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Abstract 

 

The Southern Ocean plays a central role in global biological production (Sarmiento et al., 

2004). Quantifying the mechanisms that regulate magnitude and variability in plankton 

biomass in the Southern Ocean is a key challenge in understanding controls on global 

climate (Busalacchi, 2004). Numerical models are an integral means of understanding 

large scale views of seasonal plankton cycles (Fasham et al., 1990). Marine 

biogeochemical models are characterised by non-linear dynamics and the annual model 

trajectories are highly sensitive to the parameters used to run them. Experiments were 

performed to select a stochastic inverse method to objectively estimate the parameters of 

a simple four component nitrogen based mixed-layer marine ecosystem model for the 

Southern Ocean. Twin experiments using the Metropolis-Hastings algorithm and 

simulated annealing show that simulated annealing holds promise as a standard means of 

assigning the parameters of marine biogeochemical models in a way that improves the 

model agreement to available observations.  

 

SeaWiFS surface chlorophyll estimates in the Sub-Antarctic Zone show low 

concentrations south west of Tasmania and high concentrations south east of Tasmania. 

Simulated annealing was used to estimate the model parameters at two locations in the 

Sub-Antartic Zone (station P1 at  140�E ,  46.5�S  and station P3 at  152�E , 45.5�S ) 

through assimilation of SeaWiFS chlorophyll observations. Model parameter estimates 

were compared to in situ parameter estimates from the SAZ-Sense (Sub-Antarctic Zone 

Sensitivity to environmental change) project stations P1 and P3 in the austral summer of 

2007.  

 

The parameter estimates suggest that different ecosystems are present within the Sub-

Antarctic Zone. Station P3 has higher regenerated production with an f-ratio of 0.57 

compared to P1 which has an f-ratio of 0.70, indicating larger size fractionated 

phytoplankton at P1 with a greater capability to sink and smaller size fractioned 

organisms at P3 with greater recycling ability. Different biological processes rather than 

different physical conditions between the two sites are responsible for the difference in 
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ecosystem function in our experiments. At P3 the optimisation results in satisfactory 

estimates of recycling rates but underestimates primary production, zooplankton biomass 

and zooplankton grazing. We conclude that the same ecosystem model structure is not 

applicable at both stations and we need additional processes at P3 to reproduce the 

observed seasonality of phytoplankton and the observed primary productivity. We 

hypothesize that the missing processes in the ecosystem model at P3 are iron limitation of 

phytoplankton and the seasonal variations in atmospheric deposition of iron. 

 

SeaWiFS surface chlorophyll estimates and Levitus nitrate estimates in the Southern 

Ocean south of Australia (140 
�

E) show that this region is characterised by a high-nitrate 

low-chlorophyll (HNLC) regime typical of Southern Ocean waters. The HNLC 

conditions become more prominent moving south from the Sub-Antarctic Zone, with 

surface chlorophyll generally decreasing and nitrate increasing with latitude. Simulated 

annealing was used to fit the ecosystem model to SeaWiFS surface chlorophyll data in 

the Sub-Antarctic Zone, Polar Frontal Zone and Antarctic Zone. We hypothesise that bio-

availability of iron limits phytoplankton growth in this region. The most reliable 

physiological indicator of iron availability was investigated by optimising the model 

parameters for maximum photosynthetic growth and maximum photosynthetic efficiency 

of phytoplankton. 

  

The parameter optimisations indicate that phytoplankton growth rates in the Polar Frontal 

Zone and Antarctic Zone are limited by some process not explicitly included in this 

model, with iron availability being the most likely candidate. In our experiments 

variations in ecosystem functioning caused by iron availability are more significant than 

differences caused by light availability. Based on these optimisations we support the 

contention that micronutrient availability, such as iron, is the primary cause of the HNLC 

conditions in the Australian sector of the Southern Ocean.  

 

Unification of the information provided by observationalists and modellers is a valuable 

approach for improving understanding of marine ecosystem dynamics. Measurements of 

atmospheric deposition of iron, phytoplankton growth rates, primary production, f-ratio 
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and processes contributing to regenerated production throughout the year are needed to 

support Southern Ocean modelling studies.  
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The ocean plays an integral role in the climate system by regulating the amount of carbon 

dioxide in the atmosphere. Carbon dioxide (CO 2 ) from the atmosphere dissolves in the 

surface waters of the ocean where it undergoes rapid chemical reactions. The carbon 

dioxide and the associated chemical forms are collectively known as dissolved inorganic 

carbon (DIC).  

 

The oceans are responsible for the uptake of 2.2 ± 0.4 Pg C yr . (Takahashi et al., 2002) 

and contain 60 times more carbon than the atmosphere. As well as being transported 

around the globe by ocean currents, DIC is used by ocean biology; carbon fluxes in the 

ocean are often described in terms of the solubility pump and biological pump. 

 

1.1 Plankton and the Biological pump  

Phytoplankton are the most numerous organisms on the planet (Hallegraeff, 2006), and 

are the basis of most ocean food chains. For the past 3.5 billion years they have been 

controlling Earths climate through oxidation (Lee and de Mora, 1999; Falkowski et al., 

1988) and the trapping of carbon dioxide (Riebesell et al., 1993).  

 

The Earth’s store of materials is fixed and finite; biologically important elements must be 

constantly recycled. During recycling the form of these elements continually changes as 

one chemical compound is transformed into another. Through the process of 

photosynthesis, phytoplankton produce organic compounds in the sun lit surface oceans 

from dissolved carbon dioxide and nutrients. Much of the organic matter produced is 

recycled within the surface waters through the food web structure of phytoplankton, 

zooplankton and bacteria but some survives and is transported out of the photic zone 

towards the ocean floor through sinking of dead organisms or faecal pellets. At depth 

remineralisation processes such as bacterial respiration transform the organic carbon back 

into DIC hence there is a net transfer of carbon from surface to depth  A small fraction of 

this carbon is transported below the thermocline, where currents transport it to the deep 

ocean and it is ‘buried’ for hundreds to thousands of years. This process is known as the 

‘soft tissue pump’. Some species of phytoplankton and zooplankton form mineral 



 

 3 

calcium carbonate shells in the upper ocean waters. When they die their shells sink and 

dissolve either in the water column or in sediments. This process adds to the downward 

transport of DIC from the surface to the abyss and is termed the ‘carbonate pump’. 

Together the soft tissue pump and the carbonate pump make up the ‘biological pump’.   

 

 

 

 

 

Figure 1.1: The ocean biological pump 
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Current literature suggests that photosynthetic carbon fixation by phytoplankton leads to 

the formation of approximately 45 Gt C yr
�1

 of which about 16 Gt are transported to the 

ocean interior through dissolved and particulate matter (Falkowski et al., 1998) 

Given that air – sea carbon fluxes controlling the ocean carbon concentration have 

historically been in balance - a conjecture verified by ice core data of atmospheric CO 2  

concentrations, which were remarkably stable for 10000 years before the industrial 

revolution (Neftel et al., 1982), it is assumed that the biological pump had been operating 

in steady state for many thousands of years preceding the eighteenth century. In addition, 

of the main chemical constituents that make up the soft tissue of all organisms (oxygen, 

hydrogen, carbon, nitrogen and phosphorus) nitrogen and phosphorus have the potential 

to limit phytoplankton productivity because they are not always found in forms that are 

biologically available (Ayres, 1997). Carbon, as well as oxygen and hydrogen, is 

abundant everywhere and does not limit growth of phytoplankton; therefore it is also 

widely assumed that the biological pump has continued operating in steady state since 

industrialisation despite the associated increase in atmospheric CO 2  levels (Anderson 

and Totterdell, 2004). However it cannot be assumed that this steady state will continue 

forever, and it has been suggested that the steady state assumption needs to be re-

evaluated (Sarmiento and Gruber, 2006; Riebesell et al., 2007) . 

 

Anthropogenic CO 2  causes changes in the inorganic aspects of ocean chemistry which 

effect the biological uptake of CO 2 . Taylor et al. (2002) demonstrate that biological 

systems may respond to climate signals other than those that dominate the driving 

variables. Sarmiento et al. (1998) caution that biological changes may already be 

occurring and that they could easily modify the ocean carbon sink substantially between 

now and the middle of the twenty-first century. They report the largest potential 

modification is found in the Southern Ocean where increased stratification could decrease 

upward transport of excess DIC and cause an increase in biological pump efficiency. 

Conversely Maier-Reimer et al. (1996) report that the potential slowing of the 

thermohaline circulation could result in reduced nutrient upwelling and a reduction in 

biological pump efficiency. 
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In general it is clear that future climate driven changes could modify biogeochemical 

cycles and it is not known how ecosystems will respond to increasing CO 2  levels in the 

ocean. It is essential to investigate ocean biogeochemical cycles to understand the 

evolving role of the ocean in the face of environmental change. 

1.2 The Southern Ocean 

The Southern Ocean plays a central role in regulating ocean-atmosphere carbon 

exchanges, the climate system and biological production (Marinov et al., 2006) and is 

recognised as the body of water most sensitive to climate change (Sarmiento et al., 1998); 

furthermore different regions within the Southern Ocean have responded differently to 

climate change (Kohfeld et al., 2005). 

 

Composed of three major masses of water - Antarctic Surface Water, Antarctic Bottom 

Water and Circumpolar Deep Water, the Southern Ocean produces over half of the 

world’s deep ocean water (Trewby, 2002). The Southern Ocean’s northern boundary is 

the Subtropical Front which is characterised by steep surface gradients in sea surface 

temperature and salinity (Hill et al., 2006). At this major biological barrier the Southern 

Ocean’s mainly eastward flowing waters known as the Antarctic Circumpolar Current 

(the largest ocean current in the world and the only current to flow around the globe 

without encountering any continuous land barrier) meet the Atlantic, Pacific and Indian 

Oceans. Hence the Southern Ocean is the formation region of a global network of ocean 

currents that redistributes heat and nutrients around the earth. 

 

The Southern Ocean is notorious for having some of the strongest winds and largest 

waves on the planet leading to the formation of a deep mixed layer of up to 800 metres in 

winter (Rintoul and Trull, 2001) that subsequently leads to a significant amount of 

upward mixing of nutrients from depth potentially sustaining large phytoplankton 

populations.  

 

The Southern Ocean includes distinct regions which differ with respect to their 

hydrological, chemical and biological features (Treguer and Jacques, 1992). Despite the 
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favourable environment and plentiful macro-nutrient concentrations, vast areas of the 

Southern Ocean have surprisingly low phytoplankton populations with no distinct spring 

bloom. This phenomenon is also observed in areas of the Pacific Ocean, and determining 

the cause of these “high nitrate-low chlorophyll” (HNLC) conditions has been the subject 

of many studies in recent years (Boyd, 2002; Coale et al., 2004). 

 

 

 

 

Figure 1.2: Map of the Southern Ocean showing the Antarctic Circumpolar Current 

(ACC), the Sub-Antarctic Front and the Polar Front. 

 

 

Southern Ocean phytoplankton abundance is highly variable seasonally as well as 

spatially (Smith and Lancelot, 2004). In austral summer the Southern Ocean acts as an 
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intense sink for atmospheric CO 2 , primarily due to photosynthetic utilization of CO 2  

(Takahashi et al., 2002), however there is great variability in CO 2  ocean-atmosphere 

exchanges, largely linked to the activity of the biological pump (Treguer and Jacques, 

1992). The relative contributions of physical conditions (such as mixing) and biological 

factors (sinking of detritus) in the uptake of carbon dioxide are still poorly constrained 

(Takahashi, et al., 2002), it is thought that vertical gradients of DIC are largely due to 

biological processes and thermodynamical effects alone explain only about one quarter of 

the observed gradients (Maier-Reimer and Hasselmann, 1987; Volk and Hoffert, 1985).  

 

Predicting the responses of the physical and biological systems of the ocean to warming 

(Sarmiento and LeQuéré, 1996), and elucidating mechanisms describing processes such 

as the magnitude and variability in primary production in the Southern Ocean remain 

important issues to be resolved in understanding the controls on global climate. However 

until recently detailed study of the Southern Ocean has been problematic due to the 

limited number of shipboard observations south of 30 
�

S (Gille, 2002). 

 

1.3 The Sub-Antarctic Zone 

The circumpolar Sub-Antarctic Zone (SAZ) is the body of water between the Subtropical 

Front and the Sub-Antarctic Front. The SAZ represents more than half the areal extent of 

the Southern Ocean (Orsi et al., 1995). SAZ surface waters have the potential to act as a 

large sink for atmospheric CO 2  due to seasonally low carbon dioxide partial pressures 

relative to atmospheric levels (Metzl et al., 1999). The SAZ is the region of formation of 

Sub-Antarctic Mode Water (SAMW) which supplies nutrients to the sub-tropical and 

tropical oceans on decadal to century timescales (Toggweiler et al., 1991). Up to 75% of 

global oceanic production may rely on this nutrient supply (Sarmiento et al., 2004). Thus 

the SAZ represents a key interface that mediates the influence of the Southern Ocean on 

the global oceans, and equally represents the first Southern Ocean region affected by 

circulation changes to the north (Griffiths et al., 2006). 
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1.3.1 Sub-Antarctic Zone Sensitivity to change 

SAZ-Sense is the study of the sensitivity of Sub-Antarctic Zone waters to global 

environmental change. A scientific research voyage took place from 17
th
 January to 20

th
 

February 2007 to examine biogeochemical processes in SAZ waters south of Australia. 

The overall goal was to understand the controls on Sub-Antarctic Zone productivity and 

carbon cycling and their sensitivity to future changes including climate warming 

(Griffiths et al., in press). 

 

The survey included a wide range of measurements of biogeochemical and microbial 

community structure, carbon transports and ecosystem processes (Westwood et al., in 

press; Pearce et al., in press; Cavagna et al., in press; Lannuzel et al., in press; de Salas et 

al., in press; Wright et al., in press; Bowie et al., 2009). The process-orientation of the 

project allows ecosystem and biogeochemical models to benefit from realistic estimates 

of the key ecosystem processes such as f-ratios and primary production. 

 

I participated as a volunteer on the SAZ-Sense voyage as part of the Conductivity-

Temperature-Depth (CTD) team, and also learnt about how some of the many 

measurements used in this thesis, such as the maximum photosynthetic efficiency of 

phytoplankton, are made. 

 

1.4 Remote Sensing 

Quantification of phytoplankton biomass in the surface oceans can be derived from 

remote sensing measurements of the spectral distribution of sunlight reflected from below 

the sea surface. Phytoplankton contain the photosynthetic pigment chlorophyll-a, which 

mainly absorbs red and blue-violet light and reflects green light. When phytoplankton 

concentrations are high they predominate in determining the spectral absorption of sea 

water (Robinson and Sanjuan-Calzado, 2006) thus allowing satellite detection of 

phytoplankton distributions.  
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There has been a significant growth in satellite systems over the recent decades since the 

first ocean remote sensing satellites were launched by the US in the 1970s. 

The most extensive global ocean colour data sets have been provided by the Sea-viewing 

Wide Field-of-view Sensor (Sea-WiFS) carried on a SeaStar spacecraft. Launched in 

August 1997 as part of NASA’s Mission To Planet Earth, Sea-WiFS is a ‘sequel’ to

Coastal Zone Colour Scanner which ceased operation in 1986. 

 

 

Figure 1.3: Surface chlorophyll concentrations (mg m�3
) in February from 1998 – 2008 

Sea-WiFS climatology computed from 8-day composites.

 

 

 

Satellite data is crucial for validating model simulations of basin or global scale 

processes, as it is the only source of such large scale observations. While attractive in 
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principle it should be noted that use of this data is subject to several limitations. 

Measurement errors average about 30% due to cloud cover obstructing the satellite view 

and the presence of dissolved organic matter which strongly absorbs blue light, and 

interferes with measurements of chlorophyll. In addition satellites only detect the surface 

activity and field data from the Southern Ocean show chlorophyll-a typically exhibits 

maximum values at sub surface depths. For a full discussion on the use, and limitations, 

of satellite ocean colour data in marine ecosystem models see Robinson and Sanjuan-

Calzado (2006).   

 

Since satellite data provides the only large-scale synoptic observations of the Southern 

Ocean, the most advantageous use of Sea-WiFS observations would be to combine them 

with the relatively sparse data provided by in-situ measurements to collectively gain as 

much information as possible. 

 

1.5 Numerical Modelling 

Numerical modelling is a fundamental method of understanding the ocean biological 

pump. Marine biogeochemical models usually attempt to describe the movement of 

inorganic chemical tracers through the ecosystem by partitioning the chemistry and 

biology into a number of compartments such as nitrate, phytoplankton, zooplankton and 

detritus. Using mass conservation as an underlying concept the compartments simulate 

standing stocks, and transferral between compartments, of matter or energy. In this thesis 

the term ecosystem model is often used as a synonym for the entire biogeochemical 

model. 

 

There are a large number of marine biogeochemical models available of varying 

complexities. (E.g. Evans and Parslow, 1985; Fasham et al., 1990; Oschlies and Garcon 

1998; Palmer and Totterdell, 2001; Moore et al., 2002; Baird et al., 2006). These can 

broadly be divided into two categories:  

1) Simple models, termed N-P-Z-D models (Evans and Parslow, 1985; Wroblewski 

et al., 1988; Doney et al., 1996; Denman and Pena, 2002; Kantha, 2004). These 
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models describe the non-linear interactions between populations of 

phytoplankton, zooplankton, nutrients and detritus. They may contain a few more 

compartments such as bacteria or ammonium (Fasham et. al., 1990) and are 

usually calculated in terms of nitrogen. Nitrogen is generally the limiting nutrient, 

and understanding the nitrogen cycle is a necessary prerequisite to modelling the 

carbon cycle (Fasham et al., 1995). Typically these models have 10 to 30 

parameters. 

2) Complex models, termed plankton functional type models, incorporating many 

different components of the intricate food web structure capable of capturing 

complex processes such as the export flux. There are about 5000 species of 

marine phytoplankton and there are models that include many functional types 

such as diatoms, coccolithophorids, picophytoplankton, phytoflagellates and 

dinoflagellates (Bissett et al., 1999; Totterdell et al.,1993; Moore et al., 2002; 

Gregg et al., 2003). These models typically have more than a hundred parameters. 

 

In developing a marine ecosystem model the particular choice of compartments and the 

parameterisation of fluxes between compartments contains an element of subjectivity. In 

contrast to the modelling of physical ocean properties where the underlying equations of 

fluid dynamics are well known (Gill, 1982), the governing equations for biogeochemical 

models are unknown. Typically they use numerous parameters, for example even the 

relatively simple seven compartment model of Fasham et al. (1990) has 27 parameters. 

The model solutions significantly depend on the choice of these biological parameters, 

only a few of which are derived from observational data. Parameters derived from 

laboratory studies may be dependent upon the conditions in which biological samples are 

grown and dependent on different methodologies used in different laboratories. As the 

model complexity increases the number of parameters that must be fitted surpasses our 

ability to constrain them from observations (Matear, 1995). 
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Figure 1.4: A photomicrograph depicting the siliceous frustules of fifty species of 

diatoms (the main primary producers in the Southern Ocean). 

 

 

How much complexity is required to accurately simulate major observed biogeochemical 

cycles is a subject of debate (Anderson, 2005; le Quere, 2006). Although simple N-P-Z-D 

models cannot adequately explain all of the diverse measurements available for well 

sampled sites in the ocean such as the Bermuda Atlantic Time-series Study (BATS), they 

are capable of providing many insights into ocean biology such as the timing and 

magnitude of phytoplankton blooms. The choice of model complexity will ultimately 

depend on the purpose it is being used. It has not been demonstrated that models of 

greater complexity will inherently produce the best estimates of bulk biogeochemical 

fluxes. Indeed Friedrichs et al. (2006) showed that in fitting various models to 
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biogeochemical observations of DIN, chlorophyll, , zooplankton, primary production and 

export flux, the additional complexity of a multiple size class model is minimal. For the 

purpose of simulating phytoplankton distribution in a region of few biogeochemical 

observations, such as the Southern Ocean, a simple aggregated model is most appropriate. 

 

One of the N-P-Z-D models most commonly used for its simplicity is that of Fasham et 

al. (1990). Despite its simplicity this model can reproduce the main features of the mixed 

layer at several locations and assist understanding of the fundamental biological 

interactions in the ocean (Fasham et al., 1995; Ryabchenko et al., 1997; Popova et al., 

2002). It has become a standard model used in various studies ranging from zero-

dimensional mixed-layer applications to coupled three-dimensional ecosystem circulation 

models (Matear, 1995; Sarmiento et al., 1993). However it has been shown by Spitz et al. 

(1998) that not all the parameters can be constrained by observations for BATS. Similarly 

it was shown by Matear (1995) that data sets for Station P (Ocean Station Papa) could not 

validate a seven compartment model, and a three-component configuration is adequate 

for explaining the observations of nitrate, phytoplankton and mesozooplankton 

concentrations and primary production. 

 

Oschlies and Garcon (1999) simplified the model of Fasham et al. (1990) to a four 

component model, achieving quite realistic simulations of seasonal ecosystem dynamics 

in different biological provinces of the North Atlantic, however their model analysis 

indicated some deficiencies such as an overestimation of zooplankton grazing and an 

underestimation of phytoplankton mortality. Overcoming such deficiencies by increasing 

complexity is outweighed by the penalty of lowered accuracy due to inadequate 

parameterisations (Anderson 2005). One approach to the question of how to make models 

more realistic is to utilize the growing quantity of synoptic data to increase model 

agreement to the observed state. 
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1.6 Data Assimilation 

Data assimilation is a versatile methodology for estimating oceanic variables. The 

estimation of a quantity of interest via data assimilation involves the combination of 

observational data with the underlying dynamical principles governing the system under 

observation (Robinson and Lermusiaux 2000). 

 

There are two main uses of data assimilation: 

1) forecasting to allow forward extrapolation of observations in order to improve the 

predictive power of models, a familiar application in the context of 

meteorological forecasting and widely used for physical ocean modelling (Oke et 

al., 2008). This application is only just emerging in ocean biogeochemical 

modelling (Mattern et al., 2010; Fontana et al., 2009).  

2) parameter estimation, the determination of an optimal set of parameter values for 

a specified model, a rapidly growing field of research (Hemmings, 2009). 

 

The standard approach when tuning ocean ecosystem models involves running the model 

forward in time, retrospectively comparing the results to the data, and then modifying the 

parameters accordingly – a process which always allows the possibility of tuning poorly 

defined parameters to force model output to the desired result. Data assimilation 

(sometimes termed inverse modelling), in the parameter estimation context, is a 

systematic means of comparing the output of the model with observations to obtain the 

underlying model parameters which statistically are most likely to have produced the 

data. 

 

Minimising parameter uncertainty in marine ecosystem models is important since model 

dynamics can change substantially with different parameter values. A poor fit between 

model output and data can be because of a poor choice of parameter values or because of 

inappropriate model structure. This ambiguity between parameter uncertainties and 

model uncertainties makes it difficult to distinguish superiority between two or more 

contending models and explains the overabundance of models describing the same 

processes such as phytoplankton growth (Vallino, 2000). 
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The assimilation process can reduce the uncertainties (errors) associated with using either 

data or model alone; highlight where uncertainty is not reduced which is an indication of 

where model improvement needs to be made (Hurtt and Armstrong 1999); and 

investigate which parameters are well constrained by the data and which are not (Matear, 

1995). Many parameter optimisation experiments have overlooked error estimation 

(Fasham et al., 2006), however measures of uncertainty are an essential aspect of 

parameter optimisation to avoid erroneous results (Fennel et al., 2001).  

 

1.7 Objectives of this thesis 

This thesis contributes toward understanding of two main issues in marine 

biogeochemical modelling. The factors that influence zonal and meridional variability in 

phytoplankton dynamics in the Southern Ocean are investigated, and suitable 

methodologies for parameter optimisation are evaluated. 

 

More specifically the objectives of this thesis are: 

1) Evaluate stochastic parameter estimation methods by optimising the parameters of a 

simple four-component nitrogen based marine ecosystem model using simulated 

annealing and the Metropolis-Hastings algorithm.  

 

• Apply the algorithms in a set of twin experiments to determine their suitability for 

the problem and select the most advantageous of the two methods to optimise the 

model parameters. 

• Identify the cost function sensitivity to each parameter value. Determine the 

parameters which are well constrained and those that are not 

• Assess the suitability of using solely chlorophyll observations for data 

assimilation. 
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2) Investigate zonal differences in ecosystem dynamics in the Southern Ocean by 

performing parameter optimisation experiments at two contrasting locations in the Sub-

Antarctic Zone south of Tasmania. 

 

• Evaluate parameter optimisation estimates in terms of model fit to Sea-WiFS 

surface chlorophyll data as well as in situ estimates from the SAZ-Sense project.  

• Investigate possible causes for the differences in phytoplankton biomass between 

the two contrasting sites by comparing optimised parameters, modelled f-ratios 

and primary productivity for the two locations. 

• Determine whether the zonal variability in the ecosystem functioning is due to 

differences in the biological parameters or differences in the physical forcing. 

 

3) Examine meridional variation in phytoplankton distributions south of Australia by 

performing parameter optimisations in the Sub-Antarctic Zone, Polar Frontal Zone and 

Antarctic Zone at 140 
�

E. 

 

• Consider the role of iron availability as a possible cause for the HNLC conditions 

of the Australian sector of the Southern Ocean by optimising phytoplankton 

growth parameters.  

• Evaluate parameter optimisation estimates in terms of model fit to Sea-WiFS 

surface chlorophyll data as well as in situ estimates from published literature. 

• Investigate meridional differences in ecosystem functioning by comparing the 

optimised parameters, f-ratios, primary production and zooplankton grazing 

between the three zones. 

• Determine whether meridional variability in the estimated phytoplankton growth 

rates is due to differences in solar radiation, temperature, mixed layer depth or 

some other cause such as bio-availability of iron. 

 

Chapter 3 of this thesis has been prepared in the form of a manuscript for submission to a 

peer-reviewed journal. Subsequently some aspects of the introduction and methodology 

are repeated for comprehensiveness.
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2.1 Introduction 

Biogeochemical models provide an essential tool for numerical experimentation, such as 

the assessment of how marine ecosystems may respond to, or influence, changes in 

climatic conditions (e.g. McNeil and Matear, 2008; Matsumoto, 2007). They are a 

valuable tool for defining sampling strategies for measurement programs (Lenton et al., 

2009) and are useful for filling in the gaps between oceanographic samplings (e.g. The 

Joint Global Ocean Flux Study). 

 

The combination of biogeochemical models with observational data is an effective 

methodology that can provide insights into marine ecosystems that might not be feasible 

using either approach alone.  Data assimilation can provide an improved representation of 

biological variables, where the errors and deficiencies of both models and data are 

reduced in a complementary fashion (Gregg et al., 2009). 

 

The result of any biogeochemical modelling study is dependent upon the parameters 

chosen to run the model, and thus it is imperative that their allocated values are chosen 

critically. Assigning the values of the biological parameters is especially difficult as, 

unlike many chemical or physical parameters, they cannot strictly be regarded as 

constants (Fasham et al., 1990). There exists large variability in field estimates of 

parameters, and in some regions very few measurements exist. The use of data 

assimilation methods to determine the most suitable biological parameters has been the 

focus of much research over the past decade (Fennel et al., 2001; Eknes and Evensen, 

2002; Schartau and Oschlies, 2003a; Hemmings et al., 2004; Oschlies and Schartau, 

2005; Friedrichs et al., 2006; Nerger and Gregg, 2007; Zhao and Lu, 2008; Anderson, 

2009). 

 

Schartau and Oschlies (2003a) (SO03 hereafter) optimised the parameters of a four 

component reduced version of the Fasham et al. (1990) ecosystem model developed by 

Oschlies and Garcon (1999). They improved the model performance compared with the 
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initial parameterisation at three locations in the North Atlantic. The Southern Ocean 

ecosystem is crucial in global biogeochemical cycles and climate regulation. Running the 

models described in SO03 or Oschlies and Garcon (1999) in the Southern Ocean 

produces estimates of annual phytoplankton distributions very different from those 

estimated by satellites. Here we use the optimised parameters from SO03 as a starting 

point to perform parameter optimisation experiments for the Southern Ocean.  

 

There are several techniques that can be used for parameter optimisation (gradient 

descent methods, conjugate gradient algorithms, newtons method, stochastic search 

algorithms). Despite numerous studies utilising data assimilation methods there is no 

consensus on the best approach. In the parameter estimation framework the most 

common implementation in ecosystem modelling is with the use of the adjoint method 

(essentially a gradient descent method). An adjoint model is used to compute the gradient 

of a model-data misfit function (known as the liklihood function or cost function) with 

respect to the parameters. Lawson et al. (1996) were the first to assimilate data into a 

biogeochemical model applying the variational adjoint method in a twin experiment to a 

five component zero-dimensional model. Subsequently the adjoint technique has been 

used for numerous studies ranging from twin-experiments using zero dimensional models 

(Spitz et al., 1998; Schartau et al., 2001) to fitting coupled physical-biological models to 

satellite ocean colour data (Xu et al., 2008). 

 

Estimating the parameters of a marine biogeochemical model is a strongly non-linear 

problem (Athias et al., 2000). The adjoint method relies on iteratively solving linear 

inverse problems. The problem is solved by progressively computing local gradients of 

the model-data misfit function from a prior solution that must lie close enough to the real 

solution for the linearised equations to hold. Since the likelihood function (cost function) 

need not be quadratic, it is possible to have more than one optimal parameter set, i.e. the 

cost function may have more than one minimum. A minimum is said to be a global 

minimum if no other lesser or equal minima exist, otherwise it is considered a local 

minimum. The need to specify an initial guess for the parameters leads to the possibility 
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of convergence to a local minimum – the value of which will be influenced by the initial 

guess chosen.  

 

The lack of prior knowledge about the parameters, and the fact that the cost functions 

associated with these problems exhibit several local extrema and saddle points, makes 

methods which rely on determining gradients of the cost function inappropriate (Athias et 

al., 2000). The use of stochastic search algorithms, which can explore large regions of the 

parameter space and reduce the chance of getting stuck in local minima, are better suited 

for highly non-linear systems. 

 

Matear (1995) applied the stochastic method of Simulated Annealing to fit data from 

Station P to three different zero-dimensional marine ecosystem models and found the 

method to be robust and effective at determining optimal parameters while a conjugate 

gradient algorithm failed to find the optimal model parameters. Hurtt and Armstrong 

(1996; 1999) also used simulated annealing to reduce model-data misfit for a four-

component reduced version of the Fasham et al. (1990) model, and were confident that 

they had found the “global” optima. The genetic algorithm is another stochastic method, 

used by Schartau and Oschlies (2003a) to optimise the parameters of the four-component 

model developed by Oschlies and Garcon (1999). Both simulated annealing and the 

genetic algorithm provide robust results however convergence to the global minimum 

cannot be proven. 

 

Approaching the parameter optimisation problem from a Bayesian perspective Harmon 

and Challenor (1997) used the Metropolis-Hastings algorithm, which relies on Markov 

Chain Monte Carlo simulation. This approach allows determination of the posterior 

probability density distribution of parameter estimates; summary statistics such as the 

mean along with measures of uncertainty can then be derived. Furthermore this algorithm 

is proven to converge to the target distribution and directly accounts for covariance 

among uncertain parameters by storing the parameter distributions (Dilks et al, 1992). 

This approach of presenting a full statistical description of parameters, in the context of 

marine ecosystem models, has to the best of our knowledge, not been used in 
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optimisation experiments assimilating real data. Harmon and Challenor (1997) and Dowd 

and Meyer (2003) found the technique to be very successful in twin experiments and a 

promising framework for ecosystem inverse problems. 

 

Assimilation of satellite ocean colour data into biogeochemical models is an approach 

with scope for much development. With over a decade of satellite ocean colour 

observations the range of data products is expanding as sensors become more 

sophisticated (McClain, 2009). The Argo float program is expanding to include 

biogeochemical observations (Gruber et al., 2007). These data sets allow data 

assimilation experiments in remote regions (such as the Southern Ocean) where annual in 

situ measurements are not practical. Inverse techniques will become more important in 

the future as more and more comprehensive data sets become available. It is important to 

identify the best methodology to integrate these observations with models. 

 

A comparison of the Metropolis-Hastings algorithm and simulated annealing for 

optimising the parameters of a NPZD model has, to the best of our knowledge, not been 

done before. Twin experiments, in which model-generated data are assimilated into the 

model are used for addressing methodological issues (Spitz et al., 1998; Fennel et al., 

2001; Friedrichs, 2001; Xu et al., 2008; Hemmings et al., 2008; Simon and Bertino, 

2009), and are the first step in robust ecosystem modelling studies. In this study we test 

the performance of the two optimisation methods under idealised conditions in the Polar 

Frontal Zone (PFZ) of the Southern Ocean (146 
�

E, 54 
�

S). We identify the model 

parameters that are well determined in this location, and those that are not, and assess the 

suitability of assimilating satellite derived surface chlorophyll measurements as the only 

data constraint – an important consideration when performing data assimilation studies in 

the Southern Ocean.  

 

The rest of this Chapter is organised as follows: Section 2.2 provides a description of the 

biological model and the data constraints used to run it. Section 2.3 describes the 

optimisation problem and the methods used to solve it. Section 2.4 describes the 

experimental design of the optimisations performed. The results of applying the 
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Metropolis-Hastings algorithm are presented and discussed in Section 2.5. The simulated 

annealing results are presented and discussed in Section 2.6. Section 2.7 summarises this 

Chapter. 

 

2.2 The ecosystem model 

 

2.2.1 Model structure 

Following SO03 a simplified version of the Fasham et al. (1990) model with a reduced 

number of parameters is used. It is a four component N-P-Z-D (Nitrate-Phytoplankton-

Zooplankton-Detritus) ecosystem model of the seasonal nutrient cycle described in 

μmol/kg nitrogen in the mixed layer. The model differs from that of Fasham et al. (1990) 

in that it combines nitrate and ammonium to dissolved inorganic nitrogen; and bacteria 

and dissolved organic nitrogen are not resolved explicitly. 

 

The model differs from some more commonly used N-P-Z-D model formulations 

(Fiechter et al., 2009; Fan and Lv, 2009; Denman and Pena, 1999; Oschlies and Garcon, 

1999) in that it includes a temperature dependence on all remineralisation rates, a 

quadratic phytoplankton mortality term and a linear loss from phytoplankton back to the 

dissolved inorganic nitrogen (DIN) pool. This formulation draws on the quadratic 

mortality of phytoplankton to approximate the loss of phytoplankton due to the formation 

of aggregates. This loss enters the detritus compartment to then sink out of the system. 

The phytoplankton linear mortality term represents an implicit description of the bacterial 

loop without explicitly including bacteria and dissolved organic nitrogen as additional 

state variables in the model (Schartau and Oschlies, 2003,b). The model structure is 

shown in Figure 2.1. 
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Figure 2.1: The biological model structure. 

Dissolved 

Inorganic 

Nitrogen 

 

Detritus 

 

Zooplankton 

 

Phytoplankton 
rapid recycling 

mortality/ 

aggregation 

sloppy 

feeding 

mortality 

excretion 

sinking 

remineralisation 

primary production 

grazing 



 

 24 

 Mixed layer dynamics are not modelled explicitly. Instead following Evans and Parslow 

(1985); Fasham (1990); and Matear (1995), data are used to define the seasonal change in 

mixed layer depth (in metres), M, as a function of time (in days), t . 

dM

dt
= h(t)

                                                (2,1)
 

In this simple zero-dimensional application the pelagic ecosystem is assumed to consist 

of a homogeneous mixed layer overlying a deeper abiotic layer. Phytoplankton and 

zooplankton are assumed to be homogeneously distributed in the upper mixed layer and 

horizontal advection and diffusion are ignored. An analytical solution for light limited 

growth introduced by Evans and Parslow (1985) is used that depends on 

photosynthetically available radiation (PAR) as a function of depth. 

 

Following Evans and Parslow (1985) the concentrations of nonmotile entities like nitrate 

and phytoplankton remain constant in a shallowing of the mixed layer while the 

concentration of zooplankton increases since they are assumed able to actively maintain 

themselves within the mixed layer when its depth decreases. A deepening of the mixed 

layer dilutes the volumetric concentrations of nitrate, phytoplankton and zooplankton as 

the water mixes with the underlying water mass. Following Evans and Parslow (1985) we 

define the variable h+ (t) = max(h(t),0)  and use h+ (t)  rather than h(t)  in equations 

representing nonmotile entities. 

 

The biological source-minus-sink equations are: 

 

Dissolved Inorganic Nitrogen (DIN) 

dN

dt
= μDD + � 2Z + μPP � J(M ,t,N )P +

(m + h+ (t))

M
(N0 � N )              (2.2) 

 

Phytoplankton Biomass 

dP

dt
= J(M ,t,N )P �G(P)Z � μPP � μP

2P2
�

(m + h+ (t))P

M
                 (2.3) 
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Herbivorous zooplankton 

dZ

dt
= � 1G(P)Z � � 2Z � μZZ

2
�

(h (t))Z

M
                                 (2.4) 

 

Detritus 

dD

dt
= (1� � 1)G(P)Z + μP

2P2
+ μZZ

2
� μDD � wD

�D

�z
�

(m + h+ (t))D

M
          (2.5) 

 

where m is a quantity that parameterises the diffusive mixing between the mixed layer 

and the deep ocean and N0 is the DIN concentration below the mixed layer taken from 

climatological data.  

 

Assuming light and nutrient limitation of growth to be independent effects, and following 

Hurtt and Armstrong (1996) and Oschlies and Garcon (1999) daily averaged growth is 

defined as the minimum of these two terms: 

J(M ,t,N) = min J(M ,t), Jmax

N

K + N
�

�
�

�

�
�                              (2.6) 

Where J(M ,t)  denotes the light limited growth rate and Jmax  the light saturated growth. 

 

Since we do not model the diurnal cycle the actual light limited growth rate, J(M ,t) , is 

averaged over � 24h  = 1 day. Daily mean solar radiation is converted to peak values at 

noon assuming a triangular shape of daily incident radiation as described by Evans and 

Parslow (1985).  

 

Assuming that the time a particular cell spends at depth is long compared to the 

photosynthesis reaction time, but short compared to the cell division time, then the daily 

growth rate, averaged over the mixed layer depth, M,  can be written as: 

J (M ,t) =
1

� 24h

1

M
J(I )dzdt

0

M

�0

�24h

�                                  (2.7) 

Where J(I )  is a function describing the phytoplankton photosynthesis-irradiance 

relationship. The function J(I )  was defined by the Smith function (Smith, 1936). 
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J(I ) =
Jmax (T )� I(z,t)

((Jmax (T ))2
+ (� I(z,t))2 )1/2

                                       (2.8) 

Where Jmax  is the growth rate as I � � , and I is the photosynthetically active radiation 

as a function of depth below the surface of the water.  

I(z,t) = PAR �� (t) �
� 24h

� sun

I(0,t) � e(�kwz )
                                 (2.9) 

 

Where I(0,t) was the incident radiation observed immediately below the surface of the 

water, PAR was the photosynthetically active radiation at the surface, kw  was the light 

attenuation constant, z = z / 1� (cos� / 1.33)2 is the effective vertical coordinate with 

the angle �  of incidence at noon, z was depth in metres, � (t) is a triangle function 

describing the evolution of the day, increasing linearly from 0 to 1 from daybreak to noon 

and decreasing linearly to 0 at nightfall over the variable day length, � sun  ,calculated from 

standard trigonometric formula (Brock, 1981). 

 

The maximum temperature-dependant growth was defined following the formula given 

by Eppley, 1972: 

Jmax = ab
cT                                                 (2.10) 

 

Where T is temperature in degrees Celsius.  

 

As well as growth the detritus remineralisation, zooplankton excretion and phytoplankton 

mortality parameters are temperature dependant as specified in Table 2.1 and as used in 

SO03. 

 

For the loss of phytoplankton due to zooplankton grazing a Holling type III function is 

used: 

G(P) =
g�P2

g + �P2                                               (2.11) 

 



 

 27 

The model has 16 parameters, which are assigned the same values as those used by SO03, 

(shown in Table 2.1 and referred as the SO03 parameters here after). Following Matear 

(1995) the surface PAR and the light attenuation coefficient remain invariant in time. The 

remaining 14 parameters are ‘free’ parameters, used for the optimisation experiments.  

 

2.2.2 Model numerics 

The differential equations describing the ecosystem model were solved using a fourth 

order Runge-Kutta algorithm. The model simulations were run for three years with the 

annual output from the third year used for the optimisation process. Two years was the 

typical model spin up time, with a steady-state achieved by the third year. At steady state 

the concentrations of model components on the first day of the third year were the same 

as the concentrations on the first day of the fourth year and the annual cycle of the 

individual concentrations is not sensitive to their initial conditions, respectively. 

 

2.2.3 Model forcing 

The forcing fields of the ecosystem model are solar radiation, Sea Surface Temperature 

(SST), Mixed Layer Depth (MLD) and nitrate concentration below the mixed layer 

(Figure 2.2). The forcing data is taken from the GFDL global ocean circulation model 

MOM4 (Modular Ocean Model 4) with the OFAM (Ocean Forecasting Australian 

Model) configuration as described by Mongin et al. (in press). The global model restores 

SST to a monthly climatology of Reynolds SST (Reynolds and Smith, 1994) merged with 

the Levitus World Atlas 2001 (Levitus, 1982). Daily values of SST are obtained by 

interpolation. The daily MLD is taken as the depth of a 0.05 kg m�3
 difference in density 

from the surface computed using the model output of temperature and salinity (Mongin et 

al., in press). Daily averaged values of solar radiation are from NCAR (National Centre 

for Atmospheric Research). 
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Table 2.1: Parameters used to run the ecosystem model. The values are taken from 

Shartau and Oschilies, 2003a. 

 

 

 

 

 

 

 

Parameter Symbol Value Units 

 

Phytoplankton coefficients 

Maximum photosynthetic 

efficiency (initial slope of 

P-I curve) 

�  0.256 day
�1

/(W m
�2

) 

Shortwave fraction of 

photosynthetically active 

radiation 

PAR 0.43  

Light attenuation due to 

water 
kw  0.04 m

�1
 

Maximum growth rate 

parameters 

a 

b 

c 

0.27 

1.066 

1.0 

day
�1

 

 

 
( �C)�1  

Half saturation constant 

for N uptake 
K 0.7 mmol m

�3
 

Phytoplankton loss rate μP  0.04 � bcT  day
�1

 

Quadratic mortality rate μP
2  0.025 (mmol m

�3
)
�1

day
�1

 

 

Zooplankton coefficients 

Assimilation efficiency � 1  0.925  

Maximum grazing rate g 1.575 day
�1

 

Prey capture rate �  1.6  (mmol m
�2

)
�1

day
�1

 

Quadratic mortality μZ  0.34 (mmol m
�3

)
�1

day
�1

 

Excretion rate � 2  0.01 � bcT  day
�1

 

 

Detrital coefficients 

Remineralisation rate μD  0.048 � bcT  day
�1

 

Sinking velocity wD  18.0 m day
�1
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Figure 2.2 Forcing data used to run the model simulations. Panel A shows nitrogen 

concentration below the mixed layer (mmol N m
�3

); panel B shows mixed layer depth 

(meters); panel C shows daily incident solar radiation ( W/m2
); panel D shows 

temperature (degrees Celsius).  
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2.2.3 Data constraints 

A simulated data set was created by running the model with the parameters defined in 

Table 2.1, thus providing a data set that is fully consistent with the model assumptions 

making systematic errors due to model formulation impossible. The biological parameters 

which generated the data are known, and are regarded as the true parameter values.  

 

The model is run with a different parameter set to create a starting point or reference 

solution. This parameter set is optimised, i.e. data sets of N, P, Z and D are assimilated to 

the reference solution, generating a third time series of daily values for each state 

variable. The success of the data assimilation is determined by the agreement between the 

third time series and the data as well as the recovery of the true parameter values. This 

type of numerical experiment is called an identical twin experiment. The twin experiment 

procedure is summarised in Figure 2.3. 
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Figure 2.3: Process used for a running a twin experiment. 

Input 1: NPZD model with 

offset parameters giving an 

unlikely biological solution 

Input 2: N, P, Z, D synthetic 

data sets with known true 

parameters. 

Parameter optimisation using the 

Metropolis-Hastings algorithm or 

simulated annealing. Reduce the 

discrepancy between input 1 and 

input 2 through adjustments to the 

vector of model parameters. 

Obtain a set of optimal parameters 

that minimise the difference 

between the model solution and the 

synthetic data set. Create a resulting 

model solution.

Assess agreement between 

resulting model solution and N, P, 

Z, D synthetic data. Compare 

optimised parameters with true 

parameters. 
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2.3 Parameter optimisation schemes  

2.3.1 Bayesian inference 

The parameter optimisation problem involves combining the best a priori estimate of a 

parameter with the available observations of the system, the synthesis of information is 

then used to make a (posterior) parameter estimate. The Bayesian perspective is one of a 

conjunction of different sources of information and is well suited to tackle this type of 

problem. 

 

Bayesian methods enable us to make statistical inference about our uncertainty of 

parameters �  conditional on observed data y and the knowledge of the state. The 

probability that a parameter, � , is correct given the information, y, is termed the 

posterior parameter distribution and denoted )|( yf � .  

 

Using the rules of conditional probability known as Bayes’ rule gives the posterior 

density:  

f (� | y) =
f (� ) f (y |� )

f (y)
                                          (2.12) 

where f (y) = f (y,� )d� = f (� ) f (y |� )d���  

where f (� )  is the prior parameter distribution, f (y) is the distribution of the observations 

y and f (y |� ) is the likelihood function through which the data y affect the posterior 

inference. 

 

Evaluation of f (y) is straightforward in the one-dimensional case but in practical 

applications high dimensionality and non-linearity prohibit direct numerical integration; 

hence historically implementation of Bayesian methods has been unfeasible. However 

now with the use of high-powered computing it is possible to use simulation methods to 

generate a distribution with identical statistical properties as the posterior distribution 

without actually solving the integration directly. 
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Markov Chain Monte Carlo techniques are used to generate a sample of parameter values 

having identical distribution to the real (intractable) parameter distribution. We can then 

compute summary statistics for the distribution such as the mean, variance and 

correlation between the estimates, which will be the same as for the distribution of 

interest. With the variance, error magnitude can be directly assessed which is key part of 

model evaluation. There is no consensus on the best method for error analysis in 

parameter optimisation experiments (e.g. Zhao and Lu, 2009; Schartau and Oschlies 

2003a). This method provides a mathematically rigorous way of quantifying errors.   

 

2.3.2 The Metropolis-Hastings algorithm 

Monte Carlo methods are numerical processes that produce pseudo-random numbers 

within a parameter space and a Markov Chain is a sequence of random variables having 

the Markov property which means that given the present state of the sequence the future 

state is conditionally independent of the past. The idea of Markov chain simulation is to 

simulate a random walk in the space of �  which converges to a stationary distribution, 

(termed the target distribution), that is the posterior parameter distribution, f (� y) . 

 

Several techniques have been developed to make the long-term behaviour of the Markov 

chain tend towards a desired distribution. The most general and flexible of these is the 

Metropolis-Hastings algorithm in which an (arbitrary) initial parameter value is chosen as 

a first guess, the next estimate of the parameter is selected by perturbing the current value 

in some pre-defined way. The model is then run with the candidate parameter to assess 

whether the proposed parameter increases the posterior density. Based on this a decision 

of whether to accept the new choice for the parameter is made. If the new parameter 

increases the posterior density (improves the fit of the model to the data) it is kept and it 

becomes the next value in the chain. If it results in a decrease in posterior density it may 

be kept with a small probability, otherwise it is rejected and the previous parameter is 

maintained for next value in the chain. This is repeated thousands of times as it is 

important to make sure the entire range of possible parameter values are sampled and that 

the resulting distribution has reached the required target distribution.  
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More formally the Metropolis-Hastings algorithm is given by: 

1. Set t=0. Choose a starting vector �� 0  from a starting distribution f0 (�� ) .  

for t=1,2,… 

2. Generate a proposal ���  from a proposal distribution q( ��� |� t�1) . 

3. Generate a data set �y  from f (y | ��� ) . 

4. Calculate acceptance probability � = min{1,r}  where r =
f ( ��� | y) / q( �� |� t�1)

f (� t�1 | y) / q(� t�1 | �� )
. 

5. With probability �  set �� t  = ��� . Otherwise set �� t
= �

t�1 . 

6. Return the values {�� 1,� 2 ,...,� N }. 

 

The Metropolis-Hastings Algorithm is a generalisation of the basic Metropolis algorithm 

with the modification that the jumping rule q need not be symmetric – i.e. there is no 

requirement that q(�� a
�
b ) � q(� b

�
a )  and to compensate for this asymmetry the ratio in 

step 4 is a ratio of importance ratios rather than the ratio of densities used in the 

Metropolis algorithm. This modification can be useful in increasing the convergence 

time. It can be proven that the sequence converges and to a unique stationary distribution 

(Gelman et al., 2004). 

 

There are many ways to set the step size of the algorithm q. A general method, which has 

good results in a wide variety of problems, is a normal random walk jumping distribution, 

i.e. updates are chosen according to: ��� = �
t�1

+ �  where the error structure ��  has 

Gaussian distribution. When updating the algorithm with new parameter values it is 

important to choose a step length to give appropriate acceptance. If the step size is too 

large there will be too many rejections and the algorithm wastes time standing still. If the 

step size is too small the random walk moves too slowly and it will take an unacceptably 

long time to reach the target distribution. The most efficient multivariate normal random 

walk jumping distribution has the proportion of jumps accepted at about 25% (Gelman et 

al., 2004). 

 



 

 35 

The first step in implementation is to formulate the prior and likelihood functions. 

Taking a formulation that assumes Gaussian uncertainty for both prior parameter values 

��
obs  and the assimilated data yobs , and prescribed uncertainties for the priors ���  and the 

data �� y , the likelihood function is expressed as the negative exponential of the misfit 

between model-derived values and measurements in relation to measurement error such 

that 

f (y � ) = exp{�J(y � )}                                          (2.13) 

with J being equivalent to the cost function – a term used in many parameter optimisation 

studies for the model-data misfit function (e.g. Lawson et al., 1995; Friedrichs, 2002). 

J(y � ) = 1

2
(yi

prd
� yi

obs )2 1

� y
i

2

i=1

n

�
                                     (2.14) 

where y prd denotes the model predicted values and n is the number of observations. 

 

Similarly the prior parameter distribution can be written as  

f (�� ) = exp{�J(� )}                                            (2.15) 

with  

J(�� ) = 1

2
(� i

prd
�� i

obs )2

i=1

m

�
1

��
i

2

                                    (2.16) 

where �� prd  denotes the algorithm predicted parameter values and m is the number of 

parameters. The prior parameter part of the cost function tries to force the model 

parameters to be within acceptable limits. 

 

The posterior distribution for �� , calculated for the acceptance step of the Metropolis-

Hastings algorithm is given by: 

f (�� y) � exp �
1

2
(yi

prd
� yi

obs )2 1

� y
i

2

i=1

n

�
�

�
�

	



�

exp �
1

2
(� i

prd
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�

        (2.17) 

being weighted by an average of the data and the prior parameter distribution. 

 

A point to note when running the Metropolis-Hastings algorithm is that if the iterations 

are not run for long enough the simulations may not accurately represent the target 
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distribution since proof of convergence is for the asymptotic behaviour of the chain. The 

early simulations will be influenced by the starting distribution rather than the target 

distribution; to ensure we are only using the converged parameter sequence in the 

analysis we discard the first section of the iterations of the simulation runs (termed the 

‘burn in’ period).  

 

To implement the algorithm the starting point or reference solution was created by 

offsetting the ‘true’ parameter values by adding Gaussian errors with standard deviation 

set to be equal to the expected parameter error specified in Table 2.2. Gaussian error was 

added to the observations with a standard deviation set to be 5% of the observation value 

for the biological observations and 1% of the observation value for the nitrate 

observations (since the nitrate observations are an order of magnitude larger than the 

biological observations). The step size on each parameter was set to be proportional to the 

prior standard deviation. The algorithm was run for 500,000 iterations. The first 300,000 

iterations were discarded to ensure we were looking at the asymptotic distribution and not 

the prior distribution. The remaining 200,000 iterations were used to describe the 

posterior parameter distribution. The mean values of the posterior parameter distributions 

are used for the parameter estimate. Standard deviations were calculated directly from the 

posterior parameter distribution. 

 

2.3.3 Simulated annealing 

Simulated Annealing is a stochastic algorithm used for multivariate optimisation 

problems giving comparable results to the Metropolis-Hastings algorithm. As described 

by Kirkpatrick et al. (1983) and Kruger (1993) there is a strong connection between 

multivariate optimisation and statistical mechanics. An analogy with annealing in solids 

provides a basis for optimisation of large and complex systems. 

 

Annealing is the term used to describe the thermodynamic process for growing crystals. It 

involves heating of a solid matter until it reaches a liquid state where the atoms are free to 

move randomly, it is then cooled slowly enough to permit thermal equilibrium at each 
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reduced temperature allowing the atoms to arrange themselves into the most stable 

position, eventually the system reaches a state closely resembling the structure of a 

perfect homogeneous crystal lattice at a global minimum of energy. If the substance is not 

cooled slowly enough, and allowed to get out of equilibrium, the resulting crystal will 

have many defects, or the substance may form a glass with no crystalline order and only 

metastable, locally optimal structures.  

 

In this application each configuration, defined by the set of atomic positions of the system 

is weighted by its Boltzmann probability factor, exp(�E(y) / kBT ) where E(y) is the 

energy of the configuration, kB is Boltzmann’s constant, and T is temperature. This results 

in a situation where each new configuration at a lower energy level than the previous one 

is unconditionally accepted but there is also a probability exp(-�E / kBT )   that a 

configuration at a higher energy level may be accepted (where�E is the difference in 

energy between the two configurations) (Kirkpatrick et al., 1983). 

 

Finding the low temperature state of a system when a formula for calculating its energy is 

given is an optimisation problem analogous to finding the parameterisation of a model 

with lowest model-data misfit where a known formula for calculating its cost is given. 

Iterative improvement of the model is much like the microscopic rearrangement process 

modelled by statistical mechanics, with a set of ecosystem parameters replacing 

configurations of atoms and the cost function playing the role of the energy. The 

temperature is replaced by a control parameter, which is still called T. 

 

To simulate annealing first take a high initial value of T (T0 ), imposing an arbitrary initial 

parameterisation, and start generating random models. They will be distributed following 

the prior probability density f (�� ) .  In each iteration by slightly perturbing the current 

parameterisation �� i , a new parameterisation �� j is generated. Very slowly make T tend to 

zero while continuing to generate random models. At each temperature the simulation 

must proceed long enough for the system to reach a steady state. If the reduction of T is 

too rapid, the system can be trapped in a metastable state – a local minimum of the cost 
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function (Tarantola, 1987). When T reaches zero the system is frozen in the state of lower 

energy at the point of the maximum likelihood estimate for ��  (minimum of the cost 

function).  

 

Accepting only parameterisations that lower the cost function is comparable to extremely 

rapid cooling and results in metastable solutions. The Metropolis Algorithm, which 

allows incorporation of controlled uphill steps can be applied with the use of a Boltzmann 

acceptance criteria. The Metropolis Algorithm is the same as the Metropolis-Hastings 

algorithm with the additional constraints that the jumping distribution must be symmetric 

and the acceptance probability� = min{1,r}  is calculated by setting r to the ratio of 

densities 

r =
f ( ��� y)

f (� t�1 y)
                                                (2.18)

 

The choice of a Boltzmann acceptance probability results in the system evolving into a 

Boltzmann distribution – the average of any property, such as the cost, is determined for 

some effective T, and as T is lowered the Boltzmann distribution collapses into the lowest 

energy state (minimum of the cost function).  

 

Following Tarantola (1987) we define the energy function for T0 : 

E(y) = �T0 log
f (�� ) f (� | y)

f (� )

�

�
�

�

�
	

                                 (2.19) 

where f (�� ) is the prior probability distribution of the parameters and f (�� | y)  is the 

posterior probability distribution of the parameters. 

 

This gives  f (�� | y) = f (� ) � exp{�E(y) /T0}                                                               (2.20) 

 

Defining for any T we have f (�� | y) = f (� ) � exp{�E(y) /T}                                     (2.21) 

 

Using the Metropolis Algorithm we have a method that for any value of T can generate 

random models with probability density given by 
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f (�� | y) = f (� ) f (y |� )                                             (2.22) 

  

In nonlinear least squares usually f (�� )  is taken to be a constant. We set the Boltzmann 

constant kB  to be equal to 1, and the energy function E(y) is thus defined by the usual 

model-data misfit function J multiplied by T0  (Tarantola, 1987): 

E(y) =T0 � J                                                      (2.23) 

 

In this case, following Matear (1995), we define the model-data misfit function J as the 

sum of the terms J(y |�� )  and J(�� )  defined in Section 2.3.2 . A third term is included to 

penalise large deviations from the steady-state cycle reached after spin up (Matear, 1995; 

Schartau and Oschlies, 2003a). The steady state penalty requires the model components 

at the start of the third year to be approximately equal to the values at the start of the 

second year. 
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�          (2.24) 

 

As in Section 2.3.2 we assume Gaussian uncertainty for both prior parameter values �� obs  

and the assimilated data yobs , and prescribed uncertainties for the priors ���  and the data 

�� y . The algorithm predicted parameter values are �� prd  and m is the number of 

parameters. The model predicted values are denoted y prd  and n is the number of 

measurements. The steady state penalty, which penalises large deviations from the total 

nitrogen inventory reached after spin up, is denoted t, the number of data sets in the 

optimisation (N, P, …) is denoted by nc and �t = 0.01. 

 

The procedure is independent of the structure and analytical properties of the cost 

function as well as the initial guess since the starting value of T enforces a random state. 

Following Matear (1995) the simulated annealing required 6 parameters: the starting 

value of T, T0 ; a vector representing the standard deviations of Gaussian error to be 
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added to the model parameters �� 0 ; the reduction factors for T0  and �� 0  after each 

annealing step dT and d�  respectively; the maximum number of perturbations per 

annealing step Nmax ; the maximum number of acceptable perturbations required before 

exiting from an annealing step Ng .  

 

To calculate T0  1000 simulations simulations were performed by perturbing the initial 

parameter set by �� 0  and calculating the mean change in the cost function (�J ).T0  is 

then given by  

T0 = �
�J

In�                                               (2.25)
 

 

where � is the probability of parameter sets with higher costs to be accepted, which was 

set to 0.9 (Kruger, 1993; Matear, 1995; Athias et al., 2000). 

 

The vector �� 0  was set to the standard deviation of the model parameters given in Table 

2.2. The parameters of the simulated annealing were set to dT = 0.95, d� = 0.95, Nmax = 

5500 and Ng  = 2500. These parameter values were chosen to ensure the algorithm 

converged to the same value independent of the initial guess of the parameter values. The 

initial guess was determined by adding or subtracting the prescribed Gaussian errors from 

the true parameter values (addition or subtraction was imposed randomly by the 

algorithm). Gaussian error was added to the observations with a standard deviation set to 

be 5% of the observation value for the biological observations and 1% of the observation 

value for the nitrate observations (since the nitrate observations are an order of magnitude 

larger than the biological observations). 

 

Following Matear (1995), Vallino (2000), Fennel et al. (2001) and Friedrichs et al. 

(2006), the uncertainty of the parameter estimates is assessed by calculating their 

standard errors from the Hessian matrix (H) - the matrix of second partial derivatives of 

the likelihood function with respect to parameters evaluated at their maximum likelihood 

estimates �� � .  
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H =
�

2J

���
2

� =�
�                                                (2.26)

 

 

The Hessian provides a measure of how steeply likelihood drops off as you move away 

from the optimum solution. We wish to calculate the Hessian at the point of the global 

minimum. Near the global minimum the inverse of the Hessian matrix provides the 

matrix of approximate parameter variance and covariance’s with the square roots of the 

diagonals being the standard errors (Thacker, 1987). The advantage of a twin experiment 

is that the ‘true’ parameters are known and one can determine if the global minimum has 

been found by assessing the optimised parameters. 

 

The estimated standard errors may not recover the full information on the parameter 

uncertainties. Following Fennel et al. (2001) the singular vectors of the Hessian matrix 

are calculated to determine the parameter correlations as well as the sensitivities of the 

model solution to each parameter. The matrix H is expanded as 

H =  U�VT
                                                (2.27) 

where the diagonal matrix�  contains the singular values of H and the matrices U and V 

contain the singular vectors. Following Matear (1995) the Hessian matrix was evaluated 

using a 3-point centered finite differencing scheme. The Hessian matrix was inverted 

using a Singular Value Decomposition algorithm. 

 

The parameters associated with the largest singular values are determined from the 

ordered singular vectors; these parameters have the greatest influence on the model 

solution. The parameters associated with the smallest singular values have little influence 

on the model output but are responsible for explaining the largest degree of error. This 

provides quantitative information regarding the extent to which the model parameters are 

resolved by the observations (Matear, 1995). 

 

2.4 Experimental design 
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The first experiments applying the Metropolis-Hastings algorithm (experiments M-H1) 

optimised all 14 free parameters of the model (Table 2.1). The posterior parameter 

distributions were used to obtain summary statistics on each parameter, with the mean 

value taken as the parameter estimate and the standard deviation used as a measure of the 

expected error. The results from experiments M-H1 dictated further experiments 

(experiments M-H2) in which the Metropolis-Hastings algorithm was used to optimise 

only a subset of parameters in order to improve the estimates.  

 

Similarly the first experiment using simulated annealing (experiment SA1) optimised all 

14 free parameters of the model. An analysis of the posterior errors of the estimated 

parameters was calculated from the Hessian matrix. The results from experiment SA1 

encouraged a second experiment (experiment SA2) in which the only data constraint was 

the concentration of phytoplankton.  

 

2.5 Metropolis-Hastings algorithm results and discussion 

 

2.5.1 Experiments M-H1 

The Metropolis-Hasting algorithm failed to recover the parameters in the first 

optimisation experiments, which allowed all 14 free parameters to vary (Table 2.2). 

Inspection of the parameter traces showed that after 500,000 iterations the parameters had 

not reached a stationary distribution. A number of experiments were run and extensive 

time was spent adjusting the step size and number of iterations. After 10 million iterations 

the parameters still did not reach a stationary distribution.   

 

The highly non-linear nature of the problem makes the posterior probability in the model 

space extremely difficult to define. Correlations between parameters mean it is likely to 

be multi-modal preventing the algorithm from stabilising to a unique solution. If two or 

more parameters are correlated with each other a change in one can be accompanied by a 

corresponding change in the other without much affect on the model solution. Therefore, 

while optimising all the model parameters at once, there exists the possibility of 
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accurately reproducing the phytoplankton data with more that one combination of 

parameter values. 

 

Using the Metropolis-Hastings algorithm our parameter estimates are defined as the mean 

of the posterior distribution. Since the algorithm did not result in a stable posterior 

distribution, the mean values are very different from the true parameters with large 

standard deviations (Table 2.2).  
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Parameter 

True 

Parameter 

value 

Experiment M-

H1 estimate 

Experiment M-

H2 estimate 

�  0.256 ±  0.1 0.770 ±  0.49 - 

a 0.27 ±  0.1 0.18 ±  0.14 - 

b 1.066 ±  0.01 1.426 ±  0.28 1.060 ±  0.028 

c 1.0 ±  0.01 0.9 ±  0.57 - 

K 0.7 ±  0.2 0.49 ±  0.28 - 

μP  0.04 ±  0.01 0.02 ±  0.006 0.04 ±  0.002 

� 1  0.925 ±  0.01 0.920 ±  0.01 - 

g 1.57 ±  0.1 6.13 ±  2.78 - 

�  1.6 ±  0.1 2.83 ±  1.06 - 

μZ  0.34 ±  0.05 0.69 ±  0.30 - 

� 2  0.01 ±  0.01 0.005 ±  0.004 0.01 ±  0.008 

μD  0.048 ±  0.01 0.043 ±  0.009 - 

wD  18.0 ±  2 33.0 ±  18.70 - 

μP
2  0.025 ±  0.01 0.074 ±  0.004 - 

 

Table 2.2: The mean and standard deviation of the posterior parameter distributions 

obtained by running the Metropolis-Hastings algorithm. A dash indicated the parameter 

was kept fixed at the ‘true parameter value’ in the optimisation. 
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2.5.2 Experiments M-H2 

Through trial and error (optimising each parameter individually followed by two 

parameters at once, three parameters at once, etc., in many combinations) the well 

resolved parameters were found to be the maximum growth rate parameter b, mortality of 

phytoplankton μP , and zooplankton excretion rate,� 2 . Running the Metropolis-Hastings 

algorithm allowing only these three parameters to vary results in a stable posterior 

distribution for each parameter (Figure 2.4). The parameter values estimated from the 

mean of the posterior distributions are shown in Table 2.2, the accuracy of the estimates 

are reflected in the model solution, which is very close to the annual cycle of the data 

constraints (Figure 2.5). 

 

 

Figure 2.4: A subset of the iterations that occurred while running the Metropolis-Hasings 

algorithm in experiment M-H2. The last 20,000 iterations of the algorithm run is sampled 

at every 10
th

 point and shown for each parameter. 
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Figure 2.5: Annual model cycles of phytoplankton, zooplankton, detritus and DIN after 

optimising three parameters using the Metropolis-Hastings algorithm (black line). The 

annual model trajectories using the starting parameters are plotted in a dashed line. The 

simulated data are shown in red. 
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The inclusion of additional parameters in the optimisation impedes the algorithm from 

reaching a steady state and results in erratic parameter distributions. This is due to 

correlation between the parameters. For example the inclusion of the parameter for 

maximum photosynthetic efficiency (the initial slope of the P-I curve), � , in the 

optimisation with these three parameters results in neither �  nor μP  reaching a steady 

state. Figure 2.6 shows a subset of the iterations, demonstrating how changes to the 

choice of �  are matched by changes to the choice of μP . A change in the value of �  

results in modification to phytoplankton growth; when trying to reproduce a particular 

value for the concentration of phytoplankton this modification to growth will need to be 

compensated for, such as by a complimentary adjustment to mortality of phytoplankton. 

 

 

 

 

 

 

Figure 2.6: A subset of iterations that occurred while optimising four parameters using 

the Metropolis-Hastings algorithm. The parameter trace for the phytoplankton loss term 

μP  is shown in black. The parameter trace for the maximum photosynthetic efficiency   

�  in shown in blue. The values of � are divided by 10 to assist comparison between the 

two. 
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The correlation between parameters can be clearly seen by plotting the posterior 

distributions for each parameter against one another (Figure 2.7). The posterior 

distributions of the three well resolved parameters (maximum growth rate parameter b, 

mortality of phytoplankton μP , and zooplankton excretion rate,� 2 ) are independent of 

one another, however the connection between between mortality of phytoplankton (μP ) 

and maximum photosynthetic efficiency (� ) is evident. 

 

 

 

Figure 2.7: Correlation between the posterior parameter distributions after optimising the 

maximum growth rate, b, maximum photosynthetic efficiency, � , zooplankton excretion, 

� 2 , and phytoplankton loss rate, μP , using the Metropolis-Hastings algorithm. 
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Thus the Metropolis-Hastings algorithm is effective in optimising well resolved, un-

correlated parameters. Based on the algorithm performance the three best resolved 

parameters of this model are maximum growth rate parameter b, mortality of 

phytoplankton μP , and zooplankton excretion rate,� 2 .  

 

The estimation of only three parameters after extensive manual tuning of the algorithm 

and trial and error to find the uncorrelated parameters to optimise is a rather 

unsatisfactory result. The algorithm running time makes such numerous trial experiments 

rather time consuming. I coded a tridiagonal solver with the aim of finding a more 

computationally efficient method to solve the differential equations while performing the 

Metropolis-Hastings algorithm, however the alteration did not greatly improve the 

algorithm running time.  

 

2.6 Simulated annealing results and discussion 

 

2.6.1 Experiment SA1 

The 14 free parameters were optimised using simulated annealing. The optimised 

parameters are very close to the true parameter values (Table 2.3), this is reflected in the 

model solution which accurately characterises the annual cycles of all four model 

components (Figure 2.8). 
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Figure 2.8: Annual model cycles of phytoplankton, zooplankton, detritus and DIN after 

optimising all fourteen parameters using simulated annealing (black line). The annual 

model trajectories using the starting parameters are plotted in a dashed line. The 

simulated data are shown in red. 
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Parameter 

True 

Parameter 

value 

Experiment SA1 

estimate 

Experiment SA2 

estimate 

�  0.256 ±  0.1 0.258 ±  0.07 0.263 ±  0.02 

a 0.27 ±  0.1 0.27 ±  0.03 0.27 ±  0.003 

b 1.066 ±  0.01 1.068 ±  0.004 1.068 ±  0.001 

c 1.0 ±  0.01 1.0 ±  0.003 1.0 ±  0.001 

K 0.7 ±  0.2 0.7 ± 1.3 0.7 ±  0.34 

μP  0.04 ±  0.01 0.04 ±  0.004 0.04 ±  0.0004 

� 1  0.925 ±  0.01 0.924 ±  0.02 0.925 ±  0.001 

g 1.57 ±  0.1 1.57 ±  0.30 1.58 ±  0.08 

�  1.6 ±  0.1 1.61 ±  0.16 1.6 ±  0.05 

μZ  0.34 ±  0.05 0.34 ±  0.06 0.33 ±  0.02 

� 2  0.01 ±  0.01 0.01 ±  0.001 0.01 ±  0.0007 

μD  0.048 ±  0.01 0.048 ±  0.06 0.048 ±  0.0008 

wD  18.0 ±  2 17.9 ±  10.7 18.0 ±  34.0 

μP
2  0.025 ±  0.01 0.025 ±  0.003 0.027 ±  0.002 

 

 

Table 2.3: Parameter estimates obtained from the simulated annealing optimisation 

experiments. 
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Figure 2.9 Parameter resolution for the 14 parameter simulated annealing optimisation 

experiment. The singular vectors, �i , i =1:14, are shown in decreasing order of the 

magnitude of their associated singular values. As the magnitude of the singular values 

decreases so the parameters contributing to the associated singular vector decrease in 

their impact upon the model solution. 
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The parameters best resolved by the data are the phytoplankton loss term μP  and 

zooplankton excretion � 2  (�1  and �2  in Figure 2.9, and smallest error in Table 3). The 

combination of the phytoplankton maximum growth rate parameters a and b, the 

mortality of phytoplankton, μP
2 , and the remineralisation rate, μD , is also well resolved; 

however the values of these parameters cannot be estimated independently of one another 

(�3 and �4  in Figure 2.9). The correlation between the maximum phytoplankton growth 

rate parameters a and b is evident since they appear in combination in several of the 

singular vectors, and these maximum growth rate parameters are also correlated to the 

poorly determined parameter for maximum photosynthetic efficiency � (�7 , �10  and �11 , 

Figure 2.9).  

 

The maximum temperature dependent growth is dependent upon the multiplicative 

combination of a and b, this multiplicative formulation makes it highly unlikely that the 

data would be able to constrain the two terms independently, however in combination 

they are well determined. The phytoplankton photosynthesis-irradiance relationship is 

calculated as a function of the maximum temperature dependant growth, the 

photosynthetically available radiation and maximum photosynthetic efficiency (the initial 

slope of the P-I curve). This formulation results in an estimate of �  which is not well 

resolved (Figure 2.9) and somewhat dependent on the maximum growth rate. Similarly 

the parameter optimisation experiments of SO03, which these parameter values are based 

on, showed phytoplankton growth and loss parameters (a, b, μP , μP
2 ) to be well 

constrained with maximum photosynthetic efficiency only poorly constrained.  

 

Even in this idealised case of daily observations on all the model components of nitrogen, 

phytoplankton, zooplankton and detritus many of the parameters are only poorly resolved 

by the data. The estimates of the half saturation constant of DIN uptake rate, K, and the 

detrital sinking velocity, wD , have large posterior errors (Table 2.3). The smallest 

singular values of the Hessian, which are effectively zero, correspond to singular vectors 

containing information on K and wD  only. There is no information on these parameters in 
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any of the other singular vectors, thus K and  wD  are virtually unconstrained and 

independent of the other parameters (�13  and �14  in Figure 2.9). 

 

The half saturation constant of DIN uptake rate, K, will only be used by the model 

equations in a case of nitrogen limited growth. Since there are high levels of DIN in the 

surface mixed layer annually, at this location, K is a redundant parameter. This result 

could be different if the optimisation was applied in a nutrient deficient region of the 

ocean. For example SO03 found the half saturation constant of DIN uptake rate to be a 

relatively well constrained parameter in their optimisations at 3 sites in the North 

Atlantic. Similarly Fennel et al. (2001) found the half saturation constant of DIN uptake 

rate to be among the well constrained parameters at the oligotrophic BATS site.  

 

The sinking rate of detritus is quantified as a constant velocity. Using the same 

parameterisation SO03 also found the detrital sinking rate to be a very poorly resolved 

parameter in their vertically resolved model optimisation at three distinct locations in the 

North Atlantic. Likewise Xu et al (2008) found only very small model sensitivities to the  

detrital sinking rate parameter in their coupled physical-biological model optimisation for 

the Yellow Sea.  The posterior error on the sinking rate indicates its value could lie 

somewhere between 7 and 27 d-1
 without greatly changing the model solution (Table 3). 

This constant velocity representation of detrital sinking rate has been used in many 

modelling studies ranging from one dimensional studies (Mattern et al., 2010) to coupled 

physical-biological regional experiments (Fietcher et al., 2009; Xu et al., 2008) to fully 

coupled global modelling studies (Zahariev et al., 2008), and has been used in estimation 

of global export production (Cox et al., 2000; Palmer and Totterdell, 2001). Even if the 

model assumption of a constant sinking speed of detritus was certain, the daily rate 

cannot be estimated unambiguously using this model. This result highlights the need for 

thorough consideration of the parameter values assigned to an ecosystem model before 

making inference based on them. 

 

SO03 found the sinking rate of detritus to be highly correlated to the remineralisation 

rate, with the fluxes out of the detrital compartment being dependent upon one another; 
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whereas in this experiment the remineralisation rate is correlated with the phytoplankton 

maximum growth rate parameters (Figure 2.9), with the fluxes into and out of the DIN 

compartment being dependent upon one another. This difference in dependencies is likely 

due to the different locations, with seasonal DIN gradients being more significant in the 

Southern Ocean. In the oligotrophic region considered in SO03 there is little seasonal 

variability in the DIN inventories of the euphotic zone. 

 

The maximum grazing rate , g, is only poorly resolved by the data (Table 3 and Figure 

2.9). The optimisation of SO03 set these grazing parameters at the maximum values 

imposed by their a priori assumptions, to avoid excessive grazing rates. They assumed the 

parameters to be unconstrained by the data due to lack of zooplankton observations. 

However this twin experiment shows that even in the case of daily zooplankton 

observations g and �  are only poorly resolved. Similar to the phytoplankton growth 

parameters, the zooplankton maximum grazing rate, g, and prey capture rate,� , only 

enter the model equations through the grazing function G(P); therefore it is unlikely that 

both may be accurately and independently determined due to the model formulation. A 

different formulation for zooplankton grazing was used in a four component N-P-Z-D 

model similar to this one by Zhao and Lu (2009) and Xu et al. (2008). Both studies found 

that the two parameters entering the grazing formula (maximum grazing rate and Ivlev 

grazing constant) could not be determined independently of one another. 

 

The most accurately determined parameters are consistent with those found using the 

Metropolis-Hastings algorithm; however the process of determining them and optimising 

them is a great deal faster using simulated annealing. Additionally simulated annealing 

provides an estimate for the more poorly resolved parameters, and a straightforward way 

of assessing correlation between all parameters at once. 

 

2.6.2 Experiment SA2 

Experiment SA1 was repeated with the modification that only phytoplankton data was 

included in the assimilation process. The optimised parameters are again close to the true 
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values (Table 2.3). The model fit to the data is not compromised by including information 

on phytoplankton only (Figure 2.10). The singular vectors are very similar to those 

presented in Figure 2.9. 

 

 

Figure 2.10: Annual model cycles of phytoplankton, zooplankton, detritus and DIN after 

optimising all fourteen parameters, assimilating simulated phytoplankton data using 

simulated annealing (black line). The annual model trajectories using the starting 

parameters are plotted in a dashed line. The simulated data are shown in red. 
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The exclusion of the nitrate and detritus data sets adversely affects the estimates of K and  

wD . The errors on the estimates of these parameters are more than double that in 

experiment SA1 (Table 2.3). However they were virtually unconstrained in experiment 

SA1 so no inference could be based on their estimated values even with the additional 

data. The errors on all the other parameters are reduced by omitting the nitrate,  

zooplankton and detritus data sets. The use of only one data set means that the a priori 

parameter estimates take relatively more weight in the cost function. 

 

Zhao and Lu (2009) conducted twin experiments to determine which of nutrient, 

phytoplankton and zooplankton data sets gave the best results in a parameter optimisation 

study with a model formulation very similar to this one. They found the best estimates 

were achieved when phytoplankton data were assimilated, and the addition of 

zooplankton data did not obviously improve their parameter estimates. The results 

presented here show that the parameter estimates are not compromised by assimilating 

only phytoplankton data, this gives confidence to the feasibility of using satellite ocean 

colour data to optimise the parameters of a marine ecosystem model such as this one.  

 

2.7 Summary 

 

Two methods of optimising the parameters of a marine ecosystem model have been 

applied in the Polar Frontal Zone of the Southern Ocean. The model had previously been 

optimised for the North Atlantic Ocean by Schartau and Oschlies (2003a). 

 

The Metropolis-Hastings algorithm is proven to converge to a target parameter 

distribution, and allows sampling of the complete posterior distribution of the parameter 

estimates. While attractive in principle, for this application it required considerable 

computing time to run the optimisation, extensive time adjusting the step size for each 

parameter to ensure appropriate jumping, and substantial time performing individual 

optimisations to determine the well resolved parameters. Multiple experiments using this 

method would be impractical. Nonetheless the results from an initial twin experiment can 



 

 58 

be used to estimate how well faster methods that derive uncertainties from the curvature 

of the cost function at its global minimum will work. 

 

When using simulated annealing, as with other optimisation techniques such as the 

adjoint method, there is no guarantee that the minimum has been found since the cooling 

schedule may cause the system to become trapped in a local minimum of the objective 

function. This risk can be minimised if a very slow cooling schedule is implemented 

(Tarantola, 1987). The results presented here demonstrate that it is a practical and 

effective method and will find a near-optimal solution even in the presence of noisy data. 

The agreement of the model sensitivities derived from the Hessian with the model 

sensitivities derived from the Metropolis-Hastings experiments indicates that the Hessian 

was indeed analysed at the global minimum of the cost function. Optimisations 

assimilating only phytoplankton gave comparably good results, indicating that 

optimisations could be performed where remotely sensed ocean colour observations are 

the only comprehensive data source. For future optimisation experiments simulated 

annealing is the method we would use. 

The optimisations show that several of the model parameters are correlated with one 

another. Error analysis must be an essential part of any parameter optimisation 

experiment, particularly when high correlations exist. When assimilating real data into 

this model parameter estimates should be compared with a variety of independent data 

sources that have not been used for the optimisation process to check that the estimates 

are a credible biological solution and not just a mathematical agreement to the data. 

Additionally model parameters or rates not directly optimised by the algorithm (such as f-

ratio or primary production) should be compared with independent data sources to verify 

the solution. 

To reduce errors arising from co-dependencies between the parameters it would be 

beneficial to remove the most poorly resolved parameters from the optimisation  when 

assimilating real data (Fennel et al., 2001; Friedrichs, 2006; Zhao and Lu, 2009); however 

comparison of our results with the results from SO03 shows the model sensitivities may 

change depending on the region in which the model is applied. It would be beneficial to 
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perform supplementary twin experiments when applying this model to another location to 

assess model sensitivities before selecting which parameters to optimise in data 

experiments. 

 

As well as sensitivities to the data sets, twin experiments can highlight potential 

improvements to model structure. The detrital sinking velocity cannot be unambiguously 

estimated in this model. More complex parameterisations of sinking particles exist 

(Kriest, 2002; Ruiz et al, 2002; Karakas et al., 2009); however we cannot validate all the 

parameters of this model so additional complexity without data support is not desirable 

for the parameter optimisation studies considered here. Rather we would suggest this 

model may be appropriate for modelling phytoplankton distributions and certain 

biogeochemical fluxes (primary production, phytoplankton mortality, zooplankton 

excretion) but not for estimation of carbon export through detrital sinking.  
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Chapter 3: 

Parameter optimisation of a marine ecosystem model at two 

contrasting stations in the Sub-Antarctic Zone 
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Abstract 

SeaWiFS surface chlorophyll estimates in the Sub-Antarctic Zone show low 

concentrations south west of Tasmania and high concentrations south east of Tasmania. 

Data assimilation experiments were performed using simulated annealing to obtain 

parameter estimates of a simple nitrogen based mixed-layer marine ecosystem model at 

two locations in this region (station P1 at 140 
�

E, 46.5 
�

S and station P3 at 152 
�

E, 

45.5 
�

S). The assimilation methods and parameter sensitivities are assessed in a twin 

experiment. This assessment determines the design of an optimisation experiment 

utilizing SeaWiFS chlorophyll observations. Model parameter estimates are compared to 

in situ parameter estimates from the SAZ-Sense (Sub-Antarctic Zone Sensitivity to 

environmental change) project stations P1 and P3 in the austral summer of 2007.  

 

The parameter estimates suggest that different ecosystems are present within the Sub-

Antarctic Zone. The optimisation reduces the model-data misfit dramatically compared 

with the original parameterisation, which assumed the same ecosystem dynamics at both 

stations. Different biological processes rather than different physical conditions between 

the two sites are responsible for the difference in ecosystem function in our experiments. 

 

An analysis of parameter uncertainties shows at both stations accurate parameterisations 

of phytoplankton growth, zooplankton mortality and the biological recycling processes 

are required to realistically model chlorophyll.  

 

The most significant differences in parameters between the two stations are the 

parameters relating to phytoplankton growth and zooplankton mortality. The difference in 

growth parameters results in spring time productivity estimates of 659 mg C m
�2

d
�1

 at 

P1 and 203 mg C m
�2

d
�1

 at P3. In situ estimates from the SAZ-Sense cruise do not 

support such dramatic differences in primary production between the two stations. We 

conclude that the same ecosystem model structure is not applicable at both stations and 

we need additional processes at P3 to reproduce the observed seasonality of 

phytoplankton and the observed primary productivity. We hypothesize that the missing 
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processes in the ecosystem model at P3 are iron limitation of phytoplankton and the 

seasonal variations in atmospheric deposition of iron. 

 

3.1 Introduction  

 

Marine plankton dynamics are recognised as having considerable influence on global 

climate (Riebesell et al., 2007; Le Quere et al., 2005; Matear et al., 1999; Sarmiento et 

al., 1998). The Southern Ocean plays a central role in global planktonic productivity 

(Marinov et al., 2006) and different regions within the Southern Ocean are likely to 

respond differently to climate variability (Kohfeld et al., 2005). Meridional asymmetries 

in Southern Ocean biogeochemistry were studied in the Sub-Antarctic Zone (SAZ) 

project (Trull et al., 2001) that focussed on the differences between the SAZ and the Polar 

Frontal Zone (PFZ); and the Antarctic Southern Ocean Environment Study (AESOPS) 

that focussed on the Ross Sea and Pacific Ocean (Anderson and Smith, 2001). 

 

The region of the Sub-Antarctic Zone (SAZ) to the south of Tasmania is interesting in 

that it characterised by a large zonal gradient in the phytoplankton concentrations 

estimated from remotely sensed ocean colour (Figure 3.1). The region to the south east of 

Tasmania is characterised by much higher summer phytoplankton concentrations visible 

in surface waters during austral summer than the region to the south west (Griffiths et al., 

in press). Model simulations aid identification of the processes leading to the observed 

phytoplankton distribution. To the best of our knowledge no biological model simulations 

have been done to assess whether one set of biological model parameters can reproduce 

the observed phytoplankton seasonal cycle in these different regions of the Sub-Antarctic 

Zone or identify any important regional differences in model parameterisations. 

 

The linking of models and data through data assimilation or inverse modelling is a 

developing field that can provide many insights into biogeochemical dynamics not 

possible by using data or models alone.  Data assimilation for parameter estimation is a 
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systematic means of estimating model parameters in a way that is consistent with the 

available observations (Matear, 2004).  

 

 

 

Figure 3.1: February SeaWiFS surface chlorophyll (mg m�3
) using a 1998 – 2008 

climatology computed from 8-day composites. 

 

 

 

There have been numerous studies concentrating on optimising ecosystem model 

parameters for various regions (e.g. Matear, 1995; Hurtt and Armstrong, 1999, Friedrichs, 

2001, Schartau and Oschlies, 2003a) but thus far no one has applied this technique with a 

focus on the Sub-Antarctic Zone of the Southern Ocean. In this paper ecosystem model 

parameters are optimised and compared at the two Sub-Antarctic Zone process stations of 
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the SAZ-Sense project, station P1 south west of Tasmania at  140�E , 46.5�S  and station 

P3 south east of Tasmania at  152�E , 45.5�S  to examine possible reasons for the zonal 

gradient in phytoplankton concentrations. It is hypothesised the difference in the size of 

the summer bloom at the two sites (up to 1.7 times greater at P3 compared to P1) may be 

driven by either iron supply, phytoplankton growth rates, variations in zooplankton 

grazing, or other biogeochemical mechanisms (Griffiths et al., in press).  

 

One of the models most commonly used in assimilation experiments is based on that of 

Fasham et al. (1990). Despite its simplicity this model can reproduce the main ecosystem 

features of the surface mixed layer at several locations and provide insight into the 

fundamental biological interactions in the ocean. Here a reduced four-component version 

of the Fasham et al. model as described by Schartau and Oschlies (2003a) is used. It is 

similar in formulation to the models used by Fennel et al. (2001); Oschlies and Garcon 

(1999) and Doney et al (1996).  The study of nitrogen cycling in the surface ocean 

provides information to aid understanding of primary production and f-ratios (ratio of 

nitrate based production to total production), which are useful tools to characterize 

ecosystem functioning (Savoye et al., 2004). Here the nitrogen based model is used to 

explore the ecosystem characteristics, possible reasons for the regional variation in 

phytoplankton biomass, and determine whether a model that does not incorporate the role 

of iron can realistically simulate the surface chlorophyll observations. 

 

The model sensitivities and assimilation procedure are first assessed with a twin 

experiment. We then apply the data assimilation methods to observational data from the 

two sites. Satellite derived data provides the only large-scale synoptic observations of the 

Southern Ocean and therefore SeaWiFS surface chlorophyll is used for our inversions. In 

situ measurements at P1 and P3 exist for only ~7 days at each station and are useful for 

assessment of parameter estimates rather than assimilation into the model. We examine 

whether one set of model parameters can describe the phytoplankton dynamics at the two 

contrasting sites, and whether a model that does not include the role of iron can simulate 

the surface chlorophyll concentrations observed at P1 and P3. We compare the 

biogeochemical characteristics of the two sites exploring whether the meridional 
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variation in phytoplankton biomass can be explained by either physical processes or 

ecosystem differences. Results are compared with in situ estimates of primary production 

and f-ratios from the SAZ-Sense (Sub-Antarctic Zone Sensitivity to environmental 

change) project; which took place from 18
th
 January to 19

th
 February 2007. 

 

The rest of the paper is organised as follows: Section 2 describes the ecosystem model, 

the data sets and the assimilation methods used. Section 3 gives details of the 

experimental design of this study. In Section 4 the results of the twin experiment are 

presented and discussed. The results of the data experiments are presented and discussed 

in Section 5. The results are compared to results from the SAZ-Sense project in Section 6. 

Section 7 summarises this study. 

 

3.2 Methods 

 

In this Section a brief description of the biological model is presented and we review the 

forcing used in the model simulation, the key components of the data assimilation method 

are then described. 

 

3.2.1 The biological model 

Our four component N-P-Z-D (Nitrate-Phytoplankton-Zooplankton-Detritus) ecosystem 

model of the seasonal nutrient cycle follows Schartau and Oschlies (2003a). In this paper 

mixed layer dynamics are not modelled explicitly. Instead following Evans and Parslow 

(1985); Fasham (1990); and Matear (1995), model data is used to define the seasonal 

change in mixed layer depth (in metres), M, as a function of time (in days), t . 

dM

dt
= h(t)

                                                 (3.1) 

 

In this simple zero-dimensional application the pelagic ecosystem is assumed to consist 

of a homogeneous mixed layer overlying a deeper abiotic layer. Phytoplankton and 

zooplankton are assumed to be homogeneously distributed in the upper mixed layer and 
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horizontal advection and diffusion are ignored. An analytical form for light limited 

growth introduced by Evans and Parslow (1985) is used that depends on 

photosynthetically available radiation (PAR) as a function of depth. The model equations 

are given in Chapter 2.  

 

The model has 16 parameters, which are initially assigned the same values as those used 

by Schartau and Oschlies (2003a), (shown in Table 2.1 and referred as the SO03 

parameters here after). Following Matear (1995) the surface PAR and light attenuation 

coefficient remain invariant in time. The remaining 14 parameters are used for the first 

optimisation experiment. 

 

3.2.2 Model forcing 

The forcing terms of the ecosystem model are solar radiation, Sea Surface Temperature 

(SST), Mixed Layer Depth (MLD) and nitrate concentration below the mixed layer 

(Figure 3.2). The forcing data is taken from the GFDL global ocean circulation model 

MOM4 (Modular Ocean Model 4) with the OFAM (Ocean Forecasting Australian 

Model) configuration as described by Mongin et al. (in press, a). The global model 

restores SST to a monthly climatology of Reynolds SST merged with the Levitus World 

Atlas 2001 (Levitus, 1982). Daily values of SST are obtained by interpolation. The daily 

MLD is taken as the depth of a 0.05 kg m�3
 difference in density from the surface 

computed using the model output of temperature and salinity (Mongin et al., in press, a). 

Daily averaged values of solar radiation are from NCAR (National Centre for 

Atmospheric Research). The forcing data for nitrate concentration below the mixed layer 

shows a larger seasonal pattern than is seen in in-situ measurements (Brian Griffiths, 

personal communication). However these differences do not affect the model behaviour 

as both stations are nitrate replete; running the model with a constant value for the nitrate 

concentration below the mixed layer does not change the model solution. 
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Figure 3.2: Forcing used for the model. Panel A shows nitrate concentration below the 

mixed layer (mmol N m-3
); panel B shows temperature ( 

�

C); panel C shows daily 

incident solar radiation ( W m-2
); panel D shows mixed layer depth (meters). Station P1 is 

shown in a dashed line. Station P3 is shown in a solid line. 
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3.2.3 Data constraints 

We used surface chlorophyll concentration data taken from SeaWiFS (Sea-viewing Wide 

Field-of-view Sensor) 8-day composites (9km) generated by the NASA Goddard Space 

Flight Centre. Since the data is sparse in this regions a climatology was computed for the 

years 1998 – 2008 averaging the chlorophyll over a  1
�

 square region centred on each 

process station (Mongin et al., in press, b). Daily values of chlorophyll are obtained by 

interpolation. A conversion factor of 1.59 mg Chl (mmolN)-1  was used to convert 

modelled phytoplankton nitrogen to chlorophyll (Fasham et al., 1990; Sarmiento et al., 

1993). To obtain a measure of uncertainty in the observed chlorophyll, the standard 

deviation of the observations within the  1
�

 square was calculated and is shown with the 

data in Figure 3.3. The main feature differentiating the two stations is the size of the 

phytoplankton bloom. At station P1 the bloom persists from December to February, while 

at station P3 the maximum is not observed until February and can be as large as twice the 

magnitude of the bloom at P1 (Figure 3.3). 

 

 

 

 

Figure 3.3: Chlorophyll climatology for the period 1998 – 2008 taken from Sea-WiFS.  

Station P1 is shown in a dashed line. Station P3 is shown in solid line. The standard 

deviation of the observations is plotted in a dot-dash line. 
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3.2.4 Cost function 

For the optimisation we introduce a cost function C, defined to measure the misfit 

between model output and observations at each time step of the model run. Our cost 

function includes a term representing model-data misfit for different components of the 

model (y = N, P, Z, D in the twin experiment; or y =Chla in the data experiments) and a 

term representing parameter misfit from its a priori expected value. This is included to 

penalise parameter values that are outside acceptable limits. These acceptable limits are 

based on literature values (Schartau and Oschlies, 2003a; Matear, 1995) and set to be 

broad to represent our uncertainty on the parameter, but do not allow biologically 

unfeasable choices such as negative values. A third term is included to penalise large 

deviations from the steady-state cycle reached after spin up (Matear, 1995; Schartau and 

Oschlies, 2003a). The model is run for three years, two of which are spin up time, after 

which quasi steady state was achieved, thus the steady state penalty requires the model 

components at the start of the third year to be approximately equal to the values at the 

start of the second year. 

 

Taking a formulation that assumes Gaussian errors for both prior parameter values � obs  

and the assimilated data yobs , and prescribed uncertainties ��  for the parameters and � y  

for the data it is defined as 

C =
1

2
(yi

prd
� yi

obs )2 1

�yi
2
+

i=1

n

�
1

2
(� i

prd
�� i

obs )2

i=1

m

�
1

�� i
2
+

1

2
(t1

j
� t365

j )
1

�t 4
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nc

�
                      (3.2)

 

where the superscripts prd, obs and prior denote the model predicted values, observations 

and prior values respectively and t is the steady state penalty; n refers to the number of 

data observations (n=365), m refers to the number of model parameters, nc refers to the 

number of data sets in the optimisation (N, P, …) and �t = 0.01 (following Matear, 1995). 

An algorithm is applied to find the minimum of the cost function. 
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The standard deviation on the observation error was set to be 20% of the data value, for 

consistency Gaussian noise of the same magnitude was added to the generated 

observations in the twin experiment. 

 

This cost function follows a � 2  (chi-squared) distribution. On successful minimisation it 

should have a value of order unity, indicating that the model-data misfit is of the order of 

the observational error (Tarantola, 1987). 

 

3.2.5 Optimisation 

Estimates of optimal parameter values are obtained using a simulated annealing 

algorithm, a stochastic process used to find unbiased estimates. It is a practical and 

effective method that will find a near-optimal solution even in the presence of noisy data. 

The method is described in detail by Kirkpatrick et al (1983) and Kruger (1993) and has 

been demonstrated in the context of marine ecosystem models by Matear (1995) and 

Hurtt and Armstrong (1996, 1999). 

 

The simulated annealing algorithm was run for 400 iterations, as after 400 iterations the 

algorithm converged to the same value of the cost function independent of the initial 

guess of model parameters (i.e. several trial optimisations starting from different 

parameter guesses were performed). The SO03 parameters were offset from their value 

by ± 2� their prescribed standard deviation and these offset parameters were used as an 

initial guess for running the algorithm. Following Matear (1995) the uncertainty of the 

parameter estimates is assessed from the Hessian matrix of the cost function (which is the 

same as the Jacobian matrix of the gradient of the cost function). 

 

3.3 Experimental design 

 

The experimental design is summarised in Figure 3.4. 
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Initially a twin experiment in which an idealised data set generated from the simulated 

annual model trajectories of N, P, Z and D (using the SO03 parameters as defined in 

Table 2.1) was conducted, optimising the 14 free parameters at station P1 and P3. With 

the twin experiment the “true” model parameter values are known and we can investigate 

the ability of the data assimilation to recover the model parameters without the added 

complexity due to inconsistencies between the applied biological model and reality. The 

results from this twin experiment were used to assess the feasibility of the problem and 

the parameters with the most influence on the model results.  

 

The first data experiment optimised twelve model parameters (twelve parameter 

optimisation), which were chosen on the basis of the error analysis of the twin 

experiment, while assimilating chlorophyll data. This experiment establishes the best fit 

that the simulated annealing could give to the chlorophyll data set at each process station. 

A second data experiment is performed (reduced parameter optimisation), designed in 

light of the error analysis of the twelve parameter optimisation, in order to obtain better 

constrained estimates of the model parameters.  

 

The results of the reduced parameter optimisation are used for a further experiment to 

assess the effect of the physical forcing compared to the biological parameterisation on 

the model. The optimal parameters from P1 were used to run the model at P3, and vice 

versa, to examine how the resulting parameterisations transfer across the region. The 

primary difference between the stations in physical forcing is the mixed layer depth 

(incoming radiation is almost identical due to the similarity in latitude of the stations, 

temperature varies by less than 2 
�

C between the stations, and both stations are nitrate 

replete). In this Chapter the differences in mixed layer depth are taken to be indicative of 

the differences in physical forcing. The optimised model for station P1 was run using the 

mixed layer depth data from station P3, and vice versa, to examine how the mixed layer 

dynamics influence the biological response. 
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Figure 3.4: Summary of the experimental design of this study. 
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3.4 Twin Experiment 

 

3.4.1 Twin experiment optimisation 

At both stations the optimised parameter values are successful at reproducing the data 

(Figure 3.5) and recovering the SO03 parameters (Table 3.2). Many of the optimised 

parameter estimates have large standard deviations; particularly the sinking rate of 

detritus,wD  , and the half saturation constant for Dissolved Inorganic Nitrogen (DIN) 

uptake rate, K (Table 3.2).  

 

Figure 3.6 shows parameter estimates that occurred during a simulated annealing 

optimisation of each parameter. All parameters other than the one being optimised were 

fixed at the values given in Table 2.1. The parameter values are plotted against the 

corresponding model cost function value; this shows the sensitivity of the cost function to 

variations in each parameter. The phytoplankton loss rate, μP , is the most sensitive 

parameter with small changes to its value resulting in a large increase in the cost function. 

The sinking rate of detritus,wD , and the half saturation constant for Dissolved Inorganic 

Nitrogen (DIN) uptake rate, K , are the least sensitive parameters with very large changes 

in their values hardly affecting the cost function. 

 

The response of the cost function to changes in the initial slope of the PI curve, �  and the 

phytoplankton growth rate parameter, a, is notably different between P1 and P3. A 

possible reason for this is the difference in the magnitude of the chlorophyll bloom 

between the stations. The growth rates that correspond to the data at station P1 change 

more significantly as the bloom is larger at P1 in this twin experiment. 

 

Even in this twin experiment case of daily N, P, Z and D observations the half saturation 

constant of DIN uptake rate and the detrital sinking rate cannot be accurately estimated 

for this model at stations P1 and P3. 
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Figure 3.5: Annual model trajectories after optimising the model parameters 

using simulated annealing. Panels A and B show the model output for stations 

P1 and P3 respectively. The modelled phytoplankton is plotted in a solid line 

with the data created using the SO03 parameters with 20% Gaussian noise 

added plotted in a dashed line. Panels C – E show the modelled zooplankton, 

detritus and DIN at station P1 (dashed line) and station P3 (solid line). 
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Parameter 

True 

Parameter 

value 

P1 twin experiment 

optimisation 

estimate 

P3 twin experiment 

optimisation 

estimate 

�  0.256 ±  0.1 0.270 ±  0.0875 0.253 ±  0.0748 

a 0.27 ±  0.1 0.28 ±  0.0193 0.28 ±  0.0289 

b 1.066 ±  0.01 1.062 ±  0.0118 1.064 ±  0.0017 

c 1.0 ±  0.01 1.0 ±  0.0034 1.0 ±  0.0033 

K 0.7 ±  0.2 0.7 ±  1.3220 0.7 ±  1.3220 

μP  0.04 ±  0.01 0.076 ±  0.0032 0.087 ±  0.0007 

� 1  0.925 ±  0.01 0.925 ±  0.0195 0.925 ±  0.0115 

g 1.57 ±  0.1 1.58 ±  0.3581 1.57 ±  0.2926 

�  1.6 ±  0.1 1.57 ±  0.0572 1.60 ±  0.1236 

μZ  0.34 ±  0.05 0.33 ±  0.0759 0.34 ±  0.0605 

� 2  0.01 ±  0.01 0.020 ±  0.0021 0.022 ±  0.0018 

μD  0.048 ±  0.01 0.091 ±  0.0327 0.106 ±  0.0209 

wD  18.0 ±  2 17.8 ±  11.7412 18.0 ±  6.9362 

μP
2  0.025 ±  0.01 0.024 ±  0.0024 0.025 ±  0.0005 

 

 

Table 3.2: Parameter values and standard deviations before and after optimisation in the 

twin experiment using simulated annealing at stations P1 and P3. Parameter names and 

units are given in Table 2.1. The values listed for the remineralisation rates account for 

the mean temperature at the two stations. 

 

 

 



 

 76 

 

 

 

Figure 3.6: Model parameters plotted against the costs that occurred during a simulated 

annealing parameter optimisation of each parameter at station P1 (circles) and station P3 

(filled circles). 
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3.4.2 Twin experiment summary 

Simulated annealing is an effective algorithm for data assimilation. The optimal 

parameters are found and the model correctly reproduces the data.  Our data assimilation 

analysis shows that the detrital sinking rate, wD , and the half saturation constant of DIN 

uptake rate, K, cannot be estimated from the data constraints (Table 3.2) and they have 

very little influence on the cost function (Figure 3.6).  

 

3.5 Data Experiment 

 

3.5.1 Twelve parameter optimisation 

Simulated annealing was used to find the optimal model parameters at SAZ-Sense 

stations P1 and P3 using observations of seasonal chlorophyll a from SeaWiFS. The 

analysis performed in Section 4 revealed that not all of the parameters can be determined 

by the optimisation in this region. Fennel et al. (2001) demonstrated how the errors of 

parameter estimates are improved by removing the most poorly constrained parameters 

from the optimisation. Frierichs et al. (2006) demonstrated that optimising too many 

parameters decreases the predictive ability of a model. To help reduce errors in our 

parameter estimates the detrital sinking rate, wD  and the half saturation constant of DIN 

uptake rate, K are held constant while the remaining twelve parameters are optimised.  

 

The S003 parameter values are taken as the initial parameters (Table 2.1). The model 

solution using these parameters is very different to the observations (compare Figure 3.5 

with Figure 3.3). Using the initial parameter set, the phytoplankton bloom occurs between 

September and November and is larger at station P1 than P3, in contrast to the 

observations which show the phytoplankton biomass is elevated between November and 

March with the bloom at P3 reaching as much as 1.7 times the magnitude of that at P1. 

 

The optimisation greatly improves the model fit to the SeaWiFS surface chlorophyll data. 

The model output now captures the timing and magnitude of the annual cycle of 
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chlorophyll observations. The cost function is 0.79 at station P1 and 3.61 at station P3 

(Figure 3.7).  

 

Figure 3.7: Annual model trajectories after optimising twelve parameters 

using simulated annealing. Panels A and B show the modelled chlorophyll 

(solid line) and the chlorophyll data using 8-day SeaWiFS climatology (bold 

dashed line) with error margins calculated as the standard deviation of all 

observations within a 1x1 degree square (dot-dashed line) around the process 

stations P1 and P3 respectively. Panels C – E show the modelled 

zooplankton, detritus and DIN at station P1 (dashed line) and station P3 (solid 

line). 
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3.5.1.1 Parameter uncertainty 

The parameter estimates and their a-posteriori error is shown in Table 3.3. The singular 

values and associated singular vectors of the Hessian matrix were calculated for a 

thorough uncertainty analysis. The interested reader can refer to Section 3.8. 

 

The singular vectors of the Hessian show that the parameters best resolved by the 

chlorophyll data are zooplankton excretion, � 2 ; phytoplankton loss rate, μP ; mortality of 

zooplankton, μZ ; and phytoplankton maximum growth rate, b at station P1; and 

zooplankton excretion, � 2 ; and phytoplankton loss rate, μP  at station P3. The estimates 

of these parameter values are not independent of one another. The differences in the 

estimates of these parameters between P1 and P3 are discussed in Section 6. 

 

The well resolved parameters for the phytoplankton loss rate, μP , and excretion by 

zooplankton, � 2 , control the flow of nitrogen from the phytoplankton and zooplankton 

pools back to the dissolved inorganic nitrogen pool. The rapid recycling of nitrogen from 

the  P to the  N compartments (as a function of μP ) can be regarded as an implicit 

description of the bacterial loop without explicitly including bacteria and dissolved 

organic nitrogen as additional state variables in the model (Schartau and Oschlies, 

2003b). The direct path of nitrogen from Z to N (as a function of � 2 ) is a simplified 

parameterisation of remineralisation via zooplankton representing the production of 

ammonium.  

 

The initial slope of the PI curve �  and the phytoplankton growth rate parameter a are 

reasonably well resolved at station P3 compared to station P1 where both are poorly 

resolved. As discussed in Section 4.1 this may be due to the difference in the magnitude 

of the chlorophyll bloom between the stations, which is up to 1.7 times greater at P3 than 

P1. The mortality of zooplankton, μZ  is well constrained by the data at station P1 
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compared to station P3. The zooplankton parameters for prey capture rate, � , and 

maximum grazing rate, g, are poorly resolved at both stations (Figure 3.11). 

 

 

  

Parameter 

SO03 

Parameter 

value 

P1 twelve 

parameter 

optimisation 

estimate 

P3 twelve 

parameter 

optimisation 

estimate 

P1 reduced 

parameter 

optimisation 

estimate 

P3 reduced 

parameter 

optimisation 

estimate 

�  0.256 ±  0.1 0.118 ±  0.4977 0.014 ±  0.0001 - 0.015 ±  0.0002 

a 0.27 ±  0.1 0.50 ±  1.4056 0.05 ±  0.0004 - 0.09 ±  0.0012 

b 1.066 ±  0.01 1.075 ±  0.0087 1.209 ±  0.0012 1.073 ±  0.0005 1.141 ±  0.0007 

c 1.0 ±  0.01 1.0 ± 0.0011 1.0 ±  0.0009 1.0 ±  0.0008 1.0 ±  0.0008 

μP  
0.04 ±  0.01 0.00 ±  0.0641 0.00 ±  0.0000 

7.9 � 10�8
 ±  

0.0001 

0.0002 ±  
0.00003 

� 1  0.925 ±  0.01 0.935 ±  0.0111 0.952 ±  0.0011 0.936 ±  0.0008 0.938 ± 0.0008 

g 1.57 ±  0.1 1.76 ±  0.2757 0.30 ±  0.0022 - - 

�  1.6 ±  0.1 2.85 ±  0.8807 2.72 ±  0.0406 - - 

μZ  0.34 ±  0.05 0.05 ±  0.1193 0.11 ±  0.0027 0.047 ±  0.0003 0.13 ±  0.0131 

� 2  0.01 ±  0.01 0.004 ±  0.0086 0.002 ±  0.00007 0.009 ±  0.00001 0.021 ±  0.00002 

μD  0.048 ±  0.01 0.048 ±  0.0008 0.048 ±  0.0008 0.102 ±  0.0008 0.248 ±  0.0008 

μP
2

 0.025 ±  0.01 0.018 ±  0.0018 0.014 ±  0.0011 0.018 ±  0.0008 0.019 ±  0.0009 

 

 

 

Table 3.3: Initial parameter values from Schartau and Oschlies (2003a) with their 

prescribed uncertainties, and the optimised parameter estimates for stations P1 and P3 

resulting from the twelve parameter optimisation experiment and reduced parameter 

optimisation experiment utilizing chlorophyll data from Sea-WIFS. Parameter names and 

units are given in Table 2.1. A dash indicates the parameter was not optimised in the 

reduced parameter experiment and was kept fixed at the optimised value from the twelve 

parameter experiment. The values listed for the remineralisation rates account for the 

mean temperature at the two stations. 
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The a posteriori errors and the parameter resolution, determined from the singular 

vectors, indicate that the experimental design of the twelve parameter optimisation needs 

revising particularly for station P1. 

 

3.5.2 Reduced parameter optimisation 

Several parameters are very poorly resolved in the twelve parameter optimisation. 

Following Fennel et al. (2001) we suppose that the most poorly constrained parameters, 

as indicated by the singular vectors, are known and fix them at the optimal values. The 

zooplankton grazing parameters, g and � , become invariant parameters at both stations, 

and � and a are held constant at station P1. Removing poorly constrained parameters 

does not compromise the model solution since the parameter estimates (Table 3.3) and 

model dynamics (Figure 3.8) remain close to the previous twelve parameter results, with 

costs of 0.74 at P1 and 1.04 at P3 (compared to costs of 0.79 and 3.61 at P1 and P3 

respectively in the Twelve parameter optimisation) the model solution looks nearly 

identical to Figure 3.7. The a-posteriori errors on the estimates are notably smaller for 

most parameters (Table 3.3); hence we now use these estimates for further experiments 

and comparison with in situ studies. 
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Figure 3.8a: Annual flow of nitrogen between compartments of the model at stations P1 

and P3 using the parameters from the twelve-parameter optimisation experiment in which 

Sea-WiFS chlorophyll data was used. Units are mmol m-2yr-1 . The external arrows 

represent the entrainment and detrainment of the various components in and from the 

mixed layer.

 

 

 

 

 

 

 

 

 

 

Figure 3.8b: Annul flow of nitrogen between compartments of the model at stations P1 

and P3 using the parameters from the reduced parameter optimisation experiment in 

which Sea-WiFS chlorophyll data was used. Units are mmol m-2yr-1 .3.5.3 Performance of 

parameter optimisations across the region.
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It is unknown whether differing biological systems or differing physical environments 

dominate the variation in plankton between stations P1 and P3. To explore this question 

two experiments were performed.  Firstly the optimised parameter estimates for station 

P1 from Section 5.2 (Table 3.3) were used to run the model at station P3, and vice-versa. 

Secondly the optimised model was run at station P1 using the mixed layer depth data 

from station P3, and vice-versa (the mixed layer depth data is shown in Figure 3.2d).  

 

Running the model at P1 with the optimal parameters for P3 results in substantial changes 

in the biological dynamics, and similarly running the model at P3 with the optimal 

parameters for P1 also produces substantial changes. The nitrogen fluxes at P1 become 

very similar to the optimised solution for P3 from Section 5.2, and vice versa (Figure 

3.9a). Thus the optimal parameters are distinctive to each station, and represent the 

ecosystem from that station even when utilized in a different physical setting. 

 

Changing the mixed layer depth data does not make a considerable difference to the 

biological model dynamics (Figure 3.9b). The optimal parameters found are not 

dependent on the correct mixed layer depth data. The difference in magnitude of the 

mixed layer data between stations P1 and P3 (up to 140m deeper at station P1 in the 

winter) does not produce a considerable difference in biological response between the 

stations. 

 

Experiments were performed swapping the temperature data and the light data between 

the stations. These changes did not have much impact on the biological model dynamics. 

The average temperature is less than 2 
�

C different between stations and the solar 

radiation is almost identical at both stations (Figure 3.2). 

 

These experiments show that the biological parameterisation has a greater impact on the 

modelled response in nitrogen fluxes than the physical forcing.  
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Figure 3.9a: Annual flow of nitrogen between compartments of the model at 

stations P1 and P3 using the parameters optimised for the opposite station. Units are

mmol m-2yr-1 . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9b: Annual flow of nitrogen between compartments of the model at 

stations P1 and P3 using the the swapped mixed layer depth data. Units are 

mmol m-2yr-1  
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3.6 Reduced parameter optimisation results in the context of other studies 

The SAZ-Sense voyage measured rates of primary productivity and f-ratios over ~7 days 

at each process station in February 2007. This Section makes a comparison of the reduced 

parameter optimisation results with these measurements as well as with the initial 

parameters SO03 used by Schartau and Oschlies (2003a). 

 

The reduced parameter optimisation changes the model behaviour significantly compared 

with using the SO03 parameters, which were optimised for an oligotrophic region in the 

North Atlantic (Schartau and Oschlies, 2003a). Our results produce a solution that has 

more production driven by nutrient supply from below the mixed layer at both stations 

compared to the SO03 parameters. The estimate of the phytoplankton loss rate term, μP  

is close to zero at both stations whereas the Schartau and Oschlies (2003) found a large 

flux of nitrogen from phytoplankton to the inorganic nutrient pool at all their stations. 

Accordingly the f-ratio (ratio of nitrate based production to total production) is higher at 

both stations P1 (0.70) and P3 (0.57) compared to the SO03 results of 0.09, 0.31 and 0.42 

for the locations of BATS, NABE and OWS-INDIA respectively (Schartau and Oschlies, 

2003b).  

 

The optimised f-ratios vary seasonally between 0.47 and 0.81 at P1, and 0.14 and 0.69 at 

P3 (Figure 3.10) with the annual average being 0.70 at station P1 and 0.57 at P3. This is 

high when compared with findings by Cavagna et al. (in press) who found February f-

ratios of 0.14 – 0.51 at station P1 and 0.17 – 0.26 at station P3. The results give a solution 

in which more of the production is driven by nitrogen recycled within the upper mixed 

layer at station P3 compared to P1. The recycling flux, � 2Z , representing a simplified 

parameterisation of ammonium production, makes up 16% of all zooplankton losses at P1 

compared to 29% at P3. This is consistent with the results from Cavagna et al. (in press), 

who found that the higher f-ratio values observed at P1 could have been induced by very 

low ammonium concentrations; and that low f-ratios at P3 may result from a shallow 

subsurface ammonium maximum (30m) rendering it easily accessible to mixed layer 

phytoplankton. The recycling flux, μPP , representing a simplified parameterisation of 

bacterial activity, is slightly greater at P3 than P1. Pearce et al. (in press) found rates of 
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bacterivory to be higher at P3 compared to P1. The recycling flux, μDD , representing 

detritus remineralisation makes up 24% of the nitrogen flux from detritus at P1 and 33% 

at P3.  

 

 

 

Figure 3.10: Model predicted annual f-ratio for station P1 (dashed line) and station 

P3 (solid line) 

 

 

 

The difference in optimised values of the recycling rates implies the presence of different 

ecosystems between the two stations, with larger organisms at P1 and smaller organisms 

at P3. This is consistent with the in situ findings of Pearce et al. (in press). Their size 

fractioned Chl a analysis showed that station P1 had particularly high concentrations of 

large (20 -200μm ) phytoplankton which comprised 35% of total Chl a, whereas at P3 

<3% of total Chl a was from the 20 -200μm size phytoplankton and 77% of the total 

concentrations were from small (<2μm ) phytoplankton. The species composition study 

of de Salas et al., (in press) found dominance of diatoms at P1, while smaller flagellates 

dominated at P3; they found the average particle size category within the carbon biomass 

at P1 was almost two orders of magnitude larger than that at P3.  Similarly the 

phytoplankton pigment results and analysis of Wright et al. (in press) found dominance 

of small dinoflagellates and cyanobacteria at P3 and virtually no cyanobacteria at P1. 
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The estimated parameters give an annual averaged productivity of  238.5 and 103.4 mg C 

m-2 d-1 at stations P1 and P3 respectively (3.0 and 1.3 mmol N m-2 d-1 ); with maximum 

values of 659 mg C m-2 d-1  at P1 and 203.5 mg C m-2 d-1   at P3. This is much lower than 

the values observed during the SAZ-Sense cruise of 1304± 300.1 mg C m-2 d-1  and 

986 ± 500.4 mg C m-2 d-1 at P1 and P3 respectively (Westwood et al., in press). As 

discussed by Westwood et al., their productivity measurements were high due to the 

method used and other studies in the SAZ found lower summer productivity values 

ranging between 158.7 to 730.0 mg C m-2 d-1 (Leblanc et al., 2002; Hiscock et al., 2003; 

Vaillancourt et al., 2003). The spring maximum of modelled primary productivity is of a 

similar magnitude to the various spring time in-situ estimates.  

 

Although there is significant variability in summer time primary productivity in the SAZ 

it is evident from the observations that there is no large difference in primary production 

between stations P1 and P3. Our model estimates show nearly three times lower 

production at station P3 than P1. The estimates from Westwood et al. (in press) do not 

support dramatically lower primary production at P3 than P1. 

  

Since the phytoplankton are growing slower at station P3 than P1 there is less grazing and 

lower zooplankton biomass. The mortality of zooplankton (μz ), one of the well-

constrained parameters, is considerably higher at station P3 than P1 (0.13 

(mmol m-3)�1d-1  and 0.047 (mmol m-3)�1d-1  respectively). This further lowers 

zooplankton biomass at P3 and results in less grazing pressure. In reality an ecosystem 

dominated by small phytoplankton with a high recycling rate should be mostly grazed by 

microzooplankton with a high grazing rate. The optimisation at P3 has produced a 

solution with low primary production and grazing to prevent the phytoplankton from 

blooming too early in the season. Our optimisation experiments show that out model 

formulation can only reproduce the seasonal cycle of surface chlorophyll at station P3 by 

forcing the growth rates so low that we underestimate primary production and 

zooplankton grazing. The optimised model at P3 is biological unfeasible. An alternative 

representation of the ecosystem is needed to simulate the seasonal cycle at P3. 



 

 88 

 

It is thought that variation in iron supply is partially responsible for the elevated 

chlorophyll at station P3. Lannuzel et al. (in press) and Bowie et al. (2009) found that 

iron concentrations were higher at station P3 than P1. They found that iron recycling 

within surface waters was important in explaining the differences in chlorophyll-a 

between the two sites. Mongin et al. (in press, b) showed with ocean simulations that 

atmospheric deposition is an important source of iron to P3. We hypothesize that at P3 an 

ecosystem model that includes seasonal variations in atmospheric deposition of iron is 

necessary to simulate the seasonal cycle of phytoplankton with reasonable values for 

primary production, zooplankton biomass and zooplankton grazing. 

 

3.7 Conclusion 

 

The SAZ-Sense project took place in austral summer 2007 to investigate the zonal 

asymmetries in planktonic ecosystems within the Sub-Antarctic Zone. The parameters of 

a simple NPZD model have been optimised for SAZ-Sense process stations P1 and P3 

using simulated annealing by fitting the model to the observed seasonal surface 

chlorophyll concentrations.  

 

An analysis of parameter uncertainties shows at both stations P1 and P3 the recycling 

processes, representing simplified parameterisations of the production of ammonium and 

the bacterial loop, are well constrained by the optimisation. In addition phytoplankton 

growth at P3, and zooplankton mortality at P1, are well-constrained parameters. These 

parameters are crucial to obtaining a representative simulation of phytoplankton biomass. 

 

The optimised parameters indicate that different processes control ecosystem functioning 

at P3 and P1. Our experiments suggest that the difference in observed surface chlorophyll 

between P1 and P3 results from different ecosystem functioning rather than different 

physical conditions. Based on the analysis of the environmental fields in the region the 
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most likely environmental explanation for the different ecosystems is the bio-availability 

of iron (Mongin et al, in press, a).  

 

The optimised estimates result in a convincing solution at P1 with reasonable estimates of 

primary production and biological dynamics. At P3 the optimisation results in 

satisfactory estimates of recycling rates but underestimates primary production, 

zooplankton biomass and zooplankton grazing. Despite its simplicity the model can 

reproduce the main ecosystem features in the surface mixed layer at P1. However at P3 

there is not enough flexibility with this simple model to reproduce the late seasonal 

phytoplankton maximum.  The model is missing the processes necessary to reproduce the 

biological features at P3. 

 

Based on other studies  (Mongin et al., in press, a and b) we hypothesise that seasonal 

variability in atmospheric iron deposition plays an important role in the seasonal 

evolution of phytoplankton and produces the late summer maximum in phytoplankton. 

An ecosystem model that includes seasonal variations in atmospheric deposition of iron 

may improve our modelling results at P3. 

 

This study highlights the importance of substantiating model results with independent 

validation data. The close agreement between the model and the SeaWifs surface 

chlorophyll at station P3 occurs for the wrong reason. It is important for modellers and 

observationalists to collaborate to ensure thorough model evaluation and identify key 

observations to constrain biogeochemical models. 

 

3.8 Appendix  

 

The singular values of the Hessian matrix are calculated to assess the number of 

parameters needed to capture the essential features of the data. The parameters associated 

with the largest singular values are determined from the ordered singular vectors (denoted 

�i ); these parameters have the greatest influence on the model solution. The parameters 
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associated with the smallest singular values have little influence on the model output but 

are responsible for explaining the largest degree of error. By ignoring the parameters 

associated with the smallest singular values it is possible to reduce the amount of error in 

the results (Wall et al., 2002).  

 

Figure 3.11 shows the ordered singular vectors calculated from the Hessian matrix from 

the twelve-parameter optimisation experiment utilising Sea-WiFS surface chlorophyll 

data. The singular vectors �1 � �3  in Figure 3.11a show that the parameters best resolved 

by the chlorophyll data are zooplankton excretion, � 2 ; phytoplankton loss rate, μP ; 

mortality of zooplankton, μZ ; and phytoplankton maximum growth rate, b at station P1. 

The singular vectors �1  and�2  in Figure 3.11b show that the parameters best resolved by 

the chlorophyll data at P3 are zooplankton excretion, � 2 ; and phytoplankton loss rate, 

μP .  

 

The singular vectors �3 and �4  in Figure 3.11b show the initial slope of the PI curve, �  

and the phytoplankton growth rate parameter, a are reasonably well resolved at station P3 

compared to station P1 where both are poorly resolved, as shown by �10  and �12  in Figure 

3.11a.
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Figure 3.11a: Parameter resolution for the 12 parameter optimisation experiment 

utilising Sea-WiFS chlorophyll data at station P1. The singular vectors �i , i=1:12, are 

shown in decreasing order of the magnitude of their associated singular values. As the 

magnitude of the singular values decreases so the parameters contributing to the 

associated singular vector decrease in their impact upon the model solution. 
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Figure 3.11b: Parameter resolution for the 12 parameter optimisation experiment 

utilising Sea-WiFS chlorophyll data at station P3. 
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Chapter 4: 

Phytoplankton growth in the Australian sector of the Southern 

Ocean, examined by optimising ecosystem model parameters. 
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4.1 Introduction 

 

In large areas of the worlds oceans there is an excess of nitrate and phosphate that remain 

unutilised in the surface waters where phytoplankton populations do not manage to 

bloom sufficiently to strip out the nutrients. There has been considerable debate about the 

principle factors causing anomalously low phytoplankton biomass in relation to nutrients 

in the Southern Ocean, the equatorial Pacific and the North Pacific. The Southern Ocean 

HNLC (high nutrient low chlorophyll) region is particularly important because it is one of 

the major regions of intermediate and deep water formation (Sarmiento and Orr, 1991) 

and Sub-Antarctic waters are an important sink for anthropogenic carbon dioxide (CO 2 ) 

(Metzl et al., 1999).  

 

Growth limitation by micronutrients (Coale et al., 1991; Sedwick et al., 1999; Boyd et al 

2000), limited light availability in the high latitudes (Holm-Hansen et al., 1977; Smith 

and Nelson, 1985; Mitchell and Holm-Hansen, 1991), suppression of phytoplankton 

populations by zooplankton grazing (Duce and Tindale, 1991; Miller et al., 1991; Minas 

and Minas, 1992; Tsuda et al., 2007), or some combination of these factors (Chavez et., 

1991; Landry et al., 1997; Boyd et al., 2001) have been considered to explain HNLC 

regions.  

 

The most likely micronutrient in limiting phytoplankton growth in HNLC regions is iron 

(Martin and Fitzwater, 1988; Kolber et al., 2002). Silica is also a contender (Ku et al., 

1995; Laynaert et al., 2001). Iron is an essential nutrient for phytoplankton growth, 

required for the synthesis of chlorophyll and for the photosynthetic production of organic 

compounds (Street and Paytan, 2005). 

 

The role of iron in limiting phytoplankton growth in HNLC regions has been given added 

importance since Martin et al. (1990) proposed the ‘Iron Hypothesis’ speculating that iron 

deficiency was alleviated in glacial periods due do aeolian dust deposition in a windier 

and dryer climate. They hypothesised that this allowed increased phytoplankton 
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productivity and export of CO 2 , resulting in the reduced atmospheric CO 2  

concentrations that characterise glacial periods. Iron fertilisation of HNLC regions of the 

ocean has been proposed as a geo-engineering approach to mitigate climate change, by 

stimulating a phytoplankton bloom large enough to remove substantial amounts of CO 2  

from the atmosphere (Denman, 2008). Additionally, natural delivery of iron to the 

Southern Ocean by dust from land masses and advective sources from shelf sediments is 

projected be significantly altered under future climate change scenarios (Bowie et al. In 

press). 

 

A number of iron enrichment experiments and incubation experiments (Martin et al., 

1994; Coale et al., 1996; Boyd et al., 2000; Tsuda et al., 2003; Bakker et al., 2005; 

Timmermans et al., 1998; Franck et al., 2000; Blain et al., 2004) have demonstrated an 

increase in phytoplankton growth and primary productivity with iron enrichment of 

surface ocean waters. The Southern Ocean Iron Release Experiment (SOIREE), an in situ 

mesoscale iron fertilisation experiment, provided evidence of enhanced algal growth rates 

due to iron enrichment at  140 
�

E, 61 
�

S (Boyd et al., 2000); however many of the 

previous Southern Ocean studies provided ambiguous results, with increases in 

chlorophyll in both iron enriched treatments and control treatments (reviewed in de Baar 

and Boyd, 2000). 

 

Although results support the importance of iron in regulating primary productivity, they 

do not imply that iron is the ultimate control (Fennel et al., 2003). Recent studies show 

the factors controlling phytoplankton biomass in the Southern Ocean are still open to 

debate. Boyd et al. (2001) studied the effect of iron supply and irradiance on 

phytoplankton growth in the SAZ (Sub-Antarctic Zone) and PFZ (Polar Frontal Zone) of 

the Australian sector of the Southern Ocean and found that in both regions iron was 

limiting algal growth rates while in the PFZ light was also limiting growth. In contrast 

Oijen et al. (2004) studied the effect of iron supply and irradiance on phytoplankton 

growth in the Atlantic sector of the Southern Ocean and found that low phytoplankton 

biomass was mainly caused by light limitation rather than iron. Conversely Banse (1996) 
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studied the effects of underwater irradiance, iron and grazing on SAZ chlorophyll and 

found that zooplankton grazing was controlling the phytoplankton populations. 

 

Ecosystem models provide a useful tool to separate the factors indicated in the control of 

phytoplankton biomass and look at different processes individually. Complex models 

have been developed to simulate the role of iron on marine ecosystems. Fasham et al. 

(2006) developed a multi nutrient model incorporating iron cycling and performed a 

parameter optimisation to fit the model to iron replete and iron limited conditions. They 

showed that underwater light levels have a more limiting effect on phytoplankton growth 

than iron supply at their experiment site in the Indian Ocean sector of the Southern 

Ocean. Mongin et al. (2006) applied a flexible composition model incorporation iron 

cycling, phytoplankton iron/carbon ratios and iron limitation to the same region and 

found phytoplankton growth to be strongly limited by an interaction of iron and light, 

with grazing also being a significant factor.  

 

There have been a number of iron modelling studies that do not explicitly include iron as 

a state variable (Fennel et al., 2003; Hense et al., 2000; Denman and Pena, 1999). Fennel 

et al. (2003) looked at the effect of iron on phytoplankton photosynthetic growth rates to 

investigate inter-glacial changes in CO 2  concentrations. Hense et al. (2000) used a 5-7 

compartment model to investigate the role of iron limitation in the PFZ by using different 

Si:N uptake ratios and reduced phytoplankton growth rates. Denman and Pena (1999) 

used a 4 compartment NPZD model to simulate the planktonic ecosystem and examine 

iron limitation in the North Pacific by reducing growth rates of phytoplankton. They 

found that the annual cycle of surface layer nitrate concentrations in this region was best 

reproduced by reducing the maximum photosynthetic growth by a factor of 3.0 – 3.5. 

 

Here we present a modelling study to explore the ecosystem functioning of the HNLC 

regime in the Australian sector of the Southern Ocean. The HNLC conditions in this 

region become more prominent moving south from the SAZ, with surface chlorophyll 

generally decreasing and nitrate increasing with latitude (Figures 4.4 and 4.5). We 

perform data assimilation experiments using simulated annealing to fit a nitrogen based 
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model to Sea-WiFS surface chlorophyll data in three distinct regions of the Southern 

Ocean in the Sub-Antarctic Zone, Polar Frontal Zone and Antarctic Zone. Possible 

reasons for the latitudinal variation in phytoplankton biomass in this region are discussed 

in light of what our parameter estimates indicate about the ecosystem functioning. We 

hypothesise that iron is limiting phytoplankton growth but other explanations such as 

light availability and temperature are also considered. 

 

Current knowledge of iron in seawater, and the availability of iron to phytoplankton, 

shows that the cycling of iron is complex and qualitatively different from the cycling of 

macronutrients (Fennel et al., 2003). The processes relating to the cycling of iron are 

poorly quantified, particularly those that effect bio-availability and biological uptake 

(Johnson et al., 1997; Wells et al., 1995). The main physiological response of 

phytoplankton to iron deficiency is a reduction in light saturated photosynthetic growth 

and an increase in the initial slope of the P-I curve, the photosynthetic efficiency. Greene 

et al. (1991) found a 2-fold reduction in light saturated photosynthesis and a 1.3 fold 

increase in the initial slope of the P-I curve between iron replete and iron deficient cells. 

This, combined with the lack of observations of iron in the Southern Ocean to validate 

complex model parameterisations, governs the decision to use a simple NPZD model, 

which does not explicitly include iron as a state variable (Oschlies and Garcon, 1999), 

and optimise the parameters for maximum photosynthetic growth and photosynthetic 

efficiency.  

 

This Chapter is organised as follows: Section 4.2 describes the oceanographic 

characteristics of the study region. Section 4.3 explains the experimental design of this 

study. Section 4.4 presents the results of our experiments. The results are discussed in 

Section 4.5. Section 4.6 summarises this study. 

 

4.2 Oceanographic characteristics 
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In this Section the physical characteristics of the experiment locations are described and 

the forcing used to run the model is explained. 

 

4.2.1 Physical setting 

The Southern Ocean is separated from the warmer and saltier waters of the subtropical 

oceans by pronounced meridional gradients in surface properties - a hydrographic 

boundary termed the Subtropical Front (Orsi et al., 1995). South of the Subtropical Front 

is the continuous eastward flowing Antarctic Circumpolar Current (ACC), which is 

divided in the horizontal direction by several fronts, characterised by bands of enhanced 

lateral density gradients, which are associated with strong surface currents (Nowlin et al., 

1977). Between the fronts lie zones of relatively uniform water mass properties which 

tend to be populated by distinct biological communities (Trull et al., 2001). 

 

The fronts and zones of the Southern Ocean, from north to south, are: the Subtropical 

Front (STF), the Subantarctic Zone (SAZ), the Subantarctic Front (SAF) , the Polar 

Frontal Zone (PFZ), the Polar Front (PF), and the Antarctic Zone (AZ) (Whitworth, 

1980). Additionally Orsi et al. (1995) identified the Southern ACC Front (SACCF) south 

of the AZ. The fronts are important boundaries for geographical variations of 

phytoplankton size composition and community structure in the Southern Ocean (Odate 

and Fukuchi, 1995), for example numbers of diatoms increase markedly south of the 

polar front south of Australia (Wright et al., 1996). 

 

The SAZ is a region characterised by strong winds and deep mixed layers of up to 800 m 

(Rintoul and Trull, 2001) The surface waters are warmer and less dense than the higher 

latitude regions with SST generally above 9 
�

C and salinities generally above 34.2 psu 

(Morrow et al., 2008). Phytoplankton community consists of a high abundance of 

cyanobacteria (Odate and Fukuchi, 1995) and is dominated by coccolithophores (Sokolov 

and Rintoul, 2007). 
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In contrast to the SAZ, the PFZ is characterised by relatively shallow mixed layer depth’s 

of  ~150m and smaller seasonal changes in the mixed layer depth because of a lack of 

deep convection in winter (Rintoul and Bullister, 1999). Sea Surface Temperatures are 

generally < 4 
�

C (Sokolov and Rintoul, 2002). The PFZ  phytoplankton community is 

dominated by diatoms (Sohrin et al., 2000). 

 

The AZ is a region with fairly homogeneous surface properties characterised by a low 

salinity (~33.9 psu) due to sea ice melt (Chaigneau et al., 2004) and SST generally below 

5 
�

C (Morrow et al., 2008). Phytoplankton composition shows typically very low 

cyanobacteria (Odate and Fukuchi, 1995), higher concentrations of diatoms, and 

dominance by pico-eukaryotes (Boyd et al., 2000). 

 

The fronts separating these water masses do not extend simply in a zonal direction, they 

include meanders, convolutions and eddies. The regional variation in frontal structure in 

the Australian sector of the Southern Ocean is described in detail by Sokolov and Rintoul 

(2002), who use sea surface height (SSH) contours for the period between 1992 and 2000 

to identify fronts between 130 
�

E and 160 
�

E. They identify two branches to the SAF and 

the PF. Each of the branches of both fronts correspond to maxima in horizontal gradients 

of temperature, salinity and density.  

 

The three experiment sites were chosen to be in the SAZ, the PFZ and AZ at 140 
�

E based 

on the frontal locations described by Sokolov and Rintoul (2002). The SAF is the 

strongest front and main jet of the ACC south of Australia, corresponding to a 

temperature decrease from north to south by more than 5 
�

C. At 140 
�

E the northern SAF 

(SAF-N) is found at ~47 
�

S and 50 
�

S. The southern SAF (SAF-S) is at ~52 
�

S. The PF 

marks the northernmost extent of the AZ and of temperature minimum water cooler than 

2 
�

C at 200m depth (Belkin and Gordon, 1996). At 140 
�

E the northern PF (PF-N) is seen 

at ~56 
�

S. The southern PF (PF-S) is at ~60 
�

S. The SACCF is the only Southern Ocean 

front that does not separate distinct surface water masses and usually coincides with the 
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southernmost extent of water warmer than 1.8  
�

C (Orsi et al., 1995). At 140 
�

E the 

SACCF-N is found at ~63 
�

S. 

 

The SAZ experiment site is located at 140 
�

E, 46 
�

S; the PFZ site is located at 140 
�

E, 

54 
�

S; and the AZ experiment site is at 140 
�

E, 61 
�

S (Figure 4.1). 

 

 

Figure 4.1: Sea Surface Height (dm). The contour lines indicate the frontal locations 

identified by Sokolov and Rintoul (2002). 

 

 

4.2.2 Chlorophyll a 

Satellite derived data provides the only large-scale synoptic observations of chlorophyll 

in the Southern Ocean. As in Chapter 3 we used surface chlorophyll concentration data 
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taken from SeaWiFS (Sea-viewing Wide Field-of-view Sensor) 8-day composites (9km) 

generated by the NASA Goddard Space Flight Centre for the assimilation procedure. A 

climatology was computed for the years 1998 – 2008 averaging the chlorophyll over a  1
�

 

square region centred on each process station (Mongin et al., in press). Interpolation was 

used to obtain daily values. A conversion factor of 1.59 mg Chl (mmolN)-1  was used to 

convert modelled phytoplankton nitrogen to chlorophyll (Fasham et al., 1990; Sarmiento 

et al., 1993). To obtain a measure of uncertainty in the observed chlorophyll, the standard 

deviation of the observations within the  1
�

 square was calculated and is shown with the 

data in Figure 4.2.  

 

 

 

Figure 4.2: Chlorophyll climatology for the period 1998 – 2008 taken from Sea-WIFS.  

The SAZ site (140 
�

E, 46 
�

S) is shown in blue. The PFZ site (140 
�

E, 54 
�

S) is shown in 

red. The AZ site (140 
�

E, 61 
�

S) is shown in black. The standard deviation of the 

observations is plotted in a dashed line. 

 

 

SeaWiFS chlorophyll data is not available for the higher latitude sites in the PFZ and AZ 

during mid-winter due to a high solar zenith angle. For the days where data was 



 

 102 

unavailable the chlorophyll concentrations were interpolated between the last available 

observation from autumn and the first available observation in spring. 

 

The SeaWiFS surface chlorophyll data (Figures 4.2 and 4.3) shows that the chlorophyll 

remains relatively low (<0.35 mg m-3
) at all three sites throughout the year in comparison 

to other regions of the ocean, such as Bermuda Station “S” where chlorophyll a values of 

up to 1 mg m-3
 are typical in spring (Fasham et al., 1993). 

 

Figure 4.4: February SeaWiFS surface chlorophyll (mg m�3
) using a 1998 – 2008 

climatology computed from 8-day composites. 

 

The experiment locations differ in that the SAZ site has generally higher chlorophyll 

concentrations, with an annual mean of 0.21 mgm-3
 compared with 0.14 mg m-3

 at the 

PFZ site and 0.15 mg m-3
 at the AZ site. The PFZ and AZ annual chlorophyll distribution 
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is quite similar, with the only notably distinction being the magnitude of the spring 

bloom, which reaches 0.31 mgm-3
 in the AZ compared to the PFZ where the chlorophyll 

reaches a maximum of 0.22 mgm-3
. The phytoplankton bloom in the SAZ reaches a 

maximum of 0.35 mg m-3
 in December, but unlike the higher latitude regions the bloom 

persists throughout the summer months with concentrations of ~0.275 mgm-3
 through 

January – March (Figure 4.2). 

 

4.2.3 Nutrients 

The SAZ, PFZ and AZ south of Australia all exhibit typical Southern Ocean HNLC 

conditions. The major nutrient concentrations increase with latitude and shipboard 

incubation experiments suggest that phytoplankton community growth is not limited by 

the availability of nitrate or phosphate (Lourey and Trull, 2001). Surface concentrations 

of nitrate in the summer are ~10.0 mmol N m
�3

 at the SAZ experiment site, ~22 mmol N 

m
�3

  at the PFZ experiment site, and ~24 mmol N m
�3

 at the AZ experiment site (Figure 

4.4). 
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Figure 4.4: Surface nitrate concentration in February from Levitus World Ocean Atlas 

2001. 

 

Silicate, through its link to diatom structure and metabolism, may control phytoplankton 

processes in some regions of the ocean (Dugdale et al., 1995). The Sub-Antarctic Zone is 

the largest ‘high-nitrate-low silic acid’ region in the world ocean; surface waters are 

typically depleted to levels near or below measured half saturation constants for diatom 

uptake during summer and autumn (Hutchins et al., 2001). Silic acid depletion extends 

throughout the PFZ during the growth season (Kamykowski and Zentara, 1985), however 

in the AZ high concentrations of silic acid are introduced into surface waters by persistent 

upwelling (Hutchins et al., 2001). 
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Iron is an essential micro-nutrient for phytoplankton growth and may limit growth at low 

levels. The Southern Ocean receives relatively low air born iron supply from dust 

deposition due to distance from major land masses. In situ measurements of iron in the 

Australian sector of the Southern Ocean are sparse and disparate. Sedwick et al. (2008) 

took measurements along ~140E in autumn 1998 and spring 2001 and found mixed layer 

dissolved iron concentrations decrease with latitude, from values of ~0.22 nM in the SAZ 

to uniformly low concentrations of <0.1 nM in the AZ. Conversely Lai et al. (2008) 

found dissolved iron concentrations generally increased with latitude with values of 

0.3nM in the SAZ, 0.4nM in the PFZ and 0.5nM in the AZ along 140E in summer 

2001/02. 

 

4.2.4 Model forcing 

The forcing fields applied to the ecosystem model are incident solar radiation, Sea 

Surface Temperature (SST), Mixed Layer Depth (MLD) and concentration of nitrogen 

below the mixed layer (Figure 4.5). The SST and nitrogen data sets come from Levitus 

World Ocean Atlas 2001 monthly means (Levitus, 1982). The daily MLD is taken as the 

depth of a 0.05 kg m�3
 difference in density from the surface computed using the model 

output of temperature and salinity (Mongin et al., in press). Daily averaged values of 

solar radiation are taken from NCAR (National Centre for Atmospheric Research). 
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Figure 4.5: Forcing used for the model. Panel A shows nitrogen concentration below the 

mixed layer (mmol N m
�3

); panel B shows mixed layer depth (meters); panel C shows 

daily incident solar radiation ( W/m2
); panel D shows temperature (degrees Celsius).  

The SAZ site (140 
�

E, 46 
�

S) is shown in blue, the PFZ site (140 
�

E, 54 
�

S) is shown in red 

and the AZ site (140 
�

E, 61 
�

S) is shown in black. 
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4.3 Experimental design 

 

In this Section the reasons for the experiments performed in this Chapter are outlined and 

the reasons for the model configuration and parameter values are explained. The 

experimental design is summarised in Figure 4.6. (The simulated annealing data 

assimilation methods have already been described in Chapter 2).  

 

4.3.1 Experiments 

The experiments in Chapter 3 demonstrated that simulated annealing is an effective 

method of optimising the parameters of a simple NPZD model assimilating remotely 

sensed surface chlorophyll data. Our estimates of mixed layer ecosystem behaviour at 

station P1 were generally consistent with in-situ estimates confirming that the model 

parameterisation for the chlorophyll  data was a realistic biological solution. We showed 

that not all of the parameters could be optimised, and that the precision of parameter 

estimates increased when only a subset of parameters was optimised. Furthermore a good 

fit to the chlorophyll data was achieved without including iron in the model. 

 

Previous NPZD modelling studies have shown that mixed layer ecosystem dynamics can 

be successfully reproduced in iron deficient regions without explicitly modelling iron by 

modifying phytoplankton photosynthetic growth parameters (Denman and Pena, 1999; 

Chai et al., 1996). In this Chapter the phytoplankton photosynthetic growth parameters 

were optimised, using simulated annealing, while all other model parameters were held 

constant.  

 

The parameters optimised were maximum photosynthetic efficiency/the initial slope of 

the PI curve, � ; and maximum light saturated growth, which is a combination of the two 

phytoplankton maximum growth rate parameters a and b ( Pmax = a �b
T  (where T is 

temperature)). The optimisation was performed at three sites in the SAZ, PFZ and AZ in 

the Southern Ocean (Figure 2). 
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To investigate causes of differences in optimised parameter values between the sites three 

physical forcing interchange experiments were performed. The optimisation was repeated 

interchanging the light regimes between the SAZ and AZ, interchanging the temperature 

regimes between the SAZ and AZ and interchanging the MLD regimes between the SAZ 

and AZ. The optimised parameters were then inspected to determine to what degree the 

physical forcing influences the optimal model parameterisation. 

 

4.3.2 Model configuration and parameter values 

The results of the data experiments in Chapter 3 revealed that the initial parameterisation 

used, which was optimised for three sites in the North Atlantic by Schartau and Oschlies 

(2003a), was unsuitable for modelling the ecosystem in the Australian region of the SAZ. 

One of the most sensitive parameters, the phytoplankton loss rate, μP (one of two 

phytoplankton loss parameters), was optimised to effectively zero. Therefore the 

phytoplankton loss rate, μP , is a superfluous model process in this region. The un-

optimised version of the model from the Schartau and Oschlies (2003a) study differed 

from their optimised model in parameter values as well as in the absence of this 

parameter μP . The parameter values of the un-optimised version of their model are more 

consistent with other modelling studies than the optimised version (Fasham et al., 1990; 

Sarmiento et al., 1993; Spitz et al., 1998). Therefore we use the un-optimised version of 

the model of that study as a starting point for this set of experiments. The model is 

described in Oschlies and Garcon (1999) and is referred to as OG99 hereafter. The model 

configuration is the same as that described in Chapter 2 (Section 2.2) with the exception 

that the biological source-minus-sink equations are: 

Dissolved Inorganic Nitrogen (DIN) 

                               
dN

dt
= μDD + � 2Z � J(M ,t,N )P +

(m + h+ (t))

M
(N0 � N )             (4.1) 

Phytoplankton Biomass 

                            

dP

dt
= J(M ,t,N )P �G(P)Z � μP

2P2
�

(m + h+ (t))P

M                  
(4.2) 
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Herbivorous zooplankton 

dZ

dt
= � 1G(P)Z � � 2Z � μZZ

2
�

(h (t))Z

M
                             (4.3) 

 

Detritus 

dD

dt
= (1� � 1)G(P)Z + μP

2P2
+ μZZ

2
� μDD � wD

�D

�z
�

(m + h+ (t))D

M
            (4.4) 

 

All other model equations are given in Section 2.2. 

 

The only parameters from OG99 that deviate markedly from the afore-mentioned 

literature are the zooplankton grazing and mortality parameters which were subjectively 

tuned to fit the annual cycle of primary production and chlorophyll concentrations in the 

North Atlantic (Oschlies and Garcon, 1999). However using these parameters the annual 

cycle of chlorophyll is as much as double the magnitude of the observations at the SAZ 

site, and up to triple the magnitude of the observations at the PFZ and AZ sites. Using 

these parameters the grazing rate G(P) is only 0.04 – 0.15 for phytoplankton 

concentrations between 0.2– 0.4 mmol N m-3
, allowing the phytoplankton populations to 

become too large. Therefore we set the maximum grazing rate, g, to 1.0 d-1
 to be 

consistent with Fasham et al. (1990) and Evans and Parslow (1985); and set prey capture 

rate, � , to 3.0 (mmol m-2 )-1d-1   to make the overall grazing rate G(P) = 0.12 – 0.32 for 

phytoplankton concentrations between 0.2– 0.4 mmol N m-3
 to be closer to 

measurements of herbivory in the Australian sector of the Southern Ocean by Pearce et 

al. (in press) which ranged from 0.12 – 1.39 d-1
 .  

 

Therefore the parameter values used are more consistent with established literature and 

measured values whilst making our model output of phytoplankton closer to the observed 

annual cycle. Since we are only optimising three parameters it is helpful to have a 

reasonable starting point for our model solution since the parameter estimates found will 

be somewhat dependent on the fixed parameters, as shown in Chapter 3. The model 

parameters are shown in Table 4.1. Note that in contrast to the SO03 parameters, here the 
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remineralisation parameters (remineralisation of detritus, zooplankton excretion and 

phytoplankton loss rate) are not temperature dependent. 
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Figure 4.6: Experimental design of this Chapter. 

 

 

Photosynthetic growth parameters are optimised at three 

sites in the Australian sector of the Southern Ocean 

spanning the SAZ, PFZ, and AZ. 

 

The parameter values resulting from the optimisation 

are assessed and compared between the three regions. 

Causes for differences in the optimised parameters are 

investigated. Three further optimisations are performed 

in which light, temperature or MLD data are swapped 

between the SAZ and AZ to determine the influence 

physical forcing has on the optimisation parameter 

estimates. 

Causes for differences in the optimised parameters are 

discussed. 

Performance of the optimisation is evaluated by 

assessing the model fit to chlorophyll data, and 

comparison of ecosystem dynamics/f-ratio estimates 

with in situ estimates. 
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Table 4.1: Parameters used to run the ecosystem model. These values are used as a 

starting point in the optimisation experiments. 

Parameter Symbol Value Units 

 

Phytoplankton coefficients 

Photosynthetic 

efficiency (initial 

slope of P-I curve) 

�  0.025 day
�1

/(W m
�2

) 

Shortwave fraction 

of 

photosynthetically 

active radiation 

PAR 0.43  

Light attenuation 

due to water 
kw  0.04 m

�1
 

Maximum growth 

rate parameters 

a 

b 

0.6 

1.066 
day

�1
 

 

Half saturation 

constant for N 

uptake 

K 0.5 mmol m
�3

 

Quadratic mortality 

rate 
μP

2  0.03 (mmol m
�3

)
�1

day
�1

 

 

Zooplankton coefficients 

Assimilation 

efficiency 
� 1  0.75  

Maximum grazing 

rate 
g 1.0 day

�1
 

Prey capture rate �  3.0 (mmol m
�2

)
�1

day
�1

 

Quadratic mortality μZ  0.20 (mmol m
�3

)
�1

day
�1

 

Excretion � 2  0.03 day
�1

 

 

Detrital coefficients 

Remineralisation 

rate 
μD  0.05 day

�1
 

Sinking velocity wD  5.0 m day
�1
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 4.4 Results 

 

4.4.1 Model performance, primary production, f-ratios and grazing 

The parameter optimisation was performed at three locations in the Australian sector of 

the Southern Ocean, spanning the SAZ, the PFZ and the AZ at 140 
�

E, 46 
�

S; 140 
�

E, 

54 
�

S and 140 
�

E, 61 
�

S. The model parameters for maximum photosynthetic efficiency, 

�  and maximum light saturated photosynthetic rates, Pmax = a �b
T , were optimised while 

all other parameters remained invariant in time. 

 

The optimisation results in a good fit of the model trajectory to the Sea-WiFS surface 

chlorophyll data in all three regions (Figure 4.7). The model now approximately 

reproduces the chlorophyll biomass and seasonality with cost function values of 1.7, 3.3 

and 3.5 in the SAZ, PFZ and AZ respectively, compared with the initial parameterisation 

which gives cost functions of 2.9, 32.6 and 45.3 in the SAZ, PFZ and AZ respectively.
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Figure 4.7a: Annual model trajectories at 140 
�

E, 46 
�

S after optimising phytoplankton maximum 

photosynthetic rate and photosynthetic efficiency parameters using simulated annealing. Panel A 

shows the modelled chlorophyll (solid line) and the chlorophyll data using 8-day SeaWIFS 

climatology (dashed line) with error margins calculated as the standard deviation of all observations 

within a 1x1 degree square around the optimisation site. The modelled chlorophyll using the original 

parameters is shown in a green dot-dash line. Panels B – D show the modelled zooplankton, detritus 

and DIN.  

 

 

 

 

 



 

 115 

 

 

 

 

 

 

 

Figure 4.7b: Annual model trajectories as per Figure 7a for 140 
�

E, 54 
�

S. 

 

 

 

 

 

 

 

 

 



 

 116 

 

 

 

 

 

 

Figure 4.7c: Annual model trajectories as per Figure 7a for 140 
�

E, 61 
�

S.
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The model predicted primary productivity (Figure 4.8) is considerably higher at 46 
�

S 

than at the higher latitude sites with maximum rates of 6.75 mmol N m-2 d�1
 in austral 

spring (November), falling to near 1.0  mmol N m-2 d�1
 through the winter months June 

– August. At 54 
�

S the maximum rates are on order of magnitude less, with spring 

production reaching only 0.69 mmol N m-2 d�1
  and rates remaining very low throughout 

much of the year with a minimum of 0.14 mmol N m-2 d�1
. Productivity falls even 

further at 61 
�

S with a spring maximum of 0.34 mmol N m-2 d�1
  and very low rates of 

0.05 mmol N m-2 d�1
  throughout most of the year. 

 

 

 

 

 

Figure 4.8: Model predicted annual primary productivity for the three sites. The annual 

mean production is 2.6 mmol N d-1
at the SAZ site (140 

�

E, 46 
�

S), shown in blue; 0.29 

mmol N d-1
at the PFZ site (140 

�

E, 54 
�

S), shown in red; and 0.14 mmol N d-1
at the AZ 

site (140 
�

E, 61 
�

S), shown in black. 

 

 

 

 



 

 118 

The model predicted f-ratios (Figure 4.9) indicate a system dominated by new production 

at all three sites with an annual mean of 0.57, 0.59 and 0.62 in the SAZ, PFZ and AZ 

respectively. The f-ratios vary seasonally with the maximum new production occurring in 

austral spring following the peak in MLD in September in both the PFZ and AZ 

(maximum f-ratios = 0.88 and 0.91 respectively), while seasonal f-ratios in the SAZ show 

a maximum in September as well as through the summer months January - March 

(maximum f-ratio = 0.90). The lowest f-ratios occur in May at the end of the summer 

period of shallow MLD’s in the SAZ, compared with December in the PFZ and AZ at the 

start of a period of shallow MLD’s indicating a peak in regenerated production occurs in 

different seasons each side of the SAF. 

 

 

 

 

 

Figure 4.9: Model predicted annual f-ratio for the three sites. The annual mean f-ratio is 

0.57 at the SAZ site (140E, 46 
�

S), shown in blue; 0.59 at the PFZ site (140 
�

E, 54 
�

S), 

shown in red; and 0.62 at the AZ site (140 
�

E, 61 
�

S), shown in black. 
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The fluxes of nitrogen between model compartments are shown in Figure 4.10. The 

optimisation results in highest zooplankton grazing in the SAZ, with 63% of 

phytoplankton primary production going to zooplankton biomass compared with the PFZ 

and AZ where 35% and 29% of the primary production is grazed by zooplankton 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10a: Annual flow of nitrogen between compartments of the model at the SAZ 

site (140 
�

E, 46 
�

S) using the optimised phytoplankton maximum photosynthetic rate and 

photosynthetic efficiency parameters. Units are mmol m-2yr-1 . The external arrows 

represent the entrainment and detrainment of the various components in and from the 

mixed layer.
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Figure 4.10b: Annual flow of nitrogen between compartments of the model as per Figure 

10a for 140 
�

E, 54 
�

S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10c: Annual flow of nitrogen between compartments of the model as per Figure 

10a for 140 
�

E, 61 
�

S. 
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4.4.2 Parameter estimates 

The parameter estimates of maximum light saturated photosynthetic rate, Pmax , and 

photosynthetic efficiency, � , are shown in Table 4.2. The optimisation results in a 

relatively low photosynthetic efficiency of 0.04 (Wm�2d)�1 in the SAZ, and much higher 

estimates in both the PFZ and AZ of 0.6 and 0.4 (Wm�2d)�1  respectively.  

 

Parameter 

OG99 

Parameter 

value 

140 
� E, 46 

� S 140 
� E, 54 

� S 140 
� E, 61 

� S 

�  0.025 ±  0.1 0.044 ±  0.0004 0.60 ±  0.0082 0.35 ±  0.0073 

a 0.6 ±  0.1 0.40 ±  0.0115 0.03 ±  0.00009 0.04 ±  0.00003 

b 1.066 ±  0.01 1.043 ±  0.0023 1.176 ±  0.0004 1.089 ±  0.0003 

Pmax   0.63 0.06 0.04 

f-ratio  0.57 0.59 0.62 

 

Table 4.2: Parameter values after optimisation at the SAZ site (140 
�

E, 46 
�

S), the PFZ 

site (140 
�

E, 54 
�

S) and the AZ site (140 
�

E, 61 
�

S) in which photosynthetic efficiency, � , 

and maximum light saturated photosynthesis rate, Pmax  = a �bT were optimised. 

 

Despite lower photosynthetic efficiency the optimisation results in higher algal maximum 

growth rates in the SAZ with estimates of Pmax  being 0.63 d-1
, 0.06 d-1

 and 0.04 d-1
 in the 

SAZ, PFZ and AZ respectively.  

 

4.4.3 Physical forcing interchange optimisations 

- Light interchange optimisation 

The average daily surface radiation varies between 43 and 239 Wm�2
 at 46 

�

S compared 

with 6 to 216 Wm�2
 at 61 

�

S (Figure 4.5). The interchange in light fields results in a ten 

fold increase in the optimised value of �  in the SAZ with a relatively high estimate of 
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0.42 (Wm�2d)�1  and a 50% reduction in the optimised value of �  in the AZ with a 

relatively low estimate of 0.18 (Wm�2d)�1 , showing the photosynthetic efficiency is partly 

determined by irradiance. The modified forcing does not result in a large change in the 

optimised values for Pmax , which remain high in the SAZ (0.47) and low in the AZ (0.04) 

(Table 4.3).  

 

- MLD interchange optimisation 

The SAZ is a region characterised by deep mixed layers with the MLD forcing data 

ranging between 18 and 381 m compared to the AZ where the MLD data ranges between 

65 and 114 m. The interchange of MLD forcing results in a 60% reduction in the 

optimised value of �  in the SAZ resulting in an estimate of 0.018 (Wm�2d)�1 , and a 

260% increase of �  in the AZ, giving an estimate of 0.92 (Wm�2d)�1 . This indicates that 

the photosynthetic efficiency is partly determined by the MLD, an effect of deeper 

mixing waters reducing the effective light level to which the phytoplankton are exposed. 

The MLD forcing does not have a substantial effect on the optimised estimates of Pmax , 

which remain high in the SAZ (0.56) and low in the AZ (0.09) (Table 4.3). 

 

- Temperature interchange optimisation 

The estimate of Pmax is determined by the growth rate parameters a and b, with b being 

raised to the power of T ( Pmax = a �b
T ). The SST drops considerably with increasing 

latitude, with the SAZ SST data ranging between 9 and 12 
�

C while the AZ SST 

maximum is 3 
�

C and falls to a low of -1 
�

C (Figure 4.5). The optimisations in which the 

SST forcing is interchanged do not result in a considerable change to the optimised 

values of �  or Pmax  (Table 4.3). 

 

The differences in the optimised values of Pmax  giving higher maximum light saturated 

photosynthetic rates in the SAZ compared with the PFZ and AZ are not reversed in any 

of the experiments in which forcing is interchanged. The differences occur due to 
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processes not explicitly represented by the model or its forcing, such as 

macro/micronutrient availability.  

 

 

Parameter 140 
� E, 46 

� S 140 
� E, 61 

�  

light interchange optimisation 

�  0.42 0.18 

Pmax  0.47 0.04 

temperature interchange optimisation 

�  0.05 0.34 

Pmax  0.57 0.04 

MLD interchange optimisation 

�  0.02 0.92 

Pmax  0.56 0.09 

 

Table 4.3: Parameter values after photosynthetic efficiency, � , and maximum light 

saturated photosynthesis rate, Pmax  = a �bT were optimised with the forcing data for the 

SAZ site interchanged with the forcing data for the AZ site. None of these optimisations 

result in a high estimate of Pmax  at the AZ site or a low estimate of Pmax  at the SAZ site. 

Only the optimisation in which light is swapped results in both a high estimate of �  at 

the SAZ site and a lower estimate of �  at the AZ site. 

 

4.4.4 Parameter resolution 

The singular values and associated singular vectors of the Hessian matrix show that 

maximum photosynthetic growth is more important in fitting the model trajectory to the 

chlorophyll data than photosynthetic efficiency, particularly in the PFZ and AZ where 

photosynthetic efficiency has negligible effect on the model solution (Figure 4.11).
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Figure 4.11: Parameter resolution for the optimisation experiment. The singular vectors 

�i , i=1:3, are shown in decreasing order of the magnitude of their associated singular 

values. As the magnitude of the singular values decreases so the parameters contributing 

to the associated singular vector decrease in their impact upon the model solution. The 

SAZ site (140 
� E, 46 

� S) is shown in blue, the PFZ site (140 
� E, 54 

� S) is shown in red and 

the AZ site (140 
� E, 61 

� S) is shown in black. 
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4.5 Discussion 

 

4.5.1 Model performance: f-ratios,  primary production and zooplankton grazing  

The modelled f-ratios (ratio of nitrate based production to total production) from the 

optimisation in Section 4.4.1 are consistent with observational data from Savoye et al. 

(2004), who measured N-uptake and new production in the SAZ, PFZ and AZ in the 

Australian sector of the Southern Ocean in austral spring 2001. They found that new 

production decreased from SAZ (~49 
�

S) to PFZ (~54 
�

S) and then increased southward in 

the AZ (~61 
�

S), where they measured the highest rates of new production on the transect. 

Equally in austral spring (November-December) our modelled f-ratios are high in the 

SAZ, lower in the PFZ and highest in the AZ. They found highly variable f-ratios in the 

SAZ shifting from 0.38 to 0.82 within one month, and f-ratios of 0.59 and 0.61 in the PFZ 

and AZ respectively, which are approximately the same as our modelled mean f-ratios of 

0.57, 0.59 and 0.62 in the SAZ, PFZ and AZ respectively. Cavagna et al. (in press) 

measured regenerated production and new production in the SAZ and PFZ in the 

Australian sector of the Southern Ocean in mid-summer 2007 and found generally low f-

ratios, mostly < 0.3 apart from one estimate of 0.5 in the SAZ. This is generally 

consistent with our summer f-ratio estimates of 0.1 – 0.4 in the PFZ and AZ and ~0.7 in 

the SAZ. 

 

The modelled production is generally consistent with observational data which indicates 

decreasing primary production from the SAZ to the PFZ south of Australia (Lourey and 

Trull, 2001). Westwood et al., (in press) estimated gross primary productivity rates 

integrated over the euphotic layer in the Australian sector of the SAZ in austral summer 

2007 using 
14 C -incubations. They found higher production in the SAZ than the PFZ with 

measurements of 1304± 300 and 749± 543 mg C m2 d�1
 in the SAZ at 46 

�

S and 47 
�

S 

respectively, and 475± 168 mg C m2 d�1
 in the PFZ at 54 

�

S . Over the same period 

Cavagna et al (in press) calculated daily gross primary production (integrated over the 

euphotic zone) from 
13C -incubations and found 66± 31 and 49 ± 14 mmol C m2 d�1

  in 

the SAZ and  35± 2 mmol C m2 d�1
 in the PFZ m-2 d�1

 in the PFZ. Savoye et al (2004) 
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found much lower productivity rates in austral spring 2001 using 
15 N and

13C -

incubations, with estimated production rates of 1.76 mmol N m-2 d�1
 in the SAZ, 1.5 

mmol N m-2 d�1
 in the PFZ. Comparatively our model estimates of primary production in 

the SAZ  are reasonable (496.1 mg C m2 d�1
 in austral spring) but the modelled 

production is rather low in the PFZ and AZ (spring values of 50.7 and 25.0 mg C m2 d�1
 

respectively).  

 

Pearce et al. (in press) measured the average percentage of primary production grazed by 

zooplankton in the Australian sector of the Southern Ocean in mid summer 2007. They 

found grazing rates were highest where concentrations of microzooplankton were also 

highest, with 82% (± 38%) and 67% (± 12%) of primary production being removed at 

two stations in the SAZ and 47% (± 10%) removed in the PFZ. Pakhomov and Froneman 

(2004) measured zooplankton grazing in the Atlantic sector of the Southern Ocean in 

austral summer 1997. They found 22-33% of daily primary production was grazed by 

zooplankton in the PFZ ~50 
�

S and lower zooplankton grazing removing <10% of 

primary production further south ~60 
�

S. The model solution of decreasing zooplankton 

grazing with increasing latitude is consistent with these observational studies and this 

result indicates that grazing is not the cause of low phytoplankton biomass and 

production in the PFZ and AZ compared with the SAZ.  

 

The modelled f-ratios, primary production and grazing show that the parameter estimates 

give a biologically plausible solution as well as a good fit to the chlorophyll data. 

However there is an under-estimation of primary production in the PFZ and AZ 

suggesting there may be a limitation to phytoplankton growth south of the Sub-Antarctic 

Front which is not captured explicitly by the model.  

 

4.5.2 Parameter estimates –photosynthetic efficiency 

Typically photosynthetic efficiency increases as irradiance declines (Douglas et al., 

2003). The parameter optimisation finds a ten fold higher photosynthetic efficiency, � , 

in the lower light environments of the PFZ and AZ compared with the SAZ (Table 4.2). 
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In the original parameterisation of the full model Fasham et al. (1990) set the 

photosynthetic efficiency parameter, � , to 0.025 (Wm�2d)�1  in order to fit the model 

output to annual cycles of physical and biological data for Bermuda Station “S” at 

~32 
�

N, using MLD and solar radiation forcing fields. Fasham and Evans (1995) 

subsequently optimised the model parameters for the JGOFS Station at 47 
�

N and found 

higher estimates of , � , of 0.164 and 0.222 (Wm�2d)�1 . Our SAZ (46 
�

S) estimate of 0.04 

(Wm�2d)�1 is similar to the estimate of 0.035 (Wm�2d)�1  found in the optimisation 

experiment by Evans (1999) for NABE site (North Atlantic Bloom Experiment) at 47 
�

N. 

Parameter optimisations performed at the higher latitude station OWS-INDIA at 59 
�

N by 

Hurt and Armstrong resulted in a very high estimate of �  of 0.93 (Wm�2d)�1  which they 

attributed to the low light conditions.  

 

These independently optimised estimates of �  show an increase in photosynthetic 

efficiency when going from the SAZ to the PFZ. These findings are consistent with field 

analyses of natural marine phytoplankton assemblages which show an increase in 

photosynthetic efficiency with latitude (Harrison and Platt, 1986), and our results for �  

which are 0.044 (Wm�2d)�1 in the SAZ 0.60 (Wm�2d)�1  in the PFZ and 0.35 (Wm�2d)�1  in 

the AZ. 

 

Limited information on in situ measurements of photosynthetic parameters of 

phytoplankton in the Southern Ocean has been published. Estimates of photosynthetic 

efficiency measured by Westwood et al. (in press) found �  = 0.034± 0.013 to 

0.057± 0.021 mg C mg chl a�1
 h�1

 (μmol m�2  s�1)�1  in the SAZ which results in a range 

between 0.05 and 0.17 (Wm�2d)�1   suggesting our estimates in the SAZ are reasonable, 

however our PFZ and AZ estimates for � are somewhat higher than generally found in 

in-situ studies in the region (Griffiths, F.B., personal communication). 

 

The optimisations in which the forcing data was interchanged between the SAZ and AZ 

showed the estimate of � is highly dependent on available light, with the optimised value 
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being partly determined by the surface solar radiation data and partly determined by the 

MLD data. The photosynthetic efficiency term , � , enters the model equations in 

multiplicative combination with the term I(z,t) - the photosynthetically active radiation as 

a function of depth below the surface of the water, which is itself a function of the surface 

radiation forcing data, the MLD and the attenuation of sunlight by seawater.  

 

The photosynthetically active radiation in the mixed layer is shown for the three sites in 

Figure 4.12. The surface radiation and mixed layer depth data are shown in Figure 4.5. In 

the summer months of January – March the SAZ has the shallowest MLD, combined with 

the highest surface sunlight, this results in considerably higher mean mixed layer light 

levels in summer, up to 73 (Wm�2d)�1  , compared with the PFZ and AZ summer mean 

mixed layer light levels of up to 52 and 56 (Wm�2d)�1  respectively. In September when 

the SAZ MLD reaches its maximum the mean light in the mixed layer water column 

becomes lower than both the PFZ and AZ despite the higher surface sunlight. The AZ  

has a shallower MLD throughout the year than the PFZ. The shallow depths compensate 

for lower surface sunlight and the mean light intensity throughout spring and summer is 

actually higher than in the PFZ. The annual mean mixed layer light is 22, 18 and 

19 (Wm�2d)�1  in the SAZ, PFZ and AZ respectively.  
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Figure 4.12: Photosynthetically available radiation in the water column of the mixed 

layer. The SAZ site (140 
� E, 46 

� S) is shown in blue, the PFZ site (140 
� E, 54 

� S) is shown 

in red and the AZ site (140 
� E, 61 

� S) is shown in black. 

 

 

Under these conditions phytoplankton adaptation to low light should more notable in the 

PFZ and AZ than the SAZ, and greatest in the PFZ. Accordingly Boyd et al. (2001) found 

increased light harvesting requirements of cells in the PFZ at 54 
�

S compared with those 

in the SAZ at 47 
�

S in ship board experiments in the Australian sector of the Southern 

Ocean. Our estimates of � are in good agreement with notably higher estimates in the 

PFZ and AZ than the SAZ and the highest estimate in the PFZ (Table 4.2). 

 

The differences seen between the SAZ, PFZ and AZ in the model estimates of 

photosynthetic efficiency and the differing light availability due to latitude and thickness 

of the mixed layer largely offset one another and therefore are not the cause of low 

phytoplankton biomass and production in the PFZ and AZ compared with the SAZ in this 

model. 
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4.5.3 Parameter estimates – maximum photosynthetic growth  

The parameter estimates result in the highest maximum growth rates in the SAZ. The 

growth rate is considerably lower in the PFZ and declines even further in the AZ (Table 

4.2).  

 

The maximum light saturated growth, Pmax , is based on the temperature dependent 

formula given by Eppley (1972),  who noted that there are two general trends to growth 

rates: There is a gradual and exponential increase in growth with temperature up to about 

40 
�

C; growth rates below this temperature fall within an envelope and it is possible to 

plot a smooth curve showing the maximum expected value - the upper limit on the 

growth rate at a given temperature. The upper limit for Pmax = a �b
T described by Eppley 

takes the parameters a = 0.8511 and b = 1.0654, which gives values of Pmax between 0.8 

and 1.8 d-1
 for temperatures between -1 and 12 

�

C - the range of temperatures covering 

the three optimisation sites in this study.  

 

The maximum growth rate curve (Eppley, 1972) is plotted against temperature in Figure 

4.13, along with the optimised growth rate curves for the three experiment sites. The PFZ 

and AZ growth rates show little temperature dependence and fall far below the maximum 

rates indicated by Eppley’s formula, the SAZ growth rates also fall below the maximum 

however there is a clear temperature dependance. The maximum growth values given by 

Eppley are not expected to be realised under conditions of nutrient limitation or light 

limitation, where growth rates show little or no temperature dependence (Eppley, 1972). 

This indicates that there is either nutrient or light limitation, or a combination of both 

over the entire region and additional limitation south of the SAF. However we have 

already shown that light mostly affects the initial slope of the P-I curve, not the maximum 

growth rate, and the region is nutrient replete with respect to nitrogen. 
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Figure 4.13: Variation in the maximum growth rate with temperature, the SAZ site 

(140 
� E, 46 

� S) is shown in blue, the PFZ site (140 
� E, 54 

� S) is shown in red and the AZ 

site (140 
� E, 61 

� S) is shown in black. The maximum growth rate curve defined by Eppley 

(1972) is shown in green. 

 

In the initial parameterisation used by OG99 (Table 4.1) Pmax  takes a value of 1.1, 0.8 

and 0.6d-1
 for the mean temperatures in the SAZ, PFZ and AZ respectively. Schartau and 

Oschlies (2003a) subsequently optimised the model parameters from OG99 to 

simultaneously fit data from BATS, NABE and OWS-INDIA, their parameters result in 

values of Pmax  of 0.5, 0.4 and 0.3 d-1
 for the mean temperatures in the SAZ, PFZ and AZ 

respectively. Comparatively our estimates of maximum growth in the PFZ and AZ are 

very low, and indeed lower than would be expected from in situ estimates in the region 

(Griffiths, F.B., personal communication). This further indicates that there is a process 

not captured explicitly in the model which limits phytoplankton growth in the AZ and 

PFZ. 

 

None of the optimisations in which forcing data was interchanged between regions 

resulted in a high estimate of growth in the AZ; the differences occur due to processes not 

explicitly represented by the model or its forcing. We therefore attribute the low 

estimates of Pmax  in the AZ and PFZ to limited supply of micronutrients. Hutchins et al., 
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(2001) suggest that iron is the proximate limiting nutrient for chlorophyll production in 

the Australian sector of the Southern Ocean with silica playing a secondary role.  

 

In situ measurements of dissolved iron concentrations in the Australian sector of the 

Southern Ocean from Sedwick et al. (2008) and Lannuzel et al. (in press) 

indicate a general north to south decrease. Sedwick et al. (2008)  found concentrations of 

more than 0.3nM at ~140 
�

E, 46 
�

S, 0.08-0.12 at ~140 
�

E, 54 
�

S and uniformly low 

concentrations of less than 0.1nM south of the PF ~140 
�

E, 61 
�

S. Lannuzel et al. (in 

press) found dissolved iron concentrations of 0.27± 0.04 nmol/l at ~140 
�

E, 46 
�

S and 

0.22± 0.02 nmol/l at ~146 
�

E, 54 
�

S. On the contrary, measurements of silic acid in the 

Southern Ocean show an increase in concentrations with increasing latitude ranging from 

<5 μM in the SAZ to >60 μM in the AZ (Coale et al., 2004). Therefore the most likely 

cause of the low estimates of Pmax  in the AZ and PFZ is limited supply of iron. 

 

4.5.4 Parameter resolution 

The error analysis reveals that for this model Pmax  is more important in fitting the model 

to the chlorophyll data than �  (Figure 4.11). This is consistent with the findings of 

Galbraith et al. (2010) who similarly found the effect of light saturated photosynthesis 

rates negated the importance of photosynthetic efficiency particularly in the Southern 

Ocean, they suggest that because iron limitation reduces the maximum photosynthetic 

growth, the utility of photons would decrease under iron limitation, making light 

availability less important. Moore et al. (2007) studied iron-light interactions in the PFZ 

and found that in low-iron waters irradiance had little influence on phytoplankton 

biomass accumulation. 
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4.6 Conclusion 

 

The HNLC regime of the Southern Ocean is potentially important in controlling CO 2  

fluxes between the ocean and atmosphere. The causes of HNLC conditions has been the 

subject of much debate (Banse, 1996;  Mitchell et al., 1991) with much of the attention 

focussing on the availability of iron (Coale et al., 1996; Boyd et al., 2000). 

 

The phytoplankton photosynthetic parameters of a simple NPZD model have been 

optimised at three sites in the Australian sector of the Southern Ocean, spanning the Sub-

Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone. The optimised parameters 

give a good fit to Sea-WiFS surface chlorophyll data and result in realistic ecosystem 

dynamics as determined by the fluxes of nitrogen between model compartments which 

give f-ratios, primary productivity, and grazing estimates generally consistent with in-situ 

estimates. 

 

The optimisations indicate that phytoplankton growth rates in the Polar Frontal Zone and 

Antarctic Zone are limited by some process not explicitly included in this model, with 

iron availability being the most likely candidate.  

 

Photosynthetic efficiency is primarily determined by light availability in the mixed layer. 

The effect of changes in algal growth rates far outweighs the effect of changes in 

photosynthetic efficiency on the biological model solution, and thus differences to the 

ecosystem functioning caused by iron availability are of greater consequence than 

differences in surface irradiance and mixed layer depth. 

 

Based on these optimisations we support the contention that micronutrient availability, 

such as iron, is the primary cause of the HNLC conditions in the Australian sector of the 

Southern Ocean.  

 

Under future climate change scenarios the frequency and scale of aeolian dust emissions 

(e.g. from Australia) are predicted to increase (IPCC, 2007), and high latitude oceanic 
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stratification is predicted to increase (Matear and Hirst, 2003; Sarmiento et al., 2004). 

Atmospheric deposition is the dominant source of iron in the SAZ and vertical advection 

is relatively more important in the PFZ (Bowie et al. 2009). Based on the results of the 

optimisation experiments presented here this has the potential to impact future oceanic 

productivity by enhancing the differences in growth rates observed either side of the STF 

south of Australia, increasing the maximum phytoplankton growth rates in the SAZ and 

further reducing them in the PFZ and AZ. While increased stratification may increase 

available light and therefore phytoplankton growth in the mixed layer our sensitivity 

analysis indicates that this effect would be negated by a reduction in iron supply.  
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5.1 Summary 

The work in this thesis contributes to scientific understanding of Southern Ocean 

plankton dynamics through biogeochemical modelling. The performance of an ecosystem 

model with respect to observations of surface chlorophyll has been improved in a number 

of data assimilation experiments. The results of our data assimilation experiments 

facilitate quantitative understanding of the factors determining zonal and meridional 

variability of phytoplankton biomass in the Southern Ocean. 

 

A four component NPZD model was used for the experiments. The model configuration  

has been demonstrated to give a good representation of phytoplankton distributions in the 

North Atlantic by Schartau and Oschlies (2003a,b), however the parameters they used 

results in a poor fit to the annual cycle of phytoplankton biomass in the Southern Ocean. 

To improve the model performance the parameters were optimised by assimilating Sea-

WiFS surface chlorophll data. Many optimisation techniques exist, and at present there is 

no consensus on which method is the most efficient and robust. Two stochastic 

optimisation algorithms, simulated annealing and the Metropolis-Hastings algorithm, 

were compared.  

 

5.1.1 Simulated Annealing 

Twin experiments suggest that simulated annealing would be favourable as a standard 

method of assimilating biological data into marine ecosystem models. The algorithm 

found the global minimum of the cost function, and the true parameters were recovered 

when assimilating synthetic observations of phytoplankton only. Calculation of the 

Hessian matrix provided easy analysis of the expected errors in the parameter estimates. 

The singular vectors of the Hessian matrix provided comprehensible information on how 

well the individual model parameters fit the data and also relationships between the 

parameter estimates.  

 

Experiments assimilating Sea-WiFS surface chlorophyll data demonstrated that simulated 

annealing provides robust results, improving the model fit to chlorophyll observations 
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and providing parameter estimates generally consistent with estimates from a number of 

data sources that had not been used in the assimilation process. In our experiments the 

highly sensitive parameters were the maximum growth rate of phytoplankton, 

phytoplankton loss rate and zooplankton excretion rate. The least sensitive parameters 

were the detrital sinking rate and the half saturation constant of DIN uptake rate. 

Removing the least sensitive parameters from the optimisation can be advantageous as 

error propagation is reduced with little effect on how the model solution fits the data 

(Matear, 2004). Accordingly experiments assimilating Sea-WiFS data while optimising 

only a subset of parameters resulted in good agreement of the annual model trajectory 

with the surface chlorophyll observations, allowing conclusions to be drawn while 

isolating aspects of the model.  

 

Many of the well constrained parameters were correlated with one another and could not 

be estimated independently. Validation of results with independent data is essential in 

any data assimilation experiment particularly when correlations among parameters result 

in non unique estimates and non linearity’s mean convergence to a local, rather than 

global, minimum is possible. A number of ship based observations and experiments were 

used to assist the analysis of our results. Still more credibility would be afforded to our 

results if there were seasonal atmospheric iron deposition data, time series data, mooring 

data, and long term information on rates used as model parameters, such as the maximum 

growth of phytoplankton, and on mechanisms not explicitly optimised, such as the f-ratio. 

The estimated errors showed spatial variability both zonaly and meridionally emphasising 

the need for prudence when applying specific model parameters to multiple locations, 

and the need for increased observations spatially as well as temporally. 

 

5.1.2 The Metropolis-Hastings algorithm 

The Metropolis Hastings algorithm was effective for optimising only uncorrelated and 

well constrained parameters. Accurate estimates were obtained for only three parameters. 

This is similar to recent studies by Zhao and Lu (2009) and Xu et al. (2008). Both studies 

found 5 uncorrelated parameters in a model very similar to the one used here, using the 
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adjoint method. The difficulty in implementing the Metropolis-Hastings algorithm due to 

parameter correlations discouraged use of the method for experiments assimilating Sea-

WiFS data. However it has been demonstrated by Friedrichs et al. (2006; 2007) that 

optimising poorly constrained and correlated model parameters results in degraded 

predictive ability. Friedrichs et al. (2007) found that in parameter optimisations of a 

complex 24 component model the model ability to reproduce validation data was greatly 

improved if they optimised only 3 parameters rather than 14. Hence we would not rule 

out future experiments with the Metropolis-Hastings algorithm since the error estimation 

using this method is more mathematically stringent as it does not rely on linear 

approximations.  

 

5.1.3 Phytoplankton dynamics in the Southern Ocean 

Zonal variation in phytoplankton biomass south of Tasmania was examined by 

optimising the model parameters at two distinct locations in the Sub-Antarctic Zone. 

Several hypotheses were presented as to the cause of the differences in observed surface 

chlorophyll concentrations (Griffiths et al., in press). The optimal parameters and their 

effect on the modelled ecosystem functioning were compared between the two locations. 

The primary cause of meridional variation in phytoplankton biomass south of Australia 

was also considered. Bio-availability of iron was the principal hypothesis for the cause of 

the meridional differences in observed surface chlorophyll concentrations. The most 

reliable physiological indicator of iron availability was isolated by optimising the model 

parameters pertaining to the growth of phytoplankton. The optimisations were performed 

at three sites spanning the Sub-Antarctic Zone, Polar Frontal Zone and Antarctic Zone. 

 

Our optimisations attest that an interplay of factors controls primary productivity in the 

Southern Ocean with bio-availability of iron limiting production, particularly south of the 

Sub-Antarctic Front and bio-availability of iron altering species composition within the 

Sub-Antarctic Zone. The overall picture is of an underlying community of small 

phytoplankton with the existence of a regeneration loop at all sites (mean annual f-ratios 

between 0.57 and 0.7 over all sites), and an additional diatom based food chain of varying 
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efficacy over the region. The regeneration loop is strongest in the waters south east of 

Tasmania (f-ratio of 0.57 at P3). The smaller phytoplankton thrive here since mixed layer 

ammonium concentrations are relatively high (0.47 μM ; Cavagna et al., in press) and 

there is no iron limitation (dFe = 0.48± 0.10 nmol/l; Lannuzel et al., in press), but silicate 

concentrations are very low (<1 μM ; Cavagna et al., in press).  

 

South west of Tasmania the euphotic zone waters are nitrate replete but low in 

ammonium (0.05 – 0.45 μM ; Cavagna et al., in press). Under these conditions 

production becomes dominated by larger phytoplankton (diatoms) (f-ratio of  0.7 at P1). 

However diatom growth is more effected by the concentration of iron which is lower here 

(dFe = 0.27± 0.04 nmol/l; Lannuzel et al., in press) and so summer phytoplankton 

concentrations are lower than further east.  

 

At P3 the optimisation results in satisfactory estimates of recycling rates but 

underestimates primary production, zooplankton biomass and zooplankton grazing. 

Based on other studies (Mongin et al., in press) we hypothesise that seasonal variability 

in atmospheric iron deposition plays an important role in the seasonal evolution of 

phytoplankton and produces the late summer maximum in phytoplankton. An ecosystem 

model that includes seasonal variations in atmospheric deposition of iron may improve 

our modelling results at P3. 

 

South of the Sub-Antarctic Front the phytoplankton community is dominated by the iron 

sensitive diatoms (Sohrin et al., 2000). They are adapted to the light conditions with 

increased light-harvesting characteristics compared to the SAZ phytoplankton (� = 0.044 

in the SAZ, 0.6 in the PFZ and 0.35 in the AZ). This does not help to increase overall 

growth rate, production and biomass which is bounded by iron limitation ( Pmax = 0.63 in 

the SAZ, 0.06 in the PFZ and 0.04 in the AZ) since iron concentrations decrease with 

increasing latitude in this region (Sedwick et al., 2008). 

 

Our experiments suggest that differences in observed chlorophyll result from biological 

differences rather than physical forcing. This implies that this model is not suitable for 
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coupling to a 3D circulation model to make basin scale estimates of biogeochemical 

processes and ecosystem functioning in the Southern Ocean. Our conclusions are drawn 

from optimisation experiments performed in a small number of locations south of 

Australia. It would be of interest to perform a number of individual optimisations, over a 

smaller spatial resolution, spanning the entire Southern Ocean. This would provide a 

comprehensive map of iron limitation and elucidate basic community composition in the 

Southern Ocean.  

 

5.2 Discussion of model parameter estimates and validation data 

The results presented assume the model configuration to be a truthful representation of 

the marine ecosystem. We have greatly simplified a complex reality to allow 

investigation of the core processes. The roles of iron, silica and ammonium production 

are discussed, none of which are explicitly included in the model. The use of a more 

complex model to research these ideas further may be intuitive, however presently there 

is barely enough data to assimilate and independently validate even this very simple 

model. There is a pressing need for observationalists and modellers to work together to 

collect comprehensive data sets to constrain biogeochemical models for the Southern 

Ocean. 

 

In the Sub-Antarctic Zone accurate parameterisations of regenerated production are 

crucial to modelling phytoplankton biomass, and characterising the ecosystem 

functioning. In-situ estimates of atmospheric iron deposition, primary production, new 

production and f-ratios are essential for validating the model output. On a basin scale 

accurate parameterisations of maximum growth rates of phytoplankton are essential to 

modelling phytoplankton biomass in the Southern Ocean. 

 

- regenerated production 

Ammonia excreted by zooplankton may be an important source of nitrogen requirements 

for phytoplankton in the Sub-Antarctic Zone. Our results in Section 3.5.3 suggest that 

ammonia excreted by zooplankton provides 14 and 23% of the requirements of primary 
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production at P1 and P3 respectively (Figure 3.8b). Our error analysis in Section 3.5.2 

shows that zooplankton excretion is one of the most sensitive model parameters, and 

therefore it is essential to have a reasonable estimate of this parameter to realistically 

model phytoplankton distributions. Field measurements of zooplankton excretion rates 

are required to support model predictions.  

 

The error analysis in Section 3.5.2 shows that the phytoplankton loss rate representing an 

implicit description of the bacterial loop (μp ) is also a very sensitive model parameter. 

This parameter was optimised to near zero at stations P1 and P3 indicating that the model 

results were notably improved by removing this phytoplankton loss rate (one of two 

phytoplankton mortality terms) from the model. This parameter was included in the 

model by SO03 to represent the fraction of phytoplankton’s nitrogen rapidly 

remineralised in the euphotic zone. They hypothesised that this flux was important in 

their experiments at the oligotrophic BATS site. The role of bacterial loop is more 

significant in oligotrophic waters than eutrophic waters (Sarmiento and Gruber, 2006). 

Hoppe et al. (2002) found the ratio between bacterial production and primary production 

changed significantly from up to 40% in the equatorial Atlantic to 1-5% in the high 

latitude South Atlantic (Hoppe et al., 2002, Figure 2). We found that bacterial production 

represents an insignificant percentage of primary production in the SAZ and it was 

important to reduce the parameter value from the SO03 estimate of 0.04 d-1
 to effectively 

zero in order to realistically model the annual cycle of phytoplankton.  

 

It is important to note that this parameter estimate can not be uniquely determined. The 

estimate is correlated to the estimate of zooplankton excretion at both station P1 and 

station P3 and additionally to the mortality of zooplankton and the maximum growth rate 

of phytoplankton at station P1. Therefore in-situ measurements of ammonia excreted by 

bacteria as well as ammonia excreted by zooplankton would be beneficial in validating 

the regenerated production predicted by the model, and also our decision to remove this 

flux of the model for the experiments in Chapter 4. 

 

- phytoplankton growth 
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The maximum growth rate of phytoplankton is a key process to modelling annual 

phytoplankton cycles in the Australian sector of the Southern Ocean. Changes to 

phytoplankton growth, indicative of changes in bio-availability of iron, can have a 

considerable effect on phytoplankton biomass and primary productivity. More in-situ 

estimates of maximum photosynthetic growth are essential for model validation. 

Comparatively estimates of maximum photosynthetic efficiency (the initial slope of the 

P-I curve) are less important for model validation (for this model). The model output is 

less sensitive to the choice of this parameter value, which is predominantly determined by 

light availability in the water column.  

 

- unconstrained parameters 

The modelled phytoplankton biomass shows virtually no sensitivity to the detrital sinking 

rate or the half saturation constant for DIN uptake rate. Measurements of these processes 

are not critical in modelling surface chlorophyll concentrations in the Australian region of 

the Southern Ocean. On the other hand the model cannot be used to accurately predict 

these processes and therefore quantifying sinking rates through methods such as sediment 

trap measurements is essential for obtaining estimates of carbon export in the Southern 

Ocean. 

 

5.3 Future Research 

The advantages and disadvantages of simulated annealing and the Metropolis-Hastings 

algorithm have been assessed independently, however it is possible that these methods 

may be used in a complimentary manner. Simulated annealing could be used to optimise 

all the model parameters and identify a subset of the most sensitive and uncorrelated 

ones. The Metropolis-Hastings algorithm could then be used to optimise this subset to 

provide a rigorous error estimation with the parameter estimates. Error estimation is 

central to the concept of data assimilation (Gregg et al., 2009). In our experiments, 

probing questions about ecosystems, the model predictions are regarded as hypotheses. 

The price of being wrong is minimal and the errors calculated from the Hessian matrix 

are certainly satisfactory. Marine ecosystem models are increasingly being used as tools 
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to support decision making (Stow et al., 2009). In high-stakes policy-making 

applications, error analysis is critical. When using models for future predictions an 

assessment of the sensitivity of the response to ranges in parameter estimates is essential. 

For such applications the combination of simulated annealing and the Metropolis-Hasting 

algorithm could be applicable. 

 

 

Our experiments suggest that using this model the biological solution is more sensitive to 

the biological parameters than to the physical forcing. Similarly Losa et al. (2006) found 

that spatial biological parameterisations were more important in capturing the variability 

in chlorophyll observations of the North Atlantic than improvements to the model 

physics. Multiple optimisations in an ocean basin have been performed in a number of 

studies following several different approaches, such as independent optimisations, 

simultaneous optimisation or grouping stations. Hurtt and Armstrong (1999) found that 

different ecological processes must be considered to achieve a fit to observations at two 

sites in the North Atlantic (BATS and OWSI). Schartau and Oschlies (2003a,b) 

concluded that a simultaneous optimisation at three sites in the North Atlantic (BATS, 

OWSI and NABE) results in parameter estimates that are a compromise among local 

parameter estimates that would be obtained from three individual optimisations. 

Hemmings et al. (2004) found that a good fit to observations of the North Atlantic 

requires the domain to be split into two provinces with different parameter sets. Losa et 

al. (2004) found significant spatial variation in optimised parameters over the North 

Atlantic basin and reasoned that the use of different parameter vectors smoothed over the 

domain boundaries with interpolation techniques is the best way to apply the model on a 

basin wide scale. Future work should focus on a number of individual optimisations over 

the Southern Ocean domain to identify the factors influencing spatial patterns in surface 

chlorophyll concentration. 

 

There have been numerous parameter optimisation experiments to improve the fit of a 

model to some set of observations, presenting the theoretical basis and the potential of 

data assimilation in marine ecosystem modelling. Thus far, few studies have focussed on 
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what we can learn from the optimised parameters, or used the results to form new/ test 

existing hypotheses on ecosystem functioning (Spitz et al., 2001; Friedrichs, 2002). In 

this thesis data assimilation is used as a tool to probe questions about marine 

biogeochemical dynamics. As methods such as simulated annealing become more 

established, parameter optimisations can become routine in biogeochemical modelling 

experiments. Thus I hope this work may inspire the focus of future parameter 

optimisation studies to be on what we learn about marine ecosystems as well as 

calibrating models to observations. 
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