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ABSTRACT

This study investigates the presence of trends in annual maximum daily precipitation time series obtained

from a global dataset of 8326 high-quality land-based observing stations with more than 30 years of record

over the period from 1900 to 2009. Two complementary statistical techniques were adopted to evaluate the

possible nonstationary behavior of these precipitation data. The first was a Mann–Kendall nonparametric

trend test, and it was used to evaluate the existence of monotonic trends. The second was a nonstationary

generalized extreme value analysis, and it was used to determine the strength of association between the

precipitation extremes and globally averaged near-surface temperature. The outcomes are that statistically

significant increasing trends can be detected at the global scale, with close to two-thirds of stations showing

increases. Furthermore, there is a statistically significant association with globally averaged near-surface

temperature, with themedian intensity of extreme precipitation changing in proportion with changes in global

mean temperature at a rate of between 5.9% and 7.7%K21, depending on the method of analysis. This ratio

was robust irrespective of record length or time period considered and was not strongly biased by the uneven

global coverage of precipitation data. Finally, there is a distinct meridional variation, with the greatest sen-

sitivity occurring in the tropics and higher latitudes and the minima around 138S and 118N. The greatest

uncertainty was near the equator because of the limited number of sufficiently long precipitation records, and

there remains an urgent need to improve data collection in this region to better constrain future changes in

tropical precipitation.

1. Introduction

Annual maximum daily precipitation data represent

one of the most important and readily available mea-

sures of extreme rainfall and are used frequently as in-

puts to assessments of flood risk (Bates et al. 2008; Field

et al. 2012; Min et al. 2011). Observational studies of this

variable form a critical line of evidence into how pre-

cipitation extremes have changed over the instrumental

record, and recent findings are showing that at global or

continental scales, extreme precipitation events have

been increasing in intensity and/or frequency. For ex-

ample, Alexander et al. (2006) used gridded precip-

itation data based on 5948 stations globally and found

that precipitation changes exhibited a widespread and

significant increase. Min et al. (2011), using the same

dataset but a different analysis approach, found that

65% of the data-covered areas have positive trends for

annual maximum daily precipitation over the period

from 1951 to 1999. Groisman et al. (2005) used a differ-

ent measure of precipitation extremes (themagnitude of

the daily precipitation event falling within the top 10%

or top 5% of all precipitation events) and found that in

the midlatitudes, and in particular over North America,

there has been a widespread increase in the frequency
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of very heavy precipitation events during the past

50–100 years.

These and other studies [e.g., see references in

Seneviratne et al. (2012) and Trenberth et al. (2007)],

which all differ in their methods of analysis, definition of

extreme precipitation indices, and/or the observational

datasets used, consistently report increases in extreme

precipitation in more land locations globally than loca-

tions with decreases. Despite this, there is less confi-

dence in the rate of change and, in particular, how

precipitation might scale with atmospheric temperature

as the atmosphere warms. Trenberth et al. (2003) pro-

vided a physical explanation for why increasing atmo-

spheric temperature might result in an increase in heavy

precipitation and suggested that extreme precipitation

should scale with the water content of the atmosphere

(see also Allen and Ingram 2002). The water content has

been found to scale roughly at the Clausius–Clapeyron

rate of ;7%K21 based on both observational and

modeling studies, with the possible exception of the

drier land regions, where the scaling appears to be lower

(O’Gorman and Muller 2010; Sherwood et al. 2010a;

Simmons et al. 2010; Willett et al. 2007). Therefore,

based on this hypothesis, one would expect annual

maximum daily precipitation to increase in most regions

globally at a rate of ;7%K21.

Although such theoretical arguments might suggest

a relatively uniform sensitivity of extreme precipitation

with atmospheric temperature, recent studies on the

temperature scaling of extreme precipitation showed

that increases above the Clausius–Clapeyron rate are

possible, at least for shorter-duration (e.g., hourly)

precipitation (Berg et al. 2009; Lenderink and van

Meijgaard 2008; Utsumi et al. 2011). Furthermore,

several studies examined the temperature scaling of

extreme precipitation for a range of durations and ex-

ceedance probabilities and found that the rate of

change depended on both factors (Hardwick-Jones

et al. 2010; Utsumi et al. 2011). Finally, a recent study

that looked at the covariation of extreme rainfall and

near-surface temperature inAustralia also found that the

strength of the association with atmospheric temperature

depended on the storm burst duration, with daily pre-

cipitation scaling rates being significantly below the

Clausius–Clapeyron rate of 7%K21 (Westra and Sisson

2011). These studies therefore suggest that the scaling of

extreme precipitation with temperature may be much

more complex than is implied by the Clausius–Clapeyron

scaling hypothesis, with various dynamic and thermody-

namic factors influencing the relationship between ex-

treme rainfall and atmospheric temperature.

An alternative source of information on the scaling of

extreme daily precipitation with atmospheric temperature

comes from the outputs of global coupled general cir-

culation models (CGCMs). Numerous CGCM-based

studies suggest that the intensity of extreme precip-

itation will increase under global warming in many parts

of the world, including many regions where average

precipitation decreases (Kharin and Zwiers 2000, 2005;

Semenov and Bengtsson 2002; Voss et al. 2002). A study

that evaluated an ensemble of CGCMs participating in

the diagnostic exercise for the Intergovernmental Panel

on Climate Change (IPCC) for the Fourth Assessment

Report found a global multimodel multiscenario sensi-

tivity of about 6%K21, although with large intermodel

variability (Kharin et al. 2007). That study also exam-

ined changes in zonally averaged bands and found much

larger increases (but also higher uncertainty) in the

tropics compared with other latitudes, and smaller in-

creases in the drier subtropical regions centered on

308S and 308N. In an update, Kharin et al. (2013) report

that CGCMs participating in phase 5 of the Coupled

Model Intercomparison Project (CMIP5) experiment

(Taylor et al. 2012) supporting the IPCC Fifth As-

sessment Report exhibit a planetary multimodel mul-

tiscenario sensitivity from 6% to 7%K21, but that

median local extreme precipitation sensitivity tends to

be lower globally (;5.3%K21). Finally, the first formal

detection of the observed intensification of extreme

precipitation to human-induced increases in green-

house gases was published by Min et al. (2011), using

a comparison of observed and multimodel-simulated

changes over the latter half of the twentieth century.

This study also noted that models appear to un-

derestimate the sensitivity of annual maximum daily

precipitation relative to observations, based on land

areas with data coverage, with important implications

for how we interpret model-derived projections of fu-

ture extreme precipitation.

The present observation-based study aims to com-

plement this existing research and focuses on the fol-

lowing three objectives. First, this study updates some

of the previous observational studies conducted on

annual maximum daily precipitation data using

a newly compiled record that represents the most

comprehensive, long-running, high-quality record of

precipitation extremes currently available. Second,

this study examines the relationship between annual

maximum precipitation and globally averaged near-

surface temperature to determine whether such a re-

lationship exists and the strength of any relationship.

Finally, meridional variations in the relationship with

near-surface temperature are considered to examine

whether there are any large-scale features that might

be influencing the observed changes in precipitation

extremes.
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2. Data

Annual maximum precipitation values were obtained

from 11 391 land-based observing stations across the

globe. These data represent the most comprehensive,

long-running, high-quality data of precipitation ex-

tremes currently available and have been used to de-

velop the Hadley Center Global Climate Extremes

Index 2 (HadEX2) dataset (Donat et al. 2013). The

calculation of these annual precipitation extremes fol-

lows the definition of the Rx1day (annual maximum

1-day precipitation amount) index recommended by

the joint World Meteorological Organization (WMO)

Commission for Climatology (CCl)/Climate Variability

and Predictability (CLIVAR)/Joint Technical Com-

mission for Oceanography and Marine Meteorology

(JCOMM) Expert Team on Climate Change Detection

and Indices (ETCCDI) (Zhang et al. 2011). While there

are other datasets that contain more in situ daily pre-

cipitation observations, for example, Global Historical

Climatology Network (GHCN)-Daily (Durre et al. 2010;

Menne et al. 2012), these data are not quality controlled

[although quality assurance flags are available for each

data point (Durre et al. 2010)] and in many cases contain

short or incomplete records (Donat et al. 2013). For ex-

ample, in the current version of GHCN-Daily, data for

India do not generally extend beyond the early 1970s,

while in HadEX2 the Rx1day index is available for many

stations over the period 1901–2010.However, the number

of stations available globally varies greatly over time,

reaching a peak in data availability between the 1960s

and 1980s (see Fig. 1). In addition, prior to 1950 most of

the annual maximum precipitation values are confined

predominantly to North America, Europe, India, and

Australia. For this study we also removed several sta-

tions, mainly over Europe, where it was discovered that

the annual maxima did not correspond to any of the

available monthly maxima to which we had access.

Despite this, the data described in Donat et al. (2013)

and used in this study represent themost comprehensive

high-quality land-based observations of annual maxi-

mum precipitation available.

For this study we use a measure of global near-surface

temperature as a covariate for our analysis. Our choice

of this covariate is motivated by a number of factors.

First, specific humidity globally has risen in concert with

a warming atmosphere, and thus, global mean temper-

ature serves as a proxy for the total amount of pre-

cipitable water that is available to produce extreme

precipitation events (Mears et al. 2007; Sherwood et al.

2010b). Second, in most locations, variations in global

mean temperature are positively correlated with those

in regional mean temperature (e.g., Mitchell 2003),

which by extension provides information about in-

terannual variations in annual mean precipitable water.

In addition, the most reliable attribution of the causes of

observed temperature change, and thus the ambient

conditions that might affect precipitation extremes, is on

the global scale (Hegerl et al. 2007). Many other ques-

tions about the dependence of precipitation extremes on

temperature could be asked, for example, by consider-

ing the local temperatures observed simultaneously

with extreme precipitation events. However, the mecha-

nisms that link local contemporaneous temperature var-

iations with precipitation are not necessarily those that

link global warming to extreme precipitation change

(Trenberth 2011, 2012). First-order local effects tell us

little about the quantity of moisture available during

extreme events or the relationship between the mag-

nitude of those events and the prevailing thermal state

of the region that provided the moisture. Also, the data

resources to which we have access do not permit us to

perform a detailed analysis of the various aspects of the

sensitivity of extreme precipitation to temperature vari-

ation on different space and time scales and of the various

mechanisms involved. Therefore, we have chosen the

global mean near-surface temperature anomaly as a co-

variate, being broadly representative of internal varia-

tions in the thermal state of the climate system.

There are four main independent global near-surface

temperature analyses that we could use that extend back

to the mid-1800s, and comparisons between all of these

globally averaged series show them to be in very good

agreement (Kennedy et al. 2010; Sanchez-Lugo et al.

FIG. 1. The total number of stations used in this study that have

records in any given year.
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2012). In this case, the National Aeronautics and Space

Administration (NASA) Goddard Institute for Space

Studies (GISS) series (Hansen et al. 2010) was selected

and annual near-surface global temperature anomalies

with respect to the 1951–80 base period were used (see

Fig. 2). The method for incorporating these two data

sources is described in the following section.

3. Methodology

The results in this paper are based on two well-

established and complementary statistical methods for

testing whether time series data such as annual maxi-

mum precipitation are nonstationary. The first method

uses the Mann–Kendall nonparametric trend test to

evaluate whether there is a monotonic trend in the se-

ries. One of the advantages of this test is that it does not

make any assumptions on the distribution of the data,

other than that under the null hypothesis, the data are

independently distributed in time. The secondmethod is

based on extreme value theory and tests whether one of

the parameters of the generalized extreme value (GEV)

distribution, when fitted to the series of annual maxi-

mum precipitation, is changing as a function of the

global average near-surface temperature anomaly se-

ries. This imposes a specific distributional form on the

precipitation data (the GEV distribution) that is well

supported by statistical extreme value theory, as well as

a specific form of the nonstationarity (the global near-

surface temperature trend). Finally, it is noted that both

methods are univariate and are therefore applied to

each station separately. To make inferences about the

presence of trends at regional and global scales, a ‘‘field

significance’’ resampling approach is adopted, account-

ing for both spatial and temporal dependencies. Each

aspect of the statistical methodology is described further

below.

a. Mann–Kendall test

The Mann–Kendall test is a widely used non-

parametric test for evaluating the presence of mono-

tonic trends in time series data (Chandler and Scott

2011). The test has been applied frequently in analyzing

environmental data (Hipel and McLeod 2005), in-

cluding a number of recent studies that test for changes

in rainfall extremes (e.g., Alexander and Arblaster

2009).

We are concerned here with the annual maximum

daily rainfall series at a given location. We use the vari-

ablemt, with t5 1, . . . ,T, to denote these annualmaxima,

and with T being the total number of years of data in the

record. If we define differences in the data values be-

tween different time steps as

d(t1, t2)5mt
2
2mt

1
, (1)

with t2 . t1, then the test statistic becomes

N5 �
T21

t
1
51

�
T

t
2
5t

1
11

sgn[d(t1, t2)] , (2)

with sgn[d(t1, t2)] denoting the sign of d(t1, t2). The test

statistic N represents the number of times mt2 is greater

thanmt1 , minus the number of timesmt1 is greater than

mt2 , for all possible combinations of mt2 and mt1 with

t2 . t1. A positive value of N implies that the time series

increasedmore frequently than it decreased (and vice versa

for a negative value of N), and the value of N is bounded

by6T(T2 1)/2. Kendall’s t is a normalized version of this

statistic, which is obtained by dividing by this upper bound

t5
2N

T(T2 1)
, (3)

so that t is bounded by [21, 1]. Assuming the data are

serially independent, the null hypothesis can be ap-

proximated by a normal distribution, with more details

in Chandler and Scott (2011). The median value of the

autocorrelation coefficient of the annual maximum

precipitation across all global stations with more than

30 years of record was found to be 0.0017; therefore, the

assumption of serial independence appears to be valid

on average. The Mann–Kendall analysis was conducted

using the R package ‘‘Kendall’’ (McLeod 2011).

FIG. 2. NASA GISS global near-surface temperature anomaly

series in kelvins (Hansen et al. 2010) where anomalies have been

calculated with respect to the 1951–80 base period.
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b. The nonstationary generalized extreme value
model

The statistical characteristics of very small and large

values of a distribution has been an area of active re-

search over the past few decades and has led to the

emergence of extreme value theory as the unifying

theory describing the statistical behavior of such ex-

tremes (Gumbel 1958; Leadbetter et al. 1983). One of

the most commonly studied instances of an extreme

concerns the maximum of a stationary time series that

satisfies appropriate mixing conditions (e.g., Leadbetter

et al. 1983), X1, . . . , Xn, written as

Mn 5maxfX1, . . . ,Xng , (4)

where we use the uppercase M to denote a random

variable representing the maximum value over a block

of n observations (e.g., see Coles 2001). In our applica-

tion, X represents a time series of daily total rainfall at

a given site, and n is a block size of 365 days (or 366 days

for leap years), such that Mn denotes the annual maxi-

mum rainfall in a given year.

It can be shown that under fairly general conditions,

the probability distribution of a normalized version of

Mn converges in distribution to one of three families of

extreme value distributions, denoted by G(z) (Fisher

and Tippett 1928; Gnedenko 1943; Jenkinson 1955; von

Mises 1954) as n/‘. These families are known as the

Gumbel, Fr�echet, and Weibull distributions and can be

combined into a single distribution known as the GEV

distribution:

G(z)5 exp
n
2
h
11 j

�z2m

s

�i1/jo
, (5)

where m, s . 0, and j are the location, scale, and shape

parameters, respectively. Although the theory applies

in the general case only in the limit as n/‘, in practice

this result allows the GEV distribution to be substituted

as an approximation to the actual distribution of ob-

served block maxima for finite n, and there is now sub-

stantial literature on the use of this distribution for both

observed and climate model–simulated annual maxi-

mum precipitation series (e.g., Coles et al. 2003; Kharin

and Zwiers 2005; Kharin et al. 2007; Min et al. 2009;

Westra and Sisson 2011).

We are interested here in how the behavior of random

variable Z changes over time and, in particular, whether

the observations of the annual maximum daily rainfall

accumulation can be represented as random year-to-

year fluctuations from a stationary probability distribu-

tion (the null hypothesis) or whether the distribution is

changing systematically through time. Written more

precisely, we are interested in testing the hypothesis that

one of the parameters of the GEV distribution, the lo-

cation parameter, is changing through time:

Zt ;GEV[m(t),s, j] , (6)

with

m(t)5b01b1y(t) (7)

and with y(t) denoting a time-varying covariate and b0,

b1 representing unknown parameters to be estimated. In

our analysis, y(t) is the global average near-surface tem-

perature in year t. We also modeled a time-varying scale

parameters(t) [see, e.g.,Kharin andZwiers (2005)] to each

of the gauges and found the results were very similar to the

results when only modeling a nonstationary location pa-

rameter. Therefore, the results presented in this paper are

based on the more parsimonious location-only model.

We use the method of maximum likelihood to esti-

mate all the model parameters, and we adopt a likeli-

hood ratio test for the hypothesis testing. The test is able

to handle missing years of record since only those years

with data are included in the likelihood function, and

therefore an uninterrupted rainfall record is not re-

quired. We only impose a constraint that the record

length must be above some minimum number of years,

with various thresholds adopted in the analysis as de-

scribed in more detail in section 4. Further details on the

methodology are available in Coles (2001). The extreme

value analysis was conducted using theR package ‘‘evd’’

(Stephenson 2002).

c. Calculating field significance

Although standard inferential techniques exist for

evaluating univariate tests such as those described

above, application to spatial datasets where there is

spatial dependence ismuchmore complex. For example,

in the case of extreme value distributions, spatial analogs

of the univariate extreme value distribution have only

recently been developed (Padoan et al. 2010), and limited

research has been conducted on using such techniques

for modeling the nonstationarity of climate data such

as precipitation (Westra and Sisson 2011). Furthermore,

these applications focused on subcontinental-scale spatial

rainfall using only 46 and 35 stations for the Padoan et al.

(2010) andWestra and Sisson (2011) studies, respectively.

At present, the application of such techniques to large

amounts of global data is computationally infeasible.

As an alternative, for the present study we use a field

significance resampling-based procedure (von Storch

andZwiers 1999;Wilks 2011) wherewe calculate the test

statistics on the observed time series, as well as 1000
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resampled replicates, to evaluate the probability that the

test statistics are significant under the null hypothesis

and that the annual maximum data are stationary. A

range of test statistics were considered, including the

percentage of locations with statistically significant co-

variance with temperature for the nonstationary GEV

analysis and the percentage of locations with statistically

significant trends for the Mann–Kendall test. To ensure

that spatial dependence is maintained, we form matrix

m, which is a T 3 S matrix in which the rows T denote

time and the columns S denote the spatial location. Then

each resampled matrix involves drawing (with re-

placement)T rows fromm to formm*, thereby ensuring

the sequencing of the series in time is lost but the de-

pendencies across space are preserved. This enables us

to test whether the annual maximum data globally or

over specific geographic domains are nonstationary.

Finally, although in section 3a it was indicated that the

autocorrelation ofmtwas close to zero on average across

all stations globally, we evaluated the need for using

a moving blocks bootstrap that accounts for autocorre-

lation. This approach is described in Wilks (1997) and is

based on calculating a variance inflation factor that uses

the autocorrelation at all lags to estimate the time be-

tween ‘‘effectively independent samples.’’ Other studies

that have investigated either observed or modeled

trends in precipitation extremes have used such a block

bootstrapping approach, finding that a block size of two

or three was usually required to account for autocorre-

lation effects (e.g., Alexander et al. 2006; Kiktev et al.

2003, 2007). These studies were based on the charac-

teristics of precipitation data with longer aggregation

periods, and by contrast, the outcome of our analysis

using the annual maximum data was that using a block

size greater than one was not necessary. We therefore

adopted only the conventional spatial bootstrap pro-

cedure for most of the analyses.

4. Results

a. Mann–Kendall test

We commence by examining the presence of mono-

tonic trends in the Rx1day data using theMann–Kendall

test. As discussed in the previous section, this test does

not make distributional assumptions on the data, nor

does it impose a specific form on the trend other than

that it increases or decreases monotonically. The as-

sumption that the data are serially independent was

discussed in section 3a, and no evidence for significant

autocorrelation was found.

We conduct our analysis on all stations withmore than

30 years of data over the period from 1900 to 2009.

These criteria were selected to maximize the number of

stations available for inference, while at the same time

excluding very short records. A total of 8326 out of the

11 391 records met these criteria, and the median length

of record for stationsmeeting these criteria was 53 years.

On the basis of the test statistic described in section 3a,

we classified each station as ‘‘significant increasing,’’

‘‘significant decreasing,’’ and ‘‘no significant’’ trend,

using a 5% two-sided significance level. This significance

level implies that about 2.5% of stations would show

significant increasing and significant decreasing trends

by random chance.

The results showed that 8.6% of stations had signifi-

cant increasing trends, while 2.0% had significant de-

creasing trends. To test whether this is statistically

different from the null hypothesis that there are no

trends, we use the resampling methodology described in

section 3c to generate a distribution of the percentage

significant increasing and decreasing trends under the

null hypothesis that there are no trends. The results of

this analysis are shown in Fig. 3, and the observed per-

centage of stations with significant increasing trends

clearly falls outside this distribution. In contrast, the

observed percentage of stations with significant de-

creasing trends falls within the null hypothesis distri-

bution. We note that, although the discussion in section

3c showed that moving block bootstrapping was not

required, we repeated the analysis using a block size of

4 years [well above the value of 2 or 3 recommended in

Kiktev et al. (2003)], and the results were consistent with

our original analysis.

Another way of presenting the results involves ex-

amining the percentage of stations showing increasing

and decreasing trends and evaluating the probability

that this is occurring under the null hypothesis that there

is no significant trend. On the basis of the observed

precipitation data, we find that 64% of stations show

increasing trends and 36%showdecreasing trends. This is

close to the finding by Min et al. (2011) that 65% of grid

boxes had positive trends, using 1-day annual maximum

data from the HadEX gridded extremes dataset over the

period from 1951 to 1999. We evaluated the distribution

of increasing and decreasing trends under the null hy-

pothesis, and the distribution is shown in Fig. 4. As ex-

pected, on average, about 50% of stations show increases

and 50% show decreases under the null hypothesis, and

the observed percentage of stations showing increases

falls clearly outside of this distribution.

b. Nonstationary generalized extreme value analysis

In the previous section we established that there is a

significant increasing trend in annual maximum pre-

cipitation on average at the global scale.Wenowexamine
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this issue in more detail by conducting a nonstationary

extreme value analysis using the global near-surface

temperature trend as the covariate. Similar to theMann–

Kendall test described above, we commence by analyzing

the set of 8326 stations with more than 30 years of data

over the period from 1900 to 2009, with the average re-

cord length being 53 years. We also analyze longer pe-

riods of record and different time windows and discuss

the results from these alternative analyses later in this

section.

We use the likelihood ratio test to evaluate the hy-

pothesis that the extremes are varying in response

to global mean near-surface temperature variations

against the null hypothesis that there is no significant

covariation. To this end, we classified stations as ‘‘sig-

nificant positive association,’’ ‘‘significant negative as-

sociation,’’ and ‘‘no significant association’’ with the

global mean near-surface temperature series. Once

again, we used a 5% significance level, which means

that under the null hypothesis, about 2.5% of stations

should show significant positive association and about

2.5% should show significant negative association by

random chance.

1) GEOGRAPHIC DISTRIBUTION OF STATIONS

EXHIBITING SIGNIFICANT TRENDS

The results of the analysis show that 10.0% of stations

globally had statistically significant positive associations

with the annual global mean near-surface temperature

series and 2.2% had significant negative associations.

The spatial locations of these stations are given in Fig. 5,

and the larger number of positive associations relative to

negative associations is clearly apparent. The uneven

geographic distribution of stations is also evident, with

locations that have long records being well represented

in North America (particularly the United States),

western Europe, and South Africa. In contrast, the

majority of the African landmass, Indonesia, parts of

South America, and the sparsely populated areas of

Australia are particularly poorly represented, either

because the records are unavailable or because they

were shorter than the 30-yr threshold used in this

analysis.

FIG. 3. Percentage of stations showing statistically significant (left) increasing and (right) decreasing trends based

on the Mann–Kendall test. The histogram represents the distribution of results from 1000 bootstrap realizations of

the global annual maximum rainfall data, and the red dot represents the value from the observed data.

FIG. 4. Percentage of sample with increasing trends based on the

Mann–Kendall test. The blue histogram was obtained from re-

sampling with 1000 replicates, and the red dot was based on the

observed sample.
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Another feature of this plot is that, although the

number of stations with increasing trends outnumber

the stations with decreasing trends, it is difficult to iso-

late a clear geographic pattern associated with the in-

creases [see alsoMin et al. (2011)]. For example, visually

inspecting the landmass covered by Russia, Mongolia,

China, and India, the stations with increases and de-

creases appear to be randomly distributed over the do-

main. Similar conclusions appear to hold for South

America and Australia, except in the latter case, where

there are a larger number of stations with decreasing

trends relative to stations with increasing trends. These

results are consistent with what is expected under an

enhanced greenhouse gas climate, with Kharin et al.

(2007) anticipating an intensification of precipitation

extremes in most regions, except in areas of downwel-

ling atmospheric circulation in the subtropics.

Examining the magnified plot of North America

(Fig. 6), it is again difficult to discern visually any clear

spatial pattern. Similar results are also apparent for

Europe (Fig. 7), although for this continent a larger

degree of spatial clustering can be observed that might

be related to the high station density in this region.

This is particularly evident for the region around the

Netherlands, Belgium, western Germany, and south-

ern Scandinavia, where the gauging density is highest.

Finally, the magnified plot of southern Africa (Fig. 8)

shows that the stations with significant decreases only

occur in the eastern half of the country, although based

on visual inspection, it is difficult to infer whether

this pattern is from sampling variability or a coherent

signal.

2) A SIGNIFICANT RELATIONSHIP WITH GLOBAL

MEAN NEAR-SURFACE TEMPERATURE?

It was discussed in the previous section that of all the

stations analyzed, more than 4 times the number of

stations showed significant positive associations with

global mean near-surface temperature anomalies com-

pared with significant negative associations. Can this

result be attributed to random variability under the null

hypothesis that the extremes from one year to the next

are independently distributed, or does this result in-

dicate there may be a significant positive association

with global temperature in the data?

We resample the global precipitation data 1000 times

to generate a distribution of the fraction of stations

showing statistically significant positive and negative

FIG. 5. Plot of the outcome of the nonstationary generalized extreme value analysis for each of 8326 stations that

met specified selection criteria (see text). Solid blue (red) dots indicate a statistically significant positive (negative)

relationship with the global mean near-surface temperature anomaly series at the 5% (two sided) significance level,

while open black dots indicate no statistically significant relationship. Solid gray dots indicate that the series was too

short for inclusion in the analysis.

FIG. 6. As in Fig. 5, but for North America.
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associations and compare this with the fraction of sta-

tions showing significant positive and negative associa-

tions in the original data. The results are shown in Fig. 9.

In the case of positive associations (left panel), it is clear

that the observed value of 10.0% is substantially outside

the distribution obtained from the resampled data, in-

dicating that the observations do not appear to be con-

sistent with the null hypothesis. In fact, not a single

sample out of the 1000 realizations showed a percent-

age of stations with significant positive associations that

are similar to the value observed. In contrast, consid-

ering the distribution of negative associations (right

panel), the observed value of 2.2% falls comfortably

inside the distribution of negative associations obtained

by resampling.

A different way of expressing these results is provided

in Fig. 10. Here, we estimate the percentage increase

in annual maximum daily precipitation per kelvin of

global surface temperature change, which can be eval-

uated directly once the model in Eq. (6) has been fitted

to the data. The percentage change per kelvin was esti-

mated at all stations, and the distribution of percentage

increases is shown, along with whether the association

between annual precipitation extremes and the global

mean temperature anomalies is significant or not. The

distribution of the percentage of stations with positive

associations with temperature shows that a greater

number of stations have estimated positive associations

(65%) relative to negative associations (35%). As the

absolute magnitude of the percentage change per kelvin

increases, the proportion of stations with statistically

significant changes also increases, although large per-

centage changes that are not statistically significant can

also be observed. This is because the length of record for

each station is different, and themagnitude of variability

relative to the underlying trend (the signal-to-noise ra-

tio) therefore also varies from one station to the next,

and the inference takes this into account.

Considering all stations—both significant and not

significant—together, the median percentage increase in

annual maximum precipitation per kelvin of global

surface temperature increase was found to be 7.7%.

Once again, it is possible to use a resampling technique

to evaluate the significance of this result, and it can be

seen (Fig. 11) when comparing this value with the dis-

tribution of resampled data that the magnitude of the

global average extreme precipitation sensitivity was

significantly different to the range that could be ex-

pected under the null hypothesis.

3) LATITUDINAL VARIATION OF TRENDS

The latitudinal variations of the trends are now in-

vestigated to determine whether the finding of a median

sensitivity of 7.7% K21 globally is distributed evenly or

whether there are distinct meridional features. To this

end, we look at the fraction of stations exhibiting sta-

tistically significant associations with global near-surface

temperature, as well as the median value of the change

per kelvin of temperature, within a 658 latitudinal

moving window. This is repeated for the resampled data

to obtain confidence intervals for each latitudinal band.

Before interpreting the results, it is important to note

the uneven distribution of observing stations in the dif-

ferent latitudinal bands. This is shown in the top panel of

Fig. 12, which depicts the number of stations that meet

the minimum criterion of a 30-yr record length. The

results show a maximum around 488N latitude (repre-

senting a band from 438 to 538N latitude), encompassing

the northern half of the United States and southern

FIG. 7. As in Fig. 5, but for Europe. For visualization purposes, red

dots overlay blue dots.

FIG. 8. As in Fig. 5, but for southern Africa.
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Canada, together with a large portion of Europe and

Russia. A second maximum is in the Southern Hemi-

sphere around 308S (258–358S) latitude and encompasses

the densely gauged portions of Brazil, South Africa, and

Australia. In between these two latitude bands is

aminimum value near the equator, with the lowest value

of only 59 stations in the band centered on 18N latitude.

This is almost two orders of magnitude less than the

Northern Hemisphere maximum value, highlighting the

importance of improved monitoring and coordinated

data collection efforts at equatorial latitudes. Finally, an

examination of the station locations in Fig. 5 shows that

the data is not evenly distributed zonally, partly because

of the uneven sampling distribution of the precipitation

FIG. 9. Fraction of stations showing statistically significant (left) positive and (right) negative association between

variations in extreme precipitation and global mean near-surface temperature anomalies. The histogram represents

the distribution of results from 1000 bootstrap realizations of the global annual maximum rainfall data, and the red

dot represents the value from the observed data.

FIG. 10. Histogram of percentage increase in annual maximum rainfall per kelvin global

average surface temperature change for each of the 8326 stations that met specified selection

criteria (see text). Red coloring indicates the relationship is statistically significant at the 5%

level.
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gauges and partly because of the uneven distribution of

land areas and oceans; this should also be taken into

account when interpreting the results.

Considering first the fraction of stations exhibiting

significant increases (Fig. 12, middle), it can be seen that

there are some clear meridional variations, with the

largest proportion of stations that have positive associ-

ation with global mean near-surface temperature lo-

cated near the equator and a second maxima at about

558N. The two locations with the minimum fraction of

significant positive associations are at 158S and 68N. It is

noted that the resampling methodology takes the lower

sample sizes near the equator into account, with the

confidence interval being much wider in the less well

gauged parts of the domain. The results of our analysis

are reasonably consistent with the model-derived results

under a future greenhouse gas–enhanced climate (Kharin

et al. 2007), except that the latitudes with the minimum

fraction of positive associations are closer to the equator

compared with the modeling studies.

Finally, we plot the median estimate of the sensitivity

of annual extreme precipitation per kelvin warming by

latitude (Fig. 12, bottom). The general pattern reflects

the conclusions of the middle panel, with the largest

positive associations near the equator and a second

maxima occurring in the higher latitudes of the North-

ern Hemisphere. Minima exist at 138S and 118N, and

both these minima are not statistically significantly dif-

ferent from the null hypothesis, which is that there is no

trend at these latitudes.

4) IMPLICATIONS WHEN USING DIFFERENT DATA

PERIODS

All of the results from the preceding analysis were

based on the set of stations between 1900 and 2009 with

at least 30 years of data, with the median number of

years per station in this dataset being 53 years. As dis-

cussed in section 2, the number of stations with rainfall

data increased significantly in the first half of the twen-

tieth century, plateauing from about 1960. Therefore,

the majority of the dataset is likely to be from the latter

part of the record, although sequences from the early

part of the twentieth century are also included in the

analysis.

To ensure that the results are not substantially influ-

enced by the period of record or the median length of

record, we conduct the analysis on different subsets of

data, summarized in Table 1. The first three analyses

consider the full period from 1900 to 2009 but use dif-

ferent thresholds for the minimum record length. The

last two analyses are for the different periods of record,

with the first 60 years of the twentieth century compared

with the last 40 years of the twentieth century and the

first 10 years of the twenty-first century.

Considering the first three analyses, it can be seen in

Table 1 that by increasing theminimum number of years

to be analyzed from 30 to 70 years, the number of sta-

tions meeting this minimum threshold drops dramati-

cally from 8326 stations to 2124 stations. Interestingly,

the percentage of stations with positive associations, and

FIG. 11. Global median of estimates of the local sensitivity of annual precipitation extremes

to a 1-K increase in global mean near-surface temperature. The histogram represents the

distribution of results from 1000 bootstrap realizations of the global annual maximum rainfall

data, and the red dot represents the value from the observed data.
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the median sensitivity, is remarkably constant (ranging

from 6.5%K21 for the longest threshold to 7.7%K21 for

the shortest threshold), indicating an absence of system-

atic biases caused by record length. The percentage of

stations with significant positive associations increases

from 10.0% (30-yr threshold) to 11.7% (70-yr threshold).

This is likely to be because of the enhanced statistical

power of the likelihood ratio test for longer records.

Considering the two subperiods, it can be seen that

results are again very consistent with those of the

preceding analysis. For the period from 1900 to 1959, on

average, 59% of stations show positive association, with

a median percentage increase of 5.9%K21 global average

surface temperature. The more recent period from 1960

to 2009 shows a slightly higher percentage of stations

with increasing trends and a temperature sensitivity of

7.2%K21. The general conclusion appears to be that

neither record length nor sampling period has a substantial

effect on the relationship between annual maximum pre-

cipitation and globally averaged near-surface temperature.

FIG. 12. Variation in the estimated sensitivity of annual maximum precipitation to a 1K

increase in global mean temperature by latitude. (top) The number of stations within each658
latitude band. (middle) The fraction of stations exhibiting significant positive association, with

light blue shading indicating the upper 97.5% confidence bound and dark blue shading in-

dicating the median of the confidence interval. (bottom) Sensitivity (%) of annual maximum

precipitation per kelvin warming of global near-surface temperature, with light blue shading

indicating the upper 97.5% confidence bound.
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5) IMPLICATIONS OF UNEVEN GEOGRAPHIC

COVERAGE

To account for the uneven geographic distribution of

stations, a revised estimate of the sensitivity of annual

maximum precipitation to global mean near-surface

temperature was calculated. The approach adopted was

to 1) divide the world into 18 latitude3 18 longitude grid
boxes, 2) calculate the mean sensitivity across all of the

stations within each grid box, and 3) construct an area-

weighted global average sensitivity from the gridbox

averages. This weighted average significantly reduces

the importance attached to stations in highly gauged

regions (e.g., in parts of Europe) relative to other less

densely gauged parts of the world and is therefore ex-

pected to provide an estimate of the sensitivity of global

land annual maximum precipitation with globally aver-

aged near-surface temperature that is more represen-

tative of a typical location with observations.

These results are also shown in Table 1 and demon-

strate that median global land sensitivity is 7.0%K21

change in global near-surface temperature. This is con-

sistent with the unweighted results and therefore sug-

gests that the uneven geographical coverage does not

have a large bearing on the estimated global tempera-

ture sensitivity of annual maximum precipitation.

5. Discussion and conclusions

In this study a large, high-quality dataset of annual

maximum daily precipitation has been analyzed to

evaluate the presence of trends at global and regional

scales. The analysis was based on the application of two

complementary statistical methods: one that tested for

monotonic trends and the other that tested for a signifi-

cant association with globally averaged near-surface

atmospheric temperature. Consistent with the findings

of Min et al. (2011), the results showed that nearly two-

thirds of rainfall stations globally exhibited increasing

trends, with these increases being statistically significantly

different from the null hypothesis, which is that there is

no global trend. Furthermore, the nonstationary extreme

value analysis showed a statistically significant positive

association with near-surface atmospheric tempera-

ture, with a global median value ranging from 5.9% to

7.7%K21, depending on the method of analysis used.

The consistency of the results between the Mann–

Kendall and nonstationary generalized extreme value

analysis is remarkable, as is the consistency of the results

when using different observational periods. In particular,

a median sensitivity in annual maximum precipitation

data with a 5.9% intensification of annual precipitation

extremes per kelvin of warming globally was found when
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only considering records longer than 30 years over the

period from 1900 to 1959, and a median sensitivity of

7.2%K21 was found when considering records from 1960

to 2009, which suggested a relatively stable association

with globally averaged near-surface temperature.Whether

such an association will continue into the future as the

atmosphere warms is an important research question, and

the study by Kharin et al. (2007) found a model-averaged

increase of 6%K21, with most models having sensitivities

in the range of 4%–10%K21 when considering the 20-yr

return values of annual extremes of 24-h precipitation

amounts. A recent update based on the CMIP5 experi-

ment (Kharin et al. 2013) draws similar conclusions.

The meridional variation in the magnitude of the as-

sociation with temperature was also interesting, with the

greatest positive associations occurring in the tropics in

a band roughly between 68S and 38N, andminima at both

138S and 118N. The higher latitudes also showed stronger

positive associations, particularly in the Northern Hemi-

sphere above about 508N.We note, however, the uneven

distribution of stations across the globe, with some re-

gions much better represented than others. The tropics

are particularly poorly sampled, and the strong positive

association between annual maximum precipitation and

global near-surface temperature highlights the impor-

tance of improved monitoring in these latitudes.

Finally, we emphasize that caution is required in

interpreting our finding of a median rate of change of

annual maximum daily precipitation of 7%K21 global

mean near-surface temperature. This rate is similar to

that implied by the Clausius–Clapeyron relationship,

which would suggest that precipitation extremes are

increasing in accord with the increase in atmospheric

moisture. However, our results show distinct meridio-

nal variations, highlighting that other factors such as

changes in atmospheric circulation may also be im-

portant in explaining the observed changes. Further-

more, as highlighted in the introduction, these results only

apply to daily time scale precipitation extremes and can-

not necessarily be applied to shorter-duration time scales.
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