supply (5 V). Additionally,
the power converter comes with a battery monitor that is able to measure
the battery voltage and current with an on-chip analog-to-digital converter
(ADC) (available on the ARM-based STM32 processors). Battery states are
then published to the ROS topic /mavros/battery. In the data logging in-
stantiation on the GCS, voltage values are subscribed from this topic.
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Throttle Value

Throttle control commands are subscribed from the ROS topic /mavros/
actuator_control, in which control signals are arranged in the following
order:

0. roll (-1..1)
1. pitch (-1..1)
2. yaw (-1..1)
3. throttle (0..1)

4–7. reserved

The ranges of these values are indicated inside the parentheses.

Height

Height of the hexacopter is subscribed from the /drone/viconraw topic, in
which the message is a user-defined data structure that includes:

1 Header header
2 float32[3] pos
3 float32[3] vel
4 float32[3] rates
5 float32[3] angles
6 float32[3] acc

For better visualisation, height values are transformed positive above ground.

7.4.2 Process of Identification
Hover vs. Battery Voltage

The identification process is carried out in MATLAB using a linear regression
model1. The resulting estimation of hover throttle is given in Fig. 7.1. The
approximated hover throttle value is then plotted with the actual captured
data against time, which is shown in Fig. 7.2.

Vertical Acceleration vs. Throttle and Velocity

Another flight is used to model the vertical acceleration. Take-off and landing
of this flight is cut off to eliminate the ground effect. The fitlm regression
function is used to model the relationship between the acceleration az and the
combination of trimmed throttle command (tr− h̃r, where h̃r is the estimated

1https://au.mathworks.com/help/stats/fitlm.html

https://au.mathworks.com/help/stats/fitlm.html
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Figure 7.1: Estimation of hover throttle against battery voltage. Hover throt-
tle value hr is estimated as a linear function of remaining battery voltage V̄b.
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Figure 7.2: Approximated hover throttle value against time.
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hover value inferred from the battery voltage) and velocity vz. The resulting
fitting curve of acceleration is given in Fig. 7.3.
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Figure 7.3: Approximation of vertical acceleration az.

7.5 Controller Development
7.5.1 Evolution of Non-plastic Controllers
The training process as well as the identified model is implemented in C++
to increase the training speed. The controller takes two hexacopter states
as inputs: the position error in the z-axis ez and the vertical speed vz. A
uniform distribution of white noise is added to the inputs to simulate sensing
noise. Hidden neurons are configured as Izhikevich models. The output of
the controller is a throttle command that will be added a hover value before
being fed to the plant model.

The development process is similar to that in Section 5.6.1. A population
of 150 networks are initialised with minimal structure, i.e., two input nodes,
one bias, one output and zero hidden nodes. Each network is evaluated
iteratively for a flight of 50 s at a rate of 10 ms. Fitness for feasible solutions
is defined based on the mean normalised absolute error ¯|enz | during the flight.
Infeasible simulations will be terminated when any of the drone states is out
of boundary. Fitness is then defined based on the time that the drone stays
within the bounded area.

MoNEAT is first carried out to evolve the network topology and connec-
tion weights. Probabilities of the three types of mutations, i.e. “AddCon-
nection”, “AddNode” and “AddFullyConnectedNode” as in Fig. 3.7, are 0.02,
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0.01 and 0.005 respectively. Evolution will terminate either when the popu-
lation has been stagnant for 12 consecutive generations, or if it has reached
a threshold of 50 generations.

7.5.2 Hover Throttle Estimation
The final throttle command is obtained with Eq. (7.7), as the sum of the
network output and the hover throttle estimate, which is calculated from the
measured battery voltage:

tr = tsnn + h̃r

h̃r = khṼb + bh
(7.7)

where tsnn denotes the output from the SNN controller; h̃r denotes the hover
throttle estimate; and Ṽb denotes the measured battery voltage.

Note that Eq. (7.5) marks the mapping between the hover value and the
battery voltage when the drone is hovering. However in reality, the actual
voltage (Ṽb in Eq. (7.7)) will vary based on current loads. For instance, an
increase in rotor speeds that happens when the throttle command becomes
larger will lead to a battery voltage drop due to internal resistance. Therefore,
the measured voltage Ṽb at a timestep is very likely to differ from the value
it should be when the drone is hovering. This coupling effect is modelled as
well in the identified model during the controller training process, so that the
SNN controller will be evolved to provide extra redundancy.

7.5.3 Evolution of Plastic Rules
Similar to the step in Section 6.5.2, artificial evolution is used to determine the
Hebbian rule parameters, while topological and weight evolution is disabled.
Weight changes during the simulation are induced by Hebbian plasticity only.
Beneficial plastic rules are selected to reproduce. Each network is able to
develop its own plastic rule. Finally the controller information is serialized
and saved into a text file.

7.5.4 Controller Deployment
The final controller solution is directly copied to the onboard Odroid com-
puter. An additional reward signal γ is introduced to the Hebbian rules shown
in Eq. (6.6):

∆w = γ∆wH (7.8)
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in which γ is set based on the mean standard error in height over a moving
time window of 0.1 s:

γ ∝ ¯|e| (7.9)
Here ¯|e| denotes the current mean absolute error between the actual and
reference height. The reward signal is used interchangeably in all connections
and is updated every 1 s.

7.6 Flight Tests
Flight tests are conducted using PID control, non-plastic and plastic SNN
control. The mission is to maintain the height of the drone at a setpoint after
take-off. The vehicle is armed on the ground at initialisation, then a take-off
signal is sent from the radio controller so that height control is taken over by
the SNN or PID. Meanwhile, orientations are controlled manually using the
radio controller.

Heave responses of these runs are plotted below (Fig. 7.4, Fig. 7.5 and
Fig. 7.6). The PID has an overall mean absolute error of 1.723 cm when
stabilised (after 20 s), with a standard deviation of 2.180 cm. An apparent
overshoot can be observed at take-off. The non-plastic SNN run has a mean
absolute error of 3.321 cm due to the steady state error. However its deviation
(0.776 cm) is much smaller than the value of the PID run. Finally, the plastic
run has the best performance overall. It has a mean error of 0.919 cm, with
a deviation of 0.867 cm. A weight watcher is instantiated to monitor the
changes of connection weights during the course of flight. The weights are
able to converge in a few dozen seconds as shown in Fig. 7.7.

7.7 Conclusion
A complete pathway to the design of height control is presented in this chap-
ter, beginning from identification of the height dynamics from measured data
obtained from actual flight runs, to controller development against the iden-
tified model by integrating Hebbian plasticity with artificial evolution, and
finally to controller deployment together with the algorithm that allows fur-
ther optimisation. Flight tests conducted on a hexacopter UAV have shown
that the proposed plastic spiking controller is able to accommodate model
variations when transferred from a simplified simulated model, and conse-
quently exhibit better performance than its non-plastic counterpart.
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Figure 7.4: Heave Response using PID control.
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Figure 7.5: Heave Response using non-plastic SNN control.
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Figure 7.6: Heave Response using plastic SNN control.
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Figure 7.7: Weight adaptation of the plastic run.



Chapter 8

Conclusions & Discussions

8.1 Summary of Achievements
The primary contribution of this work is the implementation of a procedu-
ral methodology towards the autonomous control of a hexacopter UAV, by
learning spiking neural networks with Hebbian synaptic plasticity via artifi-
cial evolution. A complete pathway is created for the development of flight
control for physical UAV platforms, by beginning from identification of the
system dynamics, to decomposing the controller into modules and evolving
them incrementally, and finally to integrating Hebbian plasticity for online
adaptation to model variations from simulation to on-board the platform.

8.1.1 Evolution of Network Structure and Plasticity
The eSpinn SNN library package is presented in the thesis with a focus
on offline-online hybrid training for robotic applications. Simulations in the
MATLAB Simulink and Python environments are supported by MATLAB
S-functions and pybind11 respectively, allowing rapid prototyping and vali-
dation of control strategies in simulation. It also incorporates seamless repro-
ductions of models on embedded platforms, with the dependency of Boost
Serialization. In Chapter 3 a Flappy Bird game was demonstrated as a
simple example in the Python environment. Neuroevolution was used to learn
a functional SNN that is able to self-play the game. In future work, it would
also be worth interfacing eSpinn to the OpenAI Gym simulation [235], which
includes a variety of benchmark problems that have attracted growing inter-
ests in the reinforcement learning world. These games and control problems
can be employed to investigate the performance of SNNs.

A varying-topological neuroevolution algorithm based on NEAT [140] is
utilised for SNN learning in this work (i.e. MoNEAT), which involves the
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usual search for connection weights as well as determination of network topol-
ogy. MoNEAT employs an incremental topological growth mechanism to
discover the (near) minimal effective network structure. The basis of MoN-
EAT (and NEAT) is the trace of historical markings, which are essentially
gene IDs. They are used as a measurement of the genetic similarity of net-
work topology, with which network diversities are preserved via speciation.
MoNEAT complements the original NEAT with an additional mutation (i.e.
‘AddFullyConnectedNode’ as in Fig. 3.7), so that the population can escape
from less favourable spaces more quickly. A comparison between MoNEAT
and NEAT is provided in Chapter 3 on the pole-balancing problem, which
is a widely recognised benchmark. It is demonstrated that MoNEAT are
significantly faster and more effective in solving the stated problem.

In this work, synaptic plasticity is in the form of a rate-based Hebbian
model of the nearest neighbour STDP implementation [143]. The correlation
between the pre- and postsynaptic firing is determined by artificial evolution.
Such methods are not not uncommon in the literature. For instance, the
Hebbian ABCD model described in Eq. (2.11) is similarly evolved to optimise
[152, 153, 154]. In particular, HyperNEAT is used in [153], which is an indirect
encoding method derived from NEAT.

8.1.2 Flight Control
A mathematical hexacopter model was constructed in MATLAB Simulink
that incorporates rigid body dynamics and nonlinear aerodynamics. Simu-
lated development of spiking controllers for all degrees of freedom is presented
in Chapter 5, which is carried out in an incremental manner from the inner
loop attitude control to the outer loops. Control of each DoF is developed in-
dependently. Fitness evaluations of the controller candidates are categorised
into feasible and infeasible regions. Statistic analyses showed that the evolved
SNN controllers have better performance than PID control, in which the roll
and pitch control are most improved. This indicates SNNs are more able to
provide optimised control in the presence of system nonlinearities.

Plastic height control is conducted on an actual hexacopter UAV (Chapter
7). The controller is able to adapt to the plant in a few dozen seconds and
maintain the height of the drone at a setpoint after take-off. During flight tests
some oscillations in heave response were observed as shown in Fig. 7.5 and
Fig. 7.6. These oscillations may well have been caused by delays in the control
system. In practice, sensing data is first filtered using a moving average
algorithm, which incurs a delay that affects the performance of the designed
controller. Servo delay is another significant factor. The servo dynamics in
the hexacopter platform can be modelled as a first order transfer function
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(as in Eq. (4.2)), with a time constant of 0.1 s that is roughly estimated
from a step response. Communication lags in wireless data transmission also
contribute to reduced controller performance and potential instability. Time
delay due to these effects can be as much as 0.36 s as observed in a commercial
Parrot AR.Drone [236] and a MikroKopter running ROS [237].

8.2 Areas for Future Study
This section addresses the limitation of this thesis, and discusses some future
work that will advance the study beyond the stated contributions outlined in
Chapter 1. The following topics provided for future research are in the field
of autonomous robotics, bioinspired and brain-like computing.

8.2.1 Control of Flight
Although full control of the hexacopter in six DoF is accomplished in simula-
tion, flight tests have only been conducted with regard to the height control
on the real platform. Future work on the control of other DoF can be carried
out using a similar methodology. Existing research on SNNs has primarily
focused on mission-level objectives [199, 174, 184] such as waypoint following,
target approaching and obstacle avoidance. It would be interesting to inves-
tigate the performance of spiking controllers in the lower-level domain, i.e.
attitude control [49].

In addition, learning and adaptation should be studied in online learning
scenarios where training data streamed online can be changing over time [238].
Investigations should be carried out in terms of how SNNs learn throughout
the course of the flight. The adaptation ability should also be studied under
uncertain conditions such as wind disturbance. Further, as system delays in
sensors and actuators as well as in communications can degenerate the flight
performance, modelling and analysis of such effects should be considered in
the design of robust control. Lastly, the battery discharge effect may be more
effectively handled by incorporating the measured battery voltage and current
as extra inputs to the SNN controller.

8.2.2 Exploiting Spike Timing
Chapter 3 has discussed information coding in spikes. Although rate cod-
ing has been common in robotic applications, existing studies suggest that
spike-based coding can provide richer contents and faster signal processing
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(hence less reaction time) than rate-based approaches [126, 239], as compu-
tation with firing rates has ignored the timing of spikes and must be acquired
over a longer period of spiking activities. For high-bandwidth control appli-
cations such as that required for accurate UAV control, reducing delays in
computation should result in improved performance. In addition, learning
with spike timing can be carried out via spike-based synaptic plasticity (e.g.
STDP) [159], where reward modulation is found to be associated with the TD
algorithm and neural activities could be explained in a reinforcement learning
paradigm [25].

8.2.3 Low-cost Hardware Implementation
Although specialised neuromorphic chips have brought forth massive brain-
like computing [116, 240, 120], such solutions are too expensive and in many
cases not available to the majority. A low-cost alternative is to instantiate
networks on programmable hardware, e.g. field programmable gate arrays
(FPGA) [241, 165, 242, 243]. FPGAs are reconfigurable hardware and capable
of massive parallel data processing which would not be possible on general
purpose system-on-chips (SoCs), such as the ARM-based chips on the Odroid
and Pixhawk autopilot used in this work. Such systems can be integrated with
vision-based navigation applications.

8.3 Concluding Remarks
Bioinspired computational models and learning mechanisms hold a great deal
of promise for providing autonomous systems like UAVs with adaptable, dy-
namic, and highly-tuned closed loop performance. Artificial evolution of the
innate properties of a spiking neurocontroller with synaptic plasticity can be
used to empower a robotic system to adapt in-mission to variations in the
platform.

In nature, evolution is the path that cultivates intelligence across millions
of years. However, intelligence is not directly imposed by evolution itself, but
is acquired from the learning activities during the occurrence of neuromodu-
lation based on synaptic plasticity. Evolution and learning shape intelligence
together, from a generational and an individual scale respectively. Artificial
evolution and bioinspired computation articulated in machines offer us a fas-
cinating insight into the learning and generalisation ability of human brains,
in return advancing AI technologies in a way that we have not previously
witnessed.
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