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Summary

This thesis describes an investigation into two-regime flow of
groundwater towards a pumped well constructed in unconsolidated mat
erial. Emphasis is laid on the effect of a non-linear regime on the
drawdown distribution near the well and the well discharge-drawdown
relationship.

The basic principles of well hydraulics based on Darcy's law
are reviewed and extended to two-regime flow. Generalised field
equations and a variational principle applicable to transient three-
dimensional flow are developed. An energy approach to well flow
problems is also presented and directly related to the variational
principle.

The finite element method is briefly described and formulated to
solve a variety of problems, ranging from the simplest problem of
steady one-dimensional radial flow through a confined aquifer to the
most complex problem of transient free surface flow. Techniques
developed to handle various types of boundary conditions and non-
linearity of the field equations are described. Solutions for both
wholly Darcy flow and two-regime flow situations are presented in
graphical form for each flow problem. Several new type curves

characterising two-regime flow behaviour are included.

Verification of the Darcy flow solutions by comparison with
known analytical solutions and of the two-regime flow solutions by

laboratory experiments and field investigations is described.



(ii)

New type curve methods for determining from pumping test
results the hydraulic coefficients required in the analysis of two-regime
flow are presented.

The theory, numerical techniques and type curve methods
developed in this work may be applied to specific cases of well flow
encountered in practice. Alternatively, they may be used to produce
solutions to a wider range of problems than that covered in this thesis.

These solutions could then be used as an aid in interpreting pumping

test results.
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1. Introduction
1. 1 General

Problems involving flow of groundwater towards pumped wells
have traditionally been solved on the assumption that a linear velocity-
hydraulic gradient relationship known as Darcy's law, 1s valid over the
entire flow region. This assumption leads to a linear field equation which
has been solved analytically for several cases where the aquifer is uni-
form and the boundary conditions are relatively simple. A number of
analytical solutions (Theis, 1935), (Hantush, 1960, 1961), (Boulton, 1963)
and methods for evaluating aquifer properties via these solutions have
been widely applied to the results of pumping tests. Recently, the
rapid development of numerical methods and high speed digital computers
has encouraged many workers to solve more complex cases such as
those involving multi-layered aquifers, free surfaces and unsaturated
flow. Among these workers are Javandel and Witherspoon (1965),
Neuman and Witherspoon (1969, 1970, 1971), Taylor and Luthin (1969),
Cooley (1971).

It has long been recognised that the linear velocity - hydraulic
gradient relationship may be invalidated in the immediate vicinity of
a well boundary if velocities exceed a certain limiting value (Muskat,
1937), (Kristianovich, 1940), (Wentworth, 1946). When deviation from

Darcy's law occurs, both linear and non-linear regimes must be



considered in analysing the flow over the entire region. Thus the
term "two-regime flow" may be used in this context.

Despite the increased amount of research effort which has been
put into flow towards wells, there is still a lack of a sound theoretical
basis and methods for handling the situation of two-regime flow. The
need for a clearer understanding of non-Darcy flow behaviour near a well
and for means of predicting its effect on the well discharge-drawdown
relationship has become increasingly important as a result of more

intensive use of groundwater and the consequent demand for improved

design of extraction facilities.
The objectives of this thesis are:-
(1) to extend the basic theory and principles of well hydraulics
based on Darcy’s law to allow two-regime flow to be handled;
(11) to develop a finite element method for solving the field equations;
(111) to verify the finite element analysis by laboratory and field
investigations.
142 Literature Review
1. 2. 1 Empirical Approach to Two-Regime Well Flow
A number of workers recognised that although non-Darcy flow is
often restricted to a comparatively narrow zone around the well, such a
narrow zone can affect the discharge quite considerably. On the basis
of their field experience, these workers proposed empirical equations
relating the drawdown in a well pumping from a confined aquifer to the

discharge.



3.

Jacob (1947) used the following equation:-

(1. 1)
where sw is the drawdown in the well, Q is the well discharge, B and
C are empirical constants of the equation. In adopting equation (1.1)
he assumed that flow in the aquifer formation obeys Darcy’s law up to a
certain radius, termed the effective radius of the well, and that inside
this radius the flow is fully turbulent.  The effective well radius was
defined by Jacob as that distance, measured radially from the axis of the
well, at which the theoretical drawdown based on the logarithmic distrib-
ution equals the actual drawdown just outside the screen. The term CQ2
in equation (1.1) was referred to as Mvell loss'land represents the head
loss resulting from turbulent flow inside the effective radius and the flow-
through the screen and inside the casing.

Rorabaugh (1953) proposed an equation slightly different from
equation (1.1). His equation is given by

sw = BQ + CQn (1.2)
where n 1s an unknown exponent. On the basis of field data from several
pumping tests, he demonstrated that equation (1.2) predicted the total
drawdown in the well more closely than Jacob's equation.

Whilst the two empirical equations proposed by Jacob and Rorabaugh
have been found to fit many field data, doubt usually exists regarding their
general applicability. As pointed out by Rorabaugh himself, equation (1.2)
and the constants B, C and n determined from analysis of data from the
step-drawdown pumping test should not be applied if computations must be

made for discharges greatly in excess of those used in the test.



1.2.2 Theoretical Analyses and Model Studies

Due to the complexity arising from the nature of two-regime flow
and the non-linear equation for flow in the non-linear regime, only a
limited number of theoretical analyses have been made.

The earliest attempt to obtain an analytical solution to the non-
linear field equation of steady state non-Darcy flow was made by
Khristianovich (1940). He considered a general velocit}'- hydraulic
gradient gradient relation of the form

1 = 0V) (1.3)
and described an approximate method of solution by conformal transform-
ation.

Engelund (1953) carried out a more general theoretical investigation
into steady, two-regime well flow. He employed the following equation
to describe both Darcy and non-Darcy flow in the aquifer.

vh = - F( 1M ) V (1.4)
where  "Vh 1is the hydraulic gradient vector, V is the velocity vector
andF( IV]) 1is a scalar function of the absolute velocity IVIand the
aquifer properties.

The function F ( IVl ) is given by

F (IV] ) for |V|] < Ver

F (V| ) = a +blVi for V > Ver
where K is the coefficient of hydraulic conductivity, a and b are termed
linear and non-linear coefficients of hydraulic resistance of the aquifer

respectively, and Vcr is the critical velocity at which transition from



linear to non-linear regime occurs.

By combining equation (1. 3) with the continuity equation, Engelund
obtained a general field equation.which is valid for both Darcy and non-
Darcy flow. He transformed this equation into a linearised form by
introducing new variables and employing the technique of conformal
transformation. However, the transformed equation still remains
virtually intractable to direct analytical solution for complex boundary
conditions encountered in practice. Engelund was able to obtain sol-
utions for only simple cases of steady one-dimensional two-regime flow
towards a well in a confined aquifer and two-dimensional turbulent flow
atliigh Remolds number.

Recognising the difficulties encountered in the theoretical analysis
of two-regime well flow, a number of workers resorted to experimental
studies using either an electrical or hydraulic model of the flow system.

Greic (1961) used a sand box model to study steady flow towards a
well in an unconfined aquifer. He investigated the effect of non-Darcy
flow on base pressure heads and free surface heights in the immediate
vicinity of the well.

Baturic-Rubcic (1966) used an electrical analog model to study

steady two-regime flow towards a fully screened well in a confined aquifer.

His model was a network consisting of discrete non-linear elements
with electrical properties analogous to the hydraulic properties of the
aquifer material. He compared the model results with the theoretical

solution given earlier by Engelund (1953) and obtained good agreement.



1. 2.3 Finite Element Solutions

The difficulties which render the two-regime flow problems in-
tractable to analytical solution can now be overcome by applying a
numerical technique known as "the finite element method". Recently,
a number of workers have employed this technique to obtain numerical
solutions to several complex problems of flow through porous media.

Zienkiewicz et al (1966) were the first workers to use the finite
element method to solve problems of steady state Darcy flow through
porous media. Their work was later extended by Finn (1967) and
Taylor and Brown (1967) to treat more complex problems involving free
surfaces.

Among the first workers who applied the method to problems of
transient Darcy flow towards wells in confined aquifers were Parekh
(1967), Javandel and Witherspoon (1968) and Neuman and Witherspoon
(1969). The last two workers, Neuman and Witherspoon (1970), (1971),
also developed the generalised variational principles for transient con-
fined and unconfined flows and solved several cases of flow in multi-
layer confined systems and flow in an unconfined aquifer. The useful-
ness and validity of their finite element approach was demonstrated by
comparing the computer results with known analytical solutions.

In all the work mentioned so far, the finite element analysis was
based on the assumption that flow in the entire region of the system
obeyed Darcy's law. Problems involving non-Darcy flow received

little attention until very recently when the non-linear field equations
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suitable for numerical solutions were derived by a number of workers.

These workers include Fenton (1968), Volker (1969), McCorquodale

(1969), (1970) and Parkin (1971).

Trollope et al (1970) were the first to analyse the steady cases of
non-Darcy well flow using the field equations and the finite element
technique outlined by Volker (1969). Their analysis was based on the
assumption that the Forchheimer non-linear velocity-hydraulic gradient
relationship (Forchheimer, 1901) may be used to describe flow in the
entire aquifer region. No attempt was made to investigate the practical
problems of two-regime well flow where the non-Darcy flow behaviour
prevails only in the immediate vicinity of the well boundary.

In the present w*ork, the finite element method was used to obtain
numerical solutions to the general problems of transient and steady
state two-regime flow. To bring into focus the localised nature of
non-Darcy flow, the Forchheimer relation vras applied only in the near-
well zone when computed velocities exceeded a certain critical value.
For a given aquifer material the critical value may be determined by
permeability tests. Alternatively the value may be based on a critical
Reynolds number in the range of 1 to 10 as it has been shown by many
investigators that the transition from Darcy to non-Darcy flow generally
occurs within this range (Todd 1959).

1. 3 Outline of Present Work

The work described in this thesis can be divided into two major

parts as followm:-



(i) The first part is concerned with the general theory and finite
element analysis of transient, two-regime well flow. Chapter 2 pre-
sents the development of the basic principles and field equations which
are applicable to the general situation of three-dimensional flow. Chapte
3 and 4 deal with the development of the variational principle and finite
element method for analysing axisymmetric flow problems. A number
of techniques developed to handle various types of boundary conditions
and non-linearity of the field equations are presented. These techniques
can readily be extended to other types of linear and non-linear porous
media flow.

(ii) The second part of the work deals with verification of the finite
element analysis. The finite element method was used to solve a
variety of problems, ranging from the simplest problem of one-
dimensional radial flow through a confined aquifer to the most complex
problem of transient free surface flow through an unconfined aquifer.
Solutions to typical Darcy and two-regime flow cases are presented in
Chapter 5. The Darcy flow solutions were checked against known
analytical solutions which are listed in Appendix 3. As analytical sol-
utions for the two-regime flow situations could not be obtained, the
two-regime flow solutions were verified by comparison with pumping
test results obtained from laboratory and field investigations which are
described in chapters 6 and 7. In making such a comparison, it was
necessary to know the hydraulic coefficients to be fed into the finite

element model. New type curve methods which enable all coefficients
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in the linear and non-linear velocity-hydraulic gradient relationships to be

determined are also presented.



2. Basic Principles and Field Equations of Two-regime Well Flow
2.1 General

The flow towards a pumped well constructed in an unconsolidated
aquifer may involve two flow regimes. The first, referred to as the
Darcy regime, lies in the main portion of the aquifer where the flow
obeys Darcy’s law. The second regime occurs in the immediate vieini
of the well if high flow velocities result in the violation of the Darcy
linear velocity-hydraulic gradient relationship.

The basic principles of well hydraulics which have been outlined
in the literature are based on the assumption that the flow remains
laminar and obeys Darcy’s law right to the face of the well boundary.
In order to analyse the more general problem of two-regime well flow,
it is necessary to extend these principles and develop generalised
field equations describing both Darcy and non-Darcy flow.

The principles and field equations developed herein are applic-
able to the general case of three-dimensional, two-regime well flow.
In the development, it is assumed that the two flow regimes are dis-
tinct and that the Forchheimer non-linear velocity-hydraulic gradient
relationship may be used to describe non-Darcy flow. The concept
of Reynolds number is introduced and a critical velocity corresponding
to the critical Reynolds number is used to distinguish between the two
regimes. Tensor subscript notation is employed in the derivation of

the field equations to enable flow through anisotropic aquifer material

to be conveniently described.



11.
2. 2 Darcy's Law

2.2.1 Differential Form

According to Darcy’s law, the macroscopic flow velocity is
proportional to the hydraulic gradient measured in the flow direction.
The constant of proportionality is termed "coefficient of hydraulic
conductivity" and is observed to be dependent on the properties of
the groundwater as well as the characteristics of the aquifer. Among
the various factors influencing this coefficient are grain size distrib-
ution, packing and shape of granular particles and temperature and
chemical composition of the groundwater.

The following generalisations are now introduced in order that

Darcy's law may be written in its differential form : -

vh

Fig. 2. 1: Velocity and hydraulic gradient at a point.

A right hand system of Cartesian coordinate axes (X", x2, X3)
with axis X3 pointing vertically upwards and plane x* - X2 correspond-

ing to the datum plane is adopted as shown in Fig. 2. 1.
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The hydraulic head h(x*,t) at point P (xpx2,x3) is defined as
the sum of the pressure and elevation heads above plane x*-X2*
Thus h(x*, t) may be expressed as

h(xi,t) = p/* + x3 (2,1)
where p is the hydrostatic pressure at the point, H 1is the
specific weight of water and X3 is the elevation of the point above the

datum plane.

Let vj[, V2, vg be the three components of the velocity vector,

h , Mi, Mi

be the three components of the hydraulic gradient
bKi bX2 hxg

vector and ep e3, e3 e three unit vectors along Xp X2 and x3

axes respectively.
The velocity vector V and the hydraulic gradient vector Vh

may now be expressed as

\% - Wi e(2.2)

Vh = TS, (2.3)
where the repeated subscripts denote summation over the full

range, from 1 to 3.
Thus for three-dimensional flow through anisotropic aquifers,
the general vector differential form of Darcy’s law is given by
\Y =- K Vh (2.4)
where K denotes the hydraulic conductivity tensor; a second order

symmetric tensor which may be expressed as

K - Kqgje ej (2.5)
£
ill which Kjq refers to the components of K.
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Equation (2.4) may also be written in the following tensor'sub-
script form ;-
Vi K 2-6
If the aquifer is isotropic, then K has only one independent
component which is the coefficient of hydraulic conductivity. It
follows that
Kpj - KSpj (2.7)
where Sy denotes the Kronecker delta.
On substituting equation (2.7) into equation (2.6), the following
equation for Darcy flow through isotropic material is obtained

Vi = K Sij-a— (2.8a)
3

Contracting subscript j gives

Viioo= - Koy (2. 8b)

In general Kqj and K are functions of coordinates, unless the
aquifer is homogeneous.

2. 2.2 Range of Validity

The linear velocity-hydraulic gradient relationship known as

Darcy’s law has been derived theoretically by applying the Navier-

Stokes differential equations of motion to the microscopic flow through

porous media. ((Iiubbert (1956), Irmay (1958)). In the derivation the
microscopic flow velocity is assumed to be sufficiently small for the
inertial terms in the Navier-Stokes equations to be negligible when
compared with the viscous terms. Experimental investigations

have confirmed that the linear relationship ceases to be valid as the
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inertial effects become more important and that turbulent flow
develops when Reynolds numbers become sufficiently high (Wright,
(1968)).

By analogy to flow through pipes, several investigators have
employed the Reynolds number as an index to classify the flow into
linear and non-linear flow regimes. This approach has been justified
by the application of dimensional analysis ((Rose (1945), Rose and
Rizk (1949)). When adapted to flow through porous media, the

Reynolds number is given by

R = (2.9)
where p 1is the fluid density, V is the macroscopic velocity, d is
a length characteristing the grains or pore size and yu is the dynamic
Viscosity of the fluid. The characteristic length suggested by Hazen
(1893) is the grain diameter chosen such that 10 per cent by weight of
the sample is of smaller size.

The Reynolds number defined in this manner is not a completely
satisfactory criterion for determining the departure from Darcy’s law
or the onset of turbulence (Todd 1959, p.48), mainly because it does not
take into account the general shape of separate grains and packing of
these grains. Additional research is still needed to develop a better
understanding of the Row transition. At present it is not possible to
make reliable predictions of the validity limit of the linear relationship

for a given porous medium. Permeability tests on natural sands and



artificial porous media have shown that the non-linear behaviour
usually starts when IlI reaches a range between 1 and 10, depending
on the range of grain size and shape and packing of the grains
((Lindquist (1933), Todd (1959)).

In view of the absence of a more satisfactory criterion, a critical
value of the Reynolds number has been employed in the present study
to distinguish Darcy from non-Darcy flow. The critical Reynolds
number is defined as the limiting value above which the velocity-
hydraulic gradient relationship is non-linear. The flow velocity
corresponding to this Reynolds number is termed the "critical velocity'

In the theoretical and numerical analysis of two-regime well flow
to be presented, it is more convenient to use the critical velocity than
the critical Reynolds number. For a given sample of aquifer material
an approximate value of the critical velocity may be determined from
the plot of its velocity-hydraulic gradient relationship.

2.3 Equations for Non-Darcy Flow in the Vicinity of Wells

Non-Darc}r flow near a pumped well is described by the
Forchheimer non-linear velocity-hydraulic gradient relation which,
for one-dimensional parallel flow, may be written as

i = aV+bV2 (2.10)
where 1 is the absolute hydraulic gradient, V is the absolute
macroscopic flow velocity, a and b are termed the linear and non-
linear coefficients of hydraulic resistance respectively.
The application of equation (2. 10) to non-Darcy flow is justified

as the equation has been derived theoretically using a microscopic



approach for both inertial laminar and turbulent flow (Irmay (1956),
Sunada (1965), Stark and Volker (1967)). The non-linear term bV"
has been shown to be caused by the increasing influence of inertial
forces in the case of laminar flow and by inertial and turbulent effect
if turbulence develops.

Permeability tests on natural and artifical porous media have
confirmed that the equation may be used to describe the flow over a
wide range of Reynolds number with the two coefficients a and b re-
maining approximately constant (Stark and Volker (1967)).

In order to describe three-dimensional non-Darcy flow through
anisotropic media, equation (2.10) is transformed into the following

vector differential form

Vh = -(a +b IVD)V (2.11)
-» —
where a and b denote the two hydraulic resistance tensors, the
components of which are a%j and by respectively.

Equation (2. 11) may also be written in the following tensor

subscript form
-27h- 0 = - (alM+  IV]) v, (2.12)

where IVIis the magnitude of the velocity vector
Vi = (vpr) 2 (2.13)
The components of the eifective hydraulic conductivity tensor,
Epj, are now defined in accordance with
Ejj aij +bij \V\ T1 (2.14)

where Ejjare functions of IVL



17.

For isotropic aquifers, equation (2. 12) reduces to

X - (a +b 1VD)\q (2.15)
and equation (2. 14) becomes
Ejj = (atb W1 f  Sij (2.16a)
or (2.16b)
where E may be termed "the coefficient of effective hydraulic
conductivity".
2.4 Derivation of Generalised Field Equations
2.4.1 The Continuity Equation
The continuity equation of flow in a slightly compressible porous
medium may be developed by applying the law of conservation of
matter to the flow of fluid. According to this law the net rate of
mass of fluid entering the closed boundary of an arbitrary volume sit-

uated in the flow field is balanced by the rate of accumulation of fluid

mass within the volume.

Fig. 2.2: An arbitrary closed region in the flow field.
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Consider an elemental volume SV- of the aquifer situated in the
flow field as shown in Fig. 2.2. Let SA be the surface area of the
closed boundary of SV

The net rate of mass of water entering S A is given by

Jiflvi dA
S A

Where are the components of the unit outward normal vector
of the differential area dA,-fi is the density of water and vj are the
components of the velocity vector.

The rate of mass of water accumulated within 1s

-V
gV

Since mass is conserved, it follows that

4
. SOWAdA f ~
S 1 Pt s
The divergence theorem may now be applied to transform the
surface integral into the volume integral. On replacing the left-hand
term of equation (2. 17) by its equivalent volume integral and re-

arranging the terms, the following equation results.

/ + Jw /at] = 0 (2.18)

Since the choice of SV- has been made arbitrarily, the integrand in

equation (2. 18) must vanish. It follows that

AV /'St 19)
/> s-v-



For a slightly compressible aquifer medium, it may be shown
(Walton (1970), pp. 122- 123)) that the rate of mass of water accumulated

and the rate of change of hydraulic head are related by

ILJ H = S 2.20
/0gY % zt ( )
where Ss is termed the coefficient of specific storage of the
aquifer.

Equation (2. 20) may be substituted into equation (2. 19) to give

the required continuity equation as follows:

l—gb"gﬁL = Sssth (2.21)

2.4. 2 The Differential Equations of Motion

The Darcy and the Forchheimer differential equations of motion
have been set out in Sections 2.2 and2.3. To describe two-regime
well flow, the entireregion of the aquifer 1issubdivided into two
sub-regions namely RD, where Darcy’s law i1s valid, and RN, where
non-Darcy flow exists. Thus the Darcy differential equations are
applicable in R.”* whilst the Forchheimer equations are applicable in
R-*. To determine whether a point in the flow field belongs to R-"
or R"S the critical velocity Ver is employed. A point in the flow field
belongs to RA if and only if its absolute flow velocity is greater than
ANCre

The equations describing two-regime well flow may now be

written as
~dh



2.4.3 The Generalised Field Equations

(1) Darcy Flow

The Darcy differential equations and the continuity equation can
be combined to give the second order linear field equation which is
generally applicable to transient three-dimensional Darcy flow in
anisotropic and non-homogeneous aquifer media.

From equations (2.21) and (2.22a), it follows that

* A = -
(K}§ bxj) Sg} é},détl (2.23)
For isotropic and homogeneous aquifers, equation (2. 23)

reduces to

%k ~ = -
bxj (K AXi) S&@ %1t4 (2.24)
where the coefficient K is a constant.

Equation (2. 24) may be rearranged to give

s 2h Ss -ah
2.25
'b X" Xj K Bt ( )

If the coefficient of diffusivity of the aquifer is defined as

K
Ss

then equation (2.25) becomes

A~ ho 1 Sh ' (2.26)
'bxi'bxi Vo oxat
Equation (2. 26) has been solved analytically for several cases

of axi- symmetric Darcy flow involving relatively simple boundary

conditions. A number of analytical solutions and methods for



21.

evaluating the aquifer properties have been documented by Hantush
(1964) and Walton (1971). In the present work, the available
analytical solutions have been used to verify the finite element
analysis to be described later.

(i1) Non-Darcy Flow

The non-linear field equation for non-Darcy flow through ani-
sotropic aquifers may be obtained by combining the Forchheimer
differential equations of motion with the continuity equation.

From equation (2.22b), it follows that

(ay +by viy' P (2.27)
Equation (2. 27) may be substituted into equation (2. 21) to

result in

(2.28)

Solution of the non-linear anisotropic equation (2. 28) is beyond
the scope of the present study. The present analysis assumed that
the aquifer is isotropic in the non-Darcy zone. Such an assumption
leads to a simplified non-linear field equation involving only h as a
dependent variable.

For isotropic aquifers, equation (2.27) reduces to

Zh

. (atb VI ) i (2.29)

Contracting subscript 1 gives

ah Zh

3 Xj Xj (@a+b Ivi )2 ViVi (2. 30)
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The absolute hydraulic gradient is now defined as

1
2 h
p (2.31a)

Rearranging equation (2.31a) gives

Zh
de: 2oxi A (2. 31b)
Now 2
ViVi = \Vi (2.32)

Substituting equations (2.31b) and (2,32) into equation (2.30)
gives

~h

71 (a+b IVI )2 \V\2 (2. 33)
Solving for ]Vj results in
: a , L a2 L, \7>h/ZI)
iv b b > + b (2. 34)
From equation (2.33), it follows that
\Y
2>h atb |V| (2.35)
A
Combining equations (2. 29), (2.34) and (2. 35) leads to
/=N~ R A +M
i -  EXT) 2b = 2b (2. 36)
Zh
Zl

Equation (2. 36) may now be substituted into the continuity
equation to give the required field equation.

Hence

LT " 1"h/'S11V'&h/'ax1i)' _ eah
foxA 21

b Jdh/SI| .~ > eat (2. 37)
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Equation (2. 37) can also be written in a more compact form

as follows:

bh = b h

/
7X E ( ) 3t (2.38a)
h E a bh
where 2b' 31 oh
b 131

E has been termed "the coefficient of effective hydraulic
conductivity".

The expression for E involves the square root term which may
be rationalised to result in

-, 2.3
It is noted that if the non-linear Forchheimer coefficient b
is set equal to zero, E merely becomes
E = 1/a (2.38¢)
This is to be expected as the Forchheimer velocity-hydraulic
gradient relation becomes linear when b = 0.
2.5 Initial and Boundary Conditions
Having derived the field equations governing transient two-
regime well flow, it may now be stated that the flow problem is re-
ducible to the mathematical problem of finding the function h satisfying
these equations and the corresponding initial and boundary conditions.

To analyse various practical flow problems, the following types

of initial and boundary conditions are considered:-
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(1) Initial Condition

In solving transient well flow problems, the initial distribution
of hydraulic head throughout the aquifer region is assumed to be a pre-
scribed function of coordinates, The function is also assumed to be
the known height of the water table above the datum plane. Accord-
ingly, the initial condition may be expressed as

h (xq, 0) = h° (x* *(x-J £R (2,39)

where h® (x) is the initial height of the water table and R
denotes the closed region of the flow system.

(11) Boundaries and Boundary Conditions

(a) Pervious Boundaries

Pervious boundaries of the flow system are defined as
boundaries across which there can be flux interchange between the
flow system and its surroundings. Two types of conditions prevailing
on these boundaries are considered as follows:-

Type 1: Prescribed Mux or Flow Rate

If the flux distribution on the boundary is known at any instant
of time the resulting boundary condition is referred to as "prescribed
flux condition". If, on the other hand, only the total flow rate across
the boundary 1s known as a function of time, the resulting boundary
condition is referred to as "prescribed flow rate condition".

Both the prescribed flux and prescribed flow rate conditions are
classified as "type 1 boundary condition". They are expressed math-

ematically in the following manner:



Let be the portion of a pervious boundary where the flux
distribution or flow rate is prescribed. If q denotes the prescribed
inflow flux per unit area, the prescribed flux condition may be ex-
pressed as

vini = ¢ on (2,40)

where \q and I-q are the components of the velocity vector V
and the outward normal vector ;Aof the boundary surface respectively.

Also, if Q (t) denotes the prescribed flow rate at time t, the
prescribed flow rate condition is given by

Qt) = Q() across B1 (2.41)

Two common examples of "type 1" boundary conditions are
the prescribed flux condition on the leaky boundary of an aquifer
and the prescribed flow rate condition across the boundary of a well
operating at a known discharge.

Type 2: Prescribed Head Condition

If the distribution of hydraulic head on the pervious boundaries
is known at any instant of time, the resulting boundary condition is
referred to as "Type 2n prescribed head condition and is written
mathematically as

h = h on B2 (2.42)
where h denotes the prescribed head function and Bg denotes

the boundary portion on which the hydraulic head is prescribed.
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(b) Imporvions T3oundari e.s

Across impervious boundaries of Die Dow system, the velocities
normal to the boundary surfaces arc zero. The prevailing boundary
condition is given by

v nt = 0 on B° (2.43)
where Bc denotes the impervious boundary portion.

(c) Free Surfaces

In the present work, a free surface is defined as a stream
surface along which the pressure is atmospheric. In solving the prob-
lems of flow towards water table wells, the effects of capillary
fringes on flow in the saturated region are neglected. The water table
is taken as the upper bounding free surface. As the position of the
water table at any instant of time during pumping is unknown a priori,
it is located by trial and error during the course of solution of the flow
problem.

Two conditions are satisfied on the free surface, the first of
which is given by

h (x*t) = z(xj[,X2,t) on B" (2.44)
where z(x”, X2,t) is the height of the free surface at point
(xj,x2,t) above the datum plane and B?denotes the free surface
boundary.
The second condition is the requirement of continuity of flow

across the boundary.
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Fig, 2,3: Movement of a differential element of the free surface.

To derive this condition, consider a differential element of the
free surface as shown in Fig. 2.3.

Let. z (xp.X2,t) denote the elevation at time t of a point, (xj, X2)
on d]3”. As pumping continues at a later time t+dt, the free surface
position is lowered and point (x*xgM) now moves to (x”, X2 *t+dt).

If the net average of vertical infiltration is denoted by I, the volume
of inflow into the free surface during an incremental time dt is given by

(vpi + I1113) dBF dt

This inflow quantity must be balanced by the. total volume of
gravity drainage from storage within the elemental volume dV = dBFdl.

To take into account the fact that the process of gra' ity drainage
can take place slowly in finer aquifer materials, the expr ssion for the
total drainage volume is obtained by applying Boulton's concept and
theory of delayed yield. ((Boulton (1955), (1963)). The theory is based
on the assumption that the rate of delayed yield due to gravity drainage

is an exponential function of time and proportional to the rate of lowering

of the free surface.



Thus the total drainage volume taking place during an incremenva'
time dt is given by

(o6 Sy i— D geynzasla

where Sy is the ultimate volume of delayed yield per unit draw-
down of the free surface per unit horizontal area, commonly referred
to as the coefficient of specific yield, and d is am empirical constant
termed the reciprocal of the delayed yield index.

The continuity equation may now be written as

( ni+In3)dBFdt = U % f ||]; e"*"TbngdB I'dt (2.45a)
0
Equation (2. 45a) may be rearranged to result in the required

boundary condition as follows:-

= (I -dSy Jl- e ci(t' X)dt)n3(2.45b)
(0]

For aquifer materials consisting of coarse sands or gravels in
which the drainage process takes place quite rapidly, the delayed yield
effect may be neglected and equation (2. 45b) may be written in the
following form:-

vini = - < - Sy ~ ) ng (2.45¢)
where Sy becomes a constant taken to be appro, nately equal to
the effective porosity of the aquifer material.

For the case of steady unconfined flow without vertical flux

across the free surface, equations(2.45b) and (2.45c) reduce to
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(d) Seepage Faces
In solving the unconfined flow problem, the presence of a
vertical drainage or seepage face at the well is also considered.
The seepage face is located directly below the water table and above

the water level in the well. The prevailing boundary condition is

written as

h xiyt) = X3 on BS (2.47)

where Bs denotes the seepage face boundary.
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3. Variational Principle for Two-regime Well Flow

3.1 General

, In the previous chapter the fundamental approach to the general
problem of transient two-regime well flow was presented, in which the
flow was described by two field equations and the problem reduced to
that of finding a function satisfying these equations as well as the initial
and boundary conditions.

An alternative approach is possible via variational methods. In
this approach an extremum principle valid over the entire flow region
is postulated. The required solution is the one minimising a certain
quantity D. , termed "functional", subject to the same conditions of the
flow system. The functional is defined by suitable integration of the
unknown quantities over the region.

While the two approaches are mathematically equivalent in the
sense that an exact solution of one 1is the solution of the other, the
variational aoproach is particularly useful for the computation of an
approximate solution by the finite element method to be described in
the next chapter. Furthermore, the governing field equations may be
obtained from the necessary conditions for minimisation of th. functional.

The variational principle for steady state Darcy flow through
aquifers was first developed by Mau-ersberger (1965) and later extended
by Neuman and Witherspoon ((1970), (1971)) to transient flow. The
principle for non-Darcy flow has not been fully developed. Only tne case
of steady state two-dimensional flow was treated by Volker (1969) and

McCorquodale (1969).
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The purpose of this chapter is to present, a generalised variational
principle applicable to transient two-regime well flow through confined
and unconfined aquifers. An energy theorem describing the flow is
established and directly related to the variational principle. Via this
theorem a physical meaning is assigned to the functional.

3.2 Development of Variational Principle

3.2.1 Variational Forms of the Field Equations

R=R UR

Fig. 3.1’A 3-dimensional space region and an open time domain.
Variational forms of the previously derived field equations may be
obtained by considering an equivalent variational problem and employing the
Euler-Lagrange equation from calculus of variations ((Wienstock (1952)).

Consider the general well-aquifer system shown in Fig. 3.1. As
indicated above, (x1i, X2>x% represents a right hand system of Cartesian
coordinate axes, R” and are the Darcy and non-Darcy subregions of

the flow system respectively.

Let h (x,t) be an admissible function with the second order space and

first order time derivatives



which are continuous everywhere in a given flow region R and let
the time domain be subdivided into a number of finite time increments.
Assuming that h (xe t) is known at a particular time t, the general

functional to be minimised over the space region R and the time incremer

tst may be expressed as
t + Ist

X[, t)dRdt
The extremum problem is now reduced to seeking the function
h(xj, t) which holds the above functional stationary. A necessary con-

dition 1s the Euler-Lagrange equation which may be written as

0 (3.2)

Equation (3.2) represents various classes of partial differential equation.
The previously derived field equations can be shown to belong to one of
these classes.

Thus on equating the field equations to equation (3.2), the ex-
pression for function G may be obtained.

(i) Non-Darcy Flow

The field equation describing non-Darcy flow through isotropic

aquifers is now rewritten as

0 (3.3)

Equation (3.3) is applicable everywhere in the non-Darcy flow

subregion R”. On equating it to equation (3. 2), the following

expressions result :
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Integrating the above expressions leads to
3/2

- a 2>h 2 b
o\ 4124

2b  Iai b 15311 * Ssho (3.4)
b

Hence the required functional over the non-Darcy flow sub-

G:

region is given by

- - a ajh at,2 T1>h|( 3/2
ngN g L 2 ai (<-V7 o
+S,h . ] dRdt (3.5)

(i1) Darcy Flow
The field equation describing Darcy flow through anisotropic

aquifers is rewritten as

a ah
axr &g 77+ S ¢ 0 (3.6)

Equation (3.6) is applicable everywhere in R*. On equating it to
equation (3. 2), the following equations are obtained

ac
0
ah

aG ah

hS.



Integrating the above expressions leads to

G 2 Kk ~x . 7t (3.7)
Ilence the functional over subregion 11" is given hy
t+\t 1 T 'S Dh 3 Shi
h] D = - I 1T i >
[xx(h)] f 71, Ky Dyj oy ¥O6h b dRd (B8)
t R
For isotropic aquifers, equation (3.8) reduces to
t+kt
&i(h)] D = / 1 h ~h h
R b ' Ko — 8 " dra 3. 9)

(111) Statement of the Variational Problem

Let R be the union of R* and RB. The functional [fl (h)f]l

R
may be expressed as
[ n (h)] R [ n.(h)] RN + RD (3. 10)
where [n(h)] and [n(h)] RD are the two portions contributed

by RN and RD respectively. Their expressions are given by equation
(3.5) and (3. 8).

The variational problem reduces to finding an admissible functio
that minimises £n(h)J and also satisfies the existing initial and
boundary conditions of the flow system. The classification of
boundaries and boundary conditions according to their physical nature

has been presented in Chapter 2.
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3.2.2 Treatment of .Initial and Boundary Conditions

(1) Initial Condition

At a particular time, taken as the initial time, the head dis-
tribution throughout the space region of the flow system is assumed
to be known. If, in the minimisation of the functional, the time
integration is carried out between time t = 0 and t - At, the admissible
function will automatically satisfy the initial head condition represented
by equation (2. 39).

(11) Boundary Conditions

In minimising the functional, the requirement of the conditions
on the flow boundary must also be met. These requirements lead to
extra terms that have to be added to the functional in Equation (3. 10).

For the various types of boundary conditions described in the
preceding chapter, the additional terms have been obtained by
Neuman and Witherspoon ((1970), (1971)).

On boundary portion where the flux is prescribed, the

additional term may be written as

t + At
//  -h%dBdt
t Bi

On boundary portion B2 where the function h is prescribed, it

1s given by

f f (- h)v~r dBdt
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On the free surface B, there exist two additional terms

which may be written as

-1+ M
J J (h-z) v-n"clBcit
t BF
and
t+M t
-J J 20 -0.sy e'2(t' T)dt) ngdBdt
t BF 0

for the first and second free surface conditions respectively.

Finally on the seepage face Bs, the additional term is given

by
t+ M
/ /. (h - x*) v"'n" dBdt.
t Bs

where the expressions for v* in terms of the hydraulic gradients
are given by equations (2.22a) and (2.36) for Darcy and non-Darcy
flow respectively.

3. 3 Energy Approach to Well Flow Problems

3.3.1 General

Energy theorems provide an extremely powerful to' J for the
theoretical analysis of many physical problems. Via the energy
approach, generalised field equations describing the physical phenomena
may be developed.

The energy concept for steady state groundwater flow complying

with Darcy’s law was first introduced by Muskat (1937). He postulated
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that the actual distribution of hydraulic heads and flow velocities in a
porous medium carrying a fluid under viscous flow conditions are such
as to render the total loss of macroscopic energy of the fluid a minimum,
subject to the existing boundary conditions of the flow system.

Engelund (1953) later extended the concept to tv/o-dimensional
steady non-Darcy flow. He showed that the integral expression of
the rate of dissipation of hydraulic energy in the aquifer region is
proportional to the functional of the non-linear field equation which he
developed for non- Darcy flow through homogeneous and isotropic media.

In the development presented herein, the author attempts to
establish in a rigorous manner the energy theorem for the general
problem of three-dimensional, transient, two-regime flow through
aquifers. It will be shown that the field equations governing the flow
may be obtained by applying this theorem.

3.3.2 Pissipation- of Energy in the Flow Region

The movement of groundwater occurs through the interconnected
portion of the existing pore space within the aquifer medium. While
flowing, the water particle loses some of its energy due to friction. The
loss of hydraulic energy per unit distance travelled is usually ex-
pressed in terms of the hydraulic gradient.

When the macroscopic velocity lies within the range of the Darcy
flov/ regime, it is observed to be linearly related to the hydraulic
gradient. Departure from the linear relationship has been assumed to

start at some critical velocity. Although experimental evidence shows



that the departure from linearity may not be abrupt, the assumption is
sufficiently accurate for well flow analysis. The non-linear relation-

ship has been represented by the Forchheimer equation.

\Y%

Fig. 3.2: Velocity-hydraulic gradient relationship for a
hypothetical aquifer material.

A typical velocity-hydraulic gradient relationship for isotropic
aquifers is shown in Fig. 3.2. The rate of dissipation of hydraulic
energy within the aquifer volume may be evaluated as follows:-

Consider an arbitrary volume R of the aquifer situated in the
flow field. Let a function 0, termed the "dissipation function", be
defined in accordance with

(3.11)

0 represents the rate of dissipation of hydraulic energy per

unit weight of water. The rate of dissipation of energy within the
volume R of the aquifer medium is given by

X (3.12)
1 R R

where ty 1is the specific weight of water.
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The integral term in brackets may be evaluated, provided that

an expression relating V and 1 is given.
3.3.3 Dissipation Function for Throe-dimensional Flow
The general expression of the dissipation function for three-
dimensional flow takes the following form

(3. 13)

where the repeated subscripts represent summation over the
full range from one to three.

(1) Darcy Flow

For Darcy flow through anisotropic aquifers, the dissipation

function becomes

On integrating, the following expression is obtained

K Mk h
Ky Txj) ?2Tx~

n - L

2

(i1) Non-Darcy Flow
The dissipation function for non-Darcy flow obeying the

Forchheimer velocity-hydraulic gradient relation is given by

0 (3.15a)

where the integration may not be readily carried out as IViis a
function of the hydraulic gradient.

However, if the aquifer is isotropic, the integrated expression
for 0 can be obtained in the following manner. For isotropic aquifer

media equation (3. 15a) reduces to
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0 =J(a +bIV0~1 — d(--—) (3. 15b)
Now from equations (2.34) and (2.35), it follows that
-1 - a "oh I
+ .
(a + blVl) b ce W Tl (3.16)
2h
21
Also
'Mi i 2 h 2h
21 2 x1 2%
Differentiating gives
>h 2 h 0 (3.17)
21 21

Substituting equations (3. 16) and (3. 17) into equation (3. 15b) gives

a 7 h 2h
0= 7C oy Gy * o ) 405
b
On integrating, the following expression for 0 is obtained
3/2

R A T TS R G- 18)
3.3.4 Proposed Energy Theorem
(1) Development
Theorem I The movement of groundwater through saturated
porous aquifer media takes place in such a manner that the total rate
of energy change in the flow region is rendered a minimum,

subject to

the existing initial and boundary conditions of the flow system
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Proof:

Consider an arbitrary closed region R in the aquifer medium.
L\et R be the interior of Rand dR be a differential volume of R.
The total rate of energy change in the flow region consists of

two portions, the first of which is given by

X = tfi dR (3.19)
R

where x denotes the rate of dissipation of hydraulic energy.
The second portion is due to volume compressibility of the
elastic aquifer medium. It may be interpreted as the rate of change

of elastic energy and may be expressed as

X = X" gqit-" b gr (3.20)
R JjSsh -Vt

where Ss is the specific- storage of the aquifer medium.
. .. : : N D :
Let the region R be subdivided into subregions R°° and R, which
are the non-Darcy and Darcy flow subregions'respectively. It

follows that

*okglJ MR* / Ss ~£h dR

+ 0dR + fp Ss h dR (3.21)

where the expressions for 0 are given by equations (3.14) and (3. 18)

respectively.

Substituting equations (3.14) and (3. 18) into equation (3.21) gives
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OC/v M T a ! hl 2b f,ax V1
h J L 2T ImH ** kid -+M"j
EK b
+Ssh”i] dB+/ [i Kij|| 2+ * Ssh-|ii]dB (3.22)
RD

The functional XL 1is now defined in accordance with
A = Xj~8 . (3.23)

The stationary condition of fl may be established by showing
that the vanishing of its first variation leads to the admissible function
satisfying the previously derived field equations. The condition of
minimisation is assured by showing that the second variation is a
positive definite quantity.

In order to find the first variation, let h (xj, t) be an admissible
function which, together with its second order space and first order
time derivatives, are continuous everywhere in region Pt. The
function h(xi,t) must satisfy the initial and prescribed boundary con-
ditions in order to be admissible.

The one-parameter family of "comparison functions" is now
defined as

H(xj,t) = hfe~t) +ASh (x* (3.24)
where Sh(xi) is an arbitrary function of coordinates,chosen to
vanish on the flow boundary” B,and 7Ais the real parameter of the family

The first variation of Xl is given by

Sfl = rAOi+IxSh) (3.25)
N L 0
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'

Since the function Sh(x-j) is chosen such that —:t— (oh) vanishes,

it follows that Sximay be written as

a Jbh’ 2K /el \ bh
Sfe % bx bxj 2b bl
k oh
bl
JIL _p- — h R
| cbo (Sh) +Ss— S d
;1 bh
1D!/
+ k., °P | (Sh) +ss|f Sh dR (3.26)
R D L 13 bx. - - '

The theorem of integration by parts is now employed to obtain

the following equation:

11 11 U = - - - -
[p Xij @ gt R = - p (e sh) R
. .. ~h . C B
Y Kig pxi nj b9 (3.27)
D
B
where B 1s the boundary of subregion R”\
Equation (3. 27) may also be written in the form
.. - oA i
oYy Ay ok (S AR i g axg ) & by dR
Lvjnj Shj dB (3.28)
BD

In a similar manner, it may be shown that
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/ - a 2> KM L/a. «i*hIZ>h *~ _  a
RN ~2b Ao ext A AlEb> ALl 2X A 8h)yy IR
cdi |
A

dR
w-[2%i & 2b & % !%*§>)
A, e
21
BN LVI”ISh] dB (3. 29)

where B”Tis the boundary of subregion R , which is in common

with B” as shown in Fig, 3.1.

Substituting equations (3.28) and (3.29) into equation (3.26)

results in

. D e N - a
BiL -W Iﬂ-ax" (Kllﬁ axj )+ Sg’bl—a‘tlJSh dR+ X m ]E 2b
R - r N
bhj/bh o PhY gy R - £ T n-Sh idB
+p n s 'MJ N
b | 'bhi B
o'fcl 1
'v, n- ¢ 3. 30
S Vs n3 9h dB ( )
B
where .
I b nj Sh] dB + / h N ShJ dB 0
B BP

Equation (3.30a) reduces to



= (K. e 1 + ss S h dR
RD i 1]
c T 0 C i. & J L g
N Lz7~1( ""2b Y 2b } + ’ 'bt J
R
ShdR . (3.30b)

The two integrals in equation (3. 30b) can be shown to vanish
independently when Sflis set to zero.

Thus i1t follows that

7h
/ “ bxq (Ryy dxj ) " 8g == ShdR ’
RD
and
. : Ahi
. ( ~ a2 Sh dR =0
‘éﬂ\dL ~xio T "2b +ﬁ,1 X fb ‘phl Ss bt _

Since the choice of Sh may be made arbitrarily, the integrands of

the above two integrals must vanish

Hence
3xt 1lj Bx.'  ~s )t 0 (3.31)
for xj) GR
and
~ ft JL  ,a x p_h, bh ¢ 2>h
«dXi L( 2b A(2b ; i-ail ( -Sxi 1. T Sg g 0 (3.32)
b I Mi |
<11

for (x1) GR
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Equations (3. 31) and (3. 32) are identical to the two field
equations (2.23) end (2.37), previously derived for Darcy and non-
Darcy flow respectively.

Thus it 1s now established that the flow of groundwater through
porous aquifer media takes place in such a way that the total rate of
energy change in the flow region is rendered stationary or extremised.

To ensure that the extremised functional corresponds to a
minimum, it is sufficient to show that its second variation is a
positive quantity. The remaining part of the proof is not presented.,
However, it is pointed out that the functional II (h) is a positive
definite quantity as in equation (3,22) the function h and its derivatives
appear as squares and products.

(11) Application

Before the introduction of the energy concept and theorem, the
functional [nth)] was constructed by applying the Euler-Lagrange
equation to the field equations for Darcy and non-Darcy flow. It has
just been established that via the energy approach the new functional
A (h) may be constructed without having to resort to these equations
and that the minimisation of M) leads to the sa
Also, if the function li(xj,t) is assumed to be known at an earlier time
t and its time derivative is assumed to remain invariant between t and
t + At, the two functionals are related by

t'r At
£ 1L (h)l R = /1b(h) dt (3.33)

t
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Thus a physical meaning can be assigned to ]f) (h); ¢ It may be
interpreted as the total energy cl)angc that takes place in the interior
of the flow region between time t and t +kt. Furthermore, the
terms that have to be added to Til (h)i _ to account for additional
boundary conditions of the flow system may be interpreted as energy
exchanges between the s}rstem and its surroundings, which take place
across the flow boundary over the time increment Zt.

It is finally pointed out that, the energy theorem just proved re-
mains invariant with respect to the choice of coordinate systems as
energy i1s a scalar quantity which remains unchanged with change of

coordinate systems.



4. Finite Element Analysis of Confined and Unconfined Flow Problems

4. 1 General

In the previous chapter, variational forms of the field equations we
derived and an equivalent variational problem was stated. The problem
consists of finding an admissible function that minimises a certain
functional subject to the existing initial and boundary conditions of the
flow system.

An approximate solution of the above variational problem can
be obtained by a numerical technique known as "the finite element
method". In this technique, the continuous region of the flow system
is subdivided into a finite number of closed subregions termed "finite
elements". The finite elements are assumed to be interconnected
at a discrete number of nodal points situated on their boundaries.
Associated with each element is a chosen function that defines uniquely
the hydraulic head distribution within the element in terms of its nodal
parameters. The functional over the entire region of flow is assumed
to be contributed by each element and the process of minimisation is
accomplished by evaluating the elemental contributions, adding all such
contributions, differentiating the resulting functional with respect to
the nodal parameters and equating the differentials to zero. This
process gives rise to a system of simultaneous algebraic equations
which may be readily solved by either direct elimination or iterative

methods.
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The finite element analysis of axi-symmetric flow towards a
pumped well is developed in this chapter. The analysis considers two
flow regimes, namely the non-Darcy regime in the near well zone
and the Darcy regime in the remaining portion of the flow region.
Anisotropy of the aquifer material is taken into account only in the
Darcy zone. The analysis of non-Darcy flow behaviour in anisotropic
aquifers involves complex non-linear velocity-hydraulic gradient re-
lations, the theoretical basis and experimental verification of which
have not been established. Additional field and laboratory research
is still required in order to develop a better understanding of the ani-
sotropic character of the two coefficients of hydraulic resistance in
the Forchheimer constitutive relation, namely coefficients a and b.

4. 2 Subscript Notation

For convenience in presenting the finite element formulation for
the general three-dimensional flow problem, the following subscript
notation is adopted

Both capital letter and small letter subscripts are employed.

The capital letter subscript refers to a particular node belonging to
either an element or the entire flow region. The range of the subscript
is from one to the number of nodes on the element boundary, if refer-
ence 1s made to the clement, or from one to the total number of nodes,
if reference is made to the entire flow region. The small letter sub-
script, as previously indicated, refers to a particular component along

the coordinate axis. Its range is from one to three for three-dimensions

space region.
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Unless it is indicated* repeated subscripts are interpreted as
summation over the full range and the same subscript does not appear
more than twice in the same term of the expression.

4. 3 Analysis of Flow through Confined Aquifers

4.3.1 For3nutation of Element Matrices

(1) General

X2

1

Fig. 4. 1. Typical flow region of a confined aquifer and a
finite element.

Consider the general problem of three-dimensional transient
flow towards a pumped well penetrating a confined aquifer. A typical
flow region ft is shown in Fig. 4.1. As indicated, R is the union of
RN, RD and B which are the non-Darcy flow subregion, the Darcy sub-
region and the flow boundary respectively.

The functional over R may be expressed as the sum of the

functionals over RN, RD and B. Thus it follows that

A)] - = [n (h)] rn +[11(h)] rd +A(h)l B 4.1)
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The expressions for QTL (h); I"%N and [~ Q.(h)] Iy have been

derived in Chapter 3. They may be rewritten as

t-t-M. r , 2 i'hhj 312

["<h)]EN 0 j ril-ZW **<>{_(&)
N - N 3 2 Ib
t R
Bhi

+ bS h ot ] dltdt (4.2)

and M

FIn'- T fliKnsf Sr+s=h Tr]@ < (4-3
t R

Let the closed boundary B of the confined flow region be sub-
divided into Belnd Bo \%’hich arethe prescribed flow and thepre-
scribed head portions respectively. The functional over the closed
boundary ]~JT(h)J is expressibleas the sum of the functionals over
B* and B*. It follows that

tg +& t £ At
JX (h)] ¢ - J J hqdBdt + J J (h- h) \gmdBdt (4.4)
t Bi t B2

In solving the flowproblemby the finite elementmethod, the
flow region R is discretised into a network consisting of m inter-
connected finite elements.

If the closed subregion of a typical element is denoted by Re
and if the number of nodes situated on the element boundary is ne,
the head distribution within the element may be approximated by

h(xp t) - Nj (xt) hj (t) 4. 5)

where Nj (xt) are piecewisely defined functions of coordinates
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(x 1>x2#x3) within the element, hj(t) are the nodal values at time t
of the function h and the repeated subscript I denotes summation over
the full range, from 1 to ne.

The functional over the entire flow region, [il (h"] - , may now
be expressed as the sum of the functionals over the finite elements,

[A (h)l “e , or more concisely fl(h). Thus

m
[A(h)] jj = vy  _fi(h) (4.6)
e=1
To obtain the final egression for[ A.(h)] - , it is convenient to

R’
classify the finite elements in the entire network into "interior and
exterior elements". The interior elements are defined as elements
with their closed elemental boundaries contained within the interior

of the flow region whilst the e:xterior elements are the remaining
eLements with portions of their closed boundaries as parts of the
boundary of the flow region.

The evaluation of elemental contributions is thus accomplished by
evaluating firstly the contributions from the interior elements and
secondly the remaining contributions from the exterior elements. In
the process of evaluation, it is assumed that the elements near the
well are sufficiently small for 1_{0 to be considered to belong to either

or R”. The criterion for determining whether R? belongs to R"T
or RP as follows

If. the absolute velocity at the centroid of the element is greater

than the critical velocity, the element is considered to belong to Rp

otherwise it belongs to R*.
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(1) Interior Elements
(a) Elements belonging to '

For the interior elements belonging to RN, the functional

c
over R 1is given by

, a [Bh |  2b
XL @) if. 2 VI I+ 3
t /R
372
20
21 .+ Sgh-|£  dRdt (4.7)
A qh-byy

Differentiating equation (4. 7) with respect to hj gives

t+Lt
281 '(h)

Bhj Ji / r* \ ﬁ-f
t R’

Bh
»ny Bln (&J
+ h ,a71)[I ('4-5“ + S¢ ot ,,Shjqdet (4.8)

Where it should be noted that the small letter s is not regarded
as a small letter subscript, Sg merely denotes the coefficient of

specific storage of the aquifer.
From equation (4.5), it follows that

Bh BNi
Bxi (4.9)

Contracting subscript i gives

2h Bh
2X Bxi 2 B x. (4. 10)
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Now
ah ah Jbh
a i ax. a xi (4.11)
Differentiating equation (4. 11) with respect to hj gives
~h a
— SJLN
ahT °oi - axi 0h %3);’_ (4.12)
ah ;
TT1
Also from equation (4.9) it follows that
0 Nj
Ohr 60% ) =  o0xi (4.13)

Substituting equations (4. 9) and (4. 13) into equation (4. 12) results

in
3Nj hj BNj
V > 7)X[ 0 Xi (4. 14)
10 i
101 1

Since Nj are functions which do not vary with time, it follows that

h 0 ,0hv ON|]
hT vat NJh] aF 0 (4. 15)
and
0 h *Shj _ .
0 hi 0 NjNq (4. 16)

Substituting equations (4. 14) to (4.16) into equation '4. 8) gives

t+ Nt 2 1 .
0 -TLe - % 1
R ST ) T U
! R b 0f
0 N, 0 Ni .
0% 0%, hj dRdt
t+ hl -
+ [ L AS atJ Nj Nj dRdt (4.17)

R
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The following expressions are now introduced

1
a ,f,aA2 ﬁ)—h-’\lz 1

E L 2b 1 2i) ) B (4. 182)
C E hN{ 3Ni
) e 3w R (4.18b)
R
D, /' Ss Nj Nj dR (4. 18¢)
R

Substituting these expressions into equation (4,17) results in

tH7xt t+ M

n /X WdEt/ (@.19)

where J and I range from 1 to the number of nodes on the

element boundary, ne.

(b) Elements belonging to

) : . D .
For the interior elements belonging to R, the functional over

R 1s given by

+
t+Rt o

»h  2>h i
(h) /12 Kiiosxj 3%j ¢ S8h %l?_; (4.20)
R

Differentiating equation (4. 20) with respect to hj gives

t+ £
_ r rorv ~h e , on N
mahi , 7,.L j ~Xxj +
R
Q 1 o0 / bh)\ A h h 4
S-hgp (5 Ess g élth‘Ehj (4.21)

Substituting equations (4.13), (4. 15) and (4,16) into equation
(4. 21) gives
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1y = )] 4% NINIREE oo

« « 1 H (

and substituting equations (4.18c¢) and (4.23) into equation (4.22)

lead to

e t+At t+At
s/ e hj dt+ J a4 -lin d <4.24)
t t

(ii1) Exterior Elements

In evaluating the functional contributed by an exterior element,
allowance mujst be made for the additional boundary conditions on the
element boundary. Accordingly, extra terms must be added to the
functional already derived for the interior elements. These terms
only exist on the exterior portion of the element boundary and vanish
elsewhere. i

The additional boundary conditions of confined flow problems are
the prescribed flux and prescribed head conditions. They may be
dealt with in the following manner

If Bie and E* 6 denote, the exterior portions of the closed element

boundary where the flux and the head functions are prescribed respect-

ively, the additional terms are given by
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t + &t
hq d.Bdt
Bie
and
1M
r (h-1i) v*n* dBdt
B-

: : N .
Thus for the.exterior elements belonging to E , the resulting

-
functional over R takes the form

3/2
e T4 sehif o2b oo, a
[rL (h)l fJ L 2b 12l
t Re
t+kt
+ S hff dRdt + i S h q dBdt
t Bp
t+ M
©] - (oW o dBd (4.252)
t Boe

Since the admissible function h is chosen to automatically
satisfy the prescribed head condition on the entire flow boundary, tin
term contributed by /°2° may be dropped from equation (4. 25a).

Equation (4. 25a) now becomes

t+ /\t

t+ kt
+ Sﬂh qt IJdet + ] ] hq dBdt (4.25b)
Bi1

t
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Differentiating equation (4. 25b) with respect to hI rives

€ t+M t+at t+At
“« =y Cjj hjdt J D)5 |rdt-i- J O Fra (4. 26)
where
€ _ g q Nj dB 4.27)

Similarly for the elements belonging to RD, the expression

for the functional may be written as

§+\t
- / [| xij g ¢ Ssh 7, |} dReit
t Re
t+ht
+ J J  hq dBdt (4.28)
t B,

Differentiating equation (4. 28) with respect to hj gives

§] t+M' % t+W t+At
mJ C(n*uydav s/ BJ AN d,J Ffdt 4.20!
t t t

(iv) Element Matrices

The above formulation leads to various element matrices which
have been expressed in subscript form. The expressions are given
by equations (4. 18b), (4. 18c), (4.23) and (4.27). They can also be
written in compact matrix form as follows

Let [Cel, i CG}s [dOQ and [Feldenote the element matrices havin

19’ Cjj, Dy and Fje as matrix elements respectively. By
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employing the matrix notation., the foilowing equations may be

written
ni
[Cej = ;  E [s] [S]  dR (4. 30)
Re
[Ce] = y [SIT [Kj [S] dR (4.31)
Re
[De] = 7 Ss [NJT [N] dR (4.32)
J
Re
T
[FC] = / q [N dB (4.33)
B-
where E i1s given by
- a 3h
E = + + —
b 2b' 31 ] p
or
E = 1/ + v
4 311 (4.34a)
3h
31 3xi 'axj (4.34b)
fS’}T Is the transpose of matrix [S] which is given by
T
3X} 'dx 1
[sf = (4.35)
Mo!.
*3x2 "3x2
M i

8X3 3x3



[K] is the hydraulic conductivity matrix, which may be written as

K11 K12 Ki3

&] = (4. 36)
r 21 k 22 K23
k31 k 32 K33

fNjis the shape function matrix, which is given by

[N] = [N X e Nne | (4.37)

The equations relating the differentials of the functionalfl0 and
the nodal values of the function h may also be written in matrix form.
The matrix equation for the exterior elements in the non-Darcy flow

subregion is obtained from eq. (4. 26Tt follows that

t+ &t t+&t
[-*h -] = ICe) [fleJdtJr/ [De] [-]f] dt
t
A
v (F 1 dt (4. 38
where r
'S f1l
2>h h i
C 722 .
[h«] =
cLQ 6 G =
_° &8

The matrix equation for the interior elements in the non-Darcy
flow subregion is obtained from equation(4. 33) by dropping the last
integral term on the right hand side.

Hence



Similarly, the matrix equations for the exterior and interior elements
in the Darcy flow subregion may also be obtained from equations
(4. 38) and (4.39) respectively by merely replacing matrix [Ce]in
these equations byf,COJ :

4.3.2 Element Matrices for Triangular Ring Elements

The formulation of the element matrix just presented is a
general procedure applicable to three-dimensional well flow. Many
problems of flow towards wells encountered in practice are axi-
symmetric flow problems. For problem s of this kind, the
formulation of element matrices may be simplified by employing
cylindrical coordinate system (r, z). The entire flow region may be
subdivided into a finite number of ring elements concentric about the
vertical axis of the well. These elements are readily generated Ay
revolving plane sections about the z-axis. A tympical triangular ring

element is shown in Fig. 4.2.

Fig. 4. 2: A typical triangular ring element.
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If the hydraulic head distribution at point (r, z) in the element is
represented by a linear function of r and z in terms of the nodal values,
then it can be shown ((Zienkicwiez said Cheung (1967)) that the shape

functions may be expressed as

Nj = aj +hjr + cm (4.40)
where a™, b”" and are given by
al " Y2z3“r3z?)2& (4.41a)
bf = (zg “ zg)/2C (4.41b)
ch = (r3- r2W2k (4.41c¢)

and the remaining coefficients are obtained by cyclic permutation of

subscripts and A is the area of triangle 1-2-3.

1 rl Z1
N = % 1 0o .2 (4. 41d)
1 r3 z3

Now from equation (4.40) it follows that

"Ny L bi (4. 41¢)
T

N1

4. 41
b7 I (4. 411)
Hence the matrix [S] may be written as
T
[S] bl b2 (4.42a)
cl 2 '3J

For cylindrical coordinate systems, the hydraulic conductivity matrix

is given by

(K] = Krr Krz (4.42b)

Krz Kzz
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The shape function matrix for triangular elements is
[n] = [n1( N2. N3] (4.420)

where the expressions for Ng and N3 are given by equation
(4.40).

The expressions for element matrices [ce]and [Ce]can be
obtained by direct integration, noting that dR has to be replaced by

dR = 2Tvrdrdz (4.424)

Thu s

cu=/ tEHr M ] 2Irdrdz (4-432>

R
Equation (4.43a) may be ‘approximated by

Cen= 2iXr » E(bjbj+C| G (4.43b)

where r is the centroidal radius of the triangular plane
section and the expression for E is given by equation (4. 34a).
Similarly the array elements of matrix[CelJ are expressible as
Cfj =r [Kijj — X ~ 1] 2T"rdrdz (4.44a)
Re 1 3

Substituting for the various terms on the right hand side leads to

AN
(S
IJ ~ 2Tr~ (Krr bj bj + hp” hj

Kzz cI”™j) (4.44Db)
in which r and z are not regarded as small letter subscripts.
The integration for the matrix elements of [R*jand [F"Jrequires

slightly more labour. The two matrices have been evaluated by
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P&rekh (1967). They may be written as

B —_

{De] 2itr Ss b (4.45)

—_—

[F 1= 2T(r q L (4.46)

0

where it is assumed in equation (4.46) that side 1-2 of triangle 1-2-3
corresponds to the exterior boundary portion on which the flux is pre-
scribed and that q i1s constant on side 1-2 of the triangle; the length of
this side 1s denoted by L.

4.3.3 Element Matrices for Isoparametric Ring Elements

(1) One-dimensional Elements

The problem of one-dimensional radial flow towards a pumped
well fully screened through the entire thickness of an isotropic aquifei
may be solved by using one-dimensional isoparametric elements.

iz

A

(<0 Cb)

()

Fig. 4.3: Idealised one-dimensional region and
one-dimensional isoparametric elements.
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Consider a typical well-aquifer system shown in Fig. 4.3a.
Since the velocity of flow is in the radial direction, it is sufficient to
find the hydraulic head distribution along any radial line. Accordingly,
the two-dimensional region in r-z plane shown in Fig. 4. 3a may be
reduced to a radial line shown in Fig. 4.3b. This line 1s discretised
into a network of line elements. A typical 3-node element is shown
in Fig. 4.3c. The planar ring section is readily generated by re-
volving the line element about the z-axis.

Let % be a local coordinate associated with each of the line
elements. The coordinate is so determined as to give = 0 at node
3, % =1 at node 2 and -- 1 at node 1. The relationship between

the radial coordinate and ”» -coordinate is given by
r = Aton % (4.47)

The general technique for deriving expressions for the shape
functions of isoparametric elements has been described by Ergatoudis
et al (1968). The following expression for the shape functions of the
3-node line element h£.s,,been obtained by applying this technique.

CNX N2, Ng] = t-0.5 (V'A 05 (] +% (-] 2)] (4.48)

Now the differentials dr and d* a.re related by

dr = —  d& (4.49)

from which it follows that
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dAT.

dl = A"dV ri~d~n = (4.50)

where subscript [ ranges from 1 to 3, and |,T|is the determinant

of Jacobian transformation matrix.

The expression for \Tlis given by

Jl= 0.5 (-1 +2%)rj + 0.5 (142%)r2 - 24rg (4.51)
Also

dNi = d\3 1 AN

dr d|  dr g1 dr (4.52)

Hence the slope matrix [S3for the 3-node line element takes the form

1S : [1n . , 1 N2, ]
dr dr dr (4.53)
S5 = ~ [0.5 (-1+2]), 0.5(1+24),-2"1 (4.54)

Now from equation (4. 30) it follows that

[ce] = J E [SIT [S]dR (4.55)
Re
where dR = 2i\rdr (4.56)

Substituting equations (4.56) and (4.50) into equation (4.55) results

m 1
Ce]= 21t J E [SIT [S3 Njrj |11 dif 4.57)
-1

The definite integral in equation (4. 57) may be evaluated numerically
by employing the Gaussian quadrature formula. The procedure for
numerical integration has been described by Zienkeiwicz and Cheung
(1967). On applying the 3-point quadrature formula to equation (4. 57)

and multiplying the matrices, the following expression results



> o7
D7 .

Cee3 2-n fEgi1 N, (S1>rlIW((")

0.25- 121 )  0.25(4%i -1) -0.5(1-27)

0.25(41|2 -1 0. 25(1+275)'" 0.5(1-4]. ) (4. 58'
r 2
0.5 (1-27) 0.50(1-4") (1-272)
where E Nj ( %I) and J(fe, |) are functions of the ~ -coordinate,
to be evaluated at the Gaussian points (| ¢), and W (| are the

values of the weighting coefficient at the Gaussian points.

Similarly, expressions for matrices “3and [DO] can be

obtained from the following equations
1

[Ce] = 21t f [S]T [Id [S] Nj rj; Uld% (4. 59)
-1
[De] = 27TC rS [N]T[N3 N: rj (4dUklfe,
-1
(1) Quadrilateral Elements

In solving two-dimensional flow problems quadrilateral elements
may be used to improve the accuracy of the nume rical solution. This
type of element provides higher forms of approximation to the hydraulic
head function than the simple triangular element. Its use allows
an appreciable reduction in the total number of nodes in the flow region

for a given degree of accuracy. A typical 4-node element is shown in

Fig. 4.4.
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Fig. 4.4: A 4~node quadrilateral element

A quadrilateral ring can be generated by revolving the element
about the z-axis.

To outline the derivation of the expressions for the element
matrices, let a system of local coordinates (| , 7\ ) be associated with
cach element. These coordinates are so determined as to cive

A = -1 on side 1-2, A. =1 on side 4-3, ~ =1 on side 2-3 and

A = - 1on side 1-4. The relationships between the (r, z) coordinates
and coordinates are given by
r Nj("*YIs) IT (4.61a)
z = Nj Zj (4.61Db)

where I ranges from 1 to 4.
The expressions for the shape functions Nj have bee: - developed
by Ergatoudis et al (1968). They may be written as

Nx= |[(I -])(C 1-t\) ; N2=i (1 +%)( 1-*\>
N3 = (1 +8)( 1+ | N4

The differential operators with respect to r and z and those with

respect to £ andTVare related by
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[J1°1 (4.63)
b Z

where [J] is the Jacobian transformation matrix which is given by

~r
ui (4.64a)
n
~Sr Sz
3 9 "

d-n).(i -n),(1+F).-d +ro i zi

(i-1),-(i+1),(i+D. (i-1) r2 z2

[J1 = i

(4.64b)
r3 z3
4 z4
- L
Also
dR 2ftr drdz (4.65a)
and
drdz = Il d\ (4.65Db)
where |J1 1is the determinant of the Jacobian matrix.
The slope matrix [Slmay now be expressed as
_1 N1 "N 2 AN 3 N4
[S1 [J1 (4.66)

Hence the element matrices [C8], [C8] and[p8”are may obtained as

1 1

[ce] ot ] YV E (8] [s] Njorj U d| div (4.67a)
1 -1

[C6] = 2X J J [S3 T [K][si Nj rj \J| d| 6\ (4.67b)
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[d*] = 2K J s [n] 1 [N] Ny rj |J| (4.67c)
1 -1

where the numerical integration is accomplished by employing
the Gaussian quadrature formula. A special case arises when the
quadrilateral elements used become rectangular elements. In this
case the element matrices [Ce] [C eJand [D 8are easily generated by
employing the technique described in Appendix 1. This technique
leads to considerable saving in computational time.

4.3.4 Assemblage of Elements

In the element assembling process, all elements are assembled
through the specification of the reduced compatibility condition, which
requires that the nodal values of the function be the same at coincident
nodes of adjacent elements and also equal to prescribed value on the
boundary portion where the function is prescribed.

Thus on assembling, the functional for the entire flow region

becomes

XI (h) =~ae (h ) (4.68)
.tk 1

for I = 1 ,..N
where the summation is taken over the elements adjacent to the
[-th nodal point and subscript [ ranges from one to the total number of

nodes in the entire flow region.

The minimisation of IjHihj-)! requires that



tttn(hidg "2 4 A ,4-63)

AN
: n :
The expressions for —== have been obtained both for elements

in the non-Darcy flow subregion and elements in the Darcy flow sub-

region. The general expression is now rewritten as O

* t+&t t+M A t+M
. + . +.. 4.
dt°ah1 J f®Jl J dt Ji -a‘Ft6 dt /( 70)

0
where for the elements in the Darcy flow subregion, C T is

replaced by ©

Substituting equation (4.70) into equation (4.60) gives

- t+ Lt t+M
I '
2 f *+2 | D 1f dtd
t e t
t+ &t
A f® dt = 0 (4.71a)
€ t
The following gross matrices may now be introduced
C =5 Ce (4.71Db)
e JI
DjI w2 DIJI (4-71c>
e
Pl = ]> F® (4.71d)
e fryKm jgf

Substituting equations (4.71b) to (4.71d) into equation (4. 71,a) *|IC

results in /. w



t+M t+Z]; t+M

/  CJIhJdt +J DJI +A71dt+ J Fj dt = 0 (4.72)
t t t

where subscripts J and I range from one tothe total number
of nodes in the entire region.

4.3.5 Integration with respect to Time

Equation (4. 72) represents a system of n simultaneous equations
involving the integral terms which must be integrated with respect to
time. To carry out the integration, it is assumed that all the nodal
values of hj and Fj are known at earlier time t and that the nodal

values vary linearly over the time increment & as shown in Fig. 4.5.

t 4at./N hT

¥ t=&1/2 t+

Fig. 4. 5: Nodal values and their variation over &t.

Thus on carrying out the integration, equation (4.72) become;

t+At
f N ¢t n_ mttM . t. , t+At t. Nt 0 473
J T + J1 3] F [ I 2. (4.73)

where the superscripts denote the times at wh' h the nodal
values are evaluated.

The remaining integral term in equation (4.73) involves both
CJ]iFand hJ as functions of time. This 1s because C 1is associated
with the effective hydraulic coefficient E which is given by equations

(4. 34a) and (4. 34b) in terms of the nodal values of the hydraulic head

function.
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To avoid unnecessary complication in carrying out the integration,
the following approximation is introduced:-
t+At t+At

JCIThI dt ~ (CII + QI )(hj t hj ~At (4. 74)
t 2 2

Substituting equation (4.74) into (4.73) gives

.t t t+At t. At M .t
(cji + cJi)(hJ +h] >T + DIl (hJ <‘hJ >
+(F (+Lt + F 3 — = 0 (4.75)
a

Rearranging equation (4.75) results in

1 Vo Fit+ FittM> ! 4-76>

Now let t + At denote the mid-time of t and t+ At. It follows that

2
hjt+M /2 = -|-(hj + hjt+M) (4.77a)
Fjt+M /2 = 1~ + F ~) (4.77b)
“d cJlt+M /2 = T (CJI + cji+* > 4 -77»

On substituting these into equation (4.76), the following equation

1s obtained:-

+ ! + +E+
(,I_Axt Cnt M /2 t+At/2 Djihtj. /A]E Fit £

+DjI) hj = 4.78)
Also from equation (4.77a), it follows that
t+At t+At/2 t
hj = 2hj - hj (4.79)

The last two equations provide suitable recurrence relations

for final solution of the initial value problem. The solution starts
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at the initial time, 1 = 0, and proceeds in a step-wise manner. At the
beginning of the first time step, the nodal head values h ° are specified
by the initial .conditions. These values may be substituted for hg in
equation (4. 78) and used in solving for hd*H\t/~ which may then be sub-
stituted into equation (4. 79) to result in the head values at the end of
the time step. The currently obtained head values, which become hj*
at the beginning of the new time step, can be used in calculating the
head values at the end of the second time step. The procedure can
then be repeated until the nodal values at the end of the final time step
have been determined.

For steady state flow cases, equation (4.78) becomes

Culhu+FX =0 (4.80)

The steady flow problem reduces to that of finding the solution of
equation (4. 80), subject to the prevailing boundary conditions.

4.3.6 Iterative Solution of Non-linear Algebraic Equations

Equation (4. 78) is a set of simultaneous algebraic equations in-
volving the non-linear coefficients C t-mt /2 which are contributed oy
the elements in the non-Darcy flow subregion. These coefficients have
to be evaluated in terms of the unknown nodal values of tv hydraulic
head at time t+M/2 as they are associated with the c.oeffio nt E of the
finite elements. However, provided that the values of h® and
F t+ 2 at ali the nodal points are known, it is possible to solve for

t+kt/2 tteratively.
d



. . .- tHAt/ 2
The general procedure is first to calculate matrix {_C / ]

in terms of the known nodal head values and solve for h*+" ~ | then

° . A A
use the values of n t+tt/2 just obtained fo reform léﬁ’ thr 2

J

Jand re-
solve for more accurate values of h<J The process is re-
peated until the change in successive head values is negligible.

The iterative procedure employed in this study makes use of an
over-relaxation factor to accelerate convergence of the solution. To
describe this procedure, it is convenient to drop the superscript
t+bi/2 from the unknown terms in equation (4.78) and replace it by
another superscript k which denotes an iteration number. Equation

(4. 78) now takes the form

, &t ~ k t A~ V1 k*r1 r*ut &t "t+M /2 tA
R | A Iy o 20 (4.81)

For the first iteration, the array elements Cj” of matrix [/ Cj
were calculated in terms of the known values of hj® and equation
(4. 81) was solved for hj~+” by direct Gaussian elimination method.
To start the next iteration, the following ever-relaxation formula was
used to modify hj

hi*™' = B¢ 4 comi®! - mi (4. 82)

where <ois the over-relaxation factor, having a value between
k
1 and 2, and hj denotes the old head values which are set equal to
hj» when k=I.
o CK+1 . u
The modified values hj which become hj for the current

iteration, were used in calculating the absolute element velocities and
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reforming the matrix | QO Calculation of the elejnont velocities
was necessary to enable a check to be carried out to find if a
particular finite element belonged to the Darcy or the non-Darcy flow
sub-region. Equation (4. 82) was then resolved for more accurate
values of hjk+I.
The iterative process was repeated until convergence resulted

when the following criterion was satisfied: -

Sh = maxj \hjk+" - hj*v| ~ £ (4.83)
where Sh denotes the maximum absolute error in the nodal
head values and £ is the prescribed head tolerance.

It was found that a value of u between 1.5 to 1.9 gave fast
convergence. Approximately 4 or 5 iterations were required to obtain
satisfactory results. The optimum value of u) tends to increase with
the total number of equations solved.

4.3.7 Treatment of Conditions on the Well Boundary

In solving the problem of transient flow towards a pumped well,
special treatment must be given to the conditions prevailing at the well
boundary. Two types of well boundary condition are possible, de-
pending on the pumping operation. If the well is pumped >t a constant
discharge, the condition of constant prescribed flow rate will prevail.
On the other hand, if it is pumped such that the water level in the well
remains constant, the constant prescribed head condition will result.
These two types .of boundary condition were dealt with in the following

manner:-



77.

(1) Constant Proscribed Head Condition

Consider a typical pumped well shown in Fig. 4.6. As
indicated in the figure, the first portion of the well boundary is
screened and the remaining portion is cased. If the water level
is maintained constant throughout the pumping period, the head
values at the nodes situated on the well screen will be constant with
time and equal to the known elevation of the water level above the

datum plane.

Fig. 4. 6: The boundary of a typical pumped well.

In order to incorporate the resulting prescribed head condition
into equation (4.78), the following scheme for partitioning the gross
matrices in this equation was employed

Let oC and j be additional subscripts referring to the nodes sit-
uated on the well screen and the remaining nodes in the flow region
respectively. It follows that if ranges from 1 to k, j rangesifrom

k- 1 to n and equation (4, 78) may be expanded.



On introducing and expanding subscript J in

equation (4. 78) the following equation results

(4. 84)
where the superscripts have been dropped from matrices
Now the prescribed head condition requires that
h li (4.85).

for cL =1 k
Substituting equation (4.85) into equation (4.84) and rearranging

gives
(4. 86)

By expanding subscript I, equation (4.86) can be expanded to

give the following equations

(4.87)

and

(4.88)

where 1 i1s a subscript having the same range as j and 1s a
subscript having the same range as d.
Equation (4. 87) represents a reduced set of n-k non-linear
algebraic equations which may be readily solved by the iterative pro-

cedure described earlier. A.lso if required, the values of ihe flux at
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the nodal points on the well screen can be calculated by substituting
the last set of values of Xj into equation (4. 88) and solving for .

Thus it follows that

f3' TT DJ3 hi - <S#V st V *

Knowing the nodal fluxes, the total discharge from the aquifer into

the well may be computed from

K
Q - (4.90a)

/S=1
(11) Constant Prescribed Flow Kate Condition

In the extraction of groundwater by pumping, it is common
practice to maintain constant total discharge from the well throughout
the pumping period. Accordingly, since the total flow rate is fixed,
the water level in the well and the prescribed hydraulic head along
the screened portion of the well boundary must vary with time.

Once again consider the well shown in Fig. 4.6. If Q denotes

the prescribed flow rate, the prescribed flow rate condition is given

by K
Q = F F/? (4.90b)
JjS=1

where Fg are the unknown nodal flux values.
The requirement of prescribed head distribution along the well
screen at time t + Z\t/2 may be written as

t+At/2 t+At/2 t-fAt/2
i = h2 . . . =H ' (4.91)

h
where jgt+At/2 js unknown height of the water level at

time tt- At/2.



80.

In the simple case of flow where the total discharge is
uniformly distributed along the well screen, the constant flow rate
condition maybe treated by computing the values Fg from equation
(4. 90b) and incorporating these and equation (4.91) into equation

(4. 78). The detailed treatment lias been presented by 8avandel

and Witherspoon (1968).

In the more general case where the flux distribution is non-
uniform, the prescribed flow rate condition has to be satisfied by

trial and error. Due to the non-linear field equation, the super-

position technique used by Javandel and Witherspoon (1968) to
correct the head to produce the prescribed discharge is not applic-

able. The following iteration solution technique was employed in

this study

Let tnr 1 and tn denote the current and preceding times re-
spectively, and let the mid-time tn+i be defined in accordance with'
int1 = f (in + in+1)’

For the first iteration, k = 1, an initial estimate of the value

of H at time tn+1 was made from
Hi(tn+i) = II(tn) +M4.92a)
for n = 0,1

or from the following logarithmic extrapolation formula
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HI1(t = log 1T t)a/t.n., | { HC.-tn'!-H(tn.,) |
log[tn/tn.( ]

+ H (tn_,) (4.92Db)
for n 2,3 ...

When equation (4.92a) was used, a guess had to be made as
to the value of the head increment KH at the beginning of the first
and second time steps, when n = 0 and 1 respectively.

The initial estimate of H was used in solving for the unknown
nodal head and flux values in equations (4. 87) and (4. 89) respectively.
Knowing the nodal flux , the total discharge Q was calculated
from equation (4.90a) and compared with the prescribed discharge Q.

If

> £ (4.93)

where € 1is the prescribed tolerance of the discharge ratio, a
new trial head was calculated from

H2(tn+i) = H(tn) + [H1 (tn+.p - H(tn)] Q (4.94)
Q1

Solution for the unknown nodal head and flux values was then
repeated and the total discharge from the aquifer was recalculated and re
tested for convergence. If convergence was still not obtained, the

following formula was applied

Hk+1 = Hk 1 +.n . j Q-
Q -Q
where 1™ and 13* 1 refer to I-I"H1 (tyri-1), H”(tn4l) and

ﬁ]k_ : [tin+1) respectively.



The solving procedure was then repeated and equation (4. 95)
was reapplied until convergence resulted.

It was found that the above iteration procedure gave quite sat-
isfactory results. For earlier times of pumping, the convergence
criterion was met after two or three iterations. For later times,
convergence resulted after only one iteration.-

4.3. 8 Elimination Scheme for Solving a System of Linear
Equations

The assemblage of element matrices led to a non-linear system of
n simultaneous equations which, after imposing the conditions prevail-
ing on the well boundary, reduced to a system of n-k equations as rep-
resented by equation (4. 87). The reduced system was linearised by
evaluating the non-linear coefficients in equation (4.87) in terms
of the known nodal values of the hydraulic head.

A banded Gaussian elimination scheme was employed to solve
for the n-k unknowns in the linearised system of equations. The schem
takes into account the banded character and symmetry of the gross
matrices [C] and [D]. The two matrices were arranged in compact
banded form by numbering the nodes in the entire flow region c¢ con-
secutive order along the vertical lines extending from top to bo;tom of
the aquifer. The process of elimination was accomplished by reducing
the system of equations to an equivalent triangular form through a

series of arithmetic operations on the coefficients of the equations.
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Then starting from the last equation, the last unknown was solved and
the remaining unknowns were obtained by back substitution into the
preceding equations.

Due to symmetry of matrices [C] and [Dj, it is only necessary to
operate on the elements in their upper triangles. The half band-width
of each matrix is computed as the length between the diagonal element
and the last non-zero element in each row. In the computer sub-
routine developed in the present work,the two matrices are converted
into gross vectors by stringing together the half-bands of all success-
ive rows. This conversion partly eliminates the problem of insufficient
computer storage capacity, as only a small part of the two gross
matrices needs to be stored. Furthermore, the smaller number of
arithmetic operations required cuts down the solution time considerably.

4.4 Analysis of Flow through Unconfined Aquifers

4.4.1 General Approach to the Variational Problem

In the preceding section, the finite element formulation of the
general axi-symmetric confined flow problem was presented. It is
shown in this section that the previous formulation can readily be ex-
tended to treat the unconfined flow problem involving the presence of
the moving boundary, namely the free surface.

Consider the general problem of transient, two-regime flow to a fu‘
screened well constructed in an unconfined aquifer. A typical sketch of

the radial cross-section of the three-dimensional flow region is shown

in Fig. 4.7.
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Fig. 4.7: Cross-section of 3-dimensional flow region in
an unconfined aquifer.

Due to the presence of the free surface and seepage face, the
expression of the functional obtained for the confined flow problem has
to be modified to allow for the additional boundary conditions. The
modified functional takes the following form:-

+kt
[TL(h,z)] »# =[%i(h)j 4 [ n(h)l D + j f h q dBdt

t B
t+ Zkt t+/kt
1/ (L-h) Vint dBdt +7 f . (h-xg) VjiijdBdt
t B2 t bs
t+ Zkt t+ M t
+ JJ,, (h-z) vAdBdt - / / 2(1 <£Sy fbj(
t B t B 0
dt) n3dBdt (4.96)

The general variational problem is to find the two unknown
functions, h and z which minimise the functional in equation (4. 96).
To solve the problem by the finite element me thod, it is necessarv

that the entire flow region be fixed so that the minimisation process
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may be carried out. Thus the position of the free surface has to be
initially assumed and then adjusted until all the prevailing boundary
conditions are satisfied.

A general two-step iterative procedure employed by Neuman and
Witherspoon (1870, 1971) was adopted as it generally leads to a rapidly
converging solution. The procedure is described below.

For the first step of each iteration, the function h is prescribed on

B' and B>. This leads to the following simplification of equation (4.96)/

t+ At
[nn_(h)JL =\n_(h)] Rj\i +1 a(h)J +J J hq dBdt (4.97)

t B1I
After the functional in equation (4. 97) has been minimised by the
finite element method, the flux distribution on the seepage face may be
determined.
For the second step of the iteration, the function h is no longer
considered to be prescribed on B-* and Bs. Instead, the free surface

and seepage face are treated as known flux boundaries. Equation

(4. 96) thus becomes

t+ At
[ru,,]g ., T[n(h)]J]RD+1] J h - dBdt
t
J &M tj“ JU
+ J@3)hclBdt- J I( -cdSy fe ( X) 71h
t Bs t BF {

dX)hn3 dBdt (4.98)
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where q(xg) is the flux on the seepage face per unit area.
Next, the functional in equation (4.98) is minimised and a check

made to ensure that

Jh - z1 A £S on B1 (4.99)
where £ gis the prescribed tolerance of the free surface height.

If condition (4,99) is not satisfied, the free surface position is
adjusted in an appropriate manner along the vertical direction.  The
iterative procedure is repeated until |h - z\is within the prescribed
tolerance everywhere on B\

4.4, 2 Modification of the Previous Finite Element Formulation

The functionals in equations (4.97) and (4.98) may be minimised
by applying the teclmique described earlier in Section 4.3.

The minimisation of the functional in equation (4. 97) leads to a

system of algebraic equations identical to that represented by equation

(4. 78) as this functional is identical to the one obtained for the confined

flow' problem. Equation (4. 78) is now rewritten as
t+J\i/2 t+ht/2 t+M/2 t+bt/2 t+At/2
(— On +D 1 )hj = Dn hj - — FI (4° 1001

where the superscript t+ Nt/2 is attached to pss to indicate that
Djj 1s time dependent as the elements in a certain part of the network
must be allowed to deform to accommodate the movement of the free
surface with time.

The minimisation of the functional in equation (4.98) leads to

the following system of equation:-



t+M/2 i,m/2 1+M /2 t+M/2 t

CJI + DU " hJ = °J1 hj
t+M/2 t+M/2 t+ At/2
~H + GL - Hj ) (4.101)
where and denote the extra flux terms for the

nodes on the seepage face and the free surface respectively.

The expressions for M2 H M2

t+M/2 t+M/2
G =]>/ qj <x3) NjNpB (4.102)
e (BS)e

are given by

HM/2 fIN, n

A . (is e-*<t+M/2-V)
2 /‘fSrm 3. <y
B")

Sh. dX )Nj Njn3 ] dB (4.103)
9 b

To handle the Boulton exponential integral term in equation (4. 103),

the equation is rewritten in a more compact form as follows

t+M/2 r ' t+M/2
It =2 Jve LULNIn3 - fT NjNjn3 ]dB (4.104a)
e (B )
where
t+M /2 t+M/2
, ” Mt+M/2 -X )
] v/ 0 TyhyT d-c (4.104b)
Equation (4, 104b) may be rearranged to give
t+M/2 t ,
f] - oLS)\}f( f ; N/ 27>h) dt
0
t+ M /2

(4.104c)



The second term on the right hand side of equation (4. 104c)

may be approximated by

T -«0(t+At/2 -X)
dS§ f e d-C— [[t(1

(h,t+ M /2 - h] (4.104d)

Equation (4.101c) now takes the form

rt+ At/2 4 2 . tF A2 1
fj = ji% (h eV (4- 105a)
where ¢
t <Lht/2 r
J y 7 dt (4.105b)
° VC.
Se = Sy (l-e"x At/2) (4.105¢)

Substitution of equations (4. 104a) and (4.105a) into equation (4. 101)

leads to the following system of algebraic equations:-

, At t+M/2 t+At/2 0ot+ M/2 ,  t+At/2
\\ C « + D.n + DIJI >
t+At/2 /[ t+At/2 t
= (D1 + DiJ ) hj -
(F t+ At/2 + "t+At/2  ~t+ At/2 } (4 _1QCa)
where t At/ 2
/
Dj! =Se 4 7 e Nj Nx n3 dB (4.10Gb)
C e (B1)
/  t+ At/2 f r t T
IT = 2 7 e [iNjng -fjNjNj; n3]dB (4.106¢)
1 e (BF)

It is pointed out that fg in equation (4.106c) may be calculated

bv applying Simpson's mile of numerical integration and the recurrence
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relations represented by equations (4.105a) to (4.105¢). Further-
more, the integral J p NjNjng dI3 is easily evaluated. For tri-
(BF)

angular and 4-node quadrilateral concentric ring elements, this in-

tegral is given by

f NjNjngdB = = isr ; when I =1
Jrc
(Bf)
£ NiNpi3dB = 225 K+ . when 1iJ
“Toe
B )
where
r = | (r] +r1))
/
Lr= Irx- rj\

4.4.3 Solutioil Procedure

The finite element formulation leads to two systems of non-
linear algebraic equations represented by equations (4.100) and
(4. 106a) respectively. The following procedure was employed to
obtain the final solution to the transient unconfined flow problem;-
(1) For the first step of the two-step iterative procedure, the free
surface was assumed at the beginning of each time increment. The
coefficient matrices of equations (4. 100) and (4. 106a) wei-c formed,
and equation (4. 100) was solved by the iterative solution method
described in Section 4,3.6.

Since the nodal values of the head function were prescribed on
the free surface and seepage face during the first step, it was only
necessary to solve for the remaining unknowns in equation (4.100).

The general matrix partitioning scheme for reducing a set of n equations
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to a set of n-k equations, described in section 4.3. 7, was employed,

The final solution of equation (4. 100) was then used to calculate

the nodal fluxes Gjt_l_ /2 on the seepage face.

(i1) For the second step of the two-step procedure, the free surface
and seepage face were treated as prescribed flux boundaries.

. . . LUM./2
Equation (4. 106a) was solved iteratively for the new values of hj
These values were then used to calculate the nodal fluxes at the well
boundary and the total discharge from the aquifer into the well.

(i11).At the end of the second step, the free surface position was

checked and adjustment of the free surface heights was made according

to the following equation:-

2kt = zk+ QbR - zk) (4.107)

where the superscript k denotes the k-th iteration for the correct free
surface and is an over-relaxation factor, having a value greater than
or equal to 1.

After the free surface had been shifted in the vertical direction,
the new vertical coordinates of the nodes in the variable part of the
finite element network "were calculated. The coefficient matrices in
equations (4.100) and (4.106a) were then reformed.

(iv) The two-step iterative procedure was repeated until the following

convergence criterion was satisfied:-

maXJ Ith+1 - ka+1\ ~ N (4.108)
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(v) For the well operating under a prescribed discharge, the iteration
for the correct well drawdown corresponding to the required discharge
was then performed by applying a procedure similar to that described
in Section 4.3.7.

After the correct well drawdown at time t+At/2 had been de-
termined, the nodal head values at the end of the time step were ob-
tained from equation (4. 79), which is rewritten as
hjt+ M 50 BjH At/2 th %ﬂ.109)
(vi) To accelerate convergence of the two-step iteration for the
final free surface, the following extrapolation formula was used for
predicting the trial free surface for the next time step

z ! = ’[_og.; rH,_,,i/t’n_hll ( n_ n-1)+ n-1

J log It /t 1 J J

where the superscript n refers to the n-th time step.
It was found that the use of equation (4. 110) led to convergence

after only two or three iterations except for the first few time steps.



5. Solutions to Typical Flow Problems

5.1 General

A number of computer programs were developed by applying
the theory and finite element formulation presented in the preceding
chapters. The programs coded in FORTRAN IV language were used
to solve a variety of flow problems ranging from the simplest problem
of steady one-dimensional confined flow to the most complex problem
of transient free surface flow through an unconfined aquifer. Solutions
to typical Darcy and two-regime flow cases are presented in this
chapter.

The Darcy flow solutions were verified by comparison with
known analytical solutions summarised in Appendix 3 of this thesis.
The two-regime flow solutions were verified by comparison with re-
sults from laboratory and field investigations which are described in
the next two chapters.

5.2 Flow towards a Fully Screened Well in a Confined Aquifer

5.2.1 Darcy Flow Solutions

A diagrammatic sketch of a well which is fully screened through
the entire thickness of a confined aquifer is shown in Fig. 5.1. An
analytical solution to the problem of transient Darcy flow at constant
discharge was obtained by Hantush (1959), (1964). The solution be-
comes the well known Theis solution (Theis, 1935) for timet>3OLzz—S- .

The finite element solution to the same flow problem was obtained by

Javandel and Witherspoon (1968). They employed triangular elements
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'CP

Flow CaseNo. b(min”/ft")
0 0
1 20
2 20
3 20
4 20
5 20
6 20

Q(ft"/min)

100
25
50
75

100

125

400

Fig. 5.1: Data for the problem of transient flow towards

a well in a confined aquifer.

AO



and obtained good agreement with the analytical solution.

In the present work, one-dimensional elements were employed as
the flow is strictly one-dimensional radial flow. The finite element
network shown in Fig. 5.2 was set up to solve the problem defined in
Fig. 5.1 (flow case No0.0O). As shown in Fig. 5.2, the one-dimensional
flow region is divided into a number of line segments, each of which is
further subdivided into a number of 3-node quadratic elements. The
length of the first line segment is 0. 50 ft. The network, consisting of
18 elements and 37 nodes, is graded in such a manner that the length of
each remaining line segment is twice that of the preceding line segment
(i.e. Ari =2 v until an external radius rQ= 10, 000 ft. 1is
reached. An initial time step of 10_7 minutes was chosen. The time
step size was then increased logarithmically such that any remaining
time step was 1.4 times the previous time step (i.e. At*= 1.4xAti 1)
until 30 time steps were computed. The numerical solution obtained
was compared with Hantush's analytical solution. A logarithmic plot
of the dimensionless type curves, W(u) versus 1/u, is shown in Fig.

5.3 for selected values of dimensionless radius r/rw. The variables

W(u) and 1/u were calculated from the following equations

W) = t o & (5.1)
and J 4 Tt (5.2)
r2S

where s is the drawdown in the aquifer, T and S are the coefficients

of transmissivity and storage of the aquifer respectively, Q is the



Fig. 5.2:

I 3 2 (3-Node Element)

[
ArA= 0-5 ft.
ATj = 2ArUI
Ar. Ara

No. OF NODES 37

No. OF ELEMS 18

rQ = 10,000 fi.

One-dimensional finite element network for a confined
aquifer with a fully screened well.
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I'itf. 5. 3: Comparison of the finite element and Ifantush's analytical

solutions.



calculated well discharge, r is the radial distance from the well, and
t is the elapsed time since the commencement of pumping. The draw-

down s and the aquifer coefficients T and S were calculated from

s = h h (5.3)
S = Ssm (5.4)
atbV (5.3)

where m i1s the aquifer thickness, and h° is the initial height of the
water table above the datum plane. The remaining symbols have been
defined previously.

It 1s seen in Fig. 5.3 that excellent agreement between the
numerical and analytical solutions was achieved. The use of 3-node
one-dimensional elements was found to result in a small number of
equations to be solved and a considerable saving in computational time.

5.2.2 Two-regime Flow Solutions

(1) Transient Flow Cases

Analytical solutions of the problem of transient, one-dimensional,
two-regime well flow are unavailable in the literature. In the present
work, the finite element method was used to solve the flow problem
shown in Fig. 5.1, and to investigate non-Darcy flow near the well.
The effect of non-Darcy flow on drawdown distribution and the well dis”
charge-drawdown relationship was examined.

Six flow cases of different discharge were solved. The nu-

merical solutions were obtained by employing the computer program
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which was used previously to solve the Darcy flow case. The net-
work shown in Fig. 5.2 was again adopted. The initial time step was
chosen to be .0018 minutes. FEach remaining time step was generated
by multiplying the preceding time step by 1.4 until the end of the
pumping period at t=1000 minutes.

For flow case No. 6, Q = 400 cfm, the drawdown-time relation-
ships at several points near the well were obtained in dimensionless
form, W(u) vs 1/u, and are plotted in Fig. 5.4. The dimensionless
parameters A = — and ©* = kvcr- were used to characterise

2/Tm r a
the effect of non-Darcy flow on drawdowns. The justification for
using these parameters is given in Appendix 2. It is noted that the
dimensionless type curves for all points in the non-Darcy flow zone
lie above the conventional Theis curve for the Darcy flow case, and
that the deviation from the Theis curve becomes greater as the value
of A increases.

For flow cases Nos. 2and 4, Q@ = 50 and Q = 100 cfm respect-
ively, semi-logarithmic plots of the drawdown-radial distance relation-
ships at times t = 0.46 and t = 118 minutes are shown in Figs. 5.5
and 5.6. It can be seen that the drawdown-distance curves are non-
linear for radial distances less than a critical value. This value, indi-
cated by the junction of the dotted and solid lines, represents the outer
limit of the non-Darcy flow zone. The critical radius is observed to

increase with increase in the well discharge. In both figures, the

dotted curves represent the drawdown-distance relationships that would
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result if wholly Darcy flow were assumed. Comparison of Figs. 5. 5
and 5. 6 shows-that the additional drawdowns due to non-Darcy flow
remain the same for both times.

The effect of non-Darcy flow on the well discharge-drawdown
relationship is illustrated in Fig. 5.7 for times t = 0.46 andt = 118
minutes. It is noted that as distinct from the wholly Darcy flow case,
the relationships for two-regime flow are non-linear and may be
described by the following equation

sy - BQ + CQ (5.6)

where sw = drawdown at the well (sw docs not
include the head loss resulting from flow

through the well screen and inside the well)
Q = well discharge
B, C = empirical coefficients of the equation

CQ" = additional well drawdown due to non-

Darcy flow
The values of B and C for the two curves in‘Fig. 5.7 were cal-
culated and are listed in Table 5.1.

Table 5.1: Values of Coefficients B and C for the Well in Fig. 5.1

2 .
t(min. ) B(min./ft. ) C(min”™/ft. *)
0.46 0. 24 0.00155
118 0. 36 0.00155

It 1s evident that for both times t = 0.46 and t = 118 minutes,
the values of C are virtually the same. This evidence points to the

fact that for transient flow at constant discharge, the additional non-

Darcy losses remain constant with time after non-Darcy flow has been
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No. min/ft.  min2/ft2
1 10 0 0 140 0
2 10 20 .060 140 .002
3 10 20 . 060 280 . 004
4 10 40 .030 280 . 008
5 10 80 016 280 . 016
Fig. 5. 8: Data for the problem of steady flow towards a fully

screened well in a confined aquifer.
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fully developed near the well.

(1) Steady Plow Cases

A complete analytical solution of the problem of steady state,
one-dimensional, two-regime well flow is presented in Appendix 2.

The dimensionless parameters characterising non-Darcy flow near the

well are shown to be A = NA— and N = -"cr.
27immr0 a

To verify the finite element analysis of the flow problem, five
steady flow cases were generated. These flow cases,shown in Fig.
5.8, were chosen to have different values of A but the same values of
A oand rQ/rw. A network similar to that shown in Fig. 5. 2 was
adopted. This network consists of 9 elements and of 19 nodes. The
external radius chosen 1s 1000 ft. For each flow case, the dimension-
less drawdown-radial distance relationship was obtained and plotted on
a semi-logarithmic scale. Fig. 5.9 shows the comparison of the finite
element and the analytical solutions. It can be seen that excellent
agreement between the two solutions was achieved.

5.3 Flow towards a Partially Screened Well in a Confined Aquifer

5.3.1 Darcy Flowr Solutions

A diagrammatic sketch of a partially screened well in a confined
aquifer is shown in Fig. 5. 10. The well is screened from the base of
the aquifer to a height equal to half of the aquifer thickness. A com-
plete analytical solution to the problem of transient Darcy flow at
constant discharge was presented by ITantush (1961). His simplified
solution for drawdown distribution along the base of the aquifer is given

in Appendix 3.
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0*05 P'T/ M\

Flow Case No. b(min2/ft2) Q(ft2/min)
0 0 100
1 20 25
2 20 50
3 20 75
4 20 100
5 20 125

Fig. 5. 10: Data for the problem of transient flow towards
a partially screened well in a confined aquifer.
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To verify the finite element analysis, a hypothetical problem was
formulated. The problem data are given in Fig. 5. 10, flow case No.O.
The network shown in Fig. 5.11 was adopted. The chosen external
radius is 10,000 ft. As seen in the figure, the flow region is divided
into a number of vertical blocks, each of which is further subdivided
into a number of triangular ring elements. A total of 151 elements
and 128 nodes was used. The elements increase in size along the
radial distance from the pumped well. The width of the first vertical
block is 0.20 ft., and the width of each remaining block is 1.4 times
that of the preceding block (i.e. Ar* = 1.4 X Ar” 1) until a maximum
width Armax = 400 ft. is exceeded. The maximum width is prescribed
to avoid ill-conditioned triangles.

An initial time step of 0. 00054 minutes was chosen. Each re-
maining time step was generated by multiplying the previous time step
by 1.4 until 30 time steps were completed. The numerical solution
obtained was a drawdown distribution that varied with depth for radial
distances less than approximately 1.5 times the aquifer thickness. The
dravrdovms along the base of the aquifer were used in the comparison with
Hantush's analytical solution. For the nodes located at radial distances
of 0.5 , 2.0 and 10.0 ft. from the pumped well, the drawdown-time
relationships were obtained in dimensionless form of W(u) versus 1/u
and are plotted in Fig. 5. 12.  Good agreement between the analytical

and finite element solutions may be observed.



No. OF NODES = 128

No. OF ELEMS = 151

Ar4 = 0'20 ft.
1-i
r 10J300 ft.
Kig. 5.11: Kinite element network for a confined aquifer with a partially

screened well.
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5,3.2 Two-regirne Flow Solutions

(1) Transient Flow Cases

To use the finite element method to investigate transient two-
regime flow and study the effect of non-Darcy flow near the well, the
problem defined in Fig. 5. 10 was solved for five flow cases of different
discharge. The numerical solutions were obtained by employing the
computer program which was used previously to solve the Darcy flow
case. The network shown in Fig. 5.11 was again adopted. An initial
time step of 0.0042 minutes was chosen. The remaining time steps
were generated in the manner described previously.

For flow cases Nos. 2, 3 and 5, the dimensionless drawdown-
time relationships,W(u) versus 1/u, for a nodal point located at the
base of the aquifer and at the well are plotted in Fig. 5.13. For flow
cases Nos. 3 and 5, the plot of W(u) versus 1/u for a nodal point lo-
cated at the base of the aquifer and at 2 ft. from the pumped well is
shown in Fig. 5.14. In each figure A and * are the two dimensionless
parameters chosen to characterise non-Darcy flow near the well. The
type curve for the wholly Darcy flow case, A = 0, is also includea.

It can be seen that for all the two-regime flow cases solved, the type

curves for the two points, r = 0. 5and 2.0 ft., in the non-Darcy flow

zone lie above the Darcy flow type curve, and that the deviation from the

Darcy flow curve becomes greater as the value ofAincreases.
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For flow cases Nos. 3 and 5, semi-logarithmic plots of drawdown
versus radial distance at times t = 0.12 and 52.4 minutes are illus-
trated in Fig. 5.15 and 5.16 respectively. The drawdown-radial dis-
tance relationships for the corresponding Darcy flow cases are shown
in dotted lines. It is noted that for each discharge the two-regime flow
solution deviates from the Darcy flow solution in the immediate vicinity
of the well where non-Darcy flow exists, and that the two solutions co-
incide at a certain critical radius which is observed to increase with
increase in the discharge. On comparing Figs. 5.15 and 5.16, it can
be seen once again that the additional drawdowns due to non-Darcy flow
remain the same for both early and late times.

Finally, the effect of non-Darcy flow and partial screening on the
well discharge-drawdown relationship is illustrated in Fig. 5. 17. It is
noted that for times t = 0.12 and 52.4 minutes, the well discharge-
drawdown curves are non-linear and may be fitted by equation (5. 6).

(1) Steady Flow Cases

An analytical solution to the problem of steady state, two regime
flow towards a partially screened well in a confined aquifer has not been
developed. The finite element analysis of the flow problem was
verified by comparison with experimental results to be presented in the
next chapter. As in the one-dimensional flow cases, the same
dimensionless parameters A and ~ were employed to characterise

non-Darcy flow7in the vicinity of the well.
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1 10 0 0 40

2 10 20 .062 40

3 10 20 .062 80

4 10 20 .062 160

5 10 40 .031 160

6 10 100 .0125 160

Fig. 5. 18: Data for the problem of steady flow towards a
partially screened well in a confined aquifer.
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The problem shown in Fig. 5. 18 was solved for O flow cases
which were chosen to cover a range of values of A and to have the
same value of §, rO/rw and Igc/m. A network similar to that shown
in Fig. 5.11 was adopted. A total of 128 elements and 104 nodes was
used. For each flow case, the dimensionless drawdown-radial dis-
tance relationship at the base of the aquifer is plotted on a semi-
logarithmic scale as shown in Fig. 5.19. The effect of increasing
the value of A on the drawdown-radial distance curve may be observed.
The curve for flow case No. 1, vrhich is the wholly Darcy flow case,
corresponds to A = 0.

5.4 Flow tov/ards a Well in a Confined Aquifer-Aquitard System

5.4.1 Darcy Flow Solutions

A diagrammatic sketch of a well in a confined aquifer-aquitard
system is shown in Fig. 5.20. The well is screened from the base
to the top of the main aquifer and the entire system is confined by
impermeable strata. An analytical approach to the problem of trans-
ient Darcy flow at constant discharge was first presented by Hantush
(1960). He derived asymptotic solutions for drawdowns in the main
aquifer but did not obtain solutions for drawdowns in the overlying
aquitard.

Neuman and Witherspoon (1969) later extended Hantush’s work to
obtain a complete solution to a more complex problem of flow in a

confined system consisting of two aquifers separated by an aquitard.

They also developed asymptotic solutions for small values of time.



rM- \ PT.
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Flow Case b

No. min?/ft? f3/min.
0 0 100
1 40 100
2 40 200
3 40 300
4 40 400
5 40 500
6 40 1000

Fig. 5.20: Data for the problem of transient flow to-
wards a well in a confined aquifer-aquitard
system.
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These solutions have been adapted to the simpler problem of flow in

the system shown in Fig. 5.20./ All of the available analytical sol-
utions are based on the assumption that the flow direction is horizontal
in the aquifer and vertical in the aquitard. This assumption was shown
by Neuman and Witherspoon (1969) to lead to errors of no more than

5 percent when the permeability of the aquifer is at least two orders

of magnitude greater than that of the aquitard.

To verify the finite element analysis, a hypothetical problem was
formulated. The problem data are given in Fig. 5.20, flow case No.0.
To ensure the validity of the analytical solutions, the permeability of
the main aquifer was chosen to be more than 100 times greater than
that of the overlying aquitard. The network shown in Fig. 5.21 was
adopted. The external radius chosen for this network is 5000 ft.

As seen in the figure, the flow region is divided into a number of
vertical blocks, each of which i1s further subdivided into a number of
rectangular ring elements. A finer subdivision of the vertical blocks 1is
used in the aquitard where steep vertical hydraulic gradients occur at
early pumping times. The width of the first block is 0. 50 ft. and the
width of each remaining block is 1. 5 times that of the preceding block
until a prescribed maximum width of 500 ft. is exceeded. The entire
network consists of 184 nodes and 154 elements. An initial time step
of 1.14 minutes was chosen. Each remaining time step was generated
in the manner described previously. The numerical solution obtained

was compared with the analytical solutions listed in Appendix 3.
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Fig. 5.23 illustrates a logarithmic plot of the dimonsionless draw down-
time relationships for various nodal points in the aquifer and overlying
aquitard. All of these points are located at a radial distance of 5 ft.

from the pumped well. In the figure, the dimensionless parameters

and z’/rri were calculated from

(5. 7
Kmm|

(5. 3)

(5. 9)

(5. KT

where K¢, Sg, m* are the coefficient of permeability, specific storage
and thickness of the aquitard respectively. The remaining symbols hav
been defined previously.

It can be seen that for large values of time (t>- ) the
finite element solution agrees closely with the analytical solutions.

S 1

. . mL
Deviation occurs at small values of time (t 4 ) along the steep

portions of the type curves for the nodal points in the aquitard.

To determine whether the failure of the finite element method to
yield satisfactory results for early times was due to the coarse mesh
used, the network and time step sizes were refined. The new network
shown in Fig. 5.22 was adopted. As seen in the figure, the number of

vertical subdivisions in the aquitard zone near the well is double that
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In the outer portion ol the aquitard. A combination of rectangular and
triangular elements was used. The network consists of 229 nodes and
204 elements. The initial time step was reduced to 0.28 minutes and
a smaller time factor of 1. 25 was used. Solution for 30 time steps was
completed. The result obtained was compared once again with the
analytical solutions for small values of time. It is seen in Figure 5. 23
that the use of the refined network and smaller time step sizes resulted
in better agreement with the analytical solutions.

A separate check was also made on the finite element solution by
examining the drawdown-time relationships obtained from various nodal
points in the main aquifer. These relationships are illustrated in Fig.
5.24. As expected, the numerical solution approaches Hantush’s long
time solution which corresponds to the late time Theis curve at time
t ~ 2 Sg Ifll\F?)V K/ This late time curve is spaced at a horizontal dis-

tance of (8 - I)/u.from the conventional Theis curve, referred to as the

early time Theis curve.

5.4.2 Two-regime Flow Solutions

To use the finite element method to investigate transient two-
regime flow and study the effect of non-Darcy flow on late time draw-
downs in the main aquifer, the problem defined in Fig. 5.20 was solved
for six flow cases of different discharge. As before, the numerical
solutions were obtained by employing the computer program used to
solve the Darcy flow case. The coarse network shown in Fig. 5. 21
was adopted as it can be seen in Fig. 5.23 that this network gave quite

satisfactory drawdown values at late times. Theexternal ranius oi the
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network was extended to 10, 000 ft. to ensure that the drawdown would
not reach it at the end of the pumping period. The initial time step
size was chosen to be 2. 24 minutes. As in the Darcy flow case, the
time multiplier of 1. 4 was used to generate the remaining time steps.
Thirty time steps were taken to reach the end of the pumping period at
t = 36, 000 minutes.

For flow case No. 6, Q = 1,000 cfm, a plot of the dimensionless
drawdown-time relationships for selected points in the main aquifer at
radial distances of 1, 1.50, 2.25 and 5.05 ft. from the pumped well is
shown in Fig. 5.25. The late time Theis curve for the wholly Darcy
flow case 1s also included. Once again the effect of the dimensionless
parameter A on the well function, W = 47T Kms/Q, may be observed.

For flow cases Nos. 2 and 4, semi-logarithmic plots of drawdown
in the aquifer versus radial distance from the well are illustrated in
Figs. 5.26 and 5. 27 for times t = 18 and 18, 300 minutes respectively.
The Darcy flow solutions are also shown in aotted lines. It can be
seen that, for each well discharge, the two-regime flow curve deviates
from the linear Darcy flow solution at distances less than a certain
critical radius. This radius, indicated by the junction of the solid and
dotted lines, is observed to increase with increase in the well discharge.
Comparison of Figs. 5. 26 and 5. 27 again leaas to tne conclusion that
for transient flow at constant discharge the additional drawdown due to
non-Darcy flow which has been fully developed near the well remains

constant with time.



DRAWDOWN

WELL

175

150

125

100

75

50

25

100 200 300 2.00 500

DISCHARGE -

Fig. 5.28: Well discharge-drawdown relationships at times
t = 18 and 18, 300 minutes.



106.

Finally, the effect of non-Darcy flow on the well discharge-
drawdown relationships is illustrated in Fig. 5.28 for times t = 18 and
18, 300 minutes. The relationships are non-linear and may be fitted
by equation (5.6).

5.5 Flow towards a Well in an Unconfined Aquifer - Aquitard System

5.5.1 Darcy Flow Solutions

A diagrammatic sketch of a well in a flow system consisting of
an aquifer and an overlying unconfined aquitard is shown in Fig. 5.29.
The well is screened through the entire thickness of the aquifer and
pumped at a constant discharge. An analytical approach to the trans-
ient Darcy flow problem was presented by Cooley and Case (1963, unpub1,)
They considered the boundary value problem identical to the one solved
by Hantush (1960) with the exception that the boundary condition at the
top of the aquitard is replaced by Boulton's exponential integral to sim-
ulate variable yield from the unsaturated zone. Their complete
analvtical solution for drawdowns in the main aquifer is divided into
short and long time segments. The short time solution, valid for
t " SS m2/10K"', is identical to that given by Hantush (1964, p.312).
The long time solution, valid for t > 10 Sg' m2/1C, 1is similar to
Boulton's solution of the unconfined flow problem (Boulton, 1963, p. 4/9).

To verify the finite element analysis, a hypothetical problem was
formulated. The problem data are given in Fig. 5.29, flow case No.0.
Two combinations of network and time discretisation were adopted.

For the first combination, the coarse network shown in Fig. 5.21 was
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The initial time step size of 1.12 minutes and the time multiplier of

1.4 were again chosen. The problem was solved for 30 time steps

and the numerical solution obtained was checked against the long time
solution for drawdowns in the aquifer. A plot of the dimensionless
drawdown-time relationships for points in the aquifer which are

located at distances of 57, 292 and 657 ft. from the pumped well is shown

in Fig. 5.30. The dimensionless parameters, and sfg, listed are

Iy
given by

) (5.11)

5.12
Ssm ( )

The remaining parameters , L and /3, are given by equations
(5. 7) and (5. 8). It can be seen that good agreement between the finite
element and the analytical solutions was achieved.

The second combination of network and time step sizes was used
to study convergence of the finite element solution. The refined net-
work shown in Fig. 5.22 was adopted. This network has been pre-

v iously described in Section 5.4. 1. The smaller initial time step size
of 0. 28 minutes -and the time multiplier of 1. 25 were chosen. The
numerical solution obtained was compared with the result obtained pre-
viously by using the coarse network and larger time step sizes. Fig. 5.3
shows a plot of the dimensionless drawdown-time relationships for

selected points in the flow system. All of these points are located at
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a distance of 292 ft. from the well but at different elevations from the
top of the aquifer. It is noted that along the steep portions of the type
curves the coarse mesh solution lies slightly below the refined mesh
solution and that along the flatter portions of the curves the two sol-
utions agree quite closely.

5.5.2 Two-regime Flow Solutions

A hypothetical transient two-regime flow problem was formulated.

The problem data are listed in Fig. 5.29. Six flow cases of different

discharge were solved by the finite element method. The numerical

solutions were obtained in the manner described in Section 5.4.2.

For flow case No. 6, Q = 1,000 cfm, a plot of the dimensionless
drawdown-time relationships for selected points in the aquifer at dis-
tances of 1, 1.5, 2.25, 5.07 ft. from the well is shown in Fig. 5. 32.

It can be seen that the type curves are similar to those shown in Fig. 5.'

For flow cases Nos. 2 and 5, semi-logarithmic plots of drawdown
in the aquifer versus radial distance from the well are illustratea in

Figs. 5.33 and 5. 34 for times t - 18 and 4, 580 minutes respectively.

It is noted that flow case No. 5 cannot be realised in practice as tne dis-
charge of 500 cfm results in a well drawdown in excess of the maximum
possible value of 100 ft. vihich is the drawdown to the base of the aquifer.
Finally, the effect of non-Darcy flow on the well discharge-
drawdown relationships is illustrated in Fig. 5.35 for times t - lo ana

4,580 minutes. Once again it is noted that the relationships are non-
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linear and may be fitted by equation (5.6).

5. 6 Flow towards a Well in an Unconfined Aquifer

5.6.1 Darcy Flow Solidion?
A diagrammatic sketch of a well in an unconfined aquifer is shown

in Fig. 5.36. The well is fully screened through the initial saturated
thickness of the aquifer and pumped at a constant discharge. A sim-

plified analytical approach to the problem of transientunconfined Darcy
flow was presented by Boulton (1954), (1963). He used the exponential

integral to approximate the delayed yield from the unsaturated zone

and solved the one-dimensional field equation which was developed by

considering only radial flow components. His complete analytical

solution to the problem is based on the assumption that thickness of
the aquifer is constant and equal to the initial saturated thickness.

The validity of Boulton’s work was investigated by Cooley (1971)
who applied the finite difference method to two-dimensional flow in both

saturated and unsaturated zones of the aquifer. He discovered that
Boulton's analytical solution corresponded closely to his numerical sol-
ution of the unconfined flow problem provided that the drawdown of the
water table is small compared to the initial saturated tnickness.

A hypothetical problem was formulated to verify the finite element
analysis by using Boulton's analytical solution. The pioblem data aie

given in Fig. 5.36, flow case No.O.It was assumed a piiori that

Boulton's solution provided a close approximation to the complex
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Fig. 5.36: Data for the problem of transient flow towards

a fully screened well in an unconfined aquifer.
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boundary value problem analysed by the finite element method, as an
exact solution to this problem could not be obtained.The network similar

to that shown in Fig. 5. 37 was adopted. The external radius of this

network is 2, 000 ft. As seen in the figure, the saturated flow region

is divided into two subregions, one where the mesh is held fixed and
the remaining subregion where the mesh is allowed to contract or ex-

pand to accommodate free surface adjustments. The subdivision of

each subregion into triangular elements has been described in

Section 5.3.1. A total of 133 elements and 102 nodes was used. The

initial time step size of 0.20 minutes and the time multiplier of 1.4
were chosen. The problem was solved for 30 time steps.
The numerical solution obtained was a hydraulic head distribution

that varied with depth throughout the entire pumping period. Draw-

downs at radial distances of 40 and 150 ft. from the well were av-

eraged over the height of the water table and used for comparison with

Boulton’s solution. The justification for using the average drawdowns

has been given by Cooley (1971). Values of the oimensionless draw-

down W and the parameters r/D and *~ were calculated from

4 7t K hO s
Q

W (5. 13)

(5. 14)

(5. 15)
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Fig. 5.37: Finite element network for an unconfined aquifer with a
fully screened well.
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wheic bG is the 1ii11] 1 saturated thickness of tlio aquifer, and 5

is the average drawdown, which is given by

(0

Comparison of the numerical and Boulton's analytical solutions was
made by matching the numerical results against a family of Boulton’s
type curves. The numerical results and the matching type curves are
shown in Fig. 5.3 8. The values of r/D for the best fit type curves are
slightly different from those calculated from equation (5. 14) by using the
original problem data. The difference can be explained in terms of
the fact that Boulton's solution is based on the simplifying assumption
that the thickness of the aquifer is constant and equal to the initial sat-
urated thickness. It can be seen that in general the numerical
solution agrees closely with the analytical solution except along the
steep portions of the type curves where slight deviation occurs. The
deviation is probably due to the coarse network and time step sizes
used.

Finally, the positions of the water table and water level in the
well at times t = 4.5 and 1, 140 minutes are illustrated in Fig. 5. 39.
These positions are compared in the next section with the corresponding
positions obtained from the two-regime flow solution for the same well

discharge.
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Fig. 5.41: Positions of the free surface and the water level in the well
at times t = 4.5 and 1140 minutes (Two-regime flow solution).
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5.6.2 Two-rcgimcC Flow Solutions

(1) Transient Flow Case

The transient two-regime flow case shown in Fig. 5.36
(flow case No. 1) was solved by employing the computer program
used previously to solve the Darcy flow problem. The network
described in Section 5.6.1 was again adopted. The initial time
step size of 0. 20 minutes and the time multiplier of 1.40 were chosen.

Fig. 5.40 shows a semi-logarithmic plot of the drawdown-time
relationships for two nodal points on the well boundary which are
located at the top of the seepage face and below the water level in the
well respectively. Due to the delayed yield effect which is incorp-
orated in Boulton’s exponential integral, the plot in the figure takes
the familiar S~shape.

The effect of non-Darcy flow on the positions of the water table
and water level in the well is illustrated in Fig. 5.41 for times t=4.5
and 1, 140 minutes. On comparing this figure with Fig. 5.39 it is noted
that for the same well discharge and pumping time the length of the
seepage face from the two-regime flowr solution is appreciably greater
than that obtained from the Darcy flow solution.

(11) Steady Flow Cases

To investigate steady state, two regime flow’ in an unconfined
aquifer, the problem shown in Fig. 5.42 was solved for four selected
flow cases. A network similar to the one shown in Fig. 5.37 was

adopted. Its external radius was 1000 ft. For flow cases Nos. 1,7 and



Flow Case
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4

Fig. 5.42:
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Data for the problem of steady flow towards a
fully screened well in an unconfined aquifer.

508¢.
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where the height of the water level in the well is prescribed as 10 ft.,
the free surface and the base pressure head curves are plotted in Fig.
5.43 and 5.44 respectively. The effect of increasing the value of the
non-linear coefficient b on the shape and position of these curves may

be observed. Fig. 5.45 shows a semi-logarithmic plot of the dimension-
less type curves of the base pressure head distribution for all flow

cases. The dimension!ess variables and parameters listed in the figure

were calculated from

W rtK (ho2 - hb2) (5.17)
Q
Uo N (5. 18)
0
A bOK (5. 19)
2Khoro0
bVier (5.20)
where base pressure head
hg height of the water table at the

external radius
The remaining symbols have been defined previously.
The effect of the parameter A on the shape of the type curves
may be observed. For flow case No.l, which is the wholly Darcy
flow case (A = 0), the curve becomes a straight line. Dow cases

Nos. 2, 3 and 4 correspond to A =.0017, .0035 and .0056 respectively.
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Fig. 5.43: Free surface curves for steady flow cases. Note the
effect of the non-linear hydraulic coefficient, b.

70



CASE No. b(min./ft.)2

1 0

2 0-8

10 -2L. 3 4-0
I I L
0 10 20 30 40 50 60

RADIAL DISTANCE - ft.

Kig. 5.44: Base pressure head curves for steady flow cases. Note
the effect of the non-linear hydraulic coefficient, b.
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A xPer”mell”a” Verification of Steady State, Two-regime Flow
Solutions

6.1 General

The finite element analysis was experimentally verified using
data obtained during a joint investigation of flow towards wells 9"

The following flow conditions were investigated using a large
scale hydraulic model*.-
(1) Flow towards a fully screened well in a confined aquifer.
(i1) Flow towards a fully screened well in an unconfined aquifer.
(111) Flow towards a partially screened well in a confined aquifer.
(iv) Flow towards a partially screened well in an unconfined aquifer.

Type curve methods were developed .by the author to determine
the in-situ hydraulic characteristics, namely a, b and K of the aquifer
material used in the experiments. The determined values of the
hydraulic coefficients were fed into the finite element model to obtain
numerical solutions of the flow problems. Comparison of the ex-
perimental results and the numerical solutions is presented in this
chapter. A general description of the hydraulic model and testing pro-
cedures is also included.
(1) The design and construction of the experimental equipment and some

of the results have been previously reported by Dudgeon, Huyakorn

and Swan (1973, Vol. 1). Additional data used in this thesis will be
published in detail at a later date.
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6.2 Description of Hydraulic Model

6.2.1 Essential Features

A plan view and a photograph of the model are shown in Figs.
6. 1 and 6.2 respectively. The detailed design and construction of
this model has been described by Dudgeon et al (1972, pp.D2-D13). The
model, placed in a square reinforced concrete tank with internal di-
mensions of le'xie’x1l', was constructed to represent a quadrant
portion of the well-aquifer system. The aquifer material was retained
by a 16 ft. radius barrier which was made up of 16 gauge perforated
steel sheets joined together to form a quadrant of the circle. The
thickness of the aquifer was 5 ft. An inner barrier with a radius of
4 ft. was also provided to allow aquifer material close to the 5 inch
quadrant well to be removed without disturbing the bulk of the entire
aquifer. This provision was desirable as it served the purpose of
speeding up the task of changing well screens. The inner barrier
was made from a 16 gauge perforated steel sheet, curved and corrug-
ated to allow it to resist compressive loads without buckling. The
open area of the perforated sheet was 52%, which was considered
sufficient to prevent additional flow resistance being introduced at
this location.

Water was supplied to the tank from a 6 inch diameter inlet pipe
located at the corner opposite to the quadrant well. The inflow water

was passed through the aquifer medium towards the well from which it
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Fig. 6. 1: Plan view of well-aquifer model showing essential features.



Figc 6,2: General view of well-aquifer model showing
reinforced concrete tank* instrumentation annexe and
aquifer material.

Figo 6. 3: Internal view of instrumentation annexe showing orifice
manometer panel (centre) and piezometric tubes (right).
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was pumped through a discharge measuring device back into the tank.
A 6-inch centrifugal pump with a 20 II. P. motor capable of delivering
2 cfs against a head of 60 ft. was used to recirculate the water through
the tank. Discharges were accurately measured by D and D/2
orifice plate meters manufactured and calibrated according to the
British standard specification. To observe the hydraulic heads at
various radial distances from the pumped well, a number of piezometric
tappings, made from copper tubes, were installed in the base of the
tank along a radial line extending from the well outlet to the diagonally
opposite inlet pipe. The spacing of these tappings is indicated in
Fig. 6. 1. Closer spacing near the well allowed for steeper hydraulic
gradients in that vicinity. The tappings were connected to manometer
panels on two opposite walls of the tank. A photograph showing one of
these panels on the wall inside the instrumentation annexe i1s given in
Fig. 6.3.

6.2. 2 Aquifer Material

A Nepean river gravel consisting of rounded particles was
selected as an aquifer material which would allow non-Darcy flow to
develop in the zone extending from the well to the inner barrier. Sieve
analysis was performed on a sample of this gravel. The grain size
distribution curve is given in Fig. 6.4. The characteristic grain
diameter d, chosen as the diameter such that 10 percent by weight o1

the sample is of smaller size, was obtained as 0.056 inches. It is
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noted that the gravel was sufficiently coarse for unconfined flow to
take place with negligible capillary effects.

Permeability tests were also carried out on the sample to
determine the hydraulic coefficients for comparison with the values
obtained by applying the newly developed type curve methods. The
permeameter used in carrying out the tests was a downward vertical
flow type similar to the one described by Dudgeon (1964, 1966). Its
diameter was 8 inches and the diameter of the inner core section was
6 inches. As pointed out by Dudgeon, the purpose of the inner core
was to eliminate wall effects.

The gravel was loaded into the permeameter in the same manner
as was used to load the experimental tank in an attempt to obtain a
similar porosity. Porosities determined from measurements of the
volume of water required to fill the voids were 34. 6% in the permeamete
and 33.1% in the model tank.

Piezometric head measurements were taken over a 2 ft. long
inner core section of the sample. The results obtained are presented
in Fig. 6.5. The fitted Forchheimer velocity-hydraulic gradient
curve was obtained by applying the curve fitting method suggested by
Sunada (1965). The accuracy of the fit -was assessed from the value
of the standard error of estimate which was calculated as 5. 6 percent
Values of the hydraulic coefficients, a, b and IC and the critical
velocity Vcr are also included in the figure. Using the determined
value of d and the listed value of Vcr, the critical Reynolds number

[Hcrwas found to be approximately 4. 2
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6.3 Test Program and Procedures
To study two-regime flow under different aquifer and well con-
ditions, four series of tests were performed.
(1) Fully Screened Well in a Confined Aquifer

The purpose of the first series was to investigate flow towards
a fully screened well in a confined aquifer. A 5 ft. length well screen,
made from a perforated steel sheet, curved to form a quadrant of a
5 inch diameter circle, was used. The top of the aquifer was covered
with a polythene sheet to simulate an impermeable overlying layer as
shown in Fig. 6.6. The sheet was held in position by several inches of
aquifer material and sealed to the edges of the tank. Care was taken to
avoid vertical leakage into the aquifer as much as possible. After the
tank had been filled with water and the air entrained in the aquifer re-
moved, several tests were carried out to establish the discharge-
drawdown relationship for the fully screened well. For each test,
measurements of the piezometric heads at the floor tappings and the
water level in the well were made.

(i1) Fully Screened Well in an Unconfined Aquifer

The purpose of the second series of tests was to investigate flow
towards a fully screened well in an unconfined aquifer. Following the
first series, the model was filled slowly with water up to a depth of
4.3 ft. which was slightly less than the tnickness oi the aquifer. The
model then represented an unconfined aquifer with a fully scieened v e.il.

Several tests were performed to obtain the discharge-drawdown
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Fig. 6.6: Radial cross-section of well-aquifer model showing
arrangement for confined flow testing.
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relationship for the same well which became a water table well. For
each test, the piezometric heads along the base of the aquifer and the
water level in the well were measured. Attempts were also made
but without success to locate the position of the free surface by observ-
ation through a series of 1 inch diameter holes spaced at 6 inch centres
in a wall of the reinforced concrete tank.
(111) Partially Screened Well in a Confined Aquifer

The third series of tests was intended to investigate flow towards a
partially screened well in a confined aquifer. Following the second
series, the 5 ft. screen shown in Fig. 6.6 was removed and a shorter
screen of 1 ft. length was placed at the base of the aquifer. The re-
maining thickness of the aquifer was cased. In carrying out this task,
it was necessary to remove and backfill the aquifer material in the
zone inside the inner barrier. As in the first series, a number of tests
were carried out to obtain the discharge-drawdown relationship.

(1v) Partially Screened Well in an Unconfined Aquifer

The last series of tests was carried out to study flow towards a
partially screened well in an unconfined aquifer. As in the second
series, the model was refilled slowly up to the depth of 4. 3 ft. and
several tests were performed to obtain the well discharge-drawdown

relationship.
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6.4 Comparison of Experimental Results and Finite Element
Solutions

6.4.1 General

In comparing experimental results from a well-aquifer model with
numerical solutions, it is essential that appropriate values of the hyd-
raulic coefficients for the aquifer material be obtained and fed into the
numerical model. FEarlier workers (Volker, 1969), (Trollope et al
1971), resorted to permeability tests carried out over a range of
velocities comparable with those in the model. @ While this approach
may be justified in the absence of a more satisfactory approach, doubt
usually exists as to whether the physical properties of the sample are
similar to those of the model aquifer. Slight change in such properties
as effective porosity and packing of grains can affect the hydraulic co-
efficients K, a and b quite considerably (FVanzini, 1951), (Engelund, 1953,
pp. 17-29), (Dudgeon, 1968). Unless the values of these coefficients
used in obtaining the numerical solutions are comparable to the actual
in-situ values, satisfactory agreement between the numerical and ex-
perimental results cannot be achieved.

In the present work, the in-situ hydraulic coefficients were de-
termined by applying two newly developed type curve methods to the
results obtained from the first and third series of pumping tests.

These type curve methods are described in the following sections.



* The arrangement for the first series of tests is illustrated dia-
grammatically in Fig. 6. 6. Results were obtained for a sufficient
number of flows to establish the well discharge-drawdown relationship.
For each test, the total discharge from the full well circle, Q, was
calculated as 4 times the measured discharge from the quadrant well.
To determine the in-situ hydraulic coefficients, the following type
curve method was applied to the results from the test which gave
Q = 68.77 cfm:~

(1) The piezometric readings were converted to drawdowns an
plotted on a semi-logarithmic scale against the dimensionless radius
r/rQ, where rQcorresponds to the 16 ft. radius of the outer barrier.

A free hand curve was drawn to fit most of the experimental points.

The plot was then superposed on the type curve for steady Darcy flow
towards a fully screened well as shown in Fig. 6.7. It is noted that the
experimental curve becomes non-linear as the well is approached. A
certain radius r where the experimental plot is linear was selected

and the corresponding values of the drawdown s and the dimensionless
drawdown 2 ft s T/Q were read from the graph. Using these values, the

transmissivity coefficient T was calculated as

T = £-2Sx 68. 77 = 57 ft2 /min>
2 KX%. 24
(11) Using the determined value of T, the experimental plot was

converted to the dimensionless plot of 2ft sT/Q versus r/rQ and
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superposed on a family of type curves for steady state, two-regime
flow as shown in Fig. 6.8. The value of the non-Darcy flow para-
meter A for the best fit type curve was obtained and used together
with the value of T in calculating the required in-situ values of the

hydraulic coefficients a, b and K as follows:-

= 2 Kirn X
QT
27T x 52x 16 x .072 . 2..2
= '"“68+77 x-57--——————-- = -°47 mm /ft e
a = -f~ - bVer
57 - .047 x 0.5 = .060 min/ft.
K = 557 = 114 ft/min.

The determined in-situ values were fed into the finite element
model to obtain theoretical predictions of the experimental flow con-
ditions. In the finite element analysis, the hydraulic heads on the
well screen were prescribed as the measured heights of the water level
in the well. In so doing, it was assumed that screen losses were
negligible.

Figs. 6.9 and 6.10 show a comparison of the numerical solutions
and the results from four tests chosen to cover a good range of the well
drawdown.  The plot in Fig. 6.9 represents the dimcnsionless draw-
down-radial distance relationships. The discharges listed are the

experimental discharges. It can be seen that ine determined in-Si*u
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values of the hydraulic coefficients led to good agreement between the
theory and experiment. As a further check on the accuracy of these
values, the well discharge-drawdown relationship is also plotted in
Fig. 6.11. Good agreement between the theoretical prediction and
experimental results may again be observed.

6.4. 3 Flow towards a Fully Screened Well in an Unconfined Aquifer

The arrangement for the second series of tests was identical to
that shown in Fig. 6.6 for the first series except that the height of the
water table at the outer barrier was lowered to 4.30 ft. As the aquifer,
which then became an unconfined aquifer, was not physically disturbed,
its hydraulic properties would have remained unchanged. Consequently,
the in-situ values of a, b and K were taken as those listed i1n section
6.4.2 and used in obtaining the finite element solutions. In the finite
element analysis, the hydraulic heads on the portion of the screen be-
low the seepage face were prescribed as the measured heights of the
water level in the well.

Figs. 6. 12 and 6. 13 show the plots of the base pressure head
against radial distance as obtained from the theory and experiment.
As the positions of the free surface were not located satisfactorily in
the experiments, only the theoretical free surface curves are included
in the figures. The water levels in the well are also shown# It can
be seen that in general the agreement between the numerical solutions
and experimental results is quite acceptable. The experimental poims

tend to lie slightly below the theoretical curves. Possible explanations
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for this are:-
(1) well screen losses which were neglected in the theoretical analysis,
(11) the effects ol convergent flow on the hydraulic coefficients a and
b (Wright, 1968).

As a further check on the values of the hydraulic coefficients
used, the well discharge-draivdown relationship is plotted in Fig. 6.14.
Good agreement between the theory and experiment may be observed
but it should be noted that the discharge-drawdown relationship is less
sensitive to change in the values of a and b than is the base pressure

head curve.

6.4.4 Flow towards a Partially Screened Well in a Confined
Aquifer

In carrying out the third series of tests to investigate flow to-
wards a partially screened well in a confined aquifer, it was necessary
to remove and backfill the aquifer material inside the inner barrier.
This process could lead to considerable change in its hydraulic prop-
erties. Thus the in-situ values of a, b and K were redetermined.

The following type curve method was applied to the results obtained
from the test which gave the total well discharge of 56. 25 c¢fm;-

(1) The piezometric readings were converted to drawdowns and
plotted on a semi-logarithmic scale against the dimensionless radius
r/rQ. A free hand curve was drawn to fit most of the experimental
points and the plot was then superposed on the type curve for steady
Darcy flow towards a partially screened well as shown in Lig. 6. 15

It is noted that the experimental curve is approximately linear beyond
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a certain radius where the effects of non-Darcy flow and partially
screening become negligible. At this radius, the values of the draw-
down s and the dimensionless drawdown 2 ft sT/Q were read from the

graph. Using these values, the transmissivity of the aquifer Tv/as

calculated as

_ 1.0 x 56, 25 ' o2 .
T ' -YS-x-0TiV ‘ 64 ft /mm
(i1) Using the determined value of T, the experimental plot was

converted to the dimensionless plot of 2 ft sT/Q versus r/rQand
superposed on a family of type curves for steady state, two-regime
flow towards a partially screened well as shown in Fig. 6.16. The
value of the non-Darcy flow parameter A for the best fit type curve was
obtained and used together with the value of T in calculating the re-

quired in-situ values of a, b and K as follows

b - — " m2r°A”
QT
6. 28 x 52 x 16 x .0188 W 2.2
56.05 x 64 = 0133 min~ /ft
8 = I _x BVecr
6451 - .0135x. 5 = .071 min/ft;
K 5 = 12.8 ft/min.

These values were fed into the finite element model to obtain
theoretical predictions of the experimental results. In the finite
element analysis, the hydraulic heads on the well screen were

prescribed as the measured heights of the water level in the well. It
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was assumed that the newly determined coefficients were applicable
throughout the entire aquifer. The additional refinement of a two
zone treatment was considered unwarranted as the properties of the
material within the inner barrier are decisive in determining the
discharge. Fig. 6.17 shows a plot of the drawdown-radial distance
relationships for four values of the prescribed well drawdown. It can
be seen that the numerical solutions agree quite closely with the ex-
perimental results.

As a further check on the theoretical analysis, a plot of the well
discharge-drawdown relationship is shown in Fig. 6.18. Good agree-
ment between the theory and experiment may again be observed.

6.4.5 Flow towards a Partially Screened Well in an Unconfined
Aquifer

As 1n the second series, the results from the final series of
tests to investigate flow towards a partially screened well in an un-
confined aquifer were obtained without disturbing the physical condition
of the aquifer material. Consequently, the same in-situ values of the
hydraulic coefficients obtained in section 6.4.4 were used to obtain
the.finite element solutions.

Figs. 6. 19 and 6.20 show the plots of the base pressure head
against radial distance as obtained from the theory and experiment.
The theoretical free surface curves and prescribed water level in the

well are also illustrated. It is noted that due to the effect of partial
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approximately equal to the aquifer thickness and that beyond this
radius it approaches the basepressure head curve. Good agreement
between the theoretical predictions on the base pressure head curves
and the experimental results may also be observed.

As a further check on the values of the hydraulic coefficients
used in the finite element analysis, the well discharge-drawdown
relationship is also plotted in Fig. 6.21. It can be seen that the ex-

perimental points lie quite close to the theoretical curve.
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7+ Field Verification of Transient Flow Solutions

7.1 General

In order to provide field verification of the finite element analysis
of transient, two-regime flow problems, two sets of data were collected
__________________________ % .
from pumpinﬂgz tests” carried out at the following sites (see Fig. 7.1):-
(1) Site A - Gumly Gumly Island, near Wagga Wagga, New South
Wales, where there exists a deep aquifer overlain by a confined aquitard;
(i1) Site B - Kosevale, Southeast Queensland, where there exists a
shallow aquifer overlain by a water table aquitard.
Type curve methods were developed and applied to the test data
to determine the hydraulic coefficients of the main aquifer and the over-
lying aquitard in each case. The determined coefficients were fed into
finite element models of the two field systems to obtain the theoretical
predictions of the actual flow behaviours. Comparison of the numerical
solutions and field data is presented in this chapter.
7%2 Site A - Gumly Gumly Island, New South Wales
7. 2.1 General Data
A pumping test was performed in co-operation with the Water
Conservation and Irrigation Commission of New South Wales, from
September 26 to 29, 1972. A group of wells (Fig. 7.2) located on an

alluvial area of the jVTurrumbidgee River, known as Gumly Gumly Island,
(1. A detailed description of the field investigations and resuits have been

published by Dudgeon, Huyakorn and Swan (1973, Vol. 2)
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was used for the test. The construction features and available driller
logs of these wells are given in Fig. 7.3. Well30638 was a 24 inch
diameter, gravel packed production well whose detailed features are
shown in Fig. 7.4. Wells 30577 and 30568 Were two close observation
wells located at distances of 7 and 22 ft. from the production well
whilst the remaining wells were distant observation wells located at
radial distances indicated in Table 7.1.

To observe drawdowns in the aquifer and the overlying aquitard,
the production well and the closest observation well 30577 were each
fitted with 4 slotted P. V.C. piezometers (see Fig. 7.4) placed at
depths indicated in Table 7.1 and Fig. 7.3. The response of these
piezometers to pumping was monitored by means of multiple contact
electric probes developed for the measurement of the rapidly falling
water level. The detailed description of these probes has been
presented by Dudgeon et al (1973, Vol. 2, Appendix III).

Pumping was started at 3. 00 p. m. on September 26 and was
continued for a period of 4320 minutes at an approximately constant
rate of 48, 000 igph (128 cfm)'until 3. 00 pm on September 29. A
continuous record of water levels in the production well, all observation
wells and piezometers was maintained for a period of 3900 minutes.
The piezometers in the shallow aquifer, illustrated in Fig. (.3, were
discovered to show no response, indicating that there was virtually no

hydraulic connection between this aquifer and the confined flow system
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Table 7. 1: Radial distances from production well 30638 and
screened intervals of observation wells and
piezometers at Site A.

Well Piezometer Radial Screened
© No. Distance Interval Remarks
from Well R.L. above
30638 sea level
(ft.) (ft.)
30638 412-452 Inside production
well
1 1 555-557)
2% 1 480-482) Gravel pack
3* 1 440-442) piezometers
4 1 420-422)
30577** 5 7 555-557 No response to
pumping 30638
6 7 485-487
7 7 465-467
8 7 420-422
30568 22 416-436
30602 1385 398-437
30032 1 2600 355-375 No response to
pumping 30638
3 2600 457-465
2 2600 540-560
30031 1 3050 533-553
2 3050 353-413 No response to

pumping 30638

JBlocked during construction

** Well 30577 hydraulically sealed from 52 ft. to 110 ft. below
ground surface.
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under consideration.

The drawdown-time field data obtained from the production well
and nearby observation well 30577 were used to verify the finite element
analysis as the aim was to examine flow conditions and aquifer
characteristics near the pumped well. To check whether non-Darcy
flow existed in the main aquifer at the pumping rate of 128 cfm, a semi-
logarithmic plot of drawdown at time t = 3800 minutes versus radial
distance was made using the drawdowns in observation wells 30577,
30602, 30032 and 30031 and the drawdowns inside the gravel pack and
the production well. The plot is presented in Fig. 7.5. It can be
seen that non-Darcy flow did not exist and that head losses in the
gravel pack and inside the pumped well were negligible.

7.2.2 Finite Element Model and Type Curves for the Field System

ro X 10,000 FT.

Fig. 7.6: Model of the Gumly Gumly Island Field System
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From the general data presented in the preceding section, a model
of the field system was constructed. As shown in Fig. 7.6, the model
represents a confined aquifer- aquitard system with an external radius
of 10,000 ft. The average thicknesses of the aquifer and aquitard were
taken as 40 and 4o ft. respectively. Both layers were assumed to be
homogeneous and isotropic. The top of the aquitard was also assumed to
be impermeable.

The finite element method was used to solve several flow cases
which were simulated to obtain families of type curves characterising
the behaviour of the field system. As non-Darcy flow did not exist in
the field, only the Darcy flow type curves were obtained for the main
aquifer.

Typical families of type curves are shown in Figs. 7.7 and 7.8
for the main aquifer and in Figs. 7. 9a to 7. 11 for the aquitard. The
dimensionless parameters of the type curves>— |, and which 1is
proportional to f? ,have been defined in Section 5,4. 1. Only a
limited practical range of values of these parameters was considered as
a vast amount of computer time would have been required to cover a wide
range. On comparing Fig. 7.7 with Fig. 7.8, it may be observed that
the horizontal spread between the two envelope Theis curves for the
aquifer decreases as decreases and that for a given value of W(u),
the difference between the values of (1/u® read from the two envelope

curves is quual to ($1~ 1)7 .



IO

IO

st+s

Fig.

10

7.7

10

4 Kt

/g =
va r2s.

Type curves for the main aquifer of the Gumly Gumly Island
system (r/B r ft ; &N- 17).

IO



w (u.)

10

s+s

Fig.

10

Type

curves

system (r/B

for

the

2/B |

m ain

6

1/a

aquifer

5.5).

of

the

Gumly

Gumly

Island



I<(NS

KW

Type

field

curves

fo

system

r

(X

the

m ain

J3

aquifer

- .01

of

the

5,

Gumly Gumly

= 1)

Island



10

=/3 3 0-125

101

Fig.

7.

9b:

1/w

Type curves for the overlying aquitard of the Gumly Gumly
Island system (r/R r~ =0.125, ¢ * 17)



10

(0

10

10°

Fig.

7.

10:

Type curves for the overlying aquitard of the Gumly Gumly

Island system (r/B

:]3

/UL

1.25;

s~ r 17).



LAI

Rig. 7. 11: Type curves for the overlying aquitard of the Gumly Gumly
Island system (r/R = .025; /S - .0125; &" =5.5).



132.

The effect of the parameters —Z{;— and p on the horizontal and
vertical spread of typo curves for the aquitard may also be noted from
Fiés. 7.9a to 7. 11. It can be seen that for constant gI;'/,A the spread
between the type curves decreases as the values of p and T increase
from ,01 to 1.25 and that when g//7 increases from 1to 2 (Figs. 7.9a
and 7. 11) the spread also decreases. This fact was used to great
advantage in matching the field data plot against the theoretical type
curves.

7.2.3 Comparison of Field Data and Finite Element Solutions

The following type curve method was used to determine the hydraulic

coefficients of the aquifer and aquitand:-
(1) The drawdown-time data for the observation point located in the
main aquifer, observation well 30577 (r = 7 ft.), was converted to a
log-log plot of s versus t on a sheet of transparent paper. The plot was
then matched on a selected family of type curves for the aquifer as shown
in Fig. 7.12. Matching was performed by shifting the field data plot
over the type curve plot while maintaining their axes parallel and en-
suring that the late time portion of the field data fell on the late time
Theis curve. Satisfactory matching was found when the remaining
portion of the field data coincided with the corresponding type curve
branching from the late time Theis curve. The final matching and
values of Eand B for the matching type curve are shown in Fig. 7.12.

As a check to ensure that the appropriate family of type curves had

been selected, matching of the field data collected from pumped well
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30568 against the same family of curves is also presented in Fig. 7.13.
It may be noted that the listed value of p for the matching type curve in
this figure is approximately 1/7 times the value in Fig. 7. 12. The two
values of p are thus proportional to the radial distances from the
pumped well.
(i1) The drawdown-time data for all observation points in well 30577
(at z’/m’> =0, 0.25 and 0.75) were plotted together on another sheet
of transparent paper. ' Using the values of p and r—given in Fig. 7. 12,
the type curves for z’/m' = 0, 0.25 and 0.75 were constructed and
matched on the field data plot. Minor adjustments of the values of p
and {BL were found necessary to obtain a satisfactory match. The final
matching a.nd values of p and — are shown in Fig. 7. 14. A match
point was selected to determine the hydraulic coefficients K, Sg and
< S; for the main aquifer and the aquitard respectively. The calculator
is presented as follows:- -
Let (W, 1/u) and (s, t) denote the coordinates of the match point.
The coefficients I< and Ss for the aquifer are given by
K Q¥

and Ss 4—Kt21/1~
where W = 0.40, L=0, 115 x 106

S =1 ft., t =100 niin.

r =7ft., Q =120 cfm

m =40 ft. ,m 1 = 45 ft.
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Thus

 123x0.40
' 4A1x40-— < 0<103  ft-“min-
4x .103 x 100 1
3s = g * F= 0.73 x 10 Oft.
7" x . 115 x 10

The coefficients of K' and S',57 for the aquitard are given by

2
K' = Kmm'
2
t _ 16 9 m2 1\ S
and 8 = e[t e
I<r
where ¢ = .018, p - .0088
: _ -5 -1
K =10.103 ft/min, Ss = 0. 73 x 10 ft.
Thus
' — A
K (.018)2 x .103 x 40 x 45 _ 0012 ®rmmm .
72
"= 16 x (.0088) x40 x .103 x .73 x 10~5
0012 x 7¢
= 0.29 x 10 ft.

The determined values of K, Ss, K' and Sstwere fed into the
finite element model and the flow problem was solved for Q = 128 cfm
and pumping period t = 4320 minutes. The calculated drawdown versus
time relationships at selected nodes (r = 1 and 7 ft. ) in the aquifer were
then compared with the field data plot for the corresponding points in the
field system. Slight adjustment of the values of Ss and Ss was made and

the adjusted values were fed back into the model. Fig. 7. 15 shows

the final comparison of theoretical solution and field data. It can be seen
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that good agreement between the theoretical prediction and the actual
behaviour of the. field system was achieved.

As a further check, the final values of K and Ss for the aquifer,
listed in Fig. 7. 15, were compared with those determined by applying
conventional type curve methods to the field data collected from the
distant observation wells, 30602, 30031 and 30032. Detailed description
of the conventional methods used has been presented by Swan and
Huyakorn (see Dudgeon et al (1973), Vol. II).

Table 7.2 lists the values obtained by fitting the Theis curve to the

late time portion of the field data.

Table 7.2: Summary of values of the hydraulic coefficients

Observation Radial

) T S K Ss
Well Distance o2 0 ft/min. it
(ft.)
30602 1385 1 3.42 8.2x10-4 0. 085 2.1x10-5
30031 3050 ©3.42 3.53x10~4 0.085 0.88x10 5
30032 2600 3.42 4.05x10-4 0. 085 1.0x10-5
Mean values 3.42 5.26x10-4 0. 085 1.33x10-0

It may be observed that the average values of K and Ss in the table
are reasonably close to those used in obtaining the finite element sol-
utions. This evidence suggests that the aquifer of the actual field
system was quite uniform in physical and hydraulic properties. The
evidence is further supported by the well log data shown in Fig. 7.3.

7.3 Site B - Rosevale, Southeast Queensland
7.3.1 General Dala
Several pumping tests were conducted at this site in co-operation

with the Irrigation and Water Supply Commission of Queensland. The
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test selected ior use in this thesis was a 24 hour test carried out
during June 8 to- June 9 using a group of wells located on an alluvial
area near the Bremer River (Figs. 7. 16 and 7.17). The construction
features and driller's logs are shown in Fig. 7.18. It may be obs-
erved from the log data that the thin aquifer and the overlying aquitard
were quite variable in thickness. Wells 2 and 3 were two 4 inch
diameter trial production wells with the screened intervals indicated
in Table 7.3.

Table 7.3: Radial distances from pumped well 3 and screened
intervals of wells at Site B.

Well Radial distance Screened interval
from well 3 (ft.) assumed R. L. (ft.)
3 rw =0.167 51-59
5 8.0 51-55
2 10.0 51-61
1 38.0 52-56
1A 39. 3 81-83
4 57.4 51-55
14S9A 80. 6 53-58

All of the wells were drilled by using a percussion rig. Samples
of the aquifer material were taken continuously from wells 2 and 3.
The grain size distribution curve obtained from sieve analysis of one
of the samples is presented in Fig. 7.19. A wide range of grain
diameter, from .04 to 3 inches, may be observed.

Pumping was started at 11.00 p.m. on June 8 and was continued
at an approximately constant rate of 7050 igph (18.8 cfm) until 11.00 a.m.
on June 9. The water levels were measured continuously in pumped

well 3 and all observation wells. Well 1A, which penetrated the water
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table aquitard* was discovered to show quite considerable response,
indicating that there was a direct hydraulic connection between this
aquitard and the aquifer.

The drawdown-time field data collected from wells 2, 3, 1 and
1A were used to verify the finite element analysis. To check if non-
Darcy flow existed in the main aquitard the discharge of 18.8 cfm, the
dravrdovms obtained from all observation wells and the pumped well at
time t = 240 minutes were plotted against radial distances. The plot is
illustrated in Fig. 7.20. It can be seen that non-Darcy flow evidently
existed within a radius of approximately 8 ft. from the pumped well
where the plot is non-linear .

7.3.2 Finite Element Model and Type Curves for the Field System

A O0-ICT

Fig. 7.21: Model of the Rosevale Field System.
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From the general data presented in the preceding section, a model
of the field system was constructed and is shown in Fig. 7.21. The
model represents an unconfined aquifer-aquitard system with an external
radius of 5000 ft.

Although the well log data showed that the aquifer and aquitard

were quite variable in physical properties, both layers were assumed to
be homogeneous and isotropic as there were insufficient data available
to define a more complex model.

Average thicknesses of 10 and 28 ft. were assigned to the aquifer
and the aquitard respectively.

The finite element method was used to solve several flow cases
which were simulated to obtain type curves characterising Darcy and
non-Darcy flow behaviour of the field system. Typical families of type
curves are shown in Figs. 7.22 and 7. 27 for the main aquifer and in
Figs. 7.23 and 7.24 for the aquitard. The dimensionless parameters
of the Darcy flow type curves, —, ~ , ft and 87, and the non-Darcy
flow parameters, A and "§ , have been defined in Section 5.5.

7.3.3 Comparison of Field Data and Finite Element Solutions

The following type curve method was used to determine the hydraulic
coefficients of the aquifer and aquitard: -

(1) The drawdown-time data collected from observation wells Nos. 2

and 1 (r = 10, 38 ft.), outside the non-Darcy flow zone, were converted

to log-log plots of s versus t on two separate sheets of transparent
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paper. Each plot was then matched on a selected family of type curves
for the main aquifer as shown in Figs. 7.25 and 7.26 respectively *
Matching was performed in the manner described previously in Section
7.2.3. For each observation well, a match point was selected and the

hydraulic coefficients were calculated as follows:-

Well No. 2 (r = 10 ft.)

From Fig. 7. 25, it follows that

W = 230; 1/u = 0.5x10° '
S = 1ft.; t =10 min.
r/D = 0.22

The coefficients K and T are given by

K QW 18.8x2.3
4ft sm 4x3. 14 x 10
= 0. 345 ft/min.
T = Km = 3.45 ft"/min.
t i
Assuming Sy ? S + S m + SOm
j y S S
4 Tto2 u 4 x 3.45 x 10 x 251
Th « _
| 5 2 10x10 x 0. 5x 10D
= .0070
D © <3y m 46 «e

Well No. 1 (r = 38 ft.)
From Fig. 7. 26, it follows that
W = 1.7; 1/u = 2.75x 104

s = 1ft., t = 100 min.
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Qw
Thus K 4 1t gm
18.8x 1.7 i
4x3.14 x 10 0.234 ft/min.
Km = 2.54 ftz’7min.

4 x 2.54 x 100 x 251

38 x 38 x 2. 75 x 10* 0064

D =O.:§4§%- - 435 f.

(11) The drawdown-time data collected from observation wells 1 and
1A (r = 38 ft.; z’/m' = 0, 0.8) were plotted together on another sheet
of transparent paper and matched on a selected family of type curves
for the aquitard. Using the average values of T and D obtained from
(1), appropriate values of r/D, and g which gave the best fit were
determined. The coefficients K> Sg , &« were calculated using the

following expressions

'

Kmm

' r 2
K = (g) r2

t 16 j32 m2 K S
K'r2

sy' K F ]
In obtaining S , an estimate was made as to the value of Ss of
S

the aquifer as the early time portion of the field data was missing for

observation well 1. The estimate was based on the value of Ss obtained

by applying the conventional Hantush type curve fitting method to the
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early time data collected from well 14S9A, which was located at
C '
r - SO. 6 ft.

(i11) The drawdown-time data collected from pumped well 3 (rw=0.167 ft. )
was plotted on another sheet of transparent paper. As the observed
drawdowns in this well would have included additional loss due to non-
Darcy flow, the corresponding drawdowns for wholly Darcy flow at the
same pumping times were obtained by extrapolating the straight line
semi-log plot of s versus r to the well radius. The Darcy flow drawdown:
so determined were also plotted on the same sheet of paper. The field
data plot was then superposed on a family of non-Darcy flow type curves
for the aquifer as shown in Fig. 7.23. The value of the non-Darcy flow
parameter for the best fitting type curve was determined and used to

obtain the Forchheimer coefficient b as follows:-

B 2 T m2r
b - - QT
- 6.28x 102x 0.167 x 13.5 = 26 mtn2/ft2.
18. 8 x 2. 85

In obtaining b, it was assumed that additional well loss due to flow
into and inside the well was negligible as this loss was not measured in
the field.

(iv) The values of the hydraulic coefficients computed from (i) to (iii)
were fed into the finite element model and the flow problem was solved
for Q = 18. 8 ¢cfm and the pumping period of 1440 minutes. The

theoretical drawdown versus time relationships at selected nodes in the

aquifer and aquitard were then compared with the field data for the
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corresponding points in the field system. Several adjustments of the
values of the hydraulic, coefficients were made and the. adjusted values
were fed back into the finite element model. The final comparison is
presented in Figs. 7.28 and 7.20. It can be seen that reasonable
agreement was obtained for the prediction of drawdowns in the pumped
well and observation well 2 whilst much poorer agreement was achieved
for observation wells 1 and 1A. This could be due to the fact that the
aquifer and the aquitard of the field system were quite variable in
physical and hydraulic properties and the assumptions made in the

theoretical analysis of the field data were seriously violated.
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8. Conclusions

1. The theory, variational principle and finite element method for
transient, three-dimensional, two-regime flow towards a pumped well
have been developed. It was assumed that the two flow regimes,
linear and non-linear, are distinct and that the Forchheimer non-
linear velocity-hydraulic gradient relationship may be used to describe
non-Darcy flow. Anisotropy of the aquifer material lias been taken
into account only in the Darcy flow zone.

2. The analysis of non-Darcy flow behaviour in anisotropic material
involves complex non-linear velocity-hydraulic gradient relationships,
the theoretical and experimental basis of which have not been es-
tablished. Further research is required in order to develop a better
understanding of the anisotropic character of the two coefficients of
hydraulic resistance in the Forchheimer constitutive relation, namely
a and b.

3. The finite element method has been used to solve a variety of axi-
symmetric flow problems, ranging from the simplest problem of one-
dimensional radial flow through a confined aquifer to the most complex
problem of transient free surface flow. Solutions for both wholly
Darcy flow and two-regime flow situations have been obtained and
presented in graphical form for each problem. Type curves
characterising two-regime flow have been included. @ The non Darc”

bQT , bVQF
flow parameters of the type curves are A -~ mqmr ano " ™ a
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4. The effect of non-Darcy flow on drawdown distribution near the well
and on the well discharge-drawdown relationship has been investigated.
It was found that type curves of the dimensionlcss drawdown versus
time for points in the non-Darcy flow zone lie above the conventional
Theis curve for wholly Darcy flows through confined aquifers and
confined and unconfined aquifer-aquitard systems. For all of the
transient flow problems solved, except the problem of transient free
surface flow in an unconfined aquifer, the well discharge-drawdown
relationships for the two-regime flow situations are non-linear and-may
be fitted by Jacob’s empirical equation. The term CQ9 of this equation
was interpreted as the additional head loss due to non-Darcy flow and
was found to remain constant with time once the non-linear regime had
been fully established near the well.

5. A rigourous check has been made on the numerical solutions for the
transient Darcy flow cases by comparing them with known analytical
solutions. It was found that in general the agreement between the finite
element results and the analytical solutions was excellent. Where
deviation occurred considerable improvement of the finite element results
was observed when a more refined network and smaller time steps were
used.

6. The numerical solutions for steady state two-regime flow through

confined and unconfined aquifers have been verified by comparison with

pumping test results obtained from laboratory experiments. Type
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curve methods have been developed for determining the hydraulic
coefficients a, b and K of the aquifer material. It was found that
these methods led to good agreement between the theory and experiment
and that the determined values of the hydraulic coefficients changed
quite considerably when the aquifer was disturbed.
7. The numerical solutions for transient flow in aquifer-aquitard
systems have also been verified by comparison with pumping test data
obtained from field investigations carried out at two sites. Type curve
methods have been developed for determining die hydraulic properties
of the aquifer and the overlying aquitard at each site.? For the first
site, where the aquifer and aquitard are relatively uniform in thickness
and hydraulic properties, the type curve method led to good agreement
between the finite element results and the field data. However, i1t was
not possible to determine from the field ds/ta the Forchheimer non-
linear coefficient, b, for the aquifer as non-Darcy flow did not exist
near the 24 inch diameter well at the discharge of 40, 000 igph. To
induce non-Da.rcy flow having significant effects on well drawdowns
would have required either a reduction in well diameter for the same
discharge or a significant increase in discharge for the same diameter.
For Site B, where the main aquifer and the aquitard are variable
in physical and hydraulic properties and non-Darcy flow evidently ex-
isted, less satisfactory agreement between the theoretical predictions
and field data was achieved. This can be explained in terms of the

limiting assumptions made in constructing the finite element model,
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particularly that of a homogeneous, isotropic aquifer of uniform
thickness. To construct a more complex model would have required
additional data regarding the variability of the aquifer and aquitard
of this site. The aquisition of this data would have greatly increased
the cost of the field investigation.

It is finally pointed out that the value of coefficient b determined
from the type curve method is based on the assumption that head
losses due to flow through the well screen and inside the well can be
separated from the total well drawdown or neglected. This value so
determined would represent an over-estimate of the true value if these
losses were significant.
8. The theory, numerical techniques and type curve methods developed
in this work may be applied to specific cases of well flow encountered -
in practice. Alternatively, they may be used to produce solutions to

a wider range .of problems than that covered in this thesis.
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Appendix 1.

Formation of Matrices [¢ jand [p OJ for rectangular ring elements

Fig. Al. 1: Cross-section of a rectangular ring element.
Consider a typical rectangular element shown in Fig. Al. 1.
As indicated, the four corner nodes are-numbered in an a.nti-
clockwise sense, and r denotes the radial coordinate of the centroid.
From equation (4.67a) in chapter 4, the expression for the

element matrix [¢c Qmay be rewritten as

1 T
[c ] =2 [XJ J E [s] [S]NxIj Ul dI dt\ (Al 1)
11
Equation (Al. 1) may be approximated by
I T
[ce] = 2>TXEr/[s] [S] Ui dn. (Al.2)
_1 HI

where E is the coefficient of effective hydraulic conductivity at the
centroid.
For rectangular elements, it can be shown that jj jand [s]are

given by



where 1 and m are the width and height of the rectangle respectively.

Now [SjT may be obtained as

AN 7>N1
D

A"Nt2 *NZ 2/1 O

T (Al. 3¢)

[s] 7>N3 7>N3
n.
0 2/m

*dN4 7>Nq
7>f dTL

Substitution of equations (Al.3a) to (Al.3¢c) into‘(Al.2) leads to

[¢"]- 2T(£ -r(f [0'] ¢i [h']) (A1.4)

where (G 6Jand H elJare the influence coefficient matrices whose

elements are given by
8i AN A A (Al Sa)
T A
S -

1J

On applying the 9-point Gaussian quadrature formula given by
Zienkiewicz((1971), pp. 147-149), the integrals in equations (Al.5a)

and (Al.5b) may be evaluated. The matrices K" j and [iTe]are

obtained as



Substitution of equations (Al.Ga) and (Al.Ob) leads to the required
expression for matrix LC j
Similarly, from equation (4. 67c), the expression for matrix

[D J may be rewritten as

11
[De] = o\ J s [N]JT [Nl Nr 1] dQ dT* (A1.7)
S1-1

Equation (Al. 7) may be approximated by

[ifj - 2TISSt J J [NIT [N] dtj dU (Al. 3)
11

On applying the 9-point Gaussian quadrature formula, the

integral in equation (Al. 3) can be evaluated. The expression for

matrix gD jnis obtained as
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© B~ o=

Nell \9)

O N O —

O

O N

O =—

( Al. 9)
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Appendix 2. i* ,20\ vusvymb b

Analytical Solution to Steady, On-?- dimension:':/
Two-recpme Well F3o\w

A2. 1 General

An analytical approach to the problem of steady state, one-
dimensional, two-regime well flow was first presented by Engelund
((1953), pp. 49-53)). In his work an expression describing the well
discharge-drawdown relationship was derived but a more general
expression describing the drawdown-radial relationship was not
presented. It is shown in this appendix that the latter expression
can be obtained and written in dimensionless form using the parame?
which have been developed to characterise two-regime well flow.

A2. 2 General Solution

¥
v

Fig. (A2. 1):Diagrammatic sketch of a confined well-aquifer system.
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A diagrammatic sketch of a confined well-aquifer system 1is
shown in Fig. (A2.1). The well is fully screened through the entire
thickness of the aquifer and pumped atiail' known discharge. Non-
Darcy flow is assumed to occur in the shaded zone extending from the

well radius to the critical radius rcr* The equation relating hydraulic

gradient and flow velocity in this zone is given by

'{%— - AV bV (A8.1)

The flow velocity and the well discharge are related by

v= "2 (A2. 2)
2itrm

Substituting equation (A2. 2) into equation (A2. 1) gives

dh  aQ bQ"

dr 2ro.nr 422 mN'r

On integrating, the following expression is obtained

rcr rcr rcr
A dr A A bQA dr
Jf dr — J 2Fm J 4it~QmA "
r r r
i aQ Y, bQ 2 1
cr h = 2Km 10 (V—rT) * 4iwrn_29’ T )
for rw * r rer (A2.3)

Now the equation describing Darcy flow in the remaining

portion of the aquifer may be written as

dh .
K g P (A24
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Equation (A2.4) may be integrated to result in

for rcryr <rQ

Substituting r = rOr in equation (A2.5) leads to

i _ Q ro
no rl}cr 2'KKm In rcr

Adding equations (A2.3) and (A2.6) gives

_ _ Q_ oy, dQ o 1k
ﬁo %1 2TtKm In rc 21 Tm)lcn 1rQL
+ bQ2 ( L )

Zf"’ll(]m2 f Ter

for rw”r 4 r(Cr.

(A2.5)

(A2.6)

Equations (A2.7) and (A2. 5) are the expressions for the head dis-

tributions in the non-Darcy and Darcy flow subregions respectively,

A2.3 Dimensionless drawdown-radial distance relationships

PV R RO S < Q1 =T

0 B Y/

Fig. (A2.2): Velocity-gradient relationship showing the

critical point where non-Darcy flow comiriences



154.

ds-51'
Equations (A2.5) and (A2. 7) may be written in dimensionless
At > *k$ X&rt f1 t£4) mtimp M
form as follows:-
'/ 0"
Let the drawdown s and the coefficient of transmissivity for
JSL I .. f rib

the aquifer T be defined in accordance with

S = hO - hi,' " " "
. L . o0

and T = Km (A2.9)

(A2.8)

From Fig. (A2.2) the coefficient of permeability Kis given

by 1
K = a+bVer 01(A2.10)

Substitution of equations (A2. 8) and(A2.9) into equation (A2i5)

leads to f (% ke i

25T _ 5] g A Iy

Similarly, subsitution of equation (A2.8) and (A2.9) into

equation (A2.7) leads to

2KsT JAVs - . r r
= Kotin )
Q rer ro r :1ii'dii)
+ bQT
Q A ~ ) (A2.12)
21tm2r0 cr

Replacement of K in equation (A2. 12) by a+ bVer gives

1V
= 1?2 rd)) + 1 in (Icr £q )
Q (r_cr ) bVer (rG - 1El
a
+ (£° - £° ) (LA2.13)

2T(m rQ r rer



The following dimension]CHS parameters are now defined.

Mo = — (A2 .14a)
ro
N = . (A2 .14Db)
2Km*“r 0
A (A2.14c¢)
a

Substituting these expressions into equations (A2. 11) and (A2.13)

results in the required dimensionless equations lor two-regime well

flow
2TUT In (J, )
f"rIrW <u0 N 1 (A2.15)
°0
and
s L° H > . JL ,]
Q rcr 1 +% *0 uo
1 <
+N (— - e2-)
uo rcr
for <u0A~-"" (A2.16)
rQ0 » ro

Introduction of the well function W allows equations (A 2. 15)
and (A2.16) to be written in compact functional form.

Thus from equation (A2.15), it follows that

2%ST = W (—) (A2.17)

for A~ ouD A

Equation (A2. IS) may also be written as
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| % .. - !ty ! -V *1 'K ow e fl&'i O Iti.!" S

= w(-*-.a ,| , uM " m,j(a2. m
Q uo ro

for ti: si \i0 <IS!
r0 "ro

A2.4 Dimensionless Parameters for Steady Non- Parcy Flow
From equation (A2.18), it can be seen that the: dimensionless

parameters characterising drawdown distributions in the non*Darcy

ip |
flow zone near the well are A, ~ and . - 'The expression”,for
ro

A and * are given by equations (A2.14b) and (A2.14c) respectively.
The parameter ~ was recognised by EngeJund ((1953), pp. 14-15))
as a type of Reynolds number. He interpreted % as the ratio of
the inertial and viscous terms in the basic Forchheimer non-linear
. : . : . c bV e
velocity-hydraulic gradient relation (i.e. - ). He also

av
'

listed some values for St>, as obtained fr%m published experimental
results available to him. Based on these and some additional pub-
lished experimental results, a practical range of values 0.01" | -NO.1
was adopted in the present work for the analysis of various steady

and transient flow problems by the finite element method.

Amongst the three parameters A, and , the

ro
parameter A is recognised in this work as the most significant

parameter characterising non-Darcy flow. This conclusion is

derived from the results of numerical experiments designed to in-

¢ XN at bt
on values of the well function.

vestigate the effects of A, A and
ro

In the experiments, a computer subroutine coded in FORTRAN IV was

employed to perform numerica! evaluation of the analytical solutions
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given by equations (A2.15) and (A2.16) for the range of values:

A, £ and - considered to be of prnc’ical significance.

-Ccr
The results showed thal % had only a slight effect on W (1/u0) f°r
fixed values of A and that the effect of ro*/rcr was negligible.

A2.5 Dimensionless Relationships cud Paramo'mrs for Transient

Non- davcy Flow

The two significant dimensionless parameters characterising
steady non-Darcy flow 'were discovered to be A and which are
defined in equations (A2.14b) and (A2. 14c). Although the analytical
solutions to transient, one-dimensional, two-regime flow at constant
discharge have not been obtained, the following dimensionless relation-

ships are proposed to characterise it.

4-T\Ts = ¥y ( A . X - k%) (A2.21)
Q u
where

1. = 4 Tt (A2.22a)
u r2s

v = bQT (A2.23Db)

2A P r
e bVcr (A2.23c¢)
a

Equation (A2. 21) may be derived by applying dimensional
analysis to the transient flow problem and neglecting the dimensionless

terms which are insignificant.

For wholly Darcy flow, equation (A2.21) reduces to



where W the well-known Theis exponential integral. T
A family of type curves for ilie general -trailsient well function in
equation (A2. 21) was obtained by employing the one-dimensional
finite element computer program. These type curves are presented

in Chapter 5. - !tV
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AppendF: 3.

Analytical Solutipris used to verily the Finite
Element Ana] vsis.

The analytical solutions listed herein have been evaluated
numerically by a number of computer subroutines which were
coded in FORTRAN IV language.

A3. 1 Flow towards a Fully Screened Well in a Confined Aquifer

(1) Darcy Flow Solution

The analytical solution to the transient flow problem shown

in Fig. (5.1), Chapter 5, was derived byHantush ((1959), (1964, p. 318))

s = -~"r W(1:,,0) (A3. 1)
where s = drawdown in the aquifer
w<X,p) - —r Jlx - exp (-t 2)l Rciu (A3. 2a)
0
R =—y[ji(wyo(>w- yi(w) JQ(p u]
/[Ti12 (w) + yp (u)] (A3. 2b)
p = r/rw (A3.2¢)
-t = It- (A3. 2d)
S fw2
JQand Jj = zero- and first- order J3esscl fund ions of
the first kind
y0 and y* = zero- and first- order Bessel functions of the

second kind
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For p > 30 and X >20, equation (A3, 1) becomes the well-

known Theis solution, which is given by

00
~U

©  du (A3. 3)
4TCT u

where

(1) Two-regime Flow Solution

The problem of steady state, one-dimensional, two-regime
flow was solved analytically by Engelund (( 1953), pp. 49-53)).
Ilis work has been reviewed and extended in Appendix 2. The gen-
eral solutions are given by equations (A2. 15) and (A2. 16)

A3. 2 Flow towards a Partially Screened Well in a Confined Aquifer

no

XWwW / Y-/ _z z_ _z z-

K
<
'S

~~7 /S S 22 11 1 —T—F ST -7 7 ET--7

Fig. (A3. 1): Model of a confined aquifer with a partially screened well

The problem of transient Darcy flow towards a partially
screened well as shown in Fig. (A3. 1) was solved analytically by

Hantush (1961). The simplified solution for the drawdown distribution

along the base of the aquifer is given by



where s drawdown along the base of the aquifer

Wi, 5> V) Zn[ .

a

cO

n - 1 s

Isc

(not r/m)

length of well screen

% _ siii(nTCI

n=|
» dy (A3. 6a)
T~y
(A3. 6b)
A3. 6¢)

For % %’ 1.5, equation (A3. 5) may be approximated by

the Theis solution as given by equation (A3. 3).

A3. 3 Flow towards a Well in a Confined Aquifer-Aquitard System

Fi<kl. (A3. 2)* Model of a confined aquifer-aquitard system with

b

a we'll which is screened through the thickness of
the aquifer.



system with awell which is fully screened through the entire

e t ¢ i d i« N LpLf< n.v;uv/atl?* ~ £ 01
thickness of the main aquifer is shown in Fig. (A3.2). In the
cJ J ¥ - [ i.H} o Voo e o« e ,lle

figure K,Ss, m and Kblssl, m ’ denote the coefficients of hydraulic
conductivity, specific storage and thickness of the aquifer and the
% I """ —~—r - v- [ »= | X ih$ 4)
overlying aquitard respectively.
C
_J Asymptotic solutions of short and long-time draw,lc}owns in the

aquifer were first obtained by 7Hantu_s_h (1959), (19C4).Theymay be

written in the following forms

(1) Short time solution, fort < m
A 10K?
s = W(u,” ) (A3.7}
41X Km
where
”" A
W(u, 4 ) = [ Y g™ ~— Sady (A3. 8a)
Iy Vy(yU
U
u o= 25 (A3.8b)
4Kt
/? l <A3-Cc>
(11) Long time solution, for t > both and 3064 r.,,” ——
K* I w K
= W(giU A3.9
e (gil) ( )

where
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The short time solution for drawdowns in the aquitard was
first obtained by Neuman and Witherspoon (1969, p. 122). It may
be written as follows:-

i o2 I
Fort ~ Sgm /10K

Q  wuss, t , z/m") (A3. 11)
4"Km
where
S' = drawdown in the aquitard
00
W, 6, ¢, 7Y oml= € fefor T Y@/ M)V on
' m Jy" L NIV
u
 erfe BAU~+ y(2" z°/ m1l )/ D1 dy . (A3. 12a)
Vy(y-u>
Z - m
21/m 1 - (A3.12b)
/
I< t (A3. 12¢)
D1 g

A3.4 Flow towards Wells in an Tinconfined A quifer-Aquitard System

Piffl /AO 0O). Model or an unconfined aquifer-aquitard system with
8* a ,veH which is screened through the thickness of the
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A diagrammatic sketch of an unconfined aqiufer--aquitard

system with a well which is fully screened through the thickness of
the main aquifer is shown in Fig. (A3.3). In the figure, Sy and Oé
denote the coefficient of specific yield and the reciprocal of delayed
yield index for the unconfined aquitard. The flow problem was solved
analytically by Cooley and Case (1963, unpublished paper). The
asymptotic solutions for short and long time drawdowns in the main
aquifer were later published by Cooley (1971). They are presented in

the following manner:-

C ]9
(1) Short time solution, for t . W—
luis.
s - s —  W(yS ) (A3.13)

4K Km

where the expression for W(u,” )is given by equation (A3. 8a).

1/ 0
(ii) Long time solution, for t * 10 SSI<m
? W(S2U, 1/D) (A3.14)
4Tt Km
where
0
09 d
X e g i Ty (A3.15a)

S2u((r/'ip v4y"T

I+ wg gkA (A3.15b)
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u r2 Ss/4 Kt (A3. 15¢)
>n_is o(n

r Krn Kmm 1
D Ljsy Kf,n j (A3.15d)

The short time solution for drawdowns in the overlying

aquitard is given by

Q

W(,yS , tD1l, z / m ) (A3. 16)
4KKm

where the expression for W(u,jS , tD+, zV m* )is given by

equalion (A3.12a).

A3. 5 Flow towards a Well in an UnconCined Aquifer

/ /71 1 1 771 7171 /4 7 77 / 7 7 /[ 0O 7 1 7 1 71 [/

Fig. (A3. 4): Model of an unconfined aquifer with a fully
screened well.

A diagrammatic sketch of a model of an unconfined aquifer with
a well which is fully screened through its saturated thickness is shown
in Fig. (A3.4). In the figure, K, S$,Sy and *6 denote the coefficients
of hydraulic conductivity, specific-storage, specific yield, and tne
reciprocal of the delayed yield index for the aquifer respectively.

The flow problem was solved analytically by "Boulton (1954, 1963).
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The general solution for the average drawdown (Boulton 1963,
p. 479) was derived under the assumptions of constant saturated

aquifer thickness and constant head distribution along the vertical

. . S 'f T .
direction. For large values of — LA approximated by
the following equation:-

< = . Q
¥*KnT w(u*uy /D) (A3.17)

where

s = drawdown in the observation well screened through

thgoentire thickness of the aquifer

cLtx
W f> >l<0 (d~ .1 7” x2+1 exp” X2+1
0
dx
-£ ] (A3. 18a)
XZ
£ =g exp (x Hi)] (A3. 18b)
x +1
n = 1+#~- (A3.18¢)
2s S
« = (A3.18d)
Uy = (v\ - 1) U (A318€)
1
rKrn 12
D =txsyi
JG - Bessel function of the first kind of zero order

Forcg)ufficiently small values of t, equation (A3. 18a) reduces to

w = S X ( d:

o D x2+41 |
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the top of the seepage face and

below the water level in the well 111

5.41 Positions of the free surface and
the water level in the well at times
t' = 4.5 and 1140 minutes (two-

regime flow solution) 111.
5.42 Data for the problem of steady flow

towards a fully screened well in an

unconfined aquifer 112.
5.43 Free surface curves for steady flow

cases 113.
5.44 Base pressure head curves for steady

flow cases 113.
5.45 Dimensionless base pressure head

curves for steady unconfined flow 113.
6.1 Plan view of well-aquifer model

showing essential, features 115.
6.2 General view of well-aquifer model !

showing reinforced concrete tank, -
instrumentation annexe  and
aquifer material 115.

6.3 Internal view of instrumentation
annexe showing orifice manometer
panel (centre) and piezornetric

tubes (right) 115.
6.4 Grain size distribution of aquifer

material 116.
6.5 Permeability test results for aquifer

material 117.

Radial cross-section of well-aquifer
model showing arrangement for con-
fined flow testing 118.
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Superposition of experimental
results on dimensionless type
curve A = 0 to obtain trans-
missivity coefficient T (fully
screened well)

Superposition of experimental re-
sults on a family of type curves to
obtain Forchheimer coefficients

a and b (fully screened well)

Dirnensionless drawdown-radial
distance relationships showing
comparison of experimental results
and finite element solutions

Drawdown-radial distance relation-
ships showing comparison of ex-

perimental results and finite element

solutions
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121.

121.

122.

122.

Well drawdown-discharge relationship

showing comparison of experimental

results and finite element solutions

Free surface and base pressure head

curves showing comparison of ex-

perimental results and finite element

solution (hw =2.2)

Free surface and base pressure head

curves showing comparison of ex-

perimental results and finite element

solutions

122.

123.

123.

Well discharge-drawdown relationship

showing comparison of experimental

results and finite clement solutions

123.

Superposition OL experimental results on
dimensionless type curve a - 0 to obtain
transmissivity coefficient T (partially

screened well)

124.
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6.20

6.21
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7.4

7.5
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Title-

Superpof- ition of experiment;.!
results on a family of type
curves to obtain Forchheimer
coefficients a and b

Drawdown-radial distance re-
lation sines showing comparison
of experimental results and
finite element solutions

Well discharge-drawdown relation-
ships showing comparison of ex-
perimental results and finite element
solutions

Free surface and base pressure head
curves showing comparison of ex-
perimental results and finite element
solutions (hW = 3 ft. )

Free surface and base pressure head
curves showing comparison of ex-
perimental results and finite element
solutions (hw = 2 ft.)

Well discharge-drawdown relationship
showing comparison of experimental
results and finite element solutions
Location of Sites A an

General plan of Site A.

Construction features and available
driller's logs of wells at Site A

Detailed features of production well
306 38 showing location of slotted
P.V.C. piezometers in the gravel pact

Drawdown-radial distance plot at time
t = 3800 minutes

124.

125.

125.

126.

126.

126.

128.

129.

129.

129.

129.
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7.6 Model of the Gumly Gumly Island

field system 130.
7.7 Type curves for the main aquifer of

the Gumly Gumly Island system

(r/B =p] Sx =17) 131.
7.8 Type curves for the main aquifer of

the Gumly Gumly Island System

(r/B - 258 ; <$=5.5)" 131.
7.9a Type curves for the main aquifer of

the Gumly Gumly Island field system

(r/B =p - .01; b =17 131.
7. 9b Type curves for the overlying aquifard

of the Gumly Gumly Island system

(r/B - p =0.125, § *17) 131.
7.10 Type curves for the overlying aquitard

of the Gumly Gumly Island system

(r/B =p - 1.25; € =17) 131.
7.11 Type curves for the overlying aquitard

of the Gumly Gumly Island system

(r/B = .025>p =70125;8 = 5.5) 131.
7. 12 Matching of field data plot on type

curves for the main aquifer (observation

well 30568) - 132.
7. 14 Matching of field data plot on type curves

for the overlying aquitard (observation

well 30577) 133.
7. 15 Comparison of field data from main

aquifer and finite elejment solutions 134.
7. 16 General plan of Site B 135.
7. 17 Location of wells at Site B 136.
7. 18 Construction features and available

driller % log of wells at Site B, 136.
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Sieve analysis of sample of aquifer “ _
material v m; ;' o g llsw 136.

v A w7

clIft

Drawdown'-radial distance plot at

time t - 240 minutes rmw 136.
Model of the Rosevale field system 137.
* Wi . W wm. > > **a5-—-{si .. v ¥
Type curves for the main aquifer of the
Rosevale field system ( £ = r -
P =.08, 62 J Hi) B D' 137.

Type curves for the overlying aquitard
of the Rosevale field system (£ =r = 0.20,
P = .08, ~2=111) - B 137.

Type curves for the over-tying aquitard of
the Rosevale field system

( - = ~4.16; 8§ -m0.93,
B O ' n 2 ¢

Matching of field data plot on type
for the main aquifer (observation

Matching of field data plot on type
for the main aquifer (observation

curves
well 2)

curves
well 1)

Matching of field data plot from pumped
well on non-Darcy flow type curves for
the main aquifer

Comparison of finite element model re-
sults and field data (pumped well 3 and
observation well 2)

Comparison of finite element model re-
sults and field data (observation wells
1 and 1A)

Cross-section of a rectangular ring
element

139.

139.

140.

141.

141.

147.
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Diagrammatic sketch of a confined
well -aquii'er system 151.

Velocity-gradient relationship showing
the critical point where non-Darcy
flow commences 153.

Model of a confined aquifer with a
partially screened well 160.

Model of a confined aquifer-aquitard
system wilh a well which is screened
through the thickness of the aquifer 161.

Model of an unconfined aquifer-aquitard
system with a well which is screened
through the thickness of the aquifer 163.

Model of an unconfined aquifer with a
fully screened well 165.
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Values of coefficients B and C
for the well in Fig. 5.1 96.

Radial distances from production
well 3063 8 and screened intervals
of observation wells and piezom-
eters at Site A 129.

Summary of values of the hydraulic
coefficient:-' obtained by fitting Thecis
curve to the field data 135.

Radial distances from pumped well 3
and screened intervals at Site B 136.
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ol ’°

Isc

r/B

r/D

r/D

rcr

Nomenclature

Dimeri si* >i

linear coefficient of hydraulic resistance

: -1
of aquifer T:
non-linear coefficient of hydraulic' re- 5
sistance of aquifer T L
characteristic grain diameter L-

unit vectors along Cartesian coordinate axes

hydraulic head L
initial hydraulic head L
prescribcd Irydraulic head

saturated thickness of unconfined aquifer L

absolute hydraulic gradient
lengib of veil screen

thicknesses of aquifer and aquitard
respectively L

components of unit outward normal vecto:
pressure head
prescribed flux per unit area LT

radial distance from pumped well L

b

Kmm
. K1

1
Km ' :

*sy ]
/ Km 1 Kmm

| S K-

N
critical radius L
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SW

At

1/u

zf/m”’

K, K<

188, . *t
external radius
radius of well
drawdown in aquifer

drawdown in aquitard

Leon

well drawdown
time since pumping started

time increment 07 JffUi

4 Tt ) ) ) M
, dimensionless time a;"tb

S
r/rG; dimensionless radius
components of velocity vector
Cartesian coordinates
vertical coordinate

(z-m)/m'

elevation of free surface above datum plane

empirical coefficient of well discharge-
drawdown equation WO

empirical coefficient of well discharge-
drawdown equation

coefficient of effective hydraulic conduct-
1vity of aquifer

prescribed elevation of water level in the
well

net specific rate of infiltration at free
surface

coefficients of hydraulic conductivity' of
aquifer and aquitard respectively o,>

b

ro. vcoaxl
'heps Jo

Dimensions

Jo

it

LT

TL

LT

(S

LT

-1

LT VI
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SS. SS

S,S

Wr

WuQ)

W(u)

/*

189.

calculated well discharge
presc ribed well discharge
Vdp ,; Reynolds m\mler
critical Reynolds number

coefficients of specific storage of aquifer
and aquitard respectively

coefficients of storage of aquifer and
aquitard respectively

coefficients of specific yield of aquifer, and
aquitard respectively

coefficient of transmissivity of aquifer
absolute flow velocity

critical flow velocity

2rtTs,/Q; dimensionless drawdown for
steady state flow

TS/Q; dimensionless drawdown for transient

flow

reciprocal of delayed yield index of aquifer
and aquitard respectively

P igsH 2
"AnT [ KSs

specific weight of water
Isc/m; screen length ratio
density of water

coefficient of dynamic viscosity of water

—b ; diffusivity of aquifer
Ss

2 -1
LT
1
LT |
T
ML 2T

23

-1,
ML
LT

Dimensh M
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c 1 j—*écl’ m
dl Ssm
82 1+ ssm.+ SY
Ssm
S\-

f 1 +Ssra
A Id\.to

5 —a ! ; non-Darcy flow Rarameter
"5, isoparametric coordinates
a over-relaxation factor
A ; transient non-Darcy flow parameter

2ICm r - A
0 dissipation function LT
C : 4 -1
rate of dissipation of hydraulic energy LT
[n(h) ]R functional over region R
.

Q functional over a finite element region
J ( )dB integral over boundary B

B

B boundary of entire flow region

Bi portion of B where flux is prescribed

B2 portion of B where hydraulic head is prescribed

Bce impervious boundary

B free surface boundary

Bs seepage face boundary

J( )dR integral ever region R

R

R closed flow region

R interior of R



Darcy and non-Darcy flow subregions
finite element subregion
variational operator

gradient operator

element matrices

element inaaices

gross matrices

gross matrix

Jacobian matrix

hydraulic conductivity matrix
shape function matrix:

element slope matrix

Dimensions

subscriptsreferring to components along coordinate

axis

subscripts referring to nodes of the flow region

which are not on the well screen

superscript referring to iteration number

superscript or subscript referring to time step

number

subscripts referring to either nodes on the
boundary or nodes in the entire flow region

subscripts referring to nodes on the well screen



