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Abstract

Personal data generated from IoT devices is a new economic asset that individuals can trade to generate revenue on the emerging
data marketplaces. Blockchain technology can disrupt the data marketplace and make trading more democratic, trustworthy,
transparent and secure. Nevertheless, the adoption of blockchain to create an IoT data marketplace requires consideration of
autonomy and efficiency, privacy, and traceability.

Conventional centralized approaches are built around a trusted third party that conducts and controls all management operations
such as managing contracts, pricing, billing, reputation mechanisms etc, raising concern that providers lose control over their
data. To tackle this issue, an efficient, autonomous and fully-functional marketplace system is needed, with no trusted third party
involved in operational tasks. Moreover, an inefficient allocation of buyers’ demands on battery-operated IoT devices poses a
challenge for providers to serve multiple buyers’ demands simultaneously in real-time without disrupting their SLAs (service level
agreements). Furthermore, a poor privacy decision to make personal data accessible to unknown or arbitrary buyers may have
adverse consequences and privacy violations for providers. Lastly, a buyer could buy data from one marketplace and without the
knowledge of the provider, resell bought data to users registered in other marketplaces. This may either lead to monetary loss or
privacy violation for the provider. To address such issues, a data ownership traceability mechanism is essential that can track the
change in ownership of data due to its trading within and across marketplace systems. However, data ownership traceability is
hard because of ownership ambiguity, undisclosed reselling, and dispersal of ownership across multiple marketplaces.

This thesis makes the following novel contributions. First, we propose an autonomous and efficient IoT data marketplace,
MartChain, offering key mechanisms for a marketplace leveraging smart contracts to record agreement details, participant ratings,
and data prices in blockchain without involving any mediator. Second, MartChain is underpinned by an Energy-aware Demand
Selection and Allocation (EDSA) mechanism for optimally selecting and allocating buyers’ demands on provider’s IoT devices
while satisfying the battery, quality and allocation constraints. EDSA maximizes the revenue of the provider while meeting the
buyers’ requirements and ensuring the completion of the selected demands without any interruptions. The proof-of-concept
implementation on the Ethereum blockchain shows that our approach is viable and benefits the provider and buyer by creating an
autonomous and efficient real-time data trading model.

Next, we propose KYBChain, a Know-Your-Buyer in the privacy-aware decentralized IoT data marketplace that performs a multi-
faceted assessment of various characteristics of buyers and evaluates their privacy rating. Privacy rating empowers providers
to make privacy-aware informed decisions about data sharing. Quantitative analysis to evaluate the utility of privacy rating
demonstrates that the use of privacy rating by the providers results in a decrease of data leakage risk and generated revenue,
correlating with the classical risk-utility trade-off. Evaluation results of KYBChain on Ethereum reveal that the overheads in terms
of gas consumption, throughput and latency introduced by our privacy rating mechanism compared to a marketplace that does
not incorporate a privacy rating system are insignificant relative to its privacy gains.

Finally, we propose TrailChain which generates a trusted trade trail for tracking the data ownership spanning multiple decentralized
marketplaces. Our solution includes mechanisms for detecting any unauthorized data reselling to prevent privacy violations
and a fair resell payment sharing scheme to distribute payment among data owners for authorized reselling. We performed
qualitative and quantitative evaluations to demonstrate the effectiveness of TrailChain in tracking data ownership using four private
Ethereum networks. Qualitative security analysis demonstrates that TrailChain is resilient against several malicious activities and
security attacks. Simulations show that our method detects undisclosed reselling within the same marketplace and across different
marketplaces. Besides, it also identifies whether the provider has authorized the reselling and fairly distributes the revenue among
the data owners at marginal overhead.
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Abstract

Personal data generated from IoT devices is a new economic asset that individuals can
trade to generate revenue on the emerging data marketplaces. Blockchain technology can
disrupt the data marketplace and make trading more democratic, trustworthy, transparent
and secure. Nevertheless, the adoption of blockchain to create an IoT data marketplace
requires consideration of autonomy and efficiency, privacy, and traceability.

Conventional centralized approaches are built around a trusted third party that conducts
and controls all management operations such as managing contracts, pricing, billing,
reputation mechanisms etc, raising concern that providers lose control over their data.
To tackle this issue, an efficient, autonomous and fully-functional marketplace system is
needed, with no trusted third party involved in operational tasks. Moreover, an ineffi-
cient allocation of buyers’ demands on battery-operated IoT devices poses a challenge for
providers to serve multiple buyers’ demands simultaneously in real-time without disrupt-
ing their SLAs (service level agreements). Furthermore, a poor privacy decision to make
personal data accessible to unknown or arbitrary buyers may have adverse consequences
and privacy violations for providers. Lastly, a buyer could buy data from one marketplace
and without the knowledge of the provider, resell bought data to users registered in other
marketplaces. This may either lead to monetary loss or privacy violation for the provider.
To address such issues, a data ownership traceability mechanism is essential that can track
the change in ownership of data due to its trading within and across marketplace systems.
However, data ownership traceability is hard because of ownership ambiguity, undisclosed
reselling, and dispersal of ownership across multiple marketplaces.

This thesis makes the following novel contributions. First, we propose an autonomous
and efficient IoT data marketplace, MartChain, offering key mechanisms for a market-
place leveraging smart contracts to record agreement details, participant ratings, and data
prices in blockchain without involving any mediator. Second, MartChain is underpinned
by an Energy-aware Demand Selection and Allocation (EDSA) mechanism for optimally
selecting and allocating buyers’ demands on provider’s IoT devices while satisfying the
battery, quality and allocation constraints. EDSA maximizes the revenue of the provider
while meeting the buyers’ requirements and ensuring the completion of the selected de-
mands without any interruptions. The proof-of-concept implementation on the Ethereum
blockchain shows that our approach is viable and benefits the provider and buyer by
creating an autonomous and efficient real-time data trading model.
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Next, we propose KYBChain, a Know-Your-Buyer in the privacy-aware decentralized IoT
data marketplace that performs a multi-faceted assessment of various characteristics of
buyers and evaluates their privacy rating. Privacy rating empowers providers to make
privacy-aware informed decisions about data sharing. Quantitative analysis to evaluate
the utility of privacy rating demonstrates that the use of privacy rating by the providers
results in a decrease of data leakage risk and generated revenue, correlating with the
classical risk-utility trade-off. Evaluation results of KYBChain on Ethereum reveal that
the overheads in terms of gas consumption, throughput and latency introduced by our
privacy rating mechanism compared to a marketplace that does not incorporate a privacy
rating system are insignificant relative to its privacy gains.

Finally, we propose TrailChain which generates a trusted trade trail for tracking the data
ownership spanning multiple decentralized marketplaces. Our solution includes mecha-
nisms for detecting any unauthorized data reselling to prevent privacy violations and a
fair resell payment sharing scheme to distribute payment among data owners for autho-
rized reselling. We performed qualitative and quantitative evaluations to demonstrate
the effectiveness of TrailChain in tracking data ownership using four private Ethereum
networks. Qualitative security analysis demonstrates that TrailChain is resilient against
several malicious activities and security attacks. Simulations show that our method de-
tects undisclosed reselling within the same marketplace and across different marketplaces.
Besides, it also identifies whether the provider has authorized the reselling and fairly
distributes the revenue among the data owners at marginal overhead.
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Chapter 1

Introduction

“Data is the new oil. It’s valuable, but if unrefined, it cannot be used. It has to be changed

into gas, plastic, chemicals, etc. to create a valuable entity that drives profitable activity;

so must data be broken down and analyzed for it to have value.” – Clive Humby, 2006

The above statement by Clive Humby [1] that data is the new oil has often been cited.

In some ways, this expression accurately reflects how data is an essential resource of this

century, similar to oil a century ago. Businesses are investing enormous resources to

accumulate and take control of data, and with its possession, they can transform society

and the economy. However, this statement fails to capture the essence of the data. Unlike

oil, data is not a finite resource, it can be reused, and its value depends on the eye of the

beholder. Therefore, a better analogy is to think of data as an asset.

1.1 Data as an Asset

In 2011, the World Economic Forum [2] described data as a new asset in the digital

economy. One of the driving forces behind the digital economy is data generated from

the Internet of Things (IoT) devices. With the continued adoption of IoT, more ’things’

are becoming connected to the Internet, such as wearable devices, medical implants, cars,
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etc. The IDC forecast [3] estimates that over 41.6 billion devices will be connected by

2025, collectively producing 73.1 ZB (zettabytes) of data. This voluminous data may

contain sensitive information about our identity, social interactions, habit, locations etc.

Collecting, storing and analyzing these data will pose enormous opportunities in different

application domains [4–8] including agriculture, automotive, home automation, health

care, insurance services, personal fitness, smart cities, and many more. Organizations

collect and use IoT data to improve and optimize operations [9]. For example, ride-

booking services can use customers’ smartphone data to monitor traffic conditions in

real time, adjust pricing based on demand and manage vehicle supply. Others could

employ IoT data as an integral part of their product/service offering [8]. For example,

health insurance providers can use health data from fitness or wearable devices to develop

customer-centric propositions that incentivize healthy lifestyles. IoT data can also improve

the effectiveness of critical public services [10]. For instance, municipal governments can

collect sensing data from smart cars to predict the development of potholes for road

maintenance. Researchers can use data generated from smart devices and wearables to

develop models that can detect and prevent infections [4]. For example, with the help of

health parameters collected in real-time from mobile phone sensors, COVID-19 positive

and suspected cases can be tracked and quarantined. In short, data is a valuable resource

of the 21st century touching all aspects of society.

1.2 The IoT ecosystem - where we stand today

As highlighted in the above examples, acquiring the correct set of IoT data at the correct

time and context can help businesses, governments, service providers, developers and other

data consumers to make more informed decisions. However, one significant challenge

data consumers face is the considerable time and effort required to access high-quality

IoT data generated by disparate data sources. There are several models under which

these data sources could be owned and operated [11]. They may a) be wholly owned

and operated by a city government; b) they may be deployed and operated/managed
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by a single organization for each application; or c) they may belong to individuals who

are normal citizens, producing various types of data streams regularly from their sensor-

equipped devices. However, all these three options are not always available in many

use cases. For example- (a) and (b) do not make sense for the wearable. Therefore,

our interest is in the data collected by the sensors built into the heterogeneous smart

devices owned by individuals because it is intuitively the most scalable and effective way

to collect large datasets. The most common example is the smartphone sensors already in

the hands of 6.64 billion [12] people worldwide. A smartphone is typically equipped with

a rich set of embedded sensors [13], such as an accelerometer, digital compass, gyroscope,

GPS, microphone, camera, etc. Moreover, IoT devices are an integral part of individuals’

lives, from light bulbs to coffee makers, headphones, TVs, and many more. By 2030, it

is expected that each individual will possess about 15 connected devices [14]. However,

with the amount of data generated by billions of IoT devices, it is challenging for data

consumers to channel, collect, manage, and find needed data from all these data sources.

IoT comprises low-power devices [15] with necessary sensors to fulfil primary usage. For

example, a smart sprinkler may only be activated if the soil moisture level in the garden

goes below a certain level. Typically, data generated by these IoT devices are managed

and stored in a cloud by application or service providers (SP). SP process and analyze

the collected data to provide a promised service, and after his analysis, data is either

thrown away or amassed in private silos. Such unused and hidden data are known as dark

data, which accounts for 99% of the collected data [16]. Dark data hide a considerable

amount of knowledge and insight that could be used to build valuable services. To realize

the full value of data, these dark data residing in monolithic and isolated data silos must

be combined from multiple IoT solutions and made easily accessible or shareable across

services. However, in the current ecosystem, SP allows data owners to access their data

or summaries through some application or web. Data owners have no option but to trust

the SP and rely on their promises of resilience, availability, and security. Moreover, these

data often contain sensitive private information that SPs can use to profile data owners

violating their privacy and making profits through unsolicited marketing or targeted ad-

vertisements [17,18]. Besides, SP could also exploit and make users’ data widely available
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Figure 1.1: Evolution of data management system

to anyone without the user’s explicit consent, for example, in the Facebook Cambridge An-

alytica scandal [19]. In 2018, Cambridge Analytica misused the API, originally designed

to allow a third-party app to access the personality profile of participating users, to collect

information on 50 million Facebook profiles without the consent of the users. Such illicit,

gathered private data are later used to create personalized psychology profiles for political

purposes. Hence, in the current IoT ecosystem, data owners have limited possibilities to

control and monetize their data.

The aforementioned limitations in the current IoT ecosystem necessitate a mechanism that

empowers data owners with fine-granular access control, allowing them to decide what data

they wish to share with whom and ensure data ownership. Furthermore, there should be

a way for data owners to demand fair compensation for the data they share with data

consumers. Finally, the data owners must be able to reject any request for data sharing

they deem unacceptable. These requirements lead us to conclude that a marketplace for

IoT data that aims to ensure ownership, control and fairness is viable.

1.3 The rise of Data Marketplace

This section will discuss the evolution of data management systems traditionally used to

manage data silos, their limitations and how the IoT data marketplace is a promising

solution for data consumers and owners. The evolution of the data management systems

is depicted in Fig. 1.1. Between 1970-1980, databases were developed to store many

structured data types such as names, dates, addresses etc., enabling users to interact with

the data. However, databases are expensive and proprietary and are often considered

unsuitable for meeting IoT data requirements [20] due to the dynamic and vast nature
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Figure 1.2: Data marketplace facilitating trade between seller and buyer

of IoT, heterogeneous data sources, size and scale, etc. Subsequently, the concept of

data warehouses developed between 1980-1990 to accumulate data from a wide range of

sources and transform it into a structured format for processing and storing purposes.

However, data warehouses have a rigid and inflexible architecture that makes adding a

vast amount of unstructured data from new IoT devices time-consuming. In 2011, data

lakes were introduced to tackle the limitations of data warehouses. A data lake is a large

storage repository that holds large volumes of raw data in its original format. However,

data lakes do not offer a way to organize and monetize data. In 2017, the notion of an

IoT data marketplace attracted increasing attention as it enables (i) data consumers to

navigate, integrate, and analyze data produced from a plethora of IoT devices owned by

individuals to generate timely insights that help in effective decision-making, (ii) data

owners to control, monetize, and distribute data generated from their IoT devices with

data consumers. Data marketplace addresses the issue of data silos and facilitates the

data trade between data owners and data consumers. A data marketplace consists of two

main participants: seller and buyer. A seller is an entity that sells data generated from his

IoT devices in return for incentives. We will use seller and provider interchangeably in the

thesis. A buyer is an entity interested in purchasing a particular type of data. For example,

application developers, researchers, businesses, government, etc. A data marketplace, as

depicted in Fig. 1.2, in general, facilitates all the activities of selling and buying, such as

enabling the seller to list his data offerings and the buyer to send a query and discover

data as per requirement, pricing the data, negotiating, managing and enforcing the data

contracts, transferring data and making payment settlement.
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IoT Data Marketplace and Significance of Decentralization

This section will discuss the marketplace’s fundamental responsibilities and different ap-

proaches to realize these responsibilities and their limitation.

A data marketplace is an ecosystem that facilitates data trading between sellers and buy-

ers by enabling governance. A marketplace offers services to deliver the main functions

of the trading process, including data discovery, price model management, payment, data

contract management and data transfer [21]. Data marketplace governance refers to the

management and regulatory framework for decision-making that covers how the market

operates and functions. Marketplace governance includes: deciding on the data pricing,

supervising terms and conditions of trade, monitoring and enforcing agreements and con-

tracts, defining rules and restrictions around data sharing for sellers and around access

right for the buyers, ensuring the method for data collection and transfer, and so forth.

Effective and efficient governance can be achieved by enabling transparency and account-

ability [22]. Transparency ensures that relevant information is available to the participants

so they can know about the decision made by the marketplace. For example, sellers and

buyers have access to pricing information, knowledge about trade transactions, usage pol-

icy, terms and conditions of trade, etc. Accountability ensures that any ambiguity in the

trade process should be resolved based on a common agreement by all the participants,

and liable participants should be held responsible for their actions. Without transparency

and accountability, participants will lack trust in the marketplace [23]. The primary re-

sponsibility of the data marketplace is to help its participants build trust by providing

governance to negotiate and sign a contract with an untrusted entity with whom they

have no prior relationship. There are two approaches to designing a data marketplace, as

depicted in Fig. 1.3.

Centralized approach - In this approach, a central trusted third party (TTP) handles

the governance to ensure the proper operation of the marketplace. TTP oversees and

controls every aspect of the trade, from offer listings to data pricing, receiving seller’s raw
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Figure 1.3: Centralized and decentralized approaches to implement marketplace

data, processing and storing it, transacting the trade, data dissemination, payment and

settlements. The centralized governance of the TTP results in several limitations.

• Limited accountability: TTP has a central monopoly as they have exclusive owner-

ship of all marketplaces operations. TTP can exploit its position, set the price and

operation rules, and enforce that to the participants. All participants must comply

with the TTP’s terms, which can change anytime. Besides, TTP can collude with

dishonest participants and cheat, leading to unfair trades.

• Limited privacy - TTP has complete visibility on the trade activity and history

of the seller and buyer and the associated data. TTP does not guarantee that it

will protect participants’ information from misuse, interference and loss nor disclose

trade details to unauthorized parties.

• Limited transparency: Limited information about TTP operations and activities are

visible to the participants. Providers often have limited control over their data as

they do not know whether it is altered, where it resides, etc. Similarly, buyers are

often unaware of hidden overhead costs, provided with biased terms and conditions,

misinformed about the provider’s usage policy, etc.

With billions of connected IoT devices, centralized governance can be a bottleneck. Early

works [21,24] based on this approach rely on centralized systems such as cloud computing
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as an underlying technology. However, such centralized systems suffer from known issues

such as scalability, expensive infrastructure, single point of failure, and low security, which

make them unsuitable for managing the enormous volume of data generated by IoT devices.

Additionally, traditional database techniques may not be suitable for designing IoT data

marketplaces that need to scale to effectively store and manage data. As the amount

of data stored in a centralized database grows, it can become increasingly difficult to

efficiently manage and process the data, leading to slower response times and potential

latency issues for users. Moreover, the centralized nature of traditional databases makes

them vulnerable to cyber attacks [25], leading to data loss, theft, and manipulation [26].

Therefore, a decentralized approach is necessary for IoT data marketplaces that can offer

higher security, transparency, and immutability as discussed next.

Decentralized approach - A decentralized approach could solve the limitations of

the aforementioned approaches. A decentralized marketplace transfers the control and

responsibilities from a TTP to a distributed network and facilitates P2P interactions by

bridging the trust gap. It enables decentralized governance wherein each participant agrees

on a set of business rules that will govern the transactions and are each responsible for

running the marketplace infrastructure. The rules and infrastructure provide a framework

that makes it possible to set up automated agreements. Since all the participants take

part in the marketplace operation, a single entity cannot have a monopoly, making the

marketplace transparent.

In a decentralized marketplace, no single entity takes responsibility for the proper op-

eration of the marketplace. As a result, accountability must come from the underlying

technology. Essential requirements of the decentralized marketplace to ensure account-

ability are: (i) the participants must be held accountable for their actions, and (ii) the

marketplace must be able to account for actions performed by the participants. Ensuring

user accountability requires each participant to be linked to a legal entity that can hold

them responsible for their actions. Accounting for participant actions requires the mar-

ketplace to capture the nature of the action, what has been done, when, and by whom and
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record the associated information. For instance, a record to prove that the user has signed

a contract at a given time and agreed to its terms. The marketplace also needs to ensure

that the historical records are maintained, protected against tampering, and retrievable

for auditing. Moreover, all these operations must be verifiable by any marketplace par-

ticipants at any time. Since a decentralized marketplace stores sensitive information that

should not be accessible by everyone, thus, data privacy becomes a critical challenge.

As stated above, the requirements of decentralized governance are commensurate with the

properties of blockchain technology, which was first introduced by Nakamoto in the Bitcoin

cryptocurrency [27]. The following section highlights the benefits of using blockchain in

designing a decentralized IoT data marketplace and its challenges.

Blockchain: An Enabler of Decentralized IoT Data Marketplace

A blockchain [28] is a consensus-based, peer-to-peer distributed network with a growing list

of ordered records, called blocks, that are chained together using cryptographic properties

of hash functions. Typically, blockchain is a decentralized, distributed and public digital

ledger that is used to record transactions shared among the nodes in the network, making

it more secure and less prone to a single point of failure. Consensus allows distributed

users to reach an agreement by communicating directly, enabling disintermediation and

ensuring that all copies of the distributed ledger are in the same state. A transaction is a

basic communication primitive between participating nodes in a blockchain. Each block

contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Utilizing the cryptographic hash functions, any attempt to change one transaction result

could be detected by a mismatch; hence, blockchain provides the immutability property,

which ensures resilience against modification or removal of the stored data. Furthermore,

blockchain also provides a technology called smart contracts, which are pieces of executable

code residing on the blockchain and automatically execute once specific conditions are met.

The multidimensional benefits of the blockchain in the IoT data marketplace [11, 29–31]

are summarized in Fig. 1.4. A user in a blockchain network is known by a pseudonym,
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Figure 1.4: The fundamental advantages of the blockchain in data marketplace

which is its public key, instead of the real-world identity, enhancing user anonymity. Ev-

ery time users transact IoT data, the corresponding transaction records are grouped into

blocks. These blocks are added to the blockchain after users validate the information

authenticity using consensus, which supports trust in every transaction. The fact that all

the trade-related transactions are stored in the ledger makes it possible for users to ver-

ify the veracity of transactions. The existence of an encrypted, perpetual, and validated

record of transactions via blockchain increases transparency and confidence in buyers and

providers to exchange their sensitive IoT data. Users can employ smart contracts to en-

code the terms of an agreement in lines of code instead of legal language. These contracts

self-execute when pre-determined conditions are met that automatically enforce the terms

of the agreements and establish effective governance that all nodes in the network follow.

Hence, using blockchain in the data marketplace enables decentralized governance, and

disintermediation ensures user anonymity, increases transparency and trust in transac-

tions, creates an immutable and auditable log of historical transactions, and promotes

accountability of users’ activities.

1.4 Thesis Motivation

In this section, we discuss the main challenges to exploit the useful features of blockchain

technology in a decentralized IoT data marketplace, followed by specific contributions of

this thesis in the next section.
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1.4.1 Autonomy and efficiency

Despite all the potential benefits, adopting blockchain to create an open IoT data market-

place is not straightforward and requires design consideration from different perspectives.

In this research, we aim to design decentralized IoT data marketplaces of the future by

considering design challenges from autonomy, efficiency, privacy and traceability aspects.

1.4.1 Autonomy and efficiency

An autonomous marketplace enables self-governance where participants can make trade

decisions rather than being imposed by the marketplace. Such a marketplace establishes

sellers’ autonomy through increased transparency, i.e., by letting them know of their rights

and allowing them to control who has access and to what data, how their data is bought,

sold, shared etc. Buyers can exercise their autonomy by negotiating the data price and

the terms and conditions under which data is shared. The adoption of blockchain in

recent works to develop a decentralized marketplace provides specific functionality for

data trading. For instance, in [29, 30, 32], blockchain records all the trade activities that

improve transparency and accountability with verifiable logs. This approach facilitates

autonomy but recording every interaction on the blockchain is inefficient. In [33–35],

blockchain is used as an access control system to automatically manage data access based

on the criteria set by sellers. This approach enables autonomy for sellers who can control

their data access, but buyers have limited autonomy in negotiating and deciding the

terms and conditions. Other approach [11,36,37] use blockchain to record the sellers’ data

offerings, and buyers can browse the ledger to find the proper data type based on their

requirements. This approach facilitates the least level of autonomy allowing only data

listing and querying. The current approaches lack complete autonomy that would allow

participants to pursue their interests and impel them to behave responsibly to establish

trust.

Moreover, blockchain is resource-consuming since all the entities involved must perform

consensus or encryption algorithms and have to place a complete copy of the blockchain,

which comes at the cost of scalability. On the contrary, IoT devices are resource-constrained
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with limited computational, memory and networking constraints. Even with lighter con-

sensus mechanisms, having all IoT devices execute the associated algorithms is inefficient.

Also, IoT devices do not always have the required storage space to retain copies of all

transactions recorded in blockchain history.

To achieve autonomy and efficiency in a decentralized IoT data marketplace, we identify

the following requirements:

• An open data marketplace is accessible to anyone to join and trade. Such a mar-

ketplace often spans the globe, with many participants. Therefore, scalability is a

fundamental challenge for efficiency in the IoT data marketplace. With the ever-

increasing number of IoT devices owned by many sellers, generating large amounts

of IoT data would lead to an overwhelming number of transactions. Using one

monolithic blockchain for storing all the marketplace-related transactions, such as

all trade interactions, data offerings, and access policies on-chain, is expensive, in-

efficient and unscalable. The intrinsic trade-off between scalability and the need to

maintain a decentralized and distributed architecture makes it challenging to use a

fully decentralized public blockchain network like Bitcoin or Ethereum, as they may

not be able to handle the transaction load.

• Ensuring non-repudiation in an autonomous marketplace without an intermediary is

challenging. An autonomous marketplace enables self-governance where participants

define the terms and conditions under which they trade the data. Non-repudiation

ensures that they adhere to those obligations made under a contract. Consider an

example where a buyer and seller agree to trade GPS data with specific sampling

intervals, duration and quality at a certain price. However, ensuring that both par-

ties adhere to these obligations without an intermediary is difficult. The seller may

renounce the contract by not providing the GPS data for the specified requirement.

Similarly, the buyer may not pay the agreed price for the purchased data. Such ac-

tions lead to agreement violations and impact the usability of the data marketplace.

• Another fundamental challenge in trading data-stream from IoT devices is its en-
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ergy budget, which may limit the volume of data generated in real time. An IoT

device’s energy budget is subject to its battery capacity or, in some cases, to external

sources such as harvesters. Without energy harvesting, IoT devices must optimize

their operation and adapt to their environments to fulfil their primary usage. With

energy harvesting, IoT devices have a dynamic energy budget subject to their phys-

ical context, namely, their current draw and perspective. Since IoT devices are

designed to operate autonomously for a long duration and typically require little or

no human interaction, they must be energy efficient. Hence to be viable in the data

marketplace, an IoT device must serve its primary purpose without impacting the

user’s experience. Besides, it should also serve the secondary purpose of fulfilling

buyers’ data collection requirements based on the device’s current residual energy

and capabilities.

To realize the above requirements of autonomy and efficiency in a decentralized IoT data

marketplace, we formulate and seek answers to the following key research questions:

RQ1: How to address the scaling vs. decentralization trade-off to achieve autonomy and

efficiency in decentralized IoT data marketplace?

RQ2: How to ensure non-repudiation among the participants who do not trust each other

without an intermediary?

RQ3: How to efficiently utilize the energy of an IoT device to serve both primary and

secondary purposes in the marketplace to deliver maximum utility within its energy con-

straints?

1.4.2 Privacy

Privacy concerns in trading IoT data are high as it can reveal sensitive and confidential

information about the users, such as their daily habits, locations and health. Blockchain

provides pseudonymization using public-private key cryptography to protect the true iden-

tity of the participants. However, attackers can access the full history of all the trading
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transactions between the parties, making them vulnerable to linking or de-anonymization.

Hence, privacy is another challenge in the blockchain-enabled IoT data marketplace. To

address the issue of privacy, we identify the following requirements:

• A provider receives short-term economic gain by trading their IoT data in such a

marketplace. As their engagement increases, trading data with a particular buyer

over the longer term may affect their privacy. Moreover, data is considered an asset

and requires protection even after being sold. Therefore, it becomes the buyer’s

responsibility to safeguard the provider’s data privacy. Three characteristics of the

buyer that raise the provider’s privacy concerns and risks include (i) Non-compliance:

a buyer may not have adopted or complied with the industry standard privacy prac-

tice and security measures to safeguard the provider’s data; (ii) Data accumulation:

large accumulation of data by the buyer can make them a target of cybercrime or

a buyer acting in bad faith can misuse this data to infer highly personal informa-

tion about the provider; (iii) Data-leak: a buyer may intentionally or accidentally

share the provider’s sensitive data with an unauthorized party without the provider’s

knowledge or consent. The provider is often unaware of all these risks when deciding

to sell data to the buyer. Existing data marketplace ecosystems rely on the buyer’s

trust score that governs the provider’s decision of whether or not to give data access

to them. However, the trust score is a subjective metric that depends on his interac-

tions, historical behaviour, experience, feedback or ratings submitted by providers.

We identify the following three requirements to address the privacy issues from the

provider’s perspective. First, providing factual and relevant information about buy-

ers is essential to empower providers to estimate the aforementioned privacy risks

and make a more confident and informed decision about data disclosure to them.

Second, even if providers have access to comprehensive and multifaceted information

about buyers, it will take time and effort to digest all this information. Therefore, it

is necessary to provide providers with an effective and simple way to ascertain the

implications of selling data to the buyer on their privacy. Last, since the provider’s

decision of data disclosure depends on the buyer’s information, it is vital that this
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information be accurate and timely and captures the buyer’s dynamic activities in

the marketplace. Therefore, to prevent manipulation and build trust, this informa-

tion should be collated and managed in a decentralized, transparent, efficient, secure

and automated manner.

To fulfil the above requirements of privacy in a decentralized IoT data marketplace, we

formulate and seek answers to the following research questions:

RQ4: What relevant information about buyers would empower providers to estimate their

privacy risks and make a privacy-aware, informed decision about data disclosure?

RQ5: How can we convey buyers’ comprehensive and multifaceted information simply and

practically to the provider so that they can effectively ascertain the implications of selling

their data to buyers on their privacy?

RQ6: How to ensure that buyers’ information is accurate, not manipulated, and collated

timely and automatically based on their dynamic activities in the decentralized market-

place?

1.4.3 Traceability

The immutable feature of the blockchain makes it an effective tool for ownership veri-

fication since once an asset is listed on the blockchain, ownership cannot be altered or

counterfeited unless the owner verifies the change. Blockchain benefits in tracking and

tracing on-chain digital assets like bitcoin since it is minted, listed or transferred, but data

stored off-chain is different. Due to the severe scalability and usability impact, recording

enormous amounts of IoT data on the blockchain is not possible. To address this issue,

one way is to record the hash on-chain that will direct the buyers to off-chain storage

where IoT data is stored. However, a buyer can independently resell the purchased data

off-chain to others without the provider’s knowledge, making tracking and tracing data

ownership challenging in the IoT data marketplace.
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To accomplish the traceability of data ownership in a decentralized marketplace, some of

the specific challenges are listed below:

• Data ownership is ambiguous, as buyers may claim ownership of the purchased data.

Unlike traditional physical commodities that are owned by one specific entity, data

ownership can include multiple parties as long as they can access the data and share

it with others. Hence, it is difficult to keep track of ownership once data is sold.

Furthermore, buyers will likely register with multiple marketplaces for monetary

gain or alternative offerings for data purchases. A buyer could buy data from one

marketplace and resell the purchase data in its original format or redistribute it

as a value-added service (VAS) to users registered in other marketplaces. Current

marketplace architectures are fragmented and dispersed and lack mechanisms to

track data ownership spanning multiple marketplace systems.

• A data owner can explicitly consent to the buyer to resell his data (in the original

format or VAS) to others to maximize his profit. This requires all entities involved

in the reselling process to be treated fairly. Blockchain guarantees trade fairness,

which means a provider should receive a payment if and only if a buyer acquires

the expected data and vice-versa. While reselling fairness means that a reseller who

buys data from a provider and obtains payment by reselling the purchased data to

other users should fairly distribute the profit among all the data owners. However,

a buyer can independently resell the bought data to other buyers and generate

value from it without the data owner’s knowledge. Such undisclosed reselling may

lead to privacy violations when the data owner does not want to resell their data

(unauthorized reselling) or monetary losses when the data owner permits it to be

resold for economic interests (authorized reselling). Such undisclosed data resales

should be automatically detected to enable reselling fairness.

• Since an honest buyer pays for the data, they should be ensured that the traded data

is accurate, authentic, and sold with explicit consent. However, a malicious actor can

perform various fraudulent activities, such as trying to impersonate IoT devices to

sell fake or bogus data or tamper with the data sent by legitimate devices. Trading
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such bogus or fake data impacts the marketplace’s effectiveness and usability. This

necessitates a mechanism that enables buyers to validate the authenticity of the

purchased data by ensuring that it is generated from a legitimate device and has not

been altered through the entire life cycle.

To address the aforementioned challenges in data ownership traceability, we formulate and

seek answers to the following key research questions:

RQ7: How to manage and track the data ownership spanning across multiple marketplace

systems that are dispersed and fragmented?

RQ8: How to formulate the revenue sharing scheme to automatically and fairly distribute

the revenue among all the data owners over authorized reselling of data and protect the

profit of the data owners from malicious buyers that may resell without an authorization?

RQ9: How to ensure that only authentic and accurate data generated from a legitimate

device is traded in the marketplace? How to enable buyers to validate the authenticity of

the purchased data?

Implementation issue

The complexity of smart contracts is another challenge in blockchain implementation be-

cause of its impact on cost and network speed measured in terms of latency and through-

put. Since recording anything on the blockchain results in a data storage fee, deploying

a smart contract incurs a transaction cost that depends on the size and the computa-

tional tasks it performs. Besides, each function call in the smart contract code also has

an execution cost that depends on its space, time and transaction complexity. Space com-

plexity includes both memory and ledger storage consumption. Time complexity typically

reflects the complexity of the instructions or operations and their combinations. Trans-

action complexity depends on the number of arguments or volume of data in/out of a

blockchain client. Furthermore, structural designs of smart contracts with complicated
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validation logic and more number of reads and writes from/to the ledger may increase the

processing latency and reduce the throughput of the blockchain network, thus, impacting

the overall performance. To address this concern, we formulate and seek answers to the

following implementation question:

IQ: Given the volume of marketplace-related events and frequency of trades, what are the

major design considerations in architecting a blockchain solution for decentralized IoT data

marketplace so that the associated overheads (in terms of gas consumption, latency and

throughput etc.) should be minimal and not impact the performance of the platform?

To this end, this thesis contributes to the research in the adoption of blockchain technol-

ogy to design a decentralized IoT data marketplace addressing challenges from autonomy,

efficiency, privacy and traceability aspects as stated above.

1.5 Thesis Contributions

Primarily, this thesis contributes to the adoption of blockchain technology in designing a

decentralized IoT data marketplace to achieve autonomy, efficiency, privacy and traceabil-

ity by addressing the challenges outlined in the previous section. The specific contributions

of this thesis are outlined in the following subsections. Fig. 1.5 depicts the research ob-

jective and contributions of the thesis graphically.

In this thesis, we have presented our conceptual ideas in the application domain of per-

sonal IoT data. Despite this, our ideas can be generalised to other IoT data-sharing

scenarios/application domains. The reason for choosing personal IoT data is two-fold: An

increased incidence of amassing data without the knowledge of data owners and drawing

inferences or illegally sharing it with third parties in recent years has led to the demand

for user-controlled sharing where an individuals decides what data they wants to share,

to who and for how long. Thus, addressing this demand for the democratization of all

the untrusted participants by allowing them to interact with each other using blockchain

technology could be apt in the current IoT ecosystem. Secondly, the related data, roles
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Figure 1.5: Research objective and contributions

and participants in a marketplace trading personal IoT data generated by individuals are

easier for the readers to understand from a user’s perspective.

1.5.1 MartChain: Towards an autonomous and efficient decentralized

IoT Data Marketplace

In this contribution, we propose a blockchain-based data marketplace known as MartChain

for trading IoT data in real-time generated by resource-constrained IoT devices. To ad-
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dress the scaling vs decentralization trade-off, we propose to use geographically distributed

multiple facilitators, to which participants delegate the responsibility of data offerings/de-

mands listings and search and discovery (RQ1). We develop MartChain as a 2-tier mar-

ketplace framework where tier 1 comprises facilitators, and tier 2 comprises participants,

including buyers, providers and their devices. We propose to use a public blockchain net-

work in tier 2 that realizes other essential operational components of the marketplace,

such as contract management and execution, data pricing, payment and settlement, and

reputation mechanisms, leveraging smart contracts to enable autonomous IoT data trad-

ing. These contracts collectively ensure the integrity of an agreement, non-repudiation of

the parties and guarantee that the participants’ behaviours automatically conform to the

terms of the agreements (RQ2). Due to the resource-constrained nature of IoT devices,

an inefficient allocation of buyers’ demands on such devices (i.e., secondary usage) poses

a challenge for a provider to simultaneously serve multiple buyers’ demands in real time

without disrupting their SLAs (service level agreements). MartChain is underpinned with

an Energy-aware Demand Selection and Allocation (EDSA) mechanism for optimally se-

lecting and allocating buyers’ demands on the provider’s IoT devices (RQ3). We present a

proof-of-concept implementation in Ethereum to demonstrate the feasibility of the frame-

work (IQ). We investigate the impact of buyers’ demands on the battery drainage of IoT

devices under different scenarios through extensive simulations. Our results show that this

approach is viable and benefits the provider and buyer by creating an autonomous and

efficient marketplace for trading IoT data in real time from battery-powered IoT devices.

1.5.2 KYBChain: Know-your-buyer in Privacy-aware decentralized IoT

data marketplace

In this contribution, we maintain three profiles for a buyer, namely practice, purchase and

leakage, that capture his various characteristics regarding the provider’s three concerns:

non-compliance risk, data accumulation risk and leakage risk (RQ4). The practice profile

is based on assessing the buyer’s privacy and security measures and keeps track of any

updates in his data protection practices. The purchase profile is a provider-dependent
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characteristic and monitors all the data purchase transactions of the buyer specific to

a provider. A leakage profile maintains the records to assess the buyer’s data leak risk

based on the potential damage they can cause and the likelihood of its occurrence that

depends on their past data leak events. However, even if providers have access to all these

profiles, it will be difficult for them to digest the information within them. We implement

a standardized and simple indicator for each buyer-provider pair, known as privacy rating

(PR) (RQ5). This new privacy visualization metric measures the provider’s overall and

long-term risk caused by sharing his data with the buyer and limits subjectivity’s role in the

provider’s decision. Our definition of privacy rating (PR) satisfies the following intuitive

properties: better privacy practices and security measures reduce the provider’s privacy

risks and increase his PR; higher the sensitivity and visibility of accumulated data greater

the provider’s privacy risks and lower his PR; higher the probability and severity of data-

leak risk, greater the provider’s privacy risks and lower his PR. We identify the privacy

attributes/elements to model these profiles and develop a methodology to formulate PR

satisfying the above-stated properties. To address the lack of trust in buyer’s information

collation and its manipulation, we propose to use blockchain to record these profiles in

an immutable, transparent, secured and decentralized manner (RQ6). We develop a

blockchain-based data marketplace framework integrated with a privacy rating system

known as KYBChain. KYBChain employs smart contracts to compute PR automatically,

efficiently, accurately and timely. We conduct several experiments on synthetic data to

demonstrate the efficacy and practical utility of PR. Furthermore, we present the proof

of concept implementation of KYBChain in a private Ethereum network and analyze the

overheads to demonstrate its feasibility (IQ). Our results justify the efficacy of privacy

rating in aiding providers to make a privacy-aware decision about data sharing. Moreover,

our evaluations of KYBChain reveal that the overheads introduced by our mechanism

compared to a marketplace that does not incorporate a privacy rating system on the

blockchain are insignificant relative to its privacy gains.
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1.5.3 TrailChain: Traceability of Data Ownership across Multiple Data

Marketplaces

In this contribution, we propose TrailChain which is a novel and fine-grained data own-

ership traceability mechanism by leveraging the power of blockchain technology on top

of existing watermarking techniques. Our framework provides an immutable and trusted

trade trail for tracking the sequence of data ownership spanning across multiple decen-

tralized marketplaces in an automated, efficient and transparent manner. The novelty

of TrailChain stems from (a) a mechanism that offers flexibility by identifying whether

the resell/redistribution is legitimate/illegitimate or within or across marketplace systems

(RQ7); (b) a fair resell payment sharing scheme that allows trusted, protected and auto-

mated sharing of resell revenue among the data owners in the trade trail over authorized

reselling (RQ8); (c) a data ownership registration protocol that allows providers to reg-

ister the ownership of original data and guarantees that the data has been generated by

a genuine device. Besides, it also provides proof of data authenticity to the buyer by

automatically verifying the trade lineage (RQ9); (d) a prototype implementation using

four private Ethereum networks and simulation to demonstrate TrailChain’s feasibility

by benchmarking performance metrics including execution gas costs, execution time, la-

tency and throughput (IQ). Qualitative security analysis of the architecture highlights

its effectiveness in providing immunity to several common attacks. Finally, simulations

demonstrate that our method detects reselling within the same marketplace and across

different marketplaces. Besides, it identifies whether the reselling is authorized or unau-

thorized and fairly distributes the revenue among the data owners at marginal overhead.

1.6 Thesis Organizations

The thesis is organized as follows:

Chapter 2: This chapter presents the background and state of the art of related research.
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Chapter 3: This chapter presents MartChain for enabling autonomy and efficiency in

the decentralized IoT data marketplace while addressing the challenges of scalability, re-

pudiation and the resource-constrained nature of IoT devices.

Chapter 4: This chapter presents KYBChain, which integrates a privacy rating system

in a decentralized IoT data marketplace to record a buyer’s practice, purchase and leakage

profile and evaluate his privacy rating. Buyers’ privacy rating empowers providers to act

according to their preferences and make a privacy-aware informed decision about data

sharing to them.

Chapter 5: This chapter presents TrailChain, a data ownership management framework

that tracks data ownership within and across multiple marketplace systems and enables

fair revenue sharing among actors registered in the same or different marketplaces.

Chapter 6: This chapter concludes this thesis and discusses directions for future research.
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Chapter 2

Background

This chapter presents an overview of blockchain technology and related literature in the

context of the application of blockchain in a decentralized IoT data marketplace. First,

we present the overview of blockchain technology in section 2.1 and popular blockchain

platforms in section 2.1.1. In the following sections, we focus on the state-of-the-art

blockchain-based IoT data marketplace from autonomy, efficiency, privacy and traceability

aspects. We considered industry-led solutions and academic-focused research frameworks

and concluded each section with a comparative analysis of the discussed approaches. First,

we discuss the autonomy and efficiency approaches in section 2.3.1. Second, we present

the work on privacy in section 2.3.2. Third, the work related to the traceability of data

ownership is discussed in section 2.3.3.

2.1 Blockchain Overview

Blockchain technology was introduced along with the first cryptocurrency, Bitcoin, by

Satoshi Nakamoto. In his whitepaper [27], Nakamoto envisioned an electronic payment

system using a distributed peer-to-peer network to enable direct transactions between users

without needing a trusted third party. Bitcoin solves the problem of double-spending, i.e.,
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spending the same digital token more than once and maintaining transaction order in a

distributed system. Through its usage as the technical backbone for Bitcoin, blockchain

has attracted tremendous attention from academia and industry in various other disci-

plines such as finance, supply chain, healthcare, law, IoT, and others. However, to utilise

blockchain’s full potential in these domains, it needs to be optimised according to its

suitability in a particular industry. For optimisation, understanding the working of the

blockchain is essential. In principle, a blockchain is an immutable digital ledger that pub-

licly stores transactions (data records) after being verified by distributed nodes. These

nodes produce timestamped transactions which get broadcast to the network, bundled

into blocks and added to the append-only ledger after a mining process. The blocks form

a linear sequence where each block references the previous block’s hash, forming a chain

of blocks. The ledger is replicated among the nodes, and all transactions are publicly

visible, allowing network participants to verify the transactions’ validity independently.

Moreover, participants are pseudonymous, meaning they are identified by their account

identifier, while their real identity remains anonymous. Thus, the blockchain structure

enables features like distributed computation, transparency, anonymity, auditability, and

immutability in a decentralized fashion. Next, we discuss the blockchain structure and its

key components.

The basic structure of a blockchain is depicted in Fig. 2.1. Blockchain is a distributed

data structure, similar to linked lists, that links blocks of data together, where the first

block is called a genesis block. Each block is composed of a header and a body. The

body consists of a set of transactions. A transaction represents an interaction between

participants, and its structure consists of a unique ID, previous transaction ID, public

key and single or multiple signatures. Based on the number of participants involved in

generating the transactions, a valid transaction either includes the signature of one party,

singlesig transactions or includes signatures of n out of m parties, multisig transactions.

Most blockchain instantiations allow participants to create and use multiple public-privacy

key pairs to preserve anonymity. The public key is used to verify the transaction, and

the private key is used for signing the transaction. The transaction ID is the hash of

its content. Each transaction is linked to the previous transaction made by the same
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Figure 2.1: Structure of block and transaction

participant. The hash of the public key is stored to prevent the reconstruction of the

private key from the party’s public key. The block header contains the block number, the

previous block header’s hash value, block size, a timestamp, a nonce and the Merkle root.

With the previous block’s hash stored in the current block, blocks are cryptographically

linked, and any tampering on the previous block will be detected. The timestamp is the

time when a block is created. A nonce is used in the creation and verification of a block.

The transactions within a block body are hashed in a Merkle tree. A Merkle tree is a

binary tree with each leaf node labelled with the hash of one transaction and the non-leaf

nodes labelled with the concatenation of the hash of its children. Merkle root is the root

hash of a Merkle tree used to verify the transactions in a block efficiently. A small change

in one transaction can produce a significantly different Merkle root. Hence, instead of

verifying all the transactions, verification can be done by simply comparing the Merkle

root.

Blockchain employs interconnected components organized into three layers to provide spe-

cific infrastructure features, as illustrated in Fig. 2.2. At the lowest layer, the blockchain

has the signed transactions between participants. These transactions denote an agreement
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Figure 2.2: Components of blockchain infrastructure

between two participants, which may involve the transfer of physical or digital assets,

completing a task, and other such tasks. These signed transactions disseminate to their

neighbours. Any entity which connects to the blockchain is called a node. Nodes that fully

validate transactions and blocks are called full nodes. These nodes verify the transactions

according to rules, group the valid transactions into blocks, add them to the blockchain

and receive a reward in return. Nodes must reach an agreement about the present state of

the distributed ledger, which is the goal of the second consensus layer. Different consensus

mechanisms exist to validate and add blocks depending on the blockchain type. These

include Proof-of-work (PoW) [38] that requires nodes to expend resources solving a crypto-

graphic puzzle. Proof-of-stake (PoS) [39] that randomly select validators according to how

many coins they stake. Byzantine Fault Tolerance (BFT) [40] ensures that the distributed

system remains fault-tolerant even in the presence of faulty or malicious nodes and others.

The topmost layer, the compute interface, allows blockchain to offer more functionality.

Typically, a blockchain stores the system’s current state, and transactions trigger state

transitions. In Bitcoin, the blockchain state consists of the user’s balance. However, more

advanced applications require storage of complex states, which are updated dynamically

using distributed computing. The update is done by smart contracts, self-executing lines

of code executed if certain conditions meet. The business logic or terms of the agreement

are directly written into these lines of code.
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Figure 2.3: Structure of smart contract

Smart Contracts : A smart contract resides on a blockchain and is identified by a

unique address. The structure of a smart contract is shown in Fig. 2.3. It includes a set of

executable functions and state variables. These functions are executed by the transactions,

which include input parameters required by the function. Upon the execution of a function,

the state variables change depending on the logic implemented in the function. Smart

contracts can be written in high-level languages (such as Solidity, Go, and Java). They are

compiled into byte code using language-specific compilers and deployed on the blockchain

with unique addresses that any blockchain user can call. Since a smart contract can consist

of several functions, the application binary interface (ABI) must specify which function to

invoke. Any user on the blockchain network can trigger the functions in the contract by

sending transactions specifying the address and ABI to the contract. The contract code

is executed on each node to verify new blocks.

2.1.1 Blockchain Platforms

In this section, we briefly describe different types of blockchain networks and outline the

most popular and suitable platforms for IoT domains as identified in [41].

Blockchain networks can be categorized into three types: Public, Private and Consortium

blockchain.

Public blockchain networks are permissionless in nature, which means anyone is free to join

and participate in the blockchain network’s core activities without needing permission from

any authority. Any node within a permissionless blockchain network can read and write to

the ledger. Since such networks are open for anyone to join, malicious nodes may attempt

to publish blocks that subvert the system. To prevent this, permissionless blockchain
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networks often utilize a consensus mechanism such as POW, POS etc., that requires

nodes to expend or maintain resources when attempting to publish blocks. Popular public

blockchain includes Bitcoin, Ethereum, Litecoin, IOTA etc.

Private blockchain networks are permission-enabled blockchain networks managed by a

single organization/participant with complete control over the blockchain’s rules. In a pri-

vate blockchain, the central authority determines who can join the network. The central

authority does not necessarily grant each node equal rights to perform functions. Pri-

vate blockchain networks are only partially decentralized because public access to these

networks is restricted. A common example of a private blockchain is Multichain.

Consortium blockchain networks are permission-enabled blockchain networks governed by

a group of organizations rather than one entity. Since only authorized users maintain the

blockchain, there is a certain level of trust in each other. It is also possible to restrict

read access and who can issue transactions. They use consensus mechanisms, such as

BFT, for publishing blocks which often do not require the expense of resources. Unlike in

public blockchain, the identity of every member is known in consortium blockchain, hence,

misbehaving members’ authorization can be revoked. Examples of consortium blockchains

include Hyperledger Fabric, Corda, Quorum etc.

Next, we briefly outline some popular blockchain platforms used for application develop-

ment in various industries. We also outline the specific platform we used to implement

and evaluate the ideas proposed in this thesis.

• Ethereum [42] is a public distributed computing platform that enables developers

to build and deploy smart contracts to develop decentralized applications. Ethereum

provides an underlying technology, Ethereum Virtual Machine or EVM, a runtime

environment for compiling and deploying smart contracts. The Ethereum blockchain

is powered by ether, its native cryptocurrency. Ethereum faces a scalability prob-

lem resulting in high transaction fees and low transactions per second of 15 tps.

Moreover, it uses POW, which typically requires a high amount of energy. Recently,

Ethereum 2.0 was launched based on POS and is much more efficient, with a capacity
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to handle up to 100,000 tps. Ethereum 2.0 also provides sharding that addresses the

scalability concerns associated with classic Ethereum. Ethereum is most suitable for

products and applications running on an open network where participating entities

are not subject to access control. Some examples are decentralized finance, digital

identity, payments, and others.

• IOTA [43] is a cryptocurrency based on a directed acyclic graph structure, the Tan-

gle, which has the potential for scalability and zero transaction fees. On top of the

Tangle network, Masked Authenticated Messaging (MAM) [44] allows transmission,

access, and verification of an encrypted data stream. Based on Tangle and MAM,

the IOTA Foundation launched a data marketplace [45] prototype that allows stor-

ing of data on Tangle and enables trading where privacy and integrity meet with

MAM.

• Hyperledger Fabric [46] is an open-source project built by IBM and Linux Foun-

dation that aims to offer a modular and extendable framework. Its distinguishing

modular feature allows a pluggable architecture that includes components like a

consensus, membership services, endorsement policies, etc. The consensus of the

earlier version of Fabric was based on the order-execute model, Kafka, wherein Fab-

ric executes the transactions before finally committing them. Hyperledger Fabric

v2.0 introduced Raft, which follows a leader-follower model wherein a leader node is

elected for every channel, and the follower nodes replicate the leader’s decision. Raft

is better than Kafka in terms of transactions per second due to its simpler frame-

work than Kafka. Hyperledger Fabric uses Chaincode as the technology’s business

logic, which uses FabToken as a native token. The fabric has vast applications across

industries, from healthcare to supply chain to real estate to banking.

• Corda [47] is an open-source R3 consortium product that is developed to record

and automate legal agreements in financial and banking environments. It uses the

concept of state changes and transactions instead of blocks and chains. It aims to

achieve scalability and address the privacy concerns faced by banks or financial insti-

tutions. To do so, Corda employs Notaries, either centralized or distributed entities,
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who validate the transactions. Corda’s smart contracts support code and legal prose

known as the Ricardian Contract. Ricardian Contracts function as legally binding

agreements between two parties based on agreed-upon terms and conditions. A con-

tract is cryptographically signed and verified using the blockchain and readable by

lawyers and machines. Corda offers a Token SDK that enables the creation of na-

tive tokens on the blockchain. Though Corda was initially designed for the financial

service industry, it is gaining popularity in the construction industry, healthcare,

energy sector, government technology and many others.

• Quorum [48] is soft forked from Ethereum, developed by JP Morgan. It aims to

provide the finance industry with a permission-enabled enterprise blockchain that

supports transaction and contract privacy. Quorum uses a consensus protocol called

“QuorumChain”, wherein a consensus is reached by simple majority voting. Quorum

uses Raft-based and BFT for better fault tolerance, faster block time and better

transaction finality. Quorum supports both public and private contracts. Anyone

on the network can execute the public contracts, while only specific nodes have access

to execute the private contracts. It supports JPM Coin as the native cryptocurrency.

Some of Quorum blockchain’s most prominent use cases are banking and finance,

insurance, enterprise solutions, travel and hospitality, and many others.

• Multichain [49] is a private blockchain extended and forked from Bitcoin. It consists

of two types of nodes with different capabilities. Admin nodes are responsible for

creating filters, issuing assets, and approving new filters and new nodes. Member can

send and receive transactions. Like Bitcoin, MultiChain uses POW consensus but

enforces a round-robin schedule to promote mining diversity. It allows configurable

target time for adding a block, i.e., less than 10 minutes which is an average time

for Bitcoin. MultiChain enables an institution to create multiple private blockchains

on the same machines, allowing nodes to pass data between different blockchains on

the same network. Unlike other blockchain platforms, MultiChain supports multiple

tokens. It also supports a smart filter, a piece of code that allows custom rules

to be defined regarding the validity of transactions or data. MultiChain is used
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to develop lightweight financial systems, provenance tracking in the supply chain,

inter-organizational record keeping, and many others.

• Litecoin [50] is an open-source blockchain, forked from Bitcoin. Technically, Lite-

coin is identical to Bitcoin but features faster transaction confirmation times and

improved storage efficiency due to the reduction of the block time (from 10 minutes

to 2.5mins) and the use of Scrypt PoW, a less resource-intensive consensus method.

Litecoin adopts a new feature of segregated witness to limit the number of orphaned

blocks, which are formed when two miners mine a block at nearly the same time and

then reject one. It enables interoperability and allows trading multiple cryptocur-

rencies using atomic swaps. Litecoin also implemented a lightning network providing

a valuable second layer (Layer 2) of transactions to process 840,000 tps compared to

7 tps in Bitcoin. Litecoin is a digital currency used for instant payment.

In this thesis, we chose Ethereum for implementing and evaluating all proposed ideas

(Chapters 3, 4, 5) due to its flexibility to build both public or private blockchain networks,

ease of deployment, and availability of tools for blockchain deployment, management, data

query, smart contract implementation etc. However, our proposed ideas are blockchain-

agnostic and can be implemented in any blockchain instantiation that supports smart

contract execution, for instance, Corda, Quorum and Hyperledger Fabric.

2.2 IoT Data Marketplace

Recall from Chapter 1, that an IoT data marketplace: (i) addresses the issue of data silos

and enables sellers to monetize and distribute the data generated from their IoT devices;

(ii) addresses the issue of discovering and accessing new data sources and enables buyers

to navigate through data offerings and find the one which is needed. In general, a data

marketplace acts as a platform to facilitate data trade by providing various functionalities.

To be functional as a marketplace, authors in [51] identify components of a marketplace,

depicted in Fig. 2.4, which are described as follows:
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Figure 2.4: Components of data marketplace

1. User registration and authorization: This allows users to register in the marketplace

either as sellers or buyers. A seller owns data, while a buyer is interested in purchas-

ing a particular data type. The seller may implement different access granularities

and only allow specific buyers to access data based on his usage policy.

2. Data discovery and selection: This allows buyers to search and select sellers’ devices

based on their desired data type (e.g., traffic data or solar panel data).

3. Data price model: This allows the seller to select a pricing strategy with typical

options being fixed, tiered, dynamic, or negotiated pricing. In a fixed pricing model,

the price is fixed for a particular duration, while in tiered pricing, the price is fixed

but includes multiple categories. Dynamic pricing changes the price over time, while

in negotiated pricing, the price is actively negotiated at the time of sale.

4. Contract management: The seller and buyer employ this to manage the trade agree-

ment. A contract usually consists of terms and conditions that govern the quality

of data and the associated costs.

5. Rating mechanism: The buyers and sellers employ this function to rate each other,

which establishes a level of trust.

6. Data metering: This is used to measure particular parameters (e.g., amount, fre-

quency, and type) associated with an ongoing trade for billing purposes.
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7. Billing and payments: This manages the payment process for trades. The mar-

ketplace may incorporate different mechanisms of payment (e.g., advance payment,

pay-as-you-go, and payment at predetermined intervals).

8. Real-time middleware: This incorporates different functions related to real-time data

streaming, such as data routing, resource management, and encryption.

Data marketplaces can further be distinguished based on a centralised or decentralised

architecture. Conventional data marketplaces [21, 24, 52] rely on centralised architecture

where a central trusted third party (TTP), i.e., a particular data marketplace operator,

oversees the trade to ensure that both parties commit to their obligations, which results

in several limitations such as scalability, limited privacy, a central point of failure, and

low security (see Chapter 1). A decentralised IoT data marketplace allows participants

to trade data without having to trust a third party. Next, we discuss the proposals for

realising decentralised IoT data marketplaces using blockchain technology.

2.3 Blockchain to enable Autonomy, Efficiency, Privacy and

Traceability

In the following sections, we explore the application of blockchain technology for providing

autonomy, efficiency, privacy and traceability in a decentralised IoT data marketplace.

2.3.1 Autonomy and efficiency

This section explores the value proposition of blockchain technology for autonomy and

efficiency in a decentralized data marketplace. In most of the state-of-the-art, blockchain

offers certain functionalities in the broader context of data marketplaces. For example,

blockchain is used as a trade transaction management system in [53] to improve trans-

parency and traceability. Making use of the immutability and distributed nature in [11],

providers use blockchain as a product catalogue that buyers can browse to find the proper
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data type based on their requirements. In another approach [54], blockchain smart con-

tract is used to implement an access control mechanism enabling the providers to manage

who can access their data and for how long. In the following section, we group exist-

ing solutions based on their design considerations in architecting a blockchain solution

for enabling autonomy and efficiency in marketplace functionalities. These approaches

include trade transaction management, distributed data catalogue, hybrid centralized-

decentralized architectures, decentralized data storage and access mechanisms, and agree-

ment instantiations. We highlight the core features of each approach and discuss some

relevant works.

Trade transaction management : The purpose of a marketplace is to facilitate the

trade of a particular item between users. We define a trade transaction as an exchange

of value between a buyer and seller that involves the user’s communication, negotiation,

execution, settlement, and payment. In the trade management framework, the entire

trade transaction history is recorded in the blockchain, which enables the participants

to trace the history of the transactions based on the transaction time stamp and have

complete visibility of the communications and data exchanges, leading to a high level of

transparency. Benefiting from the inherent immutability offered by blockchain, when a

transaction is confirmed, either party (i.e., seller or buyer) cannot modify the content or

data, which provides a trusted trading platform.

In [29], a secure publish/subscribe (SPS) service protects the users’ anonymity and

achieves fair payment in exchanging CPS data. All the interactions in SPS between

publishers and subscribers, from publishing a topic to specifying interest, payment and

rating, are recorded in the blockchain. In [53], a brokered-based IoT data trading em-

ployed smart contracts to achieve non-repudiability and transparency by recording the

following information in the blockchain: participant details, provider data offerings, trade

agreements to define the terms of the data exchange and data receipt during the data

delivery. In another approach [30], SDN controllers provide storage servers where the

seller uploads its encrypted data, and the blockchain module employs smart contracts
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to automate data monetization by using several transactions: advertisement transaction

to record the provider’s data price and description; purchase transaction to record the

buyer’s interest and amount paid; and response transaction containing a symmetric key

encrypted with the buyer’s public key. In [55], a four-layered data exchange framework

was proposed: the data layer comprises IoT data stored in the cloud, the network layer

comprises nodes, storage, servers etc., connected in a P2P fashion, the interaction layer

includes web and mobile interfaces for participants interaction, and the management layer

leverages smart contracts to manage and record users, data collection and search, data

access rights and transaction history in the blockchain. In [37], providers store their IoT

data in an encrypted form in Swarm, a decentralized storage system. The smart contract

provided various ABIs to register users, add/query devices, purchase data and define data

structures to record payload and user information on the blockchain. In other work,

Block-DM [32] is based on the cloud for storing data, and a supervising authority (SA)

maintains the consortium blockchain. SA assigns anonymous credentials to providers, en-

forces providers’ consent-based data marketing over IoT data and records all operations

in the blockchain.

Blockchain-based marketplaces facilitate the trade management process, which involves

storing the transaction’s history in a transparent and immutable manner. In a data

marketplace, it is critical to maintain a catalogue of the available data types and match

them properly with the potential buyers, outlined in the next section.

Distributed Data Catalogues : In a blockchain-based marketplace, the participants

in the trade are connected and share information through blockchain, which eliminates the

need for central controllers. The sellers advertise features of their data, including price,

data types, and reviews in the blockchain. The buyers can explore/browse the chain to find

the proper data type and connect to the seller to conduct the trade. Blockchain enhances

the reliability of the listing process as data offerings are replicated in all the participants

in an immutable manner. As individual sellers manage the listings, the likelihood of

errors is low, given that malicious entities in the marketplace cannot alter the price or the
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preference of any listing to benefit other sellers.

The blockchain in [11] functions as a product catalogue that buyers can search to find

suitable data products. Each seller creates a detailed product description, including data

type, seller’s id, price, and IP address and stores it in a distributed file storage (DFS)

framework such as IPFS or Storj. The DFS returns a storage identifier that the seller then

stores along with product metadata in the blockchain through a product smart contract.

A similar approach is proposed in [36] where a seller uploads the product image and

description to the IPFS and then stores the product information and IPFS links onto

the blockchain, and buyers place their bid to buy data. In another work [56], a smart

contract is used to realize data offering listing and discovery functionalities. Provider

issues add transactions to store his data offerings on the chain, and buyers issues search

requests to find the offering. Offering smart contract provides two query functions that

return either the ID of the first offering that matches the criteria or a list of IDs of all

the offerings matching the criteria. The search happens off-chain, where the node keeps

track of which blocks contain which offerings. In other work, data is stored in the IOTA

blockchain as message streams using the MAM protocol. Every single message is indexed

by a keyword set to discover the content of specific data/MAM channels available in the

Tangle. Hypercube-based Distributed Hash Table (DHT) lookup functionalities are used

to search data through keywords on MAM channels. Several industry projects based on the

distributed data catalogues approach exist to support IoT data exchange. Databroker [57]

relies on the gateway operator that runs the Ethereum node and DataBroker API to

expose the gateway allowing sensor owners to sell their data on the platform. Sensor

owners upload their data offerings on the marketplace, and buyers can discover and buy

access to these data by paying with DXT tokens. Another similar platform for sensor data

delivery is Moeco [58], which acts as a gateway for the providers to sell their data to the

buyers acting as a middleman and processing the payment on their behalf. Streamr [59]

uses a time-based brokered subscription model and DATA token to trade real-time data

streams. Using marketplace smart contract, providers store a registry of datasets and

coordinate access and permissions.

37



CHAPTER 2. BACKGROUND

The listing services allow the providers to advertise their data and the buyers to search and

retrieve particular data types. However, as outlined in section 2.2, the data marketplace

involves design decisions beyond data-listing services. The following section discusses

marketplace architectures.

Hybrid Centralized-Decentralized Architectures : The existing data marketplace

solutions can be categorised as centralised, where a central controller manages all as-

pects of the trade and decentralised, where the core functionalities of the marketplace are

distributed between the participants. As outlined in Chapter 1, the central solutions intro-

duce privacy, security, and single-point-of-failure challenges. A purely distributed method

(i.e., blockchain-based method) also becomes challenging as storing all the indexing and

management information in all the participants increases the storage and thus increases

the cost of managing the chain. A blockchain-agnostic method using a hybrid approach

(i.e., less critical centralised and new decentralised elements) creates a practical and re-

alistic solution for data marketplaces. Hybrid approaches can either rely on brokers to

manage trades or rely on the central server to manage to trade.

The data monetization framework in [54] uses the Ethereum blockchain to enable providers

to create an IoT device contract to facilitate payment settlement, data price and usage

time auditing, issuance of access tokens, and events log. Besides, the framework also

employs the message queuing telemetry transport (MQTT) broker, a TTP hosted in the

cloud, to improve the reliability, scalability, availability, and accessibility of the framework

with low latency. MQTT broker aggregates the IoT data, authenticates the buyer off-

chain based on the unique token issued by the IoT device contracts and gives data access

to him. Similar to the above approach, [60] proposed a review system based on blockchain

to record metadata, reviews and ratings. The MQTT broker stores the encrypted data

and facilitates data transfer between providers and buyers. Another work [61] uses an

HTTP server-based platform, Hermes, which employs IOTA to store the provider’s data.

The marketplace server facilitates trading by providing APIs to register or de-register

users; post queries or offers; forward decryption keys of the stream on IOTA, encrypted
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with buyers’ public keys, to buyers; and resolve disputes. In other work [33], the medi-

cal data-sharing framework relies on a centralized marketplace to provide matchmaking

services and receives a commission in return. A consortium blockchain, maintained by

academicians, manages data access requests, ensures data integrity, verifies the provider’s

data-sharing policy, and payment settlement mediated by the marketplace. A similar

approach in [62] uses a mediator to facilitate trade by matching buyers with sellers in

return for a percentage of incentive on successful matchmaking. Blockchain record all the

agreements, settlements, and penalties for misbehaviour. In [31], the authors leveraged

blockchain for IoT traffic metering and contract compliance on top of the IoT-brokered

data infrastructure. The broker mediates all the interactions between publisher and con-

sumer, manages all the subscriptions and reliably delivers messages to the subscriber. An

industry project, Wibson [63], relies on Notaries to authenticate and validate the data

made available by the seller and resolve conflicts between buyer and seller. The sellers

install a smartphone application and can sell their data in exchange for a Wibson token.

The hybrid method is a combination of centralised and decentralised models that facilitates

the functionality of the data marketplace by reducing overheads and increasing trust and

security. In the next section, we discuss decentralised data storage and managing access

to the data, which is critical to a decentralised marketplace.

Decentralized Data Storage and Access Mechanisms : An access control mecha-

nism enables the data owners to manage who can access their data and for how long. The

access mechanism separates the data exchange into two parts: raw data exchange, where

the participants share the raw data, and right access exchange, where permission to access

particular data is exchanged between participants.

Sash [64] employs smart contracts to evaluate access requests of buyers based on the

provider’s predefined policies. Providers store their data in the cloud encrypted using pre-

fix encryption and advertise data offerings to the blockchain. A key distribution authority

uses the Access Control List (ACL) recorded in the blockchain to decide whether or not to

share the master secret key with the buyer. A similar work [35], PrivacyGuard, leverages
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smart contracts to enable providers’ data access control. It executes the smart contract

off-chain in a trusted execution environment based on Intel SGX to prevent exposing user

data on the public blockchain. In [65], a secure and auditable data management consists

of a distributed hash table (DHT) to store chunks of IoT streams as a key-value pair,

and blockchain empowers data owners by managing access rights per data stream basis

for a limited time. In [34], providers store their data in the interplanetary file system

(IPFS) and receive a hash in return. They divide the hash into n-shares and record the

encrypted hash shares on the blockchain. A passive entity, the worker, authenticates the

buyer’s identity, queries the smart contract and sends the decrypted hash shares to the

buyer. An industrial project, datapace [66] is a marketplace for IoT sensor data based

on Hyperledger Fabric to ensure data integrity using policy-based data verification. It

uses Mainflux [67] as an IoT cloud platform enabling connectivity and management of

IoT devices via the gateway. It leverages smart contracts to define the conditions under

which the data is traded in exchange for a TAS token. Another project, Datum [68], relies

on DAT Token Smart Contract to provide secure data trading. Providers submit their

data by connecting different IoT services to the platform, paying a small DAT token fee

to store it in the network. Buyers acquire data for DAT tokens, and the smart contract

initiates an off-chain key exchange under the provider’s terms. Data is encrypted under

the provider’s usage terms, anonymized and stored on the storage node miners that earn

DAT tokens for saving and transmitting the encrypted data.

Access control management is critical to ensure that the user controls the stored data and

thus protects their privacy. The seller and buyer must reach an agreement to access data,

discussed in the next section.

Agreement Instantiation : An agreement instantiation approach manages the agree-

ment life cycle and ensures the agreement’s integrity, non-repudiation of the participants,

and authentication.

An agreement framework [69] that relies on a data marketplace used as a TTP handling

all transactions among all stakeholders, including providers, data custodians, and buyers.

40



2.3.1 Autonomy and efficiency

Blockchain is to record the agreements established in the data marketplace and monitor

the activities within the ecosystem. Data custodians collect data from the provider and

transfer data assets to the buyer. The provider broadcasts an agreement in the blockchain

that describes their acceptable terms and conditions. The data custodians broadcast

a service-level agreement based on negotiated terms with the provider and asset terms

and conditions. The marketplace creates a transaction that contains the agreements.

The involved parties validate the transactions and store the corresponding hash in the

blockchain. The data and service assets are then saved in the service repository with the

link to their respective agreement’s hash.

The summary of the literature discussed in this section is provided in Table 2.1. We com-

pare the existing work along these dimensions: approach, system model, platform, smart

contract usage, autonomy level (i.e., what level of autonomy the marketplace provides

to its participants), IoT efficiency for trading data in real-time and scalability. We can

note from Table 2.1 that the existing solutions do not cover all the essential dimensions.

Moreover, IoT efficiency is not considered necessary while trading data stream in real-time

from the resource-constrained IoT devices in the existing IoT data marketplace systems.

With a trade-off with scalability, some frameworks provide full autonomy for participants.

We address the challenges mentioned above by proposing a MartChain framework (see

Chapter 3). MartChain aims to provide full autonomy in data trading using a public

blockchain network. It also addresses the issue of scalability by employing multiple trust-

less geographically distributed facilitators. Moreover, MartChain is underpinned with an

optimization module to achieve energy efficiency for resource constraints IoT devices for

trading data stream in real-time.
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Table 2.1: Comparison of autonomy and efficiency approaches in a decentralized IoT data
marketplace

Article Approach System model Platform Smart contract usage Autonomy Efficiency Scalability
[29] Trade trans-

action
Publish-subscribe model Bitcoin Setup, publish, subscribe, match,

payment, reputation
Full ✕ ✕

[53] Trade trans-
action

Broker for data transfer Ethereum Data offering, trade agreement,
data receipt, settlement

Full ✕ ✕

[30] Trade trans-
action

SDN for data storage and transfer Hyperledger Data advertisement, purchase re-
quest, data access, settlement

Full ✕ ✕

[55] Trade trans-
action

Four layer: data, network, man-
agement, interaction

Ethereum User management, data manage-
ment, exchange management

Full ✕ ✕

[32] Trade trans-
actions

Cloud servers to store data Hyperledger Data listings, data trading inter-
actions

Full ✕ ✕

[11] Data cata-
logue

DFS for storing data, SDPP [70]
for payment transfer

Ethereum Decentralized registry for data of-
ferings

✕ ✕ ✕

[36] Data cata-
logue

Bidding system based on IPFS as
data storage

Ethereum Product information, user bids,
escrow account

✕ ✕ ✕

[37] Data cata-
logue

Swarm as data storage, Raiden
micropayment as payment chan-
nel

Ethereum Authorization mechanism, data
offerings

✕ ✕ ✕

[56] Data cata-
logue

✕Nodes maintains local copy of
offerings for off-chain search

Ethereum Data offerings and retrieval ✕ ✕ ✕

[71] Data cata-
logue

DHT for keyword-based search IOTA Data offerings Partial ✕ ✕

[54] Hybrid
model

MQTT broker for data transfer Ethereum Access token, data offerings Partial ✓ ✕

[61] Hybrid
model

Server manages user registration,
data offerings, queries, disputes

IOTA Payment settlement ✕ ✓ ✕

[60] Hybrid
model

MQTT broker stores and transfer
data, trusted arbitrator for dis-
putes

Ethereum Data metadata, reviews and rat-
ings

✕ ✓ ✕

[31] Hybrid Publish-subscribe model, broker
mediate interactions

Ethereum Payment settlement ✕ ✓ ✓

[62] Hybrid
model

Mediator mediates all interac-
tions

N/A Agreements, settlement, penaliz-
ing for misbehaviour

Partial ✓ ✓

[33] Access con-
trol

Cloud for storing data, Broker for
facilitating marketplace function-
ality

N/A user registration, data sharing
policy, payment, recording all
transactions

Partial ✕ ✓

[64] Access con-
trol

Cloud storage to store data, key
authority to share secret keys for
decryption

Hyperledger Add and verify metadata contain-
ing ACL

Partial ✕ ✕

[65] Access con-
trol

DHT for data store and transfer N/A Access control Partial ✕ ✕

[34] Access con-
trol

IPFS for storing data, workers
mediate all interaction with a
smart contract on behalf of cus-
tomer

Ethereum Recording encrypted hash shares,
access control, payment, review

Partial ✕ ✕

[35] Access con-
trol

TEE based on Intel SGX to ex-
ecute smart contract off-chain,
data broker to address scalability

Ethereum Data access policy Partial ✕ ✓

[69] Agreement
instantiation

Server for marketplace services,
data custodian to store and
transfer data

N/A Agreement, transaction logs Partial ✕ ✕

2.3.2 Privacy

This section discusses the state-of-the-art for enabling privacy in decentralized IoT data

marketplaces. We first discuss the existing solutions that devised proposals using privacy-

enhancing technologies (PETs). In the following sections, we present related work of

privacy awareness in the IoT ecosystem and label, rating, and scoring system.

As discussed in Chapter 1, exchanging IoT data in the marketplace entails the risk of

exposing individuals’ sensitive information that may restrain them from sharing data.

Many initiatives explored privacy-enhancing technologies to enhance user’s privacy while
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preserving data utility. These includes digital signatures, differential privacy, anonymiza-

tion techniques such as k-anonymity, encryption, trusted execution environments, zero-

knowledge proofs, and hashing. Digital signatures ensure data authenticity and integrity.

Differential privacy adds noise to data to protect individual identities. Anonymization

techniques such as k-anonymity masks individual identities by grouping individuals with

similar attributes. Encryption protects data in transit and at rest. Trusted execution en-

vironments ensure secure data processing. Zero-knowledge proofs enable data validation

without revealing the data, and hashing securely stores and verifies data. Several existing

works based on these privacy-enhancing technologies are discussed below.

In [72], the authors use several cryptographic primitives to realize practical security. These

include symmetric encryption to encrypt the provider’s data and asymmetric encryption

for digital signatures to ensure that the data source is authentic as claimed. The hash-

ing mechanism verifies the integrity of transferred data by making the hash public before

transferring the data. In [73], cloud servers store the provider’s encrypted sensor data,

establish runtime dynamic smart contracts between provider and buyer and use a proxy

re-encryption scheme to transfer the anonymous data securely to the buyer. In other

work [74], Sterling enables buyers to perform privacy-preserving analytics and apply ma-

chine learning (ML) over private data through smart contracts, trusted execution environ-

ments and differential privacy. In [75], data price is evaluated using differential privacy

based on the provider’s privacy loss in trading data. A provider deploys a compensation

contract in the Quorum platform that defines the function of data and privacy loss and

also sets the maximum privacy budgets for a dataset. The compensation contract man-

ages the privacy budget and allocates it according to the buyer’s accuracy requirements.

Another work [76] used two data protection techniques to provide k-anonymity and differ-

ential privacy properties in a Sensing-as-a-Service model to ensure anonymity. Through a

specific smart contract where parties agree on predefined policies, an aggregator receives

access to data from k data subjects. The aggregator provides the sensing service and pro-

duces an anonymized dataset that buyers can acquire. In [77], the protocol integrates ring

signatures to enhance the privacy of provider identity, extends the double authentication

preventing signature (DAPS) for fair data trading and utilizes similarity learning to guar-
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antee the availability of trading data. SDTE [78] consists of SDTP, a secure blockchain

for contract deployment, requirements matching and secure contract execution on Intel’s

Software Guard Extensions (SGX). SDTP consists of trusted nodes (SGX supported) and

normal nodes (non-SGX). The buyer deploys his data analysis contracts on SDTP, finds

some sellers based on the data of interest, and finds SDTP’s trusted nodes. Then, the seller

sends the data to the trusted nodes selected by the buyer. Data analysis will be performed

on the trusted nodes, and the execution results will be sent to the buyer. An industry

project, Agora [79] leverages cryptographic techniques such as FE scheme to achieve data

privacy, tailored Zero-knowledge proof (ZKP) ensures output verifiability, and atomicity

of payments by leveraging smart contracts.

Although privacy-enhancing technologies have received tremendous attention, they are not

without their downsides as presented in [80]. Firstly, they can be complex and resource-

intensive, which can make them difficult and expensive to implement. Additionally, PETs

can sometimes be prone to errors, which can increase the risk of privacy breaches. Further-

more, some PETs may not be fully effective at protecting privacy, as attackers may still be

able to use techniques such as inference attacks to gain insights into sensitive information.

Finally, PETs can also limit the utility of data, as they may require certain data to be ob-

fuscated or encrypted, which can make it difficult to extract valuable insights. Moreover,

in the IoT data marketplace, providers often share their IoT data with third-party buyers

who may use the data for purposes beyond the provider’s expectations. For example, using

advanced technologies like data mining, AI, and ML, a malicious buyer can make unautho-

rized predictions about a provider’s behaviour. Moreover, depending on how often and to

what extent buyer collects the provider’s data, the privacy threats including identity theft,

financial loss, or reputation damage increases. These privacy harms and risks are more

for providers in the IoT data marketplace since buyers may track habits, behaviours, and

locations through the excessive and ubiquitous data collection. Therefore, to address the

above issues, there is a need for increased privacy risk awareness in the data marketplace.

By informing providers about the potential privacy risks associated with sharing their IoT

data, they can make informed decisions based on their privacy preferences and needs. This

can help to reduce the likelihood of privacy harms and increase user trust in the market-
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place. Additionally, this can help to promote responsible data sharing practices that are

consistent with legal and ethical standards. Overall, making privacy risk awareness crucial

for protecting users’ privacy and promoting a trustworthy IoT data marketplace.

Privacy-awareness in IoT ecosystem : There are several proposals for privacy risk

assessment in the IoT ecosystem [81–84] to inform users about privacy risks associated with

the disclosure of their personal information to third parties. In [85], the authors discuss the

key requirements for the design of privacy risk-aware frameworks around wearable and IoT

ecosystems. Their framework enables the users to make informed data-sharing decisions

by evaluating privacy in terms of risk-benefit trade-offs. Several other works [86,87] enable

users to define privacy-aware policies for data sharing based on their preferences. In [88],

authors propose a policy framework for user data sharing based on the user-editable and

negotiable privacy policy that defines the purpose, type of data, retention period and price.

Other works [89,90] developed a decision model for users to guide their choices regarding

data sharing. Current data marketplace ecosystems rely on trust management models [33,

60,91] where the provider’s decision whether to give data access to the buyer depends on

the buyer’s trust score. However, trust is a subjective belief about an entity in a particular

context [92]. It lacks factual and relevant information about buyers that can empower

providers to properly assess privacy risk and make a privacy-aware informed decision

about data sharing. To design such a mechanism for providers in the data marketplace,

understanding their preferences and concerns is of great importance. Factors such as

trade interactions, transparency of mechanisms, context and who is collecting the data

are essential determinants that are not considered in existing approaches.

Label, rating, and scoring system : Labels, ratings and scores are a common ap-

proach in contexts such as food [93] and energy [94] to communicate important information

effectively, have been shown to impact users’ purchase decisions significantly. In the pri-

vacy context, Apple [95] and Google [96] have recently required application developers to

provide information about the privacy practices of their applications. This information is

presented on a private label in the app and play store to help users make a more informed
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application selection. Various studies [97–99] have shown that privacy and security labels

for IoT devices could effectively inform users about the privacy risk associated with data

collection. Authors in [100] propose a privacy and security label for the internet safety

of IoT toys to help parents make purchase decisions. Other studies [101, 102] compute

the privacy score of a user indicating his potential risk caused by his daily information-

sharing activities on social networking sites. An automated website scanning portal, Pri-

vacyScore [103], develops a benchmark tool to assess website security and privacy features.

The framework introduced in [104] produces a Privacy Invasion Profile for each mobile

application by analyzing its permissions, which can be used to compare the risk of pri-

vacy invasion for a specific application. However, these rating systems are based on a

centralized model where data to compute ratings are stored on the central server. The

rating data can be modified and manipulated to change the rating. Many studies employ

blockchain to develop rating systems in various application domains to address this issue.

These include rating restaurants on website [105], assessing the success level of tourism

destinations [106], movies rating for deciding watch [107], credit rating for assessing the

creditworthiness of a borrower [108–110]. A rating system proposed in [111] rate service

providers to protect IoT devices from unreliable services by them.

Table 2.2 summarizes the existing approaches to address the privacy issue in data sharing.

We compared the discussed articles against the following categories: use case, architec-

ture, adopted privacy mechanism, allow a provider to make an informed decision for data

sharing and if they use any rating/label/scores. It is evident from the table that the

existing solutions to address privacy challenges in a decentralized IoT data marketplace

are based on privacy-enhancing technologies that allow providers to protect the privacy

of their IoT data. Other solutions employ privacy and security awareness mechanisms to

allow users to make an informed decision about data sharing by assessing their privacy

risk and acting as per their preference using labels/scores/ratings. However, these frame-

works are centralized, making the risk assessment or rating data prone to manipulation.

Furthermore, these approaches are based on data sharing in different contexts, such as

mobile applications, social networks, wearable IoT devices, and websites. They do not

consider factors suitable to assess provider’s risks associated with sharing their data and
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Table 2.2: Comparison of privacy approaches in a decentralized IoT data marketplace
Article Year Use-case Architecture Privacy mechanism Informed

decision
Score/Label/
Rating

[72] 2020 Data marketplace Decentralized Digital signature, asymmetric encryp-
tion, hashing

✕ ✕

[73] 2021 Data marketplace Decentralized Proxy re-encryption scheme ✕ ✕
[74] 2018 Data marketplace Decentralized Trusted execution environments and dif-

ferential privacy
✕ ✕

[75] 2020 Data marketplace Decentralized Differential privacy ✕ ✕
[76] 2020 Data marketplace Decentralized k-anonymity and differential privacy ✕ ✕
[77] 2019 Data marketplace Decentralized Ring signatures, double authentication

preventing signature
✕ ✕

[78] 2019 Data marketplace Decentralized Trusted execution environment ✕ ✕
[112] 2017 Data marketplace Decentralized k-anonymity, hashing ✕ ✕
[79] 2021 Data marketplace Decentralized Functional encryption scheme, Zero-

knowledge proof
✕ ✕

[85] 2020 Wearable IoT devices Centralized Privacy risk-aware ✓ ✕
[86] 2020 IoT data sharing Centralized Privacy-aware policies ✓ ✓
[100] 2021 IoT toys Centralized Privacy and security aware ✓ ✓
[101, 102] 2010,

2017
Social networking sites Centralized Privacy risk-aware ✓ ✓

[103] 2017 Website Centralized Privacy and security aware ✓ ✓
[104] 2014 Mobile application Centralized Privacy risk-aware ✓ ✓
[111] 2019 IoT SPs credibility Decentralized N/A ✓ ✓

make a decision based on their preferences and needs in the data marketplace.

Our proposed privacy-risk-aware solution KYBchain (see Chapter 4) addresses the above-

mentioned challenges. KYBchain approaches the privacy issue from the provider’s view-

point and empowers them to make privacy-aware data-sharing decisions. It computes the

privacy rating of the buyer that the providers can use to manage their long-term privacy

risks associated with trading or sharing their IoT data in the marketplace. In the proposed

solutions, extensive performance evaluations are carried out to demonstrate the efficacy

of privacy ratings. We also presented proof of concept in a private Ethereum network

and demonstrated the feasibility of KYBchain using Hyperledger Caliper. In addition,

we have also made use of some PETs, including digital signatures, encryption techniques,

and hashing, to protect the provider’s data and minimize privacy risks. However, in the

current research, we have not considered incorporating ZKP-based solutions because the

privacy provided by them comes at the cost of increased computation and communica-

tion overhead. In the future, we plan to explore ZKP-based solutions in the proposed

architecture and investigate the trade-off between privacy and efficiency.
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2.3.3 Traceability

Blockchain can play a crucial role in traceability by offering a detailed audit trail of trans-

actions on a network. Most of the existing works exploring the application of blockchain

for traceability are in the context of supply chain management [113–116]. Supply chains

generally have a complex network of manufacturers, suppliers, retailers, distributors, au-

ditors, and customers. Smart contracts record the movement of assets across these entities

in the blockchain in an immutable and tamper-proof manner. The shared ledger infras-

tructure enables anyone to retrieve the audit trail to find the different milestones an asset

has crossed in the journey through the supply chain. Unlike physical commodities in the

supply chain that are only owned by one specific entity, data ownership can include mul-

tiple parties as long as they can access the data and share it with others [117]. Several

studies [118, 119] employed blockchain to enable provenance and lineage traceability. A

data sharing scheme is introduced in [120] based on the blockchain double-chain structure

to separate the original data storage and the transactions. One chain was used to store

the encrypted data, and another chain was used to record the data-sharing transactions.

These signed data-sharing transaction records enable data to be traced. In another ap-

proach [121], blockchain was applied to an m-health system for secure patient-user access

and traceability of electronic health records. This implementation is based on Hyperledger

Fabric which enables the creation of chronologically organized and immutable health data

records traceable throughout the system, maintaining the necessary anonymity. The pro-

posed system implements two separate database components (personal and health data)

that assure data traceability through sets of IDs stored in the blockchain to create this

anonymous storage system.

Recall from Chapter 1 data ownership traceability in the data marketplace becomes more

challenging since a buyer can buy data in one marketplace and sell it to participants in

another. The existing approaches discussed above enable data traceability within the con-

fines of a single system and do not consider the dispersal of data ownership spanning across

multiple systems. Moreover, a buyer can redistribute/resell data without the knowledge

and consent of the provider. Such undisclosed reselling can lead to privacy violations or
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monetary loss for the providers. Managing digital data rights is fundamental to restricting

buyers’ ability to redistribute/resell the data they have purchased. A data owner should

be fairly compensated if buyers resell their data to others in the marketplace. In the next

section, we first discuss the existing interoperability mechanisms. Next, we provide an

overview of the digital rights management (DRM) systems followed by the fair payment

settlement in data trading. Lastly, we present a comparative summary of the most relevant

state-of-the-art with our proposed approach.

Interoperability mechanism: Tracking data ownership spanning across multiple mar-

ketplace systems requires these disparate systems to interact and integrate seamlessly,

allowing for data sharing between them. In this section, we will discuss several exist-

ing blockchain platforms that aim to achieve interoperability between different blockchain

networks.

ChainBridge [122] is a protocol that enables the transfer of digital assets and tokens across

different blockchain networks through relay chains and parachains, each with their own

bridge contract. The communication between different chains is through a message-passing

system. To transfer assets, the originating chain’s bridge contract creates a message

and sends it to the target chain’s bridge contract. However, it requires a trusted set

of validators to maintain the relays, making it not fully decentralized.

Polkadot [123] uses a multichain architecture with "parachains" that run in parallel to

the Polkadot Relay Chain. Each parachain is a sovereign blockchain with its own gover-

nance structure and token economics. The Relay Chain acts as a bridge between these

parachains, enabling them to communicate and share data and assets using a cross-chain

message passing protocol. However, running a parachain on Polkadot requires significant

resources, which may limit participation, and the Relay Chain may become a bottleneck

if it cannot handle increased traffic from the parachains.

Cosmos [124] uses a hub-and-spoke architecture to create multiple independent blockchains

or zones that communicate through the Cosmos Hub. Each zone can communicate with
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other zones using the Cosmos Inter-Blockchain Communication protocol. However, the

mechanism requires high coordination between zones, limiting scalability. Also, the Cos-

mos Hub may become a central point of failure if compromised or offline.

Avalanche [125] uses subnets and a bridging mechanism to enable interoperability between

blockchain networks. X-Chain is used for asset exchange between blockchain networks and

C-Chain is used for smart contract execution and development. These subnets are bridged

using the Avalanche-Ethereum Bridge. However, larger subnets may have more power and

influence over the network, which could lead to centralization risks.

Cardano [126] uses a two-layer architecture: a settlement layer for accounting and a com-

putation layer for smart contracts and dApps. Its cross-chain communication protocol

enables the transfer of assets and data between different blockchains, even those not built

on Cardano. However, these features are still in development and yet to be fully tested.

Algorand [127] utilizes Atomic Transfer Protocol for decentralized cross-chain asset trans-

fers. This involves hashing transaction data from one blockchain and including it in

another blockchain’s transaction, ensuring atomic transfers. Additionally, Algorand offers

layer-1 smart contracts using TEAL programming language. However, low adoption of

Algorand may limit the availability of resources and tools for developers.

Polygon [128] uses Plasma Layer 2 scaling solution to address Ethereum’s scalability and

usability issues. Its architecture includes interconnected sidechains that are compatible

with Ethereum Virtual Machine networks. Polygon enables interoperability with non-

EVM compatible networks via its Polygon Bridge. However, currently, it only supports

Ethereum-based networks.

IBM’s blockchain interoperability mechanism [129] uses a trusted data transfer protocol

based on relay services and attestation proofs, focusing on data integrity and security. Each

blockchain network has a relay node that receives and verifies data from one network and

transfers it to the other. Attestation proofs are cryptographic signatures that are created

by trusted parties or validators on each network. The relay nodes collect these attestation
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proofs from both networks and use them to verify the authenticity of the data and prevent

tampering by malicious actors during the transfer process.

In this thesis, we opted for IBM relay and attestation proofs based interoperability mecha-

nism due to its ease of implementation, flexibility, and compatibility with various blockchain

networks. Its focus on data integrity and security further supports our goal of facilitating

trusted data transfer across multiple marketplace systems. However, the relay nodes may

introduce centralization and trust issues that we address in our research.

Digital rights management (DRM) systems : To date, several works have been

proposed based on digital watermarking and blockchain for managing digital data rights,

which is essential for data trading. DRM controls the trading, protection, monitoring,

modification, distribution, and tracking of digital data [130].

The authors in [131] and [132] propose a distributed media transaction framework that uses

blockchain’s append-only and time-ordered property to record the modification history and

ownership of an image. A digital watermark comprising the corresponding transaction ID

and other information such as copyright owner, location, and creation date is embedded

in the image to link the transaction trail recorded in the blockchain with the image. In

other similar approaches [133] and [134], the authors present a copyright management

model for digital images using digital watermarking, blockchain and IPFS. Blockchain

stores information about the digital image, such as the owner’s digital signatures and

cryptographic hashes. The watermarked image and corresponding block index are stored

in IPFS. The above schemes provide a reliable, secure, efficient and tamper-resistant digital

content service and DRM practice. However, the transaction trail can only be retrieved

by replaying all transactions, which requires traversing every transaction in every block,

which is time-consuming and slow. Moreover, this retrieval approach is applicable for

offline analysis and unsuitable for on-chain transaction processing. In other words, smart

contracts cannot access historical transaction trails, hence, restricting the expressiveness

of the business logic that the contract can encode.
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Another popular use case of ownership traceability is non-fungible tokens (NFTs) [135].

NFTs are digital assets that represent ownership of unique real-world items such as art, mu-

sic, and videos. When creating a new NFT, a smart contract is deployed on the blockchain

that contains the NFT’s metadata, including its unique token identifier, ownership infor-

mation, and transaction history. The transfer of an NFT is transparent, irreversible, and

recorded on the blockchain, providing an immutable record of ownership transfers. How-

ever, NFT smart contracts only record the current owner and associated metadata, and do

not provide the complete ownership trail, which is needed in data marketplaces to enable

payment sharing among all owners. To obtain the entire ownership history of an NFT,

one needs to examine the input and output addresses associated with each transaction,

which can be a time-consuming process. Additionally, NFTs can be transferred between

compatible blockchain networks, enabling ownership traceability across these networks.

However, these networks should be compatible with similar token standards, or it may

not be possible to transfer the NFT to those networks.

DRMChain [136] is a digital copyright management that ensures authorized access to

digital content and provides external storage of decentralized digital content using IPFS.

DRMchain employs two isolated blockchain application interfaces for storing the original

content with its cipher summary and the DRM-protected content service, such as content

watermark, encryption, license and violation tracing, among others. DRMchain enables

violation tracking by tracing the identity of the content provider responsible for the il-

legal content. However, the system lacks traceability functions such as trail retrieval or

validation.

In [137], the authors provide a data traceability model addressing the problem of limited

storage resources of edge nodes that cannot store the blockchain. The approach provides

a secure data traceability solution by dividing the edge network into multiple blockchain

networks. The nodes in the edge network are divided into groups known as internal areas

based on their physical distance from each other. For each internal area, a master node is

elected that has the highest computing power and forms a peer-to-peer blockchain network,

also known as the external area, with other master nodes. The internal area uses digital
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watermarking for data distribution and traceability. For data transmission outside the

area, master nodes store the transmission record and the watermark information on the

blockchain network. However, tracing the path along which data is exchanged requires

querying the blockchain, which takes time and is thus not suitable for online settlement

of resell payment sharing.

The authors in [138] propose a digital watermark management system based on smart

contracts to prevent the illegal distribution of publications. Their solution uses a special

deployment method for computationally intensive contracts (CICs) that enables smart

contracts to perform computationally intensive calculations such as digital watermarks

and complex encryption algorithms at low gas costs on Ethereum. Besides the low tech-

nology readiness of CICs, the approach could suffer from scalability issues as it stores the

data in the ledger and implements computationally expensive watermark embed/detection

algorithms using smart contracts.

In [139], the authors propose a watermarking technique for big data by leveraging the

power of blockchain technology and smart contracts. An owner stores the watermarked

data in IPFS and registers it to the system. Data is transferred to data collectors using the

proxy re-encryption technique and tokenization. An access control mechanism is devised

to ensure that only legitimate buyers can access the data after getting permission from

sellers. The system provides an audit trail for data movement for legitimate data trad-

ing. However, the model does not detect the unauthorized spread of the divulged copies

across marketplace systems. Moreover, the system lacks diversified trade trail manage-

ment functions, such as trail validation or retrieval. In addition, it lacks an effective resell

payment-sharing mechanism.

Payment Settlement in Marketplace : In our framework, we consider decentral-

ized data trading and resell payment share settlement among data owners using smart

contracts. This section presents the related work in this domain.

The authors in [140] address the issue of data ownership and identity verification during
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dynamic data streaming trading based on publish/subscribe model and IoT-brokered in-

frastructure. The data stream is stored on the Tangle and transmitted through Masked

Authenticated messaging (MAM). Brokers manage the provider’s product and correspond-

ing subscribers using smart contracts. Smart contracts are also used to automate the sub-

scription and payment process. Nevertheless, the above work does not consider ownership

traceability and reselling of data. Since their model relies on brokers to certify transactions

before uploading to the contracts, their model may suffer from collusion attacks.

The authors in [141] propose a data trading scheme using a special Bitcoin script for fair

and instant payment. The scheme prevents double-spending attacks in fast transactions

through ECDSA signature vulnerabilities. If the signature uses the same random number

twice, the private key of the payer’s signature is exposed, and miners set all of the Bitcoin

of the payer’s payment account to the transaction fee. The scheme allows sellers to up-

load their data securely on the cloud and stores integrity proof of data in the blockchain

for validation purposes. Their approach focuses on instant payment using Bitcoin and

prevents illegal data access through an access policy. However, there is no mechanism to

detect reselling of data.

In [142], the authors propose three traceability solutions (Trace-MIN, Trace-MAX, and

Trace-BF) to enable monetization for the IoT data marketplace. In Trace-MIN, only

the broker has write access, and the information recorded on the blockchain is minimal.

In Trace-MAX, maximum information is logged in the blockchain. In Trace-BF, three

bloom filters are used for storing publication, tracking and confirmation information by

the publisher, broker and subscriber. For each solution, authors present data sharing,

verification and monetization process. Their approach employs a smart contract for keep-

ing the count of data bytes exchanged between buyer and seller for payment settlement

purposes. However, Trace-BF does not provide traceability of the data ownership.

In [143], a smart-contract-based protocol is proposed to ensure that the provider is paid

when consumers resell their data. A tripartite contract involving the provider, the reseller

and the buyer is formed and stored on the blockchain. When the buyer pays for the

item, the revenue is shared between the reseller and provider using a smart contract.

54



2.3.3 Traceability

Reselling can be detected by employing a verification process that the buyer performs. A

buyer broadcasts its verification information to all the sellers in the market. A genuine

provider matches the verification information with the existing data items and determines

whether the reselling is authorized. The difference between this model and our work is

that the former limits the resell payment share only between the reseller and the provider.

However, our solution can share the payment among all the data owners in the trade

lineage. In addition, their work has not addressed the scenario of sharing across multiple

marketplaces.

The above-discussed existing solutions are summarized in Table 2.3. We compare the

existing solutions against the following dimensions: application domain for the traceabil-

ity mechanism, its specific use case, providing a mechanism to detect the undisclosed

resharing/ redistribution, verifying the data origin and integrity, supporting traceabil-

ity across multi-system networks, enabling distribution of resell payment. As is evident,

most existing approaches detect undisclosed resharing or redistribution of assets and pro-

vide a mechanism to verify the data origin and integrity using watermarking techniques.

However, they do not ensure traceability outside the confines of the system. In the data

marketplace, participants will likely register with multiple marketplaces for monetary gain

or alternative offerings for data purchases. Users could buy data from one marketplace and

resell the original data or value-added services to users registered in other marketplaces.

Furthermore, there is also a lack of consideration to protect the profit of data owners when

their data is resold.

In Chapter 5, we propose TrailChain addressing the aforementioned challenges to devise

an effective data ownership traceability in the multi-marketplace data trading scenario.

In particular, TrailChain fulfils the following requirements: (a) provides a data ownership

registration mechanism that establishes trust in the origin and creation process of data

by guaranteeing that the registered data in the marketplace is indeed collected by the

specific provider’s IoT device, (b) empowers data-owners to track the data movement

within and across marketplace systems, (c) provides an automated mechanism that can

verify if the data was transferred without violating data owner’s consent when the data
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is resold/redistributed, and (d) retrieves the trusted trade trail in a transparent, efficient

and autonomous manner for enabling fair and protected distribution of the resell payment

among the data-owners.

Table 2.3: Comparison of Traceability Approaches in Decentralized IoT Data Marketplace

Article Year Application
domain

Use-case Undisclosed
re-sharing

Verify au-
thenticity

Multi-
system

Resell
payment

[120] 2018 Data sharing Modification history
and ownership of data

✓ ✓ ✕ ✕

[121] 2022 Health system Health records ✓ ✓ ✕ ✕
[131], [132] 2017,

2020
Distributed me-

dia transaction
Modification history

and ownership of media
✓ ✓ ✕ ✕

[133], [134] 2018,
2020

Copyright man-
agement model

Ownership of digital
images

✓ ✕ ✕ ✕

[136] 2018 Digital copyright
management

Identity of the content
provider

✓ ✕ ✕ ✕

[137] 2020 Data traceability
model

Modification history
and ownership of data

✕ ✕ ✓ ✕

[138] 2019 Digital water-
mark system

Illegal distribution of
publications

✓ ✕ ✕ ✕

[139] 2020 Data marketplace Ownership traceability ✓ ✓ ✕ ✕
[140] 2020 Data marketplace None ✕ ✓ ✕ ✕
[141] 2020 Data marketplace None ✕ ✓ ✕ ✕
[142] 2020 Data marketplace Trade traceability ✕ ✕ ✕ ✕
[143] 2020 Data marketplace Data originator ✓ ✓ ✕ ✓

2.4 Chapter Summary

In this chapter, we first presented a brief overview of blockchain technology and discussed

the structure of transactions and blocks, and key components of blockchain infrastruc-

ture. We outlined some popular blockchain platforms and examined their features. We

presented an overview of the key components of the IoT data marketplace. Then we dis-

cussed the literature in the context of blockchain solutions addressing autonomy, efficiency,

privacy and traceability challenges in the IoT data marketplace, covering industry-led and

academic solutions. We grouped the existing works based on their approach to architect-

ing blockchain solutions for achieving autonomy and efficiency in the decentralized IoT

data marketplace. In particular, these approaches include trade transaction management,

data catalogue, hybrid centralized-decentralized model, data storage and access control
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and agreement instantiation. For the privacy challenge, we discussed the existing work

of privacy-enhancing technologies, privacy-aware frameworks and label/rating and scoring

systems. We looked into the literature on digital rights management systems and pay-

ment settlement for traceability challenges. Finally, we compared the limitations in the

discussed approaches to our proposed solutions which are explained in detail from Chapter

3 to Chapter 5. At the end of each section, we provided a comparative analysis of the

discussed articles using tables.
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Chapter 3

MartChain: Towards an Autonomous and

Efficient Decentralized IoT Data

Marketplace

In this chapter, we answer the research questions RQ1, RQ2, RQ3, and IQ. The un-

precedented rate of IoT adoption presents an opportunity for device owners to trade their

IoT data with interested buyers. Traditional solutions rely on a trusted third party for

conducting all management operations, thus raising issues such as centralized governance,

single point of failure, limited user control and lack of transparency. Blockchain is a

promising technology that can make data trading decentralized, secure, democratic and

transparent. However, adopting blockchain in a marketplace ecosystem is not straightfor-

ward and requires consideration of the following aspects. First, given the large number of

IoT devices owned by a myriad of providers, trading data generated by them may lead to

a large volume of operational transactions. Thus, using a monolithic blockchain to record

all such transactions will be inefficient, expensive and unscalable. Second, it is challenging

to enable self-governance and non-repudiation without a trusted third party. Last, the

restricted energy budget of IoT devices limits the volume of data they can exchange in

real time. An inefficient allocation of buyers’ demands on such devices poses a challenge

for providers to simultaneously serve multiple buyers’ demands without disrupting their
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service level agreements. In this chapter, we propose MartChain for trading IoT data in

real time generated by resource-constrained IoT devices. MartChain employs facilitators

to manage data offerings/demands listings and perform search and discovery. We leverage

smart contracts to implement other key operational components such as contract manage-

ment and execution, data pricing, payment and settlement, and reputation mechanisms.

MartChain is underpinned by an Energy-aware Demand Selection and Allocation (EDSA)

mechanism for optimally selecting and allocating buyers’ demands on providers’ IoT de-

vices. We present a proof-of-concept implementation in Ethereum to demonstrate the

feasibility of the framework. We investigate the impact of buyers’ demands on the bat-

tery drainage of IoT devices under different scenarios through extensive simulations. Our

results show that this approach is viable and benefits the provider and buyer by creating

an autonomous and efficient marketplace.

3.1 Introduction

As discussed in Chapter 1, the Internet of Things (IoT) presents an enormous opportunity

to transform society by unlocking and unleashing a world of data. As the number of data

sources expands exponentially, businesses are investigating ways to harness the data for

insights they can use to drive operational efficiencies, improve their customers’ experience,

or both. For example, a fitness tracking app provider may wish to procure air quality data

from weather stations deployed all over the city to suggest pollution-free running tracks

to its users. Grocery chains may be interested in obtaining aggregated information about

food items stored in smart fridges of customers in a local neighbourhood to manage their

inventory better. In traditional IoT systems (see Chapter 2), the data is stored by the

service provider of a device leading to the creation of data silos where data access is only

restricted to the service provider and the inability to share it with other parties. Given

the significant value of the data produced by IoT devices, the notion of an IoT data

marketplace has attracted tremendous attention. A data marketplace would enable IoT

device owners to monetize, trade, and share the historical or real time data generated by
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their IoT devices with other participants in the IoT ecosystem. The data marketplace

addresses the issue of data silos and incentivises users to share their data with service

providers or other parties that require access to the data.

To date, data marketplaces for trading IoT data have typically been developed using a cen-

tralized brokered approach [21,24]. In such approaches, a TTP oversees the trade to ensure

that both parties commit to their obligations, which results in several limitations. The first

limitation was centralized governance, as the TTP conducts all management operations

and controls every aspect of a trade, from offer listings to price determination, product

search, data storage, transacting the trade, data dissemination, and buyer/provider feed-

back. With billions of connected IoT devices, it can be a bottleneck. Other limitations

were limited privacy as the TTP has full visibility on the trade history of providers and

buyers and the associated data, central point of failure, and low security as the TTP

may be compromised by hackers, which leads to data leakage. To address the outlined

challenges, blockchain [144] is a promising technology that has the ability to disrupt the

data marketplace by making trading decentralized, democratic, secure and transparent. It

provides multidimensional benefits in the IoT data marketplace as discussed in Chapter 1.

Nevertheless, the adoption of blockchain to create an open IoT data marketplace is not

straightforward and requires considerations from different perspectives, as listed below:

An open data marketplace refers to a market that is accessible to anyone to join and

trade IoT data generated from IoT devices. Such a marketplace often spans the globe,

where the number of participants may increase drastically. Therefore, before realizing

the promise of blockchain for the IoT data marketplace, a fundamental challenge, i.e.,

scalability, must be addressed. With the ever-increasing number of IoT devices owned by

a myriad of providers, generating a massive amount of IoT data leads to overwhelming

transactions of read/write operations. Using one monolithic blockchain for storing all

the marketplace-related transactions, such as all trade interactions, data offerings, and

access policies on-chain, is expensive, inefficient and unscalable. An efficient IoT data

marketplace must balance the degree of decentralization and scalability that a blockchain

possesses without impacting the overall performance.
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Moreover, in a decentralized data marketplace, ensuring autonomy and non-repudiation

become challenging. An autonomous marketplace enables self-governance where partici-

pants define their own terms and conditions under which they will trade the data. Non-

repudiation ensures that they adhere to those obligations. Consider an example where

a buyer and provider agree to trade GPS data with specific sampling intervals, duration

and quality at a certain price. However, ensuring that both parties adhere to these obli-

gations is difficult. The provider may renounce the contract by not providing the GPS

data for the specified requirement. Similarly, the buyer may not pay the agreed price for

the purchased data. Such actions lead to agreement violations and impact the usability

of the data marketplace. An autonomous decentralized data marketplace must ensure

non-repudiation between parties without the need for any trusted intermediaries.

Another challenge in trading data streams from IoT devices is the associated energy bud-

get, perhaps the most substantial factor limiting the volume of real time data. A data

stream is generally quantified in terms of sampling rate, duration and quality. These pa-

rameters directly impact the energy budget of the IoT device. An IoT device’s energy

budget is subject to its battery capacity and, where applicable, to the energy it can har-

vest from its environment. Without energy harvesting, IoT devices must optimize their

operation and adapt to their environments to deliver maximum utility. When energy har-

vesting is available, IoT devices have a dynamic energy budget subject to their physical

context, current draw and prospective energy [145]. In order to be viable in the data

marketplace, an IoT device must serve its primary purpose without impacting the user’s

experience. Besides, it should also serve the secondary purpose of fulfilling buyers’ de-

mands based on the devices’ current residual energy and capabilities. This requires the

provider to efficiently use the energy budget of their IoT devices so that buyers’ demands

do not deplete their energy and disrupt the data service. Disrupted data service will affect

the provider’s motive to maximize revenue and the buyer’s goal to get quality data for

the desired rate and duration. Therefore, it is essential that the selection and allocation

of buyers’ demands on the provider’s devices be energy efficient.

Existing works on blockchain applications offer specific functionalities in the broader con-
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text of data marketplaces. For instance, in [53], blockchain is used as a trade transaction

management system. In [11], blockchain is used by providers as a product catalogue that

buyers can browse to find the proper data type based on their requirements. In another

approach [54], blockchain smart contract is used to implement an access control mechanism

enabling the providers to manage who can access their data and for how long. Although

these approaches allow the sharing of IoT data, they do not have all the essential func-

tions of a marketplace. A fully-functional and effective marketplace must support all the

fundamental components for buying/selling activities [51], including user registration and

authorization, data discovery and selection, price model, contract management, reputation

management, data metering, billing and payments, real time middleware (see Chapter 2).

Table 3.1 compares existing blockchain-based marketplace frameworks with our proposed

work. The main criteria for this comparison are the supported functionalities and the

application of smart contracts in realizing those functionalities. This comparison demon-

strates the need for a holistic and effective marketplace design with key functionalities

that satisfy all the aforementioned complex requirements. Our proposed framework,

MartChain, employs smart contracts to manage users, contracts, data price and repu-

tation. It supports the following marketplace functionalities: (1) user registration to

participate in data trade, (2) 2-step selection and matching of buyers’ demands with

provider’s offerings based on available battery in their devices, (3) dynamic data pricing

to encourage providers to provide high-quality data (4) formation of customizable and

flexible agreement based on users’ specifications (5) tuning of reputation scores based on

the malicious behaviour of dishonest actors (6) data metering to facilitate settlement and

dispute resolution (7) automatic payment and settlement at predetermined intervals (8)

transfer data over a secured TCP connection.

In this chapter, we present MartChain, a hybrid data marketplace framework that uses

facilitators to address the aforementioned scalability issue. Facilitators coordinate trad-

ing between providers and buyers by managing data offering/query listing and identifying

matches from billions of devices based on buyers’ requirements. Smart contracts are self-

verifying, self-enforcing and tamper-proof and can thus automate the execution flow of the
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Table 3.1: Comparison of blockchain-based data marketplace solutions with MartChain
Articles Smart contract

application
User regis-
tration

Discovery
and selec-
tion

Price
Model

Contract
manage-
ment

Reputation
manage-
ment

Data me-
tering

Billing and
payments

Real time
middle-
ware

[35] Access control ✕ ✕ Fixed ✕ ✕ ✕ ✓ ✕
[65] Access control ✕ DHT ✕ ✕ ✕ ✕ ✕ ✕
[53] Data offering,

Trade agreement,
Data receipt

✕ Browse
blockchain

Fixed ✓ ✕ ✓ ✓ ✕

[37] Registration,
Data offering

✓ Browse
blockchain

Fixed ✕ ✕ ✕ ✕ ✕

[11] Data offering ✕ Browse
blockchain

Fixed ✕ Rate data
quality

✕ SDPP [70] ✓

[54] Access control ✕ ✕ Fixed ✓ ✕ ✕ ✓ ✓
[146] Access control,

Data integrity
✓ ✕ ✕ ✕ Rate data

quality
✕ ✓ ✓

MartChain User, Contract,
Price and

Reputation
management

✓ 2-step Dynamic ✓ Rate experi-
ence

✓ ✓ ✓

trading whenever the predefined conditions are met. MartChain leverages smart contracts

to develop operational functionalities. A new smart contract, SubscriptionSc, is deployed

for each agreement between buyer-provider pairs. These contracts are customizable based

on user specifications, maintain agreement integrity, enable autonomous data trading, and

ensure non-repudiation. MartChain also includes a price model and reputation mechanism

to enable other fundamental functionalities of the marketplace. Several price strategies

were proposed in literature based on optimization problem formulation to achieve higher

revenue [147–149] or game theoretic model based on buyer’s demand [150]. However, these

price schemes are complex, time-consuming and difficult to integrate with blockchain be-

cause of high resource consumption. As highlighted in Table 3.1, most of the existing

frameworks utilized a fixed model based on the price specified by the provider. On the

contrary, we employ smart contract, PriceSc, to implement a simplistic and convenient

estimation of data price based on the market dynamics that motivate providers to supply

high data quality in return for higher incentives. Furthermore, trust and reputation man-

agement is pervasive in the data marketplace, enabling trustworthiness among users who

do not trust each other. As listed in Table 3.1, some existing marketplaces employ a rep-

utation system to rate providers based on the quality of their offered data items. In [29],

reputation scores are calculated based on the positive and negative activity of the user.

However, this model suffers from manipulation of reputation score by various malicious

activities like collusion, false negative feedback etc. Another existing trust and reputation

model in literature explores the notion of trust in supply chain [151] or access control [92].

63



CHAPTER 3. MARTCHAIN

However, these works mostly overlook the trust issues amongst the users in the data mar-

ketplace. MartChain leverages smart contract, ReputationSc to assess the reputation of

users based on their trading interactions and experience with each other. The flow control

of all these interdependent smart contracts needs to be designed carefully to provide the

correct workflow for each trading stage. Moreover, creating a new contract on demand can

result in an increased number of interconnected contracts over time. Therefore, managing

the interactions of these contracts becomes challenging. An optimization mechanism also

underpins MartChain for selecting and allocating buyers’ demands on providers’ devices

to support real time data streaming from energy-constrained IoT devices.

This chapter makes the following contributions:

• We present details of the blockchain-enabled marketplace framework, including the

architectural design, the participants, and their interactions.

• We formulate the demand selection and allocation optimization problem to maximize

the provider’s revenue by considering the resource-constrained nature of IoT devices

and solving it using our novel greedy heuristic algorithm. Simulation results confirm

that providers and buyers will benefit from the proposed algorithm.

• We implement critical components of the marketplace, such as the agreement frame-

work, pricing model and reputation model using smart contracts and present a proof-

of-concept implementation of our framework in the Ethereum testnet to demonstrate

its feasibility.

The rest of this chapter is organized as follows. The proposed framework and network

architecture are discussed in section 3.2. In section 3.3, we present an integer linear

formulation of the optimization problem and a heuristic algorithm to solve the problem,

followed by the details of our smart contracts in section 3.4. We present proof-of-concept

implementation and evaluations in section 3.5, and section 3.6 summarizes the chapter.
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Figure 3.1: Motivating use-case

3.2 Proposed MartChain Framework

In this section, we first provide a motivating use case followed by a high-level overview of

MartChain and then discuss the major components of the framework.

3.2.1 Motivating Use case

A motivating use case is depicted in Fig. 3.1. Consider an application developer providing

location-based services by purchasing real time location data from multiple providers. The

developer specifies their desired data quality in terms of accuracy and latency, sampling

interval, and duration. These parameters directly impact the battery consumption of the

provider’s device. Existing techniques for improving the power consumption of IoT devices

usually compromise data quality for energy efficiency. High-quality data (high accuracy

and frequency, low latency) usually consumes more energy. For instance, the positioning

modality that provides the most accurate location information and power consumption is

listed in Table 3.2.

Similarly, when an IoT sensor works at a low sampling interval and for a longer duration,

it imposes a heavy workload on different components (processor, network, storage, and
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Table 3.2: Power consumption and location accuracy of different positioning modality

Position modality Location accuracy Power consumption
GPS 6m High

Assisted GPS 60m Medium
Cell-ID/WiFi Positioning System 1600m Low

sensors) of the device, draining the battery rapidly. For example, if a smartphone owner

sells location data by sending frequent (low sampling interval) data, the phone battery

depletes more quickly. This degrades the smartphone user experience and impacts the

utility of other buyers with whom the provider has already made an agreement. However,

if a low data rate setting is applied, then the data quality is reduced, and the buyer’s utility

is degraded. Due to the costs associated with continuously sensing and transmitting data,

a provider has to make an optimal decision to serve buyers’ demands in real time based

on the devices’ current residual energy and capabilities. Thus, finding a solution that

maximizes the participants’ satisfaction while considering IoT devices’ limited capabilities

and constraints for creating a sustainable marketplace is vital. With this use case in mind,

we present the MartChain framework next.

3.2.2 Overview

The architectural design for MartChain is shown in Fig. 3.2. MarChain is a 2-tiered

marketplace framework comprising facilitators in tier 1 and participants, including buy-

ers, providers and their devices in tier 2. Instead of a centralized trusted facilitator, we

leverage the concept of geographically distributed facilitators in tier 1 that are intercon-

nected in a P2P manner, thus forming an overlay network spanning the entire globe. Tier

2 is partitioned into multiple service zones that the facilitators supervise. We assume

facilitators to be trustless and highly resource entities. They can be realized using fog

nodes to ease the burden on resource-constrained IoT devices. MartChain incorporates

a fee-based mechanism that we assume will motivate independent, self-interested facili-

tators to participate in the marketplace. To balance the degree of decentralization and

scalability a blockchain possesses, we carefully split the marketplace functionalities be-

66



3.2.2 Overview

Figure 3.2: 2-tier framework of MartChain

tween the participants in tier 1 and tier 2. The participants in tier 2 must register with a

facilitator nearest their location and create a profile. The facilitator gathers all the data

offerings and query lists from all the registered providers and buyers in their service area

respectively, executes search and match algorithms and provides them with the potential

buyer and provider lists. The resource-rich facilitators can easily handle the processing

overhead of searching and matching. Since facilitators are trustless, they can collude with

any participant and provide a biased potential list. Such malicious behaviour can be pre-

vented by using decentralized database systems such as BigChainDB or blockchain-based

data catalogue approach (see Chapter 2) to maintain the device and data information

transparently and efficiently. This enables a decentralized scheme for handling product

information and further optimizes transaction requests to deal solely with product data

references rather than trading transactions. Since the facilitators are synchronized, if a

facilitator fails, the associated participants connect to another nearby facilitator. Further-

more, to eliminate the facilitator’s monopoly market power over how providers are selected

and advertised to buyers, the generated lists can be validated and attested by other fa-

cilitators in the network using attestation-based proof [129]. The second tier-segregates
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transaction requests dealing with references to the product/query data from the trading

transaction. The trading-related operational transactions are handled by a decentralized

marketplace application (Dapp) built over a public Ethereum network that employs all

the other key marketplace components, such as managing contracts, pricing, payment and

settlement, reputation mechanisms, etc. These are implemented using smart contracts to

enable autonomous IoT data trading as discussed in section 3.2.3.

The main roles of different participants in MartChain are explained below.

Provider - Providers mainly include IoT device owners interested in selling their data. A

provider can have multiple heterogeneous devices with varying resources and data char-

acteristics. To connect these devices to the network, a conceptual data repository such as

Databox [152], Personal Data Stores (PDS) [153] or Solid [154] can be used. IPFS [155],

Swarm [156] or Web3.0 [157] are prominent examples of personal data management via

such data stores that enable user-controlled data sharing. These technologies are peer-to-

peer (P2P) with decentralized file transfer systems in which files are addressed by the hash

of their content. Moreover, they are compatible with edge computing. IPFS or Swarm

nodes can be executed on IoT gateways connecting local IoT devices to the P2P network.

Even for IoT devices that are not co-located, these nodes can aggregate and store the

data of all the connected devices via the Internet. The provider posts the offerings to the

facilitator as metadata. The metadata consists of information such as a public identifier

(i.e., changeable public key) to anonymize the identity of the provider; a list of IoT devices

owned; geographical co-ordinates associated with the sensing data; spatial and temporal

context of the data which can be static or dynamic; and a data usage license which de-

fines the appropriate use of the data and also includes terms for restrictions of reselling of

the data. We address the problem associated with data reselling by unauthorized agents

in Chapter 5. We assume that a provider uses two strategies to generate a sustainable

income in the marketplace: (1) maximizing revenue by using the available resources on

IoT devices as efficiently as possible and (2) attracting buyers by offering add-on features

such as high-quality IoT data or sensitive data which are distorting, revealing or intruding

their privacy.
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Buyer - Buyers are the end users interested in buying the raw data or value-added service.

They can be private or government organizations or individual users. We assume that a

buyer can also act as a data reseller (see Chapter 5) depending on its activities in the mar-

ketplace. A buyer queries the system defining the required data and its specifications. A

query list generally includes buyer’s requirements, which are classified into context-based

and quantitative-based. In a query, context-based requirements comprise data type, loca-

tion, temporal context (i.e. archived or real time data), and provider’s reputation score,

and quantitative-based requirements consist of data quality, sampling interval and dura-

tion. The difference between the two is that the latter depends on the battery availability

of the provider’s devices, while the former is independent of the available battery. Queries

that include location information can support location-based value-added services or limit

the search for matching potential providers. For instance, a smart refrigerator manufac-

turer may need data from refrigerators of their customers in different geographical regions

to gain insights into how their devices are being used. The manufacturer can query the

marketplace to collect extensive usage data about their refrigerators, including tempera-

ture settings, number and frequency of door openings, the average number of items in the

refrigerator, energy usage, location, etc.

Facilitator - A facilitator is a trustless and resource-available entity whose motivation is

to receive incentives in return for its service. The facilitators serve the following purpose

and benefits in our system:

• Catalog: A facilitator receives data queries from buyers and metadata for data

offerings from providers. The facilitators maintain the list of the provider’s data

offerings and the buyer’s demands that belong to their service zones. On receiving

the queries from the buyers in their service zone, a facilitator multicasts their query

list to all the other facilitators in the network so that the request can be routed to

the appropriate facilitator based on the specified parameters.

• Search and match: The facilitator uses a discovery and selection algorithm; an ex-

ample is illustrated in [158] to match the data offerings and demands based on the

69



CHAPTER 3. MARTCHAIN

criteria specified by both parties, such as location, data types, and budget pricing.

Data streaming requires buyers to define quantitative parameters such as sampling

interval, streaming duration, and data quality, along with contextual parameters

such as data type, location, and provider’s reputation score. The facilitator matches

the metadata of data offerings to the contextual parameters of the buyer’s demand.

The selection based on quantitative requirements needs to consider the battery avail-

able on the provider’s devices, which is a dynamic parameter. To avoid the network

overhead related to periodically notifying facilitators of the providers’ device battery

status, selection based on quantitative requirements is made locally at the provider’s

end using the optimization module as explained in section 3.3. Next, the facilita-

tor creates a list of potentially matching buyers and sends it to all the identified

providers. It may be possible that multiple providers satisfy the query of a single

buyer. A facilitator sends this one-to-many selected list to the corresponding buyer.

The match may involve participants associated with other facilitators. However, it

could also be possible that no match happens. In this case, the facilitator retains

the query and data offerings and checks if a match is possible in the future.

• Dispute resolution: At the end of data trading, both the buyer and the provider

submit the cumulative number of data samples transferred for settlement purposes.

The provider and buyer are untrusted entities that may behave maliciously. Such

malicious behaviour can be detected by the other party involved in the same trade

and then is reported to the facilitator, who functions as a judge to resolve the dispute.

The facilitator relies on the trade’s claims recorded in the blockchain in tier 1 and

evidence provided by either side to solve the dispute. MartChain can employ a

proof of delivery solution as discussed in [159] to prove the trading and delivery

of digital assets. However, a facilitator can collude with the participant to give a

dishonest verdict. An affected participant can request the other facilitator, who can

easily detect such collusion activity by referring to the trade transactions recorded in

the blockchain. The participation of such dishonest facilitators is revoked from the

network. Based on the trading history of a user, a reputation score is recorded in the

blockchain, which signifies the probability that the user will behave honestly in the
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Figure 3.3: 2-steps demand selection and match

next transaction. In the case of detecting misbehaviour using proofs, the facilitator

penalizes the responsible party, reduces its reputation score, and restrains the party

from participating in the marketplace for a specific time period. If none of the parties

is at fault and the dispute happens due to other reasons, such as channel congestion,

no actions are being taken by the facilitator. However, the parties still need to pay

a nominal fee to the facilitator for dispute resolution to prevent participants from

abusing or misusing its service.

3.2.3 Main Components

Our marketplace framework supports the following main components:

Optimization-based selection and allocation: MartChain employs 2-step demand

selection and match as depicted in Fig. 3.3. The first step of discovering and matching

data offerings and queries is based on the contextual requirement of the demands (data
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type, location, and provider’s reputation). It is actioned by the facilitator, as explained

earlier. The second step is actioned at the provider, which involves optimization-based

selection using quantitative requirements (sampling interval, quality, duration) of buyers’

demands.

Agreement framework: An automated creation and enforcement of legally binding

trade agreements is required throughout data transmission. Providers can specify their

terms and conditions using smart contracts as an agreement instantiation. This allows

them to define their product details (e.g., price) and all other content, such as subscrip-

tion details, data quality, and data usage, in the way that best suits their needs. It also

ensures that the participants’ behaviour automatically conforms to the terms of the agree-

ments. Smart contracts enable fine-grained per-user and per-data stream conditions to

be formalized. The agreement framework consists of two smart contracts known as data

subscription contract (SubscriptionSc) to record subscription details and register contract

(RegisterSc) to record contract details as explained in sections 3.4.1 and 3.4.2, respectively.

Price model: We consider dynamic pricing, which depends on market conditions. The

MartChain thus supports a competition-based price model that enables a simple and

dynamic evaluation of IoT data price using the PriceSc (discussed in section 3.4.3).

Reputation Model: All the parties need to provide feedback to each other based on

their trading experience to establish a trustworthy and reliable framework. Our reputation

mechanism provides resilience to manipulation of reputation scores from various attacks

such as ballot stuffing: the user gives false-negative feedback to one entity to make him

quickly lose their reputation; strike and rechange: the user builds up a good reputation

by performing many low-value transactions well and then misbehaves in a very high-value

one; and collusion: two users collude to influence each other’s reputation. The reputation

model utilizes the ReputationSc (see section 3.4.4) to record their trading interactions in

blockchain and evaluate the actor’s reputation score. This ensures reliability among actors

who do not trust each other.

The interactions of the above-stated components to achieve data trading are illustrated in
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Figure 3.4: Interactions of different components in the MartChain

Fig. 3.4. The provider and buyer advertise the offer and query the facilitator, respectively.

The facilitator matches the offer and query and sends the potential list of demands to the

provider. The provider then uses the optimization module to select demands based on the

available battery of their IoT devices. Subsequently, the provider and buyer come to an

agreement. A SubscriptionSc is deployed in the blockchain and registered in the market-

place using the RegisterSc. The provider adds the subscription details in the blockchain

using the SubscriptionSc. This updates the price of the requested data type using the

PriceSc. The data is transferred off-chain from the provider to the buyer over a secured

TCP connection. On completion of the data transfer, involved actors submit feedback that

triggers a payment settlement. During settlement, payment is released to the provider,

and an invoice is sent to the buyer. Lastly, the reputation scores of both actors are updated

via a ReputationSc.
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Figure 3.5: EDSA sample scenario

3.3 Optimization-Based Selection and Allocation

To fulfil buyers’ demand for data-stream from resource-constrained IoT devices, MartChain

proposes an optimization module. It allocates a subset of the demands on the provider’s

devices so that the provider’s revenue is maximized. The selection and allocation of de-

mands should meet the quantitative requirements of the selected buyers’ demands and

ensure that the battery capacity of the devices is sufficient to fulfil the assigned demands

completely without any interruptions. This optimization problem is defined as the Energy-

aware Demand Selection and Allocation (EDSA).

In this section, we formally state the EDSA problem. Given a set of demands where each

demand is expressed in data type, sampling interval, duration, and quality, the aim is

to find a subset of demands that maximize the provider’s revenue while satisfying the

battery, quality and allocation constraints. Fig. 3.5 describes the EDSA sample scenario

for a provider with three devices offering three different data types and four buyers with

different data demands. All the demands of buyer1, buyer2, and buyer3 are selected and

assigned to device1, device2, and device3, respectively, while only one demand of buyer4

is selected and assigned to device3.

The EDSA can be formulated as an Integer Linear Program (ILP) to find the optimal
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selection of demands of the buyers to maximize the revenue as given in ( 3.1) through

(3.4). The formulation uses the following variables that are categorized into two types:

1. Provider’s parameters: A provider owns D resource-constrained devices with battery

levels Bi, for i = 1, 2, . . . , D. Each device provides a set of data types S. Without loss

of generality, let Qij be the highest quality threshold that a device i can meet for a data

type j. The unit data price Pij(qk) is defined based on the device i, data type j and the

quality demand qk of the buyer k. The energy consumption Ek
ij of device i is the energy

required for sensing, processing, and transmitting data type j to the buyer k.

2. Buyer’s parameters: There are a total of C potential buyers, where each buyer may

have multiple demands with different requirements of data types. A buyer k’s demands

consist of data type j, and the subscription duration is dk
j with a sampling interval of sk

j .

Hence, Nk
j = (dk

j /sk
j ) is the total number of samples of data type j demanded by buyer k.

maximize
xk

ij∈{0,1}

D∑
i

S∑
j

C∑
k

xk
ijNk

j Pij(qk) (3.1)

subject to
C∑
k

S∑
j

xk
ijEk

ij ≤ Bi, ∀i, (3.2)

D∑
i

xk
ij ≤ 1, ∀k, ∀j, (3.3)

xk
ijqk ≤ Qij , ∀i, ∀j, ∀k (3.4)

where the decision variables xk
ij = 1 if data type j demand of buyer k is assigned to device

i, and xk
ij = 0 otherwise. Equation 3.2 captures the battery constraint of the devices.

The allocation constraint in Equation 3.3 ensures that each buyer demand is served by at

most one device of the provider. Equation 3.4 represents the devices’ quality constraint,

which defines the assignment restrictions. The integer linear programming formulation

outputs a selection of demands that optimally maximizes the total revenue while meeting

the battery, quality, and allocation constraints. The objective function is the total revenue

generated by the demands that are selected and allocated to an IoT device of the provider.

75



CHAPTER 3. MARTCHAIN

The above problem can be mapped to a Multiple Knapsack Problem with Assignment

Restriction (MKP-AR) [160]. The MKP-AR is defined as follows. Its input is a bi-

partite graph G = (X, Y, E) with a set of edges E between X and Y . The vertices

of X = x1, x2, . . . , xm correspond to knapsacks (providers’ devices). The vertices of

Y = y1, y2, . . . , yn correspond to items (demands) where m is the total number of providers’

devices and n is the total number of demands. E is defined between (x, y) if quality Qi

offered by device xi is greater than the quality qj demanded in demand yj . Item y ∈ Y

is assignable to knapsack x ∈ X only if (x, y) ∈ E (assignment restriction). For each

knapsack xi ∈ X, its capacity ci (battery capacity) is associated. For each item, yj ∈ Y ,

the profit (price) and the weight (power consumption) of yj , denoted by pj and wj , respec-

tively, are associated. A feasible solution of MKP-AR is assigning items to knapsacks such

that, for each xi, the total size of assigned items to knapsack xi is at most ci. The goal

of the MKP-AR is to maximize the total profit of assigned items. MKP-AR is considered

in [160] in which the profit and weight of each item are the same. A more generic problem,

in which profits and weights are different, was studied by [161]. It uses linear relaxation to

find optimal vertex solutions followed by solving an instance of reduced MKP-AR prob-

lem iteratively. MKP-AR is NP-hard in the strong sense, and no simple method to run

on resource-constrained devices, such as dynamic programming, is known to apply to the

MKP-AR. Also, given the low latency demand of a marketplace, computing an optimal

solution may not be ideal. Therefore, we use a modified greedy heuristic approach [162]

to include quality constraints to solve the EDSA. The intuition behind our algorithm is

that selecting demands with high prices and low energy consumption may result in high

total revenue for the provider under energy constraints. Based on this intuition, we define

the Normalized Revenue (NR) of demand as the ratio of the generated revenue to the

energy consumption of the demand. If the prices are chosen according to the costs, this

scheme also maximizes the provider’s total profit. Our NR-based Algorithm 1 starts by

initializing the list of demands (Line 1) and calculating the NR values for each demand

in the list (Lines 2-4). Then, the list of demands is sorted in descending order of NR

values (Lines 5-9). Note that demands with equal NR values are further sorted based on

their prices. The rest of the algorithm (Lines 11-19) assigns demands to devices using the
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Algorithm 1 NR-based algorithm executed by the provider
1: Initialization of the Demand list.

2: for each dem in Demand

3: Calculate NR

4: end for

5: Sort demands in descending order of NR

6: if elements in NR are equal:

7: Sort demands in descending order of prices

8: end if

9: end sort

10: Sort devices in ascending order of battery availability

11: for each dem in Demand

12: for each dv in device

13: Compare Device battery ≥ demanded energy

14: Compare Device quality ≥ demand quality

15: Assign dem to dv

16: Update the available battery of dv

17: break

18: end for

19: end for

sorted demands list (starting from the demand with the highest NR value), checking the

battery availability and device quality constraints and updating the available battery of

the devices.

3.4 Marketplace Components Using Smart Contracts

MartChain realizes critical components of the marketplace by leveraging smart contracts.

There are two types of blockchain accounts: external and smart contract accounts. Once

the actors register with the facilitator in their service zone, they receive a changeable

key pair to anonymize their identity as suggested in [27] and become the external account

holder. The private key is used to sign a transaction, while the public key is used to validate

the transaction’s signature. The smart contract is compiled into bytecode and deployed

in the blockchain with unique addresses that can be called by any external account holder

using a transaction or another contract using a message. A smart contract can consist
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Figure 3.6: Data trading protocol

of several functions. So, an ABI is required to specify which function in the contract to

invoke. A transaction specifies the contract address, and ABI triggers the function in the

contract, which executes itself according to the coded terms.

After receiving the probable buyers’ demands list from facilitators, the provider identi-

fies the desired list of demands using the NR-based algorithm and runs the data trading

protocol as shown in Fig. 3.6. Provider establishes a direct TCP connection with all the

buyers mentioned in the desired list. This off-chain channel is encrypted using transport

layer security (TLS). Both parties proceed with the negotiation stage. During the ne-

gotiation, the provider requests bids from all the selected buyers who send their bids in

return. Provider evaluates all these bids and can either reject and request a new bid or

accept the bid or counter the proposed new bid. Once both parties accept a bid, a data

agreement leveraging a smart contract is established between them. Both parties agree on

the granularity of payment, which is the number of data transactions after which payment

must be made. It is represented by the variable N . The benefit of using N is that if any

of the involved parties perform any malicious activity, they can lodge the dispute early

instead of waiting till the end of the contract. To prevent the malicious behaviour of any

participant, both involved parties deposit an amount greater than the data price in their
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escrow account, which is locked till the subscription settlement happens. This is to account

for the dispute resolution fee of a facilitator. If a participant is involved in any malicious

activity, this deposit is used to penalize him. Provider shares a symmetric session key

with the buyer to encrypt all the data in transit. Data is transmitted to the buyer as per

the agreed specifications. The buyer verifies the received data and, in return, sends an

acknowledgement to the provider. Buyer and provider use a metering system [31] to count

N transactions. At the end of this, both parties initiate settlement and disconnect.

Some of these interactions are governed and automated by smart contracts. These con-

tracts record the agreement details, participants’ reputation scores, and data price in a

decentralized, transparent, secure, and efficient manner in the blockchain for future use.

The methods provided by each contract and the transaction details to execute them are

given in detail below:

3.4.1 Data Subscription Contract (SubscriptionSc)

All the agreed and negotiated terms are encoded, compiled, and deployed in the blockchain

as a smart contract known as the SubscriptionSc. For each provider-buyer pair, an in-

stance of SubscriptionSc is spawned. Its state corresponds to the subscription details,

such as Device id, Data type, Start time, Interval, Duration, Subscription Status, Pay-

ment Granularity, Quality Score, Risk Score, Total cost and Negotiation Terms. Device id

is the identifier of the IoT device that generates data. Start time is the time when the sub-

scription starts. Interval is the time between two data samples, and Duration is the data

collection period. Subscription Status manages the execution flow of the subscription. Its

value is assigned from a predefined set INITIATE, ACTIVE, SETTLEMENT, DISPUTE,

FINISH, INSUFFICIENT FUNDS. Payment Granularity refers to the option to make a

settlement into a smaller equal part. Quality Score quantifies the quality preference of the

buyer, and Risk Score quantifies the data sensitivity per the provider’s preference. Total

cost is the amount of money needed to pay for the subscription. It comprises three compo-

nents: Execution cost, Data cost and Facilitator fee. Execution of a smart contract incurs
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a fee referred to as the Execution cost. It is divided between the buyer and provider as

per the negotiation terms. Data cost is the agreed-upon price of a data sample. It is used

to determine the base price of a data type, as explained later in section 3.4.3. The facili-

tator fee is the payment in return for their service. SubscriptionSc uses subscriptionAdd,

subscriptionInfo, subscriptionStart, subscriptionSettlement and subscriptionDelete meth-

ods. These are executed by transactions TxaddS , TxinfoS , TxstartS , TxconfirmDelivery,

TxresolveS and TxdelS respectively to automate various stages of subscription as explained

below:

• subscriptionAdd(): This method adds a new subscription to the subscription list.

Only the provider can issue the transaction TxaddS to prevent the buyer from mali-

ciously adding any subscription to the contract. The subscription status of the newly

added subscription is set to INITIATE. This emits an event subscriptionAdded to

the provider and buyer with the subscription id (SID). TxaddS is given as

TxaddS = [subscription detail|Sigp|PUp] (3.5)

where Sigp and PUp are the signature and public key identifier of a provider, sub-

scription detail consists of data specifications including device id, data type, start

time, interval, duration, subscription status, payment granularity, quality score, risk

score, total cost and negotiation terms.

• subscriptionInfo(): This function receives the subscription id and returns the corre-

sponding subscription details. The read-only transaction TxinfoS can be issued by

either of the concerned parties where SID is the subscription id, Sig and PU are

the signature and public key of either the provider or buyer.

TxinfoS = [SID|Sig|PU ] (3.6)

• subscriptionStart(): After the buyer verifies the subscription details using the re-

ceived SID, they starts the subscription by issuing TxstartS . Moreover, at the

subscription start time, the provider also issues TxstartS . On receiving transactions
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from both parties, this method changes the subscription status of SID to ACTIVE.

TxstartS = [SID|Sig|PU ] (3.7)

• subscriptionSettlement(): This method is executed by TxconfirmDelivery where Dcount

is a non-zero integer while feedback F is a real number in [0, 1].

TxconfirmDelivery = [SID|Dcount|F |Sig|PU ] (3.8)

At the end of the subscription, both actors submit their data count confirming the

delivery of Dcount data samples and provide feedback F to the other actor based on

their experience. On receiving TxconfirmDelivery from both actors, the subscription

status changes to SETTLEMENT. During settlement, data counts sent by both

parties are compared, and the following actions are taken.

Case 1: Data counts submitted by both actors match. This means no con-

flict occurred. Invoice and payment are released to the buyer and provider,

respectively, marking the subscription status to FINISH.

Case 2: When data counts mismatch, the actor with the higher reputation

score is trusted, and payment settlement is performed based on their claimed

data count. In this case, the subscription status is set to DISPUTE. However,

to prevent an actor from misusing their reputation score, an affected actor

can report the dispute to the facilitator at the end of payment granularity.

The affected actor can raise the complaint by sharing AID and SID of the

disputed subscription with the facilitator. A facilitator identifies and penalizes

the misbehaving actor by using the evidence stored in the blockchain and, in

return, receives a fee. The facilitator issues TxresolveS to submit their feedback

for the actor (PU), hence, changing the subscription status from DISPUTE to

FINISH.

TxresolveS = [PU |F |SigF |PUF ] (3.9)

• subscriptionDelete(): A provider issues TxdelS to delete the subscription entry from

the subscription table. Only the entry with subscription status set to FINISH gets
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deleted.

TxdelS = [SID|Sigp|PUp] (3.10)

3.4.2 Register Contract (RegisterSc)

This is a multisig contract, which ensures that both parties have agreed upon the deployed

contract terms and conditions. It keeps records of all the registered users using method

registerActor executed by the transaction TxregisterActor. Moreover, it also maintains a

SubscriptionSc lookup table comprising Contract ID, Provider identifier, Buyer identifier,

SubscriptionSc address. Various methods, including registerAgreement, removeAgreement,

getAgreement are employed to manage the lookup table using transactions TxregisterA,

TxremoveA and TxgetA respectively. In addition, RegisterSc also implements methods

including setPrice(), getPrice(), setRepS(), getRepS() to interact with PriceSc and Repu-

tationSc respectively.

• registerUser(): A new actor registers in the marketplace by issuing transaction

TxregisterUser given by Equation 3.11. Role can either be provider or buyer, Sig

and PU are the signature and public key of the actor.

TxregisterUser = [Role|Sig|PU ] (3.11)

• registerAgreement(): A newly deployed SubscriptionSc can be added to the contract

lookup table using multisig transaction, TxregisterA, where address is the address

of the deployed SubscriptionSc. Before creating a new entry of SubscriptionSc, this

method verifies that both parties send the registration request. This ensures that

both parties agree with the terms mentioned in the SubscriptionSc. It emits the

event agreementCreated, returning the agreement ID AID.

TxregisterA = [address|Sig|PU ] (3.12)

• removeAgreement(): This method deletes the contract entry from the lookup table.

It subsequently performs the SelfDestruct operation of the SubscriptionSc contract
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Figure 3.7: Functions and data structures of SubscriptionSc and RegisterSc contracts

Figure 3.8: Functions and data structures of PriceSc smart contract

to remove the code and storage of the SubscriptionSc from the blockchain, such

that the SubscriptionSc can no longer be available. It is invoked by the multisig

TxremoveA.

TxremoveA = [AID|Sig|PU ] (3.13)

• getAgreement(): TxgetA is issued by either of the parties to get the contract details,

such as its address, co-parties details etc.

TxgetA = [AID|Sig|PU ] (3.14)

Fig. 3.7 depicts the functions and data structures of SubscriptionSc and RegisterSc smart

contracts.
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3.4.3 Price contract (PriceSc)

A PriceSc, as shown in Fig. 3.8, is deployed for each data type traded in the marketplace.

The PriceSc maintains a ledger with the following fields: time stamp, data sample cost,

quality score, and risk score. These stored values are used to calculate the base price

offered by other providers in the market. PriceSc provides two methods updatePrice() and

getPrice() to update and retrieve prices. These are executed by transactions MxsetP and

MxgetP . When a new subscription is added in the SubscriptionSc, it triggers RegisterSc

to issue MxsetP to the PriceSc. MxsetP records the latest agreed-upon price of the data

sample in the ledger. Data sample cost is derived from the data cost and the number of

samples. MxgetP retrieves the base price of a data type d. These transactions are given

by:

MxsetP = [t|Priced(t)|QS|RS] (3.15)

MxgetP = [IDd|tbase] (3.16)

where t is the time when the new subscription is added, Priced(t) is the agreed upon per

data sample price given in the subscription, QS is the quality score, and RS is the risk

score. IDd is the identifier of data type d. These factors are used to determine the base

price, as explained below.

We have adopted competition-based pricing in our framework because a data marketplace

is highly competitive, with many providers interested in offering their IoT data in return

for incentives. In competition-based pricing, the provider can use competitors’ prices for

the same data type as the basis for setting a price. This strategy does not require complex

computations [148, 149] and varies depending on the market. RegisterSc deploys a new

PriceSc when a new data type is traded. A provider can select the cost of new data type

per the market dynamics of supply-demand [147]. Then providers can choose to follow

the market going rate of a certain data type as charged by other providers selling the

same data type. Nonetheless, a provider may provide value-added features besides price

to draw the buyer’s attention. These value-added features could be the data satisfying the
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high-quality demand of buyers or posing a high risk of privacy violation for the provider.

We quantify these value-added features by (i) Quality Score (QS), which is the weighted

average of the buyer’s demand for quality levels and preferences, and (ii) Risk Score (RS),

which is calculated using the risk matrix technique [163]. The price per sample of the

data type d at time t is computed based on the quality score QS(t), the privacy risk score

RS(t) and the base price Priced
base(t) given by Equation 3.17.

Priced(t) = (1 + QS(t) + RS(t))Priced
base(t) (3.17)

These parameters are explained as given below:

• Base price: The competitor’s price is used as a benchmark and corresponds to the

index price of data type d. It is calculated using agreed-upon data sample price

(Priced
agreed(t)), QS(t) and RS(t), which are stored in the ledger. Equation 3.18

gives the price index for a subscription of data type d at time t.

Priced
index(t) =

Priced
agreed(t)

1 + QS(t) + RS(t) (3.18)

To calculate the base price, the price index is averaged for all the successful subscrip-

tions in a time interval. For Nsub(tbase) number of subscriptions in a time interval

tbase, base price (Priced
base(tbase)) of data type d is calculated by Equation 3.19.

Priced
base(tbase) =

∑
t∈tbase

Priced
index(t)

Nsub
(3.19)

• Quality score (QS): Quality score is evaluated based on the buyer’s desired data

quality. Data quality can be defined in terms of accuracy, conciseness, completeness,

timeliness, etc. [164]. We calculate QS as the weighted average of the desired

quality level (q1, q2, ...qn) for n quality attributes and given by Equation 3.20.

QS = w1 ∗ q1 + w2 ∗ q2 + ... + wn ∗ qn (3.20)

where w1, w2, ...wn are the weights representing the quality preference for each at-

tribute.
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• Risk score (RS): The risk score is determined using the risk matrix technique [163].

The IoT data holds intrinsic value, and sharing it exposes the provider to potential

damage represented as risk, which can lead to several privacy harms. Therefore,

a provider can categorize each data type into different harm types and the impact

of risk represented as consequences as shown in Fig. 3.9a. Harm types depend on

whether the privacy harm of the data type is distorting the provider’s identity or

reputation, revealing information about the provider or can potentially be used to

expose or intrude into the provider’s life. Consequences depend on the impact of

the risk, ranging from insignificant (1) to critical (5). Based upon harm type and

consequences preferred by the provider, a data type’s risk level is estimated and is

finally used to calculate its risk score, as shown in Fig. 3.9b.

3.4.4 Reputation contract (ReputationSc)

Reputation plays a key role in ensuring trustworthiness among actors who do not neces-

sarily trust each other. MartChain employs a feedback-based reputation mechanism that

considers the actor’s past trading interaction and experience with other actors. Maintain-

ing an actor’s reputation score, represented as RepS, is essential in facilitating smooth

transactions, building trust and reducing risk. We assume that RepS ∈ [0, 1], such that

the higher the value of RepS, the better the actor’s reputation. The initial RepS of a new

actor, whose history is unknown, is fixed at 0.5. A dishonest actor with low RepS can

adopt a new identity to whitewash their reputation. Since an actor requires to register

using TxregisterActor that consumes gas and incurs a fee, it will discourage whitewashing

attack [165].

Our reputation model considers the actor’s history that captures the number of transac-

tions done and the value of feedback obtained by him. However, an actor with a good

reputation might occasionally cheat, relying on the fact that a small number of negative

feedback does not corrupt their reputation. To prevent such attempts, our model decreases

the reputation value much faster for negative feedback than positive feedback increases it.
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(a)

(b)

Figure 3.9: (a) Risk Matrix (b) Risk Score Example

Nevertheless, since economic interests are relevant in the marketplace, a malicious actor

could do the following actions or attacks in order to gain a reputation or to cheat by

disturbing the trading of honest actors:

• Malicious reputation manipulation: An actor can exploit their RepS to malign other

actor’s RepS by giving false feedback.

• Strike and recharge attack: An actor may build up a good reputation by properly

executing several low-value transactions or subscriptions and then misbehaving or

cheating in high ones.
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• Collusion attack: Two actors can collude to increase each other’s RepS.

• Violation attack: An actor violates the agreement by disrupting the subscriptions.

A malicious actor could start trading and then aborts it. Such behaviour causes

damage to honest actors who spend resources, like the battery of the IoT device,

which is crucial in IoT environments.

To overcome the above attacks, our reputation model determines the new reputation

value by tuning the previous reputation value and the latest feedback. The tuning factor

depends on various parameters, including feedback credibility (FC), subscription value

(TV ), collusive activity (CA) or violation factor (V F ), as explained later. In order to

show how the RepS is computed and updated, we assume that Actori (a.k.a ratee) submits

their feedback for Actorj (a.k.a receptor) using TxconfirmDelivery. This triggers a message

MxsetR (Equation 3.21) to the ReputationSc to update their trade experience.

MxsetR = [PUj |Svalue|Fij |Sigi|PUi] (3.21)

where PUj is the identifier of Actorj . Sigi and PUi are the signature and public key of

Actori. Svalue is the monetary value of the subscription. Fij is the feedback provided

by Actori to Actorj that represents their experience about the transaction. We assume

that Fij ∈ [0, 1], where Fij = 1 increases with the level of satisfaction. ReputationSc

maintains the feedback record list of each actor as illustrated in Fig. 3.10: maximum

transaction value in the trade history (Smax) with an Actori, total number of negative

feedback (F −
ij ) given by Actori to Actorj , the total number of feedback (F −

ij +F +
ij ) given

by Actori to Actorj , the total number of failed subscriptions Sfail due to the agreement

violation, the total number of subscriptions Stotal, list of all requests timestamp (ToR)

and the total number of trade transactions Ti,j between Actori and Actorj within a given

interval. ReputationSc provides two methods: updateReputation() to update the feedback

in the list and getReputation() to retrieve the RepS. As a consequence of MxsetR, the

RepSj of Actorj is updated as follows:

88



3.4.4 Reputation contract (ReputationSc)

Figure 3.10: Functions and data structures of ReputationSc smart contract

RepSj =


((1 − α)RepSj + αFij)e−

Sfail
Stotal for successful subscription

RepSj .V F for failed subscription
(3.22)

where

α = (FC + TV ).CA

2 (3.23)

In the Equation 3.22, the new RepSj of Actorj is computed for successful and failed sub-

scriptions by updating the previous reputation value (RepSj) of Actorj . For successful

subscriptions, the previous reputation value of Actorj is computed by tuning the feedback

given by Actori. The exponential factor is the ageing factor of the impact of failed sub-

scriptions with respect to the total subscriptions. The tuning factor, α, considers FC,

TV and CA as given by Equation 3.23. While for the failed subscriptions, the violation

factor (V F ) is used to tune the previous reputation score. These parameters are explained

below.

• Feedback credibility (FC): This factor denotes the credibility of the feedback source

to prevent reputation manipulation attack and is calculated using Equation 3.24 as

given in [166]. FC is high whenever (1) the reputation RepSi of Actori providing

the feedback is high and (2) the number of negative feedbacks (F −
ij ) provided by

Actori is small with respect to the total number of feedbacks (F −
ij + F +

ij ).

FC = RepSi

RepSi + RepSj
.(1 −

F −
ij

F −
ij + F +

ij

) (3.24)

• Subscription value (TV ): The use of this parameter prevents strike and recharge

attack [166] by modulating the feedback with the transaction value. In other words,

for a low-valued transaction, the positive feedback increases the reputation score
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slightly, but the increase is considerable for a high-valued transaction. TV is the

ratio of the current subscription value (Svalue) to the maximum value (Smax) of all

the subscriptions happened between Actori and Actorj as given in Equation 3.25.

TV = Svalue

Smax
(3.25)

• Collusive activity (CA): A collusion factor [166] is employed to prevent the pos-

sibility of actors colluding with one another to increase or decrease each other’s

reputation scores by providing a number of (positive or negative) feedback. CA

is negatively correlated to the number of previous transactions Ti,j made between

Actori and Actorj . CA is calculated using Equation 3.26 where a is a non-negative

constant.

CA = ( 1
Ti,j

)a (3.26)

• Violation factor (V F ): An agreement can be violated due to the provider’s resource-

constrained IoT devices or the buyer’s malicious intention to disrupt the data ser-

vice. The violation factor (V F ) defines the reliability of the actors in such cases.

The reputation score of the actors drastically decreases if they fail to comply with

the agreed subscription. This is to ensure that the provider delivers the data to

which they agreed and that the buyer does not cheat in honest transactions. V F is

calculated using the number of failed subscriptions (Sfail) and the total number of

subscriptions (Stotal) as given in Equation 3.27.

V F = 2 − 2(
Sfail
Stotal

) (3.27)

3.4.5 Autonomous data trading using smart contracts

Fig. 3.11 depicts how different contracts, as discussed in section 3.4.1-3.4.4 interact with

each other to automate the execution flow of the subscription for data trading purposes.

In Step 1a, a provider and a buyer reach an agreement via data trading protocol. In

Step 1b, a new SubscriptionSc is compiled and deployed on the blockchain. In Step 2a,

the provider registers the contract address of the deployed SubscriptionSc to RegisterSc
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Figure 3.11: Autonomous data trading using smart contracts

using TxregisterA. In Step 2b, RegisterSc emits the event agreementCreated returning the

contract ID AID. Step 3a: Provider issues TxaddS to add subscription details based on

their negotiated terms. The subscription status is set to INITIATE. Step 3b: An event

subscriptionAdded is emitted to the buyer with SID, who then verifies the subscription

specification. Step 4a: If everything looks fine, the buyer issues TxstartS . An equivalent

amount corresponding to the total cost is held in their escrow account. If the buyer does

not have the corresponding balance in their account, the subscription status is set to

INSUFFICIENT FUNDS. At the subscription start time, the provider also issues TxstartS

that, in turn, changes the subscription status to ACTIVE. Step 4b: At this point, MxsetP

updates the price of the data type in the corresponding PriceSc. Then, the provider

and the buyer engage in data transfer via data trading protocol in Step 5. Both parties

issue TxconfirmDelivery, and based on the count information sent by them SubscriptionSc

verifies whether there is a conflict or not in Step 6. If there is no dispute, in Step 7a,

SubscriptionSc issues an invoice to the buyer and payment is made to the provider. This

marks the subscription status to be FINISH. If the data count does not match, then
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the DISPUTE is lodged, and payment is processed as per the dispute resolution explained

earlier. In Step 7b, The entities also send feedback using TxconfirmDelivery. SubscriptionSc

issues MxsetR to the RegisterSc, which in turn forwards it to the ReputationSc. It uses

respective feedback to update the buyer’s and provider’s reputation scores.

3.5 Implementation and Evaluation

In this section, we provide a proof-of-concept implementation of the smart contracts,

discussed in section 3.4, using the Solidity version 0.5.12. We thoroughly tested a single

buyer and provider on the private Ethereum blockchain Ganache. This ensures that

the logical flow and execution outcome from the interactions of different smart contracts

are as expected. Then we analyze the cost of trade on an Ethereum public testnet.

Next, we implement the NR-based algorithm, presented in section 3.3, in MATLAB to

solve the EDSA problem. The simulation results provide insights into the provider’s

revenue generation in different scenarios. Finally, we provide a high-level comparative

analysis of the existing blockchain-based approaches for the data marketplace as discussed

in Chapter 2 with MartChain.

3.5.1 Proof of concept implementation

The implementation was done on the Ropsten testnet network, the public Ethereum net-

work, which behaves similarly to a production blockchain. It runs a proof-of-work consen-

sus and is used for testing purposes. Our smart contracts1 were implemented and deployed

using Remix IDE2.

It is worth noting that any operation or transaction that modifies the state incurs fees,

which need to be paid by the involved parties. These costs are estimated using the amount

1Smart contract codes available at https://github.com/pooja239/DataMart
2http://remix.ethereum.org/
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Figure 3.12: Deployment Cost

Figure 3.13: Tx Execution Cost

of gas consumed and the unit gas price. The gas consumed during any operation reflects

the computational complexity or size of the smart contracts, while the miners in the sys-

tem determine the gas prices. We used 10 Gwei gas price to evaluate the cost of different

operations during data trading (the recommended gas prices can be found at ["ETH Gas

Station", Ethgasstation.info, 2020. [Online]. Available: https://ethgasstation.info/. [Ac-

cessed: 23- Jan- 2020]).

Fig. 3.12 shows the deployment cost of contracts. It can be observed that Subscrip-

tionSc and ReputationSc contracts consume the maximum amount of gas because of the
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Table 3.3: Evaluation parameters for simulating EDSA

Parameter Value
Number of IoT devices (i) per provider D = 5
Data type (j) for each device S = 5
Price of jth type on ith device Pij ∼ N (10, 3)
Quality of jth type on ith device Qij ∼ U{10, 20, ..., 100}
Battery of ith device (mAh) Bi = 2000
Number of buyers (k) C = 10
Total number of demands dem = 50
Duration (hr) of kth buyer demand for jth type dk

j ∼ N (5, 2)
Sampling interval (min) of kth buyer demand for jth type sk

j ∼ N (10, 60)
Quality demanded by kth buyer qk ∼ U{10, 20, ..., 100}

complexity of the functions involved in reputation score evaluation and maintenance of

subscription execution flow. As discussed in section 3.4, end-to-end data trading involve

the following transactions: SubscriptionSc contract deployment, TxregitserA to register the

SubscriptionSc contract address in the lookup table, TxaddS to add the subscription de-

tail, TxstartS to start the subscription, TxconfirmDelivery to begin the settlement process

followed by the TxdelS to delete the completed subscription from the blockchain. The gas

consumption of these transactions is shown in Fig. 3.13, where the total cost of all the

operations is USD 2.67555. It can be observed that TxaddS and TxconfirmDelivery con-

sumed more gas than other transactions. This is because these transactions involve write

operations on the blockchain. TxaddS requires interaction with the PriceSc to fetch the

price of the subscription and also update the pricing information in the ledger. At the

same time, TxconfirmDelivery interacts with the ReputationSc to calculate and update the

reputation score based on the latest feedback.

3.5.2 Evaluation

Table 3.3 gives the values of the parameters defined in section 3.3, used in the simulations

unless stated otherwise. The performance results are generated by averaging results over

1000 iterations.
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Figure 3.14: Revenue generation and demand selection with NR-based algorithm

Figure 3.15: Effect of increasing battery capacity

Fig. 3.14 shows the effect of increasing the number of demands requested for 10 data types

by 50 buyers. We can observe that increasing the number of demands requested from 10

to 250 causes a logarithmic growth for the revenue, which reaches saturation at a certain

demand level (210-230) due to the limited batteries of the devices. This can be observed

from the residual battery levels. Note that buyers’ quality requirements may also limit

the number of demands served by the provider, as some demands may have higher quality

requirements than the quality of data provided by the provider.

Next, Fig. 3.15 demonstrates the effect of increasing the battery capacity on a provider’s
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Figure 3.16: Effect of the increasing number of devices

total revenue with a single device. We observe that the revenue increases linearly with the

increase in battery capacity from 500mAh to 3000mAh. As the battery capacity increases,

the provider can select and serve more demands and generates higher revenue. The residual

battery does not change much; however, the percentage of the residual battery decreases,

resulting in better battery capacity utility. It is observed that the total revenue generated

increases linearly with the linear increment of battery capacity.

Finally, we analyze the impact of increasing the number of provider devices on the gen-

erated revenue in Fig. 3.16. The overall battery capacity with a provider is kept fixed

to capture the original trend of increasing the number of devices rather than increasing

battery, which will linearly increase the generated revenue. We observe that increasing

the battery capacity for IoT devices is more strongly related to revenue generation than

increasing the number of devices. As we move from 10 devices with 300mAh batteries to 1

device with 3000mAh battery, the total revenue increases. This could be explained by the

smaller battery capacities and residual batteries remaining on the devices. Devices with

small batteries cannot serve demands that require high energy consumption. Furthermore,

the residual batteries remaining on the devices cannot be combined and utilized to serve

more demands.
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3.5.3 Comparative Analysis

In this section, we present the comparison of existing blockchain-based marketplace ap-

proaches with our proposed approach across multiple dimensions, including usability,

advantages, and disadvantages. As discussed in Chapter 2, these existing approaches

include trade transaction management, distributed data catalogues, hybrid centralized-

decentralized architectures, decentralized data storage access control, agreement instanti-

ation. This analysis is useful to observe the potential benefits and drawbacks of using

the MartChain platform for building decentralized data marketplaces in trading data

in real-time from resource-constrained IoT devices. Table 3.4 summarizes the compar-

ative analysis. It can be noted from Table 3.4 that existing approaches have advantages

such as auditing and transparency, reliability in listing providers’ offerings, high feasi-

bility, enabling owner-controlled data, and non-repudiation respectively. However, these

approaches also have some disadvantages, such as a lack of scalability, limited service

offerings, centralization issues, high redundancy, and a focus on specific marketplace func-

tionality respectively. In contrast, MartChain offers autonomy through the use of smart

contracts to manage subscription workflows automatically, without any intermediaries. It

also enables energy-efficient selection and allocation of buyer’s demands on the resource-

constrained IoT devices of the provider. Besides, MartChain enforces a holistic model

equipped with all essential components of the marketplace, such as discovery and selec-

tion, data agreement management, price model and reputation mechanism (see chapter

2). Recall from section 3.2, MartChain requires decentralized database systems such as

BigChainDB or blockchain-based data catalogue approach in tier-1 to maintain the de-

vice and data information transparently and efficiently. Overall, the comparison suggests

that MartChain offers a promising approach for autonomous and efficient real-time data

trading, but further research is needed to optimize its performance and scalability.
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Table 3.4: A comparative analysis of the existing blockchain-based approaches in the data
marketplace with MartChain

Approach Usability Advantage Disadvantage
Trade transaction man-
agement

Stores trade logs Auditing and trans-
parency

Lack of scalability

Distributed data cata-
logues

Records data offer-
ings

Reliability in listing
provider’s offering

Limited offered ser-
vices

Hybrid centralized-
decentralized architec-
tures

Pays the price in-
volved in the trade

High feasibility Centralization issues

Decentralized data stor-
age Access control

Maintains access
policy

Owner controlled
data

High redundancy

Agreement instantia-
tion

Manages agreement
details

Non-repudiation Specific functionality
of marketplace

MartChain Records subscription
details, data pricing
trend, participant’s
behaviour

Autonomous, effi-
cient, full-fledged
with key market-
place functionalities

Requires two sepa-
rate blockchains

3.6 Chapter Summary

MartChain is a fully-functional and effective decentralized marketplace with essential com-

ponents such as discovery and selection, data agreement management, price model and

reputation mechanism. We outlined the participant’s roles in 2-tier architecture and in-

teraction among them. We presented functionalities of four smart contracts (Subscrip-

tionSc, RegisterSc, PriceSc, and ReputationSc) and their associated methods to achieve

the trustful automated data trading by eliminating the third-party risk. The framework

also provides a simple and dynamic way of pricing the data based on the competitors’

prices in the market and encourages providers to sell higher-quality data and value-added

features in return for greater incentives. In order to provide resilience to various security

attacks, a reputation mechanism is presented that uses the trading history of entities in

tuning the reputation score and penalizes them for being dishonest. The MartChain is

underpinned by an EDSA mechanism for optimally selecting and allocating buyers’ de-

mands on provider’s resource-constrained IoT devices while satisfying the battery, quality

and allocation constraints. EDSA maximizes the provider’s revenue while meeting the
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buyers’ requirements and ensuring the completion of the selected demands without any

interruptions. We presented preliminary work on the Ethereum blockchain showing how

to implement these components using smart contracts. Also, we evaluate the gas con-

sumption and cost incurred for interacting with the proposed marketplace framework.

Furthermore, we formulated the EDSA problem in MATLAB and simulated various sce-

narios to analyze the impact of the requested demands on the battery drainage of the

provider’s devices. Our result shows that our approach is viable and benefits the provider

and buyer by creating an autonomous and efficient real-time data trading model.
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Chapter 4

KYBChain: Know-your-buyer in

Privacy-aware decentralized IoT data

marketplace

This chapter answers the research questions RQ4, RQ5, RQ6, and IQ. In a data market-

place, providers are driven mainly by their economic interests and may willingly disclose

their valuable and sensitive IoT data to buyers. However, they are often unaware of the

long-term privacy risks associated with trading or sharing their IoT data. Three charac-

teristics of the buyer that raise privacy concerns and risks include (i) Non-compliance: a

buyer may not have adopted or complied with the industry standard privacy practice and

security measures to safeguard the provider’s data; (ii) Data accumulation: Large accu-

mulation of data by the buyer can make them a target of cybercrime or a buyer acting

in bad faith can misuse this data to infer highly personal information about the provider;

(iii) Data-leak: a buyer may intentionally or accidentally share the provider’s sensitive

data with an unauthorized party without the provider’s knowledge or consent. Various

technical measures, including privacy labels, privacy-enhancing techniques, data leakage

prevention mechanisms, data provenance models, etc., have been developed to minimize

or prevent such concerns and risks. A provider must trust the buyer to implement or

follow these measures properly. Currently, providers rely on trust scores to measure the
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buyer’s trustworthiness in managing their privacy. However, the trust score is a subjec-

tive metric that depends on providers’ historical experiences and opinions. Therefore, to

limit the role of subjectivity in the providers’ decision to data-sharing with a buyer, it

is essential to provide them with factual and relevant information to make them aware

of the associated privacy risks. In this chapter, we approach the privacy issue from the

provider’s viewpoint and empower them to make privacy-aware data-sharing decisions.

We propose a framework, KYBChain, to compute a privacy rating of the buyer that the

provider can use to manage his risk. This rating is defined specifically for a buyer-provider

pair, which measures the provider’s overall and long-term risk caused by sharing his data

with the buyer. Our definition of privacy rating (PR) satisfies the following intuitive prop-

erties: better privacy practices and security measures reduce the provider’s privacy risks

and increase his PR; higher the sensitivity and visibility of accumulated data greater the

provider’s privacy risks and lower his PR; higher the probability and severity of data leak

risk, greater the provider’s privacy risks and lower his PR. We identify several privacy

attributes/elements to model and develop a methodology to formulate PR satisfying the

above-stated properties. KYBChain employs blockchain and smart contracts to record all

these privacy attributes/elements to evaluate PR in a transparent, efficient, secured and

automated manner. We conduct several experiments on synthetic data to demonstrate

the efficacy and practical utility of PR. Furthermore, we present the proof of concept

implementation of KYBChain in a private Ethereum network and analyse the overheads

to demonstrate its feasibility.

4.1 Introduction

The adoption of Blockchain technology in MartChain (see Chapter 3) establishes non-

repudiation, trustworthiness and transparency among the participants. A provider re-

ceives short-term economic gain by trading their IoT data in such a marketplace. As their

engagement increases, trading data with a particular buyer over the longer term may have

repercussions on their privacy [163]. Moreover, data is considered an asset [167] and re-
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quires protection even after being sold. Therefore, it becomes the buyer’s responsibility

to safeguard the provider’s data privacy. Privacy regulation compliance is important for

holding or managing a provider’s data. Buyers must adopt privacy practices and secu-

rity measures to safeguard the provider’s purchased data. Other liabilities arise from the

risk that a large accumulation of data could make the holder a target for cybercrime.

Moreover, a buyer acting in bad faith can misuse all the purchased data and infer highly

personal information about providers resulting in various predictive privacy harms such

as localization and tracking, profiling, etc. To mitigate this threat, the buyer must use

the data as per the agreed purposes and delete it after its retention period. Nevertheless,

even when they do so, a state of zero risk remains unachievable. Buyers that strive for

compliance can still fall victim to data leaks. When a provider perceives the buyer is inca-

pable of protecting their privacy, they associate risk with data sharing. They may decide

not to engage or restrict their level of engagement with the buyer. Therefore, it becomes

increasingly important that the provider can accurately assess the overall and long-term

risk of sharing their data with a buyer. To fulfil this aim, an IoT data marketplace must

provide measures that can help a provider (i) make a privacy-aware informed decision

of data disclosure to a buyer and (ii) manage and minimize their associated long-term

privacy risk. To design privacy-aware systems [85], understanding a provider’s preferences

and concerns is of great importance. Factors such as trade interactions, transparency of

mechanisms, context and who is purchasing the data are essential determinants. Three

sources of such privacy concerns that may arise from the buyer’s characteristics based on

their dynamic activities are non-compliance risk, data accumulation risk and data leakage

risk, as explained in detail below:

Non-compliance risk: This refers to the risk that the buyer may use the data in a way

that violates privacy regulations or other laws. For example, in 2018, Facebook had allowed

third-party app developers to access users’ data without their consent, which violated a

2011 FTC consent decree [19]. Currently, buyers are provided with various strategies to

notify providers of their practices, such as publishing or providing written privacy policy

statements. Privacy policies [168] are legal documents that detail the purpose of usage,

user’s control, retention period, security practices, etc. These comprehensive documents
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are designed to give confidence to the provider that the buyer will safeguard their privacy

by complying with the stated privacy regulations and security practices. However, privacy

policies are long, complex, and contain complicated legal jargon. Therefore, most providers

typically ignore or skip reading them [169]. In recognition of the ineffectiveness of privacy

policies, numerous research [98,99] have addressed the problem of making privacy policies

more understandable and simplified. Nevertheless, it is still challenging for a provider to

determine if the buyer complies with the data protection practices and security measures

stated in their privacy policy.

Data accumulation risk: This risk refers to the potential that a buyer may accumulate

privacy-sensitive data over time from a provider. Large data accumulation may increase

the risk of a single point of cyber attack or failure because of data centralization. Moreover,

a buyer acting in bad faith can easily misuse this data and infer highly personal informa-

tion about the provider [170]. This could be used for nefarious purposes such as behaviour

profiling [171], data profiling [172], individual identification [173], tracking [174], identity

theft, or targeted advertising. Hence, exposing the provider to undesirable consequences

and privacy violations. For example, in 2013, Target, a major US retailer, used customer

data to create a pregnancy prediction score for each customer, which was used to send

targeted ads for baby products. However, this led to an incident where a teenager’s preg-

nancy was discovered by her father due to Target’s targeted ads, causing significant privacy

concerns for the family [175]. Additionally, the privacy risk of the provider increases as

their disclosed data becomes more visible in the marketplace. For instance, suppose a

provider sold their IoT data to several buyers with consent to reshare it with other buyers

in the marketplace. A deceitful data broker acting as a buyer can buy the provider’s data

directly from him and indirectly through other buyers. Using advanced analytics, the

data broker can build up a detailed profile [176, 177] of the provider and sell it to others.

In this regard, conventional studies [178] have mainly focused on privacy-enhancing tech-

niques such as anonymization, de-identification and decentralized technologies. However,

these techniques suffer from various limitations. Data anonymization [179] refers to an

irreversible transformation of data to prevent identifying a particular individual. Many

studies [180, 181] have shown that data could be combined with metadata that is avail-
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able openly on the Internet can allow such re-identification. De-identification [182] is the

process of removing personal information from a dataset. However, IoT data is often very

difficult to de-identify due to its highly granular nature [183, 184]. Besides, longitudinal

data, i.e., data collected over time, e.g. mobility traces, is difficult to de-identify, even

when aggregated. Decentralized and distributed technologies, such as blockchain, enable

individuals to control data sharing by removing any intermediaries and improve trans-

parency [185,186] by recording all the interactions on the immutable ledger. With control

and transparency, a provider can track all the data they has traded with others in the

marketplace. However, it is still hard for a provider to quantify their privacy exposure,

which may increase over time due to the sensitivity of data the buyer has accumulated

and the visibility of disclosed data to others.

Leakage risk: This risk refers to the possibility that the buyer leaks sensitive or protected

data of a provider to an unauthorized third party either intentionally (e.g., resold data for

monetary benefits) or inadvertently (e.g., due to failure to implement adequate privacy

or security measures). For example, in 2017, Equifax, one of the largest credit reporting

agencies in the US, suffered a massive data breach that exposed the personal information

of over 143 million people [187]. The breach occurred due to a vulnerability in Equifax’s

system, which allowed hackers to gain unauthorized access to the data. This breach in-

cluded sensitive data such as Social Security numbers, birth dates, and addresses. Existing

literature employs watermarking [137, 188] to detect intentional data leakage. Based on

a similar approach, we proposed TrailChain (see Chapter 5) that uses watermarking to

track the data ownership and detect legitimate and illegitimate data reselling within and

across marketplace systems. However, a buyer can also intentionally leak the data outside

the confines of the marketplaces due to malicious insiders [189]. Furthermore, to prevent

accidental disclosure of data to unauthorized entities, a buyer can employ several security

mechanisms [190] such as firewalls, virtual private networks, intrusion detection systems or

data leakage detection or prevention systems (DLPD). Even though the purpose of DLPD

systems [191] is to ensure that sensitive data is not misused or accessed by unauthorized

users, a provider is often unaware of the privacy risks of sharing data with a buyer who

was involved in a data leakage event in the past. Such an incident will make the provider
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sceptical about the buyer’s ability to handle sensitive information, reducing their willing-

ness to sell more data to him. Moreover, a buyer hoarding a large variety of sensitive data

from providers will be at higher risk of cybercrime. While deciding to sell data to the

buyer, the provider is often unaware of the privacy risks of data leakage or the impact of

the historical breach events associated with the buyer.

It’s important to note that the examples cited above are not specific to IoT devices, but

they illustrate the risks associated with sharing personal data in general. The risks asso-

ciated with IoT devices may be similar, but they may also have additional considerations

due to the nature of the data collected and the ways in which it is used. Consequently, a

buyer in a marketplace can appear as a black box to the provider. Provider’s confidence

that their data is handled appropriately by the buyer relies primarily on trust. A provider

must trust that the buyer will: comply with privacy regulations and security best prac-

tices in their policy, not accumulate the data and misuse it to invade their privacy and

exert constant effort to mitigate any unauthorized sharing with third parties. Current

data marketplace ecosystems rely on trust management models [33, 60, 91] that evaluate

the trust score of a buyer based on their interactions, historical behaviour, experience,

feedback or ratings submitted by providers. Buyer’s trust score governs the provider’s

decision of whether or not to give data access to them [192]. However, trust is a subjective

belief about an entity in a particular context [92]. It lacks factual and relevant information

about buyers that can empower providers to properly assess the aforementioned privacy

risks and make a privacy-aware informed decision about data disclosure to them.

In this chapter, we address the privacy issue from the provider’s perspective by providing

him with relevant information about the buyer. To this end, we maintain three profiles for

a buyer, namely practice, purchase and leakage, that capture their various characteristics

regarding the three aforementioned concerns. The practice profile is based on assessing the

buyer’s privacy and security measures and keeps track of any updates in their data protec-

tion practices. The purchase profile is a provider-dependent characteristic and monitors

all the data purchase transactions of the buyer specific to a provider. A leakage profile

maintains the records to assess the buyer’s data leak risk. However, even if providers have
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access to all these profiles, it will be difficult for them to digest the information within

them [193]. Therefore, it is necessary to provide providers with an effective and simple

way to ascertain the implications of selling data to the buyer on their privacy. On that

account, one meaningful approach is to implement a standardized and simple indicator for

each buyer-provider pair, known as privacy rating (PR). This new privacy visualization

can estimate the privacy risk of data sharing with a buyer and limit the role of subjectivity

in the provider’s decision. We also define a privacy rating vector (PRV ) for a buyer to

enable fine-grained decision-making according to the providers’ preferences for each pro-

file. PRV comprises an overall rating (PR) and more specific ratings corresponding to the

practice, purchase and leakage profile of a buyer represented as PRpra, PRpur and PRlea

respectively. Privacy rating can offer many benefits to providers, buyers, and regulators.

Providers can act according to their privacy preferences by comparing PR or PRV of dif-

ferent buyers and make a privacy-aware data-sharing decision. The transparency resulting

from the published assessments in PRV creates an incentive for buyers to include secure

design and privacy practices to get a good rating. They will be able to confidently demon-

strate their commitment to protecting the privacy of providers. Furthermore, regulators

can use PRV to bring enforcement actions against buyers who fail to protect providers’

data adequately.

Current approaches for determining privacy ratings are based on data collection in dif-

ferent contexts, such as mobile applications [194, 195], social networks [101, 102] or web-

sites [103]. These approaches do not consider the privacy elements/attributes that im-

pact the providers’ aforementioned privacy concerns in a data marketplace. Furthermore,

scores/ratings have been shown in other contexts such as food [196], energy [197, 198]

or mobile application ratings [199] to significantly impact user’s decisions by effectively

communicating important information to them. However, these mechanisms use static

details such as information present in the privacy policy for website [103] or IoT de-

vices [100, 200, 201] or privacy settings in mobile applications [194, 195] or social net-

works [101, 102], etc. The evaluation of the buyer’s privacy rating should be dynamic.

Furthermore, all these existing rating systems rely on a TTP to manage and store all the

rating data required to evaluate buyers’ ratings. Since a TTP can collude with the buyer

106



4.1. INTRODUCTION

to change the rating in their favour by removing, modifying, and manipulating all their

rating data, such systems lack trust in data integrity and are prone to collusion attacks

and unfair ratings. Therefore to build trust and fairness in the privacy rating system,

the evaluation of the indicator should be decentralized, transparent, efficient, secured and

automated. Finally, integrating the dynamic rating system within the marketplace frame-

work should introduce minimal overheads to the latency and throughput and not impact

the scalability of the marketplace platform.

Figure 4.1: Buyer’s profiles in the KYBChain to compute their privacy rating

To address the above challenges, we propose KYBChain, a know-your-buyer, blockchain-

based marketplace framework integrated with a privacy rating system. Blockchain ad-

dress the aforementioned issues of manipulation, unfairness and lack of trust by recording

buyer’s profiles in an immutable, transparent and secure manner. KYBChain leverages

smart contracts to relate a buyer’s activities to their respective profiles and evaluate their

rating in an efficient, decentralized and automated manner. Fig. 4.1 depicts a buyer’s

practice, purchase and leakage profiles, corresponding ratings and how they are evaluated

in KYBChain. Besides users (providers and buyers), auditors and regulators are also

the participating actors. An auditor assesses the buyer’s practice and security measures

against the industry and regulatory standards and validates the buyer’s compliance with

the disclaimers in their policy. Based on their assessment, they then submits an audit

report which becomes the basis of the practice profile of the buyer. The purchase profile

tracks all the on-chain provider-specific purchase transactions of the buyer. This work does
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not consider data purchases outside KYBChain or off-chain trades. The leakage profile is

used for data leakage risk assessment of a buyer by monitoring all their purchase transac-

tions and the likelihood of such events in future. When a data leak incident is discovered

for a buyer, the regulator investigates the potential damage caused by the incident. they

submits an investigation report recorded in the buyer’s leakage profile to keep track of

their past data leak events. Practice, purchase and leakage profiles are used to evaluate a

buyer’s practice, purchase and leakage rating.

To the best of our knowledge, we are the first to provide an intuitive and mathematically

sound methodology for computing buyers’ privacy ratings in the data marketplace. The

three characteristics of a buyer include the privacy practice and security measures they

has adopted, their data collection pattern and data leak behaviour. These characteristics

are rather general, and any model/system that requires data collectors would be able to

satisfy them. This chapter makes the following novel contributions:

• We propose KYBChain, a decentralized marketplace framework integrated with a

privacy rating system to rate the buyers based on their practice, purchase and leakage

profiles. We identify several privacy elements to model these profiles. These identi-

fied privacy elements are further used to develop rubrics for scoring the magnitude

of risk associated with each profile. Due to the complexity of dependency on these

privacy elements and their associated risk on practice, purchase and leakage rating,

formulating a single formula is not trivial. Thus, we design different methodologies

to convert these risk scores into rating corresponding to each profile. The proposed

mechanism offers flexibility and granularity by considering fine-grained details of

buyers’ characteristics to compute their privacy rating.

• We leverage smart contracts for automation of privacy rating calculation with blockchain

transactions and events to ensure the transparency and reliability of the system. By

progressively evaluating the privacy rating of a buyer based on their activities in the

marketplace over time, KYBChain captures the dynamics of the buyer’s behaviour.

We incorporate blockchain events as a method to automatically notify participants

in case of any privacy violations.
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• We conduct multiple simulations to demonstrate the utility of privacy ratings and

analyze the effect of rating corresponding to the practice, purchase and leakage

profile on the provider’s decision-making. We also develop a proof-of-concept im-

plementation of KYBChain in a private Ethereum network and report experimental

results regarding gas consumption, throughput and latency. Our results justify the

efficacy of privacy rating in aiding providers to make a privacy-aware decision about

data sharing. Moreover, our evaluations of KYBChain reveal that the overheads

introduced by our mechanism compared to a marketplace that does not incorporate

a privacy rating system are insignificant relative to its privacy gains.

The rest of the chapter is structured as follows. The next section briefly discusses the

overview of the proposed approach. Section 4.3 explicates the modelling of the privacy

rating in more detail. Section 4.4 discusses the proposed decentralized marketplace frame-

work integrated with a privacy rating system. Performance evaluation is presented in

section 4.5 and discussion in section 4.6. Finally, section 4.7 concludes the chapter.

4.2 Overview of the Proposed Solution

In this section, we describe the overview of the proposed solution. We present the roles

of different participants, the high-level architecture of KYBChain and the privacy rating

system.

Table 4.1 lists the notation used in this chapter.

The high-level architecture of KYBChain is illustrated in Fig. 4.2. The participants and

their specific roles are explained below:

(i) Providers: Users who possess IoT devices that generate data and wish to monetize

their IoT data.

(ii) Buyers: Users who demand and purchase data, e.g. service providers, researchers,
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Table 4.1: Table of notation used
Notation Description
Bi ith buyer
DPj jth provider
a

ij
k

(t) kth attribute of purchase of Bi where k ∈ [1, 6]
Xi

k
kth privacy element final score

xi
k

kth privacy element of practice profile of Bi where k ∈ [1, 6]
A

ij
k

(t) kth privacy element of purchase profile of Bi where k ∈ [1, 5]
γ(t) Ageing function for past impact
x

iq
k

Assessment of kth privacy element by qth auditor for Bi

CP ij (t−) Current data possession of Bi for DPj data
Ri(t) Data leakage risk assessment for Bi
β(t) Decay function for evaluating practice rating
RepSi(t) Feedback-based reputation score of Bi

Ii(t) Impact of past data leak at time t based on regulator report
CID IPFS content ID
LF Leak Factor
P RV i

lea
(t) Leakage profile of Bi at time t

P Ri
lea

(t) Leakage rating of Bi at time t

P R
j
lea

Leakage rating preference of DPj

Leakedj (tri) Leaked data of DPj corresponding to purchase request of Bi

Li Likelihood of Bi

NormXi Normalized score for practice privacy elements
agr number of agreements potentially affect or affected
Nauditor Number of auditors
NB Number of buyers
Ni

leak
Number of past data leaks for Bi

pro Number of providers potentially affect/affected
Nij Number of purchase agreements between DPj and Bi

Ii
past(t) Overall Impact of Bi past data leaks

F Aij (t+) Potential future acquisition of Bi to buy DPj data
Ii Potential impact of Bi based on their overall data possession
P RV i

pra(t) Practice profile of Bi at time t
P Ri

pra(t) Practice rating of Bi at time t
P R

j
pra Practice rating preference of DPj

P refj Preference of DPj

P ESij (t) Privacy exposure score of DPj wrt Bi

P Rij (t) Privacy rating of Bi for DPj

P Rj Privacy rating preference of DPj

P RV ij (t) Privacy rating vector of Bi for DPj

P UU Public key of the user. U ∈ A, Bi, R

P urij (t) Purchase of Bi at time t to buy DPj data
P RV

ij
pur(t) Purchase profile of Bi for DPj based on their purchases in time period

[0, t]
P R

ij
pur(t) Purchase rating of Bi for a time period [0,t]

P R
j
pur Purchase rating preference of DPj

Acceptedj (tri) Purchase request of Bi accepted by DPj

trij (t) Purchase request of Bi to DPj at time t

RepSi
DL(t) Reputation score of Bi with data leak

Simp Score for impact attributes
Sntmp Score for non-temporal privacy elements
Spra Score for practice privacy elements
Sd

tmp Score for temporal privacy elements of data-type d

sen Sensitivity of data potentially leak or leaked
SigU Signature of user where U ∈ A, Bi, R

T i
threshold

Threshold time
taudit Time audit assessment was submitted
tpurchase Time when buyer purchase provider’s data
tleak Time when data leak was detected
vol Volume of data potentially leak or leaked
α1, α2, α3 Weight preference for factors in P ES
w1, w2, w3 Weight preference for factors in P R

W T Aj “Willingness-to-Accept” amount of DPj

W T P i “Willingness-to-Pay” amount of Bi
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Figure 4.2: High-level architecture of KYBChain

organizations, government, etc. As per many privacy laws [202–204] worldwide,

entities that collect personal data must demonstrate how they safeguard this data

through their privacy policies. Moreover, to ensure that their practices conform

with the stated privacy policies, these entities are obligated to undergo privacy au-

dits [205]. As an industry practice, such entities hire certified public accountants

(CPAs) or audit firms to perform privacy audits using auditing procedures such

as SOC (System and Organization Controls), developed by the American Institute

of CPAs (AICPA) [206]. They receive a SOC certificate showing their compliance

with the regulatory requirements. Since the buyer purchases and collects IoT data

of providers, we assume the buyer uploads their privacy policy and privacy audit

report to the IPFS and updates its address in their user profile in the KYBChain.

(iii) Sellers: Sellers can either be a provider or resellers who play a dual role of buying data

from providers and selling purchased data or value-added services to other buyers

in the marketplace. We will use seller and provider interchangeably throughout the

chapter.

(iv) Auditors: Auditors can be private third-party vendors or government agencies such

as FTC. The auditor’s responsibilities are to verify the privacy policy and privacy

audit uploaded by the buyer, identify vulnerabilities and gaps in the buyer’s security

measures and submit an assessment report in the KYBChain. We assume auditors
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registers in the KYBChain and offer a verification service for incentives.

(v) Regulators: Entities responsible for enforcing data protection laws such as OAIC in

Australia, DPA in the EU, CCPA in US or ICO in the UK. They oversee data leakage

events by providing response guidelines [207] to assist a buyer when leakage occurs.

An effective response plan comprises four steps: contain the data leakage, assess

the potential harm by gathering evidence, notify the affected individuals and review

actions to prevent future occurrence. In KYBChain, all the data leakage incidents

are reported to regulators, who investigate the leakage to identify the accountable

buyer, determine the cause and assess the potential damage.

KYBChain extends on the MartChain design (see Chapter 3) with the addition of a privacy

rating system. KYBChain employs two sets of smart contracts: Marketplace contracts to

manage different trading-related functionalities such as user registration, agreement man-

agement, and reputation management. KYB-module, devised as a stand-alone application

to implement a privacy rating system, leverages several smart contracts to manage buy-

ers’ profiles based on their dynamic activities in the marketplace. However, associating

all these profiles with the buyer’s identity in the blockchain may create a privacy threat

for him. This issue can be addressed by unlinking the buyer’s identity from the transac-

tions stored in the blockchain, as discussed in [208]. Buyer’s profiles are updated during

different stages of KYBChain as described below.

• Initial-auditing stage - During this stage, changes in buyer’s practices are monitored

to assess the buyer’s non-compliance risk. This stage is triggered when a newly

registered buyer uploads their policy and audit report, or an existing buyer updates

their policy and audit report. A notification is sent to the registered auditors, who

then validate the buyer’s latest policy and audit report. Based on their assessment,

auditors submit assessment reports to the KYBChain that updates the buyer’s prac-

tice profile. The details of the auditor’s assessment are explained in section 4.3.1. A

successful assessment marks the buyer as KYB-approved and permits them to trade

data freely in the marketplace.
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• Pre-assessing stage - During this stage, the buyer’s provider-specific purchase trans-

actions are monitored to assess the buyer’s data accumulation risk. When buyers

and providers agree to trade, they deploy an agreement contract in the KYBChain.

Based on the buyer’s data requirements, the provider adds subscription details in

the agreement contract. The agreement contract manages the execution flow of the

subscription, starting from initialization, data transfer, receipt and acknowledge-

ment, and payment settlement to finish (see Chapter 3). During the final stage of

subscription, i.e., settlement, the buyer’s purchase profile is updated based on the

subscription specifications as explained in section 4.3.2.

• Post-management stage - During this stage, the buyer’s data leak events are moni-

tored and tracked in the buyer’s leakage profile. When a data leakage event occurs,

a regulator investigates the leakage to identify the accountable buyer and estimate

the damage caused by the event. KYBChain can utilize existing data leakage detec-

tion mechanisms [209] to identify the buyer responsible for leaking data. A regulator

gathers the relevant information about the incident from the responsible buyer, such

as system logs [210], to determine the cause and potential harm of the leakage.

The regulator then documents their impact analysis and submits the report to the

KYBChain that updates the leakage profile of the buyer.

We present the details of smart contracts, transactions and their interactions during dif-

ferent stages of KYBChain in section 4.4. Although KYBChain is built over MartChain,

the KYB-module is devised to be agnostic of marketplace implementation. It can be

integrated with other blockchain-enabled marketplace solutions, such as distributed prod-

uct catalogues and access control (see Chapter 2). When a provider receives a new data

purchase request from a buyer, the provider can use the buyer’s privacy rating vector to

make a privacy-aware decision about data sharing. The provider can accept or reject the

buyer’s request based on their preference. Accordingly, a provider can share their data

per the buyer’s requested data requirements. To retrieve the buyer’s privacy rating, the

smart contracts in KYB-module fetch the buyer’s practice, purchase and leakage profiles

and evaluate the privacy rating as described below:
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The privacy rating comprises three components: practice rating, purchase rating and

leakage rating corresponding to the buyer’s practice, purchase and leakage profiles. It

is explicitly evaluated for each provider and for a point in time, which means that (i)

for different providers, the buyer may have different privacy ratings, and (ii) the privacy

ratings are dynamic. We model the privacy rating of buyer Bi for provider DPj at time t

as a weighted average given in Equation 4.1.

PRij(t) = wj
1 × PRi

pra(t) + wj
2 × PRij

pur(t) + wj
3 × PRi

lea(t) (4.1)

where wj
1, wj

2, and wj
3 are the weighting factors for the ratings corresponding to their

buyer’s different profiles. The choice of these weighting factors depends on the provider’s

preferences. PRi
pra(t), PRij

pur(t) and PRi
lea(t) are the practice, purchase, and leakage

ratings of the buyer. Each rating PRi
pra(t), PRij

pur(t) and PRi
lea(t) are in the range from

0 to 1; hence, PRij(t) ∈ [0, 1]. Note that the purchase profile captures the provider-buyer

interactions. Hence, PRij
pur is a provider-dependent rating computed for each pair. The

basic premises for the calculation of these components are: (i) better privacy practices

and security measures reduce the provider’s privacy risks and increase their PRi
pra(t);

(ii) higher the sensitivity of accumulated data greater the provider’s privacy risks and

lower their PRij
pur(t); and (iii) higher the probability and harm of data leakage event,

greater the provider’s privacy risks and lower their PRi
lea(t). As presented in [211],

each provider differs in their extent of privacy expectations and attitude, as some are

privacy fundamentalists while others are privacy pragmatists or unconcerned. Therefore,

to enable fine-grained characterisation of providers’ privacy preferences, we have structured

the privacy rating vector PRV ij(t) of a buyer using the following tuple:

PRV ij(t) =< PRij(t), PRi
pra(t), PRij

pur(t), PRi
lea(t) > (4.2)

We present buyer’s practice, purchase and leakage profiles as PRVpra, PRVpur, PRVlea and

they are represented as a tuple of the privacy elements presented in the Sections 4.3.1,

4.3.2 and 4.3.3 respectively. Our approach consolidates these privacy elements, as depicted

in Fig. 4.3, that form the core of the modelling of the profile and formulation of the

corresponding rating, as explained next.
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Figure 4.3: Privacy elements to model buyer’s practice, practice and leakage profiles

4.3 Modelling of Privacy Rating components

In this section, we describe the modelling of each profile and the formulation of the corre-

sponding rating.

4.3.1 Practice profile

Recall from section 4.2 when a data leak occurs, a regulator investigates the data leak to

determine the impact. These assessment reports are visible to all the participants in the

KYBChain, hence, improving the transparency of compliance and data protection prac-

tices adopted by the buyers. We assume privacy-unconcerned providers will be motivated

only by economic benefits. In contrast, privacy-concerned providers may prefer to sell

their data to those buyers who have adopted good practices and measures for safeguard-

ing their privacy. Therefore, we propose a rating system that privacy-concerned providers

could utilize such that the better the privacy practices and security measures adopted
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by the buyer, the higher their practice rating. The practice rating is buyer-specific and

evaluated for a point in time, as explained later.

To model the buyer’s practice profile, we first identify the privacy elements to determine the

buyer’s practice and security measures. Next, we develop a rubric that auditors will use to

score these privacy elements against the industry standards and regulatory requirements.

Finally, these scores are used to evaluate the buyer’s practice rating.

Table 4.2 presents the identified privacy elements [212] that form the basis of the practice

profile. The privacy elements are not limited to the list in the table; a new privacy element

can be added to model the practice profile.
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Privacy Elements Description

Purpose This factor determines how the purchased data will be used.

• Single: Purchased data can only be used once for a one-time single purpose.

• Reuse: Purchase data could be reused for the same purpose more than once, for a

selected set of explicitly defined purposes, or unforeseeable related purposes.

• Any: Purchased data could be used in any way.

Visibility This factor determines who is permitted to access or use the purchased data.

• Authorized party: Only the buyer who has bought the data is permitted to ac-

cess/view the purchased data.

• Third party: This determines if the purchased data is shared with third parties

for legitimate purposes. Disclosing purchased data to third parties is risky since

they are not abiding by any agreement with the providers. However, the risk can

be controlled if the privacy policy provides the details about the third party, such

as name and location (country), details of the shared data, the purpose of sharing,

duration of retention of shared data, security measures, etc.

• All: This dimension represents the least amount of privacy protection since the

purchased data can be offered to anyone.

Retention This factor determines how long the buyer can retain the purchased data. Data that has

passed its expiry time must be deleted, or a renewed agreement must refresh the retention

period. Data retention impacts providers’ privacy preferences based on whether the data

can be retained for a short duration, long duration or stored at the buyer’s end for an

indefinite duration.
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Granularity This factor determine the level of data precision required by the buyer.

• Existential: This dimension corresponds to the existence of the data instead of the

actual data value.

• Partial Precision: This dimension corresponds to the data value altered in a non-

destructive way using techniques like aggregation or summarization, differential

privacy etc., to reduce preciseness to preserve the provider’s privacy

• Full precision: This dimension corresponds to the actual data without alteration.

Precise data could uniquely identify an individual and vice versa.

Data security This factor determines the buyer’s ability to protect the provider’s data from misuse,

interference and loss and unauthorised access, modification or disclosure. This factor is

determined based on the communication, storage and code security mechanism followed

by the buyer.

• Communication Security: This determines if all communication channels that

transmit IoT data are secure using SSL/TLS. Communication security can range

from insecure channels to weak communication protocols to strong communication

security using mutual authentication and encryption.

• Code Security: This determines if the buyer’s application or software demonstrates

secure coding practices such as audit logs are maintained, privileges are carefully

planned, hash functions and cryptography are carefully designed etc. It ranges

from no code security to few secure coding practices adopted to good secure coding

practices.

• Storage Security: This determines if the data storage has adequate protection

mechanisms, including encryption, authentication, authorisation and security soft-

ware such as anti-viruses, intrusions detection systems etc. Storage security can

range from no measures to weak to strong security measures that guarantee con-

fidentiality, integrity and availability.
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Control Mechanism This factor determines if providers can perform the following actions on their sold data:

view, update, or delete (i.e., if the provider has the ’right to be forgotten). Depending

on the level of control given to the provider over the data, the dimensions of the control

mechanism can range from no control to partial control to complete control over viewing,

updating and deletion.

Table 4.2: Identified privacy elements to model the buyer’s practice profile

These privacy elements are further used to develop a rubric for scoring the buyer’s practice

and security measures. To keep the system simple and understandable for users, we adopt

a 5-point Likert scale [213] in [−1, 1] to score each privacy element based on the following

criteria:

1. When the buyer’s practice and security measure corresponding to the privacy element

is worst, a score of -1 is given.

2. When the buyer’s practice and security measure corresponding to the privacy element

is bad, a score of -0.5 is given.

3. When the buyer’s practice and security measure corresponding to the privacy element

is average, then a score of 0 is given.

4. When the buyer’s practice and security measure corresponding to the privacy element

is good, a score of 0.5 is given.

5. When the buyer’s practice and security measure corresponding to the privacy element

is best, then a score of 1 is given.

An illustrative example of such a rubric is given in Fig. 4.4. It can be designed as

per industry standards or regulatory requirements. Next, we model the practice profile

(PRV i
pra(t)) of Bi at time t as a tuple given by

PRV i
pra(t) =< Spra(xi

1), Spra(xi
2), Spra(xi

3), Spra(xi
4), Spra(xi

5), Spra(xi
6) > (4.3)
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where xi
1, xi

2, xi
3, xi

4, xi
5, xi

6 are the privacy elements, i.e., purpose, visibility, retention,

granularity, data security and control mechanism, respectively. Spra() is the score as per

the rubric guide.

Figure 4.4: Rubric for scoring privacy elements of buyer’s practice and security measures

As discussed in section 4.2, the auditor assigns these scores based on their assessment

of the buyer’s privacy policy and audit report. However, a malicious buyer can collude

with the auditor to manipulate the assessment in their favour. This creates a false sense

of security and may lead to promulgating policies inconsistent with actual practices [214]

of the dishonest buyer. Therefore, instead of relying on a single auditor, we assume

multiple auditors perform the assessment who are randomly selected to prevent a collusion

attack. The final score of each privacy element is determined by averaging the score in the

assessment reports submitted by all the auditors. Suppose Nauditor auditors submitted

their assessment report for a buyer Bi. The score for qth privacy element given by qth

auditor is Spra(xiq
k ) where q ∈ [1, Nauditor] and k ∈ 1, 6. Equation 4.4 gives the final score

for each privacy element.

Xi
k = 1

Nauditor

Nauditor∑
q=1

Spra(xiq
k ) (4.4)

Next, we compute the normalized score (NormXi) as the average of all the privacy ele-

ment’s final scores given by:

NormXi = 1
6

6∑
k=1

Xi
k (4.5)

where, Xi
k is the final score for kth element. NormXi is a real number in the range of

[−1, 1]. The buyer who follows the best privacy practice receives the maximum normalized
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score, i.e., NormX = 1, while the buyer who adopts poor practices receives the minimum

normalized score, i.e., NormX = −1.

We adopt the rating concept in [100] to calculate the practice rating, in which the logistic

function is used to map the risk scores to the rating. As in real-life scenarios, a buyer’s

practice and security measures will be outdated with time due to the rapidly changing

threat landscape or newly discovered vulnerabilities in cybersecurity. Hence, to ensure

the buyer’s practice and measure become obsolete with time, we introduce a time thresh-

old. This means that the buyer’s privacy assessment remains effective for a specific time

threshold, and so does their practice rating. Beyond this time, their practice rating will

decay, reflecting outdated practices and measures. The decline in practice rating will com-

pel the buyer to periodically review, update and audit their privacy practice and security

measures as per the recommended industry practice [214].

The normalized score (NormXi) of Bi computed in Equation 4.5 is used to map to their

practice rating PRi
pra(t) as given by Equation 4.6.

PRi
pra(t) =


1

1+e−5NormXi t ≤ T i
threshold

1
1+e−5NormXi β(T i

threshold − t) t > T i
threshold

(4.6)

where T i
threshold is the threshold time that enables practice rating to decay in time. It is

determined based on the time and periodicity of the audit. β(T i
threshold − t) is the decay

factor that can be realized using an exponential function such as β(t) = e−f(t).

4.3.2 Purchase profile

In the marketplace, a provider can accept different demands from the buyer and disclose

their data per the buyer’s requirements. Recall from section 4.1 a buyer accumulating all

these disclosed data may cause predictive harm that can aggravate the provider’s privacy

risk over time. Hence, inadvertently exposing the provider’s privacy [215]. The purchase

profile of a buyer is calculated based on the provider-specific data purchases to determine

the provider’s privacy exposure. We assume that privacy-concerned providers may prefer

121



CHAPTER 4. KYBCHAIN

to sell their data to those buyers for whom providers’ privacy exposure is low. Therefore,

we propose a rating system that privacy-concerned providers could utilize, such that the

lower their privacy exposure to buyers, the higher their purchase rating. The purchase

rating is provider-buyer specific and evaluated for a period of time, as explained later.

We first identify the privacy elements to model the buyer’s purchase profile. Next, we

develop a rubric to score these privacy elements based on the provider’s severity of privacy

risk associated with all the provider’s data the buyer has purchased. Finally, we describe

the steps to evaluate the provider’s privacy exposure from these scores and map it to the

buyer’s purchase rating.

As suggested in [102], the privacy risk due to prolonged data sharing depends on the

sensitivity of the disclosed data. Sensitive data reveal confidential and private information

about the provider. The sensitivity of IoT data [176] is the function of temporal and non-

temporal factors. The temporal factors are based on the data specifications preferred

by the buyer for their usage: data age, data sampling interval, and data period. The

non-temporal factors depend on the overall purchase behaviour of the buyer regarding the

provider: purchase diversity and purchase sample size. Table 4.3 presents the description

of the identified privacy elements to model the purchase profile.

Privacy Elements Description

Data age This factor is defined as the amount of time elapsed between when the data got generated

and when the buyer collected it. Data may be collected shortly after generation, i.e., near

real-time data. Data may be generated in the past and purchased later, i.e., archived

data. Availability, accuracy and relevancy decrease with data age. The older the data,

the less likely it is to cause harm, reducing the privacy risk for the provider.

Data Sampling interval The sampling interval refers to the time between the measurements of two data samples.

The shorter the data sampling interval, the higher the amount of sensitive information

it reveals, creating new privacy threats to the provider [216].

Data period Period refers to the interval length within which all the data samples are measured. Data

analysis, measured and collected over an extended period, may reveal different trends

over time and expose sensitive characteristics related to the provider’s health, habits,

interests, and others, causing increased privacy threats.
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Diversity This element refers to the variety of the data types that a buyer has purchased from

different IoT devices of a provider. High diversity correlates with privacy risk since a

more accurate provider profile can be generated by linking their diverse data to their

habits, movements, and emotions.

Sample size Sample size refers to the total number of provider’s data samples a buyer has purchased.

Suppose a buyer has bought GPS data from a provider multiple times. The buyer, acting

in bad faith, might link all the GPS datasets over time and, thus, increases the sample

size. The combined dataset encompasses increasingly long periods, enabling insights

that can only be derived from large datasets. Sample size usually depends on the period

and interval but to consider the scenario in which data samples may be lost during

transmission, we have a separate parameter.

Table 4.3: Identified privacy elements to model purchase profile of a buyer

To model a purchase profile using these privacy elements, we first define a purchase. In

the marketplace, a purchase corresponds to disclosing the provider’s data to the buyer

as per their requirement. A buyer’s data requirement comprises the following attributes:

data type, age, period, and interval. For each purchase, a provider can explicitly consent

the buyer to share their data with other buyers for monetary benefits. Provider’s data

for which reshare consent is true may spread to different buyers in the marketplace. We

represent a purchase (Purij(t)) that the buyer (Bi) made at time t to buy the provider’s

(DPj) data as a tuple given by Equation 4.7.

Purij(t) =< aij
1 (t), aij

2 (t), aij
3 (t), aij

4 (t), aij
5 (t), aij

6 (t) > (4.7)

where aij
1 (t), aij

2 (t), aij
3 (t) represent temporal attributes, age, interval and period, respec-

tively. aij
4 (t) and aij

5 (t) represent non-temporal attributes, data type and sample size,

respectively. aij
6 (t) represent the reshare consent as either true or false. These attributes

are specified in the subscription agreed upon between buyer and provider as discussed in

section 4.4.1.

A provider is generally aware of all the data the buyer has bought directly from him.

Besides, the buyer can also accumulate data from other sources without the provider’s
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Figure 4.5: Direct and indirect interaction to purchase the provider’s data

knowledge. These sources can be other buyers who purchased the provider’s data and were

given permission by the provider to reshare their data. Therefore, we consider two ways

of interactions as depicted in Fig. 4.5 through which buyers can purchase the provider’s

data. Direct interaction means the buyer purchases the provider’s data directly from him.

Indirect interaction means the buyer purchases the provider’s data from other buyers.

The purchase profile is calculated based on all the purchases via direct or indirect interac-

tions over a period of time. We model the purchase profile of Bi for DP j as a tuple given

by Equation 4.8:

PRV ij
pur(tn) =< Aij

1 (tn), Aij
2 (tn), Aij

3 (tn), Aij
4 (tn), Aij

5 (tn) > (4.8)

where Aij
1 (tn), Aij

2 (tn), Aij
3 (tn) corresponds to temporal privacy elements, i.e., age, interval

and period respectively. Aij
4 (tn) and Aij

5 (tn) correspond to non-temporal privacy elements,

i.e., diversity and sample size, respectively. We derive privacy elements of PRV ij
pur(tn)

based on all the purchases (Purij(t)) of Bi to buy DPj data in the time period t ∈ [ti
0, tn]

as explained next.

These privacy elements are further used to develop a rubric for assigning a risk score to

the buyer’s purchase attributes. We adopt a 5-point scale in [−1, 1] similar to the practice

profile to score each attribute based on the following criteria:

1. When the risk associated with the attribute is very high, a score of -1 is given.
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2. When the risk associated with the attribute is high, a score of -0.5 is given.

3. When the risk associated with the attribute is average, a score of 0 is given.

4. When the risk associated with the attribute is low, a score of 0.5 is given.

5. When the risk associated with the attribute is very low, a score of 1 is given.

We develop different methodologies to evaluate temporal and non-temporal privacy ele-

ments in purchase profile. This is because, in the case of temporal, the privacy risk is

associated with each temporal attribute of purchase. For example- as the sampling inter-

val decreases, the identifiability of the data increases. GPS data collected daily will likely

reveal the providers’ places of residence or employment. Data collection on an hourly basis

will likely reveal individuals’ residences, places of employment, children’s school locations,

and relatives’ homes. Sampling interval decreasing to minute-by-minute samples will en-

able an analysis of behaviour, such as inferences about providers’ walking and visiting

patterns or shopping habits. Therefore, to determine the temporal privacy elements, we

first assign a risk score to the temporal attribute of each purchase and then aggregate

them for all the purchases. While in the case of non-temporal, risk is associated with the

data accumulation for overall purchases. For instance- an individual piece of data may

seem innocuous, e.g., step counts are not considered sensitive. However, with the increase

in the volume of data collected from different diverse IoT devices, buyers can learn pow-

erful patterns of providers’ preferences and behaviours, e.g., the data from smartwatches

and fitness trackers can infer providers’ physical activities such as walking, running, and

jumping, with high accuracy. Therefore, to determine the non-temporal privacy elements,

we first aggregate non-temporal attributes for all the purchases and then assign risk scores,

as explained next.

Temporal Elements: As suggested in [163], the risk posed by different types (e.g. GPS

and temperature) of IoT data varies. The risk magnitude depends on how much sensitive

information a particular data type reveals about the provider [217]. Therefore, a separate

rubric score guide for each data type should be designed to map temporal attributes of

different data types on the same scale of risk magnitude. Fig. 4.6 illustrates an example of
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Figure 4.6: An illustrative example of rubric to determine temporal privacy elements of
GPS data.

a rubric score guide for the temporal specification of GPS data. Since temporal elements

are a function of time, the associated harm to the provider’s privacy decreases with time.

Therefore, an ageing factor (e.g. exp−(tn−t)) is used to give more relevance (higher weights)

to the attributes of a recent purchase and less relevance (lower weights) to past purchase

attributes. We formulates the kth temporal privacy element (Aij
k (tn) where k=1,2,3) of

the purchase profile of Bi given by Equation 4.9.

Aij
k (tn) = 1

N ij(tn)

tn∑
t=ti

0

Sd
tmp(aij

k (t))exp−(tn−t) (4.9)

where N ij(tn) is the total number of purchase transactions by Bi with DPj in the time

period [ti
0, tn]. Sd

tmp is the temporal rubric score guide for data-type d.

Non-temporal Elements: Algorithm 2 gives the steps to compute the non-temporal

element in the purchase profile. First, we count the unique values in each non-temporal

attribute of all the purchases. We then assign a risk score to these counts based on

the aforementioned risk criteria to determine the non-temporal elements of the purchase

profile. An illustrative example of a rubric to score the non-temporal attributes is depicted

in Fig. 4.7.

Next, we describe the steps to evaluate the provider’s privacy exposure based on all their

disclosed data in the marketplace.

Provider’s privacy exposure depends on the risk posed by their overall disclosed data in

the marketplace. Therefore, when a provider receives a new data purchase request from a

buyer, we determine the provider’s privacy exposure score (PES) based on the risk posed
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Algorithm 2 Algorithm to determine non-temporal privacy elements in purchase profile
Input: P urij(t) ∀ t ∈ [ti

0, tn], Sntmp

Output: Aij
4 (tn), Aij

5 (tn)

1: initialize empty list diversity, samples = 0

2: for each P urij(t) in time [ti
0, tn]

3: if aij
4 (t) /∈ diversity

4: append aij
4 (t) to diversity

5: samples + = aij
5 (t)

6: Aij
4 (tn) = Sntmp(length(diversity))

7: Aij
5 (tn) = Sntmp(samples)

8: return (Aij
4 (tn), Aij

5 (tn))

Figure 4.7: Rubric to determine the non-temporal privacy element of a purchase. This
guide is generated considering all the purchases of the buyer specific to a provider.

by (i) the data requested in the latest purchase request, (ii) the data currently possessed

by the buyer, (iii) the buyer can potentially acquire from other buyers. We use an example

scenario as depicted in Fig. 4.8 to explain the aforementioned factors to determine the

provider’s PES. Suppose there are 2 buyers (B1 and B2) and a provider (DP ). B1

purchased DP ’s data (d1
1 and d1

2). B2 purchased DP ’s data (d2
1 and d2

2). DP has only

given reshare consent to d2
1. Now assume that B1 sends a new purchase request to buy d1

3

data. DP ’s privacy exposure score depends on the risk posed by B1’s current possession,

i.e., d1
1 and d1

2, their latest purchase request, i.e., d1
3, and potential future acquisitions, i.e.,

d2
1. Next, we formulate the provider’s PES and map it to the buyer’s purchase rating

based on the following premises: the higher the provider’s PES, the higher the privacy

risk of disclosing data to the buyer the lower the buyer’s purchase rating.

Suppose there are NB buyers in the marketplace. We assume that each buyer Bm where

m ∈ [1, NB] purchased provider’s (DPj) data in the time period t = [tm
0 , tn−1]. At the

time tn, Bi sends a new purchase request to DPj specifying their data requirement as (d,

aij
1 (tn), aij

2 (tn), aij
3 (tn)) where d is the data type. aij

1 (tn), aij
2 (tn), aij

3 (tn) are the temporal
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Figure 4.8: An example scenario to illustrate the factors used in evaluating the provider’s
privacy exposure score

attributes data age, data sampling interval, period. aij
4 (tn) = d and aij

5 (tn) = aij
3 (tn)

aij
2 (tn)

are

the bon-temporal attributes diversity and sample size.

The risk posed by the latest data purchase request is represented as a tuple given by

Equation 4.10.

trij(tn) =< Aij
1 (tn), Aij

2 (tn), Aij
3 (tn), Aij

4 (tn), Aij
5 (tn) > (4.10)

where Aij
k (tn) = Sd

tmp(aij
k (tn)) for k = 1, 2, 3 and Aij

k (tn) = Sntmp(aij
k (tn)) for k = 4, 5.

The risk posed by current data possession is represented as a tuple given by Equation

4.11.

CP ij(t−
n ) =< Aij

1 (t−
n ), Aij

2 (t−
n ), Aij

3 (t−
n ), Aij

4 (t−
n ), Aij

5 (t−
n ) > (4.11)

where Aij
k (t−

n ) is the kth element in the buyer’s purchase profile based on all the purchases

made between time [ti
0, tn−1].

The risk posed by the potential data they can acquire from other buyers is represented as

a tuple given by Equation 4.10.

FAij(t+
n ) =< Aij

1 (t+
n ), Aij

2 (t+
n ), Aij

3 (t+
n ), Aij

4 (t+
n ), Aij

5 (t+
n )) > (4.12)

where

Aij
k (t+

n ) = 1
(NB − 1)

NB∑
m=1
m̸=i

Amj
k (tn−1) (4.13)
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where Amj
k (tn−1) is the privacy elements based on the purchases of Bm between the

time [tm
0 , tn−1]. These are computed using the same methodology for temporal and non-

temporal elements as discussed above; however, only purchases for which reshare consent,

i.e., amj
6 (t) = true, are considered.

Depending on different implementations or applications, the privacy elements of these

factors can be combined to represent the complex relationships between them. Risk as-

sessment based on these factors can be performed using rules [218] that are generally

defined based on relevant knowledge and opinion from human experts or much more com-

plex fuzzy logic models [219, 220]. However, we use a simplified approach of weighted

average to evaluate the provider’s privacy exposure score as given by Equation 4.14:

PESij(tn) = 1
5

5∑
k=1

α1 × Aij
k (tn) + α2 × Aij

k (t−
n ) + α3 × Aij

k (t+
n ) (4.14)

where PESij(tn) is a real number in [−1, 1]. α1, α2 and α3 are the weights based on the

provider’s preference such that (α1, α2 and α3 ≥ 0) and (α1+ α2+ α3 = 1).

The privacy exposure score PESij(tn) computed in Equation 4.14 for DPj with respect

to Bi is then mapped to the buyer’s purchase rating PRij
pur(tn) using the logistic function

as given by Equation 4.15.

PRij
pur(tn) = 1

1 + e−5P ESij(tn) (4.15)

where PRij
pur(tn) is a real number in the range [0, 1].

4.3.3 Leakage Profile

A leakage profile is used to assess the buyer’s data leak risk by quantifying their potential

damage and likelihood of a data leak event. It helps providers minimize data leak risk

by deciding and controlling data sharing as necessary. To this end, we propose a rating

system that depends on the data leak risk assessment satisfying the following premises:

the higher the data leak risk, hence, the lower the reliability of the buyer’s capability in

129



CHAPTER 4. KYBCHAIN

the provider’s eye, the lower their leakage rating. We compute the leakage rating specific

to a buyer at a particular time.

To model the leakage profile, we first identify the privacy elements for the leakage profile.

We then quantify these elements to assess the data leak risk and map this risk assessment

to the buyer’s leakage rating.

Risk assessment [221] involves the calculation of (i) the impact, which is the level of damage

that will be incurred, and (ii) likelihood which is the probability that an event will occur.

To make the data leak risk assessment more systematic, we decompose the impact and

likelihood into more fine-grained elements as explained below:

Risk = Impact × Likelihood (4.16)

Impact Quantification: An impact is quantified based on the damage that a data leak

event might cause to the provider, along with the financial loss and reputation damage

that a buyer might suffer [81]. We quantify the impact by using four different attributes:

(i) volume (vol) and (ii) sensitivity (sen) of data that buyer can potentially leak, which

indicates the extent of possible harm to providers; (iii) the number of agreement (agr)

violation that reflects the magnitude of potential financial loss for a buyer; (iv) number of

providers (pro) that might get affected causing potential reputation damage to the buyer.

We designed a similar scoring system as suggested in [222] to determine the combined

influence of all these attributes on the potential impact. An illustrative example of the

scoring system is given in Fig. 4.9. Suppose a data leak incident is reported against a buyer

Bi with estimated impact given as 10,000 datasets of highly sensitive data affecting 40

providers and violating 100 agreements. In this case, Simp(vol), Simp(sen), Simp(agr) and

Simp(pro) as per the illustrative example given in Fig. 4.9 is -1, -0.5, 0.5, 0 respectively.

We adopt the method in [222] to evaluate the combined impact (I) of all these attributes,

which is formally given by:

I = v1 × Simp(vol) + v2 × Simp(sen) + v3 × Simp(agr) + v4 × Simp(pro)
v1 + v2 + v3 + v4

(4.17)

where Simp(vol), Simp(sen), Simp(agr) and Simp(pro) represents the score of volume, sen-

sitivity, agreements and providers as per the Fig. 4.9 respectively. v1, v2, v3, and v4
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Figure 4.9: An illustrative example of a scoring system to score the severity of the impact
attributes

represent the corresponding provider’s weightage preference for each parameter. I is in

the range of [−1, 1]. This means that when I is -1, the potential impact of a data leak is

low, and when I is 1, the potential impact is high.

Likelihood Quantification: We define the likelihood as how likely a buyer leaks the

provider’s purchased data to a third party. A data leak can be caused intentionally or

inadvertently [223]. Intentional data leak is caused deliberately because of the malicious

behaviour of the buyer. A low-reputed buyer tends to intentionally share the data with

unauthorized parties [223] for monetary purposes. Therefore, we assume that the likeli-

hood of an intentional data leak depends on the buyer’s reputation score. As described

in [224], risk analysis usually involves the quantification of probabilities of a loss event

based on experience and the costs of the associated loss. Therefore, KYBChain employs a

reputation mechanism that considers interaction feedback (similar to the one discussed in

Chapter 3) and data leak events to calculate the buyer’s reputation score. To incorporate

the past data event in evaluating the reputation score, we define a leak factor (LF ) that

solely depends on the impact of all buyer’s past data leak events. We formulate the new

reputation score of Bi at time tn as given by Equation 4.18. The value of LF lies in [0, 1]

and is given by Equation 4.19. With the increase in the overall impact of the past leak

events, LF decreases, thus decreasing the buyer’s reputation score.

RepSi
DL(tn) = RepSi(tn).LF (tn) (4.18)

where

LF (tn) = 2 − 2Ii
past(tn) (4.19)

where RepSi(tn) is the buyer’s feedback-based reputation score, RepSi
DL(tn) is the buyer’s
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reputation score incorporating their past data leak events, Ii
past(tn) is the overall impact

of all the buyer’s data leak events happened in the past and is calculated as explained

next.

We formulate Equation 4.20 to determine the overall impact (Ii
past(tn)) of all the past data

leak events of the buyer. We consider the damage due to recent data leak events more

relevant than the previous data leak events. Therefore, we introduce an ageing function

(γ(tn−t) such that 0 < γ < 1), which assigns higher weights to the impact of recent data

leak events and lower weights for past events.

Ii
past =

∑tl
t=t1 Ii(t)γ(tn−t)

N i
leak

(4.20)

where Ii(t) is the impact of the data leak event that occurred at time t such that t < tn.

Nleak is the number of past data leak events for the buyer. Ii(t) is calculated using

Equation 4.17 based on the regulator investigation of the data leak event as explained in

section 4.4.

Furthermore, the failure of buyers to implement adequate security systems [189] can cause

an accidental data leak. Since the accidental data leak results from poor security practices

followed by the buyer, we assume the likelihood of an inadvertent data leak depends on the

buyer’s data security score, as discussed in section 4.3.1. We assign the buyer’s likelihood

that a data leak event will occur based on their RepSi
DL and data security score (Spra(xi

5))

as given by Equation 4.21.

Li =



0.80 RepSi
DL ≤ 0.5 & Spra(xi

5) ≤ 0

0.60 RepSi
DL ≤ 0.5 & Spra(xi

5) > 0

0.40 RepSi
DL > 0.5 & Spra(xi

5) ≤ 0

0.20 RepSi
DL > 0.5 & Spra(xi

5) > 0

(4.21)

where RepSi
DL ∈ [0, 1] and Spra(xi

5) ∈ [−1, 1]. We assume that the maximum likelihood

is 80% because low security or reputation still offers some reliability for the buyer. For

the same reason, we choose 20% as the lowest likelihood because there can not be com-

plete reliability or security. We can change these values for different implementations and

applications.
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We model the leakage profile PRV i
lea(tn) of Bi as a tuple given by:

PRV i
lea(tn) =< Ii(tn), Li(tn), {Ii(t1), Ii(t2), ..., Ii(tl)} > (4.22)

where Ii(tn) and Li(tn) are used in risk assessment based on the potential impact and

likelihood that a data leak will occur. Ii(t) is the damage caused by the data leak incident

in the past at time t where t < tn.

To quantify the potential impact (Ii(tn)), we are considering the comprehensive purchase

history of buyer Bi, i.e., data bought from all providers so far. We compute the following

impact attributes: the volume (vol(tn)) and sensitivity (sen(tn)) based on their overall

data possession for all the providers; the number of agreements (agr(tn)) they has formed

that might get violated if a data leak occurs; and the number of providers (pro(tn)) whose

data they has purchased. Suppose Bi bought data from NP number of providers in the

time period t = [ti
0, tn]. they made NDPj number of agreements with DPj , ∀j = [1, NP ].

We evaluate these attributes at time tn using Equation 4.23-4.25.

vol(tn) =
NP∑
j=1

tn∑
t=ti

0

aij
5 (t) (4.23)

sen(tn) = 1
NP

NP∑
j=1

∑tn
t=t0(aij

1 (t) + aij
2 (t) + aij

3 (t))
3NDPj

(4.24)

agr(tn) =
NP∑
j=1

NDPj (4.25)

pro(tn) = NP (4.26)

where aij
5 (t) corresponds to the sample size, aij

1 (t), aij
2 (t), aij

3 (t) represents age, interval

and period respectively. We explained these privacy elements in section 4.3.2. Scores are

assigned to the obtained impact attributes using Fig. 4.9, which are then used to calculate

Ii(tn) as per Equation 4.17.

Besides potential damage due to the overall data possession of the buyer, we also con-

sider the impact of any potential data leak events experienced by the buyer in modelling
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the leakage profile. Recall from section 4.2, when a data leak event occurs, a regulator

investigates the data leak to determine the impact. they submits an investigation report

to the KYBChain comprising the volume and sensitivity of leaked data, the number of

agreements violated and the number of providers affected. KYBChain assign scores to

these attributes as per Fig. 4.9 and using Equation 4.17 obtain Ii(t) for the data leak

incident that occurred at time t where t < tn.

We adopt the logistic function to model the leakage rating given by Equation 4.27.

PRi
lea(tn) = 1

1 + e−5Ri(tn) (4.27)

where

Ri(tn) = Ii(tn) × Li(tn) (4.28)

Ri(tn) is the risk assessment calculated based on the potential impact associated with the

overall current possession of the buyer and the likelihood of a data leak event.

4.4 Data marketplace with privacy rating system

In this section, we first present KYBChain architecture that integrates the proposed pri-

vacy rating system as discussed in section 4.3 with the decentralized marketplace. Second,

we explain the different phases in KYBChain to update and retrieve a buyer’s different

profiles.

4.4.1 KYBChain Architecture

As depicted in Fig. 4.10, KYBChain architecture is organized into two layers: Transaction

(Tx) and Blockchain (BC) layers. The Tx layer encompasses different read/write trans-

actions and events. These transactions are issued by participants that invoke the smart

contracts to autonomously execute trade-related activities and update buyers’ profiles.

Events are emitted on predefined conditions to notify the participant of other partici-

pants’ activities. At the BC layer, the transactions are processed following a set of access
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t!]

Figure 4.10: KYBChain architecture

rules defined by the Access Control List (ACL), which are decided by the network ad-

ministrator during bootstrapping. The transactions invoke the smart contracts in the BC

layer that autonomously execute trade-related activities and automatically map buyers’

activities to their different profiles.

We implement KYBChain on a permissionless blockchain network. It is managed by a

network administrator who has administrative control over the blockchain and defines the

network model. they is also responsible for adding a regional regulator to the network. We

choose Ethereum for the deployment of KYBChain. The proposed design is blockchain

platform agnostic as it does not use any feature of the consensus or the communication

layer and hence can be implemented on most generic blockchain platforms, as long as

it provides Turing-complete programming capabilities. We assume that each participant

maintains a changeable public/private key pair to be identified in the network.

In the following sections, we describe the layers of the KYBChain framework in detail.
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4.4.1.1 Transaction Layer

The Tx layer has inputs from auditors, regulators, buyers, and sellers. These inputs

generate transactions to execute the smart contracts in the BC layer. We present different

transactions that are categorized based on which participant issued them and their details

as follows:

Trading-related activities: The buyer or the seller initiates all the marketplace trading-

related transactions. Marketplace end-users issue TxregisterUser to register themselves as a

buyer, provider, dual role or auditor handled by user management. TxregisterUser is given

by:

TxregisterU = [role|SigU |PUU ] (4.29)

where role ∈ {buyer, provider, dual or auditor}, SigU and PUU are the user’s signature and

the public key. Following registration, the buyer’s profile is created in the KYB-module

using TxcreateP rofile, which is bound to a spawned contract instance from a BuyerSc

template. A BuyerSc manages and maintains the buyer’s practice, purchase and leakage

profiles.

Newly-registered buyers are initially marked as KYB-unapproved. Such buyers do not

receive any rating. Hence, providers may be reluctant to trade with them. To be KYB-

approved, a buyer must upload their privacy policy and audit report in a decentralized

peer-to-peer blockchain-compatible repository, IPFS (InterPlanetary File System). they

requires to record its content id (pointer on IPFS to access the privacy policy) on BC

using TxuploaDP olicy given by:

TxuploadP olicy = [Hdata|CID|SigB|PUB] (4.30)

where Hdata is the hash of buyer’s data stored in IPFS, CID is the content ID to locate

their files on IPFS, SigB and PUB are the signatures and public key of the buyer.

All the other trading-related transactions vocabulary is adopted from MartChain (see

Chapter 3). These transactions include TxregisterA for registering new data subscription

contracts (SubscriptionSc) in the KYBChain based on the terms decided between buyer
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and provider; TxaddS for adding agreed upon specifications of a new subscription in their

SubscriptionSc. Data is transferred off-chain from provider to buyer. After which, both

confirm the data delivery and share their feedback based on their experience via transaction

TxconfirmDelivery. This transaction performs settlement by transferring payment from the

buyer’s escrow account to the provider’s account, marking the data subscription completed.

Besides, it also triggers the update of the buyer’s latest purchase as per the specification

of the data subscription in their purchase profile.

Auditor assessment: The buyer’s TxuploadP olicy emits an event to the set of registered

auditors who are randomly selected using the hash-sharding method [225] as used in

Distributed SQL Database. This method evenly segments the list of registered auditors

into multiple shards, assigning a unique shard ID to each. The hash of the transaction ID

of TxuploadP olicy is used to identify and select a random shard. The audit request is sent to

all the auditors in the selected shard. With a uniform hashing algorithm such as Keccak-

256, the hash function can evenly distribute the audit request across different shards of

auditors, reducing the risk of repeatedly selecting the same shard. Recall from section

4.3.1 randomizing the auditor selection prevents any chance of collusion between buyer

and auditor that can manipulate assessment. Selected auditors then retrieve the content

ID from the KYBChain and the files from the IPFS. Auditors assess the buyer’s policy and

audit report and submit their assessment report using TxauditReport. The buyer’s status is

changed to KYB-approved when 2/3 of the auditors in shards submit positive assessment

results. This will ensure better system security than a pure majority (51%). Moreover,

the final score of each privacy element is determined by averaging the corresponding score

submitted by all the auditors. However, if the 2/3 condition is not met, the buyer’s status

remains KYB-unapproved. Such buyers may require to improve the efficacy of their privacy

practice per the regulatory requirements and request re-assessment. TxauditReport is given

by Equation 4.31.

TxauditReport = [PUBi |Result|Assessment report|taudit|SigA|PUA] (4.31)

where Result is either pass or fail based on whether or not Bi complies with the data

protection law as per the auditor’s assessment. Assessment report contains scores (xi
1, xi

2,
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xi
3, xi

4, xi
5, xi

6) given to each privacy element of the practice profile (see section 4.3.1).

SigA and PUA are the signatures and public keys of the auditor. taudit is when the audit

report was submitted and is used to determine Tthreshold in Equation 4.6.

Regulator investigation: The role of the regulator is significant when a data leak event

occurs. A regulator can discover a suspected data leak event directly or can be alerted

by some external sources. The regulator identifies the buyer responsible for the leak,

collects evidence, and investigates the data leak event. Based on the analysis, they issues

TxinvestgationReport to submit their investigation report given by

TxinvestgationReport = [PUBi |Investigation report|SigR|PUR] (4.32)

where PUBi is the public key of the identified buyer Bi. Investigation report contains

the following details: tleak, list of affected providers, leaked data sensitivity, agreements

violated, and the volume of leaked data>. tleak is the time when the leak was detected

for a buyer. SigR and PUR are the regulator’s signature and public key, respectively. This

transaction updates the buyer’s leakage profile. Besides, it also emits an event to all the

affected providers to notify them about the leak per the Notifiable Data Breach (NDB)

scheme of Privacy Act [203].

KYBChain uses several internal transactions that connect marketplace elements with the

KYB-module. These internal transactions are issued by RegisterSc to BuyerSc triggered

by the participants’ transactions. TxupdateP ractice update auditor’s privacy assessment

in the practice profile triggered by TxauditReport, TxupdateImpact update the regulator’s

investigation in the leakage profile triggered by TxinvestgationReport and TxupdateP urchase

update subscription detail in the purchase profile triggered by TxconfirmDelivery. These

transactions are given by:

TxupdateP ractice = [PUBi |Assessment report|taudit] (4.33)

TxupdateImpact = [PUBi |tleak|Investigation report] (4.34)

TxupdateP urchase = [PUBi |PUDP |tpurchase|Subscription detail] (4.35)
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where Subscription detail consists of type, age, interval, period, resell consent, and reten-

tion. tpurchase is when the subscription is finished. DP is the provider whose data the

buyer has purchased.

Query: Participants issue TxretrieveP rofiles to retrieve the buyer’s profile which is given

by:

TxretrieveP rofiles = [Option | Preference |data|PUBi |PUU |SigU ] (4.36)

A participant can choose from two option to obtain a buyer’s profile: (i) Coarse: se-

lecting this option, TxretrieveP rofiles returns coarse-grained privacy profile, i.e., PRV ij =

< PRi(t), PRi
pra(t), PRij

pur, PRi
lea >, (ii) Fine: this option return fine-grained privacy

profiles, i.e., < PRV i
pra(t), PRV ij

pur, PRV i
lea >. These components are calculated as ex-

plained in section 4.3. The privacy rating of buyers serves different purposes for different

entities. Regulators and buyers are more interested in fine-grained profiles to ensure pri-

vacy compliance. In contrast, a provider can use a coarse option to assess the risk of

sharing data with a particular buyer per their demand. preference and data are empty in

the case of regulator and buyer, while for the provider, it is set to their weight preference

and purchase requests for which the provider wants to measure their exposure level.

Events: Several events are emitted that asynchronously notify participants about different

activities happening on the KYBChain. These are listed below.

• subscriptionAdded: This is the trade event by SubscriptionSc to notify the buyer

that a seller has added a subscription to their contracts based on their negotiated

terms. A buyer can verify the subscription details and raise a dispute if anything is

wrong.

• auditRequest: This event is emitted by RegisterSc when the buyer updates their

IPFS content ID to inform the registered auditors of the pending assessment. This

event contains details of the buyer requesting a privacy assessment.

• auditResult: This event is emitted by RegisterSc to inform the buyer about the

outcome of their privacy assessment.

139



CHAPTER 4. KYBCHAIN

Figure 4.11: ACL defines the rules of access to the resources of the KYBChain

• leakNotification: This event is triggered when the regulator submits their investiga-

tion report of a data leakage incident. All the providers who are impacted by the

data leakage are notified of the incident by RegisterSc.

4.4.1.2 Blockchain Layer

Transactions in KYBChain are governed by an ACL which defines the permissions for

submitting transactions, read/write access to the ledger, updating profiles, and other ac-

tions for the participants as shown in Fig. 4.11. The BC layer employs two sets of smart

contracts for marketplace elements and the KYB-module. Marketplace elements include

the user’s registration for all marketplace entities, trading agreements between buyer and

seller and their respective reputation score. All the users who register as buyers will be

mapped to their digital profile using their public key in the KYB-module. ACL does not

permit buyers to modify their digital profiles. Next, smart contracts are invoked by trans-

actions received from the Tx layer to automatically update and evaluate privacy ratings.

The following Sections present the smart contracts of the BC layer in detail:

Marketplace elements: KYBChain is the extension MartChain (see Chapter 3) from

which we adopted the marketplace elements, including user management, agreement man-

agement and reputation management. These marketplace elements are implemented us-

ing the following smart contracts: RegisterSc, SubscriptionSc, ReputationSc, which are

installed by the administrators during bootstrapping.
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RegisterSc provides core marketplace functionalities such as entity registration and agree-

ment management. registerUser() allows participants to register themselves. Registered

users can deploy new data subscription contracts and register them using registerAgree-

ment(). Besides, RegisterSc oversees all the trade-related activities for the registered

contracts. Moreover, RegisterSc also manages pertinent information, such as the details

of the registered auditors, regulators and administrators. To integrate the KYB-module

with the marketplace, we extended the RegisterSc design by adding various interfaces.

Auditors who are interested in enrolling in KYBChain, register themself using registerAu-

ditor(). Regulators are added by the administrator using addRegulator(). Auditor uses

auditReport(), and regulator uses investgationReport() to submit their audit report and

leakage investigation report, respectively. Another method uploadPolicy() is provided for

the buyer to update their IPFS content ID. retrieveProfile() to retrieve the privacy rating

of the buyer. These newly added functions are designed with role-based permissions as

given by Fig. 4.11 to restrict other entities from unauthorized access.

SubscriptionSc template smart contract allows participants to customize it based on their

terms and conditions. When a buyer and seller agree to trade with each other, a new

instance of SubscriptionSc is spawned and deployed in the KYBChain. SubscriptionSc

is a bilateral contract that binds buyer-seller and ensures that their behaviour automat-

ically conforms to the terms. Furthermore, SubscriptionSc maintains the list of data

subscriptions and automatically manages their execution status using several methods:

addAgreement() to add new data subscription, startSubscription() to commence the data

transfer and confirmDelivery() to confirm the transfer of data to initiate the payment

and settlement. User also submits their feedback based on their trade experience. The

feedback is used to evaluate the reputation score of participants in the marketplace that

is managed and maintained by ReputationSc. It is important to note that the reputation

score of the buyer differs from their privacy rating as the former is based on the trading

experience of sellers with him while the latter solely depends on the buyer’s profiles that

are handled by the KYB-module, as explained next.

KYB-module: KYB-module consists of three smart contracts: PrivacyRatingSc, RuleSc
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Figure 4.12: Entity relation diagram illustrating a data structure for storing buyer’s profile

and BuyerSc. The logic to update, retrieve and compute privacy profiles is implemented

in PrivacyRatingSc, and the data structure to record a buyer’s profiles is implemented

in BuyerSc. Decoupling logic from data storage facilitates the upgradeability of the pri-

vacy rating evaluation system without affecting the buyer’s profile [226]. PrivacyRatingSc

connects the KYB-module with the marketplace elements via RegisterSc. For any related

buyer’s activities in the marketplace, RegisterSc sends transactions to PrivacyRatingSc

to update buyers’ profiles in their associated BuyerSc. PrivacyRatingSc also implements

logic to retrieve and compute privacy profiles using the rules specified in RuleSc. RuleSc

is a smart contract that defines all the rubric scoring tables and rules for grading systems

as explained in section 4.3. RuleSc is deployed in the network by the regulators with

read-only access that can only be upgraded by deploying a new contract. PrivacyRatingSc

manages all the BuyerSc that collect and store data about buyers’ profiles.

We design BuyerSc as a template smart contract comprising data structures and functions
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to record buyers’ profiles in the blockchain. When a participant registers himself as a

buyer, a new BuyerSc is spawned from the template smart contract. The BuyerSc address

is registered in RegisterSc against the buyer’s identifier. The BuyerSc records buyer’s

practice, purchase and leakage profiles in a data structure that is implemented based on

the entity-relationship diagram as shown in Fig. 4.12. The privacy practice profile consists

of all the privacy elements defined in section 4.3.1 and is initialized based on the privacy

audit report submitted by the auditors. Next, a separate purchase profile is maintained for

each provider whose data the buyer had purchased. The purchase profile is designed as a

nested structure that consists of a provider-specific structure and an array of data-specific

structures. The provider-specific structure monitors the non-temporal elements depending

on the overall purchases of a specific provider. It includes the total number of data samples

and a list of data types. The array of data-specific structures records temporal elements

corresponding to each subscription for a particular provider. It includes age, interval,

and period. Lastly, the leakage profile comprises privacy elements discussed in section

4.3.3 that are initialized based on the investigation report submitted by the regulator.

Depending on different events and activities, the corresponding profile of the buyer is

updated, and the privacy rating is dynamically evaluated.

4.4.2 KYBChain Phases

This section presents the details of the various phases of KYBChain, including setup and

initialization, profiles update in different stages, and retrieval.

4.4.2.1 Setup and initialization

During this phase, the KYBChain network is bootstrapped. The administrator sets up

KYBChain by deploying smart contracts of the KYB-module and integrating it with the

marketplace element via RegisterSc. As discussed earlier, RegisterSc is extended with

new functions and transactions such as TxauditReport, TxinvestgationReport, TxuploaDP olicy,

TxcreateP rofile etc., that are required by different participants to interact with the KY-

143



CHAPTER 4. KYBCHAIN

Figure 4.13: Initial auditing Stage

BChain. There are two ways to integrate the KYB-module with an existing marketplace.

(i) a new version of RegisterSc integrated with new functions can be deployed, and all

states from the old contract are migrated to the new one. (ii) existing RegisterSc can be

upgraded by using update plugin of OpenZeppelin [227]. During the initialization phase,

regulators are added to the network by the administrator, and they deploy RuleSc in

the KYB-module. External auditors are initially incentivized to register in KYBChain

through an initial coin offering (ICO) and receive native tokens for their audit assessment

service.

4.4.2.2 Update of buyer’s profile

In this section, we present end-to-end interactions of smart contracts during different

stages of KYBChain that trigger the update of the buyer’s profile.

Initial auditing : During this stage, the privacy practice of the buyer is assessed and up-

dated in their practice profile. The end-to-end interactions of smart contracts during this

stage are depicted in Fig. 4.13. In Step 1, a user register himself by issuing TxregisterUser

to RegisterSc and receive a dynamic key pair PK + /PK−. If the user has selected buyer

as a role, RegisterSc subsequently sends TxcreateP rofile in Step 2 to PrivacyRatingSc that

144



4.4.2 KYBChain Phases

Figure 4.14: Pre-assessment Stage

spawns a new instance of BuyerSc in Step 3. The contract address is recorded against

the buyer’s identifier in their user profile maintained by RegisterSc. In Step 4, the buyer

uploads their privacy policy and audit report on an IPFS. In Step 5, the buyer issues

TxuploadP olicy to RegisterSc to share the content ID. In Step 6, RegisterSc emits an event

auditRequest to the set of randomly selected registered auditors. In Steps 7-8, auditors

fetches the buyer’s privacy policy and audit report, perform an assessment, and submit

their report using TxauditReport in Step 9. A positive assessment changes the buyer’s status

to KYB-approved, which issues TxupdateP ractice to the PrivacyRatingSc in Step 10 that

forwards the transaction to the corresponding BuyerSc in Step 11. The final scores are

updated in the practice profile of the buyer in Step 12.

Pre-assessment: During this stage, the buyer’s purchases are monitored and recorded in

their purchase profile as discussed in section 4.3.2. The end-to-end interactions of smart

contracts are depicted in Fig. 4.14. In Step 1, a buyer and provider agree to trade with

each other, and an instance of SubscriptionSc contract is spawned and deployed in Step 2-3.

Both provider and buyer issue TxregisterA to RegisterSc to register the contract address of

SubscriptionSc in Step 4. Based on the buyer’s data requirement, the provider adds a new

subscription in the SubscriptionSc in Step 5, about which the buyer is notified via an event

subscriptionAdded in Step 6. The subscription status is set to ACTIVE when the provider
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Figure 4.15: Post-management Stage

transfers the data off-chain over a secured channel to the buyer in Step 7. After the

transfer, both parties confirm the data delivery by issuing TxconfirmDelivery to RegisterSc

in Step 8. This triggers the settlement process, during which payment is transferred

from the buyer’s account to the provider’s account. RegisterSc sends three transactions

to different contracts. In Step 9, Txsettlement is issued to SubscriptionSc, which changes

the subscription status to FINISH. In Steps 10-11, TxsetR is sent to ReputationSc, which

maintains the reputation score of each user (see Chapter 3). Both parties submit feedback

based on their trading experience, which is utilized to evaluate their respective reputation

score. In Steps 12-14, RegisterSc issue TxupdateP urchase to PrivacyRatingSc that forwards

the transaction to the corresponding BuyerSc to update the buyer’s purchase profile.

Post-management: During this stage, the buyer’s leakage profile is updated if any

data leak event occurs. The end-to-end interactions of smart contracts are depicted in

Fig. 4.15. In Step 1, the regulator becomes aware of the data leak events either via

self-discovery or alert from external sources [228] such as the buyer himself or the service

provider etc. In Step 2, the regulator gathers evidence from the guilty buyer, e.g. logs

from their data leakage prevention system [229] to investigate the cause and impact of

leakage in Step 3. In Step 4, they submits their investigation report to RegisterSc using

TxinvestigationReport. TxinvestigationReport leads to three actions by RegisterSc. Firstly,

TxsetR is issued to ReputationSc to update the buyer’s reputation score in Steps 5-6 to
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Figure 4.16: Retrieval of buyer’s privacy profile

reflect their reputation damage. Secondly, TxupdateLeakage is sent to PrivacyRatingSc in

Steps 7-9, which is forwarded to the corresponding BuyerSc of the concerned buyer. This

is to update the buyer’s leakage profile per the investigation report submitted by the

regulator. Lastly, RegisterSc emits an event leakNotification to all the affected providers

to notify them of the data leak event in Step 10.

4.4.2.3 Retrieval of buyer’s privacy profile

The end-to-end smart contract interactions to retrieve the buyer’s privacy profile are

depicted in Fig. 4.16. On receiving the purchase request of a buyer in Step 1, the provider

sends a query TxretrieveP rofile to textitRegisterSc to fetch the buyer’s profiles in Step

2. Provider shares their privacy preferences and purchase request sent by the buyer in

the transaction. In Step 3-4, textitRegisterSc fetches the reputation score (RepS) of the

buyer using TxgetR and forwards the retrieval request to the PrivacyRatingSc in Step 5.

In Steps 6-8, PrivacyRatingSc executes various read transactions to retrieve the practice

profile, current possession and future acquisition specific to the provider who initiated

the request and leakage profile from the BuyerSc. Subsequently, it retrieves rubric score

guides using the RuleSc. In Step 9, PrivacyRatingSc compute the buyer’s privacy profile

(PRV ) using all this retrieved information and the provider’s preferences. In Step 10,
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PrivacyRatingSc forwards the buyer’s obtained PRV to RegisterSc that forwards it to the

provider in Step 11. In Step 12, using the privacy rating vector of the buyer, a provider

could act as per their privacy preferences and take three possible decisions based on the

associated privacy risk of data sharing with the buyer: (1) if the risk is low, the provider

can accept the purchase request or 2) if the risk is medium to high, they can negotiate the

price and terms with the buyer or 3) if the risk is too high, they can decide to reject the

purchase request.

4.5 Evaluation

The purpose of this evaluation section is two-fold: (1) to illustrate the efficacy and practical

utility of privacy rating and (2) to conduct a quantitative performance evaluation of the

KYBChain architecture. We conduct a comparative analysis of the proposed marketplace

system integrated with privacy rating, termed “with rating”, with the baseline marketplace

system where no privacy rating is used, termed as “without rating”. We performed all

the experiments and performance tests on a 3.70GHz Intel(R) Xeon(R) 12 Linux Server

(Ubuntu) with 62GB RAM Memory.

4.5.1 Utility of the privacy rating

In this section, we first describe our simulation setup, simulation methodology, perfor-

mance metrics, and experiment results to demonstrate the utility of privacy rating.

4.5.1.1 Simulation Set-up

Since there is no commercially available data for the marketplace participants, we employed

synthetic datasets by generating an (i) sample space of buyers with different profiles and

(ii) sample space of providers with different behaviours characterized based on their privacy

attitude.
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Buyers’ Sample space: In our simulation, we have considered NB number of buyers in

the marketplace. We generate each buyer’s (Bi) profile by randomly choosing scores for

the corresponding privacy elements using a uniform distribution. The choice of uniform

distribution suits our scenario since it defines equal probability for each risk score in the

given set. We generate these profiles in the time period (ti
0, tn) where ti

0 and tn correspond

to the time Bi starts trading and tn is the time when we evaluate their privacy rating,

respectively. Different parameters used to simulate buyers’ different profiles are explained

below:

• Practice profile: Recall from section 4.3.1, the purchase profile consists of the score

of privacy elements (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6) which we uniformly select from the discrete

set [−1, −0.5, 0, 0.5, 1]. We assume T i
threshold has not expired (tn ≤ T i

threshold), which

means the audit assessments are effective for each Bi in the time period of interest.

• Purchase profile: To calculate the purchase rating (PRi
pur(tn)), purchase history for

each Bi is built. We considered the maximum number of data subscriptions formed

by all the buyers to be Xmax. We randomly select the number of data subscriptions

for each Bi from [1, Xmax]. Each data subscription of Bi is with a provider DPj

randomly selected from the set {DPU , DPP , DPF } as explained later. For each

purchase of Bi to buy DPj ’s data at time t, the risk scores for temporal (aij
1 (t),

aij
2 (t), aij

3 (t)) and non-temporal (aij
4 (t), aij

5 (t)) privacy elements are selected from the

discrete set [−1, −0.5, 0, 0.5, 1] (see section 4.3.2) following a uniform distribution.

• Leakage profile: The privacy elements for leakage profile, i.e. seni(t), voli(t), agri(t),

proi(t) to evaluate the potential impact (Ii(t)) of Bi, are calculated using their

generated purchase history. To calculate likelihood (Lii(t)) of data leak for each

Bi, reputation score (RepSi
DL(t)) is randomly selected using uniform distribution

between [0, 1]. Recall from section 4.3.3 the losses incurred by the historical data leak

events are used to determine the buyer’s reputation score. Since we have randomly

selected the buyer’s reputation score, the effect of Ii
past is assumed to be already

considered in the analysis.
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At the current time tn, we consider that each Bi query the marketplace by sending two

purchase requests (i) tri
LCD: a demand to request a low critical data that relatively poses

a low privacy risk to the provider. The risk score of each privacy element for tri
LCD is

uniformly selected in {−1, −0.5, 0} implying low risk and (ii) tri
HCD: a demand to trade

high critical data that poses relatively high privacy risk to the provider. The risk score

of each privacy element for tri
HCD is uniformly selected in {0, 0.5, 1} implying high risk.

Each purchase request consists of the buyer’s data requirements (d, ai
1(tn), ai

2(tn), ai
3(tn))

and their willingness to pay (WTP) amount, i.e., the maximum price buyer is willing to

pay to procure the data as per their requirement [147]. We assume that the buyer’s WTP

amount depends on the number of data samples and the criticality of the requested data.

“Willingness to pay” of tri
LCD and tri

HCD are represented by WTP i
LCD and WTP i

HCD

respectively and given by Equation 4.37 and 4.38.

WTP i
LCD ∼


U [1, LCDmax

2 ] if ai
5(tn) < 0

U [1 + LCDmax
2 , LCDmax] if ai

5(tn) ≥ 0
(4.37)

WTP i
HCD ∼


U [LCDmax + 1, HCDmax

2 ], if ai
5(tn) < 0

U [1 + HCDmax
2 , HCDmax], if ai

5(tn) ≥ 0
(4.38)

where LCDmax and HCDmax are the maximum WTP amount for all the LCD and HCD

purchase requests, respectively.

Providers’ Sample space: As presented in [230], individuals have different privacy

beliefs, concerns, and attitudes towards data sharing. Moreover, to design a privacy-

aware marketplace system, understanding providers’ preferences is important [85]. In this

section, we define providers’ preferences based on their different privacy characteristics to

generate the providers’ sample space.

Provider’s preference in the data marketplace expresses their wishes about accepting buy-

ers’ purchase requests and sharing their data with them. Since a provider’s motive to

trade their data is economically driven; therefore, we consider their “willingness to ac-

cept” (WTA) amount in their preference. Willingness to accept is the minimum monetary
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amount that a provider is willing to accept to trade their data [147]. Moreover, a privacy-

concerned provider would also have a privacy preference that we define in terms of privacy

rating. We represent a provider’s (DPj) preference by a tuple given by:

Pref j =< PRj , PRj
pra, PRj

pur, PRj
lea, WTAj > (4.39)

where Pref j is DPj ’s preference. PRj , PRj
pra, PRj

pur, PRj
lea and WTAj are their pref-

erences for privacy rating, practice rating, purchase rating, leakage rating and willingness

to accept, respectively.

We sought to investigate how different providers benefit from using privacy ratings in

managing the risk-utility trade-off [230] posed by trading their sensitive IoT data in return

for monetary benefits. To this end, we employed Westin’s privacy segmentation [231] of

individuals based on their privacy attitude profiles. In our analysis, we considered three

providers with different privacy characteristics: an unconcerned privacy provider (no or low

privacy concern), a privacy pragmatist provider (mid-level privacy concern), and a privacy

fundamentalist provider (high privacy concern). We describe the privacy characteristics

of these providers and their preferences as follows:

• Unconcerned provider (DPU ): According to [232], about 20% of individuals can

be categorised as privacy unconcerned. These individuals are comfortable sharing

their data and believe such behaviour does not threaten their privacy. Therefore,

we assume that the privacy-unconcerned provider is generally willing to trade their

data to buyers, regardless of the threat to their privacy. Therefore, we define their

preferences only in terms of price since privacy preferences seem inconsequential to

him. It is given by Equation 4.40.

PrefU =


{0, 0, 0, 0, WTAU } in “w/o rating”

{0, 0, 0, 0, WTAU } in “with rating”
(4.40)

where PrefU is DPU preference. WTAU is the price preference. As per our as-

sumption, their privacy preference is set to zero, which means that an unconcerned

provider will accept most of the purchase requests they receives solely based on their

price preference, irrespective of the sensitivity of the requested data.
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• Fundamentalist provider(DPF ): According to [233], privacy fundamentalists ac-

count for about 25% of the population. These individuals usually have little interest

in providing their data. Since a fundamentalist provider willingly registers in the

marketplace for monetary benefits, we assume they would be very selective in accept-

ing purchase requests and conservatively trade their data. We make the following

assumptions about the fundamentalist provider: (i) without a rating system, the

fundamentalist provider would read the buyers’ privacy policy to understand their

privacy practice before sharing their data [233], (ii) with a rating system, they would

consider the fine-grained components of privacy rating vector in decision-making, (iii)

they would be restrictive in accepting highly sensitive data requests and hence, their

privacy preferences and price preferences for HCD requests would be stringent than

LCD requests. Fundamentalist providers’ preferences for both marketplace settings

are given by Equation 4.41.

PrefU =


{0, PRF

pra, 0, 0, WTAF } in “w/o rating”

{0, PRF
pra, PRF

pur, PRF
lea, WTAF } in “with rating”

(4.41)

where PrefF is DPF preference. Based on our assumption, DPF prefers the practice

rating (PRF
pra) and is willing to accept it in “w/o rating” setting. While in the case of

“with rating”, they considers fine-grained components of privacy rating, i.e., practice

(PRF
pra), purchase (PRF

pur) and leakage (PRF
lea) rating.

• Pragmatist provider (DPP ): According to [232], privacy pragmatists account for

about 55% of the population. They willingly share some personal information for

incentives. Pragmatist provider’s preference is generally between two extremes, i.e.,

they is not as lenient as unconcerned and not as stringent as fundamentalist in

sharing their data. Based on this argument, we only considered price preference in

“w/o rating” and overall privacy rating for their privacy preference in “with rating”.

DPP ’s preference is given by Equation 4.42.

PrefP =


{0, 0, 0, 0, WTAP } in “w/o rating”

{PRP , 0, 0, 0, WTAP } in “with rating”
(4.42)
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Algorithm 3 Algorithm to determine if Bi purchase request is accepted by the DPj

Buyer’s Input: tri(t), W T P i, P RV ij(t), Lii

Provider’s Input: P refj

Output: Acceptedj(tri), Leakedj(tri)

1: if each element in P refj ≥ element in (P RV ij(t), W T P i)

2: Acceptedj(tri) = 1

3: else

4: Acceptedj(tri) = 0

5: Generate random P ri
leak ∈ [0, 1]

6: if (P ri
leak < Lii(t) and Acceptedj(tri) == 1)

7: Leakedj(tri) = 1

8: else

9: Leakedj(tri) = 0

10: return (Acceptedj(tri), Leakedj(tri))

where PrefP is DPP preference. WTAP is their price preference and PRP is their

overall privacy rating preference.

4.5.1.2 Simulation Methodology

To determine the utility of privacy rating, we assume that each DPj ∈ [DPU , DPP , DPF ]

receives purchase requests from NB buyers in the marketplace. For each purchase request

of Bi, we determine whether it is accepted by DPj or not based on their preference and

buyer’s privacy rating vector and WTP using Algorithm 3. A purchase request (tri) of

Bi at time tn is accepted by DPj , i.e., Acceptedj(tri) = 1, if the buyer’s privacy rating

vector (PRV ij(tn)) and WTP amount (WTP i) satisfies provider’s preference (Prefj)

otherwise it is rejected, i.e., Acceptedj(tri) = 0. On accepting the purchase request of a

buyer, the provider shares their data per the requirement specified in the purchase request.

Hence, Acceptedj(tri) = 1 signifies that the provider (DPj) has disclosed their data to

the buyer (Bi). Next, to observe the utility of leakage rating, we simulate a data leak

event for the buyer based on a randomly generated leakage probability (Pri
leak) and their

likelihood of leakage (Lii). We assume that a buyer (Bi) leaks the provider’s disclosed data

corresponding to their purchase request tri if Pri
leak < Lii(t) and Acceptedj(tri) == 1 are

true, i.e., Leakedj(tri) = 1 otherwise it is not leaked, i.e., Leakedj(tri) = 0
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Then, we evaluate the effect of privacy rating usage on the total number of accepted

purchase requests by a provider, the provider’s revenue generation and the amount of

provider’s data leaked if a data-leak event occurs. These metrics are explained below:

• Accepted purchase requests: This metric refers to the total number of purchase

requests accepted by the provider per their preference. This metric is useful to show

the impact of using a rating system on the effectiveness of the marketplace, i.e., the

number of buyers’ demands that are fulfilled by the marketplace.

Total accepted purchase requests =
NB∑
i=1

Acceptedj(tri) (4.43)

• Revenue: This metric estimates the provider’s total revenue generated as the sum

of WTP of all the accepted purchase requests. Comparing this metric in “with

rating” and “w/o rating” settings shows the impact of using privacy preference on

the provider’s revenue generation.

Revenue =
NB∑
i=1


WTP i if Acceptedj(tri) = 1

0 otherwise
(4.44)

• Leakage percentage: This metric helps the provider to estimate the percentage

of their data leaked of their total disclosed data. Comparing this metric in “with

rating” and “w/o rating” settings shows the impact of using leakage rating on the

amount of provider’ leaked data. A low leakage percentage is preferable since it

signifies that a small fraction of data is leaked if data leak events occur for all the

buyers, hypothetically, in the marketplace.

Leakage percentage =
∑NB

i=1 Leakedj(tri)∑NB
i=1 Acceptedj(tri)

× 100 (4.45)

4.5.1.3 Simulations

We conduct several simulations to measure performance metrics, as detailed below. For

each experiment, we took the average of 10 different runs for statistical significance and

also to contemplate all the possible combinations of privacy elements.
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Table 4.4: Parameters used in the simulation

Parameter Value
Total number of buyers NB = 1000

Bi start time ti
0 ∼ U [0, 9]

Current time tn = 10
Maximum number of trade Xmax = 10

Maximum WTP for LCD requests LCDmax = 500
Maximum WTP for HCD requests HCDmax = 1000

Unconcerned preference PrefU =


(0, 0, 0, 0, 0) for LCD requests in “w/o rating”
(0, 0, 0, 0, 0) for LCD requests in “with rating”
(0, 0, 0, 0, 0) for HCD requests in “w/o rating”
(0, 0, 0, 0, 0) for HCD requests in “with rating”

Fundamentalist preference PrefF =


(0, 0.6, 0, 0, 60%) for LCD requests in “w/o rating”
(0, 0.6, 0.6, 0.6, 20%) for LCD requests in “with rating”
(0, 0.8, 0, 0, 80%) for HCD requests in “w/o rating”
(0, 0.8, 0.8, 0.8, 40%) for HCD requests in “with rating”

Pragmatist preference PrefP =


(0, 0, 0, 0, 50%) for LCD requests in “w/o rating”
(0.5, 0, 0, 0, 10%) for LCD requests in “with rating”
(0, 0, 0, 0, 70%) for HCD requests in “w/o rating”
(0.7, 0, 0, 0, 30%) for HCD requests in “with rating”

PR weight preferences (w1, w2, w3) = ( 1
3 , 1

3 , 1
3 )

PES weight preferences (α1, α2, α3) = (0.1, 0.7, 0.2)

Comparative analysis: In this simulation, we compare the performance metrics in “w/o

rating” and “with rating” marketplace settings to demonstrate the utility of privacy rating

and its components. Table 4.4 gives the values of the parameters, defined in the section

4.5.1.1, used in this simulation unless stated otherwise. To observe the utility of price

preference; we considered the provider’s WTA amount as the percentage of the LCDmax

for LCD requests and HCDmax for HCD requests.

Fig. 4.17 depicts the instances of a single iteration of simulation for a pragmatist provider.

Fig. 4.17a illustrates the buyer’s sample space where each circle represents the buyer’s

LCD and HCD purchase requests. We plot the buyers’ overall privacy rating on the x-axis

and the criticality of their purchase requests on the y-axis. The size of the circle represents

the buyer’s WTP amount. Next, we execute the algorithm 3 to obtain the accepted and

leaked purchase requests. Fig. 4.17b depicts the selection space of the provider comprising

all the buyers’ purchase requests whose privacy rating and WTP satisfy the provider’s
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(a) (b) (c)

Figure 4.17: An instance of single iteration for pragmatist provider in “with rating” (a)
Buyers sample space (b) Selection space showing accepted purchase requests (c) Affected
requests due to data leakage

preference. Fig. 4.17c depicts the purchase requests affected by the data leak event.

Fig. 4.18a and 4.18b compare the results for three providers in the “w/o rating” and “with

rating” settings for (a) low critical data requests and (b) high critical data requests. The

key findings are summarized below:

• Unconcerned provider: Since DPU has the least privacy concern and lowest prefer-

ences among the three, all the purchase requests (LCD and HCD) received by him

are accepted irrespective of the existence of a rating system. their revenue is more for

HCD than LCD because HCD requests have higher WTP. Furthermore, the leakage

percentage is estimated to be 53% in all the cases, which signifies that 53% of their

disclosed data is leaked after the injection of the data leak event.

• Pragmatist provider: The number of accepted LCD requests increases from 503 in

“w/o rating” to 677 in “with rating”, while the revenue remains almost the same.

Since we set the privacy preference of DPP to 0.5 and relaxed their price preference

from 50% to 10%, this expanded their selection space by including requests with

low WTP. The revenue remains almost the same because requests of buyers with a

privacy rating greater than 0.5 are selected who might have requested with low WTP.

On the contrary, the number of selected HCD requests decreases from 299 in “w/o

rating” to 160 in “with rating”, and we observe a similar trend for revenue. Since
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(a)

(b)

Figure 4.18: Comparative analysis of metrics in the “w/o rating” and “with rating” settings
for (a) LCD purchase requests (b) HCD purchase requests

we set the privacy preference of DPP to 0.7 and relaxed their price preference from

70% to 30%, many buyers with a lower privacy rating than 0.7 are eliminated from

their selection space. The leakage percentage of DPP decreases in “with rating” as

compared to “w/o rating”. A decrease in leakage percentage signifies that the amount

of provider’s data leaked is less in “with rating” than in “w/o rating”. This is because

DPP is using privacy preference in “with rating” that eliminated all the buyers from
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their selection space whose likelihood of data leak is more. The decrease in leakage

percentage is more for HCD (53% to 39%) than LCD (54% to 49%) because their

privacy preference for HCD (0.7) is more stringent than for LCD (0.5).

• Fundamentalist provider: The number of accepted requests in “w/o rating” decreases

in “with rating” for both LCD requests (163 to 113) and HCD requests (46 to 9). We

observed a similar trend for revenue as well. Compared to the DPP , the number of

accepted purchase requests and revenue is lower for DPF . Since the fundamentalist

provider exhibits the most conservative privacy attitude compared to the other two,

their privacy preference considers fine-grained components of privacy rating (see sec-

tion 4.5.1.1). With more filter parameters, their selection space shrinks, eliminating

all the buyers who do not satisfy their preference. The number of accepted requests

for LCD is more than for HCD because of lower privacy and price preferences choices

of DPF in the case of LCD. We observed leakage percentage decreasing for both LCD

(50% to 32%) and HCD (49% to 23%). The decrement in leakage percentage is more

for DPF as compared to DPP because DPF ’s preference for leakage rating is 0.6 for

LCD and 0.8 for HCD, which is more than the overall privacy rating preference of

DPP (i.e., 0.5 for LCD and 0.7 for HCD).

Next, we analyze the impact of increasing providers’ price preferences while keeping their

privacy preferences the same. The discussion on the evaluation is as follows:

• Pragmatist provider: Fig. 4.19 shows that with the increase in price preferences,

the total number of accepted requests decreases for both HCD requests (1000 to 97

in “w/o rating” and 235 to 22 in “with rating”) and LCD requests (1000 to 100 in

“w/o rating” and 753 to 76 in “with rating”). This is because “w/o rating” only

considers price preference, and in “with rating”, the selection space is reduced due

to the use of privacy and price preference. We observe a similar trend for revenue

due to the same reason. However, the decline in leakage percentage is more for HCD

requests (from 54% in “w/o rating” to 39% in “with rating”) as compared to LCD

(from 54% in “w/o rating” to 49% in “with rating”). The possible reason is that
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(a)

(b)

Figure 4.19: Effect of price preference for pragmatist in “w/o rating” and “with rating”
for (a) LCD requests (b) HCD requests

since we use a more stringent privacy rating preference for HCD requests (0.7) than

LCD requests (0.5) to define pragmatist provider preference, the buyers with a high

likelihood of data leakage are possibly eliminated from the selection space; hence, a

more significant decline is observed for HCD than LCD.

• Fundamentalist provider: Fig. 4.20 shows that with the increase in price preferences,

the total number of accepted requests decreases for both HCD requests (233 to 22
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(a)

(b)

Figure 4.20: Effect of price preference for fundamentalist in “w/o rating” and “with rating”
for (a) LCD requests (b) HCD requests

in “w/o rating” and 16 to 2 in “with rating”) and LCD requests (404 to 40 in “w/o

rating” and 145 to 14 in “with rating”). Compared to DPP , we observe that fewer

purchase requests are accepted for DPF in both settings because of a more stringent

preference of DPF than DPP . We observe a similar trend for revenue as well as

leakage rating for HCD and LCD requests in both settings. However, compared to

DPP , the decline in leakage percentage is more for DPF , i.e., in the case of HCD
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Figure 4.21: Utility of overall privacy rating

requests from 49% in “w/o rating” to 23% in “with rating” and in the case of LCD

requests from 50% in “w/o rating” to 31% in “with rating”. The possible reason is

that DPP considers the overall privacy rating in their preference while DPF uses a

fine-grained privacy component of privacy rating in their preference. Consequently,

the selection space is reduced more for DPF due to an increase in filter parameters.

Moreover, buyers with lower leakage ratings, whose likelihood of leakage is more,

are eliminated from the selection space, reducing the amount of leaked data.

An interesting observation from the above simulation is that with the increase in price

preference, we observe no impact on the leakage percentage, which remains almost the

same. This implies that price preference does not play any role in addressing the provider’s

privacy concern. We also observed although privacy preference reduces the provider’s

privacy concern, it impacts their overall revenue (utility). This observation aligns with

the classical risk-utility trade-off providers must consider while trading their data in the

marketplace. Therefore, we recommend the provider relax their price preference to increase

their monetary benefits.

Next, we analyze the utility of privacy rating and its components by varying one parameter

in the provider’s preference while keeping other parameters the same.
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Figure 4.22: Utility of practice rating

Utility of overall privacy rating: Fig. 4.21 depicts the utility of overall privacy rating.

We observe that for lower PRij , the number of accepted purchase requests remains almost

the same for LCD (702) and HCD (701) requests. Accepted purchase requests gradually

start decreasing with an increase in privacy rating. When PRij is greater than 0.3, the

accepted requests for HCD slightly reduce as compared to LCD. Recall from section 4.3.2,

the sensitivity of requested data is one of the factors used in determining the buyer’s

purchase rating. Therefore, HCD requests of buyers whose purchase rating is higher will

only be accepted, resulting in fewer accepted purchase requests. The revenue for HCD

requests is much higher than for LCD requests due to the higher WTP amount for high-

sensitive data. We also observe the leakage percentage to be almost the same in both

cases. Interestingly, DPP can select HCD requests to increase their utility (revenue), and

their risk (leakage percentage) remains the same as that of LCD. However, the number of

accepted purchase requests will decrease slightly.

Utility of practice rating: Fig. 4.22 illustrates the utility of practice rating. We observe

that with the increase in PRpra, the number of accepted purchase requests decreases

(374 to 47) for both LCD and HCD requests. Since we choose a uniform distribution

to generate privacy elements of the practice profile, the computed practice rating of the

buyers is possibly equally distributed in [0,1]. Hence, with the increase in PRpra, purchase
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Figure 4.23: Utility of purchase rating

requests of buyers with high practice ratings are only present in the selection space, and

buyers with low practice ratings are eliminated. Notably, the leakage percentage slightly

decreases for LCD (40% to 34%) and HCD (39% to 35%). Recall from section 4.3.3, higher

PRpra implies that the buyer may be following good data security practices and hence,

their likelihood of a data leak is low. This can be inferred as the data corresponding to

their purchase request is not leaked due to the simulated data leak event.

Utility of purchase rating: Fig. 4.23 shows the utility of purchase rating. We observe

that the number of accepted purchase requests remains the same ( 256) till PRpur = 0.5

for both LCD and HCD requests. However, with a further increase in PRpur, the number

of accepted purchase requests for HCD decreases more than LCD. Recall from section

4.3.2, we considered the risk posed by the data purchase request in the computation of

PRpur. Since the privacy risk posed by the HCD requests is higher than LCD requests,

the buyer’s purchase rating is less for their HCD requests than their LCD requests. Hence,

the selection space for HCD requests reduces more than for LCD requests. Interestingly,

the leakage percentage increases with the increase in purchase rating. The reason is that

since PRlea=0.5, the buyers in the selection space have a higher likelihood of data leak;

hence, the data corresponding to their purchase requests are leaked.
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Figure 4.24: Utility of leakage rating

Utility of leakage rating: Fig. 4.24 depicts the utility of PRlea. We observe that with

the increase in PRlea, the number of accepted purchase requests decreases for both LCD

(417 to 2) and HCD (410 to 2) requests. This implies that fewer purchase requests of

buyers satisfy the provider’s preference with the increase in leakage rating. Interestingly,

the leakage percentage decreases with the increase in leakage rating for both LCD (51%

to 19%) and HCD (52% to 22%) requests. The reason is that a higher leakage rating

implies buyers have a lower likelihood of data leak risk. Hence, data corresponding to

their purchase requests is not leaked due to the simulated data leak event.

4.5.2 KYBChain performance evaluation

In this section, we provide a proof of concept implementation and overhead analysis of the

KYBChain framework in terms of gas consumption, throughput and latency.

4.5.2.1 Proof-of-concept implementation

This section describes the proof-of-concept (POC) implementation of the KYBChain in a

local private network based on Ethereum. We implemented various functions related to the
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KYB-module and marketplace contained within smart contracts written in Solidity v0.8.9.

However, Solidity v0.8.9 does not support floating point computation1. Therefore, the

evaluation of privacy rating is performed off-chain while smart contracts are employed to

record buyers’ profiles in the blockchain. Off-chain evaluation of privacy rating can easily

be validated using the proof stored in the ledger. We used the solidity web browser-based

IDE "Remix" to develop these contracts. We used Python v3.7.4 scripts to simulate the

interactions among contracts, web3 v5.30.0 library for communicating with the Ethereum

node, and py-solc v4.2.0 library for compiling the smart contracts. Smart contract codes

become immutable once deployed in the blockchain. Therefore, before implementing the

POC, we cautiously performed unit and integration tests of the marketplace and KYB-

module contracts on the Ganache Ethereum network.

We used Caliper v0.5.0 [234] as the benchmarking tool. For performance comparison, We

consider a baseline marketplace system, MartChain (see Chapter 3), without a privacy

rating system. The full stack of POC implementation, Caliper benchmark and smart

contracts are available online2.

The setup for POC is illustrated in Fig. 4.25. We defined a private Ethereum network

that is built using Docker to simulate a real-world KYBChain. The network comprises

two nodes and one miner, wherein each node runs geth v1.10.13 to manage the network.

We bootstrapped the network by deploying all the smart contracts in the marketplace and

KYB-module. To integrate the privacy rating system with the marketplace, the address

of the deployed PrivacyRatingSc contract is updated in the RegisterSc. We modelled two

classes: Admin and User, written in Python v3.7.4, that use web3.py v5.30.0 API for

sending transactions to these networks. Admin class is used to create instances of auditor

and regulator. User class is used to create instances of provider, seller and buyer. Each

participant instance is assigned a unique Ethereum address. We initialized the setup by

registering all the participants. The following steps describe the end-to-end data trade in

the KYBChain implementation:

1https://docs.soliditylang.org/en/v0.8.9/
2https://github.com/pooja239/KYBChain
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Figure 4.25: POC setup based on a private Ethereum network

1. When a buyer and provider comes under the agreement, a new SubscriptionSc is

spawned and deployed in the KYBChain. The contract is registered by issuing

TxregisterAgreement, a multi-sig transaction, issued by both buyer and provider to the

RegisterSc.

2. The provider issues TxaddS to SubscriptionSc to add and initiate a subscription.

After verifying the subscription details, a buyer issues TxstartS . The buyer’s escrow

account holds an amount equivalent to the agreed-upon price. This is followed by

marking the subscription status as ACTIVE.

3. The provider sends the requested data directly to the buyer. On receiving the data,

the buyer submits TxconfirmDelivery to RegisterSc, which initiates the payment set-

tlement process. The payment is automatically transferred from the buyer’s escrow

account to the provider’s account. Accordingly, the subscription is marked as FIN-

ISH in SubcriptionSc. Moreover, RegisterSc also triggers a TxupdateP urchase to the

PrivacyRatingSc that updates the buyer’s purchase profile with the subscription

details.
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Figure 4.26: Deployment gas consumption

4. Steps 1-5 are repeated for all the new provider and buyer pairs. For every completion

of a new subscription, the purchase profile of the associated buyer is updated.

5. Any user (provider, buyer, regulator, admin) can issue TxretrieveP rofile to retrieve

the buyer’s profile that can be used to calculate their privacy rating.

4.5.2.2 Performance evaluation

To illustrate the feasibility of our proposed architecture, we divide the performance eval-

uation into two parts: (1) gas consumption evaluation and (2) performance evaluation of

smart contracts in terms of latency and throughput. We repeated all the testing scenarios

for 10 iterations and calculated the average of the performance parameters.

Gas consumption: In our experiment, we record the deployment gas cost of deploying

the marketplace and KYB-module smart contracts. Fig. 4.26 shows the deployment gas

cost of RegisterSc, SubscriptionSc, PrivacyratingSc, RuleSc and BuyerSc. Compared to

the baseline, the deployment cost of RegisterSc is more in KYBChain. This is because

we added several administrator functionalities such as addRegulator, registerAuditor, sub-

mitAudit or submitReport and integration functionalities including updatePurchase, up-

datePractice, updateLeakage or retrieveProfile to integrate privacy rating system in the

marketplace. Since there is no modification, the deployment cost of SubscriptionSc re-
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Figure 4.27: Tx execution gas consumption

mains the same in KYBChain as in the baseline. The deployment cost of BuyerSc and

RuleSc is less than the PrivacyRatingSc in the KYB-module. This is because all the logic

to retrieve buyer’s profiles is implemented within PrivacyRatingSc while BuyerSc only

manages the data storage in the ledger and RuleSc only manages the rules specifications.

We also evaluated the execution gas cost incurred by the provider, buyer, or admin by

calling write functions in each smart contract during different stages of data trading. We

implemented different functions in KYBChain with role-based permissions for execution

(e.g. modifier to restrict access to certain functions) as shown in Fig. 4.11. Fig. 4.27

shows the granular gas consumption for the execution of different functions. It is observed

that the registerUser in the RegisterSc for the buyer is the most expensive transaction in

terms of gas consumption. This is because when a user registers himself as a buyer, an in-

stance of BuyerSc is spawned from PrivacyRatingSc. Consequently, registerUser includes

the deployment gas of BuyerSc. However, this transaction is infrequent since registra-

tion is just a one-time activity for any new buyer. As compared to the baseline, except

TxconfirmDelivery, all other transactions consume the same amount of gas. Recall from

section 4.4.1.1, TxconfirmDelivery triggers the payment settlement, during which payment

is transferred from the provider’s account to the buyer’s account. Post-settlement, Regis-

terSc issues TxupdateP urchase to PrivacyRatingSc. This transaction updates the purchase

profile of the buyer with the subscription specifications, hence, consuming more gas than
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Figure 4.28: Evaluation of throughput and latency of TxconfirmDelivery in KYBChain and
the baseline

the baseline.

Performance of Smart Contracts: As discussed previously, compared to the baseline,

TxconfirmDelivery performs additional write operations to update the purchase profile of the

buyer. Moreover, it is not only a state-changing transaction but is also frequent. Therefore,

it is worth evaluating the computational overhead in terms of latency and throughput

of TxconfirmDelivery. Throughput is the rate at which transactions are committed to the

ledger. Latency is the time taken from when a node sends the transaction in the network to

the time it is committed to the ledger. We consider a base model of a solo miner node using

Clique as the consensus mechanism from predefined network models in Caliper. Next, we

present performance evaluations for TxretrieveP rofile, which is a read-only transaction.

Recall from section 4.4.1.1 that TxretrieveP rofile retrieves a buyer’s practice, purchase

and leakage profile. The purchase profile of a buyer retrieves their current possession

and potential future acquisition specific to a provider. Recall from section 4.3.2, future

acquisition retrieves the purchase profile of all other buyers to determine the provider’s

risk based on the data, buyer can potentially buy from them. Therefore, it is worth

investigating the throughput and latency of TxretrieveP rofile with an increasing number of

buyers in the KYBChain.
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Figure 4.29: Throughput and latency for TxretrieveP rofile

State-changing transactions: These transactions are broadcast to the network, processed

by miners, and, if valid, are published on the blockchain. We performed the evaluations

by varying the send rate of transactions from 20 to 200 transactions per second (tps) for a

duration of 50s. Fig. 4.28 shows the evaluation results. It is observed that the throughput

of TxconfirmDelivery increases linearly with send rate in both KYBChain and baseline.

When the send rate approaches 120tps, throughput saturates at 104tps in KYBChain,

while it keeps increasing in the baseline. Furthermore, latency remains low (1.5s) until

100tps in both cases and increases for KYBChain. The trend observed in KYBChain

is due to the extra time taken to perform the additional write operations to update the

purchase profile. This resulted in the congestion caused by the rapid growth in the number

of transactions waiting in the execution and validation queues, which affects its commit

latency.

Read-only transactions - Web3 API provides a call function for local invocation

of a contract function that does not broadcast or publish anything on the blockchain.

TxretrieveP rofile is a read-only operation for reading the buyer’s profile from the ledger

and returning it to calculate their privacy rating. Typically, the call transactions are

synchronous, and the return value of the contract function is returned immediately. We

initialize each buyer’s purchase history by generating 10 purchases. We evaluate the

throughput and the latency by increasing the number of buyers from 20 to 200 and is-

suing TxretrieveP rofile at a 50tps send rate for a duration of 50s. We repeated this test

scenario for 50 iterations and calculated the average of the performance parameters.
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Fig. 4.29 shows the evaluation results for TxretrieveP rofile. When the number of buyers in

the system increases from 20 to 60, the latency increases linearly to 5sec, and throughput

decreases from 50tps to 15tps. This linear decline is due to the increase in the amount

of time for executing each loop to retrieve future acquisitions. As buyers increases from

60 to 140, the latency gradually increases to 25sec, and throughput decreases further to

5tps. This is because as the number of buyers increases, the number of call transactions

proliferates, and the node fails to retrieve the purchase profile for some requests; hence,

transactions fail with the timeout error. However, when the number of buyers is close to

140, we observe that most transactions fail due to an "out of gas" error. Usually, read

operations that return the state of the blockchain consume negligible gas compared to

write operations. However, in our case, even though we declare these retrieve functions

as view that does not change the state, they cost significant gas [235]. These functions in

purchaseRatingSc call functions of different buyers’ BuyerSc to retrieve their respective

purchase profiles and execute for loops and if conditions. Therefore, when the number of

buyers is 140, we double the default gas limit and increase the number of buyers further

from 140 to 200. We observe a similar trend as observed earlier between 60 to 140. Further

increasing the number of buyers resulted in an "out of gas" error again because of the high

processing required for the same reason stated earlier.

4.6 Discussions and design implications

KYBChain presents a decentralized marketplace framework integrated with a privacy rat-

ing system for buyers. It enables providers to make a privacy-aware informed decision by

estimating the risk of sharing their data with the buyer. KYBChain offers several benefits

in overcoming the challenges mentioned in section 4.1. (1) Objectivity: Privacy rating

is an objective metric based on factual and relevant information about the buyer. The

provider can use the privacy rating to ascertain the implications of selling data to the

buyer on their privacy. (2) Multifaceted and granular assessment: We define three differ-

ent profiles, namely practice, purchase and leakage, to enable a multifaceted assessment of
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buyer’s privacy rating to estimate the risk of non-compliance, data accumulation and data

leak. We model these profiles using privacy elements that allow the adoption of different

granularity levels based on the provider’s preferences. (3) Automatic and dynamic: We

proposed a stand-alone application, KYB-module, that comprises sets of smart contracts

to automatically map buyers’ activities in the marketplace with their profiles. (4) Au-

ditability: KYBChain provides auditable and immutable records of buyers’ profiles that

regulators and policymakers can use and inspect, thus enhancing compliance. (5) Security:

We carefully design access lists to enable role-based permissions for functions. Hence, re-

stricting participants from unauthorized access and preventing any malicious entity from

manipulating the rating. Moreover, KYBChain employs a hash-sharding technique to ran-

domly select auditors for assessment. This prevents manipulation due to the collusion of

buyers and auditors. Apart from these potential benefits of KYBChain, we also identify

some limitations listed below that could be used as the basis for future research directions.

We use several rubrics or grading tables in our system to assess the risk magnitude of

privacy elements while modelling the profiles. Such risk assessment varies considerably

with the context, the metrics used as dependent variables, and the users’ opinions. These

models can be improved by adopting a qualitative method based on expert opinions and

fuzzy techniques, as suggested in [219,220] to calculate the level of non-compliance, accu-

mulation and leakage risk associated with data sharing in the marketplace.

As highlighted in section 4.5, the throughput of the retrieval transaction (TxretrieveP rofile)

decreases as the latency increases with the increase in the number of buyers in the mar-

ketplace. Hence, with more buyers joining the marketplace, TxretrieveP rofile can be a

KYBChain performance bottleneck. To overcome this issue, there is a need to optimize

the implementation of purchase retrieval functions. One way of doing this is to utilize

the underlying computing infrastructure for caching the frequently used data, such as the

purchase profile of the buyers. The application monitors changes in the underlying ledger

and updates the cached data with new state modifications [236, 237]. Instead of making

frequent calls to the retrieval function, it can read the buyers’ purchase profile from its

application cache. Hence, improving the performance by serving future requests for profile
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retrieval faster.

Another limitation is the use of synthetic data in evaluating the efficacy of privacy ratings.

Although the experimental results exhibit that the use of privacy rating tackles providers’

privacy concerns, further generalization of the proposed approach can be explored using

real-world data. Since privacy is a subject in which people often have different opinions, it

would be worth conducting user acceptance surveys [230] to collect providers’ data-sharing

preferences.

4.7 Chapter Summary

In this chapter, we proposed a decentralized data marketplace integrated with a privacy

rating system, KYBChain, which aims to provide secure, transparent, efficient and trusted

maintenance and evaluation of buyer’s privacy rating. The contribution of this chapter is

two-fold. First, we proposed a privacy rating system to address the privacy concerns of

providers related to non-compliance risk, data accumulation risk and data leakage risk.

Corresponding to each risk, we maintain three profiles of the buyer, i.e. practice, purchase

and leakage, based on their different characteristics. We identify privacy elements to

model each profile. We use rubrics to score these privacy elements based on the associated

magnitude of risk. We developed a methodology to map these risk scores to the buyer’s

rating. Second, we implemented the privacy rating system as a stand-alone blockchain-

based application, the KYB-module, that keeps records of all buyers’ profiles. KYB-

module consists of smart contracts that automatically map buyers’ activities with their

associated profiles. Moreover, we also presented details of transactions and interactions

of smart contracts during different stages of KYBChain. We performed a quantitative

analysis to demonstrate the efficacy and utility of privacy rating based on three providers’

privacy dispositions: unconcerned, fundamentalist and pragmatist. We also implemented

a proof-of-concept on Ethereum and showed its effectiveness in terms of gas consumption.

We performed an overhead analysis on Hyperledger Caliper to demonstrate KYBChain

feasibility in terms of throughput and latency. Our analysis demonstrated the efficacy of
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privacy rating in aiding providers to make a privacy-aware decision about data sharing.

The results showed that the use of privacy rating decreases leakage percentage and revenue,

correlating with the classical risk-utility trade-off. Our evaluations of KYBChain revealed

that the overheads introduced by our mechanism compared to a marketplace without a

privacy rating system are insignificant relative to its privacy gains.
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Chapter 5

TrailChain: Traceability of Data

Ownership across Blockchain-Enabled

Multiple Marketplaces

This chapter answers the research questions RQ7, RQ8, RQ9, and IQ. Despite the

advantages of blockchain technology in decentralized data marketplaces as outlined in

Chapter 5, a data marketplace may be prone to various threats. A provider may suffer

privacy violation or monetary loss due to illegal or unauthorized reselling of their data.

A malicious entity may trade unauthentic data, which can have severe repercussions on

the buyer. A dishonest buyer can falsely claim the ownership of the purchased data caus-

ing misappropriation, forgery and identity theft for the provider. Traceability of data

ownership is an effective approach to solve the above problems. Nevertheless, managing

data ownership for traceability purposes is further complicated if a buyer buys data from

one marketplace and, without the knowledge or consent of the provider, resells bought

data to users registered in other marketplaces. Existing data ownership management

approaches are not suited as current marketplace architectures are fragmented and lack

mechanisms to track data ownership spanning multiple marketplaces. In this chapter, we

propose TrailChain, a three-layered data ownership management framework based on a

consortium blockchain network. TrailChain uses watermarking to generate a trusted trade
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trail for tracking the data ownership spanning multiple decentralized marketplaces. The

novelty of TrailChain stems from (a) a mechanism for detecting any unauthorized data

reselling within and across marketplaces; (b) a fair resell payment sharing scheme that en-

sures the resell revenue is shared with the data owners over authorized reselling; (c) a data

ownership registration protocol that allows providers to register the ownership of original

data and provides proof of data authenticity to the buyer by automatically verifying the

trade lineage; (d) a prototype implementation using four private Ethereum networks and

simulation to demonstrate TrailChain’s feasibility by benchmarking performance metrics

including execution gas costs, execution time, latency and throughput.

5.1 Introduction

The trading of IoT data promises many advantages for individuals, businesses and gov-

ernments. However, in the wrong hands, the traded data might pose a privacy threat to

the provider. In the previous chapter, we presented KYBchain, which employs a privacy

rating system to evaluate buyers’ privacy rating based on the risk associated with their

different characteristics in the marketplace. Providers can use privacy ratings to make a

privacy-aware data-sharing decision. Moreover, our findings show that a provider benefits

from a privacy rating in minimizing their privacy risk due to data leaks (see Chapter 4).

Unauthorized sharing of providers’ data to third parties has been considered one of the

major sources of their privacy concerns in the IoT data marketplace in [230]. Despite

such benefits, a provider’s revenue may decrease due to using privacy ratings, affecting

their utility. A provider can manage this classical risk-utility trade-off [230] in two ways;

either they restricts buyers from reselling their data, or they gives consent to buyers to

resell their data legitimately to others in the marketplace. In return, the buyers can share

their profit with the provider. Using the former method, a provider can control exposure

to additional privacy risks by restricting the visibility of data but at the loss of utility.

While in the latter case, even though the provider gets exposed to further risks, they can

compensate for these risks by increasing their utility. However, some open challenges in
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the data reselling context, as discussed below, have either not yet been addressed or have

only been partially addressed by the research community.

First, data ownership is ambiguous, as buyers may claim ownership of the purchased data.

Unlike traditional physical commodities that are only owned by one specific entity, data

ownership can include multiple parties as long as they have the ability to access the data

and share it with others [117]. Hence, it is difficult to keep track of ownership once data

is sold, which can lead to misappropriation, forgery and theft.

Second, data is an intangible asset [152, 238] and, therefore, can be resold in its original

format or redistributed as a value-added service (VAS) without the knowledge of the

provider. In cases when the provider may not want their data to be resold, illegal reselling

or sharing may violate data privacy laws (e.g., GDPR). In other cases, when a provider

is willing to share data for economic interests, unauthorized reselling leads to monetary

losses. In light of these concerns, organisations such as the European Commission are

contemplating the introduction of property rights over data, wherein a provider should

receive a share of the economic value generated from their data or VAS [239–241]. With

such laws and regulations, buyers will be required to share the generated revenue with the

provider for purposes other than the stipulated use, such as the resale of the purchased

data or VAS. Therefore, it is essential to facilitate a mechanism that allows providers to

detect data resales and enable the distribution of the revenue generated by the resale of

data among them.

For instance, Fig. 5.1 illustrates a data reselling and payment sharing scenario. A third-

party location-based service provider (Actor4) can provide campaign and promotional

services to local businesses to increase sales. A simple solution to generate such customized

promotional offers would be to buy users’ cuisine preferences from food service applications

(Actor2), such as Zomato, and location data from geolocation collectors (Actor3), such

as [242] and run analytics on the same. The provider in this example is the individual

(Actor1) who generates and shares their original data with Actor2 and Actor3. Actor1

should be able to detect when Actor2 and Actor3 resell their data to Actor4 and receive a

certain share p12 and p13 of the resell revenue p24 and p34 generated by Actor2 and Actor3,
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Figure 5.1: Data reselling and payment sharing scenario

respectively from Actor4.

Third, it is challenging to achieve data integrity and ensure that the traded data is ac-

curate, comprehensive, and sold with explicit consent. A malicious actor can perform

various fraudulent activities, such as they can impersonate IoT devices to sell fake or bo-

gus data or tamper with the data sent by legitimate devices, impacting the effectiveness

and usability of such marketplaces. Thus, there is a need for a mechanism to ensure that

the traded data is generated from a legitimate device and has not been altered through

the entire lifecycle.

Fourth, it is likely that participants will register with multiple marketplaces for monetary

gain or alternative offerings for data purchases. Users could buy data from one mar-

ketplace and resell the original data or value-added services to users registered in other

marketplaces. Current marketplace architectures are fragmented and dispersed and lack

mechanisms to track data ownership spanning multiple marketplace systems.

Digital watermarking technique [243,244] has emerged as a promising way to address the

challenges of illegal distribution or manipulation of digital data and for proving ownership.

Recent work [245–248] has proposed methods for incorporating watermarks in time-series

data such as sensor data or smartphone data. These schemes are designed to protect the
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digital copyright of the data by embedding the data owner’s signature in the least signif-

icant bit (LSB) of data. In complex situations such as reselling where buyers also claim

ownership of the purchased data, embedding several ownership signatures will require

additional bits, hence, introducing significant distortions in the data and degrading the

usability of IoT data. Besides, this approach does not preserve self-retrievable information

of the sequence of data ownership.

In this regard, the joint use of watermarking and blockchain offers a promising way to

prove and track ownership changes in distributed settings. Blockchain is essentially a dis-

tributed ledger that generates an immutable time-ordered history of transactions recorded

in blocks. The watermarking technique embeds blockchain transaction ID and other pub-

lic information in the data. This provides a secured and trusted linkage between the data

and its modification or ownership history. This approach has been explored in some recent

works [131, 137, 139] that fulfil a common interest of improving data ownership traceabil-

ity. However, these solutions do not address issues such as ambiguous data ownership,

undisclosed data reselling and dispersal of data ownership across multiple marketplaces.

TrailChain makes the following contributions:

• We propose a novel and fine-grained data ownership traceability mechanism called

TrailChain, by leveraging the power of blockchain technology on top of existing wa-

termarking techniques. Our framework provides an immutable and trusted trade

trail for tracking the sequence of data ownership in an autonomous, efficient and

transparent manner. TrailChain offers flexibility by identifying whether the resel-

l/redistribution is legitimate/illegitimate or within or across marketplace systems.

• We devise a data ownership registration protocol that allows providers to register

the ownership of original data and guarantees that the data has been generated by a

genuine device. Our system employs digital notaries for facilitating data ownership

traceability within and across marketplaces. Besides, it also provides proof of data

authenticity to the buyer by automatically verifying the trade lineage. We also

propose a fair resell payment sharing scheme that allows trusted, protected and
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automated sharing of resell revenue among the data owners in the trade trail.

• Finally, we develop a prototype implementation of TrailChain on Ethereum and

report detailed experimental results in terms of gas consumption and end-to-end

execution time. We present a performance evaluation of the specific mechanisms

introduced by our framework in terms of latency and throughput. We also per-

form a qualitative security analysis of TrailChain’s resilience to various malicious

activities. Simulations demonstrate that our method detects undisclosed reselling

within the same marketplace and across different marketplaces. Besides, it identifies

whether the reselling is authorized by the provider or not and fairly and automati-

cally distributes the revenue among the data owners at marginal overhead. Finally,

qualitative security analysis of the architecture highlights its effectiveness in provid-

ing immunity to several common attacks.

The rest of the chapter is structured as follows. Section 5.2 presents the overview of

TrailChain. The detailed description of our proposed framework is presented in section

5.3. Section 5.4 presents proof of concept implementation, simulation results, and security

analysis. Finally, section 5.5 provides discussions, followed by a chapter summary in

section 5.6.

5.2 Overview of TrailChain

In this section, we outline the architecture of TrailChain from three aspects. First, the

network model presents a multi-layer framework that integrates multiple decentralized

marketplace networks and uses consortium blockchain to achieve secure, trustworthy, and

transparent traceability of data ownership across these networks. Second, we explain

TrailChain’s architectural components. Third, we explain the high-level interactions of

the entities within TrailChain.

Table 5.1 lists the notation used in this chapter.
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Table 5.1: Table of notation used in this chapter
Notation Description
MPi ith Marketplace
IDMPi

ith Marketplace identifier
DNi ith Digital Notary
P UDNi

Public key of ith digital notary
SigDNi

Signature of ith digital notary
DP provider
SigDP Signature of provider
P US Public key of data seller
P UB Public key of buyer
P UO Public key of data owner
D Traded Data
bi ith batch of data sample in D
Wi Watermark of batch bi
SNi Serial number of batch bi
d IoT device generating data D
P Ud Public key or identifier of IoT device d
CRPd Challenge-response pair of device d
Cd Challenge of device d
Rd Response of device d
Pd One-way PUF functions of device d
Na Nonce
T 3(D) Trade trail table for data D
T ID Identifier of T3(D)
AID Agreement identifier
SID Subscription identifier
SS Subscription state
P S Payment state
P Payment received by data seller on selling D
rO Resell payment ratio of data owner P UO
pO Resell payment share of data owner P UO

TrailChain contains the following actors: (i) providers who possess IoT devices that gen-

erate data and wish to monetize the original data, (ii) buyers that demand and purchase

data, and (iii) data resellers that buy original data from providers or value-added services

from other data resellers and resell them to other buyers to generate more revenue. In

this chapter, we will refer to all the actors as data owners who have the ability to access

and share data with others. Moreover, data owners can derive benefits from the data by

selling original data or through value-added services. They also have the right to assign

these access privileges to others. Therefore, the provider who generated the data D and

all the buyers who have bought it are collectively referred to as the data owners of the

data D.

5.2.1 Network Model

The network model of TrailChain is illustrated in Fig. 5.2. TrailChain consists of three lay-

ers: marketplaces, data ownership management and token management. Layer 1 consists

of multiple separate decentralized marketplace networks MP = {MP1, MP2, ..., MPN }
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Figure 5.2: Network Model

that employ blockchain for managing and maintaining different trading-related function-

alities. Each marketplace (MPi) is associated with a set of data sellers and buyers with

the following assumptions. Data sellers are interested in selling original data generated

from their devices and are incentivized to participate in such a marketplace that can en-

sure tracking of further redistribution/reselling of their data. Buyers value genuine data

and are incentivized to participate in such a marketplace that can ensure authentic data

is sold fairly. We also assume that each participant is free to register himself in multiple

marketplaces in TrailChain and can independently create offerings and trade data from

one marketplace MPi to another marketplace MPj .

Layer 2 is based on a consortium blockchain network formed by a set of digital notaries

DN = {DN1, DN2, ..., DNN } that enable secure tracking of ownership change when the

data is traded within and across the underlying marketplaces. Each digital notary DNi

is associated with a marketplace network MPi and facilitates verification of the trade

legitimacy when data is traded in MPi. Without a digital notary, data owners would

be forced to use complex mechanisms to detect any unauthorized reselling of data as in

[143]. Although the approach of letting each data owner perform ownership identification

by himself is more secure, it requires them to behave honestly. Furthermore, the process

of determining data ownership in [143] is similar to mining and suffers from high com-

putational overhead. Hence, this approach is suitable only for a single reselling scenario
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in the same marketplace and not for multiple reselling scenarios in multiple marketplaces

such as ours. Introducing a digital notary simplifies the requirements on the data own-

ers for detecting illegitimate data trading. Additionally, a digital notary also notarizes

the originality of the provider’s data, provides proof of authenticity (POA) of the data

bought by buyers and facilities resell payment sharing among the data owners. The role

of the digital notary in TrailChain is carefully limited to the facilitation of aforementioned

functions and automated by using smart contracts that implement these functions in an

efficient, transparent and trusted manner.

The token management in Layer 3 manages and executes token transfer operations among

data owners for facilitating payment settlement. In our model, we consider the trading

of data across marketplaces, i.e., an actor can buy data in one marketplace and sell it to

participants in another marketplace. Therefore, to enable resell payment sharing among

the data owners, an asset exchange for the payment settlement among the participants

registered in different marketplaces is required. To simplify this payment settlement, we

assume that all participants register to a common token management network. We discuss

the impact of relaxing the above simplifying assumption in section 5.5.

A digital notary also enables interoperability by facilitating cross-layer transactions wherein

they reads and transfers the information recorded on the ledgers employed in each layer.

To ensure trusted information exchange, we assume that each cross-layer transaction is

accompanied with an attestation-based proof [129]. A proof provides the consensus view

of the local network, and it requires a subset of members to attest their approvals of the

information that is retrieved from their local ledger. The subset of members depends on

the underlying consensus protocol employed in the respective layers. Before consuming

the cross-layer information in the remote network, the proof is verified against the verifi-

cation policy wherein each signature is validated, and each signer is authenticated using

the configuration of other interoperable networks that is assumed to be priorly exchanged.
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Figure 5.3: System Architecture of TrailChain illustrating multiple blockchain-based mar-
ketplaces integrated with data ownership management and token management via digital
notaries

5.2.2 Architectural Components

The system architecture of TrailChain is depicted in Fig. 5.3. Each layer in the TrailChain

employs a separate blockchain network and uses a set of smart contracts to implement spe-

cific functions. Layer 1 uses application contracts to provide marketplace functionalities

such as management of user profiles and devices, agreements and subscriptions. Layer 2

employs system contracts responsible for tracking and managing ownership of data traded

in the marketplaces. The payment contracts provide fair and secure resell payment set-

tlement among the data owners in Layer 3. The framework also includes a marketplace

decentralized application (Dapp) for participants to interact with the underlying market-

place, which also integrates a watermarking module to verify data integrity. The use of

watermarking that allows the embedding of tracking details in the data itself and the in-

herited immutability and auditability of transaction records in blockchain provide secure,

efficient and trusted data ownership traceability.
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Layer 1 Application contracts: In this chapter, we adopt the application contracts de-

sign from Chapter 5 for demonstrating the integration of marketplace MPi with TrailChain.

However, TrailChain is agnostic of the underlying marketplace design and can similarly

integrate other solutions such as distributed product catalogue [11], access control [54] for

other marketplaces. Moreover, underlying marketplaces can be implemented in any instan-

tiation of blockchain with adequate support for smart contract execution. The application

contracts in MPi provide an agreement framework using smart contracts to guarantee

that the participants’ behaviour automatically conforms to the terms of the agreements.

The application logic is implemented by two main contracts: data subscription contract

(SubscriptionSc) and register contract (RegisterSc). SubscriptionSc is deployed on the

marketplace (MPi) ledger for agreements made between each data seller and buyer pair

and is only accessible to this pair. RegisterSc is unique to marketplace instantiation and

provides core marketplace functionalities such as entity registration and agreement man-

agement. It uses various application binary interfaces (ABI) such as registerUser, register-

Device, registerAgreement for creating participants’ profiles, registering their device and

agreement in the marketplace network, respectively. Moreover, it also manages pertinent

information such as the list of registered actors, description of devices whose data an actor

is willing to trade, marketplace identifier (IDMPi) and associated digital notary (DNi).

To integrate the data ownership management framework with existing marketplace archi-

tectures, we extended the RegisterSc design by adding various interfaces. A provider uses

registerData to initiate the data registration process for original data generated from their

devices. The digital notary uses ownershipRegistered for adding data registration ID for

a data registration request issued by a provider. Additionally, digital notary also uses au-

thencityRegistered for recording Proof of Authencity (PoA) certificate, which is needed for

data verification by the buyer. These newly added functions are designed with role-based

permissions to restrict other entities from unauthorized access.

Layer 2 System contracts: System contracts are special sets of contracts that are writ-

ten independent of marketplace application logic and deployed in Layer 2 for enabling data

ownership traceability. Based on the transaction records in the Layer 2 blockchain, owner-

ship of any data can be traced by every other digital notary. Therefore, the trade lineage
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(a)

(b)

Figure 5.4: (a) Trade tree for data D (b)Corresponding T3(D): Trade trail table for data
D

of any data can be proved and verified without any aid from a trusted third party. Sys-

tem contracts maintain and manage the immutable ownership-related information for each

data (D) traded in the underlying marketplace networks in a trade trail table (T3(D)).

A T3(D) of data D is defined as "a comprehensive history of data ownership". T3(D) is

identified by a unique trail identifier TID and records every trade transaction of data D

in chronological order. Given a data D, its selling/reselling is modelled as a trade tree

as depicted in Fig. 5.4a. The trade tree is represented as T (V, E) where each vertex

Actori ∈ V is attributed to a specific actor who has the ownership of D. The root of

the trade tree is the provider who owns the device from which the data was generated.

Each vertex Actori in the trade tree is uniquely identified by the actor’s identifier PUAi

implying that the same data D cannot be bought twice by the same actor. The edge set
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E consists of directed edges Eij representing a trade from Actori to Actorj . For each

Actorij , a corresponding entry is formed in the T3(D) as depicted in Fig. 5.4b.

When data (D) is traded from data seller (PUS) to buyer (PUB), the new ownership

details are updated in T3(D). Each entry in T3(D) consists of data seller ID (PUS), buyer

ID (PUB), marketplace ID (IDMP ) in which trading takes place, corresponding unique

marketplace subscription ID (SID) and the data seller’s resell payment ratio (rS). A resell

payment ratio (rO) of a data owner (PUO) is defined as the ratio of the payment received

by the data owner (paymentO) from the immediate data reseller to the payment received

by the data reseller on reselling the data (paymentRS), i.e., rO = paymentO/paymentRS .

A data owner or data seller defines their resell payment ratio (rS) when a new subscription

request is added to the agreement based on the negotiation with the buyer. The precise

value of the ratio depends on various properties of the data, such as its demand, usefulness,

quality, privacy risk [249] and storage cost.

System contracts consist of two smart contracts: TrackerSc and NotarySc. To facilitate

secure smart contract updates, we separate the business logic and data storage-related

functions into different smart contracts. The main smart contract NotarySc maintains

the identity and configuration information for all marketplaces to identify the origin of

the trade. It also contains functions for resell payment share settlement and trade lineage

verification. It connects to the secondary contract TrackerSc to collect and store data.

This is important when a bug is discovered and/or an update of a smart contract is

necessary. A selfdestruct method is used to make the old smart contract unusable, and

a new updated smart contract is deployed, and the accessibility of the old data remains

intact through the new smart contract.

The TrackerSc contract uses the following data structure for recording the data ownership-

related information in T3(D).

1 struct Trail {

2 bytes32 P US ;

3 bytes32 P UB ;

4 bytes32 SID;
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5 uint rS ;

6 bytes32 IDMP ; }

7 mapping ( bytes32 => Trail []) T3

NotarySc interacts with TrackerSc to retrieve the trade trail list of a data owner for data.

A trade trail list is used to identify the trade flow from provider to data owner in the

purchase order. A trade trail list of an Actor for data D is an ordered list of tuples given

as (TTL(Actor, D)) = (PUO, IDMP , rO). As an example, the trade trail list of Actor6

for data D in Fig. 5.4(a) is TTL(Actor6, D) = {(PUA1 , IDMP2 , r1), (PUA3 , IDMP1 , r3),

(PUA4 , IDMP3 , r4)}. The trade trail list of a data owner is used to determine the legiti-

macy of the data source and identifies illegal/unauthorized reselling and double-buying, as

explained in section 5.3.5. Additionally, the trade trail is utilized in the fair and secured

distribution of resell payments among the data owners in the trade trail list. For a valid

and legitimate trade trail, NotarySc uses (TTL(Actor, D)) to distribute payment P made

by the buyer for the data D to the data seller and among the data owners in the trade

trail list. It returns a payment share list (PSL) which is a list of tuple {PUO, pO} where

pO is the resell payment share for data seller and each data owner in TTL(Actor, D).

Layer 3 Payment contract: The proposed system defines a custom economic model

based on a custom currency (Ethereum token), which can be used to interact with the

underlying marketplace systems for payment settlement. Ethereum tokens are ERC20-

compatible smart contracts that can act like a currency on the Ethereum platform.

ERC20 [250] provides a standardised set of functions that must be implemented for tokens

in Ethereum. Our model employs a PaymentSC smart contract for creating Ethereum

tokens for transaction and payment purposes. We assume that all the participants (actors

and digital notaries) create an account in Layer 3. The payment settlement is automated

by employing escrow accounts in SubscriptionSc. To facilitate resell payment share for

trades, the payment contract receives PSL from the digital notary along with attestation-

based proof to verify and initiate the token transfer from the buyer’s account to data

owners as per the payment share list, as discussed previously.

Marketplace Dapp: The main function of the Dapp is to serve as the front-end to al-
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low actors to interact with the main components of TrailChain. It uses the IoT service

API to connect participants’ IoT devices with the watermarking module used for em-

bedding watermarks in the data generated from these devices. The Dapp also interacts

with the application contracts to address queries and transaction requests from actors to

record/retrieve data from the blockchain ledgers of different layers via digital notaries.

• Watermarking module: In TrailChain, digital watermarking is used to implement

mechanisms for tracking the movement of data by enabling providers to embed hidden

watermarks within data. Suppose data is found to be in suspicious possession or resold

illegally. In that case, the embedded watermark in the data is used to identify the corre-

sponding transaction trail recorded on the TrailChain to prove the ownership.

TrailChain is flexible to support any watermarking technique based on the data type.

However, to prevent malicious buyers from stripping the raw data from watermarked data

and illegally reselling it, our solution utilizes the existing backward watermark-chain data

batch scheme [248]. In this scheme, data batches are chained with each other through a

watermark, as explained below.

Before data transmission from provider to buyer, the IoT data D = (b1, b2, b3, ...bN ) is

organized into constant-sized batches bi. Each data batch consists of a fixed number of

data samples, and if the last batch is shorter, zero-padding is used. For synchronization

between the sender and the receiver, the batches are separated by a delimiter d that does

not occur in the data readings. The watermark Wi of the data batch bi is formed as:

Wi = HASH(TID|bi|SNi) (5.1)

where HASH() is a secure hash function applied on the concatenation of TID, data

batch bi and the batch serial number SNi. Watermarking module in TrailChain uses

trade trail identifier TID in Equation 5.1 that uniquely identifies immutable ownership

history recorded in Layer 2, as explained earlier. Hence, providing a linkage between

the traded data and its associated ownership details. Recall that TID is only known to

authorized entities such as digital notaries. Since the attacker does not know the TID,

any modifications to the data can be detected. The associated digital notary (DNi) of
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Figure 5.5: Watermark-chained data

a marketplace (MPi), where data D is traded, securely shares TID with the provider

during the data ownership registration process, as explained in section 5.3.4. The use of

SNi prevents data reading insertion or deletion attacks. In our implementation, we use

the SHA3 algorithm for hashing, which produces a fixed-length hash value (256 bits) for

arbitrary-length input strings. Watermarking module uses two LSBs in each data sample

in bi, one bit for marking the presence of the watermark and another bit for embedding

the watermark. Even in complex scenarios with multiple ownership details, this approach

has a negligible distortion [247] and will not affect the usefulness of the data.

In the backward watermark-chain scheme, instead of sending the watermark Wi with the

corresponding batch bi of data readings, the watermark is embedded in the following batch

(Wi of batch bi is sent with batch bi+1) as illustrated in Fig. 5.5. This way, the watermark

is chained across all batches, making it difficult for an attacker to copy one or more data

batches and replay them later [251]. This technique also ensures data integrity in an

efficient, fast and lightweight manner at the application layer. Moreover, any change or

tampering with the original data or an attempt to decouple data and watermark is easily

detectable.

5.2.3 High-level interactions

The end-to-end interactions of the actors with the proposed framework are illustrated in

Fig. 5.6. The process of selling data by Actor0 (provider) to Actor1 (buyer) is shown in

Steps (1-7) while reselling of data by Actor1 (data reseller) to Actor2 (buyer) is shown

in Steps (8-12). In Step 1, a SubscriptionSc is encoded and deployed in MP1 when

Actor0 and Actor1 come into an agreement. In Step 2, Actor0 uses the data ownership
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Figure 5.6: High-level interaction in selling and reselling scenario

registration protocol (see section 5.3.4) to register the generated data. In Step 3, DN1

(digital notary of MP1) creates a new trail in Layer 2, shares the encrypted TID and

randomly-generated Nonce with the provider. DN1 then records the hash of Nonce in the

MP1 ledger that TrailChain uses to validate the claim of ownership of original data by

the provider. Post data ownership registration, TID is embedded in the data using the

watermarking technique. Then, the watermarked data is transferred over an end-to-end

encrypted channel (possibly using transport layer security (TLS)) in Step 4. The data

exchange between two actors is assumed to be handled by the protocol chosen by the data

seller. After receiving the data, Actor1 initiates a data verification process with the DN1

in Step 5. In Step 6, DN1 reads the trade trail recorded in Layer 2, verifies the trade

lineage, generates a proof of authenticity (POA) certificate, and records it in the MP1

ledger. After receiving the POA, application contracts in MP1 automatically initiate the

payment settlement (Step 7), followed by payment share distribution in Step 8. In the case

of reselling, a new SubscriptionSc is deployed in MP2 in Step 8 when Actor1 and Actor2

come into a new agreement. Actor1 transfers the data bought from Actor0 to Actor2

in Step 9. Steps (10-12) in reselling are similar to Steps (5-7) in selling, except instead

of DN1, all the intermediate transactions are handled by DN2 (digital notary of MP2).
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Payment settlement uses a fair payment re-sharing scheme (see section 5.3.6) to calculate

the resell payment amount for all the data owners in the trade linage and transfers the

resell payment to the data owners using PaymentSc.

5.3 TrailChain Components

This section presents the details of the important components of TrailChain, which in-

clude the smart-contract-based approach for automated workflow execution, ownership

traceability of traded data, data ownership registration and verification, and fair payment

sharing. We will specifically cover six key components of TrailChain, as explained below.

5.3.1 Setup and Initialization

This component takes care of setting up marketplaces in Layer 1 and bootstrapping and

initialising the data ownership management network in Layer 2. During the set-up phase,

an existing or new marketplace network (suppose MPi) is integrated with the TrailChain.

As discussed earlier, the application contract, i.e., RegisterSc is extended with new func-

tions such as ownershipRegistered and authencityRegistered that are required for digital

notaries to interact with and fetch information from the associated marketplace ledger. To

integrate an existing marketplace with the TrailChain, either a new version of application

contracts integrated with new functions as stated above can be deployed, and all states

from the old contract are migrated to the new one or existing application contracts can be

upgraded by using update plugin of OpenZeppelin [227]. The problem of bootstrapping of

data ownership management network (Layer 2) can be solved by incentivising participants

for early adoption by having mining or service rewards using native tokens or by raising

capital through an initial coin offering (ICO). This could be done by using the first phase

of pure Proof-of-Work and then switching to Proof-of-Stake, like in PPCoin [252]. Dur-

ing the initialization phase, a digital notary (DNi) registers himself to the marketplace

(MPi) and token management network to gain authorization to read/write in the respec-
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tive ledgers. Next, they registers MPi in Layer 2 to enable a data ownership traceability

mechanism for every data trade happening in MPi.

5.3.2 Registration of actors and their devices

We assume that TrailChain uses a common decentralized public key infrastructure (PKI)

service across the three layers (i.e., data ownership management, marketplace, and token

management) for enrolling and revoking public keys. All the entities (actors, digital notary

and their devices) in the TrailChain are identified by their unique public keys across the

three layers. In the rest of the chapter, we will use the actor’s identifier and public key

interchangeably. During the registration phase, an actor registers himself and creates a

digital profile in the marketplace (Layer 1) and token management network (Layer 3) to

record their public key. Actors use their private keys to sign their transactions. These

signatures can be verified by the respective smart contracts, which have access to the public

keys of the actors recorded in their digital profiles. In order to create data offerings in the

marketplace from IoT devices, actors are responsible for registering their devices to the

system using their unique parameters such as device serial number or MAC address [253].

In order to preserve privacy, this parameter is hashed, and only the hash value is recorded

on the marketplace (MPi) ledger as the unique identifier PUd of the device d.

5.3.3 Agreement formation and execution

This component handles the workflow of subscription in an automated and non-repudiated

manner. When a data seller and a buyer come to an agreement in a marketplace (MPi), a

new SubscriptionSc with the negotiated terms is spawned. It is encoded with details of the

data seller and buyer, compiled and deployed in the marketplace ledger (MPi) in Layer

1. The SubscriptionSc address and associated ABIs are registered to the RegisterSc us-

ing registerAgreement. SubscriptionSc maintains the subscription table that contains the

following information for each subscription: subscription identifier (SID), data seller iden-

tifier (PUS), buyer identifier (PUB), device identifier (PUd), data type, validation value,
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temporal context, total cost, subscription state (SS), verification value and payment state

(PS). To enable ownership traceability, we include two extra fields for each subscription:

validation value and verification value. These fields contain the outcome of data ownership

registration and data verification processes, respectively, as explained in the following sub-

sections, and can only be updated by the associated DNi using TXupdateS . The structure

of TXupdateS is given below:

TXupdateS = [SID|Field|V alue|SigDNi |PUDNi ] (5.2)

where SID is the subscription identifier in the SubscriptionSc, PUDNi and SigDNi are the

public key and signature of the digital notary, respectively. The field corresponds to the

field "validation value" or "verification value" while the value is the corresponding value.

All the other functions in SubscriptionSc related to adding subscription details, starting a

particular subscription, etc. are only accessible by the data seller and buyer between whom

the agreement is formed. This is to restrict external entities from interfering with the ex-

ecution flow of subscriptions. Based on predefined workflows modelled by the data seller

and buyer, SubscriptionSc manages and handles the operational sequence of each sub-

scription using a separate variable subscription state (SS). Additionally, SubscriptionSc

also employs an escrow functionality that uses another variable payment state (PS) for

each subscription to automate the payment settlement when the buyer confirms the de-

livery of the data. SubscriptionSc automatically executes the steps of the subscription

process following predefined business rules as explained next. When a new subscription is

added, the SS is set to INITIATE while the PS is set to AWAITING_PAYMENT. If the

data seller is the producer of the data, they will execute the data ownership registration

process, during which SS changes to VALIDATING. At the start of the subscription, the

SS changes to ACTIVE, and the buyer makes the deposit in the escrow account, which

changes the PS to AWAITING_DELIVERY. Data is transferred off-chain from the data

seller to the buyer over a secured connection. At the end of the subscription period, the

buyer executes the data verification process, and the SS is set to SETTLEMENT while

the PS is set to AWAITING_SETTLEMENT. Finally, the payment is transferred to the

data seller and to the data owners as per the payment share list (PSL), and the receipt
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is sent to the buyer. Post-settlement, SS and PS are set to FINISH and COMPLETE,

respectively.

5.3.4 Registering provider’s data

As discussed in section 5.1, a data seller can easily generate inauthentic data instead of

collecting authentic data from their IoT devices. It is hence difficult for buyers to verify

whether data comes from registered data sources or illegitimate sources. Therefore, in our

proposed mechanism, all the original data are required to be registered by the provider

in the TrailChain prior to trading them in the marketplace. To this end, the provider is

required to provide evidence to authenticate that the data is generated by a registered IoT

device (d). TrailChain uses Physical unclonable functions (PUF) as evidence to establish

trust at the origin. PUF acts as a unique hardware fingerprint of each IoT device. A PUF

is formally described as a one-way function Pd that maps a set of challenges (Cd) to a set

of responses (Rd) based on the physical microstructure of a device. Due to the naturally

occurring manufacturing variations inherent to the fabrication process of the integrated

circuits present in IoT devices, it is nearly impossible to modify, clone or tamper with a

PUF [254]. A PUF can be represented as:

Rd = Pd(Cd) (5.3)

A single challenge and the corresponding response of a device (d) are called the challenge-

response pair and represented as CRPd. The initial CRPd is encrypted CRP ′
d = (Enc(Cd,

PUd), Enc(Rd, PUd) with the public key of the device (PUd). During the device regis-

tration process in marketplace MPi, the provider also records the encrypted challenge-

response pair of the device in the ledger of MPi. Before transferring data generated

from d, the provider registers the ownership of the generated data in the data ownership

management network (Layer 2) via DNi. We assume that the actors may be selfish and

untrustworthy and may try to gain unfair monetary benefits by unauthorized reselling of

data or selling ingenuine data. We propose a data ownership registration protocol (DORP)

to prevent such dishonest behaviours, as illustrated in Fig. 5.7. DORP consists of the
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Figure 5.7: provider registering their original data in the TrailChain using DORP

following steps:

(a) Provider sends TXregisterData (Equation 5.4) to RegisterSc for registration of data

D generated from IoT device d for subscription SID. The transaction structure is

given below:

TXregisterData = [AID|SID|SigDP ] (5.4)

where AID is the agreement ID to locate the SubscriptionSc, SID is the correspond-

ing subscription identifier of the provider for trading generated data, and SigDP is

the signature of the provider.

(b) For each new data registration request in MPi, DNi registers the ownership of

new data in the TrailChain. DNi locates the corresponding CRP ′
d for d in the

marketplace ledger (MPi) using SID. If the CRP ′
d is not found, the registration

request is rejected. Otherwise, DNi sends a TXaddNewDataT rail (Equation 5.5) to

NotarySc which in turn sends TXcreateT 3 to initiate T3(D) associated with new

data D. The createT3 function returns TID that is used to identify the recorded
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trade trail in the data ownership management (Layer 2). The trade trail identifier

TID is unique to each original data and can only be accessed by digital notaries via

NotarySc. The transaction structure of TXaddNewDataT rail is given below:

TXaddNewDataT rail = [IDMPi |SID|PUDP |SigDNi ] (5.5)

where IDMPi is the marketplace identifier and PUDP is the public key of the

provider, which can be used to identify the origin of the data.

(c) DNi generates and encrypts a nonce value Na with R′
d and TID with Na and sends

{Enc(Na, R′
d), Enc(TID, Na), C ′

d} to the provider’s Dapp that forwards {Enc(Na, R′
d), C ′

d}

to IoT device d. Next, DNi issues TxownershipRegistered to RegisterSc, which in turn

sends TXupdateS to update the validation value with HASH(Na) in the correspond-

ing subscription identified by SID. The transaction structure of TxownershipRegistered

is

TXownershipRegistered = [SID|HASH(Na)|SigDNi ] (5.6)

(d) Provider’s IoT device d decrypts the challenge using its private key and obtains the

corresponding response Rd for the challenge Cd using its PUF. Then using R′
d as the

secret key, d obtains Na and sends it to the provider’s Dapp via IoT service API.

(e) The provider’s Dapp then sends TXdataV alidate as given in Equation 5.7 with the

obtained nonce Na to the SubscriptionSc. SubscriptionSc matches the received nonce

Na with the recorded nonce Hash(Na) in the marketplace (MPi) ledger and marks

the data validation status in the corresponding subscription SID as "validated" and

returns success to the watermarking module in the provider’s Dapp. Suppose the

obtained nonce sent by the provider’s Dapp fails to match the nonce recorded in the

MPi ledger. In that case, the registration fails and the validation status remains

"invalidated" implying the origin of the data cannot be confirmed.

TXdataV alidate = [SID|Na|SigDP ] (5.7)

(f) If TXdataV alidate is successful, provider’s Dapp uses the obtained Na to decrypt TID.

The watermarking module then generates a watermark using TID and embeds it in
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the data at the application layer, as explained earlier in section 5.2.2. Finally, the

watermarked data is securely transferred to the buyer.

5.3.5 Data Verification Process for verifying trade lineage

The Data Verification Process (DVP) is illustrated in Fig. 5.8. After receiving the data

batches D = {b1, b2...bN } from the data seller (ActorS) in Step 1, the buyer (ActorB)

checks whether the data D is genuine, before initiating the payment settlement process.

Since buyers are paying for the data, it is safe to assume that honest buyers are interested

in checking whether purchased data items are genuine and have a legitimate trade lineage.

Scenarios where the buyer intends to buy bogus or pirated data, are beyond the scope

of this chapter. Besides ensuring data integrity, another benefit of using a backward

watermark-chain technique is that buyers can select a subset of consecutive data batches

to prove ownership. This approach significantly improves the network overhead compared

Figure 5.8: Data verification process initiated by buyer
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to sending the entire data to DNi for executing DVP. An honest buyer requests data

verification by first choosing a subset of consecutive data batches {bn, bn + 1, ..bm} and

sends them to the DNi along with agreement ID AID and subscription ID SID in Step

2. In dishonest cases, a malicious buyer can send false or different data batches to the

DNi, which can impact the effectiveness of the data ownership traceability mechanism

by resulting in wrong verification results. Such malicious activity can be addressed by

employing a proof of delivery protocol [255], which can identify disputes in off-chain data

transfer from the data seller to the buyer. Next, in Step 3, DNi extracts the watermark W ′

from the received data batches using the watermarking detection and extraction algorithm

given in [251]. Then, using received AID and SID, DNi reads data seller’s ID (PUS)

from the SubscriptionSc via RegisterSc. DNi then sends the transaction TXvalidateT rail to

NotarySc to verify trade lineage in Step 4. The transaction structures of TXvalidateT rail is

given below:

TXvalidateT rail = [TID|PUS |PUB|IDMPi |SigDNi ] (5.8)

Then in Step 5, NotarySc executes the Trade Lineage Verification (TLV) algorithm as

given in Algorithm 4. TLV takes seller’s ID (PUS), buyer’s ID (PUB), marketplace ID

(IDMPi) where the trade happened and TID as an input. TLV uses T3(D) corresponding

to received TID to determine the trade legitimacy and returns the verification result based

on the following four scenarios:

(1) Invalid data selling detection: Invalid data implies that no trade trail table T3(D)

exists in TrailChain identified by TID. No associated T3(D) signifies that the provider

has not registered their generated data D. An honest provider is expected to register

their data in TrailChain using DORP for monetary gain or to prevent unauthorized data

re-sharing. However, a malicious actor selling bogus/invalid data will intentionally not

register their data in TrailChain. Such dishonest behaviour can be detected when the

buyer executes the data verification process, and the malicious actor is referred to relevant

authorities and could even be banned from the system.

(2) Illegitimate reselling detection: This can be explained using the reselling scenario from

Actor5 to Actorx as illustrated in Fig. 5.9a. The corresponding trade trail table (T3(D))
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Algorithm 4 Trade lineage verification
Input: P US , P UB , IDMPi

, T ID

Output: result

1: Retrieve Trade trail table using T ID

2: if (!T 3[T ID].exist)

3: result = "ERROR: Invalid data"

4: else if (T 3[T ID].length == 0)

5: if(P US != dataP roducer[T ID])

6: result = "ERROR: Illegitimate selling"

7: else result = "No reselling"

8: else

9: if(P UB == dataP roducer[T ID])

10: doublebuy = true

11: if (P US == dataP roducer[T ID])

12: legitimate = true

13: for e in range(0, T 3[T ID].length)

14: if(T 3[T ID][e].P UB == P UB)

15: doublebuy = true

16: if(T 3[T ID][e].P UB == P US)

17: legitimate = true

18: if(!legitimate && doublebuy)

19: result = "ERROR: Illegitimate reselling and double-buy"

20: else if(!legitimate) then result = "illegitimate"

21: else if(doublebuy) then result = "double-buy"

22: else result= "Success"

23: if(result == "Success")

24: if(dataP roducer[T ID] == P US) then result = "No reselling"

25: else retrieve T T L(ActorS , D)

26: market = IDMPi

27: for ele in range(0, T T L(ActorS , D).length)

28: if(market == T T L(ActorS , D)[ele].IDMP )

29: result = "Intra-reselling"

30: else

31: result = "Inter-reselling"

32: break

33: return result
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(a)

(b)

Figure 5.9: (a) Sample reselling scenario to explain illegitimate reselling, double-buy, intra-
reselling and inter-reselling cases (b) Corresponding T3(D)

recorded in Layer 2 is depicted in Fig. 5.9b. A trade trail table identified by TID exists,

implying the data is registered and verified by DNi. However, no entry of the Actor5, data

reseller, in the T3(D) is found. This can happen only when Actor5 intentionally skips the

data verification process for bought data. This situation may arise when either Actor5

bought data illegally external to TrailChain, or they is unauthorised to sell the data. Once

identified, dishonest data resellers are referred to relevant authorities and imposed heavy

fines for such malicious activities.

(3) Double-buying: Double-buying happens when a buyer either unknowingly buys the

same data multiple times from different data sellers, or a malicious data seller fraudulently

sells the same data multiple times to the buyer. Double-buying can lead to buyer’s resource

wastage, hence, have a negative impact on the buyer’s trading experience. Double-buying

is detected by TrailChain when the buyer (Actor2 as shown in Fig. 5.9(a)) is already listed

201



CHAPTER 5. TRAILCHAIN

as a buyer in T3(D) of the data (D) (refer to Fig. 5.9(b)). In such a case, the escrow

account releases the payment back to the buyer.

(4) Authorized reselling detection: In the fourth scenario, a trade trail table associated

with the key identifier is found and a valid trade trail list can be constructed for the

data seller, which implies authorized reselling. We present the process for detecting au-

thorized reselling under two cases: intra-reselling and inter-reselling. The reselling of

data D among the actors residing within the same marketplace is referred to as intra-

reselling, and reselling of data D across the marketplace is known as inter-reselling. In

other words, the data ownership for D in intra-reselling remains within the same market-

place, while in inter-reselling, data ownership for D is dispersed in multiple marketplaces.

For instance, as depicted in Fig. 5.9(a) and (b), a trade from Actor8 to Actory in mar-

ketplace MP2 where TTL(Actor8, D) = {(PUA1 , IDMP2 , r1), (PUA2 , IDMP2 , r2)} is the

case of intra-reselling. On the other hand, a trade from Actor4 to Actorz in marketplace

MP1 where TTL(Actor4, D) = {(PUA1 , IDMP3 , r1), (PUA3 , IDMP1 , r3)} is an example of

inter-reselling.

The trade is authorized and legitimate when the verification result of the TLV algorithm

is either "No reselling", "intra-reselling", or "inter-reselling". In Step 7, for the authorized

trading, only DNi produces the proof of authenticity (POA) certificate and sends it with

its signature to the buyer. Then in Step 8, DNi executes TxauthencityRegistered in RegisterSc

that updates verification value in the appropriate SID with issued POA. Consequently,

data delivery to the buyer is automatically confirmed, and payment settlement is initiated.

5.3.6 Resell Payment Share Settlement

In accordance with the property rights over data wherein a data owner should receive

a share of the economic value generated from their data or VAS as discussed in section

5.1, our resell payment share scheme fairly distributes the resell payment received by the

immediate data reseller to each data owner in the trade trail. This can be explained by

a sample scenario of reselling as illustrated in Fig. 5.10a. Suppose there are four actors
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(a)

(b)

Figure 5.10: (a) Sample payment-sharing scenario for reselling data D from Actor2 to
Actor3 (b) corresponding T3(D) for sample payment-sharing scenario

{Actor0, Actor1, Actor2, Actor3} where Actor0 is the provider, Actor1 and Actor2 are the

data resellers and Actor3 is the buyer. Actors’ association with the marketplaces is given

as MP1{Actor0, Actor1}, MP2{Actor1, Actor2} and MP3{Actor2, Actor3}. The resell-

payment share ratios for each actor recorded in TrailChain are r0, r1, r2, r3, respectively.

Actor3 purchases the data D from Actor2 by paying the price P . Using the T3(D) recorded

in Layer 2 as shown in Fig. 5.10b, trade trail list of Actor2 for data D is retrieved which

is given as TTL(Actor2, D) = {(PUA0 , IDMP1 , r0), (PUA1 , IDMP2 , r1)}. Then using the

resell payment share method, Actor2 shares p1 = r1 × P with Actor1 on receiving resell

payment P from Actor3. While Actor1 on receiving resell payment p1 from Actor0, shares

p0 = r0 × p1 with Actor0.

Fig. 5.11 illustrates the resell payment share settlement process. RegisterSc issues an

event to DNi to initiate payment settlement. DNi sends TXevaluateP aymentShare for the

subscription (SID) to NotarySc that firstly verifies the trade lineage of Actor2. Then

based on the verification result, NotarySc sends TXupdateT 3 to TrackerSc to update T3(D)

with the new data owner (Actor3) information. Finally, trade trail list of data seller

203



CHAPTER 5. TRAILCHAIN

Figure 5.11: Resell payment share settlement scheme for trade in MPi

(TTL(Actor2, D)) is retrieved from TrackerSc using TXretrieveT 3. It should be noted that

new ownership detail is added in the T3(D) during the final stage of subscription, i.e., the

settlement phase. This is to ensure that T3(D) is updated only for the authorized trading

scenario while all the other discrepancies due to illegal reselling, off-chain data transfer,

etc., are handled during the previous states of subscription. The transaction structure of

TXretrieveT rail and TXupdateT 3 are given as:

TXretrieveT rail = [TID|PUS ] (5.9)

TXupdateT 3 = [TID|PUS |PUB|rS |IDMPi |SID] (5.10)

Next, the retrieved TTL(Actor2, D) is used to execute resell payment share (RPS) Algo-

rithm 5 that efficiently and fairly evaluates the resell payment share for each data owner

in the trade trail list. For the trade (ActorS → ActorB), the algorithm takes data seller

ActorS ID (PUS), their trade trail list TTL(ActorS , D) and payment P made by buyer

ActorB as an input and returns a payment share list (PSL). Recall from Section 5.2.2,

TTL(ActorS , D) is a list of tuple (PUO, IDMP , rO) and PSL is a list of tuple {PUO, pO}.
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Algorithm 5 Resell Payment Share Algorithm
Input: P US , T T L(ActorS , D), P

Output: P SL

1: N = length(T T L(ActorS , D))

2: Pin = P

3: for (j = N ; j > 0; j − −)

4: Pout = Pin ∗ T T L(ActorS , D)[j − 1].rO

5: P SL[j].pO = Pin − Pout

6: Pin = Pout

7: if (j == N)

8: P SL[j].P UO = P US

9: else

10: P SL[j].P UO = T T L(ActorS , D)[j].P UO

11: if (N == 0)

12: P SL[0] = (P US , P in)

13: else

14: P SL[0] = (T T L(ActorS , D)[0].P UO, Pin)

15: return P SL

The PSL for resell scenario in Fig. 5.10(a) is {(PUA0 , p0), (PUA1 , p1), (PUA2 , p2)}. Fi-

nally, DNi collects attestation-based proof from the subset of digital notaries in the data

ownership management network (Layer 2) as evidence to prove the consensus view of the

PSL. DNi then sends a transaction TXpaymentShare along with the proof to the token

management network (Layer 3). The transactions structure of TXpaymentShare is given as

below

TXpaymentShare = [PSL|PUB|Proof |SigDNi ] (5.11)

where PSL is the payment share list, PUB is the buyer identifier from whose account

the payment is made, proof comprises of the signatures of a subset of digital notaries and

SigDNi is the signature of the DNi associated with the marketplace (MPi) where the

trading happened.

To ensure a trusted and fair token transfer, TXpaymentShare is confirmed when the proof

is verified else it gets rejected. After confirmation, the payment P is transferred from

Actor3 to other actors in the PSL in which actors {Actor0, Actor1, Actor2} receive pay-

ments {p0, p1, p2} respectively. PaymentSC is also extended with implementations of the

functions defined by the ERC20 standard, such as balanceOf and transferFrom, which
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return the token balance of an account, and enables token transfers between accounts,

respectively. After the amount is transferred from the buyer account to the data owners

in the PSL, DNi notifies RegisterSc using TxregisterP ayment the completion of the pay-

ment settlement and subscription. Finally, PS is set to COMPLETE, and SS is changed

to FINISH for subscription ID SID in SubscriptionSc. The transactions structure of

TXregisterP ayment is given as below:

TXregisterP ayment = [SID|SigDNi ] (5.12)

5.4 Evaluation And Results

In this section, we provide a proof of concept implementation, a quantitative performance

evaluation and a qualitative security analysis of the TrailChain framework.

5.4.1 Proof-of-concept implementation

This section describes the proof-of-concept (POC) implementation of the TrailChain frame-

work in a local private network based on Ethereum. We selected the private Ethereum

blockchain as the implementation platform to show that our solution works for permis-

sioned and permission-less blockchains. Our proposed architecture can be implemented in

any blockchain instantiation that supports smart contract execution, for instance, Besu,

Corda, Quorum and Hyperledger Fabric.

We implemented various functions related to ownership traceability and marketplace con-

tained within smart contracts written in Solidity v0.5.13. However, Solidity v0.5.13 does

not support floating point computation1. Therefore, we simulate resell payment share

using integer values and define the resell ratio as percentages. We used the solidity web

browser-based IDE “Remix” to develop these contracts. We used Python v3.7.4 scripts to

simulate the interactions among contracts, web3 v5.2.0 library for communicating with the

1https://docs.soliditylang.org/en/v0.5.3/
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Figure 5.12: POC setup based on private Ethereum networks

Ethereum node, and py-solc v3.2.0 library for compiling the smart contracts. Smart con-

tract codes become immutable once deployed in the blockchain. Therefore, we cautiously

performed unit and integration tests of the application, system and payment contracts on

the Ganache Ethereum network before implementing the POC.

We used Caliper v0.3.2 [234] as the benchmarking tool. All the performance tests are

carried out on a 3.70GHz Intel(R) Xeon(R) 12, Linux Server (Ubuntu) with 62GB RAM

Memory. For performance comparison, We consider a baseline marketplace system [249],

without a data ownership traceability mechanism, which only provides agreement man-

agement functionality. The full stack of POC implementation, Caliper benchmark and

smart contracts are available online2.

The setup for POC is illustrated in Fig. 5.12. We defined four separate private Ethereum

networks that are built using Docker to simulate a real-world marketplace. Each network

consists of 2 nodes and one miner, wherein each node runs geth v1.10.13 to manage

the network. To demonstrate the ownership traceability across marketplace networks,

we use two separate blockchain networks, namely, Marketplace1 and Marketplace2, in

which we deployed two sets of application contracts (RegisterSc and SubscriptionSc) to

facilitate marketplace functionalities. The system (NotarySc and TrackerSc) and payment

2https://github.com/pooja239/TrailChain
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(PaymentSc) contracts are migrated to two separate private Ethereum networks: the data

ownership management layer and the token management layer. We modelled two classes:

digitalNotary and Actor, written in Python v3.7.4 that use web3.py v5.2.0 API for sending

transactions to these networks. We created two instances of digital notaries (DN1 and

DN2) and six instances of actors (Actor1, Actor2, Actor3, Actor4, Actor5 and Actor6).

Actor2 is registered in both Marketplace1 and Marketplace2 to demonstrate the reselling

use-case. These instances are linked with unique Ethereum addresses whose association

with each network is depicted in Fig. 5.12. We initialized the setup by registering all the

entities in the respective networks. All the actors’ initial balance and resell ratio are set

to 10000 tokens and 10%, respectively. Each subscription payment is 1000 tokens. We

used GPS data consisting of 2 batches of 256 samples as an instantiation of streaming IoT

data for demonstration purposes.

The different steps in the lifecycle of a data trade in TrailChain are shown in Fig. 5.13.

Compared to the baseline [249] discussed in section 5.2.2, the trading in TrailChain in-

volves three extra steps: data ownership registration process, data verification process and

payment share evaluation and settlement. Recall that the term ’selling’ refers to the trade

of original data by a provider, while ’reselling’ implies the trade of purchased data by a

data owner. Therefore, the data ownership registration process (Step 4) is only part of

selling and not reselling. Fig. 5.14 shows the snippet of the console output of the demon-

stration of our POC for selling between Actor1 and Actor2, intra-reselling between Actor2

and Actor3 and inter-reselling between Actor2 and Actor4. In addition, we also simulated

two adversarial cases as discussed in section 5.3.5: (i) illegitimate reselling, where Actor5

obtains the GPS data off-chain from Actor3 and resells it illegitimately to Actor6, and

(ii) double-buying, where Actor3 unintentionally purchases the same GPS dataset from

Actor1 that they had previously acquired from Actor2. In both of these scenarios, the

validation result is illegitimate resell and double-buying, respectively, and the payment

settlement is not performed, as shown in Fig. 5.15. The complete console output of the

POC is available online3.

3https://github.com/pooja239/TrailChain/blob/main/POC/Output.txt
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Figure 5.13: Lifecycle of a trade in TrailChain

(a) Case 1: Selling (b) Case 2: Intra-reselling

(c) Case 3: Inter-reselling

Figure 5.14: Snippets of the console output for the POC for three cases

(a) Case 1: Illegitimate resell (b) Case 2: Double-buying

Figure 5.15: Snippets of the console output for two adversarial cases

5.4.2 Performance Evaluation

To illustrate the feasibility of our proposed architecture, we divide the performance eval-

uation into three parts: (1) gas consumption evaluation, (2) end-to-end execution time

analysis and (3) performance evaluation of system contracts. We used [249] as a baseline

to compare the execution gas and execution time overhead in TrailChain. In addition, we
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Figure 5.16: Deployment Cost

repeated all the testing scenarios in each evaluation for 10 iterations and calculated the

average of the performance parameters.

(1) Gas consumption evaluation: In the Ethereum platform, any operation or trans-

action execution that changes the Blockchain or its state requires fees, and the involved

parties need to pay the fees. These costs are calculated by using the amount of gas con-

sumed that reflects the computational complexity of different transactions required in the

trading process or the size of the smart contracts.

In our experiment, we record the deployment gas cost for deploying the relevant smart

contracts in Layers 1, 2 and 3. We compare with the baseline introduced earlier, which does

not include an ownership traceability mechanism. Fig. 5.16 shows the deployment gas cost

of RegisterSc, SubscriptionSc, NotarySc, TrackerSc and PaymentSc. It is observed that

the deployment cost of the application contracts is higher. Compared to the baseline, the

deployment cost of RegisterSc is more because we added several registration functionalities,

including authercityRegistered, ownershipRegistered, to enable ownership traceability in the

existing marketplace application. The deployment cost of SubscriptionSc in TrailChain is
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Figure 5.17: Tx Execution Cost

slightly more than the SubscriptionSc deployment cost in the baseline. This is because

the subscription table contains two extra fields to record the data ownership registration

and data verification results for the provider and buyer, respectively. The deployment cost

of TrackerSc is less than the NotarySc. This is because all the logic to verify the trade

trail and evaluation of payment share is performed within NotarySc while TrackerSc only

manages the data storage in the ledger. Compared to the baseline, PaymentSc includes

an extra function to distribute the payment among all the owners in the trail based on

PSL, leading to a slight increase in the deployment cost.

We also evaluated the execution gas cost incurred by the data seller, buyer, and asso-

ciated digital notary by calling write functions in each smart contract during different

stages of data trading. We implemented different functions in TrailChain with role-based

permissions for execution (e.g. using the require clause of solidity and variables such as

msg.sender to check account authenticity). This ensures that the content can be retrieved

and/or modified only by participants with specific roles. Fig. 5.17 shows the granular gas

consumption for the execution of different functions. It is observed that the evaluatePay-

mentShare in the NotarySc is the most expensive transaction. Recall from section 5.3.6
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Figure 5.18: Execution time comparison

that evaluatePaymentShare provides the trusted payment share list (PSL) and performs

three key operations, i.e., verification of seller’s trade lineage, payment share evaluation

and update current trade details in the T3(D) in Layer 2. Note that paymentShare dis-

tributes the amount paid by the buyer to all the data owners in the trail and builds on

transferFrom [250] and, therefore, does not require much gas.

(2) Execution Time Analysis: In this evaluation, we are interested in observing the

increase in end-to-end execution time of trading in TrailChain due to the introduction of

three extra steps as compared to trading in baseline: data ownership registration process

(Step 4), data verification process (Step 7) and payment share settlement (Step 8) as

illustrated in Fig. 5.13. End-to-end execution time is the time span of trade starting from

subscriptionSc deployment till the payment settlement. Fig. 5.18 shows the end-to-end

execution time for baseline, selling, intra-reselling and inter-selling cases. As expected, the

execution time of trade in TrailChain is more compared to the baseline. Additionally, the

execution time of selling is also more than the reselling cases due to the additional data-

registration process in the former. However, the execution time of the different steps in

inter-reselling and intra-reselling remain the same, implying TrailChain provides ownership

traceability across marketplace networks with no additional time overhead compared to

within the same marketplace network. It is worth noting that since there are no changes
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Figure 5.19: Impact of Trail length on execution time

in the deployment of the subscription contract (Step 1), registration of the agreement

(Step 2) and adding subscription (Step 3), execution time remains the same in all the

scenarios. The time to execute the start subscription (Step 5) remains the same in the

baseline and reselling cases, while it is lower in the selling case. This is because, at the end

of the data ownership registration process (Step 4) in selling, the RegisterSc automatically

activates the subscription for the provider. The execution time of DVP and payment share

settlement (Steps 7 and 8) remains similar in selling and reselling cases. The execution

time of payment in the baseline is less compared to TrailChain. This is because, during

the settlement phase, the payment amount is transferred directly from the buyer to the

data seller in the baseline. In contrast, payment share is evaluated and distributed among

all the data owners in the trail in TrailChain.

Fig. 5.19 depicts the variation of the end-to-end execution time of a single trade depending

on the trail length. Trail length is the number of data owners in the trail who have resold

the data. A trail length of 0 corresponds to when the data is bought directly from the

provider. It has the maximum execution time because of the data ownership registration

process (Step 4). It is observed that the execution time of trade in the case of reselling

increases with the increase in trail length from 1 to 7. However, the execution time remains

almost the same in all the steps except DVP and payment share settlement (Steps 7 and 8).
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These two steps require NotarySc to construct the trade trail and perform trade validation

and payment evaluation, which depends on the trail length. Hence, the execution time of

these two components increases with the increase in trail length.

(3) Performance of System Contracts: Recall from section 5.2, TrailChain uses Layer

2 to record and manage the data ownership traceability for trading in the underlying

marketplace networks. Herein, we evaluate the latency and throughput of the system

contracts deployed in the Layer 2 blockchain network. Throughput is defined as the

rate at which transactions are committed to the ledger. Latency is the time taken from

when a node sends the transaction in the network to the time it is committed to the

ledger. For Layer 2, we consider a base model of a solo miner node using clique as the

consensus mechanism from predefined network models in Caliper. For the performance

evaluations, we consider the read-only and state-changing transactions in both TrackerSc

and NotarySc as they are not only frequently used but also their computational overhead

is higher. To determine the scalability of TrailChain, we compared the performance in two

scenarios: multi-T3 and single-T3. Multi-T3 corresponds to updating and reading trades

from multiple T3 tables. While single-T3 corresponds to updating and reading trades

from a single T3 table. Next, we present the throughput and latency evaluations for

TxretrieveT rail and TxupdateT 3 in TrackerSc and TxvalidateT rail and TxevaluatepaymentShare

in NotarySc. We performed the evaluations by varying the send rate of transactions from

10 to 100 transactions per second (tps) for 1000 trades.

Read-only transactions: Web3 API provides a call function for local invocation of a con-

tract function that does not broadcast or publish anything on the blockchain. TxretrieveT rail

and TxvalidateT rail are read-only operations in TrackerSc and NotarySc, respectively, for

reading and constructing the trade trail for a given data owner. The call transactions

are synchronous, and the return value of the contract function is returned immediately.

The performance results for TxretrieveT rail and TxvalidateT rail are shown in Fig. 5.20. As

expected, the throughput of both read transactions increases linearly with an increase in

send rate, while latency remains low for the multi-T3 scenario. However, in the single-T3

case, the throughput starts saturating at 70tps while the latency starts increasing. Recall
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(a)

(b)

Figure 5.20: Throughput and latency for (a) TxretrieveT rail (b) TxvalidateT rail

from section 5.3.5 that to retrieve or validate the trail, the trade trail is constructed using

T3. In this experiment, a trail length for each read request is selected in the range of

(1,1000) with uniform distribution. With the increase in send rate, the number of call

transactions proliferates, and the node fails to construct the trails for some of the re-

quests; hence, transactions start failing with a timeout error. Note that the throughput

and latency of TxvalidateT rail is slightly more than that of TxretrieveT rail. Contrary to

TrackerSc, NotarySc uses an additional logic to validate the constructed trail leading to

a slight increase in the metrics.

State-changing transactions: These transactions are broadcast to the network, processed

by miners, and, if valid, are published on the blockchain. We consider TxupdateT 3 and

TxevaluatepaymentShare for performance analysis as these transactions perform write-operations
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(a)

(b)

Figure 5.21: Throughput and latency for (a) TxupdateT 3 (b) TxevaluatepaymentShare

on Layer 2 that will update the state of the blockchain and consume Ether. Fig. 5.21a

shows the performance results of TxupdateT 3. It is observed that in the multi-T3 scenario,

throughput increases linearly with send rate. Throughput starts saturating at 33.33tps

when the send rate approaches 40tps. A similar trend is observed in single-T3, with the

throughput saturating at 37tps at the same transaction load. Furthermore, latency re-

mains low ( 1.5s) and then starts increasing from send rate of 40tps. This is due to the

congestion caused by the rapid growth in the number of transactions waiting in the ex-

ecution and validation queues, which affects the commit latency. Before the saturation

point, the throughput and latency for both Single-T3 and Multi-T3 are almost the same.

However, after the saturation point, it is observed that the update in Single-T3 is faster

than Multi-T3, where the latency of Single-T3 is lower, and throughput is higher than

Multi-T3. This trend is similar to the bulk-insert operation in SQL wherein a multi-row
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insertion in one database is faster than inserting the same number of single-row in mul-

tiple databases. This difference in overhead is due to the extra time spent establishing

connections with multiple databases rather than connecting to a single database. Simi-

larly, inserting a single element in multiple tables in multi-T3 causes a higher latency than

inserting multiple elements in a single table in single-T3.

TxevaluatepaymentShare is the most expensive transaction in TrailChain as it involves three

operations to provide a trusted payment share among the data owners. The throughput

and latency comparison of TxevaluatepaymentShare in single-T3 and multi-T3 are shown in

Fig. 5.21b. In the case of multi-T3, the throughput increases linearly till send rate is 10tps

and approaches to maximum performance point of 13.2tps for the send rate of 20-30tps.

However, with a further increase in the send rate from this point, the throughput starts

falling and settles to 12.5tps. The transaction latency of multi-T3 remains almost constant

till the send rate is 10tps, and an increase is observed till 40tps. This is also due to the in-

crease in the commit latency that is caused by the congestion of the number of transactions

growing in the execution and validation queues. However, with a further increase in the

send rate from 40tps, the latency saturates to 26sec. This is because, from 40tps, many

transactions are reported as failed by the Caliper due to the high validation time of suc-

cessful transactions and high waiting time of remaining transactions in the queue. Hence,

the number of successful transactions starts decreasing. Caliper calculates the through-

put and latency only for successful transactions [https://github.com/hyperledger/caliper].

Therefore, with the decrease and saturation in the number of successful transactions on

increasing send rate beyond 40tps, we observe that the throughput and latency also get

saturated. This implies that the system under test has reached its saturation point, and a

further increase in send rate will not impact the performance. In the case of single-T3, we

observed a similar trend for throughout that approaches the maximum performance point

of 10tps for send rate of 15tps and then starts decreasing and settles at 4.1tps. However,

in single-T3, we observe that even for a lower send rate of 5tps, the latency is higher

compared to multi-T3. This can be explained by the fact that in the single-T3 scenario, a

single T3 has 1000 trade elements, while in the multi-T3 case, each T3 has a single trade

element. Therefore, NotarySc takes more time to construct and validate the trade trail
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in single-T3 than in multi-T3. This increases the validation time for the single-T3 case.

The latency reaches its peak of 41sec with the send rate at 20tps. Further increase in the

send rate decreases the latency, which finally settles at 30sec. This is due to the decrease

in the number of successful transactions as explained earlier.

Recall from section 5.2 that TrackerSc only manages the data storage-related functions in

Layer 2, while the business logic related to trail validation and payment share evaluation

is handled by NotarySc. Therefore, with the increase in the validation time of the trans-

actions, the commit time of TxevaluatepaymentShare is more than that of TxupdateT 3. Hence,

the performance of TxupdateT 3 is better than TxevaluatepaymentShare in both multi-T3 and

single-T3 scenarios.

5.4.3 Security Analysis

In this section, we discuss the critical attacks that can be implemented by malicious entities

including providers, data resellers, digital notary nodes and external attackers, and argue

how TrailChain can provide resilience against all of them.

Malicious provider: In TrailChain, all providers are required to register their data in

the marketplace before selling it. An actor cannot sell anything that is not registered in

the marketplace. However, a malicious provider may try to register some fake/bogus/inau-

thentic data in the marketplace. Our system can detect such an attempt when the provider

executes the data ownership registration process. The watermarking module embeds the

watermark in the data generated from the IoT device after verifying that the device is

registered and in possession of the provider, as explained in 5.3.4. The watermark will

not be embedded if the data is not generated from the stated device. Hence, a malicious

provider cannot register bogus/fake/inauthentic data in the marketplace.

Malicious data reseller: A data reseller can be involved in the following three malicious

activities. In the first instance, a dishonest data reseller may try to subvert payment of

the resell shares for purchased data D by not executing the data verification process. In
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this case, the data reseller will not be listed as an owner in the T3(D). Moreover, suppose

they resells the data to an honest buyer who executes the data verification process. In that

case, the malicious data reseller will be automatically identified as an illegal reseller by the

NotarySc as discussed in section 5.3.5. In the second instance, when the malicious data

reseller tries to falsely claim ownership of the data by registering it under their name, the

watermarking module will detect the already embedded watermark, and registration will

fail. In the third instance, a malicious data reseller attempts to sell the data by modifying

it. When they tries to register the ownership of the modified data, the execution of

DORP will fail, as the data reseller will not be able to prove that the data is generated

by a registered device that is owned by him. Moreover, TrailChain employs a backward

watermark-chain scheme that will chain all batches using a watermark. Any change or

tampering with the original data is thus easily detectable using this technique. A dishonest

data reseller can be penalized by reducing their reputation or revoking their participation

in the marketplace. These accountability mechanisms will be explored in our future work.

Malicious digital notary node: The key involvement of the digital notary node is in

the data ownership registration protocol and data verification process, where they can

act maliciously and degrade the effectiveness of the ownership traceability mechanism.

Moreover, a malevolent digital notary can attempt to obtain the data content causing

privacy or security risk to the provider. TrailChain prevents such attacks, as explained

below.

• During the data ownership registration process, a dishonest digital notary can po-

tentially change the tracking identifier TID′ embedded in the data. Corresponding

to an invalid tracking identifier, no T3(D) exists in the data ownership manage-

ment layer. Hence, genuine data will be regarded as invalid/fake data. TrailChain

prevents this attack by enabling trusted cross-layer information exchange between

the data ownership management network and marketplace network, wherein such

information transfers are accompanied by attestation-based proof from the subset

of digital notaries along with the tracking identifier. Hence, such malicious activity

of modifying the tracking identifier TID by a dishonest digital notary can be easily
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detected and penalized.

• During the data verification process, a malicious digital notary extracts the wa-

termark from the data and intentionally sends a different watermark to NotarySc.

When NotarySc executes the trade lineage verification algorithm, the fallacious wa-

termark or TID′ will fail to identify trade records in the data ownership management

layer and provide incorrect verification results. To prevent this attack, a marketplace

network can register additional digital notaries. Consequently, instead of relying on

a single digital notary, a buyer can send their DVP packets to multiple digital no-

taries for data verification. This minimizes the potential tampering of the extracted

watermark by a dishonest digital notary.

• A malicious digital notary tries to obtain data using illegitimate means that can raise

security or privacy issues for the provider. Since data transfer in TrailChain happens

directly between data seller and buyer using TLS, the likelihood of such an attack

is low. Furthermore, the buyer shares a small subset of data batches with a digital

notary during DVP to validate the trade lineage and generate PoA, as explained

in section 5.3.5. Since only a limited number of samples are shared, it will have a

low impact on the security or privacy of the provider. However, even if the digital

notary obtains the content of the data by any illegitimate means and wishes to sell

the data, such unauthorized selling can be detected by TrailChain.

Colluding digital notary: Malicious digital notaries can collude to corrupt the cross-

layer information transfer from TrailChain. This attack can be mitigated by employing a

large number of validators in the data ownership management network. Furthermore, to

generate proof for trusted information transfer, attestation by the signatures of more than

2/3 of the digital notaries can be used as in [256]. This will ensure better system security

as compared to a pure majority (51%).

Device Impersonation: An attacker may try to impersonate a device to register fake/il-

legitimate data. However, this attack requires the attacker to have access to the actual

physical device as the data registration process validates the source of data using the de-
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vice’s PUF, a hardware fingerprint as discussed in section 5.3.4. The likelihood of success is

thus very low, and hence, TrailChain exhibits high resilience against device impersonation

attacks.

Actor impersonation: An external attacker can generate fake transactions by trying to

impersonate a legitimate actor. An attacker may sign the transactions by either stealing

the victim’s private key or using a different private key. In the former case, the attacker will

require to access the personal storage of the victim where these keys are stored, which is

highly difficult. In comparison, the system can easily detect the later case. This is because

all transactions are signed using the actors’ private keys, the corresponding public keys

known to the system and used to verify the transactions. Therefore, the likelihood of

success of this attack is very low.

Denial of Service: An adversary may make the digital notary unavailable by sending a

large number of fake requests for DORP and TLV processes. DOS protection can be built

into the digital notary using thresholding methods [257] in which incoming transaction

requests from such malicious senders can be blocked and banned from the system if they

generate transactions above a certain threshold. However, it can still lead to short-term

DOS, whose effect can be further mitigated by adding redundant digital notaries in the

marketplace.

5.5 Discussion

The joint use of watermarking techniques and blockchain technology in TrailChain en-

sures integrity, transparency and availability of data ownership information in a trustless

environment to prove ownership and enable ownership traceability in data marketplace,

respectively. A comparison of the most relevant works [131,137,139,143] with TrailChain

is summarized in Table 5.2. This comparison demonstrates several benefits offered by

TrailChain in overcoming the challenges mentioned in section 5.1. (1) Data authenticity:

TrailChain uses a PUF-based data ownership registration process that enhances the effec
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Table 5.2: A Comparative summary of TrailChain wrt relevant works.

Metrics [139] [137] [131] [143] TrailChain
Data type Big data IoT data Image IoT data IoT data
Blockchain Ethereum NA Ethereum NA Ethereum
Watermark ✓ ✓ ✓ ✕ ✓
Data authenticity ✕ ✕ ✕ ✓ ✓
Trusted trade trail ✓ ✓ ✓ ✕ ✓
Automatic reselling
detection

✕ ✕ ✕ ✓ ✓

Fair distribution of
resell payment

✕ ✕ ✕ ✓ ✓

Security ✕ ✕ ✕ ✕ ✓
Multi-system net-
work

✕ ✓ ✕ ✕ ✓

Performance evalua-
tion

✕ ✕ ✕ ✕ ✓

tiveness and usability of the marketplace by ensuring that only genuine data is registered

and traded in the system. TrailChain also provides a data verification mechanism for buy-

ers to validate the authenticity of the purchased data. (2) Trusted trade trail: TrailChain

uses system contracts to trace data ownership and provide a transparent, immutable au-

dit trail for data movement across multiple marketplace networks. (3) Automatic reselling

Detection: Our model automatically detects data reselling and identifies illegitimate data

trading and double-buying scenarios. (4) Fair distribution of resell payment: TrailChain

adopts a payment-share channel to allow fair and trusted distribution of resell payments

among the owners in the trail. (5) Security: TrailChain provides resiliency against various

security threats, minimizing the overall risks in the data ownership traceability mecha-

nism. (6) Multi-system networks: TrailChain provides an effective data ownership trace-

ability in the multi-marketplace data trading scenario. (7) Performance evaluation: The

experimental evaluation of TrailChain demonstrates its effectiveness in detecting undis-

closed reselling, identifying unauthorized data reselling, and fairly distributing the revenue

among the data owners at marginal overhead.

Our approach uses a common token management layer for simplifying payment settlement

among data owners in different blockchain-based marketplace networks. More complex
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scenarios that require asset exchange in different blockchain networks can be implemented

using techniques like Hash Time Locked Contracts (HTLC) [258] or atomic swaps [259]. In

the future, we will consider incorporating these techniques into our architecture to enable

a wider spectrum of applications, including asset and information transfers.

Another limitation is that the robustness and efficiency of TrailChain depend on the un-

derlying coupling of the embedded watermark and the data. To ensure data integrity and

tamper detection, TrailChain adopts a backward watermark-chaining technique, wherein

each data batch is linked with the previous batch through the watermark as explained

in section 5.2.2, similar to blockchain. Hence, making it difficult for an attacker to re-

move the embedded watermark or make it undetectable while keeping the data useful. To

prevent forgery or modification attacks, a robust watermark technique [260] can be used.

Moreover, to demonstrate the generality of the traded data in the TrailChain, we pre-

sented a proof of concept for GPS data samples. However, we expect TrailChain to work

even better for trading multimedia data (image, video) with more advanced watermarking

techniques [261,262] that provide stronger coupling between the data and watermark.

The quantification of throughput and latency of transactions depends on various fac-

tors [263] such as the underlying consensus mechanism, blockchain platform used, exe-

cution environment, block time etc. However, the trends of throughput and latency will

likely remain the same as they depend on the underlying logic of smart contracts. In this

chapter, we used the Ethereum blockchain to illustrate the feasibility of our architecture

and demonstrate that our design works even on a permission-less blockchain. However,

other blockchain platforms such as Hyperledger Fabric, Besu or Corda with other con-

sensus mechanisms (iBFT, raft, PBFT) could be considered that can further improve

the system’s performance for varying numbers of transactions [264]. Furthermore, since

the simulation of POC is performed on a single machine, the end-to-end execution time

analysis does not incorporate network delay and therefore, the latency due to cross-layer

transactions or message exchange between two entities is considered to be negligible.
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5.6 Chapter Summary

In this chapter, we proposed a data ownership management and traceability framework,

TrailChain, which aims to provide a secure, immutable and trusted trade trail to trace

the data movement across multiple decentralized marketplace networks. TrailChain uses

a blockchain-based data ownership management layer that keeps records of the ownership

changes when the data is traded among the marketplace participants. The framework

also provides a PUF-based data ownership registration process that ensures the reliability

of the origin of data. Additionally, it provides a data verification mechanism for buyers

to validate the authenticity of the bought data. TrailChain achieves automation and

efficiency using smart contracts that enable resell detection and ensure that the revenue is

properly and fairly shared among all the data owners in the trail. TrailChain is agnostic

of the underlying marketplace design and can be implemented for existing designs without

requiring many changes. We performed a qualitative security analysis to show that the

approach is immune to several common attacks. We implemented a proof-of-concept

implementation on Ethereum and demonstrated its feasibility in terms of gas costs and

execution time. Lastly, we performed an experimental evaluation on Hyperledger Caliper

to demonstrate its effectiveness in terms of throughput and latency.
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Conclusion and Future Directions

In this thesis, we explored the adoption of blockchain to achieve autonomy, efficiency, pri-

vacy and traceability in the decentralized IoT data marketplace. First, we presented an

extensive literature review to understand the state-of-the-art blockchain-based IoT data

marketplace and the associated challenges from the perspective of ensuring autonomy,

efficiency, privacy and traceability. Second, we presented MartChain, an autonomous

and efficient marketplace framework, to address the challenges of scalability, repudiation

and the resource-constrained nature of IoT devices. Third, we presented KYBChain, a

privacy-aware marketplace framework, to address the privacy concerns of providers result-

ing from sharing their sensitive IoT data with buyers about whom they may not have any

prior information or knowledge. Finally, we presented TrailChain, a data ownership trace-

ability framework, to address the complex issues of ambiguous data ownership spanning

multiple marketplace systems, undisclosed reselling and lack of a mechanism to verify the

authenticity of purchased data.

In the next section, we summarize the contributions made in each chapter, followed by

potential research directions in section 6.2.
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6.1 Summary of Contributions

We proposed MartChain in Chapter 3, a fully functional and effective decentralized mar-

ketplace for trading IoT data stream in real-time from resource-constrained IoT devices.

The framework design is based on the autonomy and efficiency requirements of the data

marketplace. The design enforces a holistic model equipped with all essential components

of the marketplace, such as discovery and selection, data agreement management, price

model and reputation mechanism. We outlined the participant’s roles in MartChain and

the interaction among them. We also presented the functionalities of four smart contracts

(SubscriptionSc, RegisterSc, PriceSc, and ReputationSc) and their associated methods

to achieve trustful automated data trading. The framework also provides a simple and

dynamic way of pricing the data based on the competitors’ prices in the market and en-

courages providers to sell high-quality data and value-added features in return for greater

incentives. To provide resilience to various security attacks, we presented a reputation

mechanism that uses the trading history of entities in tuning the reputation score and

penalizes them for being dishonest. An EDSA mechanism underpinned MartChain to

ensure that the computational constraints of the provider’s IoT devices, such as battery

energy, processing capacity, and communication bandwidth, are considered in determining

which data requests a provider can service. This represents a multi-objective optimization

problem that incorporates the computational constraints of the provider’s IoT devices,

requests from buyers, and the need to maximize profits and value for the provider and

buyer, respectively. We implemented the key MartChain components as smart contracts

on the Ethereum blockchain. We evaluated the gas consumption and cost incurred for

interacting with MartChain. Furthermore, we formulated the EDSA problem in MAT-

LAB and simulated various scenarios to analyze the impact of the buyer’s requests on the

battery drainage of the provider’s devices. The simulation result shows that our approach

is viable and benefits the provider and buyer by creating an autonomous and efficient

real-time data trading model.

In Chapter 4, we proposed KYBChain, a know-your-buyer marketplace framework inte-

grated with a privacy rating system. The contribution of this chapter is two-fold. First,
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we proposed a privacy rating model to address the privacy concerns of providers related

to non-compliance risk, data accumulation risk and data leakage risk. Corresponding to

each risk, we maintained three profiles of the buyer, i.e. practice, purchase and leakage,

based on their different characteristics in the marketplace. We identified several privacy

elements to model these profiles. These identified privacy elements are further used to

develop rubrics for scoring the magnitude of risk associated with each profile. We then

developed a methodology to convert these risk scores to the buyer’s respective ratings.

Second, we designed a blockchain-based marketplace framework embedded with a stand-

alone rating management component, the KYB-module, that records all buyers’ profiles.

KYB-module comprises smart contracts that automatically map the buyer’s activities with

their profile. Moreover, we presented details of the methods and transactions implemented

in these smart contracts and their interaction with the marketplace components during

different stages of KYBChain. We conducted multiple simulations to show the utility of

privacy ratings based on three providers’ privacy dispositions: unconcerned, fundamental-

ist and pragmatist. We developed a proof-of-concept implementation of KYBChain in a

private Ethereum network and reported experimental results regarding gas consumption,

throughput and latency using Hyperledger Caliper. Our results revealed that compared to

a marketplace that does not incorporate a privacy rating system, the overheads introduced

by our mechanism are insignificant relative to its privacy gains.

Finally, in Chapter 5, we proposed TrailChain, a data ownership management and trace-

ability framework, which aims to provide a secure, immutable and trusted trade trail to

trace the data movement across multiple decentralized marketplace networks. We devised

a PUF-based data ownership registration process that allows data producers to register

the ownership of original data and guarantees that a genuine device has generated the

data. TrailChain provided a data verification mechanism for buyers to validate the au-

thenticity of the bought data. We also proposed a fair resell payment sharing scheme

that allows trusted, protected and automated sharing of resell revenue among the data

owners in the trade trail. Finally, we developed a prototype implementation of TrailChain

on Ethereum and reported detailed experimental results regarding gas consumption and

end-to-end execution time. We performed an experimental evaluation on Hyperledger
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Caliper to show its effectiveness in terms of throughput and latency. We also performed

a qualitative security analysis of TrailChain’s resilience to various malicious activities.

Simulations demonstrated that our method detected undisclosed reselling within the same

marketplace and across different marketplaces. Besides, it identified whether or not the

provider has authorized the reselling and fairly distributes the revenue among the data

owners at marginal overhead.

6.2 Future Research Directions

The research presented in this dissertation augments novel contributions towards adopting

blockchain in a decentralized IoT Data Marketplace. To conclude this chapter and the

thesis, we present potential future research directions as described below:

The first area for future exploration is regulatory oversight of the marketplace for data

trading. With its economical and societal benefits, data is a valuable asset for orga-

nizations, governments, individuals, etc. However, keeping private data and sensitive

information safe is paramount with the ever-growing cyber security risks. Many lawmak-

ers worldwide have introduced data protection laws to secure individuals’ data privacy,

availability, and integrity. Per a UN report [265], 137 out of 194 countries have imple-

mented data protection and privacy legislation. However, these regional regulations are

inconsistent and do not have significant international implications. Since the data market-

place network spans the globe, data can travel the world through this borderless network,

making it challenging to apply data protection regulation evenly as citizens’ data leaves

that region. Therefore, considering regional data protection laws while designing a data

marketplace to enable data transfer from one country to another would be an interesting

future direction.

Another exciting research direction is the reliable data verification process for buyers.

Compared to physical trading goods, verifying data against the buyer’s requirements is

difficult before buying them. A buyer can verify the data after buying it using our data
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verification process proposed in Chapter 5. However, data verification after buying reveals

the data to the buyer, which may affect providers’ security and privacy requirements.

Moreover, since the value of data depends on its novelty, revealing data for verification

may decrease its value. Existing approaches use trust mechanisms to establish trust that

the provider will provide quality data per the buyer’s requirements. However, trust in

the data (the trading good) is still missing. It will be worth investigating new approaches

for data verification addressing this privacy and trust trade-off. Cryptographic methods

such as zero-knowledge proof that enable data verification without revealing the provider’s

identity will likely attract significant attention.

Another open area for future investigation is to reduce reliance on a central entity. For

example, MartChain, discussed in Chapter 3, relied on a facilitator to provide various

services such as search and discovery mechanisms and dispute resolution. In TrailChain

presented in Chapter 5, digital notaries enable interoperability across ownership manage-

ment, marketplace systems and payment layers. However, including such a central entity

may lead to a certain level of monopoly, affect transparency, and centralize trust, making

the purpose of using a blockchain futile. Therefore, it is critical to reduce or remove the

dependency on the central entity to achieve decentralized solutions.

Another potential direction for future research is to acquire real-world data to simulate

experiments. While the experiments conducted in this thesis are based on synthetic data,

obtaining real data from industry or collaborations would be a valuable future direction

to enhance the validity of the thesis’s results and observations. This is an essential step

towards demonstrating the effectiveness and practicality of the proposed decentralized IoT

data marketplace in real-world scenarios.

Given the high volume of transactions, scalability limitations are expected to be a bot-

tleneck for blockchain in data marketplace contexts. In MartChain (see Chapter 3), we

employed geographically distributed facilitators to address the issue of scalability. We

delegated two marketplace operations to the facilitators, including listing data offerings

from myriads of devices and searching and matching offerings based on buyers’ queries.

While we employed blockchain to manage only trade-related transactions. However, the
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transaction volume from millions of users on the blockchain can significantly affect the

system’s performance, including latency, throughput and cost. It will be worth explor-

ing the cluster shard [266] approach to address the scalability constraints of blockchain for

massive transaction volume. In the cluster shard approach, instead of using a single ledger

to record all the transactions, the entire ledger can be split into smaller chunks, known as

shards, that can operate independently to manage the transactions of its cluster.

Finally, applying machine learning (ML) in the IoT data marketplace for data pricing op-

timization is an interesting research direction. Pricing is used as an economic mechanism

for revenue generation for providers. Optimizing prices to maximize providers’ profits and

avoid discouraging buyers from purchasing data has always been challenging. Existing

studies used rule-based optimization methods wherein price rules are defined to determine

the price-setting logic. Optimization tools automatically adjust the price based on these

price rules. However, the traditional methods are time-consuming and ineffective, given

the large volume of data that requires continuous evaluation. Combining two disruptive

technologies, machine learning and blockchain, can be an effective solution compared to

traditional approaches. ML algorithms can analyze large volumes of data, consider more

variables and predict the price based on market dynamics. The immutable trade transac-

tions stored in the blockchain can be fed to ML algorithms to develop predictive models

to calculate the price based on demand fluctuation. Developing an ML-based pricing

model is an interesting future research direction that may make the data marketplace

more attractive for broad adoption among the participants.

In summary, there is still much work to be done to realize the full capability of blockchain in

the IoT data marketplace. Despite all these open challenges, blockchain, with its salient

features of transparency, decentralization, trust, security, immutability and anonymity,

will continue to hold a lot of potential for enabling efficient data democratization in the

IoT data marketplace.
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