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Abstract

Small wall climbing robots are useful because they can access difficult environments

which preclude the use of more traditional mobile robot configurations. This could

include an industrial plant or collapsed building which contains numerous obstacles

and enclosed spaces. These robots are very agile and they can move fully through

three dimensional (3D) space by attaching to nearby surfaces. For autonomous oper-

ation, they need the ability to map their environment to allow navigation and motion

planning between footholds. This surface mapping must be performed onboard as

line-of-sight and wireless communication may not always be available.

As most of the methods used for robotic mapping and navigation were developed

for two dimensional usage, they do not scale well or generalise for 3D operation.

Wall climbing robots require a 3D map of nearby surfaces to facilitate navigation

between footholds. However, no suitable mapping method currently exists. A 3D

surface mapping methodology is presented in this thesis to meet this need.

The presented 3D mapping method is based on the fusion of range and vision

information in a novel fashion. Sparse scans from a laser range finder and a low

resolution camera are used, along with feature extraction, to significantly reduce

the computational cost. These features are then grouped together to act as a basis

for the surface fitting. Planar surfaces, with full uncertainty, are generated from

the grouped range features with the image features being used to generate planar

polygon boundaries. These surfaces are then merged together to build a 3D map

surrounding a particular foothold position.

Both experimental and simulated datasets are used to validate the presented

surface mapping method. The surface fitting error is satisfactory and within the

required tolerances of a wall climbing robot prototype. An analysis of the compu-

tational cost, along with experimental runtime results, indicates that onboard real

time operation is also achievable. The presented surface mapping methodology will

therefore allow small wall climbing robots to generate real time 3D environmental

maps. This is an important step towards achieving autonomous operation.
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Chapter 1

Introduction

The field of mobile robotics promises to enrich our lives by automating mundane or

dangerous tasks. Despite significant advances in recent years, some environments

remain difficult to access for most mobile robots using traditional locomotion. Sce-

narios such as the maintenance of an industrial plant or urban search and rescue

in a collapsed building pose many challenges for traditional robotic configurations.

Ground based and aerial robots are usually unable to operate in these difficult en-

vironments because they often consist of enclosed spaces and numerous obstacles.

A Wall Climbing Robot (WCR), however, can climb onto, over or through most

obstacles in its way. These robots are typically small in size but are highly agile and

they can move fully through 3D space by attaching themselves to nearby surfaces.

This ability, whilst complicating the navigation and path planning processes, allows

these robots to undertake a variety of useful tasks in environments which are typi-

cally difficult or dangerous for a human or wheeled/aerial robot to access. Therefore,

a WCR that could successfully navigate these environments would have obvious ap-

peal. Yan et al. [1] echoed these sentiments, stating that ‘the potential is enormous

for wall-climbing robots which can work in extremely hazardous environments ’.

As these WCRs can move in 3D, they obviously need some kind of 3D mapping

system to facilitate navigation and motion. They are unable to use the 2D map-

ping approaches which are sufficient for most ground based robots. Therefore, they

require a surface mapping approach that is able to provide suitable 3D surface in-
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CHAPTER 1. INTRODUCTION

formation in real time. Without such a mapping capability, these robots are unable

to operate autonomously. This is a requirement for use in many of the enclosed or

confined environments where WCRs are beneficial. Generally, the lack of line-of-

sight makes remote control operation unreliable or impossible to achieve in these

scenarios.

The field of WCRs has seen a number of robots developed in recent years and

many different sizes and configurations have been proposed. Small WCRs are of

more interest than their larger cousins as they are generally more agile and are able

to access smaller spaces. However, because of the small size of these robots their

mapping capabilities are generally limited or nonexistent. Most require external

assistance for mapping and navigation due to their lack of onboard sensing or com-

putational hardware. Because of this, no suitable method has been developed that

fully meets the onboard 3D mapping needs of a typical small WCR. Other robotic

mapping methods are either limited to 2D use, are not real time using onboard

hardware or they consist of an unsuitable map representation.

The required 3D map should accurately detail a WCR’s immediate environment.

One of the main tasks for a WCR is to plan motion between footholds and so the

generated 3D map must contain enough information to facilitate this process. Most

nonplanar surfaces are, however, unsuitable for use as footholds. Therefore the focus

of the 3D mapping approach should be the fitting of good quality planar surfaces

that accurately represent the surrounding environment.

Small WCRs are also typically payload limited because they must support their

entire weight against gravity. This limits the availability of onboard processing and

sensing hardware. This restriction is further exacerbated by the need for the surface

map to be created in real time. A WCR robot is unable to move, and thus continue

to map and navigate, until it has a reasonable environment map available.

This thesis will meet this mapping need by presenting a 3D mapping solution

using the smart fusion of sparse data from a camera and a laser range finder. This

will provide a real time 3D mapping capability for a WCR. It will focus on the use
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of planar surfaces and will be designed to operate under the payload and hardware

limitations inherent to small WCRs.

1.1 Aim and Scope of Research

The aim of the research presented in this thesis is the development of a method-

ology to provide a 3D surface mapping capability for a wall climbing

robot.

Objectives

In achieving this aim, the following objectives should be met:

1. The 3D mapping method should generate planar surfaces to represent a wall

climbing robot’s immediate environment.

2. These planar surfaces should be accurate enough to allow a wall climbing

robot to use them successfully as potential footholds. The uncertainty of each

surface must also be estimated.

3. The 3D mapping method should be computationally inexpensive to allow real

time operation using limited computational and sensing resources.

4. The generated 3D map should facilitate the successful navigation of a wall

climbing robot through its environment.

Scope

The scope of this thesis is limited to the operation of a small wall climbing robot

in a semi-structured environment consisting predominantly of planar surfaces. The

custom built wall climbing robot outlined in this thesis uses suction cups to attach

itself to surfaces. As nonplanar surfaces are unsuitable as footholds, the 3D map-

ping method should be primarily focussed on mapping the planar surfaces in the
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environment. The representation of any nonplanar surfaces will be discussed in this

thesis. However, they will not be implemented in this work.

While the generated 3D maps could be later used within some Simultaneous

Localisation and Mapping (SLAM) framework, that is not the focus of this work.

Each 3D map should be a local map only and it should accurately describe a wall

climbing robot’s local environment. Its primary task should be to enable some

navigation process to move the robot towards the next desired foothold. The actual

implementation of any navigation, motion planning or SLAM framework is outside

the scope of this work.

The mapping method also needs to be designed for operation using the limited

computational resources available to a small wall climbing robot. Any existing

approaches that involve post-processing or computationally intensive calculations

are unsuitable. Real time mapping is a requirement and this must be performed

using a computationally inexpensive approach. Real time is defined in this thesis as

requiring the 3D mapping to be completed in the time taken for the robot to acquire

each 3D scan and then move to the next position.

1.2 Thesis Structure

Chapter 2 lays out the background and motivation for this research. The rele-

vant literature is discussed with a focus on wall climbing robots, simultaneous

localisation and mapping, 3D mapping and surface representations.

Chapter 3 presents the relevant hardware used in this thesis. The custom built

wall climbing robot is introduced along with its primary sensors which are a

camera and a laser range finder. This will provide further background and

context to the choices motivating the theory developed in the later chapters.

Chapter 4 details the extraction of the range and image features. These are used

as the basis for the proposed surface mapping approach. A method is then de-

veloped to group these features together that is based on the physical surfaces
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which generated them.

Chapter 5 details the approach used to fit planar surfaces, with full uncertainty, to

the grouped range features found in Chapter 4. A method to generate polygon

boundaries for each surface is then developed using the planar projection of

the image features.

Chapter 6 details the merging of individual 3D scans which consist of the planar

surfaces extracted in Chapter 5. This allows the construction of a local 3D

map about the wall climbing robot’s current foothold.

Chapter 7 investigates the computational performance of the proposed surface

mapping method. The computational cost and running times are analysed

and the level of sparseness of the input data is discussed.

Chapter 8 concludes this thesis by summarising the research performed. The main

contributions of this thesis are outlined and future work is proposed.

Appendix A details the wall climbing robot used as the motivation for this work,

as introduced in Chapter 3.

1.3 Publications

The following publications have been produced during the period of this research:

• B. Howarth, M. Whitty, J. Katupitiya, J. Guivant. “Extraction and Group-

ing of Surface Features for 3D Mapping.” To appear in Australasian Confer-

ence on Robotics and Automation (ACRA), 2011 Dec. 2011

• B. Howarth, J. Katupitiya, A. Szwec, J. Guivant. “Novel Robotic 3D Surface

Mapping using Range and Vision Fusion.” In Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on , pp.1539-1544, 18-22

Oct. 2010
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• B. Howarth, J. Katupitiya, R. Eaton, S. Kodagoda. “A Machine Learning

Approach to Crop Localisation using Spatial Information.” In International

Journal of Computer Applications in Technology, 2010, volume 39, pages 101-

108

• R. Eaton, J. Katupitiya, K. W. Siew, and B. Howarth. “Autonomous Farm-

ing: Modeling and Control of Agricultural Machinery in a Unified Framework.”

In International Journal of Intelligent Systems Technologies and Applications,

2010, volume 8, pages 444-457.

6



Chapter 2

Literature Review

2.1 Introduction

This chapter presents the existing robotics research in the fields of wall climbing

robots and 3D Mapping. It will demonstrate the need for the contributions of

this thesis as well as providing the required context and background information.

Where appropriate in later chapters, further review of the relevant literature will be

provided.

The specific role of wall climbing robots will be introduced and defined within

the more general area of mobile robotics. The common robotic mapping approaches

will be reviewed, particularly those in the area of 3D mapping and localisation. The

ability for these approaches to be adapted for use by a wall climbing robot will be

discussed and the need for a new 3D mapping approach will be shown to exist.

2.2 Wall Climbing Robots

Robots have been long used in the areas of manufacturing and automation and

in the past few decades they have become increasingly mobile. With the rapid

advancements in computational power and robotic hardware of late, mobile robots

have become smaller and more autonomous than ever before. Such small mobile

robots have become a part of an increasingly popular area of research.

7



CHAPTER 2. LITERATURE REVIEW

One interesting area of research within the field of mobile robots is that of Wall

Climbing Robots (WCRs). Yan et al. [1] commented that ‘The potential is enormous

for wall-climbing robots which can work in extremely hazardous environments’ while

Xiao et al. [2] noted that ‘It has been a long-time dream to develop a miniature

climbing robotic system with the ability to climb walls, ... thus transforming the

present 2D world of mobile rovers into a new 3D universe.’ Remarks such as these

give an indication of the potential benefits available from advancing the state of the

art in this area.

These robots are not constrained by gravity. Instead they attach themselves to

surfaces, such as walls, and are able to then move around and across any usable

surface within reach. This mode of locomotion is quite different to a wheeled or

tracked mobile robot, which are constrained by gravity to the ground plane. Wall

climbing robots are useful in many situations that preclude the use of a typical

ground based robot because they can climb onto and over most obstacles in their

way. This useful ability, whilst complicating the navigation and path planning

processes, allows these robots to complete useful tasks in environments that are

usually unfriendly to robots.

Potential applications include maintenance, surveillance, inspection, exploration

and search and rescue operations. Wall climbing robots are especially useful in

industrial or cluttered environments and applications include the inspection and

maintenance of nuclear and petrochemical storage tanks [1], the unrestricted explo-

ration of urban structures [3] and the welding of large aluminium tanks [4]. These

environments are difficult or impossible to access with a ground based robot. Other

problematic environments could include a collapsed building, ventilation ducting,

the interior of an aircraft wing or some other complicated enclosed structure.

2.2.1 Adhesion Techniques

Many wall climbing robot designs have been proposed in the literature. The primary

differences in design involve the robot configuration and the adhesion technology
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used. To an extent these design considerations are often influenced by the intended

purpose and environment of the robot.

The use of magnetic adhesion is a simple process. However, its use is limited

to ferrous surfaces. This has restricted its use to robots specifically designed for

a particular industrial site. Yan et al. [1] described the development of two wall

climbing robots, one of which used permanent magnets to attach to oil tanks for the

purpose of sandblasting and spray painting.

The use of vacuum seals is a common approach to adhesion for wall climbing

robots. This can take the form of static or dynamic vacuum approaches. Static

vacuum involves the use of a vacuum pump to create a static vacuum seal which

then requires only infrequent use of the pump to compensate for leakage. This leads

to lower power consumption. Dynamic vacuum maintains a constant pressure and

is in continual operation. The advantage is that the suction cup or skirt can slide

and so the robot can drive around using wheels or tracks but at the cost of higher

power consumption. This was used by Tang et al. [3] for their city climber robots.

A hybrid vacuum approach was proposed by Taylor et al. [4]. Their TigBot

used static suction in combination with a low friction seal on each suction cup. This

allowed the cup to be dragged over the surface in a smooth manner using wheeled

locomotion. This robot was used for the welding of tanks and so needed to be able

to drive at a smooth and constant rate. This hybrid approach was suitable for this

task as the tanks were a known and constantly flat surface. This approach does not

generalise well as it is unable to transition between surfaces. This is also a weakness

of the dynamic vacuum methods.

A different method is inspired by geckos which are natural climbers and this

approach was used by Menon et al. [5]. They have designed a climbing robot whose

body, gait and adhesion is based on the gecko. Their dry adhesion pads used micro

fibres to produce synthetic gecko feet. The adhesion is based on van der Waals

forces and so should work on a variety of surfaces in theory, but more development

is needed to verify this potential.
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A promising recent approach called electroadhesion has been proposed by Prahlad

et al. [6]. This technique induces electrostatic forces between the wall and its elec-

troadhesive pads. This allows for high adhesion forces and works for a variety of

surface materials. It does require a high voltage, but uses relatively little power.

2.2.2 Locomotion Configurations

The chosen method for locomotion differs significantly between robots in the litera-

ture. However, most can be grouped into either legged, wheeled or tracked locomo-

tion. In many cases this choice is a function of the method of adhesion used.

The use of wheels or tracks with a movable adhesion method allows for common

mobile robot designs to be quickly modified to create a wall climbing robot. It also

allows for simplified motion planning, control and navigation, as general methods

can often be easily adapted. The downside is that the robot is often less agile than a

legged robot and can have difficulty in transitioning between surfaces with different

orientations.

Dynamic vacuum lends itself to continual motion and so most approaches use

wheels or tracks. Examples of this design can be found in the work of Yan et al.

[1] where the first of two robots they propose has wheels inside its vacuum skirt

for compactness. The CityClimber robots of Xiao et al. [2] and Tang et al. [3]

also use this design. The TigBot of Taylor et al. [4] follows a similar approach but

uses a static vacuum seal with very low friction and external wheels. A comparable

locomotion approach is seen in the work of Prahlad et al. [6] where electroadhesive

pads and flaps are attached to tracks.

Legged locomotion, whether bipedal or using more legs, is a more complicated

configuration but provides for more flexibility and agility in motion. The simplest

approaches have distinct bodies and multiple legs. An example is the four legged

robot of Menon et al. [5] built to mimic a gecko. These robots are generally larger

and heavier than other wall climbing robots. This is due to the extra complexity of

having many legs and the extra actuation and control hardware needed to support
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them. This approach also suffers from the same limitations in terms of agility as

wheeled wall climbing robots.

A more agile configuration, such as a bipedal legged robot, is ideal for general

use in enclosed and complicated environments. Minor et al. [7] proposed a bipedal

design based on four joints. Its configuration involved two legs joined at the centre

with a revolute hip joint. They showed that a revolute hip joint provided the most

agility in being able to cross the maximum number of potential surface orientations.

In confined spaces a prismatic hip joint provided better mobility. Their robot only

had four joints and was under actuated to save weight. This limited its gait to a

flipping or inching motion.

The prototype climbing robot developed by Ward et al. [8] extends this bipedal

concept to six joints allowing greater flexibility in motion and gait. However, this

does further complicate the process of navigation and motion planning due to the

high number of degrees of freedom.

2.2.3 Mapping Capabilities

For a WCR, or indeed any robot, to be of some practical use it requires the ability

to perceive and interact with its environment. Interaction generally involves the

locomotion of the robot or the use of some implement or tool such as a robotic

arm. The focus of this thesis is on the perception capabilities of WCRs and so this

interaction will not be further investigated in this work.

The perceptual capability of a robot involves the sensing of its environment and

the acquisition and interpretation of pertinent information about it. The major

areas of robotic perception involve the mapping of an environment, keeping track of

the robot’s location within that map and the acquisition of task specific data.

In most WCRs such perception is minimal or nonexistent, as for many the pri-

mary focus has been the physical robot design and construction. The integration of

sensors and perceptual capabilities to allow navigation is often ignored or proposed

as future work [7]. The most basic level has involved operation via remote control
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with a human operator using a video camera feed or through direct line-of-sight [1].

For many useful activities this is a severe limitation.

The lack of autonomy eliminates one of the main advantages of robotics in au-

tomating monotonous tasks and freeing up human labour for more productive pur-

suits. Many of the specific environments in which a wall climbing robot would

be useful precludes such line-of-sight human operation. Video and other wireless

telemetry may also broadcast poorly due to interference from the structure. This

was seen in the search and rescue robots deployed during the World Trade Center

disaster, as detailed by Casper et al. [9].

Some WCRs have introduced small amounts of autonomous activity, such as

with the TigBot [4]. While they used remote video for control, they did introduce a

line following capability to track the weld seam on the tank being welded. Meiting

et al. [10] used a camera on their wall cleaning robot, but its use was limited to

obstacle avoidance. Tang [3] used stereo vision to fit planar surfaces for mapping.

This procedure was done offline and would take further work to integrate it onto

their CityClimber robot, especially as stereo vision is generally computationally

expensive. However, their robot is larger than most WCRs and it may be able to

house more processing hardware. This extra size comes at the expense of mobility

and agility.

For most small WCRs, a typical computer is too big and heavy to be used

onboard due to payload restrictions. A miniature computer module must be used

instead. The Gumstix [11] Verdex Pro board is used in this thesis and has a clock

speed of 600MHz. It is detailed in Appendix A and it is at the top end of miniature

computers currently available.

An alternative mapping approach is to use ground based robots to aid in the

map building process. They can either fully map the scene or fuse maps and sensor

data with those from the wall climbing robot. Xiao et al. [12] uses this approach

with the CityClimber robot as an alternative to the mapping method of Tang [3].

However, this method is not applicable to many useful scenarios because the WCR

12



CHAPTER 2. LITERATURE REVIEW

may need to operate alone or be out of line-of-sight of the ground based robots.

The use of reactive navigation, as seen in the work of Balch [13] and Arkin

[14], is not a feasible alternative to environmental mapping for WCRs. While it

may be viable for some 2D robotic navigation scenarios, the nature of the WCR

3D navigation problem precludes its use. These robots often need to locate and

carefully plan their 3D motion to discrete foothold locations. This is difficult to

perform using a reactive approach as it can be inefficient, which can waste limited

onboard power, or possibly lead to a catastrophic collision or fall.

In general the mapping and perceptual methods currently used by small wall

climbing robots are limited at best. This is especially true where the robot is payload

limited yet needs to navigate in real time, which is the case for the robot used in

this thesis. No methodology currently exists to build a real time 3D map for a

WCR using limited computational resources. A 3D map is necessary to allow a wall

climbing robot to plan and navigate between potential footholds, which in some

environments may be few and far between.

2.3 Simultaneous Localisation and Mapping

The ability of a mobile robot to perceive its environment autonomously, and navigate

within it, raises two issues. Firstly, some representation or map of the environment

needs to be constructed. Secondly, the robot must keep track of its current location.

These are the mapping and localisation problems respectively. These two issues are

connected and must be considered in parallel in order to obtain a consistent solution

for either. This combination led to the development of Simultaneous Localization

and Mapping (SLAM) methods.

The SLAM problem was first tackled over two decades ago with seminal papers

by Smith et al. [15][16] and Durrant-Whyte [17]. They outlined the relationship

between the mapping and localisation problems and also laid out the basis for the

SLAM solutions so widely used today. The mapping half builds a map estimate

based on some estimated pose. The localisation then determines the new pose
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estimate based on the map estimate. This duality means that errors in one half will

feed through to the other.

2.3.1 2D SLAM

The majority of SLAM research has been limited to the 2D case. Most robots

are constrained to the ground plane and therefore 2D SLAM is sufficient assuming

the ground is approximately level. It is also significantly less complex to map and

localise in 2D, compared to the 3D case. Whilst recent research has moved SLAM

into the third dimension, the 2D SLAM case is still instructive for an overview of the

SLAM problem, despite it being insufficient for a wall climbing robot. 3D SLAM is

discussed later in Section 2.3.2.

The general SLAM approach involves a two step cycle of map building based on

the current robot pose estimate and then a pose update to localise the robot based

on the new map estimate. The most common approach is feature based SLAM where

the map consists of a set of features or landmarks. These landmarks might be points,

lines or other interesting features. They should be able to be easily re-observed from

multiple viewpoints and be sufficiently unique to be easily distinguished from one

another.

The landmarks are tracked and their position estimate is updated using a Bayesian

filter such as the commonly used Extended Kalman Filter (EKF). The robot pose

is also estimated as it is correlated to each landmark through the mapping process.

A full 2D SLAM solution of this form is provided by Dissanayake et al. [18]. For a

more detailed overview of the background and theoretical basis of SLAM, refer to

the tutorial articles by Durrant-Whyte et al. [19] and Thrun [20].

As Durrant-Whyte et al. [19] notes, in a theoretical sense 2D SLAM is consid-

ered a solved problem. There are, however, many practical issues and problems that

are the focus of further research. The computational complexity of the basic EKF

approach scales poorly as the number of landmarks increases. Many optimisations

have been proposed to improve the efficiency to allow practical real time implemen-
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tations. Guivant [21] and Leonard [22] proposed improvements such as suboptimal

local submaps and more efficient reformulations of the EKF equations.

Others have proposed alternative probabilistic filters to replace the standard

EKF for SLAM. These included the Unscented Kalman Filter [23], the Extended

Information Filter (EIF) [24] and the Particle Filter [25], which is based on Monte

Carlo methods. SLAM using a particle filter, or FastSLAM, is the most popular

alternative to EKF based SLAM. It represents the probability distributions by a

number of particles which allows the probability distributions to be more accurately

represented, if enough particles are used. This allows for the tracking of multiple

hypotheses, unlike the EKF which is limited to a unimodal Gaussian distribution.

FastSLAM also scales much better than EKF SLAM but can diverge from the correct

solution in some cases if care is not taken.

An alternative approach to landmark based SLAM is called scan matching. This

approach estimates the pose of the robot by attempting to align a new scan with

the current map to determine the change in rotation and translation since the last

scan. This localises the robot pose and allows the new scan to be merged with the

current map. Scan Matching is commonly performed using the Iterative Closest

Points (ICP) algorithm [26] which attempts to find the rotation and translation by

minimising the distance between matched points in each scan. This is an iterative

solution and can be computationally expensive if the point cloud is large, especially

in 3D SLAM where it is more commonly applied.

Two dimensional SLAM does suffer from some limitations, mainly that it is

limited to application in a 2D world only. This is fine for many applications, partic-

ularly wheeled or tracked mobile robots that operate on level ground. However, if

the ground is sloping, uneven or, if the robot is moving fully in 3D, then 2D SLAM

is insufficient.

The maps generated and maintained by most 2D SLAM approaches consist of

a sparse set of landmarks and the local environmental knowledge provided by this

representation is limited. It may be necessary to overlay a separate 2D or 3D
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mapping implementation to allow for some higher level tasks such as navigation

in complex environments. The denseSLAM algorithm was introduced by Nieto et

al. [27] which incorporated a dense local map representation within the 2D SLAM

framework. However, this approach does not appear to be well suited for extension

into 3D SLAM.

2.3.2 3D SLAM

To localise and map a robot that moves in 3D, it is obvious that a 3D SLAM im-

plementation is needed. Recent research has shown the successful development and

implementation of such methods. Like 2D SLAM, there are two main approaches.

They are feature based methods and scan matching methods. Both can be consid-

ered to be extensions of their 2D counterparts as introduced previously.

Feature Based 3D SLAM

Three dimensional feature based SLAM involves the extraction of 3D landmarks

which are tracked and estimated using a probabilistic filter such as the EKF, similar

to that of 2D feature based SLAM. In 3D the feature extraction and registration

is much more complex than in the 2D case. The features used are often visual in

nature as they are easier to match than range point features. Approaches using

only range data generally seek to extract planes, lines or other features for the same

reasons.

Early work using visual features was done by Se et al. [28] who proposed an

approach to 3D SLAM that used visual point features from a stereo vision system.

The point features used Scale-Invariant Feature Transform (SIFT) descriptors [29]

that allowed them to be matched from multiple poses. These are expensive to

compute on top of the stereo vision computation and so using visual feature matching

is not a viable option for this work because of this.

3D single camera SLAM has been demonstrated by Davison et al. [30] which

tracks features via their bearing angle and requires multiple views to estimate the
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feature position. The features used were image patches and showed good results for

a moving camera. This approach was demonstrated on a humanoid robot by Stasse

et al. [31]. It works best with a smooth sensor motion and a high frame-rate. It is,

nevertheless, poorly suited to the discrete stop-scan-go approach that is commonly

used by many mobile robots. The scans are too infrequent and often have minimal

overlap.

An alternative feature based approach proposed by Ellekilde et al. [24] used a 3D

range camera for range estimates of visual point features extracted from a separate

camera. This eliminated the need for expensive stereo vision calculations. However,

these range cameras are generally noisier than laser range finders. They used an EIF

with SIFT features in a similar manner to Se et al. [28]. The EIF is mathematically

similar to the EKF but is reformulated using the inverse covariance matrix.

Rather than use point features, Kohlhepp et al. [32] proposed and demonstrated

a method for using planes in 3D SLAM. They did not, however, fully integrate

the planes within the EKF as features and chose to use a separate 3D mapping

system instead. Weingarten et al. [33] extended this approach by fully incorporating

the planar surfaces into the EKF as landmarks for 3D SLAM. This was combined

with the Symmetries and Perturbations Map (SPmap) framework of Castellanos et

al. [34] to represent the planes in the EKF. This approach proved successful for

a ground based robot but was most suited to structured environments with a few

large planes. It was based on infinite planes as the features but they later introduced

planar polygon segments [35] which aided in the data association.

A similar approach was also used by De la Puente et al. [36] and Zureiki et al.

[37] with similar results. They each proposed different methods of segmentation for

the extraction and fitting of the planar features. Zureiki et al. [37] also proposed the

idea of using infinite 2D lines from a camera image to produce additional features.

However, this was not implemented in their work. This idea will be explored further

in this thesis.

The approach of using planar features has the potential to greatly reduce the
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data dimensionality compared with the original point cloud. It can also smooth

the noisy raw data and is generally easier to visualise. It is useful for autonomous

perception tasks such as navigation and footstep planning for wall climbing robots.

However, this data reduction comes at the cost of reducing the information avail-

able, as the plane fitting is an approximation process. This approach is especially

dependent on having a robust plane extraction method and is most suited to struc-

tured environments such as urban scenes. Nonplanar surfaces such as vegetation

and other irregular objects can cause difficulties, as they cannot be easily handled

by plane fitting.

The planar segmentation techniques currently used are generally computationally

expensive and therefore would struggle to run in real time on some small robots. If

a computationally inexpensive segmentation approach could be developed then the

use of planar features as a map representation would be an ideal map representation

for any robot that has computational constraints.

Scan Matching 3D SLAM

The second main approach used for 3D SLAM is scan matching. This is an extension

of the 2D scan matching approach into 3D. It is the predominant approach when

the sensor used provides 3D range data in the form of a point cloud. Scan matching

involves acquiring a new 3D scan and then attempting to determine the rotation

and translation that has occurred since the previous scan. The new scan can then

be aligned and with the previous points and merged into the map to update it. It is

often preferred over 3D feature based SLAM due to the difficulty in extracting and

matching good 3D features. Scan matching, however, can operate with just the raw

point cloud.

Surmann et al. [38] demonstrated an early implementation of this approach in

an indoor environment while Nuchter et al. [39] used the same approach for the

mapping of an abandoned mine. They used a variation of ICP to allow real time

operation. The underground mine environment was feature poor, and so feature

18



CHAPTER 2. LITERATURE REVIEW

based SLAM would likely fail. Scan matching SLAM approaches are, however, very

useful in such environments.

This method was further developed by Nuchter [40] by also looking into optimi-

sations to reduce the computation time. This is especially important as the major

disadvantage of scan matching is that it can be computationally expensive in 3D,

especially for large point clouds. However, despite such optimisations, the compu-

tation required is still prohibitive for a computationally constrained robot, such as

the one used in this work.

Another weakness of scan matching is that it generally requires significant over-

lap between successive scans which does not always occur. Borrmann et al. [41]

focussed on ways of ensuring the map remains globally consistent. This tries to

avoid a common problem for scan matching, where the global error grows with each

sequential match, as the new scan is only compared with the latest estimate.

An alternative method for scan matching is the Normal Distribution Transform

(NDT) [42]. It is used by Magnusson et al. [43] in a mine mapping 3D SLAM

implementation and they compare their results using NDT with ICP. They showed

that NDT was faster and slightly more reliable than ICP, despite it being less widely

used for scan matching.

Some researchers have used planes rather than points as the basis for scan match-

ing. The aim was to greatly reduce the computational burden as a few planes are

easier to match and align than a large point cloud. The plane extraction process

must be robust and accurate for this to work. Viejo et al. [44] modified the ICP

algorithm to work with planes extracted from the raw range point cloud. They first

determined the rotation between plane sets based on the difference in plane normal

vectors. The translation between scans is then calculated separately. However, the

pose error was significant and their method did not incorporate all six degrees of

freedom (DOF) required for true 3D SLAM.

Harati et al. [45] proposed a 3D SLAM method based on orthogonal corners

which showed promise in highly structured urban environments but would be un-

19



CHAPTER 2. LITERATURE REVIEW

suitable in general. They encoded corners based on their orientation. Due to the

orthogonality assumption the number of possible encodings was small and therefore

the scan matching is greatly simplified. The rotation was determined by matching

and comparing the corner encodings and all that remained was the translation off-

set. Pathak et al. [46] found the optimal rotation by maximising a value function

based on the angle between normal vectors of the planes. These methods all followed

a similar path of using only the infinite plane parameters for scan matching while

ignoring other useful information such as polygon edges, corners and other surface

descriptors.

3D SLAM Limitations

In many of the example implementations of 3D SLAM the map produced is insuf-

ficient for further high level use in tasks such as navigation. This is especially true

for a wall climbing robot that requires knowledge of available planar surfaces to act

as footholds. The methods based on planar rather than point features appear to be

the way forward in this regard. SLAM methods using point features could, however,

be used to track the pose and allow a planar 3D map to be built on top.

Another issue involves the computational requirements of these approaches, par-

ticularly those based on visual features, stereo range imaging and scan matching

for SLAM. These methods are all computationally expensive. This is fine in many

cases where the robot is large and ground constrained and so weight and compu-

tational power are not a constraint. However, if onboard computational resources

are limited, these methods are unusable because real time operation would not be

possible.

2.4 3D Mapping

It is often necessary to implement some form of useful 3D map on top of the SLAM

algorithm due to the limitations of the map produced. The exception to this is the

planar 3D SLAM approach. The 3D maps are commonly used for higher level tasks
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such as navigation, visualisation, object recognition or footstep planning for a wall

climbing robot. For these tasks, SLAM maps consisting of topological features or

point clouds are insufficient.

2.4.1 Point Clouds

The simplest approach to producing a 3D map is to display the raw 3D points as

a point cloud. The 3D data in a point cloud is the starting point for most 3D

mapping approaches such as grid, mesh or planar based methods. The raw 3D data

is supplied by a 3D sensor and several different configurations have been suggested.

A 2D laser range finder facing vertically can acquire 3D information as the robot

moves around [47][48]. This requires a separate 2D navigation system and is only

applicable to ground based robots. This configuration is also unable to map surfaces

directly in front of the robot without deliberately turning to scan it.

More recent approaches have used sensors that provide individual 3D scans which

can be used in a stop-scan-go fashion. Early 3D laser range finders were custom built

and so performance was varied, an example of which was used by Kweon et al. [49].

These were built with the pan and tilt integrated within the scanner. However, they

often had a limited field of view and, due to their custom nature, they were not

fully developed. More commonly a tilting 2D laser range finder is used in a nodding

fashion to generate the 3D point cloud [39][33]. This allows well characterised 2D

laser range finders to be used and provides a large field of view. The weakness of

this approach is the length of time it takes to generate the 3D scan as many 2D

scans are needed.

Stereo Vision [50] can be used to generate a point cloud in 3D from a single

frame per camera pair. This does however, require a lot of extra computational

effort. Recently developed 3D time-of-flight cameras provide a consistent 3D scan

per frame [51]. These camera based approaches suffer from higher noise and a

smaller field of view than the tilting laser range finder configurations.

Once the point cloud from a scan has been acquired it needs to be registered
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with the rest of the 3D data. The 3D SLAM approach to this problem commonly

involves scan matching [39] to track the pose and register the new data directly.

In this case the map used is the point cloud itself which is suitable for basic tasks

and human visualisation. Other approaches, such as that of Mahon et al. [48], use

the pose from EKF based 2D SLAM to register their 3D point cloud data and then

build a more useful 3D map from the raw points.

While a point cloud provides a useful visualisation of the data on its own, it can

be enhanced in several ways. Underwood et al. [52] built a coloured 3D point cloud

by assigning colour to each range point. They aligned a camera image with the range

data from a laser range finder for the purpose of easing the visualisation of the point

cloud. A simple extension to point clouds is to build a triangular mesh by joining

the raw data points together. This also eases the visualisation of the raw data by

giving it a more solid appearance. It does nothing to reduce its dimensionality and

unlike plane fitting it does not smooth the sensor noise which can lead to a jagged

appearance.

This approach was used by Sequeira et al. [53] to model indoor environments.

They used these meshes to register successive scan. However, the accuracy of this

method was not thoroughly investigated. Another weakness of using meshes is that

it cannot easily deal with holes such as doors or windows in the point cloud. Mesh

and point based approaches are best suited to mapping and modeling irregular

shapes rather than structured planar environments.

Pervolz et al. [54] created textured 3D maps by building a mesh from the point

cloud and then used colour information from cameras to map texture onto the mesh.

This provided good visualisation of an irregular indoor scene for a human viewer.

Frueh et al. [55] used this same approach but for a large outdoor urban scene. They

used a vertical laser range finder attached to a car rather than the nodding laser

range finder used by Pervolz. Bok et al. [56] applied texture mapping to their 3D

reconstruction on an outdoor urban scene but their work was mostly focussed on

using this for motion estimation.
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This same idea of using camera image information to fill in the gaps of the laser

range finder point cloud can be generalised to increase the resolution of the entire

point cloud, rather than just in some areas. Diebel et al. [57] used Markov random

fields to use high resolution camera images to greatly improve the resolution of

the range point cloud. This approach essentially interpolated between range points

based on the smoothness of the image colour data. High resolution coloured point

clouds were produced that showed good visual quality. No ground truth information

was used to determine the accuracy of this approach.

Andreasson et al. [58] took a broader look at using vision to interpolate 3D laser

range finder point clouds. They quantitatively compared five different interpolation

methods and the method used by Deibel et al. [57]. These approaches greatly

increase the dimensionality of the data and are more suited to visualisation tasks

rather than robotic navigation, especially for smaller robots with limited resources.

The effects of pose error and scan registration between point clouds was not discussed

as each scan was taken from a known fixed point.

A passive triangulation approach was used by Dias et al. [59] to add extra points

into a laser range finder point cloud. They used this technique to provide extra detail

to improve the overall model in areas that were of high interest or were occluded.

Jiang et al. [60] generated two point clouds from a stereo vision system and a

laser range finder respectively. They then used an energy minimisation framework

to fuse the two point clouds. As with the interpolation methods of Diebel et al.

[57] and Andreasson et al. [58], these methods were applied to modeling tasks

and the accuracy compared to ground truth is unknown as only qualitative visual

comparisons were made.

The use of multiple sensors, particularly a camera and a Laser Range Finder

(LRF), has shown promise in improving the mapping capabilities of a robot. The

use of this sensor fusion approach has been limited to use in improving a model’s

visualisation by texture mapping and resolution improvements. These are primarily

useful for 3D modeling applications rather than navigation. The use of such sensor
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fusion is relatively under used in 3D mapping methods aimed at real time navigation.

2.4.2 Grid Based 3D Maps

An early approach for robotic mapping was the occupancy grid. It was described by

Moravec for the 2D case [61] and a later extension to the 3D mapping case [62] was

demonstrated. This approach involves dividing the world into a grid of discrete cells

and then calculating the probability that a cell is occupied or free based on sensor

measurements. The 3D case is of more interest but has extremely high memory

requirements and is inefficient as most grids are free space. It suffers from accuracy

issues depending on the grid resolution and, similar to a point cloud, is difficult to

use for higher level 3D tasks. Multi-Resolution grid approaches have been proposed

[63] to reduce the computational requirements. However, the other limitations of

the grid approach remain.

Elevation maps are a more useful grid based mapping approach whereby each

cell contains the height of the environment at that point. This is a 2.5D mapping

approach and cannot handle vertical surfaces or overhanging surfaces such as bridges.

Extensions have been proposed by Pfaff et al. [64] to label the cells and treat vertical

and overhanging surfaces differently while Triebel et al. [65] allowed each cell to have

multiple patches. All these grid based approaches are not true 3D mapping methods

and are only suitable for use by a robot driving on the ground. The limited resolution

and high dimensionality also limits their use by a wall climbing robot, especially as

the grids only work when the robot is parallel to the ground plane.

2.4.3 Planar 3D Maps

The use of surface features such as planes, rather than a 3D point cloud, shows a lot

of potential in providing richer 3D maps. Birk et al. [66] argued that a paradigm

shift is required to move from using point clouds based maps to surface based repre-

sentations stating ‘...large surface patches are ideally suited for 3D scan registration

as a core element for 3D SLAM.’. They discuss important advantages such as a high
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level of compactness as well as good suitability for use with computational geometry

and higher level problems such as navigation and motion planning.

Some recent 3D mapping approaches have attempted to extract features or ob-

jects from the data to both smooth and simplify the map for the ease of higher

level perception. As mentioned previously, this approach has been successfully in-

tegrated into the SLAM problem. Other examples of planar map building exist

based on known or 2D SLAM pose information. The most common feature based

3D mapping approach involves attempting to fit planar surfaces to the raw range

points. This is essentially a segmentation problem, with the plane fitting itself being

relatively trivial.

The Expectation-Maximization (EM) Algorithm has been adapted to the map-

ping problem by Liu et al. [67]. EM iteratively registers data points from the 3D

point cloud to the most likely planar surface in the map and then recalculates those

surfaces with a better fit to the registered points. This was used as a pure mapping

process as the robot pose was assumed known. This method produced a good planar

map, however, it had several weaknesses. Some assumptions were required about

the number of surfaces used. If this initial model is wrong, then EM produces a poor

segmentation. The risk of local convergence of the iterative algorithm compounds

this issue.

As a solution to these problems, Liu et al. [67] proposed to use an outer EM

loop that will split and merge the surfaces to iteratively settle on the correct number

of scene surfaces. This was further developed by Lakaemper et al. [68] who used

patches instead of infinite planes within the EM framework. These approaches

were computationally very expensive and could only realistically be achieved as a

post-processing operation. This weakness makes EM unsuitable for many common

robotics tasks that require some form of real time navigation or perception.

An extension to EM based segmentation using both a laser range finder and a

camera was proposed by Andreasson et al. [69]. They assigned colour to each range

point and used this extra information to aid in the association of correspondences
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when assigning points to planes. This is based on the assumption that points gener-

ated from a surface will share a similar colour which in many cases holds true. This

assumption is especially useful for distinct planes that may lie close together with

similar orientations and it should provide more robust matching. However, it still

suffers from the same computational limits as other EM approaches.

A region growing approach to segmentation was used by Hahnel et al. [47] to

simplify their original 3D map which consisted of a mesh of points which had been

built using scan matching. Their region growing approach was based on random

seed points which then added additional neighbouring points that appeared to lie

on the same plane. The best planes from this random process were kept and the

rest were rejected. This was followed by a merging process.

Their segmentation was performed on the entire 3D point cloud, which consisted

of hundreds of thousands of points. This was a function of the scanning configuration

used where a vertical facing laser range finder provided the 3D data. It had to be

run offline due to its high computational cost. This reduced the complexity of the

model but it still consisted of several thousand planar surfaces as well as the points

that were not matched to planes, which were kept unaltered. This resulted in the

map looking visually simpler but remaining still very complex. A similar mapping

approach was also used by Mahon et al. [48] who also used the same laser range

finder setup.

Poppinga et al. [70] extended this work and reformulated the algorithm to run

incrementally. They used a 3D range camera which produced 3D range and intensity

images. This allowed the algorithm to run more efficiently by processing one 3D scan

at a time and taking better advantage of the sequential nature of the data. Other

region growing approaches have been used for planar segmentation including the

work of Zureiki et al. [37]. They segmented each individual 3D scan by estimating

local normals for each point based on its immediate neighbours and then associated

points with similar normals.

The approach of de la Puente et al. [71] was based on computer vision tech-

26



CHAPTER 2. LITERATURE REVIEW

niques. Planes were fitted to each point and its neighbours. The residual of the fit

was stored to create a new range residual scan where edges could be detected as

local maximums. A flood-fill algorithm was then used to assign points within these

boundaries to the same surface. They extended their approach to handle spheres

and cylinders as well as planes which allows for a more accurate representation of

some objects. This was not actually implemented for surfaces other than planes and

they did not mention how they would be distinguished during the fitting stage.

Weingarten et al. [72] developed a segmentation methods based on dividing

the point cloud into a grid and then fitting one plane to the points within each

grid. A Random Sample Consensus (RANSAC) [73] approach was used to find the

dominant plane per grid and then a merging operation combined similar planes in

neighbouring grids. This was reasonably fast, however, the accuracy relied on the

grid resolution being suitable. It was also limited to one plane per cell which could

lead to smaller surfaces being completely overlooked.

2.5 Summary

The literature shows many successful methods for building a 3D map for robotics

use. For the most part, however, they are all unsuitable for use by a small wall

climbing robot. Such a robot requires a true 3D mapping method that can be used

from any pose. It should also be computationally light so that it can run in real

time with the limited onboard processing capabilities of such a robot. All the wall

climbing robots described in the literature had limited mapping capabilities and

therefore a new method needs to be developed to build a useful 3D map.

All the mapping approaches based on post processing of the data for map building

are unusable. A wall climbing robot needs to be able to map in real time so that it

can move and continue to build its map. Those methods that did run in real time

were operating on powerful processors and are still computationally very expensive.

They would not be suitable where processing resources are at a premium. This

includes methods based on stereo vision data and expensive segmentation methods.
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As the wall climbing robot used in this thesis requires a map of flat surfaces

to evaluate potential footholds, all the methods based on point clouds and meshes

are inadequate. It appears that using planar features is the best way forward and

successful planar SLAM approaches have been demonstrated by Weingarten et al.

[33] and Pathak et al. [74]. The main issue with their methods lie with the cost of

their segmentation and planar feature extraction processes. There exists no compu-

tationally cheap method for performing this segmentation.

The use of fused laser range finder data and camera image features shows promise

in improving mapping techniques. However, in the literature its use was mainly

limited to improving the robustness or visualisation of the data and mapping. There

does appear to be potential for this information to be fused in other ways to produce

lightweight segmentation and mapping methods and this is an under explored area

of research. The use of these sensors, and the fusion of their data, will be introduced

in the next chapter. Further background on the design of a wall climbing robot will

also be provided and this will allow the theoretical contributions of later chapters

to be placed into context.
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Chapter 3

A Robotic System Requiring 3D

Mapping

3.1 Introduction

The previous chapter detailed the literature relevant to Wall Climbing Robots

(WCRs) and the generation of 3D surface maps for usage in robotics. This chap-

ter will detail the required background information regarding the robotic hardware

used in this thesis. This will allow the theoretical and practical contributions of

later chapters to be placed in the proper context.

The target robotic system will be introduced, along with its design choices, and

the resulting implications on the mapping requirements will be discussed. An ex-

perimental test setup is outlined which simulates the desired robot scanning motion

and the data acquisition process is described. A simulator is also introduced to

complement the real world experimental datasets. The two main sensors used, a

camera and a laser range finder, are described and the reasons for choosing each

particular sensor are discussed. Finally, the extrinsic calibration between the two

sensor coordinate frames is described to allow their data to be fused together.
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3.2 Wall Climbing Robot Prototype

A series of custom WCRs have been designed and built for operation in indoor

environments. These have served as the motivation for this thesis which has imposed

several design constraints on the proposed mapping approach. These are detailed

below in Section 3.2.1. A brief overview of the robot is presented below and further

information and specifications can be found in Appendix A.1.

Wall Climbing Robots are not constrained to the ground like most common

mobile robots and have many useful capabilities as discussed previously in Section

2.2. Their 3D motion does introduce new problems and these will be discussed in

this section to provide a context for the 3D mapping solution that is proposed in

later chapters.

The current generation prototype robot can be seen below in Fig. 3.1. It is

the second generation prototype and has evolved from the first generation robot

designed by Ward [75]. The main improvements developed for the new prototype

include the addition of onboard electronics and sensors as well as improvements to

the joint mechanisms, gearboxes and feet designs. The majority of this redesign was

performed by King [76] and Szwec [77] in collaboration with the author and so the

robot design itself is not considered as a contribution of this thesis.

(a) CRACbot. (b) CAD model.

Figure 3.1: Wall climbing robot - Current prototype.

The current generation robot has been named the Compact Remote Articulated
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Climbing Robot (CRACbot) and is shown in Fig. 3.1(a). It is under construction

and is missing several pieces of hardware in this photo. A CAD model is also shown

in Fig. 3.1(b). The CRACbot has seven revolute joints to provide six DOF of

motion, as seen in Fig. A.2 of Appendix A.1, and it is an entirely self contained

bipedal robot. It has two feet, each containing a suction cup, that are used to climb

walls or to walk on any other suitable flat surface. This configuration provides a

high level of agility and flexibility to achieve any desired pose within reach. This

robot has been designed to maximize the ability to access confined spaces. This will

allow it to negotiate difficult environments such as air ducts, pipelines and industrial

plant that might contain inclined and vertical surfaces.

The CRACbot is able to move in 3D space. Therefore, a 3D mapping imple-

mentation is needed. This will have to provide the locations of suitable potential

foothold surfaces to enable navigation and motion. In some cases it is possible to

provide such a robot with a prebuilt environmental map but this is often impracti-

cal. Such an approach would greatly limit the range of potential applications and

significantly increase the time and cost to deploy the robot in each new environment.

It would also require that the environment match the supplied map exactly and any

changes, however small, would require a new map to be constructed for the robot.

The ability to construct its own 3D map in real time is thus a significant advantage.

To generate useful environmental data the CRACbot is equipped with one colour

camera and one laser range finder mounted on each foot. During operation it can

secure itself via one foot, with the other foot free to make observations of the en-

vironment. The free foot, with the camera and laser range finder mounted, can

rotate to achieve any desired scanning position within its workspace to scan the

environment to allow the construction of a 3D surface map.

For further information and detailed specifications of the CRACbot, refer to

Appendix A.1.
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3.2.1 Design Implications

The design of the CRACbot has implications for the required 3D mapping method-

ology. This impacts the choice of the robotic hardware, particularly the sensors, and

also any mapping approach used. The robot can scan surfaces while it is attached

to them so the ranges of interest are typically less than 600mm. As the robot walks

on these surfaces, rather than just mapping their location, the need for a highly

accurate 3D surface mapping system becomes apparent.

Like most wall climbing robots, the CRACbot is small and payload limited. Its

entire weight must be supported against gravity by the suction cups and thus the

sensing and processing hardware mass must be minimised. This leads to a major

design consideration that the algorithms used must be lightweight and aimed at

operating using the limited onboard computational resources available. This would

also allow such mapping methods to be generalized for use in other small robots or

autonomous vehicles with similar constraints.

Relation to Thesis Objectives

The payload and computational constraints of the CRACbot led to the choice of

using sparse, low resolution data acquired from both a laser range finder and a

colour camera. As mentioned in Section 1.1, the aim of this thesis is to create a

mapping method to produce 3D surface maps of a sufficient quality to enable the

CRACbot to navigate successfully between footholds. This method must be able

to operate under these computational constraints by intelligently fusing these two

sensor modalities.

The generated 3D surface map needs to contain the majority of planar surfaces in

the environment. Nonplanar surfaces are unsuitable for usage as footholds because

the suction cups are unable to successfully attach to them in most cases. The planar

surfaces need to be mapped to an accuracy of ±3◦ in orientation and ±20mm in

distance. These values are a function of the tolerances built into the CRACbot foot

mechanism as a small amount of error can be tolerated during footstep placement.
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3.3 Data Acquisition

While the wall climbing robot described above is the motivation for the surface

mapping approach presented in this thesis, it was also necessary to acquire simu-

lated environmental data. An experimental setup and a simulator were developed

for initial testing and validation of the proposed surface mapping approach. This

allowed the data to be acquired under carefully controlled conditions with a known

ground truth for each surface. The pose of the sensors could also be determined

accurately which allowed the mapping theory to be developed independently of any

particular localisation method used. The intended scanning motion of the climbing

robot was to use the final wrist joint to tilt the sensors through one angular DOF

θ and provide a 3D scan, as shown in Fig. 3.2. This was the action that has been

emulated by the experimental and simulated setups as described below.

X

Y

θ

Figure 3.2: Scanning motion for data acquisition. Sensors tilt through angle θ
about the X axis.

3.3.1 Experimental Data Acquisition Setup

For the purposes of gathering experimental data during the construction of the

climbing robot prototype, an experimental test setup was built to simulate the

scanning motion of the wall climbing robot, as shown in Fig. 3.2. This setup
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consisted of a base plate, a sensor suite and a number of objects comprising the

target environment to scan.

Base Plate

The base plate was a 700mm square x 12mm thick aluminium plate with tapped

holes every 50mm in a grid pattern. This allowed for sensors and target objects to

be mounted at accurately known ground truth locations. This base plate can be

seen in Fig. 3.3(a) below. During data acquisition much of this aluminium surface

was covered with white paper to create a more amenable floor surface material. Due

to the often large incidence angle with the ground plane, caused by the sensor suite

being restricted to ground level, the aluminium creates specular reflections that are

not easily accounted for in the current sensor model. This white paper also covers

up the unused mounting holes which tend to confuse the feature extraction process.

Sensor Suite

The sensor suite consisted of one LRF and one camera. The particular sensors used

will be discussed later in this chapter. The camera was mounted to the right hand

side of the LRF whereas, in the current WCR prototype, the camera is mounted

directly above the LRF. This is not a significant difference and it will be shown in

Section 4.3 that the proposed mapping methods can handle any offset that is not

too large.

The sensors were mounted on a three DOF swiveling machinist vice. This allowed

the sensor pose to achieve any desired angle about any axis within the workspace of

the vice. This vice was in turn mounted on a small 12mm aluminium plate which

could be accurately positioned anywhere on the base plate. The base plate and

sensor suite can be seen in Fig. 3.3(a).

The kinematics for the swivel vice is shown in Fig. 3.3(b). Joint B, which is

offset from the base at A by TB, provided the tilting motion by rotating through

the angle φ to achieve the 3D scans. Joint A, at the base of the robot, allowed it to
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rotate about the vertical Y axis through the angle α. This joint was offset from the

scan origin at point O by TA. The sensors are located at position S which is offset

from Joint B by TS.

(a) Swivel vice and sensor suite mounted on
base plate. Origin O is under the bolt at the
vice base.

TS

T
B

A

B

S

Z axis

X axis

Y axis

O

TA

φ

α

(b) Kinematics of swivel vice simulating the
robot scanning motion.

Figure 3.3: Experimental setup for data acquisition.

After positioning the vice and sensor suite in the desired pose for a 3D scan, the

vice was tilted forwards to allow the sensor suite to exhibit a nodding motion. This

simulates the intended scanning motion of the robot which will tilt its final foot

joint in a similar manner, as in Fig. 3.2. Custom written C++ code was used to

interface with the sensors for data acquisition and MATLAB was used to interpret

the raw data for the mapping methods detailed in later chapters.

The mobility and agility of the vice limits the usable workspace of the sensor

suite, so that it is not possible to test all possible pose configurations. This is not

seen as a major disadvantage as most useful poses are achievable. A simulator was

also implemented which does not suffer from this limitation and this will be detailed

shortly.
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Experimental Test Scenario Environment

The main test environment used to acquire test data for the mapping methods

proposed in this thesis is shown below in Fig. 3.4(a). Three 3D scans were taken at

different poses and these are shown in Fig. 3.4(b). For the exact pose of each scan

A-C, refer to Table 3.1. Each 3D scan consisted of nine 2D scans taken at a tilt

angle of 0◦ to 40◦ below the horizontal at a step of 5◦. The data acquired will be

used to validate the surface mapping methods introduced in the following chapters.

For some experiments different environments will be used to test particular aspects

of the proposed methods and they will be introduced and detailed at that point.

Throughout the thesis this dataset will be referred to as the experimental dataset.

In some cases it may instead be referred to as the real dataset to contrast it with

the simulated dataset detailed below.

(a) Test scenario environment. (b) Top view of test environment showing sensor
poses.

Figure 3.4: Experimental (Real) scenario used for data acquisition.

Table 3.1: 3D scan poses for experimental dataset.
3D Scan X Y Z θA

A 0m 0m 0m 0◦

B 0.2m 0m 0m 0◦

C -0.2m 0m 0.2m -45◦

This test environment consists of ten planar surfaces with variation in material,

colour, shape and orientation. This environment does not contain any nonplanar

surfaces and this is further discussed in Section 4.3.4.
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3.3.2 Simulated Data Acquisition Setup

To complement the experimental test setup described above, a simulator was devel-

oped using Microsoft Robotics Developer Studio (MRDS) and the associated Visual

Simulation Environment (VSE). They were used to simulate the robot and provide

known and controlled data acquisition to further develop and verify the proposed

mapping approach. The VSE allows for many scenarios to be quickly and accurately

simulated whereas the real experimental setup allows for the real world influences,

such as noise, to be tested.

The simulated robot was also simplified, so that it contained two joints in the

same manner as the experimental test setup shown in Fig. 3.3(b). The same kine-

matic model was used although the translations TA, TB, TO differed.

Simulated Test Scenario Environment

The simulated test environment used in the remainder of this thesis is shown below

in Fig. 3.5(a). Five 3D scans were taken at different poses and these are shown in

Fig. 3.5(b). Each 3D scan consisted of eleven 2D scans taken at a tilt angle of 50◦

above to 50◦ below the horizontal at a step of 10◦. The data acquired will be used

to validate the surface mapping methods introduced in the following chapters.

(a) Simulated test scenario environment. (b) Top view of simulated test environment
showing sensor poses.

Figure 3.5: Simulated scenario used for data acquisition.
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Table 3.2: 3D scan poses for simulated dataset.
3D Scan X Y Z θA

A 0m 0m 0m 0◦

B 0m 0m 0m -45◦

C 0m 0m 0m 45◦

D -0.6m +0.4m -0.2m 0◦

E +0.4m +0.4m -0.2m 45◦

3.4 Image Sensor

A colour image sensor, or camera, is a valuable source of information for use by

a robot or autonomous vehicle for perception and navigation purposes. A camera

produces a 2D image that is a projection of the 3D scene it is looking at. This

image can provide colour, texture and shape information that is independent from

the range of the objects in the scene. Cameras are generally inexpensive so vision has

become popular for use in mobile robotics. The major disadvantage of vision is the

computational expense of extracting useful information from images which can be

significant for advanced algorithms such as stereo vision. This is especially true for

high resolution images as for many computer vision algorithms the complexity scales

poorly. The design considerations for the wall climbing robots discussed in Section

3.2.1 ruled out the possibility of any computationally expensive techniques. A low

resolution colour camera is therefore highly desirable and any mapping methods

developed will need to be able to compensate for this.

3.4.1 Choice of Camera

With the ideal camera having low resolution and providing colour images, the cam-

era chosen was the CMUcam3 [78]. This camera fit the requirements as well as

providing ease of use for initial development. There are however, many other sim-

ilar colour cameras available which could be used in its place as long as they too

are low resolution. The CMUcam3 also provides an added benefit of having its own

dedicated onboard processor. This could be used to ease the computational burden

on the main robotic processor which will have limited computational power as men-
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tioned previously. Further details of the specifications and camera calibration can

be found in Appendix A.2.

3.5 Range Sensor

The use of Laser Range Finders (LRFs), or lidars, in the field of mobile robots has

become almost the norm in recent years. They provide environmental information

at an accuracy and resolution that is unmatched by most other sensors. They form

the backbone for many major algorithms for localisation and navigation [19][79].

LRFs have been preferred to other range sensors such as sonar or infrared due

to their higher accuracy and angular resolution and, stereo vision aside, are the

predominant range sensor choice in mobile robotics of late. A review of the benefits

of LRFs compared to other range sensors, particularly stereo vision, was performed

by Hebert [80].

A LRF consists of a laser emitter and receiver pair as well as the required elec-

tronics to infer the range measurement from the received data. Two types of laser

measurement techniques are used. Firstly, amplitude modulated continuous wave

LRFs emit a laser beam at a precisely known frequency. The returned beam will be

phase shifted by a distance proportional to the range of the surface object. The sec-

ond method is called time-of-flight which emits a pulse and records the time taken to

travel to the object and return. Each technique has advantages and disadvantages

but for most applications the difference is not significant. For further information on

the specific differences, particularly in reference to the error models and calibration,

refer to Adams [81].

The laser module is mounted on a motorised platform that typically rotates at a

rate of 10-75Hz in common LRFs. This allows the LRF to scan and provide range

measurements in a 2D plane. Some LRFs also scan in 3D but such scanners tend

to be expensive, slow and bulky and so are unsuitable for many mobile robotics

applications. A more common approach to generating 3D scans in robotics is to use

a cheaper and more reliable 2D LRF and provide a tilting [82][39] or translating [48]
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motion external to the LRF module.

3.5.1 Choice of Laser Range Finder

There many different LRF brands and models available for use in robotics and

autonomous vehicles. These vary in size, accuracy, cost and many other factors and

so the choice depends on the application requirements, as each LRF has its own

strengths and weaknesses.

LRFs are increasingly being used in fields such as surveying and geographic

information systems. These LRFs provide highly accurate range measurements with

large operating ranges in the order of 100m or more. Examples and the usage of

this type of LRF are discussed by Boehler et al. [83]. However, these LRFs are

unsuitable for use in mobile robotics as they are too expensive for most robotic

applications and their very high accuracy is generally not necessary anyway.

Two common LRFs used in robotic applications are the SICK and Hokuyo mod-

els. The SICK LMS-200 has been particularly popular for use in robotics and has

been used by Nuchter et al. [39], Weingarten et al. [33], Harati et al. [45], Ye et

al. [82] and many others. This LRF has been well characterized by Ye et al. [84]

and has shown robust performance in mobile robotic applications. All the previous

examples, however, were from ground constrained wheeled robots. Due its rela-

tively large size (185mm×156mm×210mm) and weight (4.5kg), the SICK LMS-200

is unsuitable for use by a small wall climbing robot where the entire payload must

be supported against gravity. This LRF also performs poorly at ranges less than

500mm in some situations.

A better option for smaller robots is the Hokuyo URG-04LX [85] which has

found favour in recent years due to its much smaller size (50mm×50mm×70mm)

and low mass (0.16kg). It has been extensively characterised by Kneip et al. [86]

and Okubo et al. [87] and both Lee et al. [88] and Pascoal et al. [89] found it to

have similar performance characteristics to the widely used SICK LMS-200, but in

a much smaller package.
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A third option is to use a 3D range camera such as the recently developed Swiss-

Ranger series as used by May et al. [51] and Surmann et al. [90]. These cameras

are also very small and lightweight and use the principal of time-of-flight to produce

a 3D image with range and intensity information at each pixel. It has a field of

view of roughly 45◦ horizontally and vertically and can supply images at 30Hz. This

is a promising sensor for use in robotics application but has several limitations. It

has been found to have a lower accuracy and more complicated noise model and

calibration requirements when compared with the SICK and Hokuyo LRFs, and a

relatively small field of view.

Another similar sensor is the recently released Microsoft Kinect sensor which

was designed for use with the Xbox gaming console. It provides coloured 3D range

images, similar to the time-of-flight cameras, to provide a RGB-D image. The main

limitation for its use in this work is its minimum range, which is currently 1200mm.

The required operating range for the CRACbot is 0-1000mm and so this sensor is

unsuitable until its minimum range can be significantly reduced.

The Hokuyo URG-04LX LRF has been chosen for this work. This was primarily

due to its small size and weight and its well characterised performance. The SICK

LMS-200 is too bulky for a small WCR to feasibly carry and the Swiss Ranger time-

of-flight cameras still require further development and characterisation. Further

details of the Hokuyo URG-04LX specifications and calibration can be found in

Appendix A.3.

3.6 Extrinsic Sensor Calibration

The kinematics of the experimental robot setup was detailed in Fig. 3.3(b) above,

but this only provided the transformations up to the sensor Coordinate Frame (CF)

origin, denoted as S. The exact rotation and translation offsets for each sensor must

be known in order to transform data points from the local LRF and camera CFs to

the sensor base CF. They can then be transformed into the world CF.

Another use for this extrinsic calibration is to transform laser range points onto
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the camera image and vice versa. This allows these two sensor modalities to be fused

together in a smart fashion as opposed to relying on each sensor independently. This

section will introduce common approaches to sensor fusion and detail the extrinsic

calibration parameters.

3.6.1 Sensor Fusion

Most SLAM and mapping systems use only one sensor type, usually either laser

range data [33][48] or vision information [30][91]. In recent years it has become

more common to add multiple sensors to robots. This is partly due to reduced

cost and size of sensors and also the increase in computational resources. This has

allowed the analysis and fusion of more data to provide more complex information

about the environment.

One very common sensor set to fuse has been LRF range data with image data

from a camera. These two sensors have been found to provide complementary data.

A good comparison can be found in [59]. For example LRFs provide accurate range

data but with limited resolution. Cameras can provide higher resolution data and

provide texture information but is also dependent on lighting conditions.

Most efforts to combine image and range data have been for the purpose of

visualization for a human operator. The approach involves creating a geometric

map using only range data and then projecting the image data onto the 3D point

cloud [92] or modeled surfaces [67] to colour the produced map. Sometimes colour or

intensity information has been used as extra information to aid in correspondences

and localization for SLAM problems [93][94], in addition to range information. Again

colour is mapped onto range data to create more descriptive 3D points.

Another line of fusion has been to extract line features from range images and

camera images and attempt to match them up in order to register the two images and

extract planar surfaces [95]. This approach is also used as a method for calibrating

the transformation between camera and laser CFs [96].

During fusion between multiple sensors it is crucial to ensure that the measure-
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ments are correctly time stamped so that they can be fused together correctly. This

was investigated in detail by Carballo et al. [97] to ensure correct time stamp-

ing for the Hokuyo URG-04LX. This problem is more apparent during high speed

scanning or when a robot does not stop moving while acquiring each scan. If the

scanning approach of Stop-Scan-Go is used, where the robot is stationary during

data acquisition, then a basic time stamping approach for sensor fusion is sufficient.

In general, much of the information available from a pairing of a LRF and a

camera is wasted in most approaches. There is potential to use this information in

a smart manner during sensor fusion for mapping.

3.6.2 Calibration Parameters

The parameters required for the calibration between the camera and LRF coordinate

frames are introduced below for both the experimental and simulated setups.

Experimental Calibration Parameters

The external calibration was performed by combining the manufacturers specifica-

tions with precision measurements of the sensors themselves to manually find the

required offsets. The sensor suite can be seen below in Fig. 3.6 where the transla-

tions from the sensor CF, at point S, to the LRF and camera CFs are denoted TL

and TC respectively. There was no rotation as the sensor mountings were designed

to avoid this.

(a) Sensor suite mounted on swivel vice.

T
S

B

S

C
L

T
LTC

(b) Kinematics of sensor suite.

Figure 3.6: Extrinsic calibration parameters for sensor suite.
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Automatic methods for calibration between LRFs and cameras have been pro-

posed by Zhang et al. [98], Li et al. [99] and Scaramuzza et al. [100] amongst others.

The general approach involves extracting features such as image lines LRF edges

from each sensor and attempting to find the transformation that aligns them. The

parameters found using the manual approach were verified and found to be sufficient

to produce a quality calibration. Thus the automatic techniques were unnecessary

in this case.

Simulated Calibration Parameters

The extrinsic calibration of the simulated sensor CF transformations is known ex-

actly from the simulator parameters specified. Both the camera and LRF were

placed exactly at the sensor base origin with no rotation so that no transformations

were necessary, which leads to the trivial values for Tl = Tc = [0 0 0]T . This allowed

the aperture of each sensor to be in the exact same position which is obviously an

impossible situation for any real system. This configuration does allow for simplified

kinematics and minimises any occlusions caused by offsets between the two sensors.

3.7 Summary

This chapter has detailed the robotic hardware used in this thesis along with the

reasons for the design choices made. These choices have implications for the de-

velopment of a suitable mapping methodology. In particular, the limited onboard

computational resources and the need for real time operation require a fast and

lightweight mapping approach. It must also accurately map the planar surfaces

in the robot’s immediate environment because they are required as footholds for a

WCR.

A camera and LRF were chosen as the primary sensors. The CMUcam3 camera

was chosen for its low resolution. The Hokuyo URG-04LX was chosen as the LRF

due to its small size and weight. It has been extensively characterised and provides

good performance at the desired operating range of 0-1000mm. Chapter 4 will
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shortly detail the extraction of surface features from the raw data of these two

sensors and their subsequent grouping. These feature groups will then be used for

planar surface fitting in Chapter 5. The experimental and simulated test setups

described in this chapter will be used to validate these methods.
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Chapter 4

Extraction and Grouping of

Surface Features

4.1 Introduction

The target wall climbing robot was described in Chapter 3. The use of both a laser

range finder and a colour camera was discussed and the idea of using the fusion of

these two sensing modalities for mapping was introduced. Chapter 2 also found that

for many plane fitting methods, the planar segmentation of the raw 3D data was

slow and computationally expensive. This chapter proposes an alternative approach

based on the extraction of features from the range and image data. A method is

then proposed to group these surface features together to provide the basis for the

planar surface fitting method proposed in Chapter 5.

The extraction of image lines and corners from each camera image as well as the

extraction of 2D line segments from the laser range finder scans will be described in

Sections 4.2 and 4.3. The representation of each feature type is then explained and

transformations are detailed to convert from the sensor coordinate frames into the

world coordinate frame. After the feature extraction stage is completed, the features

need to be associated together according to the physical surfaces that generated

them. This process, detailed in Section 4.4, is referred to as feature grouping in
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this work and a method to perform this task is proposed and evaluated. This is

an important step to ensure that the planar surface fitting process is accurate and

robust.

4.2 Image Feature Extraction

Image lines and corners are extracted from each image and these are used to provide

boundary information for the surface fitting process. This section describes the

extraction process used and the representation of these features in a graph structure.

The coordinate transformation equations are detailed to transform an image pixel

into the world CF and then project it onto the planar surface as a polygon boundary

corner.

4.2.1 Extraction of Image Lines and Corners

The extraction of image features is a common task in computer vision as it allows for

great reductions in the amount of data to be stored and operated on. The aim is to

find representative features of the important information present in the image. The

most common features used are line and point features. Line features predominantly

consist of image edges while point features consist of interesting pixels or small pixel

groups. The point features are either corners of physical surfaces or could be visually

unique or interesting points. In this work physical corners and edges are desired, as

the aim of this research is to extract physical structure.

Image Feature Extraction Method

The method used to extract the image lines and corners involves a two part process.

A standard Canny edge detector [101] was used to extract edge curves from the

image. Corners were then found within each curve using the approach of He et

al. [102], which used local curvature. These are fairly standard algorithms. While

any other edge detector could be used, Canny edge detection generally gives good
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results.

The curves were split at each corner into individual edges and those passing

certain criteria were selected as image lines. The two criteria used were a minimum

number of supporting points and a linearity test. This did have the effect of elimi-

nating valid short lines as well as nonlinear curves but improved the robustness of

the extraction, especially against false texture edges.

Linear image edges were chosen as they can be represented compactly by two end

points. This greatly reduces the data size as well as simplifying the 3D coordinate

transformations. Nonlinear edges could be represented by curves or approximated

by piecewise linear segments but this is not used at this point. This limitation is not

as severe as it first seems. The surface mapping approach presented in this thesis

is focussed primarily on the mapping of planar surfaces. The target environment of

operation for the CRACbot is any structured indoor environment. These generally

contain a high proportion of planar surfaces which commonly exhibit many linear

edges in such an environment.

The final image feature extraction step involves the merging of redundant corners

to create junctions where more than two lines met. This extra step is required as

the corner extraction process operates on individual curves. This is most commonly

used at T junctions as the main and side edges can correspond to separate extracted

edge curves. Some corners were generated by the intersection of an image line with

the outer image frame boundary and these corners were joined together at this stage

to provide closed surfaces to be used later. These image corners and lines will be

referred to as virtual features as they do not correspond to physical surface features.

This will be clarified further in Section 5.5.1.

An example of this extraction process is shown in Fig. 4.1 below. Figure 4.1(a)

is the raw colour image which is then converted into black and white for use by

the Canny edge detection algorithm, as in Fig. 4.1(b). The output edge curves are

shown in 4.1(c). Following the corner detection process, the final extracted image

features can be seen overlaid on the original colour image in Fig. 4.1(d). Note that
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two image edges are not extracted. The first is missed as it is too short and the

second is missed as the black and white intensity difference between the two surfaces

is below the threshold.

(a) Colour image from camera (b) Black and white image

(c) Extracted edges from Canny edge detector (d) Final extracted image lines and corners

Figure 4.1: Image feature extraction process.

Image Feature Extraction Results

The accuracy of the image feature extraction process was analysed using the exper-

imental and simulated datasets to determine the accuracy of the extracted features

and the success rate of the extraction. The results are shown below in Table 4.1.

The metrics used below are explained as follows.

True + (%)

A true image feature (corner or line) that was successfully extracted.

False + (%)

An extracted feature (corner or line) that did not correspond to any physical

feature or showed a gross location error.
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RMSE (pixels)

The Root Mean Square Error of the extracted image corner positions. The

Euclidean distance in pixels is used.

Table 4.1: Image feature extraction results
DataSet Images Corners RMSE True False Lines True False

(pixels) + + + +
Real 9 188 1.19 83.3% 11.7% 158 81.6% 6.3%
Simulated 11 189 0.84 95.2% 4.8% 164 89.0% 2.4%

The corner accuracy, measured by the Root Mean Square Error (RMSE), was

1.19 pixels (experimental data) and 0.84 pixels (simulated data). This error was

used as an indication of the uncertainty of the corner extraction used in Section

4.2.3 and should also include an additional quantization error of 0.5 pixels. Another

consideration is the sensitivity of this error to the particular environment being

scanned as well as the tuning of the edge detection parameters. An extra factor of

50% was introduced to allow for this.

The final errors used for the uncertainty of the corner extraction were 2.5 pixels

(experimental data) and 2.0 pixels (simulated data). The corner extraction had

a success rate of 83.3% (experimental data) and 95.2% (simulated data). As the

corners are detected from within extracted image edges, the majority of failed corner

detections were due to a failure to detect that edge and this will be discussed shortly.

The corner accuracy calculation excluded corners that were clearly incorrect

and these were instead recorded as false positive corners. These were caused by

several factors. Firstly, image noise caused some image edges to be over segmented

along a linear edge. This is not of major concern as it will be handled during the

polygon boundary merging in Section 5.5. Secondly, highly textured regions can

cause virtual edges and corners to be generated. However, this was not such an

issue in the scenarios used. Proper tuning of the edge detection parameters can

help to negate this but retuning may be required when the environment changes

significantly. Lastly, errors in the junction merging algorithm occasionally caused

some corners to be merged incorrectly resulting in errors of five or more pixels. This
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was primarily an issue with short edges or edges being merged at very acute angles.

The image line detection rate was 89.0% (simulated data) and 81.6% (experi-

mental data). The main reasons for detection failure were adjacent surfaces having

very similar material/texture or the image edge did not contain a sufficient number

of supporting pixels. The false positive rate was insignificant at 2.4% (simulated

data) and 6.3% (experimental data) and most of these get filtered out in the group-

ing stage of Section 4.4. These were caused by similar reasons to the false positive

corners, namely textures and shadows as well as poor junction merging.

4.2.2 Graphical Representation of Image Features

Once the image lines and corners have been extracted they require some kind of

representation for storage and feature grouping. A graphical structure is used for

this purpose. The image corners become the graph nodes and the image lines are the

edges connecting the nodes. An example structure is shown below in Fig. 4.2. Note

that, in this work, every extracted line has both its endpoints marked as corners by

definition.

A graphical representation has been used for grouping of image features by Ho-

raud et al. [103] and McLauchlan et al. [104] amongst others. This representation is

compact and allows for easy searching of connected features for the feature grouping

process. Further details of the feature grouping method used in this work can be

found in Section 4.4.

One major difference compared to the graph structures of other approaches is

that in this work each image line is used twice during the grouping stage. Every

physical edge has two sides corresponding to the two physical surfaces it separates.

This must be tracked to ensure that each image side is grouped uniquely to one and

only one surface. It is the image line sides that are grouped and not the image line

itself.

Each image line is thus represented as a directed edge running from corner A

to corner B. It does not matter which image line endpoint (corner) is chosen to
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be corner A. The important consideration is that the choice is consistent. When

looking along the image line towards corner B, Side 1 is defined as the left-hand side

and Side 2 is the right-hand side of the line. This notation allows the sides to be

tracked and referenced independently of the orientation of each image line. This is

shown in Fig. 4.2 for line Le.

Figure 4.2: Graphical representation of image features. The image corners are nodes
and the image lines are directed edges.

4.2.3 Transformation of Image Points

After the image features have been extracted and converted to the graphical struc-

ture introduced above, each image feature needs to be transformed from the camera

CF to the world CF before it can be used for surface fitting. This is done point

wise as each image line is represented by its two endpoints. This 2D to 3D transfor-

mation can only be performed up to a scale factor Z which is the unknown depth

parameter.

Extra constraints are required to determine the exact 3D location of each image

point. The constraint used here requires the image point to lie on a known planar

surface and this allows Z to be calculated. The determination of this planar surface

and its parameters are detailed later in Section 5.4.

Camera CF to World CF Transformation

Given a pixel location pi = [u v 1]T from an image, that is U pixels wide and V

pixels high, it is possible to determine the location of the point in the world CF.
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This can be done only up to a scale factor Z. To find the 3D point first requires

a conversion from image coordinates to normalized camera coordinates. This gives

the normalised image point pcn using (4.1). This uses the camera calibration matrix

K from (A.1).

pcn =













xn

yn

1













= K−1













u

v

1













= K−1pi (4.1)

To estimate the uncertainty in the normalized xn and yn components, K is

expanded and then (4.1) can be rearranged to give (4.2).

xn =
u− u0
fu

yn =
v − v0
fv

(4.2)

These are used to derive the variances σ2
xn

and σ2
yn

using standard uncertainty

propagation [105]. As the two components of (4.1) are independent their variances

can be calculated using (4.3) where F is the generic function and xi are the variables

of interest. The variances used are found in Tables A.2 and 4.1.
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This is used to find σ2
xn

in (4.4). The equation for σ2
yn

is found in a similar

manner. The covariance matrix Σpcn is also shown in (4.5).
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After finding pcn, it is then required to convert this normalized point from the

camera CF to the world CF. Essentially pcn represents a line in 3D space passing

through the camera centre pc = [0 0 0]T and with a direction vector given by

pcn = [pcn − pc]. To convert this line to world coordinates, the two components

need to be separately transformed to give the line equation shown in (4.6). The

two components are a direction vector v passing through a point p0. Note that the

vector v should not be confused with the scalar v from (4.1) which represents an

image pixel location.

p = p0 + Zv Z ∈ R (4.6)

The transformations into the world CF of v and p0 use the kinematics of the

robot scanning motion. This is simplified in this work to using only one revolute

joint and this was detailed in Section 3.3. The translation from the camera CF

origin to Joint B, seen in Figs. 3.3 and 3.6, is denoted Tc = TC + TS. Joint B tilts

through the angle φ to provide the 3D scanning motion. TB is the translation from

joint B back to the scan origin at joint A. Note that the rotation about joint A

and the translation back to the world CF are not relevant at this point so are not

mentioned further. They will be fully detailed later in Section 6.2.1.

The rotation about joint B is described by the rotation matrix Rφ shown in (4.7).

These parameters are used to find v using (4.8) and p0 using (4.9).

Rφ =













1 0 0
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(4.7)
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= B(xi, yi, zi, φ) = Rφpcn (4.8)
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p0 =













x
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z













w

= C(xi, yi, zi, φ) = Rφ(Tc + pc) + TB

= Rφ(Tc) + TB (4.9)

The covariance of p from (4.6) is a function of the covariances of p0, Z and v.

The rotation matrix Rφ shown in (4.7) is used to find the covariance Σv as in (4.10)

using the covariance Σpcn and variance σ2
φ. Together they form the block diagonal

input covariance matrix Σ. The Jacobian JB of B from (4.8) is used to propagate

the error. As the tilt angle φ is independent of the image point pcn, the Jacobian

can be split and it can be shown that the remaining Jacobian terms for x, y, z are

equivalent to the rotation matrix Rφ.
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(4.10)

The covariance Σp0 is also found in the same manner, as shown in (4.11).

Σp0 = RφΣTcR
T
φ +

[

∂c

∂φ

]

σ2
φ

[

∂c

∂φ

]T

+ ΣTB (4.11)

Line-Plane Intersection of Image Point

As the converted camera pixel represents a line in 3D space, further information is

needed to determine the scale factor Z and thus the unique point in 3D that was

imaged by the camera. If the parameters of the surface that contains the imaged
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point are known, then it is possible to calculate the exact 3D location of that point.

A plane in 3D can be represented in a number of ways. One of the most common is

the Hessian normal form whereby the set of planar points p conform to (4.12). The

plane parameters consist of the normal vector n to the plane and the orthogonal

distance d to the origin. This is discussed further in Section 5.4.

n · p− d = 0 (4.12)

By combining (4.6) with (4.12) it is possible to estimate the scale factor Z and

thus the unique 3D point pw being imaged. While a singularity appears in 4.13 if v

is orthogonal to n, this situation cannot occur in practice. By definition the vector

v intersects the plane defined by n. As v must pass through the camera centre,

which cannot lie on the plane, the two vectors cannot therefore be orthogonal.

Z =
d− n · p0

n · v (4.13)

The uncertainty of v and p0 can be propagated into Z using the Jacobian matrix

Jz and the input covariance block diagonal matrix Σ containing the covariances Σv,

Σn, σd and Σp0 .

σ2
z = JzΣJ

T
z where Jz =

[

∂Z

∂v

∂Z

∂n

∂Z

∂d

∂Z

∂p0

]

(4.14)

To calculate the final position of the image pixel in world coordinates the value

of Z found in (4.13) is used to find pw as shown in (4.15). The covariance Σpw can

be found using (4.16) to account for the uncertainty in both v and Z.

pw = p0 + Zv (4.15)

Σpw = Σp0 + vσ2
zv

T + Z2Σv (4.16)
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4.3 Range Feature Extraction

The laser range finder provides a series of range and bearing measurements in a

2D scanning plane. This information can be used to extract structure from the

environment. The range values can be converted into 2D cartesian coordinates on

the laser plane and line segments can then be extracted. These line segments can be

used for plane fitting once they have been converted into 3D space. This is necessary

as the line segments will be grouped with those from other 2D scans which were taken

at different tilt angles. For further information on the specifics of the LRF used and

its calibration, refer to Section 3.5.

This section introduces possible segmentation approaches before detailing the

segmentation method used in this work. The transformation of the laser data into

the world and camera CFs is then described. This is followed by a description of

the line segment representation used.

4.3.1 2D Line Segmentation Literature

A good quality segmentation of the laser range finder measurements into linear seg-

ments is very important for the success of the proposed approach as these segments

form the basis of the planes that represent the physical surfaces. It is important

that the segmentation is accurate and so it should be conservative. This means that

false positive points in the line segments are very undesirable, even at the expense

of a higher rate of false negative segmentation. In this work, the surface boundaries

are not dependent on the laser segments and so it is not necessary for the edges to

be detected perfectly. This allows for a conservative approach to be used.

There are several commonly used algorithms for 2D line segmentation and a

good summary can be found in the work of Nguyen et al. [106]. The approaches

most commonly used fall into the categories of incremental line growing, recursive

splitting and edge finding. Other methods have also been suggested including the

Hough transform and statistical algorithms such as RANSAC and EM.
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Incremental Approaches

The incremental approach starts with a small number of consecutive points that

form an initial candidate line. Each increment adds the next one or more adjacent

points and then refits a 2D line to all the points in the set. A test condition is used

to verify the linearity of the point set to determine if the line segment is still linear

or not. This condition is usually either the line variance or the point distances from

the line. When the condition is violated, the new points are removed and the line

set is returned.

Incremental segmentation is a simple algorithm and has been widely used in

many applications. Siadat et al. [107] called this approach Line Tracking. Their

work used a least squares fit and terminated the line when any of the supporting

points exceeded a distance threshold. This approach can be inefficient as for long

line segments, the constant refitting is wasteful. Nguyen et al. [106] suggested a

coarse incremental fitting whereby five points were added before each fitting and

then a fine search was used to find the exact edge point when needed. Siadat et al.

[107] used a least squares fit. While this is not an optimal line fit, it allows for an

incremental line fit which mitigates the inefficiency. An advantage of incremental

approaches is that the segmentation does not have to wait for the entire scan to

be acquired to begin the segmentation. However, this is only advantageous if the

scanning is a relatively slow process which tends not to be the case with newer range

finders.

Recursive Splitting Approaches

Recursive splitting methods are another widely used line segmentation approach.

The Split-and-Merge approach involves the fitting of a line to all points in the

segment and then finding the supporting point with the greatest distance from the

line. If this distance exceeds some threshold then the segment is split in two at

that point and the process is repeated for each new segment until a satisfactory line

segment is obtained. This is often followed by a merge operation to merge any line
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segments that are collinear. Split-and-Merge is fast but Nguyen et al. [106] found

it to have a higher rate of false positive associations compared to the incremental

approach.

An example of the Split-and-Merge approach is the work of Borges et al. [108]

who combines this splitting approach with a fuzzy clustering method which worked

well on a simulated dataset. A similar approach was called Iterative End Point Fit

by Siadat et al. [107] and instead of fitting a line to the points of each segment as

in the splitting methods, the line is formed by joining the two end points. This can

be faster as the line fitting becomes trivial but at the cost of higher sensitivity to

range noise.

Edge Finding Approaches

An alternative approach to segmentation is to look for edges in the scan data, rather

than by line fitting. These approaches can operate on the raw range information

which eliminates the need to first transform the data into cartesian coordinates.

The simplest method is to split segments when the difference in consecutive range

measurements exceeds a threshold. However, this is only reasonable for detecting

jump edges but not intersecting edges or changes in surface direction. Siadat et al.

[107] proposed a version of this approach called Successive Edge Following. This

used an adaptive threshold for the distance between successive range points but

this does not fully overcome the disadvantages of this approach. It is, nevertheless,

useful as a pre-splitting approach to find the easy segment edges.

An alternative approach is suggested by Harati et al. [109] which first converted

the range and bearing pairs into a Bearing Angle. This was the angle between

the laser beam and the line passing through consecutive points. They then showed

that edges in this bearing angle provided decent segmentation results using direct

thresholding to find changes in the angle. However, this approach can be adversely

affected by noisy data and is very sensitive to the threshold value.
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Other Approaches

The Hough transform is commonly used in computer vision applications for extract-

ing image lines. Pfister et al. [110] used a version adapted to laser line segmentation

to find the initial line segments for their line fitting algorithm. The Hough transform

does suffer from discretisation and the correct choice of grid size can be difficult.

RANSAC [73] can be applied to line segmentation. It is a random approach to

line fitting which selects many lines from random points and selects the best found

candidates. EM is another statistical tool that has been applied to segmentation

by Liu et al. [67] amongst others. Both these approaches are computationally

expensive due to their random nature. This makes their performance difficult to

guarantee without a large number of iterations as well as disqualifying their usage

in this work as computational resources are limited. They do not take advantage of

the sequential nature of the data and so occasionally attempt to fit lines to unrelated

points. EM can also get stuck in local minima and often requires an initial estimate

of the number of line segments.

4.3.2 Proposed 2D Line Segmentation Method

The segmentation method used in this work is based on the incremental line fitting

approach. Incremental segmentation and the Split-and-Merge approach are both

fast. However, the incremental approach has the advantage due to its lower rate of

false positive associations, as noted by Nguyen et al. [106]. This is a measure of

the number of points incorrectly assigned to a given line segment and does come

at the cost of lower true positive point associations. This tradeoff is taken as, in

this proposed approach for plane fitting, it is more important to get accurate lines

as opposed to accurate line edges. Methods to pre split the data using the image

information and post merge the segmented lines are also proposed in an effort to

improve the overall quality of the segmentation.
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Incremental Segmentation and Proposed Modifications

The incremental line segmentation approach has been modified for use in this work.

The 2D lines are fitted using Principal Components Analysis (PCA) and the splitting

criteria is the maximum distance of all points to the fitted line. The modifications

used are aimed at improving the robustness and accuracy of the segmentation, pos-

sibly at the expense of segment endpoint accuracy. As the extracted line segments

form the basis of the infinite plane fitting, it is important to ensure that all the

segmented points are actually from the true line. This is known as minimising false

positive points. The laser line segment edges do not have to be found exactly, as

they are not used to determine the planar polygon boundaries.

The task of minimising the false positive rate is achieved with several modifica-

tions to the standard incremental method, as shown in Algorithm 4.1. In contrast to

most segmentation algorithms, the orthogonal distance of the next candidate point

is tested before adding it to the line segment. It thus has no influence on the line

parameters. This allows a change in direction to be detected earlier as it reduces

the tendency of the incremental approach to follow a curve in the data. This is

especially useful at join edges where, unlike jump edges, there is no large change

between adjacent range measurements.

Several such advanced points are tested and integrated into the line segment

before refitting to improve the speed of the algorithm. Testing 3-5 points in advance

of the line, as seen in Fig. 4.3, showed the best results. In this example the next

three points are tested and all found to be within the threshold distance so they

are added to the line segment and the line is refitted. If the distance of any tested

point exceeds the threshold, then the next point is also checked. Two such outlying

points indicate a split in the segment whereas a single point is marked as an outlier

and henceforth ignored. These two scenarios are shown in Fig. 4.4. Should two

adjacent outlier points cause a split in an otherwise linear segment, they will likely

be remerged together as discussed later in this section.

The modified incremental segmentation algorithm is shown in Algorithm 4.2.
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The initial condition finds the next set of five consecutive points that form a valid

line.

Figure 4.3: 2D line segmentation example. The next three points are tested
before integrating and refitting the line.

(a) Splitting at two consecutive outliers.

outlier

(b) Single outlier ignored.

Figure 4.4: 2D line segmentation process - Splitting criteria.

Another simple modification is to ignore the first and last points in each extracted

segment as these are commonly segmented into the wrong line. In the case where a

discarded endpoint was in fact correctly segmented, little is lost during plane fitting

unless the total number of points is small. Pre-splitting, or clustering, the range

data prior to segmentation using the image lines can also help in this regard and

this is discussed below.

Algorithm 4.1 Standard incremental segmentation.
start← i
end← i+ 1
while validLine(fitLine(start:end)) do
end ← end+1

end while
return fitLine(start:end-1)
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Algorithm 4.2 Modified incremental segmentation.
start← i
end← i+ 4
while !validLine(fitLine(start:end)) do
start ← start+1
end ← end+1

end while
while validLine(fitLine(start:end)) do
if pointsOnLine(end+1:end+3) then
end ← end+3

else
return fitLine(start+1:end-1)

end if
end while
return fitLine(start+1:end-1)

Pre Segmentation - Image Line Clustering

A common technique to improve the performance of the segmentation is to first split

the range scan into point clusters where there are large jumps between consecutive

range values. This was shown by Nguyen et al. [106] to provide benefits in speed as

well as accuracy. The size of the threshold can be kept constant or varied depending

on the size of objects in the environment. Overall, this clustering process is similar

to the edge based segmentation methods discussed previously.

This work instead uses the image line features for clustering as opposed to range

jumps. The images provide valuable information for surface segmentation that can

be used to aid the laser line segmentation and this is rarely exploited in this manner.

As the image lines are already extracted there is little extra cost to using this

information to pre-split the laser line segments.

It is easy to find the corresponding laser bearing in the specific case where the

LRF is installed to scan perpendicular to the Y camera axis, the vertical offset

between the two sensor apertures is small, and the horizontal offset is small. In this

specific configuration the laser scan line projects onto the image as a horizontal line

running through the principal point v0, as seen in Fig. 4.5, or very close to it in the

case of small offsets. Any image lines that intersect this line will imply that the laser

line should be split at that point. As the two sensors are aligned horizontally, the
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horizontal bearing of a feature in one sensor is directly transferable into the other.

v0

U

V

split 1 split 2

Figure 4.5: Projection of laser line onto image and use of image lines for pre-splitting.

Each image line, represented by its two endpoints p1 and p2 in u,v coordinates,

is checked for this intersection using (4.17) below. The product will only be negative

if one point lies above the line and the other below.

(v1 − v0)(v2 − v0) < 0 (4.17)

For each image line found, the u value at the intersection must be interpolated

using (4.18) to determine the splitting point. Horizontal image lines do not pro-

vide useful intersection information and so are ignored. They would also cause a

singularity to occur.

ui =
(v0 − v1)(u2 − u1)

v2 − v1
+ u1 (4.18)

This process provides a set of values u = u1 . . . uN which can be converted into an

angular bearing using (4.19) to determine the splitting points in the raw LRF data.

The measurement index i can found from (4.20) where R is the angular resolution,

fu is the focal length in the horizontal direction and N is the total number of

measurements taken, assuming the scan is centred.
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θi = tan−1

(

u0 − ui
fu

)

(4.19)

i =
θi
R

+
N

2
(4.20)

Image Line Clustering - General Case

In the general case where the horizontal or vertical sensor offset is significant, a little

more work is required to find the corresponding LRF bearing for each image pixel

on the horizontal line. If the offset is large or the LRF does not scan parallel to the

horizontal axis of the camera, then the horizontal line assumption is invalid. In this

work it is assumed that these requirements are not violated.

Due to the presence of a vertical offset between the two sensor frames, the hori-

zontal line will pass through a different point on the image V axis. This can be found

by projecting the LRF points from x, y coordinates into u, v image coordinates. The

average v coordinate (height) can be found and should be used as the basis for the

horizontal scan line. The intersecting image line pixels are then calculated as in

(4.17-4.18) above.

In this general case it is not possible to directly correspond the horizontal bear-

ings between sensor frames. The sensor offset results in a different bearing that

needs to be found, as seen in Fig. 4.6. The laser points that have been projected

onto the image in u, v coordinates track across the image in an increasing fashion

due to the consecutive nature of the LRF scanning process. Thus it becomes a 1D

search problem to correspond the splitting points ui with their appropriate laser

bearing index. In cases of high noise it is possible that multiple nearby laser read-

ings will correspond to the same image u value and so the laser u values will not

be strictly increasing. In this case the first and last readings to intersect with the

desired splitting pixel should form the two splitting points, with any measurements

in between being ignored.

A similar problem was tackled by Ellekilde et al. [24]. However, their work
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CameraLRF

θl θc

split 1 split 2

Figure 4.6: Image line pre-splitting - General case with sensor offset.

required a 2D, rather than 1D, search which is a more complicated problem. This

splitting process could also be achieved by assigning the pixel colours to the laser

range readings and then looking for edges or jumps in a 1D image. This is redundant

as it repeats the edge detection already performed in a suboptimal way as the rest

of the image data is ignored.

Care should be taken with this approach as spurious lines generated by object

textures should not be used to pre split the data and these lines should be filtered out

in some way as they do not correspond to physical edges. Care should also be taken

to ensure that correct camera calibration has been performed. A post processing

merging step can also be used to minimise the impact of this. If the false lines are

numerous, then the line segmentation will operate poorly, as each split segment will

have few points for segmentation.

This approach also assumes all intersecting image edges are extracted and are

linear. This means that some edges will be missing if they are not extracted or if they

are curved or otherwise nonlinear. This is not a big issue as the line segmentation

will still likely find those segment edges anyway. Nonlinear edges could still be used

if the intersecting edge detection was done as an intermediate step during the image

edge extraction prior to nonlinear edges being culled.
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Post Segmentation - Segment Merging

After the laser lines have been segmented using the above methods, a merging step is

beneficial to merge adjacent segments that were over segmented due to the presence

of noise, outliers or excessive pre-splitting. This process involves testing each line

against adjacent line segments to determine if they are collinear and spatially close.

If all three criteria below are satisfied then the two segments should be merged

together.

The first criterion requires that the two adjacent lines are collinear. This can be

tested by taking the angle between the two segment direction vectors vi and vi+1

using the standard dot product in (4.21).

cos−1(ψ) = cos−1 (vi · vi+1) < ∆ψ (4.21)

Due to the nature of the line fitting process using PCA the direction vector v

can be rotated 180◦ for the same line, depending on the implementation. Because

of this, if the absolute angle computed is greater than 90◦, then the angle should

be subtracted from 180◦ to get the desired angle for testing. This can be seen in

Fig. 4.7. An angular threshold of ∆ψ =5◦ was used. This value, along with dorth

to be introduced shortly, was calculated empirically from a test set of collinear and

noncollinear line segments and was found to differentiate robustly between the two

cases.

ψ

dpar

dorth

vi

vi+1

pN
i

p1
i+1

Figure 4.7: Post segmentation merging criteria.
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The second criterion requires the endpoints of the two adjacent line segments

vi and vi+1 to be close spatially. To eliminate the influence of noise, these two

endpoints are projected onto their respective lines. This is described later in Section

4.3.5. There are two distances to test. They are the orthogonal distance to the line

v, and the distance along the line v to the orthogonal intersection point. This is

shown graphically in Fig. 4.7. These are calculated between the last point on the

line segment vi (p
N
i ) and the first point of the line segment vi+1 (p1

i+1).

Equation (4.22) below describes the calculation of the parallel and perpendicular

distances. They should be calculated twice, once for each line direction vector, and

the smaller of the two distances should be tested. The threshold values require some

tuning and the values used here were dpar =30mm and dorth = 5mm. The value for

dpar was chosen to allow for several outlier points between the endpoints of adjacent

segments as they occur more commonly in this modified incremental segmentation

approach. This constant threshold does not account for the distance to the line

segment as that did not show a significant improvement.

dpar = (pN
i − p1

i+1) · v

dperp =
√

(dpar)2 − ||pN
i − p1

i+1||2 (4.22)

A third criterion that can be used is to check that the colour descriptors match

between the two adjacent line segments. This can prevent segments being merged

that are parallel and connected but are from different surfaces. An example is a sign

on a wall having negligible thickness. Such a surface should only have been split

in the first instance if the image pre-splitting was also used. This extra criterion

should be used in this case as it will otherwise likely lead to those surfaces being

falsely merged.

This also checks against the colour of any outlier points between the two segments

that were excluded during the line segmentation. If they show a different colour

descriptor than the two consecutive segments being tested, then it is likely that the
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split was caused by a physical gap or object. In this case the line segments should

not be merged.

4.3.3 Results of 2D Line Segmentation

The segmentation methods described above were run on the laser scan data and im-

age data from three datasets, two real and one simulated, to determine the benefits

and performance of each combination. The results are shown below for segmentation

only, segmentation with pre splitting, segmentation with post merging, and segmen-

tation with both pre splitting and post merging. For each case the segmentation

accuracy, true and false positive rates and running time were found.

Experimental Setup

The datasets used to validate the range segmentation methods were acquired as de-

scribed in Sections 3.3.1 and 3.3.2. Two experimental datasets were acquired. These

used identical setups, except that the second scenario also contained three additional

nonplanar surfaces. This was used to compare the segmentation performance with

a more cluttered scene and the ability to recognise nonlinear line segments. In total

there were eighteen 2D scans from the two experimental datasets resulting in 87 line

segments. These two scenes are shown below in Figs 4.8(b) and 4.8(c).

The simulated dataset consisted of eleven 2D LRF scans and camera images.

This gave a total of 55 line segments that were extracted. The simulated LRF had

Gaussian noise added while the simulated camera images were considered noise free.

The scene used is shown below in Fig. 4.8(a).

The metrics used for the results below are explained below. Each range point

was manually assigned a true segmentation label for the purposes of these results.

True + (%)

A true line segment that was successfully extracted.

False + (%)

An extracted line segment corresponded to a nonlinear surface. This is ap-
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(a) Simulated environment.

(b) Real environment. (c) Real environment containing
nonplanar surfaces.

Figure 4.8: Scenes used for laser line segmentation testing.

plicable only to the dataset Real #2, as it was the only test scene containing

nonplanar surfaces. This is defined as the number of false segments generated

by these surfaces as a percentage of the number of such real surface segments.

This rate can be more than 100% as each surface can potentially generate

multiple segments.

UnderSeg (%)

An extracted line segment corresponded to more than one true line segment.

OverSeg (%)

A true line segment that was segmented into multiple extracted segments.

EdgeError (%)

A successfully extracted line segment that failed to segment successfully at
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the true edge of that line segment. This was defined as at least one segment

endpoint being more than one bearing outside the true endpoint range bearing.

Time (ms)

The average time taken to segment each 2D laser scan in milliseconds. This

was run in MATLAB on a single core 2.7GHz PC and so these times should

be used for comparisons only.

Segmentation Results

The results using simulated data are shown in Table 4.2 below.

Table 4.2: Range segmentation results - Simulated dataset
Type True + False + Under Over Edge Time

Seg Seg Error (ms)
Segmentation only 82% N/A 11% 7% 7% 19.9
Segmentation + Pre Splitting 98% N/A 2% 0% 4% 32.1
Segmentation + Pre Splitting 98% N/A 2% 0% 4% 32.4
+ Post Merging

Table 4.3: Range segmentation results - Real dataset #1
Type True + False + Under Over Edge Time

Seg Seg Error (ms)
Segmentation only 75.0% N/A 25.0% 0% 31.8% 19.7
Segmentation + Pre Splitting 100% N/A 0% 0% 6.8% 32.8
Segmentation + Pre Splitting 95.5% N/A 4.5% 0% 6.8% 34.2
+ Post Merging

Table 4.4: Range segmentation results - Real dataset #2 (nonplanar surfaces)
Type True + False + Under Over Edge Time

Seg Seg Error (ms)
Segmentation only 81.4% 200% 11.6% 7.0% 23.2% 19.8
Segmentation + Pre Splitting 90.7% 157% 0% 9.3% 7.0% 32.6
Segmentation + Pre Splitting 97.7% 157% 0% 2.3% 7.0% 34.0
+ Post Merging

The standard range based incremental segmentation method successfully ex-

tracted 82% of the simulated laser line segments. However, it did suffer from some

under segmentation and segment edge inaccuracy. By using the image features for

pre splitting, the segmentation success rate increased to 98% and the under segmen-

tation and edge error rates reduced. The cost of this extra effort was seen in the
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higher runtime, which almost doubled. The addition of the merging step provided

a small improvement with negligible additional runtime.

The results for the two experimental datasets are shown in Tables 4.3 and 4.4.

The segmentation accuracy was slightly lower than the simulated case with a suc-

cessful extraction rate of 75-81%. This was expected due to the higher levels of

noise in the real data. The edge error rate was also significant at 23-32% of laser

line segments. The image line pre-splitting significantly improved the accuracy of

the segmentation up to a 91-100% success rate. The edge error rate was also signif-

icantly reduced down to 7%.

The second experimental scan showed high rates of false positive segments, in

the order of 30% of extracted line segments. This was caused by the three curved

surfaces shown in Fig. 4.8(c) being approximated by piecewise linear segments.

These segments are undesirable as they violate the planar surface assumption used

during plane fitting and so a method to differentiate them from true linear segments

is needed.

4.3.4 Linearity Verification of Line Segments

The plane fitting method described in Chapter 5 relies on the assumption that the

surface features were generated by planar surfaces. As discussed previously, the

linear segmentation of the laser range scans can sometimes fit piecewise linear seg-

ments to nonplanar surfaces. This can lead to poor planar surfaces being generated

that do not correspond to any real surface which could cause major problems for

surface merging and footstep planning. This section presents a method to filter out

line segments generated by nonplanar surfaces.

An example of such false line segments is shown in Fig. 4.9 below. Both line

segments are shown in red with their supporting points in blue and they have iden-

tical scale. The line segment in Fig. 4.9(a) is from a linear surface while Fig. 4.9(b)

is from a nonlinear surface and a tell-tale curve can be seen.

If a line segment was generated from a planar surface then it is reasonable to
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(a) Example linear segment. (b) Example nonlinear segment.

Figure 4.9: Linearity of extracted line segments.

expect that the variance of those points should lie almost exclusively along the

direction of that line. A small amount of variance in the orthogonal direction is to

be expected but this should be minimal and caused by sensor noise alone. It then

stands to reason that a nonplanar surface being approximated by a linear segment

should have a relatively higher variance in the orthogonal direction. These segments

tend to be shorter in length due to the piecewise nature of approximating a curve

by a line segment.

This was seen in Fig. 4.9 where the short length of the nonlinear line segment

produces a smaller relative variance along the line in comparison to the orthogonal

direction. While both segments appear to have similar levels of orthogonal vari-

ance in absolute terms, the key idea is that the relative variance in the orthogonal

direction is much larger for a nonlinear segment.

An orthogonal least squares line fit can be performed using PCA which finds a

new orthogonal basis for the data points in which the variance along the direction

of the line is maximised. It does this by finding the eigenvectors of the covariance

matrix of the data, in the order of highest to lowest eigenvalue. Each eigenvalue

corresponds directly to the proportion of total variance present along the direction

of its corresponding eigenvector. The first eigenvalue λ1 provides a measure of the

variance along the line while λ2 gives the variance orthogonal to the line. PCA is

also used for plane fitting in this work and a full description and derivation can be

found in Section 5.4.

A variance based metric is proposed using these two eigenvalues and it will be

evaluated on two sets of line segments from the experimental datasets. The first
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dataset consisted of linear line segments only while the second set contained only

line segments that were generated by piecewise approximation of nonplanar surfaces.

The metric used was the percentage of variance explained by the orthogonal direction

of the line, as in (4.23), with lower values indicating higher linearity.

(

λ2
λ1 + λ2

)

× 100 < ∆ (4.23)

The value of the threshold ∆ can vary depending on the relative importance of

minimising false positives or false negatives. This can be seen below in Table 4.5.

Table 4.5: Line segmentation - Linearity verification
∆ True + False +

<1.5% 80% 0%
<2.0% 90% 10%
<2.5% 100% 30%

A value of 1.5% gave no false positives as it was able to filter out all the non-

linear segments successfully. However, several legitimate linear segments were also

removed. Higher thresholds reduced the rate of false negatives but began to intro-

duce more false positives which are generally undesirable. In this work a value of

1.5% was chosen to minimise the number of false line segments passing through to

the plane fitting stage. The effect of a false plane being fitted to nonplanar data

could potentially be catastrophic whereas missing a single line segment is much less

likely to cause the plane fitting to fail due to the redundancy of multiple scans.

This method was implemented on the range segmentation results shown previ-

ously in Table 4.4. Updated results can be seen below in Table 4.6. True positive

detection was slightly lower but false positive rate was significantly reduced and

entirely eliminated when pre-splitting was also used.
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Table 4.6: Range segmentation results with nonlinear verification
Type True + True + False + False +

(old) (new) (old) (new)
Segmentation only 81.4% 69.8% 200% 29%
Segmentation + Pre Splitting 90.7% 81.4% 157% 0%
Segmentation + Pre Splitting 97.7% 88.4% 157% 0%
+ Post Merging

4.3.5 Representation of 2D Line Segments

For the purposes of the feature grouping, as detailed in Section 4.4, it is convenient

to represent each laser line segment as a set of two endpoints. It is assumed that the

sensors and robot are stationary during data acquisition and that the laser beam

width is negligible which is reasonable at close range. A line can be fitted to the

points supporting each segment using 2D PCA. This generates a direction vector v

and a centre of gravity point p0 = [x0 y0]
T that lies on that line. Using these it

is possible to map the two end points from each segment onto the line to give the

desired endpoints. This can be done orthogonally or radially as seen in Fig. 4.10

below.

The orthogonal approach can be performed as a projection of the vector [p−p0]

onto the vector v and then the location offset p0 is added, as shown below in (4.24).

It is assumed that the vector v has been normalised.

porth = p0 + ([p− p0] · v)v (4.24)

The radial approach is performed by calculating the intersection point of the

laser beam (l1 = bp) with the 2D line (l2 = p0 + av). This is shown below in (4.25)

where the direction vector p = [px py]
T is formed by the vector from the origin (0,0)

to point p.
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p0 + av = bp

prad =
vyx0 − vxy0
vxpy − vypx

p (4.25)

The radial projection is used as it is more accurate physically, although the

orthogonal projection does provide a reasonable approximation if the LRF range

noise is small.

p0 p

prad

porth

v

LRF

Figure 4.10: Orthogonal and radial projections of a LRF point onto a 2D line.

4.3.6 Transformation of Range Points

Each laser range measurement is a 2D point in the laser CF. To be useful it needs

to be transformed into various other CFs as described below.
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Laser CF to World CF Transformation

The Hokuyo LRF provides range measurements every 0.36◦ with the 0◦ bearing

being directly in front of the laser housing and positive bearing angles proceeding

anticlockwise. Each range measurement ri has an associated bearing θi and these

can be used to convert to cartesian coordinates pl within the 2D laser scanning plane

using (4.26). The range measurements are in millimetres and the bearing must be

in radians.

pl =













x

y

z













l

= ri













−sin(θi)

0

cos(θi)













(4.26)

The covariance matrix Σpl for pl can be found from the range and bearing vari-

ances σ2
r and σ2

θ using (4.27-4.30), as they are independent of each other.

Σpl =













σ2
x 0 σ2

xz

0 0 0

σ2
xz 0 σ2

z













(4.27)

where

x = f(ri, θi) = −risin(θi)

σ2
x =

(

∂f

∂r

)2

σ2
r +

(

∂f

∂θ

)2

σ2
θ

= sin2(θi)σ
2
r + r2i cos

2(θi)σ
2
θ

(4.28)

77



CHAPTER 4. EXTRACTION AND GROUPING OF SURFACE FEATURES

z = g(ri, θi) = ricos(θi)

σ2
z =

(

∂g

∂r

)2

σ2
r +

(

∂g

∂θ

)2

σ2
θ

= cos2(θi)σ
2
r + r2i sin

2(θi)σ
2
θ

(4.29)

σ2
xz =

(

∂f

∂r

∂g

∂r

)

σ2
r +

(

∂f

∂θ

∂g

∂r

)

σ2
θ

= −sin(θi)cos(θ)σ2
r + r2i sin(θ)cos(θi)σ

2
θ (4.30)

In many cases the bearing variance can be considered negligible and (4.28-4.30)

can be simplified to give Σpl as shown in (4.31). This is generally not necessary as

the extra calculation is not significant and does not have any further effect on later

equations.

Σpl = σ2
r













sin2(θi) 0 −sin(θi)cos(θ)

0 0 0

−sin(θi)cos(θ) 0 cos2(θi)













(4.31)

The world CF is setup as a left hand coordinate system, as seen in Fig. (4.11).

It is an extension of the 2D image CF used by the camera, where the X axis points

to the right and the Y axis points up. The Z axis provides depth to extend the CF

into 3D. As the laser range finder is generally mounted in the same direction as the

camera, its 2D scanning plane will be the XZ plane.

To determine the position pw of the 3D point in the world CF, the kinematics

of the sensor motion need to be taken into account. This is the same process as

described by the transformations for the camera image points into the world CF in

Section 4.2.3. For the simulated and experimental data acquisition setups, described

in Section 3.3, the only joint that moves between 2D scans is Joint B which rotates

through the angle φ. The transformations can, however, be easily derived for any

translation and rotation of the sensor suite, such as will be required for the six DOF
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Figure 4.11: 3D left handed coordinate frame with sensors located
at point O.

wall climbing robot.

Equation (4.32) is used to transform the cartesian point pl from the laser CF

into the world CF to get pw. The translation from the LRF CF origin to joint B, as

shown in Figs. 3.3(b) and 3.6, is denoted Tl = TL + TS. The translation from joint

B back to the scan origin at point A is denoted TB. The rotation about the tilt axis

is described by the rotation matrix Rφ in (4.7).

pw =













x

y

z













w

= H(xl, yl, zl, φ) = Rφ[Tl + pl] + TB

= RφpB + TB (4.32)

where

pB = Tl + pl

ΣpB = ΣTl + Σl (4.33)

The covariance of Σpw
is found from the input covariance ΣpB

and variance σφ
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using (4.34). This is performed using the Jacobian JH to propagate the error. As

the tilt angle φ is independent of the 3D point position, the Jacobian can be split

and it can be shown that the remaining Jacobian term for pl is equivalent to the

rotation matrix Rφ.

Σpw = JHΣJ
T
H

=

[

∂H

∂x

∂H

∂y

∂H

∂z

]

ΣpB

[

∂H

∂x

∂H

∂y

∂H

∂z

]T

+

[

∂H

∂φ

]

σ2
φ

[

∂H

∂φ

]T

+ ΣTB

= RφΣpBR
T
φ +

[

∂H

∂φ

]

σ2
φ

[

∂H

∂φ

]T

+ ΣTB (4.34)

Laser CF to Camera CF Transformation

A common task is the projection of a 3D range point onto the corresponding pixel

in a camera image. To convert between the laser CF and the camera CF, the

transformations in (4.32) and (4.9) are combined. The LRF scan and camera image

may have been acquired at different tilt angles φl and φc and so the rotation matrices

Rφl and Rφc are introduced to allow for this.

pc =













x

y

z













c

= R−1
φc
Rφl(Tl + pl)− Tc (4.35)

The 3D point pc is then normalized by dividing through by zc and then multiplied

with the intrinsic parameter matrix K for the camera from (A.1) to get the image

point pi.
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pi =
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(4.36)

4.4 Feature Grouping

The image and range features extracted in Sections 4.2 and 4.3 are of no use indi-

vidually for plane fitting. It is necessary to associate together those features that

were generated by the same physical surface, to which a planar surface can then be

fitted. This is a process known as feature grouping. This section proposes a method

to achieve this grouping which is detailed below to group together the laser range

and image features. This method will then be validated using the extracted features

from earlier in the chapter.

Many approaches refer to feature grouping in a different context to that of this

work which uses structural grouping. This is defined as grouping together features

that were generated by the same physical surface. This is a similar case to perceptual

grouping. However, it is more explicit in the requirement that the features originate

from the same surface. This work also requires the grouping of multiple feature

types including image lines and laser line segments.

It should be clarified that the approach proposed in this work is a pure grouping

method and involves no matching. Grouping involves the clustering of multiple

features that have something in common within a single image or across multiple

images. Matching on the other hand involves finding and tracking the same feature

or feature group across consecutive images. This will be clarified further below.

4.4.1 Feature Grouping Literature

Several approaches to grouping image features have been previously suggested based

on various criteria. The grouping of image lines is often performed using spatial or

perceptual information. Spatial grouping involves grouping image features that are
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close to each other. Perceptual grouping relies on the idea that images features,

particularly image lines, with similar properties are unlikely to have been generated

by chance. Such properties include collinearity and a common termination junction

for a pair of line segments.

Mohan et al. [111] uses perceptual grouping to extract buildings from aerial

images based on parallel lines. Chang et al. [112] incorporates both spatial and

perceptual grouping of features for matching across images. They group image lines

that are parallel or touching and are spatially close in location.

Image line features can be grouped as a precursor to a feature matching algo-

rithm. Rather than match individual features across images, groups of features are

matched as they provide a lower dimensionality and more unique feature set than

individual features. Shen et al. [113] used this approach by using each image corner

or junction as a group. Each such group consisted of the image lines terminating

at the common point as well as the point location itself. These were then matched

across images to provide correspondences for a Structure From Motion (SFM) algo-

rithm. This junction based approach is not suitable for this work, as the grouping

criteria are not surface based.

Some grouping methods create a graph structure to store the connectivity be-

tween the image lines and image corners. This is a compact and convenient struc-

ture to use and it is also followed in this work, as previously mentioned. Grouping

methods often attempt to match graph or subgraph structure between images in a

matching step. Horaud et al. [103] constructed such graphs of image lines from two

images and used them for feature matching to find stereo correspondences for stereo

vision. This matching was done using a graph search and attempting to match the

graph structures or substructures of the two images.

McLauchlan et al. [104] combined these two ideas for their SFM algorithm. They

extended the junction matching to operate on subgraphs and used a coplanarity test

for grouping image lines. They incorporated the plane equation as a constraint for

the SFM. However, they did not actually perform any plane fitting. This requires
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the image lines to be matched correctly so that a 3D line can be fitted, which allows

for coplanarity testing. This difficulty is avoided by using the laser line segments

instead.

Image point features are commonly matched in stereo vision [114] and visual

SLAM [115] algorithms. These methods use point features that may not necessar-

ily be physical image corners and the matching is usually performed using feature

descriptors such as SIFT [29]. An overview and evaluation of some commonly used

point feature descriptors is given by Moreels et al. [116]. Such feature descriptors

allow for robust matching of rich visual features between images but they can be

expensive to calculate. This can be a severe restriction for real time operation on

smaller robotic systems. These are straight matching approaches, as they involved

no grouping of features, and so they are of little use.

Grouping of laser line segments is not usually performed for plane fitting with

the exception of scan line grouping. This was introduced by Jiang et al. [117] and

it is used as a region growing method for fitting planes to dense range data by first

segmenting each individual 2D LRF scan into line segments. Adjacent scans are

grouped based on a statistical similarity measure. The same approach of grouping

line segments is used in this work. However, as it must operate on sparse scans, the

scan line grouping approach would likely fail in many scenarios. The gap between

each 2D scan is large and there is not always a good overlap between line segments.

Therefore, a new feature grouping approach is needed to handle sparse scanning.

4.4.2 Proposed Feature Grouping Method

The feature grouping method proposed in this work differs from most of the methods

discussed above. The grouping criterion is structural and requires that grouped

features originate from the same physical surface. This is a strict requirement as

falsely grouped features will cause the plane fitting to produce poor results. This

necessitates that the grouping be conservative.

The feature grouping must be able to handle both laser line segments as well as
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image lines. This is a major difference from other approaches which only attempt to

group one feature type. Grouping multiple feature types has the benefit of having

more available information to work with. Colour information is used which is often

neglected in other work and is a valuable addition to improve the robustness of the

grouping.

Features from consecutive 2D scans, each consisting of a LRF scan and a camera

image, are grouped rather than matched as in other work where the same feature

is tracked across multiple images. It is not necessary for the same image features

to be detected in each and every image during the grouping stage. This is a major

benefit if the feature extraction proves difficult in certain environments.

Feature Grouping Steps

The feature grouping process combines three separate steps of laser-image grouping,

image-image grouping and laser-laser grouping. The interaction of these three steps

will be outlined briefly below and can also been seen in Fig. 4.12. Each stage will

be explained in detail later in the chapter.

1. Extract laser and image features from new 2D scan.

2. (Laser-Image Grouping)

Associate each laser line segment that intersects a surface with the image

features that surround it on the new scan.

3. (Image-Image Grouping)

Associate together all image features from the new scan that surround a com-

mon surface.

4. (Laser-Laser Grouping)

Associate the grouped features from steps 2 and 3 with those of previous 2D

scans by matching coplanar line segments.

5. Get the next scan and go to Step 1.
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Figure 4.12: Feature grouping process.

An example of grouped features is shown below in Fig. 4.13. The three images

show the grouped features for the front of the green box from three consecutive

scans. It consists of three laser lines segments (red) and 22 image lines (white).

Each image line has a small white tick pointing towards the centre of the surface it

is assigned to. This signifies the side of the image line assigned.
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Figure 4.13: Example of grouped features generated by the same physical
surface from consecutive 2D scans.

Colour Descriptors

During the grouping processes to be described shortly, one of the major criteria used

for testing correct group matches requires that the features share the same colour,

texture or pattern. It is reasonable to expect that image features generated from the

same surface share a common colour. There are obviously exceptions to this rule.

Flat surfaces with non-uniform colour exist, most commonly consisting of images or

text, such as a poster, book cover or a sign. The majority of these cases can still be

handled with a reasonable degree of success despite this. Extensions to the colour

descriptor to include texture could also help, but this has not been implemented.

The descriptor chosen is RGB colour as it is easy to implement and test for po-

tential matches. It will later be shown to provide good matching performance. As

RGB camera images are often optimised for human eye perception, they can suffer

from low dynamic range. A possible improvement would be to use High Dynamic

Range (HDR) images, which could provide for greater contrast and improved per-

formance under varying light conditions. They are more difficult to generate and

generally require multiple images, a higher number of bits per colour and some ex-

tra computation. This reduces their appeal as these factors will increase the image

transfer and computational times and so HDR imaging is not used in this work.

To handle surfaces of varying texture the RGB standard deviation will also be

used so that both the colour and the variation are used in the matching process.

Therefore, each feature will be assigned a colour descriptor vector C consisting of

six parameters, as shown in (4.37).
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C = [Rµ Gµ Bµ Rσ Gσ Bσ] (4.37)

To determine matches between any two colour descriptor vectors Ci and Cj , the

weighted Euclidean distance is used as in (4.38). The standard deviation terms are

weighted using Wσ. This value is dependent on the importance placed on matching

the standard deviations. It is also used to normalise the standard deviation values to

the RGB values. A weight of Wσ = 0.5 was used for the simulated data and Wσ = 2

for the noisier real data, but these can be tuned depending on the environment. A

match is determined if the distance Di,j was less than a given threshold. This value

should take into account the noise and lighting conditions of the environment and

should also be adjusted relative to the size of the weight Wσ.

Dµ =
√

(Rµi −Rµj )
2 + (Gµi −Gµj )

2 + (Bµi − Bµj )
2

Dσ =
√

(Rσi − Rσj )
2 + (Gσi −Gσj )

2 + (Bσi −Bσj )
2

Di,j =
√

D2
µ +W 2

σD
2
σ (4.38)

Calculation of Colour Descriptors

The colour descriptor for each laser line is calculated by mapping the laser line

onto the image from the same scan and extracting the line of N pixels between the

endpoints, as seen in Fig. 4.14(a) below. The mean and standard deviation are then

calculated from those pixels for the R, G and B values.

Each image line is represented in the graph as consisting of two lines, one for

each side of the line. As mentioned earlier in Section 4.2.2, this is because each side

will be assigned to a different surface. The colour descriptor for each side is made up

of the line of pixels on either side of the image line as shown below in Fig. 4.14(b).

This region is chosen to take into account any small error in the line location from

the edge fitting to ensure that the pixels are extracted from the correct surface. The

several pixels adjacent to each image line endpoint (corner) are also ignored to allow
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for acute angles between connecting image lines.

(a) Pixels used for colour descriptor of laser line
segment projected onto image.

side 1 side 2

(b) Pixels used for each image line side colour
descriptor. The arrow depicts the direction of
the image line.

Figure 4.14: Colour descriptors for features.

A colour descriptor is not needed for the image corners as they are not directly

used in the grouping approach proposed here. While the corners provide location

information and anchor the image lines, it is only the laser line segments and image

lines that are used during grouping.

4.4.3 Laser-Image Feature Grouping

The second step of Fig. 4.12, after acquiring the new scan, is to group the new laser

range and image features together. They are associated with each other by finding

the image features that surround a laser line segment. Each laser line segment

can be mapped onto any image as a 2D line in u,v coordinates using equations

(4.35-4.36) from Section 4.3.6. The image lines that are intersected by the end

points of the projected laser line segment are selected as candidates for matching,

pending verification tests such as colour matching. An example is shown below in

Fig. 4.15(a).

Finding the Line Intersection Point

Each image line is represented by two image end points (p1,p2) and likewise each

projected laser line segment is represented by (p3,p4). This grouping task now
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(a) Laser line segment (blue) projected onto the
image and desired seed image lines (purple).

p0

p1

p2

p3 p4

(b) Image points used to calculate intersection
of laser line segment with potential image lines
using (4.39-4.40).

Figure 4.15: Laser-Image feature grouping process.

reduces to solving a 2D line intersection problem. Using the parametric equation of

a line it is possible to generate two line equations as seen in (4.39) and (4.40). This

is demonstrated in Fig. 4.15(b).

pl = p3 + ua(p4 − p3) (4.39)

pi = p1 + ub(p2 − p1) (4.40)

By finding the intersection point p0, where pl = pi, it is possible to solve for ua

and ub as in (4.41) and (4.42).

ua =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)
(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)

(4.41)

ub =
(x2 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)
(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)

(4.42)

These equations can be simplified if the laser and camera data were acquired at

the same pose and the offset between camera and LRF apertures was small. In this
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case it can be assumed that the laser line segment mapped onto the image is parallel

to the U image axis and thus y3 = y4. This greatly simplifies the equations to give

(4.43) and (4.44).

ua =
−(y1 − y3)
(y2 − y1)

(4.43)

ub =
(x2 − x1)ua + (x1 − x3)

(x4 − x3)
(4.44)

Determination of Valid Intersection for Grouping

The parallel distance in pixels from the end of the laser line segment to the intersec-

tion point can be calculated using (4.45). For a match to be achieved this distance

should be less than some threshold ∆d. This ensures that only image lines that

intersect very near to the end of each line segment are grouped, allowing for some

error in the feature extraction locations.

A value of ∆d = 10 was used. This was based on two factors. Firstly, three

standard deviations from the line position were used. This standard deviation was

found to be up to 2.5 pixels in Section 4.2.1. Secondly, an allowance was made to

account for the conservative nature of the modified laser line segmentation process

used. This was discussed in Section 4.3.2.

This distance calculation should be performed for each end of the line as either

could be the intersecting end, giving rise to two distances of interest d3 and d4.

They are the distance from the intersection point p0 to the endpoints p3 and p4

respectively.

d3 = |p3 − p0|

=
√

(x3 − x0)2 + (y3 − y0)2 (4.45)
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Again this can be simplified using the horizontal line assumption as discussed

previously which gives y3 = y0. By substituting in (4.39) to give x0 at ua, the final

equation for d3 is found in (4.46). Similarly d4 is found as in (4.47). Both distances

are measured in image pixels.

d3 =
√

(x3 − x0)2

= |x3 − (x3 + ua(x4 − x3))|

= |ua(x4 − x3)| (4.46)

d4 = |(1− ua)(x4 − x3)| (4.47)

The ua parameter can be used to determine where the image line segment is

intersected by the laser line segment. Any value within the range 0 > ua > 1 means

that the intersection lies within the image line segment. The same holds true for ub

and the laser line segment. Therefore the following rules are applied to determine if

an image line should be considered a grouping candidate for that laser line segment.

1. 0 > ua > 1 - The intersection point should lie on the image line segment.

2. d3 <∆d or d4 < ∆d - The intersection point should be near the end of the

laser line segment.

Choosing the Correct Side of the Image Line

If the above conditions hold, then that image line is deemed to be a match to the

laser line segment. Before they can be grouped together, it is necessary to determine

which side is the inside of the image line. The inside of an image line is the side

that is on the same surface as the laser line segment. Using the notation for image

line sides outlined in Section 4.2.2, if a vector v is created that originates at p1

(Corner A) and terminates at p2 (Corner B), then Side 1 is on the left hand side of

the vector and Side 2 is on the right hand side.
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To determine the side lying on the inside of the image line, a second vector v0

is created that originates at p0 and terminates at the midpoint of the laser line

segment. The midpoint is used rather than either laser line segment endpoint as it

will always lie on the desired surface, whereas the endpoints may occasionally lie on

the outside of the image line due to errors in the feature extraction.

The signed angle between these two vectors is found using (4.48). This can be

used to find the difference in angle θv between two lines if they are represented as

vectors originating from the same point.

θv = atan2(v0)− atan2(v) (4.48)

The angle θv is used to determine which side of the image line lies on the inside

of the surface as shown below. Note that by definition θv cannot be 0◦ as the two

lines would be identical in this case.

• Side 1: −180◦ > θv > 0◦

• Side 2: 0◦ > θv > 180◦

Once the correct side has been determined, all that remains is to check that the

colour descriptor for the laser line segment matches the chosen image line. If they

do match, then the image line segment side can be added to the same group as

the laser line segment. A check should also be made to ensure that this image line

side has not already been grouped previously. If so, then the two groups should be

considered for merging as each image line side corresponds uniquely to one and only

one real surface.

4.4.4 Image-Image Feature Grouping

The third feature grouping step, as shown in Fig. 4.12, is the grouping of the image

lines. These form the boundaries of surfaces imaged by the camera. To determine
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the polygon boundaries of each surface it is therefore required to group together all

the image lines that correspond to the same surface. The method proposed below

is based on the idea that the boundary image lines are linked in the image feature

graph. Given any image line as a seed, it is then possible to traverse the graph to

find connecting lines to group together.

Once an image line side has been grouped to a laser line as described above,

that line is used as a seed line to find further matching lines that correspond to the

same physical surface. Every image line has two endpoints that are distinct nodes in

the graph. Each of these endpoints is chosen in turn as a starting point to traverse

the graph. All edges leaving the node corresponding to that endpoint are potential

match candidates as they are connected to the seed image line side.

The following criteria are used to determine which of these image line sides, if

any, should be grouped.

Grouping Criteria: The desired image line side should meet all criteria below.

1. Be connected to an image line currently in the group.

2. Be the first image line radiating from the corner on the same side of the line.

3. Have the same colour descriptor for the corresponding line side.

Criterion 1 selects only those image lines terminating at the seed corner node,

excluding the seed line. Criterion 2 then chooses from within these lines, the one

image line that continues the image boundary surrounding the surface of interest.

This is done by converting each of these image lines into vectors and (4.48) is then

used to find their angle relative to the seed image line. The image line with the

smallest angle on the same side as the seed line side is chosen and then Criterion

3 is used as a final check by requiring that the colour descriptors match. This is

important as if the feature extraction is imperfect then a missing image line could

cause the wrong image line exiting the node to be chosen. This image line will likely

correspond to a different surface and thus should not be grouped.

If these three grouping criteria are satisfied, then the chosen image line side is

added to the group and then becomes the next seed image line. This grouping
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process is demonstrated in Fig. 4.16. The extracted seed image lines are shown in

orange with the laser line segment in blue as seen in Fig. 4.16(a). The seed corner,

in purple, leads to two connected candidate image lines, also shown in purple. The

angles θ are evaluated for each of these and θ1 is chosen. After a successful colour

match, this process continues until the grouping is terminated leading to the four

grouped image lines shown in Fig. 4.16(b). Note that one image line is missing as

it was not extracted.

θ1

θ2

Laser Line Segment

Candidate Line

Se
ed

Li
ne

(a) Candidate image lines connected to seed im-
age line corner, both shown in purple.

(b) Grouped image lines (orange).

Figure 4.16: Image-Image feature grouping process.

Termination Conditions: Continue until any of the following are true.

1. No other image lines are connected to the seed line corner.

2. The chosen connected image line does not match the colour descriptor.

3. The chosen connected image line is already in the group.

The first two termination conditions are self explanatory. Termination condition

3 is based on the assumption that the chain has already been followed from the

other side of the image line and so further grouping is redundant for this chain.

Examples of these conditions are shown in Fig. 4.17. As above, the grouped lines

are in orange, the seed image corner is purple and the candidate line to test is also

purple.

This method to group connected image lines within a single image is reliant

on having an accurate image feature graph and good selection of image seed lines.
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(a) No ungrouped image line is connected to po-
tential corner (purple). Orange image lines have
already been added to the group.

(b) Colour descriptor of potential image line
(shown in purple) does not match grouped fea-
tures.

(c) Potential image line (purple) is already in
the group.

Figure 4.17: Image-Image feature grouping termination conditions.

If the feature graph is perfect, then a single seed line should successfully group

all surrounding image lines. However, in any realistic scenario this is unlikely. It

is therefore important to generate good seed image lines and this is currently done

using the laser line segment edge intersections only, as described in Section 4.4.3. To

improve the robustness of this grouping it may be necessary to detect additional seed

image lines using other means. This should allow the successful grouping of isolated

image lines in the situation of poor feature extraction leading to an incomplete image

feature graph.

4.4.5 Laser-Laser Feature Grouping

The last grouping step of Fig. 4.12 is to group the laser line segments together. These

are the key to grouping the features across images. This can eliminate the need for
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feature matching/tracking of the image lines as in other grouping approaches. Each

new laser line segment will either be associated with an existing group or will spawn

a new feature group.

For each new scan, the new image lines are associated with existing groups as

discussed previously in Sections 4.4.3 and 4.4.4. These two steps are then repeated

using the new laser line segments. They are projected onto the new image one at a

time and the intersecting image lines are extracted as seeds. If these seed lines have

already been associated with a group, then the laser line segment is also associated

with that same group if several criteria are met.

Grouping Criteria: The laser line segment should meet all criteria below.

1. The colour descriptor of the new laser line should match that of the group.

2. There should exist some continuous path within the image between the new

laser line segment and existing line segments.

The first criterion is a standard part of this grouping approach and should already

be satisfied if the previous grouping steps have been performed correctly. The second

criterion requires that there is no jump or discontinuity on the image between the

lines. This would suggest that the line segments originated from different surfaces

and that there is some error in the image feature graph. In this case they should

not be grouped together.

Verification of Planarity of Grouped Laser Line Segments

Note that so far during the grouping there has been no mention of verifying the

coplanarity of the grouped laser line segments. This was deliberately done as non-

planar features can still form a valid group if the true surface is nonplanar. However,

it is important for planar surface fitting to verify the coplanarity of the grouped laser

line segments at some stage prior to plane fitting. This determines if a planar sur-

face should be fitted to each group or if some other surface representation should

be used. This verification can be performed at any time prior to plane fitting and
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it is convenient to do this during the laser-laser grouping process. Two criteria can

be used to satisfy the coplanarity.

Coplanarity Criteria: The grouped laser lines should meet both criteria.

1. A new laser line should be coplanar with all existing laser lines within the

group.

2. A quasi-linear RGB image path should exist that links the laser line segments.

The first criterion is a 3D coplanarity test based on the 3D lines fit to each line

segment. There are three different situations each requiring different variations of

the basic coplanarity test. It should be noted that checking laser line segments from

the same scan is redundant. By definition they are coplanar as they both lie on the

same 2D laser scanning plane.

Case 1: Two laser line segments

The simplest case involves testing the new laser line segment against only one

existing laser line segment from a previous scan. The existing line segment runs

from point A to point B in 3D space and the new line segment runs from point C

to point D to give vectors AB and CD. A third vector AC can be created which

runs between the two line segments’ endpoints. These three vectors should all be

normalised before using them here. The two line segments are coplanar if (4.49) is

true. Due to noise in the sensor data, a small threshold should be used, as in (4.50).

In this work a value of ∆p1 = 0.05 radians was used. This allows for a 3◦ deviation

from orthogonal.

[AB × CD] · AC = 0 (4.49)

|[AB × CD] · AC| < ∆p1 (4.50)

Case 2: Three or more laser line segments

An extension of the two line case is needed when there are two or more line
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segments already within the group to test against. In this case (4.50) should be

true for every line segment pair in the group. For large groups this can become

computationally costly which is undesirable.

Case 3: Plane and laser line segment

If a plane has already been fitted to the existing laser line segments within the

group then it is possible to test if the new line segment lies on the plane. This

requires far less computation than individually testing each line segment pair, as in

Case 2. If the line segment has endpoints A and B, then all that is required is to

test whether both points lie on the plane represented by parameters n and d. If

(4.51) holds true, then the new laser line segment is coplanar and the group can be

verified as planar. A threshold of ∆p2 = 5mm was used. This was based on the

standard deviation of the laser line segment endpoints.

n ·A− d = 0 (4.51)

|n ·B− d| < ∆p2 (4.52)

4.4.6 Results of Feature Grouping

The proposed feature grouping method was evaluated on a simulated scene and a

real scene. For each 3D scan a series of metrics was compiled to determine the

grouping performance. The simulated scene used was described in detail in Section

3.3.2. It consisted of five 3D scans from differing poses and orientations. Each 3D

scan contained eleven 2D scans at an angular resolution of 10◦. The experimental

scene used was described in Section 3.3.1. It contained three 3D scans from differing

poses and orientations, with each scan having nine 2D scans at an angular resolution

of 5◦. These two scenes are shown below in Fig. 4.18.
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(a) Simulated scene. (b) Experimental scene.

Figure 4.18: Test environments.

Tables 4.7 and 4.9 show the accuracy of the extracted groups for the simulated

and experimental scenes respectively. The metrics used are described below.

Surfaces

The number of true surfaces visible in the scans.

True Groups

The number of extracted groups that correspond to a true surface.

Missing Groups

The number of true surfaces without a corresponding extracted group.

False Groups

The number of extracted groups not corresponding to any surface. This in-

cludes surfaces that have been over grouped where the smaller groups are

marked as being false.

Fittable Groups

The number of True Groups that were able to have representative surfaces

fitted to them. This required that there were two or more laser line segments

in the group and the majority of true surface edges were represented accurately.

Tables 4.8 and 4.10 show the accuracy of the grouping of individual image lines

and laser line segments for the simulated and experimental scenes respectively. The

metrics used are described below.

Image/Laser Lines
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The number of extracted features.

True Group

The number of extracted features that were grouped to their correct surface

group.

Wrong Group

The number of extracted features that were grouped to an incorrect surface

group.

Table 4.7: Surface grouping results (Simulated dataset)
3D Scan Surfaces True Missing False Fittable

Groups Groups Groups Groups
A 9 89% 11% 0 100%
B 8 88% 12% 0 100%
C 9 89% 11% 0 88%
D 8 100% 0% 0 75%
E 12 92% 8% 1 60%

ALL 46 91% 9% 1 81%

Table 4.8: Individual feature grouping results (Simulated dataset)
3D Scan Image True Wrong Laser True Wrong

Lines Group Group Lines Group Group
A 418 53.5% 0% 27 85.2% 0%
B 323 65.9% 0% 24 100% 0%
C 414 63.3% 0% 30 90.0% 0%
D 341 66.3% 0% 25 100% 0%
E 481 51.4% 0.2% 36 80.6% 0%

ALL 1977 59.3% 0.1% 142 90.2% 0%

Table 4.9: Surface grouping results (Experimental dataset)
3D Scan Surfaces True Missing False Fittable

Groups Groups Groups Groups
A 9 78% 22% 1 100%
B 7 86% 14% 1 100%
C 9 78% 22% 2 100%

ALL 25 80% 20% 4 100%
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Table 4.10: Individual feature grouping results (Experimental dataset)
3D Scan Image True Wrong Laser True Wrong

Lines Group Group Lines Group Group
A 391 48.8% 2.8% 32 84.4% 0%
B 324 46.3% 1.5% 26 80.8% 0%
C 429 48.5% 2.1% 33 75.8% 3.0%

ALL 1144 48.0% 2.2% 91 80.2% 1.1%

4.5 Discussion

The quality of the feature extraction and grouping methods introduced in this chap-

ter are critical to the successful fitting of planar surfaces. It is therefore important

to examine their performance.

4.5.1 Image Feature Extraction

The image feature extraction was performed on low resolution images using common

edge and corner detection schemes as described in Section 4.2. The performance of

this edge detection is critical to the success of the plane boundary fitting method de-

scribed in Section 5.5 to generate the polygon boundary of the planar surface. False

positive and false negative features can reduce performance if they are not handled

correctly and filtered out during the grouping stage. These are more common in

scenarios with difficult surface conditions but such environments cause problems for

any vision based methods and so this issue is not restricted to this work.

As the aim of this research is to extract physical structure, physical image corners

and edges are obviously desired. Surfaces exhibiting irregular texture, shadow or

specular reflectors could cause false edges to be extracted. False edges, particularly

those from irregular surface texture, could impact on the feature grouping and sur-

face fitting performance if not handled appropriately. To mitigate any effect, several

approaches have been used to filter out these false edges and minimise their impact.

This includes the decision to only use linear image edges of a minimum length. This

was found to filter out a large proportion of these false edges as short image edges

are frequently generated by the linear approximation of textured surfaces and some
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specular reflections. The feature grouping process, introduced in Section 4.4, also

filtered out a large number of the remaining false edges, as they seldom correspond

to other extracted image or range features.

Occasionally false edges from shadows or textured surfaces may make it through

to the plane fitting stage. These will generally be those that are large in size and

linear in shape. Such false edges can still be handled within the existing surface

fitting framework and this leads to extra surfaces being generated. These surface

patches could then be merged together with adjacent surfaces if they were found

to be coplanar. However, such merging is intentionally not a part of the current

approach. It can lead to legitimately distinct surfaces being merged together due to

the tolerances involved in the merging process. This could occur when there exists

a small physical step change between the two surfaces that falls within the merging

tolerances, or when they consist of different materials with systematic range biases

that cancel out the range step.

A higher level of surface planarity and accuracy is required for foot placement

than can generally be achieved through the merging of adjacent surfaces. If a wall

climbing robot attempted to walk on a merged surface with a physical step change it

could lead to poor adhesion, which is undesirable. However, this lack of merging is

generally only a minor inconvenience as it can lead to fragmentation of some surfaces

and it does not adversely affect performance if the surfaces are large enough to fit the

robot’s foot. Mapping for scenarios other than foot placement may be more tolerant

of any merged step change and so this merging process could be easily implemented

if desired.

As the proposed mapping method fuses information from both vision and range

sources it is less sensitive than vision only methods. It is, however, also more

sensitive than pure range methods to such visually difficult surfaces. Due to the

redundancy in this approach, as multiple images are used for each 3D scan, it is not

crucial to see every image feature in every image. Successful surfaces can still be

mapped if most of the relevant surface features are seen in at least one image.
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Currently only linear image edges are being extracted. This simplifies their

storage and transformation through CFs as each line can be easily represented by

its two endpoints. This limits the applicability of this method to structured or

indoor environments where the surfaces contain a high proportion of straight surface

edges. This is, however, not a major disadvantage for two reasons. Firstly, the wall

climbing robot requires structured environments with a high proportion of planar

surfaces to be able to walk on and these planar surfaces commonly exhibit linear

edges. Secondly, this approach could be extended to use some other compact point

based representation for the nonlinear image edges. Possibilities include a piece-wise

linear approximation or the use of splines.

4.5.2 Range Feature Extraction

The line segments extracted from the laser range scans are to be used for plane

fitting in Section 5.4. It is more important that the 2D segmentation minimises

the number of false positive points rather than attempting to find the segment

edges exactly. These edges are not used to find the planar polygon boundaries,

unlike other plane fitting methods. For this reason the LRF 2D line segmentation

was performed conservatively and modifications to the traditional incremental line

segmentation were proposed to further this aim.

Many line segmentation algorithms, including the incremental approach, have a

tendency to want to follow edges past the true join edge point. Often the line criteria

will still be satisfied for the next several points past the true edge. Modifications

were proposed to counter this behaviour. They included using the image lines to

pre split the laser range scans at known surface boundaries, ignoring the first and

last segmented points and reformulating the incremental segmentation algorithm as

seen in Algorithm 4.2.

The benefit of these modifications and improvements can be seen in the results

shown in Tables 4.2-4.4. The percentage of line segments containing at least one

incorrectly segmented edge reduced significantly when the image line pre-splitting
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was introduced, especially in the noisier experimental datasets. This will flow onto

the accuracy of the planar surfaces fitted to these line segments and provide more

accurate surface mapping.

During the range segmentation process, some nonlinear surfaces were piece-wise

approximated by linear line segments. This is undesirable as the plane fitting pro-

cedure described in the next chapter assumes that the points it is fitting to were all

generated by the same planar surface. Methods to mitigate this were outlined in

Section 4.3.4 by attempting to determine if an extracted line segment was from a

linear or nonlinear surface.

A metric based on the relative variances parallel to and orthogonal to the line was

able to filter out over 80% of the false linear segments. It could filter out even more

if a low rate of false negatives is acceptable. This choice of threshold depends on

the aim of the method and in this work it was deemed more important to be robust

against nonlinear extracted line segments. This led to several small linear segments

being also removed. These were very short segments and in most cases there already

existed at least two other lines from that surface that could be successfully grouped

and used for plane fitting.

4.5.3 Feature Grouping

The feature grouping method outlined in Section 4.4 showed promising results. As

seen in Table 4.7, it was able to group 91% of the simulated surfaces successfully,

with 81% of those being able to have a good planar surface fitted to them. The

remaining 19% of these surfaces were unable to have a planar surface fitted to them

as they either contained only one laser line segment or they were missing several key

image edges. Neither of these problems stemmed from the grouping method itself

as the first was caused by the sparse scanning resolution and the second caused by

the image feature extraction process.

It should also be noted that within these groups the grouping of individual

features was performed accurately but conservatively, as in Table 4.8. Just under
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60% of 1977 image lines were assigned to a surface group and of these only 1 image

line was incorrectly grouped. The grouping of the laser line segments performed

even better with 90% of 142 line segments grouped and no false positives.

The grouping method was then applied to a real dataset, as seen in Tables 4.9

and 4.10. From the three 3D scans, 80% of the surfaces were successfully represented

by a feature group and all of these were able to have a good surface fitted to them.

Within these groups the rate of image line side and laser line segment grouping was

slightly lower than in the simulated case as the additional noise caused more difficult

features to exist. However, this rate was still just under 50% and still provided a

good grouping of features for use in surface fitting. The false grouping rate was also

higher for similar reasons.

This grouping method is not dependent on the matching and tracking of individ-

ual features unlike other feature grouping approaches previously mentioned. This is

a major benefit as it allows for some level of failure in the feature extraction process,

particularly with difficult image extraction scenarios. The most important aspect

is the image feature graph which this grouping method uses to associate grouped

image features. The grouping performance degrades as the quality and complete-

ness of the image feature graph reduces. It can be seen from the results that the

proposed grouping method is still reasonably robust to this.

Grouping failures can either be false negative groupings or false positive group-

ings. False negative groupings involve a feature not being grouped at all. As multiple

images are used, each feature can appear in multiple scans and has more than one

chance to be grouped if it is missed from an individual image. The worst case sce-

nario for a false negative is when the feature is not seen in any image and this leads

to that edge being unable to be represented on the planar surface fit to that group.

This is undesirable but not fatal.

On the other hand, a false positive grouping can lead to a catastrophic failure.

This occurs when a feature is associated to a surface group representing a different

surface. This leads to that group containing features from multiple surfaces and the
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resulting attempted planar surface fit will most likely bear no resemblance to any

real surface. This could lead to the wall climbing robot hitting an obstacle or falling

off the wall. It is for this reason that the grouping is performed conservatively, as

discussed above, and the low level of false positive feature grouping is a testament to

the success of this. Several post processing steps will also be introduced in Section

5.5.4. These aim to further tidy and remove any falsely grouped image features once

they have been merged together as polygon boundaries.

4.6 Summary

This chapter has presented the extraction and grouping of the image and range

features used in this thesis. These features are the basis for the planar surface

fitting performed in Chapter 5.

The extraction of the image lines and corners was discussed and the transfor-

mation of each image point into the world CF was detailed. The 2D range scans

were linearly segmented using several modifications to the existing incremental seg-

mentation approach. The addition of a pre-segmentation splitting step using image

edges was shown to be beneficial. This led to an improvement in the accuracy of

the segmentation edges. A method was also proposed which verified that each line

segment was generated from a linear surface. It successfully filtered out those line

segments that were caused by nonplanar surfaces being segmented in a piece-wise

fashion. This is important because of the planar assumption inherent to the surface

fitting process.

The proposed surface fitting approach requires that the extracted features are

grouped together and a method to perform this was presented. This grouping was

based upon structural similarity so that features generated by the same physical

surface were grouped together. It avoided feature matching and tracking across

images, as in other grouping approaches, and was able to handle multiple different

feature types. This grouping method successfully grouped features from 80% of

surfaces in the experimental test environment and the rate of false positive groupings
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was very low, at just over 2%. This will allow for good quality surfaces to be fitted

to the majority of the planar surfaces in an environment using the methods outlined

in Chapter 5.
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Chapter 5

Fitting Planar Surfaces to

Grouped Features

5.1 Introduction

The previous chapter described the process of extracting and grouping together

range and image features that were generated from the same physical surface. This

chapter proposes a method for fitting a planar surface patch to each of these feature

groups. The extracted planar surface patches will later be merged together with

those extracted from other 3D scans acquired at nearby poses. This will extend the

field of view, improve the surface accuracy and build a more complete 3D surface

map of the environment. This surface merging is the focus of Chapter 6.

The surface fitting method described in this chapter is a two step process. It

first involves fitting an infinite plane to the grouped laser line segments. This is

followed by the generation of polygon boundaries by projecting the image features

onto the recently fitted plane. The uncertainty information of each surface will also

be estimated. This surface fitting method will be described in detail and results

will be shown to demonstrate its accuracy. Several real and simulated datasets will

be used to demonstrate the basic approach while a series of further datasets will

be used to investigate the surface fitting performance using a variety of challenging
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realistic surfaces.

5.2 Surface Fitting Literature

The approach commonly used for fitting planar surface patches involves the use of

dense range images from either a 3D laser range finder [37][118] or a stereo vision

system [59][114]. These range images are segmented through either region growing

or edge based methods and then planes are fitted to each segmented point cloud.

This requires dense scanning and the segmentation can often be expensive and slow.

Because of this, an alternative approach was proposed in Chapter 4 to extract surface

features for plane fitting.

The proposed surface fitting method differs in that sparse laser and image data

are fused together and used to generate planar surfaces from a minimal number of

scans. This will speed up both the data acquisition and processing time to allow real

time operation using the limited computational resources of the CRACbot. This is

discussed further in Chapter 7.

While the idea of using both range and vision information to produce better 3D

maps is not a new one, the approach presented here is novel. A similar idea was

introduced by Zureiki et al. [37], who discussed the use of infinite line segments from

a camera image to add additional features for their EKF 3D SLAM approach. They

did not, however, implement this idea and their planar segmentation was based on

dense range scanning. Their approach also differs from the one presented in this

work, as their image lines were only intended to augment the planar surfaces as

additional EKF features. In this work the image line features are an integral part of

the planar surface segmentation and fitting processes and allow faster segmentation

by using sparse data scanning.

As discussed in Chapter 2, the simplest fusion approaches only applied colour

information to their 3D point clouds. This was useful for visualization purposes

only. Both Andreasson et al. [58] and Diebel et al. [57] used vision to interpolate

between laser range measurements. They used dense scans and high resolution im-
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ages to provide accurate and detailed surface models. These methods were, however,

computationally expensive and produced high density point clouds. Vision has been

also used to aid in segmentation by Andreasson et al. [69] and to add additional

range points to occluded areas in laser range images by Dias et al. [59] and Jiang

et al. [60]. All these approaches were aimed at increasing the data density rather

than reducing it and none of them used any planar surface fitting.

5.3 Overview of Proposed Surface Fitting Method

The method proposed in this thesis for fitting planar surface patches to sparse range

and image data is summarised below in Fig. 5.1.

Figure 5.1: Overview of surface fitting methodology.
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At each scanning position, a 3D surface scan is acquired. This is achieved through

taking a series of 2D scans by tilting the sensor suite through one angular DOF. This

is a simplification of the general case where consecutive 2D scans can be acquired

at any nearby pose. It simplifies the kinematics and thus the computational burden

to help achieve real time performance. This is also the easiest way to ensure that

there exists sufficient overlap between the 2D scans.

Features are extracted from the raw sensor data to be used for surface fitting.

They are then associated together into groups corresponding to the physical surfaces

that generated them. This was discussed in detail in Chapter 4.

Infinite Plane Fitting

A planar surface is fitted to the features from each group using the laser line segments

in the world CF. A minimum of two such line segments from different scans are

needed to fit a plane and additional line segments allow for an improved fit.

This plane fitting process assumes that the physical surface that generated the

range data was planar. This assumption needs to be confirmed by some means and

there are several aspects to consider. Firstly, the feature grouping process must be

robust and accurate to avoid incorrect associations. This was achieved in Section 4.4

by conservatively matching features so that marginal data was ignored. Secondly,

planes should only fit to points from linear laser segments. This will filter out the

majority of potential nonplanar surfaces. A method to verify the linearity of these

line segments was detailed in Section 4.3.4.

Polygon Boundary Generation

A series of polygons are projected onto the recently found planar surface for each

feature group. This uses the grouped image corners and lines. Each image provides

a separate boundary estimate and these are then merged together to provide the

final polygon boundary for the planar surface patch. This merging allows the corners

to be estimated more accurately as they are seen multiple times and it allows for
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redundancy in the feature extraction process. It also enables the planar surface

boundaries to be extended for large surfaces or occluded areas.

This step is necessary as, unlike other dense plane fitting approaches, the sparse

range data does not provide enough information to generate the surface polygon

boundaries. However, this approach does allow for very sparse and fast scanning of

the environment, as very few scans are needed to map the majority of the planar

surfaces in the scene. This is one of the major advantages of this approach, as the

number of scans can be reduced by an order of magnitude. The 2D Scans can be

acquired at an angular step of 5◦ − 10◦ as opposed to other plane fitting methods

that acquire dense range images by scanning at a step of 0.5◦ − 1◦.

The sparse scanning of this approach opens up the possibility for using an adap-

tive tilting step. The scanning can be sparser and faster when the Field of View

(FoV) consists of a few large objects such as walls. Areas of the scene with many

smaller objects could also be scanned more densely. This idea is discussed further

in Section 7.3.3.

5.4 Infinite Plane Fitting

Fitting infinite planes is the first half of the surface mapping method, as introduced

in Section 5.3. The fitting of each infinite plane involves two steps. Firstly, the pa-

rameters of the plane must be found. Secondly, the uncertainty of these parameters

must be estimated.

There are several viable plane models that can be used to represent a plane in

3D space. The general equation of a plane has the four parameters A,B,C,D as seen

below in (5.1). The Hessian plane model is a simple reformulation of the general

plane equation to physically meaningful parameters. Here A,B,C are normalised to

give the normal direction vector n and D is normalised by the same value to get the

distance d. This model is seen in (5.2).
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Ax+By + Cz+D = 0 (5.1)

n · p− d = 0 (5.2)

Other plane models have been derived from (5.1) and one useful model is seen

in (5.3). This is obtained by rearranging in terms of z and dividing through by the

C parameter. It has eliminated one parameter and this allows for a more compact

representation but at the cost of introducing singularities. This means that some

planes are impossible to represent using this model. It should be noted that while

each model discussed thus far may have used similar symbols they are, however, not

always representing the same value. This will be clarified later where appropriate

for those models that are used.

z = Ax+By +D (5.3)

Other models exist with different paramaterisations but the three models men-

tioned are the most useful, especially the Hessian plane model of (5.2) which is used

in many plane fitting approaches. This work uses the Hessian plane model for fitting

the infinite plane parameters but the uncertainty of these parameters will be found

using the model shown in (5.3). This is the approach taken by Weingarten [35].

However, their covariance calculations were incomplete and unproven. This work

will extend their approach by showing and proving the full derivation of the plane

parameter covariance equations in Section 5.4.2.

5.4.1 Calculation of Plane Parameters

For each group, an infinite plane is fitted to the set of supporting 3D points from

each grouped laser line segment, providing that two or more such segments from

different 2D scans are available. The points are transformed into the world CF and
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the plane is fitted using Principal Components Analysis (PCA).

The Hessian plane model shown in (5.2) has been used in this work. The param-

eters of this model are a unit normal vector n which is orthogonal to the plane and

the orthogonal distance d to the origin. These can be seen in Fig. 5.2 below. The

infinite plane is shown as dashed lines with an example polygon boundary shown by

the thicker red lines.

d

X

Y
Z

Xp

Zp

origin

infinite plane

pcog

n

Figure 5.2: Hessian plane model for infinite plane with planar polygon bound-
ary shown in red.

PCA is a commonly used method for fitting planes to 3D data points. It was

originally proposed for use in plane fitting by Pearson [119] and has also found

extensive uses in statistics and data analysis. More recent work using PCA for plane

fitting, particularly in the context of robotic mapping, has been done by Weingarten

et al. [118] and Poppinga et al. [70] amongst others.

PCA acts to generate a new orthonormal basis for a set of data points such

that the greatest variance lies in the direction of the first Principal Component

(PC) vector. The second PC direction then accounts for as much of the remaining

variance as possible and so on. In this manner, PCA can be used to fit an orthogonal

plane to a set of 3D points. The normal vector n of (5.2) is the third PC vector

found.
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Assuming the data was generated by scanning a plane and that the line segments

used were coplanar and from different 2D scans, then the third PC direction should

have the least variance. This also makes sense intuitively as the greatest variance

should lie along the plane in the first two PC directions, with the third direction

accounting only for noise and uncertainty. A useful tutorial on PCA is provided by

Shlens [120].

Using PCA for Plane Fitting

To use PCA to fit a plane, it is first required to find the centre of gravity pcog of

the 3D point dataset P . This is equivalent to the mean of the data points as shown

in (5.4).

pcog =
1

N

N
∑

i

pi =













x̄

ȳ

z̄













(5.4)

where

P =

[

p1 . . . pi . . . pN

]

=













x

y

z













=













x1 . . . xi . . . xN

y1 . . . yi . . . yN

z1 . . . zi . . . zN













(5.5)

PCA finds the eigenvectors of the covariance ΣP of the dataset P , in the order

of highest to lowest eigenvalues. This corresponds to the order of highest to lowest

variance directions. Each eigenvalue is proportional in size to the variance explained

by its corresponding eigenvector direction. The required covariance ΣP is found in

(5.6).

ΣP =
1

N − 1

N
∑

i

[

pi − pcog

] [

pi − pcog

]T

(5.6)

The normal vector n is then found using (5.7) where eig(X) generates the eigen-

vectors of a matrix X . The vectors v1 and v2 are the first two eigenvectors generated
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by this technique. They are chosen to be normalised so that V is an orthonormal

basis which can be used later as a rotation matrix.

V = eig(ΣP ) =

[

v1 v2 n

]

where λv1 > λv2 > λn (5.7)

After n has been found it is used to find the d parameter. This is done by

substituting n and any point lying on the plane into (5.2). The centre of gravity

point pcog is one such point as it can be shown to lie on the plane [118]. It can be

used to calculate d as shown in (5.8).

d = n · pcog (5.8)

The principal component vectors of V form an orthonormal basis of a new CF

aligned to the fitted plane. The inverse of V , which is also its transpose, can be used

as a rotation matrix to transform the input points pw from the world CF into the

plane CF to give points pp as in (5.9). The covariance Σw of the point in the world

CF is also used to generate the corresponding point covariance Σp in the plane CF.

pp = V T

[

pw − pcog

]

Σp = V TΣwV (5.9)

Likewise, V can be used to rotate a point in the plane CF back into the world

CF as in (5.10).

pw = V pp + pcog

Σw = V ΣpV
T (5.10)
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Robustness of Plane Fitting with PCA

The method of using PCA to fit planar surfaces is commonly employed in robotic

mapping applications, as mentioned previously. It is however important to recognise

that PCA is highly influenced by outliers and this can lead to poor plane fitting

performance if not properly addressed. In this thesis, several methods have been

proposed to minimise the appearance of outliers, particularly during the 2D line

segmentation process detailed in Section 4.3.

Single outlier points were detected during 2D line fitting, as seen in Fig. 4.4.

These outliers were removed from the line data set and so would not feed through

to the plane fitting process. The end points of each extracted line segment were also

ignored as seen in the proposed modified incremental line segmentation approach

shown in Algorithm 4.2. These boundary points were occasionally incorrectly seg-

mented due to the nature of the standard incremental line segmentation approach.

As PCA assumes it is fitting to planar data, it was important to also filter out

those extracted line segments that were generated by the piecewise linear fitting to

a curved surface. A method to achieve this was proposed in Section 4.3.4 to verify

the linearity of each line segment.

Incorrect grouping of line segments that appear to belong to the same plane can

also lead to problems with plane fitting using PCA. This is why the grouping method

proposed in Section 4.4 is performed conservatively. Before attempting to fit a planar

surface, the grouped line segments are checked to ensure that they are all coplanar.

This was detailed in Section 4.4.5. This grouping can occur when two adjacent

and non-coplanar surfaces are difficult to distinguish between and are subsequently

grouped together, as if they were from the same surface. In this situation a plane fit

would not be attempted, as is the case with other non-planar surfaces. Some other

method for mapping these surfaces could be used instead, but this is beyond the

scope of this thesis.

Alternative plane fitting methods, such as RANSAC [72], EM [67] and the Hough

Transform [110] are generally more robust than PCA to the presence of outliers in
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the segmented data. They do however suffer from other weaknesses which make

them impractical for use by a small wall climbing robot. RANSAC and EM are

both statistical plane fitting approaches and are very computationally expensive.

It is often only practical to run them offline which rules out their usage for real

time applications. The Hough Transform is predominantly used for line fitting,

particularly in computer vision applications. While it can be used for plane fitting

too, it suffers from discretisation and the correct choice of grid size can be difficult.

5.4.2 Derivation of Plane Parameter Covariance

The PCA method described above to find the plane parameters of a given point set

does not provide any uncertainty information. This must be found separately. A

least squares approach can be used to find this covariance for the plane parameters

in (5.2).

An Ordinary Least Squares (OLS) plane fit can be applied to any data set to

provide both the plane parameters and associated covariance. The plane model

used is (5.3) which was found by rearranging the general plane equation of (5.1), as

previously mentioned. This is restated below in (5.12) and reparameterised in terms

of β. It is then possible to derive the covariance of the OLS parameters β0,β1,β2

and then use these to calculate the covariances of n and d.

The OLS plane is, in general, not orthogonal to the data and so is less optimal

than an orthogonal fitting approach, such as PCA. This OLS fit only accounts for

fitting error in the Z direction of the 3D point set and so it is not identical to the

PCA plane fit found previously. Because of this, the use of OLS will not calculate

the desired orthogonal covariance of the PCA fitted plane, in the general case. The

desired covariance will only be found when the OLS plane fit aligns exactly with the

PCA plane fit.

It is, however, possible to first transform the data points into the PCA fitted
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plane CF defined by the PCA orthonormal basis whose origin is at the centre of

gravity point. In this CF the OLS plane fit aligns exactly with the PCA fit as

required. As the OLS covariance equations can be fit to any data set in any CF, the

choice is made to find the OLS covariance with the original 3D points having first

been rotated to align with the PCA plane in the plane CF. The desired covariances

of n and d can then be found and transformed back into the original CF.

This idea is demonstrated for the 2D case of a line in Fig. 5.3(a) below. In the

original world CF the OLS residuals (black), which operate on the error in the Y di-

rection only (Z direction for the 3D case), are not identical to the Euclidean distance

used for the residual by PCA (green) and other orthogonal fitting approaches. This

leads to the difference in the fitted planes. After rotating the points into the line

CF frame found using the PCA line fit, as shown in Fig. 5.3(b), the two residuals

now become identical and so the fitted lines will also be identical.

Xw

Yw Xp

Yp

PCA

OLS

(a) Data in world CF.

Xw

Yw

Xp

Yp

PCAOLS

(b) Data transformed into PCA line CF.

Figure 5.3: 2D Example of aligning OLS with the orthogonal PCA fit.

An alternative approach to using a this combination of PCA and OLS could be

to use Total Least Squares (TLS) [121]. The TLS approach accounts for error in all

residual directions during the fitting process rather than just the Z direction used by

OLS. The TLS fit is an orthogonal plane fit and so the coordinate transformation

required by the OLS approach above is unnecessary. The TLS plane fit would

align with the orthogonal PCA plane fit by definition. The TLS equations are

however more complicated to use, especially for the covariance calculations and so

this approach is not used here. The approach of using PCA and OLS provides plane
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fitting equations which are easier to calculate, particularly with the simplifications

introduced later in this chapter.

This PCA and OLS approach to calculating the plane covariance is an extension

of that used by Weingarten et al. [118], as described later in this section. They out-

lined this method as a way to find the plane covariance but they did not provide the

derivations or proofs that will be presented here to fully demonstrate this approach.

An alternative method for calculating the plane covariance was put forward by

Pathak et al. [122]. They derived an analytical method, using a newly proposed

LRF sensor model et al. [123], that calculated the covariance as the generalised in-

verse of a Hessian matrix containing second partial derivatives. This model had no

analytical solution and they acknowledged that incremental or numerical solutions

are unsuitable for real time applications, which is especially relevant for a compu-

tationally limited system such as the robot used in this work. They then went on

to derive an approximate model to allow a solution to be calculated and this did

alleviate some, but not all, of the computational burden.

Ordinary Least Squares Plane Fitting

For a point set P consisting of N points pw in the world CF, the general plane

equation for OLS fitting can be restated as in (5.11). Here x,y, z are column vectors

containing the individual x,y,z values of each point in P T , as in (5.5).

Ax+By + Cz+D = 0 (5.11)

By rearranging as a function for z and changing the parameters to β0, β1, β2, an

amenable form is achieved, as in (5.12).

z = β0x+ β1y + β2

β0 =
−A
C

β1 =
−B
C

β2 =
−D
C

(5.12)
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With the plane equation in this form, the individual x,y,z coordinates of each

point pw are substituted. The equation is converted into matrix form consisting of

N rows, one for each of the N 3D points. This can be simplified and rearranged for

β as in (5.13), where M is a matrix containing N rows of the x,y values.

z =Mβ (5.13)

This equation consist of three matrices. Firstly, z is the column vector consisting

of the z values of each point as above. Secondly, M is the Nx3 matrix containing

the x and y values. Finally, β = [β0 β1 β2]
T is the 3x1 vector containing the desired

plane parameters. Using these matrices, (5.13) can be expanded as (5.14).

























z1
...

zi
...

zN

























=

























x1 y1 1

...
...

...

xi yi 1

...
...

...

xN yN 1





































β0

β1

β2













(5.14)

To solve for β, (5.13) is rearranged using the pseudo-inverse of M as in (5.15).

For the inverse of MTM to exist, M must be full rank. This requires M to contain

at least three points that are linearly independent of each other. This should be

the case for any set of three or more points that were generated from at least two

different tilt angles.

β = [MTM ]−1MT z (5.15)

Equation (5.15) can be used to find the covariance of the parameters β if it is

expanded symbolically to allow partial derivatives to be found.

This can be easily calculated numerically to find β to provide an OLS plane fit.

However, this is undesirable and unnecessary. This OLS fit is not an orthogonal fit

as it only considers errors in the Z and ignores any in the X and Y directions. It
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does not therefore align with the PCA plane parameters found previously.

This problem is solved by first transforming the points from the world CF onto

the plane CF. In this CF the Z axis aligns with the normal vector of the plane. The

errors in the X and Y directions now lie along the surface of the plane and so are

not relevant. All the remaining error is now normal to the plane and lies exclusively

in the Z direction. The OLS plane now aligns with the PCA plane fit. This is the

approach taken by Weingarten et al. [118]. The remainder of this section extends

their approach by fully deriving, proving and simplifying the necessary equations.

It is also important to note that this approach to calculating the covariance does

not fit the plane twice even though two different plane models are used. This was

claimed by Pathak et al. [122] as their main criticism of this covariance calculation

method and this will be shown not to be the case. The Hessian plane model of

(5.2) is fitted using PCA and this is the only time that plane fitting is performed.

The OLS plane model of (5.12) is used only to derive the covariance equations that

follow.

Using the OLS Fit to Calculate the Plane Covariance

The covariance Σβ of the OLS plane parameters β can be calculated from the co-

variances of each input point. This is done using (5.16) where Σin is a matrix with

the covariance matrices of each input point along its diagonal, as in (5.17), Jβ is the

Jacobian of β with respect to each input point’s x, y and z coordinates, as in (5.19).

Σβ = JβΣinJ
T
β (5.16)

where
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Σin =

























Σ1 0

. . .

Σi

. . .

0 ΣN

























(5.17)

Jβi =













∂β0
∂xi

∂β0
∂yi

∂β0
∂zi

∂β1
∂xi

∂β1
∂yi

∂β1
∂zi

∂β2
∂xi

∂β2
∂yi

∂β2
∂zi













(5.18)

and where

Jβ =

[

Jβ1 . . . Jβi . . . JβN

]

(5.19)

The Jacobian Jβi of (5.18) can be found by taking the partial derivatives of

(5.15). This requires the inverse [MTM ]−1 to be found symbolically, rather than

numerically, to allow for the partial derivatives to be found. Firstly, MTM needs to

be expanded as shown below in (5.20).
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MTM =













xT

yT

1T













[

x y 1

]

=













x1 . . . xi . . . xN

y1 . . . yi . . . yN

1 . . . 1 . . . 1





































x1 y1 1

...
...

...

xi yi 1

...
...

...

xN yN 1

























=













∑

i x
2
i

∑

i xiyi
∑

i xi
∑

i xiyi
∑

i y
2
i

∑

i yi
∑

i xi
∑

i yi N













(5.20)

The symbolic inverse of (5.20) is found using the standard formula for a 3x3

matrix inverse.

[MTM ]−1 =
F

|MTM | (5.21)

where

F =













N
∑

i y
2

i −(
∑

i yi)
2

∑
i xi

∑
i yi−N

∑
i xiyi

∑
i xiyi

∑
i yi−

∑
i xi

∑
i y

2

i

∑
i xi

∑
i yi−N

∑
i xiyi N

∑
i x

2

i−(
∑

i xi)
2

∑
i xiyi

∑
i xi−

∑
i x

2

i

∑
i yi

∑
i xiyi

∑
i yi−

∑
i xi

∑
i y

2

i

∑
i xiyi

∑
i xi−

∑
i x

2

i

∑
i yi

∑
i x

2

i

∑
i y

2

i −(
∑

i xiyi)
2













(5.22)

and where

|MTM | =N
N
∑

i=1

x2i

N
∑

i=1

y2i + 2

N
∑

i=1

xi

N
∑

i=1

yi

N
∑

i=1

xiyi

−
N
∑

i=1

y2i

(

N
∑

i=1

xi

)2

−
N
∑

i=1

x2i

(

N
∑

i=1

yi

)2

−N
(

N
∑

i=1

xiyi

)2

(5.23)
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The remaining term of (5.15) is expanded symbolically in (5.24).

MT z =













xT

yT

1T













z

=













x1 . . . xi . . . xN

y1 . . . yi . . . yN

1 . . . 1 . . . 1





































z1
...

zi
...

zN

























=













∑

i xizi
∑

i yizi
∑

i zi













(5.24)

It is now possible to write equations explicitly for β0, β1, β2 in terms of the input

points xi, yi, zi. Each row vector of (5.21) is multiplied with (5.24) to give (5.25 -

5.27). The notation Fab refers to the entry at row a, column b of (5.22).

β0 =
1

|MTM |

[

F11

∑

i xizi F12

∑

i yizi F13

∑

i zi

]

(5.25)

β1 =
1

|MTM |

[

F21

∑

i xizi F22

∑

i yizi F23

∑

i zi

]

(5.26)

β2 =
1

|MTM |

[

F31

∑

i xizi F32

∑

i yizi F33

∑

i zi

]

(5.27)

The required partial derivatives for the Jacobian Jβi in (5.18) can be found using

the quotient rule for differentiation shown in (5.28). The numerator term, denoted

by fi, consists of the 1×3 matrix from the RHS of (5.25-5.27).
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δβi
δx

=
δfi
δx
|MTM | − δ|MTM |

δx
fi

(|MTM |)2 where βi =
fi

|MTM | x = xi, yi, zi (5.28)

These partial derivatives are long and complicated if taken in the original world

CF. As mentioned above, the OLS fit used above also does not align with the

orthogonal plane fit found using PCA in (5.7). These two issues can be solved by

transforming the 3D points into the CF defined by the orthonormal basis supplied

by the PCA plane fitting. This idea was proposed by Weingarten et al. [118]

but their work did not provide the full derivations here. The simplified covariance

equations and proofs presented below are new contributions over and above that of

Weingarten.

It will be shown that the partial derivatives can be significantly simplified using

lemmas (5.4.1) and (5.4.2) below. The covariance can be found in the plane CF and

the inverse transformation can then be applied to get the plane covariance in the

world CF, as required.

Covariance Calculation in Plane CF

The input data points are transformed into the plane CF defined by the axes and

origin found using PCA in (5.9). In this new CF, the fitted plane lies along the

X, Y axes as expected, because it is aligned with the CF axes and passes through

the origin by definition. Therefore the plane parameters are exactly n = [0 0 1]T

and d = 0. This will be shown to be true later. These parameters are not of interest

as PCA has already provided them in the original world CF. It is possible, however,

to calculate the covariance matrix Σβ as outlined above and use this to determine

the covariance matrix Σn and variance σd.

The following two lemmas allow the partial derivatives for equations (5.25-5.27)

to be significantly simplified, as in the plane CF many of the sum terms equate

exactly to zero. They can also be used to show that the parameters β from (5.12)

also all equal 0.
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Lemma 5.4.1. In the plane CF defined by the orthonormal basis vectors and origin

supplied from a PCA planar fit, the vector sum of the data points is exactly equal to

0. For clarity the coordinate frame subscripts will be noted as superscripts with pp

being in the plane CF and pw being in the world CF.

N
∑

i=1

pp

i =













0

0

0













which leads to
N
∑

i=1

xpi =
N
∑

i=1

ypi =
N
∑

i=1

zpi = 0

Proof. Equation (5.9) outlines the transformation to obtain a point pp in plane

coordinates as below.

pp = V T [pw − pcog]

By taking the sum of all N points and substituting in (5.4) for pcog, the desired

result is achieved.

N
∑

i=1

pp

i =

N
∑

i=1

(

V T [pw
i − pcog]

)

= V T

(

N
∑

i=1

pw
i −

N
∑

i=1

pcog

)

= V T

(

N
∑

i=1

pw
i −Npcog

)

= V T

(

N
∑

i=1

pw
i −N

1

N

N
∑

i=1

pw
i

)

=













0

0

0
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Lemma 5.4.2. In the plane CF defined by the orthonormal basis vectors and origin

supplied from a PCA planar fit, the vector sum of product data points are exactly

equal to 0. For clarity the coordinate frame subscripts will be noted as superscripts

as above.

N
∑

i=1

xpi y
p
i =

N
∑

i=1

xpi z
p
i =

N
∑

i=1

ypi z
p
i = 0

Proof. Equation (5.9) outlines the transformation to obtain a point pp in the plane

CF as below.

pp = V T [pw − pw
cog]

The point set P p in the plane CF, as in (5.5), can then be written as below using

Pw
0 which is the mean centred point set in the world CF.

P p = V TPw
0 where Pw

0 = Pw − Pcog

P p can be multiplied by its transpose to get the matrix P p(P p)T . This contains

the desired plane CF sum of product terms which are located outside the main

diagonal. All that remains is to then show that P p(P p)T is a diagonal matrix and

therefore the off diagonal terms must by definition be exactly 0.

P p(P p)T =













∑

i(x
p
i )

2
∑

i x
p
i y
p
i

∑

i x
p
i z
p
i

∑

i x
p
i y
p
i

∑

i(y
p
i )

2
∑

i y
p
i z
p
i

∑

i x
p
i z
p
i

∑

i y
p
i z
p
i

∑

i(z
p
i )

2













By substituting back in the original equation for P p it can be shown that the

matrix P p(P p)T is the product of a square matrix Pw
0 (P

w
0 )

T and V matrices. A

square matrix is diagonalised by its eigenvector matrix in exactly this form so it

now remains to show that V is the eigenvector matrix of Pw
0 .
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P p(P p)T = V TPw
0 (V

TPw
0 )

T

= V TPw
0 (P

w
0 )

TV

From (5.7) it is known that V consists of the eigenvectors of the covariance ΣwP

of Pw from (5.6). This can be rewritten using Pw
0 .

ΣwP =
1

N − 1

N
∑

i=1

[

pw
i − pw

cog

] [

pw
i − pw

cog

]T

=
1

N − 1
Pw
0 (P

w
0 )

T

The 1
N−1

term has no influence on the eigenvectors of ΣwP , as they are normalised,

and so it can ignored. The only influence this constant term has is on the size of the

eigenvalues. This is not an issue as only their relative size is important in ordering

the eigenvectors.

V = eig(ΣwP )

= eig(
1

N − 1
Pw
0 (P

w
0 )

T )

= eig(Pw
0 (P

w
0 )

T )

It can therefore be seen that the square matrix Pw
0 (P

w
0 )

T is diagonalised by

its eigenvector matrix V and so P p(P p)T is therefore a diagonal matrix. This ne-

cessitates that the off diagonal sum of product terms are exactly equal to zero as

required.
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The two above lemmas can now be used to simplify the partial derivative equa-

tions significantly and they allow the Jacobian terms of (5.18) to be easily calculated.

It can also now be seen from (5.24) thatMT z is equal to 0 and therefore using (5.25-

5.27) it can be seen that β0 = β1 = β2 = 0. The partial derivative equation from

(5.28) can now be simplified, as the numerator fi for βi is equal to zero.

∂β

∂x
=

∂f

∂x

|MTM | (5.29)

The derivation for ∂β0
∂xi

is shown below. The remaining partial derivatives are

found similarly.

∂β0
∂xi

=
1

|MTM |
∂f0
∂xi

(5.30)

First the partial derivative ∂f0
∂xi

is found.

f0 =



N

N
∑

i=0

y2i −
(

N
∑

i=0

yi

)2




N
∑

i=0

xizi +

(

N
∑

i=0

xi

N
∑

i=0

yi −N
N
∑

i=0

xiyi

)

N
∑

i=0

yizi

+

(

N
∑

i=0

xiyi

N
∑

i=0

yi −
N
∑

i=0

xi

N
∑

i=0

y2i

)

N
∑

i=0

zi (5.31)

∂f0
∂xi

=



N

N
∑

i=0

y2i −
(

N
∑

i=0

yi

)2


 zi +

(

N
∑

i=0

yi −Nyi
)

N
∑

i=0

yizi

+

(

yi

N
∑

i=0

yi −
N
∑

i=0

y2i

)

∑

i

zi (5.32)

This partial derivative can be greatly simplified by using lemmas 5.4.1 and 5.4.2

which allow most of the sum terms to be set to zero. This leaves the only remaining

non-zero terms as in 5.33.

130



CHAPTER 5. FITTING PLANAR SURFACES TO GROUPED FEATURES

∂f0
∂xi

=

(

N
N
∑

i=1

y2i

)

zi (5.33)

Next the denominator |MTM | from (5.23) is found and also simplified in the

same manner to leave only non-zero terms.

|MTM | = N

N
∑

i=1

x2i

N
∑

i=1

y2i (5.34)

Substituting (5.33) and (5.34) into (5.30) gives the desired partial derivative in

the plane CF, as seen in (5.35) below. This is used in the Jacobian Jβi of (5.18).

∂β0
∂xi

=
(N
∑

i y
2
i ) zi

N
∑

i x
2
i

∑

i y
2
i

=
zi

∑

i x
2

(5.35)

The other eight partial derivatives can be derived in a similar manner and sub-

stituted into (5.18) to give Jβi as shown below in (5.36). Four of these partial

derivatives equate exactly to zero as they do not contain any non-zero terms.

Jβi =













∂β0
∂xi

∂β0
∂yi

∂β0
∂zi

∂β1
∂xi

∂β1
∂yi

∂β1
∂zi

∂β2
∂xi

∂β2
∂yi

∂β2
∂zi













=













zi∑
i x

2

i

0 xi∑
i x

2

i

0 zi∑
i y

2

i

yi∑
i y

2

i

0 0 1
N













(5.36)

This finally allows the covariance matrix Σβ to be found in the plane CF using

(5.16). This equation can be rewritten as an iterative sum as in (5.37) below. Note

that Σin is the block diagonal input covariance matrix which contains all the input

point covariances.

Σβ = JβΣinJ
T
β =

N
∑

i=1

JβiΣiJ
T
βi

(5.37)
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Covariance Transformation to the World CF

It now remains to use Σβ to find the covariance Σn and variance σd in the plane

CF. These can then be transformed back into the world CF to find the desired

plane parameter uncertainty. This is done by using the partial derivatives of the

transformation from β to n and d to transform the uncertainty.

Using (5.12) with C = 1 allows the general plane parameters of (5.11) to be

found in terms of β.

A = −β0 B = −β1 C = 1 D = −β2 (5.38)

Equation (5.11) can be rearranged to mirror (5.2) and it can be easily seen that

A,B,C is related to n and D is related to d.

Ax+By + Cz+D = 0












A

B

C













·













x

y

z













+D = 0 (5.39)

Equation (5.39) can be normalised so that the normal vector [A B C]T has a

magnitude of 1. This leads to equations for n and d in terms of β.

n =













nx

ny

nz













=
1√

A2 +B2 + C2













A

B

C













=
1

√

β2
0 + β2

1 + 1













−β0
−β1
1













(5.40)
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d =
−D√

A2 +B2 + C2

=
β2

√

β2
0 + β2

1 + 1
(5.41)

It can now be seen by substituting β0 = β1 = β2 = 0 into (5.40) and (5.41) that

in the plane CF, n = [0 0 1]T and d = 0, as previously stated.

To calculate the covariance matrix Σn of the normal vector n, the Jacobian Jn

is used, as shown in (5.45). The component partial derivatives are easily calculated.

The derivation of ∂nx

∂β0
is shown below.

nx =
β0

√

β2
0 + β2

1 + 1
=
f

g
(5.42)

The quotient rule is again used to find the partial derivatives as shown below in

(5.43). This is simplified by using β0 = β1 = 0 to get f = 0 and g = 1.

∂nx
∂β0

=

∂f

∂β0

g

=
1√
1

= 1 (5.43)

The remaining partial derivatives are found similarly to get the jacobian Jn. This

allows Σn to be found in the plane CF, as in (5.45) below.

Jn =













∂nx

∂β0

∂nx

∂β1

∂nx

∂β2

∂ny

∂β0

∂ny

∂β1

∂ny

∂β2

∂nz

∂β0

∂nz

∂β1

∂nz

∂β2













=













1 0 0

0 1 0

0 0 0













(5.44)
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Σn = JnΣβJ
T
n =













σ2
β00

σ2
β01

0

σ2
β01

σ2
β11

0

0 0 0













(5.45)

Likewise the variance σ2
d of d is found in the place CF, as in (5.47).

Jd =

[

0 0 1

]

(5.46)

σ2
d = JdΣβJ

T
d = σ2

β22
(5.47)

These give the desired uncertainty information for the plane parameters. All

that remains is to transform them back into the original world CF, as shown below

in (5.48) and (5.49). The distance parameter d is the same in both CFs because

the coordinate transformation is orthonormal and therefore the variance σ2
d remains

unchanged.

(Σn)w = V (Σn)pV
T (5.48)

(σ2
d)w = (σ2

d)p (5.49)

5.5 Generation of Planar Polygon Boundaries

The previous section detailed the method for fitting an infinite plane to the acquired

range data. Unlike other surface mapping approaches that operate on dense point

clouds, sparse range scanning does not supply enough information to determine the

polygon boundaries of each plane. Instead, the method proposed here uses the

extracted image features to estimate the boundary information. The image corners

act as the primary basis for the boundary of the plane and the image lines provide

information as to the connectedness of those corners.
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The simplest plane fit involves two laser lines and one camera image. In this

case, the polygon is bounded by the extracted corners and, by adding a second or

third image, it is possible to improve the accuracy of the boundary. It can also be

expanded if the camera FoV is limited or occluded. These new corners need to be

matched and fused incrementally with the boundary corner estimates.

An example of this process is shown below in Fig. 5.4. The grouped features

from three consecutive images for the black paper surface are shown in Fig. 5.4(a).

The projected boundaries in the plane CF of each of the three images can be seen

in Fig. 5.4(b). The corner location uncertainty is demonstrated using ellipses set at

one standard deviation in the X and Y directions. The merged polygon boundary

is shown in Fig. 5.4(c).

Prior to the matching and fusion of the image corners, it is first necessary to

transform the pixel location pi=[u v 1] from the camera into the world CF. They

can then be projected onto the plane to get their 2D corner location in the plane

CF. The equations to perform this transformation were derived in Section 4.2.3.

5.5.1 Corner and Line Registration

The image feature boundary information from the first scan is set as the initial poly-

gon boundary. Each new scan can be overlaid on top of the current boundary with

full uncertainty information. This new scan can then be incrementally registered

and merged into the current polygon boundary estimate. A similar problem was

tackled by Neira et al. [124] for data association of features for 2D SLAM.

In this work, each new line and corner is checked for a match to an existing

boundary feature. If a correspondence is found, they are marked as being a match

to await merging. This is done by finding the closest corner pair and assigning them

as a match. Then each line from that corner is followed in turn and the subsequent

corners are also checked for a match. This allows the connectivity of the image lines

to be preserved whilst using the corners to anchor those lines to the plane.

Once these chains are exhausted, the remaining unmatched corners are checked,
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(a) Grouped features for black paper surface.

(b) Individual planar polygon boundaries pro-
jected onto infinite plane.

(c) Merged polygon boundary.

Figure 5.4: Example of polygon boundary merging with uncertainty ellipses.

the next closest corner match is used and then the process repeats until no matched

corners remain. Any corners that are still unmatched at this point are considered

for addition to the boundary, if they extend it sufficiently.

Image Line and Corner Types

The registration process requires different approaches to handle the different types

of image corners or lines being matched. As mentioned in Section 4.2.1, the outer

edges of the camera image introduce virtual image corners and lines that do not

correspond to physical surface corners or edges. These are useful as they allow the

image boundaries to be closed when the FoV is limited. They are preserved until

subsequent images expand the surface boundary and eventually the true image edge

can be seen. The matching of these virtual features is more complicated than the

standard features and each matching case will be discussed below.
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The following definitions are used in the remainder of this work. An example of

each can also be seen in Fig. 5.5.

Corner: An image corner corresponding to a physical corner.

Line: An image line corresponding to a physical surface edge.

Virtual Corner: An image corner introduced by an image line intersecting the

outer image edge. The four outer corners of the image are also virtual corners,

but these correspond to virtual lines instead.

Virtual Line: An image line introduced by the outer image edge that connects two

virtual corners.

corner

line virtual corner

virtual line

Figure 5.5: Examples of real and virtual image features.

5.5.2 Registration Combinations

During the registration process each combination of feature types, virtual or real,

must be handled differently. The virtual features represent different feature infor-

mation with respect to the underlying physical surface.
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Firstly, corners should be matched with other corners until all possible matches

are corresponded. The next two stages involve matching the lines of remaining

unmatched corners and virtual corners to lines present in the other scan. This is

a two way process as the new scan corners should be matched to boundary lines

and vice versa. The concept is the same for both cases of line matching. However,

they each generate different points to be merged with. This is explained in more

detail below. The final matching step is to use the remaining unmatched features

to extend the boundary, if they lie outside it.

Matching a Corner to a Corner

The matching of corners from the new scan to those already existing in the boundary

is performed by finding the Mahalanobis distance between each potential pair using

(5.50). This is a standard measure of the distance between two vectors. It is

essentially a 2D cartesian distance with each direction normalised by the combined

point covariance.

dM =

√

[p1 − p2]
T [Σ1 + Σ2]

−1 [p1 − p2] (5.50)

If this distance dM is less than a threshold value of 2.5 standard deviations,

then the two points are matched with each other. This value was chosen as it

corresponds to a 99% probability that the two points coincide and thus are in fact

the same point. At this stage an additional check is also made to verify that these

two matched corners have similar line connectivity to other matched corners between

the boundary and the new scan. This ensures that the image line connectivity of

the polygon boundary is preserved.

Matching a Corner to a Line

If a corner is not close to any existing corner, then it may be possible to match it

to an existing line. This occurs most often in the situation where an image edge is

over segmented in one scan and so a corner is generated in the middle of an image
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line. This can be seen in Fig 5.6(a) below.

This matching process requires lines to be matched together rather than the cor-

ners themselves. The candidate lines are found by first taking the lines terminating

at the corner in question and checking whether any of the corners at the opposite

end of these lines have already been matched. If such a corner is found, the angle

and distance between the two lines are checked to see if they are similar. When a

match is found, the corner is projected onto the line using (5.51). This splits the

image line at p0 and generates a new corner to merge with. This is shown in Fig.

5.6(b).

(a) Over segmented image line (blue) matched
to an image line (red).

p0

p1

p2

p3

(b) Projected corner position p0 for merging
with p3.

Figure 5.6: Matching of a corner to a line.

p0 =







x0

y0






= p1 + u(p2 − p1) where u =

(p3 − p1) · (p2 − p1)

|p2 − p1|2
(5.51)

This can be expanded out for the components of p0 as in (5.52) and (5.53).

These will be used to find the partial derivatives, as required for (5.54) below. This

will allow the uncertainty of this new point to be found.

x0 = x1 +
(x3 − x1)(x2 − x1)2 + (y3 − y1)(y2 − y1)(x2 − x1)

(x2 − x1)2 + (y2 − y1)2
(5.52)
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y0 = y1 +
(x3 − x1)(x2 − x1)(y2 − y1) + (y3 − y1)(y2 − y1)2

(x2 − x1)2 + (y2 − y1)2
(5.53)

The covariance Σp0 of this new point p0 can be calculated from the individual

covariances of the three input points using the Jacobian of p0, as shown in (5.54).

Σp0 =

3
∑

i=1

JpiΣpiJ
T
pi

where Jpi =







∂x0
∂xi

∂x0
∂yi

∂y0
∂xi

∂y0
∂yi






(5.54)

A final check should be done to ensure that the point lies within the line segment

it is being projected onto. This is the case if u from (5.51) lies between 0 and 1.

If this is true, then the corner is added into the boundary and it is assigned as a

match to the original corner p3.

Matching a Virtual Corner to a Line

Virtual corners are matched to lines in a very similar manner to that of corners to

lines, as above. The major difference is that virtual corners do not correspond to

actual physical corners, as they were instead generated by the outer boundary of the

image. The line they terminate likely continues some distance outside the camera

FoV and so it makes sense to merge with the corner there, rather than looking for

one near the location of the virtual corner. It stands to reason that if the virtual

corner was generated by the same physical line that it was matched with, then the

length of its line should also be similar.

After matching a virtual corner to a line, instead of projecting the corner onto

the line as above, the virtual corner’s line should be extended to match the length of

the line it was matched to. This is seen in Fig. 5.7(a). This new corner, generated

at the endpoint of the extended line, can then be merged with the matched corner.

Equations (5.51) and (5.54) can also be used to find this point as above. However,

the points involved are slightly different, as shown in Fig. 5.7(b) below. The other

difference requires that the value of u should lie outside the range 0 to 1 to indicate

that the projected point does not lie on the line segment.
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(a) Virtual corner on image line (blue) matched
to image line (red).

p0

p1

p2

p3

(b) Projected corner position p0 for merging
with p0.

Figure 5.7: Matching of a virtual corner to a line.

Unmatched Corners and Lines

Any remaining corners and lines in the new scan that have not yet been matched

can be used to extend the current polygon boundary. This is a similar process to

taking the union of the current boundary and the new scan boundary after first

merging the matched feature pairs. These missing features fall into two categories.

Firstly, some difficult surface edges may not have been extracted or grouped in

previous scans and so they should be added into the boundary. This is done by

finding, if possible, a matched corner in the boundary and then adding the missing

lines and corners that extend from that point.

Secondly, virtual lines should be added to the boundary if they occur outside

the image boundary and if they extend other virtual lines. Virtual lines should not

be merged together as they do not correspond to physical surface edges. The outer

most virtual line should be kept and any interior virtual lines should be removed

from the boundary as they become redundant. This removal can be done here or as

a post processing step, as detailed in Section 5.5.4.

5.5.3 Merging of Registered Corners

After the matching process has been completed for the new scan, all matched corner

pairs are merged together to produce an updated boundary estimate. This merging

process is performed incrementally with the addition of each new scan to simplify

the corner registration process. The merging itself, however, could be undertaken
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as a batch operation at any stage if a different registration process was used.

The merging is based on the standard Kalman Filter (KF) equations to provide

an optimal linear estimate. A motion model is not needed as the planar surface can

be considered stationary. The state variable is the 2D point pb, with covariance

matrix Σb, which is the corner location in the plane CF of the current boundary.

The Z coordinate is not used because in the plane CF the corner lies on the plane

and so it is equal to zero. The matched corner location from the new scan is denoted

pn, with a 2×2 covariance matrix Σn.

The subscript denotes the index of the new scan being integrated into the polygon

boundary with pb
k−1 being the boundary prior to merging. The polygon boundary

is denoted as pb
k after it has been merged with the new scan. The superscripts n

and b denote a point from the new scan and boundary respectively.

The state and covariance update steps both require the calculation of the Kalman

GainKk as in (5.55). This is a measure of the relative uncertainties of the new corner

measurement pn
k and the current corner boundary location pb

k−1.

Kk = Σbk−1[Σ
b
k−1 + Σnk ]

−1 (5.55)

The state update step is shown in (5.56). This generates the new corner lo-

cation pb
k as a weighted sum of the old corner location pb

k−1 and the new corner

measurement pn
k. The weight used is the Kalman Gain Kk from (5.55).

pb
k = pb

k−1 +Kk[p
n
k − pb

k−1] (5.56)

Similarly, the covariance update step of (5.57) is used to generate the new corner

location covariance Σbk where I is a 2×2 Identity matrix.

Σbk = [I −Kk]Σ
b
k−1 (5.57)
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5.5.4 Post Processing of Polygon Boundaries

Due to the unique nature of this surface mapping approach, it was necessary to

develop the polygon boundary merging methods detailed above. The boundaries

that are produced are, however, still short of the quality required for robotic use.

After the registration and merging steps are complete, a post processing step is

required to improve the quality of the polygon boundaries. Several methods are

proposed below to solve common problems in the boundaries that are generated.

Erroneous boundary lines are removed if they made it through the registration

process or were caused by poor feature grouping. It is also possible to close small

gaps in the polygon boundary using surrounding information. These both help to

ensure that a quality closed polygon boundary is generated. Finally, any collinear

adjacent boundary segments are merged to simplify the boundary representation.

Removal of Inconsistent Edges

The registration process sometimes produces two types of erroneous boundary lines

that should be removed to improve the quality of the polygon boundary.

The first type of edge that should be removed are those that lie inside the poly-

gon. It is important to differentiate these bad edges from legitimate edges that lie

internal to the polygon because non-convex hulls are valid. The erroneous internal

lines generally connect to a corner lying on the polygon boundary and so are easily

identified by looking for corners that connect more than two boundary lines. The

image lines that were extracted and grouped contain information about the inside

of the line and this allows the inside of the boundary to be distinguished from the

outside. Such internal lines are most often caused by virtual lines that, by definition,

are internal to a surface and should be removed once they have been extended and

become redundant. This removal can be performed during boundary merging or as

a post processing step.

The second type of erroneous edge are those that lie outside the polygon bound-

ary. They are often caused by a false grouping during the feature grouping stage of
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Section 4.4. These are identified in a similar manner to the false internal boundary

lines. As the inside of each image line is known, the outside of the polygon boundary

can be determined. Any image line that lies on the outside of the boundary, espe-

cially if it connects to a corner that already has two other lines on the boundary, is

likely a false line and should be removed.

An example of a surface containing such edges that require removal is shown

below in Fig. 5.8. The resulting polygon boundary, shown in Fig. 5.8(d), was

generated from the image lines of three images. It has two lines that should be

removed. This first is an internal line caused by a virtual line from the bottom edge

of Fig. 5.8(a). The second line to be removed is a falsely grouped line from Fig.

5.8(b). The third image has all four image lines correctly extracted and grouped as

seen in Fig. 5.8(c).

Closing of Small Gaps in the Boundary

Another useful post processing step is to join small gaps in the boundary to provide

a closed polygon. Often these gaps are small and easily joined, as is the case where

a small segment of an image edge was missed during extraction or grouping. An

example of such small gaps being filled is shown in Fig. 5.9(a) by the red lines,

which are also circled for clarity.

The criterion used to find such gaps requires a pair of nearby corners that each

have less than two lines connected to them. If the Mahalanobis distance between

these two corners, found using (5.50), is less than 2.5, then they are connected by a

new boundary line.

If the gap is too large, then more effort is required to estimate a boundary, if

at all possible. This generally occurs in situations when whole image lines are not

extracted or grouped. This is usually due to difficult feature extraction conditions

such as similar surface material and colour. In this case the two corners are tenta-

tively joined but the line is marked as being a temporary line in a similar fashion

to virtual lines. This is shown by the dotted red line in Fig. 5.9(b).
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(a) Extracted image lines
(white) with virtual line from
bottom edge.

(b) Extracted image lines with
falsely grouped line from wrong
surface (ground).

(c) All four image lines cor-
rectly extracted and grouped.

virtual line

falsely grouped

(d) Polygon boundary with er-
roneous lines to be removed.

Figure 5.8: Polygon boundary simplification by removing erroneous lines.

This allows the polygon boundary to be closed for visualisation purposes and

allows navigation to proceed cautiously in those areas near this new line until more

information is acquired. When this surface is merged with that of following 3D scans

it may be possible to fill in the gap with real lines and thus the temporary line can

then be removed.

Merging of Linear Boundary Lines

This registration and merging method has a tendency to produce corners within

linear boundary edges. These should be removed as the edge is otherwise linear and

this allows the boundary representation to remain compact. The main reason for
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(a) Two small gaps filled (circled red lines). (b) One large gap tem-
porarily filled (dotted red
line).

Figure 5.9: Examples of filling gaps in the polygon boundary.

these extra corners is the occasional over segmentation of image lines during feature

extraction as well as over segmentation at image T junctions. This leads to new

corners being introduced within linear edges, as described in Section 5.5.2.

These extra corners provide useful information, as the algorithm itself cannot

distinguish between an over segmented line segment and a true corner. The merging

process takes care of this because a falsely over segmented line will get merged back

into the line with subsequent observations if it is indeed truly linear. In this case

the corner is redundant and can be removed without any loss of information.

The angle θc of each corner in the boundary can be calculated, as shown in Fig.

5.10, using (5.58). This allows redundant corners to be identified if this angle is

close to 180◦. A threshold of 8◦ was used, as this was the threshold used during the

extraction of image corners in Section 4.2.1.

p0p1 p2

θc

Figure 5.10: Image corner angle calculation.
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θc = cos−1 ([p2 − p0] · [p1 − p0]) (5.58)

Each corner that is identified with θc < 8◦ is removed from the boundary and the

two lines it connects are merged into one. This simplifies the storage and subsequent

usage of the polygon boundary. An example from the real dataset is shown below

in Fig 5.11. A polygon boundary with several redundant corners is shown in Fig.

5.11(a). After identifying and removing several corners, the final boundary is seen

in Fig. 5.11(b) with only the significant boundary corners remaining.

(a) Polygon boundary with several redundant corners from experimental dataset.

(b) Linear corners merged leaving only significant corners.

Figure 5.11: Polygon boundary simplification by removing redundant corners.
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5.6 Results of Planar Surface Fitting

The methods proposed in this chapter for fitting planar surfaces to sparse range

and vision data have been evaluated. Both real and simulated datasets were used

to validate the performance. The plane parameter fitting accuracy and polygon

boundary corner accuracy are presented below and compared with their ground

truth values. Each 3D scan was then reconstructed and compared with the original

scene to give a visual representation of the quality of this surface mapping approach.

These results will then be discussed in detail in Section 5.8.

Experimental Setup

The experimental and simulated environments used in this chapter were the same

as those used previously to validate the feature grouping methods of Section 4.4.6.

These environments were fully described in Sections 3.3.1 and 3.3.2.

Five simulated 3D scans were taken, at different poses denoted A-E, with each

containing eleven 2D scans at an angular resolution of 10◦. The experimental dataset

consisted of three 3D scans, at different poses denoted A-C, with each scan having

nine 2D scans at an angular resolution of 5◦. Refer to Sections 3.3.1 and 3.3.2 for

more information regarding the pose of each 3D scan. The simulated range mea-

surements contained Gaussian noise only. The experimental range measurements,

however, contained both Gaussian noise and systematic biases as they were gener-

ated by a real sensor. This was discussed in Section A.3.

These two scenes can be seen below in Figs. 5.12(a) and 5.12(b). Each surface is

labeled numerically, as detailed in Tables 5.3 and 5.4. Several surfaces are not visible

in Fig. 5.12(a) below due to the viewpoint of the image and these are indicated with

arrows. Note that these two scenario environments, while similar, are intentionally

different and the surface numbering scheme is unique to each environment.

The input feature groups used for these plane fitting results were extracted and

grouped as described in the previous chapter. The groupings were thus imperfect

but realistic.
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(a) Simulated scene. (b) Experimental scene.

Figure 5.12: Test environments with surface numbering.

5.6.1 Infinite Plane Fitting Results

The plane parameters that were fitted using the equations from Section 5.4 are

presented below. For each 3D scan the mean errors were calculated both in absolute

terms and normalised by the covariances calculated in Section 5.4.2. The normal

vector n error was calculated as the angle between the true normal vector and the

fitted vector while the error in the d parameter was the absolute scalar error. The

calculation and explanation for each term is shown below. The results for the five

simulated 3D scans are shown in Table 5.1 and the results for the three real data

3D scans are shown in Table 5.2.

µθn

The mean of the absolute angular error in degrees between each fitted normal

vector n and the corresponding ground truth normal vector n0.

µθn =
1

N

N
∑

i=0

|θni
| where θni

= cos−1(ni · n0
i ) (5.59)

µθn (σ)

The same as above, except each angle is normalised by its covariance in a

manner analogous to calculating the Mahalanobis distance. The normalising

angle using the covariance is the angle between the normal vector and a vector
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that is one standard deviation away.

µθn(σ) =
1

N

N
∑

i=0

|θni
|

|θσi |
(5.60)

where

θσi = cos−1

(

ni ·
ni + nσi
||ni + nσi ||

)

and nσi =













σx

σy

σz













i

(5.61)

µ∆d

The mean scalar error in millimetres between the calculated d parameter and

the ground truth value d0.

µ∆d =
1

N

N
∑

i=0

(

di − d0i
)

(5.62)

µ∆d (σ)

The mean normalised error, which is the error in d normalised by its standard

deviation σd.

µ∆d(σ) =
1

N

N
∑

i=0

(

di − d0i
σdi

)

(5.63)

Table 5.1: Simulated dataset - Plane parameter fitting error
3D Scan Planes µθn µθn (σ) µ∆d µ∆d (σ)

A 7 0.15◦ 0.66 1.20mm 5.63
B 7 0.24◦ 1.97 1.05mm 5.48
C 8 0.13◦ 0.49 1.10mm 4.69
D 6 0.23◦ 0.78 1.16mm 2.69
E 7 0.19◦ 0.79 1.82mm 4.47

ALL 35 0.18◦ 0.93 1.26mm 4.65

Table 5.2: Real dataset - Plane parameter fitting error
3D Scan Planes µθn µθn (σ) µ∆d µ∆d (σ)

A 7 2.40◦ 3.35 12.9mm 32.6
B 5 1.20◦ 2.77 7.9mm 28.1
C 8 1.46◦ 2.11 7.6mm 27.8

ALL 20 1.73◦ 2.71 9.5mm 27.8
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5.6.2 Polygon Boundary Generation Results

The accuracy of the polygon boundaries generated by this method has been evalu-

ated. The boundary corner locations have been used for this task as ground truth

information is available for these. The results using the simulated dataset are shown

below in Table 5.3 while the results from the real dataset are shown in Table 5.4.

Only those corners that corresponded to known physical corners were used. Vir-

tual corners do not have any matching physical corner and so ground truth is un-

available for these. This is the reason for the relatively low corner count for some of

the planar surfaces. Some large surfaces, such as walls, extended beyond the camera

FoV in some of the images and so relatively few non-virtual corners were seen.

To fairly assess the corner accuracy, the boundaries were projected onto the

ground truth plane rather than using the plane parameters fitted to the laser range

data. This allows the accuracy of the polygon boundary generation process to be

examined independently of any errors in the plane parameters. A comparison is

shown in Table 5.5 to express the difference in accuracy between these two cases.

The distance metrics used are described below.

µ∆c

The 3D Euclidean distance in millimetres between the measured corner and

the ground truth.

µ∆c (σ)

The Mahalanobis distance between the measured corner and the ground truth.

This normalises the Euclidean distance by the corner location covariance and

the units used are standard deviations.

To show the difference in corner location error introduced by using the fit plane

parameters instead of the ground truth plane parameters, the corner error was re-

calculated using the plane parameters fitted to the acquired data for scan A from

the real dataset as seen below in Table 5.5.
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Table 5.3: Simulated dataset - Polygon boundary corner error
Planar Surface # of Corners µ∆c µ∆c (σ)
1 - Ceiling 3 59.3mm 3.12
2 - Back Wall 22 11.0mm 3.24
3 - Left Wall 2 16.0mm 2.99
4 - Right Wall 1 22.3mm 2.98
5 - Red Floor 16 8.2mm 1.51
6 - Yellow Floor 8 8.2mm 2.54
7 - Blue Diagonal RHS 1 13.8mm 2.85
8 - Green Box Top 4 15.0mm 4.62
9 - Green Box LHS 3 14.2mm 2.27
10 - Green Box Front 8 4.5mm 2.66
11 - Green Box RHS 0 - -
12 - Blue Box Top 3 18.2mm 3.08
13 - Blue Box LHS 0 - -
14 - Blue Box Front 7 9.0mm 2.18
15 - Blue Box RHS 10 8.4mm 2.03
16 - Back Wall Yellow Inset 16 8.0mm 2.23
ALL 104 11.1mm 2.54

5.6.3 3D Scan Reconstructions

For each 3D scan, using both the real and simulated datasets, the planar surfaces

were reconstructed to give a qualitative representation of the plane fitting approach.

Each reconstruction is shown below alongside the corresponding view of the en-

vironment. Note that the images do not completely align as they have different

perspectives. The 3D reconstructions are built using multiple images and so the

corresponding true scene image should be used as a comparative aid only. The five

simulated data 3D reconstructions are shown in Figs. 5.13 - 5.17 while the three

real data 3D reconstructions are shown in Figs. 5.18 - 5.20.

5.7 Further Results and Validation

A further series of 3D datasets were acquired and processed with the aim of inves-

tigating the performance of the proposed surface fitting approach for more difficult

scenarios and also to determine its limitations. Three scenarios consisting of eight

additional 3D scans were used.

Each scenario contained several planar surfaces with the addition of complicat-
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Table 5.4: Real dataset - Polygon boundary corner error
Planar Surface # of Corners µ∆c µ∆c (σ)
1 - Back Wall 10 6.2mm 1.02
2 - Red Paper 10 6.8mm 1.42
3 - White Foam 0 - -
4 - Balsa Wood 8 9.6mm 2.48
5 - Box Side 7 18.1mm 2.95
6 - Box Front 11 8.6mm 2.26
7 - Box Top 0 - -
8 - PC Side 4 9.6mm 1.91
9 - Black Floor 8 12.7mm 3.01
10 - White Floor 15 13.6mm 2.95
ALL 73 10.6mm 2.27

Table 5.5: Polygon boundary corner error - Fit vs true plane parameters
3D Scan # of Corners µ∆c µ∆c (σ)
Real Scan A (true n,d) 22 13.8mm 2.55
Real Scan A (fit n,d) 22 14.7mm 1.88

ing factors such as clutter, nonplanar or irregular surfaces, textured surfaces and

shadows from different lighting conditions. It should be noted that the intention of

using these difficult surfaces was not to attempt to fit surfaces to the nonplanar ob-

jects, as that is outside the scope of this work. Instead the aim was to investigate if

these complicating factors degraded the surface fitting performance of the dominant

planar surfaces and if so, to what degree.

The resulting 3D reconstructions of each scene are presented below and the

performance will be discussed in detail later in Section 5.8.5.

5.7.1 Validation Scenario 1 - Clutter

The first validation scenario was designed to investigate the effect of the level of

clutter in the scene. Three 3D scans were taken of a scene with increasing levels

of clutter and non-planar or irregular objects. The first scene, shown in Fig. 5.21,

contained three basic planar surfaces with no clutter. These planar surfaces were

the wall, floor and a book cover and they were present in all three scans.

It is important to note for each 3D reconstruction that the image of the true

scene, such as that shown in Fig. 5.21(b), is presented for comparison purposes only
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(a) 3D reconstruction - Sim 1. (b) Actual environment.

Figure 5.13: 3D reconstruction of simulated scan #1 for qualitative comparison.

(a) 3D reconstruction - Sim 2. (b) Actual environment.

Figure 5.14: 3D reconstruction of simulated scan #2 for qualitative comparison.

due to the different perspective used by the 3D scene reconstruction from multiple

images. This perspective also explains the apparent missing corners in each 3D

reconstruction.

The second scene, shown in Fig. 5.22, and the third scene, shown in Fig. 5.23,

contained the same three basic planes as Fig. 5.21, but with the addition of in-

creasing levels of clutter. This clutter included a can of drink, a set of keys, a small

aluminium plate, a plastic bag, a coaster, an apple, a pen and a piece of balsa wood.

These objects were generally small in size with irregular edges or nonplanar surfaces

and contained various textures. They were chosen to test the surface fitting perfor-

mance of the major planes in the scene, rather than attempting to fit surfaces to
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(a) 3D reconstruction - Sim 3. (b) Actual environment.

Figure 5.15: 3D reconstruction of simulated scan #3 for qualitative comparison.

(a) 3D reconstruction - Sim 4. (b) Actual environment.

Figure 5.16: 3D reconstruction of simulated scan #4 for qualitative comparison.

them explicitly.

5.7.2 Validation Scenario 2 - Walls with Shadow

The second validation scenario was designed to investigate the surface fitting perfor-

mance using a typical set of office walls. The three main surfaces, seen in Fig. 5.24,

consisted of very similar colours and so were also used to test the ability to extract

image edges and group surface features in the absence of sharp image gradients. A

third complicating factor was the presence of some small cable conduits.

The second scene, shown in Fig. 5.25, introduced a fourth planar surface made

of textured wood, along with a light source to generate some shadow. This was
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(a) 3D reconstruction - Sim 5. (b) Actual environment.

Figure 5.17: 3D reconstruction of simulated scan #5 for qualitative comparison.

(a) 3D reconstruction - Real 1. (b) Actual environment.

Figure 5.18: 3D reconstruction of real scan #1 for qualitative comparison.

designed to investigate the effect of edge extraction for textured surfaces as well as

the effect of shadows and the ability to distinguish a shadow from a distinct surface.

5.7.3 Validation Scenario 3 - Outdoors

The third validation scenario was designed to investigate the surface fitting perfor-

mance in outdoor conditions with realistic walls and surfaces consisting of various

materials and textures.

The first outdoor scene, seen in Fig. 5.26, contained several walls along with

other planar surfaces including a ledge, concrete floor and a window. These surfaces

contained various textures, along with surface marks, and clutter in the form of
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(a) 3D reconstruction - Real 2. (b) Actual environment.

Figure 5.19: 3D reconstruction of real scan #2 for qualitative comparison.

(a) 3D reconstruction - Real 3. (b) Actual environment.

Figure 5.20: 3D reconstruction of real scan #3 for qualitative comparison.

leaves. The second outdoor scene, seen in Fig. 5.27, contained a brick wall and

several pipes. The third outdoor scene, seen in Fig. 5.28, consisted of the side of a

shipping container along with a concrete floor that was irregular both in slope and

colouring with a small plant in the bottom left corner. Each of the four surfaces is

numbered to aid in comparing the corresponding surfaces in this scene as they are

less obvious than the previous 3D reconstructions.
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(a) 3D reconstruction. (b) Actual environment.

Figure 5.21: 3D reconstruction of Validation scene 1a - No Clutter.

(a) 3D reconstruction. (b) Actual environment.

Figure 5.22: 3D reconstruction of Validation scene 1b - Moderate Clutter.

5.8 Discussion

The methodology and results of the planar surface fitting approach presented in this

chapter will now be evaluated and discussed.

5.8.1 Plane Parameter Fitting

The results seen in Tables 5.1 and 5.2 show that the sparseness of the range data

has little impact on the accuracy of the plane parameters fitted using PCA. This

allows planar surfaces to be mapped using 5-10x less raw data points, which will

significantly improve the speed of the plane fitting. Such sparseness also makes
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(a) 3D reconstruction. (b) Actual environment.

Figure 5.23: 3D reconstruction of Validation scene 1c - Substantial Clutter.

(a) 3D reconstruction. (b) Actual environment.

Figure 5.24: 3D reconstruction of Validation scene 2a - Basic Walls.

real time operation using limited processing resources viable as the computational

and memory requirements are an order of magnitude less than when using dense

scanning. The computational cost is further eased by the use of planar features as

opposed to trying to operate on a map consisting of a large raw point cloud, as

in many other robotic mapping approaches. The reductions in computation and

memory usage gained by this approach will be further explored in Chapter 7.

There are two main limitations of this plane fitting approach and these can limit

the variety of viable environments for robotic operation, if not handled appropri-

ately. Firstly, any nonplanar surfaces cannot be fit properly using this plane fitting

approach. It is assumed that the feature groups correspond to planar surfaces only
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(a) 3D reconstruction. (b) Actual environment.

Figure 5.25: 3D reconstruction of Validation scene 2b - Shadows and Texture.

(a) 3D reconstruction. (b) Actual environment.

Figure 5.26: 3D reconstruction of Validation scene 3a - Outdoor Walls.

and any attempt to fit a plane to a nonplanar surface will obviously lead to an

inaccurate surface fit. A method was described in the LRF line segmentation pro-

cess of Section 4.3.4 to ensure that only linear line segments were extracted. The

grouping stage of Section 4.4.5 also ensured that only coplanar laser line segments

were grouped together.

These techniques allow any nonplanar surfaces or features to be filtered out prior

to the plane fitting and an alternative surface fitting method is not proposed here.

Such surfaces are unsuitable for a wall climbing robot to use as footholds because a

planar surface is required to achieve an adequate vacuum seal with a suction cup.

Those surfaces should nevertheless be represented in some fashion in the robot’s map
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(a) 3D reconstruction. (b) Actual environment.

Figure 5.27: 3D reconstruction of Validation scene 3b - Outdoor Bricks.

(a) 3D reconstruction. (b) Actual environment.

Figure 5.28: 3D reconstruction of Validation scene 3c - Outdoor Container.

as obstacles to be avoided. Such representations could include cylinders, spheres,

bounding boxes or some type of polynomial function.

While the introduction of extra surface representations is outside the scope of

this work, it is worth noting that the mapped planar surfaces required direct line of

sight to the sensors. This means that there should exist free space between the sensor

CF origin and those planar surface. Unmapped surfaces, nonplanar or otherwise,

will appear as holes in the planar surface map and extra care should be taken about

these areas during motion planning. The issue of motion planning for the CRACbot,

and its predecessor, was addressed by Ward et al. [8].

A second limitation of this surface mapping approach is introduced by the sparse
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nature of the range scanning. Some smaller surfaces can be missed by the LRF

scanning plane and so a plane is unable to be fitted to that surface. Two linear

segments from different LRF scans are required to fit a plane and this compounds

the issue by requiring at least two LRF scans to intersect the surface and possibly

more if one is unable to be successfully segmented or grouped. This can be seen in

the 3D reconstructions as a few surfaces are missing because of this.

The obvious solution to this problem is to scan more densely but this quickly

erodes the computational benefits of the sparse scanning. A better solution would

be to introduce an adaptive scanning angular resolution to allow dense scanning in

areas with smaller objects and then sparser scanning in areas with large surfaces

such as walls. This will be discussed further in Section 7.3.3.

Despite these missing surfaces, the nature of this scanning process allows for

multiple 3D scans to be merged from different poses and this process is the subject

of the next chapter. Therefore, there is a level of redundancy built into the mapping

process. Any surfaces that do not have sufficient range information in one 3D scan

can be identified and a suitable pose chosen to acquire the required range scans for

that surface. An alternative method would be to modify the plane fitting process to

operate on range data from multiple 3D scans or incorporate pseudo range features

using the image information. This is not considered at this stage.

5.8.2 Plane Parameter Accuracy

The plane parameters n and d were accurately fitted to the acquired and grouped

range data, using the equations of Section 5.4. The results of fitting these parameters

to the simulated dataset were shown in Table 5.1 above. A total of 35 planes were

fitted from the five simulated 3D scans. The mean angular error of the normal vector

n was 0.18◦ and the mean error in the orthogonal distance d was 1.26mm.

The simulated range data contained only Gaussian noise and this was almost

completely averaged out. The small amount of remaining error was caused by er-

rors in the LRF line segmentation of Section 4.3. This is to be expected as no
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segmentation process is perfect and this issue affects all linear and planar segmen-

tation approaches. Despite this, the planes were still fitted to an acceptable level of

accuracy using this approach.

The results of plane fitting for the real dataset were shown in Table 5.2. From

the three 3D scans, a total of 20 planes were fitted. The mean angular error of

the normal vector n was 1.73◦ and the mean error in the orthogonal distance d was

9.5mm. It should be mentioned that these errors are taken against ground truth

values that were difficult to measure exactly as they correspond to real objects.

As expected, the accuracy is lower for the real dataset due to the much noisier

range data from a real LRF. Like the simulated dataset, the Gaussian noise gets

averaged away. The linear range segmentation again causes some of the fitting error

and this is slightly more prominent than in the simulated case as the noisy real range

points are harder to segment accurately.

The majority of the real dataset plane fitting error was caused by unmodeled

systematic range errors. This was discussed in Section A.3 and a basic range error

model was used. More complicated sensor models have been proposed that try to

account for errors due to the surface range, angle of incidence and material. They

do, however, greatly complicate the plane fitting and covariance calculations as well

as increasing the computational load. For many cases this extra accuracy is not

required and the accuracy found here is very reasonable.

In general, it is difficult to compare the accuracy of this plane fitting method with

those from the literature as quantitative results are rarely provided. However, in a

qualitative comparison, the surfaces fit here show similar accuracy to those found

by Weingarten et al. [118], Poppinga et al. [70] and Pathak et al. [46] amongst

others.

5.8.3 Plane Covariance Calculations

The uncertainty of the plane fitting parameters is an important part of the mapping

process and it is therefore important to calculate the covariance Σn and variance σ2
d.
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This uncertainty information allows planar surfaces from different 3D scans to be

merged in a manner that ensures the most reliable surface information is weighted

highest. Without it, such merging can only be undertaken by equally weighting each

plane regardless of the relative uncertainty.

The plane uncertainty is also important as it allows the robot to make informed

decisions about the best surfaces to use as footholds and avoid those surfaces that

have high uncertainty. This is important because attempting to step onto an unre-

liable surface may fail, as it may be unsuitable as a foothold. In extreme cases this

could also result in a catastrophic fall or collision.

The method used in this work to calculate the covariance of the plane parameters

was described in Section 5.4.2. It was based on a method proposed by Weingarten

et al. [118] which used an OLS plane fit, aligned with the PCA plane fit, to derive

the covariance equations. They did not fully derive these covariance equations and

so this work has extended their approach by deriving and proving a significantly

simplified covariance calculation in the plane CF, as shown in (5.16)-(5.37). This

allows the covariance to be calculated in a fast and efficient manner as an iterative

sum.

The results of the covariances of the plane parameters can be seen in Tables

5.1 and 5.2. The plane parameter errors were calculated in absolute terms as well

as being normalised by the parameter uncertainty, as represented by µθn(σ) and

µ∆d(σ). The Mahalanobis error for d was straightforward to calculate using (5.63).

The simulated dataset had a mean distance error of 4.65 standard deviations while

the real dataset was 27.8 standard deviations.

The angular error of the normal vector θn did not allow a standard Mahalanobis

distance calculation so the covariance Σn was also converted into an angular repre-

sentation using (5.61). This allowed a normalised angular error to be found. The

simulated dataset had a mean angular error of 0.93 standard deviations while the

real dataset was 2.71 standard deviations.

These values indicate that the covariance is being significantly underestimated,
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particularly for σ2
d. This is most likely due to the assumption that the range noise

is Gaussian with no systematic bias, which influences the d parameter significantly

more than n. This Gaussian noise assumption has been clearly shown to be false

and yet the covariance does not account for it. The reason for this can be seen in

(5.36), which forms the Jacobians for (5.37). The input Jacobian terms are inversely

proportional to the number of points N and the sum of the x2i and y
2
i points, which

are in the plane CF and have been mean centred. These denominator terms increase

proportionally to the number of points supporting the plane as well as the size of

the plane as the sum terms are a measure of the spread in the X and Y directions

within the plane.

The result of this is that the covariance matrix converges towards zero as the

number of points supporting each plane increases. This level of uncertainty is clearly

overly optimistic and unrealistic when systematic biases are present. A secondary

issue is the small size of the covariance values can cause numerical issues in practice.

Despite the sparse scanning approach used in this thesis, this issue is still apparent

and this would be compounded when dense range scanning is used. This problem

was also noted by Weingarten [35] who proposed to add a small amount of constant

noise to the diagonal elements of the covariance matrix.

An alternative approach would be to use a more powerful sensor model, such

as those detailed in Section A.3, to estimate these systematic errors and eliminate

them prior to calculating the covariance or even integrate them within the covariance

calculations, as done by Pathak et al. [122].

There is a cost to using these more complicated sensor models, as in general no

analytical solutions exist for them. As numerical or incremental methods are too

computationally costly for real time operation on limited resources, approximate

solutions become the only viable option. This does reduce the benefits gained by the

extra complexity and so while some improvement in the accuracy of the covariance

is possible, it is not necessarily significant.

If computational constraints allow, other sensor models or covariance calculations
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could be substituted in place of the methods proposed here and there would be

no effect on the remainder of the plane fitting approach. Having said that, the

covariances calculated here still provide valid results, especially for Σn, and their

usefulness will be shown in the following chapter.

5.8.4 Polygon Boundary Generation

As previously mentioned, the sparse nature of the range scanning does not provide

enough raw points to generate an accurate polygon boundary on the planar surface.

Mapping approaches using dense range scanning are able to use convex hulls of

the segmented points, or similar methods, but sparse scanning does not allow for

this. The image information is therefore used to provide the polygon boundary

information and this approach has produced planar patches of comparable quality

to other plane fitting methods, as seen in the 3D reconstructions of Figs. 5.13 -

5.20. The reconstructions show good agreement when comparing them side-by-side

with images of the true environment and quantitative results have also shown the

accuracy of this method.

The accuracy of the polygon boundaries was measured using the corner location

error µ∆c
, both in absolute and Mahalanobis distances. Results were shown for the

boundaries of 35 simulated surface observations and 20 real surface observations, as

in Figs. 5.3 and 5.4 respectively. Only corners in the boundary that corresponded

to a physical corner were used, as ground truth information was available for these.

Virtual corners do not correspond to a physical surface corner and so their accuracy

cannot be determined. This is the reason for the seemingly low number of corners

tested, as many of the larger surfaces exceeded the camera FoV in most of the

images.

The mean corner error was 11.1mm (2.54 standard deviations) for 104 simulated

corners while the real dataset had a mean corner error of 10.6mm (2.27 standard

deviations) for 73 corners. These values were calculated using the ground truth

plane parameters for each plane to characterise the corner error independent of any
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errors in the fitted plane parameters n and d.

A comparison was performed in Table 5.5 that compared the extent of the addi-

tional error caused by using the fitted, rather than ground truth, plane parameters

for 3D scan A of the real dataset. For the 30 corners in this scan, the mean corner

location error increased slightly from 13.8mm to 14.7mm when using the fit param-

eters. It is interesting to note that despite this increase in absolute terms, there

was actually a decrease in the Mahalanobis distance error. The covariance increased

proportionally more due to the extra uncertainty of the plane parameters. Overall

the difference was not significant and this gives some confidence in the use of the

covariance and uncertainty calculations.

In general, this corner accuracy is very good. It is not often characterised in

other plane fitting approaches, which tend to rely on visual inspection to determine

qualitatively the accuracy of their planar patches. It is therefore difficult to compare

this boundary accuracy with that of other work. Nevertheless in absolute terms, the

error of this approach is very low. This is especially good when the low resolution

of the images is taken into account, as this places a lower bound on the achievable

accuracy. The effect of the image resolution on the boundary accuracy will be further

examined later in Section 7.3.1, but these results show that it is possible to fit good

surface patches using such low resolution cameras.

It should be noted that several corners showed much higher absolute error. For

example Surface 1 (Ceiling) of the simulated dataset in Table 5.3 had a mean error of

59.3mm. This value seems high at first glance but the Mahalanobis distance was only

3.12 standard deviations which is in line with the rest of the surface corners. These

corners were relatively far from the sensor, at a range of almost two metres, and so

naturally they were more uncertain than closer corners and this was accounted for

by the larger covariance of these points.

The generation of the polygon boundaries is limited by the feature extraction

and grouping process preceding it. Missing features or falsely grouped features will

translate to errors in the polygon boundary. This is partly dealt with by the post
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processing steps described in Section 5.5.4. However, those methods can only do so

much. It is therefore important to ensure that the extraction and grouping of the

image features are performed accurately and robustly.

Another limitation inherent to this approach of using image features, rather

than range information to generate the polygon boundaries, is that the boundary

is limited by the FoV of the camera. This especially concerns the horizontal FoV

in the scanning configuration used here, as the sensors tilt vertically. In this work

the simulated camera had a horizontal FoV of 60◦ while the CMUcam3 camera only

had a horizontal FoV of 42◦. This weakness is partially mitigated by the use of the

virtual lines and corners to ensure that the maximum amount of image information

is used to generate the polygon boundaries. The fact still remains that a camera

with a wider FoV, such as one with a fish eye lens, would provide larger surface

boundaries. However, the accuracy would be lower if the image resolution is held

constant to limit the computational cost.

Despite these limitations, the results indicate that the accuracy for most of the

fitted surfaces was within the required tolerances, as detailed in Section 3.2.1. There-

fore, the planar surface patches produced are good enough to allow a wall climbing

robot to use them as footholds. This is especially true after they are merged together

to build a larger 3D map, as detailed in the following chapter.

5.8.5 Further Results and Validation

The basic experimental and simulated datasets, shown in Fig. 5.12, were used to

demonstrate the proposed surface mapping approach and the results of which have

been discussed above. A series of more difficult 3D scenarios were generated to

examine validate the surface mapping performance against a range of complicating

factors. The 3D reconstructions of these scenes were presented in Section 5.7.
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Validation Scenario 1 - Clutter

The first additional set of three 3D scans was designed to test the surface fitting

performance against increasing levels of clutter. The three scans, seen in Figs.

5.21 - 5.23, contained the same three main planar surfaces to allow for qualitative

comparisons to be performed.

The first scene, shown in Fig. 5.21, contained no clutter. The three dominant

planar surfaces consisting of the wall, the floor and the front cover of the book were

extracted very well. A fourth surface was visible, which is the bottom of the book

consisting of the white pages. This surface was extracted and grouped successfully,

however, only one 2D laser scan intersected it and so a plane was unable to be fitted.

Like all previous 3D reconstructions, the bottom corners are missing as they were

not seen from the camera’s perspective.

The second scene, shown in Fig. 5.22, introduced several small objects into the

scene including a can of drink, a set of keys, a coaster and a small piece of aluminium.

The three main planar surfaces were again extracted reasonably well. The back wall

was not affected but the other two surfaces showed some effects from the clutter.

The book cover was successfully grouped and fitted but the image edges from the

can of drink were grouped together with the book edges due to a similar colour and

texture existing where the two objects intersected. A non-linear laser line segment

was extracted for this non-planar can but it was filtered out to prevent it being falsely

grouped and used for plane fitting. However, this left the image edges corresponding

to the can free to be falsely grouped elsewhere as they were not already grouped. A

potential modification could be introduced to allow line segments that are recognised

as non-linear through to the grouping process but to prevent them from being used

for plane fitting.

The floor was extracted reasonably well, except the coaster and the set of keys

were not extracted as holes in the 3D reconstruction. Several linear piecewise edges

were extracted for these objects, but this was not sufficient for them to be grouped

in this case. The small piece of aluminium was not extracted, for the same reason
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as the front side of the book. The ability to extract small surfaces is hindered by

the lack of two intersecting laser scan lines. This is a weakness of this method in

that it can struggle to extract some small objects in a cluttered scene. However,

these small objects would not be suitable for use by a wall climbing robot as they

are not large enough to place a foot on.

The third scene, shown in Fig. 5.23, had substantial levels of clutter and the

plane fitting performance degraded further. Despite this, two of the major planes

were still mostly extracted and the balsa wood was also fitted well. The area of the

floor that was unoccupied by clutter was successfully extracted despite the irregular

edges of the clutter. This was bordered by the plastic bag (top right), the pen

(bottom right), the keys (bottom left), the book (top left) and the stapler, (top

middle).

The book cover was not extracted but it was almost completely covered with

other objects. It could not be reasonably expected to be extracted by this method,

or any other surface fitting method for that matter. It should also be noted that

none of the nonplanar or irregularly shaped clutter had a false surface fitted to

them because their non-planar surface features were filtered out using the methods

described earlier in Sections 4.3.4 and 4.4.5.

Validation Scenario 2 - Walls with Shadow

The second validation scenario was designed to investigate the surface fitting per-

formance using a typical example of office walls.

The three main planar surfaces, seen in Fig. 5.24, were all of a very similar colour

and this was used to further test the surface extraction and grouping robustness.

The presence of some small cable conduits, which were the same colour as the wall

behind it, was another complicating factor.

The three dominant surfaces were extracted well, despite the similar colours of

each surface. This had little effect on the success of the surface fitting. The cable

conduits were also seen and acted to split the walls into smaller surfaces. This is
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important because these conduits protrude from the wall and so would be unsuitable

to act as a foothold. They would possibly be difficult for other methods to detect

due to their small size and could easily be mistaken for noise in a dense 3D range

scan.

The second scene, shown in Fig. 5.25, introduced a fourth planar surface made

of textured wood along with a light source to generate some shadows. This was

designed to investigate the effect of edge extraction for textured surfaces as well as

the ability to distinguish a shadow from a distinct surface.

The introduction of a textured surface did not impede the surface fitting. This

was helped by the regular and repeating nature of the textured wood grain. This

resulted in many small and non-linear edges being extracted during the image feature

extraction process and the majority of these were easily filtered out.

This is in contrast to textured surfaces that are irregular or contain a small

number of dominant textural areas, such as the book cover from Fig. 5.21. Such

texture can in some cases generate large enough and straight enough image edges

to impact on the grouping and surface fitting performance. These textured surfaces

are less common in the target environment for a wall climbing robot, as common

industrial and other structured environments usually consist of surfaces with regular

texture.

The shadow introduced by the light source did affect the surface extraction

performance of this scene. The area of shadow on the back wall was seen as a distinct

surface on the grouping from several images, due to the sharp image gradients, but

in other images it was grouped together with the wall behind it. This is the reason

why the back wall was not extracted as high as the left wall. This redundancy

did allow the shadow to be ignored as it presented as internal edges. These were

ignored according to the post processing rules of Section 5.5.4. Part of the desk

that was covered in shadow was not grouped together with the rest of the desk.

This presented as a hole in the 3D reconstruction because only one laser scan line

intersected this small area and so a separate surface could not be fitted.
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Validation Scenario 3 - Outdoor Scenes

Three outdoor scenes were analysed and the resulting 3D reconstructions were pre-

sented above in Figs. 5.26-5.28. These scenes were designed to test the surface fitting

performance with a range of outdoor walls and surfaces that might be encountered

by a wall climbing robot in the real world.

The first scene, shown in Fig. 5.26, was of the side of a building. It contained

several walls and small planar surfaces as well as the ground and a glass window.

As expected, the window was not extracted, but of the other planar surfaces in

the scene, 6 out of 7 were successfully extracted. These surfaces included different

materials and textures and most of the plain coloured surfaces contained surface

marks. The concrete pavement was partially covered in leaves and the surface fitting

algorithm was able to successfully extract the visible surface despite this additional

visual clutter.

The second outdoor scene, shown in Fig. 5.27, was of a brick wall with some

piping. The bricks were all extracted successfully, however, the edge accuracy was

somewhat diminished. This is still a good result as the bricks exhibit surface texture

and are individually small in size. The left wall was also extracted but the two pipes

were not. This is important as they are non-planar surfaces and were filtered out.

The third outdoor scene, shown in Fig. 5.28, was of the side of a shipping

container with a plant growing out the bottom. Several planar surfaces were fitted

to the side of the container as well as the concrete ground. The irregularly shaped

plant presented as a hole in the concrete ground but the edges were not followed

exactly. The ground did exhibit a variety of texture and colour and so its extraction

is a good result.

Validation Scenario Performance

The extra eight 3D reconstructions have shown that the proposed 3D surface fitting

algorithm can perform reasonably well against a variety of difficult environmental

and surface conditions. The overall results were promising and while the test sce-
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narios were not exhaustive, they fulfilled their main intention of demonstrating the

feasibility of the proposed surface fitting approach and identified several limitations

for robotic usage in its current form.

Clutter and irregular edges: The presence of clutter in a scene did degrade

the surface fitting performance but in many cases it did not prevent the predominant

planar surfaces being extracted. Those small objects that were successfully grouped

were in many cases unable to have surfaces fit to them and so presented as holes

in the 3D reconstruction. Other clutter that had irregular edges were sometimes

filtered out through the image edge extraction and grouping processes and so were

completely missed in some cases.

It should also be noted some of this small clutter can be difficult for any surface

fitting approach, especially those based solely on range scans. The small thin objects,

such as the aluminium plate and the coaster, would be almost indistinguishable from

the planar surfaces behind them in such dense 3D range scans, whereas the method

presented here method does recognise some of them, albeit in a limited fashion.

In all the 3D reconstructions, every non-planar surface was successfully filtered

out and none had a plane fit attempted. This is important in minimising erroneous

planar surface fits which could lead to catastrophic failures for a climbing robot.

There is further potential to improve the surface fitting success and robustness

by using less restrictive, but more computationally expensive, edge representations

to allow small clutter to be extracted more successfully. An adaptive scan tilting

angle would also help in such scenes to scan the small clutter more densely. This

idea was introduced earlier in Section 5.3 and is discussed in more detail later in

Section 7.3.3.

Shadows and illumination:

Shadows were found to slightly degrade the surface fitting performance in some

cases. Fig. 5.25 contained some shadows which affected the surface fitting perfor-

mance for several surfaces. The back wall surface was able to ignore and merge part

of the shadow. The shadow falling on the desk and the rest of the back wall pre-
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sented as holes in the 3D reconstruction as neither had the required two intersecting

laser lines to allow a surface to be fitted.

Shadows are a problem for any visual mapping approach but the availability of

range information could allow them to be merged with the background surface the

shadow falls upon, rather than fitting them as two distinct surfaces as in the current

approach. Such merging of adjacent coplanar surfaces, as would be done in a pure

range based geometric 3D mapping, is intentionally not performed as part of the

proposed mapping approach.

Adjacent coplanar surfaces could actually be distinct and slightly different sur-

faces containing a small step change. This can be caused by merging tolerances or

systematic biases inherent to the range data canceling out any true range differences.

For a wall climbing robot, attempting to place a foot on such a step could cause a

lack of adhesion and a potential fall. An example of this is the small aluminium plate

in Fig. 5.22. For other applications, such as wheeled robots, it could be acceptable

to perform such merging and this would handle most examples of shadow.

Texture:

Those surfaces with regular texture were handled well in most cases. These

generally presented with a large number of small false image edges which were

easily filtered out during the extraction and grouping stages. This texture was also

modeled reasonably well using the RGB colour descriptors for feature grouping.

Successful examples were the textured wooden surface of Fig. 5.25, the speckled

step in Fig. 5.26, the bricks in Fig. 5.27 and the concrete ground in Fig. 5.28.

Several surfaces which contained irregular texture, such as the book cover in

Fig. 5.21, did generate large straight edges which degraded the performance in

some cases. In the likely wall climbing environment the majority of texture surfaces

should exhibit regular texture and so this is not considered a major issue.
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5.9 Summary

This chapter has described a novel approach to fitting planar surface patches to 3D

scans consisting of a limited number of laser range scans and camera images. The

first half of this chapter described a plane fitting method using principal components

analysis. This included estimating the uncertainty of the plane parameters. A

full derivation and proof of the plane covariance was shown which had not been

performed in similar work. A method for fitting the polygon boundaries using the

image feature information was also presented. This involved the projection of image

corners onto the infinite plane and a procedure for merging the boundaries from

multiple images was detailed.

The results showed, both qualitatively and quantitatively, that this method is

able to produce accurate planar surface patches using sparse range and image data.

Their quality was comparable to the those produced by other surface mapping meth-

ods from the literature. More difficult scenarios were also tested for further valida-

tion. The proposed surface mapping approach was still able to successfully extract

most major planar surfaces in each scenario despite the presence of complicating fac-

tors such as clutter, texture, non-planar or irregular surfaces, shadows and outdoor

environments.

The surface patches extracted in this chapter will enable a wall climbing robot to

build a local 3D map of the surrounding environment by merging together multiple

3D surface scans. This surface merging is the subject of the next chapter.
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Chapter 6

Merging of Surfaces to Generate

3D Maps

6.1 Introduction

Chapter 5 detailed the process of fitting planar surface patches to an individual 3D

scan. Multiple such scans can be acquired at different poses from the same foothold

location. This chapter describes the process of merging them together to create

a local 3D map about the robot’s current position that is more useful than the

individual scans on their own.

Before planar surface merging can take place, the change in pose between each

new 3D scan is estimated and corresponding surfaces are registered together. A

method for merging these planar surfaces using a Kalman Filter is then detailed

along with two proposed modifications to alleviate several practical and numerical

issues. The equations to transform the individual polygon boundaries onto the

new merged plane are derived. These projected boundaries are merged together to

improve the surface accuracy and field of view.

The proposed merging method will be validated using the individual real and

simulated 3D scans found in Section 5.6. This will be followed by a discussion of the

merits of this merging method and the suitability of the resulting 3D surface maps

176



CHAPTER 6. MERGING OF SURFACES TO GENERATE 3D MAPS

for use within planar SLAM algorithms from the literature.

6.2 Scan Alignment and Surface Registration

As individual 3D scans are acquired at different locations in space, there needs to

be some way of estimating their relative pose so that they can be aligned within

the same CF. A separate data association problem, known as feature registration,

involves determining which planar surfaces within these scans correspond to the

same physical surface and should thus be merged together.

A common method for pose estimation is to use odometry. This uses propri-

oceptive sensor measurements of the robot’s internal state to estimate its motion

and thus infer the change in position over time. These measurements, such as joint

rotation from a shaft encoder, are combined with a motion model to estimate the

pose change. This approach is an open loop process but if the movement between

each scanning pose is small then the estimated pose from odometry alone is likely

to be reasonably accurate. In general the pose estimate will drift over time, due to

odometry errors such as noise and slippage at the ground contacts.

To correct for drift in the pose estimate, a SLAM approach is useful as it closes

the loop with exteroceptive measurements of the robots position relative to its en-

vironment. This may include real time kinematic GPS position information or

environmental features or landmarks such as planar surface patches. An EKF is

a popular framework for implementing SLAM and neatly combines these two pro-

cesses. The prediction step uses the odometry and motion model to predict the

robot’s pose until an environmental measurement is acquired and the update step

corrects the pose to provide a more accurate estimate.

Kohlhepp et al. [32] proposed an EKF based 3D SLAM approach to build a

3D map using planar surfaces. However, they separated out the SLAM based pose

estimation and the 3D planar map generation and so the two components were only

loosely integrated. Weingarten et al. [33] used the SPmap [34] as a way to integrate

planar surfaces as features within the EKF SLAM framework.
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Their results showed good pose estimation. However, their wheeled robot was

ground constrained and so limited to 2D motion. Changes in the ground height

degraded their performance and this was a weakness of their implementation. They

also modified their approach to use planar segment information during data associa-

tion [35] which showed some improvement in the pose accuracy as well as improving

the visualisation. This SLAM approach was also used by de la Puente et al. [36] in

a simulated rescue robotics scenario, with similar results.

An alternative planar SLAM approach was proposed by Pathak et al. [74] which

operates without odometry or other motion information. They estimated the pose

change by solving the registration problem first using an algorithm called Minimally

Uncertain Maximum Consensus (MUMC). In this manner it is similar to scan match-

ing approaches, such as ICP [39], but uses planar surfaces rather than the raw point

clouds [125]. The other key difference is that it estimates the rigid transformation

between scanning poses in a closed form after maximising planar surface correspon-

dences in a search space. This operated on infinite planes only, with planar polygons

used for visualisation. Despite this it was able to build 3D maps successfully in a

variety of real world environments and was significantly faster than ICP based scan

matching methods.

6.2.1 Pose Estimation

For the CRACbot, introduced in Section 3.2, the change in pose between the acqui-

sition of each 3D scan will be estimated using odometry as the joint displacements

are relatively small. The estimated pose can be used to fuse together multiple 3D

scans taken from a single foothold to build a local 3D map about that position. It

is assumed that the suction cup does not slip during this process. This is justified

because the centre of gravity of the CRACbot does not change significantly during

the acquisition of the 3D scans, as the joint displacements are small.

Each time the robot takes a step, this local 3D map will be merged into a

global 3D SLAM framework as the pose will have possibly changed considerably.
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While the implementation of this is outside the scope of this thesis, the process and

applicability of using these extracted planar surface patches within 3D SLAM will

be discussed later in Section 6.6.2.

Transformation of Planar Surfaces to Common CF

Using odometry information, an estimate of the change in pose is available in the

form of a rigid transformation described by a rotation matrix Rα and a translation

vector Tα . These can then be used to transform the new 3D scan back into the

local foothold CF so that it can be merged into the local 3D map.

The transformations are described below in (6.1-6.2) and the polygon boundary

information can also be transformed point-wise using (6.3). The subscript denotes

the CF of each term where necessary, with i denoting the new 3D scan and 0 denoting

the local foothold CF.

n0 = Rαni

Σn0
= RαΣni

RT
α +

(

∂n0

∂α

)

σ2
α

(

∂n0

∂α

)T

(6.1)

d0 = di + nT
0 Tα

σ2
d0

= σ2
di
+ nT

0ΣTαn0 + TT
α Σn0

Tα (6.2)

p0 = Rαpi + Tα

Σp0 = RαΣpiR
T
α +

(

∂p0

∂α

)

σ2
α

(

∂p0

∂α

)T

+ ΣTα (6.3)

The uncertainty of each term is dependent on the form on the rotation matrix

used. The chosen form is the rotation matrix Rα, which describes rotation by an

angle α about a single joint axis. When this is coupled with the translational offset

Tα, they describe the transformation about a single rotating joint, such as those
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used on the CRACbot in this thesis. Thus for multiple joints the above equations

can be chained together to achieve the desired pose transformation with respect to

the world CF.

6.2.2 Planar Surface Registration

Once the new 3D scan has been transformed into the local foothold CF, the planar

surface pairs that correspond to the same physical surface need to be associated

together in a process known as registration. Because the relative motion between

the scans is small, the uncertainty of the estimated change in pose is also small.

Therefore the desired surface pairs should align and overlap to a large degree, taking

into account the measurement and motion uncertainty.

There are four criteria that must be satisfied for a pair of surfaces to be registered

together for merging.

Surface Orientation

The two planar surfaces should have similar orientations in space. The co-

variance normalised angular error between the two normal vectors ni and nj

should be less than a threshold of tn = 3 standard deviations. The normalising

angle θσ is found using (5.61).

µθ =
|cos−1(ni · nj)|

θσi + θσj
< tn (6.4)

Surface Location

The two planar surfaces should be physically close in space. The Mahalanobis

distance error between the two distances di and dj should be less than a thresh-

old of td = 3 standard deviations.

∆d(σ) =





di − dj
√

σ2
di
+ σ2

dj



 < td (6.5)
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Surface Colour

The colour descriptors of the two surfaces should match, as detailed previously

in Section 4.4.2.

Surface Polygons

The planar polygon boundaries of the two surfaces should overlap to some

degree, taking into account the uncertainty of each polygon boundary.

6.3 Infinite Plane Merging

Once a planar surface patch from the new 3D scan has been registered and trans-

formed into the foothold CF, it needs to be merged into the local 3D map. The

first step of this process is to merge the infinite plane parameters (n and d) of the

two planar surfaces. This is performed using a KF as detailed below. The filter is

initialised with the parameters of the first 3D scan surface and these make up the

state variable xk with the associated covariance matrix Σk. This is shown in (6.6),

where k denotes the index of the 3D scan that the planar surface was observed in.

xk =







n

d






Σk =







Σn 0

0 σ2
d






(6.6)

The KF equations described here are essentially the same as those described in

Section 5.5.3. The Kalman gain Kk is found using (6.7) which then allows the state

and covariance to be updated using (6.8-6.9). The new surface observation being

merged into the filter is denoted yk with associated covariance Rk. This observation

has already been transformed into the original CF for merging using (6.1-6.2).

Kk = Σk−1[Σk−1 +Rk]
−1 (6.7)

xk = xk−1 +Kk[yk − xk−1] (6.8)

Σk = [I −Kk]Σk−1 (6.9)
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There are two issues with this approach that must be considered. Firstly, the

two normal vectors may point in opposite directions for different observations of the

same plane. Secondly, the merged normal vector may not remain a unit vector.

Pathak et al. [122] also noted these issues and proposed an alternative plane

fusion approach which avoided these two problems. Their method found the merged

state covariance using a modified version of (6.9) and then used this to find the

state variable xk. This relied on their plane fitting equations which placed the

plane parameters within the null space of their plane covariance and so the reverse

transform could be used to find the merged plane parameters xk.

Their approach is not applicable here as they used a different plane fitting method

to the one used in this thesis and it was also based on a more complicated sensor

model. Nevertheless, there are simple solutions to the two problems mentioned

above and they are detailed below. It will be shown later in the results of Section

6.5 that the basic KF approach of (6.7-6.9) provides good quality plane merging

when these two modifications are applied.

6.3.1 Directional Consistency of the Normal Vector

The normal vector sign problem is a quirk of the plane fitting process. While n and

−n can both represent the same physical plane in space, any attempt to merge them

using this KF approach, or indeed any other merging approach, will fail. They will

cancel each other out and the resulting estimate of the surface normal will be wildly

inaccurate.

A solution to this issue involves modifying the plane fitting equations of Section

5.4.1 by adding an additional step to ensure consistency in the sign of the normal

vector for each surface. This is shown below in (6.10) and ensures that each normal

vector always points outwards from each surface.

if (n · p0 − d < 0) then (n := −n d := −d) (6.10)

182



CHAPTER 6. MERGING OF SURFACES TO GENERATE 3D MAPS

This works by checking the distance of a point p0 to the planar surface. If this

distance is negative then that point is below the surface when looking in the direction

of n. Any point in space can be used for p0 but for meaningful results some choices

are better than others. Any point that might intersect a surface, such as the world

origin which likely intersects the ground plane, will introduce a singularity and so

is not a good choice. A better point to use is the origin of the LRF taking each

particular 3D scan. This ensures that all normal vectors point towards the LRF and

thus outwards from each surface. This also eliminates the possibility of that plane

intersecting with this point because such a plane would not have been seen by the

LRF in the first place.

6.3.2 Ensuring Normal Vector Remains Normalised

When using the basic KF to merge a pair of planar surfaces, the merged normal

vector nk = [xk(1) xk(2) xk(3)]
T may no longer be a unit vector as required. This

vector is formed from the first three components of the state vector xk and must be

renormalised in some manner. This can be handled in several ways.

An approximate solution is to explicitly normalise the normal vector component

of xk, as in (6.11), to give the normalised state vector as x+
k . This is done by dividing

the normal vector component by its Euclidean norm.

x+
k = xkN Σ+

k = NΣkN
T

where

N =



















1
||nk||

0 0 0

0 1
||nk||

0 0

0 0 1
||nk||

0

0 0 0 1



















(6.11)
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A second approach to this problem is to integrate the requirement that n remain

a unit vector into the KF equations as a state constraint. There are a number of

methods to achieve this and they are surveyed and explained in detail by Simon

[126].

The method used is called Perfect Measurements [127] and introduces the state

constraint as an extra measurement with an uncertainty of zero. This requires

the full KF equations to be used (excluding the prediction step), rather than the

simplified ones shown in (6.7-6.9). The H matrix, which was previously an identity

matrix, is reintroduced into the equations below.

yk = Hxk + v (6.12)
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vk
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(6.13)

Using this augmented form of yk and H , the KF equations become (6.14-6.16).

Kk = Σk−1H [HΣk−1H
T +Rk]

−1 (6.14)

xk = xk−1 +Kk[yk −Hxk−1] (6.15)

Σk = [I −KkH ]Σk−1 (6.16)

This state constraint approach does not seem to work well in practice, showing

similar results to the basic KF case, and in some cases showed slightly worse per-

formance. This was likely due to numerical instability inherent to this method due

to the singularity introduced to the covariance matrix by the perfect measurement.

This was compounded by the small absolute size of the covariance values due to the
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normalised nature of the state normal vector. Some extra method of normalisation,

such as the explicit approach described above, is still required which negates the

value of using these state constraints.

In cases where the error was very large and the observed planes differed sig-

nificantly, the state constraint did hold the norm of the normal vector closer to 1

than the basic Kalman Filtering approach and so may have value in such cases.

Despite this, these state constraints were not used due to the numerical issues and

the explicit normalisation approach was favoured instead.

6.4 Polygon Boundary Merging

Once the new plane observation has been merged with the current plane estimate,

as described above, the old boundary corner locations become obsolete and must

be projected onto the merged plane estimate. This must be performed for both the

current boundary estimate and the observed plane boundary to allow them to be

merged together.

6.4.1 Projection of Polygon Boundaries onto Merged Plane

Each 2D corner location p1, on its original plane, must be first transformed into

the world CF using equation (5.10). This 3D point can then be projected onto the

newly found merged plane as follows.

The orthogonal distance D of this 3D point to the merged planar surface is found

using the Hessian plane equation as shown in (6.17). In general p1 will not lie on

the plane and so D is not equal to zero. This D parameter is the distance from p1

to a corresponding point p2 that lies on the plane, conforming to (6.18), and is the

orthogonal projection of p1. It stands to reason that p2 can be found from p1 by

subtracting the distance D in the direction of the normal vector n.
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n · p1 − d = D (6.17)

n · p2 − d = 0 (6.18)

Using these two equations it is possible to derive the equation for p2 as follows.

Firstly, D is added to each side of (6.18) and then n · n, which is equal to 1 by

definition, is also introduced. This is then rearranged to a form matching that of

(6.17) to give (6.20).

n · p2 + n · nD − d = D (6.19)

n · (p2 +Dn)− d = D (6.20)

By comparing (6.20) with (6.17) it can be seen that p1 is found using (6.21).

p1 = p2 +Dn (6.21)

This is then rearranged to give the desired equation for p2 using (6.22).

p2 = p1 −Dn (6.22)

The uncertainty of p2 is calculated by first finding the variance of D as in (6.23)

below. The Jacobians containing the partial derivatives of (6.17) are trivial to

calculate in this case. The desired covariance Σp2 is then found using (6.24).
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σ2
D = pT

1Σnp1 + nTΣp1n+ σ2
d (6.23)

Σp2 = Σp1 +D2Σn + nσ2
Dn

T (6.24)

All that remains is to transform the 3D point p2 into the merged plane CF as a

2D corner point to allow the polygon boundaries to be merged. This is performed

using (5.9). There are, however, some minor complications that need to be addressed

first.

As the normal vector n of the merged plane has been modified, the rotation

matrix V used in (5.9) will no longer be orthogonal due to small changes in the

direction of n. The solution is to generate a new orthonormal rotation matrix by

selecting any two vectors that are mutually orthogonal to n. This can be done by

using Gram-Schmidt orthogonalisation [128], with the vectors v1 and v2 that lie on

the original plane, to give the new rotation matrix V
′

as in (6.25).

V
′

=

[

u2

||u2||
u3

||u3||
n

]

(6.25)

where

u1 = n

u2 = v1 −
v1 · n
n · n n

u3 = v2 −
v2 · n
n · n n− v2 · u2

u2 · u2

u2 (6.26)

In the same manner, the origin of the original plane CF no longer lies on the

new plane and so a new CF origin p
′

cog must be generated. This can be performed

using (6.22) to give (6.27).

p
′

cog = pcog −Dn (6.27)
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6.4.2 Merging of Projected Polygon Boundaries

The final step in the merging process is to merge the two polygon boundaries that

have just been projected from their respective infinite planes onto the new merged

planar surface. This process is performed in the same manner as the merging of the

individual polygon boundaries from each 2D image to originally generate the planar

surfaces, as described in Section 5.5.

To summarise this process briefly, each projected boundary is represented by a

series of linked corner points lying on the 2D planar surface. Pairs of corners that are

physically close are registered together and merged. The remainder of the boundary

is merged by taking the union of the unmatched corners and edges and removing

any internal or otherwise erroneous edges.

6.5 Surface Merging Results

The methods described in this chapter to merge the planar surfaces from multiple

3D scans are validated in this section. The experimental and simulated datasets

described in Section 3.3, and the planar surfaces extracted according to Chapter 5,

were used for this.

6.5.1 Results for Experimental Dataset

The results of merging the three 3D scans of the experimental dataset are shown

below. These were found using the same methods as those used for the results of

the individual 3D scans, as shown in Section 5.6.

Experimental Plane Fitting Results

The plane parameter fitting errors are shown in Fig. 6.1 for the eight surfaces that

were extracted in at least one of the real 3D scans. The change in error is shown

as each new surface observation is merged into the current surface estimate. The

change in the angular error of n in degrees is shown in Fig. 6.1(a) while the change
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in the error of d in millimetres is shown in Fig. 6.1(b). The X axis depicts the

number of observations of each surface.
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Figure 6.1: Change in plane parameters during merging (Experimental dataset).

Experimental Polygon Boundary Results

The mean corner location error, µ∆c in millimetres, is shown in Table 6.1 after the

three experimental 3D scans were merged together. This error value was found using

the ground truth plane parameters to show the corner error independent from any

plane fitting error. The mean Mahalanobis error µ∆c (σ) is also shown in terms of

the standard deviations. The average of the individual 3D scan mean corner errors

is also shown for comparison.
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Table 6.1: Real dataset - Polygon boundary corner error (true n,d)
3D scan Corners µ∆c µ∆c (σ)
Average of Individual Scans 73 10.6mm 2.27
Merged Scan 39 8.3mm 2.06

The total corner error, including any errors from the plane parameters, was also

found as in Table 6.2. This was found by projecting the corners onto the plane

parameters fit to the raw data, rather than using the ground truth parameters as

in Table 6.1 above. This error is compared to the total error from Scan A, as taken

from Table 5.5.

Table 6.2: Real dataset - Polygon boundary corner error (fit n,d)
3D Scan Corners µ∆c µ∆c (σ)
Scan A (found in Table 5.5) 22 14.7mm 1.88
Merged Scan 39 13.0mm 2.38

Experimental 3D Reconstruction Results

The 3D reconstruction of the local 3D map produced by merging the three 3D scans

from the experimental dataset are shown in Fig. 6.2.

6.5.2 Results for Simulated Dataset

The results of merging the five 3D scans of the simulated dataset are shown below.

These results were calculated using the same methods as those used for the indi-

vidual 3D scans shown in Section 5.6. The same layout is followed as that of the

experimental results shown in Section 6.5.1 above.

Simulated Plane Fitting Results

The plane parameter fitting errors are shown in Fig. 6.3 for the fourteen surfaces

that were extracted in at least one simulated 3D scan. The change in error is shown

as each new planar surface observation is merged into the current surface estimate.

Note that the scale of the Y axis is different to that used in Fig. 6.1 and it is

important to take this into account when making comparisons.
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(a) Reconstructed front view. (b) Actual front view.

(c) Reconstructed side view. (d) Actual side view.

Figure 6.2: 3D reconstruction of merged experimental scene.

Simulated Polygon Boundary Results

The mean corner location error is shown in Table 6.3 after the five simulated 3D

scans have been merged together. The mean error of the five individual 3D scans is

also shown for comparison. Unlike the experimental results shown in Section 6.5.1

above, there is no need to show the corner error using the fit parameters, as in

Table 6.2. This would be redundant as the plane fitting error was negligible for this

simulated dataset, as was seen in Fig. 6.3, and the corner error is virtually identical

to that seen below in Table 6.3.

Table 6.3: Simulated dataset - Polygon boundary corner error (true n,d)
3D Scan Corners µ∆c µ∆c (σ)
Average of Individual Scans 104 11.1mm 2.54
Merged Scan 56 11.1mm 2.69
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Figure 6.3: Change in plane parameters during merging (Simulated dataset).

Simulated 3D Reconstruction Results

The 3D reconstruction of the local 3D map produced by merging the five 3D scans

from the simulated dataset are shown in Fig. 6.4.

6.6 Discussion

The merging of individual 3D scans was required to generate a 3D map about the

WCR’s current position. This map must contain the majority of planar surfaces

from the environment and they need to be mapped accurately enough to allow the

WCR to use them as footholds. It is necessary to determine if the generated merged
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(a) Reconstructed left side view. (b) Actual left side view.

(c) Reconstructed right side view. (d) Actual right side view.

Figure 6.4: 3D reconstruction of merged simulated scene.

3D maps meet these requirements.

6.6.1 Merging of Planar Surfaces

For both experimental and simulated datasets, the merged 3D maps were better

than the individual 3D scans, both qualitatively and quantitatively. This was seen

as improvements to the field of view, the number of mapped surfaces and a reduction

in occlusions, as well as an improvement in the accuracy of the planar surfaces.

Almost all relevant planar surfaces were observed and had a planar surface fit to

them, the accuracy of which was within the tolerances laid out in Section 3.2.1. The

3D maps are therefore good enough to allow the WCR to plan its next foothold

location and navigate towards it. Such navigation and motion planning is, however,

outside the scope of this work. Refer to the work of Ward [75] for a motion planning

approach that was developed for the CRACbot.
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Infinite Plane Fusion

The experimental 3D map reconstruction successfully mapped eight of the ten visible

surfaces, as seen in Fig. 6.2. It can also be seen that the field of view is wider than

the individual scans, shown in Figs. 5.18-5.20. The three individual scans each

contained seven, five and eight of the ten surfaces respectively, however, several of

these were only partially observed.

The accuracy of each planar surface plane in the merged 3D map showed general

improvement, as seen in Fig. 6.1. This shows the change in the error of the n

and d parameters of each plane after integrating each successive surface observation

during the merging process. The generally decreasing trend is apparent and all

but one surface had an angular error of less than 2◦. All but two surfaces had a

distance error of less than 15mm. This level of error is decent considering that they

were calculated against ground truth values that were hand measured and so not

known exactly. It is also within the tolerances required for footstep placement of

±3◦ and ±20mm. The higher level of error in the d parameter was mostly caused

by unmodeled systematic errors in the LRF range measurements, as mentioned in

Chapter 5.

Similar results were seen for the simulated dataset and its 3D reconstruction of

the merged 3D map, as in Fig. 6.4. The merged 3D map contained 14 out of the 15

visible surfaces and the level of occlusion was significantly less than that seen in the

individual 3D scans, shown in Figs. 5.13-5.17. The plane parameter accuracy, as in

Fig. 6.3, did not change significantly. The absolute accuracy is already excellent,

due to the lack of unmodeled systematic biases, and so there is little room for the

error to improve.

The plane fitting results for both datasets show that the basic KF merging ap-

proach, as described in Section 6.3, was sufficient to merge the planar surface obser-

vations. The proposed modifications effectively solved the two problems pertaining

to the unit normalisation and the directional consistency of the normal vector.
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Polygon Boundary Fusion

The polygon boundary fusion process followed the same method used to merge the

boundaries of the individual scans, as detailed in Section 5.5. This method was

found to work well for the individual scan boundary generation and similar results

were also seen in the merging of the boundaries to generate the planar surfaces of the

merged 3D map. This can be seen qualitatively in the 3D reconstructions shown in

Figs. 6.2 and 6.4, which bear a good resemblance to the true scenes being mapped.

The field of view of the polygon boundaries are also more complete than those seen

in the individual 3D scans which were limited by of the camera field of view.

For the experimental dataset the merged corner error, from Table 6.1, was 8.3mm

which was a 22% decrease from the mean error of the individual scans when using

the ground truth plane parameters. When using the fit plane parameters, the corner

error was 13.0mm (12% decrease). These show that the polygon boundary merging

process is taking the corner uncertainty into account and providing a better estimate

than using the average corner position. This is also a validation of the corner

projection method, detailed in Section 6.4.1, to project each boundary onto the

merged plane and calculate the new corner locations and uncertainties.

The simulated dataset merged corner error, shown in Table 6.3, was 11.1mm

which was the same as the mean corner error of the individual 3D simulated scans.

Due to the simplified nature of the simulated noise models, the level of uncertainty of

each surface boundary was not significantly different. The merging process therefore

weighted each corner location similarly and essentially provided the average corner

position.

6.6.2 Usage of Planar Surfaces for SLAM

After the generation of a local 3D map, the WCR can use this environmental knowl-

edge for navigation by some means. The map is locally accurate with low relative

distortion between surfaces and this will allow the WCR to plan its motion towards

the next foothold location. These surfaces are globally uncertain but this is not an
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issue during motion planning. It is more important to be able to successfully move

to the next foothold rather than knowing the exact global location of that foothold.

For a WCR, being slightly lost is less of a concern than attempting to step onto a

poor quality surface which could lead to a collision or fall.

After the footstep motion has finished, the global robot position can be estimated

by a 3D SLAM implementation as odometry alone will no longer be sufficient to track

the robot’s pose. While the implementation of such a SLAM algorithm is outside the

scope of this work, it remains to demonstrate that the planar surface maps generated

in this thesis are able to be integrated within the planar SLAM approaches from the

literature.

EKF SLAM using Planar Features

EKF planar SLAM uses planar surfaces as features as opposed to the point features

that are more commonly used in SLAM. The work of Kohlhepp et al. [32], Wein-

garten et al. [33] and de la Puente et al. [36] in this area was introduced in Section

6.2. They all proposed similar approaches, with Weingarten [35] proposing to use

the SPmap framework to maintain an estimate of the planar surfaces. This required

the planar surface parameters n and d, as well as the local plane covariance. This

information is readily available from the surface mapping approach of this thesis.

Therefore, the planar surfaces from the local 3D map could be used within such an

EKF SLAM framework with little modification. The ability of the proposed method

to generate the surface uncertainty is especially useful because many plane fitting

methods do not provide this and so they could not be used for SLAM.

Weingarten [35] also suggested using the polygon boundary information to aid

in the data association and again this information is available. The surface colour

and texture information from the colour camera could also be used to improve the

robustness of the data association.
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Planar Scan Matching SLAM

The planar scan matching approach of Pathak et al. [74], as described previously,

registers planar surfaces together and then determines their change in pose between

observations. Their method also used the Hessian plane parameters n and d, with

corresponding uncertainties, and again this is the same plane representation used in

this work.

The main requirement for successful registration using their MUMC approach

[125] was that each 3D map needed to contain at least three nonparallel planar

surfaces that could be matched. The local 3D maps of Figs. 6.2 and 6.4 each

contained enough such surfaces for use within their MUMC registration and SLAM

framework. This approach operates on the infinite plane parameters only and so

could benefit from the use of polygon boundary information and surface colour.

These are available for each planar surface extracted in this work and this could

improve the speed and robustness of MUMC by reducing the search space during

the data association phase.

6.7 Summary

This Chapter has detailed the creation of local 3D maps by merging together a

number of individual 3D scans taken from the same WCR foothold position. These

were extracted, as described in Chapter 5, and a methodology was proposed to

merge together both the infinite plane parameters and the polygon boundaries. The

resulting local 3D map showed an improvement in the field of view, a reduction in

occlusions and increased accuracy when compared with the individual 3D scans.

The accuracy of the merged surfaces was within the allowable tolerances set out

in Section 3.2.1 and over 80% of the visible planar surfaces were successfully mapped.

It follows that these local 3D surface maps are sufficient to allow the CRACbot to

locate and maneuver to a suitable nearby foothold. A 3D SLAM implementation

could then be used at this point for longer term mapping and localisation. This
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integration was discussed and found to be viable.

It now remains to show that the presented surface mapping methodology can

build these 3D surface maps in real time. This is the focus of the following chapter.
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Chapter 7

Performance Analysis

7.1 Introduction

The previous three chapters have detailed the proposed 3D mapping method. The

accuracy and quality of the resulting planar surfaces have been experimentally vali-

dated and found to be sufficient to enable navigation and motion planning to occur

by some means. This chapter analyses the computational performance of the pro-

posed mapping method. This will determine the viability of real time operation

using the limited computational resources available to a small wall climbing robot,

such as the CRACbot.

The computational cost of each mapping component will be analysed theoreti-

cally and the running time will be found experimentally. This will show that real

time operation is possible and also highlight any potential bottlenecks. Areas for

improvement will be discussed with a particular focus on optimising the level of

sparseness used during the data acquisition process.

7.2 Computational Performance

This section analyses the computational performance of the 3D surface mapping

method presented in this thesis. The computational complexity of each component

of the proposed mapping method will be theoretically analysed. This is followed by
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runtime results for the experimental datasets which will then be compared to other

planar surface fitting methods.

7.2.1 Computational Complexity Analysis

Feature Extraction

The extraction of image features uses the approach and implementation of He et al.

[102]. A Canny edge detection stage is used which has a complexity of O(uv) for an

image consisting of u × v pixels. This is followed by a scale space corner detection

stage to find the corners within each detected edge. This has a complexity of O(nil)

for an image containing nil extracted image lines. For further information refer to

Section 4.2.1. The edge detection complexity tends to dominate due to the quadratic

nature of the image pixel count and this is a major reason why low resolution images

were used.

The incremental 2D line segmentation of each LRF scan is O(Sn2
p) [106] for a

scan consisting of np points and S extracted line segments. This quadratic complex-

ity suggests that subsampling the LRF scans would provide large improvements in

the runtime of this segmentation process. The level of sparseness used for feature

extraction and its effect on runtime will be discussed further in Section 7.3.1.

Feature Grouping

The feature grouping process has a computational complexity of O(n2
2Dngnllnil) for

a 3D scan consisting of n2D 2D scans. The total number of feature groups is ng and

the average number of image line and laser line features per image are denoted nil

and nll respectively. This complexity is dominated quadratically by the number of

2D scans taken and so this feature grouping method performs better when a larger

tilting angular step is used. This will be discussed further in Section 7.3.2.
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Plane Fitting

PCA plane fitting using (5.4-5.8) is O(np) when fitting to a set of np raw 3D data

points. The calculation of the covariance of the plane parameters using (5.36-5.37)

is also O(np). So the plane fitting process is overall linear in complexity when fitting

each individual plane. The overall complexity of the plane fitting process is O(nsnp)

when fitting ns planar surfaces. Note that ns is less than or equal to ng as some

feature groups may not be able to have a planar surface fitted to them.

Polygon Boundary Generation

The generation of polygon boundaries for each planar surface in each 3D scan has

a complexity of O(n2Dn
2
c) where nc is the number of image corners on each polygon

boundary. Due to this quadratic complexity in terms of nc, the corner postprocess-

ing techniques of Section 5.5.4 becomes especially important to remove redundant

corners.

Merging of 3D Scans

The process of incrementally merging two 3D scans has two components. The fusion

of the plane parameters is O(ns) in complexity while the fusion of the two polygon

boundaries is O(nsn
2
c). If this process is performed as a batch operation, once n3D

individual 3D scans have been acquired, then the overall complexity is O(n3Dnsn
2
c).

7.2.2 Runtime Results

The total running time of the mapping method depends on the data acquisition and

motion times along with the time taken to process the data to build each 3D surface

map. For real time operation to be viable, the processing of each 3D scan should

be equal to or less than the time taken to acquire it and move to the next position.

If more time is required then the robot will have to pause to allow the computation

to catch up and any delay of more than a few seconds is generally undesirable.
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Runtime Results for Mapping Components

The running time of each proposed mapping component was found experimentally

using the three 3D scans of the real dataset, as shown below in Table 7.1. These

values were found using implementations of each mapping component written in

C++ and MATLAB. A conservative factor of 3:1 was used to estimate the runtime of

the MATLAB implementations when running in equivalent C++ code. All mapping

components were run on a single core 2.7GHz Intel processor with 1GB of RAM.

The feature extraction required 79ms per 2D scan with a total of 711ms needed to

process the nine 2D scans of each individual 3D scan. The feature grouping process

required 6ms per group to give a total of 54ms for an average of nine groups. The

plane fitting and polygon boundary generation runtime was 18ms per plane. This

gave a runtime of 126ms for an average of seven planar surfaces for each 3D scan.

The merging of the individual 3D scans to generate the local 3D map took 8ms per

plane pair. These values are summarised in Table 7.1.

The CRACbot embedded computer is a GumStix Verdex Pro [11] with a pro-

cessor clock speed of 600MHz. A factor of 1:8.1 was used to estimate the runtime

of each mapping component when running in C++ code on the Verdex Pro. This

value was found by taking into account benchmark information for the Verdex Pro,

the relative clock speeds and differences in architecture and available memory. For

further information about the Verdex Pro specifications and the assumptions used

to arrive at the factor of 8.1, refer to Appendix A.1. This process was necessary

as the code has not yet been fully converted and implemented for operation on the

CRACbot at this time. The estimated runtimes are shown below in the final column

of Table 7.1.

Data Acquisition Time

The data acquisition time is the product of the number of 2D scans to be acquired

and the time taken to tilt the sensors to the next position and acquire the LRF and

camera data. The CMUcam3 can acquire images at 26Hz (38.5ms per image). The
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Table 7.1: Runtime for components of proposed mapping method
Mapping Component 2.7GHz PC Verdex Average Verdex

Time Time Number Time
(Average) (Average) (Total)

Image Feature Extraction 59ms 478ms 9 2D scans 4.30s
LRF Feature Extraction 20ms 162ms 9 2D scans 1.46s
Feature Grouping 6ms 49ms 9 groups 0.44s
Plane Fitting 9ms 73ms 7 planes 0.51s
Polygon Boundary 9ms 73ms 7 planes 0.51s
3D Scan Merging 8ms 65ms 12 plane pairs 0.78s

Hokuyo URG-04LX LRF can acquire 2D range scans at 10Hz (100ms per scan).

As the motor runs continuously it may require at worst case 199ms to acquire a

scan, depending on the initial position of the LRF scanning motor when a scan is

requested.

Both sensors were interfaced using a RS232 serial connection operating at a

baud rate of 115,200bps. The protocol used was eight data bits and one stop bit

which leads to an effective data transfer rate of 12.5KBps. The camera supplies a

16 bit raw RGB image with 50,512 pixels which equates to 99KB in size. This will

require eight seconds to transfer each image in this format. The onboard hardware

can compress the image to jpeg format to reduce the file size to 5-7KB (400-560ms

transfer time) and approximately 200ms is required for this conversion to jpeg.

The 2D LRF scan consists of 682 range measurements, requiring 2 bytes each, to

give a total size of 1.33KB. This will take just over 100ms to transfer . If intensity

and the receiver gain value for each range measurement are also desired, then 320ms

will be required to transfer this information. It should be noted that higher transfer

rates are possible for the Hokuyo URG-04LX but are not implemented.

As both sensors can acquire their data simultaneously, a minimum time of 200ms

is required at each 2D scan location after the joint has settled. Taking into account

the transfer time of each sensor, a worst case minimum time between acquisition of

consecutive scans is 800ms, which is predominantly limited by the camera transfer

rate. This transfer can occur during the tilting motion to the next 2D scan position.

From Table 7.1 it was seen that the feature extraction process for each 2D scan
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required an estimated 640ms. This is within the minimum data acquisition time

required for each 2D scan of 800ms. It is therefore possible to extract the features

in real time.

These data acquisition timings are summarised in Fig. 7.1 below. This diagram

shows the relative timing of the acquisition and feature extraction for each 2D scan.

The image feature extraction for 2D scan i is performed during the acquisition and

transfer of the image from the next scan (i + 1) to prevent the need for a pause.

Note also that these times were estimates only and the conversion factors used were

conservative. It is likely that the feature extraction process speed could be further

improved when converted from MATLAB to optimised C++ code.

Figure 7.1: Data acquisition timing diagram.

3D Scan Acquisition Time

The tilting joint on the CRACbot has a speed of 3RPM which equates to an an-

gular velocity of 0.31 radians (18◦) per second. The CRACbot joint controller was

designed and analysed by Szwec [77]. Based on this information, and the motor

time constant of 9ms, an estimated 100ms should be allowed for speed up and set-

tling time per tilting movement. The time required to acquire each 2D scan is thus

300ms, including 200ms for data acquisition, plus the time taken to tilt through the

desired angular step to arrive at the next 2D scan tilt angle.

Possible scanning times are shown below in Table 7.2. A number of tilting
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angular steps that are commonly used in the literature (0.5◦ and 1.0◦), as well as

the angular steps used in this thesis (5.0◦ and 10.0◦), are shown. The time taken to

acquire a 3D scan which tilts through a range of 40◦, as used in the experimental

dataset, is shown along with the number of 2D scans required. These scanning

times are, however, limited by the minimum time required for the transfer of the

raw sensor data, which is 800ms.

Table 7.2: 3D scan acquisition time
Tilting 2D DAQ Tilting Total Time 40◦ Scan 2D Scans

Angular Step Time Time per 2D Scan Time Required
0.5◦ 300ms 28ms 800ms (328) 65s 81
1.0◦ 300ms 56ms 800ms (356) 33s 41
5.0◦ 300ms 278ms 800ms (578) 7.2s 9
10.0◦ 300ms 556ms 856ms 4.3s 5

From Table 7.1 it was seen that the feature grouping, plane fitting and polygon

boundary generation processes required an estimated 1.5s for each 3D scan. This

is currently performed after the acquisition of the entire 3D scan, as most of the

time available during data acquisition is required for feature extraction. This time

is comparable to the time required to move to the next 3D scan pose and so no

pause is required to complete the mapping. If these surfaces are needed to plan the

next 3D scanning pose, then a small pause of less than two seconds will be required

before continuing.

3D Scan Memory Usage

Each 2D scan consists of a set of LRF range measurements and a camera image. As

mentioned above, the camera image requires 5-7KB when converted to jpeg format,

while each LRF scan requires 1.33KB when subsampling is not used. Assuming

these worst case values, each 40◦ 3D scan, consisting of nine 2D scans, will require a

maximum of 75KB of storage space for the raw data. Once each image has been used

for feature extraction it can then be deleted. This reduces the memory requirement

to 19KB for the storage of nine LRF scans and the latest camera image to operate

on.
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Once feature extraction has been performed then the raw image data is no longer

needed. The image corner features themselves consist of a list of (u,v) coordinate

pairs and a second list of edges that join corners together. A typical set of features

consisting of 40 corners and edges will require approximately 160 bytes. The LRF

segment information is negligible in size, as it is simply a list of the endpoint indexes

with each 2D LRF scan. In total, the image and LRF features can typically be

represented by 200 bytes per scan to give a total of 1.8KB per 3D scan.

Each planar surface requires 32 floating points values to store the plane param-

eters, covariances, origin and rotation matrix. This gives a total of 128 bytes per

plane. The average polygon boundary consists of 10 corners, each requiring 6 float-

ing point values for their 2D location and covariance. This requires an additional

260 bytes, once the edge information is also included, to give a total of 388 bytes per

planar surface. Assuming an average of seven planes per 3D scan, the total memory

required to store each 3D surface scan is 2.7KB. At this point the raw LRF data is

no longer needed.

Overall the process of fitting planar surfaces to each 3D scan requires the tempo-

rary storage of less than 20KB throughout the whole mapping process. Only 3KB

are needed to store the resulting planar surface patches for an average 3D scan.

Local 3D Map Acquisition Time

The time taken to acquire a local 3D map about a particular foothold location de-

pends on a number of factors but several assumptions can be used to estimate this

time. It is assumed that the 3D scan poses do not differ significantly. This allows

odometry to provide the change in pose, as assumed in Section 6.2.1, as well as

ensuring some level of overlap between scans. Another benefit of this assumption is

that the robot can operate with less environmental knowledge if it keeps its move-

ments short between observations. Practically, this assumption limits the number of

joints moving to two and those joints are limited to moving through a maximum of

90◦. At a speed of 3RPM this will take 4.6 seconds, including the 100ms allowance
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for settling time.

It is also assumed that each local 3D map consists of a maximum of five individual

3D scans and so the total time for the acquisition of each local 3D map is 40 seconds

(10.0◦ tilt step) to 54 seconds (5.0◦ tilt step). From Table 7.1 it was seen that the

3D scan merging process required 65ms to merge each planar surface pair within a

set of individual 3D scans. Assuming an average of twelve matched planar surface

pairs, this merging will take an estimated 780ms to merge a new 3D scan into the

local 3D map. This is well within the data acquisition and motion time for each

new 3D scan.

7.2.3 Discussion of the Computational Performance

The results and estimates of the mapping runtimes showed that the proposed map-

ping approach can operate in real time when using the limited onboard computa-

tional power of the Verdex Pro. The estimated runtimes, for onboard operation of

each mapping component, were all within their respective data acquisition and mo-

tion time frames. However, it should be noted that these times were estimates only,

as the code has not yet been fully implemented on the onboard Verdex Pro proces-

sor. Nevertheless, even if these estimates are out by a factor of 2, real time operation

is still achievable if short pauses in the order of a few seconds are acceptable.

The data acquisition of each 2D scan was limited by the transfer speed of the

camera images. The maximum available baud rate is 115,200 bps for the CMUcam3

and despite the low resolutions used, these images can take approximately 800ms

to acquire, convert to jpeg format and then transmit to the Verdex Pro board. It

was mentioned in Section 3.4.1 that the CMUcam3 could be interchanged with any

low resolution camera. Using a different camera with a faster serial or USB transfer

rates would significantly improve the speed of the data acquisition process.

In general, the acquisition of each 3D scan is still significantly faster than dense

scanning approaches. The number of 2D scans required is an order of magnitude

less when scanning sparsely. This was seen in Table 7.2 where a dense scan at an
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angular step of 0.5◦ required over a minute for acquisition while the sparse scans

required only 5-7 seconds. This allows for both faster scanning and faster mapping,

as less data is acquired and operated on.

Performance Compared with Literature

It has been shown that the proposed mapping approach is capable of generating

planar 3D surface maps in real time. It is beneficial to compare this performance

against other 3D planar mapping approaches to ascertain any relative advantages

or disadvantages. The mapping approaches used for comparison are those of Zureiki

et al. [37], Pathak et al. [46] along with Weingarten et al. [72] who proposed

both the Grid Based Segmentation (GBS) and Region Growing Segmentation (RGS)

approaches. Where appropriate, their runtimes will be scaled in a similar manner to

that used to generate the estimated Verdex Pro runtimes. This will allow for fairer

comparisons. These times are summarised in Table 7.3 below.

Table 7.3: Running time for mapping methods in the literature
Planar Mapping Approach Processor Tilt Point Run Verdex

Speed Range Cloud Time Time
Weingarten [72] - GBS 1.4GHz 270◦ 58k 4.5s 19s
Pathak [46] 1.6GHz 180◦ 195k 6.4s 31s
Weingarten [72] - RGS 1.4GHz 270◦ 58k 14s 59s
Zureiki [37] 3.0GHz 97◦ 61k 10s 90s
Proposed Method - 40◦ Tilt Range 2.7GHz 40◦ 2.5k 0.9s 7s
Proposed Method - 90◦ Tilt Range 2.7GHz 90◦ 5k 1.9s 15s

It is difficult to make quantitative comparisons between the different methods

due to variations in factors such as the angular tilting range and the amount of

plane fitting and polygonalisation performed. Despite this, it can be seen that

the proposed mapping method compares favourably and performs at least as fast,

if not faster than the other mapping methods in the literature. It also operates

on significantly smaller input datasets. This is important for embedded operation

where memory and storage space are limited, but this is not factored into the running

time estimates. All the other methods were also fitting 3D maps from ground based

208



CHAPTER 7. PERFORMANCE ANALYSIS

robots using large or heavy sensors. Therefore they would not be directly suitable

for use on a small wall climbing robot undertaking 3D motion.

7.3 Discussion of the Level of Sparseness

The use of sparse input data from the LRF and camera is a key component of the

mapping method proposed in this thesis. It is important to investigate the effect on

the performance of the proposed mapping method when the level of sparseness is

varied. This sparseness originates from both the sensors themselves and the tilting

angular step between each 2D scan. By analysing each source of sparseness carefully

it will be possible to provide clues as to the best levels of sparseness to use.

7.3.1 Sensor Sparseness

Camera Pixel Resolution

The resolution of the camera images influences the running time in several ways.

The image acquisition and transfer time, which was shown to be the main bottleneck

in the data acquisition process, along with the image feature extraction process

are both significantly faster operations when using lower resolution images. These

processes are both quadratic in complexity for an image consisting of u× v pixels.

This justifies the use of low resolution images in this thesis which were only 287

× 176 pixels (0.05MP) in size. The use of such images provides improvements in

runtime of approximately 6× over VGA images (640×480=0.3MP) and 26× over

XVGA images (1280×1024=1.3MP). The storage space and memory required to

store and operate on each image are also reduced by a similar factor. This is another

advantage when using limited onboard computational resources.

There is a tradeoff when using low resolution images in terms of reduced accuracy.

The image resolution limits the achievable accuracy of the reconstructed polygon

boundary corners to the size of half a pixel. However, it is only one of several factors

that contribute to the boundary corner error. Other factors include the quality of
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the camera calibration and the accuracy of the feature extraction process.

Increasing the image resolution would not provide a significant improvement in

accuracy but would come at the cost of a large increase in runtime. For example,

if the image resolution was doubled in both the vertical and horizontal directions,

the runtime would increase fourfold due to the quadratic complexity of the image

feature extraction operations. The corner error would, however, not halve as the

influence of the other error sources has remained unchanged.

The image resolution should therefore be as low as possible while still maintaining

a reasonable level of error. If the resolution is too low then the corner error becomes

dominated by the image resolution. The ideal pixel resolution should provide a level

of corner error that is similar in magnitude to the error provided by the other sources

which are independent of the image resolution. Lower resolutions would begin to

dominate the polygon boundary corner error while higher resolutions would greatly

increase the runtime with little improvement to the corner error.

For the low resolution (0.05MP) CMUcam3, a surface corner at a range of 500mm

would have a minimum error of ± 2mm. This corresponds to half a pixel in each

of the horizontal and vertical directions. From Table 5.4 it can be seen that the

average corner reconstruction error was 10.6mm. The majority of this error was

not caused by the image resolution and so higher resolution images would provide

a negligible improvement in the corner accuracy.

LRF Angular Resolution

The angular resolution of the 2D LRF scans influence the accuracy and running time

of the plane fitting and line segmentation operations. Lower scanning resolutions

will supply less raw data points. This will decrease the plane fitting runtime as the

calculation of the plane parameters and covariance are both O(np) in complexity

for a 2D scan consisting of np points. The incremental 2D line segmentation is

O(Sn2
p) and would benefit even more from a lower scanning angular resolution, or

subsampling of the acquired data.
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The Hokuyo URG-04LX used an angular resolution of 0.36◦ and this was the de-

fault setting. At this resolution a surface at a range 500mm and 0◦ angle of incidence

will be intersected by adjacent laser beams that are approximately 3mm apart. The

proposed surface mapping method does not use the LRF data to detect the surface

boundaries and so decreasing the angular resolution will provide large improvements

in performance at negligible cost to the accuracy of the planar surfaces.

The limiting factor to reducing the angular resolution of each scan is the size

of the objects in the scene. If the surfaces are small in size, then fewer beams

will intersect them. This may cause some surfaces to be missed or inaccurately

segmented if the resolution is too low, as the influence of the range noise becomes

more significant. Nevertheless, such small surfaces are likely to be unsuitable as

footholds and so the accuracy of their extraction is of less concern. An angular

resolution of 1.08◦ (subsampling every third measurement) would improve the plane

fitting speed threefold and the 2D line segmentation speed ninefold while having

little effect on the surface accuracy.

7.3.2 Tilting Angle Sparseness

The second source of sparseness in this mapping approach is introduced by the

tilting angular step between the acquisition of each 2D scan. In this thesis a step of

5-10◦ was used. This is an order of magnitude larger than the 0.5-1.0◦ step that is

commonly used for dense 3D range scanning in other robotic mapping approaches.

This sparseness influences the plane fitting process in two ways. Halving the

angular step will double the number of raw data points np used for plane fitting.

This will result in the time taken to calculate the plane parameters and covariances to

double as both processes are linear in complexity. However, there will be negligible

improvement in their accuracy. A plane can be fitted to a minimum of two line

segments from different angular steps and this will provide the fastest plane fit.

Further line segments provide little extra improvement to the plane accuracy in

general.
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Having said that, if the tilting angular step is too large, then some surfaces

will not be intersected twice and thus cannot have a planar surface fit to them.

Assuming optimal feature extraction and grouping, the ideal tilting angular step

should intersect each surface in the environment twice but no more. In practice this

should be relaxed somewhat to provide extra intersections to allow for grouping and

extraction failures.

This ideal tilting angular step should also take into consideration the vertical FoV

of the camera. The CMUcam3 has a vertical FoV of ±15◦. This means that each

surface point is seen in seven consecutive images for a tilting step of 5◦. Each surface

feature needs to be successfully extracted from at least one image. However, if it is

observed several times, then the accuracy can be improved through the boundary

merging process. In general, two to three observations of each corner are sufficient

to generate a good quality polygon boundary. In this case, the tilting step could

be increased to 10◦ increments (four images per feature) if the size of the surface

objects allow the LRF to intersect each one at least twice.

7.3.3 Adaptive Tilting Angle

As discussed in the previous section, the ideal angular tilting step is largely depen-

dent on the size of the surface objects being scanned. A large angular step has

significant performance benefits but risks missing smaller objects in the scene. The

solution to this problem may be to introduce an adaptive tilting step that can at-

tempt to determine the size of the objects in the scene and adjust the size of the

angular step accordingly. This would involve using the current camera image to

find the largest angular step for the next 2D scan that will intersect any currently

grouped surface that still requires a second LRF line segment for plane fitting.

For example, when scanning large surfaces, such as a wall, the angular step can

be maximised to the vertical FoV of the camera (15◦ for the CMUcam3). As soon

as smaller objects are encountered, the angular step can be reduced to acquire the

necessary two LRF line segments. This would significantly speed up the data acqui-
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sition and surface fitting operations but would introduce some extra computation

to implement the adaptive step planner.

Another approach is to use a small constant angular step to ensure that smaller

objects are observed sufficiently but during surface fitting the number of observa-

tions actually used could be limited. It was previously mentioned that plane fitting

requires a minimum of two LRF line segments for successful fitting. Further line

segment observations generally provide little improvement to the accuracy of the

planar surface but significantly increase the fitting time. Thus large surfaces may

produce many line segments of which most are largely redundant.

By using the most accurate two or three line segments, a faster plane fit could be

found with little sacrifice in accuracy. A similar idea could be used after a sufficient

number of corner observations have been extracted and merged to generate the

polygon boundary of a particular surface. The position of that surface region could

be estimated and ignored in subsequent images to speed up the extraction of the

image features.

Both these approaches have the potential to reduce significantly the runtime of

the proposed mapping approach. They have not been implemented at this time and

are presented here as future work.

7.4 Summary

This chapter has discussed and analysed the computational performance of the pro-

posed planar surface fitting method. Experimental results have shown that real

time operation is achievable when operating on the limited computational resources

available to the CRACbot. This performance was also compared to the speed of

other similar planar surface mapping approaches. It was found to perform at least

as fast, if not faster, than these other methods.

The degree of sparseness was analysed for both the raw sensor data and the an-

gular step between each 2D scan. It was determined that a significant improvement

in computational performance could be achieved by optimising the level of sparse-
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ness used. The image resolution could be decreased further and subsampling the

LRF scans could speed up the mapping performance with negligible effect on the

accuracy of the planar surfaces. The tilting angular step size could also be modified

adaptively to scan small objects sufficiently whilst also scanning larger objects the

minimum number of times.

214



Chapter 8

Conclusions and Future Work

A wall climbing robot is able to move in full three dimensional (3D) space by attach-

ing itself to any suitable surface within reach. These robots have the potential for

use in areas such as the inspection, surveillance and maintenance of environments

that are hazardous or inaccessible to ground based robots or people.

This thesis has presented research into a methodology for the creation of 3D

surface maps to enable a small wall climbing robot with limited computational

resources to map and navigate in real time. Using experimental results from realistic

surfaces, the presented 3D mapping method was shown to produce accurate planar

surfaces using sparse scanning and data acquisition from both a laser range finder

and a colour camera. These planar surfaces were found to be sufficient for use

as footholds by a wall climbing robot and this will facilitate motion planning and

navigation. Real time operation was also shown to be achievable.

The main contributions of the research presented in this thesis are summarised

in this chapter. Potential areas and prospects for future work are also discussed.

8.1 Thesis Contributions

This thesis has provided a unique contribution to the field of robotics by allowing

small wall climbing robots to build planar surface maps for navigation in real time.

The main contributions are summarised below.
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8.1.1 Planar Surface Fitting

A wall climbing robot requires knowledge of nearby surfaces to navigate through

its environment. The CRACbot uses suction cups to attach itself to surfaces and

therefore only planar surfaces are suitable to act as footholds. The basis of the

surface mapping approach in this thesis was a method for planar surface fitting to

construct a 3D map using the fusion of range and image information. This was

detailed in Chapter 5 and consisted of two steps. Infinite planes were fitted to

3D points extracted from laser range finder scans while edge features from camera

images were used to provide polygon boundary information for each surface.

Due to the unique nature of this surface mapping approach, a method to merge

the polygon boundary information from several images was needed. Section 5.5

presented an approach to handle this merging and construct the planar polygon

boundaries. The concept of virtual corners and lines was introduced. These virtual

image features were generated at the physical image boundary. They allowed closed

polygons to be generated for surfaces that were not fully observed due to limitations

in the camera field of view. The registration and merging of each combination of

real and virtual features were presented along with post processing stages to clean

up the generated polygon boundaries. This process allowed for multiple images to

improve the boundary accuracy and extend the field of view, despite the simplicity

of the registration and merging used. This provides additional benefits in terms of

computational performance.

The novel approach presented for the fusion of range and image information

allowed for the use of sparse scanning and low resolution data acquisition. This

contrasts with the normal paradigm in robotic mapping of densely scanning the

environment and attempting to fit highly detailed surface models. The proposed

planar surface fitting methods can therefore be performed quickly and in real time

using the limited computational resources available to a small wall climbing robot.

The amount of data being operated on was orders of magnitude less when compared

to the dense point clouds used by most other robotic 3D mapping approaches. This
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will allow the presented mapping approach to be generalised for use by other small

or miniature mobile robots that have similar computational limitations.

8.1.2 Surface Feature Extraction

It was found that for many plane fitting methods, the planar segmentation of the

raw 3D data was slow and computationally expensive. An alternative approach was

proposed in Chapter 4. This was based on the extraction of features from the range

and image data that could then be grouped together to provide the basis for the

plane fitting process.

While the extraction of image features used standard edge and corner extraction

algorithms, the extraction of range features from the 2D LRF scans relied on sig-

nificant modifications to the standard incremental segmentation algorithm. Firstly,

image line features were used to pre-split the raw range scan. Secondly, the adja-

cent points were not added to the line segment set until several consecutive points

were all found to belong to the estimated line segment. Thirdly, the two endpoints

of each segment were ignored during plane fitting. These modifications showed an

improvement in the accuracy of the planar surfaces fitted to the line segments by

significantly reducing the rate of false positive segmentations.

8.1.3 Feature Grouping

The extracted features were of little use individually and therefore some means

for grouping them together was required before planar surfaces could be fitted. A

method was proposed in Section 4.4 to group together image and range features

generated by the same physical surface. This was required as no previous method

existed that could handle the sparseness of the scanning and data acquisition used

in this approach. The grouping method was designed to be conservative and the

results showed that only 2% of features were incorrectly grouped. This low rate

is important as false associations can lead to the generation of inaccurate planar

surfaces during the plane fitting stage.
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8.1.4 Accuracy and Uncertainty of Planar Surfaces

The calculation of uncertainty information for each planar surface was required for

both the merging of planar surfaces and the determination of suitable and reliable

foothold locations. The plane parameter covariance equations were fully derived in

Section 5.4.2 by extending the approach of Weingarten et al. [118]. It was shown

that by performing these calculations in the plane coordinate frame, the covariance

equations simplified dramatically. Most of the sum and product terms equated

to zero and proofs were shown to confirm this. Using these simplified equations

allowed for faster computation of the plane uncertainty. This is beneficial when

computational resources are limited, as is the case with the CRACbot or other

similar small robots.

For the experimental dataset, the error of each planar surface fit in Chapter 5

was less than 3◦ in orientation and less than 30mm in distance. All but one surface

had an error of less than 2◦ in orientation and less than 15mm in distance. The

surface orientation accuracy was therefore good enough for use by the CRACbot

but the distance accuracy was borderline for several surfaces. This was caused by

the range errors from the laser range finder and a more complicated sensor model

could be used to improve this, albeit at a higher computational cost.

Overall, this level of surface accuracy indicates that the planar surfaces fitted

using the proposed approach are sufficient to allow a wall climbing robot to suc-

cessfully use them as footholds. The accuracy was also comparable to that of other

surface fitting approaches, despite the sparseness of the scanning used. The mean

corner error of the merged planar polygon boundaries was found to be 8mm. This

polygon boundary accuracy is rarely shown in other methods and so comparisons

are difficult to make. This level of error does, however, appear to be very reasonable

considering the low resolution of the images used to generate them.
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8.1.5 Real Time Operation

The generation of a 3D map must be performed in real time for a wall climbing

robot as it cannot move without a surface map of some kind. The computational

hardware that a wall climbing robot can carry onboard is often severely limited

due to payload restrictions. A lightweight algorithm was needed as most dense 3D

mapping approaches generate a large amount of raw data which is slow to acquire,

store and operate on.

The proposed surface mapping approach was shown in Chapter 7 to be lightweight

and fast because of the usage of sparse scanning, low resolution data acquisition and

feature extraction. Real time operation using the 600MHz processor onboard the

CRACbot was shown to be viable. Each mapping component was able to be pro-

cessed within the time required for the relevant data acquisition and motion. This

minimises the need for the robot to pause and wait for the 3D map to be built which

is preferable for speed and battery life considerations.

8.1.6 3D Map Construction for Navigation

Individual planar surfaces are of little use by themselves for navigation. It was

shown in Chapter 6 that it was possible to merge surface observations from nearby

3D scans to build a local 3D surface map about a wall climbing robot’s current

foothold position. This would allow the robot to use this information to locate a

suitable nearby foothold and move towards it successfully. Any implementation of

such navigation and motion planning is, however, outside the scope of this work.

A standard Kalman Filter was used to merge the planar surface parameters.

Several simple modifications were proposed and implemented to ensure that the

surface normal vector direction and sign remained consistent throughout the merg-

ing process. Previous planar merging approaches noted these problems but used

alternative surface merging approaches instead. It is beneficial if a Kalman Filter

can be used directly for surface merging. The proposed modifications allowed its

usage while also maintaining the correctness of the normal vector. This is important
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because the Kalman Filter is easy to use and is a well understood estimator.

The use of the generated planar surfaces within planar 3D SLAM frameworks

from the literature was discussed and analysed. It was found that they could be

used, with little modification, within both feature based and scan matching planar

SLAM approaches. This will allow for longer term navigation and map building

which is an important part of autonomous operation for a wall climbing robot.

8.2 Future Work

The planar surface mapping method presented in this thesis opens up new avenues

for research and development. Areas of potential future work are introduced below

along with possible refinements to the method to validate it further and improve its

robustness.

8.2.1 Full Implementation on CRACbot Prototype

The CRACbot was the target robotic system and motivation for the surface mapping

approach presented in this thesis. It was not however, fully operational at the time

of writing. The proposed methods were instead validated using an experimental

test rig which simulated the robot scanning motion. The surface mapping approach

was shown to be fast enough to allow for real time usage. This will need to be fully

validated using the CRACbot once it is operational. This will confirm that the robot

can map successfully its environment and move between footholds in real time. The

use of the generated planar surfaces within a 3D SLAM framework was discussed

in Section 6.6.2 and found to be viable. This also needs to be implemented on the

CRACbot to provide a long term navigation capability.

8.2.2 Estimation of Surface Properties

The presented mapping approach was able to provide information regarding each

planar surface in the map, but this was limited to colour and texture only. The
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ability to provide richer surface information, such as surface type or material, would

be very useful for the end user robot. This could allow a more detailed sensor model

to correct for material specific range biases from the LRF scans. Another benefit

could be to allow a wall climbing robot to avoid surface materials that are known

to provide poor suction. The availability of both range and vision data provides the

opportunity for further exploration of this concept.

8.2.3 Integration of Nonplanar Surfaces

Currently, the surface mapping is limited to planar surfaces. Nonplanar surfaces are

unsuitable as footholds for the CRACbot and so have not been the focus of this work.

While several methods were detailed in Sections 4.3.4 and 4.4.5 to detect and filter

out any features generated by nonplanar surfaces, no representation was detailed to

handle them within the current framework. This is important for obstacle avoidance

and visualisation purposes. Possible extensions to accommodate nonplanar surfaces

include the addition of spheres, cylinders or piecewise planar surfaces to represent

them.

8.2.4 Optimisation of Sparseness

Section 7.3 analysed the sparseness of both the sensor data and the tilting angu-

lar resolution. It was found that by optimising the level of sparseness used, the

computational performance of the mapping process could be improved further with

little cost to the surface accuracy. Several suggestions were proposed including the

introduction of an adaptive tilting angular step to achieve this. It also appears that

even lower resolution images and LRF scans could be used in some situations. Fur-

ther investigation is warranted to determine the level of possible improvement to

the speed of the approach and any resulting loss in accuracy.
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Appendix A

Hardware Specifications

A.1 CRACbot Specifications

This appendix details the target robot system to provide more detailed specifications

than those outlined in Section 3.2. The mechanical design and choice of motors will

be discussed. An analysis of power consumption and battery life is also provided

along with details of the onboard computational resources.

The Compact Remote Articulating Climbing Robot (CRACbot) described in this

thesis is a custom built wall climbing robot. It is the second generation prototype

and has evolved from the first generation robot designed by Ward [75]. This was

designated Hirudo and is seen in Fig. A.1(a). As such the major design decisions

have already been made. The bipedal configuration was originally chosen as it

provides a more agile wall climbing robot compared with wheeled configurations.

Suction cups were chosen as they are a well known adhesion technology and can

attach to a wide variety of surface materials.

The main improvements developed for the CRACbot, shown in Fig. A.1(b),

include the addition of onboard electronics and sensors as well as improvements to

the joint mechanisms, gearboxes and feet designs. The majority of this redesign was

performed by King [76] and Szwec [77] in collaboration with the author.
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(a) Hirudo (missing umbilical cord). (b) CRACbot (some hardware missing).

Figure A.1: Wall climbing robot prototypes.

Mechanical Design

The CRACbot has a bipedal design with a total of seven revolute joints providing

motion in six DOF, as seen in Fig. A.2 below. This provides a large amount of

flexibility and agility that allows it to scan the environment from any desired pose

within its workspace. A 3D CAD model of the CRACbot is shown in Fig A.3.

θ1

θ2

θ3 θ4 θ5

θ6

θ7
1(R)

2(R) 3(R) 4(R) 5(R) 6(R)

7(R)

Figure A.2: Kinematic configuration of the CRACbot.

The robot consists of two legs joined at a hip joint and attaches to surfaces via

a suction cup on each foot. The robot is 760mm long when fully extended. Each

foot is circular with an 120mm diameter annulus surrounding the suction cup. This

annulus improves the surface attachment of the foot and reduces the chance of the

suction cup being peeled off the wall when subjected to high moments.
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Figure A.3: CAD model of CRACbot.

The CRACbot has a total mass of 3.0kg when fully equipped. This includes a

payload of 500g consisting of the sensors and computational hardware. The maxi-

mum allowable payload varies depending on mass distribution as well as the intended

movements of the robot. If certain worst case movements are avoided then a higher

payload can be carried.

Motors

Each joint is powered by a 12V motor. Two sizes are used because the central

joints require less torque than those on each foot, which only have to support half

the weight of the robot in the worst case. The chosen motor for these joints is the

EC-16 from Maxon Motors (www.maxonmotor.com.au). It is a 12V brushless DC

motor with a 16mm output shaft which will run at 60RPM. The larger motors are

the EC-22 which will run at 50RPM. Each motor also contains an absolute encoder

to allow for position control feedback and is driven by a brushless electronic speed

controller.

Each motor has a worm gear on its output shaft with a 20:1 reduction ratio

to generate the necessary output torque. The worm gear also allows the joints to

be self-locking as the torque cannot feed back from the joint to the motor. This

allows for great reductions in power usage as the motors do not have to be running

continuously to maintain their position. This results in output speeds of 2.5-3.0RPM
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for each joint, which is equivalent to an angular velocity of 0.044-0.052 radians per

second (15-18◦ per second).

Power

The onboard hardware is powered by an 11.1 Lithium Polymer (LiPo) battery cell

with a capacity of 3000 mAh. The operating time can be found by adding up the

power consumption of the individual components. The main components are the

seven motors, the sensors and the remaining electronics and vacuum system. The

EC-22 motor requires 12W, while the EC-16 motor requires 5W for operation. These

motors are not in continual usage and so their average power consumption is much

lower.

It is assumed that the robot spends half its time acquiring 3D scans and the

other half moving. During 3D scan acquisition only one of the EC-22 motors is in

operation and only one of each sensor is used. During robot motion it is assumed

that each motor is running 50% of the time. This leads to a operating time of

50% for the sensors (one LRF and one camera) and 25% for six motors with the

remaining EC-22 motor operating at 75%. This is summarised in table A.1 below.

Based on these assumptions about operating duty cycles, the average power

consumption is 30.3 W. The LiPo battery has a capacity of 33.3 Whours and so this

leads to an average operating time of 66 minutes.

Table A.1: CRACbot power consumption
Component Power Duty Cycle Average Power

Consumption Consumption
Motors - Motion 63 W 25% 15.8 W
Motors - Scanning 12 W 50% 6 W
Sensors - Motion 3 W 0% 0 W
Sensors - Scanning 3 W 50% 1.5 W
Other Components 7 W 100% 7 W
TOTAL 30.3 W
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Computation

The CRACbot is currently controlled by an onboard embedded computer consisting

of a Gumstix Verdex Pro board [11] and two expansion boards. The Verdex Pro runs

at a clock speed of 600MHz with 128MB of RAM and runs Linux as its operating

system. It has 32MB of flash memory and an SD card slot for additional storage. A

Robostix expansion board provides the interface to the motor controllers, vacuum

system and sensors. A WiFi expansion board allows for wireless communication

with a base station. The Verdex board is an entirely self contained module with a

size of 80mm × 20mm × 6.3mm. With the two expansion boards in place the height

increases to approximately 15mm.

The performance of the Gumstix Verdex Pro processor has been benchmarked

(http://www.gumstix.org/hardware-design/verdex-pro-coms/) and found to

operate at just over twice as fast as an AMD K6 233MHz processor. As the code

has not yet been fully implemented on the Verdex board, this information will be

used to estimate the running time of the surface mapping method. These runtimes

were found using a Core i7 2.7GHz PC with 6GB of RAM and running Windows

7 OS. This was artificially limited to single core operation at 2.7GHz with 1GB of

RAM for the purposes of the runtime experiments in Section 7.2.2. These times

will be multiplied by an appropriate factor to estimate the runtime when using the

Verdex Pro onboard computer.

This factor is found by first assuming the Verdex Pro runs at a speed equivalent

to an AMD K6 processor at 500MHz using the benchmark data. The raw clock speed

is 5.4 times slower than the 2.7GHz PC. An extra factor of 50% is added to account

for the difference in RAM and processor limitations as well as being conservative

with clock speed comparisons between different architectures. Thus the run time of

each component of the mapping method is multiplied by a factor of 8.1 to estimate

the runtime on the Verdex Pro. This same process was also used to estimate the

runtimes of comparable mapping methods in the literature, as seen in Table 7.3. The

feature extraction process was coded in MATLAB and so a conservative speedup

244

http://www.gumstix.org/hardware-design/verdex-pro-coms/


APPENDIX A. HARDWARE SPECIFICATIONS

factor of 3 was used to convert to an equivalent C++ implementation runtime.

A.2 Image Sensor

The specifications and calibration of the chosen colour camera, the CMUcam3, are

detailed below.

Camera Specifications

The relevant specifications for the CMUcam3 and the simulated camera are sum-

marised in Table A.2. The CMUcam3 is a colour CMOS camera with a resolution of

176 × 287 pixels and a horizontal field of view of ±21◦. This resolution equates to

0.05 megapixels which is significantly less than a standard webcam or other cameras

used in robotics which are often at least 1 megapixel and sometimes even higher

resolutions. Image data is acquired via a RS232 serial interface and the average

power consumption is 275 mW while the camera is powered on.

During simulation using MRDS, the VSE provides a camera module that is used

to simulate the real camera. This is a noiseless pinhole camera and the intrin-

sic parameters are precisely known. The resolution is 320 × 240 pixels which is

approximately 50% higher than the resolution used for the CMUcam3 images. Nev-

ertheless, this resolution is still very low and the simulated camera does provide a

wider horizontal field of view of ±30◦.

Table A.2: Camera specifications.
Parameter CMUcam3 Simulated Camera
Image Sensor Colour CMOS Simulated
Camera Model Pinhole Pinhole
Image Resolution 176 × 287 pixels 320 × 240 pixels
Field of View (Horizontal) ±21◦ ±30◦
Interface RS232 Serial at 115,200 bps Simulated
Operating Current (Average) 55 mA -
Operating Current (Maximum) 130 mA -
Operating Voltage 5 V -
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Intrinsic Camera Calibration

It is necessary to calibrate each camera to determine the intrinsic parameters such

as the focal length (fu and fv) and principal point (u0, v0). The subscripts u and v

refer to the width and height images axes respectively. These parameters form the

camera intrinsic parameter matrix K, shown in (A.1), and they allow image points

to be transformed into the world coordinate frame as seen later in Section 4.2.3. The

cameras were calibrated with a standard checkerboard pattern [129] by using the

MATLAB camera calibration toolbox [130]. The parameters are detailed in Table

A.3. For the CMUcam3 images there was no skew evident. Some lens distortion

was shown to exist and this was removed from the images.

K =













fu 0 u0

0 fv v0

0 0 1













(A.1)

A.3 Range Sensor

The specifications and calibration of the chosen laser range finder, the Hokuyo URG-

04LX, are detailed below.

LRF Specifications

The specifications of the Hokuyo URG-04LX LRF [85] are summarised in Table A.4.

It is lightweight at only 160g and it is small in size at 50mm × 50mm × 70mm, both

of which are very desirable traits for usage on a WCR or other small autonomous

vehicle. It is also relatively low power, requiring only 2.5W at 5V on average which

Table A.3: Camera intrinsic parameters
Parameter CMUcam3 Simulated Camera
Focal Length fu 205.7 208

fv 450.3 208
Principal Point u0 74.6 160

v0 169.6 120
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means it can run off the same power supply as any onboard electronics. It has a

wide field of view providing an angular range of 240◦ with an angular resolution of

0.36◦.

This Hokuyo LRF has a maximum range of just over four metres which is low

compared to some other commercial LRFs. This is, however, more than sufficient

for the target WCR as in general the objects of interest will be at ranges of less

than 1000mm. The quoted range accuracy is ±10mm for ranges less than 1000mm

which is reasonable but the true error is higher than this in some cases. This is

discussed later in Section A.3. This value was generated under ideal conditions and

the calibrations and error characterisations discussed in the following section will

show that this error value should be used with care, as there are numerous sources

of systematic and random error that need to be carefully controlled.

The simulated environment provided a simulated LRF whose specifications are

also shown in Table A.4. While Gaussian errors were introduced into the simulated

range measurements, the simulated LRF was otherwise highly accurate. There were

no systematic biases introduced, unlike a real LRF, as they are difficult to model

and reproduce. This was not significant, however, as the Hokuyo LRF allowed the

effect of real systematic errors to be tested on the proposed mapping methods.

Table A.4: LRF specifications
Hokuyo URG-04LX Simulated LRF

Range 20-4095mm 25-8000mm
Accuracy (bias) ±10mm (range < 1000mm), then ±2% 0mm
Accuracy (std. dev.) σ = 5mm σ = 5mm
Range Resolution 1mm 0.001mm
Angular Range 240◦ 360◦

Angular Resolution 0.36◦ 0.5◦

External Dimensions 50mm × 50mm × 70mm -
Weight 160g -
Power Usage 2.5W at 5V(4W max) -
Interface RS-232C and USB2.0 FS -

247



APPENDIX A. HARDWARE SPECIFICATIONS

Laser Range Finder Calibration and Characterisation

In many robotic applications that use modern laser range finders, such as the SICK

LMS 200 [131] and the Hokuyo URG-04LX [132], the accuracy of the range mea-

surements provided is more than adequate and is easily handled using probabilistic

techniques for SLAM [133] and other perception requirements. This is especially

true when the environment or the robot itself are large in scale, such as with the

autonomous vehicles participating in the DARPA Urban Challenge [134]. In these

and other similar situations, a range error of 10mm is negligible and in some case

errors of up to 50mm or higher may even be acceptable, especially for tasks such as

obstacle avoidance and some 2D SLAM.

In other situations, however, the range measurement accuracy becomes signifi-

cant. For small robotic systems a range error of 10mm cannot be considered negli-

gible. The small WCR described in Section 3.2 needs to map surfaces accurately in

3D to determine possible foothold locations. This goes beyond obstacle avoidance

to actively trying to walk on the object surfaces and so the accuracy requirements

are more stringent, particularly when considering the relatively small scale involved.

The Hokuyo URG-04LX range accuracy must therefore be well known and char-

acterised. This will allow good quality range data to be acquired. This is also

important as underestimating the range accuracy could have catastrophic conse-

quences.

Central Bearing Calibration

The first calibration that should be performed is to find the true 0◦ measurement

step. This is the range bearing directly in front of the LRF housing and is not

necessarily the same as the central measurement step returned from the LRF. A

target was setup on the base plate shown in Fig. 3.3(a) at a range of 600mm from

the LRF and at an incidence angle of 0◦ to the laser beam. After taking 1000

readings, the step with the minimum average distance was taken as the true 0◦ step.

The minimum mean range occurred at step 389 not 384 as quoted by the manu-
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facturers. This corresponds to a rotational bias of 1.8◦ which is not insignificant but

is easily compensated for. The necessity for this calibration is demonstrated in other

work where the central (0◦) step was found at step 387 [86] and 386 [87] in other

work. This variability is likely due to the tolerances of the mechanical mounting

and appears to differ for each laser individually.

Startup Drift Calibration

LRFs exhibit a property known as warmup or measurement drift. This is where for

a period of time immediately after providing power to the LRF, the mean range will

drift before settling to a steady state value. All LRFs drift to differing extents for

anywhere up to 2 hours [84][135]. This drift has been demonstrated for the Hokuyo

URG-04LX by Lee et al. [88], Pascoal et al. [89] and others. They found that the

mean range drifted by 6-20mm for 30-90 minutes after startup. The usual approach

to handling this problem involves waiting for a set period of time before acquiring

the more useful steady state values.

Tests were performed to confirm these values and it was found that the drift

varied substantially depending on the target range and surface material, amongst

other factors. The drift lasted up to 60 minutes in some cases before settling to

steady state. During the data acquisition process, described in Section 3.3, the LRF

was powered on for a minimum of 2 hours before acquiring the datasets.

For practical robotics tasks, this waiting period is not ideal, especially for time

critical applications such as search and rescue. It would therefore be useful if this

drift could be compensated for. Two possible methods involve using the time elapsed

or the temperature of the receiver electronics as suggested by Hebert et al. [135] and

Kneip et al. [86]. Excluding the first 15 minutes of operation, the LRF drift appears

to exhibit a common shape that shows a weak correlation to the LRF temperature,

which heats up by about 12◦C during startup. Initial tests showed some promise in

using this temperature to estimate the drift error. However, more work is needed

to fully verify it on a range of operating conditions outside of the laboratory and so
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any such compensation is not used further at this stage.

Range Error Characterisation

The URG-04LX LRF manufacturer (Hokuyo) quoted a range accuracy of ±10mm

[85]. It is unclear exactly what this represents in terms of the range error. It

appears to be an upper bound on the mean range bias for a small number of range

readings taken under ideal operating conditions. This figure takes no account of the

numerous systematic error sources and gives no indication of the level of Gaussian

noise present in the range measurements.

The true range error of a single measurement can be much higher than ±10mm

due to a variety of factors. In addition to the calibration errors discussed above,

other common error sources are surface dependent. These include the target range,

surface material and angle of incidence to the laser beam. Range errors have been

seen in the order of 30mm in some extreme but not uncommon cases and this error

consists of a mix of systematic biases and random error. Considering the need for

accurate range data it is important to ensure that these error sources are carefully

considered and calibrated for if possible.

Several studies have characterized various different LRF models to show the

existence and extent of systematic range error sources [84][135][136]. The Hokuyo

URG-04LX range error has also been characterised in this way. Lee et al. [88]

compared it to the SICK LMS200, errors due to surface material and the surface

patterns of the object and found that both LRFs showed similar levels of error.

Pascoal et al. [89] looked at the Hokuyo LRF to determine their usefulness in

difficult environmental conditions. They found that the range accuracy deteriorates

significantly and becomes unusable in environments containing adverse conditions,

including smoke or excessive heat, such as those found at a disaster site or building

fire.

Kneip et al. [86] and Okubo et al. [87] both followed the approach that Ye et

al. [84] used to characterize the SICK LMS200. Both focussed particularly on the
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influence of surface material and angle of incidence on the Hokuyo range error as well

as applying a linear model to the dependency of range error to true range. Overall,

these characterisation studies found that while the surface dependent systematic

error sources could be modeled to some degree of success individually, they were

difficult to properly model and compensate for in combination.

Others have proposed LRF sensor models, but they only provided limited success

at the expense of complicating any algorithms wishing to utilise them. One such

model was proposed by Lang et al. [137] which modeled the incidence angle error

in a Bayesian fashion. While some improvement in range accuracy was seen, the

model had to be individually calibrated for each new material which limited its use.

It is possible to provide an approximate calibration if the target environment is

known in advance. The target environment consists of surfaces at ranges of less than

one metre which allows most of the range dependent range error to be compensated

for. The angle of incidence and surface material are harder to compensate for. The

range distributions for a variety of expected surface materials and angles of incidence

were acquired at ranges of 200mm to 600mm.

A systematic bias of 17mm was estimated and this was removed from the raw

range measurements during acquisition. The level of Gaussian noise was also mea-

sured and differed from 3-5mm depending on the target conditions. A value of 5mm

was used in this work as a conservative estimate.
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