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ABSTRACT 

Understanding and describing human emotional state is important for many applications such as 

interactive human-computer interface design and clinical diagnosis tools. Speech based emotion 

prediction is generally viewed as a regression problem, where speech waveforms are labelled in terms 

of affective attributes such as arousal and valence, with numerical values indicating the short-term 

emotion intensity. Current research on continuous emotion prediction has primarily focused on 

improving the backend, developing novel features or improving feature selection techniques. 

However, emotion expressions or perceptions are in general heterogeneous across individuals, 

depending on a wide range of factors, such as cultural background and speaker’s gender. The impact 

of these sources of variations on the continuous emotion prediction systems has not been fully 

explored yet and is the focus of this thesis.  

 Speaker variability, i.e., differences in emotion expression among speakers, has been shown to be 

one of the most confounding factors in categorical emotion recognition system, but there is limited 

literature that analyses the effect on continuous emotion prediction systems.  In this thesis, a 

probabilistic framework is proposed to quantify speaker variability in continuous emotion systems in 

both the feature and the model domains. Furthermore, three compensation techniques for speaker 

variability are developed and in-depth analyses in both the feature and model spaces are carried out.  

Another confounding factor is the inter-rater variability, i.e., difference in emotion perception 

among raters, which is ignored in current approaches by taking the average rating across multiple 

raters as the ‘true’ representation of the emotion states. However, differences in perception among 

raters suggest that prediction certainty varies with time.  A novel approach for the prediction of 

emotion uncertainty is proposed and implemented by including the inter-rater variability as a 

representation of the uncertainty information in a probabilistic model. In addition, Kalman filters are 

incorporated into this framework to take into account the temporal dependencies of the emotion 
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uncertainty, as well as providing the flexibility to relax the Gaussianity assumption on the emotion 

distribution that reflects the uncertainty.  

The proposed frameworks and methods have been extensively evaluated on multiple state-of-the-

art databases and the results have demonstrated the potential of the proposed solutions.  
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1 INTRODUCTION 

1.1 Speech based continuous emotion prediction 

Human behaviour is a complex process which manifests an intricate interplay among the human brain 

and the body [3]. Understanding and describing human behaviour is crucial to many fields including 

analysis of affective states, underlying cognitive load, impaired social behaviours, etc.  Affect, refers 

to the feelings we experience as part of everyday life in the form of moods and emotions [4]. 

Emotions represent the mental feeling, such as happiness and anger. They can lead us to engage 

appropriately in a given situation. For instance, a good teacher who is capable of observing student’s 

emotion states can adjust his/her teaching plan, since emotion states can affect students’ concentration 

and task solving ability [5]. Similarly, a machine that automatically recognises students’ emotion 

states can be useful. With the rapid development of technology, it makes the automatic emotion 

recognition a possible task which facilitates many aspects of everyday life. For example, in the 

customer service application, a machine detecting the specific customer’s emotion state as extremely 

angry can immediately pass him/her to professional assistants, which will dramatically reduce 

aftermarket complaints. Similarly, an automated personal assistant able to detect a speaker’s emotion 

state can take the right action to interact with the speaker, such as playing comforting music while 

they are sad, or playing jokes when them are happy. While humans are easily able to recognise the 

emotion state of a speaker, it is still a challenge for machines to automatically recognise humans’ 

emotion states. 

Emotion is generally represented in two ways. One of the representations is in the form of a small 

number of categorical classes, where six basic emotion states that are universal for all human beings 

are shown in Figure 1.1 [6], including anger, fear, disgust, joy, sadness and surprise. However, it is 

argued that human also exhibit more complex and subtle states, such as thinking and embarrassment, 

which are not reflected by the six basic categorical emotion representations [7], and are often not 

adequately considered when modelling human emotions. Therefore, the dimensional description of 



2 

human affect is advocated [8], where the most widely adopted dimensions are arousal (ranging from 

deactivated to activate) and valence (ranging from unpleasant to pleasant). Numerical values are used 

to indicate the type and degree of the emotions. These dimensions of arousal and valence are related 

to one another in a systematic manner [9]. Each basic emotion can be represented as a combination of 

the type and degree of the emotional continuum, which is able to cover almost all of the complex and 

Figure 1.1: Six basic emotion categories: anger, fear, disgust, joy, sadness and surprise [1]. 

Figure 1.2: A graphical representation of the circumplex model of affect: the horizontal axis represents the valence 

dimension (pleasant vs. unpleasant) and the vertical axis represents the arousal dimension (activated vs. deactivated). 
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subtle human emotion states, shown in Figure 1.2. The emotion intensity in terms of arousal and 

valence is indicated by numerical values such as range within [-1,1], with a larger value representing 

high arousal or valence emotion states. For instance, happiness is an emotion state with high arousal 

and high valence, while depression is an emotion state with low arousal and low valence values. 

Fontaine., et al. [10] have argued against the notion that a two dimensional description of emotion is 

sufficient for characterizing humans’ emotional experiences. For example, anger and fear are both 

negative valence and high activation, but they are differentiated based on a third dimension: 

dominance, which represents controlling and dominant versus controlled or submissive one feels (see 

Figure 2.2 for details). Due to the advantages of dimensional representation that maps all human 

emotion states to a three dimensional arousal-valence-dominance space, therefore, our research 

mainly focuses on the dimensional representation of emotion owing to those advantages. 

Affect behaviour can be communicated via multiple modalities including the speech, face, body 

language, etc., among which speech is one of the most significant human behavioural signal, 

containing a rich variety of information. It is also easy and nonintrusive to collect, making it an 

excellent advantage for speech based recognition system design. Linguistic information, referring to 

the words spoken, is able to reflect a speakers’ emotion state. On the other hand, paralinguistic 

information (acoustic cues) has been reported to be effective in predicting the emotion states of 

speakers, and is harder to disguise compared to the linguistic information [11]. In certain 

circumstances, one might exhibit more informative emotional information than the other. For instance, 

language is often more informative for valence, but may not show significant advantages in arousal 

predictions compared to speech acoustic cues. For example, a speaker’s pitch (fundamental frequency 

of speech) and speech energy tends to increase with increasing positive emotion states [12]. Owing to 

these advantages, this thesis will focus on the speech and the inference of emotional states 

(dimensional representation) from speech.   

As mentioned above, the dimensional emotion labels are represented by numerical values 

indicating the emotion intensity in terms of arousal and valence. These values are generally obtained 

for each small interval, such as per 20 or 40 million seconds. The aim of a speech based automatic 
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detection system is to predict these numerical values from the speech segment within each small 

interval, referred as the speech-based continuous emotion prediction system, shown in Figure 1.3. 

Speech waveforms are labelled with a specific numerical value for valence attribute indicating the 

short-term emotion intensity. The numerical labels (solid line) of the speech frames are generally 

achieved by averaging multiple raters’ evaluations (dash lines) as perceived by several raters listening 

to the speech (and watching associated videos if available). The speech-based continuous emotion 

prediction system aims to capture the relationship between the speech and the corresponding emotion 

intensity, which is generally a regression model, and the system is expected to output the emotion 

predictions continuously (in small time intervals, i.e. 20ms) for unknown speech.   
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Current research on continuous emotion prediction has primarily focused on either improving the 

backend, developing novel features or improving feature selection techniques for choosing the most 

discriminative feature set from a large pool of (generally statistical) features. These systems are 

typically built on the implicit assumption that the only source of variability in the model is the 

emotional content, but not other factors unrelated to emotion. However, emotion expressions or 

perceptions are in general heterogeneous across individuals, which can be affected by a wide array of 

factors ranging from culture background, speaker’s age and gender, to speaker’s health conditions [3]. 

This heterogeneity introduced from different sources in the continuous emotion prediction systems 

has not been fully explored yet.  

(a) 

(b) 

Figure 1.3: A speech based continuous emotion prediction system. (a) one video clip with facial expression (not used in 

system)[2]; (b) Speech waveform are segmented to small chunks with each chunk annotated with valence intensity 

(solid line), which are averaged among three ratings(dash lines). The speech based continuous emotion prediction 

system is developed as a regression model that captures the relationship between speech and the valence intensity.  
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Previous studies have reported a negative influence of the additional variability not related to 

emotion on both categorical emotion recognition and continuous emotion prediction systems, which 

generally leads to unreliable predictions [13, 14]. For example, speaker variability was shown to 

reduce the ability to distinguish between different emotional classes such as happiness, anger etc. [14], 

while variability in phoneme level has been observed as changes in magnitude and direction of 

formants in different emotional speech across vowels [15]. Among the different sources of variability 

unrelated to emotion that are typically present in speech, speaker variability (differences between 

speakers) has been shown to be one of the most confounding factors in categorical emotion 

recognition systems [13-16], but only limited literature has considered speaker variability in 

continuous emotion prediction systems [17-20]. Z-normalisation [18, 19] and i-vector normalisation 

[17, 20] are generally utilised; these being the standard variability compensation techniques employed 

in the field of speech processing, and specifically speaker verification systems. Speaker-dependent 

systems have also been proposed in conjunction with score level fusion to improve prediction 

accuracy [21]. While the majority of speaker variability compensation techniques applied in 

continuous emotion prediction systems have been based on those applied to the emotion classification 

problem, the fundamental premise behind speaker variability compensation for classification and 

regression systems is quite different. In the case of emotion classification systems, the aim is 

generally to maximise inter-class variability while minimising intra-class variability. However, in a 

continuous emotion prediction system that is cast as a regression problem, the problem of 

compensating for speaker variability is typically framed as that of reducing inter-class variability 

when treating each speaker as a distinct class, while trying to preserve the information that is more 

emotion specific. Consequently, the direct application of compensation methods developed for 

classification problem to continuous emotion prediction systems may be suboptimal and not 

appropriate. The speaker variability in continuous emotion prediction will be further discussed in 

Section 2.4.2. 

Another confounding issue is the variability introduced by multi-raters, which is generally 

neglected by taking the average or weighted average among multi-raters as the representation of the 
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emotion states. Taking the average of these individual ratings to produce a ‘gold standard’ 

representing the emotion intensity smooths out discrepancies between raters. However, perception 

differences among raters and other possible sources of variability suggest that the certainty of emotion 

intensity may not be consistent. For instance, happiness is easy to recognise while frustration can be 

more ambiguous, which will be indicated by low and high inter-rater variability respectively. An 

optimal emotion prediction system is expected to consider the varying prediction certainty with time. 

Several studies [22-25] have showed the importance of taking information from multiple raters into 

account for both categorical emotion recognition and continuous emotion prediction systems, or have 

argued that emotion attributes should be ranked instead of trying to predict absolute values. However, 

investigation on the inter-rater variability in continuous emotion prediction systems is still lacking, 

which will be discussed in details in Section 2.4.3.  

In addition, temporal dependencies between the acoustic observations have been shown to be 

critical for continuous emotion prediction tasks since affect evolves over time [26, 27]. The inclusion 

of both historical and future emotional information is generally achieved by a bidirectional long short-

term memory recurrent neural network (BLSTM-RNN), prevailing over the standard statistic 

modelling techniques. However, LSTM-RNN easily falls into over fitting when the size of the 

training data is small [28]. The output-associate (OA) framework was proposed to capture temporal 

dependencies of a single affect dimension as well as the dependencies between the dimensional affect 

attributes of arousal and valence [29-31]. While these studies investigated emotions’ evolving nature 

in terms of numerical values of emotion attributes referred as hard labels (i.e. mean ratings among 

multiple raters of arousal and valence), only a limited number of researchers have taken the temporal 

dependencies of the uncertainty of emotion prediction into account. Current techniques cannot be 

directly used to explore the temporal dependencies of such emotion uncertainty, since they target on 

the hard labels only. Thus by exploring the temporal dependencies of emotion uncertainty, it aims to 

reveal the evolving process of emotion label distributions. 
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1.2 Thesis objectives 

Given the limitations raised in the previous section, the three principle objectives of this thesis are 

presented in this section. Firstly, the speaker variability in terms of probability distributions is 

systematically formulated, and to compensate speaker variability in continuous emotion prediction 

tasks. In meeting this objective, this thesis aims to: 

 Characterise speaker variability in feature space and in model space.

 Develop compensation techniques for speaker variability in continuous emotion prediction

based on the analysis of the difference between speaker-dependent probability

distributions in feature space.

Secondly, I intend to determine how the existing representation of emotion states as hard labels can be 

improved to a more appropriate representation as distributions which include uncertainty of emotion 

prediction, by explicitly accounting for multi-rater variability in the system. To achieve this objective 

we: 

 Include inter-rater variability as a representation of the information of uncertainty in a

probabilistic framework.

 Analyse the effect of inter-rater variability on the conventional emotion prediction system

(utilising mean rating as ground truth) based on the information of predicted uncertainty of

emotion labels.

Finally, I want to explore how the temporal dependencies of emotion attributes can be incorporated to 

improve the existing prediction systems, in terms of both hard labels and label distributions by: 

 Investigating different approaches in the front-end and back-end to incorporate temporal

dependencies of hard labels for arousal and valence.

 Developing techniques to capture the temporal dependencies of emotion label distributions.
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1.3 Organisation of thesis 

The remainder of this thesis is organised as follows: 

Chapter 2 describes emotion representations and provides an overview of the current techniques for 

predicting emotion intensity in terms of three affective attributes; namely, arousal, valence and 

dominance. The emotion databases currently in common usage are introduced, focusing on the three 

databases used to generate all of the experimental results presented in this thesis. It also highlights the 

challenges of the variability introduced from speakers and multi-raters and the importance of temporal 

dependencies. 

Chapter 3 characterises speaker variability in terms of a probability distribution in continuous 

emotion prediction systems. It explores the differences in distributions of features between speakers in 

feature and model spaces. Two metrics of inter-speaker and intra-speaker difference are adopted to 

quantify the confounding effect of speaker variability in continuous emotion prediction systems.  

Chapter 4 proposes three techniques to compensate for speaker variability in continuous emotion 

prediction systems, which are carried out in either the feature or model spaces. In-depth analysis 

reports and compares the compensation effect of these techniques. It highlights that the way speakers 

express their preferred emotion states is a key difference and compensating it in the feature space 

shows significant potential. 

Chapter 5 characterises the inter-rater variability in continuous emotion prediction systems. In 

addition, the delay caused by sensing and judgment between an annotator’s perceptual observations 

and their decision-making is also compensated in the ground truth and individual raters respectively. 

The analyses reveal low agreement among raters and inconsistency within individual rater, which 

leads a deeper consideration of the inter-rater variability.   

Chapter 6 proposes a novel framework that is able to incorporate the uncertainty information of 

speech frames by explicitly accounting for multi-rater variability in the system. In addition, the 
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correlation between the uncertainty and the performance of a conventional emotion prediction system 

utilising average rating as the ground truth is investigated, by comparing the prediction performance 

in the low and high uncertainty regions. 

Chapter 7 considers the temporal dependencies that occur in the evolution of emotion represented as 

hard labels. The incorporation of temporal dependencies for hard labels is explored in a wide range 

from feature extraction to the design of system structures. 

Chapter 8 analyses the incorporation of temporal dependencies into the emotion uncertainty 

prediction, i.e. label distributions. A distribution assumption is made on the label distribution and two 

new measurements were adopted to evaluate the system performance in terms of the similarity 

between predicted and ground truth distributions.  

Chapter 9 concludes the thesis with a summary of the research contributions and presents potential 

future research directions to follow up from this thesis. 

1.4 Major contributions 

The research presented in this thesis provides original contributions to the automatic assessment of 

emotion intensity in terms of arousal, valence and dominance using paralinguistic speech cues. The 

major contributions can be summarised as follows: 

 A probabilistic framework is developed to quantify speaker variability in continuous

emotion systems in both the feature space and model space. Two measures for quantifying

the speaker variability have been formulated, which are based on the exploration of the

difference in probability distribution of features between the speaker-dependent models in

both the feature and model spaces. Results suggest that speaker variability is a confounding

factor for continuous emotion prediction in both spaces, and a significant difference was

observed in terms of the inter-speaker variability, while only minor differences were observed

in terms of the intra-speaker variability.
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 A factor analysis based speaker normalisation technique is formulated for continuous

emotion prediction. The proposed technique operates directly on the feature space and

decomposes it into speaker and emotion specific sub-spaces. Speaker-specific information is

removed from the original feature space and only the emotion-specific information is kept.

The improvements achieved by employing the proposed method suggest the effectiveness of

the proposed scheme.

 A novel Partial least square dimension reduction (PLSDR) based compensation

technique for speaker variability is introduced. It aims to project the original feature space

to a lower-dimensional latent space, which simultaneously minimises speaker variability, and

maximises the mutual-information between the projected features and the underlying ground

truth. A key advantage of the proposed method is its capability to achieve feature dimension

reduction and speaker normalisation in the same step. Experimental analyses indicate that the

proposed technique is able to compensate for speaker variability in both spaces.

 A feature mapping based compensation technique for speaker variability is proposed. It

aims to compensate for the speaker variability appearing in the different ways that speakers

express similar emotion states. Speaker-dependent models are developed and compared to the

speaker-independent model, to determine the speaker-dependent shifting and scaling

parameters of compensation from a model point of view. The advantage of feature mapping

based normalisation is the additional compensation effect on the local variability of speaker-

dependent distributions, while the other two compensation techniques mentioned above only

minimise the distance between speaker-dependent distributions.

 A novel approach for predictions of uncertainty in the lables is developed by utilizing

the inter-rater variability, which relaxes the assumption of the ground truth as the mean

ratings. This is implemented by including the inter-rater variability as a representation of the

information of uncertainty in a probabilistic Gaussian mixture regression (GMR) model. In

addition, the correlation between the uncertainty and the performance of typical emotion
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prediction systems that utilise average rating as the ground truth is investigated, by comparing 

the prediction performance in the low uncertainty regions and the high uncertainty regions. 

Result suggests the effectiveness of predicting the uncertainty in the labels using inter-rater 

variability in terms of distribution estimation. They also indicate the correlation between the 

proposed framework and the conventional emotion prediction. 

 Temporal dependencies regarding the emotion mean ratings among multi-raters are

investigated by extending output-associate (OA) structure within a multimodal fusion

framework, and by further incorporating a measure of uncertainty associated with each

prediction within this framework. OA takes into account the contextual and temporal

dependencies that exist within and between predicted arousal and valence values when

performing multimodal fusion. Superior performance in arousal and valence predictions

suggest the effectiveness of the method. In addition, the predicted uncertainties firstly

obtained from different sub-systems are combined with the predictions, and serves as

additional information in the second stage OA fusion framework. Consistent improvements

were observed when incorporating prediction uncertainty across various system

configurations for predicting arousal and valence, suggesting the importance of taking into

consideration prediction uncertainty for fusion and more broadly the advantages of

probabilistic predictions.

 A dynamic multi-rater GMR is proposed, aiming to obtain the predictions of

uncertainty in the emotion labels by taking into account their temporal dependencies.

This framework is achieved by incorporating feedforward and backward Kalman filters into a

GMR to estimate the time-dependent label distribution that reflects the emotion uncertainty. It

also provides the benefits of relaxing the label distribution from Gaussian assumption to that

of a Gaussian mixture model (GMM). In addition, two new measurements to estimate

emotion uncertainty from the GMM are adopted. This study is the first attempt to incorporate

temporal dependencies in distribution predictions in continuous emotion prediction.
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2 SPEECH BASED EMOTION PREDICTION: A REVIEW 

2.1 Emotion Representations 

Psychologists have pursued three major approaches towards emotion modelling that can be 

distinguished: categorical, dimensional and appraisal-based approaches [32]. The categorical 

approach is one of the most commonly adopted approaches as it describes human emotion as a small 

number of emotions that are universally recognised, with the six basic emotions including anger, 

disgust, fear, happiness, sadness and surprise [7]. However, it is also argued that people exhibit more 

complex, subtle and non-basic emotions in their everyday social life, such as embarrassment or 

thinking, which are not covered in the categorical framework. Therefore, the dimensional approach 

was proposed, attempting to conceptualise human emotions by defining several affective dimensions. 

The dimensional model of emotion suggests that a common and interconnected neurophysiological 

system is responsible for all affective states, which contrasts the theory of basic emotion that different 

emotions arise from separate neural systems [9]. Several dimensional models of emotion have been 

developed, though there are just a few that remain as the dominant, currently accepted models [33]. 

The dimensions of arousal, valence and dominance are the most commonly used in these dimensional 

models [8].  

One typical model is the circumplex model of emotion. This model assumes that each emotion can 

be represented as a combination of two dimensions, namely, arousal and valence. Arousal indicates 

the degree of activated emotions while valence indicates the degree of pleasant emotions. The varying 

degree of both arousal and valence can be combined to map all complex and subtle emotion states, as 

shown in Figure 2.1 (same as Figure 1.2). The other model is the PAD emotional state model which 

uses three numerical dimensions ,namely, pleasure (valence), arousal and dominance, to represent all 

emotions [34]. Apart from arousal and valence, the third dimension of dominance is added, which 

reflects the degree of controlling and dominant nature of the emotion. The PAD model [34] is shown 

in Figure 2.2.  
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The third set of psychological models is componential models which are based on the appraisal 

theory. These assume that emotions are generated through continuous, recursive subjective evaluation 

of both our own internal state and the state of the outside world [35]. A computational tractable model 

proposed by Ortony, Clore and Collins commonly referred as OCC model [36] based on appraisal 

theory is now established as a standard model for emotions and has mostly been used in affect 

synthesis [7]. However, only limited literature has investigated appraisal theory from an engineering 

point of view, instead focusing on the theory. 

Figure 2.2: The PAD model of affect. The cone’s vertical dimension represents intensity and the circle represents degrees 

of similarity among the emotions. The eight sectors are designed to indicate that there are eight primary emotion 

dimensions defined by the theory arranged as four pairs of opposites. In the exploded model the emotions in the blank 

spaces are the primary dyads or dyadic emotions (mixtures of two primary emotions) [27]. 

Figure 2.1: A graphical representation of the circumplex model of affect: the horizontal axis represents the valence 

dimension (pleasant vs. unpleasant) and the vertical axis represents the arousal dimension (activated vs. deactivated). 
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A variety of automatic systems have been developed based on three emotion representations, 

especially with focus on the first two sets. An emotion recognition system aims to identify emotion 

categories form multi-modal behaviour signals, which is generally achieved by developing classifiers 

to different emotion categories, or finding the hard margins between different emotion categories. It is 

referred as a classification system. A dimensional emotion prediction system aims to predict the 

emotion intensity (i.e. arousal and valence) in terms of continuous numerical values, which targets on 

a regression model to capture the relationship between the multi-modal behaviour signals and the 

continuous numerical values.  

While categorical emotion representations are probably more actionable and interpretable, 

dimensional models of emotion are better representations in terms of providing more tractable 

analysis.  Therefore, I focus on the dimensional emotion representation throughout the thesis with 

more emphasis on the two dimensional circumplex model, since previous literature has reported that 

arousal and dominance are highly correlated [37]. A similar performance was also generally observed 

for arousal and dominance prediction, suggesting that the prediction framework for arousal and 

dominance prediction may be similar. 

2.2 Dimensional Emotion Prediction 

A speech-based dimensional emotion prediction system generally aims to develop a regression model, 

often referred to as the back-end, which captures the relationship of the emotional speech and 

emotional state in terms of attributes such as arousal and valence. Emotional speech is generally 

represented by a set of features that are extracted by a suitable front-end, and the emotion intensity 

such as arousal and valence is represented by a set of time-varying numerical values, herein referred 

to as labels.  
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2.2.1 System Overview 

A continuous emotion prediction system is generally comprised of two phases, namely the training 

phase and the test phase as shown in Figure 2.3. During the training phase, speech samples with 

known labels are pre-processed and representative features are extracted to indicate the speaker’s 

personal emotional information. Regression modelling techniques are used to develop a regression 

model. In the test phase, the same feature sets are extracted from speech with unknown labels, 

referred as test features. Predictions are then estimated using the regression model based on the test 

features.  

Details of the dimensional emotion prediction systems are described in Figure 2.4. Features are 

extracted from small time durations segments referred to as frames, which generally range from 20ms 

to 40ms in length. The frame-wise features are referred to as low level descriptors (LLDs). Several 

statistical descriptions (functionals) are then applied to the LLDs within a longer window of several 

seconds to calculate the statistic features, e.g. the mean, standard deviation, skewness, etc. The 

statistical features capture the statistical characteristics within the window, since emotion is a slowly 

varying process. Different regression modelling techniques have been developed and applied in this 

field. An overview of these techniques is presented in Section 2.2.2 and 2.2.3. 

Figure 2.3: Block diagram of a speech-based dimensional emotion prediction system, comprising of the training and test 

phases. 
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2.2.2 Features and Feature Selection Techniques 

Features, a way of extracting and suitably representing relevant information form the raw signals, can 

be used as a higher parametric representation of speech waveforms. These are generally extracted at 

the first step in a continuous emotion prediction system, since the raw speech signals contain large 

amount of data which is computationally expensive to process, and it is also hard to distinguish the 

desired emotion information directly from raw speech. An important step in speech-based continuous 

emotion prediction systems is the extraction of the suitable features that characterise the emotion-

specific information. The current analysis on speech-based features can be divided into three 

categories: acoustic features, linguistic features and feature embedding. 

2.2.2.1 Acoustic and prosodic features and feature selection techniques 

A suitable set of acoustic features, which reflect the characteristics of speech sound, is the most 

widely adopted feature set in continuous emotion prediction systems. Spectral features and prosodic 

features are two feature sub-sets that have proven effective in capturing the emotion-specific 

information [11]. Spectral features indicating the distribution of the spectral energy across the range 

of frequency  of speech were shown to be effective in distinguishing between emotion categories [38]. 

For instance, happiness was proven to contain high energy at high frequencies, while sadness had low 
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Figure 2.4: Speech based continuous emotion prediction system description. 
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energy at the same range [39, 40]. Mel-frequency cepstral coefficients (MFCCs) developed based on 

the properties of the human auditory system [41] and linear predictive coefficients (LPCs) that model 

the characteristic of the human vocal tract [42] are the two most widely adopted spectral feature. 

Prosodic features, e.g. pitch, jitter and shimmer, reflecting the auditory quality of sound have been 

shown to be indicative of emotional state [11]. In particular, the concept of pitch, referring to the 

fundamental frequency (f0) of the vibration of the vocal folds when excited by air from the lungs 

passing over the vocal folds, is of great importance [43-46]. Formants showing the resonant 

frequencies of the vocal tract, and voice quality reflected in signal amplitude, energy and duration are 

another two commonly adopted prosodic features [11].  

Both spectral features and prosodic features are extracted on a frame basis referred as LLDs as 

discussed in Section 2.2.1. Since LLDs only capture the information in a short duration that ignores 

the statistic property over a longer window, the statistical features are proposed by applying several 

functions to the LLDs over a longer duration. A large number of researchers have shown that 

statistical features are superior to LLDs in terms of system performance [47-50], and most existing 

literature that uses the statistical feature sets have demonstrated good performance in emotion 

prediction [51-54]. However, the statistical features are generally of high dimensions due to the large 

number of functions applied, and it is common to use dimensionality reduction techniques in speech 

emotion recognition applications in order to reduce the feature dimensions. 

There are generally two approaches for dimensionality reduction: feature selection and feature 

transformation. In feature selection, the main objective is to find the feature subset that achieves the 

best possible system performance. This subset is usually characterised by an easy to calculate function, 

called the feature selection criterion. Such a criterion searches for the optimal subset of features by 

minimising the cross validation error [55], or maximising the mutual information between the features 

and the class labels[56]. On the other hand, feature transform techniques aim to find a suitable linear 

or nonlinear mapping from the original feature space to another space with reduced dimensionality 

while preserving as much relevant classification/regression information as possible. The reader may 

refer to [57, 58] for excellent reviews on dimensionality reduction techniques. In particular, PCA is 
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one of the most widely adopted dimension reduction technique in continuous emotion prediction 

systems [59, 60], aiming to preserve enough variability in feature space, as well as reducing the 

feature dimension for the followed modelling techniques. 

2.2.2.2 Linguistic features 

The lexical content of speech is important and a straightforward way to convey emotions. It is 

generally extracted at the phoneme level or word level, thus the first step is to recognise the phoneme 

or word sequences. However, phoneme or word recognisers were shown to have poor performance, 

making linguistic feature extraction unreliable [61, 62], which has slowed down research into 

continuous emotion prediction development using linguistic features. With improvements in data 

collection in many databases, transcripts that enable a more accurate analysis on the linguistic features 

have started to be provided.   

Phone Log-Likelihood Ratios (PLLR) features have been investigated for continuous emotion 

prediction. They show promising performance in predicting arousal and valence, which motivates 

feature analysis at the phoneme level and opens new research possibilities in this field [63]. A bag-of-

words feature representation based on the transcripts has also been proposed and generated with 

OpenXBOW [64] in AVEC 2017, which uses 521 unigrams, i.e. 521 single word. It is referred as bag-

of-text-words (BoTW). The histograms of 521 unigrams are created over a segment of 6 seconds in 

time, and the logarithm is taken from the term frequencies. Thus the BoTW features contain 512 

dimensional features in total. Significant improvements in arousal, valence and likability (how much a 

subject expresses a positive or a negative attitude while speaking) predictions have been observed 

using the BoTW features over the standard acoustic feature set of Extended Geneva Minimalistic 

Acoustic Parameter Set (eGeMAPS) [65]. Apart from phoneme- and word-level features, nonverbal 

vocal gestures such as laughter or filler have also been analysed.  Information extracted from these 

segments has been shown to be complimentary to the acoustic and linguistic features [66]. Though 

only limited body of literature has attempted to use these linguistic features, or nonverbal vocal 

gestures, in continuous emotion prediction systems, the promising potential has opened a new 

research avenue in this field.  
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2.2.2.3 Feature embedding 

With the great computation power of deep learning, some research has focused on learning deep 

features with neural networks. Convolutional neural networks (CNNs) and LSTM methods have been 

combined as a feature extractor that is applied to the raw speech waveforms, with the aim of 

automatically learning the best representation of the raw speech signal directly. This technique was 

shown to outperform traditional approaches using acoustic features significantly [67]. Additionally, 

CNNs combined with auto-encoders were also used to learn affect-salient features for speech based 

emotion recognition systems. An auto-encoder is a neural network used for unsupervised learning, 

with the aim of learning a representation (encoding) for a set of data.  A variant of auto-encoders has 

been adopted at the first stage to learn the local invariant features, and convolution layers were 

connected to the output of auto-encoders to form a series of feature maps.  Then these feature maps 

are subsampled and stacked into one feature vector as input feature for the regression modelling 

techniques [68]. The experimental results showed that the proposed method lead to stable and robust 

recognition performance in complex scenarios, e.g. with variations of speaker and environmental 

distortions. In [69], CNNs have been directly applied to LLDs to extract the emotion salient feature 

vector without need to apply utterance-level statistics. CNNs and auto-encoders have been the most 

widely used neural network structures for feature extraction [70-72]. CNNs learn the visual patterns in 

a three dimensional space that works as filtering processing and well captures the salient speech 

segments, and auto-encoders are capable of performing dimension reduction and reconstruction that 

fit well in the situations where variability from other sources affect the main task. Though such 

features have achieved promising results, analysis of what emotion-related information the network 

captures is still lacking.  

2.2.3 Regression modelling techniques 

Regression models aim to capture the relationship between speech-based features and the affective 

dimensions of arousal and valence.  The regression model generally takes one of three approaches: (a) 

it defines a hard margin represented by a set of parameters which is obtained by optimising a specific 

objective function, e.g. support vector regression or neural networks; (b) it models the joint 
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probability distribution of features and labels, e.g. Gaussian mixture regression models;or (c) it 

represents a probabilistic mapping function from the features to the labels, e.g. RVM. All three 

approaches have shown promising results. The general idea behind each regression modelling 

technique will be discussed in this section, while details of the specific modelling techniques utilised 

in this thesis will be presented in Section 2.3. 

2.2.3.1 Support vector regression 

Support vector regression (SVR) [73] is one of the most popular regression techniques in continuous 

emotion prediction systems. It is used extensively in the speech-based emotion recognition and 

prediction. owing to one of the main advantages that SVR generalises well in many applications [74-

76]. The basic idea behind SVR is to find a linear mapping function between the feature and labels as 

shown in Figure 2.5.  The ‘휀 − 𝑡𝑢𝑏𝑒’ shown within the black solid lines is modelled using all the 

feature vectors represented by red dots. SVR is a sparse approach that only a subset of vectors are 

adopted to characterise the model, referred as support vectors appearing in the edge of the ‘휀 − 𝑡𝑢𝑏𝑒’. 

The slack variable 𝜉 is introduced to cope with the infeasible constraints of the optimisation problem 

in SVR. To deal with the non-linear mapping with SVR, kernels are adopted which maps the original 

feature space to a high dimensional space where the non-linear mapping can be converted to a linear 

problem.  

One of the main advantages of SVR is the good generalisation that fits well in many applications, 

since the ′휀 − 𝑡𝑢𝑏𝑒’ aims to yield the most fitted region around a regression line. Another benefit of 

SVR is the efficiency of modelling computation, since it only adopts the support vectors close to the 

tube, and the number of parameters tuned during the training phase is limited. In addition, the kernel 

functions can easily provide a path of dealing non-linear mapping problems. However, the error 

permitted and the kernel functions utilised has to be properly identified since SVR depends greatly on 

these parameters.    
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2.2.3.2 Long short term memory recurrent neural network 

Deep learning structures, especially recurrent neural networks (RNNs) and LSTM-RNNs, have 

attracted more and more attention in recent years for use in continuous emotion prediction systems, 

since they are able to automatically capture the long-term temporal dependencies of emotion’s 

evolving nature. They take advantage of the sequential information with the output being dependent 

on the previous computations, while ‘memory cells’ within the RNN store the information calculated 

so far. A typical RNN is shown in Figure 2.6. 

In Figure 2.6  𝑋𝑡 = [𝑋1𝑡, 𝑋2𝑡 ,⋯𝑋𝑁𝑡]
𝑇 represents the 𝑁 dimensional feature vector at time 𝑡, and 𝑌𝑡

represents the corresponding prediction. 𝑊𝑖𝑛 and 𝑊𝑜𝑢𝑡 represent the weight matrix connecting two

conservative layers, and 𝑊𝑟 is the weight matrix that connect the previous time step to current time

step, which are able to memorise the past information as shown in the unfolded structure. However, 

researchers have found that RNNs can only remember short-term temporal dependencies [77, 78]. 

With increasing length of windows, RNNs become unable to connect past information to the current 

state, thus LSTM-RNN is proposed to capture long-term information. LSTM-RNNs [24, 52, 79, 80] 

as a special kind of RNN is capable to model the long-term dependencies, since it introduces gates in 

the network that are able to control how much of information to let through.  
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2.2.3.3 Gaussian mixture regression 

GMR [81-83] aims to construct a Gaussian mixture model (GMM) for the joint density of the features 

and the affective dimensions referred as labels during the training phase, and then derives the 

conditional density and regression functions from the joint GMM during the testing phase. It is 

developed for multivariate nonlinear regression modelling and provides the flexibility of allwoing 
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Figure 2.6: A recurrent neural network and the unfolding in time of the computation involved in its forward 

computation. 𝑋𝑡 represents input feature vector at time t, and 𝑁 represents the feature dimensions; 𝐻𝑀𝑡 represents the 

𝑀𝑡ℎ hidden unit at time t; 𝑌𝑡 represents prediction at time t.  𝑊𝑖𝑛 represents the input weight matrix, 𝑊𝑟 represents the 

recurrent weight matrix and 𝑊𝑜𝑢𝑡 represents the output weight matrix.
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multi-dimensional predictions. Researches have employed it in continuous emotion predictions in 

recent years [81] and superior performance is observed compared to neural networks[81]. 

2.2.3.4 Relevance vector machines 

The relevance vector machine (RVM) [84] is a probabilistic model that adopts the Bayesian 

framework for obtaining sparse solutions to regression tasks. RVM aims to find a set of weights 

associated with each feature dimensions during the training process, and then predictions are made 

using these trained weights during the test phase. The Bayesian framework is introduced by assigning 

a Gaussian prior to the weight of each dimension and a Gaussian assumption to the bias term. One of 

the key advantages of RVM is the sparse representation of the weights, which ensures that the model 

will be characterised by a subset of the feature dimensions, thus achieving feature selection during the 

training phrase. Another advantage of RVM is that the probabilistic output provides the prediction 

uncertainty as a Gaussian distribution, which could be useful in clinical applications [85].  

Apart from these regression modelling techniques, a variety of other regression approaches have 

also been explored with regards to continuous emotion prediction. Distance-based fuzzy k-nearest 

neighbours and rule-based fuzzy-logic estimators [86] have been investigated, but were found to be 

less effective than SVR systems. Gaussian Process (GP) as a nonparametric model has been tested in 

continuous emotion prediction systems and showed superior advantages in preference learning, in 

which the goal is to learn a predictive preference model and to predict the label ranking, i.e. training 

instance 𝑿1 displaying higher arousal intensity than instance 𝑿2[87-89]. This thesis mainly focuses on

GMR and RVM, since they have shown robust and superior performance in continuous emotion 

prediction systems and also provide the flexibility with different requirements, which are further 

discussed in Section 2.3.   

2.2.4 Evaluation metrics 

Most existing evaluation metrics in continuous emotion prediction focus on either the absolute value 

difference, or the trend of value changing between the time series of system prediction and the ground 

truth provided by the databases, e.g. generally the mean ratings among individual annotators.  



27 

Pearson’s correlation coefficient (CC) [90], and mean squared error (MSE) are the two most 

commonly used metrics. Pearson’s correlation coefficient indicates the strength and direction of the 

linear relationship between the affective ground truth 𝒚 and the affective predictions 𝒙 by the trained 

model, and is calculated as:  

𝜌𝑐𝑐 =
𝑐𝑜𝑣(𝒙, 𝒚)

𝜎𝒙𝜎𝒚
(2.1) 

where 𝑐𝑜𝑣 represents the covariance of two variables, and 𝜎𝒙 and 𝜎𝒚 are the standard deviations of 𝒙

and 𝒚 . A higher value of 𝜌𝑐𝑐  indicates a strong correlation between two variables, thus a better

performance of the emotion prediction system.  

Mean squared error measures [91] the average of the squares of the error terms, i.e. the difference 

between the ground truth and the predictions,  and is calculated as 

MSE =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

(2.2) 

where  𝑖 represents the frame number and 𝑁 is the total number of frames in sequences 𝒙 and 𝒚. A 

smaller value of MSE represents a better performance of the prediction systems. 

However, 𝜌𝑐𝑐  and MSE can only partially represent the emotion prediction system performance.

For example, a high 𝜌𝑐𝑐 may not always represent good predictions due to the high MSE, as shown in

Figure 2.7(a), and a low MSE may not always indicate good predictions either due to the low 𝜌𝑐𝑐, as

seen in Figure 2.7(b). Finding a trade-off between these two metrics may be a better representation the 

system performance, but it is not straightforward to employ. Therefore, an evaluation metric that 

integrate both the correlation and the MSE  in continuous emotion prediction systems was 

proposed[76], namely, the concordance correlation coefficient (CCC) [92]. The CCC measures the 

agreement between two variables 𝒙 and 𝒚 as: 

http://en.wikipedia.org/wiki/Expected_value
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𝜌𝑐𝑐𝑐 =
2𝜌𝑐𝑐𝜎𝒙𝜎𝒚

𝜎𝒙
2 + 𝜎𝒚

2 + (𝑢𝒙 − 𝑢𝒚)
2 (2.3) 

where 𝑢𝒙 and 𝑢𝒚 are the mean value of prediction sequence 𝒙 and ground truth 𝒚. CCC is able to

indicate the overall system performance, and thus has been commonly adopted in continuous emotion 

prediction systems since AVEC 2016. 

Even though CC, MSE and CCC have all been adopted in continuous emotion prediction systems 

for years, there is still not adequate support on the optimal evaluation metric. More importantly, as 

(a) 

 (b) 

Figure 2.7: Plot of predictions 𝑥 and ground truth 𝑦 within a time segment, showing examples where CC and MSE measures 

fail to indicate poor prediction performance. In (a) I observe a high CC coupled with a high MSE; (b) shows a low CC and 

low MSE. 
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discussed in Section 1.4, I have investigated emotion prediction as a distribution prediction using 

inter-rater variability, instead of treating emotion prediction as a point estimation that uses the mean 

rating as the ground truth. In this case, the evaluation metrics of the distribution predictions should be 

able to deal with a time sequence of distributions, where these three evaluation metrics cannot be 

directly employed since they are only applicable for time sequence of point estimations.    

2.3 Two regression models 

This section will introduce two back-ends mainly adopted in this thesis: RVM and GMR. These are 

two relatively new approaches to be used in emotion prediction systems, and they show great 

potential for emotion prediction tasks, as RVM performing well for high dimensional feature sets and 

GMR modelling features from a probabilistic point of view. 

2.3.1 Relevance Vector Machines (RVM) 

RVMs are a relatively new approach to multi-dimensional regression which is gaining in popularity in 

the field of continuous emotion prediction [19, 29, 93]. RVM can be considered as a sparse Bayesian 

method analogous to support vector regression (SVR) [84, 94]. A key advantage of RVM over SVR 

in the context of multi-modal learning is its heterogeneous mapping (HM) property, which allows any 

arbitrary kernel function to be used in conjunction with a RVM. HM allows not only the mappings of 

contextual temporal information, but also a convenient multimodal fusion technique, which negates 

the need to train and heuristically combine multiple predictors [85]. 

RVM forms the regression function as: 

𝑦(𝒙𝑛, 𝒘) = 𝒘𝛷(𝒙𝑛) + 𝜖𝑛 = ∑𝑤𝑝𝛷𝑝(𝒙𝑛) + 𝜖𝑛

𝑃

𝑝=1

(2.4) 

where 𝒘 = [𝑤1,⋯ ,𝑤𝑃]
𝑇 is an estimated set of sparse weights, also known as regression parameters,

and 𝒙𝑛 denotes an 𝑀-dimensional feature vector at frame 𝑛. 𝛷 = [𝛷1(𝒙∗),⋯ ,𝛷𝑃(𝒙𝑛)] 
𝑇 is a set of

potentially non-linear transforms performed on 𝒙𝑛 and 𝜖𝑛 is the training noise vector. In the Bayesian

approach used in RVMs all noise terms are assumed to have a Gaussian distribution, such that 
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𝜖𝑛~𝑁(0, 𝜎
2)  (2.5)

Given the assumption of 𝒘 a zero-mean Gaussian prior, it ensures that RVM learns a sparse 

representation of 𝒘, where the majority of elements in 𝒘  are zero. This encourages sparsity by 

declaring smaller weights as more probable [84]:  

𝑃(𝒘|𝜶) =∏𝑁(0, 𝛼𝑖
−1)

𝑃

𝑖=1

(2.6) 

where 𝜶 = [𝛼1,⋯𝛼𝑃]
𝑇  is the inverse variance hyperparameter, and is analogous to regularisation

terms in SVR or ridge regression. The training phase of the RVM regression model searches for the 

most probable (MP) values of 𝜶 and 𝜎2, called 𝜶𝑀𝑃 and 𝝈𝑀𝑃
2 , using an iterative Bayesian inference

procedure. In the testing phase, 𝜶𝑀𝑃 and 𝝈𝑀𝑃
2  are used to make a prediction and to estimate the level

of uncertainty associated with that prediction. 

2.3.1.1 RVM training 

Assuming the independence of data points 𝒚𝑡 at each time 𝑡, RVM aims to maximise the likelihood of

the complete data set 𝑃(𝒚|𝒘, 𝜎2) as:

𝑃(𝒚|𝒘, 𝜎2) = (2𝜋𝜎2)−𝑁/2exp (−
1

2𝜎2
‖𝒚 − 𝒘𝜱‖2) (2.7) 

where 𝜱 = [𝛷(𝒙1),𝛷(𝒙2),⋯𝛷(𝒙𝑁)]
𝑇 , 𝒚 = [𝑦1, 𝑦2, ⋯ 𝑦𝑁]

𝑇 and 𝑁  represents the feature

dimensionality of 𝜱 . Within  𝜱 ,  𝛷(𝒙𝑁) = [1, 𝐾(𝒙𝑛, 𝒙1), 𝐾(𝒙𝑛, 𝒙2),⋯ , 𝐾(𝒙𝑛, 𝒙𝑁)] , where 𝐾(∙)

represents the kernel functions. Thus the frame-wise label 𝒚𝑡 is distributed as a Gaussian variable

𝑃(𝑦𝑡|𝒙∗) = 𝑁(𝑦𝑡|𝒘∅(𝒙∗), 𝜎
2).

With the Gaussian prior 𝜶 defined, the objective function expands to 𝑃(𝒚|𝒘,𝜶 , 𝜎2), which can be

estimated as:  

𝑃(𝒘,𝜶 , 𝜎2|𝒚) =
𝑃(𝒚|𝒘,𝜶 , 𝜎2)𝑃(𝒘,𝜶 , 𝜎2)

𝑃(𝒚)
(2.8) 

This posterior 𝑃(𝒘,𝜶 , 𝜎2|𝒚) cannot be analytically computed in full, but equation (2.8) can instead

be decomposed as:  
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𝑃(𝒘,𝜶 , 𝜎2|𝒚) = 𝑃(𝒘|𝒚,𝜶 , 𝜎2)𝑃(𝜶, 𝜎2|𝒚) (2.9) 

The first term in the right side of equation (2.9) can be further expanded as: 

𝑃(𝒘|𝒚, 𝜶 , 𝜎2) =
𝑃(𝒚|𝒘, 𝜎2)𝑃(𝒘|𝜶)

𝑃(𝒚|𝜶, 𝜎2)

= (2𝜋)−𝑁/2|𝜮|−1/2exp (−
1

2
(𝒘 − 𝒖)𝑇𝚺−1/2(𝒘 − 𝒖))

(2.10) 

where the posterior covariance 𝜮 is 

𝜮 = (𝜎−2𝜱𝑇𝜱+ 𝑨) (2.11) 

and the posterior mean 𝒖 is 

𝒖 = 𝜎−2𝚺𝜱𝑇𝒚, (2.12)

where 𝑨 = 𝑑𝑖𝑎𝑔(𝛼0, 𝛼1, ⋯𝛼𝑁), and 𝜎−2 represents the inverse variance of the noise term in equation

(2.5).  

In order to estimate the hyperparameter posterior 𝑃(𝜶, 𝜎2|𝒚) on the right hand side in equation

(2.9), a delta function has been adopted to approximate 𝑃(𝜶, 𝜎2|𝒚) , as explained in [84]:

∫𝑃(𝒚| 𝜶 , 𝜎2) 𝛿(𝜶𝑀𝑃 , 𝜎𝑀𝑃
2 )𝑑𝜶𝑑𝜎2 = ∫𝑃(𝒚| 𝜶 , 𝜎2) 𝑃(𝜶, 𝜎2|𝒚)𝑑𝜶𝑑𝜎2 (2.13) 

Therefore, the learning process becomes the search for the hyperparameter posterior mode: 

𝑎𝑟𝑔𝑚𝑎𝑥𝜶,𝜎2 𝑃(𝜶, 𝜎
2|𝒚) ∝ 𝑃(𝒕|𝜶, 𝜎2)𝑃(𝜶)𝑃(𝜎2) (2.14) 

which aims to search for 𝜶𝑀𝑃 and 𝜎𝑀𝑃
2 .

The estimation of 𝜶𝑀𝑃  and 𝜎𝑀𝑃
2  cannot be obtained in close form, and are instead estimated

iteratively.  The updating of 𝜶 follows [95] as: 

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝑢𝑖
2 (2.15) 

𝛾𝑖 = 1 − 𝛼𝑖𝚺𝑖𝑖 (2.16)

where 𝚺𝑖𝑖 is the 𝑖𝑡ℎdiagonal element of the posterior weight covariance from equation (2.11), and 𝛾𝑖,

ranging from 0 to 1, indicates how ‘well-determined’ the corresponding weight 𝑤𝑖 is by the dataset.
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In terms of the hyperparameter 𝜎2, differentiation gives the updated variance 𝜎2
𝑛𝑒𝑤

 as:

𝜎2
𝑛𝑒𝑤

=
‖𝒚 −𝜱𝒖‖

𝑁 − 𝚺𝑖𝛾𝑖
(2.17) 

where 𝑁 represents the number of data samples and 𝒖 is shown in equation (2.12). The iteratively 

estimated most probable hyperparameters 𝜶𝑀𝑃 and 𝜎𝑀𝑃
2  from equation (2.15) and (2.17) are then used

for the predictions. 

2.3.1.2 RVM prediction 

For a new data point 𝒙𝒏, the prediction 𝑦𝑛 of the test feature vector is made as:

𝑃(𝑦𝑛|𝒚, 𝜶𝑀𝑃 , 𝜎𝑀𝑃
2 ) = 𝑁(𝑦𝑛|𝑢𝑛, 𝜎𝑛

2) (2.18) 

where 

𝑢𝑛 = 𝒖
𝑇𝛷(𝒙𝑛) (2.19) 

𝜎𝑛
2 = 𝜎𝑀𝑃

2 +𝛷(𝒙𝑛)
𝑇𝚺𝛷(𝒙𝑛) (2.20) 

In practice,  𝒘 is set to fixed values 𝒖 in equation (2.19) for the purpose of point prediction. Note that 

the variance 𝜎𝑛
2  in equation (2.20) is comprised of the estimated noise 𝜎𝑀𝑃

2  and a

term𝛷(𝒙𝑛)
𝑇𝚺𝛷(𝒙𝑛) representing the uncertainty in the prediction.

RVM presents the learnt regression model as the most relevant set of extracted feature dimensions, 

meaning the technique explicitly performs both dimensionality reduction and feature selection without 

the need for holding out a subset of validation data. This is a desirable quality as it helps to minimise 

the chances of over-fitting during system development. More importantly, the RVM output is 

probabilistic given that the 𝜎𝑛
2 contains the uncertainty in the prediction as shown in equation (2.20).

The probabilistic output could be useful in many applications, i.e. clinical practice.   

2.3.2 Gaussian Mixture Model (GMM) 

GMMs are probabilistic models for representing data within an overall population, and have been 

used extensively in speech processing. Real-world data can follow a multimodal distribution, thus 

fitting them to a unimodal model generally gives a poor fit. GMMs aim to model the data distribution 
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as a mixture of multiple unimodal Gaussian distributions as shown in Figure 2.8. Furthermore, GMMs 

maintain many of the theoretical and computational benefits of Gaussian models, making them 

practical for efficiently modelling very large datasets. 

GMMs are parameterised by two types of values, the mixture component weights and the 

component means and covariance. For a GMM with 𝑀 components, the model can be represented as: 

𝜆 = 𝑃(𝒙) =∑𝑤𝑖𝑁(𝒙|𝒖𝑖, 𝜮𝑖)

𝑀

𝑖=1

(2.21) 

where 𝑖  represents the mixture number and 𝑀  represents the total mixture number, and 𝑤𝑖  is the

mixture component weight. 𝑁(𝒙|𝒖𝑖, 𝜮𝑖) is the multivariate normal distribution of mixture 𝑖 , with

mean  𝒖𝑖 and covariance 𝜮𝑖. The varying number of mixture components ensures that GMM is able to

model any real distribution as a combination of multiple Gaussians. The  𝑖𝑡ℎ  mixture component

𝑁(𝒙|𝒖𝑖 , 𝜮𝑖) in equation (3.9) can be further expanded as:

𝑁(𝒙|𝒖𝑖 , 𝜮𝑖) =
1

√(2𝜋)𝐾|𝜮𝑖|
exp (−

1

2
(𝒙 − 𝒖𝑖)

𝑇𝜮𝑖
−1(𝒙 − 𝒖𝑖)) (2.22) 

And a valid 𝑃(𝒙) requires 𝑤𝑖 satisfy:

∑𝑤𝑖

𝑀

𝑖=1

= 1 (2.23) 

The GMM parameters 𝜃 = [𝑤, 𝒖, 𝜮] are estimated based on the maximum likelihood from a set of 

training data. Assuming the data points are independent, the likelihood of a GMM model 𝜆 is: 

Figure 2.8: Data fitting to a 2-mixture Gaussian Mixture Model. Feature 1 and Feature 2 are the 2 dimensional features. 
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𝑃(𝜃|𝒙) ∝ 𝑃(𝒙|𝜃) =∏𝑃(𝒙𝑛|𝜃)

𝑁

𝑛=1

(2.24) 

where 𝑛  represents the frame number. The GMM parameters 𝜃  are estimated by maximising the 

likelihood function 𝑃(𝒙|𝜃)in equation (2.24). Generally the expectation maximisation (EM) [96] 

algorithm is utilised to estimate the GMM parameters 𝜃 by maximising the loglikelihood 𝑙𝑛𝑃(𝒙|𝜃). 

During the training phase, the GMM parameters 𝜃 are first randomly initialised, and then estimated 

iteratively. The posterior probability 𝑃(𝑖|𝒙𝑛) of each 𝑖𝑡ℎ mixture component given data point 𝒙𝑛 is

updated as: 

𝑃(𝑖|𝒙𝑛) =
𝑤𝑖𝑁(𝒙𝑛|𝒖𝑖, 𝜮𝑖)

∑ 𝑤𝑘𝑁(𝒙𝑛|𝒖𝑘, 𝜮𝑘)
𝑀
𝑘=1

(2.25) 

Then the mean 𝒖𝑖 is updated over the entire training set as:

𝒖𝑖 =
1

𝑁𝑖
∑𝑃(𝑖|𝒙𝑛)

𝑁

𝑛=1

𝒙𝑛 (2.26) 

𝑁𝑖 = ∑𝑃(𝑖|𝒙𝑛)

𝑁

𝑛=1

(2.27) 

where 𝑁𝑖 can be interpreted as the effective number of points assigned to mixture 𝑖. Similarly, the

covariance 𝜮𝑖 can be updated as:

𝜮𝑖 =
1

𝑁𝑖
∑𝑃(𝑖|𝒙𝑛)

𝑁

𝑛=1

(𝒙𝑛 − 𝒖𝑖)(𝒙𝑛 − 𝒖𝑖)
𝑇 (2.28) 

The weights 𝑤𝑖 are then estimated as:

𝑤𝑖 =
𝑁𝑖
𝑁

(2.29) 

Another method for GMM training is adapting the GMM parameters from a pre-trained universal 

background model (UBM), referred as GMM-UBM. It especially suits the situation where only a 

small set of training data is available. The main premise behind GMM-UBM training is to use the 

prior information of the potential model represented by UBM (𝜆𝑈𝐵𝑀) . Maximum a Posterior (MAP)

adaptation is utilised to adapt the GMM parameters from UBM. 

The UBM is firstly trained as in (2.26) – (2.29). Given another set of adaptation data 𝒙, the new 
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statistics of 𝒖𝑖
′ = 𝐸𝑖(𝒙), 𝜮𝑖

′ = 𝐸𝑖(𝒙
2) − 𝐸𝑖

2(𝒙) and 𝑤𝑖
′ are similarly estimated as in (2.26) – (2.29).

The new parameters are estimated as a combination of the UBM and the new statistics as: 

�̂�𝑖 = (1 − 𝛼𝑖)𝒖𝑖 + 𝛼𝑖𝒖𝑖
′ (2.30) 

�̂�𝑖 = (1 − 𝛼𝑖)(𝜮𝑖 + 𝒖𝑖) + 𝛼𝑖𝐸𝑖(𝒙
2) − �̂�𝑖

2
(2.31) 

�̂�𝑖 = [(1 − 𝛼𝑖)𝑤𝑖 + 𝛼𝑖 ∗ 𝑤𝑖
′] ∗ 𝜑 (2.32) 

where 𝜑  is a scalar that guarantees the weight components sum to unity. 𝛼𝑖  is the adaptation

coefficient for each mixture 𝑖 , ensuring the adaptation conducted only when the training data is 

reliable . 𝛼𝑖  is represented as:

𝛼𝑖 =
𝑁𝑖

𝑁𝑖 + 𝑟
(2.33) 

where 𝑟 is the relevance factor that controls the degree of adaptation. The GMM-UBM adaptation 

scheme is utilised in this Chapter since the emotion database is small.  

2.3.3 Gaussian Mixture Regression (GMR) 

GMR aims to develop a joint density function over features and labels during the training phase, and 

then derives the conditional probability and regression functions for the test features.  

Let 𝑿𝑛 = [𝒙𝑛
T, ∆𝒙𝑛

T]T  represent the features consisting of the static information (low level

descriptors) and dynamic information (generally delta features) and 𝒀𝑛 = 𝒚𝒏 represent labels at frame

𝑛, where the delta values are calculated as in [97] as 

∆𝒙𝒏 =
𝒙𝒏+𝟏 − 𝒙𝒏−𝟏

𝟐
(2.34) 

The training features and labels are represented as 𝑿 = [𝑿1
𝑇 , 𝑿2

𝑇 , ⋯𝑿𝑁
𝑇 ]T and 𝒀 = [𝒀1

𝑇 , 𝒀2
𝑇 , ⋯𝒀𝑁

𝑇 ]𝑇 ,

where 𝑁 represents the total number of frames. The GMM 𝜆[𝒁] of the joint probability distribution of

features and labels is trained using all the joint features 𝒁𝑛 = [𝑿𝑛
𝑇 , 𝒀𝑛

𝑇]𝑇 by the EM algorithm as [83]:

𝜆[𝒁] = ∑ 𝑤𝑚𝑁([𝑿,𝒀]; [
𝒖𝑚
(𝑿)

𝒖𝑚
(𝒀)
] , [
𝜮𝑚
(𝑿𝑿) 𝜮𝑚

(𝑿𝒀)

𝜮𝑚
(𝒀𝑿) 𝜮𝑚

(𝒀𝒀)
])

𝑀

𝑚=1

(2.35) 
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where 𝑚 is the mixture number, 𝑀 is the total number of mixtures, and 𝑤𝑚 is the weight for each

mixture. 𝒖𝑚
(𝑿)

and 𝒖𝑚
(𝒀)

represent the mean vectors of the 𝑚𝑡ℎ mixture component for the features and

labels respectively. The matrices 𝜮𝑚
(𝑿𝑿)

and 𝜮𝑚
(𝒀𝒀)

 represent the covariance of the 𝑚𝑡ℎ mixture for the

features and labels.  𝜮𝑚
(𝑿𝒀)

and 𝜮𝑚
(𝒀𝑿)

are the cross-covariance matrices of the 𝑚𝑡ℎ  mixture for the

features and labels. Full covariance matrices are employed to better capture statistical properties of the 

features and labels. The reader may refer to Section 3.2.3 of this thesis for the full details of the GMM. 

In order to find label 𝒀𝑛 for each frame  𝑛, the conditional probability of  label 𝒀𝑛 given 𝑿𝑛 is

estimated, as shown in Figure 2.9. A three mixture GMM is modelled as 𝜆(𝒁). Given the test feature

vector 𝑿𝑛, the conditional probability 𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝒁)) is estimated as the cross-section. Assuming the

independence of data points 𝒀𝑛, the overall conditional probability 𝑃(𝒀|𝑿, 𝜆(𝒁)) is represented  as

[83]:  

𝑃(𝒀|𝑿, 𝜆(𝒁)) =∏∑ 𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝑍))  =∏∑𝑃(𝑚|𝑿𝑛, 𝜆

(𝒁))𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁))

𝑀

𝑚=1

𝑁

𝑛=1

𝑀

𝑚=1

𝑁

𝑛=1

(2.36) 

where 𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁))  represents the probability of 𝑿𝑛 belonging to the 𝑚𝑡ℎ mixture as:

Figure 2.9: An example of a two dimensional GMM 𝜆(𝒁)with three mixture components. x and y represent the variables of 

feature and label; 𝑿𝑡 represents the test features at frame t.
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𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁)) =

𝑤𝑚𝑁(𝑿𝑛; 𝒖𝑚
(𝑿), 𝜮𝑚

(𝑿𝑿)
)

∑ 𝑤𝑘𝑁(𝑿𝑛; 𝒖𝑘
(𝑿), 𝜮𝑘

(𝑿𝑿))𝑀
𝑘=1

 (2.37)

In equation (2.36) the posterior probability 𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) is a Gaussian distribution with the

mean 𝑬𝑚,𝑛
(𝒀)

and covariance 𝑫𝑚
(𝒀)

𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) = 𝑁(𝒀𝑛; 𝑬𝑚,𝑛

(𝒀) , 𝑫𝑚
(𝒀)
) (2.38) 

where the mean 𝑬𝑚,𝑛
(𝒀)

and covariance 𝑫𝑚
(𝒀)

 of the Gaussian distribution are 

𝑬𝑚,𝑛
(𝒀) = 𝒖𝑚

(𝒀) + 𝜮𝑚
(𝒀𝑿)𝜮𝑚

(𝑿𝑿)−𝟏(𝑿𝑛 − 𝒖𝑚
(𝑿)) (2.39) 

𝑫𝑚
(𝒀)
= 𝜮𝑚

(𝒀𝒀) − 𝜮𝑚
(𝒀𝑿)𝜮𝑚

(𝑿𝑿)−𝟏𝜮𝑚
(𝑿𝒀)

 (2.40)

It can be seen that 𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝑍))  (from equation (2.36)) is also a GMM for each frame 𝑛 [83]. The

time sequence �̂� = [𝒀1
𝑇 , 𝒀2

𝑇 , ⋯𝒀𝑁
𝑇 ]𝑇 is estimated based on maximising the function in equation (2.36)

over consecutive frames and the EM algorithm is generally applied [83]. 

As in [83], the auxiliary function is iteratively maximised with respect to �̂�: 

𝑄(�̂�, 𝒀) = ∑ 𝑃(𝑚|𝑿,𝒀, 𝜆(𝒁))𝑙𝑜𝑔

𝑀

𝑚=1

𝑃(�̂�,𝑚|𝑿, 𝜆(𝒁)) (2.41) 

The final estimated label vector �̂� is obtained: 

�̂� = (𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅
)−1𝑫(𝒀)

−1
𝑬(𝒀)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (2.42) 

𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑑𝑖𝑎𝑔[𝑫1

(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅
, 𝑫2

(𝒀)−1,
̅̅ ̅̅ ̅̅ ̅̅ ̅

⋯ ,𝑫𝑛
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

,⋯ ,𝑫𝑁
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

] (2.43) 

𝑫(𝒀)
−1
𝑬(𝒀)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= [𝑫1

(𝑌)−1𝑬1
(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

, 𝑫2
(𝑌)−1𝑬2

(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇
,⋯ ,𝑫𝑛

(𝑌)−1𝑬𝑛
(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

,⋯𝑫𝑁
(𝑌)−1𝑬𝑁

(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇
] (2.44) 

𝑫𝑛
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∑ 𝛾𝑚,𝑛

𝑀

𝑚=1

𝑫𝑚
(𝒀)−1

(2.45) 

𝑫𝑛
(𝒀)−1𝑬𝑛

(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇
= ∑ 𝛾𝑚,𝑛

𝑀

𝑚=1

𝑫𝑚
(𝒀)−1

𝑬𝑚,𝑛
(𝒀)

 (2.46) 

𝛾𝑚,𝑛 = 𝑃(𝑚|𝑿𝑛, 𝒀𝑛, 𝜆
(𝒁)) (2.47) 

The derivation of (2.41) is given in the Appendix.  
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A good approximation algorithm to the EM algorithm [83, 98] with the dominant mixture 

sequence �̂� has been shown to be effective in voice conversion systems [83]. The likelihood in 

equation (2.36) can be approximated with a mixture component sequence for each frame as:  

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒎
𝑃(𝒎|𝑿, 𝜆(𝒁)) (2.48) 

where �̂� = [�̂�1, �̂�2,⋯ , �̂�𝑛,⋯ �̂�𝑁]  with �̂�𝑛  indicating the dominant mixture component at

frame  𝑛: 

�̂�𝑛 = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑚≤𝑀

𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁)) (2.49) 

Then the approximated estimated label 𝐘  can be estimated based on the dominant mixture

component sequence shown as:  

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒚
𝑃(�̂�|𝑿, 𝜆(𝒁)) 𝑃(𝒀|𝑿, �̂�, 𝜆(𝒁)) (2.50) 

Instead of considering the conditional probability distribution  𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝑍))  for each frame to

be a GMM, the approximate algorithm takes the approach of adopting the dominant Gaussian 

mixture component as the posterior probability. Our preliminary experimental results indicate 

that this approximate algorithm gives comparable results to the EM algorithm in continuous 

emotion prediction, and was thus utilised throughout this chapter. A convenient means to 

estimate the uncertainty as the standard deviation of the dominant mixture component for each 

frame 𝑛 is provided by replacing the GMM with a single Gaussian distribution.  

2.4 Databases 

A large number of early emotion databases are comprised of recordings of acted behaviours, where 

several speakers read scripts with different emotion states. The annotations of such databases mainly 

focused on emotion categories. SUSAS (Speech Under Simulated and Actual Stress), collected by J. 

Hansen at the University of Colorado Boulder in 1999, contains 32 speakers and 16000 utterances in 

total [99]. Burkhardt, F. collected a German database of acted emotional speech [100], containing ten 

sentences performed in 6 target emotions by ten actors. The Serbian Emotional Speech Database [101] 
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contains six actors’ recordings with five acted emotion states. However, scientists have found that 

acted emotion in speech is different from spontaneous emotional speech, and the optimal features and 

methods for analysing these two kinds of speech are different [102, 103]. With the increasing 

attention drawn to continuous emotion prediction systems, databases with continuous annotations of 

arousal and valence became an urgent need. Researchers then started to collect spontaneous speech 

databases, closer to realistic speech, with both categorical and continuous emotion annotations. 

The FAU Aibo Emotion Corpus [104] consists of 9 hours of German speech of 51 children from 

the age 10-13 years, spontaneously interacting with the Sony's pet robot Aibo. This database is 

annotated with 11 emotion categories for each small chunk. The length of chunks is in between word 

level and turn level, which is generated by annotating the whole database to generate turns in terms of 

free phrases, dislocations, vocatives, etc. by a coarse syntactic boundary system, and then applying the 

similar rule to the turns to create the chunks. The Vera am Mittag German Audio-Visual Spontaneous 

Speech Database (VAM) [105] is an audio-visual database containing 12 hours of recordings of a 

German TV talk-show, and is annotated in terms of three emotion dimensions: arousal, valence and 

dominance. The most popular database for emotion recognition and prediction before 2015 was the 

Interactive Emotional Dyadic Motion Capture Database (IEMOCAP) [106], which was collected by 

the Speech Analysis and Interpretation Laboratory (SAIL) at the University of Southern California 

(USC). IEMOCAP [106] is an audio-visual database collected in dyadic interactions between 

professional actors. It is one of the early databases that recorded dyadic interactions between male-

female professional actors. 10 subjects were recorded in 5 dyadic sessions, amounting to 

approximately 12 hours of recordings. Each utterance and video clip is annotated by three annotators 

in terms of the categorical emotion labels and the continuous emotion intensity on an utterance basis. 

The categorical emotion labels include specific types of emotions (happiness, anger, sadness, 

frustration, neutral state, etc.), while the continuous emotion intensity includes three dimensions: 

arousal, valence and dominance with values ranging from 1 to 5 and a step size of 1. The final ground 

truth is the average of the multiple annotations.  
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The most recent released and commonly used databases for continuous emotion prediction systems 

since 2015 are the USC CreativeIT database [107] , the RECOLA database [108], the SEMAINE 

database [109] and the SEWA database [65], which can be found in Section 2.4.1 The limitations of 

current databases is presented in Section 2.4.2. 

In general, annotations of the databases are gathered by asking several evaluators to listen to the 

emotional recordings, and watch the video if available, and move a cursor within a 1D or 2D 

emotional space to give their perception about the emotion intensity of the speech samples. The 

ground truth of the speech sample is obtained as the weighted or unweighted average among several 

evaluators  [107-109].  

2.4.1 Databases with Frame-level Annotation 

The four databases described in this section have all been utilised in this thesis. Most experimental 

results are carried out using multiple databases to prove their effectiveness in different conditions, i.e. 

acted and spontaneous, English and French, etc.  The details of the usage of each database including 

the partitions of training and development sets and the cross validation settings will be specifically 

discussed in the experimental section in each chapter.  

2.4.1.1 The CreativeIT database 

The USC CreativeIT multimodal database created by Metallinou et al. [107] provides a novel bridge 

between the study of theatrical improvisation and human expressive behaviour in dyadic interaction. 

The theatrical improvisation technique of Active Analysis is able to provide naturally induced 

affective and goal-driven interaction, and ensures a more spontaneous dynamic interaction between 

two actors.  

The USC CreativeIT database consists of two different theatrical techniques; the two-sentence 

exercise, where each actor is restricted to saying one predefined sentence with a given verb driving 

their emotions and actions; and the paraphrase exercise, where actors are asked to act out a given 

script with their own words and interpretation. The database contains multimodal behaviour signals 

including speech and video.  
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In total it contains 8 sessions of 90 sentences recorded by 16 speakers in English. The attributes that 

are annotated for each session include arousal, valence and dominance at both frame-level and 

utterance-level. All continuous annotations at frame-level are performed by watching the session 

videos and using Feeltrace software [110] that enables the user to continuously move a mouse around 

a computer screen so as to indicate the attribute value in a range from -1 to 1. For the discrete 

annotations at the utterance-level, annotators are asked to provide a label ranging from 1 to 5. Each 

recording is evaluated by 2 to 4 evaluators. The final continuous attribute values are obtained by 

averaging all individual annotations. 

2.4.1.2 The RECOLA database 

The RECOLA database [108] consists of multimodal spontaneous speech in French collected in a 

remote collaborative framework. 23 dyadic interactions of 46 participants including 27 females and 

19 males are recorded in terms of their audio, video and physiology behaviour signals. The two 

participants are placed in separate rooms and engage in a remote discussion about a simple task 

paradigm. The annotation tool developed for and used in this database is ANNEMO [111], which 

enables one-dimensional continuous affective annotation instead of joint two-dimensional 

annotations, in order to reduce the cognitive load ensuring high quality annotation. The two 

dimensions of arousal and valence were annotated separately every 40 milliseconds with values 

ranging from -1 to +1 and a step size of 0.01. Post processing was performed to reduce the unwanted 

variability of each annotation, and finally the ground truth of an utterance is estimated by taking the 

mean of the annotations provided by all six annotators.  

 The RECOLA database is used for AVEC 2015 and AVEC 2016. Speech data from 27 speakers 

was equally divided into training, development and test partitions. The affect labels of the designated 

test partition were not released for the challenge purpose. This partition of RECOLA database is most 

commonly used in the existing literatures for a direct comparison with the challenge results. Further 

information about RECOLA can be found in [18]. 
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2.4.1.3 The SEMAINE databases 

The SEMAINE database [109] is collected using the Sensitive Artificial Listener (SAL) paradigm, 

where the subject naturally interacts with an operator (role-played by a subject). The database consists 

of three basic scenarios: i) solid SAL, where human operators play the roles of the SAL characters; ii) 

semi-automatic SAL, where the system speaks to participant using phrases selected by a human 

operator from a pre-defined list; and iii) automatic SAL where an automated system chooses what to 

say. The participant interacts with four characters, or operators, with different ‘personality’.  141 

conversation sessions were recorded in total, and only the speech data from 20 speakers recorded over 

26 sessions using the solid SAL scenario is used in this dissertation owing to its inclusion of 

spontaneous speech. 

Five affective dimensions including valence, activation (arousal), power (dominance), expectation 

and intensity, and four emotion categories are annotated for each solid SAL conversation.  Final 

annotations were  the average of the individual ratings from a number of 2-8 raters for arousal, 

valence and dominance (power), which were obtained using the FEELTRACE tool [110].   

2.4.1.4 The SEWA database 

The SEWA database [109] is an audio-visual multimodal database in German which is collected ‘in-

the-wild’, i.e. using the webcams and microphones from computers in the participants’ homes or 

offices. Participants are given a task of discussing a commercial they have just viewed in pairs, 

without any scripts or constraints in regards to emotion provisions; thus it is a database with 

spontaneous and natural behaviour signals. These dynamic conversations were limited to 3 minutes. 

The SEWA database is annotated in terms of arousal, valence and likability, i.e. how much a 

subject expresses a positive or a negative attitude while speaking. Each speech utterance (clip) is 

annotated by 6 annotators aged between 20 and 24. Post processing is applied to each individual 

annotation to normalise them to the same range and to remove any bias. Then the ground truth is 

calcuclated as a weighted average over the six normalised annotations based on the evaluator 

weighted estimator (EWE) approach [112].  
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The SEWA database was released in 2017 and has been used for AVEC 2017. In total, the 32 pairs 

of 64 participants aging from 18 to 60 were divided into three partations: training, development and 

test, which contain 34, 14 and 16 utterances respectively. It should be noted that the labels of the test 

partition were not provided since AVEC 2017 challenge organisers hold them to validate the system 

performance of participants’ submissions.  

One crucial improvement of the SEWA database over other databases is the provided transcripts, 

which have been transcribed from the video chats manully. Timestamps have been used to indicate 

which subject is speaking. This has motivated more investigations on the lingustic analysis and 

experimental results have shown superior performance [65, 113]. 

2.4.2 Limitations of current databases 

Most of the existing emotion databases have some limitations with regards to assessing the 

performance of the emotion recognition and prediction systems. Some of these limitations [11] can be 

briefly summarised as: 

(a) Most emotion databases do not simulate emotions in a natural and clear way. They have used

different techniques such as the sensitive artificial listener (SAL) paradigm or the theatrical

improvisation technique of active analysis, but there has been no analysis as to which method

is the most appropriate to generate natural expressions of emotion.

(b) Transcripts were not provided in most early databases, which makes the analysis of linguistic

content difficult.

(c) Many databases are recorded in a controlled environment, where the recording quality may

not exactly match a realistic scenario.

(d) The ‘ground truth’ of emotion recognition and prediction is obtained by averaging the human

ratings based on the perception of emotion. This may not be the optimal way to define the

ground truth.
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2.5 Challenges 

2.5.1 Overview 

Continuous emotion prediction has attracted much attention in the last few decades, and has been 

mainly focused on finding representative acoustic and linguistic features, or on developing more 

advanced regression modelling techniques for prediction. Most of the literature has focused on the 

acoustic features, and the eGeMAPS feature set [114] proposed in 2016 has been one of the most 

widely adopted acoustic feature set. This is used as a standard minimalistic set of voice parameters, to 

ensure compliance with state-of-the-art methods allowing appropriate comparison of results across 

studies. More and more research has focused on linguistic features owing to the increased availability 

of speech database transcripts.  In addition, the nonverbal vocal gestures that extracted from the 

segments, such as ‘laughter’, ’pause’ or ‘filler’, have also been proven to provide complimentary 

information in predicting emotion categories. This has motivated further analysis of continuous 

emotion prediction [66]. 

Regarding regression modelling techniques, there has been an increasing interest in deep learning 

structures in emotion recognition and prediction, especially recurrent neural networks. One of its key 

advantages is the ability to model the short-term and long-term temporal dependencies since these 

aspects play a crucial role in human emotion expression and prediction. Other regression techniques 

including GMR, RVM, and SVR also show great potential in different system configurations. 

However, many challenges still exist in continuous emotion prediction systems, which are listed as 

follows:  

 While the investigation of acoustic features has solidified, the analysis of linguistic features

has just started owing to the transcripts provided. Despite the success of the initial analysis

using PLLR features [63] and the bag-of-words representation of acoustic LLDs and text-

based features [65], there still lacks knowledge regarding the appropriate use of transcripts.
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 The back-end of deep learning structures has proven promising as an area of research in

speech processing, especially LSTM in continuous emotion prediction. However, there is

still limited literature that analyses LSTM, giving insight into what and how it captures

emotion-related information.

 As mentioned in Section 2.4.3, a standard principle of data collection has not been

determined yet, which will limit the development on the speech-based automatic systems.

 Another great challenge in continuous emotion prediction is the emotion-unrelated factors

introduced into the systems. Emotion expression and perception vary among different

speakers due to cultural background, gender or even religion [115, 116]. This results in

speaker variability and annotation variability respectively. Speaker variability refers to the

difference in emotion expression occurring between different speakers, while annotation

variability refers to the difference in emotion perception occurring different evaluators,

further discussed in Section 2.5.3.

Speaker variability has been shown to be one of the most confounding factors in continuous 

emotion prediction systems. Different speakers sound different and their corresponding speech 

characteristics in the feature space may be different, and some speakers may be more expressive while 

others are more introverted. All these differences among speakers will introduce variability into 

continuous emotion prediction systems, which may lead to less accurate models and predictions. The 

inter-rater variability, indicating the agreement among annotations, is generally neglected in current 

systems since the typical approach is to use some weighted or unweighted average among annotators 

as the ground truth. However, some literature argues the importance of this variability and this has 

motivated serious consideration in recent systems [117]. This thesis focuses on these two categories of 

variability in continuous emotion prediction systems, and provides insights into how the two sources 

of variability affect continuous emotion predictions systems. Furthermore, compensation techniques 

and a novel framework to compensate for or adopt this variability have been proposed to address the 

problem. In addition, the long-term temporal dependencies of emotion have also been considered and 

incorporated into the proposed framework.  
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2.5.2 Speaker Variability 

The expression of emotion varies among different speakers due to many factors, including cultural 

background, gender and religion [115, 116], thus the features extracted from different speakers not 

only contain emotion-specific information, but also speaker-specific information, as shown in Figures 

2.10 and 2.11. Figure 2.10 represents three speakers with different emotion expression ranges. It can 

be seen that speaker 3 is more expressive than speaker 2, as indicated by the wider distribution 

represented by the black dashed lines. The varying feature distribution of the three speakers is what 

Figure 2.10: An example of 1-dimension feature distribution of three speakers. The distributions for three speakers are quite 

different and it introduces the speaker variability in the regression models. 

Figure 2.11: An example of 1-dimensional feature distribution of high arousal and low arousal emotion states. The red solid 

line represents the overall distribution of high arousal (happy) state of three speakers, indicated by the coloured dash lines;  

The blue line indicates the overall distribution of low arousal (sad) that is also generated by the same three speakers. 



47 

introduces speaker variability into the regression model. Regarding making predictions about an 

unknown speaker whose speaker-specific information was not included in the regression model, the 

system may produce a less reliable prediction. Figure 2.11 shows two feature distributions of high and 

low arousal states, i.e., happy and sad. The overall distribution of high arousal (happy) state is 

modelled by all the speakers, where the dashed lines shown in Figure 2.10 indicate three speaker-

dependent distributions. Similarly, the overall distribution of low arousal (sad) represented by the blue 

solid line is also generated using all the speaker information. As observed, the distributions of high 

and low arousal overlap significantly, due to that the way to express similar emotion state varies 

among speakers. It reduces the discrimination between emotion states, and makes emotion recognition 

and prediction a harder task.  

Some of the literature has considered speaker variability in emotion recognition systems, but only a 

small number of studies have taken it into account in continuous emotion prediction systems. A 

general idea is to borrow the variability compensation techniques used in other fields like speaker 

verification, however, since addressing speaker variability in continuous emotion prediction is carried 

out in a regression diagram while other speech processing fields solve classification problems, it is 

expected that the compensation on speaker variability in continuous emotion prediction will work 

differently. 

This thesis mainly analyses the effect of speaker variability in continuous emotion prediction 

systems from a probabilistic view in Chapter 3, and proposes compensation techniques for speaker 

variability in Chapter 4. Analyses on the compensation effect of the proposed techniques are further 

discussed in Chapter 4, which provides some insights and motivated further investigation in this field. 

2.5.3 Inter-rater variability 

Apart from human expression difference in emotion, the perception difference also plays a crucial role 

in continuous emotion predictions. Annotation schemes are used to evaluate the emotional 

information present in speech data, significantly depending on individual perception. However, 

emotion perception differs among evaluators, which can result in a very low inter-rater agreement 
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level of different raters [7]. Taking the average of annotations to force a ground truth makes the labels 

less reliable. The valence annotation of one speech utterance and video clip is shown in Figure 2.12 

[81]. Three coloured lines indicate three individual ratings. As observed, inter-rater agreement varies 

in different segments. For instance, a large variance appears in the green segment at the start of the 

speech and a high agreement is achieved in the yellow segment where the speaker tends to be more 

positive. The existing systems treat the inter-rater variability equally over the entire utterance, but the 

inter-rater variability is supposed to convey the useful information of emotion certainty varying over 

time. Hence, how to properly take advantage of the inter-rater variability in continuous emotion 

prediction systems is still a challenge. More importantly, the typical framework treating emotion 

prediction as a point estimation which ignores the inter-rater variability warrants deeper consideration. 

In Chapter 5 and 6, the impact of inter-rater variability is analysed by observing the raters’ reaction 

lag and quantifying the inter-rater variability, as well as proposing a framework to incorporate the 

inter-rater variability in continuous emotion predictions systems.  

2.5.4 Temporal Dependencies 

The incorporation of long-term dependencies is critical for continuous emotion prediction tasks [118]. 

Most statistical models such as SVR, RVM and GMR are not able to take temporal dependency into 

account on their own, but RVM and GMR can be used with additional techniques, which have the 

Figure 2.12: An example of 1-dimensional inter-rater variability. A video clip and the corresponding speech segment is 

shown on top of this figure. Three raters evaluate the video clip and speech segment simultaneously, with the individual 

ratings as coloured lines.  The regions rectified in green and yellow regions indicate the different inter-rater variability, 

displayed as low and high agreement among three raters. 
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flexibility to incorporate long-term dependencies. These are achieved by an output-associate structure 

for RVM (OA-RVM) and extracting dynamic features that capture information change among 

multiple frames  for GMR [31, 83, 93]. In addition, the LSTM and RNNs with the memory cells have 

shown great success in continuous emotion prediction systems in automatically capturing long-term 

knowledge [80], and CNNs were also further explored to incorporate the past and future information 

for current states in continuous emotion prediction systems [118].  

To capture the long-term knowledge in continuous emotion prediction systems, this thesis has 

expanded OA-RVM to a multimodal fusion framework, and developed GMR based system with 

shifted delta cepstral (SDC) features in Section 7. Furthermore, based on the great potential our novel 

framework that predicts emotion distribution using inter-rater variability shows, incorporating 

temporal dependencies in this paradigm is also investigated, which will be further discussed in 

Section 8. 

2.6 Summary 

This section has briefly explained the overview of speech-based continuous emotion prediction 

systems, and illustrated the current developments of feature extraction, regression modelling 

techniques and the commonly used evaluation matrices in this field. A variety of emotion databases 

were introduced and specially emphasised the four popular databases which are utilised in this thesis. 

One key limitation in the current database is the way to generate the emotion labels, by averaging the 

ratings of multiple raters, which motivates our continued research on the analyses of inter-rater 

variability as one target in this thesis. The main challenges I focus on in this thesis mainly are the 

human expression and perception difference, i.e. speaker variability and inter-rater variability 

respectively, which show a negative effect in continuous emotion prediction systems, and the 

temporal dependencies that is critical for continuous emotion prediction tasks. The in-depth analyses 

and proposed techniques will be further explained in details in the following chapters.  
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3 CHARACTERISATION OF SPEAKER VARIABILITY 

3.1 Introduction 

Speech production is a complex process involving the lungs, glottis, vocal tract, etc., all of which vary 

across different speakers [119]. This will result in differences in speech among speakers. Moreover, 

the linguistic context (i.e. words, syllables and phonemes) used to express emotional states also varies 

across speakers, due to cultural, gender and age differences [120, 121]. Speaker variability, referring 

to the differences in expression of emotional states among speakers, generally manifests as: (a) 

differences in how speakers express their gamut of emotional states; and (b) differences in how the 

same emotional state is expressed by different speakers. Additionally it has been shown to be one of 

the most confounding factor in categorical emotion recognition and continuous emotion prediction 

systems, which results in negative effect in emotion prediction systems. For example, the system 

developed using those speakers who tend to be positive will generate a less accurate prediction to the 

speaker who tends to be negative.  Thus, compensating speaker variability in the continuous emotion 

prediction systems is necessary and important. 

Most of the compensation techniques for speaker variability are proposed in categorical emotion 

recognition systems [14, 16, 122], while only limited studies have concerned with speaker variability 

in the continuous emotion predictions, and most of them directly borrowed the techniques from other 

fields, such as speaker verification and categorical emotion prediction that cast as classification 

problems. However, as stated in Section 2.4.2, the fundamental premise behind the compensation 

techniques for classification and regression systems may be quite different. Consequently, 

compensating speaker variability in a regression problem could not directly borrow the concepts in a 

classification problem.  

Most existing literatures adopt z-normalisation [18, 123] and compensation in the i-vector domain 

[17, 20] for speaker variability in continuous emotion prediction systems. In [18], Valstar et al. 

examined speaker-dependent z-normalisation where the normalisation parameters were calculated and 

applied individually for each speaker, assuming that the feature distribution for each speaker was 
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different. On the other hand, the methods based on i-vectors [17, 20] operate on the basis that the total 

variability model can be viewed as a projection of a model of the distribution of the feature space to a 

more informative low-dimensional space. As previously stated, given that these two approaches were 

originally proposed for classification models, they can be adopted in continuous emotion prediction 

systems, but may not be an ideal solution for a regression problem.  

Other approaches for speaker variability compensation have included the use of speaker-dependent 

systems followed by score level fusion strategies [21] [124]. Mencattini et al. [21] proposed the 

dynamic cooperative speaker models which developed single-speaker-regression-models for each 

speaker and obtained the predictions by combining a subset of model outputs, which were 

dynamically selected as the most concordant among them within a time period. Their proposed 

method assumed that the relationships between features and labels were different for different 

speakers and that the cooperative strategy of merging the predictions that exhibit a common consensus 

minimised the speaker variability by eliminating those speakers in which system prediction was 

shown less correlated with other speakers based on the concordance correlation coefficient criterion. 

In summary, compensating for speaker variability has led to benefits for continuous emotion 

prediction systems. However, these compensation methods either aim to obtain predictions from 

speaker-dependent systems and fuse them, or simply utilise methods developed for classification 

problems, such as z-normalisation and i-vector compensation. To the best of the author’s knowledge, 

there is a dearth of analyses of how speaker variability affects continuous emotion prediction systems, 

and how to compensate for speaker variability in their specific case.  

Speaker variability can manifest as differences in terms of the feature distribution, e.g. one speaker 

expresses more positive emotions while another only shows negative emotions, which leads to a wider 

overall feature distribution due to the distinct speaker-dependent distributions as depicted in Figure 

2.10. It can also appear as differences in the relationship between individual features and labels, e.g. 

the differences between female and male speech expressing the same emotion, which results in less 

discriminative distributions between different emotion states as in Figure 2.11. In this Chapter, the 

aim is to analyse how these speaker-dependent feature distributions and speaker-dependent regression 

models differ in continuous emotion prediction systems. 



52 

A probabilistic framework to quantify speaker variability in continuous emotion systems in both 

the feature space and the model space, i.e. the learnt relationship between features and continuous 

attribute labels, is proposed. As discussed in Section 2.2.3, the regression model generally takes one 

of the three approaches: either (a) it models the joint probability distribution of features and labels 

(e.g. Gaussian mixture regression models); (b) it represents a probabilistic mapping function from the 

features to the labels (e.g. RVM); or (c) it defines a hard margin represented by a set of parameters 

which is obtained by optimising a specific objective function (e.g. support vector regression or neural 

networks). All three approaches are affected by speaker variability, but the first approach involves a 

generative model of the joint distribution over the features and labels, which lends itself to 

quantitative analyses of the effect of speaker variability in the feature space. Thus, this is the approach 

taken throughout this chapter. 

The rest of this Chapter is organised as follow: a novel approach to quantify speaker variability is 

presented in Section 3.2. Experimental settings and results are presented in Sections 3.3 and 3.4 

respectively; and the findings will be summarised in Section 3.5.  

3.2 Formulation of speaker variability 

As discussed in Section 3.1, speaker variability is characterised by studying: (a) differences in how 

speakers express their gamut of emotional states; and (b) differences in how the same emotional state 

is expressed by different speakers. In order to quantify these things in terms of generative modelling 

of the joint distribution over feature and the affective attribute label spaces of arousal, valence and 

dominance, they are respectively analysed as: (a) differences in the marginal distributions over the 

feature space (marginalised across the label space), which captures the differences in the acoustic 

characteristics of different speakers; and (b) differences between conditional distributions of the 

features given the emotional state, which captures the differences in how different speakers express 

similar emotional states.  
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3.2.1 Quantifying speaker variability 

Given the joint distribution 𝑃(𝒙, 𝒚|𝑠) of features 𝒙 and multi-dimensional attribute labels 𝒚 for each 

speaker 𝑠, it can be expected that the differences in the speech characteristics between two speakers, 

𝑠 = 𝑖 and 𝑠 = 𝑗 will be reflected in the differences between the marginal distributions 𝑃(𝒙|𝑠 = 𝑖) and 

𝑃(𝒙|𝑠 = 𝑗). Specifically, if speaker variability is a significant confounding factor I would expect the 

differences between the speaker specific marginal distributions to be greater than the difference 

between speaker specific marginal distributions and a speaker independent distribution 𝑃(𝒙) . 

Similarly, I would also expect the differences between speaker specific conditional distributions of the 

features given affect labels, 𝑃(𝒙|𝒚, 𝑠 = 𝑖)  and  𝑃(𝒙|𝒚, 𝑠 = 𝑗) , to be greater than the differences 

between speaker specific conditional distributions 𝑃(𝒙|𝒚, 𝑠) and the speaker independent conditional 

distribution 𝑃(𝒙|𝒚). 

Furthermore, if speaker variability was a significant confounding factor, I would also expect 

speaker independent distributions of features from all speakers, both 𝑃(𝒙) and 𝑃(𝒙|𝒚), to be ‘broader’ 

distributions when compared to speaker specific feature distributions 𝑃(𝒙|𝑠)  and 𝑃(𝒙|𝒚, 𝑠) . 

Consequently, the broadness of these marginal and conditional feature distributions are estimated, 

called ‘widths’, to test this hypothesis. 

3.2.2 Proposed distribution based measurements 

In this work the difference between distributions in terms of the symmetric KL divergence is 

estimated (sometimes simply referred to as KL divergence in this Chapter for ease of reading). This is 

a measure of dissimilarity between two probability distributions, with a larger KL divergence 

indicating a greater separation between them. The symmetric KL divergence 𝐼𝑆𝐾𝐿  between two

distributions 𝑃1(𝒙) and 𝑃2(𝒙) is given by [14]: 

𝐼𝑆𝐾𝐿(𝑃1, 𝑃2) =
1

2
|∫ 𝑃1(𝒙)𝐼𝑛

𝑃1(𝒙)

𝑃2(𝒙)
𝑑𝑥 + ∫ 𝑃2(𝒙)𝐼𝑛

𝑃2(𝒙)

𝑃1(𝒙)
𝑑𝒙

𝒙𝑥

| (3.1) 

Specifically, a Monte-Carlo estimate of the symmetric KL divergence proposed in [14] is utilised to 

quantify the separation between two distributions. For details on how this Monte-Carlo approximation 
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is implemented, the reader is referred to [14]. The separation between speaker specific marginal 

feature distributions, 𝑃(𝒙|𝑠), are then estimated as the average KL divergence between one speaker 

specific model and all other speaker models as follows: 

𝑆𝒙(𝑖) =
1

𝑁𝑠 − 1
∑ 𝐼𝑆𝐾𝐿(𝑃(𝒙|𝑠 = 𝑖), 𝑃(𝒙|𝑠 = 𝑗))

∀𝑗,𝑗≠𝑖

 (3.2) 

where 𝑆𝒙(𝑖) denotes the average KL divergence between the marginal distribution of features for the

𝑖𝑡ℎ speaker and speaker specific marginal distributions of features for all other speakers, and 𝑁𝑠 is the

total number of speakers. 

The KL divergence between a speaker specific marginal feature distribution and the speaker 

independent feature distribution is then given by: 

𝑈𝒙(𝑖) = 𝐼𝑆𝐾𝐿(𝑃(𝒙|𝑠 = 𝑖), 𝑃(𝒙)) (3.3) 

where 𝑈𝒙(𝑖) denotes the KL divergence between the marginal distribution of features for the 𝑖𝑡ℎ

speaker and the speaker independent distribution of features (from all speakers). 

In order to estimate the width of a distribution, the probabilistic acoustic volume (PAV) [125] is 

employed, depicted in Figure 3.1. PAV can be viewed as the hyper-volume corresponding to the cross-
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Figure 3.1: Estimation of the probabilistic acoustic volume of 1-dimensiaonl distribution P(x). θ is the threshold; The 

probablistic acoustic volume is indicated by the grey area. 
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section of a multivariate distribution at a specified threshold. Given one threshold 𝜃, the total acoustic 

volume of a distribution 𝑃(𝒙) can be estimated as the grey area, where the probability 𝑃(𝒙) larger 

than 𝜃 is obtained as:  

𝑉𝜃 = ∫𝑓(𝑥)𝑑𝑥,   𝑤ℎ𝑒𝑟𝑒, 𝑓(𝑥) = {
1, 𝑃(𝒙) > 𝜃 
0, 𝑃(𝒙) <  𝜃

(3.4) 

A Monte Carlo approach is utilised to compute 𝑉𝜃 as in [126].

Further, by defining a series of thresholds 𝜃 = [𝜃1, 𝜃2,⋯ 𝜃𝐿] , the corresponding PAV can be

computed as 𝑉 = [𝑉𝜃1 , 𝑉𝜃2 , ⋯𝑉𝜃𝐿] as shown in Figure 3.2(a). The rate at which the corresponding

PAVs vary (referred to as PAV profiles) is indicative of the width of the distribution. For instance, a 
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Figure 3.2: (a) Estimate of probability acoustic volume (PAV) profile for a sample 1-dimensional feature distribution 

reflecting two small feature clusters; (b) estimate of probability acoustic volume profile for an example 1-dimensional 

feature distribution reflecting two wide low density feature clusters exhibiting a ‘low concentration’ of features. 
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wide probability distribution shown in the left graph of Figure 3.2(a) gives rise to a shallow PAV 

profile, as shown in the right graph of Figure 3.2(a), while a narrower probability distribution shown 

in the left half of Figure 3.2(b) is indicated by a steep PAV profile as in the right graph of Figure 

3.2(b). Therefore, the best linear fit to a PAV profile is estimated and the slope of the line is utilised as 

a measure of the steepness of the profile and consequently the width of the distribution. Noting that 

the slopes will be negative, a lower value indicates a steeper PAV profile, and therefore a narrower 

probability distribution. For example, 𝛼1 > 𝛼2 in Figure 3.2.

Similar to estimating these measures from the marginal feature distributions, the symmetric KL 

divergence and PAV based measures on the conditional distributions of the features given attribute 

labels 𝑃(𝒙|𝒚, 𝑠) are also estimated. However, it is less straightforward to estimate 𝑃(𝒙|𝒚, 𝑠) since it is 

the product of 𝑃(𝒙𝑓|𝒚𝑓 , 𝑠) over all frames 𝑓, and this does not always have a closed form. Instead, the

conditional probability 𝑃(𝒙|𝒚, 𝑠) can be rewritten as follows: 

𝑃(𝒙|𝒚, 𝑠) =
𝑃(𝒙, 𝒚|𝑠)

𝑃(𝒚|𝑠)
(3.5) 

It can be observed that 𝑃(𝒙|𝒚, 𝑠) is proportional to 𝑃(𝒙, 𝒚|𝑠), which can be estimated as a GMM if 

𝑃(𝒚|𝑠) is consistent for all speakers. Consequently, a speaker specific transformation of the affect 

labels, 𝒚, to a normalised label, �̃� is estimated such that: 

𝑃(�̃�|𝑠) = 𝑃(�̃�), ∀𝑠 (3.6) 

This speaker specific label normalisation is based on feature mapping [127] and implemented by 

modelling speaker specific and speaker independent label distributions 𝑃(𝒚|𝑠) and 𝑃(𝒚) as GMMs. 

Following this normalisation, the conditional feature distributions of interest are approximated as: 

𝑃(𝒙|�̃�, 𝑠) =
1

𝑃(�̃�)
𝑃(𝒙, �̃�|𝑠) (3.7) 

Noting that 𝑃(�̃�) in equation (3.7) is identical for all speakers, the KL divergences between the 

conditional feature distributions of interest were estimated as: 
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𝑆𝒙|𝒚(𝑖) =
1

𝑁𝑠 − 1
∑ 𝐼𝑆𝐾𝐿(𝑃(𝒙, �̃�|𝑠 = 𝑖), 𝑃(𝒙, �̃�|𝑠 = 𝑗))

∀𝑗,𝑗≠𝑖

(3.8) 

where, 𝑆𝒙|𝒚(𝑖) denotes the average KL divergence between the conditional distribution of features

given the affect label for the 𝑖𝑡ℎ  speaker and the corresponding speaker specific conditional

distributions for all other speaker. Again, 𝑁𝑠 is the total number of speakers.

Similarly, the symmetric KL divergence as in equation (3.1) between a speaker specific conditional 

feature distribution given the labels and the speaker independent conditional feature distribution given 

the labels is then given by: 

𝑈𝒙|𝒚(𝑖) = 𝐼𝑆𝐾𝐿(𝑃(𝒙, �̃�|𝑠 = 𝑖), 𝑃(𝒙, �̃�)) (3.9) 

Finally, the widths of the conditional distributions 𝑃(𝒙|𝒚, 𝑠) and 𝑃(𝒙|𝒚) are estimated as the widths 

of 𝑃(𝒙, �̃�|𝑠) and 𝑃(𝒙, �̃�) in terms of the slope of the linear fit their PAV profiles, as shown in Figure 

3.2. Note that these measurements are also used to quantify the reduction effect in speaker variability 

after employing the proposed compensation techniques for a direct comparison in Chapter 4.  

3.2.3 Gaussian Mixture Model 

GMMs are utilised to model the marginal distribution 𝑃(𝒙|𝑠 = 𝑖) and the conditional distribution 

𝑃(𝒙|𝒚, 𝑠 = 𝑖), since it is in concordance with the GMR back-end, which models the joint GMM of 

feature and label distributions (further discussed in Chapter 4.3.2). Additionally, GMMs also provides 

the framework for a range of subsequent transforms for variability reduction in the supervector and i-

vector domain [128, 129]. Details of GMMs can be referred to Section 2.4.2. 

3.3 Experimental settings 

The proposed analysis of speaker variability, as described in Section 3.2, was carried out on the USC 

CreativeIT database. The front-end employed 65 low-level descriptors (LLDs) and their first order 

derivatives were extracted using OpenSMILE [130], to match those used in the Computational 

Paralinguistics Challenge 2013 (ComParE 2013) audio feature set [131]. Three second windows with 
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a one second shift between windows were used to compute statistical features by applying five 

functionals (maximum, minimum, mean, standard deviation, and range) of each of the LLDs. PCA 

was used to reduce the feature dimensionality to 40, while aiming to preserve approximately 70-85% 

of the data variability [16, 17]. Dynamic features and labels were calculated as in [16], and 

concatenated with the original features and labels in order to capture the information of emotion 

change that has been shown to improve emotion prediction [19]. The final feature dimension was 80, 

including dynamic features. This feature set was utilised in the front-end for all the emotion prediction 

systems and in all analyses reported in this Chapter. 

Experimentally GMMs with four full covariance components and 10 iterations of the EM algorithm 

were found to be the optimal settings for the speaker-dependent and speaker-independent models. Due 

to data scarcity, training individual speaker models from scratch will lead to unreliable models, 

consequently a universal background model (UBM) was first trained using half of each speaker’s 

data, and speaker-dependent models were developed via Maximum a Posterior (MAP) adaptation 

[132] using the other half of each speaker’s data.

The Monte-Carlo approach that was used to estimate the KL divergence and PAV profiles made use 

of 100000 samples. In terms of the PAV profiles, the overall probability of all test utterances is 

computed, by estimating the probability of each frame-wise test feature vector fitting to the trained 

GMMs. Then 37 thresholds ranging from 25 to 75 percentiles in 2 percentile steps were applied to the 

overall probability as in [125] to estimate the PAV profiles. Thresholds less than the 25
th
  percentile 

and higher than the 75
th
  percentile are not considered as in [125], since the PAV calculated using less 

than 25
th
 percentiles approximately equals to 1 and that higher than 75

th
  percentile is around 0.  

3.4 Experimental results 

3.4.1 Marginal Probability Distribution 

The average KL divergence between the marginal feature distributions of a speaker and all other 

speakers 𝑆𝒙(𝑖) for each of the 16 speakers is shown in Figure 3.3 in light blue. These are compared to

the KL divergences between the distributions for each speaker and a speaker independent UBM, 
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𝑈𝒙(𝑖), shown in dark blue. Finally, the mean values of both measures across all 16 speakers are

indicated by the dark and light blue dotted lines. It can be seen that 𝑆𝒙(𝑖) is consistently greater than

𝑈𝒙(𝑖), indicating that the separation between speaker specific models is greater than the separation

between a speaker model and the speaker independent model (UBM). 

Table 3.1 shows the mean and median values of the slopes of the linear fits to the PAV profiles of 

the speaker specific marginal distributions and compares them to the slope of the linear fit to the PAV 

profile of the speaker independent UBM. It should be noted that the slope of PAV profile of Speaker 1 

achieves extremely low value, i.e. -9.67*10^55, indicating that feature distribution of Speaker 1 is

quite concentrated compared to other speakers (slope values ranging within [-3.45 -2.60]). Speaker 1 

Figure 3.3: Symmetric KL divergence for speaker-dependent models and UBM of marginal probability distributions for all 

speakers. The average KL divergence calculated between one speaker and all other speakers (light blue) is smaller than 

that between that speaker and UBM (dark blue), indicating the separation between speaker-dependent distributions in 

terms of the marginal probability distributions. 

Table 3.1: Slope of PAV profiles for marginal distributions 

Speaker-independent 
Speaker-dependent 

Mean Median Standard deviation 

Slope of PAV  𝛼 -2.79 -2.95 -2.91 0.26 
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was a clear outlier and consequently not included. Consequently, the mean and standard deviation 

were calculated only for Speakers 2 to 16.  It was observed that the mean and median slopes for the 

speaker specific distributions are lower than that of the speaker-independent UBM, indicating that the 

speaker models are ‘narrower’ than the speaker independent UBM, which is as expected.  

Taken together, the results shown in Figure 3.3 and Table 3.1 suggest that marginal feature 

distributions for individual speakers are distinct from each other and ‘narrower’ than the marginal 

distribution over features from all speakers. Therefore, pooling data from multiple speakers to train a 

single model will lead to a broader model which in turn are likely to lead to less accurate predictions, 

showing that speaker variability is a significant confounding factor.  

3.4.2 Conditional Probability Distribution 

In order to estimate both separation between the conditional distributions of features given affect 

labels and their widths, this section proposes normalising the affect labels 𝒚 to obtain normalised 

labels �̃� , such that the distribution of the normalised labels is consistent across all speakers, as 

described in Section 3.1.2. Also, as mentioned therein, feature mapping [19] was used to map the 

speaker-dependent labels to a consistent distribution. However, feature mapping adapts the mean and 

covariance, but not the weights of a GMM.  Thus the mapped label distributions 𝑃(�̃�|𝑠) are similar 

across all speakers 𝑠, but not identical. Consequently, it should be noted that the comparison of 

𝑃(𝒙|𝒚, 𝑠) values are only indicative and not definitive.  

To verify that the label normalisation technique works as required, the average KL divergence 𝐼𝑆𝐾𝐿

is estimated as in equation (3.1) between label distribution for one speaker and all other speakers 

𝑆𝒚(𝑖) as:

𝑆𝒚(𝑖) =
1

𝑁𝑠 − 1
∑ 𝐼𝑆𝐾𝐿(𝑃(𝒚|𝑠 = 𝑖), 𝑃(𝒚|𝑠 = 𝑗))

∀𝑗,𝑗≠𝑖

(3.10) 

where 𝑁𝑠  is the total number of speaker. The KL divergence between speaker specific label

distributions and speaker independent label distributions 𝑈𝒚(𝑖) for the un-normalised labels is also

estimated as: 
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𝑈𝒚(𝑖) = 𝐼𝑆𝐾𝐿(𝑃(𝒚|𝑠 = 𝑖), 𝑃(𝒚)) (3.11) 

Then these are compared to the equivalent measures estimated on the normalised labels 𝑆�̃�(𝑖) in

yellow and 𝑈�̃�(𝑖) in red in Figure 3.4. From this comparison it can be seen that the KL divergences

are dramatically reduced after normalisation, suggesting the normalisation was effective in making all 

the label distributions similar to each other as intended.  

Following this, as in the case of the marginal distributions described in Section 3.3.1 the average 

KL divergence between one speaker and all other speakers  𝑆𝒙|𝒚(𝑖), shown in dark blue for each of the

16 speakers, are compared with the average KL divergence computed between one speaker and UBM 

as in light blue 𝑈𝒙|𝒚(𝑖) in Figure 3.5. The widths of these conditional distributions in terms of slopes

of linear fits to their PAV profiles are compared in Table 3.2. These comparisons agree with the 

observations made in the case of the marginal distributions and lend further support to the suggestion 

Figure 3.4: Symmetric KL divergence before and after mapping of 𝑃(𝒚|𝑠) for all speakers. The average KL divergence 

between one speaker and all other speakers 𝑆𝑦(𝑖) before label normalisation is represented in dark blue; The average KL

divergence between one speaker and UBM 𝑈𝑦(𝑖) before label normalisation is represented in light blue; The average KL

divergence 𝑆�̃�(𝑖)  after label normalisation is represented in yellow; The average KL divergence 𝑈�̃�(𝑖)  after label

normalisation is represented in red. The speaker-dependent label distribution after normalisation is significantly smaller 

than that before normalisation, indicating that the mapped speaker-dependent distributions are similar. This ensures a 

effective comparison in terms of the conditional probability distributions (referring to equations (3.6) and (3.7)). 
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that speaker variability is a significant confounding factor and compensating for speaker variability 

prior to training emotion prediction systems may be beneficial. 

3.5 Summary 

This chapter has analysed speaker variability in continuous emotion prediction systems in terms of 

marginal and conditional feature distributions in order to gain insight into how speaker variability 

affects emotion prediction systems.  Measures of inter- and intra-speaker variability in terms of the 

symmetric KL divergence and the probabilistic acoustic volume profiles respectively, were adopted to 

quantify speaker variability based on comparisons of speaker-dependent Gaussian mixture models of 

the feature space. It was found that speaker variability showed negative effect in inter-speaker 

variability indicated by the distinct speaker-dependent feature distributions, but only altered the intra-

speaker variability slightly, for both marginal and conditional probability distributions. In addition, 

the intra-speaker variability was compared to the local variability in a speaker independent universal 

Table 3.2: Slope of PAV profiles for conditional distributions 

Speaker-independent 
Speaker-dependent 

Mean Median Standard deviation 

Slope of PAV  𝛼 -2.85 -2.98 -2.96 0.26 

Figure 3.5: Symmetric KL divergence for speaker-dependent models and the UBM of conditional probability distribution. 

The average KL divergence calculated between one speaker and all other speakers (light blue) is smaller than that between 

that speaker and UBM (dark blue), indicating the separation between speaker-dependent distributions in terms of the 

conditional probability distributions. 
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background model and it was found that the speaker independent model was broader than that of the 

speaker-dependent models, suggesting that differences between speakers increased the widths of the 

speaker-independent feature distributions, which is not expected since the variability within the 

broader model may generate less reliable predictions. This analysis suggests that speaker variability is 

indeed a significant confounding factor and that compensating for speaker variability prior to training 

emotion prediction systems may be beneficial. This motivates our research on compensation 

techniques for speaker variability in continuous emotion prediction systems, which appear in Chapter 

4.
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4 COMPENSATION TECHNIQUES FOR SPEAKER VARIABILITY 

4.1 Motivation and Introduction 

Speaker variability has been shown to be a significant confounding factor in speech based emotion 

prediction systems in Chapter 3. However, most current continuous emotion prediction systems either 

ignore speaker variability or adopt normalisation techniques that were originally proposed for 

classification problems. Two of the most widely adopted techniques are speaker-wise z-normalisation 

[17, 18] and i-vectors [19, 20].  

Some of the other compensation methods for speaker variability in classification problems include: 

(a) normalisation techniques such as joint factor analysis based normalisation methods [9], iterative

feature normalisation [12], and an auto-encoder based transfer learning method [11]; and (b) model 

compensation techniques, which improve the model representation to decrease the variability [13-14]. 

These are less employed in continuous emotion prediction systems owing to certain constraints that 

that prevent them from being applied directly to regression systems.  

As previously stated in Chapter 3, the fundamental premise behind speaker variability 

compensation in classification and regression systems is expected to be quite different. In terms of 

emotion classification systems, inter-class variability is supposed to be maximised while intra-class 

variability is minimised. However, as a regression problem of continuous emotion prediction, the aim 

of compensating for speaker variability is to reduce inter-class variability, where the class refers to 

speaker. Therefore, the methods utilised for classification problems cannot be directly applied to 

continuous emotion prediction systems. 

Based on the analysis in Section 3.4, this chapter proposes three compensation methods based on 

factor analysis, partial least square dimension reduction (PLSDR) [23] and feature mapping [24], and 

further compares these against a number of the state-of-the-art techniques [13, 21, 25]. Factor analysis 

based normalisation aims to decompose the feature space into emotion-specific and speaker-specific 
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spaces, and reduce the speaker information contained in in the speaker-specific space. PLSDR, a 

technique widely used in chemometrics [26] that projects the observed data to its latent structure, 

assumes that the observed data is generated by a process driven by only a small number of latent 

variables. Generally high dimensional feature vectors with dimensionality ranging from hundreds to 

thousands, which are computed by stacking a number of functionals of LLDs, are utilised to represent 

the emotional content in speech signals, and to develop the prediction systems. However, they might 

be redundant and can benefit from a low dimensional representations in the latent space. The proposed 

PLSDR based normalisation technique projects the original feature space to a latent space that 

minimises the speaker variability. Feature mapping for GMMs was shown to be promising for channel 

compensation in speech based speaker verification systems [24]. This technique maps the channel-

dependent feature space to a channel-independent feature space. A similar concept is adopted and 

expanded to compensate for speaker variability in continuous emotion prediction systems, by 

similarly mapping the speaker-dependent space to a speaker-independent space.  

The proposed compensation techniques are described in Section 4.2. Then the key experiment 

settings and evaluation techniques are explained in Section 4.3, and the performance comparison 

between the proposed and the state-of-the-art compensation techniques for speaker variability follow 

in Sections 4.4 and 4.5. The summarisation is given in Section 4.6. 

4.2 Proposed compensation techniques 

4.2.1 Factor analysis based normalisation 

The proposed speaker normalisation technique views speaker identity as an underlying factor that 

affects speech features within a factor analysis framework. Specifically, it assumes features extracted 

from speech are comprised of a common vector, a speaker identity component and a residual vector 

that contains mainly emotion-related features as given below, 

𝒙𝑖𝑗 = 𝒖+ 𝑭𝒚𝑖 + 𝜺𝑖𝑗 (4.1)

where 𝒙𝑖𝑗 represents the feature vector estimated from the 𝑗𝑡ℎ frame of speech from the 𝑖𝑡ℎ speaker, 𝑢

is the independent mean over all speakers, 𝒚𝑖 is the vector of speaker factors, 𝑭 is the factor loading
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matrix that captures the speaker variability, and 𝜺𝑖𝑗 is the residual component that contains emotion

specific information. This is mathematically similar to the PLDA model [21]. 

Speaker normalisation is then accomplished by subtracting the speaker identity component 𝑭𝒚𝑖

from the raw features 𝒙𝑖𝑗 to give the normalised features �̃�𝑖𝑗, so that

�̃�𝑖𝑗 = 𝒙𝑖𝑗 − 𝑭𝒚𝑖 − 𝒖 (4.2)

Note that it might not be an ideal solution to linearly separate emotion-specific and speaker-specific 

information in feature space. However, based on the model assumption, we conducted an initial 

analysis by assuming speaker information as an additive factor to the emotion content. 

In this model, the speaker factors 𝒚𝑖 are assumed to follow a standard normal distribution and the

residuals 𝜺𝑖𝑗 are assumed to follow a zero-mean normal distribution with a covariance 𝜮, i.e.

𝒚𝑖~𝒩(0, 𝐼) (4.3)

𝜺𝑖𝑗~𝒩(0, 𝜮) (4.4) 

Parameters 𝜽 = [𝒖, 𝑭, 𝜮] and 𝒚𝑖  of the model should be estimated during the training phase using

training data from all speakers. The training procedure is discussed in Section 4.2.1.1 which is 

identical to that given in [133], and the test procedure is presented in Section 4.2.1.2.  

4.2.1.1 Model Parameter Estimation 

Let 𝑿𝑖 = [𝒙𝑖1
𝑇 , 𝒙𝑖2

𝑇⋯𝒙𝑖𝑀𝑖
𝑇]𝑇  represent the concatenated statistical features of the 𝑖𝑡ℎ  speaker of

𝑀𝑖 × 𝐷 dimensions, where 𝑁 is the number of speakers, 𝑀𝑖 represents the number of frame of feature

vectors from the 𝑖𝑡ℎ speaker and 𝐷 represents the feature dimension. In the training phase, the aim is

to find the optimal parameter set 𝜽 that maximises the model likelihood of 𝑃(𝑿|𝜽), given some 

training data 𝑿 = [𝑿1
𝑇 , 𝑿2

𝑇⋯ ,𝑿𝑁
𝑇]𝑇. Here, the EM algorithm as mentioned in Section 3.2.3 is used

to solve the problem as follows: 

Firstly, equation (4.1) can be rewritten as: 

𝑿𝑖 = [
𝒖
⋮
𝒖
] + [

𝑭
⋮
𝑭
]𝒚𝑖 + [

𝜺𝑖1
⋮
𝜺𝑖𝑀𝑖

] (4.5) 
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At this point, it is helpful to introduce the notation, 𝑨 = [𝑭𝑇 , 𝑭𝑇 , … , 𝑭𝑇]𝑇, 𝒎 = [𝒖𝑇 , 𝒖𝑇 , … , 𝒖𝑇]𝑇and

𝜺𝑖 = [𝜺𝑖1
𝑇 , 𝜺𝑖2

𝑇 , … , 𝜺𝑖𝑀𝑖
𝑇 ]

𝑇
 , where 𝜺𝑖  is of mean zero and covariance matrix 𝜮′ as shown in equation

(4.6). 

𝜮′ = [

𝜮 0 ⋯ 0
0 𝜮 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝜮

] 
(4.6) 

For each speaker 𝑖,  the posterior of the speaker identity 𝒚𝑖can be rewritten using Bayes theorem as:

𝑃(𝒚𝑖|𝑿𝑖, 𝜽) =
𝑃(𝑿𝑖|𝒚𝑖, 𝜽)𝑃(𝒚𝑖)

𝑃(𝑿𝑖)
(4.7) 

Since 𝑃(𝑿𝑖) is consistent, the 𝑃(𝒚𝑖|𝑿𝑖, 𝜽) is proportional as:

𝑃(𝒚𝑖|𝑿𝑖, 𝜽) ∝ 𝑃(𝑿𝑖|𝒚𝑖, 𝜽)𝑃(𝒚𝑖) (4.8) 

where, the posterior probability 𝑃(𝑋𝑖|𝑦𝑖 , 𝜃) is a Gaussian distribution as below:

𝑃(𝑿𝑖|𝒚𝑖, 𝜽) = 𝒩(𝒎+ 𝑨𝒚𝑖, 𝜮
′) (4.9) 

Since 𝑃(𝑿𝑖|𝒚𝑖, 𝜽)  and 𝑃(𝒚𝑖)  in equation (4.8) are both Gaussian distributions, the posterior

distribution 𝑃(𝒚𝑖|𝑿𝑖, 𝜃) is also a Gaussian distribution given by

𝑃(𝒚𝑖|𝑿𝑖, 𝜽) = 𝒩(𝐸[𝒚𝑖], 𝑐𝑜𝑣(𝒚𝑖)) (4.10) 

where 

𝐸[𝒚𝑖] = (𝑨
𝑇𝜮′−𝟏𝑨+ 𝑰)−1𝑨𝑻𝜮′−𝟏(𝑿𝑖 −𝒎) (4.11) 

and 

𝑐𝑜𝑣[𝒚𝑖] = (𝑨
𝑇𝜮′−𝟏𝑨+ 𝑰)−1 (4.12)

The model parameters, 𝜽 = [𝒖, 𝑭, 𝜮], are optimised using EM algorithm which aims to maximise 

the auxiliary function 𝑄(𝜽𝑡−1, 𝜽𝑡)

𝑄(𝜽𝑡−1, 𝜽𝑡) =∑∑∫𝑃(𝒚𝑖|𝑿𝑖, 𝜽𝑡−1)log [ 𝑃(𝑿𝑖𝑗|𝒚𝑖, 𝜽𝑡)𝑃(𝒚𝑖)

𝑀𝑖

𝑗=1

𝑁

𝑖=1

]𝑑𝒚𝑖 (4.13) 
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where 𝑡 indicates the iteration number. 

The updated parameters 𝜽 can be obtained by calculating the derivatives of 𝑄(𝜽𝑡−1, 𝜽𝑡) and are

given as:  

𝒖 =
1

𝑁 ∙ 𝑀𝑖
∑∑𝒙𝑖𝑗

𝑀𝑖

𝑗=1

𝑁

𝑖=1

 (4.14) 

𝑭 = (∑∑(𝒙𝑖𝑗

𝑀𝑖

𝑗=1

𝑁

𝑖=1

− 𝒖)𝐸[𝒚𝑖]
𝑇)(∑𝐸[𝒚𝑖𝒚𝑖

𝑇]

𝑁

𝑖=1

)

−1

(4.15) 

𝜮 =
1

𝑁 ∗ 𝑀𝑖
∑∑𝑑𝑖𝑎𝑔 [(𝒙𝑖𝑗 − 𝒖)(𝒙𝑖𝑗 − 𝒖)

𝑇
− 𝑭𝐸[𝒚𝑖](𝒙𝑖𝑗 − 𝒖)

𝑇
]

𝑀𝑖

𝑗=1

𝑁

𝑖=1
(4.16)

4.2.1.1 Speaker Normalisation for Test Utterances 

During the testing phase, the speaker factors 𝒚𝑡 are estimated from 𝑃(𝒚𝑡|𝒛𝑡, 𝜽), where 𝒛𝑡 represents

the test data. As the posterior probability of test speaker factor 𝑃(𝒚𝑡|𝒛𝑡, 𝜽) is a Gaussian distribution

as in equation (4.8), the expectation value 𝐸[𝒚𝑡|𝒛𝑡, 𝜽] is adopted as the final estimation for the test

speaker factor 𝒚𝑡, where 𝑨 = 𝑭 and 𝜮′ = 𝜮, since the normalisation is carried out at the frame-level.

The normalised feature vectors �̃�𝑡 are calculated as given by

�̃�𝑡 = 𝒛𝑡 − 𝑭𝑬[𝒚𝑡] − 𝒖 (4.17)

where 

𝐸[𝒚𝒕] = (𝑭
𝑇𝜮−1𝑭 + 𝑰)−1𝑭𝑇𝜮−1(𝒛𝑡 − 𝒖) (4.18) 

4.2.2 PLSDR based normalisation 

4.2.2.1 Conventional PLSDR 

PLSDR assumes that a few underlying factors can account for the data variability [134]. It aims to 

project the original feature space to a lower-dimension latent variable space, which maximises the 

covariance between the latent factors and the underlying ground truth. Let 𝑿 = [𝑿1
𝑇 , 𝑿2

𝑇⋯ ,𝑿𝑁
𝑇]𝑇

represents the feature vectors where 𝑁 denotes the total number of frame. PLSDR decomposes the 

feature matrix 𝑿 as: 
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𝑿 = 𝑻𝑷𝑇 + 𝑬 (4.19)

where 𝑿 is an 𝑁 × 𝐷1  matrix, 𝑁 represents total number of frames, and 𝐷1  represents the original

feature dimensions;  𝑻  is an 𝑁 × 𝐷2  matrix comprising of latent components (a low-dimensional

representation of 𝑿) and 𝐷2 denotes the dimensionality of the latent components (𝐷2 < 𝐷1 ); 𝑷 is a

𝐷1 × 𝐷2 matrix; and 𝑬 is an 𝑁 × 𝐷1 matrix representing residual factors. Conversely, given the data,

𝑿 , the latent components, 𝑻 = [𝒕1
𝑇
, 𝒕2

𝑇
,⋯ 𝒕𝐷2

𝑇
] 𝑇  can be calculated by estimating each column

vector 𝒕𝑖 sequentially as:

𝒕𝑖 = 𝑿𝒘𝑖 (4.20)

where  𝒘𝑖 ( 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝐷2)  is a weight vector corresponding to elements of the weight matrix

𝑾 = [𝒘1
𝑇
, 𝒘2

𝑇
,⋯𝒘𝐷2

𝑇
] 𝑇, a 𝐷2 × 𝐷1 matrix that projects the original feature space 𝑿 to the lower

dimensional space 𝑻. For computational purposes, the label 𝒀 is similarly decomposed as for 𝑿 in 

equation (4.19)  as:   

𝒀 = 𝑼𝑸𝑇 + 𝑭  (4.21)

where 𝒀  is an 𝑁 × 𝐷3  matrix, 𝐷3  denotes the label dimensionality. 𝑼 = [𝒖1
𝑇
, 𝒖2

𝑇
,⋯𝒖𝐷3

𝑇
]𝑇 is

a  𝑁 × 𝐷4 projected matrix of 𝒀 , similar as 𝑇  to 𝑋  in (4.19). 𝑸  is a 𝐷4 × 𝐷3  matrix, and 𝑭  is the

residual matrix similar as 𝑬 in (4.19).  PLSDR aims to find 𝒘𝑖 from equation (4.20) by maximising

the covariance between the new projected latent feature vector 𝑿𝒘𝑖 and labels 𝒖𝑖 as:

𝒘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘𝑖

(𝑐𝑜𝑣(𝑿𝒘𝑖, 𝒖𝑖)) 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘𝑖

1

𝑁 − 1
(𝑿𝒘𝑖 − 𝑿𝒘𝑖̅̅ ̅̅ ̅̅ )

𝑇
(𝒖𝑖 − 𝒖�̅�) (4.22) 

where 𝑿 and  𝒀 are first mean-centred. This means that the covariance calculation simplifies to 

𝒘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘𝑖

(
1

𝑁 − 1
(𝑿𝒘𝑖)𝑇𝒖𝑖) (4.23) 

A Lagrange multiplier is added to solve the maximisation problems under the constraint 𝒘𝑖
𝑇
𝒘𝑖 = 1.

It can be proven that 𝒘𝑖  corresponds to the first eigenvector of 𝑿𝑇𝒀𝒀𝑇𝑿 [135], which takes into

account the correlation between 𝑿 and 𝒀. Finally, 𝑾 and 𝑻 are obtained. For further details of the 

algorithm, the reader is referred to [59, 136-138]. 
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4.2.2.2 Proposed PLSDR based normalisation 

Instead of only considering the covariance between the features and labels, a method that aims to 

project the original features to a latent space that additionally minimises the speaker variability is 

developed. This method focuses on manipulating the speaker-specific covariance between the features 

and labels. Firstly, features and labels from each speaker 𝑠 , denoted here as 𝑿𝑠  and 𝒀𝑠 , are

decomposed individually, similarly to equations (4.19) and (4.21), as:  

𝑿𝑠 = 𝑻𝑠𝑷𝑠
𝑇 + 𝑬𝑠 (4.24) 

9𝒀𝑠 = 𝑼𝑠𝑸𝑠
𝑇 + 𝑭𝑠 (4.25) 

where 𝑻𝑠 = 𝑿𝑠𝑾. 𝑻𝑠, 𝑷𝑠, 𝑬𝑠, 𝑼𝑠, 𝑸𝑠 and 𝑭𝑠 all keep the same denotation as conventional PLSDR in

4.2.2.1, but specific to each speaker 𝑠 here. The projection matrix 𝑾 maximises the summation of 

speaker-specific covariance between the new features 𝑿𝑠𝑾 and 𝒀𝑠  for each speaker 𝑠 . It can be

estimated as   

𝑾 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑾

(∑𝑐𝑜𝑣(𝑿𝑠𝑾,𝒀𝑠)

𝑆

𝑠=1

) 
(4.26) 

This projection matrix introduces the speaker-specific information, and the projected feature space is 

expected to minimise the speaker variability according to (4.26). Similar to equation (4.23),  𝑿𝑠 and

𝒀𝑠 for each speaker 𝑠 can be mean-centred individually and the simplified criterion can be estimated

as 

𝒘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘𝑖

∑
1

𝑁𝑠 − 1
(𝑿𝑠𝒘

𝑖)
𝑇
𝒖𝑠
𝑖

𝑆

𝒔=1

(4.27) 

where 𝑁𝑠  represents the total number of frames of each speaker s. The Lagrange multiplier 𝜆  is

generally introduced to solve equation (4.26) under the constraint ‖𝒘𝑖‖ = 1 as:

𝑳(𝒘𝑖) = ∑
(𝑿𝑠𝒘

𝑖)
𝑇
𝒖𝑠
𝑖

𝑁𝑠 − 1

𝑠𝑛

𝒏=1

− 𝜆(𝒘𝑖
𝑇
𝒘𝑖 − 1)  (4.28) 

By taking the derivative of this equation with respect to 𝒘𝑖, it comes to:
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𝛿𝑳(𝒘𝑖)

𝛿𝒘𝑖
=∑

𝑿𝑠
𝑇𝒖𝑠

𝑖

𝑁𝑠 − 1

𝑆

𝑠=1

− 2𝜆𝒘𝑖 = 0  (4.29) 

The PLS2 algorithm [59, 136-138] is used to estimate the parameters 𝑾, and 𝜽 = [𝑻𝑠, 𝑷𝑠, 𝑸𝑠, 𝑼𝑠]

for the proposed method that can accommodate multi-dimensional labels 𝒀. In our case,  𝒀  is a 

matrix of either two or three columns representing the affective attributes of interest. The use of multi-

dimensional labels, as opposed to employing a different decomposition for each affective attribute, 

aims to take the dependencies between the affective attributes into account.  

The algorithm is developed by estimating the column vectors of  𝑻𝑠  and 𝑾  sequentially. Let

[𝒕𝑠
𝑖 , 𝒑𝑠

𝑖 , 𝒒𝑠
𝑖 , 𝒖𝑠

𝑖 ] represent the 𝑖𝑡ℎ  column vectors of matrices  [𝑻𝑠, 𝑷𝑠, 𝑸𝑠, 𝑼𝑠]  for each speaker 𝑠

respectively.  Based on equation (4.29),  the 𝑖𝑡ℎ  column vector 𝒘𝑖  of weight matrix 𝑾  can be

calculated under the constraint ‖𝒘‖ = 1 as 

𝒘𝑖 =∑
𝑿𝑠
𝑖 𝑇𝒖𝑠

𝑖

𝑁𝑠 − 1

𝑆

𝑠=1

‖∑
𝑿𝑠
𝑖 𝑇𝒖𝑠

𝑖

𝑁𝑠 − 1

𝑆

𝑠=1

‖⁄  
 (4.30) 

where 𝑁𝑠 represents the total frame number of speaker 𝑠.  𝑿𝑠
𝑖  denotes the residual information of the

original feature vectors of speaker 𝑠, since the information in 𝑿𝑠 will be reduced after each column 

estimation and 𝒘𝑖  is then computed using the information left as in equation (4.35). 𝒖𝑠
𝑖  is the 𝑖𝑡ℎ

column vector of 𝑼𝑠. Note that the first column vector 𝑢𝑠
1 should be initialised for estimation of 𝒘1 in

(4.30), which generally takes the first column of 𝒀𝑠 as in [59, 136-138].

Then the 𝑖𝑡ℎ  column vectors [𝒕𝑠
𝑖 , 𝒑𝑠

𝑖 , 𝒒𝑠
𝑖 , 𝒖𝑠

𝑖 ] can then be estimated and updated iteratively until they

converge, the details of which can be found in [139]. These parameters are:  

𝒕𝑠
𝑖 = 𝑿𝑠

𝑖𝒘𝑖 (4.31) 

𝒒𝑠
𝑖 = 𝒀𝑠

𝑖 𝑇𝒕𝑠
𝑖/‖𝒀𝑠

𝑖 𝑇𝒕𝑠
𝑖‖ (4.32) 

𝒑𝑠
𝑖 = 𝑿𝑠

𝑖 𝑇𝒕𝑠
𝑖/𝒕𝑠

𝑖 𝑇𝒕𝑠
𝑖 (4.33) 

𝒖𝑠
𝑖 = 𝒀𝑠

𝑖𝒒𝑠
𝑖 (4.34) 

It can be seen that 𝒖𝑠
𝑖  was updated as a linear combination of the columns of 𝒀𝑠

𝑖  with weights 𝒒𝑠
𝑖  as in 

equation (4.34). This allows information about multiple affective attributes from  𝒀𝒔 to be introduced

into the estimation. 𝑿𝑠
𝑖  and 𝒀𝑠

𝑖  represent the residual information as: 



72 

𝑿𝑠
𝑖 = 𝑿𝑠

𝑖−1 − 𝒕𝑠
𝑖−1𝒑𝑠

𝑖−1𝑇 (4.35) 

𝒀𝑠
𝑖 = 𝒀𝑠

𝑖−1 − 𝒖𝑠
𝑖−1𝒒𝑠

𝑖−1𝑇 (4.36) 

where 1 ≤ 𝑖 ≤ 𝐷2 . Thus every 𝑖𝑡ℎ  column vector of 𝑾  and [𝑻𝑠, 𝑷𝑠, 𝑸𝑠, 𝑼𝑠]  can be estimated

sequentially, until a predefined number of columns (dimensions), 𝐷2, are achieved.

During the estimation of each column vectors [𝒕𝑠
𝑖 , 𝒑𝑠

𝑖 , 𝒒𝑠
𝑖 , 𝒖𝑠

𝑖 ]  in equations (4.31)-(4.34), they are 

also optimised iteratively. The estimation of the optimal column vectors 𝒘𝑖  and [𝒕𝑠
𝑖 , 𝒑𝑠

𝑖 , 𝒒𝑠
𝑖 , 𝒖𝑠

𝑖 ]

continues until they reach the converge condition,  ∑ (𝒖𝑠
𝑗
− 𝒖𝑠

𝑗−1𝑆
𝑠=1 ) ≤ 휀 , where 𝑗 is the iteration

number for the optimisation and 휀 is a predefined threshold. 

The normalised features 𝑻𝑠 can be obtained individually as per equation (4.31) for each speaker,

and the regression model for emotion prediction is developed based on 𝑻𝑠 over the entire training

partition. During the testing phase, features 𝑿𝑡 extracted form test speech (as opposed to features 𝑿𝑠

from training speech from speaker 𝑠) are mean-centred and the trained weight matrix 𝑾 is used to 

project the test features to the normalised feature space to obtain 𝑻𝑡 as follows:

𝑻𝑡 = 𝑿𝑡𝑾  (4.37) 

The regression model is trained using normalised features 𝑻𝑠, and predictions are made based on each

normalised new test features 𝑻𝑡.

The proposed PLSDR based speaker normalisation aims to achieving both feature dimensionality 

reduction and speaker normalisation simultaneously. Since the proposed technique is applied directly 

on the features prior to model training, it can be easily used with other types of models and in other 

regression problems in other fields. 

4.2.3 Feature mapping based normalisation 

This section introduces a speaker normalisation method based on feature mapping [140] that directly 

transforms the feature space to reduce mismatch between marginal feature distributions 𝑃(𝒙|𝑠) for 

different speakers, which were originally laid out in Section 3.2.    

Feature mapping was first introduced within the field of speaker verification for a system that 

aimed to minimise the channel variability from model space [127]. It mapped the channel-dependent 
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feature space to a channel-independent space, and developed speaker-dependent mapping rules. The 

technique proposed in this section aims to reduce the speaker variability in continuous emotion 

prediction systems by adapting the speaker-dependent GMMs of the feature space to a speaker-

independent GMM, where the root GMM can be viewed as a speaker-independent model as shown in 

Figure 4.1.  

In this chapter, the root GMM is chosen to be a UBM trained on data from multiple speakers in 

order to make it speaker-independent. During the test phase, the distribution of features of the test 

speaker 𝑃(𝒙|𝑡) is similarly mapped to the UBM 𝑃(𝒙). It should be noted that the root GMM does not 

have to be a UBM and a speaker adaptation scheme can be envisioned. In this way, a model of the test 

speaker’s feature distribution is chosen as the root GMM [141]. However, there appears to be 

inadequate data from the target test speakers in the databases employed herein to estimate a reliable 

model for use as the root GMM, and the performance of the speaker adaptation approach was poor. 

Henceforth, the main focus is only the speaker normalisation approach in this section, a description of 

which follows. 

Firstly, speaker-dependent GMMs of 𝑃(𝒙|𝑠) are developed in the feature space. Then speaker-

dependent mapping rules are developed by comparing the speaker-dependent GMMs and the UBM 

individually. This is achieved by a linear affine transformation, shifting the mean and adapting the 

covariance matrix of the speaker-dependent GMMs towards that of the UBM. The speaker-dependent 

mapping is carried out by the transformation obtained for each Gaussian mixture component instead 

of for the overall distribution of the GMM. After mapping, the normalised joint model of 𝑃(�̃�, 𝒚) is 

Speaker 1 GMM Speaker S GMM 

Root GMM
mapping mapping

Regression Modelling Labels

Figure 4.1: Feature mapping structure. The speaker-dependent GMMs are mapped to a root GMM (speaker-independent 

GMM). The mapping rule is speaker-dependent. The normalised features are used for the regression modelling techniques. 
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developed using normalised features �̃� from all speakers. 

In terms of the mapping principle for each speaker s, the dominant mixture 𝑘 for the feature vector 

at frame 𝑖 was first calculated as:  

𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑚≤𝑀

𝑤𝑚𝑃𝑚(𝒙𝑖|𝑠) (4.38)

where 

𝑃𝑚(𝒙𝒊|𝑠) = 𝑁 (𝒙𝑖; 𝒖𝑠𝑚
𝒙 , 𝜮𝑠𝑚

(𝒙𝒙)
), (4.39)

𝒙𝒊 represents the feature vector at frame 𝑖 and 𝑃𝑚(𝒙𝒊|𝑠) represents the probability of feature vector 𝒙𝒊

belonging to 𝑚𝑡ℎ mixture component of the speaker-dependent GMM 𝑃(𝒙|𝑠) . 𝒖𝑠𝑚
𝒙  and 𝜮𝑠𝑚

(𝒙𝒙)

represent the mean and covariance matrix of the 𝑚𝑡ℎ  mixture component of the speaker-dependent

GMMs for speaker s. The dominant mixture component modelled by 𝑃𝑘(𝒙𝒊|𝑠), to which 𝒙𝑖 is most

likely to belong, is determined for each speaker 𝑠 as in equation (4.38). Then the feature vector 𝒙𝑖 is

mapped to a speaker-independent space, by following the affine transformation from this dominant 

mixture component 𝑘 to the corresponding 𝑘𝑡ℎmixture component of the UBM from a distribution

view. It should be noted that covariance matrices 𝜮𝑘
(𝒙𝒙)

and 𝜮𝑠𝑘
(𝒙𝒙)

of 𝑘𝑡ℎ  mixture of the UBM and

speaker-dependent GMM are full covariance matrices, though the approach presented in [127] only 

dealt with diagonal covariance matrices.  

When using full covariance matrices for each mixture component, the mapping of 𝒙𝑖  to 𝒙�̃�  for

speaker 𝑠 is given as:  

𝒙�̃� =  𝑾(𝒙𝑖 − 𝒖𝑠𝑘
𝒙 ) + 𝒖𝑘

𝒙  (4.40)

where 𝑾 represents the transformation matrix for scaling and rotation, in order to match the speaker-

dependent mean and covariance 𝜮𝑠𝑘
(𝒙𝒙)

 to the speaker-independent mean and covariance 𝜮𝑚
(𝒙𝒙)

. The

means 𝒖𝑠𝑘
𝒙  and 𝒖𝑘

𝒙  of the 𝑘𝑡ℎdominant mixture for speaker dependent GMM and UBM can be directly

found from models of the joint distributions 𝑃(𝒙, 𝒚|𝑠) and 𝑃(𝒙, 𝒚) respectively. To estimate 𝑾, first 

the covariance matrices corresponding to both sides of equation (4.40) are found as: 
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𝑐𝑜𝑣(𝒙�̃�) = 𝑐𝑜𝑣(𝑾(𝒙𝑖 − 𝒖𝑠𝑘
𝒙 ) + 𝒖𝑘

𝒙)

= 𝑐𝑜𝑣(𝑾𝒙𝑖) 

∴ 𝑐𝑜𝑣(𝒙�̃�) = 𝑾𝑐𝑜𝑣(𝒙𝑖)𝑾
𝑇

(4.41) 

Since 𝜮𝑚
(𝒙𝒙)

= 𝑐𝑜𝑣(𝒙�̃�) and 𝜮𝑠𝑚
(𝒙𝒙)

= 𝑐𝑜𝑣(𝒙𝑖) are already obtained in the joint model 𝑃(𝒙, 𝒚|𝑠) and

𝑃(𝒙, 𝒚) respectively, equation (4.41) can be rewritten as: 

𝜮𝑚
(𝒙𝒙)

= 𝑾𝜮𝑠𝑚
(𝒙𝒙)

𝑾𝑻 (4.42) 

Cholesky decomposition can be used to further decompose the covariance matrices as: 

𝜮𝑠𝑚
(𝒙𝒙)

= 𝑸𝑸𝑻 (4.43) 

𝜮𝑚
(𝒙𝒙)

= 𝑹𝑹𝑻 (4.44) 

Substituting equations (4.43) and (4.44) into (4.42), it is noted that 

𝑹𝑹𝑇 = 𝑾𝑸𝑸𝑇𝑾𝑇 = 𝑾𝑸(𝑾𝑸)𝑇 (4.45) 

The transformation matrix 𝑾 is finally obtained as 

𝑾 = 𝑹𝑸−1 = 𝑹𝑸𝑇 (4.46)

The mapping is performed on a vector basis. The normalised joint model 𝑃(�̃�, 𝒚) can be developed 

using normalised features, and predictions are made based on  𝑃(�̃�, 𝒚)  and the normalised test 

features.  

One of the obstacles to feature mapping is that it only maps features by shifting the mean and 

transforming the covariance, not taking the weights of each mixture into consideration. It can 

therefore reduce the variability between speakers, but may not map speaker specific feature 

distributions 𝑃(𝒙|𝑠) to a common distribution, since the target models could differ in terms of their 

mixture weights.   

4.3 Experimental settings 

In this section the experimental settings are seperated into two parts: one for factor analysis based 

normalisation technique, and the other for the PLSDR and feature mapping based normalisation 

techniques, since different back-ends were utilised for each. Factor analysis based normalisation was 
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carried out in the original high dimensional feature space, thus RVM was used as the back-end due to 

its inherent feature selection property. GMR was utilised as the regression modelling technique for the 

PLSDR and feature mapping based normalisation techniques, aligned with the analysis in Chapter 3. 

4.3.1 Factor analysis based normalisation 

The USC CreativeIT database [107] and the SEMAINE database [142] (referring back to Section 

2.4.2) were utilised to evaluate the factor analysis based normalisation method. The same feature set 

described in Section 3.3.1 was utilised and RVM was adopted as the back-end. The proposed speaker 

normalisation was applied with 13-dimensional and 12-dimensional speaker factor vectors with the 

USC CreativeIT and the SEMAINE databases respectively. The dimensionality of the speaker factor 

vectors 𝒚𝑖  was chosen based on the number of speakers in the training dataset. The speaker

normalisation model parameters were estimated with 10 iterations of the EM algorithms in both cases. 

Person’s correlation coefficient is adopted as the evaluation metric. 

The experiments on the USC CreativeIT database were conducted in a leave-one-session-out cross 

validation manner to avoid the model starvation owing to the limited size of the database[81]. The 

SEMAINE database on the other hand was split into a distinct training set comprising of speech data 

from 12 randomly selected speakers and a distinct test comprising of speech from the remaining 6 

speakers. Apart from the system performance, analyses of the compensation effect of the proposed 

technique are also reported on the USC CreativeIT database in Section 4.5.1. 

4.3.2 PLSDR and feature mapping based normalisation 

Three databases were used to evaluate the proposed PLSDR and feature mapping based normalisation 

methods: the USC CreativeIT database [107], the SEMAINE database [142] and the RECOLA 

database in Section 2.3.2, which featured in AVEC 2016 [18]. Similarly to Section 4.4.1, further 

analyses of the proposed techniques are carried out on the USC CreativeIT database for a direct 

comparison in Section 4.5.2.  

An overview of the system is shown in Figure 4.2. Statistical features are extracted and GMR [81] 

is used as the regression technique. All the parameters are identical to those described in Section 3.3. 
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PLSDR and feature mapping based speaker normalisation, shown as orange blocks in Figure 4.2, are 

two proposed compensation techniques for speaker variability and are evaluated independently here. 

4.3.2.1 Front-end 

In order to ensure that the systems are compared fairly, the feature dimension after PLSDR is set to 

80, to be consistent with the system described in Section 3.3. It should be noted that the PLSDR based 

method carries out feature normalisation after incorporating dynamic information, while the baseline 

approach with PCA reduces the dimension to 40 and then incorporates the dynamic information (in 

the form of deltas) since this was found to exhibit better performance [81].  

4.3.2.2 Back-end 

GMR allows for the possibility of jointly modelling all the affective dimension of interest, i.e. where 

arousal, valence and dominance are jointly predicted. In this case, the label vector 𝒀𝑠 used for GMR is

a six-dimension vector comprising of the three affective attributes (arousal, valence and dominance) 

and their temporal derivatives. Inclusion of the derivatives takes the dependencies among emotion 

attributes into account as well. For details about GMR the reader is referred to [81, 83].   

GMMs with four mixture components and full covariance matrices are used. Twenty iterations of 

the EM algorithm are used to train the GMMs. Finally, post-processing of the prediction is 

implemented using a binomial filter to smooth them, and then mean and variance normalisation for 

scaling purposes [29]. 

4.3.2.3 Evaluation metrics 

All systems evaluated on a database used identical training, development and test partitions to allow 

direct comparison of accuracy on that database. The experiments on the USC CreativeIT database 

were conducted in a leave-one-session-out cross validation manner [81]. The SEMAINE database was 

split into a distinct training set comprising of speech data from 12 randomly selected speakers and a 

distinct test set of speech from the remaining 6 speakers with 28 utterances. In the RECOLA database, 

the experiments were carried out using the training set and the development set (serving as test set) as 

partitioned by AVEC 2016 [92]. 
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The performance of these continuous emotion prediction systems was evaluated using Pearson’s 

correlation coefficients averaged across the test utterances as the performance metric. In addition, 

inter-speaker variability and intra-speaker variability, as outlined in Section 3.2.2, were also compared 

before and after the compensation techniques on the USC CreativeIT database.  

4.4 Experimental results 

This section compares the effect of speaker variability before and after the proposed speaker 

normalisation techniques using the CreativeIT database. The performance of emotion prediction 

systems, employing the proposed techniques on the three databases, are reported and compared with 

the state-of-the-art techniques. The experimental results are separated into two sections: factor 

analysis based normalisation, and the PLSDR and feature mapping based normalisation. 

Feature 
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Vector

Feature Mapping
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Statistical
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Gaussian Mixture Regression (GMR)
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Figure 4.2: System overview of speech-based emotion prediction systems with proposed compensation techniques for 

speaker variability. Orange boxes indicate the proposed techniques in the system flow, either of the proposed technique is 

utilised in the system. 
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4.4.1 Factor analysis based normalisation 

4.4.1.1 Analysis of the speaker variability 

In order to determine how speaker variability negatively affects the performance of continuous 

emotion prediction systems, the performance of a speaker independent emotion prediction system was 

compared to that of speaker-specific emotion prediction systems on the USC CreativeIT database. 

Speaker-specific emotion prediction systems refer to those that are trained and tested on data from the 

same speaker. For this experiment, speaker-specific systems were trained on 2/3 of the data and tested 

on the remaining 1/3 of the data from 14 of the 16 speakers in the database, as there was insufficient 

data from the remaining two speakers to train and test a speaker-specific system. The performance of 

the speaker independent system is estimated on data from all 8 sessions in the database in a leave-one-

session-out cross-fold validation. Both systems use only voiced speech for training and no feature 

normalisation. 

The results of the experiment are shown in Figure 4.3, where the performance of the 14 speaker-

specific system as well as the average speaker-specific performance is compared to the performance 

of the speaker independent system in terms of mean correlation coefficient between predicted attribute 

values and ground truth labels based on human annotators (included in the database).The consistently 

superior performance of the speaker-specific systems suggests that speaker variability degrades the 

performance of speech based continuous emotion prediction systems.  

Figure 4.3: Speaker independent vs. speaker-specific systems - correlation coefficient evaluated on the USC CreativeIT 

database. Blue bars represent the speaker-specific systems, the red line represents the average of speaker-specific systems, 

and the dotted green line represents the speaker independent system. 
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In addition to this, the F-ratio is used as a measure of dissimilarity between speaker classes in order 

to investigate the effect of the normalisation on raw features [143]. This is the ratio of inter-class 

variability over intra-class variability given by: 

𝐹 − 𝑟𝑎𝑡𝑖𝑜 =

1
𝑁
∑ (𝑢𝑖 − 𝑢)
𝑁
𝑖=1

1
𝑁 ∙ 𝑀𝑖

∑ ∑ (𝑥𝑖𝑗 − 𝑢𝑖)
𝑀𝑖
𝑗=1

𝑁
𝑖=1

(4.47) 

where ui represents the mean of features estimated from the ith speaker and other notations are the

same as in Section 4.2.1.  

In this experiment, each speaker  is treated as a distinct class and adopt the average F-ratio of 

speaker classes as a measure of feature dissimilarity between speakers per feature dimension. A larger 

F-ratio value indicates a more separated feature and therefore greater speaker variability. F-ratios of

the first 50 dimensions (out of 650) of the un-normalised feature vector are compared to the F-ratios 

of corresponding 50 dimensions of the normalised feature vector in Figure 4.3. In addition the F-ratios 

of the same 50 dimensions of the speaker identity component (𝑭𝐸[𝒚𝑖]) as in equation (4.1) are also

shown in Figure 4.4. From this figure it can be seen that consistently the largest F-ratios correspond to 

the speaker identity component and the smallest F-ratios to the normalised feature vectors which 

suggests that the proposed speaker normalisation method is operating as expected and is able to 

decompose the feature space into a speaker subspace and a residual subspace, which includes emotion 

information. 

4.4.1.2 Performance with factor analysis based speaker normalisation 

The final validation of the proposed speaker normalisation technique was carried out on both the USC 

CreativeIT database and the SEMAINE database by comparing the performances of the basic emotion 

prediction systems with and without speaker normalisation.  

The performance is shown in Table 4.1. It can be seen the proposed speaker normalisation 

consistently improves the relative performance of emotion prediction systems that use voiced speech 

on both databases by 8.2%, 11.7% and 7% in USC CreativeIT and 11.0%, 95.7% and 1.9% in 

SEMAINE for arousal, valence and dominance respectively. However, no improvement is shown on 
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the system that uses all frames in USC CreativeIT database, possibly owing to the lack of voiced 

speech in USC CreativeIT database. It also doesn’t show a large difference between the two systems 

with and without VAD on the SEMAINE database. 

4.4.2 PLSDR and feature mapping based normalisation 

This section analyses the PLSDR and feature mapping based compensation techniques. The analyses 

of KL divergence before and after PLSDR and feature mapping based normalisation are presented in 

Sections 4.5.2.1 and 4.5.2.2, in terms of marginal and conditional probability distributions (as 

discussed in Section 3.2.2).  The experimental results conducted on the three databases from the 

previous section are reported in Section 4.5.2.3. 

Figure 4.4: F-ratio comparison among original features,  speaker component and normalised features 

Table 4.1: Performance on two databases. 

A means arousal, V means valence and D means dominance. 
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4.4.2.1 Marginal probability distribution 

The average KL divergence between the feature distributions of the 16 speakers and all other speakers 

𝑆𝒙(𝑖)  (as defined in Section 3.2.2) after the application of the two proposed compensation techniques

are shown in Figure 4.5 and compared to the KL divergences prior to speaker normalisation.  

It can be seen from the results that the proposed PLSDR based speaker normalisation has the 

greatest effect on the features from speakers who are the furthest from the other speakers (speakers 3 

and 11 in Figure 4.5) and brings them in line with the other speakers. On the other hand, feature 

mapping based speaker normalisation reduces the differences between feature distributions across all 

speakers, but in the case of speakers whose distribution was significantly different in the first place 

(speaker 11), the difference after normalisation is still fairly high unlike in the case of PLSDR. 

Finally, it should also be noted that the variability in the average KL divergence between speakers for 

each speaker 𝑆𝒙(𝑖) after normalisation was lower for PLSDR (standard deviation of 𝑆𝒙(𝑖) was 3)

compared to feature mapping (standard deviation of 𝑆𝒙(𝑖) was 5.7).  

The slopes of linear fits to the PAV profiles discussed in Section 3.2.2 before and after 

compensation were also estimated as measures of the effect of the proposed speaker normalisation 

methods on the ‘widths’ of feature distributions and reported in Table 4.2. As in Section 3.2.2, the 

Figure 4.5: Symmetric KL divergence of marginal probability P(x|s) before and after compensation. 
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slope of speaker 1 (an outlier) is not included in the calculation of the mean or the standard deviation. 

These results show that in the original feature space (prior to any speaker normalisation), the speaker 

independent feature distribution was significantly ‘broader’ than the speaker specific distributions. 

However, after speaker normalisation using either proposed method, the ‘widths’ of the speaker 

independent and speaker dependent feature distributions were much more similar, suggesting that the 

differences between speakers were reduced. It is also interesting to note that the PLSDR based 

normalisation method reduced the variability in the feature space, namely the ‘widths’ of the speaker 

dependent and speaker independent distributions, compared to the un-normalised feature space. This 

is indicated by a smaller mean value of slopes of speaker-dependent models compared to the slope 

value of speaker-independent model. However, the feature mapping based approach increased the 

variability (the widths) in the feature space slightly. 

4.4.2.2 Conditional probability distribution 

As in Section 4.5.2.1, the analysis carried out on the marginal feature distributions is repeated, on the 

conditional distributions of the features 𝒙 given the affect labels 𝒚 as well by approximating the true 

conditional distribution 𝑃(𝒙|𝒚, 𝑠) , by the label normalised joint distribution, 𝑃(𝒙, �̃�|𝑠)  (refer to 

Section 3.2.2). These results are reported in Figure 4.6 and Table 4.3 and broadly concur with the 

results corresponding to the marginal feature distributions in Figure 4.5 and Table 4.2. However, 

compared to 𝑆𝒙(𝑖) shown in Figure 4.6, speakers 3 and 11 do not appear to be significantly different

from the other speakers in terms of the conditional feature distributions, and feature mapping appears 

to perform worse for speaker 11. Finally the effect of the PLSDR based approach on the variability 

(‘widths’) of the conditional distributions appears to be greater than that on the marginal distributions 

while the effect of feature mapping on the variability of the conditional distributions is much more 

Table 4.2: Slope of PAV profiles for marginal distributions 

Speaker-independent 
Speaker-dependent 

Mean Median Standard deviation 

Original -2.79 -2.95 -2.91 0.26 

PLSDR -3.54 -3.52 -3.52 0.18 

Mapping -2.64 -2.78 -2.79 0.14 
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subdued. On the whole, these results suggest that the PLSDR based normalisation approach may be 

somewhat superior to the feature mapping based approach when viewed through the lens of their 

effects on the conditional distributions of the features given affect labels. 

4.4.2.3 Performance on three databases 

In this section, the performance of GMR based continuous emotion prediction systems using PLSDR 

(GMR-PLSDR) and feature mapping (GMR-FM) based speaker normalisation techniques on three 

well-established databases are reported, and compared to the commonly employed speaker-wise Z- 

normalisation (GMR-Z-N). These systems were also compared to a PCA based system without any 

speaker normalisation (GMR-PCA).  In addition, two additional systems employing speaker 

normalisation techniques that have been shown to be effective in emotion classification systems, 

namely feature warping (FW) [122] and iterative feature normalisation (IFN) [144], were also 

implemented and evaluated on the USC CreativeIT database for comparison. The reported 

Figure 4.6: Symmetric KL divergence of conditional probability  𝑃(𝑥|𝑦, 𝑠) before and after compensation. 

Table 4.3: Slope of PAV profiles of conditional probability distribution 

Speaker-independent 
Speaker-dependent 

Mean Median Standard deviation 

Original -2.85 -2.98 -2.96 0.26 

PLSDR -3.73 -3.80 -3.83 0.24 

Mapping -2.96 -3.10 -3.21 0.22 
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performances of other recent speaker normalisation techniques, including i-vector [17] and factor 

analysis (FA) based normalisation [145], are also shown here for reference. The performances of these 

systems on the three databases are reported in Tables 4.4 to 4.6. The evaluation metric is mean 

Pearson’s correlation coefficient averaged across the utterance. It should be noted that the systems 

without ‘GMR’ in their label used different feature sets or back-ends, and this should be taken in to 

account when comparing performances. 

As can be seen from Tables 4.4 to 4.6, the proposed GMR-PLSDR and GMR-FM systems are 

shaded in grey, and the best performance achieved is highlighted in red. The GMR-PLSDR system 

outperformed the commonly used speaker wise z-normalisation (GMR-Z-N) and showed consistent 

improvements on all three databases. Notably, the improvement in valence was more significant than 

for arousal for all databases. Generally, valence cannot be predicted well using speech alone, 

consequently the improvements achieved by compensating for speaker variability suggests that large 

differences may exist between speakers when expressing positive or negative emotions. The 

improvement shown by GMR-PLSDR also indicates that taking into consideration the mutual 

information between features and labels during speaker normalisation may be beneficial for valence 

prediction. The proposed GMR-FM provided a small improvement over GMR-PCA (with no speaker 

normalisation) on all three databases.  However, it did not outperform GMR-PLSDR, concurring with 

the results in Section 4.5.1. 

Finally, the results in Table 4.4 reveal that speaker normalisation techniques developed for emotion 

classification systems, feature warping [122] and iterative feature normalisation [144], do not perform 

as well in continuous emotion prediction, possibly due to the fact that feature warping assumes the 

feature dimensions are independent and iterative feature normalisation relies on a definition of a 

neutral state that is difficult to properly articulate in the dimensional emotion representation. The i-

vector and factor analysis based normalisation techniques did not perform as well as the proposed 

techniques either. 

The results in Table 4.5 obtained using the SEMAINE database are compared to the state-of-the-art 

systems presented in AVEC 2012, including the baseline and winner papers for both the frame-level 
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and word-level sub-challenges. Though the data split for training, development and test are not 

identical between our experiments and AVEC 2012 challenges, the overall data size utilised in these 

experiments is similar, with 87 sessions in our experiments and approximately 96 sessions for AVEC 

2012 challenge. It can be observed that the performance with the proposed compensation techniques 

outperformed those systems significantly. 

Table 4.4: Performance on the CreativeIT database 

A-arousal, V-valence, D-dominance; PCC- Pearson’s correlation coefficients; CCC- Concordance CC

PCC CCC 

A V D A V D 

U
S

C
 C

re
a

ti
v

eI
T

 

GMR-PCA 0.562   0.229   0.229 0.358 0.127 0.124 

GMR-Z-N 0.580 0.251 0.223 0.370 0.144 0.110 

GMR-PLSDR 0.617  0.266  0.280  0.405 0.155 0.137 

GMR-FM 0.573  0.246  0.248 0.330 0.080 0.093 

GMR-FW [20] 0.533 0.229 0.196 0.248 0.043 0.052 

IFN [13] 0.373 0.176 0.214 - - - 

I-vector [26] 0.492 - 0.145 - - - 

FA [17] 0.526 0.231 0.220 - - - 

Table 4.5: Performance on the SEMAINE database 

PCC CCC 

A V D A V D 

S
E

M
A

IN
E

 

GMR-PCA 0.479 0.288 0.268 0.340 0.167 0.100 

GMR-Z-N 0.441 0.249 0.332 0.304 0.147 0.161 

GMR-PLSDR 0.594 0.400 0.433 0.389 0.228 0.217 

GMR-FM 0.552 0.354 0.289 0.387 0.168 0.082 

AVEC12 baseline[146] 0.054 0.062 0.019 - - - 

AVEC12 winner 1[147] 0.445 0.017 0.380 - - - 

AVEC12 winner 2[148] 0.257 0.270 0.147 - - - 

Table 4.6: Performance on the RECOLA database 

PCC CCC 

R
E

C
O

L
A

 

A V A V 

GMR-PCA 0.766 0.427 0.629 0.281 

GMR-Z-N 0.813 0.471 0.667 0.208 

GMR-PLSDR 0.820 0.513 0.670 0.248 

GMR-FM 0.781 0.443 0.631 0.202 

State-of-

the-art 

[21] 

Proposed - - ~0.7 ~0.32 

Average - - ~0.6 ~0.21 

Global - - ~0.58 ~0.18 

 Note that ‘~’ indicates the approximated values since these results were reported as a boxplot in [19].
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The performance on the RECOLA database was also compared to a state-of-the-art system 

employing dynamic cooperative speaker models. It can be seen that our proposed systems 

outperformed the systems which utilises the global predictions (i.e. one speaker-independent 

regression system) and average predictions (i.e. mean of the predictions from all speaker-dependent 

systems). Though our GMR-PLSDR could not outperform the system with cooperative regression 

models, it is still a simpler system that does not require developing the speaker-dependent regression 

systems. 

4.5 Comparison of compensation techniques 

It is of interest to compare the compensation techniques in the feature space and model space. This is 

carried out by comparing the average relative improvements over the GMR-PCA baseline of feature 

normalisation and model adaptation schemes respectively in terms of PCC. Since valence is better 

predicted with a video signal and dominance is highly correlated with arousal [19, 145], the 

comparison of speech-based arousal prediction is more indicative and will now be discussed in this 

section. The analysis on valence will be considered as the future work. 

Speaker-wise z-normalisation, factor analysis and feature mapping based normalisation techniques 

were carried out at the feature level, which can be characterised as compensation methods in the 

feature space. The PLSDR based techniques target model adaptation, since they alter the relationship 

between features and labels, directly interfering with the speaker-dependent conditional probability 

distribution. Thus the relative improvements of the GMR-Z-N and GMR-FM systems over the 

baseline GMR-PCA are calculated as the average overall improvement achieved by compensation 

techniques in the feature space. Similarly, the mean of the relative improvements of the systems 

Table 4.7: Comparison of normalisation and adaptation for arousal 

USC CreativeIT SEMAINE RECOLA 

Feature space 4.7% 12.6% 6.7% 

Model space 24.2% 41.5% 13.6% 
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GMR-PLSDR over the baseline is computed, as the overall improvement of compensation techniques 

in the model space. The performance was calculated on the same three databases as in Section 4.5, 

and shown in Table 4.7. It was observed that the compensation techniques conducted in model space 

outperformed those in feature space on all three databases, suggesting that model adaptation performs 

better than feature normalisation for speaker variability compensation in continuous emotion 

prediction. Despite the different experimental settings, the comparison of relative improvement may 

still provide some useful insights.  

4.6 Summary 

Three speaker normalisation techniques based on factor analysis, partial least square dimension 

reduction (PLSDR) and feature mapping were proposed and tested over three databases. 

Improvements were observed in arousal, valence, and dominance prediction evaluated over three 

databases, validating the effectiveness of the proposed techniques.  Follow up analysis of the feature 

space distributions was also conducted to verify the effect of the proposed techniques, in terms of the 

F-ratio, inter-speaker and intra-speaker variability before and after compensation.

Specifically in terms of the PLSDR and feature mapping based normalisation techniques, the

results of the analyses and the validation on the three databases in terms of affect prediction systems 

complemented each other and indicated that both speaker normalisation techniques were effective in 

reducing speaker variability with the PLSDR based method being a little superior. In particular, the 

analyses showed that the PLSDR based method had a greater effect on features from those speakers 

that were more different from the other speakers.  Finally, the experimental results also showed that 

the proposed methods outperformed current approaches to speaker normalisation. It can also be 

extended to explore other confounding factors apart from speaker variability. 

Only speaker normalisation techniques are explored in this section and the adaptation of the trained 

models to the target speaker is not explored, though this may be a promising avenue for future work. 

Another limitation of the work reported in this chapter is that the GMR employed in this chapter did 

not take temporal information into account, and ignores the evolving nature of emotions. 
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5 CHARACTERISATION OF INTER-RATER VARIABILITY 

5.1 Introduction 

As mentioned in Chapter 2, continuous emotion prediction is generally viewed as a regression 

problem, where a speech waveform is labelled with a specific numerical value for each affective 

attribute indicating the short-term emotion intensity. The numerical affective attribute labels 

corresponding to each speech frame are generally obtained by averaging labels from multiple raters as 

perceived by them when listening to the speech (and watching associated videos if available). In 

current continuous emotion prediction systems, the back-end regression models are trained using 

these average ratings as targets, which neglects the possible information indicated by multiple raters, 

such as the disagreement among multiple raters. Thus, averaging these individual ratings to produce a 

‘gold standard’ may not be the optimal strategy to generate the underlying emotion labels, since it 

forces the conflicting information between raters to be de-emphasised during system design.   

One of the key information neglected in current continuous emotion systems is the inter-rater 

variability, referring to the disagreement among the multiple raters. The conventional system using 

mean ratings only considers the average but did not take into account the uncertainty information of 

the average rating: a high inter-rater variability may indicate a high uncertainty of the emotion state 

and vice versa as discussed in Section 2.5.3. Therefore, using the information of multiple raters 

instead of the mean rating to represent the underlying emotion attributes may be beneficial since they 

can provide more comprehensive information, i.e. the uncertainty of the emotion states. 

 Only a very limited number of studies have thus far considered inter-rater variability in continuous 

emotion prediction systems [23-25, 149-151]. These studies either presented methods to improve the 

inter-rater reliability, or adopted the inter-rater variability as additional information in the continuous 

emotion prediction system designs. However, a systematic analysis on the relationship between inter-

rater variability and emotion states/categories has not yet been fully investigated.  
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The other important clue that multiple raters can provide is the inherent reaction lags between the 

individual annotations and the underlying emotional content, which is introduced by the time delay of 

the evaluator first sensing the stimulus and then defining his/her judgements. Previous studies [2] 

have only reported that compensating for the reaction lag between the mean rating and the underlying 

emotional content improves the system performance dramatically, but they assumed that difference in 

reaction lags between individual annotators are negligible, which may not hold true.  

In this chapter I primarily focus on the inter-rater variability and the individual reaction lags. To 

evaluate the inter-rater variability, two measurements are adopted in terms of the pair-wise Pearson’s 

correlation coefficient and Cronbach's alpha; the former estimating the average inter-rater variability 

of the pair-wise correlation, and the latter estimating the inter-correlation among multiple raters. Good 

surveys of different inter-rater reliability measures can be found in [152] and [153]. Additionally, a 

probabilistic framework is proposed to quantify the inter-rater variability in terms of different emotion 

categories which are clustered based on the two dimensional arousal and valence ratings, aiming to 

reveal the correlation between them and to provide a path to utilise the information from multiple 

raters for emotion prediction systems. The RECOLA database is utilised for the analyses in terms of 

the inter-rater variability since it contains the highest number of annotators for all the utterances, i.e. 

six annotators, amongst all publically available emotion databases. 

Regarding the individual reaction lags, first the compensation effect is investigated in the mean 

ratings, and then proposed a compensation technique for the individual annotation delay based on 

maximising their inter-correlation.  

The rest of this chapter is organised as follows: the delay compensation techniques for both the 

mean rating and the individual annotators are first described in Section 5.2, since the individual 

ratings after compensation for the reaction lags can support a more accurate analysis of the inter-rater 

variability. The inter-rater variability estimated by the two measurements mentioned above and the 

proposed probabilistic framework is discussed in Section 5.3. The key experimental settings and 

evaluation techniques are explained in Section 5.4. The chapter is summarised in Section 5.5. 
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5.2 Delay effect and compensation techniques 

Section 5.2.1 describes the compensation method of the mean ratings, and Section 5.2.2 expands this 

concept to individual raters.  

5.2.1 Delay Compensation for the mean rating 

Generally the annotators listen to the speech, sensing and judging the underlying emotion states, and 

finally make their decisions and move the joysticks. This will introduce a delay between the speech 

and the annotations, referred as the reaction lag, as shown in Figure 5.1. The perceived emotion states 

are delayed than the underlying emotion states owing to the reaction lag. This in turn affects the 

reliability of the ground truth utilised for the emotion prediction systems, since the regression models 

are developed using the wrong labels will output wrong emotion predictions. Therefore, the 

(a) 

(b) 

(c) 

Figure 5.1: An example of reaction lag betteen the annotation and the speech. (a) Facial expression of one speaker 

that is shown for understanding but not used in this thesis; (b) speech segments of the corresponding speaker; (c) 

the perceived emotion states (mean rating among multiple raters) represented by solid line and the underlying 

emotion states represented by dash line. The perceived emotion states are delayed than the underlying emotion 

states. 
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annotation delay is generally compensated before training the regression models. 

Similar to the work in [2], temporal shifts were applied to speech files in order to realign the 

features with the ground truth. The frame shift was achieved by dropping first 𝑁 ground truth scores 

and last 𝑁 input feature frames before regression training. This is applied to each file in the training 

set, and these realigned features and labels are then utilised for the regression modelling. This method 

is generally applied to most of emotion prediction systems [18, 19, 29].  

However, the compensation in the training process will lead to the need to shift the prediction back 

by the same amount. As shown in Figure 5.2(a), the predictions and the ground truth are displayed 

without compensation for annotation delay. With the compensation for annotation delay in Figure 

5.2(b), the predictions were produced by the regressor which is trained with the shifted training files. 

They are shifted forward in time by 𝑁 frames, when compared to the ground-truth labels. In order to 

realign the predictions with the labels, the predictions are redshifted back 𝑁 frames. This can be either 

by directing shift or by a smoothing filter that introduces the time shift. Filtering has been shown to be 

effective for smoothing output predictions, helping to minimise adverse effects due to noisy 

predictions and offer rough estimations for undetected frames in facial features [154]. Filtering also 

introduces an output-delay proportional to the filter length; a FIR filter length of 2𝑁 + 1  introduces a 

delay of 𝑁, where 𝑁 remains the number of scores/frames dropped as per the previous paragraph. 

Hence, post-processing filters are used for resolving the synchronisation issue in predicted outputs 

caused by the introduction of a delay in the training phase (Figure 5.2c), and unless stated this is 

applied to all systems reported herein.  

In this chapter, a smoothing filter is used not only to help remove high frequency noise present in 

predictions, but also to realign predictions generated by a system trained on frame shifted features. As 

this filter will be applied over longer timescales (2s to 4s), the commonly used mean filter [155] that 

applies equal weights to all samples could be an unsuitable choice of filter. I therefore apply a 

binomial filter, which is a Gaussian shaped filter that gives greater weight to predictions adjacent to 

the prediction and less weight to the predictions further away. The binomial filter coefficients are 

obtained by the successive convolutions of (1,1). For example, with order 𝑛 = 3 applications the 
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binomial filter weights are given by [1,1] ∗ [1,1] = [1,2,1] , and with order 𝑛 = 4 the weights are 

given by [1,1] ∗ [1,1] ∗ [1,1] = [1,3,3,1]. They tail off smoothly towards zero near the edges. For 

large numbers of applications, the weights become Gaussian and the filtering approximates Gaussian 

kernel smoothing. In this case,  the order 2𝑁 + 1 is used and the coefficients ℎ(𝑛) are formed as: 

ℎ(𝑛) = [1,1] ∗ ⋯∗ [1,1]⏟          
2𝑁

 (5.1) 

The coefficients are finally normalised by dividing ∑ ℎ(𝑛)2𝑁+1
𝑛=1  to make the summation of all 

coefficients to 1. The predictions after applying binomial filter will be realigned as in [29]. It should 

be noted that the length of binomial filter can be flexible. The reason we adopted the length related to 

annotation delay is to achieve the smoothing and realignment simultaneously. This framework has 

been tested within a wide range of delays targeting the optimal delay compensation for arousal and 

valence respectively, and experimental results are discussed in Section 5.4.1. 

Figure 5.2: Effect of annotation delay compensation on a set of predicted arousal ratings. (a) Predictions without delay 

compensation and smoothing are noisy and not well matched with the ground truth labels. (b) Applying temporal shifts to 

the training data improves system performance but results in predictions that are advanced in time compared to their 

ground truth. (c) Applying a binomial filter to these predictions not only smooths the output but resolves the 

synchronisation issue [29].  

(a) 

(b) 

(c)

(a) 
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5.2.2 Delay Compensation for individual annotators 

The method of compensating reaction lag in mean ratings based on validation performance cannot be 

directly applied to individual annotators, since reaction delays between each individual annotator may 

be different, which will increase the computational requirements dramatically. Let 𝑁𝑟 represents the

individual rater’s frame shift for the 𝑟𝑡ℎrater. For 𝑅 raters in total, if using the first rater as a reference,

a set of frame shifts [𝑁2, 𝑁3⋯𝑁𝑅]  for all the other raters (2 ≤ 𝑟 ≤ 𝑅) needs to be verified. 𝑁𝑟  is

validated over a wide range of values, assuming relative delays from -5 to 5 seconds with a step of 0.2 

second (51 total steps), this will lead to  51𝑅−1 combinations to be tested, and increasing number of

raters and delay frames tested will further increase the computational load. Note that the frame shifts 

are verified from negative delays to positive delays to overcome the problem that the first rater 

responds slower than other raters.  A more effective strategy is proposed to compensate for the 

reaction lags in individual annotators based on the inter-correlation coefficient.  

A speech segment annotated by three raters is shown in Figure 5.3. Taking Rater 1 as a reference, it 

is observed that Rater 3 (red) responds to the decreasing change in affect level much more slowly 

compared to Rater 1 indicated by the orange arrow in Figure 5.3, while Rater 2 (green) responds faster 

Figure 5.3: Three individual ratings of a speech segment. The delay is observed as the difference among the starting 

point of a decreasing trend in the ratings. 
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than Rater 1 (blue). A compensation method is proposed that aims to maximise the inter-rater 

‘correlation coefficient’ among three raters based on the Pearson’s correlation coefficient (CC). 

Pearson’s CC is only capable of calculating the correlation between two annotators, so first the idea 

must be expanded to three annotators.  

Pearson’s CC between two variables 𝒙 and 𝒚 is [90]： 

𝜌(𝒙, 𝒚) =
𝑐𝑜𝑣(𝒙, 𝒚)

𝜎𝒙𝜎𝒚

(5.2) 

where the covariance of 𝒙 and 𝒚 is 

𝑐𝑜𝑣(𝒙, 𝒚) = 𝐸[𝒙𝒚] − 𝐸[𝒙]𝐸[𝒚] (5.3) 

To expand this concept to three variables, the covariance between three variables 𝒙, 𝒚,  and 𝒛  is 

calculated as:  

𝑐𝑜𝑣(𝒙, 𝒚, 𝒛) = 𝐸[𝒙𝒚𝒛] − 𝐸[𝒙]𝐸[𝒚𝒛] − 𝐸[𝒚]𝐸[𝒙𝒛] − 𝐸[𝒛]𝐸[𝒙𝒚] + 2𝐸[𝒙]𝐸[𝒚]𝐸[𝒛] (5.4) 

The ‘correlation’ between three variables can then be calculated as:  

𝜌(𝒙, 𝒚, 𝒛) =
𝑐𝑜𝑣(𝒙, 𝒚, 𝒛)

𝜎𝒙𝜎𝒚𝜎𝒛
(5.5) 

Similar to Section 5.2.1, different frame shifts are investigated. One rater, randomly chosen as Rater 1, 

is utilised as the reference without any frame shift, then Rater 2 and Rater 3 are shifted with regards to 

Rater 1. The optimal delay for each rater is finally chosen as the time shift values that achieve the 

maximum 𝜌(𝒙, 𝒚, 𝒛), and the individual ratings are then realigned based on these optimal delays. In 

order to validate the effectiveness of the realignment of the individual raters, a system which utilises 

the mean realigned ratings is compared to the system with the original mean ratings. All other system 

configurations are kept same for a direct comparison. 

5.3 Inter-rater reliability 

Recall from Section 5.1, our definition of inter-rater variability, it indicates the disagreement among 

multiple raters. A high inter-rater variability represents a high level disagreement among raters, which 

has been paid far less attention to, when defining the emotion intensity as the mean of multiple ratings. 
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A systematic understanding of how inter-rater variability relates to the emotion categories is still 

lacking. This section first proposes two measurements of inter-rater variability in Section 5.3.1, and 

analyses the correlation between the inter-rater variability and emotion categories/clusters in Section 

5.3.2. 

5.3.1 Measurements of inter-rater variability 

The most widely adopted metrics used to measure the inter-rater variability are the mean of pair-wise 

Pearson’s correlation coefficient and Cronbach's alpha [156]. The mean of pair-wise Pearson’s 

correlation coefficient is given as:  

𝑢(𝒙1, 𝒙2,⋯𝒙𝑁) =
1

∑ 𝑘𝑅−1
𝑘=1

∑ ∑ 𝜌(𝒙𝑖 , 𝒙𝑗)

𝑅

𝑗=𝑖+1

𝑅

𝑖=1

(5.6) 

where 𝒙𝑖 and 𝒙𝑗 represents the 𝑖𝑡ℎ and the 𝑗𝑡ℎ individual annotations, and 𝑅 represents the total rater

number. Cronbach's alpha 𝛼 is able to estimate the reliability between multiple raters and is given as: 

𝛼 =
𝑁

𝑁 − 1
(1 −

∑ 𝜎𝒙𝑖
2𝑁

𝑖=1

𝜎𝒚
2  ) (5.7) 

where 𝜎𝒙𝑖
2  is the variance of the 𝑖𝑡ℎ  rating, 𝒙𝑖  represents the 𝑖𝑡ℎ  individual annotations, and 𝜎𝒚

2

represents the variance of the observed total ratings given that 𝒚 = 𝒙1 + 𝒙2 +⋯+ 𝒙𝑅 . These two

measurements reflect the reliability of the ratings, and a high value of 𝜌(𝒙1, 𝒙2, ⋯𝒙𝑁) or 𝛼 indicates a

low inter-rater variability.  

5.3.2 Correlation between inter-rater variability and emotion clusters 

The correlation between the inter-rater variability and emotion clusters/categories is analysed in a 

probabilistic framework, similar to that proposed in chapter 3. I aim to gain some insights into the 

inter-rater variability, i.e. is inter-rater variability different for different emotion categories? The first 

challenge in this framework is the definition of emotion categories in terms of dimensional labels of 

arousal and valence. Here the K-means clustering method [157] is adopted to cluster the speech 

frames into 𝐾 different emotion categories in the arousal-valence space. This is directly applied to 
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mean ratings. K-means clustering aims to partition the observations into K clusters in which each 

observation belongs to the cluster with the nearest mean, serving as a prototype for each cluster. It is 

used to allocate speech frames to different clusters that represent different emotional states.  

Let 𝒙𝑛 represent the two-dimensional mean ratings of arousal and valence at frame 𝑛, and 𝑿 =

[𝒙1
𝑇 , 𝒙2

𝑇 , ⋯𝒙𝑁
𝑇 ]𝑇  represents the entire training data of 𝑁  frames. K-means clustering partitions 𝑁

frames into K sets 𝑺 = [𝑆1, 𝑆2,⋯𝑆𝐾] with the aim of minimising the sum of distances between the

training data and their corresponding centroids. The Euclidean distance is the metric generally 

adopted, given by: 

argmin
𝑺

∑∑‖𝒙− 𝒖𝑖‖
2

𝒙~𝑆𝑖

𝐾

𝑖=1

(5.8) 

where 𝒖𝑖 is the mean of the data points in 𝑆𝑖. Readers can refer to [157] for further details.

The second key point in the analysis of the relationship between the inter-rater variability and the 

emotion categories/clusters is the representation of the inter-rater variability, which is computed as the 

standard deviation among multiple raterss. Let 𝝈𝑛 represent the standard deviation among 𝑅 raters for

each frame  :  

𝝈𝑛 = √
1

𝑅
∑(𝒙𝑛,𝑟 − �̅�𝑛)

2

𝑅

𝑟=1

(5.9) 

where �̅�𝑛  represents the average of 𝒙𝑛,𝑟  among 𝑅  raters. These inter-rater variability 𝝈𝑛  will be

assigned to the sets 𝑺 = [𝑆1, 𝑆2,⋯ 𝑆𝑘] of each cluster according to the K-means clusters. GMMs are

then estimated to model the distributions of inter-rater variability within each emotions cluster, 

referred as the emotion-dependent inter-rater distributions, 𝑃(𝝈|𝑆𝑖). Similar to Section 3.2.1, GMMs

𝑃(𝝈|𝑆𝑖) aim to model the probabilistic distribution of the inter-rater variability 𝝈𝑛 for each emotion

cluster 𝑆𝑖. Note that GMMs were developed for each speaker in Section 3.2.1, while here they are

created for each emotion clusters 𝑆𝑖.
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In order to quantify the inter-rater variability between different emotion clusters, the symmetric KL 

divergence is adopted which calculates the similarity between the emotion-dependent GMMs 𝑃(𝝈|𝑆𝑖)

and 𝑃(𝝈|𝑆𝑗), similar to equation (3.1):

𝐼𝑆𝐾𝐿 (𝑃(𝝈|𝑆𝑖), 𝑃(𝝈|𝑆𝑗)) =
1

2
|∫ 𝑃(𝝈|𝑆𝑖)𝐼𝑛

𝑃(𝝈|𝑆𝑖)

𝑃(𝝈|𝑆𝑗)
𝑑𝑥 + ∫ 𝑃(𝝈|𝑆𝑗)𝐼𝑛

𝑃(𝝈|𝑆𝑗)

𝑃(𝝈|𝑆𝑖)
𝑑𝒙

𝒙𝑥

| (5.10) 

A Monte-Carlo sample method is utilised to computationally estimate KL divergence in (5.10). 

Readers can refer to [14] more details. The average KL divergence between one emotion-dependent 

distribution 𝑃(𝝈|𝑆𝑖) and all other emotion-dependent distributions is finally estimated as follows:

𝐴(𝑖) =
1

𝐾 − 1
∑ 𝐼𝑆𝐾𝐿 (𝑃(𝝈|𝑆𝑖), 𝑃(𝝈|𝑆𝑗))

∀𝑗,𝑗≠𝑖

(5.11) 

It should be noted that the absolute value of the symmetric KL divergence 𝐴(𝑖) in (5.11) is not 

straightforward to determine the similarity between two distributions. Thus two reference symmetric 

KL divergence are adopted, i.e. the similarity between the emotion-dependent distributions from the 

same clusters, and the similarity between the emotion-dependent distribution 𝑃(𝝈|𝑆𝑖) and a emotion-

independent distribution 𝑃(𝝈)  (similar as Section 3.2.2). In terms of the similarity between emotion-

dependent distributions from the same clusters, the inter-rater variability 𝝈 are divided equally to two 

parts for the same emotion cluster, represented as 𝝈1 and 𝝈2, then the emotion dependent distributions

are developed as 𝑃(𝝈1|𝑆𝑖) and  𝑃(𝝈2|𝑆𝑖). The KL divergence between the same emotion clusters are

𝑅(𝑖) = 𝐼𝑆𝐾𝐿(𝑃(𝝈1|𝑆𝑖), 𝑃(𝝈2|𝑆𝑖)) (5.12)

Regarding the similarity between the emotion-dependent distribution 𝑃(𝝈|𝑆𝑖)  and a emotion-

independent distribution 𝑃(𝝈) (referring to UBM) , the KL divergence is calculated as:  

𝑈(𝑖) = 𝐼𝑆𝐾𝐿(𝑃(𝝈|𝑆𝑖) , 𝑃(𝝈)) (5.13)

Under the assumption that inter-rater variability manifest different for different emotions, it is 

expected that 𝐴(𝑖) is significantly larger than 𝑅(𝑖) and 𝑈(𝑖), with 𝑈(𝑖) larger than 𝑅(𝑖).  

One key challenge in this framework is the cluster number K which cannot be specifically defined, 

thus a range of different values are tested. In order to investigate the effect of the total cluster number 
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K in our proposed framework, the mean values of 𝐴(𝑖) and 𝑈(𝑖) averaged over all emotion clusters are 

estimated and compared for each specific K value as: 

𝐴𝑓(𝐾 ) =∑ 𝐴(𝑖)

𝐾

𝑖=1

(5.14) 

𝑅𝑓(𝐾 ) =∑ 𝑅(𝑖)

𝐾

𝑖=1

(5.15) 

𝑈𝑓(𝐾 ) =∑ 𝑈(𝑖)

𝐾

𝑖=1

 (5.16) 

where 𝐾 represents the cluster number, and is tested from 4 to 10 clusters. Finally 𝐴𝑓(𝑘), 𝑅𝑓(𝐾 ) and

𝑈𝑓(𝑘) are compared in Section 5.4.2. One of the limitations in this work is that the standard deviation

among multiple raters as a global representation of inter-rater variability does not capture all the 

potential biases in individual annotators. 

5.4 Experimental settings and results 

5.4.1 Delay Compensation 

5.4.1.1 Delay Compensation in mean ratings 

A range of different time delays ranging from 0 to 10 seconds with a step of 1 second for arousal and 

valence respectively was tested in the RECOLA database. The eGeMAPS feature set was adopted as 

the front-end, and RVM is utilised as the back-end. The concordance correlation coefficient (CCC) is 

utilised as the evaluation metric, as shown in equation (2.3). The results depicted in Figure 5.4 show 

that a substantial improvement in CCC was seen with the introduction of delay compensation, 

increasing from around 0.276 to 0.691 for arousal and from 0.140 to around 0.5 for valence (Figure 

5.4). Also it shows that valence rating responds more rapidly than arousal, which is consistent with 

previous studies [2]. 
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Our analysis reveals that compensating the annotation delay improves the system performance 

substantially. Based on these results, a 4-second delay for arousal and a 2-second delay for valence 

was selected as the optimal delay value. Unless otherwise stated, these delay values were used in all 

subsequent systems.  

5.4.1.2 Delay Compensation in individual ratings 

Here, the USC CreativeIT database (annotated by 2 to 4 evaluators) is adopted since it makes the 

initial analysis a simpler task. Similar to Section 5.4.1.1, a range of different time delays ranging from 

[-10s 10s] seconds with a step of 0.2 seconds was tested for each rater. Note that the number of 

annotators for each utterance in the USC CreativeIT database is not fixed, which could be 2, 3, or 4 

annotators, and for a given utterance they would be all different. Thus the compensation is carried out 

on an utterance basis rather than on the database as a whole. The inter-rate ‘correlation coefficients’ 

among three raters achieved with different individual delays for one utterance are shown in Figure 

5.5. It can be seen that the inter-correlation changes with varying delay, and the optimal delay is 

chosen as the values achieving the maximum CC.   

Figure 5.4: Delay compensation using frame shift and smoothing. The best delay for arousal was found to be 4s and the 

best delay value for valence was 2s. 
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The mean rating averaged among the realigned individual ratings are utilised for the regression 

system design, and compared with the system using the original mean ratings. In addition to arousal 

and valence, the system performance for dominance is also developed. As stated in [145], the feature 

set discussed in Section 4.4.2 performs well in the USC CreativeIT database, and was found slightly 

better than eGeMAPS in our analysis. Thus the 650 dimensional feature set was utilised and PCA was 

applied to reduce the feature dimension. Similarly, GMR was found to perform well in these system 

configurations and was utilised in this section.  The system performance is evaluated in terms of the 

Pearson’s correlation coefficient and the results are shown in Table 5.1.  

The system with delay compensation could not outperform the baseline without delay 

compensation between individual raters, possible owing to the delay between individual raters not 

Figure 5.5: Delay compensation for individual annotators using frame shift. The original CC without realignment (at 

(0,0) in the x-y plane) and  maximum CC, where the individual ratings have been realigned, are indicated by a red circle 

and a red star, respectively. 

Table 5.1: Comparison of System performance with and without delay compensation in individual rating 

in terms of correlation coefficients 

Arousal Valence Dominance 

with delay compensation 0.4868 0.2472 0.2240 

without delay compensation 0.5539 0.2096 0.2412 
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being consistent over the entire utterance. Figure 5.6 shows that Rater 2 and Rater 3 were realigned 

with approximately the same starting point of the decreasing trend of arousal intensity, and their 

delays with respect to R1 were significantly reduced. However, the three ratings in the black dash box 

in Figure 5.6(b) becomes dislocation comparing to that in Figure 5.6(a). Consequently, it may be that 

the realignment of individual ratings may only work for some specific segments. One possible 

solution can be to implement the proposed method for each small segment instead of the entire 

(a) 

(b) 

Figure 5.6: Delay compensation for individual ratings based on maximizing CC. (a) original individual ratings without 

delay compensation, where R2 and R3 were observed significant delay regarding to R1 at the starting point of a 

decreasing trend; However, the individual ratings within the black dash box were well aligned; (a) individual ratings 

with delay compensation, where R2 and R3 were realigned and the delay regarding R1 was reduced ; however, the 

individual ratings within the black dash box becomes misaligned. 
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utterance, which is future work as discussed in Section 9.2. Due to the worse performance with 

compensation in the individual annotators, the following analysis on inter-rater variability will focus 

on the original ratings without compensation.  

5.4.2 Analysis on inter-rater variability 

5.4.2.1 Measurements of inter-rater variability 

As discussed in Section 5.1, the RECOLA database is used owing to its uniform use of a relatively 

large number (6) of raters. The pair-wise Pearson’s correlation coefficient for arousal and valence 

measuring inter-rater variability is shown in Tables 5.2 to 5.5 (next page). 𝑅𝑖 represents Rater 𝑖 in

these tables. The mean Pearson’s CC of each rater was calculated by averaging the five pair-wise 

Pearson’s CC respectively. A significant difference was observed among the six raters in terms of the 

mean Pearson’s CC, suggesting a high inter-rater variability. The inter-rater variability as lower in 

valence compared to that of arousal, though speech-based valence prediction systems generally 

Table 5.2: Pair-wise Pearson’s Correlation Coefficients (CC) for arousal in training partition. R1 to R6 

represents Rater 1 to Rater 6 respectively; Mean represents the average among the five pair-wise CC. 

R1 R2 R3 R4 R5 R6 

R1 1 0.459 0.594 0.407 0.457 0.423 

R2 0.459 1 0.521 0.479 0.346 0.334 

R3 0.594 0.521 1 0.382 0.400 0.412 

R4 0.407 0.479 0.382 1 0.262 0.323 

R5 0.457 0.346 0.400 0.262 1 0.241 

R6 0.423 0.334 0.412 0.323 0.241 1 

Mean 0.468 0.428 0.462 0.371 0.341 0.347 

Table 5.3: Pair-wise CC for arousal in validation partition. 

R1 R2 R3 R4 R5 R6 

R1 1 0.493 0.732 0.434 0.523 0.429 

R2 0.493 1 0.602 0.451 0.353 0.383 

R3 0.732 0.602 1 0.578 0.543 0.536 

R4 0.434 0.451 0.578 1 0.447 0.568 

R5 0.523 0.353 0.543 0.447 1 0.310 

R6 0.429 0.383 0.536 0.568 0.310 1 

Mean 0.522 0.456 0.598 0.496 0.435 0.445 
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achieve lower performance than arousal prediction. This is possibly owing to the fact that the 

annotations are evaluated by listening to the speech and watching the video simultaneously. 

Additionally, the Cronbach's alpha on the training and development partition is also reported in 

Table 5.6. The Cronbach’s alpha also suggests that the inter-rater variability was lower in valence 

rather than that in arousal. 

Table 5.4: Pair-wise CC for valence in training partition. 

R1 R2 R3 R4 R5 R6 

R1 1 0.620 0.545 0.609 0.285 0.615 

R2 0.620 1 0.539 0.556 0.155 0.549 

R3 0.545 0.539 1 0.511 0.178 0.502 

R4 0.609 0.556 0.511 1 0.239 0.548 

R5 0.285 0.155 0.178 0.239 1 0.309 

R6 0.615 0.549 0.502 0.548 0.309 1 

Mean 0.535 0.484 0.455 0.493 0.233 0.505 

Table 5.5: Pair-wise CC for valence in validation partition. 

R1 R2 R3 R4 R5 R6 

R1 1 0.601 0.512 0.610 0.359 0.512 

R2 0.601 1 0.595 0.573 0.294 0.528 

R3 0.512 0.595 1 0.478 0.182 0.505 

R4 0.610 0.573 0.478 1 0.335 0.485 

R5 0.359 0.294 0.182 0.335 1 0.309 

R6 0.512 0.528 0.505 0.485 0.309 1 

Mean 0.519 0.518 0.454 0.496 0.296 0.468 

Table 5.6: Cronbach's alpha 𝛼 for arousal and valence in training and development datasets. All 

means the 𝛼 calculated over the combination of train and dev sets. 

Arousal Valence 

Training 0.7643 0.8194 

Development 0.7944 0.8111 

All 0.7811 0.8161 
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5.4.2.2 Correlation between inter-rater variability and emotion states 

A variety of different cluster numbers ranging from 4 to 10 is tested. GMMs with 2 mixture 

components are utilised to model the probabilistic distribution, where full covariance matrices are 

adopted to capture the correlation between arousal and valence. The symmetric KL divergence is 

calculated using 100,000 Monto-Carlo sampling points.  

The KL divergence between one emotion cluster and all other clusters  𝐴(𝑖) , between same 

emotion cluster 𝑅(𝑖), and between one emotion cluster and UBM 𝑈(𝑖) (Section 5.3.2) for six clusters 

is shown in Figure 5.7. It should be noted that a similar result has been observed for all different 

numbers of clusters K, and the result for six clusters is only presented for explanatory purposes. It can 

be seen that the KL divergence 𝐴(𝑖) calculated between one emotion cluster and all other emotion 

clusters (red bars) is significantly larger than that between one emotion cluster and UBM 𝑈(𝑖) (light 

blue bars), and that between same emotion states 𝑅(𝑖) (dark blue bars) for all clusters, suggesting that 

the inter-rater variability varies significantly among emotion clusters.  U(i) is also shown larger than 

R(i) where R(i) is extremely small approaching to 0 since they have the similar distribution for the 

same emotion cluster. 

In addition, the average of the KL divergence 𝐴𝑓(𝐾)  , 𝑅𝑓(𝐾)  and 𝑈𝑓(𝐾)  for different cluster

number K is shown in Figure 5.8. There is no significant difference observed for different numbers of 

clusters. The consistent larger value of 𝐴𝑓(𝐾) than 𝑅𝑓(𝐾) and 𝑈𝑓(𝐾) indicates that the number of

emotion clusters is not a factor affecting our findings, which further confirms our observation that 

inter-rater variability is emotion-dependent, which warrants deeper consideration as discussed in 

Section 5.3.2. 

5.5 Summary 

This chapter analysed the information from multiple raters in terms of the individual reaction lags and 

the inter-rater variability characterised by two measurements, i.e. the mean of pair-wise Pearson’s 

CCs and Cronbach’s alpha, and more importantly the correlation between the inter-rater variability 
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and different emotion categories. Compensation for the mean ratings was observed to significantly 

improve these measures, suggesting the importance of taking reaction lag into account in continuous 

emotion prediction systems. However, the system using the realigned individual ratings based on the  

Figure 5.7: Symmetric KL divergence for emotion-dependent inter-rater distributions. Dark blue bars indicate the symmetric 

KL divergence calculated between the same emotion cluster 𝑅(𝑖); light blue bars represent that calculated between one 

emotion and UBM; red bars represent that calculated between one emotion and all other emotion clusters 𝐴(𝑖). Note that 

dark blue 𝑅(𝑖) is extremely small (10−6) that is not observed in this Figure. 

Figure 5.8: Average of symmetric KL divergence for emotion-dependent inter-rater distributions using different clusters. 

Dark blue bars indicate the average of symmetric KL divergence calculated between same emotion cluster 𝑅𝑓(𝑘); light blue 

bars represent that between one emotion and UBM 𝑈𝑓(𝑘); red bars represent that between one emotion and all other 

emotion clusters  𝐴𝑓(𝑘). 𝐴𝑓(𝑘) is consistently larger than 𝑅𝑓(𝑘) and 𝑈𝑓(𝑘), indicating the number of clusters is not a 

affecting factor. 
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proposed compensation technique could not outperform the baseline system without compensation, 

which is possibly due to intra-rater variability. Future work could focus on a small segment instead of 

a long utterance, a different criterion instead of the inter-rater ‘correlation coefficient’, or further 

analysis of the inconsistency of individual ratings. Additionally, the correlations found between the 

inter-rater variability and the emotion clusters suggested that the inter-rater variability varies 

significantly among different emotion clusters, which contains valuable information related to 

emotion uncertainty. These findings motivate future work on the incorporation of inter-rater 

variability into continuous emotion prediction systems, where the emotion label can be represented by 

a distribution using the information from multiple raters, instead of single mean ratings only.    
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6 UNCERTAINTY IN EMOTION PREDICTION 

6.1 Introduction 

As mentioned in Chapter 5, differences in perception among raters result in time-varying inter-rater 

variability that is shown to be correlated with emotion categories. Considering that the overall 

distribution of inter-rater variability is able to reflect the uncertainty in the speech frames to some 

extent, meaning that a high inter-rater variability indicates a high level of uncertainty about the 

affective attributes corresponding to that speech frame, incorporating this kind of information into a 

model for uncertainty prediction to support the point estimation of conventional emotion prediction 

systems can give us insights into the natural variability of human emotion expressions.  

In current literature, inter-rater variability has been considered in continuous emotion systems, by 

either dealing with relative labels using preference learning [22, 87], or considering a multi-task 

learning framework which learns the inter-rater variability by the inter-rater standard deviation based 

on LSTM-NNs [151], or capturing the inter-rater variability by Convolution Neural Network [148]. 

One shortcoming of these methods is that they treat multiple raters variability as an additional point 

prediction target instead of an overall distribution that can comprehensively represent the inter-rater 

variability. Preference learning [22, 87] aims to predict the ranking of emotion labels while still 

treating the emotion intensity as a point estimation, and the LSTM-NN based system [151] predicted 

the mean and standard deviation of multiple raters, which still takes the predicted emotion labels (i.e. 

mean and standard deviation as two predicted labels) as point estimates for mean and standard 

deviation, though it does consider the label distribution to be Gaussian. In this chapter an emotion 

prediction system is proposed that targets the prediction of label distributions instead of point 

estimates, where the label distribution is indicated by inter-rater variability. It is expected that the 

prediction of the label distribution can reflect the uncertainty of the emotion content. For instance, a 

frame with a high inter-rater variability would correspond to a predicted label distribution with low 

confidence regions.  
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The key challenges in estimating the prediction uncertainty directly from annotated speech are: (i) 

finding a probabilistic model for the posterior distribution and thus providing a means to estimate the 

uncertainty information; and (ii) finding a way to incorporate the inter-rater variability into the model. 

In terms of the first challenge of a probabilistic model, the commonly used SVMs [74, 158, 159] and 

LSTM-NN [27, 160] are not able to handle this problem since they can only find a point estimate 

based on one specific structural risk minimisation. However, probabilistic models such as RVMs [29, 

31, 84] and GMR [97] are capable of incorporating a probabilistic description of the target labels. 

Furthermore both RVMs and GMR have been shown to be effective in predicting emotions [31, 97]. 

Given the desire to incorporate inter-rater variability into the model, multivariate RVM [93], where 

multiple raters evaluations can be treated as multi-task learning, does not show good performance 

when arousal and valence are modelled as multi-task learning [93]. Moreover, RVMs are constrained 

to modelling only the label distribution as Gaussian distributions. In this chapter, GMR is adopted as 

the regression model. More importantly, it provides the flexibility to incorporate the inter-rater 

variability into the input feature space while generating the joint vectors for GMR training (Section 

2.3.3), which is achieved by concatenating individual ratings with the original features on a frame 

basis. 

6.2 Emotion uncertainty prediction 

The conventional GMR will be briefly reviewed in Section 6.2.1. Then the proposed method is 

separated into the incorporation of inter-rater variability in Section 6.2.2 and the label distribution 

prediction in Section 6.2.3.  

6.2.1 Conventional GMR 

First I will briefly review the conventional GMR as discussed in Section 2.3.3. Let 𝑿𝑛 = [𝒙𝑛
𝑇 , ∆𝒙𝑛

𝑇]𝑇

and 𝒀𝑛 = [𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇 represent the features and labels consisting of the static information (low level

descriptors) and dynamic information (generally delta features) at frame 𝑛. The training features and 

labels are then represented as 𝑿 = [𝑿1
T, 𝑿2

T,⋯𝑿𝑁
T ]
T

 and 𝒀 = [𝒀1
T, 𝒀2

T, ⋯𝒀𝑁
T ]
T
, where 𝑁 represents the
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total number of frames. The GMM  𝜆(𝒁) modelling the joint probability distribution of features 𝑿 and

labels 𝒀 is trained using all the joint features  𝒁𝑛 = [𝑿𝑛, 𝒀𝑛], referring to Section 3.2.3. In order to

find the predictions �̂�𝑡  of the test features 𝑿𝑡 at frame 𝑡, the conditional probability of label 𝒀𝑡  as

𝑃(𝒀𝑡|𝑿𝑡 , 𝜆
(𝒁)) is calculated for each frame as a GMM as:

𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝑍)) = ∑ 𝑃(𝑚|𝑿𝑛, 𝜆

(𝒁))𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁))

𝑀

𝑚=1

(6.1) 

where 𝑀 represents the total mixture component of the GMM 𝜆(𝒁). Here the first term on the right

side of (6.1) 𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁)) is a scalar indicating the posterior probability of 𝑿𝑛 belonging to the 𝑚𝑡ℎ

mixture component, as shown in equation (2.37). The second term on the right side of (6.1) is a 

Gaussian distribution as:  

𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) = 𝑁(𝒀𝑛; 𝑬𝑚,𝑛

(𝒀) , 𝑫𝑚
(𝒀)
) (6.2) 

where the mean 𝑬𝑚,𝑛
(𝒀)

and covariance 𝑫𝑚
(𝒀)

 of the Gaussian distribution are 

𝑬𝑚,𝑛
(𝒀)

= 𝒖𝑚
(𝒀)
+ 𝜮𝑚

(𝒀𝑿)
𝜮𝑚
(𝑿𝑿)−𝟏

(𝑿𝑛 − 𝒖𝑚
(𝑿)
) (6.3) 

𝑫𝑚
(𝒀)
= 𝜮𝑚

(𝒀𝒀) − 𝜮𝑚
(𝒀𝑿)𝜮𝑚

(𝑿𝑿)−𝟏𝜮𝑚
(𝑿𝒀)

 (6.4)

where 𝒖𝑚
(𝒀)

, 𝒖𝑚
(𝑿)

,  𝜮𝑚
(𝑿𝑿)

, 𝜮𝑚
(𝒀𝒀)

, 𝜮𝑚
(𝑿𝒀)

,and 𝜮𝑚
(𝒀𝑿)

are the GMM 𝜆(𝒁)modelling parameters, referring to

Section 2.3.3. Finally the label prediction �̂�𝑡 is estimated as the point which achieves the maximum 

probability of 𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝑍)).

6.2.2 Inter-rater variability incorporation 

To incorporate inter-rater variability into the conventional GMR model, the 𝑟𝑡ℎ individual rating

𝑌𝑛,𝑟 at frame 𝑛 is concatenated with the frame-wise features 𝑋𝑛 to generate the joint vector 𝑍𝑛,𝑟

as:  

𝒁𝑛,𝑟 = [𝑿𝑛, 𝒀𝑛,𝑟] (6.5) 

Given R raters in total, R joint vectors are generated per frame as: 
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𝒁𝑛 = [𝒁𝑛,1
𝑇 , 𝒁𝑛,2

𝑇 ,⋯ , 𝒁𝑛,𝑅
𝑇 ]𝑇 (6.6) 

As shown in Figure 6.1(a), the conventional GMR develops the joint vectors by concatenating the 

feature Xn and Yn at frame n, which results in one joint vector for each frame n represented by the red

dot. The joint vectors at these two frames were shown to be close, indicating similar emotion intensity. 

Assuming six annotators in total for one database, the proposed incorporation of the inter-rater 

variability, as in Figure 6.1(b), generates the joint vectors Znr by concatenating the features Xn with

each individual ratings Ynr . This results in six joint vectors for each frame sharing the same feature

(a) 

(b) 

Figure 6.1: An example of 2-dimensional joint vector generation with and without incorporation of inter-rater variability. 

Joint vectors are represented as red dots. (a) Joint vectors for two frames without incorporation of inter-rater variability 

in the conventional GMR system. (b) Joint vectors for two frames with incorporation of inter-rater variability in the 

proposed GMR system. 



112 

𝑿𝑛 but different 𝒀𝑛𝑟. For frame 1, six joint vectors displays close while they are shown apart for

frame 2. Though the conventional joint vectors of these two frames in Figure 6.1(a) are similar, but 

our newly generated joint vectors that incorporate inter-rater variability indicate that it is of high 

uncertainty to obtain the emotion intensity for frame 2 when compared to frame 1. In this way, inter-

rater variability is introduced in the joint vectors. 

6.2.3 Predicting label distribution 

During the test phase, the conditional posterior 𝑃(𝒀𝑛|𝑿𝑛, 𝜆
(𝒁)) is estimated for each test feature

vector 𝑿𝑛 as in equation (6.1), where 𝒀𝑛 = [𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇. Note that 𝒀𝑛 contains the label and the

delta label, but the aim of the multi-rater system is to find the uncertainty information related to 

the label 𝑦𝑛  only, instead of 𝒀𝑛 = [𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇  . Therefore, I focus on the prediction of

𝑃(𝒚𝑛|𝑿𝑛, 𝜆
(𝒁)). In order to obtain 𝑃(𝒚𝑛|𝑿𝑛, 𝜆

(𝒁)), we can marginalise 𝑃([𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇|𝑿𝑛, 𝜆
(𝒁))

over ∆𝒚𝑛
𝑇 as:  

𝑃(𝒚𝑛|𝑿𝑛, 𝜆
(𝒁)) = ∫ 𝑃(𝒀𝑛|𝑿𝑛, 𝜆

(𝒁))
∆𝒚𝑛

𝑑(∆𝒚𝑛)

= ∑ 𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁))

𝑀

𝑚=1

∫ 𝑃([𝒚𝑛
T , ∆𝒚𝑛

T]T|𝑿𝑛, 𝑚, 𝜆
(𝒁))

∆𝒚𝑛

𝑑(∆𝒚𝑛)

= ∑ 𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁))𝑃(𝒚𝑛|𝑿𝑛, 𝑚, 𝜆

(𝒁))

𝑀

𝑚=1

(6.7) 

It can be seen that 𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁) is consistence as in equation (6.1). The second term on the right

side of equation (6.8) 𝑃(𝒚𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) is a Gaussian distribution. To obtain the representation

of 𝑃(𝒚𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)), first 𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆

(𝒁)) (equation (6.2)) can be rewritten with separated

information of 𝒚𝑛 and ∆𝒚𝑛 as:

𝑃(𝒀𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) = 𝑁 (𝒀𝑛; 𝑬𝑚,𝑛

(𝒀) , 𝑫𝑚
(𝒀))

= 𝑁([𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇; [
𝒖𝑚
(𝒚𝑛)

𝒖𝑚
(∆𝒚𝑛)

] , [
𝜮𝑚
(𝒚𝑛𝒚𝑛) 𝜮𝑚

(𝒚𝑛∆𝒚𝑛)

𝜮𝑚
(∆𝒚𝑛𝒚𝑛) 𝜮𝑚

(∆𝒚𝑛∆𝒚𝑛)
])

(6.8) 
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where 𝑚 is the mixture number and 𝑤𝑚 is the weight for each mixture. 𝒖𝑚
(𝒚𝑛) and 𝒖𝑚

(∆𝒚𝑛)represent the

mean vectors of the 𝑚𝑡ℎmixture component for original labels and delta labels respectively; the

matrices 𝜮𝑚
(𝒚𝑛𝒚𝑛)and 𝜮𝑚

(∆𝒚𝑛∆𝒚𝑛) represent the covariances of the 𝑚𝑡ℎ mixture for the original and delta

labels; and  𝜮𝑚
(𝒚𝑛∆𝒚𝑛) and 𝜮𝑚

(∆𝒚𝑛𝒚𝑛) are the cross-covariance matrices of the 𝑚𝑡ℎ  mixture for the

original and delta labels. Then 𝑃(𝒚𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) can be obtained as:

𝑃(𝒚𝑛|𝑿𝑛,𝑚, 𝜆
(𝒁)) = 𝑁(𝒚𝑛; 𝒖𝑚

(𝒚𝑛), 𝜮𝑚
(𝒚𝑛𝒚𝑛)) (6.9) 

The parameters of 𝒖𝑚
(𝒚𝑛)  and 𝜮𝑚

(𝒚𝑛𝒚𝑛)  can be gained using the 𝑬𝑚,𝑛
(𝒀)  and 𝑫𝑚

(𝒀)   terms in (6.8).

𝑃(𝒚𝑛|𝑿𝑛, 𝜆
(𝒁)) is found to be a GMM as in equation (6.7).

It was found that the approximated algorithm described in Section 2.3.2 shows comparable 

performance as the EM algorithm [81, 83]. Therefore, I adopted the approximated algorithm 

which simplifies the uncertainty estimation in this framework. 

For each frame 𝑛, the suboptimal mixture component number  �̂�𝑛 is firstly estimated as

�̂�𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑚𝑛

𝑃(𝑚|𝑿𝑛, 𝜆
(𝒁)) (6.10) 

where �̂�𝑛 represents the mixture component to which 𝑿𝑛 is most probably belongs. This suboptimal

mixture component 𝑃(𝒚𝑛|𝑿𝑛, �̂�𝑛, 𝜆
(𝒁))  ( the m̂n Gaussian mixture component ) is used to

approximate the overall GMM distribution 𝑃(𝒚𝑛|𝑿𝑛, 𝜆
(𝒁)),  as shown in Figure 6.2. The third mixture

component of 𝑃(𝒚𝑛|𝑿𝑛, 𝜆
(𝒁)) is adopted to approach the overall distribution as in Figure 6.2(b), as

�̂�𝑛 = 3. This then allows for the estimation of emotion intensity �̂�𝑛, as the expected value of 𝒚𝑛,

where 

�̂�𝑛 = 𝑬[𝒚𝑛|𝑿𝑛, �̂�𝑛, 𝜆
(𝒁)] = 𝒖�̂�𝑛

(𝒚𝑛) (6.11) 

and the time-varying indicator of prediction uncertainty in �̂�𝑛  for each frame as its standard

deviation �̂�𝑛:

�̂�𝑛 = 𝑫[𝒚𝑛|𝑿𝑛, �̂�𝑛, 𝜆
(𝒁)] = 𝜮�̂�𝑛

(𝒚𝑛𝒚𝑛) (6.12) 

where 𝑫[∙] in (6.12) denotes the computation of standard deviation. 
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It should be noted that the uncertainty prediciton �̂�𝑛 which is derived from the covariance

matrix 𝐷𝑚
(𝑌) in (6.4) is fixed for each mixture 𝑚 across all frames and does not vary with the

frame-based test features 𝑋𝑛. Consequently, the standard deviation �̂�𝑛 will only take one of 𝑀

distinct values as adopting the dominant mixture in each frame 𝑛. This will result in a quantised 

standard deviation �̂�𝑛  for the uncertainty prediction. The quantisation can be improved by

increasing the GMM mixture number, but this is constrained by the amount of available training 

data. The RECOLA database used in this work contains 90 minutes of speech and it was 

empirically found that it can only be used to train GMMs of 16 mixtures or less. 

(a) 

(b) 

Figure 6.2: An example of suboptimal mixture component �̂�𝑛 = 3 approaching the overall distribution 𝑃(𝑦𝑛|𝑋𝑛, 𝜆
(𝑍)). (a) 

A 3 mixture GMM representing 𝑃(𝑦𝑛|𝑋𝑛, 𝜆
(𝑍)); (b) The 3rd dominant mixture is used to approach 𝑃(𝑦𝑛|𝑋𝑛, �̂�𝑛, 𝜆

(𝑍)), and 

the mean and standard deviation parameters are estimated. 
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This new paradigm aims to predict the uncertainty of emotional labels, as opposed to conventional 

point estimation that indicates the exact emotion intensity. The proposed framework reveals the time-

varying nature of the level of human emotion certainty. 

6.3 Experimental Settings and Results 

6.3.1 Experimental settings 

The RECOLA database was used to verify the effectiveness of the proposed method (Section 4.3.2). 

65 low-level descriptors (LLDs) and their first-order derivatives were extracted using OpenSMILE 

[130], using the same LLDs and delta features as [131]. Two second windows with 40 ms shift were 

used to compute the statistical features by applying five functionals: maximum, minimum, mean, 

standard deviation, and range. Dynamic features and labels were calculated as in [97]. PCA was used 

to conduct dimensionality reduction in the feature space from 650 dimensions to 40 dimensions, 

preserving approximately 85% of the data variance in the training dataset [17, 97]. Dynamic features 

∆𝒙𝑛 calculated on 𝒙𝑛 were concatenated with the statistic feature, which results in 80 dimensional

feature vector in total. The arousal and valence prediction systems are implemented independently. 

Thus the label vector [𝒚𝑛
𝑇 , ∆𝒚𝑛

𝑇]𝑇is of 2 dimensions and further concatenated with the feature vector,

generating 82 dimensional joint vectors for GMR training. The reason for using 80 feature dimensions 

was to preserve enough feature variability in the training dataset and to provide a sufficiently high 

dimensionality to train the system with a large number of parameters for GMM.  Delays of 4s for 

arousal and 2s for valence were applied during the training phase, based on a previous study [29]. The 

delay thus introduced in the predicted uncertainty was compensated for by removing the 

corresponding frames. GMMs with different numbers of mixture components ranging from 4 to 32 

were tested using HTK. The same feature set and back-end are adopted for the conventional emotion 

prediction system for a direct comparison.   
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6.3.2 Experimental results 

6.3.2.1 Performance of uncertainty prediction 

Under the assumption that a high inter-rater variability �̃�𝑛  will result in a high predicted

uncertainty �̂�𝑛, we aim to investigate the positive correlation between the predicted standard

deviation �̂� = [ �̂�1,  �̂�2,⋯  �̂�𝑁]  and the multi-rater standard deviation 𝜎  calculated from six

ratings, referred as inter-rater variability 𝝈. Pearson’s correlation coefficient (CC) was computed 

on the 9 development utterances individually. The final performance measure was the mean 

correlation coefficient averaged over the 9 evaluation utterances. The results are shown in Table 

6.1. A moving averaging filter was utilised to relax the quantisation of the predicted standard 

deviation for each utterance, with an optimal window size determined from [100, 800] 

experimentally.  It should be mentioned that I do not have a specific baseline for a direct 

comparison owing to the new paradigm which predicts distributions instead of point estimates; 

therefore our main aim is to reveal the essence of the uncertainty.  

The best performance of 0.4097 and 0.5684 were achieved with 8 mixture components before and 

after smoothing, and there was not much variation between different mixture numbers for arousal. 

This indicates the positive correlation between the predicted �̂� and the inter-rater variability 𝝈 to some 

extent. However, the performance of valence is worse for all mixture numbers, agreeing with previous 

Table 6.1: Mean CC computed between �̂�  and 𝝈. No smoothing means the mean CC 

between the quantized �̂�  and ground truth 𝝈 smoothing means the mean CC between the 

smoothed �̂�  and groud truth  𝝈. 

No Smoothing Smoothing 

Arousal Valence Arousal Valence 

M
ix

tu
re

s 

4 0.3530 0.0461 0.5173 0.0890 

8 0.4097 0.0937 0.5684 0.1322 

16 0.3998 0.0457 0.5350 0.0745 

32 0.3872 0.0476 0.4410 0.0881 
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studies [29] that showed valence is well predicted by a video signal. Consequently, in this chapter I 

mainly focus on analysing the predicted uncertainty for arousal.  

In order to better understand the predicted uncertainty, the scatter plot of the predicted �̂� with 

smoothing and the inter-rater variability 𝜎 is investigated over the entire test dataset as shown in 

Figure 6.3. It can be observed a positive correlation between the predicted �̂�  in the 𝑥-axis and 

the inter-rater variability 𝝈 in the 𝑦-axis. This indicates a relatively strong correlation between 

the predicted �̂�  and the inter-rater variability 𝝈, which means a high inter-rater variability will 

result in a high uncertainty in prediction.  

In addition, one segment of the ratings from 6 raters of Speaker 2 is shown in Figure 6.4, which 

displays the uncertainty of the emotion prediction changing over time. Only one speech segment from 

speaker 2 is shown in order to reduce clutter but the predicted uncertainty was observed to be 

generally consistent with the inter-rater variability across all speakers and speech segments. The grey 

error bar shows the predicted standard deviation �̂�𝑛 from the expectation value �̂�n for each frame n

as shown in equations (6.11) and (6.12). Six coloured lines indicate the individual raters’ ratings. It 

can be seen that the speech segments with higher inter-rater variability are associated with higher 

variability in predicted estimates and vice versa. 

Figure 6.3: Scatter plot of the smoothed predicted standard deviation 𝜎 and the inter-rater �̃�. A positive correlation is 

observed. 
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6.3.2.2 Correlation between uncertainty and conventional emotion prediction for arousal 

In order to gain an in-depth understanding of this paradigm for support of speech based emotion 

prediction, the performance of conventional emotion prediction systems that use the average 

rating as the ground truth is also analysed, by comparing the prediction accuracy on specific 

speech segments, which are determined based on the uncertainty prediction obtained by the 

proposed method. Since valence generally performs worse with speech signal only, I mainly 

analysed the speech based arousal prediction. Generally, low inter-rater variability is represented 

by low predicted uncertainty, and indicates that raters were more in agreement about the emotion 

expressed in those speech segments. Thus the prediction should be easier to make accurately. 

Given the inter-rater variability or the predicted uncertainty information, conventional emotion 

prediction performance for arousal is investigated by segmenting the speech frames into two 

regions: low variability regions where affect should be easier to predict from the speech 

segments since there is less uncertainty, and high variability regions, where affect should be 

harder to predict from the speech segments since there is greater uncertainty. 

In terms of defining low and high variability regions, the predicted uncertainty should be 

considered instead of the inter-rater variability, since the latter is not generally accessible during 

the testing phase in real scenarios. I propose using percentiles based on the histogram of 

Figure 6.4: Six raters’ ratings (coloured lines) and predicted uncertainty (grey error bar) from a speech segment from 

Speaker 2. The predicted uncertainty changes in concordance with the inter-rater variability, i.e. predicted uncertainty 

becomes smaller when six annotators have high agreement (frames 3000-4500). 
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predicted uncertainty �̂�𝑛 to determine the low and high variability regions. Given the threshold 𝜌

as a percentile, the speech segments with �̂�𝑛 smaller than the value of the  𝜌𝑡ℎ percentile and

higher than the value of  (100 − 𝜌)𝑡ℎ  percentile were clustered as low and high variability

regions respectively. For instance, 𝜌𝑡ℎ = 50 indicates the split of data in half, and a lower 𝜌𝑡ℎ

loses data from the middle range. These regions will be referred as predicted low and high 

uncertainty regions. Five thresholds of 𝜌 ∈ [10, 50]  with a step increase of 10 for the 

segmentation of low and high uncertainty regions were investigated. 

One important precondition of this analysis is that the predicted uncertainty used to define 

high and low uncertainty regions should be accurate. To guarantee it, similarly the low and high 

uncertainty regions are defined using the ground truth of six annotations. These are generally not 

accessible during test phase, but we aim to reveal the insights and it can be helpful to use the 

ground truth as a reference. The standard deviation among six annotations is computed to 

represent the inter-rater variability/uncertainty. Then the low and high uncertainty regions are 

similarly defined by applying the threshold of 𝜌𝑡ℎ percentile to the histogram of these standard

deviations, referred as truly low and high uncertainty regions. Then the accuracy of the speech 

frames in the predicted low (high) uncertainty regions is calculated, with speech frames in the 

truly low (high) uncertainty regions serving as ground truth.  However, the accuracy in predicted 

low uncertainty regions is found to be relatively low, as shown in Figure 6.5. Here, the black line 

indicating the percentage of correctly predicted uncertainty frames in low variability regions, 

which only achieves 20% accuracy when using 𝜌 = 10 and 𝜌 = 20. Thus, segmenting low and 

high variability regions only based on the predicted �̂�𝑛  may result in misleading comparison of

the conventional emotion systems. Therefore, the truly low and high regions were used as a 

reference for the predicted �̂�𝑛 to define low and high variability regions, serving as an initial

analysis of the correlation between the uncertainty and conventional point estimation. 
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To avoid mis-categorising speech segments to low and high variability regions, only the 

speech segments clustered to both the predicted and truly low/high uncertainty regions are 

selected, by finding the intersection segments that appear in these two regions. The Pearson’s 

correlation coefficient, which is calculated between the conventional emotion predictions and the 

ground truth (i.e. mean ratings), is then adopted to evaluate the system performance within high 

and low regions separately. The CCs for each region are finally compared to reveal the impact of 

the uncertainty prediction on the conventional emotion prediction systems, shown in Table 6.2.  

As expected, it can be seen that the performance in the lower variability regions is in general 

much better than in the higher variability regions when they are defined using 10th-40th 

Figure 6.5: Percentage of correctly predicted uncertainty frames in low and high variability regions with 8 mixtures The 

low and high uncertainty regions are defined using the thresholds (< 𝜌𝑡ℎ)and (> (100 − 𝜌𝑡ℎ)) .

Table 6.2: CC in low and high variability regions based on the intersection of predicted �̂�  and 

the inter-rater variability 𝝈. Percentiles (𝜌) 10
th
 to 50

th
 indicate the regions of the histograms of 

P(�̂�) and P(𝝈) used to determine low and high variability regions. 

Region 

Percentiles  𝜌 

10th 20th 30th 40th 50th 

Low 0.8013 0.7055 0.6891 0.6905 0.6885 

High 0.3787 0.3837 0.4829 0.6125 0.6905 
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percentiles. In addition, the conventional arousal prediction system that uses the mean of the 

labels as the ground truth is also evaluated over the entire test dataset instead of the low and high 

variability regions only, which achieves an optimal CC of 0.7990 using 8 mixtures. The CC of 

0.8013 in the low variability region defined using 10th percentiles (Table 6.2) outperforms the 

CC of 0.7990 over the entire dataset, suggesting that the conventional emotion system outputs 

more reliable predictions in these regions with low uncertainty. It should be noted that the 

comparison between the conventional performance using entire test dataset and Table 6.2 is not a 

direct comparison, since a different number of speech frames is used to compute the CC for each 

uncertainty region. 

6.4 Summary 

This chapter proposes a novel paradigm that is able to incorporate uncertainty about the emotion 

labels of speech frames by explicitly accounting for inter-rater variability in the system. The results of 

this investigation show the effectiveness of the proposed method for uncertainty prediction. The 

second interesting finding is the high correlation between the uncertainty and the emotion prediction 

achieved by using the average value over multiple raters. The predictions are more reliable in the 

lower inter-rater variability regions than that in the higher inter-rater variability regions. As the first 

study to analyse the uncertainty related to emotion prediction, these findings provide more insights 

into the time-varying variability introduced in emotion prediction by multiple raters. The idea of 

predicting emotion uncertainty can open up opportunities for building classifiers with an “option to 

reject,” where the classifier indicates that it is not confident enough to provide an answer. This 

direction may be extremely important if these methods are used in practical applications. However, 

further studies need to be carried out to perfect the relaxation of the constraint of the quantised 

uncertainty predictions, which is improved in Chapter 8. 
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7 MODELLING TEMPORAL DEPENDENCIES FOR EMOTION POINT 

ESTIMATION 

7.1 Introduction 

The modelling techniques in continuous emotion prediction and the prediction of uncertainty 

information of underlying emotion states discussed in Chapters 3 to 6 mainly focused on the statistical 

models such as GMR and RVM, which did not take into account temporal dependencies in emotion 

prediction. Several studies have reported that modelling of the temporal dependencies is beneficial for 

emotion prediction [24, 27, 31, 75, 160], which motivates our work on incorporating such temporal 

dependencies within our framework.  

A variety of existing literature has focused on unidirectional and bidirectional long short term 

memory neural networks (LSTM and BLSTM) [24, 27, 75, 160], due to their ability to model long 

range temporal dependencies. While LSTMs are able to model the dependency of current prediction 

on past information, BLSTMs are trained using frame level features in forward and reverse order, 

making the system aware of both past and future events in relation to the current time step. However, 

in-depth analyses of BLSTMs modelling temporal dependencies with regards to affective attributes 

are still lacking. Nicolaou et al. [31] proposed an output-associate RVM (OA-RVM) framework that 

augments traditional RVM regression by incorporating the temporal dynamics of arousal and valence.  

It is a two stage regression modelling technique, where the outputs of the first stage regression model 

are captured by a temporal window and utilised as the input to the second stage modelling using RVM. 

Comprehensive experimental results suggest its efficiency and advantages over the statistical model 

of conventional RVM.  

In this chapter, I aim to analyse the temporal dependencies in the feature extraction level, and in the 

two-stage regression framework, which expands the OA-RVM structure in a multimodal diagram. In 

terms of the feature sets, the most commonly adopted sets in continuous emotion prediction are the 
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statistical features applied on the low level descriptors (LLDs) as mentioned in Section 2.2.2. They 

are generally calculated over a small interval or window ranging from 2s to 8s. However, these 

features only capture the statistical characteristics of the LLDs in a specific window, but cannot 

capture time-dependent information. Thus, exploration of the dynamic features that capture long-term 

information is required. Two categories of dynamic features are explored for emotion prediction 

including the regression delta coefficients and the shifted delta coefficients [161]. In addition, the 

two-stage regression originating from OA-RVM is extended in a multimodal system with different 

OA configuration settings, aiming to investigate the effect of different OA frameworks on continuous 

emotion prediction systems.  

The rest of this chapter is organised as follow: the feature sets that take into account the long-term 

dynamics are discussed in Section 7.2, the OA framework is expanded in Section 7.3. The 

experimental settings are discussed in Section 7.4, and the work is finally summarised in Section 7.5. 

7.2 Dynamic feature extraction 

7.2.1 Regression delta coefficients 

In order to capture dynamic information in the feature space, regression delta coefficients are utilised. 

It has been shown that in the case of a single Gaussian model the incorporation of regression delta 

coefficients in an analogous scenario corresponds to fixed-lag Kalman smoothing [162]. The lag 

depends on the window length 2𝐿 − 1, over which the derivatives are approximated by 

∆𝒙𝑛 =
∑ 𝜃(𝒙𝑛+𝜃 − 𝒙𝑛−𝜃)
𝜃=𝐿
𝜃=−𝐿

2∑ 𝜃2𝜃=𝐿
𝜃=−𝐿

(7.1) 

where 𝒙𝑛 represent the feature vector at frame 𝑛, 𝐿 is a parameter related to the window size, and ∆𝒙𝑛

is the regression delta feature vector. In addition to incorporating temporal derivatives in feature space, 

it was also shown in [81] that for a GMR based emotion prediction system incorporating derivatives 

in the label space enables the prediction to be affected by the entire sequence of observations.  The 

label derivatives are also calculated as:  
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∆𝒚𝑛 =
∑ 𝜃(𝒚𝑛+𝜃 − 𝒚𝑛−𝜃)
𝜃=𝐿
𝜃=−𝐿

2∑ 𝜃2𝜃=𝐿
𝜃=−𝐿

(7.2) 

Both the regression delta features and regression delta labels are used to train the GMR models. 

The features 𝑿𝑛  and labels 𝒀𝑛  at frame 𝑛 that are used to train a GMR model are obtained by

concatenating the original features and labels with regression delta features and labels respectively as:  

𝑿𝑛 = [𝒙𝑛, ∆𝒙𝑛]
𝑇 (7.3) 

𝒀𝑛  = [𝒚𝑛, ∆𝒚𝑛]
𝑇

The relationship between the final label set 𝒀𝑛 and the original label 𝒚𝑛 is a linear mapping:

𝒀𝑛 = 𝑾𝒚𝑛   (7.4)

If 𝐿 = 1 in equation (7.1), the delta coefficients are calculated between three frames. Equation (7.4) 

can be rewritten for a sequence of observed labels 𝒚 = [𝒚𝟏
𝑻, 𝒚𝟐

𝑻,⋯𝒚𝑁
𝑻 ]𝑻 as:

𝒀 =

[

1
0
0

−0.5
0
⋮
0
0
0

0
0.5
1
0
0
⋮
⋯
⋯
⋯

0
0
0
0.5
1
⋮
⋯
⋯
⋯

0
0
0
0
0
⋱
−0.5
0
0

⋯
⋯
⋯
⋯
⋯
⋯
0
0

−0.5

0
0
0
0
0
⋮
0.5
1
0 ]

∙ 𝒚

(7.5) 

where 𝒀 = [𝒚1, ∆𝒚1, 𝒚2, ∆𝒚2⋯𝒚𝑁 , ∆𝒚𝑁]
𝑻 . Increasing the length of the temporal window enables

longer term dynamics to be incorporated in the system. The joint Gaussian mixture mode 𝜆(𝒁)  is

developed based on the joint vector 𝒁𝑛 = [𝑿𝑛, 𝒀𝑛]. During the test phase, the emotion prediction is

estimated based on the conditional probability 𝑃(𝒀|𝑿, 𝜆(𝒁)) for the entire sequence of labels using the

EM algorithm as described in Section 6.2. After incorporating the delta regression coefficients of the 

labels, the emotion prediction is updated in each iteration as: 

�̂� = (𝑾𝑇𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑾) −1𝑾𝑇𝑫(𝒀)

−𝟏
𝑬(𝒀)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(7.6) 
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Compared the equation (2.42), the weight matrix 𝑾 is utilised in the prediction of  �̂�, and  the inverse 

of 𝑾 enables the final prediction at each step to be affected by the entire label sequence. In equation 

(7.6), 𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅

 is

𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑑𝑖𝑎𝑔[𝑫1

(𝒀)−1,
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑫2
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

⋯ ,𝑫𝑛
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

,⋯𝑫𝑁
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

] (7.7) 

and 

𝑫(𝒀)
−𝟏
𝑬(𝒀)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= [𝑫1

(𝒀)−1
𝑬1
(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

, 𝑫2
(𝒀)−1

𝑬2
(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

,⋯ ,𝑫𝑛
(𝒀)−1

𝑬𝑛
(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

,⋯𝑫𝑁
(𝒀)−1

𝑬𝑁
(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇

] (7.8) 

Further the submatrices 𝑫𝑛
(𝒀)−1̅̅ ̅̅ ̅̅ ̅̅ ̅

and 𝑫𝑛
(𝒀)−1

𝑬𝑛
(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

are calculated as

𝑫(𝒀)
−1̅̅ ̅̅ ̅̅ ̅̅ ̅
= ∑ 𝛾𝑚,𝑛

𝑀

𝑚=1

𝑫𝑚
(𝒀)−1

(7.9) 

𝑫𝑛
(𝒀)−1𝑬𝑛

(𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑇
= ∑ 𝛾𝑚,𝑛

𝑀

𝑚=1

𝑫𝑚
(𝒀)−1𝑬𝑚,𝑛

(𝒀)
(7.10) 

The scalar 𝛾𝑚,𝑛 in equation (7.9) and (7.10) is the posterior probability of mixture 𝑚 as:

𝛾𝑚,𝑛 = 𝑃(𝑚|𝑿𝑛, 𝒀𝑛, 𝜆
[𝒁]) =

𝑤𝑚𝑁(𝒁𝑛; 𝒖𝑚, 𝜮𝑚)

∑ 𝑤𝑘𝑁(𝒁𝑛; 𝒖𝑘 , 𝜮𝑘)
𝑀
𝑘=1

 (7.11)

where 𝑤𝑚, 𝒖𝑚, and 𝜮𝑚 are the parameters of the GMM model 𝜆[𝒁], referring to equation (4.65). The

𝑬𝑚,𝑛
(𝒀)

and 𝑫𝑚
(𝒀)

are the mean and covariance matrix of the 𝑚𝑡ℎ mixture component at frame 𝑛, similar

as in equation (4.69) and (4.70). It can be seen that the inverse of the weight matrix 𝑾 in equation 

(7.6) is used in the prediction of  �̂�, which enables the final prediction at each step to be affected by 

the entire label sequence. In this way, the temporal dependencies have been incorporated in the 

system by using delta regression coefficients.  

7.2.2 Shifted delta coefficients 

The shifted delta cepstra (SDC) feature vector, which captures the dynamic information across a time 

segment has been shown to improve language identification systems in [163]. The SDC feature vector 

is created by stacking delta cepstra/features computed across multiple frames. Compared to the 
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standard delta feature vector, SDC feature vector is able to capture long-term temporal dependencies 

in the feature space, which motivates our investigation into the use of SDC feature vectors in 

continuous emotion prediction systems.  

The SDC feature vector is controlled by a set of four parameters, 𝑁, 𝑑, 𝑃 and 𝑘, as shown in Figure 

7.1.  𝑁 represents the number of cepstral coefficients computed at each frame, 𝑑 represents the time 

advance or delay for the delta computation, 𝑘 is the number of blocks whose delta coefficients are 

concatenated to form the final feature vector, and 𝑃 is the time shift between consecutive blocks. The 

feature vector ∆𝑐(𝑡 + 𝑖𝑃) at the (𝑖 + 1)𝑡ℎ  block at frame 𝑡 is

∆𝑐(𝑡 + 𝑖𝑃) = 𝑐(𝑡 + 𝑖𝑃 + 𝑑) − 𝑐(𝑡 + 𝑖𝑃 − 𝑑) (7.12) 

where 0 ≤ 𝑖 ≤ 𝑘 − 1. The final SDC feature vector ∆𝑐𝑓(𝑡) at frame 𝑡 is generated by concatenating

all the ∆𝑐(𝑡 + 𝑖𝑃) 

∆𝑐𝑓(𝑡) = [𝑐(𝑡), 𝑐(𝑡 + 𝑃),⋯ , 𝑐(𝑡 + (𝑘 − 1)𝑃)] (7.13)

The SDC feature vectors ∆𝑐𝑓(𝑡) are then utilised to replace the conventional statistical features for the

regression modelling.  

7.3 Output-Associate framework 

Output-associative (OA) techniques are gaining popularity in continuous emotion prediction [31, 75, 

147]. These techniques take into account the contextual and temporal dependencies that exist within 

and between predicted arousal and valence values when performing fusion. In this section, the OA 

t-d t t+d t+P-d t+P t+P+d t+(k-1)P-d t+(k-1)P t+(k-1)P+d

+- +- +-

c(t) c(t+P) c(t+(k-1)P)

Figure 7.1: Computation of the SDC feature vector at frame 𝑡 for parameters 𝑁 − 𝑑 − 𝑃 − 𝑘 [161] 
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structure originated from OA-RVM [31] has been extended to three configurations in a multimodal 

framework: OA fusion, OA regression, and OA regression incorporating uncertainty, as shown in 

Figure 7.2. OA fusion utilised the temporal dependencies in the arousal and valence predictions only, 

OA regression additionally considers the input feature space, and OA regression with uncertainty 

predictions further incorporated the long-term dynamics of the predictions of uncertainty information 

about emotion states. These three configurations will be discussed in Sections 7.3.1 to 7.3.3 in details, 

and will be easily adapt to a multimodal setting in Section 7.3.4. 

7.3.1 Output-associate fusion 

OA-fusion is an extension of decision-level fusion and is achieved by learning the fusion weights of 

an OA-matrix. The OA-matrix is formed by output-associative vectors from a set of initial predictions, 

taken from each dimension as shown in Figure 7.3.  

Feature 
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Model

Arousal 

Predictions

Valence 

Predictions

OA Fusion

OA Regression

OA Regression 

with uncertainty

Uncertainty 

Predictions of 

Arousal

Uncertainty 
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Regression 

Model

Regression 

Model

Regression 
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Predictions

Predictions

Predictions

Figure 7.2: Block diagram of OA fusion, OA regression and OA regression with uncertainty. OA fusion utilised the 

temporal dependencies in the arousal and valence predictions only, OA regression additionally considers the input 

feature space, and OA regression with uncertainty predictions further incorporated the long-term dynamics of the 

predictions of uncertainty information about emotion states. 
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As shown in Figure 7.3, generally multiple regression modelling techniques or features are tested in 

speech-based continuous emotion prediction systems, resulting in 𝑁 subsystems for arousal prediction 

and 𝑀 subsystems valence prediction. An 𝑁 or 𝑀 equal to 1 indicates that only one main system is 

used for arousal or valence predictions. In this thesis, I did not treat arousal and valence differently, 

thus 𝑁 and 𝑀 were always equal.  Let �̃�𝑎𝑚 and  �̃�𝑣𝑚 represent the arousal and valence prediction of

𝑚𝑡ℎ subsystem respectively. The associated OA-matrix 𝒀𝑂𝐴
𝑚  can be formed in terms of arousal and

valence predictions as below: 

𝒀𝑶𝑨
𝒎 = [�̃�𝒂𝒎

−
𝑷
𝟐
+𝒏 
,⋯ , �̃�𝒂𝒎

𝒊+𝒏 ,⋯ �̃�𝒂𝒎

𝑷
𝟐
+𝒏 
, �̃�𝒗𝒎
−
𝑷
𝟐
+𝒏 
,⋯ , �̃�𝒗𝒎

𝒊+𝒏 ,⋯ , �̃�𝒗𝒎

𝑷
𝟐
+𝒏 
]

(7.14) 

where �̃�𝑎𝑚
𝑖+𝑛 and �̃�𝑣𝑚

𝑖+𝑛  are the prediction values at time 𝑖 + 𝑛  and 𝑖  ranges in [−
𝑷

𝟐
,
𝑷

𝟐
] ; and 𝒀𝑂𝐴

𝑚

represents the OA matrix for the 𝑚𝑡ℎ subsystem; and 𝑃 denotes the length of the temporal window for

OA matrix. By simply concatenating the predictions within a window, the long-term dynamics within 

time range [−
𝑷

𝟐
,
𝑷

𝟐
]  are introduced for each frame, and regression modelling techniques will

automatically learn the relationship between current frame and the past and future information. In this 

way, the temporal dependencies are incorporated by the OA framework in continuous emotion 

prediction systems. 
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The OA fusion matrix is generated by concatenating the arousal and valence predictions of all 

subsystems within a longer window size as: 

𝒀𝑶𝑨 = [𝒀𝑶𝑨
𝟏 , 𝒀𝑶𝑨

𝟐 , ⋯ , 𝒀𝑶𝑨
𝒎 , ⋯ , 𝒀𝑶𝑨

𝑴 ] (7.15)

The 𝒀𝑂𝐴 is then utilised as input to the second stage regression models. With increasing length 𝑃 of

the temporal window, the dimension of 𝒀𝑂𝐴 increases dramatically. In order to minimise the linearity

between feature dimensions referred as multi-collinearity effects, either a RVM or regularised linear 

regression (RLR) is used to learn the fusion weights since RVM is able to conduct feature selection 

and RLR helps prevent model from over fitting the high dimensional training data. 

To explain this mathematically, first let �̃�𝑎 and �̃�𝑣 represent the OA matrix of 𝑀 subsystems for

arousal and valence respectively:   

�̃�𝑎 = [�̃�𝒂𝟏
−
𝑷
𝟐
+𝒏
, ⋯ , �̃�𝒂𝟏

𝒊+𝒏 , ⋯ �̃�𝒂𝟏

𝑷
𝟐
+𝒏

⏟             
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 1

, ⋯ , �̃�𝒂𝒎
−
𝑷
𝟐
+𝒏
, ⋯ , �̃�𝒂𝒎

𝒊+𝒏 , ⋯ �̃�𝒂𝒎

𝑷
𝟐
+𝒏

⏟             
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑚

, ⋯ , �̃�𝒂𝑴
−
𝑷
𝟐
+𝒏
, ⋯ , �̃�𝒂𝑴

𝒊+𝒏 , ⋯ �̃�𝒂𝑴

𝑷
𝟐
+𝒏

⏟              
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑀

] 
(7.16) 

�̃�𝑣 = [�̃�𝒗𝟏
−
𝑷
𝟐
+𝒏
, ⋯ , �̃�𝒗𝟏

𝒊+𝒏 , ⋯ �̃�𝒗𝟏

𝑷
𝟐
+𝒏
,⏟              

𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 1

⋯ , �̃�𝒗𝒎
−
𝑷
𝟐
+𝒏
, ⋯ , �̃�𝒗𝒎

𝒊+𝒏 , ⋯ �̃�𝒗𝒎

𝑷
𝟐
+𝒏

⏟             
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑚

, ⋯ , �̃�𝒗𝑴
−
𝑷
𝟐
+𝒏
,⋯ , �̃�𝒗𝑴

𝒊+𝒏 , ⋯ �̃�𝒗𝑴

𝑷
𝟐
+𝒏

⏟              
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑀

] 
(7.17) 

where the concatenation [�̃�𝑎 , �̃�𝑣] for frame 𝑛 are referred as OA vector. Based on either RVM or

RLR as the second stage regression techniques, OA fusion aims to learn a set of weights [𝝋𝑎, 𝝍𝑎]

and [𝝋𝑣, 𝝍𝑣]  for arousal and valence predictions, such that

�̌�𝒂
𝒏 = (𝝋𝒂)

𝑻(�̃�𝒂)  + (𝝍𝒂)
𝑻(�̃�𝒗) +  𝝐

(7.18) 

�̌�𝒂
𝒏 = (𝝋𝒂)

𝑻(�̃�𝒂)  + (𝝍𝒗)
𝑻(�̃�𝒗) +  𝝐

(7.19) 

where �̌�𝑎
𝑛 and �̌�𝑣

𝑛 represent the arousal and valence prediction at frame 𝑛, and 𝝐 represents the learned

noise. During the training phase, the OA vector [�̃�𝑎 , �̃�𝑣] for each frame 𝑛 is treated as the new feature

vector, and training data referred as OA matrix is generated by concatenating the OA vectors of all 

frames. Regression techniques are applied to the OA matric to learn the fusion weights. 
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7.3.2 Output-associate regression 

The other fusion strategy is a combined feature-level, decision-level and OA fusion scheme, herein 

referred to as output-associative regression (OA regression). This system is an extension of the OA 

fusion, in which the OA matrix is concatenated with the input feature space to learn the fusion 

weights as shown in Figure 7.4 (shown in bold arrow). Fusion of dimensions using this system will be 

performed using the OA-RVM [31]. 

The OA-RVM technique extends the contextual and temporal mapping performed in OA fusion to 

also incorporate the relationship between the input feature space 𝒙 when updating the prediction 

values, such that the final prediction values �̌�𝑎
𝑛 ad �̌�𝑣

𝑛 (similar to equations (7.18) and (7.19) for OA

fusion) are: 

�̌�𝒂
𝒏 = (𝝎𝒂)

𝑻𝝓(𝒙) + (𝝋𝒂)
𝑻(�̃�𝒂)  + (𝝍𝒂)

𝑻(�̃�𝒗) +  𝝐
(7.20) 

�̌�𝒗
𝒏 = (𝝎𝒗)

𝑻𝝓(𝒙) + (𝝋𝒗)
𝑻(�̃�𝒂)  + (𝝍𝒗)

𝑻(�̃�𝒗) +  𝝐
(7.21) 

where �̃�𝑎 and �̃�𝑣 are the temporal independently-learnt set of arousal and valence prediction values as 

in equation (7.16) and (7.17), and these are continuous on the range [𝑛 −
𝑃

2
, 𝑛 +

𝑃

2
]. 𝝓(𝒙) represents
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the input features after applying kernel 𝝓(∙), and [𝝎𝑎, 𝝎𝒗] are the learnt weights for input features for

arousal and valence. 

OA-RVM therefore uses the past, current and future prediction context associated with the input 

feature frames, as well as the input features, to update a prediction result. Prediction using the non-

causal relationship has been shown to be superior to RVM and SVR when performing continuous 

emotion prediction [164]. The work presented within this section aims to reinforce the usefulness of 

the OA-RVM framework and furthermore explore this paradigm in terms of a multimodal fusion 

technique in Section 7.3.4.  

During the training phase, the OA vector [�̃�𝑎 , �̃�𝑣]  for each frame 𝑛  is concatenated with the

original feature vector 𝝓(𝒙) to generate the feature vector 𝒙𝑛
′ = [𝝓(𝒙) , �̃�𝑎 , �̃�𝑣], and the training data

referred as OA matric are generated by concatenating features 𝒙𝑛
′  of all frames. Regression techniques 

are applied to the OA matrix to learn the fusion weights. During the test phase, similarly the OA 

matrix is generated and the trained weights are used for final emotion predictions. 

7.3.3 Output-associate regression incorporating uncertainty prediction 

The prediction about uncertainty of the underlying emotion states can be further incorporated as 

additional information in OA regression. The emotion predictions about uncertainty of the underlying 

emotion states  are adopted as an additional feature set, and OA regression will be further extended to 

incorporate the relationship between the predictions about uncertainty of the underlying emotion 

states when updating the prediction values, as in equations (7.18) and (7.19), and (7.20) and (7.21). 

These prediction values are 

�̌�𝒂
𝒏 = (𝝎𝒂)

𝑇𝝓(𝒙) + (𝝋𝒂)
𝑇(�̃�𝒂) + (𝝍𝒂)

𝑇(�̃�𝒗) + (𝝌𝒂)
𝑇(�̃�𝑎) + (𝝇𝒂)

𝑇(�̃�𝑣) +  𝝐 (7.22) 

�̌�𝒗
𝒏 = (𝝎𝒗)

𝑻𝝓(𝒙) + (𝝋𝒗)
𝑻(�̃�𝒂) + (𝝍𝒗)

𝑻(�̃�𝒗) + (𝝌𝒗)
𝑇(�̃�𝑎) + (𝝇𝒗)

𝑇(�̃�𝑣) +  𝝐 (7.23) 

where �̃�𝑎 and �̃�𝑣 are the temporal independently-learnt set of arousal and valence predictions about 

uncertainty of the underlying emotion states  values (similarly developed as in equations (7.16) and 

(7.17)), continuous on the range [𝑛 −
𝑃

2
, 𝑛 +

𝑃

2
]; the concatenation [�̃�𝑎, �̃�𝑣] for frame 𝑛 are referred as
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OA uncertainty vector; and [𝝌𝒂, 𝝇𝒂, 𝝌𝒗, 𝝇𝒗] represent the weights learned from the predictions about

uncertainty of the underlying emotion states  of arousal and valence. 

During the training phase, the OA vector [�̃�𝑎 , �̃�𝑣] at frame 𝑛, the OA uncertainty vector [�̃�𝑎 , �̃�𝑣]

at frame 𝑛  are concatenated with the original feature vector 𝝓(𝒙)  to generate the feature vector  

𝒙𝑛
′ = [𝝓(𝒙) , �̃�𝑎 , �̃�𝑣�̃�𝑎, �̃�𝑣], and OA matric are generated by concatenating features 𝒙𝑛

′  of all frames.

Regression techniques are applied to the OA matrix to learn the fusion weights. During the test phase, 

similarly the OA matrix is generated and the trained weights are used for final emotion predictions. 

7.3.4 Multimodal output-associate fusion and regression 

The OA frameworks described in Sections 7.3.1 to 7.3.3 can be extended to fusion of multiple 

modalities in a straightforward manner. A complete multimodal OA-matrix 𝒀𝑎𝑙𝑙 can be formed by

combining the OA matrices from all modalities: 

𝒀𝒂𝒍𝒍 = [𝒀𝑶𝑨(𝟏), 𝒀𝑶𝑨(𝟐),⋯ , 𝒀𝑶𝑨(𝑴)] (7.24)

where 𝒀𝑂𝐴
𝑖 represents the OA matrix of the 𝑖𝑡ℎ  modality and 𝑀  represents the total number of

modalities. The three fusion schemes outlined in Sections 7.3.1 to 7.3.3 can be extended to the 

multimodal case: Figure 7.5 shows the multimodal OA fusion, Figure 7.6 demonstrates the 

multimodal OA regression, and Figure 7.7 displays multimodal OA regression with uncertainty 
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incorporation. Fusion between modalities is simply a case of training a regressor with the OA-matrix. 

Again, to minimise multi-collinearity effects, either a RVM or RLR was used to learn the fusion 

weights.  
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7.4 Experimental settings and results 

7.4.1 Dynamic feature extraction 

7.4.1.1 Experimental settings 

The USC CreativeIT database was used to verify the impact of incorporating the dynamic features, 

and the experiments were carried out in a leave-one-session-out framework. Compensation for the 

reaction lags as discussed in Chapter 5 were first carried out with 4s and 2s for arousal and valence 

prediction respectively. The same 650 dimensional features were first extracted as in Section 6.3.1. 

These features were directly reduced to 80 dimensions using PCA for the baseline system without any 

dynamic feature extraction. 

Firstly, PCA was used to reduce the feature dimension to 40. Then the regression delta coefficients 

were calculated for each of the 40 dimensions and concatenated with the original 40 dimensional 

features, resulting in a total of 80 dimension features. This aims for a fair comparison using 80 

dimensional features for all systems. GMR modelling techniques are utilised as the back-end, where 

the three dimensional labels of arousal, valence and dominance ratings were jointly modelled. The 

systems with and without regression delta coefficients are compared. These three systems are: one 

without any regression delta coefficients, one only including regression delta coefficients of features, 

and another utilising both the regression delta coefficients of features and labels to verify the 

combined impact of features and labels. The experiments are carried out in a multi-dimension 

prediction framework, where arousal, valence and dominance are simultaneously predicted.     

In terms of the SDC features, different combinations of 𝑁 − 𝑑 − 𝑃 − 𝑘  are investigated as in 

Section 7.2.2.  To keep the comparison consistent, PCA was still adopted to reduce the SDC feature 

dimensions to 80. However, the SDC features projected from an extreme high dimension could not 

maintain the original information comprehensively and could not be modelled properly by GMR, thus 

the investigation on the SDC features with GMM backend was limited. In total, GMM with 4, 8 and 

16 mixture components was tested with different feature sets.  
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7.4.1.2 Experimental results 

The comparison of systems with and without regression delta coefficients is shown in Table 7.1. 

Different mixture components were tested and a system with 4 mixture components was found to 

achieve the best performance, thus the comparison was conducted based on the 4-mixture GMM. It 

can be seen that only incorporating the regression delta coefficients for features improves the results 

for arousal slightly, but not for valence and dominance. However, further incorporating the delta label 

coefficients dramatically improves the system performance for all three affective attributes, 

suggesting the significance of the dynamic label information. Therefore, the GMR based continuous 

emotion prediction systems all incorporate the regression delta coefficients throughout this thesis, 

including the GMR based experiments in Chapters 4, 6, 7, and 8.  

The results of the system performance with SDC features are shown in Table 7.2. Compared to the 

GMR baseline without regression deltas, the SDC features showed superior performance with some 

Table 7.1: Correlation coefficients of system performance with and without regression delta coefficients 

for a 4-mixture GMM. 

Arousal Valence Dominance 

No regression delta coefficients 0.4765 0.1639 0.1652 

Regression deltas of features only 0.4822 0.1472 0.1582 

Regression deltas of features and labels 0.5643 0.2148 0.2226 

Table 7.2: Correlation coefficients of system performance with SDC features, using different SDC 

parameters. 

CC 

Parameters 𝑵− 𝒅− 𝑷− 𝒌 Arousal Valence Dominance 

65-3-2-2 0.5094 0.2061 0.1772 

65-4-2-2 0.4578 0.2001 0.1316 

65-6-2-2 0.3140 0.0892 0.0715 

65-3-1-2 0.4787 0.2456 0.1888 

65-2-1-2 0.5103 0.2907 0.2139 

GMR baseline without regression deltas 0.4765 0.1639 0.1652 

GMR baseline with regression deltas 0.5643 0.2148 0.2226 
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experimental settings, highlighting the effectiveness of incorporating more temporal information. 

However, it did not outperform the system with regression delta coefficients for arousal and 

dominance predictions. These results suggest that that valence prediction may benefit more from the 

incorporation of longer-term temporal dependencies. 

7.4.1 Output-associate framework 

7.4.1.1 Experimental settings 

The RECOLA [76] and SEWA [65] databases are used to verify the extension of the OA framework 

to a multimodal context. Three modalities in the RECOLA database are used in our experiments: 

audio, video and physiology. The SEWA database does not provide physiological signals and instead 

audio,video and text modalities are used in the experiments run on this database.  Note that the 

extension of OA framework has been mainly proposed for the Audio/Video Emotion Challenge 

(AVEC) 2015 and 2017, thus the databases utilised are different. AVEC is a competition event aimed 

at comparison of multimedia processing and machine learning methods for automatic audio, visual 

and physiological depression and emotion analysis, with all participants competing under strictly the 

same conditions. The RECOLA databased was used in AVEC 2015 and the SEWA database was used 

in AVEC 2017. In AVEC 2015, multimodal OA-fusion and OA regression are carried out in the 

RECOLA database to verify the effectiveness of OA framework for temporal dynamics modelling; 

and In AVEC 2017, OA regression with and without predictions about uncertainty of the underlying 

emotion states are investigated in the SEWA database.  

In the RECOLA database, audio, video and physiology signals are provided in the RECOLA 

database. All the experiments are conducted using the training partition and evaluated using the 

validation partition.  Four feature sets from three modalities have been adopted: the 102-dimensional 

Extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) (adopted in AVEC 2015 [76]), 

two types of video descriptors (84-dimensional set of facial based appearance features and 316-

dimensional set of facial based geometric features);  and the 54-dimensional set of electro-cardiogram 

(ECG) features. Apart from the provided feature sets, audio features were also extracted using 
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VoiceSauce and openSMILE. The reader is referred to [76] for a complete description of the 

challenge feature sets. SVR and RVM were initially used as the first stage regression methods. Before 

training, 4s and 2s delay compensation for arousal and valence was introduced as in Chapter 5. All 

training features were then normalised to [0, 1] and the normalisation coefficients were subsequently 

used to normalise the test data. A binomial filter was used for post processing.   

For SVR, one out of each 20 frames of training data was selected for training for reasons of 

computational efficiency, with negligible performance drop. A linear kernel was used and C was set 

to 0.005 and 0.05 for arousal and valence respectively, based on optimising the performance with 

delay and smoothing in the development set in the range of [10
-4

,1]. The number of RVM training 

iterations was set to 30 for arousal and 40 for valence, based on the best performance on the 

development data. When performing OA fusion and OA regression, the number of RVM training 

iterations was tailored for each system, ranging between 10-100. 

In the SEWA database, the training and evaluation partitions are the same as the training and 

development partitions from AVEC 2017 [65]. OA regression with and without predictions about 

uncertainty of the underlying emotion states  is verified using audio, video and text modalities, and 

the system overview is shown in Figure 7.8. The audio features include a set of 88-dimensional 

eGeMAPS features and a set of BoW representation applied on the LLDs. Video features included a 

set of 121-dimensional features describing facial position and expression of subjects, and a set BoW 

representations was applied on the video features. For text-based features, a set of BoW 

representations was again applied on transcripts to form 521-dimensional frame-level features. 

Readers can refer to [65] for the details of these provided features. Accompanying the provided 

features, another novel feature set were applied for emotion prediction: phonetically-aware acoustic 

features [165]. GMR, Gaussian process (GP) and RVM are the three probabilistic models that output 

the additional emotion predictions about uncertainty of the underlying emotion states  as discussed in 

Section 3.3 (readers can refer to [166] for GP), but RVM was experimentally found to perform worse 

for emotion uncertainty prediction. Therefore, the predictions about uncertainty of the underlying 
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emotion states  obtained by GMR and GP are used in the OA fusion framework. The performance 

measure adopted is the concordance correlation coefficient (CCC). 

7.4.1.2 Experimental results 

Output-associative (OA) fusion techniques seek to utilise the temporal dynamics among first stage 

predictions and the correlations between arousal and valence values [167]. As discussed in Section 

7.4.2.1, four subsystems are developed using either SVR or RVM based on the four features 

individually.  The results are shown in Table 7.3. 

All OA fusion systems were tested using either RLR or RVM, represented as OA-RLR and OA-

RVM, outperformed the decision-level fusion (using either RLR or RVM without OA structure) for 

both arousal and valence predictions. These results indicate that consistent significant improvements 

can be obtained by incorporating the temporal dependencies using OA fusion. 
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audio, one text and two video feature sets are investigated, and three back-ends consisting of GMR, GP and RVM are 

applied to different feature sets which are chosen experimentally. In total, seven subsystems are developed for both 

arousal and valence. 
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Furthermore, the extension of OA-fusion to OA regression has also been tested. These systems 

combined feature-level fusion and OA fusion in order to further improve performance. Owing to the 

high dimensional feature set of the OA matrix, RVM instead of RLR is adopted due to its ability to 

perform inherent feature selection within the modelling techniques. Thus all OA regression systems 

used an OA-RVM framework [31], which was extended to fuse a set of predictions learnt from each 

modality.  

Output-associative (OA) regression results with different system configurations are reported in 

Table 7.4, where C1 describes a system employing OA-RVM to the multimodal arousal and valence 

predictions obtained using four SVR for each modality at the first stage; and C2 describes a system 

employing OA-RVM to the multimodal arousal and valence predictions using four RVM for each 

modality at the first stage; and C3 describes a system employing OA-RVM to the concatenated 

multimodal features. A further increase in system performance was observed when compared to OA 

fusion methods. The superior results for OA regression appear very consistent across the different 

system configurations compared to OA fusion. These results confirm the usefulness of RVM based 

Table 7.3: CCC for OA fusion using either a RVM or RLR to learn the fusion weights. SVR and RVM are 

utilised as the 1st stage regression techniques; Fusion techniques include decision-level fusion and OA fusion; 

decision-level fusion using both RLR and RVM are compared to OA fusion using RLR (OA-RLR) and RVM 

(OA-RVM). 

1
st
 stage regression Fusion 

CCC 

Arousal Valence 

SVR 

RLR 0.684 0.524 

RVM 0.667 0.436 

OA-RLR 0.736 0.615 

OA-RVM 0.718 0.509 

RVM 

RLR 0.274 0.495 

RVM 0.648 0.458 

OA-RLR 0.447 0.578 

OA-RVM 0.710 0.535 
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OA regression for performing continuous emotion prediction. Taken together, it is concluded that 

incorporating temporal dependencies by either OA fusion or OA regression improves the system 

performance, with OA regression a little superior.  

In the SEWA database, firstly the performance of features from different modalities is investigated, 

including audio, video, and text using three types of regression models. The selection of backend 

regression models was empirical. Among all seven subsystems shown in Table 7.5, system V1 

performed the best, achieving 0.518 for arousal and 0.583 for valence in terms of CCC. Note that this 

result outperformed the multimodal baseline system of AVEC 2017 by a considerable margin [65], 

and far exceeded that of the video baseline, which uses the same video feature set with LSTM back-

ends. Interestingly, system T1 also achieved very good performance, suggesting the suitability of 

RVMs for emotion prediction. The two acoustic systems of A1 and A2 showed similar performance 

for arousal, while A1 was outperformed by A2 for valence. This may indicate that the BoW method 

applied to LLDs is able to capture a more informative representation of emotion information 

compared to functionals. Although the BoW representation in general provided reasonably good 

performance for both arousal and valence prediction, the representation has a very high dimension, 

which carries a greater risk of over-fitting.  

Table 7.4: Comparison of CCC’s using different OA regression systems using a OA-RVM set-up to learn 

the fusion weights. OA-RVM is used as the fusion technique. 

System 

number 
1

st
 stage regression Arousal Valence 

C1 SVR (4 subsystems) 0.766 0.655 

C2 RVM (4 subsystems) 0.742 0.608 

C3 RVM (1 system with concatenated features) 0.743 0.600 
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Owing to the better system performance of OA regression over OA fusion, OA regression was then 

further applied to subsets of the seven subsystems to take into account the temporal dynamics of 

emotion predictions, including up to four audio, two video and one text subsystem; the chosen subsets 

will be described later. Probabilistic predictions were incorporated within the OA regression as 

presented in Section 7.2.2.4. Several combinations of the seven subsystems were investigated and the 

optimal combinations were determined primarily according to the fusion performance of the 

probabilistic predictions. A comparison of selected subsystem combinations, with and without 

predictions about uncertainty of the underlying emotion states is reported in Table 7.6. Note that the 

optimal combination of multiple subsystems is initially determined according to the evaluation 

performance. However, a more reasonable method could be to employ statistical analyses of how 

complementary the subsystems are., which can be referred to [168]. The results presented in Table 7.6 

are for multimodal fusion of 1) system C1 comprising two audio-only subsystems, 2) system C2 of 

four audio and one text subsystem, and 3) system C3 containing all audio, text and video subsystems. 

A comparison among these three combined systems (C1, C2 and C3) suggests that including 

additional modalities improves CCC performance for both arousal and valence, achieving 0.620 and 

0.682 respectively when fusing all subsystems. However, subsystems within the same modality may 

carry similar information, which could be somewhat redundant during fusion, especially for the very 

high dimensional BoAW and BoVW features. For this reason, a system is evaluated, where one 

Table 7.5: Subsystem performances with different features and back-ends in terms of CCC.A indicates 

audio modalities; T indicates text modalities; V indicates video modalities. In total, four audio, one text and 

two video systems are presented. 

System Number Features Back-end Arousal Valence 

A1 eGeMAPS 
GMR 

0.454 0.446 

A2 BoAW 0.451 0.515 

A3 eGeMAPS GPR 0.315 0.368 

A4 PA 

RVM 

0.400 0.362 

T1 BoTW 0.441 0.499 

V1 Norm Facial 0.518 0.583 

V2 BoVW 0.397 0.422 
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subsystem from each modality was selected for fusion, i.e. C4 consisting of A4, T1 and V1. Further, 

system A1 was included in C5 owing to its good performance shown in Table 7.5. The performance 

of C4 and C5 improves the CCC of arousal from 0.620 to 0.672 compared to C3, suggesting that  

dropping the multiples of the same modality did improve system performance; however, this did not 

aid valence prediction where the performance was actually degraded from 0.682 to 0.605. 

Of particular interest is that consistent improvements were observed by incorporating prediction 

uncertainty across different system configurations for predicting arousal and valence, with relative 

improvement for arousal between 0.8% and 2.3%, and for valence of maximum 1.4%. There is no 

uncertainty comparison for the C4 system (A4+T1+V1), since there are no probabilistic predictions. 

Overall, the OA regression results in Table 7.6 considerably outperformed the multimodal baseline 

reported in AVEC 2017 [65] for both arousal and valence on the development set. 

In conclusion, incorporating temporal dynamics of uncertainty of predicted emotion labels in OA 

regression further improves system performance for both arousal and valence predictions, with little 

superior performance for arousal.   

Table 7.6: Fusion performance of systems from Table 7.5, without and with uncertainty for arousal and 

valence in terms of CCC. 

CCC 

System 

number 
Combined Systems 

(Fused Systems) 

Arousal Valence 

Without 

uncertainty 

With 

uncertainty 
Without 

uncertainty 

With 

uncertainty 

C1 A1+A2 0.490 0.494 0.500 0.507 

C2 A1+A2+A3+A4+T1 0.551 0.560 0.597 0.597 

C3 
A1+A2+A3+A4+T1+V1

+V2
0.609 0.620 0.676 0.682 

C4 A4+T1+V1 0.657 N/A 0.602 N/A 

C5 A1+A4+T1+V1 0.657 0.672 0.605 0.605 
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7.5 Summary 

This chapter aims to incorporate the temporal dependencies into conventional emotion prediction 

systems, with the main focus on dynamic feature extraction and the output-associate framework. Two 

dynamic feature sets of regression delta coefficients and shifted delta coefficients are verified based 

on the GMR backend. The regression delta coefficients were shown to increase the arousal and 

valence prediction systems dramatically, suggesting their usefulness in capturing changing emotion 

and the relative dependencies of several adjacent frames. However, the shifted delta coefficients could 

not outperform the typical statistical features, possibly owing to the high dimensionality of the SDC 

features not being properly modelled by the GMR.  

The output-associate (OA) framework was proposed and extended to OA fusion and OA 

regression, which have been verified in multimodal settings. It was shown that incorporating temporal 

dynamics in both OA fusion and OA regression all outperform the typical methods in multiple 

experimental configurations of different backends, with OA regression having slightly superior results 

to OA fusion. Furthermore, incorporating the emotion predictions about emotion uncertainty in the 

OA regression yields better results than that without uncertainty incorporation. All these results 

together suggest that incorporating temporal dependencies of emotion predictions in OA framework 

benefits continuous emotion prediction systems, and additionally modelling the long-term 

dependencies of predictions about emotion uncertainty further improves system performance. 

In summary, incorporating temporal dependencies benefits emotion prediction, either in the feature 

level or the two state regression modelling techniques such as the OA framework. Further, the 

predictions about uncertainty of the underlying emotion states obtained from the probabilistic model 

were shown to be useful in emotion prediction when combined in the OA framework, which 

motivates an in-depth analysis on the temporal dependencies or the evolving nature of the emotion 

predictions about uncertainty of the underlying emotion states , discussed in Chapter 8.  
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8 MODELLING TEMPORAL DEPENDENCIES FOR EMOTION 

UNCERTAINTY PREDICTION 

8.1 Introduction 

As discussed in Chapter 6, predicting emotion attributes as a distribution using inter-rater variability 

instead of hard label has shown promising result in the uncertainty information of the emotion labels. 

However, the GMR regression technique as a statistical model cannot take into account temporal 

dynamics. The superior performance achieved by incorporating temporal dependencies into 

conventional emotion prediction systems in Chapter 7 motivated further investigations on the 

temporal modelling for the label distribution of uncertainty information. 

The previous work in Chapter 6 [169] developed the GMR system that incorporated information 

from multiple raters to predict emotion uncertainty, under the assumption that multi-ratings reflect the 

uncertainty of speech frames, which showed potential in predicting the emotion uncertainty. However, 

these methods all assumed that label distribution obtained from multiple raters is a single Gaussian, 

which may not always be true in reality. Though the work in Chapter 6 estimated the label distribution 

as a GMM, it was still carried out by taking the dominant Gaussian mixture component of GMM. In 

addition, incorporation of the long-term dynamics either by LSTM [27, 79] or the extension work on 

OA structure [31, 93] cannot be directly used to explore the temporal dependencies of uncertainty in 

emotions, quantified as a distribution. Thus, exploring the temporal uncertainty about emotional states 

aims to reveal the evolving process of label distributions.   

Thus far, only a limited number of papers have considered the prediction of uncertainty in emotions, 

and even fewer studies have considered their temporal dynamics. Since human emotion is a slowly 

varying process where current emotion state evolves from the past emotion states, the regression 

model developed should be able to model the temporal dynamic of emotions. LSTM as one of the 

effective techniques to model long-term dependencies could not predict label distributions directly. 

Thus, incorporating filter techniques that considers the temporal dependencies within the GMR 
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system in Chapter 6 has been proposed.  Kalman filters are one of the most widely adopted techniques 

in time series analysis [170].  They have been explored as a multi-modal or multi-subsystem fusion 

technique for emotion prediction in recent years, since they are ideally suited for continuous state 

tracking. Good performance for predicting arousal and valence was observed [171-173]. However, 

this was still carried out for hard labels of emotion attributes. The work presented in this chapter 

explores the use of Kalman filters to model the temporal dynamics of a distribution over emotional 

states that captures the uncertainty in predicted emotions, which are applied to the emotion label 

distributions instead of hard labels of emotion attributes. Forward and backward Kalman filters are 

adopted to take into account both past and future information. In addition, the proposed method 

assumes that the emotion label distribution is a GMM instead of single Gaussian distribution, 

generalising the assumptions made about the distribution. 

Another challenge that arises from this new framework is the question of evaluation metrics 

between the predicted GMM label distribution and the ground truth GMM distributions. Two 

measurements are proposed to evaluate the new system performance, in terms of the KL divergence 

between the predicted and ground truth distributions, and the correlation between the local variability 

of the predicted and ground truth distributions.  

The rest of this chapter is organised as follow: the incorporation of temporal dynamics by Kalman 

filter is discussed in Section 8.2, and the experimental setting and results are presented in Section 8.3, 

and finally they are summarised in Section 8.4. 

8.2 Incorporation of temporal information for probabilistic estimation 

As mentioned in Section 6.2, the GMR system incorporates multi-rater variability in the feature 

concatenation level, and a GMR is developed to capture the label variability. In order to obtain the 

uncertainty prediction for test speech, the conditional distribution 𝑃(𝒚𝑡|𝒙𝑡, 𝜆) of label 𝒚𝑡  for each

frame 𝑡 is estimated as a GMM, where 𝜆 represents the joint model and 𝒙𝑡  represents the feature

vector at frame 𝑡. An approximation with the dominant mixture component of the GMM is adopted as 

discussed in Section 6.2.3, shown in Figures 8.1(a) and 8.1(b). Figure 8.1(a) displays the ratings from 
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6 raters of one speech segment. Figure 8.1(b) shows the prediction 𝑃(𝒚𝑡|𝒙𝑡, 𝜆) approximated as a

Gaussian distribution for each frame. This allows for a time-varying indicator of uncertainty 

prediction as the standard deviation of each frame-wise Gaussian distribution. It is expected that a 

small standard deviation reflects a low inter-rater variability.  

Emotion uncertainty is generally captured by a distribution, thus incorporating the temporal 

dependencies of emotion uncertainty is focused on the evolving process of label distributions 𝑃(𝒚𝑡).

Kalman filters are used to estimate the hidden states 𝑃(𝒚𝑡) based on the previous states 𝑃(𝒚1:𝑡−1) and

current observations, where the predicted conditional distribution P(yt|xt, λ) is treated as a current

noisy observation of 𝑃(𝒚𝑡). This framework also relaxes the assumption of label distribution being a

Gaussian distribution to allowing it to be a GMM. i.e., Instead of approximating 𝑃(𝒚𝑡|𝒙𝑡, 𝜆) and

𝑃(𝒚𝑡) by a Gaussian distribution, the proposed dynamic multi-rater GMR treats 𝑃(𝒚𝑡|𝒙𝑡, 𝜆)  and

𝑃(𝒚𝑡) as GMMs. Readers are referred to Chapter 6 for the details of estimation on the conditional

probability P(yt|xt, λ)  . The vector representation vt  of P(yt|xt, λ)   can then be generated by

concatenating their GMM parameter weights w̅mt, means u̅mt and vectorised covariances Σ̅mt of each

mixture component m, and st of P(yt) can be similarly generated by concatenating [𝑤𝑚𝑡, 𝒖𝑚𝑡 , 𝜮𝑚𝑡]

as:   

𝒗𝑡 = [�̅�1𝑡, ⋯ �̅�𝑀1𝑡, �̅�1𝑡
𝑇 , ⋯ �̅�𝑀1𝑡

𝑇 , 𝑉𝑒𝑐(�̅�
1𝑡
)
𝑇
, ⋯ 𝑉𝑒𝑐(�̅�𝑀1𝑡)

𝑇
]
𝑇 (8.1) 

𝒔𝑡 = [𝑤1𝑡, ⋯𝑤𝑀2𝑡, 𝒖1𝑡
𝑇 , ⋯ 𝒖𝑀2𝑡

𝑇 , 𝑉𝑒𝑐(𝚺
1𝑡
)𝑇, ⋯ 𝑉𝑒𝑐(𝚺𝑀2𝑡)

𝑇]
𝑇
 (8.2)

where 𝑀1  and 𝑀2  represents the number of mixture components for 𝑃(𝒚𝑡|𝒙𝑡, 𝜆)  and 𝑃(𝒚𝑡) .

Prediction of the hidden states 𝒔𝑡 can be formulated as a Kalman filter:

𝑃(𝒔𝑡|𝒔𝑡−1) = 𝑁(𝒔𝑡; 𝑭𝒔𝑡−1, 𝑸) (8.3) 

𝑃(𝒗𝑡|𝒔𝑡) = 𝑁(𝒗𝑡;𝑯𝒔𝑡−1, 𝑹) (8.4) 

where matrices 𝑭,𝑯,𝑸 and 𝑹 are the process matrix, observation matrix, process noise covariance 

and observation noise covariance, which can be estimated during the training phase. The label 

distribution 𝒔𝑡 can be updated sequentially based on equations (8.3) and (8.4). An illustration of the

proposed dynamic multi-rater GMR is shown in Figure 8.1(c). The Kalman filter ensures that the 



147 

hidden state 𝒔𝑡  is dependent on previous states, which reduces the negative effect of sudden

misleading frames. It should be noted that the Kalman filter is utilised to predict the label distribution 

𝒔𝑡 instead of hard labels. The uncertainty about predictions can then be quantified based on the label

distribution  𝒔𝑡, namely 𝑃(𝒚𝑡).

8.2.1  Training phase 

As in Section 6.2.2, a joint GMM 𝜆 = 𝑃(𝒙, 𝒚)  is developed and the prediction 𝑃(𝒚𝑡|𝒙𝑡, 𝜆)  is

estimated using validation partition. Recall that 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆), represented by 𝒗𝑡 , is regarded as the

noisy observation of the hidden states 𝒔𝑡. Vectors 𝒔𝑡 and 𝒗𝑡 are required to train the Kalman matrices

𝑭,𝑯,𝑸 and 𝑹 from equations (8.3) and (8.4). Ideally, 𝒔𝑡 can be trained directly using the labels from

multiple raters at each frame 𝑡. However, there are generally a limited number of raters in existing 

(a) 

(b) 

(c) 

Figure 8.1: Comparison of multi-rater GMR and dynamic multi-rater GMR; (a) six ratings for one speech segment; (b) 

multi-rater GMR based prediction 𝑃(𝑦𝑡|𝑥𝑡 , 𝜆); (c) proposed dynamic multi-rater GMR based prediction 𝑃(𝑦𝑡)  using 

Kalman filter. 
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databases (i.e. 3 or 6), thus it is not reliable to directly train 𝒔𝑡 as a GMM. Maximum-a-posterior

(MAP) adaptation is used to obtain 𝒔𝑡 for each frame based on a UBM trained using all labels in the

training partition. 𝒗𝑡 can be obtained by predicting 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) for each frame.

Given 𝒗𝑡 and 𝒔𝑡, the matrices 𝑭,𝑯,𝑸 and 𝑹 of the Kalman filter can be estimated as in [174]. As

suggested by [173], introducing an internal delay 𝑑 during estimation of the process matrix 𝑭, benefits 

emotion prediction systems since 𝑭  cannot be an identity matrix. This is owing to the fact that 

emotion is a slowly changing process where two adjacent frames are extremely similar.  Let 𝑨 =

(𝒔1:𝑡−1−𝑑)
𝑇 and 𝑩 = (𝒔𝑑+1:𝑡)

𝑇. 𝑭 and 𝑸 can be estimated as:

𝑭 = (𝑨𝑻𝑨+ 𝜆𝑰)−1𝑨𝑻𝑩 (8.5) 

𝑸 = 𝑐𝑜𝑣(𝑩 − 𝑨𝑭) (8.6) 

where the regularisation parameter 𝜆 can be determined experimentally. Similarly, let 𝑪 = (𝒔1:𝑡)
𝑇 and

𝑫 = (𝒗1:𝑡)
𝑇, 𝑯 and 𝑹 can be estimated as:

𝑯 = (𝑪𝑻𝑪 + 𝜆𝑰)−1𝑪𝑻𝑫 (8.7) 

𝑹 = 𝑐𝑜𝑣(𝑫 − 𝑪𝑯) (8.8) 

8.2.2 Test phase 

During the test phase, the predicted label distribution 𝒗𝑡 is estimated using the GMR based system

outlined in Chapter 6. Initial values of the hidden states 𝒔0 and the covariance 𝑸0 are given and the

Kalman filter is applied to sequentially predict the hidden states 𝒔𝑡 , given 𝒗𝑡  and the Kalman

matrices. The algorithm used to estimate hidden states 𝒔𝑡 can be found in [174]. Finally, the predicted

distribution 𝑃(�̂�𝑡)  can be reconstructed by decomposing 𝒔𝑡  into GMM parameters and emotion

uncertainty can be obtained. 

Additionally, the KL divergence was estimated between the predicted GMM distributions and the 

fitted GMM distributions, which are viewed as the ground truth on a frame basis. This is compared to 

the KL divergence that estimated between the predicted Gaussian distributions and the fitted Gaussian 

distributions as in [14]. 
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8.2.3 Forward and backward Kalman filters 

Since the Kalman filter only considers the temporal dependencies on past information, two Kalman 

filters, one trained in the forward direction (KF1), and another in the backward direction (KF2) are 

proposed to consider the temporal dependencies of both past and future information.  

During the test phase, the label distribution 𝒔𝑡
𝐾𝐹1 and 𝒔𝑡

𝐾𝐹2 were estimated using KF1 and KF2

respectively. A linear combination of 𝒔𝑡
𝐾𝐹1 and  𝒔𝑡

𝐾𝐹2 is used as the final estimation 𝒔𝑡,

�̂�𝑡 = 𝛼𝒔𝑡
𝐾𝐹1 + (1 − 𝛼)𝒔𝑡

𝐾𝐹2 (8.9)

where the linear coefficient 𝛼 was determined experimentally as 

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼

∑‖𝒔𝑡 − �̂�𝑡‖2

𝑁

𝑡=1

(8.10) 

8.2.4 Uncertainty prediction 

It is supposed that a broad GMM indicates a high uncertainty prediction corresponding to high 

disagreement among multiple raters, while a narrow GMM represents a low uncertainty prediction 

corresponding to low disagreement. The broadness of a GMM is quantified in terms of the acoustic 

volume, which can be estimated as the local variability of the GMMs. This local variability of the 

GMM can also be utilised as the uncertainty prediction. The acoustic volume 𝐴𝑉𝐿𝑡 is adopted [126].

Figure 8.2 illustrated 𝑃(�̂�1) and 𝑃(�̂�2) for time 𝑡1 and 𝑡2. Given a threshold 𝜃, the 𝐴𝑉𝐿𝑡 of 𝑃(�̂�𝑡)

is the red area under 𝜃 (Figure 8.2) as: 

𝐴𝑉𝐿𝑡 = ∫𝑓(𝒚)𝑑𝒚,   𝑓(𝒚) = {
1, 𝑃(𝒚𝑡) > 𝜃

0, 𝑃(𝒚𝑡) ≤ 𝜃

(8.11) 

Details of 𝐴𝑉𝐿𝑡 can be found in equation (3.3) in Section 3.2.2, where a set of thresholds have been

applied for a PAV profiles, but only one threshold is experimentally selected to the 𝐴𝑉𝐿𝑡 calculation.

As shown in Figure 8.2, 𝐴𝑉𝐿1 for a broad GMM is larger than 𝐴𝑉𝐿2 for a narrow GMM. These are

expected to correspond to two frames with high and low inter-rater variability respectively. The inter-

rater variability is treated as the ground truth of emotion uncertainty which is similarly estimated as 

the acoustic volume of 𝑃(𝒚𝑡) obtained using only multi-ratings.
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Additionally to estimate whether the predicted distribution matches the true distribution, Kullback-

Leibler (KL) divergence is estimated numerically as in equation (3.1), and the mean and standard 

deviation of the KL divergence over entire validation partition are reported. 

8.3 Experimental settings and results 

8.3.1 Experimental settings 

The RECOLA database was used to verify the effectiveness of the proposed methods (Section 4.4.1). 

65 low-level descriptors (LLDs) and their first-order derivatives are extracted using Opensmile [130]. 

Five functionals are used to calculate the statistic features [169].  Dynamic features and labels are 

calculated as in [81]. PCA is used to conduct dimensionality reduction in the feature space from 650 

to 40 dimensions. Delays of 4 s for arousal and 2 s for valence are applied as discussed in Chapter 5. 

GMMs with 2, 4 or 8 full covariance mixture components are tested to model 𝑃(𝒚𝑡), and GMMs with

8 mixture components are used for the joint distribution 𝜆 since they showed good performance in 

Chapter 6.  

During the training phase, internal delays of 1, 3, 5, 7 and 9 seconds have been tested for the 

Kalman filter. The fusion coefficients 𝛼 for these filters are tested in the range of [0,1] with a step 

increase of 0.1. A regularisation term for the filters is optimized in the range [10−10, 105]. During the
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Figure 8.2: Acoustic volume (𝐴𝑉𝐿) of two distributions 𝑃(𝑦1) and 𝑃(𝑦2). Red area under threshold θ is the 𝐴𝑉𝐿 for 

GMM. 
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test phase, acoustic volume is estimated by sampling 100,000 points based on Monte-Carlo approach. 

The threshold 𝜃 , used to estimate acoustic volume of the 𝑃(𝒚𝑡) over the entire test partition, is

optimized in the range of [1,99] percentiles with a step increase of two.  

All the experiments are trained and validated using the 9 speakers in the training partitions, and 

evaluated using the development dataset. The evaluation metrics for the uncertainty prediction and 

emotion prediction are Pearson’s correlation coefficient (CC) and the concordance correlation 

coefficients (CCC) respectively.  KL divergence is estimated using 100,000 Monte Carlo sampling 

points as in Section 3.3. 

8.3.2 Experimental results 

Given the assumption that high inter-rater variability produces a high uncertainty prediction, I aim to 

investigate is a positive correlation exists between the predicted uncertainty 𝐴𝑉𝐿�̂�  computed from

Kalman prediction 𝑃(�̂�𝑡), and the multi-rater uncertainty 𝐴𝑉𝐿𝑡 computed from the distribution 𝑃(𝒚𝑡)

obtained using test labels only. A moving average filter was used to smooth the prediction 𝐴𝑉𝐿�̂�. It

was observed that the ‘ground truth’ 𝐴𝑉𝐿𝑡 is noisy, which is likely due to MAP adaptation using 6

ratings only. Thus I additionally apply a mean filter with 0.5s, 1s and 1.5s windows to smooth, but not 

to over smooth the ‘ground truth’ 𝐴𝑉𝐿𝑡.

It can be observed in Figure 8.3 that the proposed method on its own outperforms the baseline with 

raw (unsmoothed) 𝐴𝑉𝐿𝑡 , for both arousal and valence, suggesting that incorporating temporal

dependencies does benefit uncertainty prediction, especially for valence. With the increased 

smoothing, the system performance was further improved. No significant performance differences 

were observed when using different numbers of mixture components to model 𝑃(𝒚𝑡) for arousal,

while the model with eight mixtures outperforms all other configurations for valence, suggesting that 

predicting valence uncertainty from speech is a more complex problem. Surprisingly, the internal 

delays of the Kalman filter were not shown to be an influential factor, possibly due to that Kalman 

filters are applied to a complex representation of the labels in terms of the model parameters instead 

of the point estimations of the emotion attributes.  
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Additionally, the KL divergence between the ground truth (modelled as a GMM) and predicted 

label distributions 𝑃(�̂�𝑡), for the proposed systems was compared to that of the baseline system in

Chapter 6 [169]. The results given in Table 8.1, indicate that the proposed system leads to a more 

reliable and smoothed distribution prediction. 

The system performance using a single feedforward is also compared to the bidirectional Kalman 

filters under the optimal system configurations. Bidirectional Kalman filters showed a slightly better 

performance of 0.665 over 0.662, and 0.383 over 0.381 for arousal and valence respectively, when 

(a) 

(b) 

Figure 8.3: Uncertainty prediction performance in terms of CC with x axis indicating the mixture components of (𝑦𝑡) : (a)

arousal, and (b) valence. The baseline (salmon) system is the one described in Chapter 6 and the performance is presented 

in Table 6.1. the proposed system (green) indicates evaluation on raw 𝐴𝑉𝐿𝑡, and ‘smoothing’ systems indicate evaluation 

on smoothed 𝐴𝑉𝐿𝑡.
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compared to the feedforward Kalman filter alone. The optimal fusion coefficient α was found to be 

0.5, suggesting equal levels of influence for both directional filters.  

In order to investigate the effectiveness of the proposed framework for emotion attribute prediction, 

the point estimations of arousal were obtained from 𝑃(�̂�𝑡)  by the expectation–maximization

algorithm [83]. Valence prediction was not analyzed since it is hard to predict form speech as in 

Chapter 6. The performance for arousal prediction achieves 0.70 and 0.43 in terms of CC and CCC 

respectively, which is calculated between predicted �̂�𝑡  and the mean ratings. Though it could not

outperform the state-of-the-art arousal prediction system with a CCC of 0.796 [92], it still shows 

potential in predicting emotion attributes without directly using mean ratings. 

8.4 Summary 

This chapter proposes a dynamic multi-rater GMR which takes into account the temporal 

dependencies of the emotion uncertainty prediction. The main contributions of this chapter are: (1) 

incorporation of both feedforward and backward Kalman filters into multi-rater GMR to account for 

the temporal dependencies of label distributions; (2) estimating label distribution as a GMM instead 

of single Gaussian assumption; (3) adoption of two new measurements to estimate uncertainty 

prediction from GMM in terms of the KL divergence between the predicated and the ground truth 

GMM, and the correlation between the acoustic volumes of the predicted and ground truth GMMs. 

The results indicate a 17% relative improvement for arousal uncertainty prediction and more than 

100% relative improvement for valence uncertainty prediction. Moreover, it shows that predicting 

Table 8.1: Comparison of mean and standard deviation (SD) of the KL divergence between the 

predicted distribution and the ground truth distribution. 

Arousal Valence 

Proposed Baseline Proposed Baseline 

Mean 0.1439 1.6872 0.2085 1.8628 

SD 0.1818 7.2714 0.2044 1.1236 
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emotion label distributions are more informative than predicting a single mean ‘ground truth’, and this 

chapter develops methods that can do it while incorporating temporal dynamics and proposes 

measures to quantify performance under this new paradigm. As the pioneer study considering the 

temporal dependencies of emotion uncertainty, the work presented in this chapter provides insights 

into the time-dependent variability introduced by multi-raters.  
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9 CONCLUSIONS AND FUTURE WORK 

9.1 Conclusion 

This thesis has described a series of investigations into continuous emotion prediction systems, 

specifically the impact of variability in the expression and perception of emotions by humans that 

manifest as speaker variability and inter-rater variability. In addition, the temporal modelling of 

emotion predictions was also investigated. The aims of these investigations can be summarised as: 1) 

determining the effect of speaker variability in continuous emotion prediction systems and further 

compensating the speaker variability based on those analyses; 2) examining the effect of inter-rater 

variability, and proposing a new framework to obtain uncertainty in predicted emotion that are to 

some extent indicated by the inter-rater variability and 3) developing techniques to capture the 

temporal dependencies of both hard labels of emotions and label distributions quantifying emotions. 

9.1.1 Effect of speaker variability on the feature space 

Chapter 3 explores speaker variability within a probabilistic framework and explores the hypotheses 

that speaker variability can be characterised in terms of both the differences in how speakers express 

their gamut of emotional states, as well as the differences in how the same emotional state is 

expressed by different speakers. These two aspects are captured in the feature and model spaces 

respectively. A GMM based probabilistic framework was adopted to quantify the speaker variability, 

since it involves a generative model of the joint distribution over the features and labels, which lends 

itself well to quantitative analysis of the effect of speaker variability on the feature space. Furthermore, 

two measures to compare the speaker-dependent distributions in terms of inter- and intra-speaker 

variability were proposed: the Kullback-Leibler divergence and probabilistic acoustic volume.   

A key insight into the effect of the speaker variability revealed in Chapter 3 is that speaker 

variability showed similar effect in both feature and model spaces. This results in distinct speaker-

dependent distributions in the (joint) feature space, and the speaker-dependent distributions are 
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‘narrower’ than the speaker-independent distribution modelled over (joint) features from all speakers, 

indicated by the smaller value of the slope of the PAV profiles. Thus, pooling data from multiple 

speakers to train a single model without compensation of speaker variability will lead to a model 

vulnerable to speaker variability and is likely to lead to less accurate predictions. 

9.1.2 Novel approaches for compensating speaker variability 

Chapter 4 developed a range of novel approaches to compensate speaker variability in continuous 

emotion prediction systems: factor analysis based normalisation techniques, partial least squares 

dimension reduction based normalisation techniques (PLSDR), and feature mapping based 

normalisation techniques. Among the three compensation techniques, factor analysis based 

normalisation method was shown to reduce the discrimination between speaker-dependent 

distributions, and PLSDR and feature mapping based normalisation techniques were shown to 

compensate for speaker variability in both feature and model spaces simultaneously. Furthermore, the 

PLSDR based method was shown to be slightly superior to feature mapping. More specifically, the 

proposed PLSDR based speaker normalisation had the greatest effect on the features from speakers 

who were the furthest from the other speakers, bringing them in line with the other speakers, while 

feature mapping based speaker normalisation reduced the differences between feature distributions 

across all speakers. In terms of the intra-speaker variability, both methods reduced the difference in 

‘widths’ of speaker-dependent distributions.  

The results presented in Chapter 4 validate the effectiveness of the proposed compensation 

techniques. Compared with the baseline system without compensation for speaker variability and the 

state-of-the-art compensation techniques implemented under the same experimental configurations, 

all three methods outperformed the state-of-the-art systems on three databases. PLSDR based 

normalisation techniques in particular achieved relative improvements of 11.7%, 33% and 12% over 

baseline for arousal, valence and dominance in the USC CreativeIT database, 106%, 11.2% and 3% 

for arousal, valence and dominance in the SEMAINE database, and 4.6% and 33% over the baseline 

for arousal and valence in the RECOLA database. 
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9.1.3 Analysis of inter-rater variability 

Chapter 5 analysed emotion annotation variability, with a focus on the inter-rater variability, and the 

correlation between the inter-rater variability and emotion categories/clusters. First, the reaction lag of 

both the mean ratings and the individual ratings was investigated, aiming to realign the emotion 

ratings for a subsequent analysis of the inter-rater variability. It was observed that the optimal delay 

for the mean rating in the RECOLA database is approximately 4s and 2s for arousal and valence 

respectively. A similar delay for arousal and valence was also observed in the SEWA database, 

altogether suggesting a more rapidly changing nature of the arousal intensity. The system 

performance was improved significantly with the delay compensation for mean ratings. However, the 

proposed compensation technique for individual raters could not demonstrate improvement in terms 

of the system performance, which is probably owing to intra-rater variability. Furthermore, inter-rater 

variability was evaluated in terms of the mean of pair-wise Pearson’s correlation coefficients and 

Cronbach’s alpha over the entire RECOLA database, serving as support for the framework for 

emotion uncertainty predictions presented in Chapters 6 and 8. The most important finding in Chapter 

5 is the correlation between the inter-rater variability and the emotion categories/clusters. A 

significant difference was observed among the inter-rater variability for different emotion clusters, 

motivating reconsideration of the nature of inter-rater variability in continuous emotion prediction 

systems.  

9.1.4 Novel framework for prediction of uncertainty in emotion labels 

Chapter 6 proposed a novel framework for emotion uncertainty prediction based on a probabilistic 

Gaussian mixture regression (GMR) model. This was implemented by incorporating individual 

ratings into a conventional GMR system, and then estimating the uncertainty from a GMM, which 

were approximated by the dominant Gaussian mixture component. The Pearson’s correlation 

coefficient between the predicted uncertainty of emotion labels and the inter-rater variability 

(computed as the standard deviation among six raters) was adopted as the evaluation metric to 

quantify system performance. High correlations of 0.56 and 0.13 were observed between the predicted 
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uncertainty and inter-rater variability for arousal and valence respectively, suggesting the proposed 

framework is a promising approach, especially for arousal uncertainty prediction. Additional analysis 

of the correlation between the uncertainty prediction and conventional emotion systems were also 

explored. The conventional emotion prediction system was found to perform better in the regions 

where inter-rater variability is low, and worse in the regions where inter-rater variability is high. This 

also provides a path for using the uncertainty information to improve conventional emotion prediction 

systems.  

The proposed framework for emotion uncertainty prediction has shown to be promising for 

predicting the uncertainty of emotion labels using inter-rater variability, and changes the perspective 

from which to view continuous emotion prediction systems. Instead of predicting emotion in terms of 

hard labels, it is potentially of more interest to predict human emotion as a distribution that implicitly 

represents uncertainty about the underlying emotion intensity.   

9.1.5 Temporal modelling of hard emotion labels 

Chapter 7 analysed temporal modelling techniques used for hard emotion label prediction, with a 

focus on the dynamic feature extraction and the output-associate (OA) frameworks. Regression delta 

coefficients and shifted delta coefficients (SDCs) were evaluated in conjunction with a GMR back-

end with a GMR back-end. The regression delta coefficients calculated on both the feature and label 

spaces improved the system performance significantly. Shifted delta coefficients outperformed feature 

vectors without dynamic information, but not regression delta coefficients. This is possibly due to a 

limited number of speech blocks being used to obtain the SDC features, since a larger number of 

speech blocks will lead to higher dimensional feature vectors, which cannot be properly modelled 

using a GMR back-end. All the results reported in this chapter consistently suggest that modelling 

long-term dynamics in the feature space benefits continuous emotion prediction.  

Additionally, the OA framework originated from [31] for continuous emotion prediction was 

further extended to OA-fusion and OA-regression in a multimodal framework, and were tested with 

relevance vector machines (RVM) and regularised linear regression (RLR) back-ends. Experiments 
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results showed significant improvement could be achieved by using the OA-framework for 

incorporating long term information. 

9.1.6 Temporal modelling of emotion label distributions 

Chapter 8 extended the emotion uncertainty prediction system introduced in Chapter 6 (a static model) 

to a dynamic GMR system that takes into account the evolving nature of human emotion.  In order to 

consider the temporal dependencies of the emotion uncertainty and to relax the Gaussian assumption 

made in the inter-rater variability in Chapter 6, Chapter 8 incorporated Kalman filters into the 

framework. Feedforward and backward Kalman filters were estimated to model the current emotion 

state based on past and future information. Two measures, acoustic volume and KL divergence 

between the predicted and the ground truth distributions, were proposed to compare the proposed 

dynamic GMR system to the static multi-rater GMR system, and the dynamic system was shown to be 

superior, especially for valence uncertainty prediction, indicating that valence may benefit more from 

modelling temporal dependencies. We also found that uncertainty prediction systems for valence 

performed better with more complex model parameters, suggesting that it is a harder problem 

compared to arousal uncertainty predictions.  

9.2 Future work 

Future work efforts could focus on generalising and verifying the proposed compensation techniques 

for speaker variability to other tasks, where the task-unrelated factors are required to be eliminated. 

Moreover, the framework for emotion uncertainty prediction can be employed in any research field 

that suffers from defining the ground truth as hard labels. One of the major factors that potentially 

limits the validation of the reported investigations is the static regression modelling techniques used in 

this thesis, such as GMR and RVM. Both of these techniques ignore the temporal dynamics of time 

series signals, which was shown to be a significant factor for improving continuous emotion 

prediction systems in Chapters 7 and 8. Therefore, with the rapid developments in deep learning, 

multiple deep neural networks can be investigated for emotion prediction or related affect modelling 
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fields. Another key consideration in any future research effort is improving these systems for use in 

real applications. The developed technologies should ultimately be employed in the real world, either 

in interactive human-computer interface design, a call centre or clinical diagnosis tools.  

There are several specific avenues for extending the work presented in this thesis. Firstly, 

appropriate evaluation techniques for emotion uncertainty prediction should be investigated, as a 

matter of urgency. The evaluation metrics used in this thesis are the correlation coefficient of the 

uncertainty prediction and the inter-rater variability, and the KL divergence between the predicted 

distribution and actual fitted distribution. However, an optimal evaluation metric that can estimate 

both the distribution similarity and the accuracy of uncertainty prediction should still be developed 

based on current work. Furthermore, a definitive method to compare evaluations of the proposed 

distribution estimation and that of the conventional point estimation is yet to be settled on.  

Secondly, though many of the insights into the emotion uncertainty prediction were gained and a 

Kalman filter was incorporated to take into account the temporal dependencies of emotion’s evolving 

nature based on the GMR framework, it still assumes that emotion uncertainty as a linearly evolving 

process, though this may not be true in reality. Deep learning especially LSTM and RNN is well 

established and has been shown to be potentially useful for modelling temporal dependencies in 

continuous emotion prediction. However, the analysis on modelling label distributions with deep 

learning structure has just started, and it requires more in-depth insights.  

The emotion uncertainty prediction system presented in this thesis adopted the emotion ratings 

without any delay compensation in individual ratings, which is known to be a confounding factor in 

emotion uncertainty prediction systems. This will introduce noise into the ratings for each frame. It is 

expected that compensating the individual reaction lag and realigning the individual ratings will 

improve the emotion distribution estimation.  

Another issue with the use of multiple ratings is that humans tend to perceive emotion changes 

better than the absolute emotion intensity. This leads to a different type of absolute ratings that 

measure the trends in emotion change for similar emotion states within duration. For instance, a high 
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agreement among raters is generally observed with a common increasing trend of arousal intensity, 

but with different absolute values for each rater. Thus, exploring the underlying emotion states instead 

of the absolute values may be more appropriate. Any future work in this vein should focus on 

investigating the hidden emotion intensity based on emotion change for each rater individually. In this 

way, though the absolute values of individual emotion intensity are different, the hidden emotion state 

is still estimated as similar for each individual rater. Systems developed using hidden emotion 

uncertainty can benefit from this representation, including conventional emotion prediction systems 

and uncertainty prediction systems. 

A key challenge in emotion prediction is the reliability of the affect labels perceived by humans, 

which influences the robustness of the regression model developed based on it. Supervised learning, 

often adopted in continuous emotion prediction, takes in the label information when training the 

model, and is highly dependent on the quality of the provided labels. Thus, reinforcement learning 

ought to be considered, since they use information in the feature space only, and train the neural 

network with the feedback of the output. Reinforcement learning in particular takes into account the 

long-term consequences, which suits emotion’s evolving nature.   

Finally, the proposed compensation techniques for speaker variability presented in this thesis can 

be tested in other paralinguistic tasks. The compensation techniques described in Chapter 4 can be 

well generalised to other tasks where the factors unrelated to the task are shown to be negative 

confounding factors in the framework. These could include gender variability in depression detection, 

speaker variability in sentiment analysis, etc., since most classification or regression modelling 

techniques themselves cannot handle such specific variability. The factor analysis and the feature 

mapping based normalisation techniques can be directly applied in other applications since they are 

conducted in the feature space, while the PLSDR based normalisation technique can be applied in 

those fields in which the ground truth is also a time series.  
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APPENDIX – EM FOR GMR 

The auxiliary function of equation (2.41) is written as: 
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, and 𝛾𝑚,𝑛 are shown in equations (2.42) – (2.47), 𝐾 is

independent of �̂�. Note the regression delta coefficients are incorporated in this derivation as in 

equation (7.6). In terms of the normal labels without regression delta coefficients, 𝑾 is an identity 

matrix. In order to find �̂�, the first derivative of the auxiliary function is set to zero with respect to �̂�: 
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 Finally the label  �̂� is estimated as the point that maximises the auxiliary function. 
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