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 48	  

Abstract 49	  

Multi-model ensembles are commonly used in climate prediction to create a set of independent 50	  

estimates, and so better gauge the likelihood of particular outcomes and better quantify prediction 51	  

uncertainty. Yet researchers share literature, datasets and model code – to what extent do different 52	  

simulations constitute independent estimates? What is the relationship between model performance 53	  

and independence? We show that error correlation provides a natural empirical basis for defining 54	  

model dependence and derive a weighting strategy that accounts for dependence in experiments 55	  

where the multi-model mean would otherwise be used. We introduce the “replicate Earth” ensemble 56	  

interpretation framework, based on theoretically derived statistical relationships between ensembles 57	  

of perfect models (replicate Earths) and observations. We transform an ensemble of (imperfect) 58	  

climate projections into an ensemble whose mean and variance have the same statistical relationship 59	  

to observations as an ensemble of replicate Earths. The approach can be used with multi-model 60	  

ensembles that have varying numbers of simulations from different models, accounting for model 61	  

dependence. We use HadCRUT3 data and the CMIP3 models to show that in out of sample tests, 62	  

the transformed ensemble has an ensemble mean with significantly lower error and much flatter 63	  

rank frequency histograms than the original ensemble.    64	  
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1. Introduction 65	  

Multi-model ensemble prediction aims to quantify climate prediction uncertainty by considering a 66	  

number of simulations from a range of different models or modelling approaches. Synthesizing the 67	  

information from this collection of simulations remains a somewhat subjective process. Some 68	  

research suggests weighting (e.g. Krishnamurti et al, 2000; Giorgi and Mearns, 2002; Tebaldi et al, 69	  

2005) or sub-selecting (e.g. Perkins et al, 2007; Gleckler et al, 2008) different simulations or 70	  

models, based on their performance. By far the most common and widely accepted approach is to 71	  

simply use the multi-model mean (e.g. Lambert and Boer, 2001; Gleckler et al, 2008; although this 72	  

is clearly not appropriate for all types of evaluation, for example variability estimates). Its 73	  

acceptance is evident in the widespread use of the multi-model mean to represent “best guess” 74	  

scenarios in the Intergovernmental Panel on Climate Change’s Fourth Assessment Report 75	  

(henceforth IPCC AR4; Meehl et al, 2007b), and was reinforced in the recent Expert Meeting on 76	  

Assessing and Combining Multi-model Climate Projections in 2010 (Knutti et al, 2010a). 77	  

 78	  

There are a number of perspectives on why the multi model mean performs so well. Imagine, for 79	  

example, that each model’s error time series (modelled minus observed) were a random number 80	  

time series with variance equal to 1 and zero mean. We know that if we examine the mean 81	  

of n>1 independent random number time series, its variance will be much lower than 1 (in fact it 82	  

will approximate 1/n). While we will spend some time explaining why model errors do not behave 83	  

like random number time series, it is nevertheless true that the multi-model mean tends to cancel 84	  

out the eccentricities of individual models (both random variability and structural errors). This is 85	  

clearly seen in Figure 1, taken from the IPCC AR4, where the red multi-model mean is a smoothed 86	  

representation of yellow individual models. It is important to note, however, that the multi-model 87	  

mean has very different properties to any particular model simulation. At least anecdotally from 88	  

Figure 1, we can see that the multi-model mean has significantly less variance than other model 89	  

time series. Perhaps more importantly, the observational time series appears to have variance more 90	  

like an individual model than the multi-model mean, yet the mean consistently provides a better a-91	  

priori estimate than any individual model. In Section 4 we argue that this suggests a framework for 92	  

interpreting multi-model ensembles that sees model simulations and observational time series as 93	  

indistinguishable realizations of the Earths climate (e.g. Annan and Hargreaves, 2010; Annan and 94	  

Hargreaves, 2011), in that the best estimate to any particular realization will be the multi-model 95	  

mean, without any expectation that the mean will match that realization. 96	  

 97	  
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Whether or not one subscribes to this framework or one that sees the multi-model mean of perfect 98	  

models converging to observations as an ensemble’s size grows, the use of the multi-model mean as 99	  

the best estimate works best when each model provides an independent estimate. Yet modelling 100	  

groups share data sets, parametrisations and even sections of model code, so there are reasons to 101	  

suspect that the assumption of statistical independence of every climate prediction may not be 102	  

appropriate (Tebaldi and Knutti, 2007; Jewson and Hawkins, 2009; Knutti et al, 2010a). This issue 103	  

is even more pressing when we consider coincident prediction (e.g. Giorgi and Mearns, 2002) – to 104	  

what degree should model agreement be a sign of robustness? 105	  

 106	  

Before discussing how best to define model independence in ensemble prediction, we use an 107	  

analogy to highlight the critical distinction between model performance and model independence. 108	  

Suppose we wish to estimate the horizontal coordinates of the peak of a hill by averaging the 109	  

position of several walkers climbing the hill. While we want the walkers (the models) to be close to 110	  

the top of the hill (the observation or truth), to achieve the best estimate we also want them to be 111	  

spread evenly around the peak. This estimation technique is analogous to ensemble averaging, 112	  

distance from the peak analogous to performance, and spread around the peak analogous to 113	  

independence. This highlights the possibility that the mean of an ensemble of relatively poor 114	  

performing but independent models could outperform the mean of an ensemble of relatively 115	  

dependent but well performing models. 116	  

 117	  

Intuitively, one may want to define model independence in terms of shared model structure or 118	  

parametrisations (as though we were using evolutionary cladistics for species classification; in 119	  

which case shared genetic history implies dependence, e.g. Masson and Knutti, 2011). Here, 120	  

however, we take a more pragmatic approach and focus on the independence of models’ 121	  

simulations (perhaps more analogous with Linnaean taxonomy). In fact we suggest there is an 122	  

obvious choice for empirically defining model dependence – correlation in model errors. Section 2 123	  

focuses on deriving weights that explicitly account for model dependence defined using correlation 124	  

of model errors. Section 3a applies these weights to a “toy” example to examine their behaviour 125	  

before Section 3b examines their application to a collection of climate models and observed surface 126	  

temperature data. Section 4 discusses how different interpretations of the relationship between 127	  

observations and a model ensemble lead to very different formalisations of the definition of 128	  

dependence outlined in Section 2. Section 5 introduces an ensemble transformation process that 129	  

both improves the predictive power of the multi-model mean and constrains ensemble variance so 130	  
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that instantaneous ensemble variance reflects the variance of the climatic distribution of weather 131	  

states. Section 6 presents discussion and conclusions. 132	  

 133	  

2. Defining and weighting for model dependence 134	  

We aim to demonstrate that correlation in model errors is a good basis for a definition of model 135	  

dependence. The association of dependence and error correlation per se is not new (e.g. Jun et al, 136	  

2008; Collins et al, 2010) but the approach we outline below offers both a compelling reason for it 137	  

as well as an optimal weighting solution. To begin, we allow the (seemingly inappropriate) use of 138	  

mean square error for time-series evaluation of climate model simulations. We will spend some 139	  

time in Section 4 justifying this decision, but for now we note that this decision need not (and does 140	  

not) imply an expectation that a perfect model should match observations. To emphasise this point, 141	  

we will refer to mean square difference (MSD), rather than mean square error. Next, suppose we 142	  

wish to find the linear combination of an ensemble of model simulations that minimizes MSD with 143	  

respect to an observational data set. That is, for time steps  1,…, j,…, J( )  and bias-corrected models 144	  

 1,…,k,…,K( ) , we want to find 145	  

    
µe

j = wT x j = wk
k=1

K

∑ xk
j       so that      µe

j − y j( )2

j=1

J

∑
  

(1) 146	  

is minimized, where  xk
j  is the jth time step of the kth bias-corrected model,  y

j  is the jth time step 147	  

observation,  wk is the kth model coefficient in the linear combination, [ ]1 2, ,...,T
Kw w w=w  and 148	  

( ) 1 2, ,...,
Tj j j j

Kx x x⎡ ⎤= ⎣ ⎦x . Bias-correction in this case simply refers to subtracting the mean error from 149	  

a model’s time series for the in-sample period. Additionally, we want to constrain the coefficients 150	  

 wk to sum to 1, so that this constrained least squares minimisation problem is solved using a 151	  

Lagrange multiplier, λ : 152	  

 
   
F w,λ( ) = 1

2
1

J −1( ) µe
j − y j( )2

j=1

J

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− λ wk

k=1

K

∑⎛⎝⎜
⎞
⎠⎟
−1

⎛

⎝⎜
⎞

⎠⎟
. (2) 153	  

The solution to the minimisation of (2) (fully detailed in Electronic Supplementary Material A) can 154	  

be expressed as  155	  

   
w =

A−11
1T A−11       

(3) 156	  

where 
    
1T = 1,1,...,1⎡⎣ ⎤⎦

K  elements 
 and A is the KxK difference covariance matrix 157	  
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A =
c1,1  c1,K

  
cK ,1  cK ,K

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.
   

(4) 158	  

That is, ci,j is the covariance of the ith and jth bias-corrected model minus observed time series (this 159	  

is effectively an error covariance matrix, without any expectation that errors should be zero for a 160	  

perfect model). Note that A is symmetric and that each diagonal term ck,k, the error covariance of 161	  

model k and model k, is just the error variance of model k, or σ k
2 . Note also that the denominator in 162	  

(3) (which is the sum of all of the elements of ) is constant for all k, and so is effectively just a 163	  

scaling factor. Each  wk  is then proportional to the sum of the elements in the kth row of . 164	  

 165	  

Now if we assume that error correlations between these K models are zero (setting all non-diagonal 166	  

terms in (4) to zero) we have  167	  

    

′A =
σ 2

1  0

  
0  σ K

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟    

(5) 168	  

so that using (5) in (3), the weight for model k is proportional to 1 /σ k
2 , the inverse of model k’s 169	  

error variance. That is, assuming zero error correlation leads to optimal weights based entirely on 170	  

relative differences in model performance.  171	  

 172	  

While we will spend some time in Section 4 explaining why independent models in an ensemble 173	  

should not have zero error correlation, (5) illustrates that this minimization of error (or ‘difference’) 174	  

problem may be viewed as having has a solution in two parts: that related to the ‘performance’ 175	  

differences of each model (the diagonal terms of A) and that related to the level of covariance 176	  

between the errors of the models (the non-diagonal terms of A). This, we suggest, provides a natural 177	  

choice for an empirical definition of model dependence. The weights given in (3), therefore, 178	  

optimally weight models for dependence and differences in performance with respect to MSD for 179	  

the in-sample period.  180	  

 181	  

A simple idealized example illustrates how important model dependence defined in this way can be 182	  

to the performance of the multi-model mean. First, in Electronic Supplementary Material (ESM) A 183	  

we show that the expected error variance of µe  (from (1), the optimally weighted ensemble mean) 184	  

is given by 185	  

A−1

A−1
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(6) 186	  

Now consider an ensemble of K models that all have error variance equal to 1, with error 187	  

covariance defined by powers of a single correlation parameter, −1 ≤ ρ ≤ 1, so that 188	  

Aρ =

1 ρ ρ2  ρK

ρ 1 ρ  ρK−1

ρ2 ρ 1  ρK−2

    
ρK  ρ2 ρ 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  and  Aρ
−1 = 1

1− ρ2

1 −ρ 0  0
−ρ 1+ ρ2 −ρ  0
0 −ρ 1+ ρ2  0
    
0  0 −ρ 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7) 189	  

(chosen so that Aρ  had a simple inverse). Since ρ  raised to some positive integer power is always 190	  

less than ρ , it is clear that the inter-model error covariances are smaller for those elements far from 191	  

the diagonal of A than those close to the diagonal. Since    
1T A−11( )  is simply equal to the sum of all 192	  

the elements in 1−A , it follows that using (7) in (6) gives 193	  

  194	  

s2 = 1− ρ2

(K − 2)ρ2 − 2(K −1)ρ + K
    (8) 195	  

Figure 2 shows the values of s2  for a K=5 member ensemble as a function of ρ . For ρ = 1  the 196	  

error covariance between all models is 1, so that the error variance of the optimal combination of 197	  

models is the same as that of a single simulation – the models are identical. For perfectly 198	  

uncorrelated errors, ρ = 0 , the error variance of the optimally weighted mean is 1 / K = 0.2  of the 199	  

error variance of an individual simulation. This result has serious implications for ensemble 200	  

interpretation. 201	  

 202	  

If, for example, one subscribed to the ‘truth-plus-error’ paradigm (e.g. Tebaldi et al., 2005; Greene 203	  

et al., 2006; Furrer et al., 2007; Smith et al., 2009), and believed that a ‘perfect’ model should 204	  

match observations plus a noise term, then model independence is naturally defined as pair-wise 205	  

zero error correlation between models (as we would define independence of random variables, or 206	  

noise). This is the ρ = 0  case of Equation 8, which would mean our estimate of error variance for 207	  

the mean of K independent models would then be 1/K. This in turn would imply that the only 208	  

barrier to perfect prediction of climate at any timescale is the number of independent models 209	  

   
sm

2 =
µe

j − y j( )2

j=1

J

∑
J −1

=
1

1T A−11( ) .
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available to us – that error vanishes as the ensemble grows very large. In Section 4 we explain in 210	  

more detail why we believe the truth-plus-error is inappropriate for climate prediction and suggest 211	  

an alternative approach. 212	  

 213	  

While it also appears that the perfectly anti-correlated example, ρ = −1 , can result in a zero error 214	  

variance weighted mean, there are likely stricter bounds on the range of possible error correlations 215	  

than we have imposed in this idealized example, depending on the size of the ensemble (we will 216	  

explore this more in Section 4). Remember all of these ‘models’ perform equally well, in the sense 217	  

that they have equal error variances. Equation (8) and Figure 2 serve to demonstrate that, all other 218	  

things being equal, lowering the error correlation between ensemble members increases the utility 219	  

of an ensemble prediction because it lowers the error variance of the ensemble mean. 220	  

 221	  

 222	  

3a. A simple application of dependence weights  223	  

To get a sense of how this weighting technique behaves, we now apply it to a very simple synthetic 224	  

example. Suppose observations of a variable of interest were given by the function 225	  

y(t) = t +15sin(t / 6)  and two model simulations of this variable were given by 226	  

x1(t) = t /1.98+15sin(t / 4)     and     x2 (t) =1.5t +18sin(t / 8),  227	  

applied to 170 discrete time steps (chosen so that trends and oscillations are visible). After bias 228	  

correction, the ‘observations’ and these two models have the same mean. Their time series are 229	  

shown in Figure 3a by the black, blue and red curves. These two models were chosen as they have 230	  

almost identical MSD (839 units2) – their ‘performance’ is the same. In this case, the two-member 231	  

ensemble mean and weighted mean (using (3)) have identical MSD (around 161 units2). If we now 232	  

add three additional models by simply adding noise terms (Gaussian, standard deviation 6 units) to 233	  

the first model, 𝑥!, we have a five-member ensemble with four dependent members (shown in 234	  

Figure 3a by the grey lines). In this case, the ensemble mean MSD is around 409 units2 and the 235	  

weighted ensemble mean MSD is around 159 units2 (these are mean MSD values from 1000 236	  

independently generated 5-model ensembles of the type described above). An example is shown by 237	  

the green and gold curves in Figure 3a, respectively.  238	  

 239	  

The weighting technique preserves the performance of the mean of the original independent-240	  

member ensemble while the performance of the multi-model mean is clearly degraded. Across the 241	  

1000 different 5-member ensembles, the weight given by (3) to 𝑥!, the second model, is almost 242	  



	   9	  

constant at 0.5 (variance of the weight value is around 0.0001). Consequently, the sum of the 243	  

weights of the dependent models 1,3,4 and 5 is also 0.5. 244	  

 245	  

Next, while there is some minor performance gain in the weighted mean from the addition of the 246	  

noisy members of the ensemble (due to the small sample size), this example illustrates a key point 247	  

when using this weighting technique where the relative dependence of the ensemble members is not 248	  

known. The performance gain of the weighted mean over the mean in the case when there is 249	  

dependence in the ensemble is not due to the weighting technique fitting noise (issues of sample 250	  

size excepted, of course). Rather, the MSD of the weighted mean approximates the MSD of the 251	  

mean of the effectively independent members.  252	  

 253	  

In Section 5 we will modify this weighting approach to ensure that as well as all weights summing 254	  

to unity, no model receives a negative weight. We note here that model weights obtained from 255	  

particle filter approximations to Bayes’ theorem (van Leeuwen, 2011; Snyder et al., 2008) share this 256	  

feature. However, as will become clear, both our objectives and method differ from that of a 257	  

particle filter. 258	  

 259	  

3b. Application of dependence weights to the CMIP3 ensemble 260	  

We now apply the weighting technique to the 24 fully coupled global CMIP3 models (Meehl et al, 261	  

2007a) in the PCMDI online database (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php) that 262	  

constitute the basis for the IPCC Fourth Assessment Report’s climate projections (Meehl et al, 263	  

2007b). We use the HadCRUT3 monthly surface air temperature dataset (Brohan et al, 2006) and 264	  

compare the two for the years 1970-1999. All model simulations are interpolated to the HadCRUT3 265	  

5° x 5° spatial resolution, and only one simulation from each model was used. This provides us with 266	  

24 residual time series of length 360 (30 years x 12 months) for each of the globe’s 72x36 grid cells 267	  

at this resolution. Any grid cells with more than 20% of observational data missing during this 268	  

period are omitted. Figure 4 shows the RMSD at each grid cell of (a) the multi-model mean of the 269	  

CMIP3 ensemble, and (b) the weighted mean of the CMIP3 ensemble using the weights given in 270	  

(3), averaged across 30 out-of-sample tests (detailed below). The weighting clearly offers 271	  

considerable reductions in RMSD globally, but several regions in particular show marked changes 272	  

(e.g. China, South America, Northern Europe and Africa).  273	  

 274	  

Figure 5 shows that the difference between Figures 4a and 4b is comprised of three incremental 275	  

stages: bias-correction, performance weighting and ultimately dependence weighting. Each curve in 276	  
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Figure 5 represents the density of global RMSD values for different model weighting techniques 277	  

across 30 out-of-sample tests. These tests use a bootstrapping approach – for any given weighting 278	  

technique, 29 years are used to define a set of model weights for and the remaining year from our 279	  

30 years of data is used to test them. The process is then repeated for all 30 possible testing years. 280	  

As there are only 30 tests for each weighting technique, the 30 RMSD values from these tests are 281	  

fitted to normal distributions in Figure 5. For each weighting technique, results are plotted for both 282	  

a ‘global’ configuration (involving a single weight for each model across all 72x36 grid cells, 283	  

considering each grid cell as an independent piece of information) and a ‘per-cell’ application 284	  

(allowing 72x36 separate weights for each model). For reference, the density of RMSD values for 285	  

the original CMIP3 ensemble mean is shown in black. 286	  

 287	  

First we consider bias correction. Using a historical evaluation period to remove model biases is 288	  

common in weather forecasting (e.g. Glahn and Lowry, 1972; Wilson and Vallée, 2002) and 289	  

climate research (Meehl et al, 2007b; Reifen and Toumi, 2009). The dark blue and light blue curves 290	  

in Figure 5 show the global RMSD of the mean of the bias-corrected models, applied globally and 291	  

at each grid cell, respectively. As expected, this improves the multi-model mean RMSD, especially 292	  

in the ‘per-cell’ application. 293	  

 294	  

Next, the green curves in Figure 5 show global RMSD density when bias-corrected ensemble 295	  

members are linearly combined using the performance weights from (3) when A is given by (5). As 296	  

we would expect, in both the global (dark green) and per-cell (light green) cases, performance 297	  

weighting gives additional skill above bias correction. Finally, we consider the optimal dependence 298	  

weights given by (3). These are represented in Figure 5 in the global and per-cell cases by the red 299	  

and orange curves, respectively, and clearly give the lowest global RMSD values. 300	  

 301	  

The clearest feature of Figure 5 is the separation of ‘global’ and ‘per-cell’ weighting strategies. 302	  

Next, while there are many published examples of model performance weighting (e.g. Krishnamurti 303	  

et al, 2000; Giorgi and Mearns, 2002; Tebaldi et al, 2005) and apparently none of dependence 304	  

weighting, the improvements in performance provided by the dependence weights here are 305	  

significantly larger than those provided by performance weights alone. Lastly, we highlight the grey 306	  

curve in Figure 5, a persistence-like case, using the mean of observed values each month across the 307	  

29-year training period to predict that month in the testing year. We see that the dependence-308	  

weighted ensemble performance is in fact superior to the average of 29 month-specific observed 309	  
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temperatures at each grid cell - a remarkable achievement for an ensemble of 100-150 year 310	  

predictions at coarse resolution. 311	  

 312	  

We again wish to reassure the reader, despite the analysis above, that we do not expect a climate 313	  

model to match monthly temperature time series. While it may seem that the weighting approach 314	  

we outline is simply likely to favour those models whose internal variability happens to better 315	  

match observations in the in-sample period, something of a noise fitting exercise, we now show that 316	  

the result is stable across the 30 year period under consideration. Table 1 shows the global RMSD 317	  

values for weights trained on one decade during this period and tested on another. While the in-318	  

sample periods (e.g. train weights on 1990s and test weighted mean on 1990s) clearly always show 319	  

the best results, application to out-of-sample decades show that the weights are remarkably stable 320	  

and remain effective. While it may be tempting to suggest that 30 years is too short a period to 321	  

illustrate that the weights perform well out-of-sample, we note that 30 years is the World 322	  

Meteorological Organization’s reference length for defining climate as opposed to weather 323	  

(http://www.wmo.int/pages/prog/wcp/ccl/faqs.html). While we fully acknowledge the potential for 324	  

longer period climate cycles to cloud this result, the limited availability of observational data 325	  

ensures this will always be a caveat. In Sections 4 and 5 we describe why, despite the lack of an 326	  

expectation of a model’s agreement with monthly time series observations, the dependence 327	  

weighted time series is key to understanding ensemble spread. 328	  

 329	  

4. Model independence, climate system uncertainty and the replicate Earth paradigm 330	  

In Section 2 we noted in a simple example that if we assumed pair-wise model error correlation to 331	  

be zero, optimal model weights (with respect to MSD) were entirely proportional to differences in 332	  

model performance (error variance in this case). Intuitively, we might therefore want to insist upon 333	  

independent model simulations as having pair-wise zero error correlation – as the standard 334	  

statistical definition, f(x1,x2)=f(x1)f(x2), would suggest for two independent random variables. But is 335	  

this appropriate for error in climate models? Below we discuss consequences of this approach and 336	  

argue for an alternative conception of a multi-model ensemble that naturally yields a positive value 337	  

for the expected error correlation of independent simulations. 338	  

 339	  

Firstly, a zero-error-correlation definition of independence implies that a ‘perfect’, independent 340	  

model should reproduce observed data plus an independent noise term. Equivalently, the error of 341	  

the mean of an ensemble of perfectly independent models should converge to zero as the ensemble 342	  

size grows large. Observational data in this case would always be the mean of a distribution of an 343	  
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ensemble of independent models. This view of a ‘perfect ensemble prediction’ amounts to a “truth-344	  

plus-error” paradigm of interpretation (e.g. Tebaldi et al, 2005). While it could be argued that very 345	  

long time averages of observations that smooth out, for example, decadal oscillations, are 346	  

predictable, high impact weather events likely to be affected by climate change such as droughts, 347	  

flooding and Tropical Cyclones clearly have limited predictability. Annan and Hargreaves (2010) 348	  

noted the inappropriateness and prevalence of this truth-plus-error paradigm in climate model 349	  

evaluation and proposed instead using an ‘indistinguishable’ paradigm of interpretation which 350	  

assumes a priori that the observations and all models belong to the same distribution. Here, we 351	  

present a third paradigm of interpretation – the ‘replicate Earth’ paradigm. We introduce the idea by 352	  

noting a critical and hitherto unmentioned assumption of the truth-plus-error paradigm – that the 353	  

climate system and all the processes that affect it are entirely (i.e. deterministically) predictable 354	  

from climate forcing variables. That is, since the truth-plus-error paradigm assumes a zero-error-355	  

correlation definition of independence, the only barrier preventing a perfect prediction by the mean 356	  

of an ensemble at any time scale is the number of independent members it contains. This is clearly 357	  

inappropriate for sub-decadal time scale events and may be inappropriate for much longer time 358	  

scale events as well. This is a consequence of defining the observed time series to be the centre of 359	  

the distribution of an ensemble of independent models – the ensemble mean will converge to the 360	  

observations as the ensemble grows large. 361	  

 362	  

In contrast to the truth-plus-error viewpoint, the replicate Earth paradigm accommodates the 363	  

possibility that there may be inherent limits to the predictability of the atmosphere and ocean at any 364	  

time scale. Suppose there were a very large number of Earth replicates that experienced 365	  

immeasurably similar climate forcing (e.g. orbital, solar, greenhouse gas forcing) to our own Earth. 366	  

Each replicate Earth would have different instantaneous realisations of atmospheric and ocean 367	  

states as a result of the climate system’s chaotic processes. Imagine that the behaviour across this 368	  

very large number of Earth replicates defined time-evolving Climatological Probability Density 369	  

Functions (CPDFs) that defined the probability of the occurrence of particular ranges of climate 370	  

variables or even particular types of events. If the climate were constant, we could approximate the 371	  

CPDF using historical data, but this is clearly not the case, especially when CO2 concentrations are 372	  

rapidly increasing. It is therefore impossible to empirically determine the properties of the CPDF in 373	  

the presence of changing climate. This, we suggest, is the role of climate models. 374	  

 375	  

Climate models can be viewed as imperfect attempts to create replicate Earths. We suggest that an 376	  

ideal ensemble prediction would be comprised of replicate Earths that were independent and 377	  
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identically distributed (IID) draws from the CPDF defined by a very large ensemble of replicate 378	  

Earths. In this ideal, the models/replicate Earths comprising the ensemble prediction are 379	  

independent because they are independently drawn from the CPDF – not because of zero error 380	  

correlation. These models are perfect because they behave like replicate Earths but their distance 381	  

from the observations on our Earth (that is, their error) is not zero. This distance has a strict lower 382	  

bound determined by the inherent variance of the range of states permitted by a particular set of 383	  

climate forcing conditions. The chaotic nature of atmospheric and oceanic flow causes the 384	  

trajectories of two replicate Earths in almost identical states to diverge with time and ultimately to 385	  

be statistically indistinguishable from independent random draws from the CPDF. In this sense, 386	  

‘perfect’ and ‘independent’ models are essentially synonymous. The mean of an ensemble of 387	  

perfect models is therefore simply an approximation of the mean of the CPDF, and since the real 388	  

Earth itself is also a random draw from the CPDF, we should not expect observations of it to match 389	  

this mean, but rather be equivalent to a different perfect model. Unlike the truth-plus-error 390	  

paradigm, we should not expect the error of the mean of an ensemble of replicate Earths (with 391	  

respect to our Earth’s observations) to tend to zero as the ensemble size increases.  392	  

 393	  

Figure 1, taken from the IPCC AR4, seems to broadly support the concept behind the replicate 394	  

Earth paradigm. It shows global mean surface temperature, expressed as an anomaly, for an 395	  

ensemble of climate models (shown in yellow), their mean (shown in red) and the observational 396	  

record (shown in black). The observational record seems much more like an individual model than 397	  

the multi-model mean: it is the most extreme value on a few occasions and has model-like 398	  

variability. Knutti et al (2010b) note that the CMIP3 ensemble mean error converges to a large non-399	  

zero value, also supporting the replicate Earth concept. 400	  

 401	  

We can in fact show that the anticipated level of error covariance between two (perfectly 402	  

independent) replicate Earths (that is, the off-diagonal ci,j in (4)) is σ r
2 , the time average of the 403	  

instantaneous CPDF variance (see ESM B for derivation). To visualise this quantity, imagine in 404	  

Figure 1 determining the variance of the yellow lines at a single point in time (about the red line), 405	  

and averaging this for all time steps. We can also show that the MSD of the mean of a K-member 406	  

replicate Earth ensemble to “our Earth” is σ r
2 +σ r

2 / K (see Equation B8), so that as the ensemble 407	  

size becomes infinite the MSD of its mean would converge to σ r
2 . 408	  

 409	  
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Annan and Hargreaves (2010, 2011) suggest that the appropriate paradigm for ensemble 410	  

interpretation is one that assumes that climate models and observations are drawn from the same 411	  

distribution (the indistinguishable paradigm). If each climate model were perfect (i.e. a replicate 412	  

Earth) then we would agree with this approach. The fact that their indistinguishable paradigm 413	  

assumes that models are replicate Earth-like is reinforced by a result we derive in ESM B – the 414	  

anticipated error correlation of replicate Earths is 0.5, precisely the estimated correlation presented 415	  

in the appendix of Annan and Hargreaves (2011). In the next section we demonstrate that the 416	  

CMIP3 ensemble is in reality not replicate Earth-like, and derive a transformation process to bring 417	  

it closer to being so.  418	  

 419	  

5. Transformation to a replicate Earth-like ensemble 420	  

We now explore the extent to which the current generation of climate models, that is the CMIP3 421	  

ensemble, behaves like a replicate Earth ensemble. To do this, we identify two key properties of an 422	  

ensemble of replicate Earths. When trying to visualize these properties, it may be helpful to refer to 423	  

Figure 1. 424	  

1. The equally weighted mean of an ensemble of replicate Earths is the linear 425	  

combination of replicate Earths that minimizes the distance from our Earth’s 426	  

observations over an extended time period. 427	  

That is, the best estimate (in terms of mean square distance) of any particular replicate Earth (a 428	  

random draw from the CPDF) will be the mean of the CPDF. (Of course, the random draw from 429	  

the CPDF that is of particular to us is the real Earth). Note that this property follows directly 430	  

from the statistical fact that the entity that minimizes the expected squared distance from 431	  

individual realizations of any probability distribution is the mean of the distribution. 432	  

2. The time average of the instantaneous CPDF variance should be approximately equal 433	  

to the variance of the real Earth about the CPDF mean over time. 434	  

This is essentially saying that the variance of the real Earth about the CPDF mean should be the 435	  

same as the variance of all the other replicate Earths about the CPDF mean. We could 436	  

equivalently phrase this as ‘the time average of the variance of an ensemble of replicate Earths 437	  

should be approximately equal to the MSE of the replicate Earth ensemble mean (with respect 438	  

to the real Earth’s observations)’. This property holds for all ensemble predictions that 439	  

represent the distribution of truth (Leutbecher and Palmer, 2008). One could imagine in Figure 440	  

1 determining the variance of the yellow lines at a single point in time (about the red line), and 441	  

averaging this for all time steps. Our assertion simply states that this should be roughly 442	  

equivalent to the variance of the black line about the red line (as though the red line were the 443	  
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CPDF mean). To understand this assertion, note that if the CPDF were not changing in time, the 444	  

ergodic assumption would be valid and the distribution of observations from a single Earth (e.g. 445	  

our Earth) would precisely define the CPDF: the variance of the observations about the mean of 446	  

the observations would be precisely equal to the variance of the CPDF. However, if the 447	  

trajectory of CPDF variance were a strongly non-linear function of time then the time average 448	  

of CPDF variance would only be approximately equal to the variance of the real Earth about the 449	  

CPDF mean over time. Since we do not know a priori how the CPDF variance will be affected 450	  

by increasing CO2 concentrations and a changing climate, the possibility of fluctuations in 451	  

CPDF variance must be allowed for. (Indeed, the study of Schär et al. (2004) suggests that the 452	  

variance of the CPDF of European summertime temperatures will increase with increasing CO2 453	  

concentrations.) 454	  

 455	  

In ESM B, we provide a mathematical proof that properties 1 and 2 would be satisfied by an 456	  

ensemble of replicate-Earths (or equivalently by an ensemble of long simulations from models that 457	  

perfectly represented physical processes from the nanoscale to the global scale but which had 458	  

differing, equally plausible initial conditions). 459	  

 460	  

It should be immediately clear that the CMIP3 ensemble does not satisfy property 1. We showed in 461	  

Section 2 that an optimized linear combination of models performs significantly better than the 462	  

multi model mean in out of sample tests. We can also show that property 2 is not satisfied. That is, 463	  

the instantaneous variance of monthly surface temperature in the CMIP3 ensemble, averaged over 464	  

all months 1970-1999, is quite different from the variance of the observations about the multi-465	  

model mean (equivalent to the error variance of the multi-model mean). We will see clear evidence 466	  

of this when discussing Figure 6 shortly. 467	  

 468	  

While any inference of CPDF properties in the presence of changing climate can only be based on 469	  

model predictions (since we only have one real sample, our Earth), we can extract better estimates 470	  

of them than the original CMIP3 ensemble provides, by using the two properties above. We know, 471	  

for example, that our linear combination of models from Section 2, µe , is a better candidate for the 472	  

CPDF mean than the multi-model mean, since it is the minimum error variance estimate we can 473	  

have for our set of model simulations (i.e. best estimate to the replicate Earth that is the real Earth). 474	  

Also, if we could interpret each model’s weight from (3) as the probability that that particular 475	  

model were a replicate Earth, we could estimate instantaneous CPDF variance using 476	  
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σ e

2 j = wk
k=1

K

∑ xk
j − µe

j( )2
 (9) 477	  

as though our variable of interest (in this case monthly surface temperature) were a discrete random 478	  

variable. Using these two pieces of information, we now present a technique to transform the raw 479	  

CMIP3 ensemble into a more replicate Earth-like ensemble. 480	  

 481	  

To begin, we note that model weights obtained from (3) are not necessarily positive and may 482	  

therefore also be greater than 1 (since they sum to 1). Ensuring their positivity, however, is not 483	  

possible without modifying the original models’ time series. But we can modify them in such a way 484	  

that their weighted combination still provides our minimum error variance estimate, and CPDF 485	  

mean estimate, µe . Recalling that the value of the kth ensemble member at the jth observation time is 486	  

given by j
kx  and that the vector listing all K of these ensemble values is denoted by jx , one can 487	  

proceed by expressing j
kx  in terms of  a perturbation from the multi-model mean 'j j j

k kx x x= +  488	  

where 
  
x j = 1

K
xk

j

k=1

K

∑ , then we can express µe  as 489	  

    µe
j = wT x j = wT z j  (10) 490	  

where the kth element of the k-vector jz is given by 'j j j
k kz x xα= +  491	  

 

    
w =

wT + α −1( )1
T

K
⎛
⎝⎜

⎞
⎠⎟

α
 (11) 492	  

and   α = 1− K min(wk )  where min( )kw  is the lowest (most negative) of the preliminary weights 493	  

obtained from (3). A complete derivation of (10) and (11) is provided in ESM C, where we also 494	  

show that the weights still sum to 1 and are now all positive. 495	  

 496	  

With this transformation of model time series and weights, we are now in a position to interpret the 497	  

 wk  as probabilities in (9) with zk
j  in place of the xk

j . This gives us an estimate of the CPDF 498	  

variance. With the weights interpreted as relative probabilities of occurrence, the formal definition 499	  

of variance becomes 
   
σ e

2 j = wk
k=1

K

∑ xk
j − µe

j( )2
 where   xk

j  is a soon to be defined modification of j
kz . 500	  

From property 2 above, for the ensemble to be replicate Earth-like, the time average of this variance 501	  

must be equal to the variance of our observations about the CPDF mean estimate, µe . That is, 502	  

property 2 requires that  503	  

 w
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1
J

σ e
2 j  =

j=1

J

∑    se
2  =  

µe
j − y j( )2

j=1

J

∑
J −1

. (12) 504	  

We can ensure (12) by further modifying our model time series, this time to change the ensemble 505	  

variance, by letting  506	  

 
   
xk = µe + β x +αx 'k− µe( )  (13) 507	  

where 508	  

 

   

β =
se

2

1
J

wk
k=1

K

∑ zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑
. (14) 509	  

A more detailed mathematical justification for (13) and (14) is provided in ESM C. Critically, it 510	  

also contains a proof that this new transformation still preserves the CPDF mean estimate 511	  

    µe
j = wT x j = wT z j = wT x j  (15) 512	  

and that (12) holds with 513	  

    
σ e

2 j = wk
k=1

K

∑ xk
j − µe

j( )2
.  (16) 514	  

In summary, (11) and (13) give us a weighted ensemble that satisfies both properties 1 and 2 515	  

provided that  wk  is interpreted as the relative probability that the transformed model   xk
j  is a 516	  

replicate Earth. We say “relative probability” rather than “actual probability” because these weights 517	  

only depend on the relative performance of the models rather than their absolute performance. 518	  

 519	  

Figure 3b gives a visual indication of how this transformation process affects the simple ensemble 520	  

we examined earlier in Figure 3a, and shows the value of 𝛼 and 𝛽 used for the transformation. 521	  

Recall from above that single values of 𝛼 and 𝛽 scale all models’ deviation from the multi-model 522	  

mean and weighted mean, consecutively. The result is a transformed ensemble whose variance 523	  

about the weighted mean, µe , approximates the variance of the observations about µe . Note also 524	  

that the strong anomalous trends shown in model 1 and model 2 are reduced as a result. Perhaps 525	  

most importantly, the mean of this transformed ensemble (green line in Figure 3b) is now much 526	  

closer to the weighted mean of Equation 15. That is, the equally weighted mean of these models is 527	  

much closer to being the best estimate of the observations (Property 1 above) – the models have 528	  

become more replicate Earth-like. 529	  

 530	  
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To show that the transformed CMIP3 ensemble is more replicate Earth like, we examine whether 531	  

the CPDF that the observations (our Earth) are drawn from is the same as the CPDF implied by the 532	  

weighted transformed models. The CPDF implied by the weighted transformed ensemble can be 533	  

sampled by randomly sampling the transformed ensemble members with frequencies that are 534	  

proportional to the weights  w . However, before considering the CPDF implied by the weighted 535	  

transformed ensemble, it is of interest to assess the CPDF that would be implied if the 24 536	  

transformed ensemble members had been evenly weighted. To do this, we consider a histogram of 537	  

the rank of the observed value of monthly surface temperature amongst all modelled values on the 538	  

real line. For example, if for a particular month at a particular grid cell, the observed temperature is 539	  

hotter than all 24 models, we increment the histogram bin associated with the 25th rank by one. 540	  

After repeating this process for all grid cells and all months of data in each of the 30 out-of-sample 541	  

tests described in Section 3, we have a 25-bin rank frequency histogram (RFH), as shown in Figure 542	  

6. It shows histograms for the original CMIP3 ensemble (black), the ensemble of bias-corrected 543	  

models (blue) and also the ensemble of transformed models (red) given by (13). If the observations 544	  

and models are from the same distribution, the histogram should be flat. Both the original and bias 545	  

corrected ensembles populate the central ranks much more than the extreme ranks – they are ‘over-546	  

dispersive’ (a sign that the ensemble is unlikely to be over-confident in its range of predictions). 547	  

The histogram for the evenly weighted transformed ensemble members (red) is clearly much flatter 548	  

thus indicating that the CPDF implied by the assumption that all of the transformed ensemble 549	  

members are equally likely is closer to the true CPDF than that implied by assuming that all of the 550	  

original bias corrected ensemble members are equally likely (the blue curve). This can also be seen 551	  

in the example shown in Figure 3b – the mean of the transformed ensemble is much closer to the 552	  

CPDF mean estimate, µe , than the mean of the original models. 553	  

 554	  

We note that our interpretation of ensemble spread being over-dispersive (supporting the findings of 555	  

Annan and Hargreaves, 2010) is somewhat at odds with Jewson and Hawkins (2009), who argue 556	  

that the ensemble spread is too narrow. The ensemble transformation they present is therefore 557	  

intended to inflate ensemble spread, and this is done as a function of correlation in model 558	  

projections (rather than focusing on correlation of model errors, as we do here). 559	  

 560	  

The assumption that the transformed ensemble members are equally likely is obviously inconsistent 561	  

with properties 1 and 2 of replicate Earth ensembles. These properties are only satisfied when the 562	  

weights/probabilities  are applied to the transformed ensemble members. We now present a 563	  

method to combine the transformed time series and weight information that borrows heavily from 564	  
 w
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the resampling methods used in particle filters (van Leewen, 2009). In doing so, we obtain 565	  

ensembles whose evenly weighted sample mean is identical to (15) and whose evenly weighted 566	  

variance is identical to that given by (16). The procedure also suggests an “effective” number of 567	  

independent models in the CMIP3 ensemble. 568	  

 569	  

Since we know that our 24-member ensemble shows more dependence than a replicate Earth 570	  

ensemble, we cannot expect it to make probabilistic predictions with the same level of accuracy as a 571	  

24-member ensemble of replicate Earths. We therefore create ensembles of varying sizes by 572	  

randomly sampling the 24 transformed members   xk  with frequencies related to their corresponding 573	  

weights   wk . In doing so, we want an ensemble that: 574	  

1) has sample mean j
eµ  - the linear combination of ensemble members minimizing error 575	  

variance;  576	  

2) has time averaged variance equal to the time averaged error variance of the ensemble mean 577	  
2
es ; and 578	  

3) has a flat rank histogram, suggesting that the ensemble members are drawn from the same 579	  

CPDF as the observed data set. 580	  

To create an ensemble of size M<K=24, we: 581	  

I. Divide the unit interval into K sections using 582	  

 
0,  w1,  ... , wi

i=1

k

∑ ,  ... , wi
i=1

K −1

∑ ,  1⎡
⎣⎢

⎤
⎦⎥

     (17) 583	  

Then, for each required prediction (in this case at each grid cell for each month), randomly 584	  

select M uniformly distributed random numbers in the unit interval [0:1] and select the kth 585	  

ensemble perturbation xk
j − µe

j( )  when a random number falls in the kth interval of (17).   586	  

II. Remove the mean of the M selected perturbations (so that at any point in time, the 587	  

perturbations sum to zero). 588	  

III. Multiply these perturbations by 
  

M / M −1( )
 
to ensure that the removal of the ensemble 589	  

mean does not change the variance.   590	  

IV. Add the resulting perturbations to the minimum error variance estimate j
eµ .  591	  

This procedure gives us an M member ensemble whose mean is precisely equal to j
eµ  and whose 592	  

time averaged mean square deviation about the mean is be precisely equal to 2
es  - the time averaged 593	  
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error variance of j
eµ . While this ensemble is neither over-dispersive nor under-dispersive under this 594	  

second moment measure, we have not yet constrained higher order moments of the ensemble 595	  

distribution and histograms are only guaranteed to be flat if all moments of the ensemble 596	  

distribution are identical to those of the distribution from which the observation is drawn. These 597	  

higher moments are likely to be affected by the number M of randomly selected members. When M 598	  

is close to the original ensemble size K, it is extremely likely that the random selection procedure 599	  

will select the same member more than once – particularly if one of the ensemble weights is much 600	  

larger than the others. Such repeated selection of the same member will clearly affect the 3rd and 4th 601	  

moments of the ensemble distribution.  602	  

 603	  

Letting M be much smaller than K reduces the chances of selecting the same member more than 604	  

once and hence lessens its possibly deleterious effects on the higher moments of the ensemble 605	  

distribution. A disadvantage of decreasing M is that our requirement that the M perturbations sum to 606	  

zero increases its impact on the ensemble distribution’s 3rd and 4th moments as M is decreased.   607	  

 608	  

With these facts in mind, it is unreasonable to expect the histogram to be flat for all sub-selected 609	  

ensemble sizes M. However, since a flat histogram enables impact assessments that could not 610	  

otherwise be performed, it is of great interest to find an M value that has an approximately flat 611	  

histogram. We considered both the per-cell weights and the global weights, and examined 612	  

histograms for values of M between 3 and 24, with 4 to 9 shown in Figure 7. 613	  

 614	  

For the per-cell weights – the most accurate configuration – it was found that the exterior bins were 615	  

over populated for M>5 and underpopulated for M<5 (see orange lines in Figure 7). Note that such 616	  

departures from flatness do not indicate under or over dispersion under a 2nd moment measure. This 617	  

is because, by construction, the mean square deviation of the ensemble members about j
eµ  is 618	  

precisely equal to the mean square error 2
es  of j

eµ . Hence, in this case, the overpopulation of the 619	  

extreme ranks must be associated with a mismatch between the 3rd, 4th and higher moments of the 620	  

ensemble distribution and the true distribution. A similar investigation is also shown in Figure 7 for 621	  

the global perturbed model case (red lines in Figure 7). They show that the extreme ranks are 622	  

overpopulated for M=10 (not shown) and underpopulated for M=8. Although the population of the 623	  

extreme ranks for M=9 is similar to that of the interior ranks, ranks 2 and 9 are a little 624	  

underpopulated. Nevertheless, as is indicated by the blue and black dashed curves, the RFHs 625	  

associated with the raw and bias corrected ensembles are less flat than that delivered by our method 626	  
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for the M=9 case. We note that both of these estimates of the effective number of independent 627	  

climate models in the CMIP3 ensemble (5 and 9) are within the range of existing estimates (Pennel 628	  

and Reichler, 2008; Annan and Hargreaves, 2011). 629	  

 630	  

To assess whether the improvement to the RFHs is because of our ensemble transformation 631	  

procedure and not just due to randomly selecting a smaller ensemble size, we randomly selected 632	  

just M of the raw, globally bias corrected and per-cell bias corrected CMIP3 ensemble members 633	  

using a set of 24 weights all equal to 1/24 and computed the resulting RFHs. These are shown by 634	  

the black, blue and green dashed curves respectively in Figure 7. As expected, these curves show 635	  

that the extreme ranks of the global and per-cell cases are under and over populated, respectively. 636	  

 637	  

The flatter RFHs associated with the replicate-Earth like ensembles obtained by resampling the 638	  

weighted transformed ensemble shows that the relative frequency of events in this replicate-Earth 639	  

like ensemble is more likely to be related to the probability of their occurrence in the real world, 640	  

making the ensemble better suited for use in quantitative societal/economic/ecological impact 641	  

models. These pseudo-replicate Earths provide an estimate of the CPDF that accounts for 642	  

performance and dependence differences between models, as well the rescaling the ensemble 643	  

variance to be closer to the variance of the observational record about the CPDF mean. 644	  

 645	  

6. Discussion and conclusion 646	  

We have introduced a new way to interpret multi-model climate ensembles, the replicate Earth 647	  

paradigm, that offers a justifiable approach to including inherent climate system uncertainty at all 648	  

timescales when evaluating ensemble performance. It is significantly different conceptually from 649	  

the two prevailing ensemble interpretation paradigms – the so called “truth plus error” and 650	  

“indistinguishable” paradigms. We outlined two key properties of a replicate Earth ensemble and 651	  

showed that the current generation of climate models are not replicate Earth-like. We then derived a 652	  

transformation process to make a given ensemble more replicate Earth-like, maximizing its 653	  

predictive ability in that the resulting ensemble mean provides the best estimate to observations and 654	  

the resulting ensemble variance becomes a reliable predictor of the error variance of the ensemble 655	  

mean. 656	  

 657	  

The technique yields a positive weight for each transformed ensemble member that can be 658	  

interpreted as the relative probability that the transformed ensemble member is a replicate Earth. By 659	  

randomly resampling the transformed ensemble members with frequencies given by their weights, 660	  
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evenly weighted ensembles were produced with flat rank frequency histograms and low error 661	  

variance means. An ensemble with a flat rank frequency histogram and small ensemble mean error 662	  

variance has a much better chance of accurately predicting changes in frequencies of weather events 663	  

than one with a larger ensemble mean error variance and a non-flat rank frequency histogram. 664	  

Hence, the resampled transformed ensemble is better suited to quantitative assessments of climate 665	  

change impacts than the original ensemble. 666	  

 667	  

One question that we have not answered is whether climate change itself will lead to model error 668	  

covariances that are significantly different to those associated with the HadCRUT3 data set (that is, 669	  

the extent to which historical data is representative of the future system). We note, however, that 670	  

this issue equally applies to bias-corrections derived from historical data, which appear well 671	  

accepted by the community and are prevalent in IPCC representations of climate projections. Note 672	  

that for the purposes of this discussion, we have also assumed that the sample size provided by 673	  

historical data is large enough to rule out spurious fluctuations in the weights associated with too 674	  

small a sample size (see Weigel et al, 2010 for examples of issues this may cause). We also reiterate 675	  

that the inferences we’ve made about the CPDF are entirely model based. This is of course 676	  

unavoidable. They may well change markedly as models improve. 677	  

 678	  

In deciding on how best to apply this approach to future projections, data availability for the 679	  

variables of interest would likely determine whether the per-cell or global application is more 680	  

appropriate, noting the issue of sample size discussed above. There also may be utility in simply 681	  

using the rescaled ensemble described in Equation (13) without the resampling process described 682	  

above, although this requires further investigation. Further work should also consider how the 683	  

method we have presented might be best extended to multiple climate model variables (Gleckler et 684	  

al., 2008). 685	  

 686	  

We also demonstrated that even in a simple optimization problem, accounting for both model 687	  

performance differences and model dependence is critical to extracting the most predictive ability 688	  

from an ensemble, regardless of whether one subscribes to the replicate Earth or truth-plus-error 689	  

paradigm. The weighting technique outlined in Section 2 provides a justifiable way to weight multi-690	  

model ensembles where some models may be represented by many simulations and others by only a 691	  

few – an issue that will face those interpreting the CMIP5 ensemble. The weights reflect each 692	  

simulation’s contribution to the overall predictability of the entire ensemble. This suggests that to 693	  
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the extent that adequate resources are available, a diversity of skillful climate model types must be 694	  

encouraged to improve ensemble predictive ability.  695	  

 696	  

While our example showed that error correlation provides a natural definition for model 697	  

dependence, the level of correlation associated with “statistical independence” depends on the 698	  

assumptions inherent in the ensemble interpretation paradigm. We showed that the ‘truth-plus-699	  

error’ paradigm leads to the rather counterintuitive conclusion that the mean of an infinite ensemble 700	  

of models with zero inter-model error correlation would be equal to the truth at all time and length 701	  

scales. We also discussed the ‘indistinguishable’ paradigm of Annan and Hargreaves (2010), noting 702	  

that ensembles of error prone models have statistical properties that strongly distinguish them from 703	  

replicate-Earths or ‘perfect’ models. We suggested that while the indistinguishable paradigm is 704	  

justifiable with replicate Earths, it is not with today’s climate models. 705	  

 706	  

The replicate Earth paradigm is not an entirely new idea. We already accept that climate models 707	  

should not be able to reproduce weather – that weather is partially chaotic. There has, however, 708	  

been an implicitly assumed time constant in most climate research (perhaps 30 years or so) beyond 709	  

which we have by and large assumed that climate is entirely predictable. If this were true then the 710	  

CPDF of 30-year averages of variables from replicate Earths would have zero variance across an 711	  

ensemble. If it were not true because of longer timescale modes of climate variability that were not 712	  

directly forced then 30 year variable averages from replicate Earths would not have zero variance. 713	  

In this way, the replicate Earth paradigm naturally accommodates both predictable and 714	  

unpredictable time averages. 715	  

 716	  

Given this somewhat fluid interpretation of the distinction between weather and climate, we now 717	  

contrast the CPDF that we wish to extract from an ensemble of climate predictions with the 718	  

Weather PDF (WPDF) that forecasters attempt to infer from ensembles of 1-15 day weather 719	  

forecasts (Gneiting and Raftery, 2005, and references therein). The WPDF is the distribution of 720	  

possible weather trajectories over, for example, the next 15 days given the last 3-5 weeks of 721	  

atmospheric/ocean observations. In terms of replicate Earths, this distribution is defined by the 722	  

distribution of 1-15 day trajectories of all replicate Earths having the exact same set of (error prone) 723	  

observations over something like the preceding 3 weeks. In contrast, the CPDF is the distribution of 724	  

possible 1-1500 year trajectories of all replicate Earths having the same anthropogenic greenhouse 725	  

gas and aerosol forcing and approximately the same ocean heat content in the late 19th century. If 726	  

one were to extend the trajectories of the replicate Earths comprising the WPDF out to climate time 727	  
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scales they would converge to the CPDF as chaotic processes caused the predictability associated 728	  

with knowledge of recent observations to be lost.  729	  

 730	  

To test how well some ensemble of models approximates the CPDF, one needs a long time series of 731	  

observations such as the HadCRUT3 data set. In contrast, the ability of an ensemble of model 732	  

forecasts to approximate the WPDF can be tested with repeated realizations of relatively short time 733	  

sequences of observations (1-15 days). The transformation process described in this paper could be 734	  

applied equally well to multi-model ensembles of 1-15 day forecasts as it could to multi-model 735	  

climate predictions. However, since the time-averaged observations used for the climate application 736	  

are different to the instantaneous observations used in the weather forecasting application it is 737	  

possible that some models would receive small weights for the weather forecasting application and 738	  

large weights for the climate prediction application.  739	  

 740	  

This raises the fact that one not only needs to consider the length of the observational record used to 741	  

derive the weights (e.g., 15 days for WPDF versus 30 years for CPDF), but also the degree of time 742	  

averaging applied to the observations. In our study, we chose to use monthly mean data over a 30 743	  

year period. We could equally well have used shorter observation averaging periods such as a week, 744	  

a day or even 1-hour averages. Alternatively, we could have used longer observation averaging 745	  

periods such as 3 monthly, annual or decadal averages. Further experimentation will be required to 746	  

determine the sensitivity of weights derived from our method to the observation averaging period. 747	  

Recalling that the model weights determined by our method are designed to provide a linear 748	  

combination of models that minimize the distance from observations and noting that high frequency 749	  

variations in the atmosphere are inherently unpredictable, we speculate that weights from our 750	  

method will be more sensitive to changes in the length of the observation period (15 day segments 751	  

versus 30 yr segments) than they would be to the observation time averaging period. 752	  

 753	  

This speculation is based on the fact that by using a relatively small number of ensemble weights to 754	  

minimize the distance to a very large set of independent observations, the replicate Earth paradigm 755	  

not only anticipates model-observation mismatch in perfect models at any time and/or space scale 756	  

but also ensures that models that accurately capture long time scale trends receive more weight than 757	  

those that do not. It makes no assumption about a particular time constant that separates weather 758	  

and climate, only that the partially chaotic natural system has a spread of ‘true’ outcomes that 759	  

define the CPDF. Critically though, this interpretation does not imply that models provide little 760	  

information about the real world. On the contrary, by ameliorating the deleterious effect of 761	  
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correlated model errors on ensemble predictions, it provides a transformed ensemble whose spread 762	  

better represents our uncertainty in prediction.  763	  

 764	  

To avoid over-fitting the data, one must ensure that the number of observations far exceeds the 765	  

number of ensemble members for which weights are sought. In our examples, we sought weights 766	  

for 24 ensemble members. The number of observations used to estimate these weights was 902,016 767	  

and 348 in the global and per-cell examples, respectively. Delsole (2007) found that 22 768	  

observations of seasonally averaged temperatures were not sufficient to accurately constrain the 769	  

weights for a 6 member multi-model ensemble. Doblas-Reyes et al. (2005) found that a weighting 770	  

method for seven models improved over the simple multi-model mean with 40 years of data, but not 771	  

with 20 years. A difference between our method and that used by Delsole (2007) and Doblas-Reyes 772	  

et al. (2005) is that their method is based on the inversion of the outer product of model predictions 773	  

whereas our method is based on the inversion of the outer-product of model-observation 774	  

mismatches. The condition number of these matrices is different. If one method gives a very ill-775	  

conditioned matrix (a concern of DelSole, 2007) and the other does not, it is possible that the 776	  

numerical accuracy of the inversions of the matrices might differ significantly.  Our finding of a 777	  

significant decrease in mean square error in out of sample tests suggests that we did have a 778	  

sufficiently large number of observations for our method to usefully constrain the weights – even in 779	  

the per-cell example.  780	  

 781	  

As noted by Palmer et al. (2008), an ideal (or more replicate-Earth like) set of models for estimating 782	  

the CPDF would be a set that could not only be shown to provide a good approximation to the 783	  

CPDF when compared to long data sets like HadCRUT3 but also be shown to accurately 784	  

approximate the WPDF when used for short term forecasts. If such a set of quasi-independent 785	  

models could be obtained then ensemble forecasts like those currently used to define the WPDF 786	  

could be seamlessly extended forward in time to provide seasonal, annual, decadal and centennial 787	  

projections. In practice, such ensembles of forecasts will inevitably suffer from dependent model 788	  

errors and the nature of these dependent model errors will depend on the time scale of the quantities 789	  

being forecast. In principle, the replicate-Earth transformation presented here could be used to 790	  

ameliorate the deleterious effects	  of	  correlated model errors on ensemble prediction performance at 791	  

a range of time scales.   792	  

 793	  

We have shown that while error correlation provides a natural choice for a definition of model 794	  

dependence, the level of error correlation we should expect from independent estimates in an 795	  
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ensemble depends strongly on the ensemble interpretation paradigm to which we subscribe. We 796	  

introduced the replicate Earth paradigm of interpretation, which assumes the possibility of inherent 797	  

uncertainty in the climate system at any spatial or temporal scale, and so does not anticipate perfect 798	  

model-observation matching at any scale. An ensemble of perfect model (or replicate Earths) in this 799	  

paradigm were shown to have well defined statistical properties that were not present in the CMIP3 800	  

ensemble. We then outlined an ensemble transformation process to transform the CMIP3 ensemble 801	  

to one that did have these properties and showed that this transformed ensemble provided an 802	  

improved prediction of the distribution of out-of sample observations.  803	  

 804	  
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Figure Captions 927	  

Figure 1: Global mean surface temperature over the last century, expressed as an anomaly. An 928	  
ensemble of climate models is represented by the yellow lines, their multi-model mean in red, and 929	  
the observational record in black (originally Figure TS.23.a in IPCC AR4 Working Group 1 930	  
Technical Summary). 931	  
	  932	  
Figure 2: Mean square error of the optimal linear combination of ensemble members as a function 933	  
of the error correlation parameter ρ  for an idealized 5 member ensemble having an error 934	  
covariance matrix given by Equation (8). 935	  
 936	  
Figure 3: (a) Synthetic model ensemble example illustrating the dependence weighting approach, 937	  
specifically how the estimate it creates is invariant with the addition of dependent models to an 938	  
ensemble, unlike the multi-model mean. (b) Transformation of the ensemble in (a) to be more 939	  
replicate Earth-like in that the multi-model mean produces a better estimate and the ensemble 940	  
variance is constrained, as described in Section 5. 941	  
 942	  
Figure 4: The root mean square difference (RMSD) between (a) CMIP3 multi-model ensemble 943	  
mean, (b) independence-weighted ensemble at each grid cell and the HadCRUT3 data set for years 944	  
1970-1999. White regions indicate greater than 20% missing data. Results are averaged over the 30 945	  
out-of sample tests described in Section 3b. 946	  
 947	  
Figure 5: The relative global root mean square difference of the multi-model ensemble mean with 948	  
several possible weighting strategies including simple bias-correction, weighting for performance 949	  
differences and weighting for model dependence. Results from thirty out-of-sample tests are fitted 950	  
to normal distributions. The persistence-equivalent prediction uses the mean of each month’s 951	  
observed value for all years except the testing year in each out-of-sample experiment. 952	  
 953	  
Figure 6: Rank frequency histograms or Talagrand diagrams of the observation amongst variants of 954	  
the 24-member CMIP3 ensemble. All monthly temperature predictions for 30 years at all grid cells 955	  
are used. The black histogram shows the original ensemble; blue the globally bias corrected 956	  
ensemble; red the globally transformed models, as described in Section 5. 957	  
 958	  
Figure 7: Rank frequency histograms for different sizes of model ensembles incorporating both 959	  
dependence weights and ensemble variance rescaling. Dashed plots show the original, globally bias 960	  
corrected and per-cell bias corrected ensembles at each grid cell and for each monthly value (black, 961	  
blue and green respectively). Resampled global and per-cell transformed model ensembles are 962	  
shown in red and orange, with the frequency of each ensemble member’s inclusion from the 963	  
original 24 model ensemble determined by the transformed models’ weights. 964	  
  965	  
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Table 1: Root mean square difference of the raw multi-model mean, bias-corrected mean, 966	  
performance weighted mean and independence weighted mean. Values are shown separately for the 967	  
1990s (top), 80s and 70s (bottom) with the training decade for corrections and weights shown on 968	  
the left of the first column and testing decade shown on the right of the first column. In-sample tests 969	  
are shaded. 970	  
	  971	  
 MM mean BC mean Perf. weights Indep. weights 
90s > 90s 1.867 1.780 1.753 1.687 
70s > 90s 1.867 1.780 1.752 1.696 
80s > 90s 1.867 1.780 1.754 1.698 
80s > 80s 1.897 1.812 1.785 1.723 
70s > 80s 1.897 1.812 1.783 1.735 
90s > 80s 1.897 1.812 1.784 1.736 
70s > 70s 1.957 1.876 1.840 1.775 
80s > 70s 1.957 1.877 1.843 1.787 
90s > 70s 1.957 1.877 1.842 1.784 
  972	  
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Figure 1: 973	  
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Figure 2: 980	  
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Figure 3:983	  
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Figure 4: 985	  
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Figure 5:  988	  
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Figure 6:  992	  
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Figure 7:  995	  
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(d)   7 models
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(e)   8 models
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(f)   9 models


