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Abstract

The class of self-exciting point process evolve within a self-excitation mecha-

nism that allows past events to contribute to the arrival rate of future events. The

significant contributions this thesis introduces are techniques to conduct efficient

statistical inferences for the recently proposed renewal Hawkes self-exciting point

processes. By employing a substantial modification to the baseline arrival rate of

the Hawkes process, the renewal Hawkes process provides superior versatility. The

additional flexibility afforded to the renewal Hawkes process occurs by defining the

immigration process in terms of a general renewal process rather than a homogenous

Poisson process. The renewal Hawkes process has the potential to widen the appli-

cation domains of self-exciting processes significantly. However, it was initially as-

serted that likelihood evaluation of the process demands exponential computational

time and therefore is practically impossible. As a consequence, two Expectation-

Maximization (E-M) algorithms were developed to compute the maximum likelihood

estimator (MLE), a bootstrap procedure to estimate the variance-covariance matrix

of the MLE and a Monte Carlo approach to compute a goodness-of-fit test statistic.

Considering the fundamental role played by the likelihood function in statistical

inferences, a practically feasible method for likelihood evaluation is highly desirable.

This thesis develops algorithms to evaluate the likelihood of the renewal Hawkes

process in quadratic time, a drastic improvement from the exponential time initially

claimed. Simulations will demonstrate the superior performance of the resulting

MLEs of the model relative to the E-M estimators. This thesis will also intro-

duce computationally efficient procedures to calculate the Rosenblatt residuals of

the process for goodness-of-fit assessment and a simple yet efficient procedure for

future event predictions. Faster fitting methods, and linear time algorithms to fit

the process are also discussed. The computational efficiency of the methods de-

veloped facilitates the application of these algorithms to multi-event and marked

point process models with renewal immigration. As such, this thesis proposes two

additional models termed the multivariate renewal Hawkes process and the mark re-

newal Hawkes process. The additional computational challenges that arise in these

frameworks are solved herein.
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Chapter 1

Introduction to self-exciting point

processes

The self-exciting point process is a natural and powerful statistical model to illustrate

the temporal patterns of the occurrence times of certain events. This introductory

chapter provides a formal introduction to these processes and defines a framework

in which statistical inferences such as estimation, model assessment, and prediction

can be implemented herein. Furthermore, this chapter provides a concise review of

the important and influential self-exciting point processes that have been developed

thus far, and the standard inferential methods that are used in practice.

1.1 Motivation

Point process models are stochastic processes that model the occurrence of points

that occur in either time or space. A point process on the real line is generally

interpreted as ‘time’ and the points as ‘events’. The Hawkes point process was a

significant advancement in the field of point processes since it provided a valuable

avenue in which to describe sequences of events occurring at random times that

demonstrate temporal clustering. Following its proposal by Hawkes (1971), this

model and its diverse extensions have been applied to analyze data arising in an

extensive range of fields such as seismology (Ogata, 1988), neuroscience (Chornoboy

et al., 1988), finance (McNeil et al., 2005; Chavez-Demoulin et al., 2005; Embrechts

et al., 2011; Filimonov and Sornette, 2012), social interaction modelling (Crane and

Sornette, 2008), credit risk (Errais et al., 2010), genome analysis (Reynaud-Bouret

and Schbath, 2010), criminology (Mohler et al., 2011), terrorist activity modeling

(Porter and White, 2012) among many others.
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1.2 Point process framework

This section primarily focuses on temporal point processes on the positive real line

R+. The extensions to marked and multivariate processes are defined at the begin-

ning of the appropriate chapter in this thesis. The following definitions and notations

follow closely the presentation adopted in Daley and Vere-Jones (2003, 2008). Let

N be the space of all boundedly finite integer-valued measures termed counting

measures, and B(N ) be the σ-algebra generated by the sets {m ∈ N : m(A) = n},
A ∈ B(R+), n ∈ N0 where N0 denotes the natural numbers including zero. A point

process on the positive real line R+ is a measurable mapping from a probability

space (Ω,F ,P) into (N ,B(N )). Hence, any random variable of the form,

N : (Ω,F)→ (N ,B(N )), (1.2.1)

is a point process on R+. In particular, the function N((a, b]) : (Ω,F) → N0 for

0 6 a < b < ∞, is a random variable that counts the number of events in the

time interval (a, b]. A notable assumption often used is that only one point can be

observed in any instant of time, that is, P (N({t}) ∈ {0, 1}) = 1. In this case, the

point process N is termed a simple point process. In less general terms, a simple

temporal point process consists of a sequence of event times in ascending order such

that τ1 < τ2 < . . . The counting process N(t), t > 0 associated with the time

series of occurrence times counts the number of events that have occurred up to and

including time t,

N(t) =
∞∑
i=1

1{τi 6 t}, t > 0.

For instance, consider a simple point process N such that N(Ai) has a Poisson

distribution with mean
∫
Ai
λ(t)dt, i = 1, . . . , n, where each N(Ai) are independent

for all mutually disjoint sets Ai ∈ B(R+) and λ : R+ → R+ is locally integrable.

Suppose that λ is a constant function that does not depend on t, then this is known as

a stationary process, and termed a homogenous Poisson process with rate λ ∈ (0,∞).

The points of a homogenous Poisson process exhibit complete randomness in Ai. For

example, if n points occur in Ai ∈ B(R+), then these n points are independent and

uniformly distributed over the set Ai. This is the most well-known point process.

However, it may not be sufficient for many real-world data applications, in which

events cluster heavily over time or exhibit more regular temporal patterns. The

clustering phenomenon of points has necessitated a generalization of the homogenous

Poisson process. In this generalization, the arrival rate λ is no longer a constant

but rather a deterministic function of time λ(t). This is termed an inhomogeneous

Poisson process and can model the seasonality patterns present in the points.

2



For both the homogenous and inhomogeneous Poisson process, the arrival rate of

future points does not depend on the occurrence of points in the past. Since Poisson

processes do not account for the history of the process, they might also not be

adequate for particular applications. A common tool to allow the history to influence

the future evolution of the process is to introduce a self-exciting mechanism that

depends on the points in the past. Before discussing such an extension, the notion of

history needs to be properly defined. The history at time t contains the cumulative

information up to and including time t. More formally, let F = {Ft; t > 0} with

Ft = σ {N(s); s 6 t}, denote the natural filtration of the point process, that is, the

σ−algebra generated by the counting process N .

The dynamical evolution of history-dependent point process models are defined

in terms of their (conditional) intensity process λ(t), t > 0 which takes the form,

λ(t) := lim
δ→0

E [N(t+ δ)−N(t)|Ft−]

δ
, t ∈ R+, (1.2.2)

where Ft− denotes the history just before time t. The intensity process indicates

the instantaneous arrival rate of points at time t. The form of the intensity process

affords versatility in the modeling capabilities of point process models and leads to

different point processes. For instance, the intensity may not depend on Ft− such as

the homogenous Poisson process in which the intensity process is just the constant

λ, or it may depend on time, in which λ(t) is a deterministic function as in the

inhomogeneous Poisson process.

For the history-dependent point process, the history of the process, namely its

past events, generate a self-exciting or autoregressive mechanism. The Hawkes

(1971) process is the pioneering self-exciting point process of this type. The self-

exciting mechanism allows the intensity to momentarily increases on the arrival of

a point with this effect usually diminishing over time. The focus of this thesis sur-

rounds self-exciting point processes and in the next section, a brief introduction to

the Hawkes process is presented.

1.3 Hawkes self-exciting point processes

The class of self-exciting point process models provides a framework for modeling

sequences of events whose arrival rate depends on the occurrence times of earlier

events. The dependence on the history of the process takes the form of a self-exciting

phenomenon in which the cumulative effects of previous events increase the intensity

for future events. Such effects will decay over time, with the most recent events

before time t having the most significant contribution to the intensity. The most

notable self-exciting point process is that of Hawkes (1971). The Hawkes process is a

3



clustering process, in which one can interpret the points of the process as immigrant

or offspring events. The immigrant events follow a homogenous Poisson process,

and then when these individuals enter the population, whether by immigration or

by birth, they begin to give birth to offspring of their own according to independent

inhomogeneous Poisson processes with a common intensity function.

The branching process interpretation can be made more explicit by examination

of the Hawkes (conditional) intensity process. Let N(t), t > 0 be a simple point

process on the positive half-line so that all its points are distinct and interpretable

as event times. Let the event times in ascending order be denoted by τ1 < τ2 < . . . .

The intensity process for the Hawkes process with respect to its natural filtration

Ft takes the form,

λ(t) = µ+

N(t−)∑
j=1

ηh(t− τj), (1.3.1)

for a positive constant µ ∈ (0,∞), a constant η ∈ [0, 1), and a positive function h(·)
on R+ such that

∫∞
0
h(t)dt = 1. The constant µ is interpreted as the hazard func-

tion of the independent and identically distributed (i.i.d.) waiting times between

immigration events, also known as the baseline intensity or background rate. The

constant η is referred to as the branching ratio and indicates the mean number of

offspring for an individual in the population. The function h(·) is a probability den-

sity function often termed the offspring density. The function ηh(·) is also known as

the excitation function, the infectivity function, the fertility function, or the mem-

ory kernel. The linear form of the intensity process in (1.3.1), indicates that at any

time t, the instantaneous event rate of the Hawkes process is the immigrant arrival

rate plus the sum of birthing rates of existing members of the population. The

constant baseline intensity describes the arrival of exogenous events, which arrive

independently of previous events.

1.4 Inference for Hawkes self-exciting point processes

This section outlines estimation for the Hawkes process based on observations over

the interval [0, T ]. The objective is to estimate the model parameters which specify

the (conditional) intensity process λ(t) of the Hawkes process and uniquely deter-

mine the distribution of the counting process N . This exposition focuses on the

parametric estimation of the Hawkes model with offspring density function h(·; θh)
parametrized through a finite-dimensional parameter θh, with the aim to estimate

the parameter vector θ = (µ, η, θ>h ). Following the discussion on estimation, this

section addresses model assessment and simulation of the process, which are vital

aspects to understanding the fitted model and its appropriateness.
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1.4.1 Estimation

1.4.1.1 Maximum likelihood estimation

The likelihood function of the Hawkes process is straightforward to calculate, and

this attractive feature implies that estimation using the method of maximum like-

lihood is simple to implement. For a point process realization τ1:n = (τ1, . . . , τn)

on the interval [0, T ] with N(T ) = n, the likelihood of the point process with a

parameter vector θ takes the form,

L(θ|τ1:n) = pθ(τ1:n)Pθ (N(T )−N(τn) = 0|τ1:n) . (1.4.1)

The likelihood is simply the product of the joint density of all the event times and the

probability that no events occur between the last event time τn and the censoring

time T . The joint density is then further factored into a product of conditional

marginal densities of which take the form,

p(t|τ1:N(t−)) = λ(t) exp

(
−
∫ t

τN(t−)

λ(s)ds

)
, (1.4.2)

where λ(t) takes on the form specified in (1.3.1) for the Hawkes process. The form

of (1.4.2) is simply the product of the probability of observing an event at time

t, and the probability that no events occur between the previous event time τN(t−)

and time t, where both probabilities are conditional on the history at time t. Then

substituting (1.4.2) into (1.4.1) leads to the classical expression for the likelihood

of a point processes and takes the form (Daley and Vere-Jones, 2003, Proposition

7.3.III),

L(θ|τ1:n) =
n∏
i=1

λ(τi) exp

(
−
∫ T

0

λ(s)ds

)
. (1.4.3)

The maximum likelihood estimator (MLE) is computed by maximizing the like-

lihood in (1.4.3) with respect to the parameter vector θ. This optimization problem

naturally attempts to maximize the value of the intensity at the observed event

times while concurrently minimizing the intensity over the intervals where no events

are observed. It is standard practice, due to its computational appeal, to use the

log-likelihood when performing the optimization routine to compute the MLE, and

by taking the logarithm of the likelihood in (1.4.3), the log-likelihood takes the

following form,

`(θ|τ1:n) =
n∑
i=1

log λ(τi)−
∫ T

0

λ(s)ds. (1.4.4)

Many optimization techniques are readily available, such as the simplex downhill

method Nelder and Mead (1965). The log-likelihood in (1.4.4) above is provided in
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sufficient generality to apply to a wide variety of point process models, such as the

time-varying baseline intensity model (non-stationary Hawkes process) discussed in

the next section. The evaluation, or more importantly, optimization of the Hawkes

likelihood is rather simple to develop, but remains computationally demanding as

it requires evaluation of the conditional intensities in (1.4.2) at all observed time

points. Hence, the complexity of the likelihood calculation is of order n2. However,

this complexity can be reduced to order n (linear time complexity) when the offspring

density function is exponential, and a recursion can be employed to compute the

excitation function at each observed time point.

The preceding discussions rely on the intensity process with respect to its natu-

ral filtration having a readily computable expression. For the Hawkes process, this

is readily available, but as will be shown later, this is not the case for the renewal

Hawkes process. When direct evaluation of the intensity process with respect to

the natural filtration is not feasible, the log-likelihood optimization cannot be per-

formed using (1.4.4). This primarily occurs in circumstances in which the immigrant

events are no longer Poisson, and the branching structure is not observable. The

Expectation-Maximization (E-M) algorithm is a natural approach to overcome this

hindrance since the unobserved branching structure can be treated probabilistically

as a missing data problem.

1.4.1.2 Expectation-Maximization algorithm

The E-M algorithm of Dempster et al. (1977) is an iterative procedure that estimates

the MLE in circumstances in which the observed data X is known, but the model

depends on some latent or missing data Z. In these instances, the likelihood based

only on the observed data L(θ|X) (herein termed the incomplete-data likelihood)

may be challenging to compute to perform direct MLE calculations. Alternatively,

it may be simpler to work with the likelihood based on the observed, and missing

data L(θ|X,Z) (herein termed the complete-data likelihood) and account for the

unobserved, or missing data Z probabilistically.

Suppose the E-M algorithm has a starting parameter estimate θ̂[0]. The E-M

algorithm proceeds to iterate between the following two steps at the (m + 1)-th

iteration:

1. The Expectation step computes the expected complete-data log-likelihood with

respect to the conditional distribution of the missing data Z, conditional on

the observed data X, and current parameter estimate θ̂[m] as follows,

Q(θ|X, θ̂[m]) = EZ|X,θ̂[m]

[
logL(θ|X,Z)

]
. (1.4.5)
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2. The Maximization step maximizes the expected complete-data log-likelihood

in (1.4.5) to compute the next iterations parameter estimate θ̂[m+1] by solving

the following optimization problem,

θ̂[m+1] = argmax
θ

Q(θ|X, θ̂[m]). (1.4.6)

The E-M algorithm continues to iterate between the Expectation and Maximization

steps until the specified convergence criterion is satisfied. The parameter estimates

are assured not to reduce the observed-data likelihood L(θ|X) at each consecutive

iteration.

The branching process interpretation of immigrant and offspring events discussed

previously facilitates the application of the E-M algorithm to the Hawkes process,

in which the missing data is the branching structure such as used in Veen and

Schoenberg (2008) and Lewis and Mohler (2011). By conditioning on the branch-

ing structure, the process is decoupled into identical (up to a shift in time), and

independent homogenous Poisson processes, and this facilitates straightforward cal-

culation of the complete-data log-likelihood. A more in-depth discussion of the E-M

algorithm applied to the renewal Hawkes process is discussed in Chapter 2, and to

avoid repetitive discussions of this concept, no further discussion of the algorithm is

mentioned here.

1.4.2 Model assessment

After identifying the fitted Hawkes process, the adequacy of the fitted model to

data should be assessed. For this purpose, a residual point process based on Papan-

gelou’s random time change theorem Daley and Vere-Jones (2003) can assess the

appropriateness of the fitted Hawkes process. The point process model is correctly

specified when the sequence of event times {τi}i=1,...,n on [0, T ] follows a point pro-

cess with the specified conditional intensity λ(t). This assessment can be conducted

by computing the integral transformed point pattern {Λ(τi)}i=1,...,n and evaluating

whether this transformed sequence follows a unit rate Poisson process on [0,Λ(T )]

where Λ(t) =
∫ t

0
λ(s)ds denotes the cumulative intensity process, also known as the

compensator of the point process.

However, rather than assessing whether the transformed sequence conforms to

a unit rate Poisson process, a test based on uniformity can be justified. A Poisson

process is observed from time 0 until the censoring time T , and since the joint distri-

bution of the ordered event times of the process is equal to that of the order statistics

of an equal number of uniformly distributed event times on the interval [0, T ], the

transformed sequence {Λ(τi)}i=1,...,n on the interval [0,Λ(T )], should be uniformly
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distributed. By replacing Λ(t) with an estimate of the cumulative intensity process

by replacing the unknown parameters by their estimates Λ̂(t), the transformed se-

quence can be assessed using formal statistical tests such as the Kolmogorov-Smirnov

(K-S) test or the Anderson-Darling (A-D) test, or it can be graphically assessed us-

ing a quantile-quantile plot (QQ plot). A large p-value emerging from these formal

tests indicate that the transformed sequence conforms to a uniform sequence and

suggests that the fitted model is adequate for the data.

1.4.3 Simulation algorithms

This section illustrates algorithms to simulate realizations of the Hawkes self-exciting

point process, in which some slight difficulties occur due to the dependence on the

history of events. To begin any discussion on simulation algorithms for self-exciting

processes, a method to simulate a homogenous Poisson process demands attention.

For a homogenous Poisson process with a constant arrival rate λ, the inter-event

waiting times are independent and exponentially distributed and can be generated

using an inversion sampling method. First, simulate u, a uniform random variable

on the unit interval and then generate an inter-event waiting time by substituting

u into the inverse cumulative distribution function F−1(u) = − log(1− u)/λ. Then

proceed to simulate exponential inter-event waiting times until the cumulative sum

of these times is greater than the censoring time T .

Simulating an inhomogeneous Poisson process is now possible, albeit slightly

more challenging and depends on the form of the specified intensity function. One

simplified approach is the thinning algorithm proposed by Lewis and Shedler (1979).

It is an iterative procedure in which the points are simulated sequentially using the

intensity process, which is updated at each consecutively simulated point. The

thinning algorithm utilizes the thinning property of Poisson processes that states

that the contribution to the intensity process from all independent sub-processes

equals the total intensity process at any time t, implying that a homogeneous Poisson

process with rate λmax such that λmax > λ(t), t > 0 can be simulated and then

thinned appropriately to obtain an inhomogeneous Poisson process with rate λ(t).

This is an efficient algorithm to simulate an inhomogeneous Poisson process with

a specified intensity function over the interval [0, T ], and following the simPois

function in the IHSEP R package works as follows:

1. Compute the maximum intensity of λ(t) over the interval [0, T ] and denote it

by λmax.

2. Simulate λmaxT + 1.96λmaxT exponential random variables with rate λmax.
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3. Sum up all the simulated exponential random variables, and if the cumula-

tive sum is less than T , iteratively simulate additional exponential random

variables in batches (of size approx. λmaxT ) with rate λmax.

4. Retain the cumulative sum of exponentials that are less than T as the event

times of the homogeneous Poisson process.

5. Perform thinning based on the retention probability λ(t)/λmax for each sim-

ulated event times to obtain the event times for the inhomogeneous Poisson

process.

Strategies that exploit the branching process interpretation of Hawkes and Oakes

(1974) usually provides greater efficiencies for simulating self-exciting processes. The

simulation comprises of two components relating to the independent immigrant ar-

rivals and the offspring generations. The algorithm works as follows. First, all of

the immigrant events are simulated as a homogeneous (or inhomogeneous in the

case of time-varying baseline self-exciting processes) Poisson process. Then, from

each simulated point τi, simulate an inhomogeneous Poisson process with rate ηh(t)

over the interval [0, T − τi], this includes both immigrants and any future offspring

events that have been generated. Such an exploit of the branching structure will be

utilized when simulating the renewal Hawkes process later on in Chapter 3.

1.5 Non-stationary self-exciting point processes

The classical Hawkes self-exciting point process of Hawkes assumes that the baseline

intensity is constant. However, this unnecessarily restricts the application domain of

self-exciting processes, as for many applications a constant baseline intensity would

not be adequate. For instance, in seismological applications, the sequence of after-

shocks following a mainshock display the self-exciting phenomenon, but the arrival

rate of mainshocks typically decays over time (Utsu, 1961) and is not constant. In

financial applications, the modeling of intra-day stock trading may also be modeled

using a Hawkes process, but the baseline trading intensity may be inappropriate

as the trading intensity during the open and close of the market exhibit drastically

different features to the rest of the trading day (Engle and Russell, 1998).

In the many contexts in which a constant baseline intensity is unrealistic or in-

adequate for the data, a non-stationary self-exciting point process with time-varying

baseline intensity might be an appropriate alternative (Chen and Hall, 2013). The

time-varying baseline intensity self-exciting point process has a time dependent func-

tion µ(t) that replaces the constant µ in (1.3.1). More specifically, the intensity
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process λ(t) takes the form,

λ(t) = µ(t) +

N(t−)∑
j=1

ηh(t− τj), (1.5.1)

which incorporates the same history-dependent self-excitation mechanism that was

introduced for the Hawkes process. The statistical inferences and model assessment

for the non-stationary Hawkes process are very similar to the Hawkes process and

are discussed in the work of Chen and Hall (2013).

In the non-stationary Hawkes process, the baseline rate is allowed to vary but

only in a deterministic way. The renewal Hawkes process also allows the baseline

rate to vary but does so stochastically and still maintains stationarity, at least in an

asymptotic sense. The remainder of this thesis will be devoted to this class of self-

exciting processes, and in the next chapter, a background on renewal Hawkes process

and the recent statistical inferences that have proposed so far will be discussed.
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Chapter 2

Background on renewal Hawkes

processes

The classical process of Hawkes (1971) models the immigrant arrival times as a

homogenous Poisson process. The estimation of model parameters for this class of

model or its inhomogeneous Poisson generalizations can be performed using MLE.

Recently Wheatley et al. (2016) introduced a nascent extension to the Hawkes pro-

cess by allowing the immigrant arrival process to be a general renewal process, rather

than a homogeneous Poisson process. Wheatley et al. (2016) termed the extension

a renewal Hawkes process or RHawkes process for an abbreviation. They demon-

strated that RHawkes processes are more versatile than Hawkes processes as such

processes can feature dependence between clusters, where each cluster consists of

an immigrant and its direct offspring of all generations. Wheatley et al. (2016) also

claimed that the likelihood of the RHawkes processes is practically impossible to

compute because the required computational time is an exponential function of the

observed number of events of the process up to the censoring time. This claim will be

proved to be incorrect in this thesis. To calculate the MLE of the RHawkes process,

Wheatley et al. (2016) proposed two E-M type algorithms based on two different

alternatives to the set of missing variables. They proposed to estimate the variance-

covariance matrix of the computed MLE using bootstrap. They also claimed that

the goodness-of-fit test statistic for the RHawkes process requires exponential com-

putational time, and hence proposed a Monte Carlo approach for goodness-of-fit

assessment.

2.1 Model and notation

Before introducing the RHawkes process model, several notations are introduced.

Let Mi, i = 1, 2, . . . denote the unobservable event indicator, where Mi = 0 indicates

that the i-th event is an immigrant and Mi = 1 indicates that the i-th event is an
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offspring. Furthermore, let I(t) = max {i| τi < t,Mi = 0} denote the (unobservable)

index of the most recent immigration event before time t, with the convention that

I(t) := 0 when t < τ1 and τ0 := 0. The point process N(t) is called a renewal

Hawkes process, or RHawkes process for short, if the intensity process λ(t), t > 0

relative to the enlarged filtration F̃t = σ {N(s), I(s); s 6 t} , t > 0 takes the form,

λ(t) =
E
[
dN(t)|F̃t−

]
dt

=
E [dN(t)|Ft−, I(t)]

dt

= µ(t− τI(t)) +
∑
j:τj<t

ηh(t− τj)

= µ(t− τI(t)) + φ(t), (2.1.1)

for a positive function µ(·) on the positive half-line R+. The function µ(·) is inter-

preted as the hazard function of the i.i.d. waiting times between the immigration

events, which forms a renewal process. For the stability of the process, it is required

that
∫∞

0
e−

∫ t
0 µ(s)dsdt <∞, which ensures the expected waiting time between succes-

sive immigrants is finite. Interestingly, when the function µ(·) is simply a constant,

the RHawkes process reduces to a Hawkes process. The self-excitation mechanism is

identical to that of the Hawkes process and its non-stationary extension where η and

h(·) have the same interpretations as before. Furthermore, note the introduction of

the notation φ(t), which denotes the cumulative contribution of offspring effects at

time t to the total intensity process. The remainder of this chapter will be devoted

to a review of the inferential methodologies proposed in Wheatley et al. (2016).

2.2 Expectation-Maximization algorithms

The intensity process for the Hawkes process with respect to its natural filtration

defined in (1.3.1) can be computed at any time t, and consequently, MLE can be per-

formed using the log-likelihood function in (1.4.4). However, the RHawkes process

model requires knowledge of which event is the most recent immigrant event, and

consequently, the intensity process defined in (2.1.1) cannot be directly computed

and used to evaluate the log-likelihood function in (1.4.4). This led Wheatley et al.

(2016) to claim that evaluation of the exact likelihood and hence, direct MLE is not

feasible for the RHawkes process.

The tremendous success and well-established application of the E-M algorithm

to point process models led Wheatley et al. (2016) to circumvent the direct calcu-

lation of the likelihood by formulating this problem using the E-M framework of

Dempster et al. (1977). The approaches of Veen and Schoenberg (2008) and Lewis

and Mohler (2011) were extended by Wheatley et al. (2016) to incorporate renewal

immigration, which they termed the EM1 algorithm. In addition to the EM1 al-
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gorithm, they introduced a further E-M algorithm with a reduced set of missing

data (EM2). The EM2 algorithm is additionally applicable to the Hawkes process

with inhomogeneous Poisson process immigration. The EM1 and EM2 algorithms

allow for straightforward estimation of the RHawkes process when the functions µ(·)
and φ(·) have separate parameters. Both the EM1 and EM2 algorithms can be tai-

lored to multivariate, spatio-temporal, and marked point process data, but no such

attempt has been made.

First, a discussion on why Wheatley et al. (2016) asserted that likelihood evalu-

ation demands exponential time. The observed data consists of the observed event

times τ1, . . . , τn over the interval [0, T ] and N(T ) = n, and the missing data consists

of the immigrant or offspring indicators M1:n = (M1, . . . ,Mn). The complete-data

log-likelihood conditioned on (τ1:n,M1:n) of the RHawkes process takes the form,

logL(θ|τ1:n,M1:n) =
n∑
i=1

(1−Mi) log µ(τi − τI(τi))−
∫ T

0

µ(s− τI(s))ds

+
n∑
i=1

Miφ(τi)−
∫ T

0

φ(s)ds, (2.2.1)

which has two separate components for the immigrant and offspring processes. How-

ever, the immigrant vector M1:n is not observable and must be treated as random.

Consequently, the observed data log-likelihood is defined in terms of an expectation

of the conditional likelihoods in (2.2.1) as follows,

logL(θ|τ1:n) = log

 ∑
j∈{0,1}n

L(θ|τ1:n,M1:n = j1:n)P (M1:n = j1:n|θ)

 , (2.2.2)

where P (M1:n = j1:n|θ) denotes the probability that the immigrant vector equals

one of the possible immigrant/offspring combinations j1:n = (j1, . . . , jn) ∈ {0, 1}n.

It is clear that these probabilities depend on the model parameters and hence makes

direct evaluation infeasible, let alone optimization of the log-likelihood in (2.2.2) over

the parameter space. This is what directed Wheatley et al. (2016) to consider the

use of the E-M algorithm. However, it should be remarked that the log-likelihood

defined in (2.2.1) depends on the random number of events N(T ) = n but the log-

likelihood in (2.2.2) treats n as a known quantity and this is not actually correct.

The remainder of this section outlines the E-M algorithms of Wheatley et al.

(2016). Similar to Veen and Schoenberg (2008) and Lewis and Mohler (2011), the

missing data for the first of the two E-M algorithms is the full branching structure,

which consists of immigrants and offspring labels, denoted as Zn×n. The branching

structure is a lower-triangular matrix Zn×n whose diagonal elements Zi,i indicate
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whether the i-th event is an immigrant with Zi,i = 1 or an offspring with Zi,i = 0.

The off-diagonal elements indicate if the j-th event is the parent of the i-th event,

in which case Zi,j = 1 for j < i, otherwise it takes the value zero. It should be

mentioned that each event can only be an immigrant or a direct offspring from a

previous event. Consequently, each row of the matrix Zn×n has exactly one element

taking the value one and the remaining elements taking the value zero.

Rather than optimizing the log-likelihood directly in (2.2.2), the EM1 algorithm

utilizes the complete-data log-likelihood, which is conditioned on the unobserved

branching structure Zn×n and the observed event times τ1:n. The complete-data

log-likelihood can be computed by computing the product of the joint probability

density function of the observed events and the branching structure p(τ1:n, Zn×n) =

p(τ1:n|Zn×n)p(Zn×n) and the probability that no events occur in the interval (τn, T ],

that is, P (N(T )−N(τn) = 0|τ1:n, Zn×n). The joint density of the observed event

times τ1:n conditional on the branching structure Zn×n takes the form,

p(τ1:n|Zn×n) =
n∏
i=1

i−1∏
j=1

(
µ(τi − τj)e

−
∫ τi
τj
µ(s−τj)ds

)Zi,i1{I(τi)=j}
×

n∏
i=1

i−1∏
j=1

(
ηh(τi − τj)e

−
∫ τi
τj
ηh(s−τj)ds

)Zi,j
, (2.2.3)

where Zi,i1{I(τi) = j)} indicates that the i-th event is an immigrant and the most

recent immigrant prior to the i-th event was the j-th event and Zi,j indicates that

the j-th event is a parent of the i-th event. Note that by convention when the

product is indexed over the empty set, the product is defined to be one. For the

time lag τi − τj, the immigrant waiting time density is evaluated at this lag when

Zi,i1{I(τi) = j)} = 1, and the offspring inter-event waiting time density is evaluated

at this lag when Zi,j = 1.

2.2.1 Expectation step

By combining the conditional density function of the observed event times condi-

tional on the branching structure in (2.2.3), and the distribution of the branching

structure, the complete-data log-likelihood takes the form,

logL(θ|τ1:n, Zn×n) = log p(Zn×n) +

(
n∑
i=1

i−1∑
j=1

Zi,j log ηh(τi − τj)−
∫ T

0

φ(s)ds

)

+

(
n∑
i=1

i−1∑
j=1

Zi,i1{I(τi) = j} log µ(τi − τj)−
n+1∑
i=1

i−1∑
j=1

1{I(τi) = j}
∫ τi

τj

µ(s− τj)ds

)
,

(2.2.4)
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where for notational convenience τ0 := 0 and τn+1 := T , and they are not to be

included as observed event times. The Expectation step computes the conditional

expectation of the complete-data log-likelihood with respect to the branching struc-

ture Zn×n conditional on the observed events τ1:n and the current parameter estimate

θ̂[m]. Hence, using (1.4.5) and (2.2.4), the expression for the Expectation step takes

the form,

Q1(θ|τ1:n, θ̂
[m]) = EZn×n|τ1:n,θ̂[m]

[
logL(θ|τ1:n, Zn×n)

]
∝

n∑
i=1

i−1∑
j=1

P
(
Zi,j = 1|τ1:i, θ̂

[m]
)

log ηh(τi − τj)−
∫ T

0

φ(s)ds

+
n∑
i=1

i−1∑
j=1

P
(
Zi,i1{I(τi) = j} = 1|τ1:i, θ̂

[m]
)

log µ(τi − τj)

−
n+1∑
i=1

i−1∑
j=1

P
(
I(τi) = j|τ1:i, θ̂

[m]
)∫ τi

τj

µ(s− τj)ds. (2.2.5)

The expression Q1 in (2.2.5) depends on the distribution of the branching struc-

ture. Hence, before optimization can be implemented, a procedure to compute the

branching structure probabilities requires attention. Let π
[m]
i,j denote the conditional

probability that the j-th event is the parent to the i-th event, that is,

π
[m]
i,j = P

(
Zi,j = 1|τ1:i, θ̂

[m]
)
. (2.2.6)

Next, define π
[m]
i := π

[m]
i,i to be the conditional probability that the i-th event is an

immigrant. It should be observed that for fixed i, these probabilities must sum to

one because each event can only be an immigrant or an offspring event of only a

single parent i.e.,
∑i

j=1 π
[m]
i,j = 1, for all i = 1, . . . , n. Furthermore, let π

[m]
i,j|k denote

the probability that the j-th event is the parent event of the i-th event conditional

on the most recent immigrant being the k-th event, that is,

π
[m]
i,j|k = P

(
Zi,j = 1|τ1:i, I(τi) = k, θ̂[m]

)
, k, j < i.

Again, a very similar abbreviation for the immigrant events will be used as before

with π
[m]
i|k = π

[m]
i,i|k.

In the next chapter, an important discovery facilitates the construction of an

efficient recursive algorithm to compute the most recent immigrant probabilities,

which is essential in developing an algorithm to compute the likelihood in quadratic

time. For now, consider the procedure implemented in Wheatley et al. (2016) and let

w
[m]
i,j denote the conditional most recent immigrant probability. In their approach,
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the probability that at time τi the j-th event is the most recent immigrant event is

computed as the product of the probability that the j-th event is an immigrant and

the probability that all subsequent events are not immigrant events (i.e., they are

all offspring events), with all these probabilities conditioned on the j-th event being

the most recent immigrant, that is,

P
(
I(τi) = j|τ1:i, θ̂

[m]
)

:= ω
[m]
i,j = π

[m]
j π̄

[m]
j+1|j . . . π̄

[m]
i−1|j, (2.2.7)

where π̄ = 1−π denotes the complementary probability. Hence, the final probability

needed to compute Q1 in (2.2.5) is given by,

P
(
Zi,i1{I(τi) = j} = 1|τ1:i, θ̂

[m]
)

= ω
[m]
i,j π

[m]
i|j , (2.2.8)

which indicates the probability that the i-th event is an immigrant and the j-th

event is the most recent immigrant event before the i-th event.

The conditional probabilities π
[m]
i|k and π

[m]
i,j|k are immediately computable from

the intensity process by employing the thinning property mentioned already, and

leads to the following,

π
[m]
i|k =

µ(τi − τk; θ̂[m])

µ(τi − τk; θ̂[m]) + φ(τi; θ̂[m])
, k < i = 2, . . . , n,

π
[m]
i,j|k =

η̂[m]ĥ[m](τi − τj)
µ(τi − τk; θ̂[m]) + φ(τi; θ̂[m])

, j, k < i = 2, . . . , n. (2.2.9)

However, the conditional probabilities π
[m]
i and π

[m]
i,j are slightly more challenging

to calculate since they depend on the distribution of the most recent immigrant.

To this end, Wheatley et al. (2016) define the incomplete-data intensity process

λ∗(t), t > 0 as follows,

λ∗(t) = µ∗(t) + φ(t), (2.2.10)

where the incomplete-data intensity process for immigrants µ∗(t), t > 0 is a weighted

average of immigrant intensities with weights ωN(t),j given by,

µ∗(t) =

N(t)∑
j=1

ωN(t),j µ(t− τj). (2.2.11)

The weights ωN(t),j in the incomplete-data intensity process for immigrants in (2.2.11)

depends only on N(t) and the index of the most recent immigrant j. However, these

weights are incorrect since they also need to depend on the current time t. For the

correct expression for the weights to be used in the incomplete-data intensity process

see (3.3.15).
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The probabilities and the incomplete-data intensity process defined above en-

ables the development of a recursive algorithm to compute the remaining proba-

bility weights. Let πi = (πi,1, . . . , πi,i) and ωi = (ωi,1, . . . , ωi,i−1) denote a vector

of probabilities for the i-th event. The probabilities π
[m]
i,j and ω

[m]
i,j are then jointly

computed using the subsequent recursion:

1. Let i = 1, π1,1 = 1 and ω2,1 = 1 since the first event is an immigrant event.

2. Let i = i+ 1 and then compute the following probabilities for j = 1, . . . , i− 1:

π
[m]
i =

µ∗(τi; θ̂
[m])

µ∗(τi; θ̂[m]) + φ(τi; θ̂[m])
and π

[m]
i,j =

η̂[m]ĥ[m](τi − τj)
µ∗(τi; θ̂[m]) + φ(τi; θ̂[m])

.

(2.2.12)

3. Then compute the most recent immigrant probabilities for the i-th event as

follows,

ωi =
(
π1π̄2|1 . . . π̄i−1|1, . . . , πjπ̄j+1|j . . . π̄i−1|j, . . . πi−1

)
,

=
(
(ωi−1) ◦ (π̄i−1|1, . . . , π̄i−1|i−2), πi−1

)
, (2.2.13)

where ◦ is the Hadamard product i.e., (a, b) ◦ (c, d) = (ac, bd).

4. Repeat steps 2 and 3 until i = n and then stop.

When the recursion terminates, the probabilities π
[m]
i|k , π

[m]
i,j|k, π

[m]
i , π

[m]
i,j , and ω

[m]
i,j are

substituted into Q1 given in (2.2.5), which is then maximized with respect to θ to

obtain the parameter vector θ̂[m+1] for the next iteration.

A closer inspection of the Expectation step of the E-M algorithms of Wheatley

et al. (2016) reveals two pertinent issues. First, the conditional distribution of

the missing data given the observed data {τ1:n, τn+1 > T} is required. However,

in calculating these distributions, Wheatley et al. implicitly assumed conditional

independence of {M1:i} and τi+1:n+1 given τ1:i, which is incorrect for general RHawkes

processes, although it is true in the classical Hawkes process models. The second

problem is that their calculation of the conditional distributions of Mi given τ1:i is

incorrect. For example, in the numerical experiments in the next chapter, it was

observed that the π
[m]
i,j ’s in (2.2.12) (eq. (16) of Wheatley et al. (2016)) do not sum to

one as they should for fixed i. This mistake was apparently due to their treatment

of the RHawkes process as if it were a non-stationary Hawkes process with a time-

varying background event rate µ∗(t) given in (2.2.11) (eq. (15) of Wheatley et al.

(2016)). This mistake can be corrected by using eq. (3.3.12), (3.3.13) and (3.3.14).

However, with only this second issue fixed, their E-M algorithms still do not work

as expected, due to the first issue mentioned above.
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2.2.2 Maximization step

Now that a scheme has been developed to compute the expectation of the complete-

data log-likelihood, the updated parameters θ̂[m+1] are calculated by maximizing

Q1 in (2.2.5) with respect to θ = (θ>µ , η, θ
>
h ). By conditioning on the branching

structure Zn×n, the expression Q1 can be divided into two distinct components that

are estimated independently. These components consists of immigration process µ(·)
and self-exciting effects ηh(·). The optimization of Q1 with respect to θµ reduces to

solving the problem,

θ̂[m+1]
µ = argmax

θµ

n∑
i=1

i−1∑
j=1

ω
[m]
i,j π

[m]
i|j

(
log µ(τi − τj)−

∫ τi−τj

0

µ(s)ds

)
, (2.2.14)

where µ(·) depends on θµ and the solution provides the next iterations parameter

estimate for the immigration process.

The maximization of Q1 with respect to η leads to the following analytical ex-

pression for the updated branching ratio parameter,

η̂[m+1] =

∑n
i=1

∑i−1
j=1 π

[m]
i,j∑n

i=1 Ĥ
[m](T − τi)

=
n−

∑n
i=1 π

[m]
i∑n

i=1 Ĥ
[m](T − τi)

, (2.2.15)

where Ĥ [m](s) :=
∫ t

0
ĥ[m](s)ds denotes the offspring distribution function estimated

at the parameter θ̂
[m]
h . Finally, to estimate the offspring parameter θh, the optimiza-

tion problem reduces to the following,

θ̂
[m+1]
h = argmax

θh

n∑
i=1

i−1∑
j=1

π
[m]
i,j log h(τi − τj), (2.2.16)

where h(·) depends on θh and the solution gives the updated parameter for the off-

spring density. Note that throughout these optimization problems, the probabilities

computed in the Expectation step all depend on the current iterations parameter

estimate θ̂[m]. The parameters θµ and θh which specify the functions µ(·) and h(·)
and the constant η are the variables which are estimated when maximizing the

expression in (2.2.5).

2.2.3 E-M algorithm with reduced set of missing data

Further to the E-M algorithm discussed in the previous section, Wheatley et al.

(2016) proposed an alternative algorithm by employing a reduced set of missing

data. This modified algorithm reduces the memory requirements and applies to

much larger datasets due to its enhanced computational efficiencies. In the so-
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called, EM2 algorithm, the branching structure reduces to the diagonal elements

of the full branching structure Z1:n := {Zi,i}i=1,...,n, and simply indicates whether

it is an immigrant or an offspring. Hence the memory requirement for storing the

missing data in the EM2 algorithm is reduced from O(n2) to O(n).

Conditional on the reduced branching structure, the semi-complete data log-

likelihood takes on the form,

logL(θ|τ1:n, Z1:n) ∝
n∑
i=1

(1− Zi) log φ(τi)−
∫ T

0

φ(s)ds

+
n∑
i=1

i−1∑
j=1

Zi1{I(τi) = j} log µ(τi − τj)

−
n+1∑
i=1

i−1∑
j=1

1{I(τi) = j}
∫ τi

τj

µ(s− τj)ds. (2.2.17)

Adopting a similar derivation to that employed in the EM1 algorithm to compute

Q1, the Expectation step for the EM2 algorithm evaluates the following,

Q2(θ|τ1:n, θ̂
[m]) = EZ1:n|τ1:n,θ̂[m]

[
logL(θ|τ1:n, Z1:n)

]
∝

n∑
i=1

(1− π[m]
i ) log φ(τi)−

∫ T

0

φ(s)ds

+
n∑
i=1

i−1∑
j=1

π
[m]
i ω

[m]
i,j log µ(τi − τj)−

n+1∑
i=1

i−1∑
j=1

ω
[m]
i,j

∫ τi

τj

µ(s− τj)ds, (2.2.18)

where the probabilities π
[m]
i and ω

[m]
i,j are calculated using (2.2.12) and (2.2.13), and

depend on the parameter estimate θ̂[m]. Furthermore, observe that the reduced

missing data implies that the calculation of the probabilities π
[m]
i,j and π

[m]
i,j|k can be

avoided.

In the Maximization step, the immigrant and offspring components are again

separable, and the optimization problem to determine the updated parameters for

θµ is identical to (2.2.14) in the EM1 algorithm. Furthermore, the updated param-

eter for η is also identical to the EM1 algorithm given by (2.2.15). However, by

conditioning on the reduced branching structure, the individual offspring processes

are incapable of being decoupled. Hence, to compute the updated parameters of θh,

the equation in (2.2.18) requires numerical optimization techniques.

2.3 Statistical inferences

This thesis is concerned with the statistical estimation of model parameters for

the RHawkes process model. Following the estimation of the model parameters,
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methods and procedures to perform statistical inferences such as model assessment,

predictions, and simulations are a natural next objective. To perform statistical

inferences, a method to calculate the likelihood value, a procedure to compute the

variance-covariance matrix, and methods to assess the goodness-of-fit of the model

to data are a necessity. In this section, methods to perform these inferences are

discussed, with the objective to discuss superior inferential methods in the next

chapter.

2.3.1 Likelihood and variance-covariance matrix evaluation

The E-M algorithms discussed so far should converge to a parameter estimate that

optimizes the likelihood function. The direct calculation of the likelihood procedure

suggested by Wheatley et al. (2016) demands evaluation of the intensity process

in (2.1.1), and this is not possible without conditioning on the immigrant vector

Z1:n ∈ {0, 1}n. Since there is a total of 2n−1 possible immigrant combinations (as

the first event is an immigrant event), direct calculation of the likelihood using

this approach is computationally infeasible. However, simulation of all the possible

immigrant vectors, which are denoted by z
(j)
1:n, j = 1, . . . , 2n−1 is possible for rather

small samples sizes.

From each possible realization of the immigrant vector, the likelihood of the

RHawkes process can be computed using the appropriate immigrant intensity pro-

cess as follows,

µ(j)(t) = µ(t− τI(τN(t))|z
(j)
1:n), (2.3.1)

which is a deterministic function. Hence the classical likelihood formula for point

processes can be applied in this instance, similar to that of time-varying self-exciting

point processes. Using the likelihood function in (1.4.1) and the immigrant intensity

process in (2.3.1), the complete-data likelihood conditioned on a particular simulated

immigrant vector z
(j)
1:n, takes the form,

L(θ|τ1:n, z
(j)
1:n) =

n∏
i=1

(
µ(j)(τi) + φ(τi)

)
exp

(
−
∫ T

0

µ(j)(s) + φ(s)ds

)
. (2.3.2)

Hence, the incomplete-data likelihood is computed as a weighted average of the

conditional incomplete-data likelihood in (2.3.2) as follows,

L(θ|τ1:n) =
2n−1∑
j=1

L(θ|τ1:n, z
(j)
1:n)P

(
Z1:n = z

(j)
1:n|θ

)
. (2.3.3)

The probabilities P(Z1:n = z
(j)
1:n|θ) in (2.3.3) are computed during the Expectation

step of the E-M algorithms but as pointed out above are not necessarily correct.
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However, this procedure to compute the likelihood is computationally demanding

even on moderate sample sizes due to the exponential computational time required

for evaluation. To offset this demanding likelihood computation, a Monte Carlo

approximation to the likelihood in (2.3.3) can be used. A Monte Carlo approxi-

mation computes the sample average of the likelihood and significantly reduces the

computational burden. The branching structure probabilities from the last iteration

of the E-M algorithm are stored and used to simulate the immigrant vector. Then

the likelihood for each realization is computed. The computed average of all the

likelihoods from the simulated realizations provides a very close approximation to

the actual value of the likelihood.

First, to simulate the immigrant vector, Wheatley et al. (2016) used the acceptance-

rejection thinning type algorithm of Lewis and Fieller (1979). Their algorithm to

simulate a realization of the immigrant vector z1:n = (z1, . . . , zn), works as follows;

1. Let z1 = 1 and I(τ2) = 1 as the first event is an immigrant event. Then let

i = 2.

2. Compute (or retrieve) the probability πi|I(τi) from the E-M algorithm and then

generate a uniform random variable u on [0, 1].

3. If u < πi|I(τi) set I(τi+1) = i and zi = 1, otherwise let zi = 0 and do not change

the index of the most recent immigrant. Then let i = i+ 1.

4. If i < n return to step 2. Otherwise return the vector z1:n as the realization

of the simulated immigrant vector.

This simple simulation procedure generates one particular realization of the immi-

grant vector z1:n. By replicating the above procedure N times, a sample set of

immigrant vectors
{
z

(1)
1:n, . . . , z

(N)
1:n

}
is obtained. Hence, to approximate the likeli-

hood, the Monte Carlo approximation takes the form,

L(θ|τ1:n) ≈ 1

N

N∑
i=1

L(θ|τ1:n, z
(i)
1:n), (2.3.4)

The approximation to the log-likelihood computes the logarithm of the computed

average in (2.3.4). Since the exponential function might produce computational

complications, it is suggested to calculate the log of the conditional incomplete-data

likelihood in (2.3.2) and then compute the exponential when computing the weighted

average in (2.3.3). Another strategy to overcome the numerical instability concerns

is to compute the average of the log of the conditional likelihoods in (2.3.2), but

then this may produce an underestimation of the Monte Carlo log-likelihood.

For variance-covariance estimation for the RHawkes process, a bootstrap pro-

cedure was the recommended strategy of Wheatley et al. (2016). This is because
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there is no explicit closed-form solution. However, these methods perform poorly

for small sample sizes and thus Monte Carlo methods are generally recommended

to improve upon the approximation.

2.3.2 Model assessment

To address the problem of assessing the fitted model’s adequacy to data, a procedure

based on the residuals using the time-change property can be implemented (Ogata,

1988; Papangelou, 1972). The transformed event times according to τ̃i =
∫ τi

0
λ(s)ds

generate a sequence {τ̃i}i∈N that forms a unit rate Poisson process when the model

specification is correct. The model fit is then assessed by testing whether the trans-

formed times conform to a unit rate Poisson process. The K-S distance is one such

metric to assess this conformance, but it depends on the particular immigrant vec-

tor z1:n to allow the intensity process, or more specifically, the cumulative intensity

process, to be a deterministic function over the interval [0, T ].

The K-S distance test statistic is a random variable that is defined in terms

of the event times and immigrant vector S(τ1:n, Z1:n). For the semi-complete data{
τ1:n, z

(j)
1:n

}
the null hypothesis H

(j)
0 is that the RHawkes model is adequate for the

particular immigrant vector Z1:n = z
(j)
1:n. Hence, the semi-complete-data p-values are

given by,

p(j) = P
(
S > S(τ1:n, Z1:n)|H(j)

0

)
, j = 1, . . . , 2n−1. (2.3.5)

Furthermore, for the incomplete-data {τ1:n} the null hypothesis H0 is that the

RHawkes model is adequate for the point process realization. The test statistic

in this case is unobserved since the immigrant vector is unobservable. To overcome

this, the incomplete-data p-value is computed by conditioning on the immigrant

vector as follows,

p = P (S > S(τ1:n, Z1:n)|H0) =
2n−1∑
j=1

p(j)P
(
Z1:n = z

(j)
1:n|θ

)
, (2.3.6)

where j denotes the index of all possible immigrant vectors from the set {0, 1}n.

Hence, by applying a similar Monte Carlo approximation that was used to calculate

the likelihood, the Monte Carlo approximation to the p-value in (2.3.6) is computed

as the average of the semi-complete data p-values as follows,

p ≈ 1

N

N∑
i=1

p(i). (2.3.7)

where
{
z

(1)
1:n, . . . , z

(N)
1:n

}
is again a sampled set of immigrant vectors.
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Chapter 3

Direct likelihood evaluation of the

renewal Hawkes process1

3.1 Introduction

The fundamental role played by the likelihood in statistical inferences, such as es-

timation, hypothesis testing, and model selection implies that a lack of a feasible

approach to evaluate the likelihood is a significant hurdle that hinders the application

of the RHawkes process model. Therefore, this chapter undertakes this challenge by

providing an efficient algorithm that computes the likelihood of the RHawkes pro-

cess in quadratic time, a drastic improvement from the exponential time claimed by

Wheatley et al. (2016). By overcoming the challenge of likelihood evaluation, this

thesis enables maximum likelihood estimation and other likelihood-based inferences,

such as goodness-of-fit testing and prediction for the RHawkes model computation-

ally feasible.

The superior performance of the MLE computed by directly maximizing the log-

likelihood relative to the estimators of Wheatley et al. based on E-M algorithms

discussed in Chapter 2, both in computational and in statistical terms, is illustrated

using a simulation study. Numerical evidence shows that the inverted observed

information matrix provides satisfactory estimates of the variance of the MLE, and

therefore, computationally expensive bootstrap procedures for variance estimation

are avoided. As a by-product of the likelihood evaluation algorithm, the Rosenblatt

transformation of the observed event times are efficiently computable in quadratic

time and serve as the foundation for assessing the adequacy of the fitted model.

A simulation-based procedure for future event prediction is also presented and was

found to be able to predict the number of earthquakes in a region near Japan

reasonably well.

1Most of the content shown in this chapter has been published in the Journal of Computational
and Graphical Statistics; see Chen and Stindl (2018).

23



The remainder of this chapter is organized as follows. Section 3.2 investigates

several properties of the RHawkes process model. Section 3.3 presents the procedure

to compute the likelihood of the model efficiently in quadratic time. Section 3.4

discusses the model assessment. Section 3.5 briefly outlines procedures to make

predictions using the fitted RHawkes model based on the observations up until

the censoring time. Section 3.6 reports the results of two simulation studies to

evaluate the numerical performance of the direct MLE estimator and compare it to

the E-M algorithms based estimators of Wheatley et al. (2016). In Section 3.7, the

proposed methodologies are applied to analyze real data arising in seismology and

finance. An R package called RHawkes implementing the proposed methodologies

and the R scripts used to perform the reported data analyses can be found in the

online supplementary materials to the article Chen and Hall (2016), also this can be

downloaded from the CRAN (https://CRAN.R-project.org/package=RHawkes).

3.2 Properties of the renewal Hawkes process model

This section investigates some of the useful properties of the RHawkes process. Re-

call the Poisson cluster or branching process interpretation of the Hawkes process

(Hawkes and Oakes, 1974), which also applies to the RHawkes process, that allows

the points of the point process to be interpreted as the arrival times of immigrants

and birth times of offspring of all generations in a dynamic population pooled to-

gether. For the RHawkes process, the immigrants arrive according to a general

renewal process and once these individuals enter the population, whether by immi-

gration or by birth, they start to give birth to children of their own according to

independent Poisson processes with a common intensity function.

By the linear form of the intensity of the RHawkes process, at any given time

t, the instantaneous event rate is the immigrant arrival rate plus the sum of the

birthing rates of existing members of the population. Statistically, the RHawkes

process is equivalent to the independent sum of a renewal process and i.i.d. non-

stationary self-exciting processes (Chen and Hall, 2013, 2016) starting at the event

times of the renewal process, where the inter-arrival times of the renewal process

have a common hazard function µ(·), and the self-exciting processes have a common

background event intensity function and excitation function both equal to ηh(·).
From this observation, useful properties of the RHawkes process can be derived.

For example, by conditioning on the first event time, it can be observed that the

mean of the process, M(t) = E [N(t)], uniquely satisfies the integral equation,

M(t) =

∫ t

0

{1 +K(t− s) +M(t− s)}µ(s) exp

(
−
∫ s

0

µ(x)dx

)
ds, (3.2.1)
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where K(t) is the expected number of events of the non-stationary self-exciting

process up to time t, and itself uniquely satisfies the integral equation,

K(t) =

∫ t

0

(1 +K(t− s)) ηh(s)ds. (3.2.2)

A derivation of (3.2.1) and (3.2.2) is detailed below.

Proof. The derivation is based upon conditioning on the first event time τ1. If

τ1 > t, then N(t) = 0, and if τ1 6 t, N(t) = 1 + N0(t − τ1) + N1(t − τ1), where

N0(·) denotes the point process formed by the offspring of the immigrant at time

τ1; and N1(·) denotes the point process formed by the immigrants after time τ1 and

their offspring. Note that N0(·) is a non-stationary self-exciting point process with

background event intensity and excitation function both equal to ηh(·), N1(·) is an

RHawkes point process equal to N(·) in distribution, and N(·), N0(·), and N1(·) are

independent. Therefore, with fτ1(s) = µ(s) exp(−
∫ s

0
µ(x)dx) denoting the density

of τ1, and K(·) = E [N0(·)] denoting the mean process of N0(·),

M(t) = E [N(t)] =

∫ ∞
0

E [N(t)|τ1 = s] fτ1(s)ds

=

∫ t

0

E [N(t)|τ1 = s] fτ1(s)ds

=

∫ t

0

{1 +K(t− s) +M(t− s)} fτ1(s)ds.

This proves (3.2.1), and it remains to show (3.2.2). Note the intensity process of

N0(t) is λ0(t) = ηh(t) +
∫ t

0
ηh(t − u)dN0(u). Now, let Λ0(t) =

∫ t
0
λ0(s)ds, and

H(t) =
∫ t

0
h(s)ds. By the definition of the intensity process, N0(t) − Λ0(t) is a

zero mean martingale, and therefore E [N0(t)] = E [Λ0(t)]. By Fubini’s theorem and

integration by parts,

Λ0(t) =

∫ t

0

ηh(s)ds+

∫ t

0

∫ s

0

ηh(s− u)dN0(u)ds

=

∫ t

0

ηh(s)ds+

∫ t

0

∫ t

u

ηh(s− u)dsdN0(u)

=

∫ t

0

ηh(s)ds+

∫ t

0

ηH(t− u)dN0(u)

=

∫ t

0

ηh(s)ds+

∫ t

0

N0(u)ηh(t− u)du

=

∫ t

0

ηh(s)ds+

∫ t

0

N0(t− u)ηh(u)du.
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Taking expectations on both sides, and by Fubini’s theorem, yields the following,

K(t) = E [Λ0(t)] =

∫ t

0

ηh(s)ds+

∫ t

0

E [N0(t− u)] ηh(u)du

=

∫ t

0

ηh(s)ds+

∫ t

0

K(t− u)ηh(u)du.

This concludes the proof of (3.2.2).

Before this chapter addresses how to calculate the likelihood efficiently in the

next section, it is worth remarking that the RHawkes process is substantially more

versatile than the original Hawkes process. For instance, depending on the choice

of model parameters, the RHawkes process can demonstrate drastically different

features than the Hawkes process. For example, Figure 3.2.1 shows five random

realizations of the event times up to the censoring time 100, of each of 6 RHawkes

processes labeled as (a)-(f) in the figure. The 6 RHawkes processes have Weibull dis-

tributed inter-immigration times with the same mean 1 and varying shape parameter

κ ∈ {1/3, 1, 3}, and have the same branching ratio η = 0.5, and different offspring

density functions h in the set {h1(t) = (1/2)(1 + t/2)−2, h2(t) = exp (−t)}. Note

that when κ = 1/3, the events of the RHawkes processes tend to occur in bursts

compared to those of the Hawkes processes (κ = 1), while when κ = 3, the events of

the RHawkes process seem to be more evenly distributed in comparison. Meanwhile,

the RHawkes processes with the exponential offspring density tend to show stronger

event clustering than the RHawkes with the same immigrant processes, but the poly-

nomial offspring density function. Using the ratio of the average of the 25% longest

inter-event waiting times of a realization of a point process to the average of the

shortest 25%, called the B-index, as a measure of the burstiness/clustering, so that

a larger B-index indicates stronger burstiness/clustering, then the average of the B-

indexes of the 5 realizations of the RHawkes process in the 6 cases are given respec-

tively by: (a) B = 208.1, (b) B = 19.7, (c) B = 11.0, (d) B = 448.6, (e) B = 23.6,

and (f) B = 13.2, which confirms the visual impression. It deserves mention that,

with Γ(s, x) =
∫∞
x
ts−1e−tdt denoting the incomplete gamma function, the B-index

of homogeneous Poisson processes is Γ(2, log 4)/{1−Γ(2, log(4/3))} = 17.424, which

can serve as a benchmark when the B-index is used to assess burstiness.

3.3 Maximum likelihood estimation

This section considers the estimation of the RHawkes model based on observations

over the interval [0, T ] using the maximum likelihood method. The likelihood is

defined as the Radon-Nikodym density of the distribution of the RHawkes process

relative to the distribution of the unit rate Poisson process on [0, T ], interpreted as a
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Figure 3.2.1: Barcode plot of simulated event times of 6 RHawkes processes, with
five random realizations of each process. Each vertical bar indicates an event time,
with bars in the same row in each graph indicating events belonging to the same
realization of the process. The censoring time is 100 in all simulations. The branch-
ing ratio η = 0.5 in all 6 processes. The waiting times between immigrations in all 6
cases are Weibull distributed with the same mean 1 but different shape parameters
κ shown in the title of each figure. The offspring density h in each case is either
polynomial or exponential, as shown in the figure titles.

function of the model parameters (Andersen et al., 1993, Section II.7). The sample

path of the RHawkes process on the interval [0, T ] is entirely specified by the number

n of its jump discontinuities and the positions of these jumps τ1 < . . . < τn. Let Pθ
denote the distribution of the RHawkes process with parameters θ = (µ(·), η, h(·)),
and PPoi denote the distribution of the unit rate Poisson process, then the density

of the RHawkes process is given by,

Pθ(τ1 ∈ dτ1, . . . , τn ∈ dτn, τn+1 > T )

PPoi(τ1 ∈ dτ1, . . . , τn ∈ dτn, τn+1 > T )

=
pθ(τ1:n)dτ1 · · · dτnPθ(τn+1 > T |τ1:n)

exp (−τ1) dτ1 {
∏n

i=2 exp (−(τi − τi−1)) dτi} exp (−(T − τn))

= pθ(τ1:n)Pθ(τn+1 > T |τ1:n) exp(T ),
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where pθ(τ1:n) is the Pθ-density of τ1:n. Up to a constant free of θ, the likelihood is

given by,

L(θ) = pθ(τ1:n)Pθ(τn+1 > T |τ1:n); (3.3.1)

see also Wheatley et al. (2016, eq. 34). The subsequent theorem provides a com-

putable expression of the likelihood, where for notational convenience, the subscript

θ in pθ and Pθ is dropped, while the dependence of the relevant densities and prob-

abilities on the parameter θ is silently understood. A description of the algorithm

to compute the likelihood in pseudocode is displayed in Algorithm 1.

The theorem below utilizes the following notation for convenience; U(t) =
∫ t

0
µ(s)ds,

H(t) =
∫ t

0
h(s)ds, and Φ(t) =

∫ t
0
φ(s)ds = η

∑
j:τj<t

H(t − τj). Also recall that

φ(t) =
∑

j:τj<t
ηh(t− τj). A proof of the theorem is provided after the statement of

the theorem.

Theorem 3.3.1. The likelihood for the renewal Hawkes (RHawkes) process (3.3.1)

can be written as,

L(θ) =


e−U(T ), n = 0,

µ(τ1)e−U(τ1)−U(T−τ1)−ηH(T−τ1) n = 1,

µ(τ1)e−U(τ1)
{∏n

i=2

∑i−1
j=1 pijdij

}∑n
j=1 Sn+1,jpn+1,j, n > 2,

(3.3.2)

where

dij = (µ(τi − τj) + φ(τi)) e
−{U(τi−τj)−U(τi−1−τj)}−{Φ(τi)−Φ(τi−1)}, (3.3.3)

Sn+1,j = e−{U(T−τj)−U(τn−τj)}−{Φ(T )−Φ(τn)}, (3.3.4)

and the pij, i = 2 . . . n + 1, j = 1, . . . i − 1, are given by p21 = 1 and the following

recursion,

pij =


φ(τi−1)

µ(τi−1−τj)+φ(τi−1)

di−1,jpi−1,j∑i−2
j=1 pi−1,jdi−1,j

, j = 1, . . . , i− 2

1−
∑i−2

k=1 pik, j = i− 1,
(3.3.5)

for i = 3, . . . , n+ 1.

Proof. When the total number of events n 6 1, the theorem is trivially true. Now

assume n > 2. To calculate the likelihood, first note that,

L(θ) = p(τ1)

{
n∏
i=2

p(τi|τ1:i−1)

}
P(τn+1 > T |τ1:n). (3.3.6)

By conditioning on the event index of the most recent immigrant, the following must
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hold,

p(τi|τ1:i−1) =
i−1∑
j=1

p(τi|τ1:i−1, I(τi) = j)P(I(τi) = j|τ1:i−1), (3.3.7)

P(τn+1 > T |τ1:n) =
n∑
j=1

P(τn+1 > T |τ1:n, I(τn+1) = j)P(I(τn+1) = j|τ1:n). (3.3.8)

Note that given τ1:i−1 and I(τi) = j, the conditional hazard function of the inter-

event waiting time τi−τi−1 is µ(·+τi−1−τj)+φ(·+τi−1). By the relations between the

hazard, the density, and the survival functions (see e.g. Daley and Vere-Jones, 2003,

Eqn. (1.1.1)-(1.1.3)), the conditional densities and survival probabilities in (3.3.7)

and (3.3.8) are given by,

p(τi|τ1:i−1, I(τi) = j) = dij, (3.3.9)

P(τn+1 > T |τ1:n, I(τn+1) = j) = Sn+1,j, (3.3.10)

where dij and Sn+1,j are as in (3.3.3) and (3.3.4).

Now it remains to show that P(I(τi) = j|τ1:i−1) = pij. When i = 2, it is clear

that P(I(τ2) = 1|τ1) = 1 = p21 since the first event has to be an immigrant. When

i = 3, . . . , n+1, by conditioning on I(τi−1) and the Bayes rule, the following recursion

holds,

P(I(τi) = j|τ1:i−1)

=
i−2∑
k=1

P(I(τi) = j|τ1:i−1, I(τi−1) = k)P(I(τi−1) = k|τ1:i−1)

=
i−2∑
k=1

P(I(τi) = j|τ1:i−1, I(τi−1) = k)
p(τi−1|I(τi−1) = k, τ1:i−2)P(I(τi−1) = k|τ1:i−2)

p(τi−1|τ1:i−2)

=
i−2∑
k=1

P(I(τi) = j|τ1:i−1, I(τi−1) = k)
di−1,kP(I(τi−1) = k|τ1:i−2)

p(τi−1|τ1:i−2)
. (3.3.11)

Now make the important observation that I(τi) can only be I(τi−1) or i−1, according

to whether Mi−1 = 1 or Mi−1 = 0. Therefore, when j 6 i− 2,

P(I(τi) = j|τ1:i−1, I(τi−1) = k)

=

0, k ∈ {1, . . . , i− 2} , k 6= j,

P(Mi−1 = 1|τ1:i−1, I(τi−1) = j) = φ(τi−1)
µ(τi−1−τj)+φ(τi−1)

, k = j.

(3.3.12)
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On the other hand, when j = i− 1,

P(I(τi) = j|τ1:i−1, I(τi−1) = k)

= P(Mi−1 = 0|τ1:i−1, I(τi−1) = k) =
µ(τi−1 − τk)

µ(τi−1 − τk) + φ(τi−1)
, k ∈ {1, . . . , i− 2} .

(3.3.13)

By (3.3.12) and (3.3.13), the recursion (3.3.11) simplifies to the the following,

P(I(τi) = j|τ1:i−1) =


φ(τi−1)

µ(τi−1−τj)+φ(τi−1)

di−1,jP(I(τi−1)=j|τ1:i−2)

p(τi−1|τ1:i−2)
, j = 1, . . . , i− 2

1−
∑i−2

k=1 P(I(τi) = k|τ1:i−1), j = i− 1.

(3.3.14)

Since p(τi−1|τ1:i−2) =
∑i−2

j=1 P(I(τi−1) = j|τ1:i−2)di−1,j, it can be observed by com-

paring (3.3.14) and (3.3.5) that, pij and P(I(τi) = j|τ1:i−1) satisfy exactly the same

recursion, and therefore must be equal for all i > 2. This concludes the proof.

Remark 3.3.1. By the general formula for point process likelihood (e.g. Daley and

Vere-Jones, 2003, Proposition 7.2.III), the likelihood is given by

n∏
i=1

λ∗(τi) exp{−
∫ T

0

λ∗(s)ds},

where λ∗(t), t > 0 is the conditional intensity process of the RHawkes process relative

to its natural filtration Ft, t > 0, which is referred to as the incomplete-data condi-

tional intensity function by Wheatley et al. (2016). The expression for λ∗(t) given

in eq. (14)-(15) of Wheatley et al. (2016) is incorrect and if plugged into the general

formula would lead to a wrong likelihood. The correct expression of λ∗(t) can be

computed by noticing λ∗(t) = r(t−τN(t−)), where r(·) denotes the conditional hazard

function of the random variable τN(t−)+1−τN(t−) given N(t−) and τ1, . . . , τN(t−), and

by calculating r(·) from the conditional density function of τN(t−)+1−τN(t−) obtained

in the proof of Theorem 3.3.1. With the correct expression of λ∗(t), the general

formula gives the same likelihood as Theorem 3.3.1.

Remark 3.3.1 facilitates the application of the general formula for point pro-

cess likelihood evaluation for the RHawkes process as the conditional intensity pro-

cess with respect to its natural filtration is now readily available. Furthermore,

Therorem 3.3.2 provides an explicit form for the intensity process to be employed

when applying the log-likelihood formula in (1.4.4) with a derivation provided after

the statement of the theorem.
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1 Function likRHawkes (n, τ1:n, T, µ(·), η, h(·), U(·), H(·));
2 if n = 0 then

3 return e−U(T );
4 end
5 if n = 1 then

6 return µ(τ1)e−U(τ1)−U(T−τ1)−ηH(T−τ1);
7 end

8 lik← µ(τ1)e−U(τ1); // likelihood initialized to p(τ1)
9 vector p1[1 : n]; // to store the pij’s

10 vector p0[1 : (n− 1)]; // to store the pi−1,j’s

11 vector d1[1 : n]; // to store the dij’s/Sn+1,j’s

12 vector d0[1 : (n− 1)]; // to store the di−1,j’s

13 scalar ptau, ph0, ph1, Ph0, Ph1; // to store p(τi|τ1:i−1), φ(τi−1), φ(τi),
Φ(τi−1), Φ(τi)

14 vector mu1[1 : (n− 1)]; // to store µ(τi − τ1:i−1)
15 vector Mu1[1 : (n− 1)]// to store U(τi − τ1:i−1)
16 vector mu0[1 : (n− 2)]; // to store µ(τi−1 − τ1:i−2)
17 vector Mu0[1 : (n− 2)] // to store U(τi−1 − τ1:i−2)
18 mu1[1]← µ(τ2 − τ1); Mu1[1]← U(τ2 − τ1); ph1← ηh(τ2 − τ1); Ph1← ηH(τ2 − τ1);

19 ptau← (mu1[1] + ph1[1]) e−Mu1[1]−Ph1[1];
20 lik← lik× ptau;
21 d0[1]← ptau; p0[1]← 1; mu0[1]← mu1[1];

Mu0[1]← Mu1[1]; ph0← ph1; Ph0← Ph1;
22 i← 3;
23 while i 6 n do
24 mu1[1 : (i− 1)]← µ(τi − τ1:i−1); Mu1[1 : (i− 1)]← U(τi − τ1:i−1);

ph1← sum(ηh(τi − τ1:i−1)); Ph1← sum(ηH(τi − τ1:i−1));
25 d1[1 : (i− 1)]← e−(Mu1[1:(i−1)]−(Mu0[1:(i−2)],0))−(Ph1−Ph0) (mu1[1 : (i− 1)] + ph1);

26 p1[1 : (i− 2)]← ph0
mu0[1:(i−2)]+ph0

d0[1:(i−2)]×p0[1:(i−2)]
ptau

;

27 p1[i− 1]← 1− sum (p1[1 : (i− 2)]);
28 ptau← sum (d1[1 : (i− 1)]× p1[1 : (i− 1)]);
29 lik← lik× ptau;
30 d0[1 : (i− 1)]← d1[1 : (i− 1)]; p0[1 : (i− 1)]← p1[1 : (i− 1)];

mu0[1 : (i− 1)]← mu1[1 : (i− 1)]; Mu0[1 : (i− 1)]← Mu1[1 : (i− 1)];
ph0← ph1; Ph0← Ph1;

31 i← i+ 1;

32 end
33 Mu1[1 : n]← U(T − τ1:n); Ph1← sum(ηH(T − τ1:n));

34 d1[1 : n]← e−(Mu1[1:n]−(Mu0[1:(n−1)],0))−(Ph1−Ph0);

35 p1[1 : (n− 1)]← ph0
mu0[1:(n−1)]+ph0

d0[1:(n−1)]×p0[1:(n−1)]
ptau

;

36 p1[n]← 1− sum (p1[1 : (n− 1)]);
37 ptau← sum (d1[1 : n]× p1[1 : n]);
38 lik← lik× ptau;
39 return lik;
Algorithm 1: Algorithm to compute the likelihood of the RHawkes process.
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Theorem 3.3.2. Let r(·) denote the conditional hazard function of the random

variable τN(t−)+1 − τN(t−) conditional on N(t−) and τ1, . . . , τN(t−). The intensity of

the RHawkes process relative to the natural filtration F = {Ft, t > 0} with Ft =

σ {N(s); s 6 t} is then given by λ∗(t) = r(t− τN(t)) where,

r(t) =

N(t−)∑
j=1

wj(t)µ(t− τj) + φ(t), (3.3.15)

and

wj(t) =
e−{U(t−τj)−U(τN(t−)−τj)}−{Φ(t)−Φ(τN(t−))}pN(t−)+1,j∑N(t−)

k=1 e−{U(t−τk)−U(τN(t−)−τk)}−{Φ(t)−Φ(τN(t−))}pN(t−)+1,k

.

Proof. The hazard function is computed as the ratio of the density function and the

survival function as follows,

r(t) =
p(t|τ1:N(t−))

S(t|τ1:N(t−))
. (3.3.16)

Then by conditioning on the index of the most recent immigrant, the density takes

the form,

p(t|τ1:N(t−))

=

N(t−)∑
j=1

p(t|τ1:N(t−), I(t) = j)P
(
I(t) = j|τ1:N(t−)

)
=

N(t−)∑
j=1

{µ(t− τj) + φ(t)} e−{U(t−τj)−U(τN(t−)−τj)}−{Φ(t)−Φ(τN(t−))}pN(t−)+1,j,

where the probability P
(
I(t) = j|τ1:N(t−)

)
= P

(
I(τN(t−)+1)|τ1:N(t−)

)
= pN(t−)+1,j

when τN(t−) < t 6 τN(t−)+1. Using a similar argument, the survival function is given

by,

S(t|τ1:N(t−)) =

N(t−)∑
j=1

P(τN(t−)+1 > t|τ1:N(t−), I(t) = j)P
(
I(t) = j|τ1:N(t−)

)
=

N(t−)∑
j=1

e−{U(t−τj)−U(τN(t−)−τj)}−{Φ(t)−Φ(τN(t−))}pN(t−)+1,j.

By combing the above two equations, and noting the form of the hazard function

in (3.3.16), the expression in (3.3.15) holds true.

Remark 3.3.2. From Algorithm 1, for each i ∈ 2, . . . , n+ 1 there are 5(i−1) func-

tion calls of µ(·), U(·), h(·), H(·), or exp(·); at most 13(i− 1) additions or subtrac-

tions; at most 7(i−1) multiplications or divisions; at most 9(i−1) + 7 assignments.
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Therefore the time complexity of the algorithm is of the order O(17n(n+1)) = O(n2).

Also, each of the 8 vectors has a length 6 n, and therefore the space (memory) com-

plexity is O(n).

As in Wheatley et al. (2016), this chapter will focus on the parametric estimation

of the RHawkes model. Suppose the functions µ(·) = µ(·; θµ) and h(·) = h(·; θh)
are parametrized through finite dimensional parameters θµ and θh respectively, and

let θ = (θµ
>, η, θh

>) denote the parameter vector of the model. The MLE of θ is

formally defined as,

θ̂ = arg maxL(θ) ≡ arg maxL(µ(·; θµ), η, h(·; θh)). (3.3.17)

Computation of the MLE θ̂ can be done by minimizing the negative log-likelihood

function − logL(θ) using general purpose optimization routines. The variance-

covariance matrix of θ̂ can be estimated by inverting the observed information ma-

trix, that is, the Hessian matrix of the negative log-likelihood function.

3.4 Model assessment

This section outlines a procedure to assess the suitability of the RHawkes model on

point process data. Although the goodness-of-fit of point process models is often

evaluated using the time change theorem (e.g. Daley and Vere-Jones, 2003, Section

7.4), in the current context, the lack of a simple expression for the intensity process

relative to the natural filtration makes this approach cumbersome. Instead, an

approach based on the Rosenblatt (1952) transforms shall be used.

The Rosenblatt transformation maps a random vector with a given (continu-

ous) joint distribution into independent and uniformly distributed random vari-

ables on the unit interval. In the current context, the transformation is given by

U = (U1, .., Un), where, U1 = F1(τ1), U2 = F2(τ2|τ1), · · · , Un = Fn(τn|τ1:n−1),

with Fi(t|τ1:i−1) denoting the conditional distribution function of τi given τ1:i−1. By

Fi(t|τ1:i−1) =
∫ t
τi−1

p(τi|τ1:i−1)dτi, and the expression of p(τi|τ1:i−1) derived earlier,

the Rosenblatt residuals of the observed event times are given by,

Ui = Fi(τi|τ1:i−1) = 1−
i−1∑
j=1

pijSij, (3.4.1)

with the pij’s being given previously in Theorem 3.3.1 and the Sij’s being given

similarly to (3.3.4) by the following,

Sij = e−{U(τi−τj)−U(τi−1−τj)}−{Φ(τi)−Φ(τi−1)}, j = 1, . . . , i− 1.
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Hence the adequacy of the fitted RHawkes model is assessed using the Rosenblatt

residuals given by (3.4.1). The residuals are checked for approximate independence

and uniformity, with the parameters µ(·), η, h(·), U(·), and H(·) involved in the pij’s

and the Sij’s replaced by their plug-in estimates µ̂(·) = µ(·; θ̂µ), η̂, ĥ(·) = h(·; θ̂h),
Û(·) =

∫ ·
0
µ̂(t)dt, Ĥ(·) =

∫ ·
0
ĥ(t)dt respectively. The independence can be visually

examined using an autocorrelation function (ACF) plot, or formally tested by such

tests as the Ljung-Box test or the Box-Pierce test. The uniformity can be visually

checked by a QQ plot, or formally tested by the K-S test.

3.5 Model predictions

In this section, methods are presented to make predictions about future event occur-

rences using observations of the RHawkes process up to the censoring time, which

form the foundation for assessing the predictive performance of the RHawkes model

on the Japan earthquake data in Section 3.7. Here, two prediction problems are

studied. The first is to predict the time of the first event after the censoring time.

The second is to forecast the number of events from the censoring time until a future

time point.

3.5.1 Predictive density and hazard function

The conditional predictive density of the time of the first event after the censoring

time T , τN(T )+1, can be straightforwardly computed from the conditional most recent

immigrant probabilities pn+1,j computed in Section 3.3, which is given by,

p (τn+1|τ1:n, τn+1 > T ) =

∑n
j=1 pn+1,jdn+1,j1{τn+1 > T}

P (τn+1 > T |τ1:n)
, (3.5.1)

where the pn+1,j’s are calculated using (3.3.5), the denominator is computed us-

ing (3.3.7)–(3.3.10) and (3.3.14), and the dn+1,j’s are given in (3.3.3). Furthermore,

it follows that the conditional hazard rate function of τN(T )+1 is given by,

haz (τn+1|τ1:n, τn+1 > T ) =

∑n
j=1 pn+1,jdn+1,j1{τn+1 > T}∑n

j=1 pn+1,jS̃n+1,j

, (3.5.2)

where S̃n+1,j = e−{U(τn+1−τj)−U(τn−τj)}−{Φ(τn+1)−Φ(τn)}.

3.5.2 Predictive simulations

A simulation-based approach can predict the number of events from the censoring

time T to a later time T̃ , similar to Section 7.5 of Daley and Vere-Jones (2003),
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since the linear nature of the RHawkes process model facilitates straightforward and

efficient simulations, as explained later in Section 3.6.1. The following steps outline

an approach to simulate the RHawkes process over the interval (T, T̃ ], conditional

on N(T ) = n and the values of τ1:n.

1. Simulate the birth times {t01, t02, . . . } of all the offspring of the individuals in

the population by time T , as the event times over the interval (0, T̃ − T ] of a

non-stationary self-exciting point process (Chen and Hall, 2013) with baseline

event intensity ν(t) =
∑n

j=1 ηh(T + t − τj), t > 0 and excitation function

g(t) = ηh(t), translated into the interval (T, T̃ ].

2. Simulate I(T ), the event index of the most recent immigration before time T ,

according to its conditional distribution P(I(T ) = j|τ1:n, τn+1 > T ) = pn+1,j,

j = 1, . . . , n, and denote the realized value by l.

3. Simulate the time t11 of the first immigration after time T as τl +W , where W

is distributed as an inter-immigration waiting time W subject to the condition

that W > T − τl, and can be simulated using a rejective method.

4. If t11 > T̃ , collect all the event times in the interval (T, T̃ ] simulated so far,

and finish.

5. If t11 < T̃ , simulate the RHawkes process on the interval (0, T̃−t11] and translate

the corresponding event times into the interval (t11, T̃ ]; and simulate the birth

times in the interval (t11, T̃ ] of all offspring of the first immigrant at t11, as the

event times in the interval (0, T̃ − t11] of a non-stationary self-exciting process

with baseline intensity function and excitation function both equal to ηh(·),
translated to the interval (t11, T̃ ]. Then collect all the simulated event times in

the interval (T, T̃ ], and finish.

Simulation of the self-exciting processes described in the steps mentioned above

can be performed by using an efficient cascading algorithm, also explained in Sec-

tion 3.6.1. From here, point and interval prediction of the number of events in (T, T̃ ]

can be computed by simulating the RHawkes process over (T, T̃ ] for a large number

of times and extracting the median or mean and appropriate quantiles of the number

of events. However, the above predictions rely on the model parameters. In prac-

tice, the parameters can be estimated from the data observed until the censoring

time. However, the use of the estimated values of the parameters in place of the true

value can potentially lead to overly confident predictions. These effects should not

be detrimental when there is sufficient data to guarantee accurate estimates of the

parameters. If there is concern about the prediction intervals being too narrow, the

randomness in the parameter estimates can be accounted for by sampling the needed

parameter vector from its sampling distribution, which might be approximated by
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a normal distribution with mean and variance-covariance matrix equal to the MLE

and the inverse of the observed information matrix respectively, or by a bootstrap

distribution of the MLE.

3.6 Simulations

This section evaluates the numerical performance of the direct MLE of the RHawkes

model and compares the direct MLE with the E-M algorithms of Wheatley et al.

(2016) using simulated data.

3.6.1 Simulation algorithm

The RHawkes process with supplied parameters µ(·), η, and h(·) can be efficiently

simulated using a cascading algorithm motivated by the cluster process represen-

tation of the RHawkes process. Let T be a predetermined censoring time. Then,

to simulate the event times of the RHawkes process up to time T , first simulate

the immigrant arrival times up to time T , as the cumulative sums of i.i.d. pos-

itive random variables with hazard rate function µ(·). Furthermore, denote the

simulated immigrant arrival times by τ 0
1 < τ 0

2 < · · · < τ 0
n0

6 T . Then for each

i = 1, . . . , n0, simulate the corresponding offspring birth times up to time T , which

can be achieved by simulating a non-stationary self-exciting point process with base-

line intensity function and excitation function both equal to ηh(·) on the interval

(0, T − τ 0
i ], and translating the event times into the interval (τ 0

i , T ].

The non-stationary self-exciting point process itself can be simulated using a sim-

ilar cascading algorithm as follows (Møller and Rasmussen, 2005). First simulate

the generation 0 individual arrival times of the non-stationary self-exciting point

process according to a Poisson process on (0, T ] with intensity function ν(·); then

keep simulating generation i (i = 1, 2, . . . ) events in the interval (0, T ] according

to Poisson processes with a common intensity function ηh(·) as long as the number

of generation i − 1 individuals in the interval (0, T ] is not zero. When this recur-

sive process stops, collect event times of all generations as the event times of the

non-stationary self-exciting point process on the interval (0, T ]. See e.g., the pro-

grams simHawkes0 and simHawkes1 in the file “simHawkes.R” of the supplementary

materials for Chen and Hall (2016), for implementations of the algorithm in the R

language.

3.6.2 Simulation models

The simulation models used in this section and throughout this thesis are similar to

those used by Wheatley et al. (2016). The renewal process for immigrant arrivals has

36



inter-renewal waiting times following a Weibull distribution with shape parameter

κ, scale parameter β, with density function given by,

g(t) =
κ

βκ
tκ−1 exp

(
−
(
t

β

)κ)
, t > 0, (3.6.1)

and hazard function,

µ(t) =
κ

βκ
tκ−1, t > 0. (3.6.2)

Notice that when κ is unity, the model corresponds to the classical Hawkes pro-

cess with a constant background intensity µ = 1/β. The offspring density h(·) is

exponential with shape parameter (or mean) γ,

h(t) =
1

γ
exp

(
− t
γ

)
, t > 0. (3.6.3)

Two illustrations of the Weibull distributions were studied. In the first illustra-

tion, the shape and scale parameters were κ = 3 and β = 1.2 and in the second

example κ = 1/3 and β = 0.2. These two situations correspond to highly bursty

(κ = 1/3) and more evenly distributed (κ = 3) event times, respectively; cf. Fig-

ure 3.2.1. The scale parameter β was determined so that the expected waiting time

between immigrations is close to unity. The shape parameter of the offspring density

was always set to γ = 1. The branching ratio was selected to be either η = 0.3, or

η = 0.7, corresponding to a low and high level of self-excitation effect, respectively.

In each simulation model, two censoring times T were determined to ensure the

expected number of events by the censoring time were approximately 400 and 800

respectively. For each combination of κ, β, γ, η, and T , the RHawkes process was

simulated 1000 times. For each simulated data set, the MLE was directly computing

by minimizing the negative log-likelihood function using the derivative-free Nelder-

Mead simplex method, and the Hessian matrix by numerical differentiation. The

computations were implemented using the R language (R Core Team, 2016), with

the aid of the optim function.

3.6.3 Simulation results

The estimation results are reported in Table 3.6.1, which contains the mean of the

1000 parameter estimates (Est), the mean of the 1000 standard error estimates

obtained by inverting the observed information matrix (ŜE), the empirical standard

error of each estimator (SE), i.e. the standard deviation of the 1000 estimates,

the empirical coverage probability (CP) of the 1000 approximate 95% confidence

intervals (CIs) computed by assuming (asymptotic) normality of the estimators,

and the average running time (RT) of the optim routine to compute the minimizer
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of the negative log-likelihood function and the Hessian matrix at the minimizer, on

Intel Xeon X5675 processors (12M cache, 3.06 GHz, 6.4GT/S QPI).

κ = 3 β = 1.2 γ = 1 η = 0.3
T 300 600 300 600 300 600 300 600

Est 3.028 3.010 1.197 1.200 1.319 1.134 0.294 0.300
SE 0.297 0.215 0.056 0.041 1.986 0.623 0.044 0.030

ŜE 0.278 0.196 0.052 0.038 0.720 0.416 0.041 0.029
CP 0.937 0.923 0.937 0.923 0.874 0.919 0.932 0.945
RT 56.6 secs. for T = 300 174.3 secs. for T = 600

κ = 3 β = 1.2 γ = 1 η = 0.7
T 132 260 132 260 132 260 132 260

Est 3.130 3.066 1.172 1.182 1.034 1.018 0.683 0.691
SE 0.800 0.573 0.145 0.107 0.324 0.199 0.063 0.044

ŜE 0.703 0.506 0.127 0.093 0.278 0.186 0.058 0.040
CP 0.887 0.897 0.897 0.912 0.920 0.934 0.926 0.932
RT 61.4 secs. for T = 132 187.6 secs. for T = 260

κ = 1/3 β = 0.2 γ = 1 η = 0.3
T 375 775 375 775 375 775 375 775

Est 0.327 0.326 0.225 0.215 1.016 0.997 0.306 0.310
SE 0.020 0.016 0.057 0.038 0.233 0.166 0.051 0.037

ŜE 0.018 0.013 0.049 0.033 0.235 0.158 0.050 0.035
CP 0.930 0.873 0.968 0.951 0.933 0.941 0.945 0.941
RT 55.1 secs. for T = 375 177.0 secs. for T = 775

κ = 1/3 β = 0.2 γ = 1 η = 0.7
T 145 320 145 320 145 320 145 320

Est 0.334 0.327 0.231 0.228 1.025 1.001 0.686 0.700
SE 0.033 0.025 0.103 0.065 0.185 0.122 0.062 0.045

ŜE 0.032 0.022 0.084 0.056 0.179 0.121 0.062 0.043
CP 0.947 0.919 0.959 0.951 0.960 0.942 0.952 0.941
RT 52.5 secs. for T = 145 157.6 secs. for T = 320

Table 3.6.1: Estimation results using the maximum likelihood method of the
RHawkes processes with Weibull distributed inter-immigration waiting times and
exponential offspring densities, based on 1000 simulated datasets in each case.

Table 3.6.1 indicates that the parameter estimates are all close to their respective

true parameter values, relative to their standard errors, with the empirical biases and

standard errors decreasing with the censoring time. The coverage probabilities of

the 95% CIs are close to the nominal confidence level, notably with larger censoring

times. However, this is not evident for the shape parameter κ. The significant

variance in the waiting time distribution between immigrants when κ = 1/3 and

β = 0.2, which is given by,

β2

[
Γ(1 +

2

κ
)− Γ

(
1 +

1

κ

)2 ]
= 0.22

(
Γ(7)− Γ(4)2

)
= 27.36,

implies that a larger sample would be required to employ any asymptotic results

and as such, the coverage probability for the shape parameter κ was reduced with

the larger censoring time due to the finite and small sample size. Using a much
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longer censoring time, these effects can be shown not to be present and the coverage

probability was very close to the nominal level 0.95. The means of the estimated

standard errors approximately agree with the empirical standard errors in most cir-

cumstances, and the agreement improves as the censoring time increases. However,

on some occasions the standard error estimate were biassed downwards slightly. The

branching ratio η is well estimated even with shorter censoring times.

In the instances when the shape parameter for the inter-immigration waiting time

distribution is large (κ = 3), the estimation of the offspring shape parameter γ seems

quite tricky with the MLE showing a noticeably larger empirical bias and standard

error when the branching ratio is small (η = 0.3). Furthermore, the estimation of

the shape parameter κ for the inter-immigration waiting time distribution seems

complicated when the branching ratio is large (η = 0.7). This seems to be expected

as there tend to be fewer offspring events when η is small, and fewer immigration

events when η is large, given the total number of events expected is more or less fixed.

In the case when the shape parameter is small (κ = 1/3), the estimators are less

affected by this phenomenon, which might be due to the contrast between the heavy-

tailedness of inter-immigration times and the light-tailedness of the waiting times to

offspring births, in this circumstance, which makes it easier to disentangle the two

types of events. However, even in the more difficult cases, the empirical bias and

standard error of the estimators reduce as the censoring time increases. Therefore,

the MLE for the RHawkes process and the inverse Hessian matrix variance estimator

have satisfactory finite sample performances.

The average time required to compute the MLE and the Hessian matrix with

datasets containing about 400 events is approximately one minute, and the required

time on datasets with about 800 events is about three minutes. The latter time is

less than four times of the former, because with a larger dataset the log-likelihood

surface experiences larger curvatures, and the Nelder-Mead algorithm manages to

converge with a smaller number of likelihood function evaluations, although the time

to compute the likelihood with a larger dataset was approximately four times that

with the corresponding smaller dataset, as expected by the time complexity of the

proposed method.

3.6.4 Comparison with the E-M algorithms of Wheatley

et al. (2016)

This section conducts a comparison of the direct MLE and the estimators from

the E-M algorithms, called EM1 and EM2, of Wheatley et al. (2016) discussed

in Chapter 2. The simulations consist of 100 datasets from the simulation model

discussed in Section 3.6.2 with parameters (κ, β, γ, η) = (3, 1, 0.5, 0.5) and censoring
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times T = 100, T = 200, and T = 400. The convergence criteria for the E-M

algorithms was that the absolute difference between the maximizers in consecutive

iterations was less than 1× 10−8. The simulation results are reported in Table 3.6.2

and contains the the empirical bias of the estimator (bias), the mean square error

of the estimator (MSE), the average running time per iteration (RT), which is the

average time required by one likelihood evaluation in the case of MLE, or the average

time required by one iteration of the E-M algorithm, and the average number of

iterations (Iter No.).

Wheatley et al. (2016) discovered that the EM1 and EM2 algorithms produce

very comparable estimates of the parameters, which was further confirmed in the

experiments on simulated datasets in this section, with the short censoring time

T = 100. Therefore, to save computational time, the much slower EM1 algorithm

was not run on the larger datasets simulated with the larger censoring times. Unlike

the MLE whose empirical bias and MSE manage to shrink toward 0 as the censoring

time increases, the empirical bias and MSE of the E-M algorithm estimators do not

seem to converge to 0. This suggests that the estimators from the E-M algorithms

of Wheatley et al. (2016) are different from the MLEs, and they do not appear to

be consistent while the MLE does. Additionally note that, while the direct MLE

and the E-M algorithms both seem to require quadratic computational time with

increasing censoring times, the direct MLE method is considerably faster than the

E-M algorithms, particularly on larger datasets.

κ = 3 β = 1 γ = 0.5 η = 0.5 RT Iter
T bias MSE bias MSE bias MSE bias MSE (secs.) No.

100
MLE
EM1
EM2

0.161
−1.063
−1.064

0.282
1.207
1.210

0.013
−0.158
−0.159

0.006
0.032
0.032

−0.019
−0.174
−0.174

0.028
0.066
0.067

−0.004
−0.128
−0.129

0.005
0.021
0.021

0.086
1.280
1.160

205
101
62

200
MLE
EM2

0.060
−1.083

0.160
1.216

0.002
−0.172

0.003
0.033

−0.023
−0.201

0.016
0.060

0.001
−0.125

0.002
0.018

0.272
4.285

196
64

400
MLE
EM2

0.044
−1.063

0.070
1.147

0.008
−0.165

0.002
0.029

−0.015
−0.221

0.009
0.055

−0.001
−0.127

0.001
0.017

0.895
16.798

188
62

Table 3.6.2: Estimation results comparing the three estimation methods MLE, EM1
and EM2, on simulated data.

Considering the well-documented success of the E-M algorithms in the classical

Hawkes process and its multivariate and marked versions (Chornoboy et al., 1988;

Mino, 2001; Veen and Schoenberg, 2008; Halpin, 2013; Olson and Carley, 2013), the

discrepancy between the direct MLE and the E-M algorithm based estimators of

Wheatley et al. (2016) observed here warrants investigation. The first issue of the

E-M algorithms of Wheatley et al. (2016) was that when calculating the conditional

distributions of the missing data given the observed data {τ1:n, τn+1 > T}, Wheatley

et al. implicitly assumed conditional independence of {M1:i} and τi+1:n+1. As an

attempt to address this issue, one can derive the joint distribution of M1:n given all
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the observations {τ1:n, τn+1 > T} using a recursive algorithm similar to that used

in the proof of Theorem 3.3.1, and integrate out the other dimensions to arrive

at the marginal distribution of Mi. With the correct conditional distributions of

the missing data used in the Expectation step, the E-M algorithms were found to

produce the same estimates as the direct MLE (modulo numerical rounding error)

on small datasets (with n = 4 or 5). However, this method is not feasible on

data with realistic sizes, as the storage of the joint probability mass functions takes

exponential space (or even factorial in the case of EM1), and the marginalization

step takes exponential time (or even factorial in the case of EM1). The second

issue as mentioned previously is that the conditional distributions of Mi given τ1:i is

incorrect as the probabilities π
[m]
i,j ’s in (2.2.12) (eq. (16) of Wheatley et al. (2016))

do not sum to one as they should for fixed i.

3.7 Applications

3.7.1 Earthquakes in the Japan Pacific Ring of Fire

In this application, the Japan earthquake data previously analyzed by Ogata (1988)

is investigated. The data consists of 483 earthquakes with magnitude 6 or greater

that occurred in a polygonal region in the vicinity of Japan from 1885-1980. The

polygonal region is part of the so-called Pacific Ring of Fire, and is defined by the se-

quence of vertex points (42◦N, 142◦E), (39◦N,142◦E), (38◦N, 141◦E), (35◦N,140.5◦E),

(35◦N, 144◦E), (42◦N,146◦E), and (42◦N, 142◦E), as indicated by the polygon in

Figure 3.7.1. The earthquake data shown in this graph was downloaded from the

earthquake archive maintained by the United States Geological Survey (USGS).

This analysis only examines the occurrence times of the earthquakes. The B-

index of waiting times between earthquakes was found to be 366.9, comparable to

those of the RHawkes processes (a) and (d) illustrated at the end of Section 3.2.

Therefore, an RHawkes process with Weibull inter-immigration waiting time distri-

bution and exponential offspring density was fitted to the earthquake times. The

resulting MLEs of the parameters were as follows, κ̂ = 0.314(0.019), β̂ = 22.2(5.47),

γ̂ = 1266(356), η̂ = 0.512(0.047), with the numbers in brackets being the stan-

dard errors. The Rosenblatt residuals were calculated, and their uniform QQ plot

and ACF plot are shown in the upper panels of Figure 3.7.2. The plots suggest

good agreement between the empirical and theoretical quantiles and with minimal

to no serial correlation among the residuals up to lag 26, which were respectively

confirmed by the large p-values of the K-S test of uniformity (P = 0.93) and the

Ljung-Box test of independence (P = 0.22).

In the seismological context, the immigrant events and offspring events have

a natural interpretation as mainshocks and aftershocks, respectively. By the fit-
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Figure 3.7.1: Big earthquakes (Magnitude > 6) around the Japan Pacific Ring of
Fire. Each open dot indicates one earthquake. The analysis uses only the data for
the polygonal region.

ted RHawkes process model, the mainshocks arrive according to a renewal process

with mean waiting time between arrivals equal to β̂Γ(1 + 1/κ̂) = 169 days, and

each (main or after) shock on average directly induces 0.51 aftershocks, and given

a shock generates an aftershock, the waiting time between the shock and the first

aftershock is exponentially distributed with mean equal to γ̂ = 1266 days. The esti-

mated shape parameter κ̂ of the Weibull distribution for the waiting times between

successive mainshocks is significantly less than one, suggesting that the numbers

of mainshocks in neighboring nonoverlapping time intervals are not independent,

but positively correlated. Such a positive correlation could be due to some latent

variable(s) underlying the mainshock intensity.

For comparison, the classical Hawkes process was fitted to the earthquake data

with a constant immigration rate ν and an excitation function following the modified

Omori’s law (Utsu, 1961),

ηh(t) = K (t+ c)−p ; (3.7.1)

see also Ogata (1988, eq. 14). The resulting MLE of the parameters are as fol-

lows, ν̂ = 0.00523(0.000934), K̂ = 0.0448(0.00496), ĉ = 0.0167(0.00886), and

p̂ = 0.996(0.0372). The estimated value of ν suggests the mean waiting time between

mainshocks is 1/ν̂ = 191 days, similar to that suggested by the RHawkes model.

42



●●●
●●●●

●●
●●

●
●●

●
●●●

●●
●●●

●
●●●●

●●●
●●●

●
●●

●
●●

●●●
●●

●●●
●●

●●
●●●

●●●●
●●●●●

●●●
●●

●●●●●
●●●

●
●
●●

●●●
●
●●●●●

●●
●●●

●●●
●
●
●●

●●●●
●●

●●●●●●
●
●●●

●●●
●●●●●

●●
●●●●

●●
●●●

●●●●
●●

●●
●
●
●●●

●●●●
●●

●●●●
●
●●●

●
●●●

●●
●●

●●
●●●

●●●●●
●●●

●
●●

●●●●

●●●
●●

●●
●●●●

●
●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●

●●
●●

●●
●●

●●●
●
●●●●

●●●
●●●

●
●
●
●
●●

●
●●

●●
●●●●

●●
●●

●●●●●●
●●●

●●
●●●

●●●●
●
●●●

●●
●●

●
●●

●●
●●●●

●●●
●●●●

●●
●●●

●●
●●●●●

●●
●
●
●●

●●●●
●●●

●●
●●

●●
●●●

●●●
●●

●
●●●

●
●●●●●

●●
●●

●●●
●●

●●●
●●●●

●●●
●●

●●●
●●●

●●●
●●

●●●●●
●●●●●

●
●●

●●●
●●

●●
●●

●●●●
●●

●●●
●●●

●●●
●
●
●●●

●●
●●●●

●●
●●●

●●●●●
●●

●
●●

●●
●●●

●●
●●

●●
●
●●

●●●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform QQ plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

P−value of K−S test = 0.93

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Residual Series

P−value of Ljung−Box test = 0.22

●●
●●●

●●
●●●

●●●
●●●

●●●●●
●
●
●●●

●
●

●
●
●●

●
●●

●●●
●
●
●
●●●

●●●
●●●

●●
●●●●●●

●
●●

●●
●
●

●
●
●●●

●●●●
●●●●●●

●●
●●

●●
●●●

●
●●

●
●●

●●●●
●●●

●●●●●
●●

●●
●
●
●●

●●●
●●●

●
●●

●●●●●
●
●●●●●●

●●●
●●

●
●
●
●
●●●

●
●●●

●●●
●●●

●●
●●●

●●
●●●●

●●●
●

●●
●●●●

●●●●
●●●

●●
●●

●●
●●●●●●

●●●●
●●

●●
●●●

●●
●●●●

●
●
●●

●●

●●
●●●●

●●●
●●●

●
●●●●●●

●●
●●●

●●
●●

●●●
●●●

●●●
●●●●●

●●
●●●●●

●
●●

●●●
●●●●

●●
●●●●●●

●●●●●
●●●

●●●●
●●

●

●●
●●●●

●●●
●●

●●●
●●●

●●
●
●●

●
●●

●●●●●
●●

●●
●
●●●●●

●●
●
●
●●

●●
●●

●●●
●●●

●●
●●●

●●●
●●●●●●

●●●
●●●

●
●●

●●●
●●●●

●●●
●●●

●●●●
●●●●

●●
●
●●

●●
●●●

●●●
●●●

●●●●●
●
●●●

●
●
●●●

●
●
●
●●●

●●
●●●

●●●●●
●●●

●●
●
●●

●●●
●●

●●●
●●

●
●
●●●

●●
●●●

●●
●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform QQ plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

P−value of K−S test = 0.48

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Residual Series

P−value of Ljung−Box test = 0.00015

Figure 3.7.2: Graphical comparison of the goodness-of-fit assessment by employing
the Rosenblatt residuals, with the upper two panels for the RHawkes process model
and lower two panels for the Hawkes process model.

The estimated value of p agrees very well with p = 1 in the original Omori’s law

(Omori, 1894). However, with such a value of p, the corresponding Hawkes process

model is not stable, as the integral of the excitation function diverges. A Hawkes

process with an excitation function in the exponential decay form (Ozaki, 1979) was

also fit to the data. However, the fit was worse than with the polynomial excitation

function (3.7.1), and therefore not reported here.

The Rosenblatt residual plots are displayed in the lower two panels of Fig-

ure 3.7.2. Notice that the uniformity of the residuals is quite acceptable with the

K-S test yielding a reasonably large p-value of 0.48. However, the ACF plot reveals

rather strong serial correlation among the residuals, with the Ljung-Box test re-

turning a very small p-value of 1.5× 10−4, which firmly rejects independence of the

residuals. Thus, it can be concluded that the original Hawkes process with a poly-

nomial decay excitation function in the form of the modified Omori’s law is not a

sufficient model for the Japan earthquake data considered here, while the RHawkes

process seems to be an ideal model.

To evaluate the predictive performance of the RHawkes model identified here

and to illustrate the prediction methods in Section 3.5, a simulation-based approach
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to predict significant earthquake occurrences in the study region from 1/1/1981 to

30/6/2016, the 35.5 years from the censoring time to the time of performing this

analysis will be implemented. First, 10,000 realizations of the identified RHawkes

process model are simulated from the censoring time up to 30/6/2016, conditional

on the earthquake times by the censoring time. The point-wise median and lower

and upper 2.5 percentiles of the simulated sample paths of the RHawkes process are

displayed in Figure 3.7.3, as well as the actual sample path based on data during the

prediction window, downloaded from the earthquake archive of the United States

Geological Survey (USGS). Notice that, as a point prediction, the median tracks the

actual earthquake count reasonably well, and the point-wise 95% prediction intervals

contain the actual counts during the whole prediction window. In particular, the

actual number 179 of earthquakes during the prediction window is well within the

95% prediction interval [18, 1011], and is not far from the median 149 or mean 211

of the simulated numbers of earthquakes in the prediction window.
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Figure 3.7.3: Actual and predicted earthquake occurrences. The solid curve shows
the actual earthquake counts, and the dashed curves show the point prediction and
95% prediction intervals at different time points.

The predictive density of the waiting time until the first earthquake after the cen-

soring time and the corresponding hazard rate function are displayed in Figure 3.7.4,

as well as the density histogram of the sample of 10,000 waiting times extracted from

the simulated sample paths of the RHawkes process. From the graph, good agree-

ment between the predictive density and the density histogram can be observed.

The graph infers that the probability of observing the first earthquake after the

censoring time in the first, second, third and fourth 100-day period were roughly
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30%, 20%, 13%, and 10% respectively. By the USGS data, the first big earthquake

after the end of the year 1980 in the study region occurred at 1981-01-18 18:11:28

GMT, during the first 100-day period. The predictive hazard function provides an

estimate of the conditional probability of observing the first big earthquake on any

day given that it has not occurred by the previous day. For example, by Figure 3.7.4,

the conditional probability of seeing the first magnitude 6 or higher earthquake in

the region on the first day of 1981 is about 0.36%, and this conditional probability

decreases gradually over time, and halves in 3 years.
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Figure 3.7.4: Predictive density and hazard functions of the waiting time to the first
earthquake after the censoring time (end of the year 1980). The solid line is the
density, and the dashed line is the hazard function.

3.7.2 Mid-price changes of the AUD/USD currency exchange

rate

The fluctuations of the prices of financial assets such as stocks and foreign curren-

cies can be due to factors external or internal to the specific markets in which the

assets are traded. Introduction of high-frequency and algorithmic trading has fur-

thered the need to understand the relationship between exogenous and endogenous

effects in the financial markets. Recently, Filimonov and Sornette (2012) used the
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Hawkes process to quantify the endogeneity or reflexivity of the mid-quote price

movements of the E-mini S&P500 futures contracts. More recently, Wheatley et al.

(2016) used the renewal Hawkes process for the same purpose. By analyzing hun-

dreds of datasets obtained from 20-minute time intervals, Wheatley et al. reported

that the RHawkes model was able to provide an adequate fit to the majority (about

80%) of the datasets. When the Hawkes or RHawkes process is used to model the

times of price changes, the branching ratio η has the interpretation as the proportion

of price changes that are not caused by external information but due to the reac-

tions of market participants to previous price changes, and hence quantifies market

reflexivity.

Motivated by these previous works, this analysis aims to quantify the level of

endogeneity in the foreign exchange (forex) market using the RHawkes process.

Specifically, the mid-quote price changes of the AUD/USD foreign exchange rate

during the trading week from 20:00:00 Greenwich Mean Time (GMT) on Sunday

19/7/2015, when the New Zealand forex market officially opened on Monday at 8 AM

local time, to 21:00:00 GMT Friday 24/7/2015, when the New York forex market
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Figure 3.7.5: GMT clock displaying the trading hours of the major foreign exchange
centres around the world.

officially closed on Friday at 5 PM local time; see Figure 3.7.5 for the trading

hours of major forex trading centers around the world will be investigated. The

mid-quote price is defined as the average of the best bid and best ask prices. By

Figure 3.7.6, which shows the hourly number of mid-quote price changes in the whole

trading week, the price change exhibits a distinct diurnal pattern, and thus the point

process of price changes for the whole period is not stationary. Therefore, similar

to Filimonov and Sornette (2012) and Wheatley et al. (2016), this analysis will

be performed on sequences of mid-price changes that occurred within short time
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windows of fixed length, although this work uses non-overlapping one-hour time

windows, rather than the overlapping 20-minute windows used in their works, so

that there is sufficient data to fit the model in each time window while avoiding the

issue of non-stationarity to some extent. This yields 121 point process observations

with the total number of events ranging from a minimum of 108 to a maximum of

3961. Although the timestamps in this data set are accurate down to microseconds

(10−6 seconds), on a number of occasions, two or even three price changes were

recorded to occur simultaneously, and so a small random noise was added to these

event times to break the ties while maintaining the time order of the price moves.
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Figure 3.7.6: Hourly number of mid-quote price changes of the AUD/USD exchange
rate during the trading week 19/7/2015 – 24/7/2015.

The RHawkes process model was fitted to the hourly data with Weibull or gamma

inter-immigration waiting time distributions and an exponential offspring density.

Figure 3.7.7 presents the goodness-of-fit test results, which suggest that both models

produce very similar fits to the data, although the fit by the Weibull model is slightly

better. Therefore, this section will only report the results of the Weibull model. At

the 1% level, the Weibull model passed both the K-S test of uniformity and the

Ljung-Box test of independence of the Rosenblatt residuals on 100 (82.6%) hourly

datasets, indicating the Weibull RHawkes model can fit the hourly data well in

the majority of cases. The cases where the RHawkes model fit was inadequate are

likely due to non-stationarity of the price change process in the corresponding hourly

intervals. For example, on four of the five trading days, the fit to the data of the 6:00
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Figure 3.7.7: Goodness-of-fit tests of the RHawkes models with either Weibull or
gamma inter-immigration waiting times and exponential offspring density, on the
hourly AUD/USD exchange rate data in the trading week 19/7/2015 –24/7/2015.
Top panels: K-S tests of the uniformity of the Rosenblatt residuals; bottom panels:
Ljung-Box test of the independence of the Rosenblatt residuals.

hour was inadequate, which is not surprising as the 6:00 hour contains the opening

at 6:30 of the London forex center, the largest forex trading center (by turnover) of

the world, which has caused substantial non-stationarity of the price change process,

with price changes in the hour occurring substantially more frequently after 6:30.

Figure 3.7.8 displays the time series of MLEs of the model parameters. The

Weibull shape parameter estimate κ̂ exhibits a fairly clear diurnal pattern with

peaks occurring around midnight GMT, and troughs around midday GMT. The

value of κ̂ is mostly less than one, with the 95% confidence intervals below one

94.2% of the time. The Weibull scale parameter estimate β̂ The offspring density

parameter estimate γ̂ is considerably sporadic with several peaks and troughs occur-

ring throughout the day. However, it is still noticeable that the highest peaks tend

to occur around midday GMT, while the lowest trough occurs around midnight
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Figure 3.7.8: Time series plot of the MLEs of the parameters based on hourly data of
the RHawkes process, over the trading week 19/7/2015 – 25/07/2015. Solid curve:
MLE; shaded region: point-wise 95% confidence intervals.

GMT. These phenomena suggest that during the sessions when the US markets

are open and overlap with the European markets (12:00 - 14:00 GMT), the exoge-

nous effects are more potent than when the Asian markets begin to open (23:00 -

1:00 GMT), where there tend to be more endogenous transactions occurring. The

branching ratio estimate η̂ is quite volatile throughout the week, although it still

exhibits highs and lows occurring at midday and midnight GMT respectively. The

estimated values range from 0.29 to 0.98 with median 0.66 and quartiles (0.53, 0.80),

and this medium to high but still sub-critical (η < 1) values suggest that substantial

high-frequency self-excitation is occurring in the mid-price changes. These trends

and regular trading patterns during a particular day suggest that the parameters

might be predictable in time. For market participants, this might be useful when

deciding on trades in future time periods. The time series of estimates could be fit

with a time series model and then used to forecast the parameters during the next

one-hour window.
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Chapter 4

Fast fitting of the renewal Hawkes

process1

4.1 Introduction

The likelihood evaluation algorithm developed in the preceding chapter makes it

viable to fit the RHawkes process model in practice, however the algorithm requires

the calculation, at each event time, of the probabilities of the most recent immi-

grant being equal to every past event in the history of the process, and therefore

its time-complexity is still quadratic. This implies that it can be intolerably slow

when applied on large datasets. However, in financial applications, the Hawkes

process and its extensions have been applied extensively to model data that occur

in very high frequencies and have an abundance of observations. Financial data

of this nature motivate the need to conduct inferences on large datasets expedi-

tiously. This leads to the proposal of faster methods for fitting RHawkes processes

which will enable the process to be applicable in real-world trading applications or

other applied domains. The developments are based on two distinct frameworks.

The first approach implements the Newton-Raphson method to optimize the log-

likelihood function, which generally takes a much smaller number of iterations to

converge than the derivative-free method, such as the Nelder-Mead downhill simplex

method. The second approach employs an approximation to the likelihood function

by truncating the distribution of the most recent immigrant, which is similar in

spirit to the approach used by Halpin (2013) to speed up the E-M algorithm for the

classical Hawkes process with non-exponential excitation function.

The choice of optimization procedure profoundly impacts the computational time

required for estimation. Previously, the derivative-free Nelder-Mead simplex method

was employed, which requires a large number of likelihood evaluations until conver-

gence. To overcome this, the Newton-Raphson method which requires fewer it-

1Most of the content shown in this chapter has been submitted for publication.
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erations until convergence is a suitable alternative. To this end, an algorithm to

compute the gradient and Hessian of the log-likelihood for the RHawkes process is

derived. Once these have been determined, implementation of the Newton-Raphson

algorithm is rather simple. The small number of iterations and exact Hessian compu-

tation reduce the computational time required for estimation significantly on larger

datasets. As a by-product, the exact Hessian matrix calculated at the last cycle of

Newton-Raphson iterations is automatically available and can be used to compute

estimators of the variance of the MLE, thereby avoiding the need to compute a nu-

merical approximation to the Hessian in a separate step after finding the maximizer

of the log-likelihood function.

The second approach to fast fitting of the RHawkes model is to optimize approx-

imations to the likelihood, rather than the exact value because it is often possible

to compute accurate approximations to the RHawkes process likelihood in a much

shorter time than the exact likelihood. This chapter proposes simple modifications

to the iterative algorithm developed in Chapter 3 that achieves significant gains

in computational efficiency and memory requirements at the small cost of a minor

loss in accuracy of the estimation, which enables fast fitting of the RHawkes pro-

cess using the maximum likelihood method on much larger datasets. The likelihood

approximation works by truncating the possible candidates for the most recent im-

migrant event to events in the recent past. This truncation is justified in quite

general conditions since most of the past events, particularly those in the distant

past have negligibly small probabilities of being the most recent immigrant at the

current event time. Computing and storing these most recent immigrant proba-

bilities unnecessarily slows down the likelihood evaluation algorithm. The possible

candidates for the most recent immigrant at the i-th event time will be restricted

to the most recent Bi events.

The tuning parameter Bi embodies a trade-off between computational complex-

ity and memory requirements against the accuracy of the estimation. However, an

appropriately determined sequence Bi can reduce the computational time signifi-

cantly, and doing so without degrading the accuracy of the estimates. Two different

methods are used to determine the tuning parameter Bi, with the first method

merely fixing Bi = B before likelihood evaluation and only computing the most

recent immigrant probabilities for the most recent B events at each step of the like-

lihood evaluation algorithm. In a more dynamic approach, Bi can fluctuate at each

iteration of the likelihood evaluation algorithm according to the computed most

recent immigrant probabilities at the previous iteration. The Bi at each iteration

depends on the waiting time distribution between successive immigrant events, the

waiting time distribution between an event and its direct offspring event, and the

level of self-excitation.
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The computational and statistical efficiency of the proposed estimation methods

for the renewal Hawkes process will be examined using a simulation study. The

newly proposed estimation methods will be compared to the derivative-free Nelder-

Mead algorithm used in Chapter 3. The simulations will confirm that the newly

proposed estimation methods accomplish comparable accuracy but require a much

shorter running time to compute estimates and standard errors. Furthermore, to

highlight the applicability of the methods presented in this chapter, an analysis of

the mid-price for several pairs of USD exchanges rates for four trading weeks will

be investigated.

The rest of this chapter is organized as follows. Section 4.2 details the Newton

Raphson algorithm for faster estimation of RHawkes processes and describe their

algorithms. Next, in Section 4.3, the approximate likelihood is discussed, and in 4.4

statistical evidence will be provided using a simulation study, of the improvement

in computational efficiency while preserving accurate estimation results. In the last

section, the mid-price analysis of USD currency pairs is illustrated.

4.2 Estimation using Newton-Raphson optimization

Chapter 3 makes straightforward and direct evaluation of the likelihood feasible and

allows MLE to be performed using standard numerical optimization procedures, such

as the derivative-free Nelder-Mead simplex method by optimizing the log-likelihood

function, which was shown to take the form,

`(θ) = log µ(τ1)− U(τ1) +
n∑
i=2

log

(
i−1∑
j=1

pij dij

)
+ log

(
n∑
j=1

pn+1,jSn+1,j

)
, (4.2.1)

where the notations used here were introduced in Chapter 3. Since the Nelder-Mead

algorithm only utilizes the value of the log-likelihood at each iteration and does not

explicitly account for the shape information, such as slope and the curvature, of

the log-likelihood surface, it often requires many more iterations to converge than

the derivative-based optimization method. Therefore, this section will consider the

well-known derivative-based Newton-Raphson method.

This section will begin by briefly introducing the Newton-Raphson method and

then follow with a procedure to compute the gradient vector and Hessian matrix. Let

∇(θ) and H(θ) denote the gradient vector and Hessian matrix of the log-likelihood

for the RHawkes process evaluated at the parameter vector θ, respectively. The

Newton-Raphson method is an iterative procedure where at each iteration t, the

following operations are computed,

θ[t+1] = θ[t] −H(θ[t])−1∇(θ[t]), (4.2.2)
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then set t ← t + 1 and repeat until a convergence criterion is satisfied. The op-

timization procedure is initialized at θ[0]. It may prove beneficial to obtain an

initial estimate using the approximate likelihood approach (see Section 4.3), which

would provide an initial starting point close to the true MLE. This approach can

potentially reduce the computational time required for the implementation of the

Newton-Raphson algorithm significantly as typically only a minimal number of it-

erations will be required until convergence.

For the implementation of the Newton-Raphson algorithm, a means to com-

pute the gradient vector, and the Hessian matrix is necessary. Recall that the log-

likelihood for the RHawkes process is computed using a recursive algorithm because

the most recent immigrant probabilities are computed recursively. As such, the gra-

dient vector and Hessian matrix also require a recursion to be evaluated. In the

sequel, the recursive algorithm to be used when computing the gradient vector and

the Hessian matrix is outlined. As mentioned earlier, an additional advantage of this

method is that the Hessian matrix needed for variance estimation is automatically

obtained as a by-product at the end of the iterations.

Let ∂θ = ∂/∂θ and ∂2
θθ> = ∂2/∂θ∂θ> denote the first and second order par-

tial derivatives with respect to the model parameters. By computing the partial

derivatives of the log-likelihood in (4.2.1) with respect to the parameter vector θ,

the gradient vector ∇(θ) = ∂θ`(θ) takes the form,

∇(θ) =
∂θµ(τ1)

µ(τ1)
− ∂θU(τ1) +

n∑
i=2

{∑i−1
j=1 dij∂θpij + pij∂θdij∑i−1

j=1 pijdij

}

+

∑n
j=1 Sn+1,j∂θpn+1,j + pn+1,j∂θSn+1,j∑n

j=1 pn+1,jSn+1,j

, (4.2.3)

where

∂θdij = Ψij

[
∂θµ(τi − τj) + ∂θφ(τi) + (µ(τi − τj) + φ(τi)) ∂θψij

]
,

∂θSn+1,j = Ψn+1,j∂θψn+1,j,

Ψij = e−{U(τi−τj)−U(τi−1−τj)}−{Φ(τi)−Φ(τi−1)},

ψij = −{U(τi − τj)− U(τi−1 − τj)} − {Φ(τi)− Φ(τi−1)} .

Here, direct equations to compute most of the terms in (4.2.3) are available. How-

ever, a method is still required to compute the derivatives of the most recent immi-

grant probabilities ∂θpij with respect to each parameter of the model. A recursive

procedure to compute the derivatives of pij is derived in Appendix A.1. The deriva-

tion follows directly by applying the chain rule and product rule for differentiation

multiple times.
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Next, to calculate the Hessian matrix H(θ) = ∂2
θθ>`(θ), the partial derivatives of

the (transposed) gradient vector ∇(θ1)> in (4.2.3) with respect to θ are computed

as follows,

H(θ) =
∂2
θθ>µ(τ1)

µ(τ1)
− {∂θµ(τ1)}⊗2

µ(τ1)2
− ∂2

θθ>U(τ1)

+
n∑
i=2

{∑i−1
j=1 dij∂

2
θθ>pij + 2∂θdij � ∂θpij + pij∂

2
θθ>dij∑i−1

j=1 pijdij

+

(∑i−1
j=1 dij∂θpij + pij∂θdij

)⊗2

(∑i−1
j=1 pijdij

)2

}

+

{∑n
j=1 Sn+1,j∂

2
θθ>pn+1,j + 2∂θSn+1,j � ∂θpn+1,j + pn+1,j∂

2
θθ>Sn+1,j∑n

j=1 pn+1,jSn+1,j

+

(∑i−1
j=1 Sn+1,j∂θpn+1,j + pn+1,j∂θSn+1,j

)⊗2

(∑i−1
j=1 pn+1,jSn+1,j

)2

}
, (4.2.4)

where and henceforth x⊗2 := xx> denotes the outer product of a vector x with itself,

and x� y := 1
2
(xy>+ yx>) denotes the symmetrized outer product of two vectors x

and y of the same dimension, the first derivatives are as in (4.2.3), and

∂2
θθ>dij = Ψij

[
{µ(τi − τj) + φ(τi)}

{
(∂θψij)

⊗2 + ∂2
θθ>ψij

}
+ 2∂θψij � ∂θ {µ(τi − τj) + φ(τi)}

+ ∂2
θθ> {µ(τi − τj) + φ(τi)}

]
,

∂2
θθ>Sn+1,j = Ψn+1,j

[
(∂θψn+1,j)

⊗2 + ∂2
θθ>ψn+1,j

]
.

Similar to the gradient vector computation, a recursion to compute the second

derivatives of the most recent immigrant probabilities ∂2
θθ>pij are needed. These

can be computed by applying the recursive procedure as derived and outlined in

Appendix A.2.

Remark 4.2.1. The recursive algorithms to compute the gradient vector and the

Hessian matrix both have quadratic computational time. The storage requirements

are linear, in that an RHawkes model with m parameters requires m vectors of

dimension n to store the first derivatives and a total of m(m + 1)/2 vectors of

dimension n to store the second derivatives. There is no need to store m2 vectors

due to the symmetry of the second-order partial derivatives.
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Using the expressions in (4.2.3) and (4.2.4), the Newton-Raphson method is

rather simple to implement. The recursion in (4.2.2) generates a sequence of esti-

mates θ[t] that converge to the true MLE quite rapidly, particularly when the initial

starting point θ[0] is not far from the estimate θ̂.

4.3 Estimation using approximate likelihood functions

In Section 4.2, the estimation procedure was enhanced by improving the computa-

tional efficiency of the optimization procedure using the Newton-Raphson method.

However, there are situations where a good starting value for the Newton-Raphson

iterations is difficult to come by, and the evaluation of the gradient and Hessian of

the log-likelihood still demands quadratic time. Therefore, an alternative approach

to speeding up the fitting of the RHawkes process by maximizing an approximate

rather than the exact log-likelihood of the RHawkes process will be beneficial. Two

methods to approximate the log-likelihood are considered. In both methods, a trun-

cation of the distribution of the most recent immigrant and the range of the excita-

tion effect is implemented. The potential candidates for the most recent immigrant

at an event time are restricted to a relatively small number of past events, instead of

considering all the past events, and the self-excitation effect of an event is restricted

to a small number of events in the future rather than let it last forever. The two

methods differ in that the first method uses fixed ranges in the truncations at dif-

ferent event times, while the second uses varying ranges of truncation at different

event times. The second is somewhat similar to the approach used by Halpin (2013)

to approximate the complete data log-likelihood of the classical Hawkes process. It

might also be worth noting that the first method is similar to the use of a fixed

number of particles in the sequential Monte Carlo approximation to the likelihood

of hidden Markov models.

First, a discussion on the truncation to the distribution of the most recent im-

migrant. Specifically, at each event time τi, this method only considers at most Bi

most recent events as the possible candidates for the most recent immigrant. This

method effectively assumes that the events which occur before the Bi-th most recent

event have negligible probabilities of being the most recent immigrant event. There

are two choices of Bi considered in this section. The first assumes that Bi ≡ B for

a large integer B and the second allows the Bi to depend on the event time τi. In

the case of dynamic Bi’s, at each step of the likelihood evaluation algorithm, the

Bi is the value such that the sum of the most recent immigrant probabilities sum

up to q or larger, where the threshold probability q = 1 − ε for a small ε > 0. Let

ci,j denote the cumulative most recent immigrant probability of the most recent j

events at time τi, so that ci,j =
∑j

k=1 pi,i−k, then the dynamically chosen Bi is given
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by, Bi = min {j > 1 : cij > q} . Next, the probabilities pij, j = i − Bi, . . . , i − 1,

are renormalized to sum to 1, and the pij for j = 1, . . . , i − Bi − 1 are all set to 0.

By a slight misuse of notation, these slightly modified probabilities are still denoted

by pij. The inner summation terms in the log-likelihood function (4.2.1) are then

approximated as follows at each iteration,

i−1∑
j=1

pijdij ≈
∑

j:i−Bi6j6i−1

pijdij, (4.3.1)

n∑
j=1

pn+1,jSn+1,j ≈
∑

j:n−Bn6j6n

pn+1,jSn+1,j, (4.3.2)

and the most recent immigrant probabilities pi+1,j at the beginning of the next

iteration are still calculated using the recursion (3.3.5), before they are subsequently

truncated.

At this point, it appears already that the approximation to the RHawkes pro-

cess log-likelihood is linear in computational time even without the truncation to

the excitation effect, at least when Bi ≡ B, since at each iteration, at most B

computations are needed to calculate the most recent immigrant probabilities pij,

j = i−B, . . . , i−1, at most B computations to calculate the conditional densities dij

or the conditional survival probabilities Sn+1,j, j = i−B, . . . , i− 1, given in (3.3.3)

and (3.3.4), and a final summation of at most B terms in (4.3.1) or (4.3.2). How-

ever, this is not true in general, because the computation of pij, dij and Sij involves

φ(τi) =
∑i−1

j=1 g(τi − τj) and Φ(τi) =
∑i−1

j=1 G(τi − τj), both of which require linearly

growing time to compute in general, due to their dependence on all past event times

τj, j = 1, . . . , i− 1. Note that the notation g(t) = ηh(t) and G(t) = ηH(t) has been

used here, and will be used for the remainder of this chapter.

For genuine linear-time approximation algorithm, one more approximation is

needed to make sure that the computation time required for the dij’s and Sij’s

for each i stays bounded. To this end, observe that their dependence on Φ(τi) −
Φ(τi−1) can be circumvented. Specifically, note that from the definition of dij and

Sij in (3.3.3) and (3.3.4) and the expression of the log-likelihood (4.2.1) that the

likelihood can be expressed in this alternative form,

`(θ) = log µ(τ1)− U(τ1) +
n∑
i=2

log

(
i−1∑
j=1

pij d̃ij

)
+ log

(
n∑
j=1

pn+1,jS̃n+1,j

)
+ Φ(T ), (4.3.3)
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where d̃ij and S̃ij are free from the Φ(τi) or Φ(τi−1) and are as follows,

d̃ij = (µ(τi − τj) + φ(τi))e
−{U(τi−τj)−U(τi−1−τj)},

S̃ij = e−{U(τi−τj)−U(τi−1−τj)}.

Furthermore, the recursion to compute the most recent immigrant probabilities pij

in (A.1.1) can also be expressed in terms of d̃ij’s and S̃ij’s as follows,

pij =


φ(τi−1)

µ(τi−1−τj)+φ(τi−1)

pi−1,j d̃i−1,j∑i−2
k=1 pi−1,kd̃i−1,k

, j = 1, . . . , i− 2,

1−
∑i−2

k=1 pik, j = i− 1,

=


pi−1,jφ(τi−1)S̃i−1,j∑i−2

k=1 pi−1,kd̃i−1,k
, j = 1, . . . , i− 2,

1−
∑i−2

k=1 pik, j = i− 1.
(4.3.4)

Note also that, with the truncation on the most recent immigrant distribution

applied, the pij’s at the start of the ith iteration, before the truncation and re-

normalization at the current iteration happens, takes the form,

pij =


pi−1,jφ(τi−1)S̃i−1,j∑i−2

k=i−1−Bi−1
pi−1,kd̃i−1,k

, j = i− 1−Bi−1, . . . , i− 2

1−
∑i−2

k=i−1−Bi−1
pik, j = i− 1.

The computation of the Φ(T ) in (4.3.3) still takes linear time. In considering

the approximate likelihood inference for the classical Hawkes process, some authors

(Lewis and Mohler, 2011; Veen and Schoenberg, 2008) have suggested approximat-

ing Φ(T ) by nG(∞), which is a close approximation when the parameters of the

excitation kernel are such that the kernel decays rapidly. However, this approxi-

mation might be too crude for some parameter values and cause efficiency loss on

the parameters of the excitation kernel. Therefore, calculation of its exact value

without an approximation will be used hereafter, which will not cause concern here,

since the computation needs to happen only once, and the goal, after all, is to find

a linear-time algorithm.

The computational time needed to evaluate φ(τi) can be reduced by assuming

that the excitation effects due to events in the distant past are negligible. This is

justifiable since the integrability condition on the kernel g implies g(τi − τj) ≈ 0

when τi and τj are far apart. Specifically, the approximation,

φ(τi) ≈
i−1∑

j=i−Fi

g(τi − τj),

is used for large values of Fi. Again, two choices of Fi are discussed. The first
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one assumes Fi = min(F, i − 1) for a fixed (large) positive integer F . With the

second approach, Fi is selected to be the smallest integer j 6 i − 1 such that

G(τi − τi−j) > (1− δ)G(∞), for a small δ > 0. That is,

Fi = min {j 6 i− 1;G(τi − τi−j) > (1− δ)G(∞)}

= min
{
j 6 i− 1; τi − τi−j > G̃−1(1− δ)

}
,

where G̃−1(1 − δ) denotes the (1 − δ)-quantile of the normalised excitation kernel

g̃(·) = g(·)/G(∞), and Fi := i− 1, when the the set is empty.

Remark 4.3.1. The dynamic approximation to φ(τi) discussed above is similar to,

but different than, that used by Halpin (2013), which approximates φ(τi) by discard-

ing the terms that are smaller than or equal to a small value δ from the summation:

φ(τi) ≈
∑
j∈Wi

g(τi − τj), with Wi = {j 6 i− 1; g(τi − τj) > δ} .

Compared to Halpin’s approach, the approach considered here seems easier to im-

plement, as determining Fi from G̃−1(1 − δ) is simple using a binary search, while

Halpin’s approach requires the determination of the set Wi, which is not straightfor-

ward when the excitation kernel is not monotonically decreasing.

Remark 4.3.2. When Bi ≡ B and Fi ≡ F , it is clear that the likelihood approx-

imation takes linear time to compute. On the other hand, when the Bi’s and Fi’s

are dynamically determined using the aforementioned approach, it is not instantly

clear that the likelihood approximation algorithm is still a linear time one. However,

there is strong numerical evidence that the sequences B1, . . . , Bn and F1, . . . , Fn are

both asymptotically stationary, suggesting that the algorithm is a linear time one in

a stochastic sense.

Remark 4.3.3. When the excitation kernel is an exponential function, or a finite

linear combination of exponential functions, then the approximation to the φ(τi)’s

are not necessary, since they can be evaluated exactly in linear time. Specifically, if

g(t) = ae−bt for some a, b, then the φ(τi)’s can be calculated using this recursion,

starting with φ(τi) = 0:

φ(τi) = {φ(τi−1) + a} e−b(τi−τi−1), i = 2, . . . , n.

Now if g(t) =
∑K

k=1 ake
−bkt for some K and ak, bk, k = 1, . . . , K, then from

φ(τi) =
∑K

k=1 φk(τi) with φk(τi) :=
∑i−1

j=1 ake
−bk(τi−τj), and the fact that each of

the K sequences {φk(τi), i = 1, . . . , n} , k = 1, . . . , K, can be evaluated in linear

time, it can be seen that φ(τi), i = 1, . . . , n can also be evaluated in linear time.
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4.4 Simulations

4.4.1 Simulation models

This section performs simulations to compare the performance of the Nelder-Mead

simplex, the Newton-Raphson, and approximate likelihood methods. The simu-

lations consist of N = 1000 realizations from the RHawkes process with Weibull

distributed inter-renewal waiting times with hazard function given in (3.6.2) with

shape parameter κ = 3 or 1/3 and scale β = 1.2, or 0.2 such that the mean waiting

time between successive immigrant events is close to one (1.07 and 1.2 respectively).

The excitation function takes an exponential form, given in (3.6.3) with mean wait-

ing time between offspring events γ = 1 and branching ratio η = 0.5. The chosen

branching ratio value implies that approximately half of the events are immigrants

and the other half are offspring events. The censoring times T are 550 and 700 so

that the mean number of events is close to 1000 in both cases.

4.4.2 Simulation results

In this section, the performance of the full likelihood and approximate likelihood

estimation are investigated by comparing the following four methods:

• A full likelihood optimization using the Nelder-Mead simplex method (NM);

• A full likelihood optimization using the Newton-Raphson algorithm (NR);

• An approximate likelihood optimization with fixed B and F values using the

Nelder-Mead simplex method (AL1), where B = F are both set to 10, or the

number of events divided by 20 and then rounded up, whichever is smaller;

• An approximate likelihood optimization consisting of a dynamically chosen Bi

and Fi with ε = 10−6 and δ = 10−6, using the Nelder-Mead simplex method

(AL2).

The optimization routines were considered converged when they were unable to

decrease the value of the log-likelihood by 10−8(|`| + 10−8) at an iteration, that is,

reltol was set at 1e-8 when the optim function in R (R Core Team, 2016) was

called. Table 4.4.1 reports the bias, empirical standard error (SE), mean standard

error estimate (ŜE) for each of the estimated parameters using the four estimation

methods described above. The average running time of the R code [on Intel Xeon

Gold 6130 (22M Cache, 2.1GHz) Skylake processors] to perform the optimization

procedure and compute the approximate Hessian matrix (exact Hessian matrix in the

case of NR) and the total number of iterations until convergence are also displayed.

59



κ = 3 β = 1.2 γ = 1 η = 0.5 Iter Time (s)

NM
Bias 0.0180 -0.0034 0.0147 -0.0033

169.96 95.4SE 0.2622 0.0505 0.2132 0.0302

ŜE 0.2538 0.0489 0.2021 0.0304

NR
Bias 0.0242 -0.0022 0.0256 -0.0025

4.26 69.2SE 0.2590 0.0496 0.2056 0.0296

ŜE 0.2545 0.0489 0.2041 0.0303

AL1
Bias 0.0179 -0.0034 0.0145 -0.0033

170.3 23.1SE 0.2622 0.0505 0.2128 0.0302

ŜE 0.2537 0.0489 0.2019 0.0304

AL2
Bias 0.0180 -0.0034 0.0147 -0.0033

169.62 19.3SE 0.2622 0.0505 0.2132 0.0302

ŜE 0.2526 0.0488 0.2011 0.0303
κ = 1/3 β = 0.2 γ = 1 η = 0.5 Iter Time (s)

NM
Bias -0.0073 0.0155 0.0088 0.0043

143.36 85.9SE 0.0178 0.0418 0.1171 0.0391

ŜE 0.0141 0.0351 0.1115 0.0353

NR
Bias -0.0073 0.0155 0.0092 0.0042

3.89 68.0SE 0.0178 0.0419 0.1167 0.0391

ŜE 0.0141 0.0351 0.1116 0.0353

AL1
Bias -0.0072 0.0170 -0.0123 0.0045

144.60 19.8SE 0.0177 0.0440 0.1138 0.0391

ŜE 0.0142 0.0355 0.1054 0.0353

AL2
Bias -0.0073 0.0155 0.0088 0.0043

143.39 19.8SE 0.0178 0.0418 0.1171 0.0391

ŜE 0.0141 0.0351 0.1114 0.0353

Table 4.4.1: Estimation results for N = 1000 realizations from two simulation mod-
els using the Nelder-Mead (NM) based on the exact likelihood, Newton-Raphson
(NR) and Nelder-Mead based on the two likelihood approximation likelihoods (AL1,
AL2) methods. The NR method needs about four iterations to converge, while the
Nelder-Mead method with exact or approximate log-likelihoods needs substantially
more (about 30 times as many) iterations to converge. The estimates using different
methods are mostly identical. In terms of speed, AL1 and AL2 are roughly five
times as fast as the NM, while the Newton-Raphson is about 30% faster than the
NM.

For all the methods NM, NR, AL1, and AL2, the estimation methods give compa-

rable results. The biases for each parameter using the two full likelihood approaches

with the NM and NR methods are very close to zero, suggesting that these esti-

mates are approximately unbiased and this is expected due to the large sample size.

The average standard errors and empirical standard error estimates are close for all

methods and in particular, the results from NM and AL1 and AL2 are nearly identi-

cal, suggesting the log-likelihood approximations are highly accurate. An important

observation that is beneficial and of practical importance is the similarly small bias

for the approximate likelihood methods AL1 and AL2.

In terms of computation time required, the method NR is about 30% faster

than NM, despite the number of iterations required to achieve convergence being

substantially (over 30 times) smaller than that of the NM (with exact or approximate

log-likelihood). The approximate likelihood methods AL1 and AL2 are the fastest,
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both about five times as fast as the NM method, and about three times as fast as

the NR method. On larger datasets, the speed gains by using the two approximate

likelihood methods should be more impressive due to their linear time complexity

in contrast to the quadratic time complexity of the NM and the NR methods.

4.4.3 Accuracy and speed of the log-likelihood approxima-

tion methods

This section examines the accuracy and speed of the two log-likelihood approxi-

mation methods. To this end, 100 realizations of the sample path of the second

simulation model in Section 4.4.1, where κ = 1/3, β = 0.2, γ = 1, and η = 0.5, up

to the censoring time of 8000 are generated. The exact and the two approximate

log-likelihoods of four parameter vectors relative to each of the 100 sample paths up

to four censoring times are evaluated, to see the influence of the parameter and the

amount of data on the accuracy and speed of the approximation. The four parame-

ter vectors are θ1 = (0.1, 0.1, 0.1, 0.1), θ2 = (0.3, 0.2, 0.5, 0.5), θ3 = (1, 1, 1, 0.8), and

θ4 = (3, 2, 10, 0.9), which are chosen from different regions of the parameter space.

The four censoring times are T1 = 1000, T2 = 2000, T3 = 4000, and T4 = 8000. For

the tuning parameters, B = F = 50 in AL1, and in AL2 the Bi’s and Fi’s were dy-

namically determined using the threshold probabilities 1−ε = 1−δ = 1−0.001. The

average running time in seconds and the median absolute relative error (MARE) of

the log-likelihood approximation are shown in Table 4.4.2 together with the average

number of events, and the mean of the average value of Bi and Fi in AL2. The

average running time and MARE of the two log-likelihood approximation methods

against the average number of events are graphed in Figure 4.4.1.

From Table 4.4.2 and Figure 4.4.1 it can be observed that the running times of

the two log-likelihood approximation methods increase approximately linearly with

the number of events, which is to be expected, since in AL1 the B and F values

are preset, and the average Bi and Fi values are also remarkably stable over time,

as shown in the table. From the table, note that the time required to evaluate the

exact log-likelihood increases roughly quadratically with the amount of data. The

speed of the method AL1 does not seem to depend the parameter vector, while the

speed of AL2 does seem to depend on the parameter vector, because in method AL2

the Bi and Fi values need to adapt to the parameter vectors under consideration to

make sure the preset requirements on the truncations to the most recent immigrant

distribution and the excitation kernel are met. For example, for parameter vector

θ4, where the mean of the offspring birth time distribution γ is 10, the dynamically

selected Fi values are around 130 on average to make sure the truncation to the

excitation kernel accounts for 99.9% ( = 1− 0.001) of the excitation effect.
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T 1000 2000 4000 8000
E [N(T )] 1676.1 3309.0 6478.0 11385.1

θ1 :

κ = 0.1
β = 0.1
γ = 0.1
η = 0.1

Time (s.)
Exact 1.01 3.57 13.61 41.52
AL1 0.15 0.31 0.63 0.95
AL2 0.26 0.31 0.76 1.51

MARE
AL1 0.00e+00 1.24e-15 1.95e-14 4.78e-14
AL2 1.56e-04 1.58e-04 1.53e-04 1.48e-04

E[B] in AL2 5.12 5.10 5.11 5.08
E[F ] in AL2 4.99 4.95 4.96 4.93

θ2 :

κ = 0.3
β = 0.2
γ = 0.5
η = 0.5

Time (s.)
Exact 1.05 3.74 14.26 42.78
AL1 0.15 0.31 0.62 0.95
AL2 0.15 0.34 0.82 1.61

MARE
AL1 1.99e-06 4.67e-06 7.52e-06 9.24e-06
AL2 3.85e-04 3.95e-04 3.93e-04 4.04e-04

E[B] in AL2 11.50 11.46 11.55 11.49
E[F ] in AL2 14.74 14.61 14.66 14.55

θ3 :

κ = 1
β = 1
γ = 1
η = 0.8

Time (s.)
Exact 0.99 3.61 13.64 39.3
AL1 0.15 0.31 0.61 0.93
AL2 0.16 0.37 0.87 1.69

MARE
AL1 2.00e-03 3.78e-03 4.70e-03 2.97e-03
AL2 3.99e-03 5.17e-03 6.33e-03 4.52e-03

E[B] in AL2 18.39 18.23 18.30 18.18
E[F ] in AL2 23.20 22.96 23.10 22.95

θ4 :

κ = 3
β = 2
γ = 10
η = 0.9

Time (s.)
Exact 0.99 3.67 13.87 38.71
AL1 0.15 0.32 0.63 0.95
AL2 0.16 0.37 0.89 1.72

MARE
AL1 1.91e-03 1.48e-03 1.33e-03 4.46e-04
AL2 2.26e-05 1.60e-05 1.37e-05 4.85e-06

E[B] in AL2 14.33 14.21 14.26 14.17
E[F ] in AL2 127.22 128.74 131.00 130.40

Table 4.4.2: The average running time (Time) and the median absolute relative
error (MARE) of the two log-likelihood approximation methods AL1 and AL2 for
four different parameter vectors at four increasingly large censoring times. The
average time required to calculate the exact log-likelihood is also reported. In AL1,
B = F = 50; In AL2, the Bi’s and the Fi’s are dynamically determined from cut-off
probabilities 1− ε and 1− δ respectively, with ε = δ = 0.001.

The MARE of the two approximation methods does not necessarily grow with

the amount of data. Both approximation methods are reasonably accurate in that

the median absolute errors in all cases are well below 1% of the exact log-likelihood

value. The accuracy of both approximation methods seems to be affected by the

parameter vector under consideration, although it seems more so for AL1 than for

AL2, as in AL1 the fixed B and F values can not adapt to the parameter vector

under consideration and therefore might be too small for specific parameter values

to produce accurate approximations.
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Figure 4.4.1: The average running times and median absolute relative errors
(MAREs) of the two log-likelihood methods (AL1 and AL2) on different param-
eters at different censoring times. Left: running times; right: MAREs. Solid lines
for AL1; dashed lines for AL2. Different points indicate different parameter vectors.

4.4.4 Influence of the tuning parameters on the speed and

accuracy of log-likelihood approximation

The speed and accuracy of the likelihood approximation parameters depend on how

the tuning parameters are determined. With large Bi and Fi values, the likelihood

approximations will be more accurate, but the running times will be longer, and

similarly, smaller Bi and Fi values mean faster but less accurate approximations.

This section explores to what extent the choice of the tuning parameters influences

the speed and accuracy of the log-likelihood. To this end, the log-likelihood ap-

proximation methods AL1 and AL2 are applied with varying tuning parameters to

find the log-likelihoods of the parameter vectors θ1, θ2, θ3 and θ4 relative to the

100 simulated sample paths up to censoring time T = 8000 of the RHawkes model.

The tuning parameter values used in AL1 are B = F = 10, 20, . . . , 160; and the

tuning parameter values used in AL2 are ε = δ = 10−1, 10−2, . . . , 10−16. The average

running times of the R code on the 100 datasets, the MARE of the log-likelihood

approximations, for each of the four-parameter vectors in Table 4.4.2 with different

values of the tuning parameters are shown in Figure 4.4.2.

The average of the mean values of the E [B] and E [F ] in AL2 on the 100 datasets

are also reported. From Figure 4.4.2, note that the average running time of AL1

increases roughly linearly with the value of the tuning parameter B and F . The

running times of AL2 also tend to increase as ε and δ shrinks, or equivalently the

approximations to the most recent immigrant distribution and the excitation kernel

function become more and more accurate. It is interesting to note that although AL2
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seems slower than AL1 for the tuning parameters considered, the running time of

AL2 increases much slower than AL1 and plateaus when ε and δ are smaller enough,

despite the average number of back-looking lag E [B] for the most recent immigrant

and the average of forward-looking lag E [F ] for the range of the excitation effect
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Figure 4.4.2: The average running time (top left), and the median absolute relative
error (MARE, top right) of AL1 and AL2 at four different parameter vectors, and
the average of the means of Bi in AL2 (E [B], bottom left), and the average of
the means of the Fi in AL2 (E [F ], bottom right) against the (transformed) tuning
parameter. In the top right panel, the smaller inset graph is a zoom-in of the right
part of the larger graph.

both increasing linearly (cf. lower panels of Figure 4.4.2) as their deterministic

counterparts in AL1. This might be because in AL2 the computational overhead

to determine the values of Bi and Fi dominate the computational cost in each
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iteration when the values of Bi and Fi are small relative to the total sample size.

It should also be mentioned that AL2 seems to be more accurate than AL1, with

the relative approximation error of AL2 on all the four parameters considered being

practically zero when ε and δ are 10−6 or smaller. This is also the reason why the

simulation experiments to compute the MLE of the parameters (cf. Table 4.4.1), the

average number of iterations of the Nelder-Mead optimization routine applied with

the exact log-likelihood and is nearly identical to that with the AL2 approximate

log-likelihood. The implication for fitting RHawkes processes (therefore including

classical Hawkes processes) in practice is that one can simply apply any derivative-

free optimization routines on the approximate log-likelihood calculated using AL2

with very small values of ε and δ, e.g. 10−6 or smaller, to achieve significant gains

in computational speed without having to worry about loss in statistical efficiency.

Another practically useful strategy of fitting the RHawkes process on big datasets is

to obtain an initial estimate of the parameters quickly using AL1 with smaller values

of B and F , and then use the initial estimate as the starting value in a sub-sequential

optimization using the Newton-Raphson method, or using a derivative-free method

with a more accurate log-likelihood approximation.

4.5 Application

4.5.1 Mid-price changes of foreign currency exchange rates

This analysis intends to quantify the level of endogeneity (self-exciting effects) in the

foreign exchange market (forex) using RHawkes processes. For this purpose, the mid-

price changes of the following currency pairs : AUD/USD (Australian Dollar against

US Dollar), USD/CAD (USD against Canadian Dollar), USD/CHF(USD against

Swiss Franc), EUR/USD (euro against USD), GBP/USD (British Pound against

USD), USD/HKD (USD against Hong Kong Dollar), USD/JPY (USD against Japanese

Yen) and USD/SEK (USD against Swedish Krona) are studied. These currency pairs

are analyzed as they represent some of the most traded currency pairs in terms of

value traded. This analysis examines the mid-price changes for these pairs, for the

four trading weeks (excluding weekends) from 1st July 2019 until 26th July 2019 and

only the hours between 12:00:00 GMT until 21:00:00 GMT, the official operating

hours for the New York forex market are considered. The different currency pairs

are compared by analyzing the level of endogenous and exogenous trading activities

and their impact on the mid-price changes.

The mid-price is defined as the mean of the best bid and ask prices, and a

mid-price change happens when the value of this mid-price changes. This change

occurs when either the bid, ask, or a combination thereof, changes the price. It is

well observed that trading activity does not happen in a stationary manner during

65



the trading day. Extremely evident is the drastically different features of trades

exhibited during the opening and closing times of international forex markets. To see

this, in Figure 4.5.1, the expected duration between mid-price changes conditional on
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Figure 4.5.1: A non-parametric estimate of the daily pattern of the duration between
mid-price changes, and in the bottom panel, the operating hours of the major forex
centers around the world.

the time of day that the mid-price change transpired is displayed. The expectation

is estimated using a cubic regression spline, where the knots were chosen every two

hours throughout the 24 hour day. This procedure has previously been employed in

the work of Engle and Russell (1998). The figure shows a clear diurnal pattern with

the New York forex hours having a shorter duration during the opening hours than

the closing hours. It is apparent, that when the majority of the forex markets are

in operation, the expected waiting time between mid-price changes is much shorter,

than when fewer markets are in operation. The non-stationary arrival time regime of

the mid-price changes over any particular trading day necessitates a transformation

to remove the intra-day patterns and hence obtain stationarity.

Following the work of Engle and Russell (1998), the observed durations are

discounted by a factor proportional to the corresponding expected duration sub-

jected to the requirement that the sum of the modified durations in a trading day

is equivalent to the sum of the original durations. The purpose is to supply less

weight to mid-price changes occurring in the opening of the US forex markets when

activity is high as the majority of the international forex markets are open; cf. Fig-

ure 4.5.1. Also note that, although the timestamps in the dataset are accurate down
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to microseconds (10−6 seconds), on several occasions two or more price changes are

recorded to have transpired at identical times. On these occasions, small random

noise was added to these event times to break the ties while still preserving the time

order of the price moves.

For each of the currency pairs, the mid-price changes for the twenty trading days

(four trading weeks) are each fitted with a renewal Hawkes processes with Weibull

immigration. The motivation for the Weibull distribution follows from the analy-

sis in Chapter 3, in which the Weibull renewal distribution was able to provide a

superior fit than the gamma and exponential distributions. Also, an exponential

offspring density function was utilized. The model fitting tasks were accomplished

by employing the AL2 approximate likelihood method with ε = δ = 10−20. The pa-
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Figure 4.5.2: Time series plot of the estimated parameters of the RHawkes process
as they evolve over the four trading weeks from 1st July 2019 until 26th July 2019
between the hours of 12:00:00 GMT until 21:00:00 GMT when the New York forex
market is open, for all seven exchanges rates with the USD.

rameter estimates for each of the currency pairs are plotted in Figure 4.5.2, whereby

the time series of estimates evolve over the four trading weeks. Note that, for the

scale parameter of the Weibull distribution β, the results are presented on the log-

scale for better visualization. Furthermore, notice that this analysis only deals with

a fixed window of time and does not take into account the mid-price changes before
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the start of the observation period. As such, edge effects may influence the param-

eter estimates, and the results presented in Figure 4.5.2, but the large sample size

should guarantee that these effects are inconsequential.

First, the exogenous features of the mid-price arrival regime are analyzed be-

fore investigating the endogenous components of the process after that. From Fig-

ure 4.5.2, observed that the arrival process of exogenously driven mid-price changes,

has a Weibull shape parameter that persists below one for the majority of the cur-

rency pairs. This implies that exogenously driven mid-price changes occur in heavier

bursts than would be suggested by a Poisson process. For instance, consider the pair

GBP/USD, the estimated shape parameter κ̂ has the following five-number summary

for the four trading weeks: (0.36, 0.50, 0.55, 0.59, 0.66) with mean 0.53 and standard

deviation 0.09. This implies a heavy-tailed distribution for the arrival process of

exogenous mid-price changes, and therefore price changes due to due to external

influences tend to occur in a more bursty fashion rather than uniformly through

time. However, for the pair USD/HKD, this is not evident, and the arrival process

of exogenous mid-price changes seem to exhibit complete randomness and does not

deviate far from a Poisson process, as the estimated shape parameter κ̂ is not very

different from one.

It is evident that the scale parameter for the currency pair USD/HKD have a

significantly larger estimated value and deviate significantly from the other currency

pairs. This is because the total number of mid-price changes for this pair is extremely

small compared to the other currency pairs. For instance, the mean number of mid-

price changes for a particular day is 2, 399, and this is three times smaller than the

next smallest, which is the currency pair USD/CHF with 8, 299 mid-price changes.

For each trading week, there tends to be a trough that happens on Fridays for the

estimated parameters of β̂ by looking at Figure 4.5.1. Again, this can be attributed

to the high level of trading activity that tends to transpire on Fridays in comparison

to the rest of the trading week, and this phenomenon is present for the majority of

the currency pairs, and hence, the mean waiting time between exogenous mid-price

changes are much smaller on these days.

Market participants generally take a longer time to react to mid-price movements

than to external factors or exogenous mid-price changes when executing currency

trades. For instance, in Figure 4.5.3, the expected waiting time between exoge-

nously driven mid-price changes is displayed in solid lines and endogenously driven

mid-price changes in dashed lines. It can be observed that the waiting time be-

tween endogenous mid-price changes take much longer to transpire than exogenous

ones, implying that market participants take a prolonged time to react to previous

price movements than to external market news or events. Note that the mean wait-

ing time between exogenous events is computed using β̂Γ(1 + 1/κ̂), the mean of a
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Weibull distribution, and endogenous events using γ̂, the mean of an exponential

distribution. These two waiting times tend to move in the same direction, although

on some occasions, the two waiting times move in opposite directions as can been

seen in Figure 4.5.3.
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Figure 4.5.3: Mean waiting time between exogenously driven mid-price changes
in solid lines, and the mean waiting time between endogenously driven mid-price
changes in dashed lines, for the currency pair AUD/USD.

This analysis concludes by analyzing the level of endogeneity in the forex mar-

kets. As seen in Figure 4.5.2, the estimated branching ratio η̂ shows varying levels

of self-excitation with estimated branching ratios ranging between 0.54 for the pair

USD/HKD and 0.93 for the pair USD/SEK. This suggests that a significant por-

tion of the price movements are endogenously generated rather than related to the

arrival of news in the market place. The overall weaker endogeneity in the price

movements of the HKD relative to the USD compared to the other currency pairs

could be because the price of the HKD is pegged to the USD and therefore traders

of this currency pair might be less sensitive to its price movements. Another critical

aspect to acknowledge is the waiting time between endogenous mid-price changes.

It can be observed that the USD/CHF exchange rate exhibit highly dispersed values

of γ̂ compared to the other currency pairs. For instance, the average of the mean

waiting times for the pair USD/CAD is 7.14 seconds, and for the pair USD/CHF,

it is significantly longer with 171.03 seconds.

The two-step procedure of transforming the observed event times and then fit-

ting a model to these transformed times could potentially be handled within a single

framework. Instead of transforming the observed event times to account for the di-

urnal patterns exhibited during the trading day, Zhuang and Mateu (2019) have

implemented a semi-parametric approach to allow the background intensity to de-
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pend on three separate temporal components relating to a long term trend, daily

periodicity, and weekly periodicity as well as a separable spatial component. They

generalize the non-parametric stochastic reconstruction method to estimate each

component in the background intensity and apply this model to describe the oc-

currences of violence or robbery in Castellón, Spain. This approach might be more

natural to account for the daily variation in trading activity that is present during

the operating hours, and the different levels of activity that occur throughout a

trading week.
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Chapter 5

The multivariate renewal Hawkes

process1

5.1 Introduction

In many areas, researchers encounter multi-type event sequence data. For example,

in earthquake modeling, the data may contain earthquakes from several neighboring

regions. In finance, the tick history data on stocks records both the times of trades

and the times of quotes; and order book data records the arrival times and other fea-

tures of limit and market orders such as the side of the trade. In these applications,

it is of interest to study not only the interactions within events of the same type

but also the interactions between events of different types. Therefore, multivariate

point processes, where different components are allowed to interact with each other,

are needed. A multivariate point process model for this purpose is the multivariate

Hawkes process (Hawkes, 1971). Bowsher (2007) modeled the timing of trades and

mid-quote price changes for an NYSE stock using a generalized bivariate Hawkes

process that allows the baseline event rate to vary with time. Embrechts et al.

(2011) fit the bivariate Hawkes process to daily data on the negative and positive

exceedances of certain threshold levels for the Dow Jones Industrial Average index.

Bacry et al. (2013) showed that the multivariate Hawkes process could demonstrate

the Epps effect and lead-lag effect observed in financial data. When interpreted as

branching Poisson processes, both the multivariate Hawkes process and the general-

ization considered by Bowsher (2007) assume the arrival processes of immigrants to

be Poisson and therefore do not allow over- or under-dispersion of the numbers of

immigrants, or serial correlation of the numbers of immigrants in non-overlapping

time intervals, even events of the same type. Such assumptions restrict the modeling

capabilities of the multivariate Hawkes process unnecessarily.

1Most of the content shown in this chapter has been published in the Computational Statistic
and Data Analysis; see Stindl and Chen (2018).
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This chapter introduces a point process model which extends on the RHawkes

process by allowing the events of the process to be of different types and, in addition

to the self-excitation effect among events of the same type, allowing events of each

type to affect the future occurrence rates of events of other types through the mutual

excitation mechanism adopted in the multivariate Hawkes processes. The model

additionally extends the multivariate Hawkes process in that the immigrant events

of different types can arrive according to general renewal processes, rather than

Poisson processes in the classical multivariate Hawkes process. This implies that

the numbers of immigrant events of the same type in non-overlapping time intervals

are allowed to have serial correlation and to be over- or under-dispersed relative to

the Poisson distribution. The extension is naturally called the multivariate renewal

Hawkes process or termed MRHawkes process for short.

Similar to the RHawkes process, the MRHawkes process can be efficiently sim-

ulated by utilizing the branching process interpretation. Moreover, similar to the

RHawkes process, the MRHawkes process does not have an easy to evaluate like-

lihood function. This chapter will derive an algorithm to efficiently evaluate the

likelihood of the MRHawkes process model, using an approach analogous to that of

Chapter 3. The feasibility of fitting the MRHawkes process model is demonstrated

by applying the model to data by likelihood maximization, on simulated data, and

real-life data. The time and space complexities of the algorithm for MRHawkes

process likelihood evaluation are both polynomial in the number of events observed,

and therefore, the algorithm can be relatively slow on large datasets. To overcome

this issue, a modification to the algorithm will be proposed, which can yield a good

approximation of the likelihood in quadratic time and linear storage space. This

chapter will provide an approach to assess two aspects of the goodness-of-fit of the

MRHawkes model, the temporal patterns of the events and the event type distribu-

tion using the Rosenblatt residuals (Rosenblatt, 1952) and the Universal residuals

(Brockwell, 2007) respectively. A simulation-based approach to predict future event

occurrences will also be proposed.

The remainder of the chapter is structured as follows. Section 5.2 introduces the

MRHawkes process model. Section 5.3 derives an exact algorithm for evaluation

of the likelihood of the MRHawkes process. A method to evaluate the goodness-

of-fit is presented in Section 5.4 and methods for future events prediction in Sec-

tion 5.5. Results of the simulation studies are reported in Section 5.6 as well as

methods to simulate the process and the assessment of the predictive performance

of the model. Applications in seismology and finance are presented in Section 5.7

with an analysis of earthquakes arising in two Pacific island countries Fiji and Van-

uatu and a dataset of trade-throughs for the stock BNP Paribas, traded on the

Euronext Paris stock exchange. An R package called MRHawkes implementing the
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proposed methodologies can be downloaded from the CRAN (https://CRAN.R-

project.org/package=MRHawkes).

5.2 Model and notation

Let {(τi, zi), i = 1, 2, . . . } be a realization of a multivariate point process where τ1 <

τ2 < . . . are all distinct and interpretable as the occurrence time of the i-th event and

zi ∈ {1, . . . ,M} indicates the i-th event type. Let the associated M -variate counting

process be N t = (N1(t), . . . , NM(t)), where Nm(t) is the number of type-m events

up to time t. Analogous to Chapter 3, let Mi denote the unobservable immigrant

or offspring status indicator, where again Mi = 0 if the event is an immigrant

otherwise it is an offspring and Mi = 1. The intensity process of the MRHawkes

process requires knowledge of each of the unobservable indexes of the most recent

immigrant events for each componentm before time t denoted by Im(t) = max{i|τi <
t,Mi = 0, zi = m}. Then collect these to form the M -dimensional vector I(t) that

contains the most recent immigrant index for all M components at time t. The

natural filtration of the multivariate point process is denoted by F = {Ft; t > 0},
so that Ft = σ {N s; s 6 t}.

The intensity process for the m-th component of the multivariate renewal Hawkes

(MRHawkes) process λm(t), t > 0 relative to the enlarged (non-natural) filtration

F̃t = σ {N s, I(s); s 6 t}, t > 0 takes the following form,

λm(t) =
E
[
dNm(t)|F̃t−

]
dt

= µm(t− τIm(t)) +
∑
j : τj<t

ηm,zjhm,zj(t− τj)

=: µm(t− τIm(t)) + φm(t), (5.2.1)

where µm(t − τIm(t)) is the immigrant arrival rate that renews on the arrival of a

type-m immigrant, with µm(·) > 0 being the hazard rate function of the i.i.d. wait-

ing times between successive type-m immigrants, the constant ηm,zj > 0 is termed

the branching ratio and indicates the average number of type-m children due to an

event of type zj, the function hm,zj(·) > 0 is termed the offspring density function

and indicates the density of the birth times of type-m children given there is at least

one type-zj child. The function ηm,zjhm,zj(·) is known as the excitation function

and indicates the excitation effect for component m due to component zj. It is a

requirement that the functions µm(·) integrate to infinity, and the branching ratios

ηm,zj are non-negative and strictly smaller than unity. Furthermore, it is assumed

that the branching matrix, defined as H := (ηj,k; j, k ∈ {1, · · · ,M}), has eigenval-

ues that are strictly smaller than unity. This chapter deals with the estimation of
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model parameters when the functions µm(·)’s and hm,zj(·)’s are given a parametric

form up to a finite-dimensional parameter.

The i.i.d. waiting times between immigrant arrivals form a renewal process for the

m-th component, whereas, in the multivariate Hawkes process, type-m immigrants

arrive according to a Poisson process. As a consequence, the multivariate Hawkes

process can be viewed as a particular sub-model of the MRHawkes process when

the immigrant renewal process is specified to have an exponential inter-renewal

distribution, and then the hazard functions µm(·) are merely constants. Again,

similar to before, a commonly used form of the inter-renewal hazard function is,

µm(t) =
κm
βm

(
t

βm

)κm−1

, t > 0,

in which case the corresponding distributions are Weibull, and the κm and βm are

referred to as the shape and scale parameters respectively. When the shape pa-

rameters are unity, the hazard functions are constant, and the immigrant arrival

processes are Poisson. A hypothesis test on the shape parameters can be conducted

to assess whether any of these parameters are statistically different from unity, in

which case the MRHawkes process deviates from the multivariate Hawkes process.

Figure 5.2.1 displays a simulated realization of a bivariate RHawkes process, with

Weibull inter-immigration waiting time distributions for both component processes.

The shape parameters for the components are κ1 = 3 and κ2 = 1/3, and the scale

parameters are β1 = 50 and β2 = 20. The offspring densities are both exponential

with mean 8. The branching ratios are η1,1 = 0.2, η2,1 = 0.2, η1,2 = 0.3, and

η2,2 = 0.1. The top panel of Figure 5.2.1 displays the component intensities in (5.2.1)

for each individual component, λ1(t) and λ2(t), and the total intensity λ(t) = λ1(t)+

λ2(t). Note that due to the self-and mutual excitation effects, each of the intensity

curves has a jump discontinuity whenever there is an event. Moreover, the intensity

λ2(t) and the total intensity λ(t) is unbounded at times. This is because the shape

parameter for component two κ2 = 1/3 is less than unity, and therefore µ2(t) =
1/3
20

( t
20

)−2/3 tends to infinity when t approaches 0 from the right, which causes µ2(t−
τI2(t)) to tend to infinity when t approaches any immigrant arrival time of component

two. The bottom panel of Figure 5.2.1 displays the barcode plot of the event times

for each component and also the pooled event times. The first component appears

to exhibit more evenly distributed event times due to the relatively large shape

parameter κ1 = 3 > 1 despite the clustering of events due to the excitation effects,

while the second component exhibits much stronger clustering among the event

times, due to a small shape parameter κ1 = 1/3 < 1 causing the spiking of the event

intensity after each immigration event of component 2. The multivariate Hawkes

(1971) process can not easily accommodate such widely varying clustering features.
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Figure 5.2.1: A simulated realization of a bivariate renewal Hawkes process. The
figure displays the intensity function λ(t) and the associated component intensities
λ1(t) and λ2(t). The figure also presents a barcode plot of the event times of the
component processes as well as the overall process, where the bars in the first row
indicate events of the first component process, the second row the second component
process, and the last row indicates the pooled event times.

5.3 Maximum likelihood estimation

This section develops a recursive algorithm to compute the likelihood of the MRHawkes

process model based on the observed data over the interval (0, T ], which consists of

the event times τ1:n, event types z1:n and N(T ) = n. It is natural to evaluate the

likelihood by conditioning upon the history of the process up until each event time,

that is, condition on the previous event times and types. Thus, the likelihood can

be decomposed as a product of conditional densities by employing the chain rule as

follows,

L(τ1:n, z1:n|θ) = p(τ1, z1)

{
n∏
i=2

p(τi, zi|τ1:i−1, z1:i−1)

}
P(τn+1 > T |τ1:n, z1:n), (5.3.1)

where for notation convenience τ1:i is short for (τ1, . . . , τi) as before and z1:i denotes

(z1, . . . , zi). The form of the conditional intensity given in (5.2.1) means that the

most recent immigrant index vector must be conditioned upon. This allows the
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intensity and indeed the inter-event waiting time distribution between events to have

an easily computable expression. Under this condition, the expression µm(t− τIm(t))

can be evaluated and thus by conditioning on the index of the most recent immigrant

events for each component m = 1, . . . ,M , denoted by j = (j1, . . . , jM) taking values

in {0, 1, . . . , , i− 1}M , the following holds,

p(τi, zi|τ1:i−1, z1:i−1) =
∑
∀j

di(j)× pi(j), i = 1, 2, . . . , n, (5.3.2)

P (τn+1 > T |τ1:n, z1:n) =
∑
∀j

Sn+1(j)× pn+1(j), (5.3.3)

where

di(j) := p(τi, zi | τ1:i−1, z1:i−1, I(τi) = j), (5.3.4)

Sn+1(j) := P (τn+1 > T |τ1:n, z1:n, I(τn+1) = j) , (5.3.5)

pi(j) := P(I(τi) = j|τ1:i−1, z1:i−1). (5.3.6)

The most recent immigrant index vector j has additional requirements to be ade-

quately defined. The elements of j must be unique unless they take the value zero,

and this exception only occurs when no immigrant from a particular component

has arrived by time τi. This constraint implies that the most recent immigrant for

different components do not coincide.

In the sequel, further notations that will follow closely to those introduced in

Chapter 3 are adjusted to accommodate the multivariate context. Lets denote the

cumulative immigrant hazard function for type-m events as Um(t) =
∫ t

0
µm(s)ds, the

offspring distribution function for individuals of type-m given the parent is a type-

n event as Hm,n(t) =
∫ t

0
hm,n(s)ds and the cumulative offspring effects for type-m

events as Φm(t) =
∫ t

0
φm(s)ds =

∑
j : τj<t

ηm,zjHm,zj(t−τj). The cumulative offspring

effects for the entire process is given by Φ(t) =
∑M

m=1 Φm(t). Then by conditioning

on the previous event times, event types and most recent immigrant index vector

I(τi−1) = j, the conditional hazard rate function of the inter-event waiting time

τi − τi−1 is given by,

haz(t) =
M∑
m=1

{
µm(t+ τi−1 − τjm) + φm(t+ τi−1)

}
.

The model implicitly assumes that the first event is an immigrant event, and thus

the joint density of the first event time τ1 and event type z1 is given by p(τ1, z1) =

e−
∑M
m=1 Um(τ1)µz1(τ1). For the other event times i > 2, the conditional densities and

survival probabilities given in (5.3.4) and (5.3.5) are directly computable and given
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by the following,

di(j) = (µzi(τi − τjzi ) + φzi(τi))e
−

∑M
m=1{Um(τi−τjm )−Um(τi−1−τjm )}−{Φ(τi)−Φ(τi−1)},

(5.3.7)

Sn+1(j) = e−
∑M
m=1{Um(T−τjm )−Um(τn−τjm )}−{Φ(T )−Φ(τn)}. (5.3.8)

It still remains to calculate the conditional probabilities pi(j) given in (5.3.6). By

conditioning on the most recent immigrant index vector I(τi−1) and Bayes’ theorem,

the following recursion is obtained,

pi(j) =
∑
j′

P (I(τi) = j| τ1:i−1, z1:i−1, I(τi−1) = j′) P (I(τi−1) = j′|τ1:i−1, z1:i−1)

=
∑
j′

P (I(τi) = j| τ1:i−1, z1:i−1, I(τi−1) = j′)

× p(τi−1, zi−1|τ1:i−2, z1:i−2, I(τi−1) = j′)

p (τi−1, zi−1|τ1:i−2, z1:i−2)
P (I(τi−1) = j′|τ1:i−2, z1:i−2)

=
∑
j′

P (I(τi) = j| τ1:i−1, z1:i−1, I(τi−1) = j′)× di−1(j′)× pi−1(j′)

p(τi−1, zi−1|τ1:i−2, z1:i−2)
,

(5.3.9)

where the summation index j′ takes values in {0, . . . , i− 2}M . One important ob-

servation to make is that at most one component of the most recent immigrant

index vector I(τi) can equal i− 1 while the remaining components must remain the

same as in I(τi−1), according to whether Mi−1 = 0 or Mi−1 = 1 and the event type

zi−1. Now define em ∈ RM to be the unit vector with the m-th element taking the

value one and other elements taking the value zero, then the following Markov type

property holds,

I(τi) =

I(τi−1) if Mi−1 = 1

δzi−1
(I(τi−1)) if Mi−1 = 0,

(5.3.10)

where δm(v) = v + ((i − 1) − eTmv)em defines a function that returns the same

input vector v except the m-th component vm is replaced with the value i− 1. The

function δm(·) hence updates the most recent immigrant index vector to indicate

that a type-m immigrant has arrived at time τi−1.

The conditional distribution of the indexes of the most recent immigrants for each

component process in (5.3.10) are computed by employing the following property

of Poisson processes which states that, for two independent non-stationary Poisson

processes, the probabilities of the first event of their superposition (or sum) process

belonging to each constituent process are proportional to the intensity functions of

the constituent processes evaluated at the time of the first event. Then observe that,
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on the arrival of an offspring event, the most recent immigrant index vector remains

unchanged and hence j = j ′. However, when a type-m immigrant arrives, observe

that j = δm(I(t)). Now by conditioning on the most recent immigrant index vector

at time τi−1 the following holds,

P (I(τi) = j|τ1:i−1, z1:i−1, I(τi−1) = j ′)

=


P (Mi−1 = 1|τ1:i−1, z1,i−1, I(τi−1) = j ′) j = j ′

P (Mi−1 = 0|τ1:i−1, z1:i−1, I(τi−1 = j ′)) j = δzi−1
(I(τi−1))

0 else,

where

P (Mi−1 = 1|τ1:i−1, z1,i−1, I(τi−1) = j ′) =
φzi−1

(τi−1)

µzi−1
(τi−1 − τj′zi−1

) + φzi−1
(τi−1)

, (5.3.11)

and

P (Mi−1 = 0|τ1:i−1, z1:i−1, I(τi−1) = j′) =
µzi−1

(τi−1 − τj′zi−1
)

µzi−1
(τi−1 − τj′zi−1

) + φzi−1
(τi−1)

. (5.3.12)

Then by combining (5.3.9), (5.3.11) and (5.3.12), the calculation of the most

recent immigrant probabilities in (5.3.6) reduces to the following recursion,

pi(j) =


φzi−1(τi−1)

µzi−1(τi−1 − τjzi−1
) + φzi−1(τi−1)

× di−1(j) pi−1(j)

p (τi−1, zi−1|τ1:i−1, z1:i−1)
, j = j′

i−2∑
j′zi−1

=0

µzi−1(τi−1 − τj′zi−1
)

µzi−1(τi−1 − τj′zi−1
) + φzi−1(τi−1)

× di−1(j′) pi−1(j′)

p (τi−1, zi−1|τ1:i−1, z1:i−1)
, j = δzi−1(τi−1)

(5.3.13)

for i = 3, . . . , n+ 1.

The likelihood function can then be evaluated at some supplied parameter values

by computing the conditional density p(τi, zi|τ1:i−1, z1:i−1) and the most recent immi-

grant probabilities pi(j) using the bivariate recursion developed in (5.3.2), (5.3.13),

and the expression for di(j) given by (5.3.7). The initial conditions for the recursion

are p2(em) equals one if z1 = m otherwise it equals zero, for all m = 1, . . . ,M . The

survival probability P(τn+1 > T |τ1:n, z1:n) is calculated using (5.3.3), (5.3.8), and

pn+1(j). Following the evaluation of all these terms, they can be substituted into

(5.3.1) to compute the likelihood. The parametric forms for the immigrant haz-

ard rate functions and offspring densities imply that the likelihood can be directly

evaluated and maximized with general-purpose optimization routines to obtain the

MLEs.
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Remark 5.3.1. The computational time required for likelihood evaluation of the

MRHawkes process is a polynomial function of the number of events n, or O(nM+1).

The storage of the most recent immigrant probabilities requires an M-dimension

matrix of size nM . Therefore, computation of the likelihood is practically infeasi-

ble in applications with a large n. However, the most recent immigrant probabilities

become insignificant for very distant event times and therefore, to speed up the likeli-

hood evaluation algorithm, these probabilities are assumed to be insignificant and are

thus truncated. The modified algorithm only considers the most recent B events to be

possible immigrants, and hence the storage is always reduced to an M-dimensional

matrix of size BM . With this truncation, the time required to compute the likeli-

hood is also reduced to O(n2) in general, or O(n) when the offspring distribution

is exponential. The tuning parameter B signifies a trade-off between computational

time and computational accuracy. In practice, it is advisable to use several B values

to make sure the truncation is not having a material effect on the final parameter

estimates.

5.4 Model assessment

A natural next step is to assess how well the model fits the data. There are two

aspects of the model that need to be examined, the temporal patterns of the events

and the distribution of the event types. For the former, the Rosenblatt (1952) resid-

uals, similar to that used in Chapter 3 will be employed. For the latter, the universal

residuals introduced by Brockwell (2007), a generalized version of the Rosenblatt

residuals to accommodate distributions with discontinuities is implemented. When

the model specification is correct, the residuals form an i.i.d. sequence of uniform

random variables on the unit interval. Therefore, to assess model fit, one can exam-

ine the residual sequence for uniformity and independence.

More specifically, the Rosenblatt residuals for the observed event times are de-

fined as Wi = Fi(τi|τ1:i−1, z1:i−1), where Fi(t|τ1:i−1, z1:i−1) is the conditional distribu-

tion function of τi given τ1:i−1 and z1:i−1. Analogous to (3.4.1) in Chapter 3, the Wi

are given by,

Wi = Fi(τi|τ1:i−1, z1:i−1) = 1−
∑
∀j

pi(j)Si(j), (5.4.1)

where pi(j) are the most recent immigrant probabilities which are computed in

the likelihood evaluation in (5.3.13) and Si(j) are given similarly to (5.3.8) by the
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following,

Si(j) = exp

{
−

M∑
m=1

{Um(τi − τjm)− Um(τi−1 − τjm)} − {Φ(τi)− Φ(τi−1)}

}
, ∀j.

Furthermore, the universal residuals for the observed event types z1:n are defined as

follows,

Vi = (1− Ui)Gi(zi − |z1:i−1, τ1:i) + UiGi(zi|z1:i−1, τ1:i), i = 1, . . . , n,

where U1:n is an auxiliary sequence of i.i.d. uniform random variables on the unit

interval, independent ofN(T ), z1:n and τ1:n; Gi(z|z1:i−1, τ1:i) is the (discrete) distribu-

tion function of the event type zi given previous event types z1:i−1 and previous and

current event times τ1:i; and Gi(z−|z1:i−1, τ1:i) denote the left limit of Gi(·|z1:i−1, τ1:i)

at z. To compute the conditional distribution function Gi, the conditional proba-

bilities of the event types are necessary. From the calculations in Section 5.3, note

that,

P(zi = m|z1:i−1, τ1:i) =

∑
∀j d(j,m)pi(j)∑M

z=1

∑
∀j d(j, z)pi(j)

,

where d(j, zi) = di(j) as given previously in (5.3.4).

5.5 Model predictions

This section considers the problem of predicting the occurrence time and event type

of the next event after the censoring time T based on the observations up until the

censoring time.

5.5.1 Predictive density and hazard function

The plug-in predictive density function provides the first solution to this problem.

Using the conditional probabilities derived in the evaluation of the likelihood, the

joint conditional predictive density of the next occurrence time and event type

(τN(T )+1, zN(T )+1) with respect to the product measure L ⊗ C, where L and C are

the Lebesgue and counting measures respectively, is given by,

p (τ, z|τ1:n, z1:n, τ > T ) =

∑
j pn+1(j) dn+1(j)

P (τn+1 > T |τ1:n, z1:n)
, τ > T, z ∈ {1, . . . ,M} , (5.5.1)

where pn+1(j) are calculated using (5.3.13) as before, the denominator is computed

in (5.3.3) and dn+1(j) are given similar to (5.3.7) by the following,

dn+1(j) = (µz(τ − τjz) + φz(τ))e−
∑M
m=1{Um(τ−τjm )−Um(τn−τjm )}−{Φ(τ)−Φ(τn)}. (5.5.2)
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The predictive density for the next events occurrence time is obtained by computing

the marginal density from the joint density in (5.5.1) by taking the summation over

all possible event types z to obtain the following,

p (τ |τ1:n, z1:n, τ > T ) =

∑
j {pn+1(j)

∑
z dn+1(j)}

P (τn+1 > T |τ1:n, z1:n)
, τ > T. (5.5.3)

The predictive density depends on the unknown parameters of the model and to

overcome this, the unknown parameters are replaced by the MLEs obtained in Sec-

tion 5.3, which then give rise to the plug-in predictive density.

5.5.2 Predictive simulations

A second approach to future event prediction is to simulate the number of events

from the censoring T to a future time point T̃ . The predictive simulations account

for the actual observations up to time T by conditioning on N(T ) = n and the

values of τ1:n and z1:n. The algorithm works as follows. First, simulate the M -

dimensional event index vector of the most recent immigrants at the censoring time,

according to the conditional distribution P (I(T ) = j|τ1:n, z1:n, τn+1 > T ) = pn+1(j).

Second, simulate the next immigrant arrival time for each component according to

the appropriate conditional inter-renewal distribution given that it is greater than

the duration between the simulated most recent immigrant arrival time and the

censoring time. Third, simulate the future arrival times of immigrants of differ-

ent components by time T̃ according to the respective inter-renewal distributions.

Fourth, simulate the offspring processes up to time T̃ for each of the immigrants in

the interval (T, T̃ ] according to the algorithm to be described in Section 5.6.1 below.

Last, simulate the arrival times in (T, T̃ ] of the offspring descending from events

prior to the censoring time T according to a non-stationary multivariate Hawkes

process (NSMHP) with baselines intensity functions νj(·) = φj(T + ·), j = 1, . . . ,M

and excitation functions gm,n(·) = ηm,nhm,n(·), m,n = 1, . . . ,M , using the algorithm

described below in Section 5.6.1.

This procedure enables the future to be simulated many times, given the model

parameters, and thus leads to another method to the first prediction problem. From

the predictive simulations, the next event time and event type can be extracted. In

fact, any quantity of interest can be extracted from these simulations. For example,

the construction of prediction intervals for the number of events in a prediction win-

dow is obtained by extracting the appropriate quantiles of the simulated numbers

of events. It should be remarked that this method does not take into account the

uncertainty in the parameter estimates and could lead to overly confident predic-

tions. However, Section 5.6.4 will demonstrate through simulations that this effect is
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inconsequential when there is sufficient data to ensure accurate estimation of model

parameters.

5.6 Simulations

This section conducts simulation studies to assess the numerical performance of the

MLE of the MRHawkes process model introduced in Section 5.3 and assesses the

predictive performance of the model using simulated data. This section also explains

how to efficiently simulate the process up to a predetermined censoring time T by

utilizing the linear nature of the intensity.

5.6.1 Simulation algorithm

Simulation of the MRHawkes process model can be efficiently implemented using

the cascading algorithm motivated by the cluster process representation of the

MRHawkes process. To simulate the occurrence times and event types to a pre-

determined censoring time T , first, simulate the immigrant arrival times up to time

T for each event type as the cumulative sums of i.i.d. positive random variables

with the appropriate hazard rate function. For each event type z ∈ {1, . . . ,M},
denote the simulated immigrant arrival times by τ 0

z,1 < τ 0
z,2 < · · · < τ 0

z,nz 6 T . Then

simulate the corresponding offspring for each of the immigrants i = 1, . . . , nz up

to time T , by simulating a non-stationary multivariate Hawkes process (NSMHP)

with baseline intensity functions νj(t) = ηj,zhj,z(t), j = 1, . . . ,M , and excitation

functions gm,n(t) = ηm,nhm,n(t), m,n ∈ {1, . . . ,M}, on the interval (0, T − τ 0
z,i], and

then translate the event times into the interval (τ 0
z,i, T ].

The NSMHP on the interval (0, T ] with baseline intensity functions νj(·), j =

1, . . . ,M and excitation functions gm,n(·), m,n = 1, . . .M , can be simulated with

a cascading algorithm as follows. First, simulate the generation 0 events of types

j = 1, . . .M on (0, T ] according to independent Poisson processes with intensity

functions νj(·), j = 1, . . . ,M ; then keep simulating generation i (i = 1, 2, . . . ) events

as long as the number of generation i − 1 events of any type is non-zero. For each

event type n = 1, 2, . . . ,M , simulate the generation i events of types m = 1, . . . ,M

according to M independent Poisson processes with respective intensity functions

gm,n(·). When this recursive process stops, return events of all generations with their

respective event type labels as the events of the NSMHP on the interval (0, T ].

5.6.2 Simulation results

This section assesses the numerical performance of the statistical inferential meth-

ods developed in Section 5.3. The simulations performed in this section are similar
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to those discussed in Section 3 with Weibull renewal immigrant inter-event waiting

times with shape parameter κm and scale parameter βm. The offspring densities are

chosen to be exponential with shape parameter (or mean) γm,n. The bivariate ver-

sion of the MRHawkes process model is analyzed with M = 2. For the first Weibull

renewal distribution, the shape and scale parameter are κ1 = 3 and β1 = 1.2 and

for the second κ2 = 1/3 and β2 = 0.2. These two processes correspond to evenly

distributed immigrant arrivals and high levels of burstiness and clustering, as men-

tioned previously. The scale parameters for the renewal immigrant distributions are

selected so that the expected waiting time between immigrants of the same type is

close to one. For the endogenous aspects of the process, the exponential offspring

densities are chosen to have a mean waiting time in the set γm,n ∈ {0.5, 1, 3}. This

parameter selection is chosen to exhibit offspring waiting times that are shorter

than, equal to, and longer than the expected immigrant inter-event waiting times.

Furthermore, this simulation study assumes that the offspring densities for offspring

events of the same type have a common shape parameter, that is, γ1,1 = γ1,2 and

γ2,2 = γ2,1 which are henceforth denoted by γ1 and γ2 respectively. The branching

ratios for the self-excitation effects are chosen to be either ηs = 0.3 or ηs = 0.7, corre-

sponding to low and high levels of self-excitation respectively. The cross-excitation

effects have branching ratios ηc = 0.1 or ηc = 0.2, implying that the branching

matrix H has a spectral radius less than one, ensuring the stability of the process.

For each combination of the chosen parameters, the MRHawkes process was sim-

ulated 500 times with varying censoring times T indicated in the table to ensure

the mean length of the realizations was about 1000. For each simulated dataset,

the MLE was computed by directly maximizing the negative log-likelihood function

using the quasi-Newton method, BFGS (Broyden-Fletcher-Goldfarb-Shanno). The

computations were implemented using the R language (R Core Team, 2016), with

the aid of the optim function. The computations are conducted on Intel Xeon X5675

processors (12M cache, 3.06 GHz, 6.4GT/S QPI). The results of the simulations are

reported in Table 5.6.1 in which it reports; the mean of the parameter estimates

(Est), the empirical standard error of the parameter estimates (SE), the average of

the standard errors obtained by inverting the approximate Hessian matrix (ŜE), the

average length of the realizations (AL), the average running time for the optimiza-

tion and computation of the approximate Hessian matrix (RT) and the empirical

coverage probability (CP) of the approximate 95% confidence intervals. The results

in Table 5.6.1 suggest that the maximum likelihood parameter estimates display

consistency as the estimates show minimal bias. The standard error estimates cap-

ture the true variance of the estimates considerably well as they are very close to

the empirical standard errors.
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κ1 β1 κ2 β2 γ1 γ2 η1,1 η1,2 η2,1 η2,2

True 3 1.2 1/3 0.2 1 1 0.7 0.2 0.1 0.3
Est 3.314 1.173 0.331 0.232 1.028 1.097 0.686 0.212 0.101 0.291
SE 1.113 0.169 0.0288 0.0870 0.248 0.814 0.0568 0.0911 0.0257 0.0826

ŜE 0.803 0.132 0.0294 0.0751 0.206 0.435 0.0517 0.0838 0.0251 0.0789
CP 0.944 0.950 0.948 0.972 0.950 0.986 0.952 0.948 0.950 0.964

RT = 20.2 hrs T = 170 Spr(H) = 0.75 AL = 1022
True 3 1.2 1/3 0.2 1 1 0.3 0.1 0.2 0.7
Est 3.119 1.200 0.332 0.231 1.151 1.030 0.282 0.107 0.213 0.683
SE 0.522 0.0909 0.0356 0.137 0.592 0.193 0.0700 0.0310 0.0827 0.0587

ŜE 0.479 0.0836 0.0334 0.0899 0.465 0.177 0.0663 0.0293 0.0799 0.0576
CP 0.950 0.948 0.952 0.984 0.952 0.950 0.942 0.940 0.940 0.950

RT = 20.8 hrs T = 170 Spr(H) = 0.75 AL = 1000
True 3 1.2 1/3 0.2 0.5 3 0.3 0.1 0.1 0.3
Est 3.027 1.197 0.326 0.221 0.527 3.304 0.294 0.103 0.103 0.302
SE 0.278 0.0519 0.0218 0.0641 0.169 2.640 0.0378 0.0330 0.0398 0.0608

ŜE 0.262 0.0484 0.0195 0.0515 0.145 1.155 0.0357 0.0298 0.0360 0.0588
CP 0.952 0.928 0.950 0.976 0.948 0.990 0.948 0.956 0.948 0.954

RT = 19.2 hrs T = 360 Spr(H) = 0.40 AL = 1003
True 3 1.2 1/3 0.2 3 0.5 0.3 0.1 0.1 0.3
Est 3.021 1.195 0.326 0.218 3.932 0.506 0.287 0.113 0.102 0.306
SE 0.311 0.0597 0.0216 0.0554 3.509 0.101 0.0558 0.0624 0.0215 0.0490

ŜE 0.294 0.0542 0.0195 0.0497 1.955 0.0973 0.0507 0.0481 0.0223 0.0485
CP 0.952 0.960 0.934 0.962 0.970 0.960 0.952 0.966 0.954 0.954

RT = 20.8 hrs T = 360 Spr(H) = 0.40 AL = 1016

Table 5.6.1: Results of the maximum likelihood estimation of the MRHawkes pro-
cesses with Weibull renewal immigration and exponential offspring densities, based
on 500 simulated datasets in each case.

When the spectral radius of the branching matrix H is high, that is, when

Spr(H) = 0.75, the immigration scale parameters tend to have a much larger em-

pirical bias and standard error compared to when the spectral radius is lower, that

is, when Spr(H) = 0.4. This observation is to be expected since the total number

of immigrants is much smaller in this circumstance due to the higher levels of ex-

citation effects, and the length of the realizations remain comparatively fixed. The

expected number of type-1 immigrants is 159, and the expected number of type-2

immigrants is 142 when the spectral radius is 0.75. When the spectral radius is

only 0.40, the expected number of type-1 immigrants is 336 and 300 for type-2 im-

migrants. When the arrival of offspring events occur more frequently relative to

immigrants, there tends to be an overestimation of the shape parameter κm while

the scale parameter βm exhibits quite a significant bias. The branching ratios ηm,n

tend to be well estimated for the range of situations considered.

The top two panels presented in Table 5.6.1 have mean waiting times for offspring

generation γm well estimated with the estimates showing minimal bias. This is a

result of a large number of total offspring events present in the realizations. In
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the lower two panels, observe that the estimates of the mean offspring waiting time

parameter tend to have a much larger empirical bias when the offspring mean waiting

time parameter is larger (γm = 3) compared to when the parameter is smaller

(γm = 0.5). The reason for this phenomenon is that a larger shape parameter value

causes the likelihood surface to become much flatter near the true parameter value

in the dimension of the shape parameter.

5.6.3 Comparison with the modified likelihood evaluation

algorithm

This section performs a simulation study to compare the performance of the modified

likelihood evaluation algorithm discussed in Remark 5.3.1 against the full likelihood

evaluation algorithm. The simulation model considered in this comparison is the

first simulation model discussed in Table 5.6.1. The estimates of the parameters

are computed using the modified likelihood evaluation algorithm with values of B

in the set {100, 200, 300, 400,∞}. The same set of simulations as in Table 5.6.1 are

used, and the results using the modified algorithm are reported in Table 5.6.2. The

case in which immigrants arrive more uniformly across time (κ1 = 3) only demands

a relatively small value of B. It can be observed that looking back only 100 events

is reasonably sufficient for accurate estimation of the parameters governing the first

component as κ1, β1, γ1, η1,1 and η1,2 are all very close to the true MLEs and are

their standard errors and coverage probabilities. However, when immigrants arrive

in burst or cluster heavily (κ2 = 1/3), more distant events are required in the ap-

proximation, approximately 400 events in this particular simulation. The type-2

immigrant inter-event waiting times in this simulation model can be considerably

large in comparison to the offspring waiting times and also the type-1 immigrant

inter-event waiting times. As a result, more distant events are needed in the ap-

proximation to obtain an accurate account of all possible most recent immigrants.

The component two parameters κ2, β2, γ2, η2,1 and η2,2 gradually get closer to the

true MLEs as the tuning parameter B becomes larger, with quite good agreement

when B = 400.

From this simulation study, it is evident that the choice of B depends on the

immigrant inter-event waiting times relative to the offspring waiting times as well

as the level of self- and cross-excitation, as discussed in detail in Chapter 4. A

larger number of events must be considered as possible most recent immigrants when

the immigrant renewal distribution exhibits over-dispersion relative to the Poisson

process. This is because many occasions occur when the offspring waiting times are

much shorter than the waiting time between successive immigrant arrivals, and so

one needs to look further back into the past, and hence a more considerable value
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κ1 β1 κ2 β2 γ1 γ2 η1,1 η1,2 η2,1 η2,2

True 3 1.2 1/3 0.2 1 1 0.7 0.2 0.1 0.3
Est 3.314 1.173 0.331 0.232 1.028 1.097 0.686 0.212 0.101 0.291
SE 1.113 0.169 0.0288 0.0870 0.248 0.814 0.0568 0.0911 0.0257 0.0826

ŜE 0.803 0.132 0.0294 0.0751 0.206 0.435 0.0517 0.0838 0.0251 0.0789
CP 0.944 0.950 0.948 0.972 0.950 0.986 0.952 0.948 0.950 0.964

RT = 20.2 hrs B = Inf (MLE)
Est 3.315 1.173 0.348 0.279 1.028 1.122 0.686 0.212 0.0869 0.282
SE 1.113 0.169 0.0277 0.128 0.248 0.511 0.0568 0.0912 0.0264 0.0777

ŜE 0.804 0.132 0.0292 0.0796 0.206 0.425 0.0517 0.0837 0.0247 0.0776
CP 0.944 0.950 0.952 0.970 0.950 0.962 0.952 0.948 0.944 0.956

RT = 0.407 hrs B = 100
Est 3.314 1.173 0.335 0.247 1.028 1.120 0.686 0.212 0.0986 0.287
SE 1.113 0.169 0.0276 0.109 0.248 1.077 0.0568 0.0911 0.0261 0.0853

ŜE 0.803 0.132 0.0294 0.0778 0.206 0.444 0.0517 0.0838 0.0250 0.0790
CP 0.944 0.950 0.946 0.972 0.950 0.992 0.952 0.948 0.950 0.974

RT = 1.185 hrs B = 200
Est 3.314 1.173 0.332 0.238 1.028 1.100 0.686 0.212 0.101 0.290
SE 1.113 0.169 0.0281 0.0986 0.248 0.827 0.0568 0.0911 0.0257 0.0823

ŜE 0.803 0.132 0.0294 0.0766 0.206 0.437 0.0517 0.0838 0.0251 0.0789
CP 0.944 0.950 0.946 0.972 0.950 0.988 0.952 0.948 0.948 0.966

RT = 2.63 hrs B = 300
Est 3.314 1.173 0.331 0.235 1.028 1.098 0.686 0.212 0.101 0.291
SE 1.113 0.169 0.0284 0.0941 0.248 0.819 0.0568 0.0911 0.0257 0.0825

ŜE 0.803 0.132 0.0294 0.0762 0.206 0.435 0.0517 0.0838 0.0251 0.0789
CP 0.944 0.950 0.942 0.978 0.950 0.986 0.952 0.948 0.946 0.964

RT = 4.988 hrs B = 400

Table 5.6.2: Results of the maximum likelihood estimation with the modified likeli-
hood evaluation algorithm that only considers the previous B events as candidates
for the most recent immigrant event.

of B needs to be selected. However, when immigrants occur quite regularly through

time, and the immigration process exhibits under-dispersion, only recent events need

to be considered as possible most recent immigrants, and B can be much smaller

in this case. The choice of tuning parameter value B represents a trade-off between

the accuracy of the parameter estimates compared to the true MLE and the time

required for estimation. One possible method to determine an appropriate value

of B is to study the difference between parameter estimates for different choices of

B, and when the difference is immaterial for that particular application, then that

value of B would be appropriate.

5.6.4 Assessment of the predictive performance

The predictive performance of the simulation-based prediction procedure discussed

in Section 5.5 will now be examined. Consider making predictions using the first

set of simulated data in Table 5.6.1. The aim is to predict the number of events

86



that occur in the prediction window (170, 283], which is two thirds the length of the

observation period for the 500 simulated datasets from the top panel in Table 5.6.1.

To assess the predictive performance, the predicted sample paths based on simulat-

ing the future with the estimated model parameters using the method of maximum

likelihood are compared to the true parameter simulated path. For each simulated

dataset, the future is simulated 500 times. The resulting 95% prediction interval

for the 500 sample paths contains the true number of events in 86.52% of all cases.

This is slightly lower than the expected 95%, but the randomness of the parameter

estimates has not been taken into consideration. The length of the observed sample

paths are on average 1000 events, but the large number of parameters and the large

standard errors can hinder the predictive performance. When the realizations are

long enough, this should not be overly detrimental to the accuracy of the predictions.

The randomness inherent in the parameter estimates could be accounted for by

using the sampling distribution for θ, where θ contains the vector of parameters. For

each simulated path, a new parameter θ̂j is simulated from the multivariate normal

distribution with mean θ̂ (the estimated parameters) and variance-covariance ma-

trix obtained from the approximate Hessian matrix from the numerical optimization

procedure. The simulation study suggests that the estimates are relatively normal

as the empirical coverage probability is relatively consistent at the 95% level sug-

gesting asymptotic normality. However, it should be observed that when the shape

parameter of the offspring density is large, this assumption might not be reason-

able. As the number of observations of the multivariate point process increases, the

randomness in the parameter estimates are substantially reduced and will have a

modest impact on the prediction interval.

5.7 Applications

5.7.1 Analysis of earthquakes around Fiji and Vanuatu

This section analyzes the arrival times of earthquakes occurring in two Pacific is-

land countries Fiji and Vanuatu. The study considers magnitude 5.5 or higher

earthquakes measured on the Richter scale for the 25 years from 01/01/1991 to

31/12/2015. The data for this analysis was obtained from the earthquakes archive

from the United States Geological Survey (USGS), which consists of 1076 earth-

quakes occurrences. During this period 646 earthquakes occur in the area of Fiji,

from hereon in denoted as type-1 events and 428 occur in the area of Vanuatu which

will be denoted as type-2 events. Figure 5.7.1 presents a plot of earthquake occur-

rences surrounding Fiji and Vanuatu during this period where Fiji is on the right,

and Vanuatu is on the left, where the solid circles indicate earthquake in Fiji and

circles for earthquake occurring in Vanuatu.
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Big earthquakes around Fiji (right) and Vanuatu (left), Jan 1991 − Dec 2015

Figure 5.7.1: Large magnitude earthquakes occurring in Fiji and Vanuatu during
1991 to 2015, where circles indicate locations of earthquakes in Vanuatu and solid
circles indicate the locations of earthquakes in Fiji.

The objective is to understand the interactions between these two neighboring

countries and their propensity for earthquakes. The earthquake data is modeled

with an MRHawkes process model with two components. The renewal immigra-

tion inter-event waiting time distributions are Weibull, and the offspring excitation

function is exponential with a common shape parameter γm, which does not depend

on the country (location) of the igniting earthquake. The model incorporates inter-

actions between the two neighboring countries and allows for ease of interpretation

between immigrant arrivals (mainshocks) and their descendants (aftershocks) as well

as location. It is plausible that some useful information is lost when attempting to

model this relationship in the univariate context. The MLEs for the MRHawkes

model are as follows,

κ̂1 = 0.470
(0.0654)

, β̂1 = 19.97
(3.47)

, κ̂2 = 0.342
(0.0221)

, β̂2 = 10.36
(2.51)

, γ̂1 = 394
(155)

,

γ̂2 = 566
(269)

, η̂1,1 = 0.428
(0.152)

, η̂1,2 = 0.367
(0.245)

, η̂2,1 = 0.382
(0.111)

, η̂2,2 = −0.0375
(0.164)

.

where the standard errors are in brackets. The multivariate Hawkes process was

also fit to the data for comparison with the same exponential offspring generation

and resulted in the following parameter estimates,

µ̂1 = 14.84
(0.61)

, µ̂2 = 27.26
(1.64)

, γ̂1 = 0.0600
(0.0198)

, γ̂2 = 0.320
(0.0930)

,

η̂1,1 = 0.0536
(0.0111)

, η̂1,2 = −0.00332
(0.00502)

, η̂2,1 = 0.00128
(0.00563)

, η̂2,2 = 0.221
(0.0288)

.
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The Rosenblatt residuals are calculated to assess the models’ ability at modeling

the temporal patterns of the events. The uniform quantile plot and ACF plot are

displayed in Figure 5.7.2. The uniformity of the residuals seems to be satisfied as the

theoretical and empirical quantiles have a good agreement. This is reinforced with

a large p-value of 0.76 and 0.83 for the Anderson-Darling (A-D) and K-S tests of

uniformity respectively. The residuals also exhibit insignificant serial correlation up

to lag 30, with a p-value for the Ljung-Box test of independence of 0.47. However, the

Rosenblatt residuals for the multivariate Hawkes process also satisfy the uniformity

assumption with a p-value of 0.22 and 0.72 for the A-D and K-S tests respectively

but fails the Ljung-Box independence test with a p-value of only 0.01. The Universal

residuals are also computed to assess how well the model captures the distribution

of location. For the MRHawkes model, the computed p-value for the A-D and K-S

test are 0.69 and 0.85 respectively, and the Ljung-Box test returns a p-value of 0.41,

which suggest the model is capturing the distribution of location between the two

countries well.
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Figure 5.7.2: Uniform quantile plot and ACF plot for the computed Rosenblatt
transform residuals for the Fiji and Vanuatu earthquake dataset for the MRHawkes
model.

Next, this analysis assesses how well the model can capture both aspects of the

point process, the temporal patterns of the events, and the event type distribution.

The combined series of the Rosenblatt and universal residuals together are assessed

for uniformity and independence. For the combined residuals, the uniformity and

independence is well satisfied for the MRHawkes model with p-values of 0.91 for the

A-D test, 0.60 for the K-S test and 0.32 for the Ljung-Box test, while the Hawkes
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model returns p-values of 0.30 for the A-D test, 0.40 for the K-S test and only 0.01 for

the Ljung-Box test and thus fails independence at the 5% level. Several auxiliary

uniform random variables were used to compute the universal residuals, and the

MRHawkes model was able to pass the test at 5% significance level in the majority

of cases. However, the multivariate Hawkes model fails the Ljung-Box test on quite

a few of the residual series with relatively low p-values. The Akaike information

criterion (AIC) for the two models are 7775.5 for the MRHawkes model and 7820.3

for the Hawkes model. Furthermore, a likelihood ratio test gives a test statistic

of 40.8 and a p-value of 1.38 × 10−9 which again indicates that the MRHawkes

model is to be prefered over the multivariate Hawkes model. The AIC criterion,

the likleihood ratio test, as well as the assessment of the residual series, suggests

that the MRHawkes process is outperforming the multivariate Hawkes process and

provides a superior quality of fit. Indeed the Hawkes model fails to capture any

interaction between the two locations since the cross-exciting branching ratios are

not significantly different from zero when taking into account their standard errors.

In the seismological context, immigrants are interpreted as mainshocks and off-

spring events as the aftershocks induced by a main or aftershock. The MRHawkes

process model suggest that main shocks occur in Fiji on average every β̂1Γ(1 +

1/κ̂1) = 45.08 days and in Vanuatu it is every β̂2Γ(1 + 1/κ̂2) = 56.49 days. This in-

terpretation differs significantly from the Hawkes model, in which, immigrants arrive

on average every 14.84 and 27.26 days respectively, and occur more frequently. When

a earthquake occurs in Fiji it directly induces on average η̂1,1 = 0.428 aftershocks in

Fiji and η̂2,1 = 0.382 aftershocks in Vanuatu. Each earthquake in Vanuatu directly

induces on average η̂1,2 = 0.367 earthquakes in Fiji, although, with a standard er-

ror of 0.245, this effect is not significant at the 5% level. Somewhat surprisingly,

the earthquakes in Vanuatu do not seem to generate aftershocks in Vanuatu. The

offspring shape parameters γ̂m are interpreted as the expected waiting time for a

directly induced aftershock to occur with γ̂1 = 394 (days) in Fiji and γ̂2 = 566

(days) in Vanuatu.

Future earthquake occurrences are predicted by utilizing the fitted model and the

prediction procedures developed in Section 5.5. The performance of the predictive

simulations is assessed by comparing the predictions with the observed earthquake

occurrences over the prediction interval under consideration. The simulation-based

approach is used to predict considerable-sized earthquakes in the areas of Fiji and

Vanuatu from 01/01/2016 until 30/06/2017. Using the identified model with η2,2

set equal to zero, as it is not significantly different from zero and non-negative

branching ratios are required for the simulation procedure employed in this thesis,

10,000 realizations of earthquake occurrences conditional on the earthquake times

and types by the censoring time are simulated. The pointwise median and lower
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and upper 2.5 percentiles of the simulated paths of the process as well as the actual

count is presented in Figure 5.7.3 for Fiji, Vanuatu and also the combined count.

It is observed that the sample paths for Fiji fall well within the prediction interval

for the entire period, and the median tends to track the observed path well. In

Vanuatu, a large number of earthquakes occur over this period. However, it still

falls within our prediction interval by the end of the prediction window. The total

number of earthquakes is comfortably within the prediction interval for the entire

eighteen months.
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Figure 5.7.3: Actual and predicted earthquake occurrences. The solid curve is the
actual earthquake counts, and the dashed curves show the point predictions and
95% prediction intervals at different time points.

The waiting time until the next earthquake occurrence can be studied using

the plug-in predictive density function. The probability that an earthquake occurs

within the next 20, 40, 60 and 80 day period is given by 65.72%, 87.18%, 94.91%

and 97.88% respectively, with the next earthquake occurring in Fiji in only 17.77

days. Another prediction of interest is to predict the location of the next earthquake.

Extracting the location of the first earthquake from the 10,000 simulations reveals

that the first earthquake occurred in Fiji on 60.68% of all realizations which suggest

that the next earthquake is more likely to occur in Fiji which again agrees with the

actual data.

The primary focus of this analysis was on the temporal patterns of earthquake

arrivals, with spatial aspects only taken into account by assigning the earthquake to

either Vanuatu or Fiji. The assignment procedure of an earthquake to a particular
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country only used the description data from the USGS database. Therefore, a lim-

itation of this approach is the arbitrary classification of earthquakes in the Pacific

Ocean and in particular, the boundaries between the two countries. As seen in Fig-

ure 5.7.1, some locations could be seen to have either classification. To fully account

for the spatial aspects of the earthquake occurrences, spatio-temporal versions of the

RHawkes process model similar to the ETAS (Epidemic Type Aftershock-Sequences)

model of Ogata (1998) should be developed. A comprehensive comparison of the

MRHawkes process to other alternative temporal point process models and their

multivariate extensions, such as the trigger process model (Vere-Jones and Davies,

1966; Vere-Jones, 1970; Adamopoulos, 1976; Türkyilmaz et al., 2013), would also be

interesting.

5.7.2 Modeling trade-throughs using bivariate RHawkes pro-

cesses

Market participants generally attempt to hide or minimize their market impact by

submitting orders based on the liquidity available in the order book. Instead of

executing large orders and revealing their intentions to the market, traders typically

split and restrict the size of their order to the quantity available at the best limit

price. This assures that the price does not change unfavorably against them and

thereby controls to some extent, the market impact of their order. However, in some

instances, the speed of execution exceeds the cost of the market impact, and large

orders are submitted with quantities greater than what is available at the first limit.

Such transactions are termed trade-throughs. A trade-through is a transaction that

occurs at least at the second level of limit orders in an order book and hence provides

valuable information about price dynamics and market microstructure.

Empirical studies indicate that trade-throughs occur in clusters, and thus, self-

exciting processes are a natural choice to model this phenomenon. Pomponio and

Abergel (2013) examine the clustering effect of trade-throughs by comparing the

waiting time between successive trade-throughs for the stock BNP Paribas. A clus-

tering effect is evident when the next trade-through arrives at a faster rate after a

trade-through than after any regular trade. To see this, they computed the empirical

arrival time distribution of the next trade-through by conditioning on whether the

current trade is a trade-through or any regular trade. The waiting time distribution

until the next trade-through had a higher peak for shorter waiting times when the

current trade is a trade-through.

Furthermore, Muni Toke and Pomponio (2011) computed the mean waiting time

between trade-throughs and found that by conditioning on the current trade be-

ing a trade-through, the mean waiting time was only 36.9 seconds compared to
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51.8 seconds for any regular trade. This suggests that trade-throughs are generally

more likely to be followed by another trade-through and occur more closely in time.

Muni Toke and Pomponio (2011) further revealed that there is no asymmetrical

effect for the side of the book that the trade-through occurred. That is, irrespective

of the sign of the trade, the mean waiting time was shorter if a trade-through oc-

curred rather than a regular trade. They also show that the cross-excitation effects

of trade-throughs are rather weak compared to the self-excitation effects. The mean

waiting time for a trade-through on the same side of the order book is smaller than

a trade-through on the opposite side of the order book.

Earlier attempts to model trade-throughs were conducted by Muni Toke and

Pomponio (2011) in which they analyze the Thomson-Reuters tick-by-tick data of

the Euronext-traded limit order book for the stock BNP Paribas (BNPP.PA) for

the 109 trading days from 1st June 2010 to 29th October 2010. The data contains

the timestamps, volume, and price of the trades and the volume, price, and side of

the order book for the quotes. The Euronext Paris is open from 9 am to 5:30 pm

local time (07:00 to 15:30 GMT). For each trading day, they extract the series of

timestamps (τAi )i>1 and (τBi )i>1 of trade-throughs for the ask and bid side of the

limit book. The non-stationarity of trading throughout the day requires Muni Toke

and Pomponio (2011) only to consider trades that occur between 9:30 am to 11:30

am the local time where the number of trade-throughs during this period remains

relatively constant throughout the period of analysis. They show that the bivariate

Hawkes process with an exponentially decaying kernel can fit the majority of the two

hour trading periods and that the cross-influence of the bid and ask trade-throughs

is particularly weak.

Motivated by their work, the analysis herein aims to model the same trade-

throughs data for the stock BNP Paribas by using bivariate RHawkes processes.

Rather than only analyzing the two-hour window, this analysis considers the entire

trading day. However, generally opening trades exhibit drastically different features

than the rest of the trading day and for this reason, transactions that occur during

the first half an hour of the day from 9 am to 9:30 am are removed from the analysis.

The analysis will consider trade-throughs occurring during the trading day from 9:30

am to 5:30 pm. For the 109 trading days, the mean number of trade-throughs over

this period was 756 with an average and standard deviation of 367 and 217 for

the ask side and 389 and 204 for the bid side. The first and third quantiles are

reasonably comparable with 126 and 859 for the ask side and 140 and 860 for the

bid side.

Figure 5.7.4 displays the expected inter-event waiting time between trade-throughs

conditioned on the time of day that the trade-through occurred. The expectation is

estimated using a cubic regression spline approach used by Engle and Russell (1998),
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where the knots are set at each hour of the trading day, with an extra knot at the

middle of the last hour to account for the quickly changing level of trading activity

near market close. Figure 5.7.4 displays a clear diurnal pattern with the opening of

the market being quite active with trade-throughs occurring roughly every 20 sec-

onds. The activity then reduces in the middle of the day with trade-throughs only

occurring every 60 to 70 seconds. The activity then picks up again before the close

with trade-throughs occurring roughly every 20 seconds again. The non-stationary

nature of the arrival times of trade-throughs over a trading day is clearly evident,

and therefore a data transformation is applied, similar to that used by Engle and

Russell (1998) to account for the level of trading activity, by discounting the ob-

served duration by a factor proportional to the corresponding expected duration

subject to the constraint that the sum of the adjusted durations in a day is the

same as the original durations.
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Figure 5.7.4: A nonparametric estimate of the daily pattern for trade-through du-
rations conditional on the time of day of the trade.

The adjusted point processes are modeled with Weibull renewal processes for

the immigrant arrivals, and the offspring densities are chosen to be exponential with

those for offspring events of the same type having a common shape parameter. The

parameter estimates for the 109 trading days are computed by directly minimizing

the negative log-likelihood function, and the results are presented in Table 5.7.1.

The table reports the mean, median, lower 2.5 percentile Q0.025, upper 2.5 percentile

Q0.975, and the standard deviation of the estimates. The parameters governing the

bid and ask side of the process are relatively similar, and both sides of trade-throughs

are displaying very similar features. The immigration process for both the bid and

ask trade-throughs tend to exhibit strong clustering and over-dispersion relative to

a Poisson process with the estimated shape parameter of the Weibull distribution κ̂
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remaining below one on most trading days. By taking the median as an estimate for

the true parameter, the mean waiting time between exogenous ask trade-through is

109.3 seconds while for the bid side trade-through is 106.4 seconds. The branching

ratio parameters for the self- and cross-excitation are reasonably similar on either

side of the book with the median value for the cross-exciting branching ratio being

appropriately one-third of the self-exciting branching ratio.

Mean Median Q0.025 Q0.975 StdDev
κA 0.801 0.816 0.320 1.006 0.148
βA 108.8 97.55 18.82 251.8 61.47
κB 0.797 0.806 0.474 0.990 0.130
βB 95.91 86.99 23.70 220.7 50.74
γA 22.75 0.0257 0.00919 294.4 126.7
γB 18.17 0.0228 0.00903 119.1 134.2
ηA,A 0.120 0.113 0.0293 0.220 0.0674
ηA,B 0.0543 0.0342 0.00544 0.329 0.0965
ηB,A 0.0446 0.0269 0.00633 0.229 0.0711
ηB,B 0.131 0.121 0.0688 0.247 0.0569

Table 5.7.1: Statistics summary for the MLEs for the diurnally adjusted BNP
Paribas trade-throughs data.

The quality of fit to the data is evaluated using the Rosenblatt residuals. At

the 1% level, the bivariate RHawkes model passed the A-D test and K-S test of

uniformity on 78.90% and 81.65% of the trading days, respectively. For comparison,

the bivariate Hawkes process was also fit to the transformed data with exponen-

tial offspring densities. At the 1% level, the A-D and K-S test of uniformity were

passed on only 25.69% and 36.70% of the trading days, respectively. Furthermore,

the goodness-of-fit of the event type distribution was assessed with the aid of the

universal residuals. The residuals were assessed for uniformity on the unit interval

and are found to pass 81 (74.31%) and 83 (76.15%) of all trading days at the 1%

level for the A-D and K-S test respectively, which suggest the model is able to ade-

quately model the distribution of the side on which a trade-through occurs. Again,

similar to the earthquake case study the combined residuals series are assessed as

well. For the MRHawkes model, the A-D and K-S test passes 80 (73.39%) and 82

(75.23%) of all trading days respectively, while the multivariate Hawkes model only

passes 43 days (39.45%) for the A-D test and 50 days (45.87%) for the K-S test.

Thus it can be concluded that the Weibull MRHawkes model is providing a better

fit to the data than the classical multivariate Hawkes model.
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To determine the necessity for bivariate RHawkes processes, two aspects of the

fitted model require consideration, that is, the need for cross-excitation effects and

whether a departure from Poisson immigration exists. The first question is solved by

computing the z-score for the cross-exciting branching ratios ηA,B and ηB,A under

the assumption that the cross-exciting effects are zero. Assuming the parameter

estimates are asymptotically normal, which is suggested by the simulation study,

the z-score can be compared to the value of 1.96. The parameters ηA,B and ηB,A

are statistically different from zero for 92 (84.40%) and 87 (79.82%) trading days.

Figure 5.7.5 displays the z-scores across the 109 trading days where the top panel is

the influence of bid trade-throughs on ask trade-throughs ηA,B and the bottom panel

is the opposite effect. Although the cross-excitation exist, similar to Muni Toke and

Pomponio (2011), the cross-influence effect between the two sides of the market

tends to be relatively small compared to the self-exciting effects, although this is

not always evident.
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Figure 5.7.5: Time series plot of the z-scores for the cross-exciting branching ratios
across the 109 trading days for the stock BNP Paribas. Top panel: the influence of
bid trade-throughs on the ask side of the market. Bottom panel: the influence of
ask trade-throughs on the bid side of the market.

The second question is solved by examining the shape parameter of the Weibull

renewal distribution for both sides of the market. Figure 5.7.6 presents the time

series plot of the shape parameter κ̂ for both sides of the market together with a

shaded 95% confidence interval. The value of κA and κB are mostly different from

one, with the 95% confidence intervals not containing the value one 76.15% and

80.73% of all trading days. This suggests that departure from Poisson immigration

for the arrival of the bid and ask trade-throughs exists.
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Figure 5.7.6: Time series plot of the MLEs for the shape parameters of the two
Weibull immigration parameters over the 109 trading days 01/06/10 -29/10/10.
Solid curve: MLE; shaded region: point-wise 95% confidence intervals.
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Chapter 6

Modeling extreme negative

returns using marked renewal

Hawkes processes1

6.1 Introduction

Modeling extreme financial returns has important applications, such as in the esti-

mation of risk measures. However, like many other financial time series, the series of

extreme returns are challenging to model due to the presence of heavy temporal clus-

tering of extremes and intense bursts of return volatility. To address this challenge,

Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012) proposed

the marked Hawkes process model, and reported sufficient fits to extreme negative

return data on a share price and on the Dow Jones Industrial Average index, while

the traditional peaks over threshold (POT) model was shown not to be suitable for

the data considered. The use of marked Hawkes processes to forecast market risk

measures has also been applied in the work of McNeil et al. (2005, pp 306-311) and

Herrera and Schipp (2009). Furthermore, Embrechts et al. (2011) considered multi-

type event sequence data in which the multivariate version of the marked Hawkes

process was used to model the interaction between positive and negative extreme

returns for the Dow Jones Industrial Average index.

Extreme returns are fundamental to the risk management of financial institutions

such as investment banks, insurers, and pension funds as they are often required to

demonstrate their financial stability under extreme market conditions. A meaningful

measure of risk for extreme loss outcomes is given by the quantile of the loss distri-

bution of a given asset or portfolio over a predefined period, and this is known as the

value at risk (VaR). Many approaches to estimate the unconditional VaR often as-

1Most of the content shown in this chapter has been published in the Extremes; see Stindl and
Chen (2019).
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sume that the return distribution is normally distributed and then forecast volatility

using the exponential-weighted moving average method as in Mina and Xiao (2001).

Other unconditional approaches often rely on generalized autoregressive conditional

heteroskedasticity (GARCH) models with either normal or t innovations.

In other approaches to estimate the VaR, the conditional return distribution,

which accounts for the current financial environment in which the asset is traded,

are often used. McNeil and Frey (2000) introduced a conditional approach using a

two-stage procedure by combining GARCH models to forecast volatility and then

applying techniques from extreme value theory (EVT) to the residuals from the

GARCH analysis. Although this method circumvents the use of unconditional return

distributions, it introduces a new problem that relates to the sensitivity of the EVT

analysis on the GARCH model fit. Another conditional approach was developed by

Chavez-Demoulin et al. (2005), in which they apply the POT model from EVT to

the excesses (return above a given threshold), which are treated as i.i.d. observations

and model the temporal patterns of exceedances (days when an excess occurs), using

a marked Hawkes (1971) self-exciting process. This approach models the serial

dependence present in returns and provides a convenient method to estimate the

conditional VaR and other risk measures of interest, such as the expected shortfall

(ES).

However, despite their success, marked Hawkes processes are not always able to

provide an adequate fit to data. On these occasions, added flexibility in the specifica-

tion of the background arrival rate may be required. For instance, the background

arrival rate may be allowed to depend on some covariates, but this approach re-

quires appropriate external covariates to be available. This chapter proposes that

the marked renewal Hawkes process model can provide this flexibility without the

need to find suitable covariates. A readily implementable recursive algorithm to

evaluate the likelihood of the model in linear storage space and quadratic computa-

tional time, which can be optimized to obtain estimates of model parameters and

their standard errors is developed. A procedure to assess the goodness-of-fit for both

aspects of the model, the temporal patterns of exceedances and the distribution of

excesses, by calculating the Rosenblatt residuals (see Rosenblatt (1952)) and testing

the residuals for uniformity and independence is also discussed. As by-products of

the direct likelihood evaluation algorithm, estimates of the two risk measures, condi-

tional VaR and conditional ES can be obtained. Furthermore, methods are provided

to make predictions about future extreme negative returns, and in particular, the

waiting time until the next exceedance and compare these predictions with actual

observations.

In the next section, the ASX stock data is introduced. Section 6.3 introduces the

marked RHawkes process model, which includes its estimation and inferential meth-
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ods such as goodness-of-fit assessment, prediction and estimation of risk measures.

Numerical illustrations will follow in Section 6.4 with a simulation study. The focus

of Section 6.5 is on applying the proposed methods to extreme negative returns for

each of the five ASX stocks.

6.2 ASX stock data

This section introduces five commonly traded stocks on the ASX (Australian Secu-

rities Exchange) that are studied in the analysis conducted in Section 6.5. The data

was obtained from the Yahoo! Finance database and contains the date, open, high,

low and close price for the following stocks traded on the ASX from 1 January 2006

to 31 December 2016; JB Hi-Fi Limited (JBH), Adelaide Brighton Limited (ABC),

Computershare Limited (CPU), Downer EDI Limited (DOW) and James Hardie

Industries plc (JHX).

The RHawkes model’s performance at forecasting market risk and in particular,

estimating the conditional VaR is assessed by backtesting. Therefore, the period

under consideration is divided into two non-overlapping periods, which are termed

the in-sample and out-of-sample period. The in-sample data are used to estimate

the model parameters, and then the estimated model is used to make a forecast of

market risk measures during the out-of-sample period and the actual data in the

out-of-sample period is used to assess the forecasted risk measures. The period

from 1 January 2006 to 31 December 2015 is the in-sample period and the follow-

ing year from 1 January 2016 to 31 December 2016 is used as the out-of-sample

period. Numerous descriptive statistics for the daily log-losses for the in-sample

period are reported in Table 6.2.1, which contains the number of observations, min-

imum, maximum, mean, standard deviation, and kurtosis. Notice that the kurtosis

for all stocks are larger than three, which suggest that the return distributions are

leptokurtic rather than normal.

Stock JBH ABC CPU DOW JHX

n 2528 2527 2528 2524 2528
min -16.03 -13.31 -14.51 -13.35 -20.15
max 16.57 14.61 11.20 36.38 12.84
mean -0.0624 -0.0323 -0.0213 0.0260 -0.0262
std dev 2.316 2.049 1.893 2.611 2.359
kurtosis 8.125 7.430 8.011 30.212 8.320

Table 6.2.1: Numerous descriptive statistics for the in-sample daily log-losses in
percent for each of the five ASX stocks.

Now, denote the percentage log-loss from day t − 1 to day t by rt = −100 ×
log(st/st−1) where st is the closing price. This analysis considers extreme negative
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returns, which exceed a high threshold denoted by u. If the loss on day t exceeds

the threshold value u, then an exceedance has occurred and provided that an ex-

ceedance has occurred, the excess loss is given by wt = rt − u. The choice of the

threshold value of u requires special attention. In this analysis, a threshold equal to

the 90% quantile of the log-losses in the in-sample period was used for each stock, so

that the 10% largest losses are considered as extreme negative returns. The choice

of threshold value u is to some extent rather arbitrary but follows the convention

used in the work of Chavez-Demoulin et al. (2005) and it can be argued that using

a lower threshold would question the validity of EVT while using a higher thresh-

old would reduce the sample size considerably. With the current choice, the (not

shown) mean-excess plots (cf. Embrechts et al., 1997, p. 355) do not indicate that

a violation of the assumptions is apparent. The threshold value u for all five stocks

are shown in Table 6.2.2 as well as some descriptive statistics, including the number

of exceedances, mean excess and median excess for the in-sample period.

Stock JBH ABC CPU DOW JHX

threshold 2.425 2.281 2.082 2.662 2.645
no. of exceedances 253 252 253 253 253
mean excess 1.608 1.456 1.255 1.873 1.401
median excess 1.074 0.898 0.743 0.935 0.887

Table 6.2.2: Numerous descriptive statistics for the in-sample loss excesses for each
of the five ASX stocks with a threshold value u chosen as the 90% quantile.

Figure 6.2.1 visualizes the transformation from raw price data into exceedance

data with threshold u = 2.425 for the stock JBH. The top panel displays a time

series of the daily closing asset price st. The daily closing asset prices are then

transformed to daily losses on the log scale rt excluding weekends and non-trading

weekdays aggregated and the time series is displayed in the middle panel. The plot

shows clear signs of intense bursts of loss volatility. Next, the excess loss above

the threshold u given that the log-loss rt exceeds the threshold is computed. The

bottom panel shows the times of exceedances and size of excesses wt. The presence

of substantial temporal clustering of extremes is evident and generally occur near

periods of significant losses.

6.3 Model and methodologies

6.3.1 Marked renewal Hakwes process

Let the arrival times of exceedances be denoted by {τi}i>1 ⊂ R+, τi < τi+1 and

denote the associated excesses by {wi}i>1. Let N(t) be a simple point process
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Figure 6.2.1: JB Hi-Fi Limited (JBH) stock data from 1 January 2006 to 31 of
December 2015. Top panel: time series plot of the daily closing stock price. Middle
panel: time series plot of the negative daily log returns. Bottom panel: time of
exceedances and size of excesses over the threshold u = 2.425.

on R+ that counts the number of exceedances by time t. There are two types of

exceedance events, namely exogenously and endogenously driven ones. The type

is identified by a further (unobservable) mark Mi ∈ {0, 1}, where Mi = 0 indi-

cates the arrival of an exogenously driven exceedance (immigrant) and Mi = 1

indicates an endogenously driven exceedance (offspring event). Furthermore, let

I(t) := max {i|, τi < t,Mi = 0} denote the index of the most recent immigrant, with

the convention that I(t) := 0 when t < τ1 and τ0 := 0. This is identical to the

conventions that were introduced for the RHawkes process introduced in Chapter 2.

The exceedance times and loss excesses will be modeled using the marked RHawkes

process, in which, the waiting times between successive exogenously driven ex-

ceedances are assumed to be i.i.d. and arrive according to a general renewal process,

and the exciting mechanism among the events is the same as in the classical marked

Hawkes process model. That is, the ground intensity process λ(t), t > 0 relative to

the enlarged filtration F̃t = σ
{
N(s), w1:N(s), I(s); s 6 t

}
, t > 0 takes the form,

λ(t) =
E
[
dN(t)|F̃t−

]
dt

= µ(t− τI(t)) +

N(t−)∑
j=1

ηh(t− τj)g(wj) (6.3.1)

=: µ(t− τI(t)) + φ(t).

The function µ : R+ → R+ is the hazard rate function of the waiting times between

successive exogenously driven exceedances. For the stability of the process, it is re-

quired that
∫∞

0
e−

∫ t
0 µ(s)dsdt <∞, which ensures the expected waiting time between
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successive immigrants is finite. The mark’s influence on the conditional intensity is

governed by the impact function g : R+ → R+. The constant η > 0 is a normalizing

constant, and for stability, it is required that ηE [g(wi)] < 1 so that the expected

number of children of an event is less than one. If the impact function is normalized

so that E [g(wi)] = 1, the parameter η ∈ [0, 1) has the interpretation of a branching

ratio. The function h : R+ → R+ is the offspring density function. As in Chapter 3,

the process φ(t) describes the total excitation effect of past events on current event

intensity.

From the intensity process specification in (6.3.1), observe that the background

intensity depends on when the most recent immigrant arrives, and it resets to the

function µ(·) upon the arrival of an immigrant. When the hazard function µ(·)
is a constant, the waiting times are exponentially distributed, and the immigrants

arrive according to a Poisson process, and therefore the model reduces to the marked

Hawkes process in Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill

(2012). However, in general, the marked RHawkes process is substantially more

flexible than the marked Hawkes process because the event counts of the marked

RHawkes process in regular time intervals can be over- or under-dispersed relative

to the Poisson process, while the counts in a marked Hawkes process can only be

over-dispersed.

The conditional intensity function in (6.3.1) is the time-intensity and only de-

scribes the dynamics of the ground process. It does not account for the distri-

bution of the marks. For full specification of the intensity process of the marked

point process, one also need to specify the distribution of the event mark given an

event happens at a certain time t and all the information before time t. In this

chapter, a conditional independence assumption is imposed, so that the mark wi

is independent of the event time τi conditional on the previous exceedance times

τ1:i−1 := (τ1, . . . , τi−1) and excesses w1:i−1 := (w1, . . . , wi−1). This conditional inde-

pendence assumption makes parametric methods for modeling marks simple to im-

plement. In this instance, optimization of the log-likelihood function can be divided

into two separate optimization problems, and therefore the MLEs for parameters in

the ground process model and the mark distribution can be separately.

6.3.2 Likelihood evaluation algorithm

This section develops an algorithm to compute the likelihood function of the marked

RHawkes process. The likelihood function can be represented as a product of the

conditional joint densities of the event time and mark, conditional on all previous
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event times and marks as follows,

L(θ|τ1:n, w1:n) =

pθ(τ1, w1)

{
n∏
i=2

pθ(τi, wi|τ1:i−1, w1:i−1)

}
Pθ (τn+1 > T |τ1:n, w1:n) , (6.3.2)

In what succeeds, the subscript θ in pθ and Pθ is dropped for notational convenience,

while the dependence of the relevant densities and probabilities on the parameter

θ is silently understood. The conditional independence assumption allows the log-

likelihood function in (6.3.2) to be divided into two separate components, and in-

ferences can be conducted independently for the temporal patterns of exceedances

and the loss excesses. The log-likelihood function then takes the form,

l(τ1:n, w1:n|θ)

=

[
log p(τ1) +

n∑
i=2

log p(τi|τ1:i−1, w1:i−1) + logP (τn+1 > T |τ1:n, w1:n)

]

+

[
log p(w1) +

n∑
i=2

log p(wi|τ1:i−1, w1:i−1)

] (6.3.3)

=: lτ + lw, (6.3.4)

where lτ and lw denotes the temporal component and the mark component of the

log-likelihood respectively. In the next section, the modeling of the marks and the

evaluation of lw will be discussed. The remainder of this section is devoted to the

evaluation of lτ .

The ground intensity function λ(t) depends on the index of the most recent

immigrant and hence to compute the conditional densities required in (6.3.3), the

distribution of the most recent immigrant is required. By defining the following

terms,

dij := p (τi|τ1:i−1, w1:i−1, I(τi) = j) , (6.3.5)

Sn+1,j := P (τn+1 > T |τ1:n, w1:n, I(τn+1) = j) , (6.3.6)

pij := P (I(τi) = j|τ1:i−1, w1:i−1) , (6.3.7)
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and by conditioning on the index of the most recent immigrant, the following holds,

p (τi|τ1:i−1, w1:i−1) =
i−1∑
j=1

dijpij, i = 2, . . . , n, (6.3.8)

P (τn+1 > T |τ1:n, w1:n) =
n∑
j=1

Sn+1,jpn+1,j. (6.3.9)

The functions U(t), H(t) and Φ(t) that were defined prior to Theorem 3.3.1 will

be used throughout this chapter except that Φ(t) =
∫ t

0
φ(s)ds = η

∑N(t−)
j=1 H(t −

τj)g(wj) now includes a contribution from the marks. The process assumes that

the first event is an immigrant with event time density p(τ1) = e−U(τ1)µ(τ1). The

conditional densities and survival probabilities in (6.3.5) and (6.3.6) are computed

using,

dij = e−{U(τi−τj)−U(τi−1−τj)}−{Φ(τi)−Φ(τi−1)} (µ(τi − τj) + φ(τi)) , (6.3.10)

Sn+1,j = e−{U(T−τj)−U(τn−τj)}−{Φ(T )−Φ(τn)}. (6.3.11)

Next, the conditional probabilities pij in (6.3.7) are computed using the following

forward recursion with initial conditions p21 = 1 and p(τ2|τ1, w1) = d21,

pij =


φ(τi−1)

µ(τi−1−τj)+φ(τi−1)
di−1,jpi−1,j

p(τi−1|τ1:i−2,w1:i−2) , j = 1, . . . , i− 2,

1−
∑i−2

k=1 pik, j = i− 1,
(6.3.12)

for i = 3, . . . , n + 1. The derivation of (6.3.12) is similar to the derivation used in

Chapter 3.

The direct evaluation of the likelihood is now practically feasible at a given

parameter vector θ. To evaluate the conditional densities p(τi|τ1:i−1, w1:i−1) and

the most recent immigrant probabilities pij, the bivariate recursion given in (6.3.8)

and (3.3.14) is implemented as well as computing dij given by (6.3.10). The survival

probability P(τn+1 > T |τ1:n, w1:n) is computed using (6.3.9), (6.3.11), and the pn+1,j.

The above terms are then substituted into the first pair of square brackets in (6.3.3),

to calculate the part of the log-likelihood needed for the estimation of parameters

of the ground process model, that is, lτ .

6.3.3 Excess modeling

The generalized Pareto distribution (GPD) is commonly used in EVT and has been

applied to model excesses of extreme negative returns (e.g. Chavez-Demoulin et al.,

2005), and shall also be used in this chapter. The use of GPD is justified by the
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following result from EVT (cf. Embrechts et al., 1997, Theorem 3.4.5): If the random

variable X has a distribution function F (·) belonging to the maximum domain of

attraction of the standard generalized extreme value distribution Hξ(·),

Hξ(x) =

1− exp
{
−(1 + ξx)−1/ξ

}
, ξ 6= 0;

1− exp {−e−x} , ξ = 0,

then there exists a positive function a(·) such that,

P(X − u 6 x|X > u)→ Gξ,a(u)(x), as u→ xF ,

where xF = sup {x ∈ R : F (x) < 1}, and Gξ,σ is the generalized Pareto distribution

function with shape parameter ξ and scale parameter σ, defined by,

Gξ,σ(x) =

1− (1 + ξx/σ)−1/ξ
+ , ξ 6= 0;

1− exp(−x/σ), ξ = 0.

Following the work of Chavez-Demoulin et al. (2005), the loss excesses are mod-

eled using generalized Pareto distributions with a common shape parameter and

scale parameters evolving according to a first-order Markov process. More specifi-

cally,

wi|w1:i−1 ∼ Gξ,a+bwi−1
, (6.3.13)

with parameters ξ > 0, a > 0 and b > 0. For stability, it is also require that ξ+b < 1.

It can then be shown using Theorem 3.2 in Cline and Pu (2002) that the Markov

process (6.3.13) is geometrically ergodic. These parameters are then estimated by

maximizing the part of the log-likelihood in the second pair of brackets in (6.3.3),

that is,

lw =
n∑
i=1

{
−(

1

ξ
+ 1) log

(
1 +

ξwi
a+ bwi−1

)
− log(a+ bwi−1)

}
, (6.3.14)

where w0 := a/(1− ξ − b) is set to be the mean of the loss excesses.

6.3.4 Model assessment

Two aspects of the model are considered in the goodness-of-fit assessment; the tem-

poral patterns of exceedances and the distribution of excesses. For the former, a

similar procedure to Chapter 3 is applied using the Rosenblatt (1952) residuals.

The basis of the method is to transform the exceedance times using the Rosenblatt

(1952) transformation to produce residuals which should be independent and uni-
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formly distributed on the unit interval when the model is correctly specified. The

residuals are given by, U1 = F̂1(τ1) = 1− e−Û(τ1) and

Ui = F̂i(τi|τ1:i−1, w1:i−1) = 1−
i−1∑
j=1

p̂ijŜij, i = 2, . . . , n, (6.3.15)

where F̂i(t|τ1:i−1, w1:i−1) is the estimated conditional distribution function of τi condi-

tional on τ1:i−1 and w1:i−1, p̂ij are the estimated most recent immigrant probabilities

in (6.3.12) and Ŝij are given by,

Ŝij = e−{Û(τi−τj)−Û(τi−1−τj)}−{Φ̂(τi)−Φ̂(τi−1)}, j = 1, . . . , i− 1.

Note that Û(t) and Φ̂(t) are the plug-in estimates of the cumulative hazard function

U(t) and cumulative excitation effect Φ(t) defined on Page 105 above Eq. (6.3.10).

For a consistent approach to the goodness-of-fit assessment of the model, the

Rosenblatt (1952) transformation is also applied to the excesses. This chapter only

considers marks with the GPD model in (6.3.13), although the procedure is general

enough to apply to most choices of marked distributions. In this instance, the

residuals are given by,

Vi = Ĝi(wi|τ1:i−1, w1:i−1) = 1−

[
1 +

ξ̂wi

â+ b̂wi−1

]−1/ξ̂

, (6.3.16)

where Ĝi(w|τ1:i−1, w1:i−1) is the estimated conditional distribution function of wi

conditional on τ1:i−1 and w1:i−1. However, for the GPD model considered in this

chapter, the conditional distribution function Ĝi(·|τ1:i−1, w1:i−1) only depends on

wi−1.

The two residual series {Ui} and {Vi} then serve as the basis for assessing the

model’s ability to model the temporal patterns of exceedances and the distribution

of excesses. Both residual series should be approximately i.i.d. uniformly on (0,1)

if both aspects of the model are adequate. The uniformity and independence can

be assessed graphical with techniques such as uniform Q-Q plot, and the ACF plot,

or more formal statistical tests, such as the K-S test and the Ljung-Box (L-B) test

respectively.

6.3.5 Predicting exceedances

Predictions using point process models often rely on simulations as explicit algo-

rithms are generally not available (Daley and Vere-Jones, 2003, pp. 274). The

distribution of quantities of interests such as the time until the next exceedance or
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the number of exceedances in a given time interval can be extracted from predictive

simulations. The algorithm works by sequentially simulating event times until the

censoring time, as in Section 6.4.1. This procedure requires a computable expres-

sion for the hazard function (or cumulative hazard function) and hence the index of

the most recent immigrant before time T must be simulated using the conditional

probabilities pn+1,j = P (I(τn+1) = j|τ1:n, w1:n) so that µ(t− τI(T )) can be computed

for all t > T . For each realization of the future, one can extract any quantity of

interest that one wants to predict, and use its empirical distribution obtained from

a large number of realizations as the basis for prediction.

A particularly important prediction for financial stakeholders is the time until

the next extreme loss. For this purpose, predictive simulations are not necessary, as

direct calculation of the predictive density and hazard function for the waiting time

until the next exceedance after the censoring time is readily available, and are given

respectively by,

p(τn+1|τ1:n, w1:n, τn+1 > T ) =

∑n
j=1 pn+1,jdn+1,j

P (τn+1 > T |τ1:n, w1:n)
, τn+1 > T, (6.3.17)

and

haz(τn+1|τ1:n, w1:n, τn+1 > T ) =

∑n
j=1 pn+1,jdn+1,j∑n
j=1 pn+1,jS̃n+1,j

, τn+1 > T, (6.3.18)

where the pn+1,j’s are calculated using (6.3.12), the denominator in (6.3.17) is com-

puted using (6.3.9), the dn+1,j’s are given as in (6.3.10) and

S̃n+1,j = e−{U(τn+1−τj)−U(τn−τj)}−{Φ(τn+1)−Φ(τn)}.

The estimated parameters are then be substituted into (6.3.17) and (6.3.18) to com-

pute the estimated predictive density and hazard function, which assists in making

predictions regarding the time until the next exceedance.

6.3.6 Forecasting conditional risk measures

Conditional risk measures such as VaR and ES are significant quantities used by

many financial institutions, and as such, a method to estimate their value is of

particular importance. The proposed algorithm to evaluate the likelihood of the

marked RHawkes process implies a procedure to compute the predictive distri-

bution of the loss excesses conditional on the history of the process by time t,

Ft = σ
{
N(t), τ1:N(t), w1:N(t)

}
, and therefore estimates of conditional VaR and ES

can be readily obtained. For the remainder of this chapter, the conditional VaR and

conditional ES will be referred to as VaR and ES, recognizing that these quantities
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are conditioned upon all priorly observed data. For the out-of-sample period, the

MLEs obtained from the in-sample period are used to obtain the plug-in predictive

loss distribution.

Let Rt+1 denote the daily log-loss on day t + 1, then the VaR at level q on day

t+ 1 is given by,

VaRq
t+1 = inf

{
r ∈ R : FRt+1|Ft(r) > q

}
.

In financial applications, attention is generally directed to extreme outcomes with

the quantile levels q = 0.95 or q = 0.99 typically used. Now by conditioning on the

index of the most recent immigrant before time t + 1, the survival function for the

daily log-loss Rt+1 becomes,

P (Rt+1 > r|Ft) =

N(t)∑
k=1

P (Rt+1 > r|Ft, I(t) = k)P (I(t) = k|Ft) . (6.3.19)

As this analysis is only interested with extreme returns, by conditioning upon the

return being greater than the threshold u, the following holds for r > u,

P (Rt+1 > r|Ft, I(t) = k) = P (Rt+1 − u > r − u|Rt+1 > u,Ft, I(t) = k)

× P (Rt+1 > u|Ft, I(t) = k) . (6.3.20)

A discrete-time process is approximated using a continuous-time process to com-

pute (6.3.20). The second term on the right of (6.3.20) can be approximated using

the probability that at least one exceedance event occurs in the interval (t, t + 1]

conditional on index k being the most recent immigrant. This sort of approxima-

tion has previously been applied in the work of Chavez-Demoulin et al. (2005) and

Chavez-Demoulin and McGill (2012). In this context, the approximation takes the

form,

P (Rt+1 > u|Ft, I(t) = k) ≈ 1− exp

(
−
∫ t+1

t

µ̂(s− τk) + φ̂(s)ds

)
. (6.3.21)

The first term on the right hand side of (6.3.20) is computed using the fitted GPD

for the excesses, that is,

Rt+1 − u|Ft; Rt+1 > u ∼ Gξ̂,â+b̂wN(t)
.

A forecast of the VaR at level q can be obtained by solving,

P
(
Rt+1 > VaRq

t+1|Ft
)

= 1− q,
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with the solution given by,

V̂aR
q

t+1 =
â+ b̂wN(t)

ξ̂

[ (
Ct+1

1− q

)ξ̂
− 1

]
+ u, (6.3.22)

where

Ct+1 =

N(t)∑
k=1

[
1− exp

{
−
∫ t+1

t

µ̂(s− τk) + φ̂(s)ds

}]
p̂N(t)+1,k,

is an approximation to the probability that the return on day t + 1 is greater than

the threshold u, i.e. P (Rt > u|Ft). The expression in (6.3.22) is only valid when

Ct+1/(1 − q) > 1, or more elegantly put q > P (Rt+1 < u|Ft). When this does not

hold, a conservative approach is applied and the VaR estimate to defined to be equal

the threshold value u.

Although the VaR is a beneficial tool for measuring risk, it does not indicate the

size of an extreme loss. This deficiency has led to the consideration of alternative

risk measures. One such alternative is the ES, which is an attractive risk measure

as it provides a measure of the size of the loss given that it exceeds the VaR level.

The conditional ES for day t+ 1 at quantile level q is defined as follows,

ESqt+1 =

∫ 1

q
VaRα

t+1dα

1− q
.

Based on this definition, a forecast of the conditional ES on day t + 1 is given by

(cf. Chavez-Demoulin and McGill, 2012),

ÊS
q

t+1 =
ˆVaR

q

t+1

1− ξ̂
+
â+ b̂wN(t) − uξ̂

1− ξ̂
. (6.3.23)

6.4 Simulation study

6.4.1 Simulation algorithm

The algorithm to simulate the process requires a sequential approach as the event

marks might be autocorrelated. The algorithm works as follows. First, simulate the

initial immigrant arrival time according to the specified inter-renewal distribution.

Then each event is simulated by first simulating the corresponding waiting time

since the last event according to an appropriate hazard function, and then simulat-

ing the event type (immigrant or offspring) according to an appropriate Bernoulli

distribution, and finally simulating the event mark according to previously simulated

events marks (and event times, depending on model specification) and the specified

dependence structure. Events are simulated sequentially until the next simulated
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event time exceeds the censoring time T . The realization of the marked RHawkes

process consists of the time-mark pairs corresponding to all the simulated events by

the censoring time. Note that the event types are not retained.

6.4.2 Simulation model

The rest of this section reports numerical evidence of the finite sample performance

of the MLEs in a simulation study. The models chosen to perform the simulations

are motivated by the model choices in Section 6.5 and consist of gamma inter-renewal

waiting times with hazard function,

µ(t) =
1

Γ(t/β, κ)βκ
tκ−1e−t/β, (6.4.1)

where κ is the shape parameter, β is the scale parameter and Γ(x, k) =
∫∞
x
sk−1e−sds

is the upper incomplete gamma function. The offspring density is exponential h(t) =

e−t/γ/γ with mean waiting time parameter γ. The event marks are conditionally

generalised Pareto distributed, and follows the first order Markov process (6.3.13)

with parameters ξ, a and b. The impact function g(w) is the normalized version of

the affine function 1 + δw, that is,

g(w) =
1 + δw

E [1 + δwi]
=

1 + δw

1 + δa/(1− ξ − b)
. (6.4.2)

The simulations consist of 1000 realizations of the marked RHawkes process up

to a predetermined censoring time T for a variety of parameter values specified in

Table 6.4.1. The censoring time T is determined so that the expected numbers of

events by T are approximately 500 and 1000 respectively. For each realization, the

parameters of the mark distribution ξ, a and b are estimated by directly minimizing

−lw, and the parameters of the RHawkes process κ, β, γ, δ and η are estimated by

directly minimizing −lτ .

6.4.3 Results

All computations were performed on Intel Xeon X5675 processors (12M cache, 3.06

GHz, 6.4GT/S QPI) using the R language (R Core Team, 2016). Likelihood maxi-

mization was performed by direct calls to the R function optim. As the log-likelihood

function is relatively flat along the parameters ξ and δ, a reparametrization θ = eθ
′

improves convergence speed and estimation accuracy. Table 6.4.1 reports the esti-

mation results, which contains the true value for each parameter (True), the mean of

the 1000 parameter estimates (Est), the empirical standard error of each estimator

(SE), i.e. the standard deviation of the 1000 estimates, the mean of the 1000 stan-
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dard error estimates by inverting the approximate Hessian matrix (ŜE), the mean

squared error (MSE), the censoring time (T ), the mean number of events (ML) and

the mean running time (RT) to perform the optimization procedure and compute

the Hessian matrix. Due to the heavy-tailed nature of the generalized Pareto dis-

tribution, substantial mark values occasionally occur. The finite and small sample

size permits these extreme mark values to have a substantial influence on some pa-

rameter estimates, especially on the estimates of δ. Therefore in summarizing the

estimation results in Table 6.4.1, the extreme estimates are trimmed by removing a

percentage (2.5% when the mean number of events is 500 and 1% when the mean

number of events is 1000) of the smallest and largest estimates for each parameter.

The bias and standard errors are decreasing as the censoring time increases in the

majority of the model scenarios considered. The standard errors are also decreasing

and approximately at a rate of 1/
√
T as the standard errors reduce by a factor

of approximately 1/
√

2 when the censoring time T is doubled. The mean of the

standard errors are relatively comparable with the empirical standard errors as they

agree in most cases, and again, this improves as the censoring time increases. For

the majority of the parameters, the MSE is reasonably close to zero with the only

notable exceptions being γ and δ. However, the MSE drops substantially as the

censoring time increases, e.g., the MSE for δ decreases from 5.996 to 0.029 in the

first simulation model considered and most decrease by a factor of two.

The estimated mean waiting time γ̂ between an event and its direct offspring and

the estimated impact parameters for the marks δ̂ lead to reasonably large standard

errors when compared to the standard errors of the other parameter estimates.

However, the standard errors of γ̂ and δ̂ are still shrinking as the censoring time gets

longer. The comparably significant standard errors for the mean offspring waiting

time is also evident in the simulation study conducted in Chapters 3 for the RHawkes

process. The estimates for γ and impact function parameter δ have significantly less

bias when the immigrant arrivals exhibit heavy clustering (κ = 1/2) compared to

when the immigrants exhibit more evenly distributed arrival times (κ = 2). The

parameter γ is well estimated when the branching ratio η is large, i.e., when the

level of self-excitation is high, as the expected number of offspring events present

in those realizations is larger. The significant bias evident in the estimation of the

parameter δ relates to the heavy-tailed nature inherent in the generalized Pareto

distribution, and a reasonably large sample would be needed to reduce the bias to a

reasonable level. The branching ratio parameter η is generally adequately estimated

with minimal bias for the variety of censoring times, level of self-excitation, and

variability of immigrant inter-event waiting times. This leads to the conclusion that

the MLE obtained by directly maximizing the log-likelihood function has satisfactory

finite sample performances.
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Immigration Offspring Mark Impact
κ β γ η ξ a b δ

True 2 0.5 1 0.3 0.1 1 0.1 0.1
Est. 2.039 0.495 1.138 0.289 0.094 1.009 0.098 0.366
SE 0.328 0.059 0.627 0.069 0.044 0.076 0.045 2.434

ŜE 0.359 0.067 0.588 0.074 0.050 0.087 0.049 4.695
MSE. 0.109 0.004 0.413 0.005 0.002 0.006 0.002 5.996

RT = 325.89 secs T = 350 ML = 498.71
Est. 2.023 0.500 1.081 0.296 0.097 1.005 0.099 0.146
SE 0.241 0.048 0.440 0.051 0.034 0.058 0.033 0.162

ŜE 0.254 0.049 0.509 0.055 0.035 0.061 0.035 0.195
MSE. 0.058 0.002 0.200 0.003 0.001 0.003 0.001 0.029

RT = 1031.71 secs T = 700 ML = 996.75

True 2 0.5 1 0.7 0.1 1 0.1 0.1
Est. 2.263 0.475 1.030 0.674 0.092 1.005 0.097 0.155
SE 1.045 0.151 0.260 0.072 0.043 0.074 0.041 0.170

ŜE 0.899 0.155 0.278 0.074 0.050 0.087 0.050 0.204
MSE. 1.161 0.024 0.068 0.006 0.002 0.006 0.002 0.032

RT = 330.55 secs T = 150 ML = 494.77
Est. 2.099 0.496 1.008 0.683 0.098 1.003 0.099 0.123
SE 0.689 0.124 0.183 0.054 0.032 0.057 0.034 0.109

ŜE 0.618 0.122 0.189 0.053 0.035 0.061 0.035 0.117
MSE. 0.484 0.015 0.034 0.003 0.001 0.003 0.001 0.012

RT = 1055.37 secs T = 300 ML = 990.62

True 0.5 2 1 0.3 0.1 1 0.1 0.1
Est. 0.506 2.014 1.026 0.299 0.094 1.011 0.097 0.259
SE 0.038 0.298 0.352 0.061 0.043 0.073 0.041 0.438

ŜE 0.042 0.337 0.378 0.070 0.050 0.087 0.049 0.599
MSE. 0.001 0.089 0.124 0.004 0.002 0.005 0.002 0.217

RT = 369.06 secs T = 350 ML = 500.03
Est. 0.503 2.007 1.016 0.298 0.096 1.005 0.098 0.184
SE 0.029 0.219 0.253 0.047 0.033 0.058 0.033 0.246

ŜE 0.029 0.234 0.268 0.049 0.035 0.061 0.035 0.280
MSE. 0.001 0.048 0.064 0.002 0.001 0.003 0.001 0.068

RT = 1227.40 secs T = 700 ML = 998.89

True 0.5 2 1 0.7 0.1 1 0.1 0.1
Est. 0.533 1.858 0.997 0.671 0.093 1.014 0.095 0.157
SE 0.076 0.503 0.200 0.065 0.043 0.075 0.044 0.179

ŜE 0.083 0.578 0.223 0.074 0.051 0.089 0.050 0.230
MSE. 0.007 0.274 0.040 0.005 0.002 0.006 0.002 0.035

RT = 348.17 secs T = 150 ML = 490.36
Est. 0.516 1.941 1.001 0.687 0.095 1.006 0.099 0.129
SE 0.053 0.409 0.143 0.048 0.032 0.058 0.034 0.123

ŜE 0.056 0.434 0.151 0.051 0.035 0.061 0.035 0.138
MSE. 0.003 0.171 0.021 0.002 0.001 0.003 0.001 0.016

RT = 1140.52 secs T = 300 ML = 996.05

Table 6.4.1: Results of the maximum likelihood estimation based on 1000 simulated
datasets of the marked RHawkes process with gamma distributed inter-immigration
waiting times, exponential offspring densities, normalized affine linear impact func-
tion, and event marks following the one-step Markov model in (6.3.13).

Figure 6.4.1 displays the normal Q-Q plots for the estimated parameters in the

last simulation model considered in Table 6.4.1. For most parameters, the standard
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normal quantiles and the empirical quantiles of the estimator align reasonably well.

However, as the actual value for δ = 0.1 is very close to the lower bound 0, and

because of the significant variance in the estimator for δ, the empirical distribution

for the estimator of δ is heavily skewed to the right, causing severe deviation of the

quantile points from the Q-Q line in the Q-Q plot for δ̂.
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Figure 6.4.1: Normal Q-Q plots for the estimated parameters in the case where
θ = (κ, β, γ, δ, η) = (0.5, 2, 1, 0.1, 0.7) and a mean numbers of events close to 1000.

6.5 Modeling extreme negative returns

The versatility of the marked RHawkes process for modeling extreme negative re-

turns will be illustrated on five stocks traded on the ASX introduced in Section 6.2.

The marked RHawkes process model was fit to the data with three different choices

of inter-renewal distributions; exponential, gamma, and Weibull. Recall that the ex-

ponential inter-renewal distribution is equivalent to the competitor approach based

on the classical marked Hawkes process for which the marked RHawkes process

will be backtested. The gamma model has an inter-renewal hazard function given

by (6.4.1) and the Weibull model with shape parameter κ and scale parameter β has

hazard function given in (3.6.2). For all models, a normalized affine impact function

as in (6.4.2) is used, where δ reflects the strength of the excesses on the ground inten-

sity process. The offspring density is selected to be exponential h(t) = e−t/γ/γ where

γ represents the mean waiting time between an exceedance event and any exceedance

events directly excited by it. The estimated parameters for each model on the ASX

stocks were found by directly optimizing the log-likelihoods and the standard er-

rors by inverting the Hessian matrix. The Rosenblatt residuals for goodness-of-fit

assessment were also calculated.
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Following Chavez-Demoulin et al. (2005), the loss excesses follow the order-1

Markov process model in (6.3.13). The contribution to the likelihood in (6.3.3)

based only on the excesses is optimized first. The results are reported in Table 6.5.1,

which reports the estimates, the standard errors (in parentheses), and the p-values

of the K-S tests and L-B tests on the Rosenblatt residuals. The significant p-values

suggest the model for the excesses is adequate for most of the stocks, except in the

case of the JHX and CPU stocks, where there is still significant serial correlation

among the residuals. A higher-order Markov process might be considered for these

stocks. The estimated parameter b̂ is positive for all the stocks, suggesting that an

excessively large loss is likely to be followed by another substantial loss, although

the result is only significant for the stocks JBH and CPU. The estimated shape

parameter ξ̂ is positive for all the stocks, although it is statistically significant only

for the stock DOW, suggesting the loss excesses on this stock is heavier-tailed than

on the other stocks, which agrees with the kurtosis statistics shown in Table 6.2.1.

ξ̂ â b̂ K–S L–B

JBH 0.113 (0.0672) 1.213 (0.152) 0.133 (0.0675) 0.7720 0.3189
ABC 0.118 (0.0706) 1.124 (0.137) 0.0883 (0.0697) 0.7737 0.4681
CPU 0.129 (0.0687) 0.748 (0.108) 0.286 (0.0883) 0.8115 0.0058
DOW 0.337 (0.0755) 1.192 (0.134) 0.0071 (0.0351) 0.4579 0.0649
JHX 0.0976 (0.0720) 1.089 (0.128) 0.122 (0.0657) 0.9627 2.656× 10−7

Table 6.5.1: Results of the maximum likelihood estimation of excesses using the
GPD with common shape parameter ξ and scale parameters evolving according to
a first order Markov process σj = a+ bwj−1 for each five ASX stocks.

Table 6.5.2 contains the estimates of the model parameters for the temporal

component, their standard errors (in parentheses), the mean waiting time between

exogenously driven exceedances (WT) and the p-values of the K-S and L-B tests on

the residuals calculated using the in-sample data. The marked RHawkes process with

gamma or Weibull inter-renewal distributions fits to the data better than the Hawkes

process model (the exponential case), with uniformity of residuals for the RHawkes

process models passing the K-S test at the 5% level on all five stocks. However, the

residuals for the Hawkes process are always smaller and mostly fail at the 5% level.

Furthermore, the results on the L-B tests of independence of residuals for the Hawkes

and RHawkes processes are very similar, except for the stock DOW. The goodness-

of-fit results of the gamma and Weibull RHawkes processes are similar, although

the fit by the gamma RHawkes model is slightly better. Figure 6.5.1 displays the

uniform Q-Q plots and the ACF plots of the Rosenblatt residuals Ui (6.3.15) for the

gamma RHawkes model fitted to the different stocks. Graphically, the uniform Q-Q

plots indicate good agreement between empirical and theoretical quantiles, although

115



they manage to depart in the upper quantiles slightly but remain within the 95%

confidence intervals. The autocorrelations among the residuals are mostly negligible

as seen in the ACF plots, and this is confirmed by the large p-values of the L-B tests

for the majority of the stocks.

κ̂ β̂ γ̂ δ̂ η̂ WT K-S L-B

JBH
Exponential µ̂ = 22.67 (5.73) 42.82 (12.67) 1.643 (3.118) 0.564 (0.115) 22.67 0.049 0.015
Weibull 1.544 (0.336) 28.07 (6.10) 29.30 (9.47) 0.694 (0.712) 0.609 (0.0906) 25.25 0.146 0.019
Gamma 1.983 (0.906) 12.44 (4.28) 29.87 (10.28) 0.772 (0.908) 0.599 (0.101) 24.67 0.189 0.019
ABC
Exponential µ̂ = 23.37 (6.33) 51.84 (16.97) 0.722 (0.870) 0.575 (0.120) 23.37 0.008 0.185
Weibull 1.384 (0.220) 24.50 (4.85) 35.37 (12.71) 0.571 (0.548) 0.555 (0.0911) 22.37 0.044 0.187
Gamma 1.606 (0.374) 13.21 (3.26) 37.37 (13.96) 0.700 (0.733) 0.530 (0.0948) 21.21 0.064 0.177
CPU
Exponential µ̂ = 27.30 (8.82) 41.77 (15.22) 0.170 (0.250) 0.639 (0.123) 27.30 0.067 0.340
Weibull 1.322 (0.242) 29.74 (8.19) 32.61 (10.86) 0.152 (0.201) 0.639 (0.103) 27.38 0.116 0.314
Gamma 1.704 (0.616) 15.66 (4.94) 32.13 (10.77) 0.160 (0.208) 0.630 (0.106) 26.68 0.131 0.314
DOW
Exponential µ̂ = 19.90 (4.29) 20.44 (6.91) 0.110 (0.137) 0.498 (0.109) 19.90 0.074 0.287
Weibull 1.768 (0.578) 30.49 (8.57) 15.49 (4.46) 0.0844 (0.0787) 0.633 (0.108) 27.14 0.230 0.139
Gamma 7.129 (4.409) 4.95 (2.60) 17.51 (4.10) 0.0791 (0.0671) 0.719 (0.0656) 35.26 0.244 0.071
JHX
Exponential µ̂ = 21.82 (6.40) 47.92 (15.61) 0.800 (1.168) 0.549 (0.139) 21.82 0.019 0.332
Weibull 1.374 (0.234) 25.39 (6.65) 36.19 (10.77) 0.552 (0.613) 0.575 (0.113) 23.21 0.065 0.345
Gamma 1.705 (0.513) 12.76 (2.98) 36.12 (11.10) 0.686 (0.856) 0.546 (0.122) 21.75 0.109 0.355

Table 6.5.2: Results of the maximum likelihood estimation of the marked RHawkes
process with exponential (mean µ), Weibull and gamma (shape κ and scale β)
distributed inter-immigration waiting times, exponential offspring densities (mean
γ) and linear impact function (δ describes the strength of the excesses) and branching
ratio η for each of the five ASX stocks.

The additional versatility of the RHawkes process introduces one extra parame-

ter, and to conduct an appropriate comparison between the RHawkes process, and

the less flexible Hawkes process, the Akaike information criterion (AIC) for each

model on each of the five stocks is also computed and reported in Table 6.5.3. For

each stock, the Weibull and gamma renewal models outperform the Hawkes model.

The AIC for the gamma and Weibull models are again comparable. Therefore, by

observing the goodness-of-fit test results and the AIC values, to correctly model the

temporal patterns of exceedances, the more flexible RHawkes model is preferred to

the classical Hawkes process. In the sequel, when talking about RHawkes processes,

only the case with gamma distributed inter-renewal times will be discussed.

The stock JBH will be used to illustrate the interpretation of the model fit since

the results on the remaining stocks and can be understood similarly. The estimated

shape parameter of the gamma inter-renewal waiting time, κ̂ = 1.983, suggests that

exogenously driven extreme losses occur more evenly through time than suggested

by the classical Hawkes process (i.e., κ̂ = 1). The mean waiting time between

successive immigrants is κ̂β̂ = 24.67 days, which is slightly larger than suggested
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Figure 6.5.1: Graphical goodness-of-fit test of the Rosenblatt residuals for the
RHawkes process with gamma distributed inter-immigration waiting times for each
of the five ASX stocks. The top panels are the uniform Q-Q plots and the lower
panels are the ACF plots.

by the Hawkes model (22.67 days). The mean waiting time from an extreme loss

to an extreme loss directly generated by it is 29.87 days, while the Hawkes model

suggests this mean waiting time is considerably longer at 42.82 days. Another

interesting comparison is between the mean waiting time between exogenously and

endogenously driven exceedances suggested by the RHawkes model. By comparing

the WT and the estimated γ̂ values, it is clear that exogenously driven exceedances

occur more rapidly than endogenously driven ones, and this is consistent with all

but one of the stocks. The value δ̂ = 0.772 reflects a moderate impact of the excess

values on the propensity for future exceedances. For example, an excess of 2% leads

to an increase in propensity contribution from that exceedance by 13.44% while

an excess of 5% leads to an increase of 16.7%. The estimated δ̂ value decreases

when switching from exponential inter-renewals to gamma inter-renewals, and this

is consistent for all the stocks. Using gamma inter-renewals thus reduces the impact

that the loss excesses has on the intensity for future exceedances as compared to the

exponential inter-renewals. The relatively large branching ratio η̂ = 0.599 suggests a

high degree of self-excitation, with the model interpreting slightly more exceedances

to be endogenous rather than exogenous.

Next, the procedure developed in Section 6.3.6 are used to estimate the risk

measures on the five ASX stocks. The performance of the estimation is assessed by

backtesting, where the number of VaR exceptions expected by the estimated risk

measure is compared to the actual number of VaR exceptions. A VaR exception

occurs whenever the actual log-loss on a particular day exceeds the estimated value
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Stock JBH ABC CPU DOW JHX

Exponential 1613.36 1625.59 1634.97 1644.57 1627.29
Weibull 1609.37 1622.72 1634.06 1640.93 1623.64
Gamma 1609.60 1622.37 1633.00 1640.48 1622.41

Table 6.5.3: Akaike information criterion (AIC) for each of the five ASX stock with
exponential, Weibull and gamma distributed inter-renewals.

of the VaR. A large number of exceptions implies that the model is underestimating

the risk. Figure 6.5.2 displays the time series of the log-losses and the estimated

95% and 99% VaR based on the RHawkes process and based on the classical Hawkes

process for the ASX stocks over the period from 1 January 2012 to 31 December

2016. Here, a more extended period for backtesting was used, which contains part of

the in-sample period as well as the entire out-of-sample period, for the comparison

between the expected and actual numbers of VaR exceptions to be meaningful.

One method to formally assess how well the VaR estimator performs is to test

whether the observed proportion of VaR exceptions p̂ agrees with the expected

proportion of exceptions p = 1 − q, where q is the quantile level used in the VaR

calculation. The null hypothesis states that the model correctly forecasts the VaR,

while the alternate hypothesis states that the model underestimates the VaR, since

financial applications typically give more importance to not underestimating risk.

For the stock JBH, the percentage of actual exceptions based on the RHawkes

model estimate of the 95% VaR is 4.49%, and is 0.528% based on the 99% VaR

estimate. Both these values agree well with the respective expected proportions,

with the p-values of the one-side exact binomial tests equal to 0.8345 and 0.9839,

respectively. The corresponding p-values on the other four stocks are all much

more substantial than 5%, suggesting the RHawkes model-based VaR estimator has

satisfactory performance. The Hawkes model-based VaR estimator also passes the

test on all five stocks, although typically with smaller p-values. Therefore, the VaR

estimators based on the RHawkes and Hawkes models have similar performances.

However, Figure 6.5.2 reveals that the VaR estimate based on the RHawkes

model can drop following an exceedance, but the VaR estimate by the Hawkes

model always jumps up following an exceedance. The rationalization for this is that

the estimated shape parameter κ̂ of the inter-renewal distribution is larger than one,

implying that the estimated hazard function µ given in (6.4.1) is monotonically in-

creasing from 0, and therefore µ(t−τk)+φ(t) can drop following an immigrant event,

which in turn causes the approximation (6.3.21) used in the calculation of the VaR

in (6.3.22) to go down following an event with a small excess, but a high probability

of being an immigrant. In contrast, the hazard function µ in the Hawkes model is a

constant, so the intensity µ+φ(t) always jumps up when the excitation effect enters
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Figure 6.5.2: Time series plot of the daily log-losses for each of the five ASX stocks
for the period 1 January 2012 to 31 December 2016 together with the 95% and 99%
estimates of VaR. The solid lines are based on estimates for the gamma RHawkes
model, and the dashed lines are based on the Hawkes model.

φ(t) following each exceedance, which causes the VaR estimate in (6.3.22) to jump

up. The estimated ES at the 95% level for the five stocks are shown in Figure 6.5.3,

from which the estimates using both the RHawkes and the Hawkes models are again

similar to each other. However, similar to the VaR estimate, the ES estimate by

the RHawkes model can drop momentarily following an exceedance with a small

excess, suggesting that the chance and the size of an extreme loss right after a small

exceedance can both be smaller than before the exceedance.

Another interesting forecast to make is the number of days until the next extreme

loss. The developments in Section 6.3.5 are used to make this forecast for each

stock and then compared with actual observations. The waiting time until the next
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Figure 6.5.3: Time series plot of the daily log-losses for each of the five ASX stocks
for the period 1 January 2012 to 31 December 2016 together with the 95% estimates
of ES. The solid line is based on estimates from the gamma RHawkes model, and
the dashed line is the Hawkes model.

extreme loss is predicted by conditioning upon all priorly available information at

the censoring time, and computing the predictive density and hazard function using

both the RHawkes and Hawkes models. Figure 6.5.4 plots the predictive densities

using solid lines and the dashed lines for the predictive hazard functions. The black

lines indicate the RHawkes model, and the grey lines indicate the Hawkes model.

For the stock JBH, the probability that an exceedance occurs in the first, second,

third and fourth 10-day period implied by the RHawkes model are 54.12%, 24.53%,

11.29%, and 5.28% respectively, with the actual exceedance occurring during the

first ten-day period. The predicted probabilities by the Hawkes model are similar,

although the predicted probability of having the first extreme loss in the first 10-day
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period is slightly smaller. The predictive hazard function provides an estimate of

the hazard or conditional probability of having an extreme loss on a given day con-

ditional on that it has not occurred by the previous day. Observe from Figure 6.5.4

that by the RHawkes model the hazard of seeing an extreme loss on 1 January 2016

is 7.86%, while by the Hawkes model, it is only 7.09% . The predictions for the

other four stocks by the two models can be interpreted similarly. Note that the

hazard function for the stock DOW increases over time and this is a result of the

significant estimated shape parameter κ̂ = 7.129 and a recent exceedance having a

high probability of being exogenously driven.
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Figure 6.5.4: Solid lines display the predictive densities, and the dashed lines dis-
play the predictive hazard functions for the waiting time (in days) until the next
exceedance after the censoring time. The black lines indicate the RHawkes model,
and the shaded lines indicate the Hawkes model.

The significance of incorporating a renewal distribution for exogenously driven

negative returns lies in the flexible properties that the conditional risk measures

such as VaR and ES can exhibit while still preserving a straightforward estimation

procedure. For instance, these risk measures are permitted to drop following an

extreme loss and this is a trait not held by the classical Hawkes process. This

suggests that after an extreme loss occurs the chances of observing another large loss

could potentially decrease. Furthermore, the RHawkes process can produce a hazard

function for the next extreme loss that actually increase over time which suggest

that the pressure for the stock price to drop substantially gains momentum from
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exogenous factors. Again, this is another property that the classical Hawkes process

cannot exhibit. Furthermore, the Hawkes process is unable to adequately fit the

five ASX stocks as the p-values for the tests of independence and uniformity mostly

fail at the five percent level. Hence, we can conclude that the RHawkes process is

the superior model of choice as it is able to successfully pass these tests at the five

percent level and provides more flexibility when performing risk quantification.
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Chapter 7

Conclusion

7.1 Summary

Stochastic point processes model the temporal patterns of event arrival times. Hawkes

processes, as opposed to conventional Poisson processes, allow events in the past to

determine the future arrival rate. Since the intensity process of a Hawkes process

increases temporarily when an event occurs, a heavier clustering of the event times is

achievable as a consequence of the self-exciting mechanism. These modeling capabil-

ities of the Hawkes process were extended by Wheatley et al. (2016), in which they

modified the arrival process of immigrants, by allowing the inter-immigrant wait-

ing times to depend on the most recent immigrant arrival time, that is, a renewal

immigration process was introduced.

However, Wheatley et al. (2016) insisted that the computation of the likelihood

for the RHawkes process demanded exponential computational time and therefore,

was practically infeasible on any meaningful datasets. Due to the perceived in-

tractability of finding the MLE directly to make statistical inferences, and relying

on the branching process representation of self-exciting process, they implemented

two E-M type algorithms to compute the MLE of the model parameters. Further-

more, a bootstrap procedure was used to estimate the variance-covariance matrix of

the MLE and a Monte Carlo approach to compute a goodness-of-fit test statistic,

but these methods are still computationally expensive.

This thesis contributes by providing superior methods to conduct statistical in-

ferences for the RHawkes process, and overcome the computationally expensive in-

ferential procedures currently available. Since the likelihood function plays a fun-

damental role in statistical inferences, a practically feasible method for likelihood

evaluation is highly desirable. Chapter 2 solved this by describing an efficient algo-

rithm to calculate the likelihood of the RHawkes process in quadratic time, which

was a significant improvement from the exponential time claimed by Wheatley et al.

(2016). This chapter furthermore discussed methods to simulate the model, perform
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goodness-of-fit assessments and predictions, which are efficient and straightforward

to implement and illustrated the applicability of the methods discussed to real data

from seismology and finance.

Nevertheless, fitting the renewal Hawkes process to data still remains a chal-

lenging task, particularly on bigger datasets. Chapter 3 undertook this challenge by

developing two approaches that significantly reduce the time required to fit RHawkes

processes. Since the derivative-based methods for optimization, in general, converge

faster than the derivative-free methods, the first approach derived algorithms to

evaluate the gradient and Hessian of the log-likelihood function and then applied

the derivative-based Newton-Raphson method in maximizing the likelihood, instead

of the derivative-free method used in Chapter 2. The second approach sought linear

time algorithms that produced accurate approximations to the likelihood function

by truncating the most recent immigration distribution. Simulation experiments

showed that the Newton-Raphson method reduced the computational time signifi-

cantly and in some simulates, halved the computational time, even on moderately

large datasets. Furthermore, the approximate likelihood methods that have linear

computational time produced comparably accurate estimates. The methods pre-

sented therein were readily applicable to data, and as an illustration, an analysis of

mid-price changes on several currencies relative to the US Dollar was presented.

The computational efficiency gains from the likelihood evaluation algorithms de-

tailed in Chapters 2 and 3 facilitated the application of these algorithms to the esti-

mation of multivariate and marked point process models with renewal immigration.

In Chapter 4, a multivariate extension to the RHawkes process was introduced, in

which, different event types interact with self- and cross-excitation effects. A similar

recursive algorithm was formulated to directly calculate the likelihood of the model,

which established the basis of statistical inferences. Furthermore, to overcome the

high computational demands required for estimation in the high dimensional set-

tings, a modified algorithm that reduced the computational time significantly was

also discussed. The likelihood evaluation algorithm implied a procedure to assess

the goodness-of-fit for both the temporal patterns of the events and the distribution

of the event types. The plug-in predictive density function for the next event time

and methods to make future predictions using simulations were also addressed. The

simulation studies showed that the likelihood evaluation algorithms and the pre-

diction procedures were performing as expected. The proposed methodologies were

illustrated on two datasets; the first was earthquakes occurring in two Pacific island

countries Fiji and Vanuatu and the second on trade-through data for the stock BNP

Paribas on the Euronext Paris stock exchange.

Chapter 6 analyzed extreme financial returns using RHawkes processes with

marks. Extreme return financial time series are often challenging to model due to
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the presence of heavy temporal clustering of extremes and strong bursts of return

volatility. In this chapter, a model for extreme financial returns was introduced,

which provided additional flexibility in the specification of the background arrival

rate compared to the Hawkes process. The model is a marked version of the re-

newal Hawkes process discussed in Chapter 2 and 3. A procedure is developed to

evaluate the likelihood of the model, which can be optimized to obtain estimates

of model parameters and their standard errors. The proposed model was applied

to extreme negative returns for five stocks traded on the Australian Securities Ex-

change. The models identified for the stocks using in-sample data were found to

be able to successfully forecast the out-of-sample risk measures such as the value at

risk and expected shortfall, and provided a better quality of fit than the competing

Hawkes model.

7.2 Perspective on future work

The scope of this thesis has detailed computational aspects to fit, assess, and make

predictions for the RHawkes process model. Although inference for the RHawkes

model, using the maximum likelihood method, is straightforward to implement, the

results concerning the properties of the MLEs are yet to be discussed. This lack of

asymptotic theory for maximum likelihood-based inference for RHawkes processes

presents an avenue for future work. It would be anticipated that under some sta-

tionarity and ergodicity conditions, that the maximum likelihood estimator θ̂ would

display consistency and asymptotic normality (as the observation time T → ∞),

as suggested by the simulation studies conducted herein. Additionally of interest is

the asymptotic distribution of the gaps between successive events. This would help

design approximations to the likelihood and have an understanding of the bound of

the relative error in the approximations.

In the seismological applications illustrated herein, the proximity of the earth-

quake epicenters or the more generally, the spatial aspects of earthquake occurrences

are either disregarded entirely or accounted for by using an event type indicator for

the different geographical regions. This unnecessarily limits the modeling capabili-

ties of the RHawkes process in terms of spatial interactions. A potential extension

that has not received attention as yet is a spatio-temporal extension to the RHawkes

process. To this end, the intensity would depend on the location of the earthquakes

similar to the space-time ETAS (Epidemic Type Aftershock Sequence)) (see, e.g.,

Ogata and Zhuang (2006)).

An autoregressive-moving-average (ARMA) point process is another recent ex-

citing modification to the Hawkes process and was introduced by Wheatley et al.

(2018). The ARMA point process incorporates the classical Hawkes process but is
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driven by a Neyman-Scott process with Poisson immigration. The process is a natu-

ral analog to the ARMA time series model for integer-values times series. It provides

an alternative generalization to the baseline rate of a Hawkes process, but rather

than allow the baseline intensity function to renew upon the arrival of an immigrant

like in the RHawkes process, the ARMA point process introduces a short-noise

type burst at the immigrant times. For instance, consider high-frequency mid-price

changes in financial markets, such as in Chapters 3 and 4 herein, the ARMA point

process would then allow exogenous shocks and clustering due to multiple mech-

anisms, such as order splitting and the near-simultaneous independent actions of

multiple market participants in response to an exogenous shock. The approach un-

dertaken in this thesis may be applicable in evaluating the likelihood of the ARMA

point process, or at least an approximation to the likelihood, to facilitate likelihood

inferences rather than the EM algorithm employed by Wheatley et al. (2018).

Another possible direction for future work could be to modulate the hazard

function for immigrant arrivals of the renewal Hawkes process so that it depends

on both the absolute time t, and on the time since the most recent immigrant τI(t).

The modulated intensity function would take the form,

λ(t) = µ(t− τI(t), t) +

N(t−)∑
j=1

ηh(t− τj),

where µ(·, ·) is now a hazard function that takes two arguments that relate to the

waiting time since the most recent immigrant t− τI(t) and the absolute time t. This

provides a convenient method to introduce non-stationarity into the renewal pro-

cess for immigrants. This would provide a flexible specification that accounts for

long terms trends in the intensity. For instance, in the data analysis of currency

exchange rates and trade-throughs, the modulated renewal RHawkes process might

be convenient to handle the natural variation in intra-day trading activities in a

single framework rather than applying the two-step procedure of transforming the

observed event times, and then fitting a stationary RHawkes process to the trans-

formed times.
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Appendix A

Derivatives of the most recent

immigrant probabilities in the

RHawkes process

A.1 First derivative of the most recent immigrant probabil-

ities

In this appendix, the derivation to compute the derivatives of the most recent im-

migrant probabilities with respect to the parameter θ using a recursive algorithm is

presented. For any fixed i ∈ {3, . . . , n} and for j 6 i−2, the most recent immigrant

probabilities pij = P (I(τi) = j|τ1:i−1) take the form,

pij =
φ(τi−1)Ψi−1,jpi−1,j∑i−2

k=1 (µ(τi−1 − τk) + φ(τi−1)) Ψi−1,kpi−1,k

. (A.1.1)

where the notations are as in Chapter 4. The derivatives of pij are obtained by

application of the quotient rule. The derivative of the pij numerator in (A.1.1) with

respect to parameter vector θ of the model is given by,

Ψi−1,j

[
pi−1,j∂θφ(τi−1) + φ(τi−1)∂θpi−1,j + φ(τi−1)pi−1,j∂θψi−1,j

]
, (A.1.2)

and the derivative of the denominator of pij is

i−2∑
k=1

Ψk(τi−1)
[
{∂θµ(τi−1 − τk) + ∂θφ(τi−1)} pi−1,k+

{µ(τi−1 − τk) + φ(τi−1)} (pi−1,k∂θψi−1,k + ∂θpi−1,k)
]
. (A.1.3)

Now by applying the quotient rule with the aid of (A.1.2) and (A.1.3), the following

recursion for the derivative of the most recent immigrant probabilities ∂θpij holds
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for i ∈ {3, . . . , n+ 1},

∂θpij =
A

C
− B

C2
, j = 1, . . . , i− 2, (A.1.4)

∂θpi,i−1 = −
i−2∑
j=1

∂θpij, (A.1.5)

where

A := Ψi−1,j

[
pi−1,j∂θφ(τi−1) + φ(τi−1)pi−1,j∂θψi−1,j + φ(τi−1)∂θpi−1,j

]
,

B := φ(τi−1)Ψi−1,jpi−1,j

i−2∑
k=1

Ψi−1,k

[
{∂θµ(τi−1 − τk) + ∂θφ(τi−1)} pi−1,k

+ {µ(τi−1 − τk) + φ(τi−1)} (pi−1,k∂θψi−1,k + ∂θpi−1,k)

]
,

and

C :=
i−2∑
k=1

(µ(τi−1 − τk) + φ(τi−1)) Ψk(τi−1)pi−1,k.

This recursive procedure is initialized with the condition that ∂θp21 = 0.

A.2 Second derivative of the most recent immigrant prob-

abilities

Now for the second derivative of the most recent immigrant probabilities, the terms

in (A.1.4) is differentiated, again using the quotient rule, and then the following is

obtained,

∂2
θθ>pij =

∂θA
>

C
− A∂θ>C + ∂θB

>

C2
+ 2

B∂θ>C

C3
, j = 1, . . . , i− 2, (A.2.1)

where

∂θA
> = Ψi−1,j

[
φ(τi−1)∂2

θθ>pi−1,j +
(
∂2
θθ>φ(τi−1)

)
pi−1,j + 2∂θφ(τi−1)� ∂θpi−1,j

+ 2 {(∂θφ(τi−1)) pi−1,j + φ(τi−1)∂θpi−1,j} � ∂θψi−1,j

+ φ(τi−1)pi−1,j

{
(∂θψi−1,j)

⊗2 + ∂2
θθ>ψi−1,j

} ]
,
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A∂θ>C+∂θB
> = 2

{
Ψi−1,j

[
pi−1,j∂θφ(τi−1) + φ(τi−1)pi−1,j∂θψi−1,j + φ(τi−1)∂θpi−1,j

]}
�

{
i−2∑
k=1

Ψi−1,k

[
{∂θµ(τi−1 − τk) + ∂θφ(τi−1)} pi−1,k

+ {µ(τi−1 − τk) + φ(τi−1)} (pi−1,k∂θψi−1,k + ∂θpi−1,k)

]}
,

and

B∂θ>C = φ(τi−1)Ψi−1,jpi−1,j

{
i−2∑
k=1

Ψi−1,k

[
{∂θµ(τi−1 − τk) + ∂θφ(τi−1)} pi−1,k

+ {µ(τi−1 − τk) + φ(τi−1)} (pi−1,k∂θψi−1,k + ∂θpi−1,k)

]}⊗2

.

The recursive procedure is again initialized with ∂2
θθ>p21 = 0. Then for each con-

secutive i ∈ {3, . . . , n+ 1} compute (A.2.1) for j 6 i− 2, and then when j = i− 1

simply use,

∂2
θθ>pi,i−1 = −

i−2∑
k=1

∂2
θθ>pik.
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