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Summa ry

This  thes is  d e sc r ib e s  an investigation into tw o-reg im e flow of 

groundwater towards  a pumped well constructed in unconsolidated m at 

eria l.  E m p h as is  is laid on the effect of a non- l inear  reg im e  on the 

drawdown d is tr ibu tion  n ea r  the well and the well d ischarge-drawdown 

relationship.

The bas ic  p r inc ip les  of well hydraulics  based on D arcy 's  law 

are reviewed and extended to tw o-reg im e flow. G enera l ised  fie ld  

equations and a var ia t ional  principle  applicable to t rans ien t  th re e -  

dimensional flow a re  developed. An energy approach to well flow 

problems is a lso  p re sen ted  and d irec t ly  re la ted  to the var ia tional  

pr incip le .

The finite e lem ent  method is brief ly  descr ibed  and form ulated  to 

solve a va r ie ty  of p rob lem s,  ranging f rom  the s im ples t  p rob lem  of 

steady one-d im ensional  rad ia l  flow through a confined aquifer to the 

most complex p rob lem  of t ran s ien t  f ree  surface  flow. Techniques 

developed to handle var ious  types of boundary conditions and non- 

linearity of the field equations a r e  descr ibed .  Solutions fo r  both 

wholly D arcy  flow and two- reg im e  flow situations a r e  p re sen ted  in 

graphical fo rm  for each  flow prob lem . Several  new type cu rves  

charac ter is ing  tw o-reg im e  flow behaviour a r e  included.

Verification of the Darcy flow solutions by com parison  with 

known analy tical  solutions and of the tw o-reg im e flow solutions by 

labora tory  expe r im en ts  and field investigations is  descr ibed .



(ii)

New type curve methods for determining from  pumping tes t  

r e su l ts  the hydraulic  coefficients requ ired  in the ana lys is  of tw o-reg im e  

flow a r e  p re sen ted .

The theory, num er ica l  techniques and type curve methods 

developed in th is  work  may be applied to specific cases  of well flow 

encountered in p rac t ice .  Alternatively ,  they may be used to produce 

solutions to a w ider  range  of p rob lem s than that covered in this th es is .  

These solutions could then be used as  an aid in in terpre ting  pumping 

test r e s u l t s .
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1. In troduction 

1. 1 General

P ro b le m s  involving flow of groundwater towards pumped wells  

have t rad i t iona l ly  been solved on the assum ption  that a l in ea r  velocity- 

hydraulic g rad ien t  re la t io n sh ip  known as D arcy 's  law, is  valid over the 

entire flow region.  This assum ption  leads  to a l in ea r  field equation which 

has been solved analytically  for s ev e ra l  ca ses  where the aquifer  is  uni­

form and the boundary conditions a r e  re la t ive ly  s imple .  A num ber  of 

analytical solutions (Theis,  1935), (Hantush, 1960, 1961), (Boulton, 1963) 

and methods fo r  evaluating aquifer  p ro p e r t ie s  via these  solutions have 

been widely applied to the r e s u l t s  of pumping t e s t s .  Recently, the 

rapid development of num er ica l  methods and high speed digital com puters  

has encouraged many w o rk e rs  to solve m o re  complex ca ses  such as  

those involving m u l t i - la y e re d  aqu ife rs ,  f r e e  su rfaces  and unsa tu ra ted  

flow. Among these  w o rk e rs  a r e  Javandel  and Witherspoon (1965),

Neuman and Witherspoon (1969, 1970, 1971), Taylor and Luthin (1969), 

Cooley (1971).

It has long been recogn ised  that the l in e a r  velocity - hydraulic  

gradient re la t ionsh ip  m ay be invalidated in the im m edia te  vicinity of 

a well boundary if ve loci t ies  exceed a ce r ta in  l imiting value (Muskat,

1937), (K ris t ianov ich ,  1940), (Wentworth, 1946). When deviation f ro m  

Darcy's  law o c c u rs ,  both l inea r  and n on - l inea r  r e g im e s  m us t  be



cons ide red  in ana lys ing  the flow over  the en t i re  reg ion .  Thus the 

t e r m  " tw o - reg im e  flow" m ay  be used  in th is  context.

Despite the in c re a s e d  am ount of r e s e a r c h  effor t  which has been  

put into flow tow ards  w el ls ,  th e re  is  s t i l l  a lack of a  sound theoretical 

bas is  and m ethods  fo r  handling the s ituation of tw o - re g im e  flow . The 

need fo r  a c l e a r e r  unders tand ing  of n o n -Darcy flow behaviour near a w ell 

and fo r  m eans  of p red ic t ing  its effect on the well d ischarge -d raw do w n  

re la t ion sh ip  has  becom e inc reas ing ly  im por tan t  as a resu lt of m ore  

in tensive u se  of g roundw ater  and the consequent dem and for im proved  

design of ex trac t ion  fa c i l i t ie s .

The objectives  of th is  th e s is  a r e : -

(i) to extend the b a s ic  theo ry  and p r in c ip le s  of well hydraulics 

based  on D a r c y ’s law to allow tw o -re g im e  flow to be handled;

(ii) to develop a finite e lem ent  method for  solving the fie ld  equations;

(iii) to ver ify  the fin i te  e lem ent  ana lys is  by la b o ra to ry  and field  

invest iga t ions .

1 ♦ 2 L i te ra tu r  e Review

1. 2. 1 E m p ir ic a l  Approach to Two-Regim e Well Flow 

A num ber  of w o rk e r s  re cog n ised  that although n o n -Darcy flow is  

often r e s t r i c t e d  to a com para t ive ly  n a r ro w  zone around the w ell, such a 

n a r ro w  zone can affect the d isch a rg e  quite cons iderab ly .  On the b asis  

of th e i r  f ield exper ience ,  these  w o rk e r s  proposed em pirica l equations 

re la t ing  the drawdown in a well pumping f ro m  a confined aquifer to the 

d i sch a rg e .



3.

Jacob (1947) used  the following equation:-

( 1 . 1 )

where sw is  the drawdown in the well,  Q is  the well d ischarge ,  B and 

C a r e  em p ir ica l  constants  of the equation. In adopting equation (1.1) 

he a s su m ed  that flow in the aquifer  fo rm ation  obeys D a rcy ’s law up to a 

ce r ta in  rad iu s ,  t e rm e d  the effective rad ius  of the well, and that inside 

this rad ius  the flow is fully tu rbulent .  The effective well rad iu s  was 

defined by Jacob as  that d is tance ,  m e a su re d  rad ia l ly  from  the axis  of the 

well, at which the th eo re t ica l  drawdown based  on the logar i thm ic  d is t r ib -
9

ution equals the actual  drawdown jus t  outside the sc reen .  The t e rm  CQ“' 

in equation (1 . 1) was r e f e r r e d  to a s  Mwell l o s s ' 1 and r e p re s e n t s  the head 

loss  re su l t ing  f ro m  turbulen t  flow inside the effective rad ius  and the flow­

through the s c r e e n  and inside the casing.

Rorabaugh (1953) p roposed  an equation slightly different f rom  

equation (1.1).  His equation is given by

where n is  an unknown exponent. On the b a s is  of field data f rom  seve ra l  

pumping t e s t s ,  he dem ons tra ted  that equation (1 . 2) p red ic ted  the total 

drawdown in the well m o re  c losely  than Jaco b 's  equation.

Whilst the two em p ir ic a l  equations proposed by Jacob and Rorabaugh 

have been found to fit many field  data,  doubt usually  exis ts  reg a rd in g  the ir  

general  applicability.  As pointed out by Rorabaugh himself ,  equation (1.2) 

and the constants  B, C and n de term ined  f ro m  analys is  of data f rom  the 

step-drawdown pumping te s t  should not be applied if computations m ust  be 

made for d isch a rg es  g rea t ly  in excess  of those used in the tes t .

sw = BQ + CQn ( 1 .2 )



1 .2 .2  T heore t ica l  Analyses and Model Studies

Due to the complexity a r i s in g  f ro m  the n a tu re  of tw o - re g im e  flow 

and the n on- l inea r  equation for  flow in the n o n - l in ea r  r e g im e ,  only a 

l imited  num ber of th eo re t ica l  ana lyses  have been m ade .

The e a r l i e s t  a t tem pt  to obtain an analy tical  solution to the non­

l in ea r  field equation of steady s ta te  non-D arcy  flow was m ade by 

Khris t ianovich  (1940). He cons idered  a genera l  velocit}'- hydraulic  

g radient  grad ien t  re la t ion  of the fo rm

i = 0(V) (1.3)

and desc r ibed  an approxim ate  method of solution by conform al t r a n s fo rm ­

ation.

Engelund (1953) c a r r i e d  out a m ore  genera l  theo re t ica l  investigation 

into steady, tw o -reg im e  well flow. He employed the following equation 

to desc r ibe  both Darcy and non-Darcy  flow in the aquifer .

vh  = - F( 1VI ) V (1.4)

where  "Vh is the hydraulic  g rad ien t  vec to r ,  V is the velocity  vector  

a n d F (  IVl) is a sc a la r  function of the absolute velocity IVIand the 

aquifer  p ro p e r t ie s .

The function F  ( IVl ) is  given by

F ( IV| ) fo r  |V| < Vc r

F ( 1V| ) = a + blVi fo r  V >  Vc r

w here  K is  the coefficient of hydraulic  conductivity, a and b a r e  te rm ed  

l inea r  and non- l inea r  coefficients of hydraulic  r e s i s t a n c e  of the aquifer 

re spec t ive ly ,  and Vcr  is  the c r i t ic a l  velocity a t  which t ran s i t ion  from



l inear  to non-l inear  reg im e occurs .

By combining equation (1. 3) with the continuity equation, Engelund 

obtained a general field equation.which is  valid for both Darcy and non- 

Darcy flow. He t rans fo rm ed  this equation into a l inear ised  form by 

introducing new var iab les  and employing the technique of conformal 

transform ation .  However, the t ransfo rm ed  equation still  rem a ins  

virtually  in trac tab le  to d irec t  analytical solution for complex boundary 

conditions encountered in p rac t ice .  Engelund was able to obtain sol­

utions fo r  only simple cases  of steady one-dimensional two-reg im e flow 

towards a well in a confined aquifer and two-dimensional turbulent flow 

atliigh R em olds  number.

Recognising the difficulties encountered in the theore tica l  analysis  

of tw o-reg im e well flow, a number of w orkers  r e so r ted  to experimental  

studies using either an e lec tr ica l  o r  hydraulic model of the flow system.

Grcic (1961) used a sand box model to study steady flow towards a 

well in an unconfined aquifer.  He investigated the effect of non-Darcy 

flow on base  p r e s s u r e  heads and free  surface heights in the immediate 

vicinity of the well.

Baturic-Rubcic  (1966) used an e lec tr ica l  analog model to study

steady tw o-reg im e flow towards a fully screened  well in a confined aquifer. 

His model was a network consisting of d isc re te  non-l inear  elements

with e lec tr ica l  p rope r t ie s  analogous to the hydraulic p roper t ie s  of the

aquifer m a te r ia l .  He compared the model re su l ts  with the theore tica l

solution given earlier by Engelund (1953) and obtained good agreem ent.
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1. 2.3 F in i te E lem en t  Solutions

The difficult ies which r e n d e r  the tw o - re g im e  flow p ro b le m s  in­

t rac tab le  to analy tical  solution can now be overcom e  by applying a 

n um er ica l  technique known a s  "the finite e lem ent  m ethod" .  Recently , 

a num ber  of w o rk e r s  have employed th is  technique to obtain n u m e r ic a l  

solutions to se v e ra l  complex p ro b lem s  of flow through porous m edia .

Zienkiewicz et al (1966) w ere  the f i r s t  w o rk e r s  to u se  the finite 

e lement method to solve p rob lem s  of s teady s ta te  D arcy  flow through 

porous m edia .  Their  work was l a t e r  extended by Finn (1967) and 

Taylor and Brown (1967) to t r e a t  m o re  complex p ro b lem s  involving f ree  

su rfaces.

Among the f i r s t  w o rk e r s  who applied the method to p ro b le m s  of 

t r a n s ie n t  D arcy  flow towards wells  in confined aqu ife rs  w ere  P a re k h

(1967), Javandel and Witherspoon (1968) and Neuman and W itherspoon 

(1969). The la s t  two w orke rs ,  Neum an and W itherspoon (1970), (1971), 

a lso  developed the g en e ra l ised  var ia t iona l  p r in c ip le s  fo r  t r a n s ie n t  con­

fined and unconfined flows and solved s e v e ra l  c a se s  of flow in m u l t i ­

lay e r  confined sy s tem s  and flow in an unconfined aqu ife r .  The usefu l­

n ess  and validity of th e i r  finite e lem ent  approach  was d em o n s t ra ted  by 

comparing the com puter  r e s u l t s  with known ana ly t ica l  solutions.

In all  the work mentioned so fa r ,  the finite e lem ent  ana ly s is  was 

based  on the assum ption  that flow in the en t i re  reg ion  of the sy s tem  

obeyed D arcy 's  law. P ro b lem s  involving n o n -D arcy  flow rece iv ed  

l i t t le  a ttention until v e ry  recen t ly  when the n o n - l in ea r  f ie ld  equations
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suitable  fo r  n u m er ica l  solutions w ere  der ived  by a num ber of w o rk e rs .  

These w o rk e r s  include Fenton (1968), Volker (1969), McCorquodale 

(1969), (1970) and P a rk in  (1971).

Trollope et al (1970) w ere  the f i r s t  to analyse  the s teady c a se s  of 

non -D arcy  well flow using  the field equations and the finite element 

technique outlined by Volker (1969). T h e ir  ana lys is  wras based  on the 

assum ption  that the F o rc h h e im e r  n o n - l in ea r  veloci ty-hydraulic  gradient  

re la t ionsh ip  (F o rch he im er ,  1901) may be u sed  to desc r ibe  flow in the 

en t i re  aquifer  region. No a t tem pt  was made to investigate  the p rac t ica l  

p rob lem s  of tw o - re g im e  well flow where the non-D arcy  flow behaviour 

p re v a i ls  only in the im m edia te  vicinity of the well boundary.

In the p re se n t  w*ork, the finite e lem ent  method was used to obtain 

n u m er ica l  solutions to the genera l  p rob lem s  of t ran s ien t  and steady 

s ta te  tw o -reg im e  flow. To bring  into focus the local ised  na tu re  of 

non-D arcy  flow, the F o rch h e im er  re la t ion  v>ras applied only in the n e a r ­

well zone when computed veloci t ies  exceeded a ce r ta in  c r i t ica l  value. 

F o r  a given aquifer m a te r ia l  the c r i t ic a l  value may be determ ined  by 

p e rm eab i l i ty  te s t s .  A lterna tive ly  the value may be based  on a c r i t ica l  

Reynolds num ber  in the range  of 1 to 10 a s  it has been shown by many 

inves t iga to rs  that the t rans i t ion  f rom  Darcy to non-D arcy  flow generally  

o ccu rs  within th is  range (Todd 1959).

1. 3 Outline of P re s e n t  Work

The work  d esc r ibed  in th is  th es is  can be divided into two m ajo r

p a r ts  as  followm:-



(i) The fir st part is  concerned with the general theory and fin ite  

elem ent analysis of transient, tw o-regim e w ell flow . Chapter 2 pre­

sents the development of the basic princip les and field  equations which 

are applicable to the general situation of three-d im ensional flow . Chapte 

3 and 4 deal with the development of the variational principle and finite  

elem ent method for analysing axisym m etric flow problem s. A number 

of techniques developed to handle various types of boundary conditions 

and non-linearity of the field  equations are presented. T hese techniques 

can readily be extended to other types of linear and non-linear porous 

media flow.

(ii) The second part of the work deals with verification  of the finite  

elem ent an alysis. The finite elem ent method was used to so lve a 

variety of problem s, ranging from  the sim p lest problem  of one­

dim ensional radial flow through a confined aquifer to the m ost com plex  

problem of transient free surface flow through an unconfined aquifer. 

Solutions to typical Darcy and tw o-regim e flow ca se s  are presented in 

Chapter 5. The Darcy flow solutions w ere checked against known 

analytical solutions which are lis ted  in Appendix 3. A s analytical so l­

utions for the tw o-regim e flow situations could not be obtained, the 

tw o-regim e flow solutions w ere verified  by com parison with pumping 

test resu lts  obtained from laboratory and fie ld  investigations which are 

described in chapters 6 and 7. In making such a com parison, it was 

n ecessary  to know the hydraulic coefficien ts to be fed into the finite 

elem ent m odel. New type curve m ethods which enable a ll coefficients
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in the  l in e a r  and n o n - l in ea r  velocity-hydraulic  gradient  re la t ionsh ips  to be 

de te rm ined  a r e  a lso  p re sen ted .



2. B asic  P r in c ip le s  and Field Equations of T w o -reg im e Well Flow

2 . 1  General

The flow towards a pumped well constructed  in an unconsolidated 

aqu ife r  m ay involve two flow re g im e s .  The f i r s t ,  r e f e r r e d  to as the 

Darcy reg im e ,  l i e s  in the m ain  port ion  of the aquifer  where  the flow 

obeys D a rc y ’s law. The second reg im e  occu rs  in the im m edia te  vie ini 

of the well if high flow velocit ies  r e su l t  in the violation of the Darcy 

l in ea r  ve loc i ty -hydrau lic  g rad ien t  re la t ionship .

The bas ic  p r inc ip les  of well hydraulics  which have been outlined 

in the l i t e r a tu r e  a r e  based  on the assum ption  that the flow re m a in s  

l a m in a r  and obeys D arcy ’s law r ight  to the face of the well boundary.

In o r d e r  to ana lyse  the m o re  genera l  p roblem  of tw o-reg im e  well flow, 

it i s  n e c e s s a ry  to extend these  p r inc ip les  and develop genera l ised  

field equations desc r ib ing  both Darcy and non-D arcy  flow.

The p r inc ip les  and field equations developed here in  a r e  applic­

able to the gen e ra l  case  of th ree -d im ens iona l ,  tw o-reg im e well flow.

In the development, i t  is a ssu m ed  that the two flow re g im e s  a r e  d i s ­

tinct and that the F o rc h h e im e r  no n - l inea r  veloci ty-hydraulic  grad ien t  

re la t ionsh ip  m ay  be used  to desc r ib e  non-Darcy  flow. The concept 

of Reynolds num ber  i s  in troduced and a c r i t ica l  velocity corresponding 

to the c r i t ic a l  Reynolds num ber is  used to distinguish between the two 

re g im e s .  T en so r  su bsc r ip t  notation is  employed in the derivation of 

the field equations to enable flow through an isotropic  aquifer m a te r ia l  

to be conveniently desc r ibed .
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2. 2 D a rc y 's  Law

2 .2 .1  D ifferen tial F o rm

A ccord ing  to Dar cy ’s law, the m ac ro sco p ic  flow velocity  is  

p roport iona l  to the hydrau lic  g rad ien t  m e a s u re d  in the flow d irec tion .  

The constan t  of p ropor t iona l i ty  is te rm e d  "coeffic ient  of hydrau lic  

conductivity" and is  observed  to be dependent on the p ro p e r t i e s  of 

the groundw ater  a s  well as the c h a r a c t e r i s t i c s  of the aqu ife r .  Among 

the var ious  fa c to rs  influencing th is  coefficient a r e  g ra in  s ize  d i s t r i b ­

ution, packing and shape of g ra n u la r  p a r t ic le s  and t e m p e ra tu r e  and 

chemical  composit ion of the g roundw ater .

The following g en e ra l i sa t io n s  a r e  now in troduced  in o r d e r  that 

D a rc y 's  law m ay be w ri t ten  in its  d if fe ren t ia l  fo rm  : -

F ig .  2. 1: Velocity and hydrau lic  g rad ien t  a t  a point.

A r ig h t  hand sy s tem  of C a r te s ia n  coord ina te  axes  (x^ , x 2 , X 3 )  

with axis  X3 pointing v e r t ic a l ly  upw ards  and plane x^ - X2 co r re sp o n d ­

ing to the datum p lane is  adopted as shown in Fig. 2. 1.

v h

o
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The hydraulic  head h(x^,t) at point P ( x p x 2 , x 3) is defined as 

the sum of the p r e s s u r e  and elevation heads above plane x^-X2 *

Thus h(x^, t) m ay be ex p ressed  as

h(xi , t) = p / ^  + x3 (2 , 1 )

w here  p is the hydros ta t ic  p r e s s u r e  a t  the point, H is the 

specific weight of w ate r  and X3 is the elevation of the point above the 

datum plane.

Let vj[, V2 , vg be the th ree  components of the velocity vector ,  

h , Mi, Mi
b K i  b X 2  hxg

be the th ree  components of the hydraulic gradient

vector  and e p  e 3, e 3 ^ ie th ree  unit vec tors  along Xp X2 and x 3 

axes respec t ive ly .

The velocity vec to r  V and the hydraulic gradient vec to r  Vh 

m ay  now be ex p re ssed  as

V = Vi e (2.2)

Vh = —— e, (2.3)
b x i  1

where the rep ea ted  subsc r ip ts  denote summation over the full 

range,  f rom  1 to 3.

Thus for  th ree -d im ens iona l  flow through an iso tropic  aqu ife rs ,  

the genera l  vec tor  differential  fo rm  of D arcy ’s law is given by

V = - K Vh (2.4)

w here  K denotes the hydraulic  conductivity tensor;  a second o rd e r  

sy m m etr ic  ten so r  which may be ex p ressed  as

K - Kqj ej ej (2.5)
—fr­

ill which Kjq r e f e r s  to the components of K.
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Equation  (2.4) m ay  a lso  be w r i t ten  in the  following t e n s o r ' s u b ­

s c r ip t  fo rm  ; -

Vi = - Kji <2- 6)1 iJ ^Xi

If the aqu ife r  is  i so t ro p ic ,  then  K has  only one independent  

com ponent which i s  the coeffic ient  of hyd rau l ic  conductiv ity .  It 

follows tha t

Kpj - KSpj (2.7)

w here  S y  denotes  the K ro n e c k e r  delta .

On subs t i tu t ing  equation (2.7) into equation (2 .6 ) ,  the following

equation fo r  D arcy  flow through  i s o t ro p ic  m a t e r i a l  is  obtained

Vi = - K S ij -a—  (2.8a)
3

C on trac t ing  s u b s c r ip t  j g ives

Vi = - K ~  (2. 8b) ■O Xi

In g e n e ra l  Kqj and K a r e  functions of co o rd in a te s ,  u n le s s  the 

aqu ife r  is hom ogeneous .

2. 2. 2 Range of Validity

The l in e a r  v e lo c i ty -h y d ra u l ic  g rad ien t  re la t io n s h ip  known a s  

D a r c y ’s law h as  been  d e r iv ed  th e o re t i c a l ly  by apply ing the N av ie r -  

Stokes d i f fe ren t ia l  equations of m otion  to the m ic ro s c o p ic  flow through 

porous  m ed ia .  ((I iubbert  (1956), I rm a y  (1958)). In the  d e r iv a t io n  the 

m ic ro s c o p ic  flow velocity  i s  a s s u m e d  to be  suff ic ien tly  s m a l l  fo r  the 

in e r t i a l  t e r m s  in the N a v ie r -S to k e s  equations  to be neg lig ib le  when 

co m p ared  with the v iscous  t e r m s .  E x p e r im e n ta l  inves t iga t ions  

have co n f irm ed  tha t  the l in e a r  r e la t io n sh ip  c e a s e s  to be valid  a s  the
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in e r t i a l  effects  becom e m ore  im portan t  and that tu rbulen t  flow 

develops when Reynolds n um b ers  becom e sufficiently high (Wright,

(1968)).

By analogy to flow through pipes, s ev e ra l  inves t iga to rs  have 

employed the Reynolds n um ber  a s  an index to c lass ify  the flow into 

l in e a r  and n o n - l in ea r  flow re g im es .  This approach  has been justif ied 

by the application of d imensional ana lys is  ((Rose (1945), Rose and 

Rizk (1949)). When adapted to flow through porous m edia ,  the 

Reynolds num ber  is given by

]R = (2.9)
P-

where  p  is the fluid density, V is the m acroscop ic  velocity, d is 

a length  c h a ra c te r i s t in g  the g ra ins  o r  p o re  s ize and yu. is the dynamic 

Viscosity  of the fluid. The c h a ra c te r i s t i c  length suggested by Hazen 

(1893) is the g ra in  d iam e te r  chosen such that  10 p e r  cent by weight of 

the sam ple  is  of s m a l le r  s ize .

The Reynolds num ber  defined in th is  m anner  is not a completely 

sa t is fac to ry  c r i te r io n  for  de term in ing  the depa r tu re  f rom  D arcy ’s law 

o r  the onset of tu rbu lence  (Todd 1959, p . 48), mainly b ecau se  it  does not 

take into account the genera l  shape of s ep a ra te  grains and packing of 

these  g ra in s .  Additional r e s e a r c h  is  s t i l l  needed to develop a b e t t e r  

understand ing  of the Row t rans i t ion .  At p re se n t  it  is not poss ib le  to 

make re l iab le  p red ic t ions  of the validity l im i t  of the l in e a r  re la t ionsh ip  

for a given porous m edium . P e rm eab i l i ty  te s t s  on n a tu ra l  sands and



ar t i f ic ia l  porous m edia  have shown that the n o n - l in ea r  behav iour  

usual ly  s t a r t s  when ILI r e a c h e s  a range  between 1 and 10 , depending 

on the range of g ra in  s ize  and shape and packing of the g ra in s  

((Lindquist (1933), Todd (1959)).

In view of the absence  of a m o re  sa t i s fac to ry  c r i t e r io n ,  a cr i t ica l  

value of the Reynolds num ber  has been employed in the p r e s e n t  study 

to dist inguish Darcy f rom  no n -D arcy  flow. The c r i t i c a l  Reynolds 

num ber is  defined as  the l im it ing  value above which the velocity- 

hydraulic  gradient  re la t ionsh ip  is  n o n - l in e a r .  The flow velocity  

corresponding  to th is  Reynolds num ber  is t e rm e d  the " c r i t i c a l  velocity' 

In the theo re t ica l  and n um er ica l  an a ly s is  of tw o - re g im e  well flow 

to be p re sen ted ,  it  is m o re  convenient to use  the c r i t i c a l  velocity than 

the c r i t ica l  Reynolds num ber.  F o r  a given sam ple  of aquifer  m ateria l  

an approxim ate  value of the c r i t ic a l  velocity  m ay be d e te rm ined  from 

the plot of i ts  ve loc i ty -hydrau lic  grad ien t  re la t ionsh ip .

2.3 Equations for N on-D arcy  Flow in the Vicinity of Wells  

Non-Darc}r flow n e a r  a pumped well is  desc r ib ed  by the 

F o rch h e im er  no n - l in ea r  ve loc i ty -hydrau lic  g rad ien t  re la t io n  which, 

for one-dim ensional  pa ra l le l  flow, m ay be w ri t ten  as

i = a V + b V 2 (2.10)

w here  i is the absolute hydraulic  gradient,  V is the absolute 

m acroscop ic  flow velocity, a and b a r e  t e rm e d  the l in e a r  and non­

l in ea r  coefficients of hydraulic  r e s i s t a n c e  re sp ec t iv e ly .

The application of equation (2. 10) to non-D arcy  flow is justified 

as the equation has been der ived th eo re t ica l ly  us ing  a m icroscop ic



approach  for both in e r t ia l  l a m in a r  and turbulent flow (Irmay (1956), 

Sunada (1965), Stark and Volker (1967)). The n o n - l in ea r  t e rm  bV" 

has been shown to be caused  by the increas ing  influence of ine r t ia l  

forces  in the case  of la m in a r  flow and by iner t ia l  and turbulent effect 

if tu rbulence  develops.

P e rm eab i l i ty  te s t s  on na tu ra l  and ar t i f ica l  porous  m edia  have 

conf irmed that  the equation may be used to d esc r ib e  the flow over  a 

wide range  of Reynolds num ber  with the two coefficients a and b r e ­

maining approx im ate ly  constant  (Stark and Volker (1967)).

In o r d e r  to d e sc r ib e  th ree -d im en s io na l  non-D arcy  flow through 

aniso tropic  media ,  equation (2 . 1 0 ) is  t r an s fo rm ed  into the following 

vector d iffe ren t ia l  fo rm

Vh = -  (a + b IVI) V (2.11)
-» —>

w here  a and b denote the two hydraulic  r e s i s ta n c e  te n s o rs ,  the 

components of which a r e  a^j and by  respec t ive ly .

Equation (2. 11) may also be w ri t ten  in the following tenso r  

subscr ip t  fo rm

- 2 ^ -  = - (alM + IVl) v, (2.12)

w here  IVIis the magnitude of the velocity  vec tor

I Vi = (vp^ ) 2 (2.13)

The components of the eifective hydraulic  conductivity tensor ,  

Epj, a r e  now defined in accordance  with

Ejj  = (aij + bij \V\ T 1 (2.14)

w here  Ej j a r e  functions of IVI.
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F o r  i s o t ro p ic  a q u i fe r s ,  equation (2. 12) r e d u c e s  to

- (a + b lVl)\q (2.15)
'bXi

and equation (2. 14) b e c o m e s

Ejj  = (a+b Wl f  S i j (2.16a)

or ( 2 . 16b)

w h ere  E m ay  be t e r m e d  "the coeff ic ien t  of effective  hydrau lic  

conductivity".

2 .4  D er iva t ion  of G en e ra l i sed  F ield Equa t ions

2 .4 .1  The Continuity Equation

The continuity equation of flow in a s l igh t ly  c o m p re s s ib le  po rous  

m ed ium  m ay  be developed by applying the law of co n se rv a t io n  of 

m a t t e r  to the flow of fluid. A ccord ing  to th is  law the ne t  r a t e  of 

m a s s  of fluid e n te r in g  the c losed  boundary  of an a r b i t r a r y  volum e s i t ­

uated  in the flow field is  ba lanced  by the r a t e  of a ccum u la t io n  of fluid 

m a s s  within the volume.

F ig .  2 .2 :  An a r b i t r a r y  c losed  reg ion  in the flow f ie ld .
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C onsider  an e lem enta l  volume SV- of the aquifer  s i tuated in the 

flow field as  shown in Fig.  2 . 2. Let S A be the surface  a r e a  of the 

closed boundary of S V*

The net r a te  of m a s s  of w ate r  enter ing  S A is  given by

-Jni f l v i dA

S A

Where a r e  the components of the unit outward norm al  vector  

of the d ifferentia l  a r e a  dA,-fi is  the density  of w ate r  and vj a r e  the 

components of the velocity vec tor .

The r a te  of m a s s  of w a te r  accumulated within is

d-V*
g V

Since m a s s  is  conserved ,  i t  follows that

S nj O v ^ d A  ‘ f  ~
s i  p s t  S *

The d ivergence theo rem  m ay now be applied to t r a n s fo rm  the 

su rface  in teg ra l  into the volume in tegral .  On rep lac ing  the lef t-hand 

t e r m  of equation (2 . 17) by i ts  equivalent volume in tegra l  and r e ­

a r ran g in g  the t e r m s ,  the following equation re su l t s .

/  + J w / a t j  = o (2.18)

Since the choice of SV- has been m ade a r b i t r a r i ly ,  the in tegrand in 

equation (2. 18) m us t  vanish. It follows that

-  ^  Vi _ /'S t 1 9 )
/> s-v-



F o r  a s l ightly  c o m p re s s ib le  aq u i fe r  m ed ium , it m ay  be  shown 

(Walton (1970), pp. 122- 123)) tha t  the r a t e  of m a s s  of w a te r  accum ula ted  

and the r a te  of change of hy d rau l ic  head a r e  r e la te d  by

I L J .H  = Ss (2.20)
/OgY b z  t

w h ere  Ss is  t e r m e d  the coefficient of spec if ic  s to ra g e  of the 

aqu ife r .

Equation  (2. 20) m ay be subs t i tu ted  into equation (2. 19) to give 

the re q u i r e d  continuity equation a s  follows:

■-2TL = s s ~  (2.21)
*bXi S b t

2 .4 .  2 The D iffe ren t ia l  Equat ions  of Motion

The D arcy  and the F o r c h h e im e r  d i f fe ren t ia l  equa tions  of motion 

have been se t  out in Sections 2 . 2 and 2 .3 .  To d e s c r ib e  tw o - re g im e

well flow, the e n t i r e  reg ion  of the aqu ife r  is  subdivided into two

su b - re g io n s  nam ely  R D, w h ere  D a r c y ’s law is  valid ,  and R N, w here  

n o n -D a rc y  flow e x is t s .  Thus the D arcy  d i f fe ren t ia l  equations  a r e  

app l icab le  in R.^ w hils t  the F o r c h h e im e r  equations  a r e  app l icab le  in 

R-^. To d e te rm in e  w hethe r  a point in the flow field  be longs  to R-^ 

o r  R^S the c r i t i c a l  velocity  Vc r  is em ployed .  A point in the flow field 

belongs to rA if and only if i ts  abso lu te  flow ve loc i ty  is  g r e a t e r  than 

^  C r  •

The equations d e sc r ib in g  tw o - r e g im e  well flow m ay  now be 

w r i t t e n  as
~dh



2 .4 .3  The G eneralised  Field Equ at ions

(i) Darcy Flow

The Darcy differential equations and the continuity equation can 

be combined to give the second o rd e r  l inear  field equation which is 

generally applicable to t rans ien t  th ree-d im ensiona l  Darcy flow in 

anisotropic  and non-homogeneous aquifer media.

F ro m  equations (2.21) and (2.22a), it follows that

* (KlS ^ - )  = SG - 4 4  (2.23)D b x j  s "dt

F o r  iso trop ic  and homogeneous aquifers ,  equation (2. 23)

reduces  to

* (K ~  ) = Ss - 4 4  (2.24)b x j  ^ Xi ® “dt

where  the coefficient K is  a constant. 

Equation (2. 24) may be re a r ra n g e d  to give

s 2h Ss -ah
'b X^Xj K Bt

If the coefficient of diffusivity of the aquifer is defined as

K

(2.25)

Ss

then equation (2.25) becomes

^  h 1 Sh ' (2.26)
'bxi'bxi V  *d t

Equation (2. 26) has been solved analytically for severa l  cases

of axi- sy m m etr ic  Darcy flow involving re la tively  simple boundary

conditions. A num ber of analytical solutions and methods for
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evaluating the aqu ife r  p ro p e r t ie s  have been docum ented by Hantush 

(19 64) and Walton (1971). In the p r e se n t  work, the ava i lab le

ana lys is  to be d e sc r ib ed  l a t e r .

(ii) Non-D arcy  Flow

The n o n - l in ea r  field equation for  n o n -D arcy  flow through an i­

so tropic  aqu ife rs  may be obtained by combining the F o rc h h e im e r  

d ifferentia l  equations of motion with the continuity equation.

F ro m  equation (2.22b), it follows that

Equation (2. 27) m ay  be subst i tu ted  into equation (2. 21) to 

r e s u l t  in

Solution of the n o n - l in ea r  an iso t rop ic  equation (2. 28) i s  beyond 

the scope of the p re s e n t  study. The p re s e n t  an a ly s is  a s su m ed  that 

the aquife r  is  i so t rop ic  in the non-D arcy  zone. Such an assum ption  

leads  to a simplif ied  n o n - l in ea r  f ield  equation involving only h as  a 

dependent v a r iab le .

F o r  iso trop ic  aqu ife rs ,  equation (2.27) r e d u ces  to

analytical  solutions have been used to ver ify  the finite e lem en t

(ay + b y  1VI )- 1  'bh
(2.27)

(2 . 28)

Z h
(a+b IVI ) viZ (2.29)

Contracting  su bsc r ip t  i gives

a  h Z h
(a + b I vi  )2 ViVi3  Xj Xj (2. 30)
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The absolute  hydrau lic  g rad ien t  is  now defined a s
1

2 h
Z l (2.31a)

R earrang ing  equation (2.31a) gives

'dx; 2>xi
Z h

Now

Z l

2

(2. 31b)

ViVi = \Vi “ (2.32)

Substituting equations (2.31b) and (2,32) into equation (2.30)

gives

^ h
Z l

Solving for  ] Vj r e s u l t s  in

i v

(a + b 1VI )2 \V \ 2 (2. 33)

a , i, a ,2 , \7>h/Zl\
2b~ +I2b > +  b~~ (2. 34)

F ro m  equation (2.33), it follows that

V
2>h a+b |V| (2. 35)

Z l

Combining equations (2. 29), (2.34) and (2. 35) leads  to 

- 'dh/ - ^ n  \  
i - Ka~xT)Z X̂  

Z h

~ a  _| h ^  +M
2b 2b (2. 36)

Zl

Equation (2. 36) may now be substi tu ted  into the continuity 

equation to give the re q u i r e d  field equation.

Hence

—  I T " -fcx  ̂ L \  21
l ^ h / 'S l lV '& h / 'a x i ) '  

b ) |'dh/Sl | . = S, •ah
•at (2. 37)
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Equation (2. 37) can a lso  be w r i t ten  in a m o re  com pact  fo rm  

as follows:

Z X-
" / b h ■E (   )

w herc  E
a

2b'

b  h  

3 t

b h

3 1

(2.38a)

o h

b  I 3 1

E has been t e rm e d  "the coefficient of effective hydrau lic  

conductiv ity".

The exp ress io n  for E involves the sq u a re  root  t e r m  which may

be ra t iona l ised  to r e su l t  in
\—

. r  a
E = i /  [ +

b 'd ll 1
L 2 ^/ 4 3 1  ‘

(2. 38b)

It is noted that if the no n - l in ea r  F o rc h h e im e r  coefficient b 

is set equal to zero ,  E m ere ly  becom es

E = 1 /a  (2.38c)

This is  to be expected as the F o rc h h e im e r  ve loc i ty -hydrau lic  

gradient  re la t ion  becom es  l in ea r  when b = 0 .

2 .5 Initial and Boundary Conditions 

Having derived the field equations governing t r a n s ie n t  two- 

re g im e  well flow, it may now be s tated that the flow p rob lem  is  r e ­

ducible to the m a th em at ica l  p rob lem  of finding the function h satisfying 

these  equations and the corresponding initial  and boundary  conditions.

To analyse  var ious  p ra c t ic a l  flow p ro b lem s ,  the following types 

of initial  and boundary conditions a r e  cons ide red :-
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(i ) Initial  Condit ion

In solving t r a n s ie n t  well flow p rob lem s ,  the initial  d is tr ibu tion  

of hydrau lic  head throughout the aquifer  region is a s su m ed  to be a p r e ­

sc r ib e d  function of coord ina tes ,  The function is  a lso  assum ed  to be 

the known height of the w a te r  table above the datum plane. A cco rd ­

ingly, the in i t ia l  condition may be ex p ressed  as

h (xq, 0 ) = h° (x^ • (x-J £ R (2 , 3 9 )

w here  h° (x^) is the in i t ia l  height of the w ate r  table and R 

denotes the closed reg ion  of the flow system .

(ii) Boundaries  and Boundary Conditions

(a) Perv ious  Boundaries

P erv io us  boundar ies  of the flow sys tem  a r e  defined as 

b o u n d a r ie s  a c r o s s  which there  can be flux in terchange between the 

flow sys tem  and i ts  su rround ings .  Two types of conditions p revai l ing  

on these  boundar ies  a r e  considered  as follows:-

Type 1: P re s c r ib e d  Mux o r  Flow Rate

If the flux d is tr ibu tion  on the boundary is known at any instant 

of t im e  the re su l t in g  boundary condition is r e f e r r e d  to as  " p r e s c r ib e d  

flux condition". If, on the o ther  hand, only the total flow ra te  a c ro s s  

the boundary is  known a s  a function of t ime, the re su l t ing  boundary 

condition is  r e f e r r e d  to as  "p resc r ib ed  flow ra te  condition".

Both the p r e s c r ib e d  flux and p re sc r ib e d  flow ra te  conditions a r e  

c lass if ied  as  "type 1 boundary condition". They a r e  ex p re ssed  m a th ­

em atica l ly  in the following m anner :



Let be the por t ion  of a pe rv io u s  boundary  w here  the flux 

d is t r ibu t ion  or flow r a te  is  p r e s c r ib e d .  If q denotes  the p r e s c r ib e d  

inflow flux p e r  unit a r e a ,  the p r e s c r ib e d  flux condition m ay  be ex­

p re s s e d  as

vi n i = q on (2,40)

w here  \q and l-q a r e  the com ponents  of the velocity  vec to r  V
—̂

and the outward n o rm a l  vec to r  n of the boundary su r fa ce  re sp e c t iv e ly .

Also ,  if Q (t) denotes the p r e s c r ib e d  flow r a t e  at t im e  t, the 

p r e s c r ib e d  flow r a t e  condition is  given by

Q(t) = Q (t) a c r o s s  B 1 (2.41)

Two common exam ples  of "type 1" boundary  conditions a r e  

the p r e s c r ib e d  flux condition on the leaky  boundary  of an  aqu ife r  

and the p r e s c r ib e d  flow r a te  condition a c r o s s  the boundary  of a well 

opera t ing  at a known d isch a rg e .

Type 2 : P r e s c r ib e d  Head Condition

If the d is t r ibu t ion  of hydrau l ic  head on the pe rv io us  boundar ies  

is  known at any ins tan t  of t im e ,  the re su l t in g  boundary  condition is  

r e f e r r e d  to as  "Type 2n p re s c r ib e d  head condition and is  w r i t ten  

m a th em at ica l ly  as

h = h on B 2 (2.42)

w here  h denotes the p r e s c r ib e d  head function and Bg denotes 

the boundary port ion  on which the hyd rau l ic  head is p r e s c r ib e d .
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(b) Imporvions T3oundari e.s

A c ro s s  im perv ious  boundar ies  of Die Dow sys tem , the ve loci t ies  

n o rm a l  to the boundary su rfaces  a r c  ze ro .  The p revai l ing  boundary 

condition is  given by

v^n^ = 0 on B° (2.43)

w here  Bc denotes the im perv ious  boundary portion.

(c) F r e e  Surfaces

In the p re se n t  work, a f re e  su rface  is  defined as a s t r e a m  

su r face  along which the p r e s s u r e  is a tm o sp he r ic .  In solving the p ro b ­

le m s  of flow tow ards  w a te r  table wells ,  the effects of c a p i l l a ry  

f r inges  on flow in the sa tu ra ted  reg ion  a re  neglected. The w a te r  table 

is  taken as  the upper bounding f ree  surface .  As the position of the 

w a te r  table at any instant  of t im e during pumping is  unknown a p r io r i ,  

it  i s  located by t r i a l  and e r r o r  during the co u rse  of solution of the flow 

problem .

Two conditions a re  sa t is f ied  on the f re e  su rface ,  the f i r s t  of 

which is  given by

h (x^,t) = z(xj[,X2 , t )  on B ^  (2.44)

w here  z(x^, X2 , t) i s  the height of the f re e  su rface  at point
t—\

( x j , x 2 , t )  above the datum plane and B r denotes the f ree  surface  

boundary.

The second condition is  the re q u i r e m e n t  of continuity of flow 

a c ro s s  the boundary.
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Fig,  2 ,3 :  M ovement of a d i f fe ren t ia l  e lem en t  of the f r e e  su rface .

To derive  th is  condition, co ns id e r  a d if fe ren t ia l  e lem en t  of the 

f ree  su rface  as  shown in F ig .  2 .3 .

Let. z (xp.X2 , t )  denote the e leva tion  at t im e  t of a point, (x j ,  X2 ) 

on d]3 ^ .  As pumping continues at a l a t e r  t im e  t+dt, the f r e e  su rface  

posit ion is  low ered  and point (x ^ x g M ) now m oves  to (x^, X2 * t+dt).

If the net  ave rage  of v e r t ic a l  in f i l t r a t ion  is  denoted by I, the volume 

of inflow into the f r e e  su rface  during  an in c re m e n ta l  t im e  dt i s  given by

( v p i  + I113) dB F dt

This  inflow quantity  m u s t  be ba lanced  by the. to tal  volume of 

g rav ity  d ra inage  f ro m  s to rage  within the  e lem en ta l  volume dV = dBF dl.

To take into account the fact  that  the p r o c e s s  of g ra '  ity dra inage

can take place slowly in f iner  aqu ife r  m a t e r i a l s ,  the expr  ss ion for the

total  d ra inage  volume is  obtained by applying B ou l ton 's  concept and

theory of delayed yield. ((Boulton (1955), (1963)). The theory  is  based

on the assum ption  that the r a te  of delayed y ie ld  due to g rav ity  drainage

is an exponential function of t im e  and p ro po r t io n a l  to the r a te  of lowering 

of the f r e e  su r fa ce .



Thus the total  d ra inage  volume taking p lace  during an incremenva' 

t im e dt is given by

- o k  ( t - 1 ) T?
( c6 Sy i  —  e dx ) n 3dB] dt

w here  Sy is the u l t im ate  volume of delayed yield p e r  unit d raw ­

down of the f re e  su rface  pe r  unit horizontal  a r e a ,  commonly r e f e r r e d  

to as  the coefficient of specif ic  yield, and oL is  am em p ir ica l  constant 

t e rm e d  the r e c ip ro c a l  of the delayed yield index.

The continuity equation may now be w ri t ten  as

( ni + In3 ) dBF dt = U  %  f  | | ;  e" ^ T b n g d B 1" dt (2.45a)
o

Equation (2. 45a) m ay be re a r r a n g e d  to r e s u l t  in the re q u i r e d
#

boundary condition as  follows:-

= - (I - d  Sy J || -  e _ci(t' X ) d t ) n 3 (2.45b)

o

F o r  aquifer  m a te r i a l s  consis t ing  of co a rse  sands o r  g rave ls  in 

which the dra inage p ro c e s s  takes  place quite rapidly,  the delayed yield 

effect m ay be neglected  and equation (2. 45b) m ay be w ri t ten  in the 

following fo rm :-

vi n i = - <1 - Sy ^  ) ng (2.45c)

w here  Sy becom es  a constant taken to be appro, nately  equal to 

the effective po ros i ty  of the aquifer  m a te r ia l .

F o r  the case  of steady unconfined flow without v e r t ica l  flux 

a c ro s s  the f re e  surface ,  equations(2 .45b) and (2.45c) reduce  to
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(d) Seepage F a c e s

In solving the unconfined flow p ro b le m ,  the  p r e s e n c e  of a  

v e r t i c a l  d ra in a g e  o r  seep ag e  face  at  the  w el l  is  a l so  c o n s id e r e d .

The seepage  face  is  lo ca ted  d i r e c t ly  below the  w a t e r  tab le  and  above 

the w a te r  lev e l  in the w ell .  The  p r e v a i l in g  b o u n d a ry  condit ion  is  

w r i t t e n  a s

h (xjy t) = X3 on B S (2 .47)

w h e re  B s deno tes  the seep age  face  bo u nd ary .
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3. V ar ia t iona l  P r inc ip le  for  T w o -reg im e  Well Flow

3.1 G enera l

, In the p rev ious  chapter  the fundamental approach to the genera l  

p rob lem  of t r a n s ie n t  tw o-reg im e  well flow was p resen ted ,  in which the 

flow was desc r ib ed  by two field equations and the problem reduced  to 

that of finding a function satisfying these  equations as  well a s  the initial 

and boundary  conditions.

An a l te rn a t iv e  approach is possible  via var ia t ional  methods. In 

this approach an ex t rem u m  princip le  valid over the en t i re  flow region 

is postu la ted .  The req u ired  solution is  the one m inim ising  a ce r ta in  

quantity D. , te rm e d  "functional" ,  subject to the sam e conditions of the 

flow sys tem .  The functional is defined by suitable integration of the 

unknown quantit ies  over the region.

While the two approaches  a r e  m athem atica l ly  equivalent in the 

sense  that an exact  solution of one is the solution of the o ther ,  the 

var ia t ional  a op roach  is p a r t icu la r ly  useful fo r  the computation of an 

approxim ate  solution by the finite element method to be descr ibed  in 

the next chap te r .  F u r th e rm o re ,  the governing field equations may be 

obtained f rom  the n e c e s s a r y  conditions for m in im isat ion  of th. functional.

The var ia t iona l  princ ip le  for steady state Darcy flow through 

aquifers  was f i r s t  developed by M a u -e r s b e rg e r  (1965) and l a t e r  extended 

by Neuman and Witherspoon ((1970), (1971)) to t ran s ien t  flow. The 

principle  for non-D arcy  flow has not been fully developed. Only tne case  

of steady s ta te  two-dim ensional  flow was t rea ted  by Volker (1969) and 

McCorquodale (1969).
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The purpose of th is  chapter is  to present, a g ene ra l ised  var ia t ional  

principle applicable to t ran s ien t  tw o -reg im e  well flow through confined 

and unconfined aqu ife rs .  An energy theo rem  desc r ib in g  the flow is 

established and d irec tly  re la ted  to the var ia t iona l  p r inc ip le .  Via this 

theorem  a physical meaning is ass igned  to the functional.

3.2 Development of V ar ia t ional P r in c ip le

3 .2 .1  Variational F o rm s  of the Fie ld  Equations

R. = R U R

i i
h — H
H------ h -V- co

o

Fig. 3 .1 ’.A 3-dimensional space region and an open t im e domain.

Variational fo rm s  of the prev iously  der ived  field equations may be 

obtained by considering an equivalent v a r ia t ion a l  p rob lem  and employing the 

E u le r -L ag ran g e  equation f rom  calculus of va r ia t io n s  ((Wienstock (1952)).

Consider the genera l  well-aquifer  sy s tem  shown in F ig .  3 .1 .  As 

indicated above, ( x i , X2>x.%) r e p r e s e n t s  a r igh t  hand sys tem  of C ar tes ian  

coordinate axes ,  R ^  and a r e  the Darcy and non-D arcy  subregions  of 

the flow sys tem  respec t ive ly .

Let h (xj_, t) be an ad m iss ib le  function with the  second o rd e r  space and 

f i r s t  o rd e r  t im e  de r iva t ives



which a r e  continuous everyw here  in a given flow region R and le t  

the t im e domain be subdivided into a num ber of finite t im e in c re m e n ts .

functional to be m in im ised  over  the space region  R and the t ime increm er  

ts t. may be e x p re s s e d  as

The ex t rem u m  prob lem  is now reduced  to seeking the function 

h(xj, t) which holds the above functional s ta t ionary .  A n e c e s s a ry  con­

dition is the E u le r -L a g ra n g e  equation which may be w ri t ten  as

Equation (3.2) r e p r e s e n t s  var ious  c la s s e s  of p a r t ia l  differential  equation. 

The p rev ious ly  der ived  field equations can be shown to belong to one of 

these  c la s s e s .

Thus on equating the field equations to equation (3.2), the ex­

p re s s io n  fo r  function G m ay be obtained.

(i) Non-Darc y  Flow

The field equation desc r ib ing  non-Darcy flow through iso trop ic  

aqu ife rs  is  now re w r i t te n  as

A ssu m ing  that h (x •, t) is known at a p a r t ic u la r  t im e t, the genera l

X[, t)dRdt
t + 1st

0 (3.2)

0 (3.3)

Equation (3.3) is applicable everyw here  in the non-Darcy flow 

subregion R ^ .  On equating it to equation (3. 2), the following

ex p ress ion s  r e su l t  :
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a  g
'dh 

a  G
^ (  a h )

0

-  a  + L a_ \  + i  ̂ * — -
3T2b ‘ b l  i / V ^ Xi

( ~ - i
v 2b

a*.

a  G

a h
a i

~d( a h  )
h S.

a t

In tegra t ing  the above ex p re s s io n s  le a d s  to
3 /2

G = - a 2>h 2 b
2b I a i

( —  \ + \ 2 h
2b I "311

b

+ Ss h "M (3.4)

Hence the r e q u i r e d  functional over  the n o n -D a rc y  flow sub-

reg ion  is  given by

n ( h )
RN

t+ ZU _

/  4 L
- a

R 2b
ajh
a i

a ,2 I1>h|( 3/2( < - V  " ^ 1  ij

+ S„h 1 dRdtb t  J (3.5)

(ii) D arcy  Flow

The field  equation d esc r ib in g  D arcy  flow th rough  an iso t rop ic

aqu ife rs  is r e w r i t te n  as

a (K. 7 7 )+  S
a  h 

s a t oax^ H

Equation (3.6) is applicable  eve ryw here  in R ^ .  On equating it to 

equation (3. 2), the following equations a r e  obtained

(3.6)

a c
a h

a G

o

a h

J

hS.



In tegra t ing  the above exp ress ions  leads  to

G -  Kl, —2- hi ^ X-: 7>tb - ^

Ilence the functional over  subregion 11 ^  is given hy

t+^\t
- I 1 T- &' h /-  ■*- Ss[xx(h)] D = f  L 2  Kl-1 ' J x j  - a x j  

t R

'Sh Dh 0 , -Shi+ Sc h —  !
■at J

F o r  i so t rop ic  aq u i fe rs ,  equation (3.8) reduces  to
t+kt

&i(h)] R D = /  f r
R D

1 h ^ h 0 . hK -----  - —  + Sc h'bXi **t

(3.7)

dRdt (3.8)

dRdt 3. 9)

(iii) Statement of the Variational P rob lem

Let R be the union of R^ and R U. The functional [ f l  (hD n
)J R

m ay be e x p re s s e d  as

[ n  (h)] R [_n. (h)] r n  + RD (3. 10)

w here  [ n ( h ) ]  and [n(h)] RD a r e  the two port ions contribute d

N Dby R and R re sp e c t iv e ly .  Their  express ions  a r e  given by equation 

(3.5) and (3. 8 ).

The var ia t iona l  p rob lem  reduces  to finding an adm iss ib le  functio 

that m in im is e s  £ n ( h ) J  and also sa t is f ie s  the existing initial and 

boundary conditions of the flow sys tem .  The c lass if ica tion  of 

boundar ies  and boundary conditions according  to the ir  physical na tu re

has been p re se n ted  in Chapter 2.
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3 . 2 .2  T re a tm e n t  of .Initial and Boundary Conditions

(i) Initial Condition

At a p a r t i c u la r  t im e ,  taken as  the in i t ia l  t im e ,  the head d i s ­

tribution throughout the space reg ion  of the flow sy s tem  is  a s s u m e d  

to be known. If, in the m in im isa t io n  of the functional,  the t im e  

in teg ra t ion  is  c a r r i e d  out between  t im e  t = 0 and t - At, the ad m iss ib le  

function will au tom atica l ly  sa t is fy  the in i t ia l  head condition re p re s e n te d  

by equation (2 . 39).

(ii) Boundary  Conditions

In m in im is in g  the functional,  the r e q u i r e m e n t  of the conditions 

on the flow boundary m ust  a lso  be m et .  T hese  r e q u i r e m e n t s  lead  to 

ex t ra  t e r m s  that have to be added to the functional in Equation (3. 10).

F o r  the va r io u s  types of boundary conditions d e sc r ib ed  in the 

p reced ing  chap te r ,  the additional t e r m s  have been obtained by 

Neuman and W itherspoon  ((1970), (1971)).

On boundary por t ion  w here  the flux is p r e s c r ib e d ,  the 

additional t e r m  m ay  be w r i t ten  a s

t + At

/  /  - h %dBdt
t B i

On boundary port ion  B 2 w here  the function h is  p r e s c r ib e d ,  it 

is  given by

t + At

f  f  (h - h ) v ^  dBdt
t b 2
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FOn the f r e e  su r fa ce  B , th e re  ex is t  two additional t e rm s

« . .

which m ay be w r i t ten  as  

- 1 + M

J  J  (h-z) v-n^clBcit

t B F

and

t + M  t

- J  J  z(I -0 . s y e ' <" (t' T)d t )  ngdBdt

t BF o

for the f i r s t  and second f ree  su rface  conditions re spec t ive ly .

F ina l ly  on the seepage face B s , the additional t e rm  is given

by
t + M

/  / .  (h - x^) v^n  ̂ dBdt.
t Bs

w h ere  the ex p re ss io n s  for v^ in te rm s  of the hydraulic  g rad ien ts  

a r e  given by equations (2.22a) and (2.36) for Darcy and non-D arcy  

flow re sp ec t iv e ly .

3. 3 E nergy  Approach  to Well Flow Prob lem s

3 .3 .1  G en e ra l

E nergy  th eo re m s  provide an ex trem ely  powerful to' j for the 

th eo re t ic a l  ana ly s is  of many physical  p rob lem s.  Via the energy 

approach ,  g en e ra l i sed  f ie ld  equations descr ib ing  the physical  phenomena 

may be developed.

The energy  concept fo r  steady s ta te  groundwater flow complying 

with D a rc y ’s law was f i r s t  in troduced by Muskat (1937). He postu la ted
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that the ac tua l  d is tr ibu tion  of hydraulic  heads and flow v e loc i t ie s  in a 

porous m edium  c a r ry in g  a fluid u n d e r  viscous flow conditions a r e  such 

as to r e n d e r  the total lo s s  of m ac ro sc o p ic  en e rg y  of the fluid a m inimum, 

subject to the ex is t ing  boundary  conditions of the flow sy s tem .

Engelund (1953) l a t e r  extended the concept to tv /o-d im ensional  

steady non-D arcy  flow. He showed that  the in teg ra l  ex p re s s io n  of 

the r a te  of d iss ipa t ion  of hydrau lic  energy in the aqu ife r  reg ion  is  

p ropor t iona l  to the functional of the n on - l inea r  f ie ld  equation which he 

developed fo r  non- Darcy flow through homogeneous and i so t ro p ic  media.

In the development p re se n te d  h e re in ,  the au thor  a t tem p ts  to 

e s tab l ish  in a r ig o ro u s  m an n e r  the energy  th eo rem  fo r  the g en e ra l  

p rob lem  of th re e -d im e n s io n a l ,  t r a n s ie n t ,  tw o - re g im e  flow through 

aqu ife rs .  It will be shown that the field equations governing  the flow 

m ay be obtained by applying th is  theo rem .

3 . 3 .2  Pis sipation- of E n erg y  in th e Flow Region

The m ovem ent of g roundw ater  occu rs  th rough  the in te rconnected  

port ion  of the ex is t ing  pore  space within the aqu ife r  m ed ium . While 

flowing, the w a te r  p a r t ic le  lo se s  som e of i ts  energy  due to fr ic t ion .  The 

lo s s  of hydraulic  energy  p e r  unit d is tance  t r av e l led  is  u sua l ly  ex­

p r e s s e d  in t e rm s  of the hydraulic  g rad ien t .

When the m ac ro sco p ic  velocity l ie s  within the ra n g e  of the Darcy 

flov/ r e g im e ,  it is observed  to be l in ea r ly  r e la te d  to the hydraulic  

gradient.  D epa r tu re  f rom  the l in e a r  re la t ion sh ip  has been a s su m ed  to 

s t a r t  a t  som e c r i t i c a l  velocity . Although ex p e r im en ta l  evidence shows



tha t  the d e p a r tu re  f ro m  l in ea r i ty  may not be abrupt,  the assum ption  is 

sufficiently ac cu ra te  for well flow ana lys is .  The non- l inea r  r e la t io n ­

ship has been r e p re s e n te d  by the F o rch h e im er  equation.

A typical veloci ty-hydrau lic  gradient  re la t ionsh ip  for iso tropic  

aqu ife rs  is  shown in Fig. 3 .2 .  The r a te  of dissipation of hydraulic  

energy within the aquifer  volume may be evaluated as follows:-

Consider  an a r b i t r a r y  volume R of the aquifer  s i tuated in the 

flow field. Let a function 0, te rm e d  the "d iss ipation  function", be 

defined in accordance  with

0 r e p r e s e n t s  the ra te  of d issipation of hydraulic  e n e r g y  per  

unit weight of w a te r .  The r a te  of d iss ipa t ion  of energy within the 

volume R of the aquifer  medium is  given by

V

<

Fig. 3 .2:  V eloc ity -hydrau lic  gradient re la t ionship  for a
hypothetical aquifer m a te r ia l .

(3.11)

X 1
(3.12)

R R

w here  ty is the spec if ic  weight of w ate r .
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The in teg ra l  t e r m  in b ra c k e t s  m ay  be evaluated , p ro v ided  that

3 .3 .3  D iss ipation Function fo r  T h ro e -d im e n s io n a l  Flow 

The gene ra l  ex p ress io n  of the d iss ipa t ion  function fo r  th re e -  

d imensional  flow tak es  the following fo rm

w h ere  the rep ea ted  su b s c r ip t s  r e p r e s e n t  su m m atio n  ov e r  the 

full range  f rom  one to th ree .

(i) D arcy  Flow

F o r  D arcy  flow through an iso tro p ic  aqu ife rs ,  the d iss ipa t ion  

function becom es

On in tegra t ing ,  the following e x p re s s io n  is  obtained

ri - _L k  ^  k h
2 Kij T x j  ?Tx~

(ii) N on-D arcy Flow

The d iss ipa t ion  function for  no n -D arcy  flow obeying the 

F o rc h h e im e r  v e loc i ty -hydrau lic  g rad ien t  re la t io n  is  g iven by

w here  the in teg ra t ion  m ay  not be re ad i ly  c a r r i e d  out a s  I Vi i s  a 

function of the hydraulic  g rad ien t .

However, if the aqu ife r  is  i so t ro p ic ,  the in te g ra te d  exp ress io n  

fo r  0 can be obtained in the following m a n n e r .  F o r  i so t ro p ic  aquifer  

m ed ia  equation (3. 15a) r e d u c e s  to

an exp ress ion  re la t ing  V and i is  given.

(3. 13)

0 ( 3 . 15a)
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0 = J ( a  + b IV 0 ~ 1 —  d ( - - — )6 X- (3 . 15b)

Now f ro m  equations (2.34) and (2.35), it follows that

(a + blVl )
-  1

Also

'Mi i
21

- a
2 b

2  h 
2 x i

< £ >  H

"oh I
J l j

2 h
21

2  h 
2 * i

(3.16)

Differentiating gives

7> h
2  1

2  h 
21

o (3.17)

Substituting equations (3. 16) and (3. 17) into equation (3. 15b) gives

2 h
0 = / ( -

a
2b N

( —  ) + 2b 7
7) h
7)1
b

) d ( 21 )

On in tegra t ing ,  the following exp ress ion  for 0 is obtained
3/2

A a i , 2 t (/ a \ 2 L ^ 1 ' '* = - 2b iTTl + T  b 1 'ir 1 *
'bh
2 1 (3. 18)

3 . 3 . 4  P ro po sed  E n e r gy Theo rem  

(i) Development

T heo rem  1: The m ovem ent  of groundwater through sa tu ra ted

porous aqu ife r  m edia  takes  place in such a m anner  that the total ra te  

of energy  change in the flow region is rend e red  a m in im um , subject to

the exis t ing initial and boundary conditions of the flow sys tem
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Proof:

C ons ide r  an a r b i t r a r y  c losed  reg io n  R in the aqu ife r  m ed iu m .
\  mm '  +

Let R be the in te r io r  of R an d  dR be a d i f fe ren t ia l  volum e of R.

The total  r a t e  of en e rg y  change in the flow reg ion  c o n s i s t s  of

two p o r t io n s ,  the f i r s t  of which i s  g iven by

X  = t f i  dR (3.19)
R

w h ere  x  denotes the r a t e  of d iss ipa t ion  of hyd rau l ic  ene rgy .  

The second por t ion  is  due to volume c o m p re s s ib i l i ty  of the 

e la s t ic  aqu ife r  m ed ium . It m ay  be in t e rp r e te d  a s  the r a t e  of change 

of e la s t ic  ene rgy  and m ay  be e x p r e s s e d  as

X „ = 'X /" c -u ^  h
jSs h - V t

2 J  Sqh - —  dR (3.20)
R

w h ere  Ss is the specific- s to ra g e  of the aqu ife r  m ed ium .

N DLet  the reg ion  R be subdivided into sub reg io n s  R and R , which 

a r e  the n o n -D a rcy  and D arcy  flow s u b re g io n s ' r e s p e c t iv e ly .  It 

follows that

*  * s \ J  M R *  /  Ss ^ £ h  dR
K R

+ 0 dR + f p  Ss h dR (3.21)

w here  the e x p re s s io n s  fo r  0 a r e  given by equations (3 .14) and (3. 18) 

r e sp e c t iv e ly .

Substi tuting equations (3.14) and (3. 18) into equation (3.21) gives



42.  ̂ 3 / 2

OC/v /" T a ! h I 2b f , a x !v“ ! i
h  J  L- 2 T  ImH  * “ k i d  - ± M ' i

EK b

+ Ss h ^ i ]  dB + /  [ i  Kij | |  2 ±  * Ss h - | i i ] d B  (3.22)

r d

The functional xl is now defined in accordance  with

A  = X j ~ $ . (3.23)

The s ta t iona ry  condition of f l  may be es tab l ished  by showing 

that  the vanishing of its f i r s t  var ia t ion  leads  to the adm iss ib le  function 

satisfying the p rev iously  derived field equations. The condition of 

m in im isa t ion  is  a s s u re d  by showing that the second var ia t ion  i s  a 

posit ive definite quantity.

In o r d e r  to find the f i r s t  var ia tion ,  le t  h (x-j, t) be an adm iss ib le  

function which, together  with its  second o rd e r  space and f i r s t  o rd e r  

t im e der iva t ives ,  a re  continuous everywhere  in region Pt. The 

function h(xi , t )  m us t  satisfy  the initial  and p re sc r ib e d  boundary con­

ditions in o rd e r  to be ad m iss ib le .

The o n e - p a ra m e te r  family of "com parison  functions" is now

defined as

H(xj,t) = h f e ^ t )  + A Sh (x^ (3.24)

w here  S h(xi ) i s  an a r b i t r a r y  function of coord ina tes ,chosen  to 

vanish on the flow boundary^ B, and 7\is the re a l  p a r a m e te r  of the family

The f i r s t  va r ia t ion  of XI is given by

S f l  = r A O i+ l x S h )1 (3.25)
N L O
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'bSince the function Sh(x-j) is  chosen  such tha t  — -  ( o h )  van ishes ,ot

it follows that  S x im a y  be w r i t t e n  as

S f t ' L
a Jb_h ’ 2)CSK) 

2b b x-j bxj
// c l \

'2b '
b h
b l

R bh
b l

_j L!l - b -  ( S h )  + Ss —  
b x ^  s b t

S h dR

-t-
r d

j_b_h 
I Dl

b h
K-.L 13 bx.

_ | _ ( S h )  + s s | f  S h dR (3.26)

The th e o re m  of in teg ra t ion  by p a r t s  is now em ployed  to obtain 

the following equation:

/
R D

V- 7)11 U c nKii -1 r— (Sh)- AJ bX-^ OX j
dR = - / L - -  ( K , , - — ) S h ] dR

Ip Lb*^ i] 3

+ i
B D

^ h C.Kii n i h13 bx i  J
dB (3.27)

w h ere  B is the boundary  of subreg ion  R ^ \

Equation (3. 27) may a lso  be w r i t t e n  in the fo rm

/  [ Kii _ L  ( S h) 1 dR = - F— (Ki-; ^  ) g h i  dRL J-J ^ x i  ^x j  J L-bxi x3 ^Xj J

BD
L v j nj S h j  dB (3.28)

In a s im i l a r  m an n e r ,  it m ay  be shown that
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/
RN

- a  ?> K m  L / a .  • i^h I ?> h ^ _ a
~ 2b ^x-j ?>xt ^  \ l (2b > ' ^ l_ l  2>Xi ^ 8 h ) J dR

cdi |

^ l 1

; - [ - -  (< ?Xi  I1# 2b & % ! $ * § > )  
b ^ h ,  •

?>1

dR

b n  Lvi”i Sh] dB (3. 29)

w here  B^T is  the boundary of subregion R , which is in common 

with B ^  a s  shown in Fig, 3 .1 .

Substituting equations (3.28) and (3.29) into equation (3.26) 

r e s u l t s  in

g x i  = f [" —  (K-h ) + Sg 1^-1 Sh dR+ p —  f6iL -W L -ax  ̂ hi axj ’b -at J L m  I
R - r N

a
2b

+ p  +

'bh j\ / 'b h 

b | 'bhi
•'fcl I

+ S 7> h ‘ 
s 'M J

S h dR - f  Tv-; n-Sh i dB 
NB

-

B D
!v. n- %h 
L' 3 3 dB (3. 30cl)

w here

I  b  n j S h ] d B  + /  h nj ShJ dB

B BD
0

Equation (3.30a) re d u c e s  to
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S-O- =
- 'b

( K .  e i  + s s

R D i 1]

c r  o c i . & j
Lz 7 ~  l( " "2b Y  2b } +

S h dR

RN
+ S, 'bt J

ShdR • (3.30b)

The two in te g ra l s  in equation (3. 30b) can be shown to vanish  

independently when S fl is  se t  to z e ro .

Thus it follows that

7> h/  c-
r d

and

L d

( K  Q ____(Rn ) + Sg ^ ^bxq hi ~d x j ShdR 0

(  ~  a
R iN L ^x i  I "2b +f i x  f | i  sY b p h

^ h i
s b t  _ S h dR = 0

Since the choice of S h m ay  be made a r b i t r a r i ly ,  the in tegrands  of 

the above two in teg ra ls  m us t  van ish  

Hence

3 x t lj Bx . '  ~s 2)t 0

fo r  (x.j_) G R
D

and

^  ft JL ,_a_ x p_h, b h  q
•dXi L( 2b A,| ( 2b ; i -ail ( -Sxi 1. + s

2>h 
s 'dt

b l_Mi | 
<>11

(3.31)

0 (3.32)

fo r  (x i ) G RN
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Equations (3. 31) and (3. 32) a r e  identical  to the two field 

equations (2.23) end (2.37), p rev iously  der ived for Darcy and non- 

Darcy flow re sp ec t iv e ly .

Thus it  is now es tab l ished  that the flow of groundwater through 

porous aquifer  m edia  takes  place in such a way that the to ta l  r a te  of 

energy change in the flow region is rendered  s ta t ionary  o r  ex t rem ised .

To ensure  tha t  the ex t rem ised  functional co r responds  to a 

m in im um , it  is sufficient to show that its second var ia t ion  i s  a 

posit ive quantity. The rem ain ing  pa r t  of the proof is  not p re sen ted . ,  

However, it is pointed out that the functional I I  (h) is a posit ive 

definite quantity a s  in equation (3 , 2 2 ) the function h and its der iva tives  

appear  as s q u a r e s  and products .

(ii) Application

B efore  the in troduction of the energy concept and theo rem , the

functional [nth)] was construc ted  by applying the E u le r -L a g ra n g e

equation to the field equations for Darcy and non-Darcy  flow. It has

jus t  been es tab l ished  that  via the energy approach the new functional

A  (h) m ay be cons truc ted  without having to r e s o r t  to these  equations

and that  the m in im isa t ion  of SI (h) leads  to the sam e field equations.

Also, if the function li(xj,t) is  a ssum ed  to be known at an e a r l i e r  t ime

t and i t s  t im e  der iva t ive  is a ssum ed  to re m a in  invar ian t  between t and

t  + At, the two functionals a re  r e la te d  by
t'r A t

£ .TL (h)l R = / l b ( h )  dt (3.33)

t
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Thus a phys ica l  m ean ing  can be a s s ig n e d  to ].f)_ (h)j • It m ay  be 

in te rp re te d  as the total energy cl)angc that takes  p lace  in the i n t e r io r  

of the flow reg ion  between t im e  t and t + k t .  F u r t h e r m o r e ,  the 

t e r m s  tha t  have to be added to T il  (h)i _ to account  for addit ional  

boundary  conditions of the flow sy s te m  m ay  be in t e r p r e te d  a s  ene rgy  

exchanges  between the s}rs tem  and i ts  su r ro u n d in g s ,  which  take  p lace  

a c r o s s  the flow boundary  o v e r  the t im e  in c re m e n t  Zl t .

It is finally pointed out that, the energy  theo rem  ju s t  p roved  r e ­

m ains  inva r ian t  with r e s p e c t  to the choice of coord ina te  s y s t e m s  as  

ene rgy  is a s c a la r  quantity  which r e m a in s  unchanged with change of 

coord ina te  s y s te m s .



4. Finite  E lem ent Analysis  of Confined and Unconfined Flow P ro b lems 

4. 1 Genera l

In the prev ious  chapter ,  varia tional  fo rm s  of the field equations we 

der ived  and an equivalent var ia t ional  problem was s ta ted . The problem  

cons is ts  of finding an adm iss ib le  function that m in im ises  a ce r ta in  

functional subject to the existing initial and boundary conditions of the 

flow sy s tem .

An approxim ate  solution of the above var ia tional  problem  can 

be obtained by a n u m er ica l  technique known as  "the finite element 

method". In th is  technique, the continuous region of the flow system 

is  subdivided into a finite num ber of closed subregions te rm ed  "finite 

e lem en ts" .  The finite e lem ents  a r e  assum ed  to be in terconnected 

at a d i s c re te  num ber  of nodal points situated on the i r  boundar ies .  

A ssoc ia ted  with each e lement is a chosen function that defines u n i q u e l y  

the hydraulic  head distr ibution within the  element in t e rm s  of i ts  nodal 

p a r a m e te r s .  The functional over the entire  region of flow is assum ed 

to be contributed by each  e lem ent and the p ro c e s s  of m in im isation  is 

accom plished  by evaluating the elem ental  contributions, adding all such 

contr ibutions,  differentiat ing the resu l t ing  functional with r e sp e c t  to 

the nodal p a r a m e te r s  and equating the differentials  to zero .  This  

p ro c e s s  gives r i s e  to a sys tem  of simultaneous a lgebra ic  equations 

which m ay be read i ly  solved by e i ther  d irec t  elimination or i te ra t ive  

m e th o d s .
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The finite e lem ent ana lys is  of a x i - s y m m e tr ic  flow towards a 

pumped well is developed in this chapter .  The ana lys is  co n s id e rs  two 

flow re g im e s ,  namely the non-D arcy  re g im e  in the n ea r  well zone 

and the Darcy reg im e  in the rem ain ing  portion of the flow region.  

Anisotropy of the aquifer  m a te r ia l  is  taken into account only in the 

Darcy zone. The ana lys is  of non-Darcy flow behaviour in an iso trop ic  

aquifers  involves complex non- l inea r  velocity -hydraulic  gradient  r e ­

lations, the theore t ica l  bas is  and experim enta l  ver if ica t ion  of which 

have not been es tab lished .  Additional field and lab o ra to ry  r e s e a r c h  

is s t i l l  req u ired  in o rd e r  to develop a b e t te r  understanding of the an i­

sotropic c h a rac te r  of the two coefficients of hydraulic r e s i s ta n c e  in 

the F o rch h e im er  constitutive re la tion ,  namely coefficients a and b.

4. 2 Subscript Notation

F o r  convenience in p resen t ing  the finite e lem ent formulation  for 

the genera l  th ree -d im ensiona l  flow problem , the following subsc r ip t  

notation is  adopted

Both capital l e t t e r  and sm al l  l e t t e r  su b sc r ip ts  a r e  employed.

The capital l e t te r  sub sc r ip t  r e f e r s  to a p a r t ic u la r  node belonging to 

ei ther an element or the en t i re  flow region. The range of the subscr ip t  

is f rom  one to the num ber of nodes on the element boundary, if r e f e r ­

ence is made to the clement,  o r  f rom  one to the total num ber  of nodes, 

if r e fe ren ce  is made to the en t ire  flow region. The sm all  le t te r  sub­

scr ip t ,  as previously  indicated, r e f e r s  to a p a r t icu la r  component along 

the coordinate axis .  Its range  is  f rom  one to th ree  for th ree -d im ensions  

space region.
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U nless  it is  indicated* repea ted  sub sc r ip ts  a r e  in te rp re ted  as

sum m ation over the full range and the sam e subscrip t  does not appear

m o re  than twice in the sam e  t e rm  of the express ion .

4. 3 Analys is  of Flow t h r ough Confined Aquifers

4 .3 .1  F o r 3nutation of E lem ent M atr ices

(i) General 

'X.-2

&■»
X

X

C el*

5

Fig. 4. 1: Typical flow region of a confined aquifer and a
finite element.

Consider the genera l  p roblem  of th ree -d im ens iona l  t ran s ien t

flow towards  a pumped well penetra t ing  a confined aquifer.  A typical

flow reg ion  ft is  shown in Fig.  4 .1 .  As indicated, R is the union of 

N DR , R and B which a re  the non-Darcy  flow subregion, the D a r c y  sub-

region and the flow boundary re spec t ive ly .

The functional over  R may be ex p ressed  as  the sum of the 

N Dfunctionals over  R , R and B. Thus it follows that

[<x (h)] - = [ n  (h)] r n  + [1 1 (h ) ]  r d  + A ( h ) l  B (4 . 1 )
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The e x p re s s io n s  for Q.TL (h)j T>N and [~_Q.(h)] have beenIA " IX

der ived  in C hapter  3. They m ay  be r e w r i t te n  as

N -  ^  3 *■ 2 Lb

t-t-M. r , 2 i 'hhj
[ ^ < h ) ] EN ■ j  r l - Z W  * * < > { ( & )

3/2

and

t R

, B h i  + b hs o t J

t+M

dltdt (4.2)

[“ '“ I n ' -  I f l i Kn s f  S r + s = h T r ] ® <tt (4- 3>
t R

Let the c losed  boundary  B of the confined flow reg io n  be sub­

divided into B and B 0 which a r e  the p r e s c r ib e d  flow and the p r e -
1 z

sc r ib e d  head por t ions  re sp e c t iv e ly .  The functional ov er  the  c losed  

boundary ]~JT(h)J is e x p re s s ib le  as  the sum  of the func tionals  o v e r

B^ and B^. It follows that

t +&t t  f At
J X  (h)] g  - J J h q  dBdt + J  J  (h - h) \q m dB dt (4.4)

t B i  t  B 2

In solving the flow p ro b lem  by the fin ite  e lem en t  m ethod ,  the

flow reg ion  R i s  d i s c r e t i s e d  into a ne tw ork  cons is t ing  of m i n t e r ­

connected finite e lem en ts .

If the c losed  subreg ion  of a ty p ic a l  e lem en t  is denoted by Re 

and if the n u m b er  of nodes s i tua ted  on the e lem en t  boundary  is  n e , 

the head d is t r ibu t ion  within the e lem en t  m ay be ap p ro x im a ted  by

h(xp t) - Nj (xt ) hj (t) (4. 5)

w here  Nj (xt) a r e  p iecew ise ly  defined functions of coo rd ina tes
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(x 1>x2 #x3 ) within the element,  hj(t) a re  the nodal values at t ime t

of the function h and the repea ted  subsc r ip t  I denotes summation over

the full ran ge ,  f rom  1 to ne .

The functional over  the en t i re  flow region, [ i l  (h) ]̂ - , may now

be e x p re s s e d  a s  the sum of the functionals over  the finite e lem ents ,

[ A  (h)l ^ e  , o r  m o re  concisely  _fl(h). Thus

m
[ A ( h ) ]  j j  = y  _fl(h) (4.6)

e= 1

To obtain the final e g r e s s i o n  for[_A.(h)] - , it is  convenient toR

class ify  the finite e lem ents  in the en t i re  network into " in te r io r  and 

ext e r i o r  e lem en ts" .  The in te r io r  e lem ents  a r e  defined as e lem ents  

with th e i r  c losed e lem enta l  boundaries  contained within the in te r io r  

of the flow reg ion  whilst the e:xterior e lem ents  a r e  the rem ain ing  

eLements with port ions  of th e i r  c losed boundaries  as  p a r t s  of the 

boundary of the flow region.

The evaluation of e lem ental  contributions is thus accom plished  by 

evaluating f i r s t ly  the contributions f rom  the in te r io r  e lem ents  and 

secondly the rem a in ing  contributions f rom  the exte r io r  e lem en ts .  In 

the p ro c e s s  of evaluation, it is  a ssum ed  that  the e lem ents  n ea r  the
-  0

well a r e  sufficiently small  for R to be considered  to belong to e i ther  

o r  R ^ .  The c r i te r io n  fo r  de term in ing  whether  R? belongs to R^T 

o r  rP  as  follows

If. the  absolute velocity  a t  the centro id  of the element is  g re a te r  

than the c r i t i c a l  velocity , the e lem en t  is  cons idered  to belong to R p  

o therw ise  it belongs to R ^ .



53.

(ii) In te r io r  E lem en ts

(a) E lem en ts  belonging to '

NF o r  the in te r io r  e lem en ts  belonging to R , the functional
e

over R is  given by

XL* (h) i f . a |Bh | 2 b
2b V l  I + 3

t  R

3/2
2 h
21 ‘ j  

b
+ Sq h - | £  s 2t J dRdt

Differentiating equation (4. 7) with r e s p e c t  to hj gives

2 S 1 ' (h)
B h j

t+Lt

1 /  r *  v  ( i - f
t R ’

—  >> 2b ) +
Bh
21 ( S TBln 21

(4.7)

+ h 7)-  ( - 4 4 )  + s'ailI ■at s ?>t "Shj ■] dRdt (4.8)

W here it should be noted tha t  the sm a l l  l e t t e r  s is not re g a rd e d  

as  a sm a l l  l e t t e r  s u b sc r ip t ,  Sg m e re ly  denotes  the coeffic ient  of 

specif ic  s to ra g e  of the aq u ife r .

F r o m  equation (4. 5), it follows that

Bh BN i
B xi

Contrac t ing  su b sc r ip t  i g ives

(4.9)

2 h Bh
2 Xi Bxi 2 B x- (4. 10)
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Now
a h  
a  i

a  h 
a x .

J b h  
a  xi (4.11)

Differentiating equation (4. 11) with re sp ec t  to hj gives

=a  hT ‘ o i
_^h 
a  x-i

a
0 hi

(_ 5 JL n
v 3x,-

a h  ; 
T T 1

(4.12)

Also f rom  equation (4.9) it follows that

0 hr  ̂0 Xj,(— ) =  ̂  ̂v- /
0 Nj
0 xi (4.13)

Substituting equations (4. 9) and (4. 13) into equation (4. 12) r e su l t s

in

V| >

3 N j  h j  BNj 
7)X[ 0 Xi (4. 14)

] 0  ii 
1 0 1 -i

Since Nj a r e  functions which do not vary  with t ime, it follows that

h 0  , 0  h v
hT v a t  '

0 N ]
NJ hJ a F o (4. 15)

and

0  h
0 hi

•Shj 
0  t

N jN q (4. 16)

Substituting equations (4. 14) to (4.16) into equation '4. 8 ) gives 
t+ N t 2 i

0 -TLe f r r- a ■ a v *
0 hI

/  /  r-i + fib) + 1
R

01
b

i
c i i
0 ‘f

0  N,i 0  Ni
0 Xj 0 x

h j  dRdt

+
t+ h.1

I  L ^S

1

0  h  j

a t
N j  Nj dRdt

R

(4.17)
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The following ex p re s s io n s  a r e  now in troduced
i

2 , b h , \  2a , f, a  ̂ H—- 1
E

CJI

DJI

L 2 b I  2 i) b

E hNt] 3N i
2> x-; 3 x-i

dR

R

/  Ss N j Nj dR

R

1 
b\ (4. 18a)

( 4 . 18b)

(4. 18c)

Substituting these  ex p re ss io n s  into equation (4,17) r e s u l t s  in

t+Zxt t+ M

?> hI /  CX  hJ d*+ / (4.19)

t t

w here  J and I range  f ro m  1 to the n u m b er  of nodes on the

elem ent boundary, n e .

(b) E lem en ts  belonging to

DF o r  the in te r io r  e lem en ts  belonging to R , the functional over

R is given by
t+Rt

(h) /  /  [  2 K i i
?>h 2>h S h i

R
,  — + S g h  ET~ I (4.20)'SXj 3Xj s 7)t -<

Differentia t ing equation (4. 20) with r e s p e c t  to hj g ives

t+ £>t

R

_ r  r  r v  ^ h  e  ,  o n  N

■ahi J  7 „ L j ^ xj +

q i c) / bh \ ^  h h -i
s - h (— ) + s s ~  ]  dRdt3 h x K 'bt '  aB t  B hj

Substituting equations (4.13),  (4. 15) and (4,16) in to  equation 

(4. 21) gives

(4.21)
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6 t + & t

I Y  = J  /  I f -  + Ss N J N I ]  dRdt ( 4 - 2 2

R

Introducing

&  ■ I  H  «
and substi tu t ing equations ( 4 . 18c) and (4.23) into equation (4.22) 

lead to

e t+ A t  t+At

■ /  ' c '  h j  d t + J  d ‘  -|iu  d. <4.24)

t t

(iii) E x te r io r  E lem en ts

In evaluating the functional contributed by an ex te r io r  e lem en t ,  

allowance mujst be made fo r  the additional boundary conditions on the 

e lem ent boundary. Accordingly, ex t ra  t e r m s  m us t  be added to the 

functional a l read y  der ived for the in te r io r  e lem ents .  These t e rm s  

only ex is t  on the e x te r io r  portion of the element boundary and vanish 

e lsew here .
i

The additional boundary conditions of confined flow p rob lem s  a r e  

the p re s c r ib e d  flux and p re sc r ib e d  head conditions. They m ay be 

dealt with in the following m an ner

If B i e and Ê 6 denote, the ex te r io r  port ions of the closed element 

boundary w here  the flux and the head functions a r e  p re sc r ib e d  r e s p e c t ­

ively, the additional t e r m s  a r e  given by
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t + &t

hq d.Bdt

B i e

and
1-t- M
r (h-li) v^n^ dBdt

B-

NThus for th e .e x te r io r  e lem en ts  belonging to E , the r e s u l t in g
- e

functional over  R takes  the fo rm

t+ &te[ r L ( h ) l  ^ j- - a  | *£>hj f 2b r , a
f  J  L 2b 121
t  R e

+ Ss h f f
t + kt

dRdt + i  s h q dBdt 
t  B p

3 /2

t+ M
+ f r (h - h) n^ dBdtI

t Boe

(4.25a)

Since the a d m is s ib le  function h is  chosen  to au tom at ica l ly  

sa t is fy  the p r e s c r i b e d  head condition on the e n t i r e  flow boundary ,  tin 

t e r m  con tr ibu ted  by 1^2° m ay  be dropped f ro m  equation  (4. 25a). 

Equation  (4. 25a) now b ec o m e s

t+ /\t

= /  f l p +

3/2
3 h

1
b

+ Sq h —  Id R d t  +b d t J

t+ k t

I  I
t B i ’

hq dBdt ( 4 . 25b)
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Differentia ting equation (4. 25b) with re sp e c t  to h r iv e s
I °

e t + M  t+at t+At

“  = /  C j j  h jd t  J  D,';  | ^ d t - i -  J  F * At (4. 26)

w here

.e _
F'  j e

J  q Nj dB (4 . 27)

S im ilar ly  for the e lem ents  belonging to RD, the express ion

for the functional may be writ ten  as

t+ \ t
- jr /  [ |  Kij g  ♦ Ss h 7  1,1 dRcit

c) t J
t R e

t+ht
+ J  J  hq dBdt (4.28)

1
e

t B

Differentiating equation (4. 28) with r e sp e c t  to h.j gives 

e t+M  t+W t+At
■ J  'c n * 1,J dt V /  B J ,  ^  d. ,  J  F fd t  (4 . 2 0 !

t t t

(iv) Element M a tr ice s

The above form ulation  leads  to various element m a t r ic e s  which 

have been ex p ressed  in subscr ip t  fo rm . The express ions  a r e  given 

by equations (4. 18b), (4. 18c), (4.23) and (4.27). They can also be 

w rit ten  in compact m a tr ix  fo rm  a s  follows

Let [CeJ , i_CG’} s [ d 0j  and [FeJdenote the element m a t r ic e s  havin

, Cjj , D y  and F j e as m a tr ix  elements  respec t ive ly .  ByJLcJ
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e m p l o y i n g  t h e  m a t r i x  n o t a t i o n . ,  t h e  f o i l  o w i n g  e q u a t i o n s  m a y  

w r i t t e n

[ C e j = I
ni

E  [ s ]  [S] dR
R e

[ C e ] = J [ S J T  [ K j  [S] dR
J
R e

[ D e ] = r
j

Ss [NJT [N] dR

R e

[ F C ] ■ /
B-

q [N
iT dB

w here  E is given by

or

E = - a 
"2b +

2b '
+

E = 1/

3_h
31 ] p

+
4 311 J

3 h
31 

r --iT •

3 x i  'axj

[s f  =

[S j is the t r a n s p o s e  of m a t r ix  [S] which  is given by

T

3 X} 'd x 1

•3x2

M i
•3 x3

M o ! .
"3 x2

3 x 3

be

(4. 30)

(4.31)

(4.32)

(4.33)

' ( 4 . 34a) 

( 4 . 34b)

(4.35)



[K] is  the hydraulic  conductivity m atr ix ,  which may be w ri t ten  as

Ck ]  =
K l l K l 2 K i 3

r  21 k 22 K23

_ k 31 k 32 K33

(4. 36)

fN j i s  the  shape function m atr ix ,  which is  given by

[N ]  = [ N X ....................................Nne ]  (4.37)
0

The equations re la t ing  the differentia ls  of the functional f l  and 

the nodal values  of the function h may also be w ri t ten  in m a t r ix  form. 

The m a tr ix  equation for the ex te r io r  elements  in the non-Darcy  flow 

subregion is  obtained from  eq. (4. 26Tt follows that

t+ &t

[ - ^ h - ]  = I[C eJ [heJdt + / [ De ] [ - |f ]  d t

+ /  [ F ’ l dt

t+&t

f
t

(4. 38^

w here

c m .7>h

r  “ 1

' S f l  

? > h  ,

[ h « ]  =

h i

clQ 6 t -, ■

1
0

) 

cT CD I

1 i .

The m a t r ix  equation for the in te r io r  e lem ents  in the non-D arcy  

flow subregion is  obtained from  equation(4. 33) by dropping the la s t

in tegra l  t e r m  on the r ight  hand side.

Hence



S im ila r ly ,  the m a t r ix  equations fo r  the e x t e r io r  and i n t e r i o r  e le m e n ts

in the Darcy flow subregion m ay a lso  be obtained f ro m  equations

(4. 38) and (4.39) r e sp e c t iv e ly  by m e r e ly  re p la c in g  m a t r ix  [C e ]in
y  0

these  equations by[C J .

4 . 3 . 2  El e m e nt Mat r i c e s  for T r ia n g u l a r  Ring E le m e n ts  

The fo rm ula t ion  of the e le m e n t  m a t r ix  ju s t  p r e s e n te d  is  a 

g en e ra l  p ro c e d u re  applicab le  to th re e -d im e n s io n a l  well flow. Many 

p ro b lem s  of flow to w ard s  w el ls  encoun te red  in p r a c t i c e  a r e  axi-  

s y m m e t r i c  flow p ro b le m s .  F o r  p ro b lem  s of th is  kind, the 

fo rm ula t ion  of e lem ent  m a t r i c e s  m ay  be s im plif ied  by employing 

cy l ind r ica l  coord ina te  sy s te m  (r, z). The e n t i r e  flow re g io n  may be 

subdivided into a finite  n u m b e r  of r in g  e lem en ts  co n cen tr ic  about the 

v e r t i c a l  ax is  of the w ell .  These  e lem en ts  a r e  r e a d i ly  g e n e ra te d  hy  

revolv ing  plane sec t ions  about the z - a x i s .  A tyrpica l  t r i a n g u la r  r ing  

e lem en t  i s  shown in F ig .  4 .2 .

F ig .  4. 2 : A typ ical  t r i a n g u la r  r in g  e lem ent .
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If the hydraulic  head dis tr ibution  at point (r, z) in the e lem ent  is  

r e p re s e n te d  by a l in e a r  function of r  and z in t e r m s  of the nodal values,  

then it can be shown ((Zienkicwiez said Cheung (1967)) that the shape 

functions may be ex p ressed  as

Nj = aj + hjr  + cm (4.40)

w here  a^, b^ and a re  given by

a l " r̂ 2z3 “ r 3 z ? ) / 2 & (4.41a)

bf  = (zg “ zg) /2C  (4.41b)

c^ = ( r 3 - r 2W2 k (4.41c)

and the rem ain ing  coefficients a re  obtained by cyclic permutation  of 

su b sc r ip ts  and A is the a r e a  of t r iang le  1-2-3.

(4. 4 Id)

1 r l Z1

r-tjCMIIZ3 1 r 2 z 2

1 r 3 z 3

Now from  equation (4.40) it  follows that

= bi^Nj
q>r

^ N l
'b Z I

(4. 41 e) 

(4. 41f)

Hence the m a t r ix  [S] may be w ri t ten  as
T

[S ] b l b 2 

C1 C2 '3 J

(4.42a)

F o r  cy l indrica l  coordinate  sys tem s ,  the hydraulic  conductivity m a tr ix  

is given by

[K ]  = K r r
Krz

Krz

Kzz
(4.42b)
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The shape function m a tr ix  for t r ian g u la r  e lem ents  is

[ n ]  = [ n 1( N2. N3]  ( 4 . 4 2 c )

where the ex p ress ions  for  Ng and N3 a r e  given by equation 

(4.40).

The exp ress ions  for  e lem ent m a t r i c e s  [ c e]and [C e]can be 

obtained by d irec t  in tegration, noting that  dR has  to be rep laced  by 

dR = 2Tvrdrdz (4.42d)

Thu s

c u  = /  tE H r  M f ] 2, I rdrdz (4- 43a>
R e

Equation (4.43a) may b e ‘approxim ated by

Cen  = 2iXr ^ E(bjbj+C| Cj) (4.43b)

where  r  is  the centro idal  rad iu s  of the t r ian g u la r  plane 

section and the express ion  for E is  given by equation (4. 34a).

S imilarly  the a r r a y  e lem ents  of m a t r ix [C eJ a r e  exp ress ib le  as

Cfj = r  [Ki;j — X- ~ i ]  2 T ^ r d rd z  (4.44a)

R e 1 3

Substituting for the var ious  t e r m s  on the r igh t  hand side leads  to 

^ e
IJ ~ 2 T\ r  ^  (Kr r  bj  b j  + h p ^  hj

Kzz c I ^ j )  (4.44b)

in which r  and z a r e  not reg a rd ed  as sm a l l  l e t te r  su b sc r ip ts .

The in tegration for the m a t r ix  e lem ents  of [R^jand [F^Jrequ ires  

slightly m o re  labour.  The two m a t r i c e s  have been evaluated by



P&rekh (1967).

tDe]

64.

They may be w ri t ten  as  

2 i t  r  Ss b

[ F  ] = 2 T( r  q L

0

1
4

1
2

(4.45)

(4.46)

w here  it is  a s su m ed  in equation (4.46) that side 1-2 of t r iang le  1-2-3 

c o r re sp o n d s  to the ex te r io r  boundary portion on which the flux is  p r e ­

sc r ibed  and that q is  constant on side 1 - 2  of the tr iangle;  the length of 

th is  side is  denoted by L.

4 .3 . 3  E lem ent  M atr ices  for  Iso pa ram e tr ic  Ring Elem ents

(i) O ne-dimensional E lem en ts

The problem  of one-d im ensional  rad ia l  flow towards a pumped 

well fully sc re en ed  through the en t i re  th ickness of an iso tropic  aquifei 

m ay  be solved by using  one-d im ensional  i so p a ra m e tr ic  e lem ents .

nn

1iZ A

k
\

1I
111

'

i r1
1
i
1iii r

(<0 Cb)

(c)

'A.

Fig. 4 .3 :  Idealised one-dimensional  region and
one-d im ensional  i s o p a ra m e tr ic  e lem ents .
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Consider  a typical  w e l l -a q u ife r  s y s te m  shown in F ig .  4 .3 a .

Since the velocity  of flow is  in the ra d ia l  d irec t ion ,  it is suffic ient to 

find the hydrau lic  head d is t r ibu t ion  along any ra d ia l  l ine .  Accordingly ,  

the tw o-d im ensional  region  in r - z  p lane shown in Fig .  4. 3a m ay be 

reduced  to a r a d ia l  l ine shown in F ig .  4 .3b .  This  l ine i s  d i s c re t i s e d  

into a network  of l ine e lem en ts .  A typical 3-node e lem en t  is shown 

in F ig .  4 .3 c .  The p lan a r  r ing  sec tion  is  r e ad i ly  g en e ra ted  by r e ­

volving the l ine e lem en t  about the z - ax is .

Let % be a local  coordinate  a s so c ia te d  with each  of the line 

e lem en ts .  The coordinate  is so d e te rm in ed  as  to give = 0 a t  node 

3, % = 1 at node 2 and -- 1 a t  node 1. The re la t io n sh ip  between 

the r a d ia l  coord ina te  and ^ -c o o rd in a te  is  given by

r  =  ̂ + °  ̂ % (4.47)

The gen e ra l  technique for de r iv ing  ex p re s s io n s  fo r  the shape 

functions of i s o p a ra m e t r i c  e lem en ts  has  been d e sc r ib e d  by E rga toud is  

et a l  (1968). The following ex p re ss io n  for the shape functions of the 

3-node line e lem ent  h£.s„been obtained by applying th is  technique.

CNX. N 2, N g ]  = t - 0 . 5  ( V ' A  0 .5  ( |  + % (1 - | 2) ]  (4.48)

Now the d if fe ren t ia ls  dr and d^ a.re re la te d  by

d r  = — _ d £- (4.49)

f ro m  which it follows that
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dAT.

dl = ^"dV r i ^ d ^  = ' J ' (4.50)

. w here  s u b s c r ip t  I ra n g es  from  1 to 3, and |,T|is the de term inan t  

of Jacobian  t ran s fo rm a t io n  m a tr ix .

The ex p ress io n  for \,Tlis given by

lJl= 0 .5  (-1 + 2% ) r j  + 0 .5  (l+2%)r2 - 2 4 r g (4.51)

Also

dNi = dN3 _ _ J _  dNj
d r  d |  d r  \ J 1 d^ (4.52)

Hence the slope m a t r ix  [S3for the 3-node line e lement takes  the fo rm

(4.53)i s  .  [ i n .  , i  N 2 , ]
d r  d r  dr

[Sj = ~  [0.5 ( - 1 + 2 | ) ,  0 .5(1+24),-2^1  (4.54)

Now f rom  equation (4. 30) i t  follows that

[c e] = J  E [ S l T [S]dR (4.55)

Re

w here  dR = 2 i \ r d r  (4.56)

Substituting equations (4.56) and (4.50) into equation (4.55) r e s u l t s

m 1

Cce]= 2 Tt J  E [S] T [S3 Nj r j  |Jl dlf (4 . 5 7 )

- 1

The definite in teg ra l  in equation (4. 57) may be evaluated num erica lly  

by employing the Gaussian  quadra tu re  form ula .  The p ro cedu re  for  

num er ica l  in tegration  has been descr ibed  by Zienkeiwicz and Cheung 

(1967). On applying the 3-point quadra tu re  fo rm ula  to equation (4. 57) 

and multiplying the m a t r i c e s ,  the following exp ress ion  re su l t s



r> r-7

D 7 .

Ccc3 2-n f E g i i  N, ( S i > r l W ( ^ )

0 . 25(- 1+2 I  ) 0 .2 5 ( 4 % i - 1 )  - 0 . 5 ( 1 - 2 ^ )

0 . 2 5 ( 4 | 2 - 1)l
r 2 

0.5  ( 1 - 2 ^ )

0. 25(l+2^j) '" 0 . 5 ( 1 - 4 | .  )

0 . 5 0 ( 1 - 4 ^ )  ( 1 - 2 ^ 2 )

(4. 58'

w h ere  E Nj ( % I) and J(fe, |)  a r e  functions of the ^  - c o o rd in a te ,

to be eva lua ted  at the G auss ian  poin ts  ( |  •), and W ( \  a r e  the

values of the weighting coeffic ient  a t  the G au ss ian  po in ts .

e oS im ila r ly ,  e x p re s s io n s  fo r  m a t r i c e s  3 and [D ]  can be

obtained f ro m  the following equations
1

[C e ] = 2 it f  [S ]T  [Id [S] Nj r j  U ld %  

- 1

[De ]  = 2 TC rSs [ N ] T [N3 N: r j  Uldfe, 

- 1

(4. 59)

(4. 60)

(ii) Q u a d r i la te ra l  E lem en ts  

In solving tw o-d im ens iona l  flow p ro b le m s  q u a d r i l a t e r a l  e lem en ts  

m ay be used  to im prove  the a c c u ra c y  of the nume r i c a l  solution. T h is  

type of e lem ent  p ro v id es  h ig h e r  f o r m s  of app rox im at ion  to the  hydraulic  

head function than the s im p le  t r i a n g u la r  e lem en t .  Its u s e  al lows 

an app rec iab le  red uc t ion  in the to ta l  n u m b er  of nodes in the flow region 

fo r  a given deg ree  of a c c u ra c y .  A typ ica l  4 -node e lem en t  i s  shown in

F ig .  4 .4 .
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Fig. 4 .4 :  A 4~node q u ad r i la te ra l  e lement

A qu ad r i la te ra l  r ing  can be genera ted  by revolving the e lement 

about the z -ax is .

To outline the der iva tion  of the exp ress ions  for the element 

m a t r i c e s ,  le t  a sy s tem  of local  coordinates  ( |  , t\  ) be assoc ia ted  with 

each e lem ent.  These  coord ina tes  a r e  so de term ined  as  to cive
v " §  O

A = -1 on side 1-2, A. = 1 on side 4-3, ^  = 1 on side 2-3 and 

^  = - 1 on side 1-4. The re la t ionsh ips  between the (r, z) coord ina tes

and coord ina tes  a r e  given by

r  Nj ( ^ * Yls ) IT (4.61a)

z = Nj Zj (4.61b)

w here  I ran g es  f rom  1 to 4.

The ex p re ss io n s  fo r  the shape functions Nj have bee: - developed 

by E rga toud is  et al  (1968). They may be w ri t ten  as

N x = | ( 1  - | ) (  1 - t \ )  ; N 2 = i  (1 +%)( 1 -*\>

N3 = \(1 +§)( 1+ \  );N4 = 1- (1 - | ) ( 1  + n.) (4.62)

The d ifferentia l  o p e ra to r s  with r e s p e c t  to r  and z and those with 

r e sp e c t  to £ andT a r e  re la te d  by
V
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•a

^ r

= [ J l ’ 1

7)%

?> ?>

rb Z -  ^  a .  -

( 4 . 6 3 )

w here  [J] is the Jacob ian  t r a n s f o rm a t io n  m a t r ix  which i s  g iven by

^ r
u i n

~Sr
'3'rl

Sz
9 " '\

(4 .64a)

[ J l  = i
d-n).(i -n),(i+T\).-d +ro
( i - l ) , - ( i + l ) , ( i + D .  ( i - l )

r i Z 1

r 2 z 2

r 3 z 3

r4 z4
_ L

(4.64b)

Also

dR 2 ft r  drdz

and

[Sl

drdz  = I Jl d \  

w h ere  |J1 is  the d e te rm in an t  of the Jacob ian  m a t r ix .  

The slope m a t r ix  [Slmay now be  e x p r e s s e d  as  

^ N i  ^N_2 ^ N 3 ^N 4

(4.65a)

(4.65b)

[ J l
- 1

(4.66)

Hence the e lem ent  m a t r i c e s  [C8 ] , [C 8] a n d [p 8  ̂a r e  may obtained a s

1 1
2 f t  J  y E [ S ]  [ s ]  Nj  r'j 1J| d |  d i \  (4.67a)

- 1  -1

[ c e ]

[ C 6] = 2 TX J  J  [S3 T  [K][si Nj r j  \J| d |  6 \ (4.67b)

-1  -1
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1 1

[d * ]  = 2K J  JSs [n ]  1 [N ]  Nj r j  |J | (4.67c)

-1  -1

w here  the n u m er ica l  in tegra t ion  is  accom plished by employing 

the Gauss ian  qu ad ra tu re  fo rm ula .  A specia l  case a r i s e s  when the 

q u a d r i l a te ra l  e lem en ts  u sed  become rec tangu la r  e lem ents .  In this 

case  the e lem ent m a t r i c e s  [Ce ] [C e J and [D 8J a re  easily genera ted  by 

employing the technique desc r ibed  in Appendix 1. This technique 

lead s  to cons iderab le  saving in computational t im e.

4 . 3 . 4  A ssem blage  of E lem ents

In the e lem ent  assem bling  p ro c e s s ,  all  e lements  a r e  a s sem b led  

through the specif icat ion of the reduced compatibility condition, which 

r e q u i r e s  that the nodal values of the function be the same at coincident 

nodes of adjacent  e lem ents  and also equal to p re sc r ib e d  value on the 

boundary port ion  where  the function is p re sc r ib e d .

Thus on assem bling ,  the functional for the en t ire  flow region 

becom es

m
XI (hj) = ^ a e ( h  ) (4.68)

. t k  1

fo r  I = 1   , . . n

w here  the sum m ation  is  taken over the elements  adjacent to the 

I- th  nodal point and subsc r ip t  I ranges  f ro m  one to the total num ber of 

nodes in the en t ire  flow region.

The m in im isa t ion  of IjHihj-)! r e q u i r e s  that
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e

i t t n ( h i >J h  '  2  ^  =■ 0 ,4- 63)I e 1

for  I = 1 ................................n

e^  _n_The e x p re s s io n s  fo r  —:— have been  obtained both for e lem en ts  

in the n o n -D arcy  flow subreg ion  and e le m e n ts  in the D arcy  flow sub-

reg ion .  The g e n e ra l  ex p re ss io n  is  now r e w r i t t e n  as  ✓

* t+&t t+M ^ . t+M
= f C® h . d t +  fD® dt + Ft6 dt (4.70)•ahi J  J l  j  JJi -at J

0
w here  for  the e lem en ts  in the Darcy  flow subreg ion ,  C T is

6re p la ced  by

Substituting equation (4.70) into equation (4.60) gives 

- t+ L t t+M

2  f " * + 2  /  D«  i f  dt 4
t e t

t+ &t
^  fF® dt = 0  (4 .71a)
e t

The following g r o s s  m a t r i c e s  m ay  now be in troduced

C = 5  Ce (4 .71b)
e J I

D jI  ■ 2  D JI  (4- 7 1 c >
e

P’l = ]> F® ( 4 .7 Id)
e fryKm jgf

Substituting equations (4.71b) to (4.71d) into equation (4. 71,a) ^ |}C

r e s u l t s  in / . w



t+ m t+ZJ; t+M

/  CJIhJ dt + J  DJI  • ^ 7 I d t +  J  Fj dt = 0 (4.72)
t t  t

w here  su b sc r ip t s  J and I range  from  one to the total num ber

of nodes in the en t i re  region.

4 . 3 . 5  In tegration  with re sp e c t  to Time

Equation (4. 72) r e p re s e n t s  a sys tem  of n s imultaneous equations 

involving the in teg ra l  t e r m s  which m ust  be in tegra ted  with r e s p e c t  to 

t im e. To c a r r y  out the in tegration ,  it is a ssum ed  that all the nodal 

values of hj and F j  a r e  known at e a r l i e r  t ime t and that the nodal 

values v a ry  l in ea r ly  over the t im e increm en t  &t as shown in Fig. 4 .5 .

•fc
t 4- at./^ hT

■fc t+-&-1/2 t+

F ig .  4. 5: Nodal values and th e i r  var ia t ion  over &t. 

Thus on c a r ry in g  out the in tegration, equation (4.72) become;

0 (4.73)

t+At
f  ^  t n  __ /■, t+M  . t . , t+At t . Nt

J  JI J + J I  J F  I I 2.

w here  the s u p e r s c r ip t s  denote the t im e s  at wh' h the nodal

values a r e  evaluated.

The rem a in in g  in teg ra l  t e r m  in equation (4.73) involves both

C TT and h a s  functions of t im e .  This  is  because  C is  assoc ia ted  
JI J

with the effective hydraulic  coefficient E which is given by equations 

(4. 34a) and (4. 34b) in t e r m s  of the nodal values of the hydraulic  head 

function.
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To avoid u n n e c e s s a ry  com plica t ion  in c a r ry in g  out the in teg ra t io n ,

the following approx im ation  is  in t roduced :-

t+At t+At

J CJI hJ dt ~  ( CJI + CJI  ) (hj t  hj   ̂ At (4. 74)
t 2  2

Substituting equation (4.74) into (4.73) g ives  

. tHZXt t t+At t. At t+M; . t .
( c j i  + c J i )(hJ  + hJ  > T  + DJ1 (hJ  ‘ h J  >

+(F t+Lt + F 3  —  = 0 (4.75)
l l a

R ea r ran g in g  equation (4.75) r e s u l t s  in

■ V  <F it + F it + M > ' <4- 76>
Now le t  t + At denote the m id - t im e  of t and t+ At. It follows that  

2

h j t + M / 2  = - | - (hj  + h j t+M) (4 .77a)

F j t + M / 2  = l ^ + F ^ )  (4.77b)

“ d c J I t + M / 2  = T (CJ I  + c j i  + “ > <4 - 7 7 »>

On substi tu t ing  th ese  into equation (4.76),  the following equation 

is  ob ta ined:-

, , A t  t + M / 2  ' . , t + A t / 2  t At t+£+( —  C n  + D j I ) h j  = D j i h j .  ^ L F i  (4 . 78)

Also f ro m  equation (4 .77a),  it follows that 

, t+At t +At / 2  t
h j  = 2hj  - h j  (4.79)

The l a s t  two equations provide  su i tab le  r e c u r r e n c e  r e la t io n s  

for  final solution of the initial  value p ro b le m .  The solution s t a r t s
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at the in itia l  t im e ,  1 = 0, and p roceeds  in a s tep-w ise  m anner .  At the 

beginning of the f i r s t  t im e step, the nodal head values h ° a r e  specified 

by the in i t ia l  .conditions. These values  may be substi tuted for lm in
cl

equation (4. 78) and used in solving for  h * ĥ t/~ which m ay then be sub-
cl

st i tu ted  into equation (4. 79) to r e su l t  in the head values at the end of 

the t im e step. The cu r ren t ly  obtained head values,  which become hj* 

at the beginning of the new t im e step, can be used in calcula ting the 

head va lues  at the end of the second t im e step. The p rocedure  can 

then be r e p ea ted  until  the nodal values  at the end of the final t im e step 

have been de te rm ined .

F o r  s teady s ta te  flow ca ses ,  equation (4.78) becom es

C h +F = 0 (4.80)
u 1 u X

The steady flow prob lem  reduces  to that of finding the solution of 

equation (4 . 80), subject to the p revai l ing  boundary conditions.

4 . 3 . 6  I te ra t ive  Solution of Non-linea r  A lgebra ic  Equations

Equation (4. 78) is a se t  of simultaneous a lgebra ic  equations in-

t-mt / 2 . ,volving the n o n - l in e a r  coefficients C' which a re  contributed oy

the e lem ents  in the non-D arcy  flow subregion. These coefficients have

to be evaluated in t e r m s  of the unknown nodal values of tv hydraulic

head at  t im e  t+M/2 as they a re  assoc ia ted  with the c.oeffio nt E of the

finite e lem en ts .  However, provided that the values of h^ and

F t+ 2 a t  a l i the nodal points a r e  known, it is  possible  to solve for

t + k t / 2  t te ra t iv e ly .
cl



i- t + At / 2The gen e ra l  p ro c e d u re  i s  f i r s t  to ca lcu la te  m a t r i x  \_C j

in t e r m s  of the known nodal head va lues  and solve for h * +^ ^ ,  then

f '  t+ tt /2  • . , , • , + r  r,-, t ^ ^ t / 2 ,  ,use  the va lues  of n ju s t  obtained to r e f o r m  gb Jand r e -
<J

solve for m o re  a c c u ra te  va lues  of h The p r o c e s s  is r e -
<J

peated  until the change in s u c c e s s iv e  head va lues  i s  neg l ig ib le .

The i te ra t iv e  p ro c e d u re  employed in th is  study m a k e s  u s e  of an 

o v e r - r e la x a t io n  fa c to r  to a c c e l e r a t e  convergence  of the solution. To 

d e s c r ib e  th is  p ro c e d u re ,  it is  convenient to drop the s u p e r s c r i p t  

t+ bi /2  f rom  the unknown t e r m s  in equation (4.78) and r e p la c e  it by 

ano ther  s u p e r s c r ip t  k which denotes an i t e ra t io n  n u m b e r .  Equation  

(4. 78) now tak es  the fo rm

, & t ^  k t ^  \ i k*r 1 r ^ u t  &t  ^ t + M / 2  tA
 ̂ 2 J I  J1  ̂ J JI  J  " 2 J (4.81)

F o r  the f i r s t  i te ra t ion ,  the a r r a y  e le m e n ts  C j^  of m a t r ix  [_C j

w e re  ca lcu la ted  in t e r m s  of the known va lues  of hj^ and equation

(4. 81) was solved for h j ^ +  ̂ by d i r e c t  G auss ian  e l im ina t ion  method.

To s t a r t  the next i te ra t ion ,  the following ev e r - re lax a t io n  fo rm u la  was

u sed  to modify h j

i k+1 k k+1 k, .h j  = h-j + co(hj - h j  ) (4. 82)

w h ere  <~o is the o v e r - re la x a t io n  fa c to r ,  having a value between

k
1 and 2 , and h j  denotes  the old head va lues  which a r e  se t  equal to 

hj^ when k=l .

k +1 u
The m odified  va lues  h j  which becom e  h j  fo r  the c u r r e n t

i te ra t ion ,  w e re  used  in ca lcu la t ing  the abso lu te  e lem en t  v e loc i t ie s  and
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re fo rm ing  the m a t r ix  \_Q Calculation of the elejnont ve locit ies  

was n e c e s s a r y  to enable a check to be c a r r i e d  out to find if a 

p a r t ic u la r  finite  e lem en t  belonged to the Darcy or  the non-Darcy  flow 

sub-region. Equation (4. 82) was then reso lved  for m o re  accu ra te  

values of h jk +l .

The i te ra t iv e  p ro c e s s  was repea ted  until  convergence re su l ted  

when the following c r i t e r io n  was sat isf ied:  -

Sh  = m a x j  \ h jk +  ̂ - hj*v | ^  £  (4.83)

w here  S h  denotes the m axim um  absolute e r r o r  in the nodal 

head values  and £  is the p re sc r ib e d  head to lerance .

It was found that a value of uJ between 1.5 to 1.9 gave fast  

convergence. Approxim ately  4 or 5 i te ra t ions  were  req u ired  to obtain 

sa t is fac to ry  r e s u l t s .  The optimum value of u) tends to in c re a se  with 

the total  n um ber  of equations solved.

4 . 3 . 7  T rea tm en t  of Conditions on the Well Boundary 

In solving the prob lem  of t ran s ien t  flow towards a pumped well, 

specia l  t r e a tm e n t  m us t  be given to the conditions prevailing at the well 

boundary. Two types of well boundary condition a r e  possible ,  de­

pending on the pumping operation. If the well is pumped >t a constant 

d ischarge ,  the condition of constant p re sc r ib e d  flow ra te  will p reva i l .  

On the o ther  hand, if it is pumped such that the w ate r  level in the well 

re m a in s  constant,  the constant p re sc r ib e d  head condition will re su l t .  

These two types .of boundary condition w ere  dealt with in the following 

m anner :-
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(i) Constant  P r o s c r ib e d  Head Condition 

C o n s id e r  a typ ica l  pumped well  shown in F ig .  4 . 6 .  A s  

ind ica ted  in the f ig u re ,  the f i r s t  po r t ion  of the well  bo undary  is  

s c re e n e d  and the re m a in in g  po r t io n  is  ca sed .  If the w a te r  leve l  

is  m a in ta in ed  cons tan t  th roughout  the pum ping p e r io d ,  the head 

values  at  the nodes  s i tua ted  on the  well  s c r e e n  will be cons tan t  with 

t im e  and equal to the known e leva t ion  of the w a te r  leve l  above the 

datum  plane .

H K 

J 2>
I

A__

= H

Fig .  4. 6 : The boundary  of a  typ ica l  pum ped w el l .

In o r d e r  to in c o rp o ra te  the r e su l t in g  p r e s c r i b e d  head condition 

into eq u a t io n  (4.78),  the following sch e m e  fo r  p a r t i t io n in g  the g r o s s  

m a t r i c e s  in th is  equation w as  em ployed

L e t  oC and j be addit ional  s u b s c r ip t s  r e f e r r i n g  to  the nodes  s i t ­

uated on the well s c r e e n  and the r e m a in in g  nodes  in the flow reg io n  

re s p e c t iv e ly .  It follows tha t  if r a n g e s  f ro m  1 to k, j r a n g e s i f r o m

k- 1 to n  and equation (4, 78) m ay  be expanded.



On introducing and expanding subsc r ip t  J in

equation (4. 78) the following equation re su l t s

(4. 84)

w here  the s u p e r s c r ip t s  have been dropped f rom  m a t r ic e s

Now the p re s c r ib e d  head condition r e q u i r e s  that

h Ii (4.85).

for cL = 1 k

Substituting equation (4.85) into equation (4.84) and r e a r ra n g in g

gives

By expanding subscr ip t  I, equation (4.86) can be expanded to 

give the following equations

where  i is a su bsc r ip t  having the sam e  range as  j and is a 

sub sc r ip t  having the sam e range as cL.

Equation (4. 87) r e p re s e n t s  a reduced set  of n -k  non- l inea r  

a lgebra ic  equations which may be read ily  solved by the i te ra t ive  p r o ­

cedure  desc r ibed  e a r l i e r .  A.lso if requ ired ,  the values of ihe flux at

(4. 8 6 )

(4.87)

and

(4.88)
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the nodal poin ts  on the well  s c r e e n  can be ca lcu la ted  by substituting 

the l a s t  se t  of v a lu es  of Xj into equation  (4. 8 8 ) and so lv ing  fo r  • 

Thus  it  follows tha t

f /3 '  T T  dJ,3 hi - < S # V  s r  V  *j
Knowing the nodal f luxes ,  the to ta l  d i s c h a rg e  f ro m  the aq u i fe r  into

the well m ay  be com puted  f ro m

K
Q - (4 .90a)

/ S =1

(ii) Constant P r e s c r i b e d  Flow Kate  Condition

In the ex t ra c t io n  of g ro un dw a te r  by pumping, it is com m on 

p ra c t i c e  to m a in ta in  constan t  to ta l  d i s c h a rg e  f ro m  the well  th roughout  

the pumping pe r io d .  A cco rd in g ly ,  s ince  the total  flow r a t e  is  fixed, 

the w a te r  level  in the well  and the p r e s c r i b e d  hy d rau l ic  head  along 

the s c re e n e d  po r t io n  of the well  boundary  m u s t  v a r y  with t im e .

Once again c o n s id e r  the well shown in F ig .  4 . 6 .  If Q denotes  

the p r e s c r i b e d  flow r a t e ,  the p r e s c r i b e d  flow r a t e  condition is  given

by K
Q = F  F/? (4.90b)

jS= 1

w h e re  Fg a r e  the unknown nodal flux v a lu es .

The r e q u i r e m e n t  of p r e s c r i b e d  head d is t r ib u t io n  along the  well 

s c r e e n  at t im e  t + Z\t/ 2  m ay  be w r i t t e n  as

t + A t / 2  t+At/2  t-f At / 2
h i  -= h2 . . . = H ' (4.91)

w h e re  jgt+At / 2  j s unknown height of the w a te r  l e v e l  at 

t im e  t-t- A t / 2 .
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In the simple case  of flow w here  the total d ischarge isL o

uniform ly  d is tr ibu ted  along the well screen ,  the constant flow ra te  

condition m a y b e  t rea te d  by computing the values Fg from  equation 

(4. 90b) and incorporating  these  and equation (4.91) into equation 

(4. 78). The detailed t re a tm en t  lias been p resen ted  by 8 a van del 

and Witherspoon (1968).

In the m o re  genera l  case  where  the flux d istr ibution is non- 

uniform, the p re sc r ib e d  flow ra te  condition has to be sat isfied  by 

t r i a l  and e r r o r .  Due to the non- l inea r  field equation, the super­

posit ion technique used by Javandel and Witherspoon (1968) to 

c o r re c t  the head to produce the p re sc r ibed  d ischarge is not applic­

able. The following i terat ion solution technique was employed in 

this study

Let tn r  1 and tn denote the cu r ren t  and preceding t im es r e ­

spectively,  and le t  the m id - t im e  tn+i  be defined in accordance with'

in + 1  = f  (in  + i n + l ) ’

F o r  the f i r s t  i te ra t ion ,  k = 1, an initial e s t im ate  of the value

of H a t  t i me tn+i was made from

H 1 (tn+i ) = II(tn ) + Mi(4.92a)

for n = 0 , 1

or from the following logari thm ic  extrapolation formula
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H1(t = log I  t n<.)a /t.n., ] { HC.-tn'!-H(tn. , )  |

l o g [ t n / t n. ( ]

+ H ( t n_,) (4 .92b)

fo r  n 2 , 3 ..........

When equation (4 .92a) was  used,  a guess  had to be m ade  as

to the value of the head in c re m e n t  K H at the beginning of the f i r s t

and second t im e  s tep s ,  when n = 0 and 1 r e sp e c t iv e ly .

The in i t ia l  e s t im a te  of H was u sed  in solving for  the unknown

nodal head and flux values  in equations  (4. 87) and (4. 89) r e sp e c t iv e ly .
k

Knowing the nodal flux , the total  d is ch a rg e  Q was ca lcu la ted  

f ro m  equation (4.90a) and com p ared  with the p r e s c r ib e d  d i s c h a rg e  Q. 

If
-0 - 0

> £  (4.93)
Q

w here  € is the p r e s c r ib e d  to le ran c e  of the d isch a rg e  r a t io ,  a 

new t r i a l  head was ca lcu la ted  f ro m

H2 (tn+i )  = H(tn ) + [ H 1 (tn+.p - H(tn )] Q (4.94)
Q 1

Solution fo r  the unknown nodal head and flux va lues  was  then 

re p ea ted  and the to ta l  d isch a rg e  f ro m  the aqu ife r  was r e c a lc u la te d  and re 

tes ted  fo r  convergence .  If convergence  w as  s t i l l  not obtained, the 

following fo rm u la  was  applied

Hk+1  = Hk_1  +.............. .. j _(Q - Q k - 1 ) (4.95)
Q - Q

w here  11^ and 13̂  1 r e f e r  to I-I^H 1 (trjri-l), H^(tn 4 l )  and

T -ik- 1 ,,11 ltn+i) r e s p e c t iv e ly .



The solving p ro ced u re  was then repea ted  and equation (4. 95) 

was reapp lied  until  convergence re su l ted .

It was found that the above i teration p rocedure  gave quite s a t ­

i s fac to ry  r e s u l t s .  F o r  e a r l i e r  t im es  of pumping, the convergence 

c r i te r io n  was m et  a f te r  two or th ree  i te ra t ions .  For  l a t e r  t im es ,  

convergence re su l ted  a f te r  only one i te r a t io n . -

4 .3 .  8 Elimination Scheme for Solving a System of L inear  
Equations

The assem blage  of e lement m a t r ic e s  led to a non-l inear  sys tem  of 

n s im ultaneous equations which, a f te r  imposing the conditions p re v a i l ­

ing on the well boundary, reduced  to a system of n -k  equations as r e p ­

resen ted  by equation (4. 87). The reduced sys tem  was l in ea r ised  by 

evaluating the no n - l in ea r  coefficients in equation (4.87) in te rm s  

of the known nodal values of the hydraulic  head.

A banded Gaussian elimination scheme was employed to solve 

for the n -k  unknowns in the l in ea r ised  system  of equations. The schem 

takes  into account the banded ch a rac te r  and sym m etry  of the g ross  

m a t r i c e s  [C] and [D]. The two m a t r ic e s  were a r ranged  in compact 

banded form  by num bering  the nodes in the en t ire  flow region c con­

secutive o rd e r  along the ve r t ica l  l ines extending from  top to bo;tom of 

the aquifer .  The p ro c e s s  of elimination was accomplished by reducing 

the sys tem  of equations to an equivalent t r iangu la r  fo rm  through a 

s e r ie s  of a r i th m e t ic  opera t ions  on the coefficients of the equations.
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Then s ta r t in g  f ro m  the la s t  equation, the la s t  unknown was solved and 

the rem ain ing  unknowns w ere  obtained by back substi tu t ion into the 

p receding equations.

Due to sy m m etry  of m a t r i c e s  [C] and [Dj, it is  only n e c e s s a r y  to 

opera te  on the e lem ents  in th e i r  upper t r i a n g le s .  The half band-width 

of each  m a t r ix  is computed as the length between the diagonal e lem ent  

and the la s t  n on -ze ro  e lem ent in each  row. In the com puter  sub­

routine developed in the p re se n t  work,the two m a t r i c e s  a r e  converted  

into g ro s s  v ec to rs  by s t r ing ing  toge ther  the ha lf-bands  of al l  s u c c e s s ­

ive rows.  This convers ion  p a r t ly  e l im ina tes  the p ro b lem  of insufficient 

com puter  s to rage  capacity, as  only a sm al l  p a r t  of the two g ro ss  

m a t r i c e s  needs to be s to red .  F u r th e rm o re ,  the s m a l l e r  num ber  of 

a r i th m e t ic  opera t ions  r e q u i r e d  cuts down the solution t im e considerab ly .

4 .4  Analys is  of Flow through Unconfined Aquifers

4 .4 .1  General  Approach to the Varia t ional  P rob lem  

In the preced ing  section, the finite e lem ent  fo rm ula t ion  of the  

gene ra l  a x i - s y m m e t r ic  confined flow p rob lem  was p re sen ted .  It is 

shown in th is  section that the prev ious  fo rm ula t ion  can read i ly  be ex­

tended to t r e a t  the unconfined flow p rob lem  involving the p re se n c e  of 

the moving boundary, nam ely  the f re e  surface .

C onsider  the genera l  p rob lem  of t ra n s ie n t ,  tw o - re g im e  flow to a fu‘ 

sc reened  well cons truc ted  in an unconfined aqu ife r .  A typical  sketch  of 

the ra d ia l  c r o s s - s e c t io n  of the th ree -d im e n s io n a l  flow reg ion  is  shown 

in F ig .  4 .7 .
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Fig. 4 .7 :  C ro s s - s e c t io n  of 3-d im ensional  flow region in
an unconfined aquifer .

Due to the p re se n c e  of the f ree  surface and seepage face, the

express ion  of the functional obtained for the confined flow problem  has

to be modified to allow for  the additional boundary conditions. The

modified functional takes  the following form :-
t+kt

[TL(h,z)] ^  = [^i(h)j 4- [_n(h)l D + J f  h q dBdt
t B l

t+/kt

+

t+ Zkt

+J J(h-h) Vjnt dBdt + I f .  (h-xg) VjiijdBdt
t B 2 t b s

t+ Zkt t+ M t

J  J „  (h-z) v ^ d B d t  - / /  z(I -<£Sy
t B t B o

'b z 
^bX

(4.96)dt) n 3dBdt

The genera l  var ia t ional  p roblem  is to find the two unknown 

functions, h and z which m in im ise  the functional in equation (4. 96).

To solve the problem  by the finite element me thod, it is n ecessa rv  

that the en t i re  flow region be fixed so that the m inim isat ion  p ro c ess
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may be c a r r i e d  out. Thus the position of the f ree  su rface  has to be

initially a ssum ed  and then adjusted until all  the p reva i l ing  boundary

c o n d i t i o n s  a r e  s a t i s f i e d .

A genera l  two-step i te ra t iv e  p rocedure  employed by Neuman and

Witherspoon (1870, 1971) was adopted as it genera l ly  leads  to a rapidly

converging solution. The p rocedure  is  desc r ibed  below.

F o r  the f i r s t  s tep of each i te ra t ion ,  the function h is  p re s c r ib e d  on 

F sB and 13 . This leads to the following s im plif ica t ion  of equation (4.96)/

t+ At
[nn_(h)]L  = \n_ (h ) ]  Rj\i + I__a (h)J +J  J  h q dBdt (4.97)

t B 1

A fter  the functional in equation (4. 97) has been m in im ised  by the 

finite element method, the flux d is tr ibu tion  on the seepage face m ay be 

determined.

F o r  the second step of the i te ra t ion ,  the function h is no longer 

considered  to be p re s c r ib e d  on B-^ and Bs . Instead, the f re e  surface  

and seepage face a r e  t rea ted  as  known flux boundar ies .  Equation 

(4. 96) thus becom es

t+ At
[ r u , „ ] g  „  + [ n ( h ) ] R D + J  J  h - dBdt

t

1 + M  t+ ^  j u
+ J  J q(x3)hclBdt-  J  J  (I -cdSy f e ( X )  71 h

t B s t BF {

d X ) h n 3 dBdt (4.98)
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where  q(xg) is the flux on the seepage face per  unit a r e a .

Next, the functional in equation (4.98) is  m in im ised  and a check

made to en su re  that

Jh - z \  ^  £  on B 1 (4 . 9 9 )s

where  £ g is  the p re sc r ib e d  to le rance  of the f ree  surface  height.

If condition (4,99) is not sa t is f ied ,  the f re e  surface  position is 

adjusted in an ap p rop r ia te  m anner  along the ve r t ica l  d irec tion .  The 

i te ra t ive  p ro ced u re  is  rep ea ted  until  | h - z\is  within the p re sc r ib e d  

to le rance  everyw here  on B ^ \

4 .4 .  2 Modification of the P r evious Finite  Element Form ulation  

The functionals in equations (4.97) and (4.98) may be m inim ised  

by applying the teclmique desc r ibed  e a r l i e r  in Section 4 .3 .

The m in im isa t ion  of the functional in equation (4. 97) leads  to a 

sys tem  of a lgeb ra ic  equations identical to that re p re se n te d  by equation 

(4. 78) as  th is  functional is identical to the one obtained fo r  the confined

flow' p rob lem . Equation (4. 78) is now re w r i t te n  as

t+J\i/2 t + h t / 2 t+ M /2  t+bt /2  t+At/2
( — O n  + D j i  ) h j  = D.n  hj  - —  F I (4‘ 100i

w here  the s u p e r s c r ip t  t+ Nt / 2  is a t tached to D j j  to indicate that 

Djj  is  t ime dependent as  the e lem ents  in a ce r ta in  p a r t  of the network 

m us t  be allowed to deform  to accom modate  the movement of the f ree  

su rface  with t ime.

The m in im isa t ion  of the functional in equation (4.98) leads  to 

the following sy s tem  of equa tion :-



t+ M /2  i , m / 2  l + M / 2  t + M / 2  t

CJI + D>U ' hJ = °J1  h j  '

t + M / 2  t + M / 2  t+ At /2

~(Fj + Gjl -  Hj )  (4.101)

where  a n d denote the ex tra  flux t e r m s  fo r  the

nodes on the seepage face and the f re e  su r face  r e sp e c t iv e ly .

- ~ t+ M /2  TJ t+ M /2  . .The e x p re s s io n s  for  and H a r e  given by

t + M / 2  t + M / 2
Gj = ] > /  qj  <x3) N j N p B  (4.102)

e (BS)e

H M / 2  . ?  f .  f l N , n_ . ( i s _ f  e - * < t + M / 2 - V )
t + M / 2

2  / * S roi " 3 -  < + sy /
P  r  O

(B )

‘Sh.l dX ) N j  N jn3 ]  dB (4.103)
'c) b

To handle the Boulton exponential in teg ra l  t e r m  in equation (4. 103),

the equation is r e w r i t te n  in a m o re  compact fo rm  a s  follows

t + M / 2  r ' t + M/ 2
I It = 2  J v e  LINIn3 - f T N jN jn 3 ] d B  (4.104a)

e (B )

where
t + M / 2  t + M / 2

, „ f -M t+ M /2  -X  )
J y J 6 T»hT d-cJ J (4.104b)

Equation (4, 104b) may be r e a r r a n g e d  to give

t + M / 2  t ,
f j  - oLSv ( f ; ^ / 2 7>hj d ty

o
t+ M / 2

( 4 . 104c)



The second t e r m  on the r igh t  hand side of equation (4. 104c)

m ay be approx im ated  by 
■’ - ! ■

T  -«0(t+At/2 -X)
d S  f  e  d -C -- | | t ( l  -

(h t+ M / 2  - h1 ( 4 . 104d)
J J

Equation (4.101c) now takes  the form

r t+ A t / 2  4  2 . t+ At/2  1
fj  = j itSe (hj  • V  (4-105a)

where t
.t _ -<Lht/2 r
J  y 7 d t  (4.105b)

°  VC.

Se = Sy (l-e"x A t / 2 ) (4.105c)

Substitution of equations (4. 104a) and ( 4 . 105a) into equation (4. 101) 

leads  to the following sy s tem  of a lgeb ra ic  equations:- 

, At t + M / 2  t+At/2 ✓ t+ M /2  , t + A t / 2
W  c «  + D.n + d j i  >

t+At/2 /  t + A t / 2  t 
= (DJ1  + Dj j  ) h j  -

( f  t+ At / 2  + ^ t + A t / 2  _ ^ t +  At /2 } (4_ 1QCa)

w here t+ A, t /  2
/
Dj! = Se 4  7 e N j  Nx n 3 dB (4.10Gb)

C e  ( B 1 )

/  t+ At /2 f  r t -r
II = 2  7 e [ i N j n g  - f  j  NjNj; n 3 ] dB (4.106c)

1 e (BF )

It i s  pointed out that f g  in equation ( 4 . 106c) may be calculated

bv applying S impson 's  mile of n u m er ica l  in tegration  and the r e c u r r e n c e
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re la t ions  r e p re s e n te d  by equations (4.105a) to (4.105c). F u r t h e r ­

m ore ,  the in teg ra l  J p NjNjng dl3 is easily  evaluated. F o r  t r i -
(BF )

angular  and 4-node quadr i la te ra l  concentr ic  r in g  e lem en ts ,  th is  in ­

teg ra l  is given by

f  NjNjngdB = ■ is r  ; when I = J
J T? c 

(Bf )
2 B rf  N jN p i3dB = ------ -— Is r  ; when I i  J

 ̂ r e 
(B )

where
r  = \  (rj  + r j )

/
L r  = 1 r x - r j \

4 . 4 . 3  Solut ioii P r o cedure

The finite element form ulation  leads  to two s y s te m s  of non­

l inea r  a lgebra ic  equations re p re se n te d  by equations (4.100) and 

(4. 106a) re spec t ive ly .  The following p roced u re  was employed to 

obtain the final solution to the t ran s ien t  unconfined flow p rob lem ;-

(i) F o r  the f i r s t  s tep of the tw o-s tep  i te ra t iv e  p ro ced u re ,  the f re e  

surface  was assum ed  at the beginning of each t im e in c rem en t .  The 

coefficient m a t r i c e s  of equations (4. 100) and (4. 106a) wei-c formed, 

and equation (4. 100) was solved by the i te ra t ive  solution method 

d e s c r  i b e d i n S e c* t i on 4 , 3 . 6 .

Since the nodal values of the head function w ere  p re s c r ib e d  on 

the f r ee  su r face  and seepage face during the f i r s t  s tep, it was only 

n e c e s s a ry  to solve fo r  the rem ain ing  unknowns in equation (4 . 1 0 0 ).

The genera l  m a t r ix  par t i t ion ing  schem e for reducing  a set of n equations
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to a se t  of n -k  equations, descr ibed  in section 4.3.  7, was employed,

The final solution of equation (4. 100) was then used to calculate 

t-i- / 2the nodal fluxes Gj on the seepage face.

(ii) For  the second step of the two-s tep  p rocedure ,  the f ree  surface  

and seepage face w e re  t rea ted  as p re sc r ib e d  flux boundar ies .

U M . / 2
Equation (4. 106a) was solved i te ra t ive ly  for the new values of h j  

These  values  w ere  then used to calcula te  the nodal fluxes at the well 

boundary and the to tal  d ischarge  f rom  the aquifer  into the well.

(iii).At the end of the second step, the f ree  surface  position was 

checked and adjus tm ent  of the f ree  su rface  heights was made according 

to the following equation:-

z k+1  = z k + cO( h Tk - z k ) (4.107)
J «J J  U

where  the s u p e r s c r ip t  k denotes the k - th  i te ra t ion  for the c o r re c t  f ree  

su rface  and is  an o v e r - re lax a t io n  factor ,  having a value g r e a t e r  than 

or  equal to 1 .

A f te r  the f r e e  su rface  had been shifted in the ve r t ica l  d irection, 

the new v e r t ic a l  coord ina tes  of the nodes in the var iable  p a r t  of the 

finite e lem ent  network "were ca lcula ted. The coefficient m a t r i c e s  in 

equations (4.100) and ( 4 . 106a) w ere  then re fo rm ed .

(iv) The tw o-s tep  i te ra t ive  p rocedure  was repea ted  until the following 

convergence c r i te r io n  was sa t is f ied :-

max Ih k+1  - z k + 1 \ .  (4.108)
J J J ^  ^
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(v) F o r  the well opera t ing  under a p re s c r ib e d  d ischa rge ,  the i tera t ion  

for the c o r r e c t  well drawdown correspond ing  to the r e q u i r e d  d ischarge  

was then p e r fo rm ed  by applying a p roced u re  s im i la r  to that desc r ibed  

in Section 4 . 3 . 7 .

A fter  the c o r r e c t  well drawdown at t im e t+At/2 had been  de­

te rm in ed ,  the nodal head values  at the end of the t im e s tep  w ere  ob­

tained f rom  equation (4. 79), which is  r e w r i t te n  as

, t+ M  o i t+ At /2  t iAh j  = 2  h j  - h j  (4.109)

(vi) To ac c e le ra te  convergence of the tw o-s tep  i te ra t ion  fo r  the

final f r e e  surface ,  the following ex trapola tion  fo rm ula  was used  for

p red ic t ing  the t r i a l  f ree  su rface  for the next t im e step

i _ r n + i , , n - l n
z = t o g .y  „ , / t  1 ( n _  n - l ) +  n - l
J log I t  / t  1 J  J

w here  the su p e rs c r ip t  n r e f e r s  to the n - th  t im e step.

It was found that the u se  of equation (4. 110) led to convergence

af te r  only two o r  th ree  i te ra t ion s  except fo r  the f i r s t  few t ime steps.



5. Solutions to Typical Flow Problem s

5 .1  General

A number of com puter program s were developed by applying 

the theory and finite elem ent form ulation presented in the preceding  

chapters. The program s coded in FORTRAN IV language w ere used  

to so lve  a variety  of flow problem s ranging from  the sim p lest problem  

of steady one-dim ensional confined flow to the m ost com plex problem  

of transient free  surface flow through an unconfined aquifer. Solutions 

to typical Darcy and tw o-regim e flow ca ses  are presented in th is  

chapter.

The Darcy flow solutions w ere verified  by com parison with 

known analytical solutions sum m arised in Appendix 3 of this th es is .

The tw o-reg im e flow solutions w ere verified  by com parison with r e ­

su lts from  laboratory and fie ld  investigations which are described in 

the next two chapters.

5 .2  Flow towards a Fully Screened Well in a Confined Aquifer

5 . 2 . 1  Darcy Flow Solutions

A diagram m atic sketch of a w ell which is  fully screened through

the entire th ickness of a confined aquifer is  shown in F ig . 5. 1 .  An

analytical solution to the problem of transient Darcy flow at constant

discharge w as obtained by Hantush (1959), (1964). The solution be-
r ,2S

com es the w ell known T heis solution (T heis, 1935) for timet>30—̂ —-  . 

The finite elem ent solution to the sam e flow problem was obtained by 

Javandel and W itherspoon (1968). They employed triangular elem ents
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Flow CaseNo. b(min^/ft^) Q(ft^/min)

0 0 100

1 20 25

2 20 50

3 20 75

4 20 100

5 20 125

6 20 400

Fig. 5 .1 :  Data for the problem  of t ran s ien t  flow towards
a well  in a confined aquifer.

ov



and obtained good ag reem en t  with the analytical  solution.

In the p r e s e n t  work ,  one-d im ensional  e lem ents  w ere  employed a s

the flow i s  s t r i c t ly  one-d im ensional  ra d ia l  flow. The finite e lem ent

ne tw ork  shown in Fig.  5 .2  was se t  up to solve the p rob lem  defined in

F ig .  5 .1  (flow case  No.O). As shown in Fig. 5 .2 ,  the one-d im ens iona l

flow reg ion  is  divided into a num ber  of line segm ents ,  each of which is

fu r th e r  subdivided into a num ber  of 3-node quadra t ic  e lem en ts .  The

length of the f i r s t  l ine segm ent  is 0. 50 ft. The network, consis t ing  of

18 e lem en ts  and 37 nodes,  is  graded in such a m anner  that the length of

each  rem a in in g  l ine segm ent  is  twice that of the p reced ing  line segment

( i .e .  Ari = 2 v until  an ex ternal  rad ius  r Q = 10 , 0 00  ft . i s

-7reached .  An in it ia l  t ime s tep of 10 minutes was chosen. The t im e

step s ize  was then in c re a s e d  logar i thm ica l ly  such that  any rem ain ing

t im e step was 1 .4  t im es  the p rev ious  t im e step (i. e. A t*= 1 .4xAti_i)

until  30 t im e  s teps  w ere  computed. The num erica l  solution obtained

was com pared  with Hantush 's  analytical  solution. A logar i thm ic  plot

of the d im ens ion less  type cu rv es ,  W(u) v e r su s  1 /u ,  is  shown in F ig .

5 .3  fo r  se lec ted  va lues  of d im ension less  rad iu s  r / r w . The v a r iab le s

W(u) and 1/u  w e re  ca lcu la ted  f rom  the following equations

W(u) = t o '& (5.1)

and J_  4 Tt (5.2)

r 2S

w here  s i s  the drawdown in the aquifer ,  T and S a r e  the coefficients 

of t r a n s m is s iv i ty  and s to rage  of the aquifer  re spec t ive ly ,  Q is  the



1 3 2 (3-Node Element)
• ------ *■—  •

ArA = 0-5 ft.
ATj = 2 A r Ul

A r

n M •----*----•-

A r. Ar,

No. OF NODES = 37  

No. OF ELEMS = 18

rQ = 10,000 ft.

Fig. 5.2:  One-dimensional finite e lem ent network fo r  a confined 
aquifer with a fully sc reened  well.
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I ' i t f .  5 .  3 :  C o m p a r i s o n  o f  t h e  f i n i t e  e l e m e n t  a n d  I f a n t u s h ' s  a n a l y t i c a l

s o l u t i o n s .



ca lcu la ted  well d isch arg e ,  r  i s  the rad ia l  d is tance from  the well, and 

t  is  the e lapsed  t im e since the com m encem ent  of pumping. The d raw ­

down s and the aqu ife r  coefficients T and S w ere  calcula ted f ro m

w ate r  table  above the datum plane. The rem ain ing  symbols  have been 

defined p rev ious ly .

It is  seen in Fig.  5 .3  that excellent ag reem ent  between the 

n u m er ica l  and analy t ica l  solutions was achieved. The use  of 3-node 

one-d im ensional  e lem ents  was found to r e su l t  in a small  num ber of 

equations to be solved and a considerab le  saving in computational t ime.

5 . 2 . 2  T w o-reg im e  Flow Solutions

(i) T ran s ien t  Flow Cases

Analy t ica l  solutions of the p rob lem  of t ran s ien t ,  one-d im ensional ,  

tw o-reg im e  well flow a r e  unavailable  in the l i t e r a tu r e .  In the p re se n t  

work, the finite e lem ent method was used  to solve the flow p rob lem  

shown in F ig .  5 .1 ,  and to investigate  non-Darcy  flow nea r  the well.

The effect of non -D arcy  flow on drawdown distr ibution and the well dis^ 

charge-draw dow n re la t ionsh ip  was examined.

Six flow c a s e s  of d ifferent d ischarge  w ere  solved. The nu­

m e r ic a l  solutions w ere  obtained by employing the com puter  p ro g ra m

s = ho h (5.3)

S = Ss m (5.4)

a+bV (5.5)

w here  m  is  the aquifer  th ickness ,  and h° is the initial  height of the
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which was used  p rev ious ly  to solve the Darcy flow ca se .  The n e t ­

work  shown in F ig .  5 .2  was again  adopted. The in i t ia l  t im e  s tep  was 

chosen to be .0018 m in u te s .  E ach  rem a in ing  t im e  s tep  w as  g en e ra ted  

by multiplying the p reced ing  t im e  step by 1 .4  until the end of the 

pumping per iod  at t = 1 000  m inu tes .

F o r  flow case  No. 6 , Q = 400 cfm, the d raw dow n-t im e r e la t io n ­

ships at s e v e ra l  poin ts  n e a r  the well  w ere  obtained in d im en s ion le ss  

fo rm ,  W(u) vs 1 /u ,  and a r e  plotted in F ig .  5 .4 .  The d im ens io n le ss

p a r a m e t e r s  A = —  and ^  = kv c r  - w e re  u sed  to c h a ra c te r i s e
2 /Tm r  a

the effect of non -D arcy  flow on drawdowns. The jus t if ica t ion  fo r

using  these  p a r a m e t e r s  is  given in Appendix 2. It i s  noted tha t  the

d im ens io n le ss  type cu rv es  for a l l  points  in the n o n -D a rcy  flow zone

l ie  above the conventional Theis  curve for the D arcy  flow case ,  and

that  the deviation f ro m  the Theis  curve becom es  g r e a t e r  a s  the value

of A in c r e a s e s .

F o r  flow c a se s  Nos. 2 and 4, Q' = 50 and Q = 100 cfm r e s p e c t ­

ively, s e m i- lo g a r i th m ic  plo ts  of the d raw dow n-rad ia l  d is tance  re la t io n ­

ships at t im e s  t  = 0 .46  and t = 118 m inutes  a r e  shown in F ig s .  5 .5  

and 5 .6 .  It can be seen  that the d raw dow n-dis tance  cu rv es  a r e  non­

l in e a r  for ra d ia l  d is tan ces  l e s s  than a c r i t i c a l  value.  This value, indi­

cated by the junction of the dotted and solid  l in e s ,  r e p r e s e n t s  the o u te r  

l im i t  of the non-D arcy  flow zone. The c r i t i c a l  rad iu s  i s  o b se rv e d  to 

i n c re a s e  with i n c r e a s e  in the well d isch a rg e .  In both f ig u re s ,  the 

dotted cu rv es  r e p r e s e n t  the draw dow n-d is tance  re la t io n sh ip s  that  would
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F i g .  5 . 4 :  D i m e n s i o n l e s s  d r a w d o w n - t i m e  r e l a t i o n s h i p s  f o r  p o i n t s  i n

t h e  n o n - D a r c y  f l o w  z o n e  n e a r  t h e  w e l l .  ( F l o w  c a s e  N o .  6 ,  

Q  = 4 0 0  c f m ) .
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r e s u l t  if wholly Darcy flow were  assum ed .  Comparison of F igs.  5. 5 

and 5. 6 shows-that the additional drawdowns due to non-Darcy flow 

re m a in  the sam e  for both t im es .

The effect of non-D arcy  flow on the well d ischarge-drawdown 

re la t ionsh ip  is i l lu s t r a te d  in F ig .  5 .7  for t im es  t = 0.46 and t = 118 

m inutes .  It is  noted that as  dis t inct  f rom  the wholly Darcy flow case,  

the re la t ionsh ips  fo r  tw o-reg im e flow a r e  non-l inear  and m ay be 

desc r ibed  by the following equation

s^y - BQ + CQ (5.6)

w here  s w = drawdown at the well (sw docs not

include the head loss  resu l t ing  f rom  flow 

through the well s c re e n  and inside the well)

Q = well d ischarge

B, C = em pir ica l  coefficients of the equation

CQ^ = additional well drawdown due to non- 

Darcy  flow

The values  of B and C for  the two curves  i n ‘Fig. 5. 7 w ere  ca l­

culated and a re  l is ted  in Table 5 .1 .

Table 5 .1:  Values of Coefficients B and C for the Well in Fig. 5.1

t(min. )
2

B(min./ft. ) C(min^/ft .  ^ )
0.46 0. 24 0.00155
118 0. 36 0.00155

It is  evident that for  both t im es  t = 0.46 and t = 118 minutes,  

the values of C a r e  v ir tua l ly  the same. This evidence points to the 

fact  that for t ran s ien t  flow at constant d ischarge ,  the additional non- 

Darcy lo s s e s  re m a in  constant with t im e af te r  non-Darcy flow has been
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Flow
Case

No.

a

min/ft.

b

m in 2/ft2

vcr  
ft / m in

Q bQTA- 9
2 ^tm^r0

1 10 0 0 140 0

2 10 20 .060 140 . 002

3 10 20 . 060 280 . 004

4 10 40 .030 280 . 008

5 10 80 .016 280 . 016

Fig. 5. 8 : Data for  the problem  of steady flow towards a fully
sc reened  well in a confined aquifer.
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fully developed n e a r  the well.

(ii) Steady Plow Ca s e s

A complete  analytical  solution of the problem of s teady s ta te ,  

one-d im ensional ,  tw o-reg im e well flow is p resen ted  in Appendix 2.

The d im ension less  p a r a m e te r s  ch a rac te r is in g  non-Darcy  flow n ea r  the

well a r e  shown to be A = ^ — and ^ = -- ^ c r  .
27i m m r 0  a

To verify  the finite element analysis  of the flow problem , five 

steady flow cases  w ere  generated .  These flow cases ,shown in Fig.

5. 8 , w e re  chosen to have different values of A but the sam e values of 

^ and r Q/ r w . A network s im ila r  to that shown in Fig. 5. 2 was 

adopted. This network consis ts  of 9 elements  and of 19 nodes. The 

ex terna l  rad ius  chosen is  1000 ft . F o r  each flow case, the dimension- 

le s s  d raw dow n-rad ia l  distance re la tionship  was obtained and plotted on 

a s e m i- lo g a r i th m ic  sca le .  Fig. 5. 9 shows the comparison of the finite 

e lem ent  and the analy tical  solutions. It can be seen that excellent 

ag reem en t  between the two solutions was achieved.

5.3  Flow towards a P a r t ia l ly  Screened Well in a Confined Aquifer

5 . 3 . 1  Darcy Flowr Solutions

A d iag ram m atic  sketch of a par t ia l ly  screened  well in a confined 

aquifer  is  shown in Fig. 5. 10. The well is sc reened  from  the base  of 

the aquifer  to a height equal to half of the aquifer th ickness .  A com ­

plete analy tical  solution to the problem of t rans ien t  Darcy flow at 

constant d ischarge  was presen ted  by ITantush (1961). His simplified 

solution fo r  drawdown distr ibution along the base  of the aquifer is given

in Appendix 3.
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a p a r t ia l ly  sc reened  well in a confined aquifer.

2 
O 

F
T

.



98.

To ver ify  the finite e lement ana lys is ,  a hypothetical problem was 

fo rm ula ted .  The p rob lem  data a r e  given in Fig. 5. 10, flow case  No .0 .  

The network  shown in Fig.  5.11 was adopted. The chosen ex ternal  

ra d iu s  is  1 0 , 000  ft. As seen  in the figure, the flow region is divided 

into a n um b er  of v e r t ic a l  blocks, each of which is fu r th e r  subdivided 

into a num ber  of t r ian g u la r  r ing e lem ents .  A to ta l  of 151 e lem ents  

and 128 nodes was used .  The e lem ents  in c rease  in size along the 

r a d ia l  d is tance f rom  the pumped well. The width of the f i r s t  ver t ica l  

block is  0 . 2 0  f t . ,  and the width of each rem ain ing  block is  1 . 4  t im es  

that  of the p reced ing  block (i. e. Ar* = 1. 4 X A r ^  1) until a maximum 

width A r m ax  = 400 ft. is  exceeded. The m axim um  width is  p re sc r ib e d  

to avoid i l l -conditioned t r ian g le s .

An initial  t im e  step of 0. 00054 minutes was chosen. Each r e ­

maining t im e  step was genera ted  by multiplying the previous t im e step 

by 1.4 until  30 t im e s teps  w e re  completed. The num erica l  solution 

obtained was a drawdown d is tr ibution  that var ied  with depth for rad ia l  

d is tances  l e s s  than approx im ate ly  1.5 t im es  the aquifer th ickness .  The 

d ravrdovms along the base  of the aquifer were  used  in the com parison with 

H antush 's  analytical  solution. F o r  the nodes located at radia l  d is tances  

of 0 .5  , 2 .0  and 10.0 ft. f rom  the pumped well, the drawdown-time 

re la t ionsh ips  were  obtained in d im ensionless  form  of W(u) v e r su s  1/u 

and a r e  plotted in F ig .  5. 12. Good agreem ent  between the analytical  

and finite e lem ent  solutions may be observed.



No. OF NODES = 128 

No. OF E L EMS = 151

Ar4 = 0' 20 ft.
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Kig. 5.11: Kinite element network for a confined aquifer with a par t ia l ly
screened  well.
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5 ,3 .2  T w o-reg irne  Flow Solutions

(i) T ra n s ie n t  Flow C ases

To use the fin ite  e lem en t method to investigate  t ra n s ie n t  two- 

re g im e  flow and study the effect of non-D arcy  flow n ea r  the well, the 

p ro b lem  defined in F ig . 5. 10 was solved for five flow ca se s  of d ifferen t 

d is c h a rg e .  The n u m e r ic a l  so lutions w ere  obtained by em ploying the 

co m p u te r  p ro g ra m  which was used  p rev iously  to solve the Darcy flow 

c a se .  The netw ork  shown in Fig . 5 .11  was again adopted. An in itia l 

t im e  step  of 0 .0042 m inu tes  was chosen. The rem ain ing  tim e steps 

w e re  g en e ra ted  in the m anner desc ribed  p rev iously .

F o r  flow ca se s  Nos. 2, 3 and 5, the d im ension less  drawdown­

tim e  re la tionships,W (u) v e r su s  1/u , fo r  a nodal point located  a t  the 

b a se  of the aqu ifer  and at the well a r e  plotted in F ig . 5 .13 . F o r  flow 

c a se s  N os. 3 and 5, the plot of W(u) v e rsu s  1/u  for a nodal point lo ­

cated  at the b ase  of the aquifer and at 2 ft. from  the pumped well is 

shown in F ig . 5 .14 . In each figure A and ^  a r e  the two d im ension less  

p a r a m e te r s  chosen to c h a ra c te r is e  non-D arcy  flow n ea r  the well. The 

type curve  fo r  the wholly D arcy flow case  , A = 0, is  a lso  include a.

It can be seen  tha t fo r  a ll the tw o -reg im e flow ca ses  solved, the type 

cu rv es  fo r  the two poin ts , r  = 0. 5 and 2 .0  f t . ,  in the non-D arcy  flow 

zone l ie  above the D arcy flow type curve , and that the deviation from  the 

D arcy  flow curve  becom es g re a te r  a s  the value of a in c re a se  s .
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F o r  flow ca se s  Nos. 3 and 5, sem i-lo g arith m ic  plots of drawdown 

v e rsu s  r a d ia l  d is tan ce  a t t im e s  t = 0.12 and 52 .4  m inutes a r e  i l lu s ­

t r a te d  in F ig . 5 .15  and 5.16 re sp ec tiv e ly . The draw dow n-rad ia l d is ­

tance  re la tio n sh ip s  fo r  the  co rresponding  Darcy flow cases  a r e  shown 

in dotted l in es . It is  noted that for each d ischarge the tw o -reg im e  flow 

solution dev ia tes  from  the Darcy flow solution in the im m edia te  vicinity  

of the well w here  non-D arcy  flow ex is ts ,  and that the two solutions co­

incide at a c e r ta in  c r i t ic a l  rad ius  which is  observed  to in c re a se  with 

in c re a s e  in the d isch a rg e .  On com paring F ig s .  5.15 and 5 .16 , i t  can 

be  seen  once again that the additional drawdowns due to non-D arcy  flow 

re m a in  the sam e  fo r  both e a r ly  and la te  t im es .

F ina lly , the effect of non-D arcy  flow and p a r t ia l  sc reen ing  on the 

well d ischarge-d raw dow n  re la tion sh ip  is  i l lu s tra te d  in F ig . 5. 17. It is  

noted th a t fo r  t im e s  t = 0.12 and 52.4 m inutes, the well d ischarge- 

drawdown cu rves  a re  n o n -lin ea r  and m ay be fitted by equation (5. 6).

(ii) Steady Flow C ases

An ana ly tica l solution to the p roblem  of steady sta te , two reg im e  

flow tow ards  a p a r t ia l ly  sc reened  well in a confined aquifer has not been  

developed. The fin ite  e lem ent ana lys is  of the flow problem  was 

v e r if ied  by com parison  with experim en ta l re su l ts  to be p re sen ted  in the 

nex t ch ap te r .  As in the one-d im ensional flow ca se s ,  the sam e 

d im en sio n le ss  p a ra m e te r s  A and ^ w ere  employed to c h a ra c te r is e  

no n -D arcy  flow7 in the vicinity of the well.



Vc r

ro

Flow Case 
No.

a
min./ft.
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*w
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1 10 0 0 40

2 10 20 .062 40

3 10 20 .062 80

4 10 20 .062 160

5 10 40 .031 160

6 10 100 .0125 160

Fig. 5. 18: Data for the problem  of steady flow towards a 
pa r tia l ly  sc reen ed  well in a confined aquifer.
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The p rob lem  shown in Fig . 5. 18 was solved fo r 0 flow ca ses  

which w ere  chosen to cover a range of values of A and to have the 

sam e  value of $ ,  r Q/ r w and l gc /m .  A netw ork s im ila r  to tha t shown 

in F ig . 5 .11 w as adopted. A to ta l of 128 elem ents and 104 nodes was 

u sed . F o r  each flow ca se ,  the d im ension less  draw dow n-rad ia l d is ­

tance  re la tionsh ip  at the base  of the aquifer is  plotted on a sem i-  

lo g a ri th m ic  sca le  as  shown in F ig . 5 .19 . The effect of in c reas in g  

the value of A on the d raw dow n-rad ia l d istance curve m ay be observed . 

The cu rve  fo r  flow case  No. 1, vrhich is  the wholly Darcy flow case , 

c o rre sp o n d s  to A = 0.

5 .4  Flow tov/ards a Well in a Confined A quifer-A quitard  System

5 .4 .1  Darcy Flow Solutions

A d iag ram m atic  sketch  of a well in a confined aq u ife r-aq u ita rd  

sy s tem  is  shown in F ig . 5. 20. The well is  sc reen ed  from  the b ase  

to the top of the m ain  aqu ifer and the en tire  sys tem  is  confined by 

im p erm eab le  s t r a ta .  An analy tical approach to the prob lem  of t r a n s ­

ien t D arcy  flow a t constant d ischarge  was f i r s t  p re sen ted  by Hantush 

(1960). He derived  asym pto tic  solutions for drawdowns in the m ain 

aqu ife r  but did not obtain solutions fo r  drawdowns in the overlying 

aq u ita rd .

Neum an and W itherspoon (1969) la te r  extended H antush’s work to 

obtain a com plete solution to a m o re  complex p rob lem  of flow in a 

confined system  consis ting  of two aqu ife rs  sep a ra ted  by an aqu itard . 

They a lso  developed asym pto tic  solutions for sm all values of t im e .
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Flow Case 
No.

b
m in?/ft?

, Q
ft? /m in .

0 0 100

1 40 100

2 40 200

3 40 300

4 40 400

5 40 500

6 40 1000

Fig. 5. 20: Data fo r the problem  of tran s ien t flow to ­
w ards  a well in a confined aqu ife r-aqu ita rd

system .
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T hese so lutions have been adapted to the s im p le r  p rob lem  of flow in 

the sy s tem  shown in F ig . 5.20./ All of the available  analy tica l so l­

u tions a r e  based  on the assum ption  that the flow d irec tion  is  horizontal 

in the aqu ife r and v e r t ic a l  in the aqu itard . This assum ption  w as shown 

by Neuman and W itherspoon (1969) to lead  to e r r o r s  of no m o re  than 

5 p e rcen t  when the p e rm eab ili ty  of the aquifer is  a t l e a s t  two o rd e rs  

of m agnitude g re a te r  than that of the aqu itard .

To verify  the finite elem ent an a ly s is ,  a  hypothetical p rob lem  was 

fo rm u la ted . The p rob lem  data a r e  given in F ig . 5 .20 , flow case  N o .0 . 

To e n su re  the valid ity  of the analy tical solutions, the pe rm eab ili ty  of 

the m ain  aqu ifer w as chosen to be m o re  than 100 t im e s  g re a te r  than 

tha t of the overly ing  aqu ita rd . The network shown in F ig. 5 .21 was 

adopted. The ex te rna l rad ius  chosen for th is  netw ork is  5000 ft.

A s seen  in the f ig u re , the flow reg ion  is  divided into a num ber of 

v e r t ic a l  b lock s , each of which is  fu r th e r  subdivided into a num ber of 

re c ta n g u la r  r in g  e lem en ts .  A f in e r  subdivision of the v e r t ic a l  b locks is  

u se d  in  the aqu ita rd  w here  s teep  v e r tica l  hydraulic  g rad ien ts  occu r a t 

e a r ly  pumping t im e s .  The width of the f i r s t  block is  0. 50 ft. and the 

w id th  of each rem a in ing  block is  1. 5 t im e s  that of the p reced ing  block 

until a  p re s c r ib e d  m axim um  width of 500 ft. is  exceeded. The en tire  

ne tw ork  c o n s is ts  of 184 nodes and 154 e lem en ts . An in itia l tim e step 

of 1 .14  m inu tes  w as chosen. Each  rem ain ing  tim e step w as genera ted  

in the m an n er  d esc r ib ed  prev iously . The n u m erica l  solution obtained 

w as com pared  with the analy tical solutions l is ted  in Appendix 3.
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the aquifer.



F ig . 5 .23  i l lu s t r a te s  a lo g a r i th m ic  plot of the d im onsion less  draw do wn-

tim e  re la t io n sh ip s  fo r  var io us  nodal points in the aqu ifer and overly ing  

aq u ita rd .  All of these  points a r e  located  at a ra d ia l  d is tance  of 5 ft. 

f ro m  the pum ped w ell. In the figu re , the d im ension less  p a ra m e te r s

w here  K ‘, Sg, m* a re  the coefficient of perm eab ility , specific  s to rage  

and th ick n ess  of the aqu ita rd  re sp e c tiv e ly .  The rem ain ing  sym bols hav 

been defined p rev iously .

fin ite  e lem ent so lution a g re e s  c lose ly  with the analy tical solu tions.

p o rt io n s  of the type cu rv es  for the nodal points in the aqu itard .

To d e te rm in e  w hether the fa ilu re  of the finite elem ent m ethod to 

y ield  sa t is fa c to ry  r e s u l t s  fo r ea r ly  t im es  was due to the co a rse  m esh  

u sed , the netw ork and tim e  step  s izes  w ere  refined . The new network 

shown in F ig . 5 .2 2  w as adopted. As seen  in the figure , the num ber of 

v e r t ic a l  subdiv isions in the aqu itard  zone n ea r  the well is  double that

and z ’/rri w ere  ca lcu la ted  from

K m m 1
(5. 7̂

(5. 3)

(5. 9)

(5. KT

It can be seen  that for la rg e  values of tim e (t> - ) t he

S 1 m LD eviation o c c u rs  a t  sm all  values of t im e (t 4  ) along the s teep
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In the ou ter portion  ol the aquitard . A combination of rec tan g u la r  and 

tr iangu lar e lem en ts  was used . The network consists  of 229 nodes and 

204 e lem en ts .  The in itial tim e step was reduced to 0.28 m inutes and 

a sm a lle r  t im e  factor of 1. 25 was used . Solution for 30 tim e steps was 

completed. The re su l t  obtained was compared once again with the 

analy tical solutions fo r  sm all values of tim e. It is seen in F igure  5. 23 

that the u se  of the refined  network and sm alle r tim e step s izes  re su lted  

in b e t te r  ag reem en t with the analytical solutions.

A sep a ra te  check was also made on the finite element solution by 

examining the drawdown-tim e re la tionships obtained from  various nodal 

points in the m ain aquifer. These re la tionships a re  il lu s tra ted  in Fig. 

5 .24. As expected, the num erica l solution approaches Hantush’s long 

tim e solution which corresponds to the late tim e Theis curve at time
j p . /

t ^  2 Sg m w  K. This la te  tim e curve is  spaced at a horizontal d is ­

tance of (<$i - l ) /u . f ro m  the conventional Theis curve, r e fe r r e d  to as the 

early  tim e Theis curve.

5 .4 .2  T w o-reg im e Flow Solutions

To use the finite elem ent method to investiga te  tran s ien t two- 

reg im e flow and study the effect of non-D arcy  flow on la te  tim e draw ­

downs in the m ain aquifer, the problem  defined in Fig. 5.20 was solved 

for six flow cases  of different d ischarge . As before, the num erica l 

solutions w ere  obtained by employing the com puter p rog ram  used to 

solve the Darcy flow case . The coarse  network shown in F ig . 5. 21 

was adopted as it can be seen in Fig. 5.23 that this network gave quite 

sa tis fac to ry  drawdown values at late t im e s .  The external rani us oi the
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network w as extended to 10, 000 ft. to ensu re  that the drawdown would 

not re a c h  it a t the end of the pumping period . The in itia l tim e step 

size w as chosen  to be 2. 24 m inu tes . As in the Darcy flow case , the 

time m u ltip lie r  of 1. 4 w as used  to genera te  the rem ain ing  tim e s teps . 

Thirty t im e  s teps  w ere  taken to re a c h  the end of the pumping period  at 

t = 36, 000 m inu tes .

F o r  flow case  No. 6, Q = 1,000 cfm, a plot of the d im ension less  

draw dow n-tim e re la tio n sh ip s  for se lec ted  points in the m ain aquifer at 

rad ia l d is tan ces  of 1, 1. 50, 2. 25 and 5.05 ft. f rom  the pumped well is  

shown in F ig . 5 .2 5 . The la te  tim e Theis curve fo r  the wholly D arcy 

flow case  is  a lso  included. Once again the effect of the d im ension less  

p a ra m e te r  A on the well function, W = 4 7f K m s/Q , m ay be observed .

F o r  flow ca se s  Nos. 2 and 4, sem i-lo g arith m ic  plots of drawdown 

in the aqu ifer v e r s u s  rad ia l  d istance from  the well a r e  i l lu s tra te d  in 

F igs. 5. 26 and 5. 27 for t im es  t = 18 and 18, 300 m inutes re sp ec tiv e ly . 

The D arcy  flow so lu tions a re  also  shown in aotted l in es . It can be 

seen th a t ,  fo r  each  well d ischarge , the tw o-reg im e flow curve deviates 

from  the l in e a r  D arcy  flow solution at d istances le s s  than a ce r ta in  

c r i t ic a l  rad iu s . This rad iu s , indicated by the junction of the solid and 

dotted l in es , is  o b served  to in c re a se  with in c re a se  in the well d ischarge . 

C om parison  of F ig s .  5. 26 and 5. 27 again le a a s  to tne conclusion that 

for t r a n s ie n t  flow at constant d ischarge the additional drawdown due to 

non-D arcy  flow which has been fully developed n e a r  the well re m a in s  

constant with t im e .
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F ina lly , the effect of non-D arcy flow on the well d ischarge- 

drawdown re la tio n sh ip s  is  i l lu s tra te d  in Fig. 5.28 for t im es  t  = 18 and 

18, 300 m in u te s . The re la tio n sh ip s  a r e  n on -lin ear and may be fitted 

by equation (5.6).

5. 5 Flow tow ards a W ell in an Unconfined Aquife r  - A quitard  System

5 .5 .1  Darcy Flow Solutions

A d iag ram m atic  sketch of a well in a flow system  consisting  of 

an aqu ife r and an overly ing  unconfined aquitard  is  shown in F ig . 5 .29 .

The well is  sc re en ed  through the en tire  th ickness of the aquifer and 

pum ped a t a constant d isch arg e . An analy tical approach to the t r a n s ­

ien t D arcy  flow prob lem  w as p re sen ted  by Cooley and Case (1963, u n p u b l . )  

They co n s id e red  the boundary value p rob lem  identical to the one solved 

by Han tush  (1960) with the exception that the boundary condition a t the 

top of the aq u ita rd  is  rep laced  by B oulton 's exponential in teg ra l  to s im ­

u la te  v a r ia b le  y ie ld  fro m  the u n sa tu ra ted  zone. T he ir  com plete 

ana lv tica l solution fo r  drawdowns in the m ain aquifer is  divided into
kJ

sh o r t  and long tim e segm en ts . The sh o r t  tim e solution, valid for

t ^  S m 2 /10K ', is  iden tica l to that given by Hantush (1964, p. 312). 
s

The long tim e solution, valid for t > 10 Sg' m 2 /lC , is  s im ila r  to 

B oulton 's  solution of the unconfined flow problem  (Boulton, 1963, p. 4 /9).

To verify  the finite e lem ent an a ly s is ,  a hypothetical p rob lem  was 

fo rm u la ted . The p rob lem  data a r e  given in F ig . 5 .29 , flow case N o .0 . 

Two com binations of network and tim e  d isc re tisa t io n  w ere  adopted.

F o r  the f i r s t  com bination, the c o a rse  network shown in F ig . 5.21 was
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The in itial tim e step size of 1.12 minutes and the time m ultip lier of

1.4 w ere again chosen. The problem was solved for 30 tim e steps 

and the num erica l solution obtained was checked against the long time 

solution for drawdowns in the aquifer. A plot of the dim ensionless 

drawdown-time re la tionships for points in the aquifer which are  

located at d istances of 57, 292 and 657 ft. from  the pumped well is  shown 

in F ig . 5 .30 . The dim ensionless pa ram e te rs ,  and <f0, lis ted  a reJ J &

(5. 7) and (5. 8). It can be seen that good agreem ent between the finite 

element and the analytical solutions was achieved.

The second combination of network and time step s izes  was used 

to study convergence of the finite element solution. The refined net­

work shown in F ig. 5. 22 was adopted. This network has been pre- 

v iously described  in Section 5 .4 . 1. The sm alle r initial tim e step size 

of 0. 28 m inutes -and the tim e m ultip lier of 1. 25 were chosen. The 

num erical solution obtained was compared with the re su lt  obtained p re ­

viously by using the coarse  network and la rg e r  time step s izes . Fig. 5. 3 

shows a plot of the dim ensionless drawdown-time relationships for 

selected points in the flow system . All of these points a re  located at

given by
Vz

Kmm'j 
K J (5.11)

(5. 12)
Ssm

rThe rem aining p a ram ete rs  , — and /3, a re  given by equations
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a d istance of 292 ft . f ro m  the well but at d ifferent elevations from  the 

top of the aq u ife r . It is  noted that along the steep portions of the t y p e  

curves the c o a rse  m esh  solution l ie s  slightly below the refined m esh  

solution and that along the f la t te r  portions of the cu rves the two so l­

utions a g re e  quite c lose ly .

5 .5 .2  T w o -re gim e Flow Solutions

A hypothetical t ra n s ie n t  tw o-reg im e flow prob lem  was fo rm ula ted . 

The p ro b lem  data  a re  l is te d  in F ig . 5. 29. Six flow ca ses  of d ifferent 

d ischarge w ere  so lved by the finite elem ent m ethod. The n u m erica l  

solutions w ere  obtained in the m anner described  in Section 5 .4 .2 .

F o r  flow case No. 6, Q = 1, 000 cfm, a plot of the d im ension less  

draw dow n-tim e re la tio n sh ip s  for se lec ted  points in the aquifer at d is ­

tances of 1, 1. 5, 2 .25 , 5 .07  ft. from  the well is  shown in F ig . 5. 32.

It can be seen  tha t the type cu rves  a re  s im ila r  to those shown in F ig . 5. ' 

F o r  flow ca se s  Nos. 2 and 5, sem i-log arithm ic  plots of drawdown 

in the aqu ife r v e r s u s  ra d ia l  d istance from  the well a re  i l lu s t ra te a  in 

F igs. 5 .33  and 5. 34 for t im es  t - 18 and 4, 580 m inutes re sp ec tiv e ly .

It is  noted tha t flow case  No. 5 cannot be re a l ise d  in p ra c t ic e  a s  tne d is ­

charge of 500 cfm re s u l t s  in a well drawdown in excess  of the m axim um  

possib le  value of 100 ft. vrhich is the drawdown to the base  of the aquifer.

F in a lly , the effect of non-D arcy  flow on the well d ischarge- 

drawdown re la tio n sh ip s  is  i l lu s tra te d  in F ig. 5.35 for t im es  t - lo  ana 

4,580 m inu tes . Once again it  is  noted that the re la tionsh ips  a re  non-
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l inear and m ay be fi tted by equation (5.6).

5. 6 Flow tow ards  a Well in an Unconfined Aquifer

5 .6 .1  Darcy Flow Solidion?

A d iag ram m atic  sketch of a well in an unconfined aquifer is shown 

in F ig .  5 .36 .  The well is fully screened  through the initial sa tu ra ted  

thickness of the aquifer  and pumped at a constant d ischarge .  A s im ­

plified ana ly tical  approach to the problem of t rans ien t  unconfined Darcy 

flow was p re se n ted  by Boulton (1954), (1963). He used the exponential 

in tegral  to approx im ate  the delayed yield from the unsatu ra ted  zone 

and solved the one-d im ensional  field equation which was developed by 

considering only rad ia l  flow components. His complete analytical 

solution to the p rob lem  is based  on the assumption that th ickness  of 

the aquifer  is  constant  and equal to the initial sa tu ra ted  th ickness .

The validity of Boulton’s work was investigated by Cooley (1971) 

who applied the finite difference method to two-dimensional flow in both 

sa tu ra ted  and u n sa tu ra ted  zones of the aquifer.  He d iscovered  that 

Boulton's analy tical  solution corresponded closely to his num erica l  so l­

ution of the unconfined flow problem provided that the drawdown of the 

water table is sm a l l  compared to the initial sa tura ted  tn ickness.

A hypothetical p rob lem  was formulated to verify the finite element 

analysis  by using Boulton 's  analytical solution. The p iob lem  data ai e 

given in F ig .  5 .36 ,  flow case No.O.It was assum ed a pi io r i  that 

Boulton's solution provided a close approximation to the complex
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boundary value problem  analysed by the finite e lement method, as  an

exact solution to th is  p rob lem  could not be obtained.The network s im i la r  

to that  shown in F ig .  5. 37 was adopted. The ex ternal  rad ius  of this 

network i s  2, 000 ft. As seen in the figure, the sa tu ra ted  flow region 

is divided into two subregions ,  one where the m esh  is held fixed and 

the rem ain ing  subregion w here  the m esh  is  allowed to contrac t  or ex­

pand to accom m odate  f ree  surface  adjustments .  The subdivision of 

each subregion into t r ian g u la r  e lem ents  has been descr ibed  in 

Section 5 .3 .1 .  A total of 133 e lem ents  and 102 nodes was used. The 

initial t im e  step s ize  of 0.20 minutes  and the time m ult ip l ier  of 1.4 

were  chosen. The p rob lem  was solved for 30 t im e steps.

The n u m er ica l  solution obtained was a hydraulic head distr ibution 

that v a r ied  with depth throughout the en tire  pumping period. Draw­

downs at rad ia l  d is tances  of 40 and 150 ft. f rom  the well w ere  av­

eraged  over the height of the w a te r  table and used for com parison with 

Boulton’s solution. The justif ication for using the average  drawdowns 

has been given by Cooley (1971). Values of the o imensionless d raw ­

down W and the p a r a m e te r s  r / D  and ^ w ere  calculated from

W 4 7t K h0 s 
Q

(5. 13)

r r (5. 14)
]

(5. 15)
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C om par ison  of the n um erica l  and Boulton's analytical solutions was 

made by matching the n um erica l  r e su l t s  against a family of Boulton’s 

type cu rv es .  The num erica l  r e su l t s  and the matching type cu rves  a r e  

shown in F ig .  5 .3  8. The values of r / D  for the b es t  fit type cu rves  a re  

slightly d ifferent  f rom  those calculated from  equation (5. 14) by using the 

original p rob lem  data. The difference can be explained in t e rm s  of 

the fact that  Boulton 's  solution is  based  on the simplifying assum ption  

that  the th ickness  of the aquifer is  constant and equal to the initial s a t ­

u ra ted  th ickness .  It can be seen that in general  the num erica l  

solution a g re e s  c lose ly  with the analytical solution except along the 

s teep port ions  of the type curves  where slight deviation o ccu rs .  The 

deviation is  probably  due to the co a rse  network and t ime step s izes  

used .

F inal ly ,  the posit ions of the w ate r  table and w ate r  level in the 

well a t  t im e s  t  = 4 .5  and 1, 140 m inutes  a r e  i l lu s t ra ted  in Fig.  5. 39. 

These posit ions  a r e  com pared  in the next section with the corresponding  

posit ions  obtained f rom  the tw o-reg im e flow solution for the sam e well 

d ischa rg e .
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5 .6 .2  T w o - rc gi m c F Iow Solutions

(i) T ra n s ie n t  Flow Case

The t r a n s ie n t  tw o -reg im e  flow case shown in Fig. 5.36 

(flow ca se  No. 1) was solved by employing the computer p rog ram  

used prev iously  to solve the Darcy flow problem. The network 

descr ibed  in Section 5 .6 .1  was again adopted. The initial t ime 

step s ize  of 0. 20 m inu tes  and the t im e multip l ier  of 1.40 were  chosen.

F ig . 5 .40 shows a sem i- logar i thm ic  plot of the drawdown-time 

re la t ionsh ips  fo r  two nodal points on the well boundary which a re  

located at the top of the seepage face and below the water  level in the 

well re spec t ive ly .  Due to the delayed yield effect which is incorp­

ora ted  in Boulton’s exponential in tegral ,  the plot in the figure takes 

the fa m i l ia r  S~ shape.

The effect of non-D arcy  flow on the positions of the water  table 

and w ater  level in the well is i l lus tra ted  in Fig. 5.41 for t im es  t=4.5 

and 1, 140 m inu tes .  On comparing this figure with Fig. 5 .39 it is noted 

that for  the same well d ischarge  and pumping time the length of the 

seepage face from the tw o-reg im e flowr solution is appreciably g re a te r  

than that  obtained from the Darcy flow solution.

(ii) Steady Flow Cases

To investigate  steady state,  two reg im e flow’ in an unconfined 

aquifer,  the prob lem  shown in Fig. 5.42 was solved for four se lec ted  

flow c a s e s .  A network s im i la r  to the one shown in Fig. 5.37 wras 

adopted. Its ex te rna l  rad ius  was 1000 ft. F or  flow cases  Nos. 1,7 and
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Flow Case 
No.
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m in .  /ft. ^2 2 min. /ft .

v c *
ft. /min.
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ft.

1 1 0 0 10

2 1

CO•

o 0. 125 10

3 1 4 .0 0. 025 10

4 1 2.0 0. 050 10

Fig. 5.42: Data for the problem of steady flow towards a
fully sc reened  well in an unconfined aquifer.

5
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where the height of the water level in the well is prescr ibed  as 10 f t . , 

the free surface and the base p re ssu re  head curves a re  plotted in Fig. 

5.43 and 5.44 respectively .  The effect of increasing the value of the 

non-linear coefficient b on the shape and position of these curves may 

be observed. Fig. 5.45 shows a semi-logarithmic plot of the dimension- 

less  type curves of the base  p re ssu re  head distribution for all flow 

cases. The dimension!ess variables and p aram ete rs  listed in the figure

were calculated from

W rtK (ho2 - hb2)
Q

Uo

A

r
r o

bOK
2 K h0r 0

bV£r_

(5.17) 

(5. 18)

(5. 19) 

(5.20)

where

ho

base p re ssu re  head

height of the water table at the 

external radius

The remaining symbols have been defined previously.

The effect of the pa ram ete r  A on the shape of the type curves 

may be observed. For flow case N o . l ,  which is the wholly Darcy 

flow case (A = 0), the curve becomes a straight line. Dow cases 

Nos. 2, 3 and 4 correspond to A = .0017, .0035 and .0056 respectively.
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^ xPe r ^mel1^a  ̂ V er if ica t ion, of Steady State, Tw o-reg im e Flow 
Solutions

6.1 Genera l

The finite e lem ent  ana lys is  was experimenta lly  verif ied  using 

data obtained during  a joint investigation of flow towards wells 9^

The following flow conditions w ere  investigated using a la rg e  

sca le  hydraulic  model*.-

(i) Flow tow ards  a fully sc reen ed  well in a confined aquifer.

(ii) Flow tow ards  a fully sc reened  well in an unconfined aquifer.

(iii) Flow towards  a pa r t ia l ly  sc reened  well in a confined aquifer.

(iv) Flow towards  a p a r t ia l ly  sc reened  well in an unconfined aquifer.  

Type curve methods w ere  developed .by the author to determine

the in -s i tu  hydraulic  c h a ra c te r i s t i c s ,  namely a, b and K of the aquifer 

m a te r ia l  u sed  in the exper im en ts .  The determ ined  values of the 

hydraulic  coefficients w ere  fed into the finite element model to obtain 

n u m er ica l  solutions of the flow p rob lem s.  Comparison of the ex­

p e r im en ta l  r e s u l t s  and the num erica l  solutions is p resen ted  in this  

chapter .  A genera l  descr ip tion  of the hydraulic model and tes t ing  p ro ­

cedures  i s  a lso  included.

(1) The design and construc tion  of the experimental  equipment and some 

of the r e s u l t s  have been previously  repor ted  by Dudgeon, Huyakorn 

and Swan (1973, Vol. 1). Additional data used  in this thes is  will be 

published in detail  a t  a l a te r  date.
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6. 2 D escrip t ion  of Hydraulic  Model

6 .2 .1  E s s e n tial F e a tu re s

A plan view and a photograph of the model a r e  shown in F ig s .

6. 1 and 6.2  re sp ec t iv e ly .  The deta i led  design and cons truc t ion  of 

th is  model has been desc r ib ed  by Dudgeon et al (1972, pp .D2-D13).  The 

model,  p laced  in a square  re in fo rced  concre te  tank with in te rna l  di­

m ensions  of l e ' x i e ’x l l ' ,  was cons truc ted  to r e p r e s e n t  a  quadrant  

port ion  of the w e l l -aq u ife r  sys tem . The aquifer  m a te r i a l  was re ta ined  

by a 16 ft . rad iu s  b a r r i e r  which was made up of 16 gauge p e r fo ra te d  

s tee l  shee ts  joined together  to fo rm  a quadran t  of the c i r c le .  The 

th ickness  of the aquifer  was 5 ft. An inner  b a r r i e r  with a rad ius  of 

4 ft. was a lso  provided to allow aqu ife r  m a te r i a l  c lose  to the 5 inch 

quadrant  well  to be rem oved  without d is tu rb ing  the bulk of the en t i re  

aqu ife r .  This p rov is ion  was des i rab le  a s  it  se rv e d  the purpose  of 

speeding up the ta sk  of changing well s c re e n s .  The in n e r  b a r r i e r  

was made f ro m  a 16 gauge p e r fo ra ted  s te e l  sheet,  curved  and c o r ru g ­

a ted  to allow i t  to r e s i s t  co m p re s s iv e  loads without buckling. The 

open a r e a  of the p e r fo ra ted  sheet was 52%, which was cons idered  

sufficient to p reven t  additional flow re s i s t a n c e  being in troduced  at  

this location .

W ate r  was supplied to the tank f ro m  a 6 inch d ia m e te r  in let  pipe 

loca ted  a t  the c o rn e r  opposite to the quadrant  well.  The inflow w a te r  

was p a s se d  through the aqu ife r  m edium  tow ards  the well f ro m  which it
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Fig. 6. 1: P lan view of w el l -aqu ife r  model showing essen t ia l  f e a tu r e s .



Figc 6,2: General view of well-aquifer  model showing
re in fo rced  concrete tank* instrumentation annexe and 

aquifer m ater ia l .

Figo 6. 3: Internal view of instrumentation annexe showing orifice 
m anom eter  panel (centre) and p iezom etr ic  tubes (right).
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was pumped through a d ischarge measuring  device back into the tank.

A 6-inch centr ifugal pump with a 20 II. P. motor capable of delivering 

2 cfs aga ins t  a head of 60 ft. was used to rec ircu la te  the water through 

the tank. D ischarges  w ere  accurate ly  m easured  by D and D/2 

orifice plate m e te r s  manufactured and calibrated according to the 

B r i t ish  s tandard  specification. To observe the hydraulic heads at 

various rad ia l  d is tances from the pumped well, a number of p iezom etric  

tappings, made from  copper tubes, were installed in the base  of the 

tank along a rad ia l  line extending from  the well outlet to the diagonally 

opposite inlet pipe. The spacing of these tappings is indicated in 

Fig. 6. 1. Closer spacing near  the well allowed for s teeper  hydraulic 

gradients in that vicinity. The tappings were connected to manometer  

panels on two opposite walls of the tank. A photograph showing one of 

these panels on the wall inside the instrumentation annexe is  given in 

Fig. 6 .3 .

6. 2 .  2 Aquifer M ater ia l

A Nepean r iv e r  gravel consisting of rounded par t ic les  was 

selected as  an aquifer m a te r ia l  which would allow non-Darcy flow to 

develop in the zone extending from the well to the inner b a r r i e r .  Sieve 

analysis was pe rfo rm ed  on a sample of this gravel.  The grain size 

distribution curve is given in Fig. 6.4. The charac te r is t ic  grain 

diameter d ,  chosen as  the diam eter  such that 10 percent  by weight oi 

the sample is  of sm a l le r  size, was obtained as 0.056 inches. It is
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noted that  the g ra v e l  was sufficiently co a rse  for unconfined flow to 

take p lace  with negligible cap il la ry  effects.

P e rm e a b i l i ty  te s t s  w ere  also c a r r i e d  out on the sample to 

de term ine  the hydrau lic  coefficients for com parison  with the values 

obtained by applying the newly developed type curve methods.  The 

p e rm e a m e te r  used  in ca r ry in g  out the te s ts  was a downward ver t ica l  

flow type s im i la r  to the one desc r ibed  by Dudgeon (1964, 1966). Its 

d iam ete r  was 8 inches and the d iam ete r  of the inner core  section was 

6 inches.  As pointed out by Dudgeon, the purpose of the inner core 

was to e l im ina te  wall effects .

The g ra v e l  was loaded into the p e rm e a m e te r  in the sam e manner 

as was u sed  to load the experim enta l  tank in an a ttempt to obtain a 

s im ila r  poros i ty .  P o ro s i t ie s  determ ined  from  m easu rem en ts  of the 

volume of w a te r  re q u i r e d  to fill the voids were  34. 6% in the p e rm e am e te  

and 33.1% in the model tank.

P ie z o m e t r ic  head m easu rem en ts  w ere  taken over a 2 ft. long 

inner co re  sec tion  of the sample.  The re su l t s  obtained a re  p resen ted  

in F ig .  6 .5 .  The fit ted F o rch h e im er  velocity-hydraulic  gradient 

curve was obtained by applying the curve fitting method suggested by 

Sunada (1965). The accu racy  of the fit -was a s s e s s e d  f rom  the value 

of the s tandard  e r r o r  of es t im ate  which was calculated as  5. 6 percen t  

Values of the hydraulic  coefficients, a, b and IC, and the c r i t ica l  

velocity Vc r  a r e  a lso  included in the f igure .  Using the determ ined  

value of d and the l i s ted  value of Vc r , the c r i t ica l  Reynolds num ber 

IF(crwas found to be approxim ate ly  4. 2
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6.3 Test  P ro g ra m and Procedures

To study two-regime flow under different aquifer and well con­

ditions, four s e r ie s  of tes ts  were performed.

(i ) Fully Screened Well in a Confined Aquifer

The purpose of the f i rs t  ser ies  was to investigate flow towards 

a fully screened well in a confined aquifer. A 5 ft. length well screen, 

made from a perforated  steel sheet, curved to form a quadrant of a 

5 inch diam eter  c irc le ,  was used. The top of the aquifer was covered 

with a polythene sheet to simulate an impermeable overlying layer  as 

shown in Fig. 6 .6 .  The sheet was held in position by several inches of 

aquifer m a te r ia l  and sealed to the edges of the tank. Care was taken to 

avoid ver tica l  leakage into the aquifer as much as possible. After the 

tank had been filled with water and the a i r  entrained in the aquifer r e ­

moved, seve ra l  tes ts  were carr ied  out to establish the discharge- 

drawdown relationship for the fully screened well. For each test,  

m easurem ents  of the piezometric heads at the floor tappings and the 

water level in the well were made.

(ii) Fully Screened Well in an Unconfined Aquifer

The purpose of the second se r ie s  of tes ts  was to investigate flow 

towards a fully screened well in an unconfined aquifer. Following the 

f i r s t  se r ie s ,  the model was filled slowly with water up to a depth of

4.3 ft. which was slightly less  than the tnickness oi the aquifer. The 

model then rep resen ted  an unconfined aquifer with a fully sc ieened  v e.il. 

Several te s ts  were performed to obtain the discharge-drawdown
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Fig. 6.6: Radial c ro ss - sec t io n  of well-aquifer  model showing
a r ran g em en t  for confined flow testing.
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re la tionship  for the same well which became a water table well. For 

each tes t ,  the p iezom etric  heads along the base of the aquifer and the 

water level in the well were measured. Attempts were also made 

but without success  to locate the position of the free surface by observ­

ation through a s e r ie s  of 1 inch diameter holes spaced at 6 inch centres  

in a wall of the re inforced concrete tank.

(iii) Par t ia l ly  Screened Well in a Confined Aquifer

The th ird  s e r ie s  of tes ts  was intended to investigate flow towards a 

par tia l ly  screened well in a confined aquifer. Following the second 

s e r ie s ,  the 5 ft. sc reen  shown in Fig. 6.6 was removed and a shorter  

sc reen  of 1 ft. length was placed at the base of the aquifer. The r e ­

maining thickness of the aquifer was cased. In carrying out this task, 

it was necessa ry  to remove and backfill the aquifer m ater ia l  in the 

zone inside the inner b a r r i e r .  As in the f i rs t  se r ie s ,  a number of tes ts  

were  c a r r i e d  out to obtain the discharge-drawdown relationship.

(iv) Par t ia l ly  Screened Well in an Unconfined Aquifer 

The la s t  s e r ie s  of tests  was carr ied  out to study flow towards a 

partia lly  screened well in an unconfined aquifer.  As in the second 

s e r ie s ,  the model was refilled slowly up to the depth of 4. 3 ft. and 

severa l  t e s t s  were performed to obtain the well dis charge-drawdown 

relationship.



120.

6 .4  C om parison  of E xper im enta l  R esults  and F in ite  E lem en t  
Solution s

6 .4 .1  G enera l

In com par ing  expe r im en ta l  r e s u l t s  f rom  a w e l l -a q u ife r  m odel  with 

n u m e r ic a l  solutions,  it is e ssen t ia l  that  a p p ro p r ia te  va lues  of the hyd­

ra u l ic  coefficients fo r  the aqu ife r  m a te r i a l  be obtained and fed into the 

n u m e r ic a l  model.  E a r l i e r  w o rk e r s  (Volker, 1969), (Trollope et al 

1971), r e s o r t e d  to p e rm eab i l i ty  t e s t s  c a r r i e d  out over  a range  of 

ve loc i t ies  co m p arab le  with those in the model.  While th is  approach  

m ay  be jus t if ied  in the absence  of a m o re  sa t i s fac to ry  approach ,  doubt 

usua l ly  ex is t s  a s  to w hether  the phys ica l  p ro p e r t i e s  of the sam ple  a r e  

s im i l a r  to those of the model aqu ife r .  Slight change in such p ro p e r t ie s  

a s  effective po ros i ty  and packing of g ra in s  can affect the hydrau lic  co­

efficients  K, a and b quite cons iderab ly  (FVanzini, 1951), (Engelund, 1953, 

pp. 17-29), (Dudgeon, 1968). Unless  the va lues  of these  coeffic ien ts  

used  in obtaining the n u m er ica l  solutions a r e  com parab le  to the  ac tua l  

in -s i tu  values ,  s a t i s fac to ry  ag reem en t  between the n u m er ica l  and ex­

p e r im en ta l  r e s u l t s  cannot be achieved.

In the p re s e n t  work, the in - s i tu  hydraulic  coefficients  w e re  de­

te rm in e d  by applying two newly developed type curve  m ethods to the 

r e s u l t s  obtained f ro m  the f i r s t  and th i rd  s e r i e s  of pumping t e s t s .

These type curve  methods a re  d esc r ib ed  in the following sec t ions .



• The a r ra n g e m e n t  for  the f i r s t  s e r ie s  of te s ts  is i l lu s t ra ted  dia- 

g ra m m at ica l ly  in Fig. 6. 6. Results  w ere  obtained for a sufficient 

n um ber  of flows to es tab l ish  the well d ischarge-drawdown re la t ionsh ip .  

F o r  each te s t ,  the total d ischarge  f rom  the full well c i rc le ,  Q, was 

ca lcu la ted  a s  4 t im es  the m easu red  d ischarge from the quadrant well.

To de te rm ine  the in -s i tu  hydraulic  coefficients, the following type 

curve method was applied to the r e su l t s  from the te s t  which gave 

Q = 6 8.77 cfm:~

(i) The p iezom etr ic  read ings  w ere  converted to drawdowns and 

plotted on a sem i- lo g a r i th m ic  sca le  against  the d im ensionless  radius 

r / r Q, w here  r Q co r responds  to the 16 ft. rad ius  of the outer b a r r i e r .

A f re e  hand curve was drawn to fit m os t  of the experim enta l  points.

The plot was then superposed on the type curve for steady Darcy flow 

tow ards  a fully sc reened  well as shown in Fig. 6 .7 .  It is noted that the 

exper im en ta l  curve becom es  non- l inea r  as  the well is approached. A 

c e r ta in  rad ius  r  w here  the experim enta l  plot is l inea r  was selec ted  

and the correspond ing  values of the drawdown s and the d im ensionless  

drawdown 2 ft s T /Q  w ere  r e ad  from  the graph. Using these  values ,  the 

t r a n s m is s iv i ty  coefficient T was calculated as

T = ± - 2 S x 68._77 = 5? ft2 /min>
2 Kx 0. 24

(ii) Using the determ ined  value of T, the experim enta l  plot was 

converted to the d im ension less  plot of 2ft sT /Q  v e r su s  r / r Q and
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superposed  on a family  of type cu rves  for steady s ta te ,  tw o-reg im e  

flow as shown in Fig. 6 .8 .  The value of the non-Darcy flow p a r a ­

m e te r  A fo r  the b e s t  fit type curve was obtained and used together  

with the value of T in calculating the requ ired  in -s i tu  values of the 

hydraulic  coefficients a, b and K as follows:-

= 2 Km2r n X
QT

2 7T x 52 x 16 x .072 . 2 . . 2
= "~68~. 77 x-57-----------  = - ° 47 m m  /f t  •

a = - f ~  - bVcr

- .047 x 0 .5  = .060 m in /f t .57

57
K = = 11.4 f t /m in .5

The de term ined  in -s i tu  values were  fed into the finite element 

model to obtain theore t ica l  predic tions of the experimenta l  flow con­

ditions. In the finite element ana lys is ,  the hydraulic heads on the  

well s c re e n  w ere  p re sc r ib ed  a s  the m easu red  heights of the w ater  level 

in the well. In so doing, it  was assum ed that sc reen  lo s s e s  were  

negligible.

F igs .  6. 9 and 6.10 show a comparison of the nu m er ica l  solutions 

and the r e su l t s  f rom  four te s t s  chosen to cover a good range of the well 

drawdown. The plot in Fig. 6.9 re p re se n ts  the d im cnsionless  d raw ­

down-radial  d is tance re la t ionsh ips .  The d ischarges  l is ted  a r e  the 

experim enta l  d ischa rges .  It can be seen that ine determined in-Si^u
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values  of the hydraulic  coefficients led to good ag reem en t  between the 

theory  and exper im en t .  As a fu r th e r  check on the accu racy  of these 

values ,  the well d ischarge-draw dow n re la tionship  is  also plotted in 

F ig .  6 .11 .  Good ag reem en t  between the theore tica l  predic tion  and 

expe r im en ta l  r e s u l t s  may again be observed.

6 .4 .  3 Flow towards  a Fully Screened Well in an Unconfined Aquifer

The a r r a n g e m e n t  for  the second se r ie s  of te s ts  was identical  to 

that shown in Fig. 6.6 for the f i r s t  s e r ie s  except that the height of the 

w a te r  table at the outer  b a r r i e r  was lowered to 4 .30  ft. As the aquifer ,  

which then becam e an unconfined aquifer,  was not physically  disturbed, 

i ts  hydraulic  p ro p e r t ie s  would have rem ained  unchanged. Consequently, 

the in -s i tu  values of a, b and K w ere  taken as  those l i s ted  in section

6 .4 .2  and used  in obtaining the finite element solutions. In the finite . 

e lem ent ana lys is ,  the hydraulic  heads on the portion of the s c reen  b e ­

low the seepage face were  p re sc r ib ed  as  the m easu red  heights of the

w ate r  level in the well.

F ig s .  6. 12 and 6. 13 show the plots of the base  p r e s s u r e  head 

aga ins t  ra d ia l  d is tance as  obtained from  the theory and experim ent.

As the posi t ions  of the f ree  surface were  not located sa t is fac to r i ly  in 

the expe r im en ts ,  only the theore tica l  f ree  surface  curves  a r e  included 

in the f igu res .  The w ate r  levels  in the well a r e  a lso  shown# It can 

be seen  that in genera l  the agreem ent  between the num erica l  solutions 

and expe r im en ta l  r e s u l t s  is quite acceptable. The experim enta l  poims 

tend to l ie  slightly below the theore tica l  curves .  Poss ib le  explanations
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fo r  thi s a r e : -

(i) well s c re e n  lo s s e s  which w ere  neglected in the theore tica l  analysis ,

(ii) the effects  ol convergent flow on the hydraulic coefficients a and 

b (Wright, 1968).

As a fu r th e r  check on the values of the hydraulic  coefficients 

used ,  the well dis charge-draivdown rela tionship  is plotted in Fig. 6.14. 

Good a g re e m e n t  between the theory and experiment may be observed 

but it should be noted that the d ischarge-drawdown re la t ionship  is  le s s  

sens i t ive  to change in the values of a and b than is the base  p r e s s u r e  

head curve .

6 . 4 .4  Flow towards  a Par t ia l ly  Screened Well in a Confined 
Aquifer

In c a r ry in g  out the th ird  s e r ie s  of t e s t s  to investigate flow to­

w ards  a p a r t ia l ly  sc reened  well in a confined aquifer,  it was n e c e s sa ry  

to rem o v e  and backfill  the aquifer m a te r ia l  inside the inner b a r r i e r .  

This  p ro c e s s  could lead to considerable  change in its hydraulic p ro p ­

e r t i e s .  Thus the in -s i tu  values of a, b and K w ere  red e te rm in ed .

The following type curve method was applied to the r e su l t s  obtained 

f ro m  the t e s t  which gave the total well d ischarge  of 56. 25 cfm;-

(i) The p iezo m etr ic  read ings  w ere  converted to drawdowns and 

plotted on a sem i- lo g a r i th m ic  scale against  the d im ensionless  radius 

r / r Q. A f re e  hand curve was drawn to fit m os t  of the experim enta l  

points and the plot was then superposed on the type curve for  steady 

Darcy flow tow ards  a par t ia l ly  sc reened  well as  shown in Lig. 6. 15 

It i s  noted that the experim enta l  curve is  approximately  l inea r  beyond
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a c e r ta in  ra d iu s  w here  the effects  of non-D arcy  flow and par t ia l ly  

sc reen ing  becom e negligible. At th is  rad iu s ,  the values of the d raw ­

down s and the d im ension less  drawdown 2 ft s T /Q  w ere  r e a d  f rom  the 

graph. Using these  values ,  the t ra n sm is s iv i ty  of the aquifer  T v /a s  

calcula ted  as

_  1.0 x 56, 25 ' „ 2 .
T '  -YS-x-oTiV  ‘ 64 ft / m m

(ii) Using the de term ined  value of T, the experim enta l  plot was 

converted  to the d im ension less  plot of 2 ft s T /Q  v e r su s  r / r Q and 

superposed  on a family  of type cu rves  for  s teady s ta te ,  tw o-reg im e  

flow tow ards  a pa r t ia l ly  sc reened  well as shown in Fig. 6 .16. The 

value of the non-D arcy  flow p a ra m e te r  a for the b e s t  fit type curve was 

obtained and used together with the value of T in calculating the r e ­

quired  in -s i tu  va lues  of a, b and K as  follows 

b - —  ^  m2 r °  ^
QT

6. 28 x 52 x 16 x . 0188 „„„„ . 2 2
56.25 x 64

a = —2L. _ bVa rp * u v c r

= .0135 min / f t

5 - . 0 135x. 5 = .071 m in /f t ;
64

K = 12.8 f t /m in .
5

These  values w ere  fed into the finite element model to obtain 

theo re t ica l  p red ic t ions  of the experim enta l  r e s u l t s .  In the finite 

e lem ent an a ly s is ,  the hydraulic  heads on the well s c re e n  w ere  

p re sc r ib e d  a s  the m e asu red  heights of the w ate r  level in the well. It
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was a s su m ed  that the newly determ ined  coefficients w ere  applicable 

throughout the en t ire  aquifer.  The additional ref inem ent  of a two 

zone t r e a tm e n t  was considered  unwarranted  as the p ro p e r t ie s  of the 

m a te r ia l  within the inner  b a r r i e r  a r e  decisive in determining the 

d ischarge .  Fig. 6 .17  shows a plot of the drawdown-radial  distance 

re la t ionsh ips  fo r  four values of the p re sc r ib ed  well drawdown. It can 

be seen  that the num erica l  solutions agree  quite closely with the ex­

p e r im en ta l  r e s u l t s .

As a fu r th e r  check on the theore t ica l  ana lys is ,  a plot of the well 

d ischarge-draw dow n re la t ionship  is shown in Fig. 6.18. Good a g r e e ­

ment between the theory and experim ent  may again be observed.

6 .4 .5  Flow towards a P a r t ia l ly  Screened Well in an Unconfined 
Aquifer

As in the second s e r i e s ,  the re su l t s  from the final s e r ie s  of 

t e s t s  to invest igate  flow towards a par t ia l ly  screened  well in an un­

confined aquifer  w ere  obtained without disturbing the physical condition 

of the aquifer  m a te r ia l .  Consequently, the same in-s i tu  values of the 

hydraulic  coefficients obtained in section 6 .4 .4  were  used to obtain 

the.finite  e lem ent solutions.

F igs .  6. 19 and 6.20 show the plots of the base  p r e s s u r e  head 

against  ra d ia l  d is tance as  obtained from  the theory and experiment.

The theore t ica l  f ree  surface  curves  and p re sc r ib e d  w ate r  level in the 

well a r e  a lso  i l lu s t ra te d .  It is noted that due to the effect of partia l
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approx im ate ly  equal to the aquifer th ickness and that beyond this  

rad ius  it  app roaches  the base p r e s s u r e  head curve. Good ag reem ent  

between the theore t ica l  pred ic t ions  on the base  p r e s s u r e  head curves  

and the exper im en ta l  r e su l t s  may a lso  be observed.

As a fu r th e r  check on the values of the hydraulic coefficients 

used  in the finite e lem ent  ana lys is ,  the well d ischarge-drawdown 

re la t ionsh ip  is  a lso  plotted in Fig. 6 .21 .  It can be seen that the ex­

p e r im en ta l  points  lie quite close to the theore tica l  curve.
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7 • F ie ld  Verification of T rans ien t  Flow Solutions

7 .1  G enera l

In o rd e r  to provide field ver if ica t ion  of the finite element ana lys is  

of t ra n s ie n t ,  tw o -reg im e  flow p rob lem s ,  two se ts  of data w ere  collected
..........................'%-z -• *

f rom  pumping t e s t s ^  c a r r i e d  out at the following s i tes  (see Fig. 7 .1 ) : -

(i) Site A - Gumly Gumly Island, n e a r  Wagga Wagga, New South 

W ales ,  where  th e re  ex is ts  a deep aquifer over la in  by a confined aquitard;

(ii) Site B - Kosevale ,  Southeast Queensland, where there  ex is ts  a 

shallow aquifer  over la in  by a w a te r  table aquitard .

Type curve methods w ere  developed and applied to the te s t  data 

to de te rm ine  the hydraulic  coefficients of the m ain  aquifer and the over- 

lying aqu i ta rd  in each case .  The determ ined  coefficients were  fed into 

finite e lem ent  m odels  of the two field sys tem s  to obtain the theo re t ica l  

p red ic t ions  of the actual flow behaviours .  Comparison of the num erica l  

solutions and field data is p resen ted  in this  chapter .

7 * 2 Site A - Gumly Gumly Island, New South Wales

7. 2. 1 General  Data

A pumping te s t  was pe r fo rm ed  in co-operation  with the Water

Conservation  and I r r iga t ion  Commission of New South Wales, f rom

Septem ber 26 to 29, 1972. A group of wells  (Fig. 7 .2) located on an

alluvial a r e a  of the jVTurrumbidgee River,  known as Gumly Gumly Island, 

(1). A deta i led  descr ip tion  of the field investigations and r e su i t s  have been 

published by Dudgeon, Huyakorn and Swan (1973, Vol. 2)
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was used  for the t e s t .  The construction  fea tu res  and available d r i l l e r  

logs of these  wells  a re  given in Fig. 7 .3 .  Well30638 was a 24 inch

d iam e te r ,  g rave l  packed production well whose detailed fea tu res  a r e  

shown in F ig .  7 .4 .  Wells 30577 and 30568 Were two close observation  

wells  located  at d is tances  of 7 and 22 ft. f rom  the production well 

w hi ls t  the rem a in in g  wells  w ere  distant observation  wells located at 

r a d ia l  d is tances  indicated in Table 7 .1 .

To obse rve  drawdowns in the aquifer  and the overlying aquitard ,  

the production well and the c lo ses t  observation well 30577 w ere  each 

fit ted with 4 slotted P. V .C .  p iezom ete rs  (see Fig. 7.4) placed at 

depths indicated  in Table 7.1 and Fig . 7. 3. The re sponse  of these  

p ie z o m e te r s  to pumping was monitored  by m eans  of multiple contact 

e le c t r ic  p ro b es  developed for  the m easu rem en t  of the rapidly  falling 

w a te r  level .  The deta i led  descr ip tion  of these  p robes  has been 

p re se n ted  by Dudgeon et al (1973, Vol. 2, Appendix III).

Pumping was s ta r te d  at 3. 00 p. m. on September 26 and was 

continued for  a per iod  of 4320 minutes a t  an approximately  constant 

r a te  of 48, 000 igph (128 cfm)'until  3. 00 pm on September 29. A 

continuous r e c o r d  of w a te r  leve ls  in the production well, a l l  observation  

wells  and p iezo m e te r s  was maintained for a per iod  of 39o0 m inutes .

The p iezo m e te r s  in the shallow aquifer,  i l lu s t ra ted  in F ig .  ( .3 ,  w ere  

d iscovered  to show no re sp on se ,  indicating that th e re  was virtually no 

hydraulic  connection between this  aquifer  and the confined flow system
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Table  7. 1: Radial  d is tances  f rom  production well 30638 and
sc reen ed  in te rva ls  of observation  wells and 

 p ie z o m e te r s  at Site A. ____

Well
P ie z o m e te r

No.
Radial 
Distance 
from  Well 

30638 
(ft.)

Screened 
Interval 
R .L .  above 
sea level 

(ft.)

R em ark s

30638 412-452 Inside production
well

1 1 555-557)
2* 1 480-482) Gravel pack
3* 1 440-442) p iezo m ete rs
4 1 420-422)

30577** 5 7 555-557 No re spo n se  to
pumping 30638

6 7 485-487
7 7 465-467
8 7 420-422

30568 22 416-436

30602 1385 398-437

30032 1 2600 355-375 No re sponse  to
pumping 30638

3 2600 457-465

2 2600 540-560

30031 1 3050 533-553

2 3050 353-413 No re spo nse  to
pumping 30638

❖ Blocked during construction
** Well 30577 hydraulically  sealed from  52 ft. to 110 ft. below 

ground su rface .
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under considera tion .

The draw dow n-tim e field data obtained from  the production well 

and n ea rby  observa tion  well 30577 w ere  used to verify  the finite elem ent 

an a ly s is  as  the a im  was to exam ine flow conditions and aquifer 

c h a ra c te r is t ic s  n e a r  the pumped well. To check w hether non-D arcy  

flow ex is ted  in  the m ain  aquifer at the pumping ra te  of 128 cfm, a sem i- 

lo g a ri th m ic  plot of drawdown at tim e t = 3800 m inutes ve rsu s  rad ia l  

d is tance w as made using the drawdowns in observation wells 30577, 

30602, 30032 and 30031 and the drawdowns inside the gravel pack and 

the production well. The plot is p resen ted  in Fig. 7 .5 . It can be 

seen  that non-D arcy  flow did not ex ist and that head lo s se s  in the 

g rave l pack and inside the pumped well w ere  negligible.

7 .2 .2  F in ite  E lem ent Model and Type Curves for the F ield  System

Q.

ro X 10,000 FT.

F ig .  7 .6 :  M odel  of the  Gumly G um ly  I s lan d  F ie ld  S y s tem
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F ro m  the g en e ra l  data p re sen ted  in the p reced ing  section, a m odel 

of the fie ld  sy s tem  was construc ted . As shown in F ig. 7 .6 ,  the m odel 

r e p re s e n ts  a confined aqu ife r-  aqu itard  system  with an ex te rna l rad iu s  

of 10,000 ft. The average  th ick n esses  of the aquifer and aqu ita rd  w ere  

taken as  40 and 4o ft. re sp ec tiv e ly . Both lay e rs  w ere  assum ed  to be 

hom ogeneous and iso tro p ic .  The top of the aquitard  w as a lso  assu m ed  to 

be im p erm eab le .

The fin ite  e lem en t method was used  to solve sev e ra l  flow ca ses  

which w ere  s im u la ted  to obtain fam ilies  of type cu rves  c h a rac te r is in g  

the behav iour of the field  sys tem . As non-D arcy  flow did not ex is t in 

the fie ld , only the  D arcy flow type cu rves  w ere  obtained fo r  the main 

aqu ife r.

Typical fa m ilie s  of type cu rves  a re  shown in F ig s . 7. 7 and 7 .8  

fo r  the m ain  aqu ifer and in  F ig s . 7. 9a to 7. 11 for the aqu itard . The 

d im ension less  p a r a m e te r s  of the type c u rv e s > — , and which is 

p ro po rtio na l to f t  , have been defined in Section 5, 4. 1. Only a 

l im ited  p ra c t ic a l  range  of values of these  p a ra m e te r s  was considered  as 

a vas t  am ount of com puter tim e would have been req u ired  to cover a wide 

range . On com paring  F ig . 7 .7  with Fig. 7 .8 ,  it m ay be observed  that 

the horizon ta l sp re a d  betw een the two envelope Theis cu rves  for the 

aqu ifer d e c re a s e s  a s  d e c re a se s  and that for a given value of W(u), 

the d iffe rence  between the values of (1/u^ re a d  from  the two envelope

cu rves  is  equal to  ( $ ~  1)— .J 1 u
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rThe effect of the p a ram e te rs  -g- and p  on the horizontal and

v ertica l  sp read  of typo curves for the aquitard may also be noted from

' rF igs . 7. 9a to 7. 11. It can be seen that for constant g"/,^ the spread

r  .between the type curves d ec reases  as the values of p  and — in c rease  

from  ,01 to 1. 25 and that when g / / 7 in creases  from 1 to 2 (Figs. 7 .9a  

and 7. 11) the sp read  also dec reases . This fact was used to great 

advantage in m atching the field data plot against the theore tica l type 

curves.

7 .2 .3  Com parison of F ield  Data and Finite Element Solutions 

The following type curve method was used to determ ine the hydraulic 

coefficients of the aquifer and aquitand:-

(i) The drawdown-time data for the observation point located in the 

main aquifer, observation well 30577 (r = 7 f t . ) ,  was converted to a 

log-log plot of s v e rsu s  t on a sheet of tran sparen t paper. The plot was 

then matched on a se lec ted  family of type curves for the aquifer as shown 

in Fig. 7 .12. Matching was perform ed by shifting the field data plot 

over the type curve plot while maintaining the ir  axes para lle l and en­

suring  that the la te  tim e portion of the field data fell on the late time 

Theis curve. Satisfactory  matching was found when the rem aining 

portion of the field data coincided with the corresponding type curve 

branching from  the la te  time Theis curve. The final matching and

values of — and B fo r the matching type curve a re  shown in Fig. 7 .12. 
B

As a check to ensure  that the appropriate  family of type curves had 

been selected , m atching of the field data collected from  pumped well
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30568 ag a in s t  the sam e fam ily  of cu rves  is  a lso  p re se n ted  in F ig . 7 .13 .

It m ay be noted tha t the l is te d  value of p  for the m atching type curve in 

this f igu re  is  approx im ate ly  1/7 t im e s  the value in Fig. 7. 12. The two 

values of p  a r e  thus p roportional to the rad ia l  d is tan ces  from  the 

pumped w ell.

(ii) The draw dow n-tim e data for a ll  observation  points in well 30577

(at z ’/ m ’ = 0, 0. 25 and 0.75) w ere  plotted together on another sheet

rof t r a n s p a re n t  p a p e r .  ' U sing the values of p  and — given in F ig . 7. 12,

the type cu rv es  fo r  z ’/m ' = 0, 0 .25 and 0.75 w ere  construc ted  and

m atched on the field data plot. M inor ad justm en ts  of the values of p

and JL w e re found n e c e s s a ry  to obtain a sa tis fac to ry  m atch. The final 
B

m atching  a.nd values of p  and — a re  shown in F ig . 7. 14. A m atch

point w as se lec ted  to determ ine  the hydraulic  coefficients K, Sg and

I<«, S’ for the m ain  aquifer and the aqu ita rd  re sp ec tiv e ly . The c a lc u la to r  
s

is  p re se n te d  a s  follow s:- -

L et (W, 1/u) and (s, t) denote the coord inates of the m atch point.

The coefficients I< and Ss for the aquifer a re  given by

K - QW4 F sm  

4 Ktu
and Ss —  2~

1 6 
w here  W = 0 .40 , — = 0, 115 x 10

s = 1 f t . , t = 100 niin.

r  = 7 f t . , Q = 120 cfm

m  = 40 ft. , m 1 = 45 ft.



D
R

A
W

D
O

W
N

 
5 

(F
T.

)

— = O 018

m a i n  a q u i f e r J t ^ I
.  .  « - i - i - t - 1- 8---- -------- ^ 7 7 o 2 S —

1 ^ o ^ rT- r - - r - r - r r ^

-  IO

a ( m a t c h  p o i n t )-  IO

» / a =  o - 1 1 5  X IO

t  * t o o  MIN.

IO
IO

IO

T I ME M I N U T E S

Fig. 7. 14: Maching of field data on type curves for the overlying aquitard  
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Thus

. .  _ 1 2 3 x 0 .4 0
’---- 4 ^ 1 x 4 0 ---- “ 0< 103 f t - ^m in -

„ 4 x . 103 x 100 -1
Ss = —g  r  = 0. 73 x 10 0 ft.

7 x . 115 x 10

The coefficients of K' and S', fo r  the aqu itard  a re  given bys
2

K' = K m m '
2r

_ t 16 /? m 2 I\ Seand Sq = -1------ =-----h-b t 2I< r

rw here  g  = .018, p  - .0088

-5 -1K = 0. 103 f t /m in , Ss = 0. 73 x 10 ft.

Thus

K' = ( .018)2 x  .103 x  40 x  45  ̂ w , .---------------= .0012 f t /m m .

S

72

' = 16 x (. 0088) x 40 x . 103 x . 73 x 10~5
S 9.0012 x 7“'

= 0. 29 x 10 ft.
t

The de te rm ined  values of K, Ss , K' and Ss w ere  fed into the 

finite e lem ent m odel and the flow prob lem  was solved fo r  Q = 128 cfm 

and pumping perio d  t = 4320 m inutes. The calculated drawdown v e rsu s  

tim e re la tio n sh ip s  at se lec ted  nodes (r = 1 and 7 ft. ) in the aquifer w ere  

then com pared  with the field data plot for the corresponding  points in the
T

field sy s tem . Slight ad justm ent of the values of Ss and Ss was made and

the ad justed  values w ere  fed back into the m odel. F ig . 7. 15 shows

the final com pariso n  of theo re tica l solution and field data. It can be seen
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tha t good ag reem en t between the theo re tica l  p red ic tion  and the ac tua l 

behaviour of the. field  system  was achieved.

As a fu r th e r  check, the final values of K and Ss for the aqu ife r, 

l is te d  in F ig . 7. 15, w e re  com pared  with those de term ined  by applying 

conventional type curve m ethods to the field data collected from  the 

d is tan t observa tion  w ells , 30602, 30031 and 30032. Detailed descrip tion  

of the conventional m ethods used  has been p resen ted  by Swan and 

Huyakorn (see Dudgeon et al (1973), Vol. II).

T able 7 .2  l i s ts  the values obtained by fitting the Theis curve to the

la te  t im e  portion  of the field data.

Table 7 .2 : Sum m ary of values of the hydraulic coefficients

O bservation
Well

Radial
D istance

(ft.)

T
2

ft /m in .
S K

f t /m in .
Ss

f t .

3 0 6 0 2 1 3 8 5  1 3 . 4 2 8 .  2 x 1 0 - 4 0 .  0 8 5 2 . 1 x 1 0 - 5

3 0 0 3 1 3 0 5 0 • 3 . 4 2 3 . 5 3 x l 0 ~ 4 0 . 0 8 5 0 . 8 8 x 1 0 _ 5

3 0 0 3 2 2 6 0 0 3 . 4 2 4 . 0 5 x 1 0 - 4 0 .  0 8 5 1 . 0 x 1 0 - 5

Mean values 3 . 4 2 5 .  2 6 x 1 0 - 4 0 .  0 8 5 1 . 3 3 x 1 0 - 0

It m ay be observed  that the average  values of K and Ss in the table 

a r e  reasonab ly  close to those used  in obtaining the finite e lem ent so l­

u tions. This evidence suggests that the aquifer of the ac tua l field 

sys tem  was quite un iform  in physical and hydraulic p ro p e r t ie s .  The 

evidence is  fu r th e r  supported by the well log data shown in F ig. 7 .3 .

7 .3 Site B - Ro sevale, Southeast Queensland

7 .3 .1  G eneral D a 1 a

Severa l pumping te s ts  w ere conducted at th is  site  in co -opera tion  

with the I r r ig a tio n  and W ater Supply C om m ission  of Queensland. The
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t e s t  se lec ted  io r  u se  in th is  th es is  was a 24 hour te s t  c a r r ie d  out

during  June 8 to- June 9 using a group of wells located  on an a lluv ia l

a r e a  n e a r  the B re m e r  R iver (F igs. 7. 16 and 7 .17). The construc tion
.

fe a tu re s  and d r i l l e r ' s  logs a re  shown in F ig . 7 .18 . It m ay be o b s­

e rv ed  fro m  the log data that the thin aquifer and the overlying aqu ita rd  

w ere  quite v a r iab le  in th ickness . Wells 2 and 3 w ere  two 4 inch 

d ia m e te r  t r i a l  production  wells with the screened  in te rv a ls  indicated 

in Table 7 .3 .

Table 7 .3 : Radial d is tances  from  pumped w ell 3 and sc reened
in te rv a ls  of wells at Site B.

Well Radial distance 
fro m  well 3 ( f t . )

Screened in te rva l 
assu m ed  R. L. ( f t . )

3 r w = 0.167 51-59
5 8.0 51-55
2 10.0 51-61
1 38.0 52-56
1A 39. 3 81-83
4 57.4 51-55

. 14S9A 80. 6 53-58

All of the w ells  w ere  d rilled  by using a p e rcu ss io n  r ig . Samples 

of the aqu ifer m a te r ia l  w ere  taken continuously from  w ells 2 and 3.

The gra in  s ize  d is tr ibu tion  curve obtained from  sieve ana lys is  of one 

of the sam p les  is  p re sen ted  in F ig . 7 .19 . A wide range of g ra in  

d iam e te r ,  from  . 04 to 3 inches, may be observed .

Pumping was s ta r te d  at 11.00 p .m .  on June 8 and was continued 

at an approx im ately  constant ra te  of 7050 igph (18.8 cfm) until 11.00 a .m .  

on June 9. The w ater leve ls  w ere  m easu red  continuously in pumped 

well 3 and all observa tion  w ells . Well 1A, which pene tra ted  the w a te r
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Fig. 7. 17: Location of wells at Site B.
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tab le  aquitard* was d iscovered  to show quite considerab le  re sp o n se , 

indicating  tha t th e re  w as a d irec t  hydraulic  connection between th is  

aq u ita rd  and the aqu ifer.

The d raw dow n-tim e fie ld  data collected from  w ells  2, 3, 1 and 

1A w ere  used  to verify the finite e lem ent ana ly s is . To check if non- 

D arcy  flow ex is ted  in the m ain aqu itard  the d ischarge  of 18.8 cfm, the 

d rav rdovms obtained from  all observation  wells and the pumped well at 

t im e  t = 240 m inu tes w ere  plotted  against rad ia l  d is tances . The plot is  

i l lu s t ra te d  in F ig . 7. 20. It can be seen  that non-D arcy  flow evidently 

ex is ted  within a rad iu s  of approxim ately  8 ft. f rom  the pumped well 

w here  the plot is  n o n - lin ea r  .

7 .3 .2  F in ite  E lem ent Model and Type Curv es  for the F ield  System

p  ^  O - I C T  w -

Fig .  7.21: Model of the Rosevale Field System.
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F ro m  the g en e ra l  data p re sen ted  in the preceding  section, a m odel 

of the field sy s tem  was construc ted  and is shown in Fig. 7 .21 . The 

m odel r e p re s e n t s  an unconfined aq u ife r-aq u ita rd  sys tem  with an ex ternal 

ra d iu s  of 5000 ft.

Although the well log data showed that the aqu ifer and aqu ita rd  

w e re  quite v ar iab le  in physical p ro p e r t ie s ,  both la y e r s  w ere  assum ed  to 

be homogeneous and iso tro p ic  a s  th e re  w ere  insufficient data available 

to define a m o re  complex m odel.

A verage  th ick n esses  of 10 and 28 ft. w ere  assigned  to the aquifer 

and the aqu ita rd  re sp e c tiv e ly .

The fin ite  e lem en t method was used  to solve sev e ra l  flow cases  

which w ere  sim ula ted  to obtain type cu rves  ch a ra c te r is in g  Darcy and 

non-D arcy  flow behaviour of the field sys tem . Typical fam ilies  of type 

cu rv es  a re  shown in F ig s . 7 .22 and 7. 27 fo r the m ain aquifer and in 

F ig s .  7 .23 and 7 .24  fo r  the aquitard . The d im ension less  p a ra m e te rs  

of the  D arcy flow type c u rv e s ,  — , ^  , f t  and 8 ^ ,  and the non-D arcy  

flow p a ra m e te r s ,  A and "§ , have been defined in Section 5 .5 .

7 .3 .3  Com parison  of F ie ld  Data and F in ite  E lem ent Solutions 

The following type curve  method was used to de term ine  the hydraulic 

coefficients of the aquifer and aquitard : -

(i) The draw dow n-tim e data collected  from  observa tion  w ells  N os. 2 

and 1 (r = 10, 38 f t . ) ,  outside the non-D arcy  flow zone, w ere  converted  

to log-log  p lo ts  of s v e r su s  t on two sep a ra te  shee ts  of t ra n sp a re n t
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p a p e r .  E ach  plot w as then m atched on a se lec ted  fam ily  of type c u rv e s

fo r  the m ain aqu ife r  as  shown in F ig s .  7 .25 and 7 .26  re sp e c t iv e ly  *

M atching was p e rfo rm ed  in the m an n er  d e sc r ib ed  p rev io u s ly  in Section

7 .2 .3 .  F o r  each ob serva tio n  w ell, a m atch  point was se lec te d  and the

hydrau lic  coeffic ien ts  w ere  ca lcu la ted  as follow s:-

Well No. 2 (r = 10 f t . )

F ro m  F ig . 7. 25, it follows that

W = 2 .30 ; 1 /u  = 0 .5x10° '

s = 1 f t . ; t = 1 0  m in.

r / D  = 0 .22

The coeffic ien ts K and T a re  given by

QW 1 8 . 8 x 2 . 3K 4 ft sm 4x3. 14 x 10

= 0. 345 f t /m in .

T = Km = 3 .45 f t^ /m in .
t i

A ssum ing  Sv ? S + S m  + S0m j  y s s

Thus S « _ 4 T to 2 u _ 4 x 3.45 x 10 x 251
y 2 10x10 x 0. 5 x 10Dr

= .0070

D ‘ < 3 ;  ■ 46 « •

Well No. 1 (r = 38 f t . )

F ro m  F ig . 7. 26, it  follows that

W = 1 .7 ; 1/u = 2. 75 x 10

s = 1 f t . ,  t = 100 m in .

4
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Q WThus K 4 rt gm

1 8 .8 x 1.7 
4x3.14 x 10 0 .2 3 4  f t / m i n .

2Km = 2.54 f t“7 m in .

i _ 4 Tt 2 uov  ----------------
y ,2r

4 x 2. 54 x 100 x 251 
38 x 38 x 2. 75 x 10*

38
0.875

.0064

D = .... 4 ,4 -  = 43.5 ft.

(ii) The d raw down-time data collected from  observation  wells 1 and 

1A (r = 38 f t . ;  z ’/m '  = 0, 0.8) w ere  plotted together  on another sheet 

of t r a n s p a re n t  pap e r  and matched on a se lec ted  family of type curves 

fo r  the aquitard .  Using the average  values of T and D obtained from  

(i), ap p ro p r ia te  values of r /D ,  and g  which gave the bes t  fit w ere  

de te rm ined .  The coefficients K> Sg , oc w ere  calculated using  the 

following exp ress io ns
r  2

K' = ( g )
Kmm'

r 2

t 16 j32 m 2 K S.

K ' r 2
(

0C
s y ' K F ]

In obtaining S , an es t im ate  was made as  to the value of Ss of 
s

the aquifer  as the ea r ly  t im e portion o f  the field data was m iss in g  for 

observa t ion  well 1. T h e  es t im ate  was based  on the value of S s  obtained 

by applying the c o n v e n t i o n a l  Hantush type curve fitting method to the
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ea r ly  t im e data collected from  well 14S9A, which was located at
C '

r  - SO. 6 ft .

(iii) The drawdown-tim e data collected f rom  pumped well 3 ( rw = 0 .167 ft. )

was  plotted on another sheet of t ran sp a ren t  paper .  As the observed

drawdowns in th is  well would have included additional lo s s  due to non-

Darcy  flow, the corresponding  drawdowns for wholly Darcy flow at the

sam e pumping t im e s  w ere  obtained by extrapolating the s t ra igh t  line

sem i- lo g  plot of s v e r s u s  r  to the well rad ius .  The Darcy flow drawdown:

so de te rm ined  w ere  also plotted on the sam e sheet of paper .  The field

data  plot was then superposed  on a family of non-Darcy  flow type curves

fo r  the aquifer  a s  shown in Fig. 7. 23. The value of the non-Darcy  flow

p a r a m e te r  for  the bes t  fitting type curve was de term ined  and used  to

obtain the F o rc h h e im e r  coefficient b as follows:-
22 7T m r

b = - QT

- 6. 28 x 102 x 0.167 x 13.5_ = 26 m tn2 / f t 2.
18. 8 x 2. 85

In obtaining b, it  was assum ed  that additional well lo ss  due to flow 

into and inside  the well was negligible as  this  lo s s  was not m e asu red  in

the field .

(iv) The values  of the hydraulic  coefficients computed f rom  (i) to (iii) 

w ere  fed into the finite element model and the flow problem  was solved 

for Q = 18. 8 cfm and the pumping per iod  of 1440 minutes.  The 

theore t ica l  drawdown v e rsu s  t ime re la t ionsh ips  at se lec ted  nodes in the 

aquifer  and aqu i ta rd  w ere  then compared with the field data for the
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co r resp on d in g  points  in the field sy s tem .  Several ad jus tm en ts  of the 

va lues  of the hydraulic, coefficients w ere  made and the. adjusted values 

w ere  fed back into the finite e lement model.  The final com parison  is  

p re se n ted  in F ig s .  7 .28 and 7 .20 .  It can be seen  that reasonab le  

a g reem en t  was obtained fo r  the p red ic t ion  of drawdowns in the pumped 

well and observa t ion  well 2 whils t  much p o o re r  ag reem en t  was achieved 

fo r  obse rva t io n  w el ls  1 and 1A. This could be due to the fact that the 

aqu ife r  and the aqu i ta rd  of the field sys tem  w ere  quite var iable  in 

phys ica l  and hydraulic  p ro p e r t ie s  and the assum ptions  made in the 

th e o re t ic a l  ana lys is  of the field data w e re  se r ious ly  violated.
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8. C o n c lu s io n s

1. The theory ,  var ia t ional  princip le  and finite element method fo r  

t r a n s ie n t ,  th ree -d im en s io n a l ,  tw o-reg im e flow towards a pumped well 

have been developed. It was a ssum ed  that the two flow reg im es ,  

l in e a r  and n o n - l in ea r ,  a r e  distinct  and that the F o rch h e im er  non­

l in ea r  ve loc i ty -hydrau lic  gradient  re la t ionship  may be used  to desc r ibe  

non-D arcy  flow. Anisotropy of the aquifer  m a te r ia l  lias been taken 

into account only in the Darcy flow zone.

2. The ana lys is  of non-D arcy  flow behaviour in aniso trop ic  m a te r ia l  

involves complex n on - l inea r  veloci ty-hydraulic  gradient re la t ionsh ips ,  

the th eo re t ica l  and experim enta l  bas is  of which have not been e s ­

tab l ished .  F u r th e r  r e s e a r c h  is requ ired  in o rd e r  to develop a be t te r  

understand ing  of the aniso tropic  ch a ra c te r  of the two coefficients of 

hydraulic  r e s i s t a n c e  in the F o rch h e im er  constitutive re la tion ,  namely 

a and b.

3. The finite e lem ent method has been used to solve a var ie ty  of axi- 

sy m m e tr ic  flow p ro b lem s ,  ranging from  the s im ples t  p rob lem  of one­

dimensional  ra d ia l  flow through a confined aquifer to the m ost  complex 

p rob lem  of t ran s ien t  f ree  su rface  flow. Solutions for both wholly 

Darcy flow and tw o-reg im e  flow situations have been obtained and 

p re se n ted  in graph ica l  fo rm  for  each prob lem . Type curves

c h a ra c te r i s in g  tw o-reg im e  flow have been included. The non Darc^
bQT , _ bVQF

flow p a r a m e t e r s  of the type cu rves  a re  A - ^ mqrr  ano " " a
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4. The effect of non-Darcy flow on drawdown distr ibution  n ea r  the well

and on the well d ischarge-drawdown re la t ionship  has  been investigated.

It was found that type cu rves  of the d im ensionlcss  drawdown v e r su s

t im e for  points in the non-Darcy  flow zone l ie  above the conventional

The is  curve for wholly Darcy flows through confined aqu ife rs  and

confined and unconfined aqu ife r-aqu i ta rd  sy s tem s .  F o r  a l l  of the

t rans ien t  flow p rob lem s  solved, except the problem  of t ran s ien t  f re e

surface  flow in an unconfined aquifer,  the well d ischarge-drawdown

re la t ionsh ips  for the tw o-reg im e flow situations a r e  non- l inear  and-may

9be fit ted by Jaco b ’s em pir ica l  equation. The te rm  CQ of this equation 

was in te rp re ted  as  the additional head loss  due to non-Darcy flow and 

was found to re m a in  constant with t ime once the non- l inear  reg im e  had 

been fully established nea r  the well.

5. A r igourous  check has been made on the num erica l  solutions for the 

t rans ien t  Darcy flow cases  by com paring  them with known analytical  

solutions. It was found that in genera l  the ag reem en t  between the finite 

e lem ent r e s u l t s  and the analytical solutions was excellent. Where 

deviation occurred  considerable  im provem ent of the finite e lem ent r e su l t s  

was observed  when a m ore  refined network and sm a l le r  t ime s teps  w ere  

used.

6. The n um erica l  solutions for steady state tw o-reg im e flow through 

confined and unconfined aquifers  have been verif ied  by co m p ar iso n  with 

pumping tes t  r e su l t s  obtained f rom  labora tory  experim ents .  Type



145,

curve  m ethods have been developed for determining the hydraulic  

coefficients a, b and K of the aquifer  m a te r ia l .  It was found that 

these  methods led to good ag reem en t  between the theory and exper im en t  

and that the de te rm ined  values of the hydraulic  coefficients changed 

quite cons iderab ly  when the aquifer was disturbed.

7. The n u m er ica l  solutions fo r  t ran s ien t  flow in aqu ife r -aqu i ta rd  

sy s tem s  have a lso  been ver if ied  by com parison  with pumping te s t  data 

obtained f rom  field investigations c a r r i e d  out at two s i tes .  Type curve 

methods have been developed for determining die hydraulic p ro p e r t ie s  

of the aquifer  and the overlying aquitard  at  each site.? F o r  the f i r s t  

s i te ,  w here  the aquifer  and aquitard a r e  re la tively  uniform in thickness 

and hydraulic  p ro p e r t ie s ,  the type curve method led to good agreem ent  

between the finite e lem ent r e su l t s  and the field data. However, it was 

not poss ib le  to de term ine  from  the f ield ds/ta the F o rch h e im er  non­

l in ea r  coefficient, b, fo r  the aquifer as  non-Darcy flow did not exist 

n e a r  the 24 inch d iam ete r  well at the d ischarge  of 40, 000 igph. To 

induce non-Da.rcy flow having significant effects on well drawdowns 

would have req u ired  e i ther  a reduction in well d iam eter  for the same 

d ischarge  o r  a significant in c re a se  in d ischarge  for the sam e d iam ete r .

F o r  Site B, where the main aquifer  and the aquitard  a r e  var iable  

in physical  and hydraulic  p ro p e r t ie s  and non-Darcy flow evidently ex­

is ted, l e s s  sa t is fac to ry  ag reem en t  between the theore tica l  p red ic t ions  

and field data was achieved. This can be explained in t e r m s  of the 

l im it ing  assum ptions  made in constructing the finite e lem ent model,
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p a r t i c u la r ly  tha t  of a homogeneous,  i so t rop ic  aqu ife r  of un ifo rm  

th ick n ess .  To co n s t ru c t  a m o re  complex model would have r e q u i r e d  

addit ional  data r e g a rd in g  the v a r ia b i l i ty  of the aqu ife r  and aq u i ta rd  

of th is  s i te .  The aquis i t ion  of th is  data would have g rea t ly  in c re a s e d  

the cost  of the field inves t iga t ion .

It i s  finally pointed out tha t  the value of coefficient b d e te rm in ed  

f ro m  the type curve  method is based  on the a s sum pt ion  tha t  head 

lo s s e s  due to flow through the well s c r e e n  and inside  the well can be 

se p a ra te d  f ro m  the to tal  well drawdown o r  neglec ted .  This  value so 

d e te rm in ed  would r e p r e s e n t  an  o v e r - e s t im a te  of the t ru e  value if these  

l o s s e s  w e re  s ignificant.

8. The theory ,  n u m er ica l  techniques  and type curve  methods developed 

in th is  work  m ay  be applied to specif ic  c a se s  of well flow encoun te red  • 

in p ra c t ic e .  A l te rna t ive ly ,  they m ay be used  to p roduce solutions to 

a w id e r  ran g e  .of p ro b lem s  than that covered  in this  th e s is .
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Appendix 1.

Form ation  of Ma tr ice s  [ c  jand [ p  0J for rec tangular  r ing elements

m,

Fig. A l .  1: Cross-section of a rec tangular  r ing element.

Consider a typical rec tangular  element s h o w n  in Fig. A l .  1.

As indicated, the four co rner  nodes are-num bered  in an a.nti-

clockwise sense,  and r  denotes the radia l  coordinate of the centroid.

F rom  equation (4.67a) in chapter 4, the expression for the

element m a t r ix  [ c  G]may be rewrit ten  as

1 1  t
[ c  J = 2 IX J  J  E [s] [S] Nx l’j U1 d I  d t \  (Al. 1 )

- 1  -1
Equation (Al. 1) may be approximated by

1 1 T
[ c e] = 2 T X E r  f/ [ s ]  [S] Ui dn.

-1 " I
(A1.2)

where  E is the coefficient of effective hydraulic conductivity at the

centroid.

F o r  rec tangu la r  e lements ,  it can be shown that j j  jand [s ]a re

given by



w here  1 and m  a re  the width and height of the rec tang le  re spec t iv e ly .  

TNow [ S j  m a y  b e  obtained as

[s]

^  N i 7>N1
T)

^ N t 2 *N 2
' d ' T

7>N3 7>N3
^n.

*dN4 7> N q

?>£ 'd TL

2/1

0

0

2 / m

(Al. 3c)

Substitution of equations (A1.3a) to (A1.3c) into‘ (A1.2) leads  to

[ c " ] -  2T(£ - r ( f  [o'] ♦ i  [ h ' J  )

w here  Cg  6Jand

(A1.4)

H e J a r e  the influence coefficient m a t r i c e s  whose

elem ents  a r e  given by

&IJ

and II IJ

r  r  ^  ^ i  ^J J  ^
- l  - l

r V drv
J  J  2>n.

-1  -1

(Al. 5a)

(A l . 5b)

On applying the 9-po in t  Gaussian q u ad ra tu re  fo rm ula  given by 

Zienkiewicz((1971), pp. 147-149), the in teg ra ls  in equations (A1.5a) 

and ( A l . 5b) may be evaluated. The m a t r i c e s  Fg ^ j  and [iT e ] a r e  

obtained as



Substitution of equations (Al.Ga) and (Al.Ob) leads to the requ ired

express ion  fo r  m a t r i x  lC j .

S imilarly, f rom  equation (4. 67c), the expression for m atr ix

[ d  J may be rew ri t ten  as
1 1

[De] = 2 1 \ f  J Ss [ N ] T [Nl N r  1J| d'O, dT^ (A1.7)
- 1 - 1

Equation (Al. 7) may be approximated by

[ i f  j  -- 2TISs r  J  J  [NJT [N] dtj dU  (A l . 3)

-1 -1

On applying the 9-point Gaussian quadrature  formula,  the 

in tegra l  in equation (Al. 3) can be evaluated. The expression  for

r  ""j ^

m a tr ix  qD j i s  obtained as
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[D 6 ] > it r .—  1m Ss

r A
9(-J 1 2

0 9 9 9

2 4 2 1
9 9 9 9

1 2 4 2
9 9 9 9

2 1 2 4
9 9 9 a

( A l .  9)



151.

Appendix 2. i* ,?f \ vusvymb b

Analytical  Solution to Steady, On-?- dimension:': /
______________Two-recpme Well F3o\w  ___

A2. 1 General

An analytical  approach to the problem of steady state, one­

dimensional,  tw o-reg im e well flow was f i rs t  presen ted  by Engelund 

((1953), pp. 49-53)). In his work an expression describing the well 

d ischarge-drawdown relationship was derived but a more general 

express ion  descr ib ing  the drawdown-radial  re lationship was not 

p resen ted .  It is  shown in this  appendix that the l a t te r  expression 

can be obtained and writ ten  in dimensionless form using the param e 

which have been developed to cha rac te r ise  tw o-reg im e well flow. 

A2. 2 General Solution

V /
. / /

p

Fig. (A2. l):Diagrammatic sketch of a confined well-aquifer  system.

<“
*h
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A d iag ra m m at ic  sketch of a confined w e l l -aqu ife r  sys tem  is 

shown in Fig. (A2 .1 ) .  The well  is ful ly  sc reen ed  through the en t i re
i i .

th ickness  of the aquifer  and pumped at a known d ischarge .  Non-

Darcy  flow is a ssu m ed  to occur  in the shaded zone extending f rom  the

well rad iu s  to the c r i t ic a l  ra d iu s  r c r * The equation re la t ing  hydraulic

g rad ien t  and flow velocity  in th is  zone is given by

- dh Tr . ^ 2  /A n-~r— = aV + b V  (A2.1)dr

The flow velocity  and the well d ischarge  a r e  re la ted  by

V = " —2 - (A2. 2)
2itrm

Substituting equation (A2. 2) into equation (A2. 1) gives 

dh _ aQ bQ^
dr 2 ro.nr 4^2  m ^"r

On in tegra ting ,  the following exp ress ion  is obtained

r c r  r c r  r c r

f  ^  d r  _ ^  ^  bQ^ drJ  dr J  2F  m r  J  4 it ~m^ r^"
r  r  r

2i 1 aQ , . r nY. . bQ , 1  1 .- h = In (__2T) + —9 (------ ------- )c r  2 K m  r  4 iwm 2 r

fo r  r w ^  r  r c r  (A2.3)

Now the equation descr ib ing  Darcy flow in the rem a in ing

portion  of the aquifer  may be w ri t ten  as

_ _ dh Q .
K -u— = 77W—  (A2.4dr 2T\mr
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Equation (A2.4) may be in tegra ted  to r e su l t  in

dr - Q drd r  J 2 T< m

h - h = —  —  Ino 2 i t  Km r

for r c r ;̂ r  < r Q (A2.5)

Substituting r  = r Qr in equation (A2.5) leads  to

Q ro- h =  —  In (A2.6)no nc r  2'KKm r c r

Adding equations (A2.3) and (A2.6) gives

Q , r n ci Q , r Cru - h =  —  In —Q- + -----—  In —^ L-ho 11 2TtKm r c r  2 1 T m x r

+ bQ2 ( ____L  )
AJ l  2 r  r  4T( m  c r

fo r  r w ^ r  4  r Cr. •

Equations  (A2.7) and (A2. 5) a re  the exp ress ions  for the head d is ­

t r ibu t ions  in the non-D arcy  and Darcy flow subregions respectively ,  

A 2 .3  Dimension le s s  drawdown-radia l  distance re la t ionsh ips

j-t
ui

SdV
v
jo4
tiP
>
X

V e . u ° c \ t v  VO

V

Fig .  (A2.2): V eloc i ty -grad ien t  re la t ionship  showing the
c r i t i c a l  point where  non-Darcy flow comiriences
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dS-51'

Equations (A2.5) and (A2. 7) may be written in dim ensionless
^ r t  i>! *k$ X&rt f l  t £A) m t i m p M

form as follows:-
‘} o ^

Let the drawdown s and the coefficient of transm issiv ity  for
JSL __ • I . • f r i b \

the aquifer T be defined in accordance with

S = h0 - h (A 2 .8)■ ' ' "v    " rf _ t
. • i.:.'■'* ' " • o

and T = Km (A 2 .9)

F ro m  Fig. (A2. 2) the coefficient of perm eab i l i ty  K is  given

by i
K = a+bVc r  o1(A2.10)

Substitution of equations (A2. 8) and(A2.9) into equation (A2i5) 

leads  to
’’ . ; K 'f ( '*•. /• .• II q !  i

21^5 T - l / TOx / A n 1 -t V----------  = I n i - 52) ( A 2 . l l )
Q r

Sim ilar ly ,  subsitution of equation (A2.8) and (A2. 9) into 

equation (A2.7) leads  to

2 K s T  ,iVs - r  r
   = K o t i n

Q  r c r  r o r  : 'i i i ' dii)

+ bQT
^  ~  ) (A 2 .1 2 )

2ltm2r 0 cr

Replacement of K in equation (A2. 12) by a+  bVcr gives
i v

= 1?(_r£L') +  1 _  in ( Ic r  _ £q )
Q r cr bVcr rG r

a

+ (£ °  - £ °  ) (.A2.13)
2T( m rQ r  r cr



The following dimension]chs p a r a m e te r s  a r e  now defined.

Mo = —  (A 2 . 14a)
r o

7v = • (A 2 . 14b)
2Km“r 0

^  (A2.14c)
a

Substituting these  express ions  into equations (A2. 11) and (A2.13) 

r e s u l t s  in the requ ired  dimensionless equations lo r  two-reg im e well 

flow

2 T U T  l n  ( J „  )
Q nD

f° r  I W  < u0 ^  1 (A2.15)r,o

and

,  , l ° h  > . JL  , ]
r c r  i + % *o uo

1 r<

Q

+ ?\ ( —-  - e 2- )
u o r cr

for < u 0 A ~ -^ '  (A2. 16)
r 0 ^  r o

Introduction of the well function W allows equations (a 2. 15) 

and (A 2 .16) to be wri t ten  in compact functional form.

Thus from  equation (A 2.15), it follows that

2KsT = W ( —- )  (A2.17)
Q

for ^  uD ^  1

Equation (A2. IS) may also be writ ten as
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\  % ... -• - ! ; ' • V ’ 1 ' * ’■ ’ • f l & ' i  O l t i . ! '  <-S

= w  ( - •  - .  a  , \  , ui M )  ' ,i ■ ,j( a 2 . m
Q uo r o

fo r  t i :  si \i0 .< I S !
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A 2. 4 D im ensionless  P a r a m e t e r s  fo r  Steady Non- P a rc y  Flow

F ro m  equation (A2.18),  it can be seen  that  the: d im ens io n le ss  

p a r a m e t e r s  c h a ra c te r i s in g  drawdown d is t r ibu t ions  in the non*Darcy
j p  |

flow zone n e a r  the well  a r e  A , ^ and . - 'The ex p ress io n ^ ,fo r
r o

A and ^  a r e  given by equations (A2 . 14b) and (A2.14c) re sp ec t iv e ly .

The p a r a m e t e r  ^  was recogn ised  by EngeJund ((1953), pp. 14-15))

as  a type of Reyn olds num b er .  He in te rp re te d  % a s  the ra t io  of

the  ine r t ia l  and v iscous  t e r m s  in the bas ic  F o rch h e im er  n o n - l in ea r

c bV •
ve loc i ty -hydrau lic  g rad ien t  re la t io n  ( i . e .  - ). He a lsoa v

c> ' ■ ■' 1
l i s te d  som e  va lues  for 4, as  obtained from  published exp e r im en ta l

r e s u l t s  available  to him. B ased  on th ese  and some additional pub­

l ish ed  exper im en ta l  r e s u l t s ,  a p ra c t ic a l  range  of va lues  0 . 0 1 ^  \  -N 0 .1  

was  adopted in the p r e s e n t  work fo r  the ana lys is  of va r iou s  steady 

and t r a n s ie n t  flow p ro b lem s  by the finite e lem ent  method.

Am ongst  the th ree  p a r a m e t e r s  A ,  ^  and , the
r o

p a r a m e t e r  A is  recogn ised  in this  work as the m ost  significant 

p a r a m e te r  ch a ra c te r i s in g  non-D arcy  flow. This conclusion is 

de r ived  f ro m  the r e s u l t s  of n u m er ica l  ex p e r im en ts  designed to in-
-  /■ ‘ Xzt a1 f t t f t

ves t iga te  the effects  of A, ^  and —— on values  of the well  function.
r o

In the exp e r im en ts ,  a com puter  subroutine  coded in FORTRAN IV was 

employed to perform num erica !  evaluation of the analy tical  solutions
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given by equations (A2.15) and (A2.16) for the range of values:

A , £ and considered  to be of p r n c ’ical significance. ̂ >■«- cr
The r e s u l t s  showed thal % had only a slight effect on W ( l /u 0 ) f ° r

fixed va lues  of A and that the effect of ro*/rc r  was negligible.

A 2 .5  D im ensionless  Relationships cud Paramo'mrs for T ra n s ie n t 

Non- 3dav cy Flow

The two significant d im ensionless  p a r a m e te r s  ch a rac te r is ing  

steady no n-D arcy  flow 'were d iscovered to be A and which a r e  

defined in equations (A2.14b) and (A2. 14c). Although the analytical  

solutions to t ran s ien t ,  one-dimensional ,  tw o-reg im e flow at constant 

d isch arge  have not been obtained, the following d im ensionless  re la t io n ­

ships a r e  p roposed  to c h a rac te r is e  it.

4-T\Ts = w , i . x . h  (A2.21)W ( —  , A , %)
Q u

w here

i .  = 4 ,Tt (A2.22a)
u r2s

•v = bQ T (A2.23b)
2 A tc?  r

fe _ bVcr  (A2.23c)
a

Equation (A2. 21) may be der ived  by applying dimensional 

ana lys is  to the t ran s ien t  flow problem  and neglecting the d im ension less

t e r m s  which a r e  insignificant.

F o r  wholly Darcy flow, equation (A2.21) reduces  to



w h e r e  W the w e l l - k n o w n  The is  e x p o n e n t ia l  i n t e g r a l .  T

A family  of type curves  fo r  i lie gen e ra l  -trailsient well function in 

equation (A2. 21) was obtained by employing the one-d im ensional  

finite e lem ent  com puter  p ro g ra m .  These  type cu rves  a r e  p re se n te d  

in Chapter  5. - r! V
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AppendF: 3.

Analytical  Solutipris used to ver i ly  the Finite 
E lem ent  A n a ]  v s i s .

The analy tical  solutions l is ted  herein have been evaluated 

n u m er ica l ly  by a n um ber  of computer subroutines which were 

coded in FORTRAN IV language.o  o

A3. 1 Flow tow ards  a Fully Screened Well in a Confined Aquifer

(i) Darcy Flow Solution

The ana ly tical  solution to the t rans ien t  flow problem  shown 

in F ig .  (5.1),  Chapter  5, was derived by Han tush ((1959), (1964, p. 318))

s  = - ~ ^ r  W(1: , , 0 )  (A3. 1)

w here  s = drawdown in the aquifer
O C J

w <X,p)  - —~ r  J l x  - exp ( - t  U2)l Rciu (A3. 2a)

o

R = —y [ j  i (u)y0(/>u)- y i (u) J Q (p u)]

/ [ J i 2 (u) + y p  (u)] (A3. 2b)

p  = r / r w (A3.2c)

-r =  I t -  (A3. 2d)
S r  2 r w

J Q and J j  = zero-  and f i r s t -  o rd e r  J3esscl fund  ions of 

the f i r s t  kind

y0 and y^ = zero-  and f i r s t -  o rd e r  Bessel functions of the 

second kind



160.

F o r  p  >  30 and X  > 2 0 ,  equation (A3, 1) becom es  the well-

known Theis  solution, which i s  given by

~u
o o

4 TC T
e

u
u

du (A3. 3)

w here

u 4 Tb
(A3. 4) /in

(ii) T w o -reg im e  Flow Solution

The prob lem  of steady s ta te ,  one-d im ens iona l ,  tw o -reg im e  

flow was solved a n a l y t i c a l l y  by Engelund (( 1953), pp. 49-53)).

Ilis work has  been reviewed and extended in Appendix 2. The gen­

e ra l  solutions a r e  given by equations (A2. 15) and (A2. 16)

A3. 2 Flow tow ards  a P a r t ia l ly  Screened Well in a Confined Aquifer

4
no

'Sc

_x_w /  Y -. /  _z_z__z_z-

K
S<

~7~ 7 /" /  /  -?—7 7  7 - 7  7 —7 —7  -/-- 7 -^ - 7 —7 V—7--7

Fig. (A3. 1): Model of a confined aquifer  with a p a r t ia l ly  s c re e n e d  w e l l

The p rob lem  of t r a n s ie n t  Darcy flow tow ards  a par t ia l ly  

sc reened  well a s  shown in Fig.  (A3. 1) was solved analytically  by 

Hantush (1961). The simplified  solution for the drawdown distr ibution

along the b ase  of the aquifer  is  given by



w here  s drawdown along the base  of the aquifer
f  e

W(u, -  , V )  = /m •f ua

cO

X J e x p [ - y  
u

11 =

2̂ 
1 s 
4 k t

CO
clu zm % n

siii(nTClf)

n=l

(n o t  r / m )  -» dy
- J ~y“

(A3. 6a)

(A3. 6b)

ls c
m

A3. 6c)

l sc  - length of well s c reen  

rF o r  — y>: 1 .5 ,  equation (A3. 5) may be approximated by m ■"

the Theis  solution as given by equation (A3. 3).

A3. 3 Flow towards  a Well in a Confined Aquifer-Aquitard  System

m

Fi<y. (A3. 2)* Model of a confined aqu ife r -aqu i ta rd  system with 
^ ’ a we'll which is sc reened  through the th ickness  of

the aquifer .



sys tem  with a well which is  fully sc reened  through the en t i re
l ■>; - i - ' Z  t g ,i d i ■' ^ ,p|,f< n.v; • uv/atl?' ~ £ 01

th ickness  of the  main aquifer  is shown in Fig. (A3. 2). In the
CJ . j * I - [ i . H} ~ ~ ~  \  . ..I *  « . -*  , i f l  W

figure K ,S s , m and Kb S1 , m ’ denote the coefficients of hydraulic,1 s

conductivity, specific  s to rage  and th ickness of the aquifer  and the
 % I. ' " — ~ —— - v- ]. » •••; \  X ih$. 4.)

overly ing  aqu ita rd  re sp ec t iv e ly .

c
Asymptotic  solutions of shor t  and long-time drawdowns in the. - / ’ - .   ' ij

— - -  J i

aquifer  w ere  f i r s t  obtained by Han tush (1959), (19C4). They may be

w ri t ten  in the following fo rm s

(i) Short t ime solution, for  t <  m
^  10K?

s =     W(u,^ ) (A3.7}
41X Km

where
f e"y r ^  nW(u, A ) = I — crfc -— -■ dv (A3. 8a)

' I y  \ fy (y U j
U

r 2Su =  —s_ (A 3.8b)
4Kt

/? ■ < A 3 - C c >

(ii) Long time solution, for t >  both and 30 6 -i r.„^ ——
K* 1 vV K

s = —  ------  W ( g i U )  (A3. 9)
41\ Km

where_____________________ __
C O
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The sho r t  t im e  solution fo r  drawdowns in the aquitard  was

f i r s t  obtained by Neuman and Witherspoon (1969, p. 122). It may

be w r i t ten  as  follows:-
i i 2 1

F o r  t ^  Sg m / 10K

Q _

4^ Km

i . i
W( uS/6 , t , z / m ) (A3. 11)

w here  
iS = drawdown in the aquitard

o o
I / l  f  e ( r + y(z / m )/V niW(u, 6 , t  , 7, I m ) =  —  |  e r f  cl '_' ________________  D1

' m  J y  ̂ L /vTv̂ TT)
u

/3a/ u~ + y(2 " z ’ / m 1 ) / D1- e r fc
Vy(y-u >

: • /  ‘ 

dy

ri.y

z 1 / m 1
z - m 

m*
/

I< t
D1 Ss

. (A3. 12a)

( A 3 .12b)

(A3. 12c)

A3. 4 Flow towards  Wells in an Tin confined A q u i f e r - A quita rd  System

O)

Piffl /AO O). Model or an unconfined aqu ife r-aqu i ta rd  sys tem  with 
8* a ,veH which is sc reened  through the th ickness  of the
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A d iag ra m m at ic  sketch  of an unconfined aqiuf er--aquitard

sy s tem  with a well which is  fully s c reen ed  through the th ick n ess  of
, i

the m ain  aqu ife r  i s  shown in Fig.  (A3. 3). In the f igure ,  Sy and 06 

denote the coefficient of specif ic  y ield and the r e c ip ro c a l  of delayed 

yield  index fo r  the unconfined aquitard .  The flow prob lem  was solved 

ana ly t ica l ly  by Cooley and Case (1963, unpublished paper) .  The 

asym pto t ic  solutions for short  and long t im e drawdowns in the main 

aqu ife r  w ere  l a t e r  published by  Cooley (1971). They a r e  p re se n ted  in 

the following m a n n e r : -
C  ] 9

(i) Short t im e solution, for t w—luis.

s  -  s --  W(u,yS ) (A3.13)
4 K  Km

w here  the ex p ress ion  fo r  W (u ,^  ) is given by equation (A3. 8a).
1 / 0 

10 Ss m(ii) Long t im e solution, for t ^ I<

Q

4Tt Km

where

W( S 2 U, r /D )  (A3.14)

o O  o

( r /D  rW ( 6 2 u , r /D )  ■ J 2Jo<2>-> { l  -

o

x exp
9 9

- ( r /D) y~
.S2 u ( ( r / ' i p  i- 4y^T

) d vj  - y  (A 3 .15a)

1 +  j w gkA  (A 3 .15b)Ss m
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r 2 Ss /4  Kt

r  K  rn 
L Jj  Sy + Kmmm 1

K' J

(A3. 15c) 
>n_is o(. n

(A3.15 d)

The sho r t  t im e solution for drawdowns in the overlying 

aqu i ta rd  is given by

Q W(u,yS , t D1, z / m ) (A3. 16)
4KKm

w here  the exp ress ion  fo r  W(u,jS , t D-j, z V m* ) is  given by 

equ a lion (A 3 .12a).

A3. 5 Flow tow ards  a Well in an UnconCined Aquifer

Q

h_- m

/  /  7  7  7  7~ 7  7  7  /  7 7 7 /  7 7 /  ✓ 7 7  7 7  7  /

Fig .  (A3. 4): Model of an unconfined aquifer with a fully
sc reened  well.

A d iag ram m atic  sketch of a model of an unconfined aquifer  with 

a well which is  fully sc reened  through its sa tura ted  th ickness  is shown 

in F ig .  (A3. 4). In the f igure ,  K, S$,Sy and *6 denote the coefficients 

of hydraulic  conductivity, specific- s to rage ,  specific y ie ld ,  and tne 

r e c ip ro c a l  of the delayed yield index for the aquifer respec t ive ly .

The flow prob lem  was solved analytically by "Boulton (1954, 1963).
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The g en e ra l  solution for the av e rag e  drawdown (Boulton 1963, 

p. 479) was der ived  un de r  the assum p t io n s  of constant  s a tu ra te d  

aquifer  th ickness  and constant head d is tr ibu tion  along the v e r t ic a l

S -f g T

d irec t ion .  F o r  l a rg e  values  of — ^  app rox im ated  by

the following equation:-

Qs  = ¥ * K n T  w (u *uy  r /D )  (A3.17)

w here

s = drawdown in the observa t ion  well s c re en ed  through

the en t i re  th ickness  of the aquifer

W

OO 9
cLtx ,

f>*o  ( d ^ . 1 ” x 2 + l  e x p ^ X2 +1

ax
- £ ] “  (A3. 18a)

o
dx

2 x
£ = —g e x p  (x Hi)]  (A3. 18b)

x +1

n. = 1 + # ~ -  (A 3 .1 8 c)

2s  S
« = (A3.18d)

U y  =  ( y \ -  1 )  u  (A 3 .18e)
1

r K r n  1 2
D =t x s y i

J G - B e sse l  function of the f i r s t  kind of zero  o rd e r  

F o r  sufficiently sm a l l  va lues  of t ,  equation (A3. 18a) r e d u c e s  to
cO

w  =
O

2 ({ r  ' I ____\ r \ X (
D ‘ x 2 +1 \

d:
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