
Adaptation and self-organization in evolutionary algorithms

Author:
Whitacre, James M.

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/6579

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/40444 in https://
unsworks.unsw.edu.au on 2024-05-02

http://dx.doi.org/https://doi.org/10.26190/unsworks/6579
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/40444
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name: WHITACRE

First name: JAMES Other name/s: MICHAEL

Abbreviation for degree as given in the University calendar: P h D

School: SCHOOL OF CHEMICAL SCIENCES AND ENGINEERING Faculty ENGINEERING

Title: ADAPTATION AND SELF-ORGANIZATION IN EVOLUTIONARY ALGORITHMS

Abstract 350 words maximum: (PLEASE TYPE)

The objective of Evolutionary Computation is to solve practical problems (e.g. optimization, data mining) by simulating the
mechanisms of natural evolution. This thesis addresses several topics related to adaptation and self-organization in evolving
systems with the overall aims of improving the performance of Evolutionary Algorithms (EA), understanding its relation to
natural evolution, and incorporating new mechanisms for mimicking complex biological systems.

Part I of this thesis presents a new mechanism for allowing an EA to adapt its behavior in response to changes in the
environment. Using the new approach, adaptation of EA behavior (i.e. control of EA design parameters) is driven by an
analysis of population dynamics, as opposed to the more traditional use of fitness measurements. Comparisons with a number
of adaptive control methods from the literature indicate substantial improvements in algorithm performance for a range of
artificial and engineering design problems.

Part II of this thesis involves a more thorough analysis of EA behavior based on the methods derived in Part I. In particular,
several properties of EA population dynamics are measured and compared with observations of evolutionary dynamics in
nature. The results demonstrate that some large scale spatial and temporal features of EA dynamics are remarkably similar to
their natural counterpart. Compatibility of EA with the Theory of Self-Organized Criticality is also discussed.

Part III proposes fundamentally new directions in EA research which are inspired by the conclusions drawn in Part II. These
changes involve new mechanisms which allow self-organization of the EA to occur in ways which extend beyond its common
convergence in parameter space. In particular, network models for EA populations are developed where the network structure is
dynamically coupled to EA population dynamics. Results indicate strong improvements in algorithm performance compared to
cellular Genetic Algorithms and non-distributed EA designs. Furthermore, topological analysis indicates that the population
network can spontaneously evolve to display similar characteristics to the interaction networks of complex biological systems.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

Witness Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

1131/1^

School of Chemical Sciences and Engineering
The University of New South Wales

Adaptation and Self-Organization in
Evolutionary Algorithms

by

James M. Whitacre

submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

July 2007

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.'

COPYRIGHT STATEMENT

'I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed

Date

AUTHENTICITY STATEMENT

'I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format,'

ACKNOWLEDGEMENTS

There are a number of very important people whom I would like to acknowledge. First, I

would like to sincerely thank my supervisor, Associate Professor Q. Tuan Pham for his

guidance, support, and encouragement. His critical eye in the earlier drafts of this thesis

helped to greatly strengthen the final version.

I would like to thank Dr Ruhul Sarker for the support and advice he has provided over the

last two years. I also want to thank him for taking an interest in my initial research ideas

and for his willingness to take on a co-supervisory role in this research.

I want to acknowledge a number of people who have provided fruitful discussions and

advice over the last few years including Hussein Abbass, Alan Blair, David Green, and Eric

Whitacre. I also want to thank Hartmut Pohlheim for providing a number of the fitness

landscape graphics used in this thesis.

Special thanks to my special gal Alice, especially for putting up with my sometimes long

work hours. Finally, I would like to thank my wonderful family for their support,

encouragement and love (especially my mom and sister).

n

ABSTRACT

The objective of Evolutionary Computation is to solve practical problems (e.g.
optimization, data mining) by simulating the mechanisms of natural evolution. This thesis
addresses several topics related to adaptation and self-organization in evolving systems
with the overall aims of improving the performance of Evolutionary Algorithms (EA),
understanding its relation to natural evolution, and incorporating new mechanisms for
mimicking complex biological systems.

Part I of this thesis presents a new mechanism for allowing an EA to adapt its behavior in
response to changes in the environment. Using the new approach, adaptation of EA
behavior (i.e. control of EA design parameters) is driven by an analysis of population
dynamics, as opposed to the more traditional use of fitness measurements. Comparisons
with a number of adaptive control methods from the literature indicate substantial
improvements in algorithm performance for a range of artificial and engineering design
problems.

Part II of this thesis involves a more thorough analysis of EA behavior based on the
methods derived in Part I. In particular, several properties of EA population dynamics are
measured and compared with observations of evolutionary dynamics in nature. The results
demonstrate that some large scale spatial and temporal features of EA dynamics are
remarkably similar to their natural counterpart. Compatibility of EA with the Theory of
Self-Organized Criticality is also discussed.

Part III proposes fundamentally new directions in EA research which are inspired by the
conclusions drawn in Part II. These changes involve new mechanisms which allow self-
organization of the EA to occur in ways which extend beyond its common convergence in
parameter space. In particular, network models for EA populations are developed where
the network structure is dynamically coupled to EA population dynamics. Results indicate
strong improvements in algorithm performance compared to cellular Genetic Algorithms
and non-distributed EA designs. Furthermore, topological analysis indicates that the
population network can spontaneously evolve to display similar characteristics to the
interaction networks of complex biological systems.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS II

ABSTRACT Ill

TABLE OF CONTENTS IV

LIST OF FIGURES X

LIST OF TABLES XXIV

ABBREVIATIONS XXVIII

CHAPTER 1 INTRODUCTION 1

1.1 AIMS AND OUTLINE 2

CHAPTER 2 GENERAL BACKGROUND OF EVOLUTIONARY

ALGORITHMS 5

2.1 OPTIMIZATION FRAMEWORK 5

2.1.1 Reconciling Optimization Research in a World of "No Free Lunches " 9

2.2 JUSTIFICATION OF E A RESEARCH 10

2.3 EVOLUTIONARY ALGORITHMS 12

2.3.1 A Brief History 12
2.3.2 General Description 13

2.3.3 Selection Methods 15
2.3.3.1 Proportional Selection 16

2.3.3.2 Linear Ranking Selection 16

2.3.3.3 Exponential Ranking Selection 17

2.3.3.4 Tournament Selection 17

2.3.3.5 Truncation Selection 18

2.3.3.6 Modified Tournament Selection 18

2.3.3.7 Characterization and Comments 19

2.3.4 Search Operators and Variation 19
2.3.4.1 Characterization 20

2.3.4.2 Multiple Operators 22

2.3.4.3 Search Operator Probabilities 22

2.3.4.4 Local Search and Expert Search Hybrids 23

2.3.5 Constraint Handl ing. 23

2.3.5.1 Rejection of infeasible Solutions 24

2.3.5.2 Constraint Handling by Repair 24

2.3.5.3 Penalty Functions 24

2.3.5.4 Stochastic Ranking 25

2.3.6 Parameter Encoding 26

2.3.6.1 Gene Expression Research 27

2.3.7 Interaction Constraints in EA Populations 28

2.3.7.1 Crowding and Niche Preserving Methods 29

2.3.7.2 Spatially Distributed Populations 30

2.3.7.3 Other Restrictions 32

2.3.8 Performance Metrics and Analysis 33

2.3.8.1 Time Dependency 33

2.3.8.2 Defining Performance 34

2.3.9 Uses and Applications of EA 35

2.3.9.1 When EA is used 35

2.3.9.2 Where EA is used 37

CHAPTER 3 ADAPTATION OF EA DESIGN 39

3.1 APPROACHES TO ADAPTATION: LITERATURE REVIEW 40

3.1.1 Impetus for EA design adaptation research 40

3.1.2 Adjustable Parameters 41

3.1.3 EA Parameter Control Techniques 42

3.1.3.1 Deterministic Methods 42

3.1.3.2 Self-Adaptive Methods 43

3.1.3.3 Supervisory Methods 44

3.1.4 Supervisory Adaptation of search operator probabilities 44

3.1.4.1 Operator Quality 44

3.1.4.2 Operator Probability Setting 45

3.1.4.3 Defining Operator Rewards 46

3.1.4.4 Event Measurement 48

3.1.4.5 Interpretation 49

3.1.4.6 Other Approaches 51

3.2 MEASURING POPULATION DYNAMICS FOR ADAPTIVE CONTROL 52

3.2.1 Why is Objective Function a Standard measure for fitness ? 55

3.2.1.1 The Hill-Climbing Assumption 53
3.2.1.2 Search Bias Assumption 53
3.2.1.3 Empirical Bias 54

3.2.2 Measuring Impact on Population Dynamics: The Event Takeover Value (ETV) 55
3.2.2.1 Multiple Parents and Genetic Dominance 57
3.2.2.2 Hitchhiking 57
3.2.2.3 ETV Calculation Procedure 59
3.2.2.4 Computational Costs of ETV Calculation 60
3.2.2.5 Related Research 61

3.2.3 ETV Analysis 62
3.2.3.1 Fitness as a predictor of ETV 62
3.2.3.2 ETV Distribution 65

3.2.4 Interpreting ETV measurements 66
3.2.4.1 Outlier Calculation 67

3.3 EXPERIMENTS 69
3.3.1 Experimental Setup 69

3.3.1.1 Core EA Design 70
3.3.1.2 Search Operator Control 72

3.3.2 Results and Discussion 75
3.3.2.1 General Performance Statistics 75
3.3.2.2 Operator Probability Profile Analysis 78
3.3.2.3 Performance Results on Artificial Test Functions 94
3.3.2.4 Performance Results on Engineering Design Problems 100

3.3.3 Discussion and Conclusions 105
CHAPTER 4 LARGE SCALE FEATURES OF EA POPULATION
DYNAMICS 110

4.1 ANALYSIS OF E A DYNAMICS USING ETV I l l
4.1.1 Experimental Setup Ill

4.1.1.1 Panmictic EA designs I l l
4.1.1.2 Spatially Distributed Populations 112

4.1.2 ETV Size Results 114
4.1.2.1 Impact of EA design 114
4.1.2.2 Fitness Landscape Dependencies 117
4.1.2.3 Impact of time length of evolution 120
4.1.2.4 Other Experimental Conditions 123

4.1.3 ETV Age Results 123

4.1.3.1 Caveats 127

4.1.4 Conclusions 127

4.2 DISCUSSION: COMPARISONS BETWEEN E A AND NATURE 128

4.2.1 Extinction Sizes 129

4.2.2 Species Lifetime Distributions 131

4.2.3 Fractal Taxonomic Structures 132

4.2.4 Summary of Conclusions 134

4.3 SELF-ORGANIZED CRITICALITY 135

4.3.1 SOC Definition 135

4.3.2 Compatibility ofEA with SOC 136

4 .4 RELEVANCE TO E A RESEARCH 138

4.4.1 Impetus for SOTEA Chapter 139

CHAPTER 5 SELF-ORGANIZING TOPOLOGY EVOLUTIONARY

ALGORITHMS 141

5.1 CRITICAL REVIEW OF PREVIOUS WORK 142

5.1.1 Interaction Constraints 142
5.1.1.1 Population Networks for Evolutionary Algorithms 142

5.1.2 Structural Characteristics of Complex Networks 144
5.1.2.1 Properties of real networlcs 144

5.1.2.2 Topological Property Metrics 145

5.1.3 Network Evolution Models 148
5.1.3.1 The BA Model: 148

5.1.3.2 The Duplication and Divergence Model 149

5.1.3.3 The Fitness Model: 151

5.2 MOTIVATIONS AND AIMS 152

5.3 S O T E A MODEL 1 153

5.3.1 Model Description 154
5.3.1.1 SOTEA and cGA Network Dynamics 154

5.3.1.2 SOTEA and cGA State Dynamics 157

5.3.2 Experimental Setup 160
5.3.2.1 NK Landscape Test Function 160

5.3.2.2 Core EA Design 162

5.3.3 Results 164
5.3.3.1 Topological Characteristics of Interaction Networks 64

5.3.3.2 Genetic Diversity 165

5.3.3.3 Performance Results

5.3.3.4 Impact of Ruggedness 167

5.3.3.5 Impact of Epistasis 168

5.3.3.6 The Impact of SOTEA model parameters 171

5.5.4 Discussion 173
5.3.4.1 SOTEA Guidelines 173

5.3.4.2 The NK Model as an optimization research tool 173

5.3.5 Conclus ions 174

5.4 SOTEA MODEL II 175

5.4.1 Model Description 175
5.4.1.1 Driving Forces 176

5.4.1.2 Mechanics of Network Rewiring 178

5.4.2 Experimental Setup 179
5.4.2.1 Algorithm Designs 179

5.4.2.2 Engineering Design Case Studies 183

5.4.3 Results 183
5.4.3.1 Engineering Design Performance Results 185

5.4.3.2 Artificial Test Function Results 192

5.4.3.3 Structural Analysis 197

5.4.4 Discussion 204

5.4.5 Future Work 205

5.4.6 Conclusions 206

CHAPTER 6 SUMMARY OF FINDINGS 208

REFERENCES 210

APPENDIX A TEST FUNCTION DEFINITIONS 228
A. 1 ARTIFICIAL TEST FUNCTIONS 228

A. 1.1 Minimum Tardy Task Problem (MTTP) 228

A. 1.2 Error Correcting Code Problem (ECC) 230

A. 1.3 Massively Multimodal Deceptive Problem (MMDP) 231

A. 1.4 Frequency Modulation 231

A. 1.5 Quadratic Function 231

A. 1.6 Generalized Rosenbrock 's Function 232

A. 1.7 Rastrigin's Function 232

A. 1.8 Schwefel 's Function 232

A. 1.9 Griewangk's Function 232

A. 1.10 Bohachevsky's Function 233

A.l 11 Watson's Function 233

A. 1.12 Colville's Function 233

A. 1.13 System of linear equations 234

A. 1.14 Ackley's Function 234

A. 1.15 Neumaier's Function #2 234

A. 1.16 Hyper Ellipsoid 235

A.2 ENGINEERING DESIGN TEST PROBLEMS 235

A.2.1 Turbine Power Plant 235

A.2.2 Alkylation Process 236

A. 2.3 Heat Exchanger Network Design 238

A.2.4 Pressure Vessel 239

A. 2.5 Coello 's Welded Beam Design 240

A.2.6 Tension Compression Spring 242

A. 2.7 Gear Train Design 243

A P P E N D I X B S E A R C H O P E R A T O R S 244

B. 1 SINGLE POINT RANDOM MUTATION 244

B.2 CREEP 244

B.3 RAISE 245

B.4 SWAP 245

B.5 UNIFORM CROSSOVER 245

B.6 SINGLE POINT CROSSOVER 246

B .7 B L X - A CROSSOVER 246

B. 8 WRIGHT'S HEURISTIC CROSSOVER 246

B.9 EXTENDED LINE CROSSOVER 247

B. 10 DIFFERENTIAL EVOLUTION OPERATOR 247

A P P E N D I X C A D D I T I O N A L R E S U L T S F R O M C H A P T E R 5 248

C. 1 ENGINEERING DESIGN PROBLEMS: PERFORMANCE COMPARISONS WITH THE
LITERATURE 248

C.2 PANMICTIC E A PERFORMANCE TABLES 251

P U B L I C A T I O N S 252

LIST OF FIGURES

Figure 2-1 Pseudocode for a basic Evolutionary Algorithm design 14

Figure 2-2 Pseudocode for Stochastic Ranking procedure where U(0,1) is a uniform
random number generator, (pk and Fk are the total constraint violation and objective
function value (resp.) for individual k, N is the number of sweeps through the
population, X is the population size, and P/is the probability that infeasible solutions
will be evaluated based on objective fUnction values. The original description
provided in [64] recommends N> k and 0.45 26

Figure 2-3 Pseudo code for Deterministic Crowding. Distance (either genotype or
phenotype) is given as dQ, fitness is given asX), and Â is the population size 30

Figure 2-4 Pseudocode of a synchronous cGA 32

Figure 3-1: Framework for a supervisory adaptive system. Fiere, an adaptive system
receives measurement data as a result of its interactions with the environment.
These measurements are then interpreted or assessed for relevance. Once
interpreted, the data is then allowed to drive internal changes to the system. The
mechanics for internal change are not shown in the figure but would consist of
mechanisms such as the Quality function and the Probability Matching Strategy.. 47

Figure 3-2 Operator tree for an individual where only crossover (Cr) and mutation (Mu)
events occur. The root node in the tree, Cr, is the search operator that was used to
generate the individual that is storing the operator tree 52

Figure 3-3: Visualizing an individual's impact on population dynamics using genealogical
graphs. An individual's impact for a given generation (horizontal axis) is defined as
the number of paths leading from the measured node to the current generation. This
is referred to as ETVgen and can be calculated for the "Event Measured" in the graph
above by counting the number of nodes on the dotted vertical line for a given
generation. As the population moves from one generation to the next, one can see
that the number of individuals in the population that are descendants of the "Event
Measured" will change with each new generation. In other words, the ETVgen value
is dynamic. To clarify this point, ETVgen values are calculated for the "Event
Measured" and are shown at the top of the graph. The maximum impact an event
has on the population is the maximum ETVgen value that is observed. This graphical
illustration assumes a generational population updating strategy such that an
individual exists in a single generation only. This is done to simplify the illustration
however other updating strategies could be used in which case some nodes would
be stretched across multiple generations in the graph 56

Figure 3-4: Genetic Hitchhiking in EA population dynamics. Considering ETVgen
measurements based on the current generation, one can easily see that all nodes to

the left of the white node will have the same ETVge„ value (i.e. they all have the
same number of paths leading to the current population). However, these nodes are
assigned their ETVgen values only because of a single important descendant (the
white node). These linear structures in the genealogical branching process are a
sign of genetic hitchhiking and can be seen in several different places in the graph
above (seven genetic hitchhiking occurrences in total) 58

Figure 3-5: Transfer of Historical Data. Each individual holds historical information in
addition to genetic information. The historical information represents the direct line
of ancestry for an individual. Examples of historical data lists are shown above for
Parent 1 {ID=?2l) and Parent 2 (/Z)=P23) and their meaning is demonstrated by the
genealogical graph on the right. A new offspring only takes historical information
from the parent that is genetically most similar (i.e. genetically dominant). In this
example, Parent 1 is assumed to be the genetically dominant parent. In addition, the
offspring creates a new ID to indicate its placement in the genealogical tree 59

Figure 3-6: Box plots of the size of an individual's impact on population dynamics (ETV)
as a function of the individual's rank within the population where a rank of 1
represents the worst individual and a rank of N represents the best individual (based
on objective function value). The data set was generated from a series of
experiments involving a number of test functions listed in Appendix A. The EA
used to generate the results was a real-coded, pseudo steady state EA design using
binary tournament selection (without replacement) and a population size of 50.
Results shown are a random sample of 5000 data points taken from a data set of
300,000. The box plots have the standard meaning with the bottom line in the box
representing the first quartile, the middle line representing the median, and the
upper line representing the third quartile. The symbol ^ is used to represent outlier
data points .63

Figure 3-7 Box plots of the size of an individual's impact on population dynamics (ETV) as
a function of the individual's ranking within the population. Top: Results from
running an EA on the Massively Multimodal Deceptive Problem (MMDP).
Bottom: Results from running an EA on the Quadratic Test Function. Both test
functions are defined in Appendix A. The EA used to generate the results was a
real-coded, pseudo steady state EA design using binary tournament selection
(without replacement) and a population size of Â = 50. Results shown for each
graph are a random sample of 5000 data points taken from a data set of
approximately 15,000. The box plots have the standard meaning with the bottom
line in the box representing the first quartile, the middle line representing the
median, and the upper line representing the third quartile. The symbol ^ is used to
represent outlier data points 64

Figure 3-8 ETV probability distribution from running an EA for 20,000 generations on the
30-D Hyper Ellipsoid test function. The EA design has a population size A^=200,
steady state population updating, and uses truncation selection. The solid line
represents a power law with exponent 2.2 65

Figure 3-9: p« calculation curves for sample sizes Mi=5 (), Mi =10 (), and Mj =20

() 69

Figure 3-10 Pseudocode of EA design 71

Figure 3-11 Pseudocode for standard search operator probability adaptation 73
Figure 3-12 Pseudocode for search operator probability adaptation using ETV. ETV is

defined in Section 3.2.2 and loutUer is defined in Section 3.2.4 74

Figure 3-13 General algorithm performance for both adaptive and non-adaptive EA
designs shown as a function of the number of generations (Gen) of evolution. In
order to aggregate performance data from different test functions, it was necessary
to deal with differences in fitness scaling. This was addressed by using the
following ranking procedure. Each algorithm is run 20 times on each test function
listed in Table 3-2. At a given generation, every EA run is ranked among all runs
conducted on that test function (with a higher ranking being better). The median
rank of each EA design is then calculated for each test function. Finally, these
median ranks are averaged over all test functions and plotted against the number of
generations (Gen) 77

Figure 3-14 Rosenbrock fitness landscape shown in a two dimensional parameter space.
The two bottom graphs are shown for variable 1 and variable 2 varying over the
entire parameter range [-2,2]. Graphs on the top focus on the parameter region
containing the global optimum. The two graphs on the left show a restricted range
of objective function values (vertical axis) to help in visualizing the fitness
landscape. Images were kindly provided by Hartmut Pohlheim and were generated
using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be
found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637 79

Figure 3-15 Performance of adaptive and non-adaptive EA designs on the Rosenbrock test
function. The global optimal solution is F=0. The optimal F value can not be
shown due to log scaling on the F axis so performance profiles are seen to terminate
when the global optima is reached 80

Figure 3-16 Search operator probability profiles for adaptive methods I(median)-Pursuit,
I(median), I(parent)-Pursuit, and I(parent) on the Rosenbrock test function.
Probability values are shown on a logarithmic scale over the first 2000 generations
of evolution 81

Figure 3-17 Search operator probability profiles for adaptive methods I(rank)-Pursuit,
I(rank), ETV-Outlier, and ETV on the Rosenbrock test function. Probability values
are shown on a logarithmic scale over the first 2000 generations of evolution 82

Figure 3-18 Schwefel fitness landscape shown in two dimensions of parameter space. The
landscape is shown for variable 1 and variable 2 varying over different parameter
ranges. The entire range is shown in the bottom graph with each parameter varying
over [-500,500]. The vertical axis shows the objective function value
(minimization) with the global optimal solution located at the origin of parameter
space. Images were kindly provided by Hartmut Pohlheim and were generated

using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be
found at http://www.geatbx.coni/docu/fcnindex-0l.html#P85_2637 83

Figure 3-19 Performance of adaptive and non-adaptive EA designs on the Schwefel test
function. The global optimal solution is at F=0 84

Figure 3-20 Search operator probability profiles for adaptive methods I(median)-Pursuit,
I(median), I(parent)-Pursuit, and I(parent) on the Schwefel test function.
Probability values are shown on a logarithmic scale over the first 2000 generations
of evolution 85

Figure 3-21 Search operator probability profiles for adaptive methods I(rank)-Pursuit,
I(rank), ETV-Outlier, and ETV on the Schwefel test function. Probability values
are shown on a logarithmic scale over the first 2000 generations of evolution 86

Figure 3-22 Griewangk fitness landscape shown in two dimensions of parameter space, a)
The landscape is shown for variable 1 and variable 2 varying over their complete
range [-500,500]. b) The landscape is shown for variable 1 and variable 2 varying
over the range [-50,50]. c) The landscape is shown for variable 1 and variable 2
varying over the range [-8,8]. The vertical axis shows the objective function value
(minimization) with the global optimal solution located at the origin of parameter
space. Images were kindly provided by Hartmut Pohlheim and were generated
using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be
found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637 87

Figure 3-23 Performance of adaptive and non-adaptive EA designs on the Griewangk test
function. The global optimal solution is at F=0 88

Figure 3-24 Search operator probability profiles for adaptive methods I(median)-Pursuit,
I(median), I(parent)-Pursuit, and I(parent) on the Griewangk test function.
Probability values are shown on a logarithmic scale over the first 2000 generations
of evolution 89

Figure 3-25 Search operator probability profiles for adaptive methods I(rank)-Pursuit,
I(rank), ETV-Outlier, and ETV on the Griewangk test function. Probability values
are shown on a logarithmic scale over the first 2000 generations of evolution 90

Figure 3-26 Ackley's fitness landscape shown in two dimensions of parameter space, a)
The landscape is shown for variable 1 and variable 2 varying over their complete
range [-30,30]. b) The landscape is shown for variable 1 and variable 2 varying
over the range [-2,2]. The vertical axis shows the objective function value
(minimization) with the global optimal solution located at the origin of parameter
space. Images were kindly provided by Hartmut Pohlheim and were generated
using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be
found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637 91

Figure 3-27 Performance of adaptive and non-adaptive EA designs on Ackley's Path
Function. The global optimal solution is at F=0. The optimal F value can not be
shown due to log scaling on the F axis so performance profiles are seen to terminate
when the global optima is reached 92

Figure 3-28 Search operator probability profiles for adaptive methods I(median)-Pursuit,
I(median), I(parent)-Pursuit, and I(parent) on Ackley's test function. Probability
values are shown on a logarithmic scale over the first 2000 generations of evolution.

93

Figure 3-29 Search operator probability profiles for adaptive methods I(rank)-Pursuit,
I(rank), ETV-Outlier, and ETV on Ackley's test function. Probability values are
shown on a logarithmic scale over the first 2000 generations of evolution 94

Figure 3-30 Performance of adaptive and non-adaptive EA designs on the System of
Linear Equations test function. The global optimal solution is at F=0 96

Figure 3-31 Performance of adaptive and non-adaptive EA designs on the Quadratic test
function. The global optimal solution is at F=0 96

Figure 3-32 Performance of adaptive and non-adaptive EA designs on Watson's test
function. The global optimal solution is at F=2.288E-3 97

Figure 3-33 Performance of adaptive and non-adaptive EA designs on Neumaier's function
#2. The global optimal solution is unknown (see Appendix A) 97

Figure 3-34 Performance of adaptive and non-adaptive EA designs on Colville's test
function. The global optimal solution is at F=0 98

Figure 3-35 Performance of adaptive and non-adaptive EA designs on Bohachevsky's test
function. The global optimal solution is at F=0 98

Figure 3-36 Performance of adaptive and non-adaptive EA designs on the Rastrigin test
function. The global optimal solution is at F=0 99

Figure 3-37 Performance of adaptive and non-adaptive EA designs on the 30-D Hyper
Ellipsoid test function. The global optimal solution is at F=0 99

Figure 3-38 Performance of adaptive and non-adaptive EA designs on the Massively
Multimodal Deceptive Problem (MMDP). The global optimal solution is at F=0.

100

Figure 3-39 Performance of adaptive and non-adaptive EA designs on the Turbine Power
Plant Problem. The global optimal solution is at F=3.05 102

Figure 3-40 Performance of adaptive and non-adaptive EA designs on the Welded Beam
Design problem. The global optimal solution is unknown 102

Figure 3-41 Performance of adaptive and non-adaptive EA designs on the Tension
Compression Spring problem. The global optimal solution is unknown 103

Figure 3-42 Performance of adaptive and non-adaptive EA designs on the Gear Train
Design problem. The global optimal solution is F=2.70xl0"^^ 103

Figure 3-43 Performance of adaptive and non-adaptive EA designs on the Minimum Tardy
Task Problem (MTTP). The global optimal solution is F=0 104

Figure 3-44 Performance of adaptive and non-adaptive EA designs on the Frequency
Modulation problem. The global optimal solution is F=0 104

Figure 3-45 Performance of adaptive and non-adaptive EA designs on the Error Correcting
Code (ECC) problem. The global optimal solution is F=0 105

Figure 4-1 ETV size distributions for a number of panmictic EA designs, a) EA designs
with population size A^=200, generational population updating (Gen), and selection
methods Tournament (Tour), Truncation (Trun) and Random (Rand) selection.
Solid line represents a power law with exponent 2.5. b) EA designs with population
size 7V=200, steady state (SS) population updating, and selection methods
Tournament (Tour), Truncation (Trun) and Random (Rand) selection. Solid line
represents a power law with exponent 2.3. Results from each EA design are taken
over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 115

Figure 4-2 ETV size distributions for a number of spatially distributed EA designs, a)
Cellular Genetic Algorithm (cGA) designs with population sizes (A^=100, A^=200),
and neighborhood radius (R=l, R=5, R=30). Solid line represents a power law with
exponent 2.2. b) Cellular Genetic Algorithm (cGA) designs with random selection
(Rand), population size (N=200), and neighborhood radius (i?=l, R=5, jR=30).
Solid line represents a power law with exponent 2.5. Results from each EA design
are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test
function 116

Figure 4-3 ETV distributions shown primarily for spatially distributed EA designs. All EA
designs have population size A^=200. Cellular Genetic Algorithm (cGA) designs
vary in the use of crowding and the neighborhood radius size (R=U /?=30).
Results from using Deterministic Crowding (DC) are also presented in the inset.
Solid line represents a power law with exponent 2.2. Results from each EA design
are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test
function 117

Figure 4-4 ETV distributions shown for selected EA designs on a range of test functions
taken from Appendix A. Evolution occurred over 2000 generations and results
shown are averages taken over 10 runs. To help in viewing results from a large
number of test functions, data is grouped into bins, a) Results for an EA design
using steady state (SS) population updating, truncation selection (Trun), and
population size A^=200. Solid line represents a power law with exponent 2.2. b)
Results for an EA design using generational (Gen) population updating, tournament
selection (Tour), and population size A^=200. Solid line represents a power law with
exponent 2.2 119

Figure 4-5 ETV distributions shown for selected EA designs on a range of test functions
taken from Appendix A. Evolution occurred over 2000 generations and results
shown are averages taken over 10 runs. To help in viewing results from a large
number of test functions, data is grouped into bins, a) Results for a distributed EA

design (cGA) using neighborhood radius R=\, and population size 7V=200. Solid
line represents a power law with exponent 2.2. b) Results for a distributed EA
design (cGA) using neighborhood radius R=30, and population size N=200. Solid
line represents a power law with exponent 2.2 120

Figure 4-6 ETV distribution results as a function of the time span of evolution, a) Results
for an EA design using steady state (SS) population updating, truncation selection
(Trun), and population size N=200. Solid line represents a power law with
exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood
radius and population size A^=200. Solid line represents a power law with
exponent 2.5. Data sets are labeled by a number which indicates the number of
ETV measurements that are used to generate the distribution. For each EA run, the
first 100 events are given to the first data set, the next 500 are given to the next data
set and so on. Results for each EA design are averages over ten runs 121

Figure 4-7 Record ETV statistics for cellular Genetic Algorithms (cGA) with population
size A^=100 and neighborhood radius (R=\, R=5, R=30). ETV(Max) is the largest
ETV found in every 200 events. Values are averages over 10 experimental
replicates 122

Figure 4-8 ETV distributions with varying amounts of historical uncoupling in EA
population dynamics. Experiments are conducted with a steady state EA using
truncation selection and population size A^=100. Evolution took place over 20,000
generations on the 30-D Hyper Ellipsoid test function. When conducting the
standard ETV calculation, historical event information is copied from the
genetically dominant parent to its offspring. In these experiments, the step of
historical transfer is skipped with probability F„ew The solid line in the graph
represents a power law with exponent = 2.1 123

Figure 4-9 ETV age distributions shown primarily for spatially distributed EA designs.
The age of an ETV is defined by the number of generations from the initial event to
the completion of the ETV calculation. All EA designs have population size
A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and
the neighborhood radius size R=5, R=30). Results from using Deterministic
Crowding (DC) are also provided for a population size of A^=200. Solid line
represents a power law with exponent 3.2 125

Figure 4-10 ETV age distributions for several EA designs. The age of an ETV is defined
by the number of generations from the initial event to the completion of the ETV
calculation, a) EA designs with population sizes (A^=200, N=50X generational
population updating (Gen) and Tournament selection (Tour). Solid line represents a
power law with exponent 3. b) EA designs with population sizes (7V=200,7V=50),
steady state population updating (SS), and Tournament selection (Tour). Solid line
represents a power law with exponent 2.5. c) EA designs with population sizes
(A^=200, A^=50), steady state population updating (SS), and Truncation selection
(Trun). Solid line represents a power law with exponent 3.5 127

Figure 4-11 Probability of an extinction event as a function of the fraction of all species
killed. The distribution is derived based on a best of fit kill curve (see [170]) using

fossil data of marine species from the Paleozoic era. Reprinted by permission from
the Royal Society (Proceedings: Biological Sciences) [171], copyright (1996).... 130

Figure 4-12 Local lifetime distributions for species based on North American bird
populations, a) Lifetime distributions for data taken over different timescales.
Power law deviations are clearly present, b) Lifetime distributions with rescaling of
data to account for finite size effects. Data is now well approximated by a power
law. Reprinted by permission from Macmillan Publishers Ltd: (NATURE) [173],
copyright (1998) 132

Figure 4-13 log-log plots of the frequency of a selected taxon with different numbers of
sub-taxa. a) Frequency of genera with different numbers of species for birds. The
frequency is given on the vertical axis and the number of bird species within the
genera is given on the horizontal axis, b) Frequency of orders with different
numbers of families for animals. The frequency is given on the vertical axis and the
number of animal families within the order is given on the horizontal axis. Data
points with frequencies j= \ are omitted. Similar distributions for other data sets are
presented in [179]. Reprinted by permission from Elsevier: (J. theor. Biol.) [179],
copyright (1990) 133

Figure 5-1: Examples of interaction networks. The networks on the top represent
commonly used EA population structures and are known as (from left to right)
Panmictic, island model, and cellular population structures. Networks at the bottom
have been developed with one or more characteristics of complex biological
networks and are classified as (from left to right) Self-Organizing Networks
(presented here). Hierarchical Networks [194], and Small World Networks [195].
Figure le is reprinted with permission from AAAS 144

Figure 5-2: Reproduction rules that change the population structure for SOTEA and the
cellular GA. a) SOTEA Reproduction: When an offspring is created (by asexual
reproduction), a new node (shown in black) is added to the network through a
connection to its parent (shown in gray). Each of the parent's connections are then
inherited by the offspring (black dotted line) with probability Padd followed by each
of the inherited connections being lost by the parent (gray dotted line) with
probability Premove- Unless stated otherwise, the parameters are set as Padd = Premoye
= 10%. This particular rule is loosely based on established models for genome
complexification [203]. b) cellular GA Reproduction: When an offspring is
created, a new node (shown in black) is added to the network and connected to its
parent (shown in gray). One of the parent's connections is then transferred to the
offspring, which allows the network to maintain a ring topology 155

Figure 5-3: Competition rules that change the population structure for SOTEA and the
cellular GA. The details of the competition rule are the same for SOTEA and the
cGA, however examples are given for both EA designs in this figure. Competition
rule: The first step is to select an individual at random. This individual then
decides to compete for survival with its least fit neighbor. When these two
individuals compete for survival such as the nodes shown in black and gray, the less
fit individual is killed. The winning individual (shown in black) inherits all
connections from the losing individual (shown in gray) that weren't already in the

winning individual's neighborhood. Finally, the losing individual is removed from
the network 156

Figure 5-4: This figure shows how structural changes from SOTEA's competition rule
depend on the fitness of individuals in the network. Starting with the network at the
top, the individual represented by the black node must decide which of its neighbors
it will try to kill. The networks at the bottom show what would happen if neighbor
1, 2, or 3 had been the least fit in the black node's neighborhood. Each of the
choices creates a new structure that is different from the other choices. Notice that
for the networks on the bottom, the black node has been changed to gray. This is to
indicate that either the black node or the white neighbor could have won the
competition (the structure is the same in either case) 157

Figure 5-5: This figure shows how the epistatic fitness (Fitepi) defined by (5-9) causes the
fitness of an individual to depend on its local neighborhood. Parts a-c of the figure
show a population of five individuals defined on a network. The Objective
Function Value (Obj) and epistatic fitness defined by (5-9) are provided in the top
and bottom (resp.) of each node (i.e. individual). For the top two individuals in part
a), an arrow is drawn towards the individual on the left to indicate it has the lower
epistatic fitness. The top left individual's epistatic fitness is 2/3 because its
objective function value is better than 2 of its 3 neighbors. In part b), a new
connection has been added to the network causing the epistatic fitness values for the
two top individuals to now be equal. Finally in part c), a connection has been
removed from the network, causing the top left individual to have an epistatic
fitness that is now higher than the top right node. If the top two nodes were to
compete for survival based on epistatic fitness, it should now be clear that the
decision of who survives (i.e. who is more fit) will depend on the neighborhoods of
the individuals 159

Figure 5-6: Pseudocode for SOTEA and cellular GA network dynamics 160
Figure 5-7: An example of the fitness lookup tables for determining the fitness contribution

fi from bit JC/. Given an NK landscape with Nnk =8 and Km =2,f3(xs, z P , is
the fitness contribution for X3. z/^^ and are the two bits that epistatically
interact with X3. As shown in the figure, they have been selected as the bits to the
left and right of xs (i.e. z/^^ = X2 and = X4). The lookup table consists of 2^(
Knk +1) entries, each associated with a unique combination of bit states for X3, zp^
and Each entry in the lookup table is a number between [0,1] drawn from a
uniform distribution 161

Figure 5-8: Genetic Diversity Results are shown over 4000 generations for Panmictic GA,
SOTEA, and cellular GA. Diversity for each EA is an average over 10 runs with
diversity calculated from (5-12) using the entire population (top graph) or the 20%
best individuals in the population (bottom graph). Experiments are conducted on
NK models with N m =30, Knk =14. For each EA design the population size is set
to iV=100 and epistatic fitness is used as defined by (5-9) 166

Figure 5-9: Performance results are shown over 5000 generations for Panmictic GA,
SOTEA, and cellular GA each operating with Epistatic Fitness. Performance for

each EA is an average over 10 runs with performance calculated as the best
objective function value in a run. Experiments are conducted on NK models with
Nnk =30, Knk =14. For each EA design the population size is set to A^=100 and
epistatic fitness is used as defined by (5-9) 167

Figure 5-10: Genetic diversity results are shown for different amounts of landscape
ruggedness for the Panmictic GA, SOTEA, and the cellular GA. Diversity is an
average of calculations using (5-12) that are taken at every 20 generations (up to
1000 generations) from the 20% best individuals in the population. This measure
then also averaged over 5 runs. Experiments are conducted on NK models with
Nnk =30, and Kmk varying as shown in graph. Increasing K^k indicates increasing
levels of landscape ruggedness. For each EA design, the population size is set to
A^=100 and epistatic fitness is used as defined by (5-9) 168

Figure 5-11: Genetic diversity results are shown over 4000 generations for Panmictic GA,
SOTEA, and cellular GA each operating without epistatic fitness. Diversity for
each EA is an average over 10 runs with diversity calculated from (5-12) using the
entire population (top graph) or the 20% best individuals in the population (bottom
graph). Experiments are conducted on NK models with Nnk =30, Kmk =14. For
each EA design, the population size is set to A^=100 and fitness is defined as the
Objective Function Value. The results shown here for the Panmictic GA are
identical to results shown in Figure 5-8. This is because the fitness rankings of
individuals in a fully connected population are the same regardless of whether
epistatic fitness (5-9) is used or the Objective Function Value is used. Because the
fitness rankings are the same, the outcome of competitions will also be the same
(hence no change to EA behavior) 169

Figure 5-12: Selective pressure patterns in the SOTEA network with (top) and without
(bottom) epistasis. Selective pressure in the network is shown with arrows in black
for pressure directed away from the network center and green for other directions of
pressure. Selective pressure directions have only been calculated for nodes located
near the network center. The arrows are drawn by selecting a node and drawing an
arrow from this node to its worst neighbor. The worst fit neighbor is determined by
epistatic fitness (5-9) for the top graph and by the Objective Function Value for the
bottom graph 171

Figure 5-13 SOTEA networks evolved using different parameter settings for the
reproduction rule. In the reproduction rule, a parent's connections are inherited by
its offspring with probability Padd followed by each of the inherited connections
being lost by the parent with probability Premove- Population interaction networks
were evolved for a) Padd = Premove = 0.0%, b) Padd = Premove = 10%, C) Padd = Premove =

20% 172

Figure 5-14 Adaptive Network Rules: A selected node N1 will attempt to add, remove or
transfer its connections based on the satisfaction of constraints and the improvement
of properties. Add Rule: The dotted line represents a feasible new connection in
the network assuming nodes N1 and N3 both would like to increase their number of
connections. Remove Rule: The gray dotted line represents a feasible connection
to remove in the network assuming nodes N1 and N2 both have an excess of

connections. Transfer Rule: The connection between N1 and N2 (gray dotted line)
being transferred to now connect N1 and N3 (black dotted line) represents a feasible
transfer assuming this action results in an overall improvement to local clustering.

179

Figure 5-15 Performance results for the Pressure Vessel design problem are shown over
3000 generations for SOTEA with different settings of Kmax, and for cellular GA
with different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained
feasibility within the first 100 generations. The global optimal solution has a fitness
of 5850.38 185

Figure 5-16 Performance results for the Alkylation Process design problem are shown over
3000 generations for SOTEA with different settings of K âx, and for cellular GA
with different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained
feasibility within the first 1400 generations. Several instances can be observed
where fitness values momentarily decrease. This is the result of EA runs turning
from infeasible to feasible where the new feasible solution is lower than the average
performance for that EA design and generation. The global optimal solution has a
fitness of 1772.77 185

Figure 5-17 Performance results for the Heat Exchanger Network design problem are
shown over 3000 generations for SOTEA with different settings of Kmca, and for
cellular GA with different values of the neighborhood radius R. Performance for
each EA is an average over 20 runs of the best fitness (objective function) value in
the population. Infeasible solutions are neglected from the calculations, however all
runs obtained feasibility within the first 100 generations. The global optimal
solution has a fitness of 7049.25 186

Figure 5-18 Performance results for the Gear Train Design design problem are shown over
3000 generations for SOTEA with different settings of Kmax, and for cellular GA
with different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained
feasibility within the first 50 generations. The global optimal solution is unknown,
however the best result previous to this work, is reported in [220] as 2.70E-12... 186

Figure 5-19 Performance results for the Tension Compression Spring Design design
problem are shown over 3000 generations for SOTEA with different settings of
Kmax, and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective
function) value in the population. Infeasible solutions are neglected from the
calculations, however all runs obtained feasibility within the first 50 generations.
The global optimal solution is unknown, however the best result previous to this
work, is reported in [221] as 0.01270 187

Figure 5-20 Performance results for the Welded Beam Design design problem are shown
over 3000 generations for SOTEA with different settings of Kmax, and for cellular
GA with different values of the neighborhood radius R. Performance for each EA is
an average over 20 runs of the best fitness (objective function) value in the
population. Infeasible solutions are neglected from the calculations, however all
runs obtained feasibility within the first 50 generations. The global optimal solution
is unknown, however the best result previous to this work, is reported in [222] as
1.7255 187

Figure 5-21 Final performance results for the Pressure Vessel (Left), Alkylation Process
(Middle) and Heat Exchanger Network (Right) design problems are shown with box
plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The
box plots represent final algorithm performance (after 3000 generations) over 20
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the
four cGA designs (with different parameter settings for neighborhood radius R), the
four SOTEA designs (with different parameter settings for Kuwd, and the eight
Panmictic EA designs described in Section 5.4.2.1. Insets are provided for the cGA
and SOTEA box plots to highlight the difference in results between these two
algorithms. Also notice that the Pressure Vessel and Heat Exchanger Network
problems are Minimization problems while the Alkylation Problem is a
Maximization problem 188

Figure 5-22 Final performance results for the Gear Train (Left), Tension Compression
Spring (Middle) and Welded Beam (Right) design problems are shown with box
plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The
box plots represent final algorithm performance (after 3000 generations) over 20
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the
four cGA designs (with different parameter settings for neighborhood radius R), the
four SOTEA designs (with different parameter settings for XM«), and the eight
Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are
provided for the cGA and SOTEA box plots (with data shifted and plotted on a log
scale) to highlight the difference in results between these two algorithms. All three
design problems are Minimization problems 190

Figure 5-23 Performance results for the Frequency Modulation problem are shown over
3000 generations for SOTEA with different settings of Kmax, and for cellular GA
with different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0 192

Figure 5-24 Performance results for the error correcting code (ECC) problem are shown
over 3000 generations for SOTEA with different settings of Kmax, and for cellular
GA with different values of the neighborhood radius R. Performance for each EA is
an average over 20 runs of the best fitness (objective ftinction) value in the
population. The global optimal solution is 0.067416. Results are shifted so that
global optima is 0 192

Figure 5-25 Performance results for the system of linear equations problem are shown over
3000 generations for SOTEA with different settings of Kmax, and for cellular GA

with different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0 193

Figure 5-26 Performance results for the Rastrigin function are shown over 3000 generations
for SOTEA with different settings of Kmax, and for cellular GA with different values
of the neighborhood radius R. Performance for each EA is an average over 20 runs
of the best fitness (objective function) value in the population. The global optimal
solution is 0 193

Figure 5-27 Performance results for the Griewangk function are shown over 3000
generations for SOTEA with different settings of Kmax> and for cellular GA with
different values of the neighborhood radius R. Performance for each EA is an
average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0 194

Figure 5-28 Performance results for Watson's function are shown over 3000 generations for
SOTEA with different settings of Kmax, and for cellular GA with different values of
the neighborhood radius R. Performance for each EA is an average over 20 runs of
the best fitness (objective function) value in the population. The global optimal
solution is 0.01714 194

Figure 5-29 Final performance results for the Frequency Modulation (Left), Error
Correcting Code (Middle) and System of Linear Equations (Right) test functions are
shown with box plots of performance data grouped by Panmictic EA, cellular GA,
and SOTEA. The box plots represent final algorithm performance (after 3000
generations) over 20 runs for all cGA, SOTEA, and Panmictic EA designs. This
includes data from the four cGA designs (with different parameter settings for
neighborhood radius R), the four SOTEA designs (with different parameter settings
for KMOX), and the eight Panmictic EA designs described in Section 5.4.2.1. When
necessary, insets are provided for the cGA and SOTEA box plots (with data plotted
on a log scale) to highlight the difference in results between these two algorithms.
All three design problems are Minimization problems 195

Figure 5-30 Final performance results for the Rastrigin (Left), Griewangk (Middle) and
Watson (Right) test functions are shown with box plots of performance data
grouped by Panmictic EA, cellular GA, and SOTEA. The box plots represent final
algorithm performance (after 3000 generations) over 20 runs for all cGA, SOTEA,
and Panmictic EA designs. This includes data from the four cGA designs (with
different parameter settings for neighborhood radius R), the four SOTEA designs
(with different parameter settings for KMOX), and the eight Panmictic EA designs
described in Section 5.4.2.1. When necessary, insets are provided for the cGA and
SOTEA box plots (with data shifted and plotted on a log scale) to highlight the
difference in results between these two algorithms. All three design problems are
Minimization problems 196

Figure 5-31 Topological properties for SOTEA with different values of KMOX and
population sizes of TV = 50 (•), 100(H), and 200(A). Characteristics include a) the
characteristic path length (Z), b) the correlation between c and k (c-k), c) the slope

of the degree correlation (t>), d) the average clustering coefficient Cave and e) the
degree average have

Figure 5-32 SOTEA Network Visualizations with Kuax = 7 for population sizes TV = 50, =
100, and 200. Network visuals were created using Pajek Software 202

Figure 5-33 SOTEA Network Visualizations with Kuca = 5 for population sizes TV = 50, =
100, and 200. Network visuals were created using Pajek Software 203

Figure A-1 Simplified diagram of an alkylation process (recreated from [224]) 236

Figure A-2 Diagram of the Heat Exchanger Network Design Problem involving 1 cold
stream that exchanges heat with three hot streams. Parameters to optimize include
heat exchange areas {xi, X2, X3) and stream temperatures (x4, X5, X6, xy, xs) 238

Figure A-3 Pressure Vessel Drawing. Parameters of the problem include the thickness of
the shell Ts, the thickness of the head Th, the inner radius of the vessel R and the
length of the cylindrical section of the vessel L. This figure is taken out of [221]
and is reprinted with permission from IEEE (© 1999 IEEE) 239

Figure A-4: Diagram of a welded beam. The beam load is defined as P with all other
parameters shown in the diagram defining dimensional measurements relevant to
the problem. This figure is taken out of [221] and is reprinted with permission from
IEEE (© 1999 IEEE) 240

Figure A-5 Diagram of Tension Compression Spring. Parameters of the problem include
the mean coil diameter Z), the wire diameter d and the number of active coils N
which is represented by the number of loops of wire in the diagram. Forces acting
on the spring are shown as P. This figure is taken out of [221] and is reprinted with
permission from IEEE (© 1999 IEEE) 242

XXlll

LIST OF TABLES

Table 3-1 Partial list of methods that have been used to adapt search operator probabilities.
Parameters that are not specified in the method are listed as (-), parameters that are
not applicable are listed as (*), and parameters that were varied in experiments are
listed as the range of values tested. Parameter a in column two is the memory
parameter given in (3-1), in column three is a parameter specific to the adaptive
pursuit strategy and is defined by (3-3), T in column four is the adaptation cycle
length which defines the number of generations between the updating of search
operator probabilities, Puin in column five is the lower bound on the allowed range
of probability values, the "Event Measuremenf in column six is described in
Section 3.1.4.4, the "Interpretation" in column seven is the interpretation of event
measurements as described in Section 3.1.4.5, and Nops in column eight is the
number of search operators being adapted. The ETV event measurement and
Outlier interpretation in the bottom two rows of the table are new event
measurement and interpretation methods (resp.) proposed in this thesis and are
described in Sections 3.2.2 and 3.2.4. "His. Credif refers to Historical Credit
Assignment which is described below in Section 3.1.4.6 51

Table 3-2 List of test functions used in experiments. Problem definitions, parameter
settings, fitness landscape characteristics, and problem descriptions (for design
problems) are provided in Appendix A 70

Table 3-3: List of search operators used in EA designs. Full descriptions of each search
operator are provided in Appendix B 71

Table 3-4 Details of the adaptive methods used for adapting search operator probabilities
are listed. Column one provides the label used to refer to each adaptive method.
The second column indicates whether the adaptive method uses the adaptive pursuit
strategy (Y) or the probability matching strategy (AO- The measurement of an event
is given in column three as either the fitness {F) or the Event Takeover Value
(ETV). The interpretation of event measurements is either one of those listed in
Section 3.1.4.5 or the Outlier method of Section 3.2.4.1. For the "ETV" adaptive
method, the interpretation is equivalent to the ETV value. Each adaptive method
has the task of setting the operator probabilities for the 10 search operators listed in
Table 3-3. Each adaptive method uses parameter settings a = 0.8, PMirT^-^l and T
=10. The adaptive pursuit strategy also has = 0.8. No attempt was made to tune
these parameters and the values were chosen largely to maintain consistency with
previous research in this topic. Preliminary testing indicated that the results are not
strongly sensitive to the setting of a and T 75

Table 3-5 Overall performance statistics for each of the adaptive and non-adaptive EA
designs. Column two measures the percentage of problems where an EA design
was the best EA design (comparisons based on median objective function value).
Column three measures the percentage of problems where an EA design was able to

find the best solution at least one time. The best solution is defined as the best
found in these experiments and is not necessarily the global optimal solution 76

Table 3-6 Overall performance statistics for each of the adaptive and non-adaptive EA
designs run on the artificial test functions. Column two measures the percentage of
problems where an EA design was the best EA design (comparisons based on
median objective function value). Column three measures the percentage of
problems where an EA design was able to find the best solution at least one time.
The best solution is defined as the best found in these experiments and is not
necessarily the global optimal solution. Results for the non-adaptive EA designs are
shown in the bottom two rows while the rows labeled as ETV and ETV-Outlier
show results for the new adaptive methods developed in this thesis 95

Table 3-7 Overall performance statistics for each of the adaptive and non-adaptive EA
designs run on the engineering design problems. Column two measures the
percentage of problems where an EA design was the best EA design (comparisons
based on median objective function value). Column three measures the percentage
of problems where an EA design was able to find the best solution at least one time.
The best solution is defined as the best found in these experiments and is not
necessarily the global optimal solution 100

Table 4-1 Names of the seven search operators used in the cellular GA and Panmictic EA
designs are listed below. More information on each of the search operators can be
found in Appendix B 113

Table 5-1: Topological Characteristics for the interaction networks of the Panmictic GA,
cellular GA, and SOTEA. For comparison, common topological characteristics of
complex networks are also provided (taken from [198], and references therein). L
is the characteristic path length, k is the node degree, kave is the average node
degree, N is the population size, and R is a correlation coefficient for the stated
proportionalities 165

Table 5-2: Names of the seven search operators used in the cellular GA, SOTEA, and
selected Panmictic EA designs are listed below. More information on each of the
search operators can be found in Appendix B 182

Table 5-3 Overall performance statistics for the Panmictic EA, the cellular GA, and
SOTEA. Column two measures the percentage of runs where the optimal solution
was found. The optimal solution is defined as the best solution found in these
experiments. Column three measures the percentage of runs where the solution
ranks in the top 5% of solutions from all EA designs. In column four, indicates
the p value for the Mann-Whitney U-test where the hypothesis is that the given EA
design class is superior to the other two EA design classes. Column five measures
the percentage of problems where the best EA design belonged to a particular
design class. Column six measures the percentage of problems where an EA design
class was able to find the best solution at least one time. Statistics in columns 1-3
are an average value over all test problems 184

Table 5-4: Topological characteristics for the interaction networks of the Panmictic EA,
cellular GA, and SOTEA. SOTEA networks are averages taken over all settings for
KMOX as described elsewhere. For comparison, common topological characteristics
of several biological systems are also provided (taken from [196] and references
therein). Characteristics include the characteristic path length L, the degree average
kave, the linkage distribution (k dist.), the average clustering coefficient Cave,
correlation between c and k (c-k\ and degree correlations {k-kNN)- For the k
distribution, y refers to the exponent for k distributions that fit a power law. Two
values for y are given for the metabolic network and refer to the in/out-degree
exponents (due to this being a directed network). Results for degree correlations are
given as the slope v of km vs k. N is the population size, and R is a correlation
coefficient for the stated proportionalities 199

Table A-1 Artificial Test Function Characteristics Table. Epi: Epistasis or Tight Linkage
(i.e. Non-Separable), Con = Continuous, n = problem dimensionality (* indicates n
is a parameter of the problem), Ref = reference to problem description used, MM =
multimodal fitness landscape, Params = parameters of the problem 228

Table B-1: List of search operators used in experiments. Details provided in this table
include the search operator name, other common name, reference for description,
and parameter settings if different from reference 244

Table C-1 Comparison of results for the alkylation process design problem (maximization
problem). Results from other authors were reported in [224]. The best solution
found in these experiments was (F, xi, X2, JCJ, X4, X5, xe, x?) = (1772.77, 1698.18,
54.73, 3029.65, 90.25, 95, 1035, 153.53) with constraints (gi, g2, gs, g4, gs, ge, gj,
g8, g9, gio, gji, gj2. gi3, gi4) = (0, 0, 4.70E-11, 0, 0, 3.72E-11, 9.98E-8, -0, 0, 0, 0, 0,
0, 0) 248

Table C-2 Comparison of results for the heat exchanger network design problem
(minimization problem). Results from other authors were reported in [224]. The
best solution found in these experiments was (F, xi, X2, X3, X4, xs) = (7049.25,
579.19, 1360.13, 5109.92, 182.01, 295.60) with constraints (gi, g2, gs) = (-2.06E-3,
-6.22E-3, -4.60E-3) 249

Table C-3 Comparison of results for the pressure vessel design problem (minimization
problem). Results from other authors were reported in [223]. Results are also
reported for [222] however their solution violates integer constraints for the and
4̂ parameters making their final solution infeasible. It should also be mentioned
that equations for defining the problem have errors in [221] and [223]. Previous
studies have used different bounds for the solution parameters in this problem which
are stated in Column 4. These bounds can change the location of the optimal
solution making it hard to compare experimental results from different authors. The
best solution found in these experiments was (F, xi, X2, X3, X4) = (5850.37, 38.8601,
221.365, 12, 6) with constraints {gi, g2, gs, gd = (-7.00E-8, -4.27E-3, -0.53, -18.66).

249
Table C-4 Comparison of results for the welded beam design problem (minimization

problem). Results from other authors were reported in [222]. The best solution

found in these experiments was (F, xi, X2, X3, X4) = (1.72485, 0.20572973978,
3.47048651338, 9.0366239103, 0.2057296397) with constraints (gi, g2, g3, g4, gs,

g?) = (0, 0, -9.99E-8, 0, 0, 0, 0) 250

Table C-5 Comparison of results for the tension compression spring problem (minimization
problem). Results from other authors were reported in [221]. The best solution
found in these experiments was (F, xj, X2, X3) = (0.0126652303, 0.051838,
0.360318, 11.081416) with constraints (gi, g2, gs. gd = (-3.16E-5, 1.47E-5, -4.06, -
0.725) 250

Table C-6 Comparison of results for the gear train design problem (minimization problem).
Results from other authors were reported in [220]. The best solution found in these
experiments was (F, xj, X2, X3, X4) = (2.70 xlO"^^ 19, 16, 43, 49) 250

Table C-7: Final performance results for eight Panmictic Evolutionary Algorithms run for
3000 generations with algorithm designs varying by the use of generational (Gen) or
pseudo steady state (SS) population updating, the use of binary tournament selection
(Tour) or truncation selection (TrunX and the number of search operators {Nops)-
Performance is presented as the single best objective function value found in 20
runs Fgest as well as the average objective function value over 20 runs FAVC None of
the Evolutionary Algorithms listed below failed to obtain a feasible solution within
3000 generations. The single best fitness values found for each problem are in bold.

251

XXVll

ABBREVIATIONS

BA Barabasi-Albert Network Model (Section 5.1.3.1)

cGA cellular Genetic Algorithm (Section 2.3.7.2)

DC Deterministic Crowding (Section 2.3.7.1)

DD Duplication and Divergence Network Model (Section 5.1.3.2)

DE Differential Evolution (Section 2.3.4)

dOA distributed Genetic Algorithm (Section 2.3.7.2)

EA Evolutionary Algorithm (Section 2.3)

EC Evolutionary Computation (Section 2.3)

ECC Error Correcting Code Problem (Appendix A)

ETV Event Takeover Value (Section 3.2.2)

GA Genetic Algorithm (Section 2.3)

MMDP Massively Multimodal Deceptive Problem (Appendix A)

MTTP Minimum Tardy Task Problem (Appendix A)

RCGA Real-Coded Genetic Algorithm (Section 2.3.6)

SOC Self-Organized Criticality (Section 4.3)

SOTEA Self-Organized Topology Evolutionary Algorithm (Chapter 5)

xxvni

Chapter 1: Introduction

Chapter 1 Introduction

Evolutionary Algorithms (EA) are a class of stochastic optimization methods which loosely

follow principles of natural selection in order to solve challenging problems. Over the

years, a strong track record (e.g. see [1], [2]) has brought them popularity in academia and

has also started to bring acceptance from industry [3], [4]. Today a number of companies

which specialize in providing optimized business solutions are now using EA techniques

[5], [6], [7], [8], [9], [10], [11].

Although Evolutionary Algorithms have achieved impressive performance in many

application domains, these achievements are partly the result of careful algorithm design

which often involves substantial efforts in defining a problem's representation and/or the

careful design of an EA's genetic operators. These significant design efforts are a

reflection of the fact that an EA is presently not able to robustly adapt its search behavior to

fit a particular optimization problem. One promising avenue for addressing this problem is

learn how open-ended adaptability and robustness occurs in natural evolutionary processes

and to incorporate these mechanisms into an EA.

To achieve such a goal, it is expected that a number of key features of natural evolution will

need to be integrated into an EA, some of which are not yet ftilly understood.^ Although

we still lack a complete understanding of evolution, the post-genomic era has provided a

number of important insights into complex biological systems as well as a better

understanding of the evolutionary processes that created these systems. With these recent

developments in mind, it was agreed upon at a recent workshop that a concerted effort

should now be made to integrate the latest understanding of evolutionary processes into EA

design [22].

If such efforts bear fruit over the coming years, it is anticipated that EA will become a more

flexible, autonomous, and robust algorithm for solving today's learning, control, design,

^ Examples of important features of natural evolution that should be of particular interest to EC research are
discussed in [12], [13], [14], [15], [16], [17] and studied in [18], [19], [20], [21].

Chapter 1: Introduction

and scheduling tasks. As the gap between natural evolution and EA behavior is narrowed
even further, it is anticipated that EA research could also become of strategic importance
for a number of frontier technologies where optimization methods are required but are not
presently capable of providing viable solutions.

1.1 Aims and Outline

The overarching aim of this research is to make progress in narrowing the gap between EA
and natural evolution. Hence, the research questions raised in this thesis are aimed at
incorporating (or understanding) some of the non-trivial aspects of natural evolution that
are missing in Evolutionary Algorithms. The key aims and research questions raised in this
thesis are described below.

Understanding and Designing an Adaptive System: The effectiveness of an adaptive
system can be measured by its ability to maintain competitiveness in a changing
environment. Natural adaptive systems have ingrained within them an ability to
advantageously change internal components when exposed to changing external forces.
However, it is not completely understood what features are required to make an adaptive
process effective in Evolutionary Algorithms. An example of such an adaptive process is
observed in the adaptive methods used for the automated control of EA design parameters.
Within this context, this thesis aims to answer how the interactions between such adaptive
systems and their environment can be translated into useful information for driving internal
changes to these adaptive systems.

To date, research into methods for adapting EA design parameters has focused on the use of
fitness measurements for controlling adaptive behavior. Chapter 3 presents an alternative
measurement, called ETV (Event Takeover Value), which is derived from empirical
evidence of an individual's impact on population dynamics. The ETV is able to measure an
individual's impact on EA population dynamics through an analysis of EA genealogical
graphs.

During a preliminary analysis of population dynamics (using ETV), an unexpected
behavior is uncovered in Evolutionary Algorithms. It is found that there is a surprising
scarcity of individuals in an EA population that cause even moderate changes to population

Chapter 1: Introduction

dynamics. Instead, most individuals actually have a negligible impact on the system. After

thorough testing (mostly presented in Chapter 4), it is concluded that this is a ftindamental

property of EA dynamics and that most interactions between the EA population and its

environment are effectively neutral and non-informative.

Based on this conclusion and through the use of statistical arguments, the new adaptive

system is modified to filter out data from individuals that have a small impact on

population dynamics. As a result, only important interactions between the adaptive system

and its environment are used to drive adaptive changes in the system. Experiments

conducted on a number of artificial test functions and engineering design problems indicate

that the new method for adapting EA design parameters is superior to a number of adaptive

methods selected from the literature.

Understanding E A Population Dynamics: The aim of Chapter 4 is to gain a better

understanding of the population dynamics of Evolutionary Algorithms using the ETV

measurement derived in Chapter 3. One important observation from this chapter is that the

probability distribution of an individual's impact on population dynamics fits a power law

with most individuals having a negligible impact. This chapter investigates this feature of

EA dynamics more closely with the goal of determining what experimental conditions lead

to power laws and what conditions lead to deviations from a power law.

By knowing what aspects of EA design can impact this characteristic of EA population

dynamics, it is expected that this information can be used to improve EA robustness, in

part, by driving EA behavior towards a more accurate reflection of natural evolution. After

comparisons are made between EA results and somewhat related observations from natural

evolution, it is concluded that some aspects of the two systems share similar patterns of

behavior but only when certain conditions are met. In particular, the population topology is

found to be a significant factor in the ETV results and it is found that EA populations that

are fully connected (i.e. Panmictic) are unable to mimic the spatial properties of natural

evolutionary dynamics.

The experimental results from this chapter also provide evidence that the spatial properties

of EA dynamics and its genealogy are self-organized and possible explanations for this

behavior are given based on the Theory of Self-Organized Criticality.

Chapter 1: Introduction

Mimicking the Structural Organization of Complex Systems: Although the majority of

experimental factors tested in Chapter 4 do not significantly influence EA population

dynamics, one factor which did alter its behavior was the introduction of spatial restrictions

within the population. Interaction restrictions also occur in biological systems, however it

is well known that network approximations of these systems have very different topological

properties compared to current spatially distributed EA populations.

Structure is an emergent property of complex biological systems and plays a fundamental

role in the robustness and general behavior of these systems. Chapter 5 reviews

contemporary understanding of how structure emerges in nature with the goal of

determining how similar structural organization can be integrated with EA design in order

to improve its robustness and behavior.

Hence, one of the primary aims of this chapter is to determine how an EA population

structure can self-organize to exhibit topological characteristics similar to complex

biological systems. This aim is achieved by modifying the population topology using

localized rules that are coupled to EA population dynamics. Two different models of

topological organization are studied and each is found to display interesting behaviors. In

particular, the first model is found to generate non-random selection pressure patterns

within the population topology and also is able to sustain very high levels of genetic

diversity. The second model is intentionally designed to evolve population structures with

high levels of modularity. Results from testing this algorithm on a suite of test problems

indicate that the new EA design strongly outperforms a number of other algorithms

including cellular Genetic Algorithms and several non-distributed EA designs.

The following chapter provides general background material for this thesis. The chapter

starts with a brief introduction to optimization including a discussion of what conditions

make optimization challenging and why nature-inspired optimization methods are useful

within certain contexts. A justification is also provided for the specific focus of this thesis

on Evolutionary Algorithms as opposed to other nature-inspired methods.

Chapter 2: General Background of Evolutionary Algorithms

Chapter 2 General Background of Evolutionary

Algorithms

This chapter reviews (briefly) the background concepts and ideas that underlie the work

conducted in this thesis. Each subsequent chapter also introduces and critically reviews

material that is relevant to the research questions being addressed within that chapter. The

intention is to allow each chapter to be largely self-contained in order to improve clarity of

the material and to keep terminology and concepts fresh in the reader's memory as they are

introduced and subsequently explored.

2.1 Optimization Framework

In general, optimization problems involve setting a vector x of free parameters of a system

in order to optimize (maximize or minimize) some objective function F(x). A solution to a

problem can also be subject to the satisfaction of inequality constraints g(x), equality

constraints h(x), as well as upper and lower bounds on the range of allowable parameter

values. Given a minimization problem consisting of n parameters, q inequality constraints,

and r equality constraints, the problem can be defined as shown below.

MinF{x\ x = (2-1)

Subject to:

g,{x)<0, ke{l,...,q} (2-2)
hj{x) = 0, j^{\,...,r} (2-3)

xf<x,<^, ie{l,...,n} (2-4)

This is the basic structure of the single objective optimization problems considered in this

thesis. There are no specific conditions attached to the variable type and the function

characteristics although many of the problems tested have multimodal fitness landscapes

and significant levels of parameter epistasis. Other conditions which are commonly

addressed in optimization research but will not be specifically addressed here include

dynamic objective functions and multiple conflicting objectives.

Chapter 2: General Background of Evolutionary Algorithms

Optimization problems are typically broken down into classes based on fitness landscape

characteristics. For some combinations of characteristics, search algorithms can be

designed with a search bias that can effectively exploit these landscape features and allow

the problem to be solved to optimality (or near optimality) with relatively little

computational effort. Examples of such simplifying characteristics include linear

separability, convex feasible spaces, and smooth unimodal landscapes.

However, many real world optimization problems have characteristics which are not as

susceptible to simplifying assumptions. A list of arguably the most important of these

characteristics is given below. It is important to note that many of the characteristics do not

necessarily pose a significant challenge when they occur in isolation, however the presence

of several of these conditions can make a problem very difficult to solve.

Characteristics which make optimization problems challenging

Dimensionality Uncertainty

Multimodality Computational Costs

Complex Constraints on Feasibility Objectives

Epistasis "^"l^'Pl® Objectives

Deception

Dimensionality: The more parameters that must be varied in order to optimize a problem,

the larger the dimensionality of the solution space. This can result in the problem size

increasing by orders of magnitude. However, the importance of dimensionality greatly

depends on the existence of parameter epistasis. If the additional parameters can be solved

separately from the other parameters in the problem then the increase in complexity will

only be additive and for the most part negligible.

Multimodality: Multimodality refers to fitness landscapes that contain multiple fitness

peaks (i.e. locally optimal solutions). These peaks play a critical role in the performance of

almost all optimization methods. Their prevalence through many problems of interest has

Chapter 2: General Background of Evolutionary Algorithms

been the primary impetus for research into alternatives to deterministic directed search and

gradient-based search algorithms.

Complex Constraints on Feasibility: Constraints determine which solutions are

considered feasible within the solution space and they can play a significant role in the

difficulty of an optimization problem. When constraints are nonlinear, they often result in a

patchwork of feasible solutions where isolated islands are surrounded by infeasible solution

space. The location of the optimal solution within this patchwork can be an important

factor in dictating how difficult the problem is to solve for a given algorithm.

Nonlinear constraints add to problem difficulty in a way that is somewhat similar to the

inclusion of multiple objective functions however they also introduce unique difficulties in

a problem. Unlike the objective function where "almost optimal" is generally good

enough, almost feasible is rarely accepted.

Epistasis: Epistasis is a term used to indicate the degree of interaction between parameters

in an objective function (or in constraint functions). Problems lacking epistatic interactions

are completely separable (i.e. decomposable) meaning that each of the parameters can be

solved in isolation. Many real-world problems have at least some degree of epistasis.

Epistasis is also a common contributor to multimodality and general problem difficulty.

The impact that epistasis has on problem difficulty and on EA behavior is a significant

topic of investigation in this thesis which is dealt with in more detail in Chapter 5.

Deception: Deception is traditionally a term used to describe a feature of fitness

landscapes that make them difficult to solve using Evolutionary Algorithms. This difficulty

is due to the challenge of maintaining building blocks of genetic material that are needed

later in the search process in order to find the optimal solution. However, the concept of

deceptiveness can be generalized to apply to any algorithm where the search bias ingrained

in the algorithm makes the optimal solution more difficult to find as the search progresses.

In other words, deception is the result of an algorithm's search bias being fundamentally

inappropriate for searching the given fitness landscape. A common form of deceptiveness

is when hill climbing in a fitness landscape consistently drives the search away from the

optimal solution.

Chapter 2: General Background of Evolutionary Algorithms

Uncertainty: Uncertainty refers to a lack of confidence that the fitness landscape
generated by an objective function accurately reflects the true landscape of the problem
being solved. Uncertainty in a problem can come in many different forms. For instance,
many real world problems are representations of a physical system where a model is
developed using a number of assumptions and simplifications. In this case, uncertainty can
come from the accuracy of the governing equations that are used to model the physical
problem. Another source of uncertainty is discretisation (i.e. granularity) of the parameter
space which is necessary for numerical optimization using computers. Discretisation can
significantly reduce the size of the parameter space however this can also eliminate any
chance of sampling the best parameter combinations. Depending on parameter sensitivity,
granularity can also play a role in defining prominent characteristics of a fitness landscape
which in turn could alter the dynamics and performance of a search process.

Uncertainty can also come from noise in the objective function evaluation which can be
inherent in the system, caused by measurement errors, or caused by numerical errors. A
review of additional types of uncertainty that are experienced in optimization research and
how they are addressed in Evolutionary Algorithms is provided in [23].

Computational Costs: Many real world optimization problems have large computational
costs associated with the objective function and/or constraint evaluation. These costs are
generally due to simulation of a real system. Metamodels such as Kriging models (e.g., see
[24]) can be used to approximate the fitness landscape so that the more computationally
expensive simulations are needed less frequently. However, increasing computational
efficiency in this way will also add uncertainty to the evaluation of the objective function.
This tradeoff means there are limits to the amount of increased computational efficiency
that can be afforded by metamodels. Another possibility is to increase the granularity of
the search space however there are tradeoffs with this approach as well which were
previously discussed.

Dynamic Objectives: Dynamic objective functions involve fitness landscapes that can
change over time. When presented with a dynamic objective function, it is generally
assumed that it is not possible to know how the problem definition will change or how this
will impact the fitness landscape being searched. In this context, it is no longer sufficient to
design a solver that can effectively search a given landscape. Instead, a solver must also

Chapter 2: General Background of Evolutionary Algorithms

maintain some degree of search robustness and flexibility which can allow the search

process to quickly account for changes in the fitness landscape. In some respects, the

desirable search features for a dynamic optimization problem are more inline with the

features observed in natural evolution and which are demanded by the natural environment

and less similar to the conditions treated in traditional optimization (e.g. mathematical

programming).

This is not to say that traditional optimization techniques are not used in this domain,

however they commonly assume that dynamical uncertainty can be represented using

probabilistic models (e.g. stochastic programming). In most cases however, such models

are unable to account for the emergent phenomena that is present in dynamic optimization

problems involving complex systems (e.g. social systems, climate change, warfare, and

organizational dynamics).

Multiple Objectives: Most real world problems are not defined as having a single

objective. Instead there are often multiple conflicting objectives which can not be

combined into a single metric. Common examples of such objectives include various

measures of cost, performance, efficiency, risk, and heuristic objectives based on human

experience. This complicates a search process because we are generally no longer

presented with a problem containing a single optimal solution or a single selection pressure

(i.e. driving force) for searching through the solution space. Such conditions can introduce

unique challenges but also unique opportunities, especially for population based search

processes. For more information on multi-objective problem characteristics and

Evolutionary Algorithms designed for this problem domain, we refer the reader to [25],

[26].

2.1.1 Reconciling Optimization Research in a World of "No Free

Lunches"

Presented with the challenges listed above, it is important to ask whether an algorithm can

be designed to effectively deal with all of these characteristics simultaneously and in all of

their varied forms. In other words, is it possible to create an effective general purpose

optimization algorithm?

Chapter 2: General Background of Evolutionary Algorithms

An important development along this line of questioning was the No Free Lunch Theorems

for Optimization (NFL) [27]. Given some basic assumptions (e.g. see [28]), NFL states

that no optimization algorithm is better than any other when its performance is averaged

over all possible problems. If one assumes that this equality holds true for the subset of

real-world problems, then NFL would place severe limitations on the amount of progress

that is possible in optimization research.

However, experience over the years suggests that NFL has only a partial bearing on the real

world. On the one hand, experience has shown that real-world problems cover a broad

range of problem types and that even for problems which appear to be similar, the best

approach to solving them can often be very different. In short, empirical evidence supports

the notion that no best approach to optimization exists.

On the other hand, most real-world problems do display some basic similarities in fitness

landscape features such as the presence of correlated landscapes^ (also see [30]).

Experience also has shown that not all optimization algorithms are equal and in fact some

appear to be quite good at solving a reasonable range of problems (also see [30]). In

summary, NFL should act as a guide when conducting optimization research however the

goal of developing more effective optimization algorithms can be a reasonable aim if

sufficient justification is provided.

2.2 Justification of EA Research

Following from the previous discussion, it appears that a strong argument should be given

to justify research that focuses on advancing a particular class of optimization algorithms.

A common and certainly valid justification would be one that is based on empirical

evidence of strong algorithm performance. Indeed many nature-inspired algorithms and

particularly Evolutionary Algorithms (EA), have been found to be effective in a number of

^ One common feature of almost all real-world problems is the existence of correlated landscapes which is to
say that one can expect (on average) that similarities between solutions in parameter space will produce
similarities in objective function value. For correlation metrics and a review, see [29].

Chapter 2: General Background of Evolutionary Algorithms

important niche applications. As a result, the use of these methods in solving real world

problems has steadily grown over the years.

Today, a number of nature-inspired optimization methods exist. Examples include Ant

Colonies, Immune Systems, Particle Swarms, and Simulated Annealing. Each are

interesting as topics of investigation in their own right, and deserve further study.

However, the decision to use EA as the algorithmic framework for this research was not a

decision that was taken lightly nor was it a decision based solely on current empirical

evidence. The decision to study Evolutionary Algorithms was instead largely based on the

desirable qualities of its natural counterpart.

Evolution and Optimization: Many biological systems in nature are viewed as having

powerful problem solving abilities. Nature-inspired optimization methods attempt to

mimic these behaviors, however few of the systems being mimicked have a clear relation to

optimization. On the other hand, natural evolution has a number of important similarities to

optimization that are now well recognized.

The first link between optimization and evolution was made in relating the natural

environment to a fitness landscape which was suggested by Sewall Wright back in 1932

[31]. He postulated that the adaptation of species was similar to climbing up a fitness

landscape which occurs due to genetic mutations and is driven by natural selection. It is

quite simple (although not strictly accurate) to also think of the genome as a

parameterization of life and to think of the thriving of a species as being due to its success

in accomplishing some set of objectives.

Looking at the diversity of life forms and the diversity of environments where life has

flourished suggests that, although individual species are great specialists, the forces driving

evolution are a powerful generalist. This ability to continually adapt and evolve new

specialized behaviors is not possible in today's optimization algorithms although it is a

highly desirable feature. In short, EA was selected as the topic of investigation because

natural evolution has a capacity to robustly "solve" a range of problems in the natural

environment which are well outside the capacity of today's algorithms.

Other natural systems, such as the behavior of ants or the immune system, are viewed as

very capable but highly specialized systems that have come about as a result of

Chapter 2: General Background of Evolutionary Algorithms

evolutionary processes. Hence, it is doubtful whether the overall potential of these other

algorithmic frameworks is comparable with the potential from mimicking natural evolution.

Based on the premise that natural evolution has unique and advanced problem solving

capabilities, this thesis focuses on ways to mimic natural evolution in an artificial

environment for purposes of optimization. This thesis tackles this topic in a multifaceted

approach looking at issues such as i) building an effective feedback adaptive process ii)

comparing the dynamical behavior between EA and natural evolution and iii) creating

models for the emergence of nature-inspired EA population structures. It is hoped that this

work will help others to look at EA from a different perspective and will help to generate

more effective algorithms for exploiting the power of natural evolutionary processes.

Having now provided the motivation and justification for this thesis, the remainder of this

chapter provides a basic review of Evolutionary Algorithms for optimization.

2.3 Evolutionary Algorithms

2.3.1 A Brief History

The term Evolutionary Algorithms is used to describe a range of stochastic optimization

methods which employ principles of natural selection and reproduction in biology to evolve

solutions to problems. Research in the field of Evolutionary Computation (EC) started as

early as the late 1950s [32], [33], [34], although much of the fundamental work, which is

generally recognized as the origins of EC research, took place several years later.

Three of the algorithmic frameworks developed in the early days of EC research are still in

active use today and include Genetic Algorithms (GA) [35], [36], Evolutionary

Programming (EP) [37], [38] and Evolution Strategies (ES) [39], [40]. Although there are

differences between each of the algorithms, their similarities are much more striking and

most research using one algorithm class is generally applicable to the others.

Instead of reviewing each of these algorithmic classes, the following review of EA reflects

the scope of the research presented in this thesis which deals primarily with the topic of

Chapter 2: General Background of Evolutionary Algorithms

parameter optimization using population-based search heuristics. For a more thorough

review of EC research we refer the reader to [41].

2.3.2 General Description

Taking terminology from genetics, an Evolutionary Algorithm initially starts with a

population of individuals, with each individual representing a solution to the problem being

solved. Each individual has a chromosome made up of genes or parameters, and the set of

all possible combinations of these genes makes up the genotypic space (i.e. solution space

or parameter space). The individuals within a population are selected to reproduce and

participate in the next generation in a process similar to the Darwinian principle of survival

of the fittest. New individuals (referred to as offspring) are generated from selected parents

using what has become a library of reproduction operators (i.e. search or variation

operators); some of which are similar to genetic mutation and recombination.

The selection of individuals is based on their fitness or phenotype which is typically

defined by the objective function value and is calculated using the genes of the individual.

This fitness then impacts an individual's chances of survival and/or procreation. By

creating a bias toward selecting the best solutions for populating the next generation, the

algorithm is often able to exploit information contained in these more fit solutions in order

to reach an optimal or near optimal solution.

A more concrete understanding of Evolutionary Algorithms is possible using the

pseudocode in Figure 2-1 which loosely follows the framework outlined in [42]. For this

pseudocode, the parent population of size at generation t is represented by P{t). For each

new generation, an offspring population P\t) of size X is created using reproduction

operators and evaluated to determine the objective function values for each offspring. The

parent population for the next generation is then selected from P\i) and g , where g is a

subset of P{t). Q is derived from P{t) by selecting those in the parent population with an

age less than K.

Chapter 2: General Background of Evolutionary Algorithms

t=0
Initialize P(t)
Evaluate P(t)
Do

PXt) = Variation(P(t))
Evaluate P^t)
P(t+1) = Select(PXt) U Q)
t=t+l

Loop until termination criteria
Figure 2-1 Pseudocode for a basic Evolutionary Algorithm design

Although some EA designs do not fit the framework listed above, many common designs

do. For instance, a non-elitist generational EA design refers to conditions where K^X and X

> a steady state EA design refers to conditions where and >1 =1, a generation gap

EA has 1< ^ < 00, and a pseudo steady state EA design typically involves and i =

Also, when an EA design is used with elitism, this simply means that the best individual in

a population is given its own value for K which is set to ^oo.

Before reviewing variation and selection schemes that are commonly used in EA design, it

is important to first provide a clearer understanding of the parameters A, and K. TO do

this, it is helpful to temporarily neglect the mechanisms used for selecting parents and for

creating new offspring. By doing this, search with an EA can be understood through its

relation to a simple branching process.

Extending this analogy, active nodes describe points in the branching process from which

new branches can potentially be grown and for an EA, the number of active nodes is

controlled by The parameter ¡̂ can also be thought of as providing an upper bound on

the memory or the amount of genetic material present in the system. In a single time step

or generation, the total number of new branches is controlled by i . Only active nodes have

the capacity to influence where new branches occur and the composition of the new nodes

(thereby making the branching process a Markov Chain). Furthermore, active nodes are

forced to become inactive after K time steps. This limits the amount of time that a node can

directly influence the creation of new nodes.

In short, these three parameters impact the algorithm by constraining the dynamics to meet

certain conditions of this branching process. For instance, a constant value for ̂ means that

Chapter 2: General Background of Evolutionary Algorithms

the size (or memory) of the system can not change while setting /c=oo means an individual

has the potential to directly influence future dynamics for arbitrarily long periods of time.

The actual influence of these parameters on other qualities of the system ultimately depends

on how selection and variation procedures are executed in the algorithm although some

general comments can be made. For instance, decreasing K generally causes the search

process to become more influenced by basins of attraction in the fitness landscape while

increasing K causes the search to be more influenced by point attractors (i.e. local optima).

Increasing fj. can increase the amount of parallel search behavior that can potentially take

place in an EA however the actual amount of parallelism depends greatly on other aspects

of EA design. Increasing X can increase the amount of innovation or changes to the

makeup of the population that can potentially occur, but again the actual amount of

innovation depends on other genetic operators.

The remaining sections of this chapter introduce each aspect of EA design in more detail.

The next section discusses different selection methods that have been devised for selecting

P. Section 2.3.4 discusses variation methods which are also referred to as search operators

or reproduction operators. Constraint handling is discussed in Section 2.3.5 (an important

topic in fitness evaluation) while options for parameter encoding are discussed in Section

2.3.6. Some advanced features in EA design are presented in Section 2.3.7 with a focus on

interaction constraints between EA population members. Section 2.3.8 presents ways in

which performance can be measured in Evolutionary Algorithms and Section 2.3.9

discusses the uses and applications of Evolutionary Algorithms.

2.3.3 Selection Methods

Selection methods have the task of deciding how much each individual in the population

will act to bias future search steps that are taken by the algorithm. There are a number of

selection methods that have been considered in EA research and some of the more common

schemes are briefly described in this section. In general, selection simply involves the

creation of one population P^ by selecting individuals from another population P. Selection

that is done with replacement means that individuals in P can be selected multiple times so

that multiple copies of an individual can exist in P \ On the other hand, selection without

Chapter 2: General Background of Evolutionary Algorithms

replacement means that, at most, only one copy of an individual from P can exist in P\

Several common methods for selecting individuals are described below.

2.3.3.1 Proportional Selection

Proportional selection selects an individual from a population with a probability

proportional to its fitness. Given a population size of N, the probability pi that individual i

with fitness fi is selected in a single selection event is defined by (2-5). To use proportional

selection with minimization problems, it is necessary to define a scaling function. Scaling

functions are also generally needed when proportional selection is used in order to address

this method's selection pressure sensitivity to a population's distribution of phenotypes.

Due to the necessity of problem-specific scaling functions, proportional selection is

difficult to implement in practice.

n f' A = — S/.
7=1

2.3.3.2 Linear Ranking Selection

Linear ranking selection is an alternative selection procedure which does not have the

scaling problems present in proportional selection. In linear ranking selection, solutions are

ranked from most fit (Rank=l) to worst fit (Rank=AO and are selected with a probability

that is linearly proportional to its ranking. In this way, an individual's probability of

selection is based on how its fitness ranks among others in the population instead of being

based on the magnitude of the fitness value. Given a population size of N and parameters

rf and rf which control the overall selection pressure, the probability that individual i is

selected in a single selection event is given by (2-6). In cases where linear ranking is used

in this thesis and no values are specified for rj^ and rj', it is assumed that if =1 and rf =0.

Other formulations for defining linear ranking are possible such as the original definition

which is given in [43], [44].

Chapter 2: General Background of Evolutionary Algorithms

_ rj- -t]-\n-Rank) (2-6)
P. = N

7=1

2.3.3.3 Exponential Ranking Selection

Exponential ranking is sometimes used to introduce a stronger selection pressure than is

possible with linear ranking. As the name suggests, the probability of selection follows an

exponential function of rank so that there is a much greater chance of being selected if a

member has a high ranking in the population. Selection pressure is controlled by c so that

as c ^ 1, the difference in selection probability between the best and worst solutions is lost

and as c 0, selection probability differences become increasingly larger and follow an

exponential curve along the ranked solutions.

c
Pi = —

Rank, (2-7)

I Rank, C '

2.3.3.4 Tournament Selection

Tournament selection works by randomly sampling a subset of the population with sample

size q and then selecting the best individual from that sample. The size of q will impact the

selection pressure from this method. A commonly used form of tournament selection is

binary tournament selection where q=2.

Tournament selection and tournament-based variants have a number of desirable properties

that make them a good choice when designing an Evolutionary Algorithm. Tournament

selection is simple to use and many advanced features in an EA can be implemented using

tournaments such as the use of crowding and age restrictions. Furthermore, tournaments do

not require global information in order to make selection decisions thereby making these

designs more efficient to execute when run in a physically parallel environment. Finally,

the selection pressure of this method can be easily tuned by changing the tournament size q.

Chapter 2: General Background of Evolutionary Algorithms

2.3.3.5 Truncation Selection

Truncation selection works by selecting with equal probability from among a fraction T, T

G [0,1] of the best individuals in the population. With a population of size N sorted based

on rank, the selection probability is given by (2-8). If selection is conducted without

replacement (as is done throughout this thesis), then each of the best individuals are

selected one time only thereby causing the selection method to be deterministic.

P,
yV, if\<i<TN (2-8)

0, else

2.3.3.6 Modified Tournament Selection

The experimental work in this thesis uses a modified form of tournament selection that is

defined by the pseudocode below.

Modified Tournament Pseudocode

• starting with individuals, conduct X tournaments

• for each tournament, select the worst individual in the tournament and remove it from

the A- +)Li population

• after X tournaments, we are left with a new parent population of size)i

• randomly select from the parent population to generate X new offspring

This procedure is essentially equivalent to a canonical GA using elitism and tournament

selection without replacement. The major difference with the canonical GA is in the

application of elitism: the surviving elite are chosen statistically (by tournament) rather than

deterministically. Furthermore, conventional elitism could be seen to over-favor the fitter

members, which have a larger share of offspring per generation and survive more

generations. In the modified tournament selection this favoritism happens naturally: a fitter

member has more offspring simply by surviving longer - a phenomenon observed in many

species.

Chapter 2: General Background of Evolutionary Algorithms

2.3.3.7 Characterization and Comments

Selection schemes introduce bias into a search process primarily by selecting points in

solution space that are of relatively high fitness. However, selection schemes can also bias

a search in other ways and so it is important to be able to quantify different aspects of the

search bias present in a selection scheme.

One aspect of a search bias is the loss of genetic diversity which can be approximated by

measuring the proportion of individuals that are not selected during a selection phase [45].

Selection schemes are also commonly characterized by their selection pressure which

indicates the extent to which the scheme is biased towards preferring more fit individuals.

For example, the selection intensity (as defined in [46]) measures the increase in mean

fitness resulting from a selection phase. Another possibility is to measure the takeover time

which is the time required for the best individual to take over a population (restricted

experimental conditions apply, e.g. see [47]). Additional ways to characterize selection

methods have also been proposed, some of which can be found in [48], [45], and [49].

A number of commonly used selection schemes were briefly described in this section and

include proportional, linear ranking, exponential ranking, tournament, and truncation

selection. Although there are differences in these selection schemes, their similarities seem

to be much more striking. Most have a parameter which (to a rough approximation) tunes

the selection pressure in a manner similar to the others. Most are also global selection

methods where selection is based only on an individual's fitness.

More advanced selection methods do exist which take into account other factors such as

age, genealogy, spatial locality and genotype in order to encourage different forms of

diversity or parallel search behavior. Some of these advanced methods are reviewed in

Section 2.3.7.

2.3.4 Search Operators and Variation

Search operators work by taking information from one or more individuals in the

population as a basis for sampling new points in solution space. Early studies of

Evolutionary Algorithms involved the use of crossover and/or mutation however many of

Chapter 2: General Background of Evolutionary Algorithms

the algorithms in use today employ a diverse range of search operators. Although an

exceedingly large number of search operators have been introduced in the literature over

the years, only a few have been able to find traction with the broader EC community.

Some of the more popular search operators are found in Differential Evolution [50],

Covariance Matrix Adaptation [51], and Estimation of Distribution Algorithms [52]. These

operators generally employ the use of multiple parents and are highly successful when

assumptions about the fitness landscape are met.

2.3.4.1 Characterization

A set of ten search operators are used in experiments throughout this thesis and are

described in Appendix B. As an alternative to reviewing each of these search operators in

detail, as well as others that have been introduced in the literature, it is possibly more

illuminating to discuss the search operators in more general terms based on their behavior

and intended usage. A few directions along these lines are provided below.

Intent and Search Bias: Probably the most important questions to ask about an operator

are; what sort of search bias is created by the operator and what sort of landscape is the

operator expecting to search. A number of standard search operators have been developed

over the years which can be better understood by attempting to answer these questions.

As an example, gene swapping operators like single point crossover and uniform crossover

(defined in Appendix B) are expecting that a partial decomposition of the problem exists

(which does occur to some extent in many problems). However, these operators also

expect that the problem can be separated along the specified dimensions of the parameter

space (e.g. without the need for linear transformation) which is less often the case. These

operators also expect to have access to a population that adequately samples each of the

sub-problems or so-called building blocks.

Another good example are search operators with hill-climbing characteristics. These

operators expect that the fitness landscape will be somewhat smooth in the region in which

the population is distributed in parameter space. One example is Wright's heuristic

crossover [53] which generates solutions by linear interpolation between two parents or

Chapter 2: General Background of Evolutionary Algorithms

extended line crossover [46], [54] which generates solutions by linear extrapolation (both

defined in Appendix B).

Exploitation and Exploration: Another important search operator property is the extent to

which a search operator creates offspring that are biased to reflect the genetic material of

the parents. In discrete spaces this can be approximated by counting how many of the

genes in the final offspring are identical to the genes in the parents. In continuous spaces,

such an assessment can be more difficult to make. Search operators which create offspring

that largely reflect the parents are often labeled as exploitive. This label is also used for

operators that are biased to predominately reflect the features of the more fit parent. In

either case, the operators are "exploiting" a landscape feature that is common in many

optimization problems, namely that similarities in genotype tend to correspond with

similarities in phenotype (i.e. correlated landscapes).

The opposite of this is exploration which generally is used to describe offspring that are

different from their parents. However, it is worth pointing out that this definition of

exploration does not mean that an algorithm is necessarily capable of exploring new

regions of the solution space. From a population perspective, what really defines

exploration is the ability to create genetic material that is not only different from the

parents, but is also different from other individuals in the population. Moving to a global

perspective, an accurate definition of exploration should actually change based on the

actions and history of the search process. However, because EA is a memory-less search

process, this latter definition of exploration can not be measured or enforced meaning that

search by an EA can become trapped in regions of parameter space for extended periods of

time.

Stochasticity: The execution of most search operators involves a random variable whose

value is drawn from some predefined distribution. This allows the operator to display a

range of behaviors and greatly reduces the chances that the same inputs (i.e. parents) will

generate the same output (i.e. offspring). This can potentially help to improve the

robustness of a search process compared to deterministic operators which always give the

same output when given identical inputs.

Chapter 2: General Background of Evolutionary Algorithms

2.3.4.2 Multiple Operators

Another option for improving the robustness of a search process is to introduce multiple

search operators, each containing a unique search bias. Recent studies have indicated that

the presence of multiple operators can help improve general performance of Evolutionary

Algorithms [55], [56].

On the other hand, the addition of multiple search biases (or the addition of stochastic

components to a search operator) are only advised if it is not possible to determine what the

most effective search bias is for a given problem. If such a bias can be obtained or learned

then the algorithm will perform substantially better on that problem. As a simple example,

the search bias obtained from using a gradient based search operator should be greatly

preferred over a more robust operator like random search when searching a smooth

unimodal fitness landscape.

However, for many complex problems, it is expected that one particular search bias may be

insufficient for effectively searching throughout the entire fitness landscape. In these

conditions, multiple search operators may be more effective. Since EA is often applied to

complex problems with poorly understood fitness landscapes, it is expected that

Evolutionary Algorithms should generally be designed using multiple search operators.

2.3.4.3 Search Operator Probabilities

To develop an effective search bias in an EA design, it is necessary to select a set of search

operators for traversing the fitness landscape as well as select the usage probabilities for

executing those operators.^ Since probability parameters can take on values equal to (or

close to) zero, the task of selecting appropriate search operators and tuning the probability

parameters can be thought of as similar tasks.

Setting these parameters is often done by trial and error or by using an efficient design of

experiments. However, instead of running the algorithm many times in order to establish

^ This can be more or less important depending on the amount of effort given to parameter encoding, which is
a complementary aspect of EA design that alters the fitness landscape.

Chapter 2: General Background of Evolutionary Algorithms

an effective EA design, it is worth considering whether an appropriate search bias can be

learned for a problem while the algorithm is being run. One promising option is to develop

mechanisms that allow the probability parameter settings to adapt to the environment so

that the overall search bias reflects what has so far been useful for traversing that particular

fitness landscape.

Notice that in this case, the adapted parameter settings used in the EA design are no longer

generally robust but instead become specialized for the particular problem being solved.

Since adapting and tuning search operator probabilities is a major topic of investigation in

this thesis, a more detailed review will be presented in Chapter 3.

2.3.4.4 Local Search and Expert Search Hybrids

Search operators can also involve more than one objective function evaluation. Such

search operators are generally classified as local search or hill climbing methods and are

designed to exploit local features of the fitness landscape. These methods often resemble

classic directed search methods, gradient-based search methods or use expert knowledge in

order to intelligently select new solutions to evaluate.

Local search operators are implemented in a lot of different ways depending on their

purpose. In some cases they are used only on the best solution at the end of an EA run as a

means to fine tune the final solution more quickly than is otherwise possible using standard

EA search operators. Other times local search is used on all individuals throughout an EA

run with the intention of modifying the fitness landscape from the perspective of the rest of

the algorithm. In this case, the local search operators are sometimes used to only modify

the phenotype (i.e. Baldwinian Evolution) instead of altering both the genotype and

phenotype (i.e. Lamarckian Evolution). EA designs that are hybridized with local search

operators are often referred to as Memetic Algorithms and are reviewed in [57].

2.3.5 Constraint Handling

Many real-world optimization problems require a set of constraints to be placed on the

parameters being optimized. Constraints can be simple bounds on the values a parameter is

Chapter 2: General Background of Evolutionary Algorithms

allowed to take but they can also be complex nonlinear relationships between multiple

parameters which can fragment the feasible solution space. Finding feasible solutions can

be a challenging problem in itself and so the manner in which feasibility is treated is crucial

to the effectiveness and efficiency of an optimization algorithm. In this section, several

constraint handling techniques are presented and discussed.

2.3.5.1 Rejection of infeasible Solutions

A rather naïve approach to constraint handling in non-convex feasible spaces is to treat

constraints as they are typically treated in linear, convex problems; that is, to strictly

enforce the constraints by requiring feasibility for every solution generated. For cases

where it is not possible to directly solve the system of nonlinear constraints, this approach

can result in a significant computational burden.

2.3.5.2 Constraint Handling by Repair

Constraint handling by repair involves the development of a procedure for turning

infeasible solutions into feasible solutions and can sometimes be as difficult to solve as the

original problem. In some instances where expert knowledge is available, repairing

infeasible solutions can be relatively straightforward and prove quite useful.

2.3.5.3 Penalty Functions

The most common and popular method for handling constraints is to incorporate penalty

functions into the objective function. Solutions that violate one or more constraints will be

penalized by altering their objective function value so that it represents a less fit solution.

A few alternatives to static penalty functions are also available such as creating a dynamic

penalty function that responds to changes in the population [58] or one that changes by a

fixed schedule [59]. It is also worth noting that constraints can also be treated as additional

objectives [60] or as pseudo-objectives to an optimization problem [61]. A review of

constraint handling techniques that have been used with Evolutionary Algorithms is

provided in [62] and [63].

Chapter 2: General Background of Evolutionary Algorithms

2.3.5.4 Stochastic Ranking

Almost all constraint handling methods work by applying a selection pressure that aims to
drive the population toward regions of the solution space that are both of high fitness and
feasible. For most EA selection methods (other than proportional selection) the selection
pressure is based on fitness rankings and not the relative difference between fitness values.
Hence, the majority of constraint handling techniques (e.g. penalty functions) can be
understood as altering selection pressure by altering the rankings of individuals.

However, as discussed in [64], the use of penalty functions is prone to over-dominance or
under-dominance. In the case of over-dominance, the penalty is too strong and all feasible
solutions are preferred over infeasible solutions. In the case of under-dominance, the
penalty for infeasibility is not strong enough to impact the rankings of individuals such that
the objective function value is the only driver of population dynamics. Selecting the
appropriate penalty weights is not only hard but the optimal penalty is also likely to be
dynamic due to the non-stationary distribution of fitness values and the non-stationary
distribution of constraint violations within the population.

An effective alternative is provided by the Stochastic Ranking method of Runarsson and
Yao [64] and is used throughout this thesis. Stochastic Ranking works by ranking
population members using a stochastic sorting procedure that considers both the objective
function and constraint violations. A pseudocode for Stochastic Ranking is provided in
Figure 2-2. The decision to swap adjacent individuals (when at least one is infeasible)
occurs based on the objective function with a probability Pf and otherwise is based on the
extent of constraint violation. As Pf 0, the ranking of population members becomes
dominated by the goal of attaining feasibility and as P/ ^ 1, ranking becomes completely
based on the objective function. The parameter P/allows for direct control over the extent
of ranking changes that occur within a population due to infeasibility. Hence, this approach
to constraint handling eliminates any problems with fitness scaling that plague penalty
function methods (e.g. over-dominance and under-dominance).

Chapter 2: General Background of Evolutionary Algorithms

For j = 1 To N
For k = 1 To A- - 1

sample u e U(0,1)
If (cpk = cpk+i = 0) or (u < Pf) Then

If(Fk>Fk.i)Then
swap(k, k+1)

End If
Else

If (cpk > (pk+i) Then
swap(k, k+1)

End If
End If

Nextk
If (no swap) Then Exit For

Nextj
Figure 2-2 Pseudocode for Stochastic Ranking procedure where U(0,1) is a uniform random number generator, ^^
and F* are the total constraint violation and objective function value (resp.) for individual Ar, N is the number of
sweeps through the population, X is the population size, and Pf is the probability that infeasible solutions will be
evaluated based on objective function values. The original description provided in [64] recommends N>X and Pf=
0.45.

It is worth mentioning that approaches have also been proposed in [65] that can deal with

the issue of over-dominance and under-dominance when using penalty functions. In this

case, mock competitions take place between members in an EA population in order to

determine how large the penalty function must be in order to balance the competing forces

from the objective function and the penalty function.

2.3.6 Parameter Encoding

Genetic encoding (also referred to as parameter encoding) is a term that is used to describe

how solutions are represented in the chromosome. Genetic encoding methods are generally

classified as either direct or indirect encodings. With direct encoding, each gene in the

chromosome is a parameter that is directly used without alteration for objective function

evaluation. In other words, binary parameters of the optimization problem are represented

by binary valued genes, integer parameters are presented by integer valued genes, and

continuous parameters are represented by floating point numbers, also called real-coded

genes. Since many design problems involve continuous variables, real number

representation is very common in EA research. A review and analysis of real-coded GAs

(RCGA) is provided in [66].

Chapter 2: General Background of Evolutionary Algorithms

Indirect encoding, on the other hand, involves a mapping process w^here genes must be

transformed or processed in some fashion before fitness evaluation can occur. A simple

indirect encoding scheme is provided in the canonical GA. Here the chromosome is

represented by a binary string which is broken up into n equal length segments

corresponding to n genes. Each binary segment is decoded to an integer value which is

then rescaled to fit within the boundary constraints of the corresponding parameter.

Although arguments based on the Schema Theorem [36] have been given for preferring the

binary encoding scheme of the canonical GA, direct encoding is more commonly used in

EA designs today. However, some specialized indirect encoding schemes have been

successfully applied such as that seen in Genetic Programming [67], [68] and in the

evolution of artificial neural networks [69], [70], [71]. Similar success has yet to be seen

for parameter optimization problems, however some interesting studies have occurred in

recent years [72], [13'.

2.3.6.1 Gene Expression Research

Indirect gene encoding can be seen as an analogue to the genotype-phenotype mapping

process in living systems and is an important open topic in EA research. Indirect gene

encodings are of great importance because they can influence features of the fitness

landscape potentially making a problem more or less difficult for a particular algorithm to

search.

Observations from Nature: Several details of the genotype-phenotype mapping process

in nature have been uncovered over the years and this should help to guide future directions

of artificial gene expression research. Some features of the mapping process are discussed

below however this is not meant to be an exhaustive review of the topic.

One important feature of the mapping process is the dominating presence of canalizing

functions. This ubiquitous feature acts to dampen perturbations (e.g. from the

environment) to the genotype-phenotype mapping process allowing it to quickly return to

its intended dynamical trajectory. Canalization can also be understood as an important

source of dynamical robustness. The term dynamical robustness is used in reference to the

stability of phenotypic expression in the face of environmental perturbations. Evidence of

Chapter 2: General Background of Evolutionary Algorithms

dynamical robustness is seen for example in the yeast cell-cycle [74]. Artificial models

have also displayed this property to some degree as seen for instance in [75].

A feature that is similar to dynamical robustness is mutational robustness which is also

known as genetic neutrality. Mutational robustness can be observed in the fitness

landscape of natural evolving systems and is created (in part) by a many to one mapping

from genotype to phenotype. There is evidence that high levels of neutrality are present in

natural evolution and this feature is believed to have a dramatic impact on evolutionary

dynamics as was first theorized by Kimura [76]. Most studies of neutrality have so far

focused on RNA folding as seen for instance in [77], [78].

It has also been proposed in [79] that with sufficient neutrality, neutral networks of single

point mutations can percolate throughout genotype space meaning that a large portion of

the space can be reached without requiring changes in fitness. Such landscape features are

less likely to force population convergence to a static region of genotype space and could

play an important role in maintaining population diversity as well as improving

evolvability. In fact, they suggest in [80] that the presence of neutral networks can cause

entropic barriers to replace fitness barriers meaning that adaptive improvements become

less a question of " i f and more a question of "when".

It is worth mentioning that key features of the mapping process such as canalizing functions

were shown to be easily created in Boolean networks [81] however similar mechanisms

have not yet been considered in any indirect encoding schemes for EA. Also in [82], it was

found that genetic robustness or neutrality is prevalent in some classes of distributed

dynamical systems.

2.3.7 Interaction Constraints in EA Populations

Traditionally, EA population dynamics occur without restrictions or constraints on which

individuals in the population can interact (e.g. through selection and reproduction). As a

consequence, the population is tightly coupled and can become stuck or stalled for many

fitness landscapes of interest. In order to provide for a more robust and parallel search

process, restrictions in competition and/or mating are sometimes used.

Chapter 2: General Background of Evolutionary Algorithms

This section reviews a number of advanced aspects of EA design which can be grouped

under heading of interaction constraints within EA populations. The history and intent of

the methods discussed below are often very different but they share a commonality that

makes them an important development in EA research.

Each of the topics reviewed below introduces a new form of diversity or heterogeneity into

an Evolutionary Algorithm. In many cases, these changes to the algorithm have resulted in

substantial improvements in the robustness of EA performance. In addition to issues of

diversity in genotypes, these methods also offer other types of diversity such as diversity in

phenotypes, ages, genetic operators, and selection pressures. In some cases, the age-old

exploration-exploitation tradeoff no longer applies due to the fact that a range of exploitive

and explorative behaviors can now be displayed within a single system.

2.3.7.1 Crowding and Niche Preserving Methods

One set of methods for restricting interactions in an EA are crowding methods which are

generally thought of as a subclass of niching methods. Crowding methods work by forcing

individuals to compete for survival and/or reproduce with others in the population that are

similar. Similarity is generally defined based on the genotype or phenotype however

historical (i.e. genealogical) similarity is also sometimes used. An example of the later

would be restricting an offspring to only compete with its parents. A number of crowding

methods have been developed including the original "standard crowding" proposed in [83],

Deterministic Crowding [84], restricted tournament selection [85] and probabilistic

crowding [86].

Deterministic Crowding (DC) is an interesting extension to standard crowding in that the

method guarantees that each individual in the population, or a direct descendent of the

individual, will survive to the next generation. From a genealogical perspective, this is an

interesting change to the algorithm because stochastic effects are eliminated which

Chapter 2: General Background of Evolutionary Algorithms

otherwise would cause a continual loss of lineages from the population."^ The result is a

substantially parallel search process. Pseudo code for DC is presented in Figure 2-3.

For each generation
Do N/2 times

Select 2 parents, pi and p2 (randomly, no replacement)
Create 2 offspring, ci and C2
I f (d (p i , C i) + d(p2, C2)) < (d (p i , C2) + d(p2, C i))

If f(ci) > f(pi) replace pi with Ci
If f(c2) > f(p2) replace p2 with C2

Else
If f(c2) > f(pi) replace pi with C2
If f(ci) > f(p2) replace p2 with ci

End If
Loop

Next
Figure 2-3 Pseudo code for Deterministic Crowding. Distance (eitiier genotype or phenotype) is given as d{),
fitness is given asy(), and N is the population size.

The more general classification of niching is used to described strategies which allow an

EA population to converge on multiple optima but do not necessarily involve a clear

restriction of interactions within an EA population. For instance. Sharing Methods [87] are

a form of globally-controlled niching where individuals are forced to share their fitness

with other individuals based on distances in genotype (or phenotype) space. Because an

intimate knowledge of the fitness landscape is needed to appropriately establish the correct

sharing strategy and parameter settings, sharing methods are not easily used. Other

niching methods also exist such as Clearing which was proposed in [88] and is similar to

Fitness Sharing.

2.3.7.2 Spatially Distributed Populations

Another approach to restricting interactions in an EA is to define the population on a graph

so that operators such as selection and reproduction are only able act within localized

regions defined by the graph topology. EA designs where the population is spatially

distributed in some manner are referred to as distributed Evolutionary Algorithms (dEA).

^ This is not to say that population convergence can no longer occur. Convergence is also be driven by search
operators.

Chapter 2: General Background of Evolutionary Algorithms

There are two general approaches to introducing spatial restrictions in an EA population

which are referred to in this thesis as island models and network models.^ Reviews on

distributed EA designs as well as physically parallel implementations of Evolutionary

Algorithms are provided in [89] and [90].

Island Models: Island models work by breaking the EA population into subpopulations or

islands, with the dynamics of each subpopulation loosely coupled to the others. With

Island Models, genetic operators can only be used between individuals within the same

island. Occasionally, individuals are selected to move to a new island thereby allowing one

island to influence the dynamics of another. A directed graph topology is usually

established for the islands so that only specified islands can pass individuals to other

specified islands. Some of the earliest work on island model EA populations was

conducted in [91].

Network Models: With network models, the population is defined on a graph where each

node represents an individual in the population. Network models are almost exclusively

defined on a cellular grid and are often referred to as cellular Genetic Algorithms (cGA).

These distributed EA designs work by having genetic operators such as selection and

reproduction restricted to occur within local neighborhoods on the network. Some of the

earliest work on network models for EA populations was conducted in [92] and [93].

The network topology is known to significantly impact the behavior and performance of a

cGA as was demonstrated in [94]. Since population topology and its impact on EA

behavior is a major topic of investigation in this thesis, a more detailed review will be

presented in Chapter 5.

Population updating strategies also can influence the overall dynamics of the system as well

as the selection pressure as seen in [95] and [96]. It is also worth noting that other

distributed dynamical systems have displayed sensitivity to the population updating

strategy as seen for instance in the related field of complex systems research [97], [98].

^ In practice, combinations of the two classes are common and are referred to as Hierarchical Evolutionary
Algorithms.

Chapter 2: General Background of Evolutionary Algorithms

An example of a cGA with synchronous updating is provided in the pseudocode below.

First, a population PQ of size N is defined on a graph (usually a 1-D or 2-D grid). For a

single generation, each cell is subjected to standard genetic operators. For a given cell i,

parents are selected from within its neighborhood, search operators are selected, and an

offspring is created and evaluated. The better fit between the offspring and P(i) is stored in

Temp{i) until all N cells are calculated. The grid is then updated (synchronously) for the

next generation by replacing PQ with TempQ. This process repeats until some stopping

criteria is reached.

Initialize PQ
Evaluate P()
Initialize Population Topology
Do

For i=l to N
Select Parents from Neighborhood(P(i))
Select Search Operators
Create and Evaluate offspring
Temp(i) = Best_of(offspring, P(i))

Next i
Replace P() with Temp()

Loop until termination criteria
Figure 2-4 Pseudocode of a synchronous cGA

2.3.7.3 Other Restrictions

Age Restrictions: Other mechanisms for restricting interactions have also been considered

such as age-based restrictions which constrain interactions to only occur between

individuals of similar age. The age in this case refers to the total age of a search path such

that offspring inherit the age of their parents + 1. An example of this approach is seen in

the Age-Layered Population Structure (ALPS) presented by Hornby in [99]. Hornby has

found that age restrictions can allow for an effective utilization of new genetic material

when it is introduced to an EA population.

Environmental Restrictions: As individuals in an EA population continue to internalize

more and more algorithmic features that originally were defined globally, more interaction

restrictions become possible. One option is to create heterogeneous island models where

individuals are grouped based on similarity of parameter space granularity, search operator

Chapter 2: General Background of Evolutionary Algorithms

type, or selection pressure [100]. Classification of an island's exploitive or explorative

character can then be used to restrict the flow of information between islands.

2.3.8 Performance Metrics and Analysis

In optimization research, there have been intermittent efforts aimed at developing standards

for performance evaluation (e.g. see [101] and references therein). This section reviews

several ways that performance can be measured in Evolutionary Algorithms. The

discussion is restricted to only address issues that arise within the particular experiments

conducted in this thesis and so some context and background is necessary. A review of

other methods for analyzing the behavior and performance of an EA is available in [102].

The discussion of performance metrics changes depending on whether a priori knowledge

is available about the problem such as knowledge of optimal genotype(s) or phenotype(s).

Here it is assumed, as is often the case for many real world optimization problems, that no

a priori knowledge is provided. As a consequence, it is assumed that performance can not

be measured by how close an algorithm gets to reaching the optimal solution, how fast it

approaches the optimal solution, or how often it finds the optimal solution. Furthermore, it

is assumed that only one best solution exists for a problem and this discussion neglects any

additional considerations of tradeoff surfaces which occur when dealing with multiple

objectives.

2.3.8.1 Time Dependency

Developing a useful performance metric requires careful treatment of an important tradeoff

between short-term and long-term performance. It is of general interest in optimization

research to understand how an algorithm performs over different time scales. Along with

classification of the problem being searched, knowing the performance at different time

scales also provides clues as to the other types of problems or conditions where the

algorithm may prove useful.

As a consequence, algorithm performance is often represented as a function of time or

computational effort. Time is typically measured as the number of function evaluations (or

Chapter 2: General Background of Evolutionary Algorithms

some multiple, e.g. generations) with the implied and generally valid assumption that

computational costs not associated with objective function evaluation are negligible.

A common mistake when presenting results is to only present performance at a single point

in time (namely the time when the algorithm stops running). This neglects performance at

different timescales and introduces a significant bias into any conclusions drawn from these

results. Although a single performance measure is sometimes more satisfying to the reader,

it does not provide a good sense of the actual usefulness of an algorithm.

2.3.8.2 Defining Performance

For a given instance in time, it is necessary to define a metric that is able to capture the

salient details of algorithm performance. If an Evolutionary Algorithm performed exactly

the same way every time it was run then its performance could be defined by the best

solution found as a function of computational effort. However, Evolutionary Algorithms

are a stochastic search method and their performance is sensitive to initial conditions. To

obtain a measure of expected algorithm performance requires a sampling of experimental

replicates to be taken with different initial conditions. Hence for a given instance in time, it

is necessary to develop a performance metric which measures some group property of a

sample of solution quality values taken from a set of experimental replicates.

Most experimental results are presented by simply comparing the mean or median solution

quality between different optimization algorithms. This is particularly useful for comparing

results that are stated in different publications however this is not the best way to determine

which algorithm within a set of experiments has superior performance.

Making comparisons using a group statistic like the median does not take into consideration

the other properties of the sample distribution (i.e. moments). This becomes particularly

relevant when the distributions deviate from normality or the sample variance is large (both

common occurrences in performance distributions of EA solution quality results). This

bias is rarely (if ever) acknowledged in the presentation of EA experimental results.

For making statements about the superiority of one algorithm over another, a suitable

alternative is to compare algorithms based on the ranking of solution quality values that are

Chapter 2: General Background of Evolutionary Algorithms

taken from a set of experimental runs. Taking the median ranking of an algorithm's

solution quality (with each run of an algorithm ranked against the other algorithm's tested)

provides a robust measure of how strong an algorithm performed compared to the others.

For even better comparisons, one can use rank-based statistical tests (e.g. the Mann-

Whitney U Test) to determine the confidence level for stating that one algorithm is superior

to another based on ranking. This approach was used for example in [103] and [104].

The experimental results in this thesis have been presented using several of the approaches

described above so that the reader can obtain a well-rounded picture of algorithm

performance. Some performance metrics focus on fmal algorithm performance while

others present performance as a function of time (e.g. with performance profiles).

Statistical tests are also used in order to gain a sense of which algorithms are superior to

others and the confidence with which such statements can be made.

2.3.9 Uses and Applications of EA

Although Evolutionary Algorithms provide a useful tool for studying natural evolution, the

purpose of this research, and most EC research, is towards its application in solving

optimization problems.

2.3.9.1 When EA is used

There is no indisputable set of conditions that dictate when an Evolutionary Algorithm

should be applied to an optimization problem however some fairly clear guidelines can be

established.

Benefits: Evolutionary Algorithms are often effective in poorly defined problems where

little is known about the fitness landscape. They are also effective for problems with

substantial levels of noise or other sources of uncertainty [105] and for problems containing

a significant level of parameter epistasis. Evolutionary Algorithms do not require gradient

information which also makes them useful for non-differentiable problems.

Evolutionary Algorithms are effective on many problems because they allow for a global

search through parameter space while exploiting basic landscape features (e.g. partial

Chapter 2: General Background of Evolutionary Algorithms

decomposition) that are present in many problems. Their stochastic nature also provides an

inherent robustness to the search process by introducing a search bias that is expected to be

true on average but does not have to be strictly true for the algorithm to perform well.

Another related benefit is their capacity to allow for some degree of parallel search to take

place. A population of solutions allows the algorithm to search in multiple directions at a

time and reduces its chances of becoming trapped or stuck due to the presence of local

optima. A population of solutions can also help the algorithm deal with fitness functions

that have multiple objectives [106] or dynamic objectives [105]. They are also less

sensitive to numerical errors compared to gradient-based and direct search methods [107].

Drawbacks: Although there are many benefits to using an EA, some cautionary notes are

also warranted. One drawback to using an EA is that it must be tailored to fit a specific

problem. Although most design issues do not require expert knowledge of the fitness

landscape, some expert knowledge is required in order to design search operators that

match well with the problem being solved. Furthermore, this aspect of EA design is crucial

to the behavior and performance of the final algorithm. The remaining aspects of EA

design largely consist of establishing the correct parameter settings. Some have claimed

that the non-intuitive nature of setting these parameters can make Evolutionary Algorithms

hard to implement in practice (by non-experts).

Another drawback of EA is that they generally do not scale well and so are rarely used on

problems containing a large number of parameters (e.g. 1000+). The stochastic aspects

which make EA robust also make it perform poorly if some regularity within the fitness

landscape can be exploited (but is neglected during EA design/hybridization efforts). Even

the slightest improvement in search bias can make huge differences in performance as the

scale of a problem increases. A common source of regularity is the presence of smoothness

at different scales in a fitness landscape. When such approximately smooth features are

present, a more directed search process can sometimes be much more effective. On the

other hand, it is quite common to integrate local search mechanisms or expert knowledge

into an EA design which can help to address this drawback of Evolutionary Algorithms.

Similarly, EA has generally not been used on problems where computational resources only

allow for a small number of function evaluations. Since EA is primarily designed to be a

global search heuristic, it tends to have relatively poor performance over short time scales

Chapter 2: General Background of Evolutionary Algorithms

compared to deterministic methods. However, it is worth noting that computational costs

are steadily becoming less of an issue when considering whether to use an EA. This is due

to the increased availability of parallel computing resources as well as the development of

more efficient surrogate models, both of which are conditions that EA is particularly suited

to exploit.

In summary. Evolutionary Algorithms are not a panacea for solving all complex problems

in the world however they do provide search characteristics that are important for solving

many challenging problems. In general, EA should be treated as an adaptable framework

for solving difficult problems instead of viewing them as a collection of ready-to-use

algorithms [108].

2.3.9.2 Where EA is used

Popular application domains for Evolutionary Algorithms include data mining,

classification, scheduling, planning, and design. Although these are active areas of applied

EC research, it is also worth pointing out that there is a diverse range of problems being

solved by Evolutionary Algorithms in both academia and industry with new applications

continually surfacing.

To get a sense of more specific applications where Evolutionary Algorithms are used, one

can simply look at workshops that have taken place at international EC conferences over

the years. For instance, taking a look at the Genetic and Evolutionary Computation

Conference (GECCO), one will find workshops have dealt with applications related to the

petroleum industry, medical applications, mechatronic design, fault tolerance, robotic

vision, evolvable hardware machines, circuit design, sensor evolution, damage recovery in

robots, modeling financial markets, structural design, and software testing.

The popularity of EA in a particular application domain can also indicated by the presence

of application-specific EA surveys and reviews. A non-exhaustive list of such surveys

includes EA applied to computer-aided molecular design [109], job-shop scheduling [110],

project scheduling [1], aerospace problems [111], data mining and knowledge discovery

[112], control systems engineering [113], [114], chemistry applications [115],

Chapter 2: General Background of Evolutionary Algorithms

macroeconomic models [116], and the modeling and control of combustion processes
[117].

Ample evidence of its versatility can also be found in the hundreds of unique industry-
driven applications where EA has been successfully applied. A sampling of applications
include breast cancer detection [118], design of the world's fastest race car [119],
optimizing schedules for bringing new products to market [3], designing pharmaceutical
drugs [120], processing MRI brain images [121], and the optimization of Intensity-
Modulated Radiation Therapy IMRT [122].

Evolutionary Algorithms can also be an important tool in academic research and have been
used to build improved models of atomic force fields [123], improve interpretation of mass
spectrometry data [124], and for the design of better molecular scale catalysts [125]. Many
other examples can be found in the Applications of Evolutionary Computation book series
[126].

Chapter 3: Adaptation of EA Design

Chapter 3 Adaptation of EA design

Designing an Evolutionary Algorithm involves a number of activities, from the

development of an appropriate genetic encoding and/or an appropriate set of search

operators, to establishing the correct selection pressure. For some aspects of EA design,

this involves the setting of a number of parameters which control aspects of EA behavior.

Parameter tuning is an important task in EA design because the optimal parameter settings

will vary from one problem to the next and the use of poor parameter settings can

significantly impact algorithm performance.

This chapter focuses on ways in which robust EA search behavior can be attained by

allowing traditionally static EA design parameters to adapt to their environment. Section

3.1 starts by reviewing adaptive control of EA design parameters. The review focuses

particularly on a general framework for the adaptation of search operator usage

probabilities.

Section 3.2 presents a new adaptive control procedure that is driven by empirical measures

of an individual's impact on population dynamics. The method follows a principle of

empirical search bias which is presented in this thesis as an alternative to the fitness driven

search bias present in most optimization algorithms.

Through a preliminary analysis of population dynamics, an unexpected behavior is also

uncovered in Evolutionary Algorithms. It is found that there is a surprising scarcity of

individuals in an EA population that cause even moderate changes to population dynamics.

Instead, most individuals actually have a negligible impact on the system. From tests using

a number of experimental conditions, it is concluded that this is a fundamental property of

EA dynamics such that most interactions between the EA and its environment are

effectively neutral and non-informative.

Based on this conclusion and with the use of statistical arguments, the adaptive system is

modified to filter out data from individuals with little impact on population dynamics (i.e.

Chapter 3: Adaptation of EA Design

neutral interactions). Experiments in Section 3.3, which are conducted on a number of
artificial test functions and engineering design problems, indicate that the new adaptive
control method is superior to several other adaptive methods in the literature.

3.1 Approaches to Adaptation: Literature Review

This section reviews past research on the tuning and adaptive control of EA design
parameters. The section starts off with a justification for such research efforts and then
presents a number of design parameters that can be adjusted in order to tune EA behavior.
Different classes of parameter control techniques are also introduced, and finally, a
framework is presented for the adaptive control of search operator usage probabilities.

3.1.1 Impetus for EA design adaptation research

Designing an Evolutionary Algorithm involves a number of activities, from the
development of an appropriate genetic encoding and/or an appropriate set of search
operators, to establishing the correct selection pressure. For some aspects of EA design,
this involves setting a number of parameters which control different aspects of EA
behavior. The number of parameters is potentially very large and each can influence the
optimal setting of the others. Furthermore, there is no reason to assume that static EA
parameter settings are optimal, especially considering the non-stationary environment
caused by the search process.

Early attempts at resolving this problem were focused on determining the best static
parameter settings for an EA [83], [127]. Over time, it has become well recognized that the
best parameter settings depend on the problem being solved. Other attempts have focused
on so-called competent EA designs where general guidelines are used to quickly determine
good parameter settings. These approaches however generally rely on a number of
simplifications and only apply to very specific algorithm designs such as the canonical
form of the Genetic Algorithm (e.g. see [128], [129]).

Ironically, the problem of parameter setting for EA design actually defines an optimization
problem. However the "optimization" of EA design is particularly difficult because we

Chapter 3: Adaptation of EA Design

generally do not have the computational resources to test a large number of algorithm

designs. With this in mind, one alternative is to carry out a systematic investigation using

an efficient Design Of Experiments (DOE) for finding the best parameter settings. In cases

where algorithm design features are not as easily parameterized, the problem becomes one

of selecting among a set of optimization algorithms. A number of methods have been

proposed for algorithm design automation or the hybridization of multiple search

algorithms. These approaches often involve some iterated learning process as seen in

[130], [131], [132], [133].

For many optimization problems, very little if any computational resources can be devoted

to parameter tuning, or more generally, to algorithm design automation, since optimizing

the search method would take much more time than optimizing the problem at hand. Under

these circumstances, one promising option is to consider ways to adapt EA design at the

same time it is being used to solve a problem. It is not expected that an optimal EA design

can be created by this approach however its potential to improve EA performance and

reduce human design efforts makes such research of practical interest for EA practitioners.

Evolutionary Algorithms which automatically tune one or more parameters are referred to

in this thesis as Adaptive Evolutionary Algorithms.

3.1.2 Adjustable Parameters

Parameters can be established for many aspects of EA design which are broken down in

this review into two general categories that are present in most optimization algorithms.

The first is that of Selection which determines how search paths are added or lost in a

search process. EA parameters associated with selection that have been adapted in the past

include population size [134], population structure [135], [136 2007)], selection pressure

[137], [138], [139], and penalty weights for constraint handling [59], [58].

The second general category is that of search operations and simply deals with how the

algorithm moves from one point in parameter space to another. EA parameters associated

with search operations include adapting crossover points [140], [141], [142], [143] adapting

mutation step sizes [144], [145], and adapting the probability of using different search

Chapter 3: Adaptation of EA Design

operators [146], [147], [148], [149], [150], [103], [104]. Reviews of adaptation and

parameter control in Evolutionary Algorithms are available in [151], [152], [153], [154].

Adapting Search Operator Probabilities: Adapting search operator probabilities is an

aspect of EA design which has been extensively studied due to the tedious nature of tuning

these parameters, particularly when considering more than two search operators (ten in this

chapter). This parameter tuning problem is also of real practical interest since most EA

designs used in industry incorporate search operators that are custom made for a particular

problem. Deciding which of these operators to use and how often to use them presents a

difficult design challenge that is often dealt with by trial and error. Due to its significance,

this chapter will focus on applying adaptive methods for controlling search operator

probabilities.

3.1.3 EA Parameter Control Techniques

Methods for adapting EA design parameters can be broken down into three general classes

which are known as Deterministic, Self-Adaptive, and Supervisory (or Feedback) adaptive

control methods. Each of these methods are briefly discussed below.

3.1.3.1 Deterministic Methods

With deterministic parameter control methods, parameters are adjusted by an external fixed

schedule or by an heuristic based on EA properties during runtime. Although deterministic

methods are included as a class of adaptive methods, there is no actual algorithm response

to its environment and so its classification as an adaptive method is rather hard to justify.

The success of deterministic methods is likely to be highly problem-specific and even run-

specific and the issue of defining the best deterministic method becomes a challenging

problem possibly rivaling that of the original optimization problem. A well-known

example of a deterministic adaptive method is the cooling schedule used in the Simulated

Annealing algorithm [155].

Chapter 3: Adaptation of EA Design

3.1.3.2 Self-Adaptive Methods

With self-adaptive methods, information is encoded in the individual population members

thereby allowing adaptation to occur while the EA is running. Research into self-adaptive

EA originated with the self-adaptive mutation rates in Evolution Strategies [42].

Self-adaptive methods have some characteristics which are highly favorable. Most

importantly, this approach can potentially allow for a diverse range of algorithm behaviors

to be present within a single population. Such diversity has the potential to provide an

overall robustness to search behavior and appears to have important similarities to what

takes place in natural evolution.

One of the main challenges with self-adaptive methods is that current EA designs tend to

have difficulty sustaining diversity in the population. Instead, dominant individuals tend to

spread their genetic material throughout the population which drives population

convergence. This process happens quite quickly in many cases and search behaviors

which exploit local landscape characteristics can exacerbate the problem. Since diversity is

a precondition for adaptation, population convergence can limit the adaptive capacity of

self-adaptive methods.

Although it not typically classified as a self-adaptive method, a similar approach that

should be mentioned is that of competitive evolution which was first proposed in [147]. In

this approach, a set of subpopulations are created and computational resources are

distributed based on fitness and improvement rates within the subpopulations. The

framework naturally allows for different EA design parameters in the subpopulations or

even different optimization algorithms altogether. The difference between this and self-

adaptive methods is that with competitive evolution, selection occurs on a larger scale so

that multiple individuals (in a subpopulation) will have identical parameter settings.

Somewhat similar ideas have also been used in the Hierarchical distributed Genetic

Algorithm [156] where subpopulations are given different EA design parameters and

communication between populations is restricted in an intelligent manner.

Chapter 3: Adaptation of EA Design

3.1.3.3 Supervisory Methods

Supervisory adaptive methods (also referred to as feedback adaptation) use measurements

taken of EA performance during runtime in order to adapt or control parameter settings.

Unlike self-adaptation where the adaptive mechanism is coupled to the EA population,

supervisory methods work usually at a higher level than individuals and are an external

mechanism that is uncoupled from the search space of the optimization problem.

Supervisory adaptation is used in this thesis for EA parameter control, however no claims

are made regarding its superiority to self-adaptive methods. On the one hand, self-adaptive

methods are admittedly more "nature-inspired", however they can also be more sensitive to

convergence problems and the associated loss of variability in EA populations. In the

words of Darwin "without variability, nothing can be effected" which is to say that

adaptation is simply not possible without variation [157].

3.1.4 Supervisory Adaptation of search operator probabilities

This section presents a detailed framework for supervisory adaptation which is presented

within the context of adapting search operator probabilities. This framework is similar to

others such as that presented in [158].

3.1.4.1 Operator Quality

Given a set of Nops search operators with probabilities P^ i = {\,...JSiops), an adaptive

method has the task of setting P in order to optimally control the usage rates of the

operators. When an operator i is used, a reward R is returned. Since the environment is

non-stationary during evolution, an estimate of the expected reward for each operator is

only reliable over a short span of time. This is addressed by introducing the operator

quality Q, which is defined such that past rewards influence operator quality by an extent

that decays exponentially with time t as defined in (3-1). The a term in this equation

controls the memory of the adaptive method where results in no memory but

maximum adaptation and «->0 results in maximum memory but no adaptation. The initial

Chapter 3: Adaptation of EA Design

value for Q is g(/=0)=0. These quality values are then directly used to define search

operator probabilities.

QXt + \) = QMVa[RM)-Q,(t)] (3-1)

3.1.4.2 Operator Probability Setting

When adapting P, it is necessary to place a lower bound on the probability value in order to

prevent it from reaching zero. Allowing the probability to reach zero prevents future

assessment of the operator which is not advised considering that the environment is non-

stationary. To address this, a lower bound Puin is used to define the minimum probability

of operator usage. Since only one operator is used at a time, the sum of all probabilities

must equal one meaning an upper bound Puca can also be defined as PMOX = -̂Nopŝ Phim- A

standard approach for setting search operator probabilities is the Probability Matching

Strategy defined in (3-2) which sets probability values to be proportional to operator

quality. For all experimental conditions where search operator probability values are

adapted in this thesis, it is assumed that all probabilities are initialized as Pi{t=Qi) = MNops.

Probability Matching
Q,it) (3-2)

Ops Min /

7=1

An alternative to the probability matching strategy is the Adaptive Pursuit Strategy

proposed in [158]. This method was developed based on a perceived weakness in the

probability matching strategy due to its sensitivity to Q scaling. As a simple example of

this, Thierens considers a case of two search operators where each operator has a stationary

reward value. He demonstrates that, as the difference between operator rewards becomes

small, the difference between search operator probabilities also becomes small. In his

argument, Thierens suggests that if one of the operators is superior, it should be strongly

favored, even if the extent of its superiority is small. The adaptive pursuit strategy defined

in (3-3) provides a straightforward method for allowing the distinction between search

operators to be maximized. The extent that the best operator dominates the search process

Chapter 3: Adaptation of EA Design

is controlled in equation (3-3) through the parameter PMOX while the rate at which

probability values change is controlled by p. In short, the adaptive pursuit strategy allows

the best operator to reach a set maximum value regardless of its relative performance

compared to other operators.

Adaptive Pursuit

(3-3)

Implicit in the rationale for the adaptive pursuit strategy is an assumption that no significant

interaction exists between search operators and their impact on algorithm performance (i.e.

no epistatic interaction). However, recent studies in [55] and [56] have suggested that

significant beneficial interactions do take place between search operators meaning that

some operator combinations are superior to any single operator used in isolation. As a

result, this puts into doubt whether our goal should be to overwhelmingly favor a single

best search operator as is intended with the adaptive pursuit strategy.

3.1.4.3 Defining Operator Rewards

In the description of supervisory adaptation presented thus far, the reward R is simply the

result of an operator's interaction with the environment. However the adaptive framework

presented in this thesis draws a distinction between interactions with the environment and

the interpretation of those interactions as is shown graphically in Figure 3-1.

Chapter 3: Adaptation of EA Design

[plronmeilt

Figure 3-1: Framework for a supervisory adaptive system. Here, an adaptive system receives measurement data
as a result of its interactions with the environment. These measurements are then interpreted or assessed for
relevance. Once interpreted, the data is then allowed to drive internal changes to the system. The mechanics for
internal change are not shown in the figure but would consist of mechanisms such as the Quality function and the
Probability Matching Strategy.

Interaction events between an operator and its environment (i.e. offspring creation) are

referred to simply as events and measurements of an event are labeled as F. To give

meaning to an event, it must be interpreted within a particular context. Using this

distinction between event measurements F and their interpretation /, the reward for an

operator i at time t can be defined in (3-4) as the average interpretation of a set of M

interactions with the environment. The ¡archive term in the equation simply stores the I

calculations from each operator.

I

^iTt

(3-4)

It is important to note that the reward at a particular time t has now been redefined so that it

represents multiple interactions between the adaptive system and its environment. Using

this particular setup, each increment of time t is now referred to as an adaptation cycle. The

number of interactions that take place during an adaptation cycle is controlled by the

adaptation cycle length T which is the number of generations before operator probabilities

are recalculated. The meaning of each of these terms within the overall adaptive

framework is demonstrated in the pseudocode below.

Chapter 3: Adaptation of EA Design

Do
'add standard genetic operators here
Gen= Gen+1
For each offspring

i = offspring's search operator
Calculate F (defined in Section 3.1.4.4)
Calculate I (defined in Section 3.1.4.5)
M, = Mi + 1
Iarchive(i, Mi)= I

Next offspring
If Gen mod T = 0 THEN

t=t+l
For each operator i

Calculate R (defined in Section 3.1.4.3)
Calculate Q (defined in Section 3.1.4.1)
Calculate P (defined in Section 3.1.4.2)
Mi = 0

Next i
End If

Loop until termination Criteria

The only calculation steps in the pseudocode above that have not yet been presented are for

F and /. The next section briefly discusses possibilities for event measurements F while

Section 3.1.4.5 describes interpretation methods / that have been used in the literature.

3.1.4.4 Event Measurement

Measurements of search operator events typically consist of the fitness of the offspring that

was created in an event. Fitness is generally based on the objective function value although

fitness measurement can also take into account the feasibility of the offspring. Somewhat

uncommon fitness measures based on the objective function are provided in [104].

Since practically all previous studies have used offspring fitness as the measurement of

choice, event measurement F is assumed to be equivalent to the offspring fitness

throughout this thesis. Section 3.2 is devoted to a new type of event measurement which is

not based on standard measures of fitness.

Chapter 3: Adaptation of EA Design

3.1.4.5 Interpretation

The interpretation of search operator events involves defining an event measurement F

within a given context. As previously mentioned, this is then used to calculate the operator

reward R as defined in (3-4). It should also be mentioned that the interpretations methods,

as described below, assume the problem being solved is a Maximization problem.

3, L 4.5.1 Parent Context

One common approach to interpreting a fitness measurement is to do so within the context

of its parents. For instance, in // the interpretation of the offspring measurement simply

indicates (with a binary variable) whether the offspring was superior to one of its parents.

Here it is assumed that the best parent is always chosen for comparison. Another option is

to measure the magnitude of improvement between an offspring and its parent as seen in I2.

h =
^ V ^Offspring ^ ^Parent

0 else

~ ^Offspring ^Parent

h = -) (3-7)

The interpretation Is equals h if I2 >0 but otherwise is set to 0. The interpretation I3 was

first defined in [159] and is described in [160], as a combination of the probability of

improvement and the expectation of improvement.

3,1,4,5,2 Population Context

It is also common to consider a measurement within the context of an individual's

population. This is seen for example in I4, which is an interpretation similar to /; except the

context being considered is the median population fitness FMedian instead of the parent

fitness.

1 V ^Offspring > ^Median
0 else

Chapter 3: Adaptation of EA Design

Also similar to h , interpretation I5 considers the size of measurement improvement

compared to the best individual in the population Fgest- However I5 also scales the

interpretation to take into account the distribution of measurements. This measurement was

first introduced in [161].

J ^^Offspring ~ ^Best) (3 - 9)

i,^Best ~ ^Median)

Interpretations similar to h have also been considered within a population context. For

example, in [162], they created which is the same as I3 except that Fparem is replaced with

Fsest- Also, in [163] they created I? which is the same as I3 except that FParent is replaced

with the F measurement in the population that represents the percentile Fgoth (i.e. Fgoth

is the F value that is greater than 90% of other F values in the EA population).

(3-10)

/ , = Max{0, -) (3-11)

Finally, another common interpretation is to simply rank an offspring's fitness F within the

EA population of size N as seen in Ig.

= Z </>{Offspnng, i) ^^ ^^^
i=l

1 ^f ^Offspring >

0 else
^{Offspring j) =

A number of past studies on the adaptation of search operator probabilities can be defined
using the adaptive framework that has been laid out in this chapter. Several of these are
presented in Table 3-1.

Chapter 3: Adaptation of EA Design

Table 3-1 Partial list of methods that have been used to adapt search operator probabilities.
Parameters that are not specified in the method are listed as (-), parameters that are not applicable are
listed as (*) , and parameters that were varied in experiments are listed as the range of values tested.
Parameter a in column two is the memory parameter given in (3-1), fi in column three is a parameter
specific to the adaptive pursuit strategy and is defined by (3-3), T in column four is the adaptation cycle
length which defines the number of generations between the updating of search operator probabilities,
PMin in column five is the lower bound on the allowed range of probability values, the "Event
Measurement" in column six is described in Section 3.1.4.4, the "Interpretation" in column seven is the
interpretation of event measurements as described in Section 3.1.4.5, and Nops in column eight is the
number of search operators being adapted. The ETV event measurement and Outlier interpretation in
the bottom two rows of the table are new event measurement and interpretation methods (resp.)
proposed in this thesis and are described in Sections 3.2.2 and 3.2.4. "His. Credit" refers to Historical
Credit Assignment which is described below in Section 3.1.4.6.

Reference a T PMIN Event
Measurement

Interpretation N

[1581 0.8 0.8 1 0.1 - - -

[1641 * 1 His. Credit
[1601, [1491 0.3 * 4 0.1 F h 5
[1621 0.001-0.5 * 1 0 F le 2
[1651 * * 100/N 0.01 His. Credit I4 3
[1631 0.001-0.1 * 1 - F, His. Credit 4 / 7 5
[1041 0.5 * 20 0.02 F Is, Outlier 10
[1031 0.5 * 20 0.02 F,ETV h. Outlier 10

3.1.4.6 other Approaches

Historical Credit Assignment: An interesting alternative for defining operator rewards
based on a principle of historical credit assignment is presented in [146] and also used in
[164], [165]. In this adaptive method, each individual stores a search operator tree as
shown in Figure 3-2. The operator tree records which search operators were used to create
the ancestors of each individual. When a search operator event occurs, credit for the event
is assigned backward to all search operators in the operator tree with the initial credit
defined by U. To account for the diminished importance of past events, the actual credit a
search operator receives is adjusted to be * U where L is the path length between the
current event and the search operator receiving credit in the operator tree. The parameter y
controls how quickly credit decays with distance in the operator tree.

Chapter 3: Adaptation of EA Design

Cr Cr ^ Cr Mu

\ / \ /
u (

\ /
(

\ /

Cr Mu Cr

Mu Cr

Cr

Figure 3-2 Operator tree for an individual where only crossover (Cr) and mutation (Mu) events occur. The root
node in the tree, Cr, is the search operator that was used to generate the individual that is storing the operator tree.

Although this approach does not fit precisely within the "event measurement/

interpretation" adaptive framework used in this thesis, it represents the only method where

events are measured based on the success of future offspring making this method quite

unique. Interestingly enough, this method has a number of similarities to the new adaptive

methods presented in the next section. It is important to emphasize however that the

adaptive methods derived in this chapter were developed independently from the approach

presented in [146]. Also, despite the similarities, there are a number of important

differences in the approaches as will be seen as the new methods are introduced.

3.2 Measuring Population Dynamics for Adaptive Control

The following section presents a new type of event measurement that is notably distinct

from the standard objective function value. Section 3.2.1 begins by clarifying why

objective function values are a common form of event measurement used for driving

parameter adaptation (and more generally used for guiding an optimization search process).

Section 3.2.1 also provides some alternatives to fitness-based search including a newly

proposed concept called Empirical Search Bias. The new event measurement is presented

as an example of Empirical Search Bias in Section 3.2.2. Based on an analysis of the new

measurement in Section 3.2.3, a new interpretation method is also developed which is

presented in Section 3.2.4. The concepts of event measurement and measurement

interpretation follow from the review in the last section and the framework outlined in

Section 3.1.4.

Chapter 3: Adaptation of EA Design

3.2.1 Why is Objective Function a Standard measure for fitness?

As previously mentioned, adaptive methods typically use a measure of fitness based on an

individual's objective function value in order to assess the merits of different search

behaviors. To understand why objective function values are universally used as indicators

of fitness requires an understanding of the assumptions implicit in any search process. The

most important of these assumptions is referred to in this thesis as the Hill-Climbing

Assumption.

3.2.1.1 The Hill-Climbing Assumption

In order to search for an optimal solution to a problem, it is necessary to make assumptions

about the fitness landscape of the problem being solved. One of the most common and

successfully applied assumptions is that a solution's objective function value (Fitness) can

approximate a solution's usefulness in searching for more fit solutions. Following this to

its logical conclusion, this implies highly fit solutions will ultimately be useful in finding

the optimal solution.^ This also implies that a solution's reproductive worth (i.e. usefulness

as a point to search from) and the solution objective function value are roughly equivalent

measures. For unimodal landscapes, this assumption is often sufficient for guaranteeing an

optimal solution will be found consistently and in a reasonable amount of time. However,

for multimodal landscapes, the Hill-Climbing Assumption can fail to produce reliable or

acceptable results.^

3.2.1.2 Search Bias Assumption

An alternative approach is to look at solving the inverse problem which is that of

optimizing search bias. For clarity, this will be called optimization based on the Search

Bias Assumption. Here the goal is to find solutions and search mechanisms that are most

Similar arguments can also be applied to the V̂ and 2 derivatives of the objective function.

^ In EA, most selection schemes involve relaxation of the Hill-Climbing Assumption. This involves treating
the Hill-Climbing Assumption as being true in the average sense but not strictly true (i.e. a probability of it
being true).

Chapter 3: Adaptation of EA Design

likely to reach the optimal solution reliably and in a small number of steps. Instead of

assigning credit to a highly fit solution, we look to assign credit to solutions that participate

in finding high fitness solutions. The underlying assumption made here is that a solution

that was helpful in finding good solutions has a chance of being helpful in finding even

better solutions. Furthermore, we treat this assumption as if it can be successfully applied

throughout the fitness landscape all the way up to the globally optimal solution. One

obvious result of this approach is that a distinction is drawn between the reproductive value

and the objective function value of a solution which makes this markedly distinct from

optimization under the Hill-Climbing Assumption. The Search Bias Assumption is difficult

to implement in practice although some options for doing so are proposed in [103].

3.2.1.3 Empirical Bias

The Hill-Climbing Assumption and the Search Bias Assumption represent opposite ends of

a spectrum of possible bias for driving an optimization search process. On the one hand,

the Hill-Climbing Assumption relies solely on the current states of the system in order to

guide future search behaviors while the Search Bias Assumption places emphasis entirely

on the initial conditions. In between is a realm where an intermediate reliance on history or

search experience occurs (i.e. where history/experience partially guides the search process).

This third option is referred to in this thesis as Empirical Bias and a proposal for

implementing Empirical Bias is provided in the following sections.

For the implementation considered, the core of the EA design remains unchanged so that

the overall search process is still driven by the Hill-Climbing Assumption. However,

search operator usage rates are driven by empirical evidence of offspring importance as

opposed to being driven by the fitness of these offspring.

For a population-based optimization algorithm like EA, an empirical measure of the

importance of an individual can be obtained by measuring the individual's impact on

population dynamics. Looking at population dynamics on a small timescale such as a

single generation, an individual will only impact the population through competition for

survival and/or competition to reproduce. However, if longer timescales are considered, we

will find an individual's impact is largely a result of the survival and spread of its offspring.

Chapters: Adaptation of EA Design

The next section describes a procedure for measuring an individual's impact on population

dynamics. This new event measurement, combined with a new interpretation method will

be used to adapt search operator probabilities in the experimental work in this chapter.

3.2.2 Measuring Impact on Population Dynamics: The Event

Takeover Value (ETV)

This section describes the Event Takeover Value (ETV) which is used for measuring an

individual's impact on population dynamics. Throughout the discussion, the term event is

used as before to describe the creation of a new individual. To help understand ETV,

Figure 3-3 shows a directed graph which represents the family tree of an individual's

lineage. Here different generations are indicated by positioning on the horizontal axis,

nodes represent individuals created in a particular generation and the parents and offspring

of an individual are indicated by connections to the left and right (resp.). Starting at the

root node on the far left of Figure 3-3, one can observe how this individual's genetic

material is able to spread through the population. At each generation, it is possible to count

the number of individuals in the population that are historically linked to the root node.

This can be thought of as an instantaneous measure of the individual's impact on

population dynamics and is referred to as ETVgen- A more detailed description oiETVgen is

provided in the caption of Figure 3-3.

Chapter 3: Adaptation of EA Design

ETV,eo= 1

3 4 5 6
Generation

Figure 3-3: Visualizing an individual's impact on population dynamics using genealogical graphs. An individual's
impact for a given generation (horizontal axis) is defined as the number of paths leading from the measured node
to the current generation. This is referred to as ETVgen and can be calculated for the "Event Measured" in the
graph above by counting the number of nodes on the dotted vertical line for a given generation. As the population
moves from one generation to the next, one can see that the number of individuals in the population that are
descendants of the "Event Measured" will change with each new generation. In other words, the ETVgen value is
dynamic. To clarify this point, ETVgen values are calculated for the "Event Measured" and are shown at the top of
the graph. The maximum impact an event has on the population is the maximum ETVgen value that is observed.
This graphical illustration assumes a generational population updating strategy such that an individual exists in a
single generation only. This is done to simplify the illustration however other updating strategies could be used in
which case some nodes would be stretched across multiple generations in the graph.

Observing Figure 3-3, it appears that a reasonable calculation of an individual's impact on

population dynamics would be to count the total number of descendants for a given

individual. This is equivalent to summing up ETVgen for all generations where the

individual's lineage remains alive. The problem with this measurement is that an

individual's lineage occasionally is able to spread throughout the entire population so that

the cumulative ETVgen value increases indefinitely. A useful alternative which is used in

this thesis is to define ETV as the largest ETVgen value observed. This value naturally has

an upper bound equal to the population size of the system. For the example given in Figure

3-3, the ETV value for the "Event Measured" would be ETV=7, which occurs in the sixth

generation.

Chapter 3: Adaptation of EA Design

3.2.2.1 Multiple Parents and Genetic Dominance

Figure 3-3 shows how an individual can impact population dynamics through the spread of

its genetic material, however it does not consider the fact that offspring are often created

from multiple parents. Also, when using multi-parent search operations, offspring tend to

be genetically biased to be more similar to one parent than the other(s). An accurate

measure of ETV should therefore account for the possibility of multiple parents as well as

account for the possibility of dominance by one of the parents.

As an alternative to assigning a weighted importance to each of the parents, a dominant

parent is chosen instead so that (for ETV calculation purposes) the offspring is seen as

having only a single (dominant) parent. By using dominance, it is no longer necessary to

address the issue of distributing credit among multiple parents meaning that Figure 3-3 is

still a valid representation of the ETV measurement process. This also helps to simplify

implementation of the ETV calculation steps as seen later.

Several ways for selecting the dominant parent have been tested including random

selection, phenotypic similarity, and genotypic similarity between parents and offspring. In

preliminary studies (results not shown), random selection resulted in mediocre EA

performance as well as poor differentiation between search operator probabilities.

Selecting the parent that was most genetically similar (by Normalized Euclidean Distance)

to the offspring worked well while selecting the parent that was least genetically similar

performed even more poorly than random selection. No significant difference in

performance was observed between using genetic similarity and phenotypic similarity. In

order to maintain consistency with the ETV measurement definition, genetic dominance is

used in ETV calculations.

3.2.2.2 Hitchhiking

Thus far, the ETV measurement implicitly assumes that an individual's impact on future

dynamics does not degrade with the passage of time. However the stochastic nature of an

EA makes this time dependency true and unavoidable. Addressing time dependence in

credit assignment has previously been done using exponential decay functions in [146],

Chapter 3: Adaptation of EA Design

[164], [165], and [103]. Another possible approach is to set a time window beyond which

an individual's impact on population dynamics can no longer be measured.

Through careful study of the genealogical branching process, it has been found that certain

branching structures can indicate exactly when confidence in the ETVgen measurement is

lost. An example of these conditions is shown in Figure 3-4. Looking at the ancestors (i.e.

nodes to the left) of the white node, it is noticed that all ancestors have the same ETVgen

value and that this value is obtained solely due to their historical linkage to an important

future event. Obtaining credit in this fashion is referred to in this thesis as Genetic

Hitchhiking.

This phenomenon actually happens quite often. If an important event occurs, it will likely

spread quickly throughout much of the population. However, all events prior to the

important event also spread because they are historically linked. Care must be taken then to

make sure an event has spread due to its own importance and not the importance of some

later event. To account for this, ETVgen measurements of hitchhikers are disregarded.

Current Generation

Figure 3-4: Genetic Hitchhiking in EA population dynamics. Considering ETVgen measurements based on the
current generation, one can easily see that all nodes to the left of the white node will have the same ETVgen value
(i.e. they all have the same number of paths leading to the current population). However, these nodes are assigned
their ETVgen values only because of a single important descendant (the white node). These linear structures in the
genealogical branching process are a sign of genetic hitchhiking and can be seen in several different places in the
graph above (seven genetic hitchhiking occurrences in total).

Chapter 3: Adaptation of EA Design

3.2.2.3 ETV Calculation Procedure

To calculate ETV, a procedure is needed for recording genealogical information. The first

step is to assign an ID to each event that uniquely identifies the offspring and indicates

which search operator created it. Historical information in the form of these ID values is

stored in each individual as an ordered list which represents the direct line of ancestry for

that individual. An example of these ordered lists and their meaning within a genealogical

tree is provided in Figure 3-5. When a new offspring is created, it inherits the historical

records of the genetically dominant parent, and a new ID (representing the offspring) is

added to the offspring's historical record.

Parent 1 Parent 2
History History

P40 P40

P33 P36

P26 P31

P21 P28

P23

Genetic
Dominance P4a

Offspring

History

P40

P33

P26

P21

New ID

New ID

Figure 3-5: Transfer of Historical Data. Each individual holds historical information in addition to genetic
information. The historical information represents the direct line of ancestry for an individual. Examples of
historical data lists are shown above for Parent 1 (/D=P21) and Parent 2 (/Z)=P23) and their meaning is
demonstrated by the genealogical graph on the right. A new offspring only takes historical information from the
parent that is genetically most similar (i.e. genetically dominant). In this example, Parent 1 is assumed to be the
genetically dominant parent. In addition, the offspring creates a new ID to indicate its placement in the
genealogical tree.

By going over the historical records that are stored in the individuals in the current

population and counting the number of times that the ID of an event is observed, the ETVgen

for that event (and that generation) can be calculated. Given a maximum size Tots for the

historical records list, an EA population size N, and individual population members M, the

ETVgen measurement for event "ZD" can be calculated using (3-13).

Chapter 3: Adaptation of EA Design

^ f e (3-13)

i=l 7=1

'J

1 if ID = M,iID^)
0 else

To check for genetic hitchhiking, the ETVgen value of an event must be compared with one

of its offspring. If they are equal then the parent's ETVgen value is set to zero. Given two

events IDi and ID2, genetic hitchhiking can be defined by (3-14).

IF [ID, = M, [ID^)) AND [iD, = M,)) (3-14)

AND {ID,) = (ID,)) THEN (ID,) = 0

The final step in the ETV calculation is to compare each ETVgen value with the archived

ETV value. If ETVgen is larger than the archived ETV, then the ETV value is updated,

otherwise the old value is retained. The ETV calculation for an event is completed when an

event's ETVgen is found to be zero (i.e. a hitchhiker event).

3.2.2.4 Computational Costs of ETV Calculation

The computational costs of the ETV calculations are reasonably small if properly

implemented. These costs come primarily from i) the size of the "historical list" in each

individual and ii) from the number of events that are being calculated at each generation

(i.e. the size of the ETV archive).

Historical List Size: The size of the historical list Tobs establishes the maximum number of

ancestor events that can be stored in each individual in the population. If Tobs is too small,

it effectively reduces the amount of time that an ETV can be measured however if Tobs is

too large, it will negatively impact the computational costs of the procedure. The first step

to improve computational efficiency was to determine how large Tabs must be in order to

calculate ETV. This was accomplished by running experiments with EA designs varying

by population size N (A^=30 to A^=400), selection pressures (binary tournament selection

and random selection), and population updating (generational and steady state) on a random

sampling of test functions taken from Table 3-2. Tobs was set to 100, which is large enough

to ensure ETV calculations are almost always finalized. For each event, the smallest Tobs

was recorded that would have allowed for the ETV to be calculated. Looking at the

Chapter 3: Adaptation of EA Design

cumulative distribution of these values, it was found that 99.9% (±0.04) of all ETV

calculations complete within The completion time did not appear to be sensitive

to any of the conditions varied in these experiments. For the 0.1% of ETV calculations that

do not complete with the measured ETV is expected to be an undervaluation for

these events. However, from these tests it is clear that the required size of the historical

lists is quite small {Tobs=2{)) and has little sensitivity to test conditions (including the

population size).

Computational Costs from ETV Archive: At each generation, an event's ETV must be

checked for a larger value and checked for evidence that the ETV calculation has

completed. As a result, the computational costs will depend on the number of ETV that are

actively being calculated at a single point in time.

In order to determine the computational cost from ETV, it was necessary to look at the

average size of the ETV archive^ as a function of time and as a function of population size.

First looking at the time dependency, it was found that the ETV archive size always

converges to a stable value. Focusing on these stable values, the ETV archive size was

found to equal 11.47V with Â being the population size.^

Also, to help understand ETV computational costs, experiments were run to determine the

average number of generations needed to complete an ETV calculation. This was found to

be 4.0 with no sensitivity to population size. From these tests, it was concluded that ETV

computational costs scale linearly with population size.

3.2.2.5 Related Research

Recently, genealogical graphs have also been used to help understand the dynamics in

Artificial Life systems [166]. However, to the author's knowledge, no previous work on

genealogical graphs has addressed the issue of genetic dominance in multi-parent

^ The archive holds the ETV value and ID number for all events held in the historical lists of the population

^ Relationship between ETV archive size and N determined by linear regression (R^ = 0.999) with five tests
conducted over the range 20 < Â < 400.

Chapter 3: Adaptation of EA Design

reproduction nor has anyone previously used the concept of genetic hitchhiking when

assessing the impact of an event in population dynamics.

3.2.3 ETV Analysis

3.2.3.1 Fitness as a predictor of ETV

Considering that ETV measures an individual's impact on population dynamics, it would

be useful to assess whether an individual's objective function is an accurate predictor of

ETV.

Experimental Setup: To test this, EA runs were conducted where fitness-based ranking

and ETV values are calculated and stored for each individual. To ensure the results were

not sensitive to experimental conditions, it was necessary to test a variety of EA designs on

a variety of test functions. A large number of ad hoc experiments have been conducted

with EA designs varying by selection pressure, population size, and the number of search

operators. Few noticeable distinctions were observed in these preliminary tests and so the

results are only presented for the EA design described in Figure 3-6. Several test functions

have also been considered in preliminary tests with results suggesting the relationship

between ETV and fitness is sensitive to the fitness landscape, however this sensitively is

rather low.

Relationship between ETV and Rank: As expected, the results shown in Figure 3-6

indicate that almost all individuals with a large impact on population dynamics (i.e. large

ETV) are caused by individuals of high rank. However, while a trend exists between larger

ranks and larger ETV, this does not mean that low ranking individuals never have a strong

impact on population dynamics. Evidence for this is provided in the box plots in Figure 3-6

where one can see that ETV measurements rarely ever reach ETV > 5 and yet a number of

low ranking individuals were able to obtain much larger ETV values.

Chapter 3: Adaptation of EA Design

Figure 3-6: Box plots of the size of an individual's impact on population dynamics (ETV) as a function of the
individual's rank within the population where a rank of 1 represents the worst individual and a rank of N

represents the best individual (based on objective function value). The data set was generated from a series of
experiments involving a number of test functions listed in Appendix A. The EA used to generate the results was a
real-coded, pseudo steady state EA design using binary tournament selection (without replacement) and a
population size of N = 50. Results shown are a random sample of 5000 data points taken from a data set of
300,000. The box plots have the standard meaning with the bottom line in the box representing the flrst quartile,
the middle line representing the median, and the upper line representing the third quartile. The symbol ¥lt is used
to represent outlier data points.

Sensitivity to fitness landscape: To demonstrate how little the ETV-Rank relationship

was sensitive to the fitness landscape, Figure 3-7 shows data from a simple unimodal test

function and a highly deceptive test function. Here it can be seen that the relationship

between ETV and rank is very similar for these two starkly different fitness landscapes.

The only important difference comes in the location of extreme ETV outliers (e.g.

ETV>40). For the deceptive problem (MMDP), the extreme ETV outliers are occasionally

found in lower ranking individuals while for the simple unimodal test function (Quadratic

Function), the extreme ETV outliers are more tightly associated with the highest ranked

individuals.

Chapter 3: Adaptation of EA Design

MMDP

50-

40-

30-

20-

1 0 -

0^

m

if*

v> v> VA w>

—I—
10 20 30

Rank

—I—
40

—1—
50

Quadratic Function

50-

40-

30-

2 0 -

1 0 -

OH
10 20 30

Rank

—r—
50

Figure 3-7 Box plots of the size of an individual's impact on population dynamics (ETV) as a function of the
individual's ranking within the population. Top: Results from running an EA on the Massively Multimodal
Deceptive Problem (MMDP). Bottom: Results from running an EA on the Quadratic Test Function. Both test
functions are defined in Appendix A. The EA used to generate the results was a real-coded, pseudo steady state
EA design using binary tournament selection (without replacement) and a population size of iV = 50. Results
shown for each graph are a random sample of 5000 data points taken from a data set of approximately 15,000.
The box plots have the standard meaning with the bottom line in the box representing the first quartile, the middle
line representing the median, and the upper line representing the third quartile. The symbol * is used to represent
outlier data points.

In summary, fitness-based ranking does provide some small indication of an individual's

chances for impacting future dynamics, however its overall ability to predict future

Chapter 3: Adaptation of EA Design

behavior is marginal. In general, fitness rankings have a strong tendency to overvalue the

actual importance of individuals in future population dynamics.

3.2.3.2 ETV Distribution

The results from Figure 3-6 indicate that regardless of rank, very few individuals have a

large impact on population dynamics. Notice that even for the 20% highest ranked

individuals (i.e. Box plot with the label Rank^SO), the median ETV value is approximately

five which is only 10% of the maximum ETV value. In order to better understand EA

population dynamics, the distribution of ETV measurements is provided in Figure 3-8. The

linearity of the ETV distribution on the log-log plot indicates the distribution fits a power

law.

Figure 3-8 ETV probability distribution from running an EA for 20,000 generations on the 30-D Hyper Ellipsoid
test function. The EA design has a population size A^=200, steady state population updating, and uses truncation
selection. The solid line represents a power law with exponent 2.2.

Importance of ETV Distribution: The existence of a power law ETV distribution (with

exponent ~ 2) indicates that the large majority of individuals play a negligible role in

influencing population dynamics whereas a vanishingly small number of individuals

dominate population dynamics. This also indicates that most of the search is characterized

by actions of questionable importance but is punctuated by the infrequent occurrence of

Chapter 3: Adaptation of EA Design

important new discoveries. The power law ETV distribution has been confirmed for a

broad range of EA designs which is presented and discussed in Chapter 4.

This result also has significant implications for how to best interpret the interactions

between an adaptive system and its environment. For instance, consider the adaptive

system that is used in this chapter, namely the adaptation of search operator probabilities.

It is now known that no matter how good a search operator is, most of the times it is used, it

will have little impact on population dynamics. This is not viewed as an indicator of poor

operator performance but instead is understood as a reflection of the fundamental dynamics

of the system. In other words, the majority of small impact interactions between a search

operator and its environment are viewed as being not informative (effectively neutral

interactions) whereas the small number of interactions which do have a large impact on

population dynamics are viewed as being very informative and should be treated as

valuable indicators of performance. The next section proposes a way to take into account

these findings.

3.2.4 Interpreting ETV measurements

Based on the conclusions from the last section, the goal of this section is to interpret ETV

data so that only informative, high impact events are able to influence search operator

probabilities. This is accomplished by treating ETV measurements as being dominated by

neutral measurements that fit some assumed distribution. Statistical arguments are then

used to gauge whether an ETV measurement is important based on the extent that the ETV

is an outlier of the neutral distribution.

The first step is to determine the properties of the neutral distribution based on the ETV

measurements gathered during an adaptation cycle. This is accomplished by taking all of

the ETV measurements (gathered from the previous adaptation cycle) and calculating the

mean and variance of the sample based on the assumption that neutral measurements

dominate the data and fit a lognormal distribution. Other distribution assumptions have

also been tested (e.g. Normal) with fairly similar results.

For more information on statistical tests, see [167]

Chapter 3: Adaptation of EA Design

An ETV is an outlier when it is NOT expected statistically that the sample population

contains at least one such measurement or any larger measurement. In other words, each

ETV can be assigned a probability pa that the ETV is an outlier of the sample distribution.

A quantitative formulation of this definition will now be derived from statistics. Also note

that for the calculations below, the ETV measurements are first transformed to log ETV so

that neutral events can be assumed to fit a normal distribution.

3.2.4.1 Outlier Calculation

Assuming a normal distribution for the data, individual measurements ETVj are tested

against the sample mean and one-sided p values, defined as p~ in (3-16), are calculated

using a z statistic as defined in (3-15). The 5 term in equation (3-15) represents the sample

standard deviation. This calculated p^ value indicates the probability of observing a

measurement of size ETVj or greater. Hence, this simple statistical test can be used to

determine the extent that an ETV value is an outlier. However, one must also account for

the fact that the number of outliers observed for a given search operator will also depend on

the number of times that the search operator was used (i.e. the search operator sample size).

This is relevant because different operators will generally have different operator usage

probability values and therefore will have different ETV sample sizes.

If a search operator / has an ETV sample size Mi, the number of measurements a that are

of size ETVj or greater follows a binomial distribution that is given by (3-17). The

probability pa of NOT observing a measurement greater than or equal to ETVj after Mi

observations is therefore the probability that a < \ given by (3-18, which can be calculated

by the binomial cumulative distribution function.

ETV^-ju (3-15)

p ^ = P (z > Z j) (3-16)

a = Bin{M.,p^) (3-17)

p^ = P{a < 1) (3-18)

Chapter 3: Adaptation of EA Design

The final result pa indicates the extent to which an ETV is an outlier that can not be easily
accounted for by the stated distribution and the number of points sampled. Summing these
Pa values over all events produced by a search operator indicates the extent that the
operator can create exceptional offspring that have an unexpectedly large impact on
population dynamics.

Measurement interpretation by the Outlier method is defined by (3-19). The reason that the
Pa value is multiplied by Mi in this equation is to allow this interpretation method to fit
within the adaptive framework presented in Section 3.1.4. To be clear, this means that an
operator's reward R is equal to the sum of its pa values (and not the average) when using
this interpretation method. An average is not used because any sensitivity to the operator
sample size M has already been accounted for in the statistical arguments above.

Joiner j e M , (3-19)

Impact of operator sample sizes: Taking a hypothetical sample of ETV data that has
been normalized using (3-15), Figure 3-9 illustrates how the calculation o f w i l l interpret
an ETV measurement for different ETV values and different operator sample sizes. For
each of the sample sizes in Figure 3-9, the pa calculation places almost no value on any
measurements found below the sample mean (z = 0). Also notice that for very high
measurements (z > 3), the pa calculation approaches a value of 1 meaning it has high
confidence that the measurement is an outlier (i.e. that the event had a large impact on
population dynamics). Finally, for ETV values that are large but their classification as
outliers is less certain, the sample size from which the measurement is taken will strongly
influence the interpretation of the measurement.

Chapter 3: Adaptation of EA Design

4

-3 -1

Figure 3-9: p« calculation curves for sample sizes Mi=5 (—), Mi =10 (), and Mj =20 ().

Although the Outlier interpretation method described here may seem overly complicated

for those unfamiliar with statistical tests, it is really only a procedure for selectively using

measurement outliers for adaptation. Many of the interpretation methods described in

Section 3.1.4.5 are simple heuristics for placing emphasis on higher valued measurements

and so in this way they are similar to the Outlier interpretation method. The difference with

the present approach is that it actually quantifies the degree to which each event exceeds

the average (in terms of probability of occurrence), and gives much more weight to "true"

outliers.

3.3 Experiments

3.3.1 Experimental Setup

This chapter has thus far reviewed a framework for adaptation of search operator

probabilities in an Evolutionary Algorithm and has presented an approach to adaptation

based on the ETV measurement and the Outlier interpretation method. This section

assesses the performance of the new supervisory adaptive method by testing it on a suite of

artificial test functions and engineering design problems (listed in Table 3-2) and

comparing these results with a number of adaptive and non-adaptive EA designs. Details

of the EA designs used in these experiments are described next.

Chapter 3: Adaptation of EA Design

Table 3-2 List of test functions used in experiments. Problem definitions, parameter settings, fitness landscape
characteristics, and problem descriptions (for design problems) are provided in Appendix A.

Artificial Test Functions Engineering Design Problems
Bohachevsky's Turbine Power Plant
Quadratic Welded Beam Design
Rosenbrock's Valley Tension Compression Spring
Rastrigin Gear Train Design
Schwefel
Griewangk Application-Inspired Problems
Massively Multimodal Deceptive
Problem (MMDP)

Minimum Tardy Task Problem
(MTTP)

Watson's Error Correcting Code Problem (ECC)
Colville's Frequency Modulation
System of linear equations
Ackley's Path Function
Neumaier's Function #2
30-D Hyper Ellipsoid

3.3.1.1 Core EA Design

The EA designs used in these experiments are described below with the core of the EA

design given by the pseudocode in Figure 3-10. For each generation Gen, N new

individuals are generated to form the offspring population. Offspring are generated by

selecting one of the ten search operators given in Table 3-3. The operators are selected

probabilistically in proportion to the operator probability value. Parents are then selected at

random from the parent population, with the number of parents depending on the search

operator used. The offspring is finally created and its objective function value is evaluated.

Chapter 3: Adaptation of EA Design

Initialize population
Evaluate population
Do

'Reproduction
For i=l to N

select a single search operator (based on probabilities)
select parents (at random)
Create offspring
Evaluate offspring

Next i
Gen=Gen+l
IF (constrained problem) THEN define fitness by Stochastic Ranking
If Adapt THEN Adapt Operator Probabilities
'Selection
For i=l to N

select two individuals (at random from parents and offspring)
keep more fit individual

Next i
Loop until stopping criteria

Figure 3-10 Pseudocode of EA design

Table 3-3: List of search operators used in EA designs. Full descriptions of each search operator are provided in
Appendix B.

Search Operators
Wright's Heuristic Crossover
Simple Crossover
Extended Line Crossover
Uniform Crossover
BLX-a
Differential Evolution Operator (DE)
Swap
Raise
Creep
Single Point Random Mutation

Selection takes place by combining the parent and offspring populations and then

repeatedly selecting two individuals at random and removing the worse individual until the

total population size is reduced to N. The selection procedure is very similar to binary

tournament selection without replacement.

Chapter 3: Adaptation of EA Design

Populations were randomly initialized (with EA experimental replicates using random

number seeds for blocking^the population size was set to A =̂30, and the stopping criteria

was set as a maximum of 3000 generations. Thus the final solution from each experiment

is obtained after 90,000 objective function evaluations. Genes consisted of direct

representations of the parameters being optimized (i.e. real coding).

For optimization problems with nonlinear constraints, fitness is determined using the

stochastic ranking method presented in Chapter 2 and also described in [64]. Previous

experience with this method has indicated that Stochastic Ranking works well for many

problems using the parameter settings specified in [64].

3.3.1.2 Search Operator Control

The algorithms tested in these experiments differ only in the settings of the search operator

probability values. A number of methods for adapting the probability values were tested

which are described in the pseudocode in Figure 3-11 and in Figure 3-12.

The standard adaptive procedure is described by the pseudocode in Figure 3-11 and works

by taking the fitness measurement for each new offspring, interpreting the fitness using one

of the interpretation formula provided in Section 3.1.4.5, and storing this interpretation with

others from the same search operator. Every r generations, the stored data is averaged to

calculate the Reward R, as defined in (3-4), which in turn is used to calculate the Quality Q

for each operator as defined in (3-1). Finally the operator probability value P is calculated

using either the probability matching strategy defined in (3-2) or the adaptive pursuit

strategy defined in (3-3).

Blocking is a method for designing experiments in order to reduce the variability of results arising from
some unimportant factor. For these experiments, the unimportant factor is the sensitivity of EA performance
to the initial conditions of the population. In this case, blocking occurs by using the same set of random
number seeds for tests on each EA design. More information on blocking can be found in chapter five of
[167].

Chapters: Adaptation of EA Design

For each offspring
i = offspring's search operator
Calculate F (defined in Section 3.1.4.4)
Calculate I (defined in Section 3.1.4.5)
M, = Mi+l
larchive (i, Mi)= I

Next offspring
IF Gen modr^O THEN

t=t+l
For each operator i

Calculate R (defined in Section 3.1.4.3)
Calculate Q (defined in Section 3.1.4.1)
Calculate P (defined in Section 3.1.4.2)

Next i
END IF

Figure 3-11 Pseudocode for standard search operator probability adaptation

The order of calculation steps changes slightly when using ETV in place of the fitness

measurement and so a separate pseudocode is provided in Figure 3-12. The change to the

pseudocode is due to the fact that the ETV measurement of an offspring can take several

generations to calculate. More information on the ETV calculation steps is provided in

Section 3.2.2.3. When the ETV measurement is used, it is interpreted using either the

Outlier interpretation method described in Section 3.2.4.1 or no interpretation is used, in

which case the interpretation I is set equal to ETV.

Chapter 3: Adaptation of EA Design

Calculate ETV
If Gen modT=0 Then

t=t+l
For each completed ETV

i = ETV's search operator
F = ETV
Calculate I '(Options: loutiier or I=ETV)
Mi = M,+l
larchive (i , M i) = I

Next ETV
For each operator i

Calculate R (defined in Section 3.1.4.3)
Calculate Q (defined in Section 3.1.4.1)
Calculate P (defined in Section 3.1.4.2)
Mi = 0

Next i
End If

Figure 3-12 Pseudocode for search operator probability adaptation using ETV. ETV is defined in Section 3.2.2
and loutuer is defined in Section 3.2.4.

The parameter settings and other design details of the adaptive methods tested in these

experiments are provided in Table 3-4. The adaptive methods chosen were done so in an

attempt to sample a number of the design options described in the background material

(Section 3.1.4) including measurement interpretations which use the parent context, the

population context, and a standard ranking interpretation (see Section 3.1.4.5). Also

included are several adaptive methods that use the adaptive pursuit strategy and the

probability matching strategy for adjusting search operator probabilities (see Section

3.1.4.2).

Chapter 3: Adaptation of EA Design

Table 3-4 Details of the adaptive methods used for adapting search operator probabilities are listed. Column one
provides the label used to refer to each adaptive method. The second column indicates whether the adaptive
method uses the adaptive pursuit strategy (Y) or the probability matching strategy {N). The measurement of an
event is given in column three as either the fitness (F) or the Event Takeover Value (ETV). The interpretation of
event measurements is either one of those listed in Section 3.1.4.5 or the Outlier method of Section 3.2.4.1. For the
"ETV" adaptive method, the interpretation is equivalent to the ETV value. Each adaptive method has the task of
setting the operator probabilities for the 10 search operators listed in Table 3-3. Each adaptive method uses
parameter settings a = 0.8, /V«=0.02 and r =10. The adaptive pursuit strategy also has p = 0.8. No attempt was
made to tune these parameters and the values were chosen largely to maintain consistency with previous research
in this topic. Preliminary testing indicated that the results are not strongly sensitive to the setting of a and r.

Adaptive EA Adaptive Event Measurement
design name Pursuit (Y/N) Measurement Interpretation
I(median)-Pursuit Y F U
I(parent)-Pursuit Y F h
I(rank)-Pursuit Y F Is
I(median) N F U
I(parent) N F h
I(rank) N F h
ETV-Outlier N ETV Outlier
ETV N ETV ETV

Two EA designs which do not adapt search operator probabilities are also considered. The

first, referred to as Static-0ps2, only uses uniform crossover with probability 0.98 and

single point mutation with probability 0.02. All other search operators have probability

values of zero. The second design, Static-Ops 10, uses all ten search operators listed in

Table 3-3 with equal probability {P = 0.1).

3.3.2 Results and Discussion

3.3.2.1 General Performance Statistics

This section attempts to draw general conclusions about the performance of the adaptive

EA designs tested in these experiments. The first statistic in column two of Table 3-5 states

the percentage of problems that an EA was found to be the best algorithm out of those

tested. The second statistic in the third column states the percentage of problems where an

EA found the best solution in at least one its runs. These two statistics evaluate final

algorithm performance, however it is also useful to make statements about performance at

other timescales. To address this. Figure 3-13 presents general algorithm performance as a

function of time.

Chapter 3: Adaptation of EA Design

Table 3-5 Overall performance statistics for each of the adaptive and non-adaptive EA designs. Column two
measures the percentage of problems where an EA design was the best EA design (comparisons based on median
objective function value). Column three measures the percentage of problems where an EA design was able to find
the best solution at least one time. The best solution is deflned as the best found in these experiments and is not
necessarily the global optimal solution.

EA Design % of problems where EA EA Design
was best design found best

I(median)-Pursuit 10.4% 40%
I(parent)-Pursuit 2.9% 35%
I(rank)-Pursuit 7.9% 40%
I(median) 4.5% 55%
I(parent) 12.9% 45%
I(rank) 9.5% 45%
ETV-Outlier 27.0% 90%
ETV 15.4% 35%
Static-0ps2 3.0% 15%
Static-Ops 10 6.6% 45%

Based on these general performance statistics, some important conclusions can be drawn.

First, it is clear that the two operator EA design with static search operator probabilities

(Static-0ps2) performs very poorly on almost every test function. This is a significant

conclusion since the two operator non-adaptive EA is by far the most commonly used EA

design. By simply including more operators without even tuning (or adapting) the

probability parameters, it is found that substantial performance improvements occur.

Adding adaptive mechanisms for tuning the probability parameters provides significant

performance improvements although the best adaptive method is problem specific. It is

important to notice that while as a class, adaptive methods were more than twice as likely

to be the best design for a given problem (compared to the non-adaptive EA designs), no

single adaptive method was strongly favored over all others. However, it is still somewhat

impressive that the ETV-Outlier adaptive method is found to be the best design on 27% of

the test functions while the average for all other adaptive methods was 9.1%. It is also

worth pointing out that the next best adaptive method, ETV, was the best design only

15.4% of the time.

If one is more interested in an algorithm's ability to find good solutions over multiple runs,

then much stronger conclusions can be made from these results. From column three of

Table 3-5, one can see that the ETV-Outlier method is able to find a best solution in 18 of

Chapters: Adaptation of EA Design

the 20 problems tested while the second best algorithm, I(median), only finds a best

solution 55% of the time.

Finally, if one is concerned with performance at different time scales, it is also clear that the

ETV-Outlier adaptive method exhibits strong performance throughout the 3000 generations

tested and that the non-adaptive method, Static-0ps2, exhibits poor performance

throughout the 3000 generations tested. It is also interesting to note in Figure 3-13 that two

of the three adaptive methods employing the adaptive pursuit strategy are no better (on

average) than the non-adaptive EA design, Static-Ops 10.

70

^50
c s.

3 0

10

\ /

- ^ — - - • _ ^ . - ^ * - -* ^ —•»—— _ —= _ ia—— i — — m — " — — * * — ^

\ *

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV
- Static-0ps2

Static-Ops 10

500 1000 1500 2000 2500 3000

Gen

Figure 3-13 General algorithm performance for both adaptive and non-adaptive EA designs shown as a function
of the number of generations (Gen) of evolution. In order to aggregate performance data from different test
functions, it was necessary to deal with differences in fitness scaling. This was addressed by using the following
ranking procedure. Each algorithm is run 20 times on each test function listed in Table 3-2. At a given generation,
every EA run is ranked among all runs conducted on that test function (with a higher ranking being better). The
median rank of each EA design is then calculated for each test function. Finally, these median ranks are averaged
over all test functions and plotted against the number of generations (Gen).

More detailed performance results for individual test functions are broken down into three

parts. In Section 3.3.2.2, the results from a selected set of artificial test functions are

analyzed in detail with the goal of understanding the relationship between search operator

probability profiles and algorithm performance. In Section 3.3.2.3, performance on the

remaining artificial test functions is presented and briefly described. Finally, Section

3.3.2.4 looks at algorithm performance on a selected set of engineering design problems.

Chapter 3: Adaptation of EA Design

3.3.2.2 Operator Probability Profile Analysis

The optimal features of a search operator probability profile are generally not known,

however it is possible to venture a few educated guesses as to what such a profile might

look like. First, the adaptive method should recognize those search operators which are not

at all effective as a means of searching the fitness landscape. For those operators, it is

desirable to keep their probability values very close to Pmin (i e. the smallest allowed value).

Although it is unknown which operators are suited for a particular problem, it is believed

that the range of search operators used in these experiments (listed in Table 3-3) is broad

enough so that at least one or more operators are not suited for each problem.

Also, as evolution proceeds, one can expect that the ruggedness and other fitness landscape

characteristics will change as the population occupies different regions of parameter space.

Hence one would expect that, on some problems, an adaptive method should modify which

search operators it prefers as it adapts to changes in the environment. For some artificial

test functions, the fitness landscape is fairly well understood and this knowledge is used in

the following section to assess each of the adaptive methods.

The Rosenbrock, Schwefel, Griewangk, and Ackley test functions have been selected for

this analysis. Search operator probability profiles are taken from the same experiments

used to generate the performance results. The probability values that are shown for each

search operator represent the median value from 20 experimental replicates.

3,3,2.2.1 Rosenbrock Test Function

The Rosenbrock test function is a smooth unimodal test function with the global optimum

residing inside a long and narrow parabolic shaped valley as seen in Figure 3-14. Since the

landscape is smooth and unimodal, finding the valley is trivial, however the curvature of

the valley makes convergence to the global optimum slow and difficult. In most runs the

population tends to gather along the bottom of the valley then follow it towards the bottom.

Search operators which exhibit hill climbing behaviors are expected to be more effective in

this fitness landscape since the problem is unimodal. The extended-line operator,

differential evolution, and Wright's heuristic crossover all have hill climbing characteristics

(similar to directed search) so one would suspect these to be favored over the other

Chapter 3: Adaptation of EA Design

operators. Gene swapping operators like single point crossover, uniform crossover, and

swap are not expected to perform well.

variable 2 0.5 0 .5 variable 1 v»ri<ibie2 0.5 0 5 variaWe 1

variable 1 vaiiabte 1

Figure 3-14 Rosenbrock fitness landscape shown in a two dimensional parameter space. The two bottom graphs
are shown for variable 1 and variable 2 varying over the entire parameter range [-2,2]. Graphs on the top focus on
the parameter region containing the global optimum. The two graphs on the left show a restricted range of
objective function values (vertical axis) to help in visualizing the fitness landscape. Images were kindly provided
by Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images
can also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637.

For many of the adaptive methods presented in the figures below, Wright's heuristic

crossover and extended line crossover are strongly favored over other search operators.

These operators act as interpolation and extrapolation search actions (resp.) which are

biased towards the more fit parent making them quite effective on smooth landscapes like

Rosenbrock. It is also noticed that the differential evolution operator and BLX are also

favored, although to a lesser extent.

For the adaptive methods I(rank) and ETV, there is very little difference between search

operator probabilities. These are also the two worst adaptive methods for this problem as

Chapter 3: Adaptation of EA Design

seen in Figure 3-15. On the other hand, I(median) and ETV-Outlier find the greatest
differences between search operator probabilities. These are also two of the three best
adaptive methods for this problem. These results taken together (particularly methods ETV
and ETV-Outlier) indicate that poor measurement interpretations can prevent adaptive
methods from making important distinctions between operators.

It is also worth noting that there exists a form of symmetry in the Rosenbrock fitness
landscape which causes the environment to be approximately stationary during most of
evolution. As a consequence, one would expect the same search operators to be
consistently preferred throughout the run. It is noticed however that for two of the three
adaptive methods employing the adaptive pursuit strategy, very little consistency is present
in the selection of search operators and in fact the operator profiles appear quite chaotic.
This behavior is a general characteristic of the adaptive pursuit strategy which is repeatedly
seen in the other test functions analyzed in this section. These two methods also seem to
suffer in performance compared with their less chaotic cousin, I(median)-pursuit, as seen in
Figure 3-15.

Rosenbrock
0.01

1E-05
1E-08

1E-11

1E-14
1E-17
1E-20

1E-23
1E-26

1E-29
1E-32
1E-35

"5(3D - -190&« - 1500 , ^OQO, . 2 ^ . _ 3_000
-

^ —
— - - — I

\ - -

Gen

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-15 Performance of adaptive and non-adaptive EA designs on the Rosenbrock test function. The global
optimal solution is F=0. The optimal F value can not be shown due to log scaling on the F axis so performance
profiles are seen to terminate when the global optima is reached.

Chapter 3: Adaptation of EA Design

1.00 1.00
l (m e d i a n)

0.10

0.01

1.00
200(

l (paren t) -Pursu i t

I I

0.10
I ff

I

T T T

I ^

H l"
•l f"

I .1

^ T . I i "

0.01

0.10

500 1000 1500 200(
0.01

I (pa rent)

i
%l ^ * ^ -p"

500 1000 1500 200(

- - - Single Point X - • " - Extended Lin X Wright's X " - - Uniform X - - -BLX-0.2

- - - D E • - Swap - - Raise " - -Creep Mutation

Figure 3-16 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(median), I(parent)-
Pursuit, and I(parent) on the Rosenbrock test function. Probability values are shown on a logarithmic scale over
the first 2000 generations of evolution.

Chapter 3: Adaptation of EA Design

1.00

0.10

0.01

1.00

i(rank)-Pursuit
1.00

: -
h ' - • " v l ' '

0.10

l(rank)

g * • * •< «1 • * 1 HI *
r r * — w — i ? — - % ^ * • ^ > «.

•• •• ^ - - V *

200(

0.10

0.01 0.01
200(0 500 1000 1500 200(

- - - Single Point X - • • - Extended Lin X Wright's X " ~ - Uniform X - - -BI-X-0.2

- - - D E ' - Swap • • Raise " "Creep Mutation

Figure 3-17 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and
ETV on the Rosenbrock test function. Probability values are shown on a logarithmic scale over the first 2000
generations of evolution.

3,3.2.2,2 Schwefel Test Function

The Schwefel test function has a multimodal fitness landscape as seen in Figure 3-18.

Local optima are distributed throughout parameter space with many containing fitness

values that are similar to the global optima making the problem challenging.

Chapter 3: Adaptation of EA Design

500

variable 1 300 300 variable 1

1000

g -500

variable 2 -500
-400

1000x

variable 1

-300

-500 -500 variable 1

1000x

500

Figure 3-18 Schwefel fitness landscape shown in two dimensions of parameter space. The landscape is shown for
variable 1 and variable 2 varying over different parameter ranges. The entire range is shown in the bottom graph
with each parameter varying over [-500,500]. The vertical axis shows the objective function value (minimization)
with the global optimal solution located at the origin of parameter space. Images were kindly provided by
Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can
also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637.

For the adaptive methods that can make clear distinctions between search operators, it

appears that two general trends occur. In the first trend, which is observed in I(median),

I(parent) and I(rank), it is found that the creep operator is consistently preferred throughout

the span of evolution. These methods also demonstrate poor performance on this test

function.

Chapter 3: Adaptation of EA Design

The second general trend is seen in I(rank)-pursuit, ETV-Outlier and to a lesser extent in

I(median)-pursuit. For these methods, the creep operator is strongly favored initially but in

the later stages of evolution, operators with hill climbing characteristics (Wright's heuristic

crossover, extended line crossover, differential evolution) are found to be strongly favored.

This behavior is most clearly visible in the search operator probability profile for the ETV-

Outlier adaptive method. The three adaptive methods that exhibit this second trend in

behavior also have the best performance as seen in Figure 3-26.

Schewfel
0.1

0.01

^ — — i iSr- 500 1000

1 t - V A T : ^

1500 2000 2500 3000

0.001 -

\ ^ - -» ^ - - %

Ps

0.0001
Gen

- -I(median)-Pursuit

- -I(parent)-Pursuit

l{rank)-Pursuit

- - l(median)

- - l(parent)

- - l(rank)

- -ETV-Outlier

- -ETV

- - Static-0ps2

Static-Ops 10

Figure 3-19 Performance of adaptive and non-adaptive EA designs on the Schwefel test function. The global
optimal solution is at F=0.

Chapter 3: Adaptation of EA Design

1.00
i(median)-Pursuit

0.10

•ft
1

' * I' % . * ^

h
«1

0.01

1.00

1.00
l(medianj

0.10

500 1000 1500 2000

0.10

0.01

0.01

1.00
500 1000 1500 2000

0.10

l(parent)

500 1000 1500
0.01

2000 0 500 1000 1500 2000

- - - Single Point X - • • - Extended Lin X Wright's X - - - Uniform X - - - BLX-0.2

- - - D E " - Swap - - Raise - - - C r e e p Mutation

Figure 3-20 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on the Schwefel test function. Probability values are shown on a logarithmic scale over the
first 2000 generations of evolution.

Chapter 3: Adaptation of EA Design

1.00

0.10

0.01

1.00

1.00
i(rank)

0.10 * ^ g ^ •> S • S S s 9

0.01
500 1000 1500

0.10

0.01

ETV-Outlier

2000 0
1.00

500 1000 1500 2000

Xt

IL •
« ^

0 .10 1 i

0.01
500 1000 1500 2000 500 1000 1500 2000

- - - Single Point X - • • - Extended Lin X Wright's X - - - Uniform X - - -BLX-0.2

- - -DE • - Swap " " Raise • " "Creep Mutation

Figure 3-21 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and
ETV on the Schwefel test function. Probability values are shown on a logarithmic scale over the first 2000
generations of evolution.

3.3.2.2 J Griewangk Test Function

From Figure 3-22a, one can see that the fitness landscape for the Griewangk test function is

smooth at large parameter scales. With the initial EA population randomly distributed

throughout parameter space, it is expected that interpolative actions would be particularly

useful in the early stages of evolution. However, as the population converges to a more

localized region of parameter space, the landscape becomes very rugged as evidenced by

the peaks in Figure 3-22b. Under these conditions, less exploitive operators are expected to

be useful such as uniform crossover and BLX. Finally, when the population eventually

Chapter 3: Adaptation of EA Design

converges to a single peak like one of those shown in Figure 3-22c, the landscape again

becomes smooth so that highly exploitive operators are expected to again be preferred.

veM'table 2 var iab te 1

Figure 3-22 Griewangk fitness landscape shown in two dimensions of parameter space, a) The landscape is shown
for variable 1 and variable 2 varying over their complete range [-500,500]. b) The landscape is shown for variable
1 and variable 2 varying over the range [-50,50]. c) The landscape is shown for variable 1 and variable 2 varying
over the range [-8,8]. The vertical axis shows the objective function value (minimization) with the global optimal
solution located at the origin of parameter space. Images were kindly provided by Hartmut Pohlheim and were
generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be found at
http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637.

As anticipated, many of the adaptive methods initially prefer Wright's heuristic crossover

which indicates an ability to exploit global landscape features (This is most notably seen in

the ETV-Outlier method). However, most adaptive methods are not able to distinguish

between search operators throughout the rest of the run. But notice in Figure 3-23 that

most adaptive methods stop improving within the first 500 generations meaning that

operator adaptation was only significant to performance during this initial phase of

evolution.

Although speculative, it is possible that the ETV-Outlier adaptive method was best able to

initially exploit global landscape characteristics but that this also helped to expedite

population convergence and ultimately was detrimental to final performance of the

Chapter 3: Adaptation of EA Design

algorithm. Considering that adaptation can only take into account performance data over

short time scales, one might suspect that for some problems, an effective adaptive

mechanism can actually impair algorithm performance. For the Griewangk test function,

some of the least adaptive methods (e.g. Static-Ops 10, I(rank), ETV) also have the best

performance which seems to support this claim.

0.1

0.09

0.08

0.07

F 0.06

0.05

0.04

0.03

0.02

Griewangk

Si
l i "

^ m m m

% . . - B
—«—B • m m m ^ m m tf m ^m

% • ^

0 500 1000 1500 2000 2500 3000
Gen

- - l(median)-Pursuit

- - l(parent)-Pursuit

l(rank)-Pursuit

- - l(median)

- - l(parent)

- -l(rank)

- -ETV-Outlier

- -ETV

- - Static-0ps2

Static-Ops 10

Figure 3-23 Performance of adaptive and non-adaptive EA designs on the Griewangk test function. The global
optimal solution is at F=0.

Chapters: Adaptation of EA Design

1.00

0.10

0.01
0 500 1000 1500

1.00

0.10

0.01

l (paren t) -Pursu i t

I f * ' i " * • • » ' 1 1

500 1000 1500

1.00

0.10

2000
0.01

1.00

l (m e d i a n)

• # 1

I
• • a . 1 • J a . 1 B . I • 1 M l m. 1 • 1 > . . 1 • J I

500 1000 1500 2000

l (parent)

0.10 - f # * 1»—-—^ , ** »

^ ^ ^ • m m ^ m

0.01
2000 0 500 1000 1500 2000

- - - Single Point X - - - Extended Lin X Wright's X - - - Uniform X - - -BLX-0.2

- - - D E - - Swap - - Raise - - -Creep Mutation

Figure 3-24 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on the Griewangk test function. Probability values are shown on a logarithmic scale over
the first 2000 generations of evolution.

Chapter 3: Adaptation of EA Design

1.00

0.10

0.01

1.00

1.00

0.10

0.01

1000 1500 2000 0

1.00

500 1000 1500 2000

ETV-Out l ier

0.10 ^ ^ » y j
i u % t •

I ^ ^

0.01

0.10

500 1000 1500
0.01

2000 0 500 1000 1500 2000

- - - Single Point X - - - Extended Lin X Wright's X - - - Uniform X - - -BLX-0.2

- - - D E • • Swap - - Raise - - -Creep Mutation

Figure 3-25 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and
ETV on the Griewangk test function. Probability values are shown on a logarithmic scale over the first 2000
generations of evolution.

3J,2,2,4 Ackley's Path Function

With Ackley's path function, the fitness landscapes is smooth on a global scale as seen in

Figure 3-26a, however once within the region containing the global optima, the landscape

becomes increasingly rugged as seen in Figure 3-26b. As a result, one might expect some

exploitive search operators would be initially beneficial, however as the basin of attraction

for the global optima is discovered, more explorative search operators would then become

more useful. Also, since a large attractor is located in the center of parameter space, one

Chapter 3: Adaptation of EA Design

would expect that an interpolation operator like Wright's heuristic crossover will be

initially very effective.

variable 2 variable 1 variable 2 - 2 - 2 variable 1

Figure 3-26 Ackley's fitness landscape shown in two dimensions of parameter space, a) The landscape is shown
for variable 1 and variable 2 varying over their complete range [-30,30]. b) The landscape is shown for variable 1
and variable 2 varying over the range [-2,2]. The vertical axis shows the objective function value (minimization)
with the global optimal solution located at the origin of parameter space. Images were kindly provided by
Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can
also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637.

For the three best adaptive methods shown in Figure 3-27, I(median)-pursuit, I(median),

ETV-Outlier, and to a lesser extend with I(rank)-pursuit, there appears to be a very brief

initial phase (20 to 100 generations) where an exploitive operator is preferred (either

differential evolution or Wright's heuristic crossover). The fact that this period is

extremely brief is not surprising since all methods reach objective function values of F <

10 in the first 50 generations which indicates that the population has already converged to

the parameter region shown in Figure 3-26b. Next, a slightly longer phase (200 to 400

generations) is observed where more explorative gene swapping operators are preferred.

Finally, for the last 500 to 700 generations before reaching the global optimal solution, the

best adaptive methods again prefer highly exploitive search operators (Wright's heuristic

crossover, extended line crossover, differential evolution). These changes in search

operator preferences during evolution are believed to accurately reflect changes in the

environment and are most clearly seen in the adaptive methods I(median) and ETV-Outlier.

Chapter 3: Adaptation of EA Design

10

0.1

0.001

1E-05

1E-07

1E-09

1E-11

1E-13

1E-15

1E-17

Ackley's Function

I gpoi - -^1000^ ^ 1500 2000 2500 3COO

11 - - t . . .

T-i—m—r
^ »

\ „

II "
% •

Gen

• l(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(nnedian)

- I(parent)

- I(rank)

- ETV-Outlier

- E T V

- Static-0ps2

Static-Ops 10

Figure 3-27 Performance of adaptive and non-adaptive EA designs on Ackley's Path Function. The global optimal
solution is at F=0. The optimal F value can not be shown due to log scaling on the F axis so performance profiles
are seen to terminate when the global optima is reached.

Chapter 3: Adaptation of EA Design

1.00

0.10

l(median)-Pursuit

I - »

n ; } S

0.01
0

1.00

1.00

0.10

0.01

l(median)

* — r - ^ — ^ ^

I
1
»

V i

- iu'^^.l

500 1000 1500 2000 g

1.00
l(parent)-Pursuit

0.10

• - v

I

f •

0.10

» » . f" * . I

0.01 4-
0

500 1000 1500 2000

l(parent)

* # -
I

V .. ^ - ^ - J \ %

500 1000 1500
0.01

2000 0 500 1000 1500 2000

- - - Single Point X - • " - Extended Lin X Wright's X • - - Uniform X - - -BLXrO.2

- - - D E • -Swap - - Raise - - -Creep Mutation

Figure 3-28 Search operator probability profiles for adaptive methods I(inedian)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on Ackley's test function. Probability values are shown on a logarithmic scale over the first
2000 generations of evolution.

Chapter 3: Adaptation of EA Design

1.00

0.10

0.01

1.00

l(rank)-Pursuit

1

V • • ; i i V ' "

1.00

0.10

0.01

0.10

0.01

500 1000 1500 2000 o

1.00
ETV-Outlier

500 1000 1500 2000

- - - - - - - - •

V
^ - J-

0.10

500 1000 1500
0.01

2000 0 500 1000 1500 2000

- - - Single Point X - • • - Extended Lin X Wright's X " - -UniforniiX - - -BLX-0.2

- - - D E • • Swap • " Raise " " "Creep Mutation

Figure 3-29 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and
ETV on Ackley's test function. Probability values are shown on a logarithmic scale over the first 2000 generations
of evolution.

3.3.2.3 Performance Results on Artif icial Test Functions

For many of the artificial test functions presented in this section, the ETV-Outlier adaptive

method is found to perform strongly throughout the 3000 generations considered.

Performance statistics provided in Table 3-6 also demonstrate superior final performance

from the ETV-Outlier method for this set of test functions. Even for problems where the

method does not clearly dominate, it generally was able to perform at least as well as the

other EA designs. It is interesting to note that ETV-Outlier shows its worst performance on

Chapter 3: Adaptation of EA Design

the most deceptive problem, MMDP. Performance graphs are presented roughly in the

order of best to worst performance for the ETV-Outlier method.

The non-adaptive EA with two search operators, Static-0ps2, is often found to be

significantly worse than all other algorithms. Also, it is interesting to note that the adaptive

method ETV has nearly identical performance to Static-Ops 10 for every problem. This

result should not be surprising considering that ETV (without Outlier interpretation) has

little ability to distinguish between search operators, as was indicated in the previous

section.

Table 3-6 Overall performance statistics for each of the adaptive and non-adaptive EA designs run on the artificial
test functions. Column two measures the percentage of problems where an EA design was the best EA design
(comparisons based on median objective function value). Column three measures the percentage of problems
where an EA design was able to find the best solution at least one time. The best solution is defined as the best
found in these experiments and is not necessarily the global optimal solution. Results for the non-adaptive EA
designs are shown in the bottom two rows while the rows labeled as ETV and ETV-Outlier show results for the
new adaptive methods developed in this thesis.

EA Design % of problems where EA EA Design
was best design found best

I(median)-Pursuit 16.7% 46.2%
I(parent)-Pursuit 2.6% 38.5%
I(rank)-Pursuit 12.8% 38.5%
I(median) 15.4% 61.5%
I(parent) 0.0% 38.5%
I(rank) 7.7% 46.2%
ETV-Outlier 29.5% 92.3%
ETV 7.7% 30.8%
Static-0ps2 0.0% 7.7%
Static-Ops 10 7.7% 38.5%

Chapter 3: Adaptation of EA Design

100

1

0.01

0.0001

_ 1E-06

1E-08

1E-10

1E-12

1E-14

1E-16

System of Linear Equations

»=• r
JL

.1500 2000
- - t - J " * - - » - «

2500 3C00

«- r- r-

Gen

• l(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

-ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-30 Performance of adaptive and non-adaptive EA designs on the System of Linear Equations test
function. The global optimal solution is at F=0.

Quadratic

1E-50
1E-74
1E-98

1E-122
F 1E-146

1E-170
1E-194
1E-218
1E-242
1E-266
1E-290

- g a s i s s s x " " " ' r r r T " " r " " i
1E-26 — ^ Z ^ m Z ¿ o f i tfOCgli i i ^ ^ O g ^ ¿^3^0

• r

Gen

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-31 Performance of adaptive and non-adaptive EA designs on the Quadratic test function. The global
optimal solution is at F=0.

Chapter 3: Adaptation of EA Design

Watson's

0 500 1000 1500 2000 2500 3000
Gen

Figure 3-32 Performance of adaptive and non-adaptive EA designs on Watson's test function. The global optimal
solution is at F=2.288E-3.

Neumaier's Function #2

3.99

3.98

F 3.97

3.96

3.95

3.94

A I " !
T X
VJ
7 . .
' i d

tt'
k t

v : .

500 1000 1500
Gen

2000 2500 3000

- - l(median)-Pursuit

- - l(parent)-Pursuit

l(rank)-Pursuit

- - l(median)

- - l(parent)

- -l(rank)

- -ETV-Outlier

- - E T V
- -Static-0ps2

Static-Ops 10

Figure 3-33 Performance of adaptive and non-adaptive EA designs on Neumaier's function #2. The global optimal
solution is unknown (see Appendix A).

Chapter 3: Adaptation of EA Design

Colville's
1

0.01

0.0001

1E-06

1E-08

F 1E-10

1E-12

1E-14

1E-16

1E-18

1E-20

" S P G - ' l e O i V .

— — - f i — m .

J15QQ J J ^ 2500 3000

s M——m m.

- - - £ ^ r

Gen

- I(median)-Pursuit

-l(parent)-Pursuit

l(rank)-Pursuit

- I(meclian)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-34 Performance of adaptive and non-adaptive EA designs on Colville's test function. The global optimal
solution is at F=0.

1

0.01

0.0001

1E-06

1E-08

F 1E-10

1E-12

1E-14

1E-16

1E-18

1E-20

Bohachevsky's

iV^ 500 IDQQ 15QQ ^ 2000 2500 3C00

Gen

• l(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-35 Performance of adaptive and non-adaptive EA designs on Bohachevsky's test function. The global
optimal solution is at F=0.

Chapters: Adaptation of EA Design

Rastrigin
1.E+01

1.E+00

1.E-01 i

1.E-02

1.E-03

F 1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

1.E-09

^ j f e ^ f i f i ^ Q P - gOQO .25ÛCL MOO

• • • - ,
V - -
^ • p • '

^ • «

Jf JB> Jß

Gen

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

- E T V

- Static-0ps2

Static-Ops 10

Figure 3-36 Performance of adaptive and non-adaptive EA designs on the Rastrigin test function. The global
optimal solution is at F=0.

30-D Hyper Ellipsoid
1.E+02

1.E+01

1.E+00

1.E-01

1.E-02

F 1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

1000 1500 '20DQ" - 25Q& - iCOO

V -,

* % ^ ft ^ • _

Gen

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

-Static-Ops 10

Figure 3-37 Performance of adaptive and non-adaptive EA designs on the 30-D Hyper Ellipsoid test function. The
global optimal solution is at F=0.

Chapter 3: Adaptation of EA Design

MMDP

4

F 3

2

1

0

I
•>• • V»

^ V

500 1000 1500
Gen

2000 2500 3000

- - l(median)-Pursuit

- -I(parent)-Pursuit

l(rank)-Pursuit

- - l(median)

- - l(parent)

- -l(rank)

- -ETV-Outlier

- -ETV

- -Static-0ps2

Static-Ops 10

Figure 3-38 Performance of adaptive and non-adaptive EA designs on the Massively Multimodal Deceptive
Problem (MMDP). The global optimal solution is at F=0.

3.3.2.4 Performance Results on Engineering Design Problems

Experiments are also conducted on a number of engineering design problems (and other

application-inspired test functions) in order to gauge the effectiveness of the adaptive

methods on practical optimization problems. Each of these problems are described in detail

in Appendix A.

Table 3-7 Overall performance statistics for each of the adaptive and non-adaptive EA designs run on the
engineering design problems. Column two measures the percentage of problems where an EA design was the best
EA design (comparisons based on median objective function value). Column three measures the percentage of
problems where an EA design was able to find the best solution at least one time. The best solution is defined as
the best found in these experiments and is not necessarily the global optimal solution.

EA Design % of problems where EA EA Design
was best design found best

I(median)-Pursuit 0.0% 28.6%
I(parent)-Pursuit 4.8% 28.6%
I(rank)-Pursuit 0.0% 42.9%
I(median) 0.0% 42.9%
I(parent) 33.3% 57.1%
I(rank) 0.0% 42.9%
ETV-Outlier 33.3% 85.7%
ETV 21.4% 42.9%
Static-0ps2 7.1% 28.6%
Static-Ops 10 0.0% 57.1%

Chapter 3: Adaptation of EA Design

The results from these experiments are noticeably different from results on the artificial test

functions. Comparing the "best design" column of Table 3-7 and Table 3-6, it is interesting

to note that three of the four algorithms that perform best on the artificial test functions are

now the worst algorithms for the engineering problems. On the other hand I(parent), which

is tied as the worst method in the artificial test functions, is now tied with ETV-Outlier as

the best method for the engineering problems. In the face of these strong reversals in

algorithm performance, it is worth noting that ETV-Outlier maintains its status as the best

algorithm in both sets of test problems. Similar behavior is observed with the performance

metric in the third column of the same tables, however the performance reversals are not as

pronounced in this case.

It is also worth mentioning that the non-adaptive methods faired better on the engineering

problems, especially in their ability to find the best solution to a problem at least one time

(i.e. the "found best" metric). In fact, Static-Ops 10 is tied for being the second best

algorithm for this performance metric.

Chapter 3: Adaptation of E A Design

Turbine Power Plant
3.06

3.058

3.056

3.054

3.052

3.05

1 ^ * —

H i
I ' »

1 3 %

^ \

—. » "

* - - % t

%
\

500 1000 1500
Gen

2000 2500 3000

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-39 Performance of adaptive and non-adaptive EA designs on the Turbine Power Plant Problem. The
global optimal solution is at F=3.05.

1.9

1.88
1.86

1.84

1.82

1.8

1.78

1.76

1.74

1.72

Welded Beam Design

I V J I

\ • » ' 1 ». ^ af ^ •

«O ir»

0 500 1000 1500
Gen

2000 2500 3000

-l(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-40 Performance of adaptive and non-adaptive EA designs on the Welded Beam Design problem. The
global optimal solution is unknown.

Chapter 3: Adaptation of EA Design

0.0135

0.0134

0.0133

0.0132

0.0131

0.013

0.0129 -h

0.0128

0.0127

0.0126

Tension Compression Spring

t ^

" K - i i

0 500 1000 1500
Gen

2000 2500 3000

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- Kmedian)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-41 Performance of adaptive and non-adaptive EA designs on the Tension Compression Spring problem.
The global optimal solution is unknown.

Gear Train Design
1.E-09

i r . ^ 5 0 0 - -10D0" - 4500 - -2000 - " - J lpOl 1 !S100 It • I
i I

%

• t . . .
I »

» -
%

1 a M a a •

1.E-10
Gen

- I(meclian)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

- Static-0ps2

Static-Ops 10

Figure 3-42 Performance of adaptive and non-adaptive EA designs on the Gear Train Design problem. The global
optimal solution is F=2.70 xlO"'^

Chapter 3: Adaptation of EA Design

MTTP
100000

10000

1000

100

10

1

\ txTJ

500 1000 1500
Gen

2000 2500 3000

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(median)

- I(parent)

- I(rank)

- ETV-Outlier

-ETV

-Stat ic-0ps2

Static-Ops 10

Figure 3-43 Performance of adaptive and non-adaptive EA designs on the Minimum Tardy Task Problem
(MTTP). The global optimal solution is F=0.

20

19

18

17

F 16

15

14

13

12

Frequency Modulation

Uk
• . A •

0 500 1000 1500 2000 2500 3000
Gen

- - l(median)-Pursuit

- - l(parent)-Pursuit

l(rank)-Pursuit

- - l(median)

- - l(parent)

- - l(rank)

- -ETV-Outlier

- -ETV

- -Stat ic-0ps2

Static-Ops 10

Figure 3-44 Performance of adaptive and non-adaptive EA designs on the Frequency Modulation problem. The
global optimal solution is F=0.

Chapter 3: Adaptation of EA Design

0.005

0.0045

0.004

0.0035

F 0.003

0.0025

0.002

0.0015

0.001

ECC

r - - • -

: - - - -
\ J?" ^ • IT « i

— - J
^ • •

500 1000 1500
Gen

2000 2500 3000

- I(median)-Pursuit

- I(parent)-Pursuit

l(rank)-Pursuit

- I(meclian)

- I(parent)

- I(rank)

- ETV-Outlier

- E T V

- Static-0ps2

Static-Ops 10

Figure 3-45 Performance of adaptive and non-adaptive EA designs on the Error Correcting Code (ECC) problem.
The global optimal solution is F=0.

3.3.3 Discussion and Conclusions

A number of important conclusions can be drawn from the results in this chapter which are

highlighted below and discussed within the context of EC research.

Keys to Effective Adaptation of Search Operators: Some useful conclusions can be

drawn about the characteristics of an effective adaptive procedure based on the probability

profile analysis from Section 3.3.2.2. From this analysis, it is concluded that an effective

adaptive method is one that 1) is able to select appropriate operators for exploiting the

features of a given fitness landscape, 2) changes only in response to environmental changes

and 3) is able to resolve the "right amount" of difference in the search operator usage rates.

Such a description of an effective adaptive method is not surprising however what is

surprising is that very few of the adaptive methods were able to exhibit these behaviors.

For example, adaptive methods using the adaptive pursuit strategy almost always created

erratic probability profiles with changes in operator preference that did not reflect changes

in the environment. Although these methods generally failed at condition 2, they were still

able (in most cases) to select appropriate operators for traversing the landscape (thereby

satisfying condition 1).

Chapter 3: Adaptation of EA Design

When the ETV adaptive method was used without Outlier interpretation, it was very poor at

resolving differences between search operators (i.e. it does not satisfy condition 3). This is

not surprising given the ETV distribution results (e.g. see Figure 3-8) which have indicated

that the ETV measurement is, on average, very similar for each event. Nor was it

surprising that for a number of problems, its performance was very similar to that observed

with Static-Ops 10 (where all search operators are used with equal probability). However,

when the ETV-Outlier method was used, large differences in probability values were

resolved between the operators (satisfying condition 1). This adaptive method exhibited

strong responses to changes in the environment (satisfying condition 2) yet these transitions

were largely non-existent in many of the other adaptive methods. Finally, the superior

performance of the ETV-Outlier method provides evidence that it also satisfies condition 3.

It is argued that the ETV-Outlier method exhibited this set of behaviors because of its

ability to focus solely on important events when making decisions of which operators to

prefer. This requires both an accurate measure of an event's importance (provided by

ETV) and the ability to filter out events that represent neutral interactions between the

adaptive system and its environment (provided by Outlier interpretation).

Performance Sensitivity to Test Function and NFL Implications: Algorithm

performance depended strongly on the set of test functions being considered. Many

adaptive methods performed well on the first set of problems but were very bad on the

second set (and vice versa). This did not occur nearly as much with ETV-Outlier which

was unexpected. This adaptive method performed significantly better than the other

adaptive and non-adaptive methods, although there were rare instances where this was not

the case. It has been argued in this chapter that the ETV-Outlier method is an effective

adaptive procedure which implies that it is able to exploit landscape features for short-term

performance gains.

However, it is worth pointing out that short-term performance gains do not guarantee long-

term performance gains for certain fitness landscapes, particularly those with deceptive

features. Indeed, it is speculated that deceptive landscape features can prevent an otherwise

effective adaptive method from providing long term benefits to the performance of an

optimization algorithm. Some evidence of this may actually be seen in the results on the

Chapter 3: Adaptation of EA Design

Massively Multimodal Deceptive Problem (MMDP) where the ETV-Outlier method's
performance is particularly poor.

In a sense, this suggested tradeoff between short and long-term performance could be
demonstrating some form of NFL-related limitations that are expected to occur with any
solver. However, it is also postulated here that the subset of real-world problems, similar to
the artificial ones selected for these experiments, are actually a biased sampling from the
space of all possible fitness landscapes and as such will display certain landscape features
more often than others. For example, the subset of real-world problems is expected to be
dominated by correlated versus uncorrected and deceptive landscape characteristics [30].
Under these assumptions, exploitive adaptive mechanisms such as the ETV-Outlier could
be expected to work fairly well in many optimization problems as is evidenced to some
degree in this thesis. On the other hand, a real-world problem's fitness landscape is not
necessarily defined as being either deceptive or not deceptive. Instead, it is expected to
have varying degrees of both features, which suggests that's a robust search process should
be able to maintain high levels of both explorative and exploitive behaviors within a single
search process. Such behaviors are not explicitly accounted for within the ETV-Outlier
adaptive method nor has this issue been adequately addressed elsewhere in the adaptive
literature.

As previously implied, it is possible that an adaptive method could actually be detrimental
to a search algorithm within certain contexts. To adequately assess potential shortcomings,
it is not only necessary to test the adaptive mechanism on a diverse set of fitness landscapes
but also important to test a diverse range of search operators. By including highly
exploitive search operators for instance, it is possible to see if exploitive behavior will work
against the adaptive method (e.g. by encouraging premature convergence within
multimodal fitness landscapes). This was accounted for in this thesis by creating the highly
exploitive swap and creep operators which were included in the list of search operators
used by the adaptive methods within this chapter. A possibly better test of an adaptive
mechanism's limitations might be to include local search operators which involve a greedy
and more exploitive multi-step search within a single operator.

Although the conditions tested in this thesis did not appear to expose particular weaknesses
in the ETV-Outlier method, this does not mean that this adaptive method can fully address

Chapter 3: Adaptation of EA Design

the tradeoff between short and long-term performance in all problems. Ultimately, this

tradeoff can only be dealt with by using either an iterative search which learns about the

fitness landscape or possibly by extending the timescale of fitness measurements which are

used by the adaptive method (thereby making the timescale for short-term performance

gains not as short). Considering that the ETV measurement itself can take multiple

generations to calculate (compared to a single function evaluation for other adaptive

methods) it is possible that this longer measurement time scale is a contributor to ETV's

exceptional performance.

Comparing ETV and fitness measurements: The Event Takeover Value or ETV has

been put forth as a method for measuring an individual's impact on population dynamics.

Comparisons between ETV and fitness-based ranking measurements have shown that a

correlation does exist however the scaling and distribution of the measurements is

dramatically different. Most importantly, it was found that very few individuals have any

significant impact on population dynamics. This was interpreted to mean that most

interactions between the adaptive system and its environment are effectively neutral. This

conclusion fits well with observations of other adaptive systems in nature and it is possible

that power law scaling (see Figure 3-8) is a general feature of interactions between many

adaptive systems and their environment. This phenomena may even be the motivating

force for the repeated emergence of threshold phenomena in biological systems (e.g. in

gene regulation, neural activation).

As an alternative to defining an arbitrary threshold, statistical arguments were used in this

chapter to quantify the importance of interactions between an adaptive system and its

environment. This eliminated any need for threshold tuning and provided strong

performance gains in the ETV-Outlier adaptive method.

ETV adaptation as a generic tool for optimization: There are a few important issues that

still need to be addressed before the ETV-Outlier adaptive method can be readily

implemented as a generic add-on tool for multi-search operator metaheuristics. First,

although the results in this chapter were promising, it is necessary to test the adaptive

method on additional problems, particularly application-inspired problems. There are many

EA application domains where a large number of specialized search operators have been

proposed in the literature (e.g. scheduling problems) and where it is not clear which search

Chapter 3: Adaptation of EA Design

operators should be used for which problem instances. These problems would provide an

ideal environment for testing the performance of an adaptive method in its ability to

advantageously select and control operator usage.

There are also some potential drawbacks with the ETV-Outlier method that should be

pointed out. One possible concern with the ETV-Outlier method is its computational

efficiency. Although Section 3.2.2.4 indicates that memory costs are actually small and

that memory and computational costs scale linearly with population size, the method still

could be deemed to be somewhat computationally costly when used on simple test

functions (which is where most EC research takes place). It is also worth pointing out that

the adaptive method is quite complicated in comparison to the elegance of the original GA,

requiring a substantial degree of record keeping and statistical tests. This does not make it

difficult to implement per se but could make the algorithm difficult to understand and act as

a potential deterrent to its use.

Final Remarks: It is generally understood that individuals in an EA population have a

usefulness in the overall search process which extends beyond their individual genotype

and phenotype. However, few if any previous attempts have been made in measuring how

individuals impact the search process or have considered ways in which this information

might be used to improve algorithm performance. This chapter attempted to make some

inroads into this topic using metrics derived from genealogical graphs. It was also pointed

out that this new ETV measurement involves a new type of search bias assumption that was

labeled as Empirical Bias and is notably distinct from the standard Hill Climbing

Assumption. The experimental results provided evidence that the adaptive method ETV-

Outlier has many of the characteristics that are desired in an adaptive procedure and are

arguably missing in previous methods for adapting EA design parameters.

Chapter 4: Large Scale Features of EA Population Dynamics

Chapter 4 Large Scale Features of EA Population
Dynamics

The previous chapter presented the Event Takeover Value (ETV) as a way to measure an

individual's impact on EA population dynamics. The ETV is able to approximate an

individual's impact on population dynamics through an analysis of EA genealogical graphs.

From preliminary tests in Chapter 3, it was found that the ETV probability distribution fits

a power law with an exponent of approximately 2. This distribution indicates that a large

proportion of individuals do not significantly impact EA population dynamics while a small

minority of individuals dominate population dynamics.

The aim of this chapter is to gain a better understanding of the population dynamics of

Evolutionary Algorithms using the ETV measurement derived in Chapter 3. In particular,

this chapter investigates what experimental conditions can significantly impact the ETV

distribution. After a broad range of conditions are tested in Section 4.1, it is concluded that

only i) the population topology and ii) the introduction of completely new (i.e. randomly

created) individuals can result in significant changes to the ETV distribution. If the EA

population topology is a fully connected graph or if no new individuals are inserted into the

population then the ETV distribution is found to be well approximated by a power law.

However, when these conditions are not met, the ETV displays power law deviations for

large ETV sizes. From these power law deviations, it is concluded that these EA designs

are not capable of being dominated by a small number of individuals and hence are able to

exhibit a higher degree of parallel search behavior.

Section 4.2 reviews and discusses several studies on the spatial and temporal properties of

natural evolutionary dynamics which are found to exhibit similarities to the results

presented in this chapter. Although the actual form of the measurements used to study

natural evolution is not identical to the ETV measurements used here, these results do

suggest that power law behavior and scale-invariant properties are prevalent in evolution.

Chapter 4: Large Scale Features of EA Population Dynamics

Section 4.3 describes the Theory of Self-Organized Criticality and presents the theory as a

possible explanation for the spatial and temporal patterns observed in EA and natural

evolution. The chapter is concluded with Section 4.4 which discusses the relevance of

these results to EA research and provides some motivations for the final chapter of this

thesis.

4.1 Analysis of EA dynamics using ETV

This section studies EA population dynamics using the ETV measurement. Section 4.1.1

first describes the experimental conditions that are used throughout this chapter. Section 0

then investigates the experimental conditions that affect the distribution of ETV sizes in EA

population dynamics. Section 4.1.3 follows with an investigation of the conditions

affecting the distribution of ETV ages where the age is the total amount of time that an

individual is able to influence EA population dynamics.

4.1.1 Experimental Setup

The experiments presented in this chapter were conducted using a number of artificial test

problems. Definitions and problem descriptions are provided in Appendix A. A number of

Evolutionary Algorithm designs have also been used in these experiments as elaborated on

below.

4.1.1.1 Panmictic EA designs

The Panmictic EA design refers to the standard EA design where spatial restrictions are not

imposed on the population. A high level pseudocode is given below with the parent

population of size ¡A at generation t defined by P(t). For each new generation, an offspring

population P'fy of size X is created through variation of the parent population. The parent

population for the next generation is then selected from P ^(t) and Q, where Q is subset of

P(t). Q is derived from P(t) by selecting those in the parent population with an age less

than or equal to K.

I l l

Chapter 4: Large Scale Features of EA Population Dynamics

Pseudocode for Panmictic EA designs
t=0
Initialize P(t)
Evaluate P(t)
Do

PXt) = Variation(P(t))
Evaluate (P^t))
P(t+1) = Select(PXt) U Q)
t=t+l

Loop until termination criteria

Population updating: The generational (Gen) EA designs that were tested in these

experiments used elitism for retaining the best parent and parameter settings ^=NI2,1=N,

K=\ (K=CO for best individual). The steady state (SS) EA design that was used in these

experiments actually involves a pseudo steady state population updating strategy with

parameter settings fi=X=N, K^OO.

Selection: Selection occurs by either binary tournament selection without replacement

(Tour), truncation selection (Trun), or random selection (Rand). Random selection is

implemented in the same fashion as binary tournament selection except the winner of a

tournament is chosen at random (without regard for fitness of the individuals).

Search Operators: For each EA design, an offspring is created by using a single search

operator that is selected at random from the list in Table 4-1. Search operator descriptions

are provided in Appendix B.

Crowding: Crowding in Panmictic populations was implemented using Deterministic

Crowding (DC) which is described in Chapter 2.

4.1.1.2 Spatially Distributed Populations

All distributed EA designs that are tested in this chapter involve a cellular Genetic

Algorithm (cGA) which is described in the pseudocode below. The algorithm starts by

defining the initial population P on a ring topology with each node connected to exactly

two others. For a given generation /, each node in the population is subject to standard

genetic operators. Each node N1 is selected as a parent and a second parent N2 is selected

among all neighbors within a radius R using linear ranking selection. An offspring is

Chapter 4: Large Scale Features of EA Population Dynamics

created using the two parents plus a single search operator selected at random from the list

in Table 4-1. The better fit between the offspring and N1 is then stored in a temporary list

Temp(7V7) while genetic operators are used on each of the remaining nodes in the

population. To begin the next generation, the population is updated with the temporary list.

This process repeats until some stopping criteria is met.

Pseudocode for cGA
t=0
Initialize P(t) (at random)
Initialize population topology (ring structure)
Evaluate P(t)
Do

For each N1 in P(t)
Select N1 as first parent
Select N2 from Neighborhood(Nl,R)
Select Search Operator (at random)
Create and evaluate offspring
Temp(Nl) = Best_of(offspring, Nl)

NextNl
t=t+l
P(t) = Tempo

Loop until stopping criteria

Crowding: Distributed EA designs that include crowding procedures are modified so that

the offspring competes with the parent {Nl or N2) that is most similar in phenotype.

Table 4-1 Names of the seven search operators used in the cellular GA and Panmictic EA designs are listed below.
More information on each of the search operators can be found in Appendix B.

Search Operator Names
Wright's Heuristic Crossover
Simple Crossover
Extended Line Crossover
Uniform Crossover
BLX-a
Differential Operator
Single Point Random Mutation

Chapter 4: Large Scale Features of EA Population Dynamics

4.1.2 ETV Size Results

This section is concerned with determining what experimental conditions can influence the

ETV distribution. There are many aspects of an EA design that have been modified or

extended over the years meaning that any attempt at making broad statements about EA

population dynamics requires a broad range of experimental conditions to be tested.

Because a large number of experiments were necessary, only selected results are presented

based on their capacity to illuminate system behavior. Section 4.1.2.1 looks at the impact

that EA design features have on the ETV distribution while Section 4.1.2.2 investigates the

impact of the fitness landscape. Section 4.1.2.3 follows up with an investigation of whether

the ETV distribution is sensitive to the amount of time that evolution is observed.

4.1.2.1 Impact of EA design

The first EA design factors tested consisted of selection methods and population updating

strategies for Panmictic EA designs, with results shown in Figure 4-la and Figure 4-lb.

Selection pressures varied from very weak (e.g. random selection) to very strong (e.g.

truncation selection) and the population updating strategy varied from infinite maximum

life spans (steady state) to single generation life spans (generational). The most remarkable

conclusion from these results is that the ETV distribution has very little sensitivity to these

design factors and consistently takes on a power law distribution. Particularly surprising

was the results using random selection, which has no sensitivity to the fitness landscape of

the test problem being used. When random selection is used, the ETV distribution appears

to take on a slightly smaller distribution tail although a power law is still clearly observed.

Experiments were also conducted to determine the impact of the population size. As seen

in Figure 4-2a, EA designs which differ only in the value of N have nearly identical ETV

distributions. The insensitivity to N was also observed for the other EA designs tested in

Figure 4-la and Figure 4-lb with Â varying from 50 to 400 (results not shown).

The results in Figure 4-2 present what was found to be the most important factor impacting

the ETV distribution. These experiments, which were run using the cellular Genetic

Algorithm, found that spatial restrictions result in power law deviations for large ETV

sizes. Furthermore, the extent of the deviation was clearly dependent upon the degree of

Chapter 4: Large Scale Features of EA Population Dynamics

spatial restrictions in the system. As seen in Figure 4-2b, the use of random selection

changes the exponent of the power law (that best approximates the data) however power

law deviations are still present.

a)

0.01

m
Q.

0.0001

0.000001

b)
0.1

^ 0.001

oT

0.00001 -

0.0000001

• Gen-Tour-N200

Gen-Trun-N200

X Gen-Rand-N200

10
ETV

100

• SS-Tour-N200

i X SS-Tnjn-N200

I • SS-Rand-N200

10
ETV

100 1000

Figure 4-1 ETV size distributions for a number of panmictic EA designs, a) EA designs with population size
A^=200, generational population updating (Gen), and selection methods Tournament (Tour), Truncation (Trun)
and Random (Rand) selection. Solid line represents a power law with exponent 2.5. b) EA designs with
population size A^=200, steady state (SS) population updating, and selection methods Tournament (Tour),
Truncation (Trun) and Random (Rand) selection. Solid line represents a power law with exponent 2.3. Results
from each EA design are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function.

Chapter 4: Large Scale Features of EA Population Dynamics

0.00001 -

0.000001

ETV 1000

b)

0.01 -

> I-

ST

0.0001 -

0.000001
1

• cGA-R1-N200-Rand
• cGA-R5-N200-Rand

cGA-R30-N200-Rand

10 ETV 100 1000

Figure 4-2 ETV size distributions for a number of spatially distributed EA designs, a) Cellular Genetic Algorithm
(cGA) designs with population sizes (A^=100, A^=200), and neighborhood radius (/f=l, R=5, /f=30). Solid line
represents a power law with exponent 2.2. b) Cellular Genetic Algorithm (cGA) designs with random selection
(Rand), population size (7V=200), and neighborhood radius (i?=l, /?=5, ;?=30). Solid line represents a power law
with exponent 2.5. Results from each EA design are taken over 20,000 generations of evolution on the 30-D Hyper
Ellipsoid test function.

Given that spatial restrictions are so far the only EA design factor significantly influencing

the ETV distribution, it was decided to consider other mechanisms for restricting

interactions within an EA population. A common approach for restricting interactions are

so called crowding methods where offspring are forced to compete with similar individuals

in the population. The results in Figure 4-3 show that crowding does have a significant

impact on the ETV distribution, but only for spatially distributed EA designs. For all but

Chapter 4: Large Scale Features of EA Population Dynamics

the smallest ETV value (ETV=1), the use of crowding decreases the ETV's probability of

occurrence by roughly an order of magnitude in the cGA. However, for Panmictic EA

designs, the use of crowding did not appear to have a significant impact on the ETV

distribution which is demonstrated using Deterministic Crowding (see inset of Figure 4-3).

0.1 XDC-N200

0 .001 -

0.00001 -

1000

0.0000001

• CGA-R1-N200
• CGA-R5-N200

CGA-R30-N200
+ cGA-crowding-R1-N200
- cGA-crowcling-R5-N200

cGA-crowding-R30-N200

10
ETV

100 1000

Figure 4-3 ETV distributions shown primarily for spatially distributed EA designs. All EA designs have
population size A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and the
neighborhood radius size (/?=1, /f=5, /?=30). Results from using Deterministic Crowding (DC) are also presented
in the inset. Solid line represents a power law with exponent 2.2. Results from each EA design are taken over
20,000 generations of evolution on the 30-D Hyper Ellipsoid test function.

All results presented thus far have been taken with evolution occurring on the 30-D Hyper-

Ellipsoid test function. This test function was selected because each of the EA designs

were able to evolve for long periods of time (achieving 1 million to 10 million events)

which allowed for greater clarity in the distribution results. The next section addresses the

impact of the fitness landscape.

4.1.2.2 Fitness Landscape Dependencies

The fitness landscape that an EA population evolves on will obviously impact the trajectory

that the population takes through parameter space. Hence, it came as a surprise to find how

little the fitness landscape influenced the ETV distribution results. Test functions were

selected from Appendix A and include unimodal and multimodal functions, linear and

nonlinear functions, functions with strong and weak epistasis, as well as deceptive and non-

deceptive functions. Results shown in Figure 4-4 and Figure 4-5 demonstrate little

Chapter 4: Large Scale Features of EA Population Dynamics

sensitivity to the fitness landscape on which evolution occurs. Other Panmictic EA designs

were also tested with similar results (results not shown). For the distributed EA results,

some sensitivity to the fitness landscape was observed when strong spatial restrictions were

present in the EA population (e.g. see Figure 4-5a). However, the general conclusions from

the previous section remain unchanged; only spatial restrictions in the EA population result

in significant changes to the ETV distribution.

Another way to test the influence of the fitness landscape on ETV results is to use a random

selection pressure as was done in the previous section. The use of random selection in an

EA design is similar to evolving on a completely flat fitness landscape. The use of

different search operators is also expected to have an impact that is similar to changing the

fitness landscape. Some preliminary work has tested the use of different search operators

(results not shown) and this was found to have a similar effect to varying the test function

although these results displayed even less sensitivity (possibly due to the range of operators

used).

Chapter 4: Large Scale Features of EA Population Dynamics

a) SS-Trun-N200

> H
m
Q.

0.01 i

• Ml IP • ECC

MMDP X Freq McxJ

i * Quadratic • Rosenbrock
i Rastrigin - Sc^^vefel

1 ^ ^ - Griewangk Sys. Lin. Eqs.
i Ackleys Neumaier's#2

0.0001 -

0.000001
10

ETV
100 1000

b) Gen-Tour-N200

0.01

0.0001 1

0.000001

• MTTP - ECC
MMDP C3 Freq Mod

X Quadratic • Rosenbrock
Rastrigin Schwefel
Griewangk A Sys. Lin. Eqs.

t Ackleys • Neumaier's #2

pi

10 ETV 100 1000

Figure 4-4 ETV distributions shown for selected EA designs on a range of test functions taken from Append« A.
Evolution occurred over 2000 generations and results shown are averages taken over 10 runs. To help in viewing
results from a large number of test functions, data is grouped into bins, a) Results for an EA design using steady
state (SS) population updating, truncation selection (Trun), and population size A=200. Solid line represents a
power law with exponent 2.2. b) Results for an EA design using generational (Gen) population updating,
tournament selection (Tour), and population size iV=200. Solid line represents a pow er law with exponent 2.2.

Chapter 4: Large Scale Features of EA Population Dynamics

CGA-R1-N200

0.01

qT

0.0001 -

0.000001

• MTTP • ECC
MMDP X Freq Mod

* Quadratic • Rosenbrock
+ Rastrigin - Schwefel
- Griewangk Sys. Lin. Eqs.
D Ackleys • Neumaier's #2

10 ETV 100

CGA-R30-N200

0.1 -

^ 0.001
h-m
ST

0.00001 -

0.0000001
10 ETV 100

1000

• MTTP • ECC
MMDP a Freq Mod

* Quadratic • Rosenbrock
Rastrigin - Schwefel

Griewangk A Sys. Lin. Eqs.
D Ackleys • Neumaier's #2

1000

Figure 4-5 ETV distributions shown for selected EA designs on a range of test functions taken from Appendix A.
Evolution occurred over 2000 generations and results shown are averages taken over 10 runs. To help in viewing
results from a large number of test functions, data is grouped into bins, a) Results for a distributed EA design
(cGA) using neighborhood radius R=\, and population size A^=200. Solid line represents a power law with
exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood radius ^=30, and population size
A^=200. Solid line represents a power law with exponent 2.2.

4.1.2.3 Impact of time length of evolution

In this section, tests were conducted with evolution taking place over different lengths of

time. As seen in Figure 4-6, during the initial stages of evolution, the ETV distribution

Chapter 4: Large Scale Features of EA Population Dynamics

displays power law deviations for large ETV sizes however these deviations disappear as

evolution is observed over longer periods of time.

a)
SS-Trun-N200

0.01

m
qT

0.0001 -

0.000001

• 100
• 500

2000
X10000
)((100000

10 ETV 100 1000

b)
CGA-R1-N200

0.01

m
Q.

• 100
• 500

2000
X 10000

100000

0.0001 -

0.000001

X XXX X
XX X

10
ETV

100

Figure 4-6 ETV distribution results as a function of the time span of evolution, a) Results for an EA design using
steady state (SS) population updating, truncation selection (Trun), and population size N=200. Solid line
represents a power law with exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood radius
R=i, and population size A^=200. Solid line represents a power law with exponent 2.5. Data sets are labeled by a
number which indicates the number of ETV measurements that are used to generate the distribution. For each EA
run, the first 100 events are given to the first data set, the next 500 are given to the next data set and so on. Results
for each EA design are averages over ten runs.

The fact that ETV distribution results have only a brief transient where the distribution is

sensitive to time, but is insensitive thereafter, indicates that the distribution approaches a

stationary state. However, record statistics of ETV in Figure 4-7 provide evidence that

maximum ETV sizes have an initial time dependency. This could mean that the system

Chapter 4: Large Scale Features of EA Population Dynamics

does not initially start with population dynamics being defined by a power law distribution

but instead that the system evolves to achieve that state over time.

1 0 0

X
ra
^ 10 >
K
LU

• ^

• _ - ~

^ a B "

•
• CGA-R1-N100

- CGA-R5-N100

1 1 1
• CGA-R20-N100

2000 4 0 0 0 6 0 0 0
Events

8000 10000

Figure 4-7 Record ETV statistics for cellular Genetic Algorithms (cGA) with population size 7V=100 and
neighborhood radius (R=l, R=5, R=30). ETV(Max) is the largest ETV found in every 200 events. Values are
averages over 10 experimental replicates.

It has been determined that the reason for this initial dynamical behavior is actually due to

the lack of a genealogical or a historical coupling between individuals in the initial

population. To confirm this, Figure 4-8 shows ETV distribution results where each new

offspring has a probability Pnew of being historically uncoupled from the rest of the

population. Historical uncoupling is simply done by preventing offspring from inheriting

historical data from their parents. From a population dynamics perspective, this is

equivalent to an EA design which includes a steady introduction of new individuals into the

EA population. As seen in Figure 4-8, a small amount of historical uncoupling can result in

power law deviations for the largest ETV sizes. However, as P„ew is increased, the extent

that the distribution deviates from a power law is found to increase only slightly.

Chapter 4: Large Scale Features of EA Population Dynamics

0.01

0.0001

0.000001

• P(new)=0.3
• P(new)=0.1

P(new)=0.04

XP(new)=0.03

•

• • • m
1 ETV 10 100

Figure 4-8 ETV distributions with varying amounts of historical uncoupling in EA population dynamics.
Experiments are conducted with a steady state EA using truncation selection and population size A'̂ =100.
Evolution took place over 20,000 generations on the 30-D Hyper Ellipsoid test function. When conducting the
standard ETV calculation, historical event information is copied from the genetically dominant parent to its
offspring. In these experiments, the step of historical transfer is skipped with probability Pnew The solid line in the
graph represents a power law with exponent = 2.1

4.1.2.4 Other Experimental Conditions

Additional tests were also conducted (results not shown) to help ensure that the ETV

distribution results that have been presented so far in this chapter were not biased due to

other experimental factors. This included experiments on selected EA designs at

population sizes up to A^=500, running evolution up to 100,000 generations, and

experiments with the ETV calculation parameter Tots set as high as 500. These

experiments resulted in no observable changes to ETV distribution results.

4.1.3 ETV Age Results

In addition to measuring the size of an individual's impact, one can also measure the

amount of time that an individual is able to impact population dynamics. This is measured

by recording the number of generations required for an individual's ETV calculation to

finish, which is referred to in this thesis as the ETV age. This section investigates this

aspect of EA dynamics more closely, again with the aim of determining what experimental

conditions impact the ETV age distribution.

Chapter 4: Large Scale Features of EA Population Dynamics

Looking at Figure 4-9 and Figure 4-10, these results demonstrate that the ETV age

repeatedly approximates a power law however different sensitivities to EA design

conditions have emerged (compared with ETV size distribution results shown previously).

Although there is still no sensitivity to the population size, these results reveal that the

selection method and population updating strategy do have an impact on the ETV age

distribution for Panmictic populations. This is seen for instance in the results presented in

Figure 4-10b where EA designs with steady state population updating and tournament

selection are found to have a clear power law deviation for large ages. On the other hand,

the introduction of spatial restrictions to the EA population does not have any influence on

this characteristic of population dynamics as seen in Figure 4-9. This is surprising

considering the importance of spatial restrictions in the previous ETV size distribution

results. Also shown in Figure 4-9, the addition of crowding to the cGA has a completely

unexpected impact on the age distribution and appears to result in an almost log-periodic

behavior that on average still tends toward a power law distribution. On the other hand, the

addition of crowding in Panmictic Populations (e.g. Deterministic Crowding) was found to

have little influence on the age distribution. In summary, these results indicate that most

ETV age distributions are well approximated by power laws although changes to the

distribution shape do occur under certain conditions.

Chapter 4: Large Scale Features of EA Population Dynamics

0.1

^ 0.001 0)
O) <

0.00001

0.0000001

• CGA-R1-N200
• CGA-R5-N200

CGA-R30-N200
X cGA-crowd i ng-RI -N200
X cGA-crowding-R5-N200
- cGA-crowding-R30-N200
+ DC-N200

1 10
Age

100 1000

Figure 4-9 ETV age distributions shown primarily for spatially distributed EA designs. The age of an ETV is
defined by the number of generations from the initial event to the completion of the ETV calculation. All EA
designs have population size A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and the
neighborhood radius size (/?=!, /?=5, jR=30). Results from using Deterministic Crowding (DC) are also provided
for a population size of A^=200. Solid line represents a power law with exponent 3.2.

As a final comment on these results, it is also worth mentioning that although the ETV has

a maximum size equal to N, the ETV age measured here is only constrained by the amount

of time that the system is observed. For these experiments, evolution was observed for up

to 20,000 generations and ETV ages were found approaching 1000 without any evidence of

power law deviations at large ages. Based on the observed distributions, it is concluded

that the maximum age of events in EA dynamics is only limited by the amount of time that

evolution is allowed to take place. 12

The m a x i m u m age can also be l imited by the E T V calculat ion procedure , for instance by limits placed on
the size of the historical records kept in the E A popula t ion. In these exper iments , the m a x i m u m record size
was set to Tobs^^A^) and under these condi t ions , it w a s found that roughly one in every 50,000 events failed to
finish the E T V calculation be fore reaching a m a x i m u m record posit ion.

Chapter 4: Large Scale Features of EA Population Dynamics

a)
U.1

0.001
o> <

0.00001

0.0000001
10

• Gen-Tour-N50

+ Gen-Tour-N200

Age 100 1000

b)
0.1

O) <
a.

0.001

0.00001 -

0.0000001
10

SS-Tour-N50

SS-Tour-N200

Age 100 1000

Chapter 4: Large Scale Features of EA Population Dynamics

c)
0 .1 -

-- 0.001 -d) O) <

0.00001

0.0000001

X SS-Trun-N50

• SS-Trun-N200

10
Age

100 1000

Figure 4-10 ETV age distributions for several EA designs. The age of an ETV is defined by the number of
generations from the initial event to the completion of the ETV calculation, a) EA designs with population sizes
(A^=200, N=50), generational population updating (Gen) and Tournament selection (Tour). Solid line represents a
power law with exponent 3. b) EA designs with population sizes (A^=200, A^=50), steady state population updating
(SS), and Tournament selection (Tour). Solid line represents a power law with exponent 2.5. c) EA designs with
population sizes (A^=200, A^=50), steady state population updating (SS), and Truncation selection (Trun). Solid line
represents a power law with exponent 3.5.

4.1.3.1 Caveats

It should be mentioned that, despite considerable efforts, the experiments were not

exhaustive and so it is possible that other EA designs and certain landscape characteristics

could result in ETV distributions which deviate from a power law or are otherwise different

from what was presented here. As an example, EA designs which parameterize the amount

of interaction between population subgroups (i.e. island model population structure) could

be one unaccounted for situation where power laws would only be observed with the

appropriate parameter tuning.

4.1.4 Conclusions

A number of conclusions can be drawn from the results presented in this chapter. First, it

was found that the probability of an individual's impact on EA dynamics fits a power law

(exponent between 2.2 and 2.5). This is a robust property of the system which is largely

insensitive to most experimental conditions including changes to population size, search

Chapter 4: Large Scale Features of EA Population Dynamics

operators, fitness landscape, selection scheme, population updating strategy, and the

presence of crowding mechanisms.

Two experimental conditions were however found to result in power law deviations for

large ETV sizes. The first is the steady introduction of new individuals that have no

relation to others in the population (i.e. historically uncoupled). The second condition is

the introduction of spatial restrictions into an EA population. Using either of these

conditions effectively removes the possibility of single individuals dominating the

dynamics of the entire population. The associated power law deviations can be understood

as an indicator of parallel computation within the system.

The amount of time than an individual influences EA dynamics (i.e. ETV age) also was

found to fit a power law with most individuals influencing the system for only brief periods

of time. However, as suggested by the power law relation, there is a non-negligible

probability that an individual will influence EA dynamics over very large time scales. This

behavior was found to be robust and was almost completely insensitive to all experimental

conditions tested.

4.2 Discussion: Comparisons between EA and nature

From the last section it was concluded that EA population dynamics exhibit power laws in

ETV spatial and temporal properties with little sensitivity to experimental conditions.

Some of the measurements that have been taken of the spatial and temporal properties of

natural evolution have also been found to exhibit power law relations. This section briefly

reviews the results from natural evolution and compares and contrasts them the results from

this chapter.

It is important to point out that no known measurements of natural evolution are exactly

equivalent to ETV and so strong conclusions about similarities or differences in behavior

are not possible. Instead, this section is provided to simply review and discuss current

evidence that spatial and temporal patterns in EA population dynamics are similar to those

observed in natural evolution.

Chapter 4: Large Scale Features of EA Population Dynamics

Section 4.2.1 reviews past studies on extinction size distributions that are derived from the

fossil record and compares this with ETV size distribution results. Section 4.2.2 reviews

past studies on the distribution of species life times and compares this with ETV age

distribution results. Finally, Section 4.2.3 looks at some topological properties of

taxonomic structure in natural evolution and compares this with the genealogical structure

of EA populations.

4.2.1 Extinction Sizes

The first large scale feature of evolutionary dynamics that is discussed deals with the

characterization of extinction event sizes. Extinction event sizes are measured as the

number of species (or percentage of species) which become extinct over a predefined time

interval. Using fossil data that has been compiled by Sepkoski [169], several studies have

analyzed extinction records [170], [171] and have found the distribution of extinction sizes

to be very broad and well approximated by a power law. This is shown for instance in

Figure 4-11, which is taken from [171]. In this figure, a best fit "kill curve", which was

developed in [170], is used to create the extinction distribution for Paleozoic marine

species. Using this model, a power law distribution is clearly observed for all but the very

largest extinction events.

Chapter 4: Large Scale Features of EA Population Dynamics

101

to 10° 0. 10°

i 10-1
>

10-a
>s
a 10-3
2 0 k 10-* a 10-*

10-»
0.01 0.1

fraction of species killed, s
Figure 4-11 Probability of an extinction event as a function of the fraction of all species killed. The distribution is
derived based on a best of fit kill curve (see [170]) using fossil data of marine species from the Paleozoic era.
Reprinted by permission from the Royal Society (Proceedings: Biological Sciences) [171], copyright (1996).

Comparing Extinction sizes and ETV: The ETV measurement is similar in some ways to

the measurement of extinction sizes in natural evolution however there are also some

important differences. The most significant similarity is that both the ETV and the

extinction size are a measure of the magnitude of changes that are taking place within each

of their respective systems. On the other hand, while ETV is measuring the spread of

genetic material in a population, the extinction size is measuring the removal of species

(which can also be thought of as a loss of genetic material). Another important difference

is that ETV measures the changes resulting from a particular event while extinction sizes

from the fossil record look at changes occurring over a time window.

Comparing Results: Despite these difference, the broad degree distributions for ETV

sizes is found to approximate a power law (exponent = 2.2 to 2.5) which is arguably similar

to what has been observed in nature (exponent ~ 2) for extinction sizes. However, it does

appear from Figure 4-11 that extinction sizes in natural evolutionary dynamics exhibit

power law deviations for large extinctions while this is largely not the case in most of the

ETV distribution results.

Some have suggested [172] that the power law deviations in the fossil record are a result of

the system being in a state of disequilibrium and that more time is needed before a power

law is observed. This is similar to the argument in [173] and shown in Figure 4-12, that

power law deviations can occur due to finite size effects suggesting that a larger time

window is needed before the fossil record can display a clear power law. Assuming for the

Chapter 4: Large Scale Features of EA Population Dynamics

moment that the power law behavior in EA and natural evolution has a similar origin, the

ETV results from this chapter would then seem to support the disequilibrium argument. As

demonstrated in Figure 4-6, running an EA for smaller periods of evolution results in ETV

distributions with power law deviations for large ETV sizes.

However, it is possible that other factors contribute to power law deviations in the fossil

record. In the experiments with EA, it was also found that spatial restrictions were a

primary cause of power law deviations. Obviously, some amount of spatial restriction is

present in natural evolution (e.g. geographical isolation) and it is speculated that this at least

contributes to the observed power law deviations for extinction sizes in nature.

4.2.2 Species Lifetime Distributions

Another way to characterize natural evolutionary dynamics is to measure the lifetimes of

species (or other taxa) as shown for example in Figure 4-12. Several studies [173], [169]

have found a broad distribution of lifetimes however there is disagreement as to whether

some of the reported results fit an exponential function [174], [175] or a power law, [173],

[176].

The difference actually has great relevance to our understanding of evolution. As explained

in Section 4.1.2 of [177], an exponential distribution would indicate that the age of a

species has no impact on its likelihood of survival. In other words, older species are not

better adapted to their environment compared to newer species. However, a more broad

distribution such as a power law would indicate a correlation exists between age and

extinction probability meaning that older species are better adapted compared to newer

species. The results taken from [173] and presented in Figure 4-12 indicate that a

correlation does exist and that the age distribution does fit a power law.

Chapter 4: Large Scale Features of EA Population Dynamics

a) b)
0 0

- 1 . 0

-2 .0

-3 .0

• a O—
... - , 1

- o 28 years - 0.0

•— - • 13 years
c>— - 0 8 years
A— -A 5 years 1 n

- < 4 years —1 .U
- V 3 years

^-2 .0 o
f

' V - 3 .0

1
1
t - j

Y
6 -4 .0

Ù
1 1

o 28 years
D 13 years
o 8 years
A 5 years
< 4 years
V 3 years

0.0 0.5 1.0 1.5 -1 .5

"09,0 X

-1 .0 -0 .5 0.0

Figure 4-12 Local lifetime distributions for species based on North American bird populations, a) Lifetime
distributions for data taken over different timescales. Power law deviations are clearly present, b) Lifetime
distributions with rescaling of data to account for finite size effects. Data is now well approximated by a power
law. Reprinted by permission from Macmillan Publishers Ltd: (NATURE) [173], copyright (1998).

Comparing Species Lifetimes and ETV ages: The ETV age measurement from Section

4.1.3 and the lifetime of a species in natural evolution are both measurements of relevant

timescales of events in their respective systems. However, the two measurements are also

different for a number reasons. For instance, if one thinks of events in EA population

dynamics as being speciation events, then the species lifetime measurement for an EA

would simply be the life time of individuals in the EA population. The ETV age, on the

other hand, measures the total lifetime of all species that contain a strong genealogical link

to an original speciation event. There are no known studies of the fossil record which have

attempted an analogous metric of natural evolutionary dynamics.

Comparing Results: Despite these differences, it is still interesting to note that both ETV

age distributions and species lifetime distributions are very broad and are well

approximated by power laws. However the power law exponents are quite distinct with the

ETV age distribution having an exponent of 2.5 to 3.5 while the results on bird species

taken from [173] have an exponent of 1.6.

4.2.3 Fractal Taxonomic Structures

Yet another way to characterize natural evolutionary dynamics is to measure the

topological properties of its taxonomic structure. As briefly reviewed in [177], several

studies have looked at the frequency distribution of the number of species within a genus

Chapter 4: Large Scale Features of EA Population Dynamics

[178] as well as frequency distributions in higher taxa [179]. From these results, some of

which are reproduced in Figure 4-13, it appears that the frequency distribution fits a power

law with exponents reported to vary between 1.5 and 2.3.

ANIMALS

Figure 4-13 log-log plots of the frequency of a selected taxon with different numbers of sub-taxa. a) Frequency of
genera with different numbers of species for birds. The frequency is given on the vertical axis and the number of
bird species within the genera is given on the horizontal axis, b) Frequency of orders with different numbers of
families for animals. The frequency is given on the vertical axis and the number of animal families within the
order is given on the horizontal axis. Data points with frequencies/=1 are omitted. Similar distributions for other
data sets are presented in [179]. Reprinted by permission from Elsevier: (J. theor. Biol.) [179], copyright (1990).

Comparing EA Genealogy and Evolutionary Taxonomy: To compare the topological

properties of taxonomic structure (in natural evolution) with the genealogical structure of

EA populations, it is necessary to clarify exactly what topological properties are being

measured in Figure 4-13.

If one thinks of taxonomic structure in terms of a branching process, then the number of

sub-taxa within a taxon (the horizontal axis of Figure 4-13) is equivalent to the number of

branches that extend away from a node in the taxonomic tree. This is what is measured in

Figure 4-13 with the addition of a few restrictions on the data used. In particular, data is

restricted to particular groupings (e.g. birds, animals) and particular levels of hierarchy

within the taxonomic structure (e.g. species/genera, families/order).

Figure 4-13a provides results for the number of species within a genera which are the

lowest and second lowest levels of the taxonomic hierarchy (resp.). An equivalent measure

in EA genealogical graphs would be that of the number of offspring created by a parent.

This aspect of EA genealogy has been studied in detail in [180] where the distribution was

Chapter 4: Large Scale Features of EA Population Dynamics

found to fit a power law under a range of conditions. They also found that spatial

restrictions in the EA population can result in power law deviations but only in cases where

high levels of spatial restrictions were imposed.^^ Comparisons at higher levels of EA

genealogy would be possible by reconstructing the genealogical graphs of an evolving EA

population, however this was not considered here.

It is also interesting to note that similar studies have looked at human genealogy through an

analysis of surname distributions [181] (also see [182] and references therein). In these

studies, it has been determined that the surname distribution is also well approximated by a

power law. In summary, the taxonomy of natural evolution has been found to have a fractal

structure (as evidenced by the stated power laws) which is also observed in both human

genealogies and the genealogical trees of Evolutionary Algorithms.

4.2.4 Summary of Conclusions

The ETV distribution results presented in this chapter were found to be similar to the

extinction distributions in natural evolution. However the distribution of extinction sizes in

natural evolution also displays power law deviations for large extinction sizes. From the

limited sources of power law deviations in the ETV results with EA, it was speculated that

that these deviations could be caused by either an insufficient amount of time that evolution

has taken place or the presence of geographical isolation.

The ETV age distribution results were generally found to be similar to the species lifetime

distributions in natural evolution with the power law exponent of the distribution being the

only significant difference. Finally, a review of natural evolution taxonomy, human

genealogy, and EA genealogy has found that each displays fractal characteristics as

evidenced by power law distributions of structural features. In particular, fractal

characteristics are found to be pervasive throughout natural evolution taxonomy.

Notice that similar conclusions have also been made in this chapter with ETV distribution results.

Chapter 4: Large Scale Features of EA Population Dynamics

4.3 Self-Organized Criticality

The review from the previous section has indicated that a number of spatial and temporal
properties in natural evolution do not have a characteristic scale (as evidenced by a power
law). The experiments conducted in this chapter also provide evidence that some spatial
and temporal properties in Evolutionary Algorithms do not have a characteristic scale.
These macro scale features have great relevance to the behavior of these systems and to our
understanding of evolution. For example, a power law relation in species lifetimes
provides strong evidence that older species are better adapted (on average) than younger
species. This information has also helped to improve our understanding EA behavior. For
instance, in the previous chapter the ETV size distribution provided convincing evidence
that most interactions between an EA and its environment are effectively neutral. This new
understanding was used to build a more effective approach to the adaptation of EA design
parameters.

It could potentially be of great benefit to understand how this behavior emerges in natural
evolution and Evolutionary Algorithms. One contender for explaining the macro features
of evolutionary dynamics is the Theory of Self-Organized Criticality (SOC). This theory is
briefly described next, followed by a set of conditions that any dynamical system is
expected to satisfy in order to be compatible with SOC theory. Section 4.3.2 provides
evidence that Evolutionary Algorithms meet a number of these conditions, with evidence
based primarily on the ETV distribution results of this chapter.

4.3.1 SOC Definition

The Theory of Self-Organized Criticality was first put forth by Bak, Tang, and Wiesenfeld
[183] and has been used to explain a range of physical phenomena such as flicker noise (1//
noise) which is observed in the light emitted from quasars, the intensity of sunspots, current
through resistors, sand flow in an hour glass, the flow of rivers, and stock exchange price
indices (see [183] and references therein). The theory claims that some coupled dynamical
systems are driven or attracted to a critical state where the system displays self-similarity in
both space and time. This behavior is in contrast to other critical phenomena (e.g. phase
transitions) where an environmental parameter (e.g. temperature) must be tuned in order for

Chapter 4: Large Scale Features of EA Population Dynamics

the system to reach a critical state. A more detailed discussion of critical phenomena is

beyond the scope of this thesis however an introduction to the topic can be found in [184].̂ "̂

Conditions for SOC: Although there is no generally agreed upon litmus test for SOC

behavior, a number of basic conditions are expected. Given a system of loosely coupled

components, an SOC system will evolve to a (critical) stationary state where interactions at

a local level (i.e. localized disturbances) can propagate and reach any size (including the

size of the entire system) with a non-negligible probability. Such a state is popularly

indicated through the presence of power laws in spatial and temporal properties.

For an SOC system, critical dynamics should not be fragile to experimental conditions;

otherwise this would indicate some sort of tuning is necessary. Hence, a broad range of

experimental conditions should be tested before any claims of SOC are made. Finally,

since SOC systems are attracted to a critical state, but do not start in one, it is expected that

some transient exists where the system is initially not critical (i.e. power law deviations

exist during the transient). Using these general conditions as a guide, the next section

considers whether Evolutionary Algorithms are compatible with SOC theory using

arguments based on the ETV results from this chapter.

4.3.2 Compatibility of EA with SOC

EA populations are already known to be loosely coupled dynamical systems and so it is

assumed that some form of self-organization will take place. The question is simply

whether the attractor for the system is a critical one. To provide support for this statement,

one must show that i) the distribution of disturbance sizes fits a power law and ii) the power

law is a robust property that occurs under many conditions. Disturbances to an EA

population can be measured by ETV as described below.

Defining ETV as a measure of disturbance: First a brief explanation is needed of how

ETV is a measure of disturbance size in EA populations. The explanation given here for

Critical phenomena also has relevance to other aspects of evolution which are not covered in this thesis.
The interested reader can find studies on its relevance to evolvability and fitness landscapes in [17], and its
relevance to evolutionary dynamics on neutral networks in [80].

Chapter 4: Large Scale Features of EA Population Dynamics

describing population dynamics on a graph is equivalent to the description provided for the

measurement of ETV that is given in the previous chapter.

The spatio-temporal process of EA population dynamics can be represented by a sparse

directed graph where individuals are represented by nodes and directed connections

between nodes indicate that one individual (with outgoing connection) has influenced the

creation of another (with incoming connection). As has been done in similar studies, weak

interactions (i.e. connections) in the system are ignored meaning in this case that only the

dominant parent is considered to be connected to an offspring.^^ This results in a graph

topology where each node has only one input connection. This graphical model of EA

dynamics is identical to the EA genealogical tree shown in the last chapter.

The creation of each new node (i.e. individual) is assumed to represent a new disturbance to

the system (i.e. genotypic and phenotypic change to population makeup). To observe the

growth of a disturbance, we look at the total number of nodes in the current state of the

system (i.e. population members) that have a path leading to this node. This represents the

current size of the system that is affected by a disturbance at a given point in time (i.e.

generation). The maximum impact of the disturbance would be calculated in an identical

fashion to the ETV measurement. Therefore, one can see that disturbances to genotypic

and phenotypic characteristics of the population can propagate from one node to another

and the eventual size of the disturbance is precisely what ETV measures.

Evidence that EA populations are self-organized to a critical state: Tests conducted in

this chapter under a broad range of experimental conditions have indicated that the ETV

size and age distributions are well approximated by power laws and that the power laws are

a robust property of the system. The experimental results shown in Figure 4-6 also indicate

that a short transient occurs before the population dynamics organize to a stationary power

law distribution. During this transient, larger ETV are less likely to be observed. This

indicates that disturbances initially remain localized and that the EA population starts in an

ordered state but is quickly driven to a critical one. In summary, the results from this

The use of a threshold criteria for considering only large interactions in a dynamical system is a standard
approach employed when one only wants to study the existence of interactions and not the relative strengths
of interactions, the latter being more complicated. For example see [185].

Chapter 4: Large Scale Features of EA Population Dynamics

chapter demonstrate that Evolutionary Algorithms meet the conditions necessary for
compatibility with SOC theory.

Alternative Explanations: Despite this apparent compatibility, it is also worth pointing
out that both spatial and temporal properties of EA population dynamics were derived from
genealogical graphs which are a type of branching process. Furthermore, it is known that
branching processes exhibit criticality when the average death rate equals the average
growth rate of new branches (e.g. see [186] and [187]). This condition is the same as the
requirement in static EA population sizes that the number of individuals removed from an
EA population is equal to the number added to the population. Hence, it is likely that the
use of a static EA population size is an important contributing factor to the ETV results
presented in this chapter.

Although the underlying causes are not fully understood, the ETV results from this chapter
allow for tentative statements to be made regarding the sufficient conditions for a system's
historical coupling to self-organize to a critical state. In particular, this behavior has been
shown to take place in a closed system that contains a reproducing Panmictic population
with a static population size. More experimentation is needed to further expand our
understanding of this aspect of EA dynamics. It would also be a significant contribution if
this form of dynamical behavior could be related back to the dynamics of an EA in
parameter space.

4.4 Relevance to EA research

What is most remarkable from the results of this chapter is not that measurements of EA
population dynamics (as measured by ETV) fit a power law. What is remarkable is how
little sensitivity the measurement results displayed to the selection pressure, the fitness
landscape, or the medium (artificial or natural) in which evolution took place.

Furthermore, many other complex systems that are unrelated to evolution, ranging from
earthquakes to solar flares to turbulence, also spontaneously organize to display similar
spatial and temporal patterns (see [185] and references therein). This is of importance to
Evolutionary Computation research because it indicates that at least some properties of

Chapter 4: Large Scale Features ofEA Population Dynamics

natural evolution are not reliant on the specific context of "nature" and instead are a
consequence of very general and easily reproduced conditions and driving forces.

4.4.1 Impetus for SOTEA Chapter

In recent years there has been growing evidence that many significant features of biology
are not a consequence of natural selection but instead are a result of physical conditions and
constraints. For instance, genome complexification models have been developed which,
when randomly evolved (without a particular selection pressure), are able to generate
topological characteristics that are similar to gene regulatory networks [188] and protein
interaction networks [189].

In another important development, characteristics such as modularity and hierarchy, which
are heavily exploited in natural evolution, have been found to emerge from simple localized
rules [190] and do not require the presence of natural selection. Models of genome
complexification have also been proposed recently where modularity is expected to emerge
without the influence of natural selection [20].

These findings suggests that the unique quality of life is not generated solely from natural
selection in reproducing populations but is also heavily reliant on the physical laws and
constraints that are imposed on these evolving systems.

If our goals as EA researchers are to mimic the salient features of life in order to exploit it
for purposes of optimization, it behooves us to actively explore what other conditions
(beyond Darwinian theory) are necessary to acquire the robust and adaptive properties of
life. Furthermore, with growing evidence that Darwinian principles only provide a partial
explanation for life, one could reasonably speculate that only so much progress is possible
in EA research from tweaking the traditional controls of natural selection (e.g. through the
development of search operators and selection pressures).

On the other hand, the results from this chapter have shown that other factors such as
spatial restrictions can cause significant changes to large scale dynamical features of a
system. These results have also indicated that some form of self-organization already
occurs in EA population dynamics which is notably distinct from its well-known

Chapter 4: Large Scale Features of EA Population Dynamics

organization in parameter space. This raises tlie question as to what other self-organizing

processes occur in nature and could be of benefit to EA performance. The final chapter of

this thesis focuses squarely on these issues.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Chapter 5 Self-Organizing Topology Evolutionary

Algorithms

Within the last several years, it was discovered that the interaction networks of complex

biological systems have evolved to take on several non-random topological characteristics,

some of which are believed to positively impact system robustness. A number of network

growth models have also been discovered that can successfully recreate many of these

structural characteristics using simple rules and in the absence of a selection pressure.

In the previous chapter, it was shown that spatial constraints (i.e. population topology) have

a significant impact on EA population dynamics. This chapter focuses on ways in which

the population topology can self-organize to exhibit topological characteristics similar to

complex biological systems. The aim of this chapter is not only to mimic the structural

characteristics of biological systems but also to acquire some of the desirable qualities

found in these systems.

The next section presents a critical review of previous work related to the application,

characterization, and evolution of interaction networks. This is followed by Section 5.2

which presents the motivations and aims of this chapter. Section 5.3 then describes the first

of two network models. The first model is designed to sustain population diversity in

rugged fitness landscapes which it accomplishes, in part, by mimicking the process of

genome complexification in natural evolution. The second model is described in Section

5.4 and is designed for the purpose of evolving important topological properties such as

modularity. This model is also designed with a focus on EA performance with tests

conducted on a number of artificial test functions and engineering design problems. The

results from these experiments provide strong evidence that the new Self-Organizing

Topology Evolutionary Algorithms (SOTEA) are able to exhibit robust search behavior

with strong performance over both short and long time scales.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.1 Critical Review of Previous Work

This section provides a review of topics that are relevant to the work presented in this

chapter. It starts by reviewing approaches to constraining interactions in population-based

systems with a focus on spatially distributed systems that are defined on a network. The

section then reviews metrics for characterizing network topology. The section concludes

by presenting a number of network models that have been successful in mimicking the

topological characteristics of complex biological systems.

5.1.1 Interaction Constraints

In recent years, there has been an increasing awareness of the importance of locality or

interaction constraints when modeling complex systems. Restricting interactions in

population-based systems has been a key factor in topics such as robustness against

parasitic invasion [191], [192], enabling speciation [193], sustaining population diversity in

rugged landscapes [136 2007), 2007)], the emergence of cooperative behavior [18], and

robustness to random attack [75]. Furthermore, convincing arguments have been made for

its role in natural evolution and in particular, its impact on system evolvability [17].

Parallel developments have also taken place in population based search heuristics such as

Evolutionary Algorithms, where it has been recognized that restricting interactions between

population members can result in significant changes to algorithm behavior. This has been

observed in several seemingly disparate topics such as the age restrictions present in the

Age Layered Population Structure (ALPS) for Genetic Algorithms [99], the genealogical

and phenotypic restrictions present in Deterministic Crowding [84], coarse-grained

restrictions in interactions between heterogeneous subpopulations [100], and explicit static

topologies for constraining interactions in the cellular Genetic Algorithm (cGA).

5.1.1.1 Population Networks for Evolutionary Algorithms

This chapter limits its focus to interaction constraints that are implemented by defining an

EA population on a network. The use of explicitly defined interaction networks provides a

useful framework for understanding system constraints and their impact on system

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

dynamics. This is, in part, because network representations of systems can be probed using
a number of tools developed in statistical mechanics.

Defining an EA population on a network impacts an EA through the localization of genetic
operators. For instance, actions such as reproduction and selection only occur among
individuals directly connected (i.e. linked) or near each other in the network. The three
types of population structures typically considered for EA populations are shown on the top
row of Figure 5-1.

The fully connected graph in Figure 5-la represents the canonical EA design, which is
referred to in this thesis as the Panmictic GA. Here, each individual (represented by nodes
in the graph) can interact with every other individual such that no definition of locality is
possible. The network in Figure 5-lb represents a typical island model population structure
where individuals exist in fully-connected subgroups which are largely isolated from other
population subgroups. Here the large arrows represent interactions which take place
between subgroups but occur at a time scale much greater than that of interactions within
subgroups. As a consequence of this setup, the locality of island model networks is defined
on a scale that is significantly larger than the individual. The final EA structure shown in
Figure 5-lc represents a cellular EA population structure which is referred to in this thesis
as the cellular Genetic Algorithm or cGA. Similar to cellular Automata, the network of
interactions takes on a lattice structure with interactions constrained by the dimensionality
of the lattice space. With the cellular GA, each individual has a unique environment
defined by its own unique set of interactions which is referred to as a neighborhood.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

J \
^̂ ' V

Figure 5-1: Examples of interaction networks. The networks on the top represent commonly used EA population
structures and are known as (from left to right) Panmictic, island model, and cellular population structures.
Networks at the bottom have been developed with one or more characteristics of complex biological networks and
are classified as (from left to right) Self-Organizing Networks (presented here), Hierarchical Networks [194], and
Small World Networks [195]. Figure le is reprinted with permission from AAAS.

The ratio of neighborhood size (i.e. number of connections per node) to system size (i.e.

total number of nodes) can be seen as a measure of locality and it is worth noting that this

ratio decreases in the EA population structures from left to right on the top row of Figure

5-1. Although the three population structures clearly have different degrees of locality,

they also have some important similarities. For each population structure, the nodes within

the network each have the exact same number of interactions and the same type of

interactions (i.e. regular graphs). Furthermore, the networks for all three cases are static

and predefined.

5.1.2 Structural Characteristics of Complex Networks

5.1.2.1 Properties of real networks

Many natural and man made systems consist of a large number of dynamical interacting

components. Examples are seen in biology (metabolic networks, protein interaction

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

networks, gene regulatory networks, food webs, neural networks), social systems
(coauthorship, relationships) and man made systems (World Wide Web, Internet, power
grids).

Despite the significant simplifications necessary to create network representations of these
systems and despite their inherent differences in scale, environmental context and
functionality, most real networks have a great deal of similarity in their topological
properties. These similarities include 1) small characteristic path lengths, 2) high clustering
coefficients, 3) fat-tailed degree distributions (e.g. power law), 4) degree correlations, 5)
low average connectivity, as well as other properties reviewed in [196]. Each of these
features are notably distinct from random graphs and regular lattices. The next section
reviews a number of topological properties that are commonly measured when studying
networks. Comprehensive reviews of this topic are provided in [196], [197], and [198].

5.1.2.2 Topological Property Metrics

To help understand the interaction networks of complex systems, a few simple measures
are introduced which are commonly used to assess network structural characteristics.
Throughout this paper, networks are represented by an adjacency matrix J such that
individuals i and j are connected (not connected) when (Jy=0).

Characteristic Path Length: The path length is the shortest distance between two nodes
in a network. The characteristic path length L is the average path length over all node pair
combinations in a network. Generally, L grows very slowly with increasing system size
(e.g. population size) N in complex systems. For instance, networks exhibiting the "Small
World" property, such as the network in Figure 5-If, have L proportional to log Â [199].

Degree Average: The degree ki is the number of connections that node i has with other
nodes in the network which is defined in (5-1). The degree average kave is simply k
averaged over all nodes in the network. The degree average is expected to remain small,
even for large networks, as reviewed in [196].

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

7=1

Degree Distribution: The degree distribution has been found to closely approximate a
power law distribution for biological complex systems with power law and exponential
distributions often fitting abiotic complex systems [198]. Networks which display a power
law k distribution are often referred to as scale free networks in reference to the scale
invariance of k.

Clustering Coefficient: Many complex biological systems have high levels of modularity
which is typically indicated by the clustering coefficient. The clustering coefficient c/ is a
measure of how well the neighbors of a given node are locally interconnected. More
specifically, this is defined in (5-2) as the ratio between the number of connections
among the ki neighbors of node i and the maximum possible number of connections
between these neighbors which is ki{ki'\)l2.

_ le, (5-2)

Although in practice, more efficient calculation methods are used, ei can be formally
defined using the adjacency matrix y as shown in (5-3).

y=i V k=\ y

Clustering-Degree Correlations: A common feature of biological and social systems is
the existence of an hierarchical architecture. Such an architecture implies that sparsely
connected nodes form tight modular units or clusters and communication paths between
these modular units are maintained via the presence of a few highly connected hubs [199].
Figure 5-le shows a network with these hallmark signs of modularity and hierarchy which
was grown using the deterministic models presented in [194].

The existence of hierarchy in a network is typically measured by looking at the correlation
between the clustering coefficient and the node degree. Based on the description given
above, an hierarchical network is expected to exhibit higher connectivity for nodes with

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

low clustering (i.e. hubs) and vice versa. Furthermore, for the feature of hierarchy to be a

scale invariant property of the system, c should have a power law dependence on k.

Degree-Degree Correlations: For many complex networks, there exist degree correlations

such that the probability that a node of degree k is connected to another node of degree k^

depends on k. This correlation is typically measured by first calculating the average nearest

neighbors degree which is defined in (5-4).

1 ^

l^i j=\

(5-4)

Networks are classified as assortative if km increases with k or disassortative if

decreases with k. Degree correlations are often reported as the value of the slope v for km

as a linear function of k.

Random Networks: Thus far, only qualitative statements have been given regarding the

topological properties of complex networks. In practically all cases, when topological

properties are mentioned as being large or small (as has been mentioned above), the

statements are referring to property values in relation to those values observed in random

graphs and particularly the models developed by Erdos and Renyi [200], [201]. As

reviewed in [197], random graphs have i) a characteristic path length ¿Rand similar to that

observed in complex networks and approximated by (5-5), ii) a Poisson degree distribution

(as opposed to the fat tailed degree distribution in complex networks), and iii) a clustering

coefficient CRand given by (5-6) which is orders of magnitude smaller than what is typically

seen in complex networks [195]. Random graphs also do not exhibit any degree

correlations or correlations between the degree and the clustering coefficient.

. In(A^) (5-5)

'Rand N

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.1.3 Network Evolution Models

In order to mimic complex systems, it is important to understand how they obtain their

interesting behaviors and properties. For both man-made and biological complex systems,

it is generally understood that the development of interaction networks in these systems

occurs through a process of constrained growth. Examples would include growth of the

World Wide Web, the developmental process in multi-cellular organisms, and the

complexification of the genome.

Over the last decade, substantial progress has been made in the development of network

growth models which can evolve to display characteristics similar to real systems.

Exemplars of this success can be seen in the Barabasi-Albert (BA) Model [202], the

Duplication and Divergence (DD) Model [203], the intrinsic fitness models of [204] and the

random walk models of [190]. Common to many successful models is the emergence of

relevant network characteristics, such as those previously mentioned (e.g. L ~ log N, Power

law k distribution), through the use of simple, locally defined rules which constrain

structural dynamics (including, but not limited to, network growth). Furthermore, these

structural dynamics are driven by one or more state properties of the nodes. This simply

means that connections in the network change and nodes are added or removed with a bias

derived by property values assigned or calculated for each node. Properties that have been

used in models include the degree of a node k [202], measures of node modularity [205], as

well as measures of node fitness [204]. The remainder of this section presents several

network evolution models that are important contributions to the field and have been

particularly important in development of the SOTEA models presented in this thesis.

5.1.3.1 The BA Model:

The Barabasi-Albert (BA) model works on the basis of network growth and preferential

attachment. These principles are inspired by experiences with real systems and they are

prevalent in a number of large complex systems. Examples of systems driven by growth

include the World Wide Web, collaboration networks, genome complexification and many

more. The concept of preferential attachment is also observed in many systems such as

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

citation networks where a new manuscript is more likely to cite well-known and already

well-cited papers compared with its less-cited peer papers. Preferential attachment is also

seen in a number of other social networks as mentioned in [202].

Model Description: Starting with a small number {mo) of nodes, at every time step a new

node is added with m (< mo) links that connect the new node to m nodes already present in

the system. To incorporate preferential attachment, the probability PNI,N2 that a new node

N1 is connected to an existing node N2 depends on the degree fc of node N2.

Furthermore, it is assumed that this dependence is linear as expressed in (5-7).

p k^, (5-7)

(=1

Model Characteristics: This model creates networks with power law k distributions with

exponent similar to that observed in real systems. These networks also have a path length

L~ log log N which obviously grows very slowly with increasing system size N. However,

these models produce networks with no correlation between k and c [199].

5.1.3.2 The Duplication and Divergence Model

Genome Complexification: As far as complex systems are concerned, the genome and its

associated expression represent the largest and most interesting case of network evolution.

Hence it is of great interest that large data sets of these systems are now available as well as

the tools necessary for probing their structural organization. For instance, recent analysis

of protein interaction networks and metabolic networks have found them to be

characterized as having power law degree distributions, high modularity, low characteristic

path lengths, and a low degree average [206], [195], [207].

Evolutionary processes associated with genome complexification are known to be initiated

by a process of gene duplication and gene mutation, which is also referred to as Duplication

and Divergence (DD). In the review presented in [208], studies are cited which have found

that roughly 40% of the human genome can be confirmed as being derived from past

duplication events (with even higher values observed in other species).

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Due to the nature of the divergence process, it is also likely that the 40% estimate is a

conservative lower bound on the actual number of duplicated genes in the human genome.

Knowing that gene divergence occurs by a series of random mutations, the process

approximates a random walk which acts to reduce (over time) any ability to recognize two

genes as having a similar historical origin. Hence, it is speculated here that DD is the

predominate cause of genome complexification.

Although several duplication and divergence models are available from the literature, the

one presented in [189] has been selected due to its simplicity and its proven capacity to

generate power laws for k.

Model Description: Starting with an unspecified initial network size, at every time step a

node is randomly chosen and duplicated. Links of the duplicated node are removed with

probability 6. New links are added to the duplicated node between itself and randomly

selected nodes in the network with probability a. In this model, S is set to 0.53 and a is set

to 0.06/A^ where A/̂ is the network size at a given time step.

The duplication step in the model represents gene duplication where the original and

duplicated genes retain the same structural properties meaning they initially have an

identical set of interactions. The rewiring steps (involving probabilities d and a) represent

mutations in the duplicated gene which cause its set of interactions to diverge from those of

the original gene. The parameter settings listed above for S and a are set in [189] based on

empirical observations of protein interactions networks in yeast and the interaction

networks of other complex systems.

Simplifying Assumptions: Although this model for genome complexification was

selected in part due to its simplicity, it is still important to highlight the simplifying

assumptions that have been made.

• The first simplification is that it does not allow for the presence of multiple duplications

at a single instance in time. This is known to occur in natural evolution with

duplication involving sizes up to and including the entire genome [209], [210]. A

model considers multi-gene duplications is presented in [203].

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

• Another difference between this DD model and nature is that gene divergence

mechanisms can potentially take place for both the duplicated and original genes. Also

divergence occurs as a slow and possibly continuous process instead of happening in a

single time step.

• Finally the removal of genes from the genome is also neglected thereby implying that

natural selection pressures present in real genome complexification will have roughly

the same impact on topology as random rewiring of the duplicated gene.

It is not clear what impact these additional features would have on the model and its

structural characteristics, however it is interesting to notice (as indicated below) that this

model does provide many similarities to complex biological systems without the presence

of natural selection pressures or the other assumptions listed above.

Model Characteristics: In [189], structural characteristics of this DD model are compared

with data available on the yeast proteome. Results indicate the model creates a network

with characteristics similar to yeast for values of have, k distribution, Cave, and L. Correlation

measurements were not considered in this study.

5.1.3.3 The Fitness Model:

The model presented in [204] proposes a "good-get-richer" mechanism for network

dynamics where nodes of higher fitness are more likely to become highly connected. This

is presented as an alternative to preferential attachment or the so called "rich-get-richer"

schemes present in the BA and DD models where an historical bias in network connectivity

drives future connectivity.

The fitness model is based on the concept of mutual attraction. One example they provide

of such a system is a sexual interaction network where it is assumed interactions take place

due to mutual attraction between two partners. They argue that knowledge of sexual

promiscuity (i.e. knowledge of k which is a precondition for preferential attachment) would

actually have the reverse impact on the probability of interactions in such networks.

Another example they provide is the protein interaction networks inside cells where

interactions are driven by chemical affinity. This second example is less convincing

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

however because protein specificity is an evolved trait meaning that both historical (i.e.

evolutionary) bias as well as principles of mutual attraction play a role for such systems.

The fitness model description given in [204] is provided below.

Model Description: In this version of the fitness model, they neglect mechanisms for

network growth and instead start off with a fixed number of nodes N containing no links.

For every node, a fitness value jc, is assigned randomly from a probability distribution p{x).

For every possible pair of nodes i j , a link is created with probability Xj) which is given

by (5-8) where xm is the maximum value possible for jc.

. . (5-8)
X M

Model Characteristics: When p{x) takes an exponential form, this model creates networks

with power law k distributions with the power law exponent similar to that observed in real

systems. The resulting networks also have clear correlations in Rnn-K and in c-k [204].

5.2 Motivations and Aims

Currently implemented network structures for EA populations have proved beneficial to

EA performance, however the population structures do not actually resemble the interaction

networks of complex biological systems as indicated in the previous review. This puts into

question how "nature-inspired" these EA designs are and what additional benefits might be

derived from more accurate representations of the structure and dynamics of complex

systems.

Over the last several years, the interaction networks of many complex systems have been

studied. It is now known that these systems display some interesting non-random

characteristics that are similar among many biological and even manmade systems [197].

These characteristics are believed to be highly relevant to the behavior of these systems and

particularly important to emergent qualities such as robustness.

A primary aim of this chapter is to improve upon the performance and behavior of

distributed Evolutionary Algorithms by mimicking the self-organizing processes of

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

complex systems within the population topology. Evolutionary Algorithms which have this

behavior are referred to in this thesis as Self-Organizing Topology Evolutionary

Algorithms (SOTEA).

To date, few have investigated the importance of dynamic population topologies for an EA.

One exception is seen in [135] where the grid shape of a cellular GA adapts in response to

performance data using a predefined adaptive strategy. In that work, structural changes are

globally controlled using statistics on system behavior. SOTEA algorithms, on the other

hand, adapt to local conditions through a coevolution of network structure and population

dynamics.

5.3 SOTEA model I

This section describes the first of two SOTEA designs that are developed and tested in this

thesis. As previously mentioned, a general aim of this chapter is to create EA population

networks which are topologically similar to the interaction networks of complex biological

systems. This first SOTEA model also looks at how this can benefit EA behavior on

optimization problems containing rugged fitness landscapes.

Section 5.3.1 describes SOTEA and a cGA variant that is used for comparison purposes.

Section 5.3.2 describes the experimental setup including a description of a tunable fitness

landscape that is used to test algorithm behavior when exposed to different amounts of

landscape ruggedness. The results are presented in Section 5.3.3 including algorithm

performance, analysis of population topology, and the impact of SOTEA design features

and fitness landscape features on population diversity. From these experiments, it is found

that SOTEA exhibits strong performance and is able to sustain high levels of population

diversity for evolution on rugged fitness landscapes. The population topology for SOTEA

is also found to have some similarities to known features of complex biological systems.

This is followed by a discussion of these results in Section 5.3.4 as well as conclusions in

Section 5.3.5.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.3.1 Model Description

For all EA designs, the population is defined on a network. Besides the trivial case where

the network is ililly connected (i.e. Panmictic GA), two other network designs are used and

are referred to as the cellular GA (cGA) and the Self-Organizing Topology Evolutionary

Algorithm (SOTEA). For the cGA and SOTEA, the population is initially defined in a ring

structure with each node connected to exactly two others (e.g. Figure 5-lc). A change to

the network structure (i.e. network dynamics) simply refers to the addition or removal of

nodes or links. The rules for defining network dynamics are described next.

5.3.1.1 SOTEA and cGA Network Dynamics

For both the cGA and SOTEA, a node is only added to the network when a new offspring is

added to the population and a node is only removed when an individual dies. Network

changes due to offspring creation are referred to as reproduction rules and changes due to

death of individuals are referred to as competition rules. The reproduction and competition

rules define how network dynamics occur and are described next.

Reproduction Rule: The reproduction rule (described in Figure 5-2) is used in SOTEA

and the cGA when a new offspring is created. The first step in the reproduction rule

involves making a copy of a parent and then mutating that copy to create an offspring.^
16

Structural changes from the reproduction rule involve the addition of a new node

(offspring) to the network, connection of the offspring to its parent, and then (depending on

the EA design) the possibility of additional connections being added to the offspring node

and the possibility of connections being removed from the parent node. Complete details

of the addition and removal of connections in the reproduction rule are provided in Figure

5-2.

Notice this means an offspring only has a single parent

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

a) SOTEARgtrodttCttonRnlc b> CeOmterGAIteprodnctkMiIUUe o o o o
V

Add
Ofl&pring

V
Add
Offspring

o o o
Figure 5-2: Reproduction rules that change the population structure for SOTEA and the cellular GA. a) SOTEA
Reproduction: When an offspring is created (by asexual reproduction), a new node (shown in black) is added to
the network through a connection to its parent (shown in gray). Each of the parent's connections are then
inherited by the offspring (black dotted line) with probability Paoa followed by each of the inherited connections
being lost by the parent (gray dotted line) with probability Premove- Unless stated otherwise, the parameters are set
as Padd = Premove = 10%. This particular rule is loosely based on established models for genome complexification
[203]. b) cellular GA Reproduction: When an offspring is created, a new node (shown in black) is added to the
network and connected to its parent (shown in gray). One of the parent's connections is then transferred to the
offspring, which allows the network to maintain a ring topology.

It is worth noting that the reproduction rule represents the only difference between SOTEA
and the cellular GA. With SOTEA, the addition of new nodes causes changes to the
network topology (see Figure 5-2a). These changes to network structure turn out to be a
crucial source of structural innovation needed for the self-organization of the SOTEA
network.

Competition Rule: The competition rule (described in Figure 5-3) is the same for SOTEA
and the cellular GA. With this rule, a randomly selected individual tries to kill its weakest
(i.e. least fit) neighbor. If instead, the selected individual is worse than its worst neighbor,
then it will die. Structural changes from the competition rule involve removal of the dead
individual and the transfer of its connections to the individual that survived.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

a) SOTEA Competition Rule b) Ceilnlar GA Compétition Rale

Black kills
gray

V
Black kills
gray

V

Figure 5-3: Competition rules that change the population structure for SOTEA and the cellular GA. The details
of the competition rule are the same for SOTEA and the cGA, however examples are given for both EA designs in
this figure. Competition rule: The fîrst step is to select an individual at random. This individual then decides to
compete for survival with its least fit neighbor. When these two individuals compete for survival such as the nodes
shown in black and gray, the less fit individual is killed. The winning individual (shown in black) inherits all
connections from the losing individual (shown in gray) that weren't already in the winning individual's
neighborhood. Finally, the losing individual is removed from the network.

This rule is particularly important because it allows for structural changes to depend on

node states. Figure 5-4 is provided to help clarify this point. Notice that once a node has

been selected for the competition rule, this node must decide who to compete with. The

decision of who to compete with depends on which of the nodes is worst in the

neighborhood. As a result, structural changes are always driven towards those nodes with

the lowest fitness. Notice that if an individual decided to kill one of its neighbors at

random then this decision would no longer depend on the node states and the network

structural dynamics would no longer depend on (i.e. be coupled to) the population

dynamics.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

a o o

y
Figure 5-4: This figure shows how structural changes from SOTEA's competition rule depend on the fitness of
individuals in the network. Starting with the network at the top, the individual represented by the black node
must decide which of its neighbors it will try to kill. The networks at the bottom show what would happen if
neighbor 1, 2, or 3 had been the least fit in the black node's neighborhood. Each of the choices creates a new
structure that is different from the other choices. Notice that for the networks on the bottom, the black node has
been changed to gray. This is to indicate that either the black node or the white neighbor could have won the
competition (the structure is the same in either case).

5.3.1.2 SOTEA and cGA State Dynamics

To mimic the interaction networks of complex systems, it is important to recognize that

state dynamics occurring on these networks play a significant role in the system's behavior.

In complex systems, the states of a node are (by definition) dependent upon the states of

neighboring (i.e. connected) nodes. Significant progress has taken place recently in

understanding the state dynamics of complex systems. Some current directions of research

include exploring the synchronization of component states [211], [212], robustness of

dynamical expression [213], [75] and the coupled dynamics of states and network

structures [214], [215], [216].

In the previous section it was pointed out that the competition rule forces changes in

network structure to depend on the fitness (i.e. the state) of population members. As a

consequence, network structural dynamics are driven by population dynamics. This section

considers how a reverse coupling of state and structural dynamics could be achieved. In

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

other words, how can a node's state depend on the states of the other nodes it is connected

to.

Along these lines, a measure of fitness called Epistatic Fitness is defined to be sensitive to

the fitness values of individuals in a neighborhood. The definition of epistatic fitness that is

used in the SOTEA algorithm is provided in (5-9).

^ . . k-Rank-\ (5-9) Epistatic Fitness = ^

In (5-9), Rank refers to the rank of an individual's objective function value among all of its

k neighbors. Here the objective function is not a direct measure of fitness but only an

intermediate value used to compute (epistatic) fitness. A rank of 1 indicates that the

individual is better than all its neighbors, resulting in epistatic fitness taking on its

maximum value of 1. A rank of k+\ indicates that the individual is worse than all its

neighbors, resulting in epistatic fitness taking on its minimum value of 0. The term

epistatic fitness is used in reference to the measure's similarity to genetic epistasis.^^

Using epistatic fitness (5-9) results in the fitness of an individual being dependent on the

network structure. In other words, the fitness is contextual. Figure 5-5 provides an

example to help clarify how (5-9) causes an individual's fitness to be dependent upon the

network structure.

In the Genome, genetic epistasis refers to interactions between genes which have a noticeable impact on the
phenotype. Similarly, nodes in the population network will now interact in a way such that they impact each
other's fitness values.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Figure 5-5: This figure shows how the epistatic fitness (Fitepi) defined by (5-9) causes the fitness of an individual to
depend on its local neighborhood. Parts a-c of the figure show a population of five individuals defined on a
network. The Objective Function Value (Obj) and epistatic fitness defined by (5-9) are provided in the top and
bottom (resp.) of each node (i.e. individual). For the top two individuals in part a), an arrow is drawn towards the
individual on the left to indicate it has the lower epistatic fitness. The top left individual's epistatic fitness is 2/3
because its objective function value is better than 2 of its 3 neighbors. In part b), a new connection has been added
to the network causing the epistatic fitness values for the two top individuals to now be equal. Finally in part c), a
connection has been removed from the network, causing the top left individual to have an epistatic fitness that is
now higher than the top right node. If the top two nodes were to compete for survival based on epistatic fitness, it
should now be clear that the decision of who survives (i.e. who is more fit) will depend on the neighborhoods of the
individuals.

It is important to mention that an interesting situation arises when SOTEA is used with
epistatic fitness. In this case, the fitness values depend on network structure (due to
epistatic fitness) and structural changes depend on fitness values (due to the competition
rule). The result is a coupling of structural changes to states plus a coupling of state
definitions to structure. It is believed that such a dual coupling is unique among existing

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

network evolution models. The competition and reproduction rules that are used for

SOTEA and the cellular GA are summarized in the pseudocodes in Figure 5-6.

Pseudocode: Competition Rule (SOTEA and Cellular GA)
-Select Individual (randomly from Parents + Offspring)
-Compare selected individual with its least fit* neighbor
-Better individual inherits all links of worse individual
-Worse indi\idual is remov̂ ed from population (and node removed from network)
•fitness is epistatic fitness

Pseudocode: SOTEA Reproduction Rule
-Add new node (offspring) to network
-Link offspring and parent
-Offepring inherits Parent links with probability Padd==01
-If inherited. Parent loses link with probability Prénom 1

Pseudocode: Cellular GA Reproduction Rule
-Add new node (offspring) to network
-Link offspring and parent
-Offepring inherits one of Parent's links
-Parent loses inherited link

Figure 5-6: Pseudocode for SOTEA and cellular GA network dynamics.

5.3.2 Experimental Setup

This section presents the remaining aspects of the Evolutionary Algorithm designs as well

as the test function generator used in these experiments.

5.3.2.1 NK Landscape Test Function

The NK landscape, originally developed by Kauffinan in [81], is a test function generator

with a tunable amount of ruggedness and a tunable problem size. The following

description of the NK landscape has been adapted from [217]. The NK landscape is a

function/- ^ R where 5 = [0,1], Â is the bit string length, and K is the number of bits

in the string that epistatically interact with each bit. To help reduce confusion with other

notation in this thesis, the Â and ^ parameters of the NK landscape are relabeled as NNK and

KNK (resp.)

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

zP)

f3

000 0.94

001 0.36

010 0.83

oil 0.20

tm %jsn
101 0.14

110 0.71

111 0.44

0 0

Figure 5-7: An example of the fitness lookup tables for determining the fitness contribution/) from bit jc,. Given
an NK landscape with TVyvjf =8 and K̂ k̂ ==2,/̂ (jĉ , Zî K Zẑ)̂ is the fitness contribution for X3. zP^ and Zẑ ^ are the
two bits that epistatically interact with X3. As shown in the figure, they have been selected as the bits to the left and
right of X3 (i.e. = X2 and - X4). The lookup table consists of K^k +1) entries, each associated with a
unique combination of bit states for X3, z P and Z 2 . Each entry in the lookup table is a number between [0,1]
drawn from a uniform distribution.

Each bit Xi provides a fitness contribution / . : ^^^^^^ R whose value depends on the

state of bit xi and the states of the Kî k bits interacting with x/. The Km bits interacting with

Xi are labeled as . NK Landscapes are stochastically generated with the

fitness contribution fi of bit xt being a number drawn from a uniform distribution in the

range [0,1]. To determine the fitness contribution/, a lookup table is used such as the one

shown in Figure 5-7. The final fitness value fix) is an average of each of the fitness

contributions as defined below. For a given instance of the NK landscape, the maximum

fitness value is not known however fitness values are bounded between [0,1].

-iV ,

(5-10)

NK '=1

In the original description [81], the Knk bits that epistatically interact with Xi are those

adjacent to x, in the bit string as seen in Figure 5-7. In this work, each Zi is randomly

selected to be any of the bits (other than JC/) and not just those adjacent or nearby. Notice

that without epistatic interactions {Knk =0), the problem is completely decomposable and

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

trivial to solve. However, as Knk increases, so too does the phenotypic interdependence of

genes. Genetic encoding of the NK landscape is simple with each bit Xi representing a

binary gene and Nnk being the size of the genome.

For most of these experiments Nm = 30, K^k = 14. These parameters have been selected

based on a tradeoff between the problem size, degree of ruggedness, and memory costs of

the model which are proportional to N x l ^ " " . More detailed descriptions of the NK

landscape model and its properties can be found in [217], [218], [79].

5.3.2.2 Core EA Design

A binary coded EA is used with population size N varying over the range [50,400]. Only

asexual reproduction is considered via parent duplication plus mutation with a bit flip

mutation rate of 2/Nnk for Nnk binary genes. Evolution occurs using a pseudo steady state

updating strategy where the parent population of size N is randomly uniformly sampled

(with replacement) N times to generate N offspring. The parents + offspring then compete

for survival to the next generation. A high level pseudocode for each of the EA designs is

provided below.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Pseudocode for all three EA designs:
Initialize population
If SOTEA or cellular GA: Connect individuals with ring topology
Loop

Loop N times
Randomly select an individual i
Generate offspring by mutation
If SOTEA: apply SOTEA reproduction rule (Figure 5-6)
If cellular GA: apply cellular GA reproduction rule (Figure 5-6)

End loop
Loop N times

Randomly select an individual i
If Panmitic GA: Select random neighbour
If SOTEA or cellular GA: Select worst neighbour
Eliminate worse of i or its chosen neighbour
If SOTEA or cellular GA: assign links of loser to winner

End loop
Gen=Gen+l

Until maximum number of generations
A few comments should be made about the similarities and differences between the three
EA designs. First, it should be noted that the cGA and SOTEA only differ in the
reproduction rule used, which is described in Figure 5-6. In particular, SOTEA uses a
reproduction rule that is loosely based on genome duplication and divergence while the
cGA uses a rule that ensures the ring topology is maintained.

The Panmictic GA also clearly differs from the distributed EA designs in that its population
is defined on a static fully connected network. However there is another difference in the
Panmictic GA that needs to be explained and justified. As demonstrated in the pseudocode
above, the Panmictic GA uses a selection method that is similar to binary tournament
selection (without replacement). This selection method was used in order to provide the
Panmictic GA with a better chance of maintaining genetic diversity. If the Panmictic GA
incorporated the same selection procedure as the distributed EA designs, this would be
equivalent to truncation selection. Truncation selection was not used with the Panmictic
GA because preliminary results (not shown) have indicated that this selection method
causes poor performance and low genetic diversity when a Panmictic GA is run on the NK
fitness landscape.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.3.3 Results

The experimental results start off by assessing the topological characteristics of the EA

populations to determine if any of the EA designs are able to acquire the topological

characteristics of complex biological systems. Experiments are also conduced to see if any

other behavioral qualities of complex biological systems are acquired. One important

quality that would be of great value in an EA design is the capacity to sustain diversity

within a competitive environment. This section investigates whether any of the EA designs

can sustain high levels of genetic diversity and also investigates whether this provides a

benefit to algorithm performance.

5.3.3.1 Topological Characteristics of Interaction Networks

This section looks at the structural characteristics of the interaction networks for each of the

EA designs and compares them to what is observed in complex systems. For each of the

structural characteristics presented in Table 5-1, only the SOTEA network was found to

have characteristics similar to that seen in complex systems.

The last column in Table 5-1 highlights the fact that every individual has the same

neighborhood size k in the Panmictic GA and the cellular GA, however k takes on a

distribution of values for SOTEA. The distribution for k is fat tailed (closely fitting an

exponential function), meaning that there is large heterogeneity in the neighborhood size.

Keeping in mind that only neighbors can compete in a structured EA, the neighborhood

size k impacts the selection pressure within the population. Since there is large

heterogeneity in neighborhood sizes for SOTEA, it is reasonable to suspect that there will

also be significant heterogeneity in selection pressure.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Table 5-1: Topological Characteristics for the interaction networks of the Panmictic GA, cellular GA, and
SOTEA, For comparison, common topological characteristics of complex networks are also provided (taken from
[198], and references therein). L is the characteristic path length, k is the node degree, kaye ¡s the average node
degree, N is the population size, and /i is a correlation coefficient for the stated proportionalities.

System L l̂ ave k distribution
Panmictic GA 1 kave = N-l k = N-l
cellular GA L ~ N kave 2 k = 2
SOTEA L ~ l o g N

(R^=0.969)
kave ~ log log N
(R^=0.989)

Exponential
(R^=0.991)

Complex
Networks

L ~ l o g N kave « N Fat Tail (e.g. Power
Law, Exponential)

5.3.3.2 Genetic Diversity

This section looks at the genetic diversity that is maintained in each of the EA designs.

Measuring genetic diversity of the population is done in a straightforward manner. Genetic

Diversity is calculated as the average Hamming Distance between population members

divided by the average Hamming Distance between random points in solution space. For a

single binary gene, two randomly selected gene values have a 50% chance of being

different making the Hamming Distance between random individuals of Nm genes equal to

Nnk /2. The Hamming Distance is defined in (5-11) as a summation of 1 minus the

Kronecker Delta function d(Xî h, Xĵ h), The Kronecker Delta function has a value of 1 if

= Xĵ h and 0 otherwise. Xî h and Xĵ h represent the gene for individuals i and j (resp.).

h=\

N N

(5-11)

(5-12)

N{N-\ N NK,

Diversity results are shown in Figure 5-8 with each of the EA designs using epistatic

fitness. Results are given for genetic diversity of the entire population as well as diversity

for the 20% best individuals in the population. It is useful to measure diversity for the top

20% because it is often very difficult to maintain diversity among the best individuals in a

population. As expected, the results demonstrate that the Panmictic GA is not able to

sustain genetic diversity, particularly in the top 20% of the population. The cellular GA has

much higher levels of diversity although this is significantly reduced in the top 20%.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

SOTEA exhibits sizeable improvements in diversity compared to the other EA designs,

particularly for 20% best individuals in the population.

Total Population Diversity

0.6 -

0.4 -r

0.2

• Cellular GA

• SOTEA

OW
0

im^ M i i i i i i i i i i

1000 2000
Generation

3000 4000

Figure 5-8: Genetic Diversity Results are shown over 4000 generations for Panmictic GA, SOTEA, and cellular
GA. Diversity for each EA is an average over 10 runs with diversity calculated from (5-12) using the entire
population (top graph) or the 20% best individuals in the population (bottom graph). Experiments are conducted
on NK models with NNK =30, K^ =14. For each EA design the population size is set to 7V=100 and epistatic fitness
is used as defined by (5-9).

5.3.3.3 Performance Results

Performance results are shown in Figure 5-9 with each of the EA designs using epistatic

fitness. These results demonstrate that the Panmictic GA is not able to continually locate

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

improved solutions while SOTEA and the cellular GA both are able to make steady

progress throughout the 5000 generations considered. However, SOTEA was found to

have better performance than the cellular GA during the later stages of evolution.

-0.215

-0.225

-0.235

(0 (A
I -0.245

-0.255

-0.265

-0.275

-FT

•
• • • • Panmictic GA

• Cellular GA
•

1 1 1
SOTEA

1000 2000 3000
Generations

4000 5000

Figure 5-9: Performance results are shown over 5000 generations for Panmictic GA, SOTEA, and cellular GA
each operating with Epistatic Fitness. Performance for each EA is an average over 10 runs with performance
calculated as the best objective function value in a run. Experiments are conducted on NK models with N^^K =30,
Km =14. For each EA design the population size is set to A^=100 and epistatic fitness is used as defined by (5-9).

5.3.3.4 Impact of Ruggedness

This section considers the impact that landscape ruggedness has on genetic diversity of the

population for each of the EA designs. Landscape ruggedness is varied by changing the

KNK parameter of the NK model as shown in Figure 5-10. These results clearly show that

as the NK landscape becomes completely smooth (i.e. KNK 0), each of the EA designs

loses the capacity to sustain genetic diversity. However as ruggedness increases, each EA

design approaches its own asymptotic limit indicating its maximum capacity for genetic

diversity. Notice that the asymptote for SOTEA was not observed over the range of KNK

values tested. Larger values of KNK were not considered due to computational costs.

Knowing that a diversity measure equal to 1 approximates a uniform distribution in

genotype space, the fact that SOTEA has diversity close to 0.8 among its top 20%

individuals indicates that SOTEA is able to distribute the search process across many

promising regions of genotype space.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

0.8

0 .6 -

I 0.4

0.2

• Cellular GA

• SOTEA

Panmictic GA

• • Cellular GA

• SOTEA

Panmictic GA •

• •

• A

K 10 15
NK

Figure 5-10: Genetic diversity results are shown for different amounts of landscape ruggedness for the Panmictic
GA, SOTEA, and the cellular GA. Diversity is an average of calculations using (5-12) that are taken at every 20
generations (up to 1000 generations) from the 20% best individuals in the population. This measure then also
averaged over 5 runs. Experiments are conducted on NK models with Nĵ ic =30, and K^k varying as shown in
graph. Increasing K^k indicates increasing levels of landscape ruggedness. For each EA design, the population size
is set to A^=100 and epistatic fitness is used as defined by (5-9).

5.3.3.5 Impact of Epistasis

All results presented thus far have considered EA designs with individual fitness defined by

(5-9) (i.e. epistatic fitness). Figure 5-11 extends the analysis of population diversity for

cases where the individual fitness is defined in the standard way (as the raw objective

function value). Compared to the results with epistatic fitness (see Figure 5-8), both

SOTEA and cellular GA have significantly less diversity and are hard to distinguish from

the diversity present in the Panmictic GA. This result provides evidence that epistasis can

play an important role in sustaining diversity in structured populations including in the

cellular GA.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Total Population Diversity • Cellular GA

• SOTEA

Rannictic GA

0.6 ---

0.4 - -

0.2

• •

V

1000 2000
Generation

3000 4000

Top 20% Population Diversity • Cellular GA

SOTEA

Pannictic GA

2000
Generation

3000 4000

Figure 5-11: Genetic diversity results are shown over 4000 generations for Panmictic GA, SOTEA, and cellular
GA each operating without epistatic fitness. Diversity for each EA is an average over 10 runs with diversity
calculated from (5-12) using the entire population (top graph) or the 20% best individuals in the population
(bottom graph). Experiments are conducted on NK models with Nj^^ =30, KJ^K =14. For each EA design, the
population size is set to A'=100 and fitness is defined as the Objective Function Value. The results shown here for
the Panmictic GA are identical to results shown in Figure 5-8. This is because the fitness rankings of individuals in
a fully connected population are the same regardless of whether epistatic fitness (5-9) is used or the Objective
Function Value is used. Because the fitness rankings are the same, the outcome of competitions will also be the
same (hence no change to EA behavior).

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.3,3.5.1 Selection Pressure Patterns

A better understanding of the impact of epistatic fitness on SOTEA is possible by observing

its influence on the selection pressure within the SOTEA network. The networks in Figure

5-12 are examples of SOTEA networks grown with and without epistatic fitness.

To represent selection pressure in the system, each node is selected in a mock competition

trial and arrows are drawn to its worst neighbor. Arrows are drawn in this way because, in

SOTEA and the cellular GA, competition occurs by first selecting an individual and then

having it compete against its worst neighbor. Arrows in black represent selection pressure

directed away from the network center, while arrows in green indicate selection pressure

that is not directed away from the center.

For networks evolved with epistatic fitness, selection pressure points away from the

network center but without epistatic fitness, selection pressure points both toward and away

from the network center. It was also found that older and better fitness nodes tend to be

located more towards the center of the network. Additional experiments are needed in

order to better understand this behavior of SOTEA, however it is believed that the selection

pressure patterns shown here ultimately play an important role in explaining why genetic

diversity is maintained at such high levels in SOTEA.

It should also be mentioned that the two networks shown in Figure 5-12 are taken after 100

generations of SOTEA evolution. Typically the amount of time required for the self-

organization of network structure to take place was less than 100 generations however no

attempt was made at determining the exact time when this transient was complete. Beyond

100 generations, it was found that topological characteristics of the SOTEA network as

well as network visualizations were very consistent.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Figure 5-12: Selective pressure patterns in the SOTEA network with (top) and without (bottom) epistasis.
Selective pressure in the network is shown with arrows in black for pressure directed away from the network
center and green for other directions of pressure. Selective pressure directions have only been calculated for nodes
located near the network center. The arrows are drawn by selecting a node and drawing an arrow from this node
to its worst neighbor. The worst fit neighbor is determined by epistatic fitness (5-9) for the top graph and by the
Objective Function Value for the bottom graph.

5.3.3.6 The Impact of SOTEA model parameters

The SOTEA model includes parameters Padd and Premove for controlling how much the

connections of an offspring are different from the connections of its parent. These

parameters are conceptually similar to a mutation rate for network topology and they will

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

control the amount of structural innovation that is introduced to the network. This in turn is

expected to impact the range of topologies that are possible during evolution. To get a

sense of the impact of these parameters, Figure 5-13 presents networks that were evolved

with different settings for Padd and Premove- As seen in Figure 5-13a, when no innovation is

possible {Padd Premove = 0), the nctwork consistently takes on a structure that resembles a

simple branching process. When both parameters are increased to 0.1, as seen in Figure

5-13b, some clustering begins to emerge. However, when the parameters are increased a

little more to 0.2 (see Figure 5-13b), the structure changes dramatically and is dominated by

a single highly connected cluster.

Figure 5-13 SOTEA networks evolved using different parameter settings for the reproduction rule. In the
reproduction rule, a parent's connections are inherited by its offspring with probability Padd followed by each of
the inherited connections being lost by the parent with probability Premove- Population interaction networks were
evolved for a) Padd = Premove = 0.0%, b) Padd = Premove = 1 0 % , C) PaOd = Premove = 20%.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.3.4 Discussion

5.3.4.1 SOTEA Guidelines

It would be useful to be able to generalize the results shown in this work and develop a

framework under which network dynamics would be beneficial to an EA population.

Along these lines, several aspects of SOTEA have been highlighted as important features of

the design.

First, the most important precondition for network self-organization was to have changes in

network structure be driven by the same forces that drive population dynamics; namely a

fitness-based selection pressure.

The SOTEA model also used a dual coupling between network states and structure which

substantially improved the behavior of the system. In particular, network dynamics

depended upon node states (due to the SOTEA competition rule) and node states depended

upon network structure (due to the use of epistatic fitness). It is worth mentioning that the

coevolution of structure and states is a topic of great significance to the study of complex

networks. To this author's knowledge, a dual coupling between states and structure is not

present in any other model of complex systems available in the literature.

It is also interesting to note that selecting the worst neighbor in the competition rule is also

similar to the extremal dynamics used in most models of self-organized critical systems as

reviewed in [177]. By eliminating the worst individual in a neighborhood, SOTEA may

actually be using an important driving force for some self-organizing processes in nature.

Additional experimentation is needed to substantiate these claims.

5.3.4.2 The NK Model as an optimization research tool

There are valid concerns about the extent to which the NK model, as currently defined,

represents real optimization problems of interest. One concern is that the topological

properties of the NK landscape's gene interaction network are similar to a random graph

and do not correspond with the topological properties of many real world systems.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

As reviewed in this chapter, many complex systems have a number of similarities in their

topological properties and these properties are also clearly non-random. Given an

appropriate problem representation, it is speculated that this (approximate) universality

could extend to a large and interesting class of optimization problems based on the fact that

many problems of interest are large complex systems of interacting components. To test

this simple idea, it would be necessary to develop course-grained network approximations

of fitness landscapes for a number of real-world optimization problems. Real world

problems could then be probed using tools developed in statistical mechanics in order to

determine whether any common structural properties exist.

Under the reasonable assumption that some topological properties are repeated in many real

world problems, it should be possible to develop network evolution models which can

evolve similar structures. Given the success of recent models in mimicking topological

properties of complex systems, this task should not be too difficult. The result of these

efforts would be a fitness landscape generator, similar in principle to the NK landscape, but

one that has the capacity to generate problem instances with properties that are similar to

real world problems. It is also worth mentioning that this suggestion has some similarities

to the proposal by Kauffman for probing gene regulatory networks [219].

5.3.5 Conclusions

This work was intended as an initial investigation into the self-organization of interaction

networks for an Evolutionary Algorithm. Motivating this research was a desire to acquire

structural characteristics of complex biological systems which are believed to be relevant to

their behavior. In addition, this work also aimed to create an artificial system with a

capacity for sustainable coexistence of distinct components within a competitive

environment (i.e. sustainable diversity).

Population diversity was not imposed upon the EA as is traditionally done but instead

emerges in the system as a natural consequence of population dynamics. The

environmental conditions which enable sustainable diversity are similar to what is observed

in complex biological systems. These conditions involved a self-organizing interaction

network and a contextual definition of individual fitness which was referred to as epistatic

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

fitness. In addition, high levels of diversity also required evolution to take place within a

rugged fitness landscape.

5.4 SOTEA Model II

The previous SOTEA model demonstrated that fitness was a natural property for tying

network structural dynamics to the evolutionary dynamics of an EA population. Different

forms of fitness measurements were considered including a contextual form (called

epistatic fitness) where an individual's fitness is defined by its own local environment.

The next SOTEA model focuses on the emergence of additional structural properties that

were not present in the first SOTEA model. One of these properties is modularity which is

a structural feature that is heavily exploited in natural evolution. To encourage modularity,

the second model uses both fitness and measures of community cohesion to drive network

dynamics. The new SOTEA is also designed for use with multi-parent search operators

which are standard in most EA designs and were missing in the first SOTEA model.

Section 5.4.1 describes the new SOTEA model including new driving forces for network

dynamics and new rules for implementing changes to network structure. Section 5.4.2

presents the experimental setup including the remaining aspects of the core EA design.

Results are presented in Section 5.4.3 and include both an analysis of performance and a

comparison of topological properties between SOTEA and complex biological systems.

The performance results provide evidence that the new SOTEA exhibits robust search

behavior with strong performance on many problems. Discussion and conclusion sections

finish the chapter in Sections 5.4.4 and 5.4.6.

5.4.1 Model Description

This section describes the new SOTEA network model used to couple the network topology

to the population dynamics of an Evolutionary Algorithm. With the new model, network

dynamics are driven by a measure of node fitness and by a measure of node modularity as

described in Section 5.4.1.1. These dynamics are implemented by rewiring localized

regions of the network as described in Section 5.4.1.2.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

As previously mentioned, the network is described by an adjacency matrix J such that

individuals / and j are connected (not connected) when Jij=\ (Jy=0). This work only deals

with undirected networks such that Jy = Jp. The terms individual and node are used

interchangeably to refer to individual members of the EA population situated within the

population network. Also, the terms links and connections are used interchangeably to

refer to directly connected nodes (i.e. individuals that are neighbors in the population).

5.4.1.1 Driving Forces

Two properties are used to drive network dynamics in this SOTEA model which are

described in this section.

5.4,1,1,1 k Adaptation

For most real networks, the degree k is not constant (unlike what is seen in lattices) but

instead takes on a distribution of values often fitting exponential or power law distributions.

How nodes come to obtain k values that are higher than others depends on the system under

study and could be historically motivated or could be motivated by some form of intrinsic

node fitness. The former has been theorized to take place in the process of genome

complexification which has been modeled primarily by the previously mentioned DD

model. Other popular models such as the BA model and its associated mechanism of

"preferential attachment" also appear to derive k distributions using an historical bias. An

alternative is the "good get richer" concept [204] introduced in the fitness model in Section

5.1.3.3, where individuals of high fitness are driven to obtain higher k.

In this model, an adaptive set point Kset is used to define a node's desired number of links

such that high fitness individuals in the population are encouraged to acquire a larger

number of connections as defined in (5-13). Although conceptually similar to the work in

[204], the node's fitness will have an ability to evolve due to the dynamics of the EA

population which is something previously unexplored in network evolution models. The

Kset parameter is defined in (5-14) as a quadratic function of rank which has a lower bound

of KMin = 3 and an upper bound Kuax which must be set by the user. The Rank term in

(5-14) refers to an individual's fitness based ranking with Rank = 1 being the best

individual and Rank = A t̂he worst individual in the population.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Min

/ / N -Rank
Max ~ ^Mir

^ /

(5-13)

(5-14)

5,4,1,1,2 Weighted Clustering Coefficient

As mentioned in the review of network properties in Section 5.1.2, many complex

biological systems have a high level of modularity (as measured by the clustering

coefficient) and a clear hierarchical structure. Networks with hierarchical structure are

expected to have a clustering coefficient that is inversely related to a node's degree (i.e. c-k

correlations). The second property used to drive network dynamics attempts to explicitly

address both observations.

Based on the previously stated driving force for k adaptation, it is expected that nodes in

SOTEA networks with higher fitness will also have higher k. To encourage high levels of

modularity as well as the inverse relationship between c and k (needed for hierarchy),

network rewiring is driven to maximize a weighted version of the clustering coefficient as

defined in (5-15). In this new version of the clustering coefficient, a connection's

contribution to c is weighted to give less importance to connections involving nodes of

higher fitness. The weight W for each connection is defined in (5-17) which alters the

term of the clustering coefficient equation, as seen in (5-16). Notice the similarity between

W and the intrinsic fitness measure which is defined in (5-8) and was first presented in

[204].

. . . 2e; (5-15)
Max C, =—7—^—r

k,{k-\)

7=1 k=\

Rank, X Rank, (5-17)
Wjk = ^

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.4.1.2 Mechanics of Network Rewiring

The previous section described two properties which will act as driving forces for network

dynamics. In particular, each node will be driven to obtain a specific value of k based on its

fitness and defined in (5-14) and each node will be driven to maximize the value of a

weighted clustering coefficient given in (5-15). To obtain these goals, changes to network

structure must take place involving the addition, removal, and local transfer of links in a

network. Although conceptually simple, these rules must satisfy a number of constraints in

addition to and sometimes superseding the driving forces previously stated. These rules are

described next and are also demonstrated in Figure 5-14.

The "Add Link Rule" and the "Remove Link Rule" are two rewiring rules that have been

created in order to allow the k value for each node to reach Kset-

Add Link Rule: Starting with a selected node Nl, a two step random walk is taken,

moving from node Nl to node N2 to node N3. If Nl wants to increase its number of links

{k^i < Kset) and N3 wants to increase its number of links (f c < Kset) then add a link

between Nl and N3.

Remove Link Rule: For a selected node Nl with kNj > Kset, a two step random walk is

taken, moving from node Nl to node N2 to node N3. If N3 is already connected to Nl

(JN].N3 =1) and KNS > KSET then remove the connection between Nl and N3. Notice the

presence of N2 with JN2,NI = JN2,N3 = 1 ensures that connections removed using this rule do

not result in network fragmentation.

The "Transfer Link Rule" allows for the improvement of clustering locally within the

network. However, this rule is not allowed to result in net violations to k adaptation.

Transfer Link Rule: For a selected node Nl a two step random walk is taken, moving

from node Nl to node N2 to node N3. If fe < Kset, then the connection between Nl and N2

is transferred to now be between Nl and N3 (i.e. JN],N2 = 1, JNJ,N3 = 0 changes to JNI,N2 = 0,

=1) . To determine if the transfer will be kept, the local modularity is calculated

using (5-15) for Nl, N2 and N3 both BEFORE and AFTER the connection transfer. If

(p*̂ ^ + c^^ + c^^) increases after the connection transfer then the transfer is kept, otherwise

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

it is reversed. In this way connections are only added which strengthen the weighted

clustering metric and don't cause a net increase in Kset violations.

Transfer

Figure 5-14 Adaptive Network Rules: A selected node N1 will attempt to add, remove or transfer its connections
based on the satisfaction of constraints and the improvement of properties. Add Rule: The dotted line represents
a feasible new connection in the network assuming nodes N1 and N3 both would like to increase their number of
connections. Remove Rule: The gray dotted line represents a feasible connection to remove in the network
assuming nodes N1 and N2 both have an excess of connections. Transfer Rule: The connection between N1 and
N2 (gray dotted line) being transferred to now connect N1 and N3 (black dotted line) represents a feasible transfer
assuming this action results in an overall improvement to local clustering.

Since there are several constraints that the random walks (in the rewiring rules) must

satisfy, up to a maximum of 10 random walks are conducted starting from N1 for each

instance of rule execution in an attempt to satisfy the conditions. An upper bound on the

number of walks is needed because there is no guarantee that a random walk exists which

satisfies all conditions.

5.4.2 Experimental Setup

5.4.2.1 Algorithm Designs

SOTEA: A high level pseudocode for SOTEA is provided below. The algorithm starts by

defining the initial population P on a ring topology with each node connected to exactly

two others (e.g. Figure 5-lc). For a given generation t, each node is subjected to both

network rewiring rules and standard genetic operators. For a given node Nl, each of the

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

three network rewiring rules are executed (defined in Section 5.4.1.2). Afterwards, N1 is
selected as a parent and a second parent N2 is selected by conducting a two step random
walk across the network. An offspring is then created using the parents and a single search
operator selected at random from the list in Table 5-2.̂ ^ The better fit between the
offspring and N1 is stored in a temporary list Temp(7V /̂) while the network rewiring rules
and genetic operators are repeated on each of the remaining nodes in the population. To
begin the next generation, the population is updated with the temporary list. This process
repeats until some stopping criteria is met. In this case, the stopping criteria is a maximum
of 3000 generations.

Pseudocode for SOTEA
t=0
Initialize P(t) (at random)
Initialize population topology (ring structure)
Evaluate P(t)
Do

For each N1 in P(t)
Add LinkRule(Nl)
Remove Link Rule(Nl)
Transfer Link Rule(Nl)
Select N1 as a first parent
Select parent N2 by conducting a two step random walk from N1
Select Search Operator (at random)
Create and Evaluate offspring
Temp(Nl) = Best_of(offspring, Nl)

NextNl
t=t+l
P(t) = Tempo

Loop until stopping criteria

cellular GA: A cellular GA is also tested in these experiments which is identical to
SOTEA except for two design changes. First, the cGA does not use any of the network
rewiring rules (Add, Remove, Transfer) that are used in SOTEA. This means the cGA has
a static ring topology. Also, when creating an offspring, the second parent N2 is selected

No parameter tuning was attempted and all search operators are used with equal probability.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

among all neighbors within a radius R of N1 using linear ranking selection. A high level

pseudocode is for the cGA is provided below.

Pseudocode for cGA
t=0
Initialize P(t) (at random)
Initialize population topology (ring structure)
Evaluate P(t)
Do

For each N1 in P(t)
Select N1 as first parent
Select N2 from Neighborhood(Nl,R)
Select Search Operator (at random)
Create and evaluate offspring
Temp(Nl) = Best_of(offspring, Nl)

NextNl
t=t+l
P(t) = Tempo

Loop until stopping criteria

Panmictic EA: SOTEA is also compared against a number of Panmictic EA designs. The

core of the Panmictic EA is given by the pseudocode below. For this pseudocode, the

parent population of size // at generation t is defined by P{t). For each new generation, an

offspring population P\t) of size is created through variation (search) operators and is

evaluated to determine fitness values for each offspring. The parent population for the next

generation is then selected from P\t) and Q, where Q is subset of P{t). Q is derived from

P{t) by selecting those in the parent population with an age less than K.

Pseudocode for Panmictic EA
t=0
Initialize P(t)
Evaluate P(t)
Do

PXt) = Variation(P(t))
Evaluate (P^t))
P(t+1) = Select(PXt) U Q)
t=t+l

Loop until stopping criteria

Eight EA designs are tested which vary by the use of generational (with elitism) vs. pseudo

steady state population updating, the use of binary tournament selection vs. truncation

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

selection, and by the number of search operators. Details are given below for each of the

design conditions.

Population updating: The generational EA design (with elitism for retaining the best

parent) has the parameter settings (K=OO for best individual). The pseudo

steady state EA design has the parameter settings N=X=fi, k^co. Unless otherwise stated,

A^=50. Each experiment ran for 3000 generations meaning that 150,000 objective function

evaluations are required to obtain a final solution in each experimental run.

Selection: Selection occurs by either binary tournament selection (without replacement) or

by truncation selection. Both selection methods are described in Chapter 2.

Search Operators: For each EA design, an offspring is created by using a single search

operator. Two designs were considered: i) a seven search operator design and ii) a two

search operator design. For the seven operator case, an offspring is created by an operator

that is selected at random from the list in Table 5-2 (no parameter tuning was attempted).

For the two operator case, uniform crossover is used with probability = 0.98 and single

point random mutation is used with probability = 0.02. Search operator descriptions are

provided in Appendix B.

Table 5-2: Names of the seven search operators used in the cellular GA, SOTEA, and selected Panmictic EA
designs are listed below. More information on each of the search operators can be found in Appendix B.

Search Operator Names
Wright's Heuristic Crossover
Simple Crossover
Extended Line Crossover
Uniform Crossover
BLX-a
Differential Operator
Single Point Random Mutation

Constraint Handling: Each of the engineering design case studies involve nonlinear

inequality constraints meaning that solution feasibility must be addressed. Feasibility is

dealt with by defining fitness using the Stochastic Ranking method presented in [64] as

opposed to defining fitness by the objective function. The parameter settings for Stochastic

Ranking were taken from the suggestions in [64].

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.4.2.2 Engineering Design Case Studies

Experiments for assessing SOTEA performance are conducted on six engineering design

problems and six artificial test problems taken from the literature (described in Appendix

A) and compared against cellular Genetic Algorithms and Panmictic Evolutionary

Algorithm designs.

The first four engineering design problems were chosen due to a prior difficulty in solving

these problems using Panmictic Evolutionary Algorithms and the difficulty that others have

had in solving these problems in general. Some of these test problems are small enough

that mathematical programming techniques have been used to solve for the global optimal

solution (problems 1, 2, and 3) v^hich has helped in the assessment of algorithm

performance. In preliminary experiments conducted on the last two engineering design

problems, some Panmictic EA designs were able to find solutions that were better than

those reported in the literature. These problems were included in this work to see if

additional improvements could be made using SOTEA.

5.4.3 Results

General Performance Statistics: This section attempts to draw general conclusions about

the three EA design classes (Panmictic EA, cellular GA, and SOTEA) tested in these

experiments. The first statistic shown in column two of Table 5-3 measures the percentage

of runs that an EA design class was able to find the optimal solution (optimal defined as the

best solution value found in all experiments). This percentage is an average over all test

problems. The second statistic shown in column three measures the percentage of runs

where an EA design class finds a solution that ranks in the top 5% of all solutions found in

these experiments. The third statistic shown in column four is a value for the Mann-

Whitney U-test where the statistical hypothesis is that the given EA design class is superior

to the other two EA design classes. The fourth statistic shown in column five measures the

percentage of problems where the best EA design belonged to a particular design class^^.

^̂ Notice that eight Panmictic EA designs were used in these experiments while only four cellular GA and
four SOTEA designs were used. This should bias columns 3 and 6 of Table 5-3 to favor the Panmictic EA.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

The sixth column looks at the percentage of problems where an EA design class was able to

find the best solution at least one time.

For each of the statistics in Table 5-3, SOTEA is found to be significantly better than the

other EA design classes based on the 12 problems tested in these experiments. Particularly

impressive are the results in column five which indicate that the SOTEA design is the best

EA design in about 80% of the problems tested.

Table 5-3 Overall performance statistics for the Panmictic EA, the cellular GA, and SOTEA. Column two
measures the percentage of runs where the optimal solution was found. The optimal solution is defined as the best
solution found in these experiments. Column three measures the percentage of runs where the solution ranks in
the top 5% of solutions from all EA designs. In column four, "p" indicates the p value for the Mann-Whitney li-
test where the hypothesis is that the given EA design class is superior to the other two EA design classes. Column
five measures the percentage of problems where the best EA design belonged to a particular design class. Column
six measures the percentage of problems where an EA design class was able to find the best solution at least one
time. Statistics in columns 1-3 are an average value over all test problems.

EA Design % of runs w here EA U-Test % of problems wl lere EA EA Design
found best was top 5% P was best design found best

Panmictic EA 4.2% 5.1% 0.87 8.3% 16.7%
cellular GA 9.4% 11.6% 0.50 12.5% 66.7%
SOTEA 16.9% 25.2% 0.13 79.2% 83.3%

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.4.3.1 Engineering Design Performance Results

Pressure Vessel

5990

5970

5950

5930

5910

5890

5870

. K - \
— — ^ —

% %
%

*k. %

- -SOTEA-KmaxS

- -S0TEA-Kmax5

S0TEA-Kmax7

- -S0TEA-Kmax9

- -CGA-R1

- -CGA-R4

- -CGA-R8

- -CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-15 Performance results for the Pressure Vessel design problem are shown over 3000 generations for
SOTEA with different settings of K^ax, and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 100
generations. The global optimal solution has a fitness of 5850.38.

1770

1765

1760

F 1755

1750

1745

1740

Alkylation Process

•

.. ̂ ^ . - - '
^ w f #

*

^ - - -*

1 ^
* lA ^ '
f . #

- - - S0TEA-Kmax3
m B - S0TEA-Kmax5

S0TEA-Kmax7
•1 Ml - S0TEA-Kmax9

- - - cGA-RI

- - - CGA-R4

- - - CGA-R8

- - -CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-16 Performance results for the Alkylation Process design problem are shown over 3000 generations for
SOTEA with different settings of K^^x, and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 1400
generations. Several instances can be observed where fitness values momentarily decrease. This is the result of EA
runs turning from infeasible to feasible where the new feasible solution is lower than the average performance for
that EA design and generation. The global optimal solution has a fitness of 1772.77.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Heat Exchanger Network Design

7068

7063

7058

7053

7048

"TIT"

« %

% -\ V

S Z Z Z Z Z Z " '

-S0TEA-Kmax3
-S0TEA-Kmax5

S0TEA-Kmax7
-S0TEA-Kmax9
- CGA-R1

- CGA-R4
- CGA-R8
-CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-17 Performance results for the Heat Exchanger Network design problem are shown over 3000
generations for SOTEA with different settings of K ^ , and for cellular GA with different values of the
neighborhood radius R. Performance for each EA is an average over 20 runs of the best fitness (objective function)
value in the population. Infeasible solutions are neglected from the calculations, however all runs obtained
feasibility within the first 100 generations. The global optimal solution has a fitness of 7049.25.

Gear Train Design
1.E-09

F1.E-10

1.E-11

I
500 1000 1500 2000 2500 3000

- - -S0TEA-Kmax3
- - -S0TEA-Kinax5

S0TEA-Kmax7
- - - S0TEA-Kmax9
- - -CGA-R1
- - -CGA-R4
- - -CGA-R8
- - -CGA-R12

Gen

Figure 5-18 Performance results for the Gear Train Design design problem are shown over 3000 generations for
SOTEA with different settings of K^ax', and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 50
generations. The global optimal solution is unknown, however the best result previous to this work, is reported in
(220] as 2.70E-12.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Figure 5-19 Performance results for the Tension Compression Spring Design design problem are shown over 3000
generations for SOTEA with different settings of K^ax, and for cellular GA with different values of the
neighborhood radius R. Performance for each EA is an average over 20 runs of the best fitness (objective function)
value in the population. Infeasible solutions are neglected from the calculations, however all runs obtained
feasibility within the first 50 generations. The global optimal solution is unknown, however the best result previous
to this work, is reported in [221] as 0.01270.

1.72495
Welded Beam Design

1.72485

- S0TEA-Kmax3

- S0TEA-Kmax5

S0TEA-Kmax7

- S0TEA-Kmax9

- cGA-RI

- CGA-R4

- CGA-R8

-CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-20 Performance results for the Welded Beam Design design problem are shown over 3000 generations for
SOTEA with different settings of jfiT̂ ô , and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 50
generations. The global optimal solution is unknown, however the best result previous to this work, is reported in
[222] as 1.7255.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Pressure Vessel Alkylation Process Heat Exchanger Netwoik

7500

7000

6500

6000

««1« K

\ -7 \

1800 F

I6(K) -

1400 -

1200 -

KMX)

7700 -

7600 -

7500 -

7400 -

7300 -

7200 -

7100 -

\ % "7

Figure 5-21 Final performance results for the Pressure Vessel (Left), Alkylation Process (Middle) and Heat
Exchanger Network (Right) design problems are shown with box plots of performance data grouped by Panmictic
EA, cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000 generations) over
20 runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA designs (with
different parameter settings for neighborhood radius R), the four SOTEA designs (with different parameter
settings for Ajj/«), and the eight Panmictic EA designs described in Section 5.4.2.1. Insets are provided for the
cGA and SOTEA box plots to highlight the difference in results between these two algorithms. Also notice that the
Pressure Vessel and Heat Exchanger Network problems are Minimization problems while the Alkylation Problem
is a Maximization problem.

Results for Pressure Vessel Design Problem: For the Pressure Vessel design problem, all

but one of the SOTEA algorithms outperformed all of the cellular GA designs as seen in

Figure 5-15. Performance also tended to improve as network connectivity was reduced for

both SOTEA and the cGA. In light of this trend, it is not surprising to see the performance

of the suite of Panmictic EA designs performed very poorly on this problem as seen in

Figure 5-21. Comparing results between Figure 5-15 and Table C-7 (in Appendix C), the

best final solution for a Panmictic EA design is beaten by all SOTEA designs after only 300

generations.

Comparisons to work from previous authors highlights the strong performance of both of

the distributed Evolutionary Algorithms. Of the 8 papers referenced in and including [223],

only one other algorithm has been able to reach the objective function values obtained by

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

the distributed EA designs employed here. Performance comparison tables are provided in

Appendix C.

Results for Alkylation: For the Alkylation Process design problem, all but one of the

SOTEA algorithms outperformed the cellular GA designs as seen in Figure 5-16. In this

problem there was no clear trend between performance and network connectivity. It is also

clear that many of the algorithms were able to fmd improvements throughout the run

suggesting that convergence did not occur within the 3000 generations considered. Hence,

it is possible that the conclusions drawn here would change if evolution was considered

over a larger time scale. The Panmictic EA designs again performed relatively poorly on

this problem as seen in Figure 5-21.

Comparisons to work from previous authors highlights the strong performance of the

distributed Evolutionary Algorithms. Of the stochastic search methods described in the 5

papers referenced in [224] including their own Differential Evolution Algorithm, none

reached the fitness values obtained by the distributed EA designs employed here.

However, two aBB (Branch and Bound Non-Linear Programming) algorithms were cited

which did fmd the global optimum. Performance comparison tables are provided in

Appendix C.

Results for HEN: For the Heat Exchanger Network design problem, all of the SOTEA

algorithms outperformed the cellular GA designs as seen in Figure 5-17. Performance also

tended to improve as network connectivity was increased for both SOTEA and the cGA.

Such a trend seems to suggest that interaction constraints are not needed for this problem

which makes the poor performance of the Panmictic EA designs (see Figure 5-21) a little

surprising. Comparing results between Figure 5-17 and Table C-7 (in Appendix C), the

best final result for a Panmictic EA design is beaten by all SOTEA designs after only 400

generations.

Comparisons to other work are less favorable in this case. For instance, in [224], they

introduce a Differential Evolution Algorithm that can find the optimal solution 100% of the

time in under 40,000 evaluations. None of the algorithms employed here were able to

obtain that level of performance for this problem. In fact, the best algorithm (SOTEA with

Kmax = 7) was only able to find the optimal solution 65% of the time in 150,000 evaluations.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

To make a fair comparison to the results in [224], the results from this thesis were also

analyzed at 40,000 evaluations and under these conditions only two of the SOTEA

algorithms (and none of the cellular GAs) were able to find an optimal solution in that

amount of time (with the optimal being found only 10% of the time). It is worth

mentioning that this was one of the simplest design problems tested with only a marginal

level of epistasis between parameters (e.g. see problem definition in Appendix A).

Gear Train Tension Conqxrcssion Welded Beam

l.B-m r

I.E-10 r

l.Er-U r

Figure 5-22 Final performance results for the Gear Train (Left), Tension Compression Spring (Middle) and
Welded Beam (Right) design problems are shown with box plots of performance data grouped by Panmictic EA,
cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000 generations) over 20
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA designs (with different
parameter settings for neighborhood radius R), the four SOTEA designs (with different parameter settings for
KMWC)^ and the eight Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are provided for
the cGA and SOTEA box plots (with data shifted and plotted on a log scale) to highlight the difference in results
between these two algorithms. All three design problems are Minimization problems.

Results for Gear Train Design Problem: For the gear train design problem, there was no

clear distinction in performance between the cellular GA and SOTEA. One of the cellular

GA designs (R=\2) was found to have better average performance than any of the SOTEA

designs as seen in Figure 5-18 however comparison of end performance between the

cellular GA, SOTEA, and the Panmictic EA shows very little difference as seen in Figure

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5-22. Of the two papers referenced in and including [220], one previous method has been

able to find the solutions achieved in this work.

Results for Tension Compression Spring Design Problem: For the tension compression

spring design problem, all but one of the distributed EA designs were found to converge to

nearly identical values as seen in Figure 5-19. The SOTEA design with XMBC=5 was found

to have worse performance than the other designs. However, comparison of end

performance as shown in Figure 5-22 shows SOTEA did have a better median performance

compared to the cellular GA.

Comparisons to work from previous authors highlights the strong performance of both of

the distributed Evolutionary Algorithms. Of the three papers referenced in and including

[221], no previous method has been able to find the solutions achieved in this work.

Results for Welded Beam Design Problem: For the welded beam design problem, each

of the distributed EA designs were found to converge to nearly identical values as seen in

Figure 5-20. Both distributed EA designs strongly outperformed the Panmictic EA as seen

in Figure 5-22.

Comparisons to work from previous authors highlights the strong performance of both of

the distributed Evolutionary Algorithms. Of the 3 papers referenced in and including [222],

no previous method has been able to find the solutions achieved in this work.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.4.3.2 Artificial Test Function Results

Frequency Modulation
20

19

18

17

F 16

15

14

13

12

• ^ ^ ^

» ^ ^ %
— * —

- S0TEA-Kmax3
-SOTEA-KmaxS

S0TEA-Kmax7
-SOTEA-KmaxS
-CGA-R1
-CGA-R4

- CGA-R8
-CGA-R12

0 500 1000 1500
Gen

2000 2500 3000

Figure 5-23 Performance results for the Frequency Modulation problem are shown over 3000 generations for
SOTEA with different settings of K„iax, and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0.

ECC
0.0050

0.0048

0.0046
F

0.0044

0.0042

0.0040

o« _

-SOTEA-KmaxS
-SOTEA-KmaxS

S0TEA-Kmax7
-S0TEA-Kmax9
- CGA-R1
-CGA-R4
- CGA-R8
-CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-24 Performance results for the error correcting code (ECC) problem are shown over 3000 generations
for SOTEA with different settings of K^ax, and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0.067416. Results are shifted so that global optima is 0.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

System of Linear Equations
1.E+02

1.E-01

1.E-04
F

1.E-07

1.E-10

1.E-13

1.E-16

5 0 0 - - t o e o - - - w o e - - 2 0 0 0 - - « s e o - - 3 € 00
• SOTEA-KmaxS

- SOTEA-KmaxS

S0TEA-Kmax7

- SOTEA-KmaxS

- CGA-R1

-CGA-R4

- CGA-R8

-CGA-R12

Gen

Figure 5-25 Performance results for the system of linear equations problem are shown over 3000 generations for
SOTEA with different settings of K âxy and for cellular GA with different values of the neighborhood radius R.
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population.
The global optimal solution is 0.

Rastrigin
1.E+01

1.E+00

1.E-01

1.E-02

F 1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

- «OQb-V-^OOÜ^^ 1500 2000 2500 31 iw Si ^ IP ^ V * » 1 «É • • •.—
000

- J - • ,

- SOTEA-KmaxS

- SOTEA-KmaxS

S0TEA-Kmax7

- S0TEA-Kmax9

- CGA-R1

- CGA-R4

-CGA-R8

-CGA-R12

Gen

Figure 5-26 Performance results for the Rastrigin function are shown over 3000 generations for SOTEA with
different settings of Kmax-, and for cellular GA with different values of the neighborhood radius R. Performance for
each EA is an average over 20 runs of the best fitness (objective function) value in the population. The global
optimal solution is 0.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

Griewangk
1

1 1 - - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12

- - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12

- - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12

\ \ \ • = . ' - .

- - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12

• « B i B B K i B i B i a i M B i t i l l l l l J I J

\

- - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12
. . . .

- - -SOTEA-KmaxS

- - - SOTEA-KtnaxS

S0TEA-Knnax7

- - -cGA-RI

- - -CGA-R4

- - -CGA-R8

- - -CGA-R12

500 1000 1500
Gen

2000 2500 3000

Figure 5-27 Performance results for the Griewangk function are sliown over 3000 generations for SOTEA with
different settings oiK^ax-, and for cellular GA with different values of the neighborhood radius R. Performance for
each EA is an average over 20 runs of the best fitness (objective function) value in the population. The global
optimal solution is 0.

Figure 5-28 Performance results for Watson's function are shown over 3000 generations for SOTEA with different
settings oiKn^^, and for cellular GA with different values of the neighborhood radius R. Performance for each EA
is an average over 20 runs of the best fitness (objective function) value in the population. The global optimal
solution is 0.01714.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Frequency Modulation Error Correcling Code Sys. of Lia Equations

4
I

Ul
«1!

I t-f M
t E-rn
t Er-(1h
1 fc-cr
i E-i*
I E-ITH
i E~ tii

\
7 \ \

%

% •7 \ %

%
\

Figure 5-29 Final performance results for the Frequency Modulation (Left), Error Correcting Code (Middle) and
System of Linear Equations (Right) test functions are shown with box plots of performance data grouped by
Panmictic EA, cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000
generations) over 20 runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA
designs (with different parameter settings for neighborhood radius R), the four SOTEA designs (with different
parameter settings for A^a)̂, and the eight Panmictic EA designs described in Section 5.4.2.1. When necessary,
insets are provided for the cGA and SOTEA box plots (with data plotted on a log scale) to highlight the difference
in results between these two algorithms. All three design problems are Minimization problems.

Results for Frequency Modulation: For the frequency modulation problem, SOTEA

designs are found to be both the best and worst performers (compared to the cellular GA)

throughout the optimization runs as seen in Figure 5-23. The larger distribution of SOTEA

performance is also evident in the final performance results shown in Figure 5-29. Here it

can also see that while both SOTEA and the cellular GA have much better median

performance than the Panmictic EA, only SOTEA and one of the Panmictic EAs were able

to find the global optimal solution.

Results for ECC: For the error correcting code problem, both SOTEA and the cellular GA

designs are able to make steady progress toward the optimal solution with little difference

between the two designs as seen in Figure 5-24. However, in the final distribution of

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

results shown in Figure 5-29, only SOTEA and one of the Panmictic EAs were able to find

the global optimal solution.

Results for System of Linear Equations: For the system of linear equations test function,

SOTEA designs overwhelmingly outperform the cellular GA as seen in Figure 5-25 and

Figure 5-29. Also seen in Figure 5-29, both distributed EA designs were able to strongly

outperform the Panmictic EA designs.

Rastrigin Griewangk Watson

.12

_ .10

.08

Of»

.02

1)1

noi

I E-(>4

I E-n?

IE-on

1 E-O?

I E.-1»

1 E (W

l.E-H)

h-t-

\ •S.
••7 \ •ft.

••7

' r

\
'•7

-7

Figure 5-30 Final performance results for the Rastrigin (Left), Griewangk (Middle) and Watson (Right) test
functions are shown with box plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The
box plots represent final algorithm performance (after 3000 generations) over 20 runs for all cGA, SOTEA, and
Panmictic EA designs. This includes data from the four cGA designs (with different parameter settings for
neighborhood radius R), the four SOTEA designs (with different parameter settings for KMOX)^ and the eight
Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are provided for the cGA and SOTEA
box plots (with data shifted and plotted on a log scale) to highlight the difference in results between these two
algorithms. All three design problems are Minimization problems.

Results for Rastrigin: For the Rastrigin test function, SOTEA designs overwhelmingly

outperform the cellular GA and the Panmictic EA as seen in Figure 5-26 and Figure 5-30.

Although both distributed EA designs have significantly better median performance than

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

the Panmictic EA designs, there is some indication that the Panmictic EA can occasionally

find better quality solutions than the cellular GA as seen in Figure 5-30.

Results for Griewangk: For the Griewangk test function, SOTEA designs are very similar

in performance to the cellular GA as seen in Figure 5-27. Both distributed EA designs

perform better than the Panmictic EA designs as seen in Figure 5-30. However, from

Figure 5-30 it also appears that SOTEA can occasionally fmd better quality solutions than

the cellular GA.

Results for Watson: For Watson's test function, SOTEA designs overwhelmingly

outperform the cellular GA as seen in Figure 5-28. Both distributed EA designs perform

better than the Panmictic EA designs as seen in Figure 5-30.

5.4.3.3 Structural Analysis

This section presents the structural characteristics of SOTEA and compares this with the

cellular GA, the Panmictic EA, and values observed in complex biological systems. These

results indicate that, unlike standard EA population topologies, SOTEA obtains several

characteristics observed in complex biological systems.

Methods for SOTEA Topological Analysis: Because network dynamics in SOTEA take

place due to changes in node fitness and because node fitness is constantly evolving (due to

population dynamics), the SOTEA network never fully converges to a stable structure. In

order to determine topological characteristics, measurements are taken every 50 generations

for SOTEA run 10 times over 1000 generations. To consider the impact of system size,

topological properties for population sizes o i N = 50, 100 and 200 have been measured with

results shown in Figure 5-31. Here it is seen that most properties show little dependency on

the population size except for L which is generally smaller for smaller systems. Figure

5-31 also indicates that the topological properties of SOTEA are sensitive to the setting of

KMOX which is the only extra parameter of the SOTEA design. The topological property

values for SOTEA with N=50 are also reported in Table 5-4, which are taken as an average

over all KMOX settings considered in this work {KMOX = 3, 5, 7, 9).

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

L

5
Kmax

10 5
Kmax

10 0 5
Kmax

10

Figure 5-31 Topological properties for SOTEA with different values of KMOX and population sizes of Â = 50 (•),
100(B), and 200(). Characteristics include a) the characteristic path length (L), b) the correlation between c and
k {c-k), c) the slope of the degree correlation (u), d) the average clustering coefficient c^^ and e) the degree average

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Table 5-4: Topological characteristics for the interaction networks of the Panmictic EA, cellular GA, and SOTEA.
SOTEA networks are averages taken over all settings for KMOX as described elsewhere. For comparison, common
topological characteristics of several biological systems are also provided (taken from [196] and references
therein). Characteristics include the characteristic path length L, the degree average have, the linkage distribution
(k dist.), the average clustering coefficient Cave> correlation between c and k {c-k), and degree correlations {k-ksN).
For the k distribution, / refers to the exponent for k distributions that fit a power law. Two values for y are given
for the metabolic network and refer to the in/out-degree exponents (due to this being a directed network). Results
for degree correlations are given as the slope T> of ÂTV VS k. N is the population size, and R is a correlation
coefficient for the stated proportionalities.

System N L kave k dist. Cave
(Crand)

c-k k-kNN

Panmictic
EA

5 0 L = 1 kave = N - l k = N-l 1 (1) no no

cellular
GA

5 0 L ~ N kave ~ 2 k = 2 0 (0 . 0 4) no no

SOTEA 5 0 5 . 9 7 3 . 6 Poisson 0 . 6 8 7
(0 . 0 7)

c = - 4 . 7 5 k D = 1 L 8

Complex
Networks

Large L ~ l o g N kave « N Power Law,
2<y<3
(Scale Free
Network)

Cave
^^Crand

Power Law
(Hierarchical)

either
D > 0
or < 0

Protein 2 , 1 1 5 2 . 1 2 6 . 8 0 Power Law,
j = 2A

0 . 0 7
(0 . 0 0 3)

Power Law \) < 0

Metabolic 7 7 8 7 . 4 0 3 . 2 Power Law,
7 = 2 . 2 / 2 . 1

0 . 7
(0 . 0 0 4)

Power Law D < 0

5,4,3.3,1 Topological Properties of SOTEA

This section briefly comments on some of the topological properties of SOTEA and the

relevance of these properties to algorithm behavior.

Characteristic Path Length L: The total distance genetic material must travel across the

network is always small as indicated by small L suggesting there is always a potential for

any two nodes to influence each other over a relatively small time scale. However, it

should be mentioned that a small path length does not necessarily mean strong interactions

occur between different regions of the network (as suggested below). Additional studies on

the population dynamics of these systems are needed to verify the impact of small L.

Clustering Coefficient: The high value of the average clustering coefficient is potentially

very important to population dynamics and algorithm behavior in general. For example,

consider the impact of clustering on the random walks used for reproduction in SOTEA.

Random walks starting from within highly clustered regions of the network are unlikely to

travel outside the cluster (due to high levels of interconnectivity among neighbors). Such a

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

topological feature may act to reduce the amount of communication between clusters, a

behavior reminiscent of the island model GA.

Degree Average: The low value for have suggests the SOTEA network maintains a

sparsely connected architecture with high levels of locality similar to that of the cellular

GA.

Degree distribution: k approximates a Poisson distribution which is not similar to the fat

tailed distributions observed in complex systems or the distributions observed in the first

SOTEA algorithm developed in Section 5.2. The distributions results suggest relatively

little heterogeneity in k is present such that the level of locality is roughly uniform within

the system.

Previous studies, as reviewed in [197], have indicated that placing upper bounds on k can

result in strong deviations from a power law. This SOTEA model introduces very tight

constraints on the values of k (e.g. upper and lower bounds, quadratic set point) so k

distribution results should not be surprising. Future work will try to allow for higher levels

of connection heterogeneity in the system, which is expected to become increasingly

relevant to system behavior as larger population sizes are considered.

Degree-Degree correlations: The assortative character of the SOTEA networks {p > 0)

suggests high fitness nodes are driven to preferentially interact with other high fitness

nodes. Such a population topology might provide a natural robustness to the search process

allowing for the coexistence of explorative and exploitive behaviors within a single system.

Clustering-Degree correlations: The linear relation between c and k suggests that some

marginal levels of hierarchy exist within the network however its presence is unlikely to

persist with larger population sizes. In the current SOTEA design, it is not clear what role

(if any) that hierarchy would play in algorithm behavior however this could change if nodes

were able to take on a diverse range of behaviors and actions.

5,4.3,3,2 SOTEA Scaling

It is also helpful to analyze networks visually to understand network structure. Figure 5-32

shows SOTEA networks after 400 generations of evolution with varying population sizes

(A^=50, 100, 200) and KMOX = 7. Figure 5-33 shows the same conditions but with KMOX = 5.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

One very noticeable consequence of the SOTEA model is that many nodes are found in

four neighborhood clusters and in particular, there appears to be a "kite" motif present in

the network.^^ It is expected that this is in part due to the degree lower bound of K^m = 3 in

the SOTEA model.

In the network visualizations, node sizes are adjusted to reflect individual fitness with

larger nodes representing individuals with better fitness. It was disappointing to see that

higher fitness nodes did not clearly take network hub positions even though the network

rewiring rules encourage high fitness nodes to acquire more connections and be less

attracted to clusters. Also, one can notice that as population size increases, residual ring-

like structures can still be observed in the network, even after 400 generations. This

indicates that initial topological bias continues to impact the network structure over long

periods of time for larger systems. It is suspected that this structural bias can significantly

impact algorithm behavior which may be investigated in future work.

A motif refers to an over-represented sub-graph within a network. In other words, there exists a structural
pattern within the network that is repeated at a frequency that is unlikely to occur by chance alone.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

/
- ^

Figure 5-32 SOTEA Network Visualizations with KMOX = 7 for population sizes Â = 50, TV = 100, and N = 200.
Network visuals were created using Pajek Software.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

Figure 5-33 SOTEA Network Visualizations with Km„x = 5 for population sizes TV = 50, TV = 100, and N = 200.
Network visuals were created using Pajek Software.

Another interesting but potentially worrisome attribute of this SOTEA model can be

observed in the network with A^=200 in Figure 5-33. Here one can see that, for the lower

half of the network, the nodes are generally much larger indicating they are of relatively

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

higher fitness than the upper section. Under such conditions, the use of a global fitness

ranking to control Kset in the SOTEA algorithm could cause entire regions of the network to

become highly connected while leaving the rest of the network with very little connectivity.

The possibility of this situation occurring could be mitigated by replacing the global fitness

measure with one that is locally defined. This would not impact selection pressure since

selection is based on local pair-wise comparisons and not based on the magnitude of fitness

values. Furthermore, a localized fitness measure would remove the only global information

currently used in SOTEA which would make SOTEA more efficient in physically

distributed implementations of the algorithm.

5.4.4 Discussion

SOTEA Network Model: The model for network dynamics used in this SOTEA

algorithm was developed using several guiding principles. First, it was desired to have

topological changes be driven by, and enacted on, local regions of the network. This not

only occurs for many real-world complex systems, it also is a prerequisite for physically

parallel implementations of the algorithm. This led to the use of network rewiring rules

based on short random walks as well as node property values which are almost completely

derived from local information (except for fitness ranking).

Second, it was recognized (in both SOTEA models) that for many complex systems, self-

organization is at least partly driven by component fitness or attractive forces between

system components. Clearly the concept of fitness also plays an important role in

optimization. This made an individual's fitness a natural choice for coupling the structural

dynamics of the network to the dynamics of the EA population.

Distributed EA research: A large amount of research efforts have been devoted to the

study of distributed Evolutionary Algorithms. These efforts include the study of fine-

grained (e.g. cellular grids), coarse-grained (e.g. island models), and hybrid structures (e.g.

hierarchical). The highly modular topology of the second SOTEA model combined with

short random walk interactions within the system could create fuzzy or partial islands

within the system where interactions within a cluster are much more likely to occur

compared to interactions between clusters. Quantifying the prevalence of this behavior

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

could be accomplished by calculating the characteristic residence time of random walkers

on local regions of the network using methods outlined in Section 2.3 in [225]. Assuming

that clusters can become fairly isolated from other clusters, this would allow for a more

nature-inspired approach to the integration of fme-grain and coarse-grain structures within

an EA population (as opposed to explicitly defined hierarchical topologies).

5.4.5 Future Work

There are other issues which have not been addressed here and will be left to fiiture work.

One issue is that the network models are not directed so that information can flow in any

direction across the network. This is often not the case for many biological systems due to

thermodynamic law and other irreversible processes.

It would also be interesting to investigate whether the structural bias in the initial

population changes the algorithm's performance sensitivity to initial conditions. It is

speculated that the combination of genetic bias and structural bias (in the initial population)

could offer an extended range of flexibility to the algorithm. For example, combining these

two features could force interactions between certain initial genotypes to take place with a

frequency that is much greater than would occur under other circumstances. In other

words, this provides some control over which regions in solution space are able to initially

interact. Combining this with a highly modular adaptive network like SOTEA could also

allow for some control over the timing of fiiture interactions between genetic material. In

short, optimizing structural bias in SOTEA could provide some limited capacity to control

not only which points in solution space are able to interact but also the timing in which

these interactions occur. This might also provide a viable path for mitigating the effects of

deleterious (e.g. deceptive) attractor basins within a particular fitness landscape.

Finally, it should be mentioned that network models currently exist (e.g. see [190]) which

can acquire the structural characteristics of complex systems without the presence of

driving forcing that encourage these characteristics to emerge (e.g. the weighted clustering

coefficient in SOTEA). SOTEA would be significantly improved if it could allow for the

emergence of important topological properties using a simplified model while still

exhibiting robust performance on optimization problems.

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

5.4.6 Conclusions

The Self-Organizing Topology Evolutionary Algorithm or SOTEA is a distributed EA

containing a population structure that coevolves with EA population dynamics. With the

population defined on a network, rules are used to modify the network topology based on

the current states of the population.

SOTEA Network Model: The second SOTEA model presented in this chapter was

designed with an emphasis on locality of network information and locality in network

dynamics. Network dynamics were driven by i) an adaptive connectivity where higher

fitness individuals were encouraged to obtain higher levels of connectivity and ii) an

adaptive definition of community which attempted to encourage high levels of clustering in

nodes of low fitness.

To this author's knowledge, this model was unique among network models in that it

considered two driving forces instead of just one. Also, this SOTEA model was the first

network model which evolves due to a dynamic state value of the nodes (i.e. fitness). The

dynamics of node fitness were a natural consequence of the dynamics of the EA population.

Topological Analysis: The second SOTEA model allows for a self-organization of

population network topology resulting in a large degree of clustering, small characteristic

path length, and correlations between the clustering coefficient and a node's degree. Each

of these characteristics are similar to what is observed in complex biological systems.

However, a number of topological properties observed in complex systems were not

attained in the current model including properties achieved in the first SOTEA algorithm

such as a fat-tailed degree distribution. Future work will attempt to address these

shortcomings as well as attempt to create a clearer fi-amework for the integration of

multiple driving forces in an adaptive network. The network rewiring rules were also

developed in a somewhat ad hoc fashion and future work will look to develop a more

intuitive framework for structural dynamics.

Performance: A number of engineering design problems and artificial test functions were

selected to test the effectiveness of the new SOTEA algorithm against another distributed

design, the cellular GA. Results indicate the SOTEA algorithm was able to provide

Chapter 5: Self-Organizing Topology Evolutionary Algorithms

improved performance and more consistent results compared with the cGA. Both of the

distributed Evolutionary Algorithms strongly outperformed a suite of eight other

Evolutionary Algorithms tested.

Chapter 6: Summary of Findings

Chapter 6 Summary of Findings

The primary goal of this thesis was to improve the performance and general robustness of

Evolutionary Algorithms using principles inspired by nature. Contributions from this thesis

include: i) reducing the practical difficulties associated with designing an Evolutionary

Algorithm by developing a more effective procedure for adapting EA design parameters, ii)

determining the aspects of EA design which impact population dynamics and enable

parallel search behavior, and iii) mimicking the structural self-organization in complex

biological systems as a means to obtain advanced behaviors and improved performance in

distributed Evolutionary Algorithms.

Designing an Effective Adaptive Process: Chapter 3 proposed mechanisms for making a

more effective adaptive process for supervisory control of EA design parameters. To make

the adaptive process more effective, two modifications were proposed. The first

modification was to use an empirical measure of an individual's importance on future

population dynamics instead of estimating its importance through the use of fitness

measurements. The second modification was to reduce the influence of non-informative

interactions between the adaptive system and its environment. This was deemed to be

particularly relevant due to evidence presented in this chapter that non-informative

measurements dominated the data received by the adaptive system. This second

modification to the adaptive system was accomplished by using statistical arguments that

quantified the importance of measurements.

Not only did the new adaptive method outperform all other methods on the majority of

problems tested, it was also found to be much more robust compared to the other adaptive

methods. In particular, it's performance was not strongly sensitive to the class of problems

(artificial test functions vs. engineering design problems) that it was tested on.

The impact of EA design on population dynamics: Chapter 4 started with the goal of

understanding how EA design factors can influence EA population dynamics. It was

concluded that the probability distribution of an individual's impact on population

dynamics fits a power law regardless of almost all experimental conditions. This result

Chapter 6: Summary of Findings

indicates that a small number of individuals are capable of driving EA population dynamics

while most other individuals have only a small impact. The existence of power law

deviations in the probability of large impact sizes (i.e. large ETV) was seen as an indicator

that such systems were not capable of being driven by single individuals and instead were

able to exhibit higher levels of parallel search behavior.

The most significant factor that enables parallel search behavior was the topology of the EA

population. As the population topology came closer to approximating a Panmictic

population, the system became increasingly driven by only a select few individuals. On

the other hand, as spatial restrictions were increased in the population, single individuals

were no longer capable of dominating the dynamics of the entire population. It is

speculated that this could account for the strong and robust performance gains that have

been repeatedly observed in distributed Evolutionary Algorithms over the years. Another

factor which was found to create a smaller degree of parallel search behavior was the

introduction of completely randomized new individuals into an EA population.

The Self-Organization of Interaction Networks for EA population topology: The aim

of Chapter 5 was to create EA populations with topological features that are similar to those

observed in complex biological systems. It was speculated that mimicking this aspect of

nature could provide additional improvements to algorithm behavior compared to those

already observed in distributed EA designs. This chapter has demonstrated that the self-

organization of population topology can induce a number of interesting new behaviors in an

EA and has the potential to significantly improve its performance on challenging

optimization problems. It is hoped that this work will inspire others to investigate the use

of network models for the self-organization of population structure and that these research

efforts will help to narrow the gap between EA and natural evolutionary processes.

REFERENCES
[1] R. Kolisch and S. Hartmann, "Experimental Investigation of Heuristics for

Resource-Constrained Project Scheduling: An Update," European Journal of
Operational Research, vol. 100, 2005.

[2] S. G. G. Ahire, A. Gupta, and M. Terwilliger, "Workforce constrained preventive
maintenance scheduling using evolution strategies," Decision Sciences, vol. 31, pp.
833-859, 2000.

[3] M. H. Bassett, L. L. Gardner, and K. Steele, "Dow AgroSciences Uses Simulation-
Based Optimization to Schedule the New-Product Development Process,"
Interfaces, vol. 34, pp. 426-437, 2004.

[4] P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, "Evolutionary algorithms +
domain knowledge = real-world evolutionary computation," IEEE Transactions on
Evolutionary Computation, vol. 10, pp. 256-280, 2006.

[5] IcoSystem, http://icosystem.com/technology.htm. 2007.
[6] Blue Kaizen, http://wvvw.bluekaizen.com/. 2007.
[7] Esteco, http://www.esteco.com/schedulers.jsp. 2007.
[8] Advanced Computational Technologies, http://www.ad-

comtech.co.uk/application.shtml. 2007.
[9] Bio-Comp, http://www.bio-comp.com/industrial/maximizeproduction.htm. 2007.
[10] XpertRule, http://www.xpertrule.com/pages/case_ud.htm. 2007.
[11] NuTech Solutions, http://nutechsolutions.com/index.asp. 2007.
[12] G. P. Wagner and L. Altenberg, "Complex adaptations and the evolution of

evolvability," Evolution, vol. 50, pp. 967-976, 1996.
[13] M. Bedau, "Can unrealistic computer models illuminate theoretical biology," pp.

20-23, 1999.
[14] W. Banzhaf, "Artificial Chemistries-Towards constructive dynamical systems,"

Nonlinear Phenomena in Complex Systems, vol. 5, pp. 318-324, 2002.
[15] D. G. Green, D. Newth, and M. Kirley, "Connectivity and catastrophe-towards a

general theory of evolution," Artificial Life VII: Proceedings of the Seventh
International Conference, pp. 153-161,2000.

[16] G. P. Wagner, "Homologues, Natural Kinds and the Evolution of Modularity,"
Integrative and Comparative Biology, vol. 36, p. 36, 1996.

17] S. A. Kauffman, "Requirements for evolvability in complex systems: orderly
components and frozen dynamics," PhysicaD, vol. 42, pp. 135-152, 1990.

[18] F. C. Santos and J. M. Pacheco, "Scale-Free Networks Provide a Unifying
Framework for the Emergence of Cooperation," Physical Review Letters, vol. 95, p.
98104, 2005.

[19] H. Sayama, L. Kaufinan, and Y. Bar-Yam, "Symmetry breaking and coarsening in
spatially distributed evolutionary processes including sexual reproduction and
disruptive selection," Physical Review E, vol. 62, pp. 7065-7069, 2000.

[20] A. Force, W. A. Cresko, F. B. Pickett, S. R. Proulx, C. Amemiya, and M. Lynch,
"The Origin of Subflinctions and Modular Gene Regulation," Genetics, vol. 170, pp.
433-446, 2005.

[21] J. P. Crutchfield and O. Gomerup, "Objects that make objects: the population
dynamics of structural complexity," Journal of The Royal Society Interface, vol. 3,
pp. 345-349, 2006.

[22] W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, F. Kepes, V. Lefort, J. F.
Miller, M. Radman, and J. J. Ramsden, "Guidelines: From artificial evolution to
computational evolution: a research agenda," Nature Reviews Genetics, vol. 7, pp.
729-735, 2006.

[23] Y. Jin and J. Branke, "Evolutionary optimization in uncertain environments-a
survey," IEEE Transactions on Evolutionary Computation, vol. 9, pp. 303-317,
2005.

[24] W. C. M. van Beers and J. P. C. Kleijnen, "Kriging interpolation in simulation: a
survey," in Proceedings of the 36th Conference on Winter Simulation, 2004, pp.
113-121.

[25] C. Coello, A. Carlos, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary
algorithms for solving multi-objective problems'. New York: Kluwer Academic,
2002.

[26] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: Wiley, 2001.

[27] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization,"
IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67-82, 1997.

[28] J. R. Woodward and J. R. Neil, "No free lunch, program induction and
combinatorial problems," Proceeding of the 6th European Conference on Genetic
programming, EuroGP, pp. 475-484, 2003.

[29] W. Hordijk, "A Measure of Landscapes," Evolutionary Computation, vol. 4, pp.
335-360, 1996.

[30] S. Christensen and F. Oppacher, "What can we learn from No Free Lunch? A First
Attempt to Characterize the Concept of a Searchable Function," in Proceedings of

the 3rd Annual Conference on Genetic and Evolutionary Computation, 2001, pp.
1219-1226.

[31] S. Wright, "The roles of mutation, inbreeding, crossbreeding and selection in
evolution," Proceedings of the Sixth International Congress on Genetics, vol. 1, pp.
356-366, 1932.

[32] H. J. Bremermann, "Optimization through evolution and recombination," Self-
Organizing Systems, pp. 93-106, 1962.

[33] R. M. Friedberg, "A learning machine: Part I," IBM Journal of Research and
Development, vol. 2, pp. 2-13, 1958.

[34] G. E. P. Box, "Evolutionary Operation: A Method for Increasing Industrial
^xodxxcWViXy,'' Applied Statistics, vol. 6, pp. 81-101, 1957.

[35] J. H. Holland, "Outline for a Logical Theory of Adaptive Systems," Journal of the
ACM(JACM), vol. 9, pp. 297-314, 1962.

[36] J. H. Holland, "Adaptation in Natural and Artificial System," Ann Arbor: The
University of Michigan Press, vol. 20, 1975.

[37] L. J. Fogel, "Autonomous automata," Industrial Research, vol. 4, pp. 14-19, 1962.

[38] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through Simulated
Evolution: Wiley, 1966.

[39] I. Rechenberg, "Cybernetic solution path of an experimental problem," Library
Translation, vol. 1122, 1964.

[40] H. P. Schwefel, "Evolutionsstrategie und numerische Optimierung," Technische
Universität Berlin, 1975.

[41] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation:
lOP Publishing Ltd. Bristol, UK, 1997.

[42] H. P. Schwefel, Numerical Optimization of Computer Models: John Wiley & Sons,
Inc. New York, NY, USA, 1981.

[43] J. E. Baker, "Adaptive Selection Methods for Genetic Algorithms," Proceedings of
the 1st International Conference on Genetic Algorithms, pp. 101-111, 1985.

[44] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm,"
Proceedings of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, pp. 14-21, 1987.

[45] T. Blickle, "Theory of Evolutionary Algorithms and Application to System
Synthesis," Swiss Federal Institute of Technology, 1996.

[46] H. Mühlenbein and D. Schlierkamp-Voosen, "Predictive models for the breeder
genetic algorithm, L: continuous parameter optimization," Evolutionary
Computation, vol. 1, pp. 25-49, 1993.

[47] D. E. Goldberg and K. Deb, "A Comparative Analysis of Selection Schemes Used
in Genetic Algorithms," Urbana, vol. 51, pp. 61801-2996.

[48] T. Blickle and L. Thiele, "A Comparison of Selection Schemes used in Evolutionary
Algorithms," Evolutionary Computation, vol. 4, pp. 361-394, 1996.

[49] W. Wieczorek and Z. J. Czech, "Selection Schemes in Evolutionary Algorithms,"
Proceedings of the Symposium on Intelligent Information Systems (IIS'2002), pp.
185-194, 2002.

[50] R. Storn and K. Price, "Differential Evolution-A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces," International Computer
Science Institute, Berkeley 1995.

[51] N. Hansen and A. Ostermeier, "Completely Derandomized Self-Adaptation in
Evolution Strategies," Evolutionary Computation, vol. 9, pp. 159-195, 2001.

[52] H. Mühlenbein and G. PaaB, "From recombination of genes to the estimation of
distributions I. Binary parameters," Lecture Notes in Computer Science, vol. 1141,
pp. 178-187, 1996.

[53] A. H. Wright, "Genetic Algorithms for Real Parameter Optimization," in First
Workshop on the Foundations of Genetic Algorithms and Classifier Systems, 1990,
pp. 205-218.

[54] Q. T. Pham, "Dynamic optimization of chemical engineering processes by an
evolutionary method," Computers and Chemical Engineering, vol. 22, pp. 1089-
1097, 1998.

[55] Q. T. Pham, "Evolutionary optimization of dynamic control problems accelerated
by progressive step reduction," in Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation, 2005, pp. 2181-2187.

[56] F. Herrera, M. Lozano, and A. M. Sánchez, "Hybrid crossover operators for real-
coded genetic algorithms: an experimental study," Soft Computing-A Fusion of
Foundations, Methodologies and Applications, vol. 9, pp. 280-298, 2005.

[57] N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: model,
taxonomy, and design issues," IEEE Transactions on Evolutionary Computation,
vol. 9, pp. 474-488, 2005.

[58] J. C. Bean and A. B. Hadj-Alouane, "A dual genetic algorithm for bounded integer
programs," Department of Industrial and Operations Engineering, The University of
Michigan Tr-92-53, 1992.

[59] Z. Michalewicz and N. Attia, "Evolutionary optimization of constrained problems,"
in Proceedings of the 3rd Annual Conference on EP, Singapore, 1994, pp. 98-108.

[60] T. Ray, T. Kang, and S. K. Chye, "An Evolutionary Algorithm for Constrained
Optimization," Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO'2000), pp. 771-777, 2000.

[61] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, "A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II,"
Proceedings of the Parallel Problem Solving from Nature VI Conference, pp. 849-
858, 2000.

[62] C. A. C. Coello, "A survey of constraint handling techniques used with evolutionary
algorithms," Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada,
1999.

[63] C. Coello, "Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art," Computer Methods in
Applied Mechanics and Engineering, vol. 191, pp. 1245-1287, 2002.

[64] T. P. Runarsson and X. Yao, "Stochastic ranking for constrained evolutionary
optimization," IEEE Transactions on Evolutionary Computation, vol. 4, pp. 284-
294, 2000.

[65] R. Sarker, T. Runarsson, and C. Newton, "Genetic Algorithms for Solving a Class
of Constrained Nonlinear Integer Programs," International Transactions in
Operational Research, vol. 8, pp. 61-74, 2001.

[66] F. Herrera, M. Lozano, and J. L. Verdegay, "Tackling Real-Coded Genetic
Algorithms: Operators and Tools for Behavioural Analysis," Artificial Intelligence
Review, vol. 12, pp. 265-319, 1998.

[67] L. Altenberg, "The Evolution of Evolvability in Genetic Programming," Advances
in Genetic Programming, pp. 47-74, 1994.

[68] R. E. Keller and W. Banzhaf, "Genetic Programming using Genotype-Phenotype
Mapping from Linear Genomes into Linear Phenotypes," in Proceedings of the
First Annual Conference on Genetic Programming 1996, pp. 116-122.

[69] M. Mandischer, "Representation and Evolution of Neural Networks," in Artificial
Neural Nets and Genetic Algorithms Proceedings of the International Conference at
Innsbruck, Austria, A. R. F., R. C. R., and S. N. C., Eds.: Springer, 1993, pp. 643-
649.

[70] K. O. Stanley and R. Miikkulainen, "Competitive coevolution through evolutionary
complexification," Journal of Artificial Intelligence Research, vol. 21, pp. 63-100,
2004.

[71] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, pp.
1423-1447, 1999.

[72] A. S. Wu and 1. Garibay, "The Proportional Genetic Algorithm: Gene Expression in
a Genetic Algorithm," Genetic Programming and Evolvable Machines, vol. 3, pp.
157-192, 2002.

[73] I. Garibay, A. S. Wu, and O. Garibay, "Emergence of genomic self-similarity in
location independent representations," Genetic Programming and Evolvable
Machines, vol. 7, pp. 55-80, 2006.

[74] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, "The yeast cell-cycle network is
robustly designed," Proceedings of the National Academy of Sciences, vol. 101, pp.
4781-4786, 2004.

[75] J. Gomez-Gardenes, Y. Moreno, and L. M. Floria, "On the robustness of complex
heterogeneous gene expression networks," Biophysical Chemistry, vol. 115, pp.
225-228, 2005.

[76] M. Kimura, The Neutral Theory of Molecular Evolution: Cambridge University
Press, 1983.

[77] M. A. Huynen, P. F. Stadler, and W. Fontana, "Smoothness within ruggedness: The
role of neutrality in adaptation," in Proceedings of the National Academy of
Sciences, 1996.

[78] P. Schuster, W. Fontana, P. F. Stadler, and L L. Hofacker, "From Sequences to
Shapes and Back: A Case Study in RNA Secondary Structures," Proceedings:
Biological Sciences, vol. 255, pp. 279-284, 1994.

[79] M. E. J. Newman and R. Engelhardt, "Effects of neutral selection on the evolution
of molecular species," Proceedings of the Royal Society of London Series B, vol.
256, pp. 1333-1338, 1998.

[80] E. van Nimwegen and J. P. Crutchfield, "Metastable evolutionary dynamics:
Crossing fitness barriers or escaping via neutral paths?," Bulletin of Mathematical
Biology, vol. 62, pp. 799-848, 2000.

[81] S. A. Kauffman, The Origins of Order: Self Organization and Selection in
Evolution: Oxford University Press, 1993.

[82] Y. D. Nochomovitz and H. Li, "Highly designable phenotypes and mutational
buffers emerge from a systematic mapping between network topology and dynamic
output," Proceedings of the National Academy of Sciences, vol. 103, pp. 4180-4185,
2006.

[83] K. A. De Jong, "An Analysis of the Behavior of a Class of Genetic Adaptive
Systems," University of Michigan, 1975.

[84] S. W. Mahfoud, "A Comparison of Parallel and Sequential Niching Methods,"
Conference on Genetic Algorithms, vol. 136, p. 143, 1995.

[85] G. R. Harik, "Finding multimodal solutions using restricted tournament selection,"
Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 24-
31, 1995.

[86] O. J. Mengshoel and D. E. Goldberg, "Probabilistic crowding: Deterministic
crowding with probabilistic replacement," Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 409-416, 1999.

[87] D. E. Goldberg and J. Richardson, "Genetic algorithms with sharing for multimodal
function optimization," Proceedings of the Second International Conference on
Genetic Algorithms on Genetic algorithms and their application, pp. 41-49, 1987.

[88] A. Petrowski, "A clearing procedure as a niching method for genetic algorithms,"
Proceedings of the IEEE International Conference on Evolutionary Computation,
pp. 798-803, 1996.

[89] E. Cantu-Paz, "A survey of parallel genetic algorithms," Calculateurs Parallèles,
vol. 10, pp. 141-171, 1998.

[90] E. Alba and M. Tomassini, "Parallelism and evolutionary algorithms," IEEE
Transactions on Evolutionary Computation, vol. 6, pp. 443-462, 2002.

[91] J. J. Grefenstette, "Parallel adaptive algorithms for function optimization,"
Vanderbilt University, Nashville, TN, Tech. Rep. CS-81-19 1981.

[92] M. Gorges-Schleuter, "ASPARAGOS an asynchronous parallel genetic
optimization strategy," Proceedings of the Third International Conference on
Genetic Algorithms, pp. 422-427, 1989.

[93] B. Manderick and P. Spiessens, "Fine-grained parallel genetic algorithms,"
Proceedings of the Third International Conference on Genetic Algorithms, pp. 428-
433, 1989.

[94] J. Sarma and K. A. De Jong, "An analysis of the effects of neighborhood size and
shape on local selection algorithms," Parallel Problem Solving from Nature (PPSN
IV), vol. 1141, pp. 236-244, 1996.

[95] B. Dorronsoro, E. Alba, M. Giacobini, and M. Tomassini, "The influence of grid
shape and asynchronicity on cellular evolutionary algorithms," CEC2004 Congress
on Evolutionary Computation, vol. 2, 2004.

[96] M. Giacobini, M. Tomassini, A. G. B. Tettamanzi, and E. Alba, "Selection intensity
in cellular evolutionary algorithms for regular lattices," IEEE Transactions on
Evolutionary Computation, vol. 9, pp. 489-505, 2005.

[97] F. Greil and B. Drossel, "Dynamics of critical Kauffinan networks under
asynchronous stochastic update," Physical Review Letters, vol. 95, p. 048701, 2005.

[98] D. Comforth, D. G. Green, and D. Newth, "Ordered asynchronous processes in
multi-agent systems," PhysicaD, vol. 204, pp. 70-82, 2005.

[99] G. S. Hornby, "ALPS: the age-layered population structure for reducing the
problem of premature convergence," in Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, 2006, pp. 815-822.

[100] E. Alba, F. Luna, A. J. Nebro, and J. M. Troya, "Parallel heterogeneous genetic
algorithms for continuous optimization " Parallel Computing, vol. 30, pp. 699-719,
2004.

[101] E. D. Dolan and J. J. Moré, "Benchmarking optimization software with performance
profiles," Mathematical Programming, vol. 91, pp. 201-213, 2002.

[102] H. G. Beyer, H. P. Schwefel, and I. Wegener, "How to analyse evolutionary
algorithms," Theoretical Computer Science, vol. 287, pp. 101-130, 2002.

[103] J. M. Whitacre, T. Q. Pham, and R. A. Sarker, "Credit assignment in adaptive
evolutionary algorithms," in Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, 2006, pp. 1353-1360.

[104] J. M. Whitacre, T. Q. Pham, and R. A. Sarker, "Use of statistical outlier detection
method in adaptive evolutionary algorithms," in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, 2006, pp. 1345-1352.

[105] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, "Metaheuristics in
Stochastic Combinatorial Optimization: a Survey," TechReport: Dalle Molle
Institute for Artificial Intelligence, 2006.

[106] C. M. Fonseca and P. J. Fleming, "An Overview of Evolutionary Algorithms in
Multiobjective Optimization," Evolutionary Computation, vol. 3, pp. 1-16, 1995.

[107] Q. T. Pham, "Effect of Numerical Errors on the Performance of Optimization
Methods," in Proceedings of Chemeca Brisbane, Australia, 2005.

[108] T. Back, U. Hammel, and H. P. Schwefel, "Evolutionary computation: comments on
the history and current state," IEEE Transactions on Evolutionary Computation,
vol. l,pp. 3-17, 1997.

[109] D. E. Clark and D. R. Westhead, "Evolutionary algorithms in computer-aided
molecular design," Journal of Computer-Aided Molecular Design, vol. 10, pp. 337-
358, 1996.

[110] R. Cheng, M. Gen, and Y. Tsujimura, "A tutorial survey of job-shop scheduling
problems using genetic algorithms-L Representation," Computers and Industrial
Engineering vol. 30, pp. 983-997, 1996.

[111] Q. Ahmed, K. Krishnakumar, and J. Neidhoefer, "Applications of evolutionary
algorithms to aerospace problems: A survey," in ECCOMAS conference on
numerical methods in engineering France, 1996, pp. 236-242.

[112] A. A. Freitas, "A survey of evolutionary algorithms for data mining and knowledge
discovery," Advances in Evolutionary Computation, pp. 819-845, 2002.

[113] P. J. Fleming and R. C. Purshouse, "Evolutionary algorithms in control systems
engineering: a survey," Control Engineering Practice, vol. 10, pp. 1223-1241, 2002.

[114] D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, "Evolutionary algorithms and
their application to optimal control studies," Physical Review A, vol. 64, p. 23420,
2001.

[115] R. L. Johnston and H. M. Cartwright, Applications of Evolutionary Computation in
Chemistry: Springer, 2004.

[116] J. Arifovic, "Evolutionary Algorithms in Macroeconomic Models," Macroeconomic
Dynamics, vol. 4, pp. 373-414, 2000.

[117] S. A. Kalogirou, "Artificial intelligence for the modeling and control of combustion
processes: a review," Progress in Energy and Combustion Science, vol. 29, pp. 515-
566, 2003.

[118] H. A. Abbass, "An evolutionary artificial neural networks approach for breast
cancer diagnosis," Artificial Intelligence in Medicine, vol. 25, pp. 265-281, 2002.

[119] K. Wloch and P. J. Bentley, "Optimising the performance of a formula one car
using a genetic algorithm," Proceedings of Eighth International Conference on
Parallel Problem Solving From Nature, pp. 702-711, 2004.

[120] S. Kamphausen, N. Höltge, F. Wirsching, C. Morys-Wortmann, D. Riester, R.
Goetz, M. Thürk, and A. Schwienhorst, "Genetic algorithm for the design of
molecules with desired properties," Journal of Computer-Aided Molecular Design,
vol. 16, pp. 551-567, 2002.

[121] Y. Fan, T. Jiang, and D. J. Evans, "Volumetric Segmentation of Brain Images Using
Parallel Genetic Algorithms," IEEE Transactions on Medical Imaging, vol. 21,
2002.

[122] Q. Hou, J. Wang, Y. Chen, and J. M. Galvin, "Beam orientation optimization for
IMRT by a hybrid method of the genetic algorithm and the simulated dynamics,"
Medical Physics, vol. 30, p. 2360, 2003.

[123] A. Globus, M. Menon, and D. Srivastava, "Enabling Computational
Nanotechnology through JavaGenes in a Cycle Scavenging Environment,"
SuperComputing, 2002.

[124] J. M. Malard, A. Heredia-Langner, D. J. Baxter, K. H. Jarman, and W. R. Cannon,
"Constrained de novo peptide identification via multi-objective optimization,"
Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 2004.

[125] A. S. McLeod, M. E. Johnston, and L. F. Gladden, "Development of a Genetic
Algorithm for Molecular Scale Catalyst Design," Journal of Catalysis, vol. 167, pp.
279-285, 1997.

[126] "Applications of Evolutionary Computation book series," Springer.

[127] J. Grefenstette, "Optimization of control parameters for genetic algorithms," IEEE
Transactions on Systems, Man and Cybernetics, vol. 16, pp. 122-128, 1986.

[128] P. M. Reed, B. S. Minsker, and D. E. Goldberg, "The Practitioner's Role in
Competent Search and Optimization Using Genetic Algorithms," in World Water
and Environmental Resources Congress, Washington, DC, 2001, pp. 0-7844.

[129] G. R. Harik and F. G. Lobo, "A parameter-less genetic algorithm," Proceedings of
the Genetic and Evolutionary Computation Conference, vol. 1, pp. 258-265, 1999.

[130] V. A. Cicirello, "Boosting Stochastic Problem Solvers Through Online Self-
Analysis of Performance," Carnegie Mellon University, 2003.

[131] H. Guo, "Algorithm Selection for Sorting and Probabilistic Inference: a Machine
Learning-Based Approach," Kansas State University, 2003.

[132] C. P. Gomes and B. Selman, "Algorithm portfolio design: Theory vs. practice,"
Proceedings of UAI-97, pp. 190-197, 1997.

[133] L. S. Crawford, M. P. J. Fromherz, C. Guettier, and Y. Shang, "A Framework for
On-line Adaptive Control of Problem Solving," Proceedings CP'01 Workshop on
On-line Combinatorial Problem Solving and Constraint Programming, 2001.

[134] F. G. Lobo and C. F. Lima, "Revisiting evolutionary algorithms with on-the-fly
population size adjustment," in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, 2006, pp. 1241-1248.

[135] E. Alba and B. Dorronsoro, "The Exploration/Exploitation Tradeoff in Dynamic
Cellular Genetic Algorithms," IEEE Transactions on Evolutionary Computation,
vol. 9, pp. 126-142, 2005.

[136] J. M. Whitacre, R. A. Sarker, and Q. T. Pham, "The Self-Organization of Interaction
Networks for Nature-Inspired Optimization," IEEE Transactions on Evolutionary
Computation, (accepted March, 2007).

[137] B. Li and W. Jiang, "A novel stochastic optimization algorithm," IEEE
Transactions on Systems, Man and Cybernetics, vol. 30, pp. 193-198, 2000.

[138] C.-K. Ting, S.-T. Li, and C. Lee, "On the harmonious mating strategy through tabu
SQdLTch,'' Information Science, vol. 156, pp. 189-214, 2003.

[139] D. H. Cho, J. K. Kim, H. K. Jung, and C. G. Lee, "Optimal design of permanent-
magnet motor using autotuning niching genetic algorithm," IEEE Transactions on
Magnetics, vol. 39, pp. 1265-1268, 2003.

[140] G. R. Harik and D. E. Goldberg, "Learning linkage through probabilistic
expression," Computer Methods in Applied Mechanics and Engineering, vol. 186,
pp. 295-310, 2000.

[141] S. Yang, "Adaptive Crossover in Genetic Algorithms Using Statistics Mechanism,"
in Proceedings of the Eighth International Conference on Artificial Life, 2002, pp.
182-185.

[142] J. Smith, "On Appropriate Adaptation Levels for the Learning of Gene Linkage,"
Genetic Programming andEvolvable Machines, vol. 3, pp. 129-155, 2002.

[143] S. Y. Ho, L. S. Shu, and J. H. Chen, "Intelligent evolutionary algorithms for large
parameter optimization problems," IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 522-541, 2004.

[144] F. Herrera and M. Lozano, "Two-Loop Real-Coded Genetic Algorithms with
Adaptive Control of Mutation Step Sizes," Applied Intelligence, vol. 13, pp. 187-
204, 2000.

[145] A. K. Swain and A. S. Morris, "Performance improvement of self-adaptive
evolutionary methods with a dynamic lower bound," Information Processing
Letters, vol. 82, pp. 55-63, 2002.

[146] L. Davis, Handbook of Genetic Algorithms: Van Nostrand Reinhold New York,
1991.

[147] Q. T. Pham, "Competitive evolution: a natural approach to operator selection,"
Progress in Evolutionary Computation, Lecture Notes in Artificial Intelligence, vol.
956, pp. 49-60, 1994.

[148] M. A. Bedau and N. H. Packard, "Evolution of evolvability via adaptation of
mutation rates," Biosystems, vol. 69, pp. 143-162, 2003.

[149] C. Igel, F. Friedrichs, and S. Wiegand, "Evolutionary Optimization of Neural
Systems: The Use of Strategy Adaptation. Trends and Applications in Constructive
Approximation," International Series of Numerical Mathematics, vol. 151, pp. 103-
123, 2005.

[150] F. P. Espinoza, B. S. Minsker, and D. E. Goldberg, "Adaptive Hybrid Genetic
Algorithm for Groundwater Remediation Design," Journal of Water Resources
Planning and Management, vol. 131, pp. 14-24, 2005.

[151] J. E. Smith and T. C. Fogarty, "Operator and parameter adaptation in genetic
algorithms," Soft Computing-A Fusion of Foundations, Methodologies and
Applications, vol. 1, pp. 81-87, 1997.

[152] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in evolutionary
algorithms," IEEE Transactions on Evolutionary Computation, vol. 3, pp. 124-141,
1999.

[153] F. Herrera and M. Lozano, "Fuzzy adaptive genetic algorithms: design, taxonomy,
and future directions," Soft Computing-A Fusion of Foundations, Methodologies
and Applications, vol. 7, pp. 545-562, 2003.

[154] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary
Algorithms'. Springer, 2007.

;i55] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, p. 671, 1983.

[156] F. Herrera, M. Lozano, and C. Moraga, "Hierarchical distributed genetic
algorithms," International Journal of Intelligent Systems, vol. 14, pp. 1099-1121,
1999.

[157] C. Darwin, "The variation of plants and animals under domestication," J. Murray,
London, 1868.

[158] D. Thierens, "An adaptive pursuit strategy for allocating operator probabilities," in
Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, 2005, pp. 1539-1546.

[159] A. Tuson and P. Ross, "Adapting Operator Settings in Genetic Algorithms,"
Evolutionary Computation, vol. 6, pp. 161-184, 1998.

[160] C. Igel and M. Kreutz, "Operator Adaptation in Evolutionary Computation and Its
Application to Structure Optimization of Neural Networks," Neurocomputing vol.
55, pp. 347-361,2003.

[161] M. Srinivas and L. M. Patnaik, "Adaptive probabilities of crossover and mutation in
genetic algorithms," IEEE Transactions on Systems, Man and Cybernetics, vol. 24,
pp. 656-667, 1994.

[162] F. G. Lobo and D. E. Goldberg, "Decision making in a hybrid genetic algorithm,"
IEEE International Conference on Evolutionary Computation, pp. 121-125, 1997.

[163] H. J. C. Barbosa and A. M. e Sá, "On Adaptive Operator Probabilities in Real
Coded Genetic Algorithms," in Workshop on Advances and Trends in Artificial
Intelligence for Problem Solving (SCCCOO) Santiago, Chile, 2000.

[164] B. A. Julstrom, "What Have You Done for Me Lately? Adapting Operator
Probabilities in a Steady-State Genetic Algorithm," Proceedings of the 6th
International Conference on Genetic Algorithms, pp. 81-87, 1995.

[165] B. A. Julstrom, "Adaptive operator probabilities in a genetic algorithm that applies
three operators," in ACM Symposium on Applied Computing (SAC '97) 1997, pp.
233-238.

[166] C. Salzberg, A. Antony, and H. Sayama, "Visualizing Evolutionary Dynamics of
Self-Replicators: A Graph-Based Approach," Artificial Life, vol. 12, pp. 275-287,
2006.

[167] D. C. Montgomery, G. C. Runger, and N. F. Hubele, Engineering Statistics: Wiley
New York, 1998.

[168] H. Pohlheim, "GEATbx - Genetic and Evolutionary Algorithm Toolbox for use with
Matlab. http://www.geatbx.coni/,1994-2007.

[169] J. J. Sepkoski, "A compendium of fossil marine animal families," Contributions In
Biology And Geology, vol. 83, pp. 1-156, 1992.

[170] D. M. Raup, "A Kill Curve For Phanerozoic Marine Species," Paleobiology, vol.
17, pp. 37-48, 1991.

[171] M. E. J. Newman, "Self-Organized Criticality, Evolution and the Fossil Extinction
Record," Proceedings: Biological Sciences, vol. 263, pp. 1605-1610, 1996.

[172] Yule, "A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C.
Willis, F.R.S," Royal Society of London Philosophical Transactions Series B, vol.
213, pp. 21-87, 1925.

[173] T. H. Keitt and H. E. Stanley, "Dynamics of North American breeding bird
populations," Nature, vol. 393, pp. 257-260, 1998.

[174] R. V. Solé and J. Bascompte, "Are Critical Phenomena Relevant to Large-Scale
Evolution?," Proceedings: Biological Sciences, vol. 263, pp. 161-168, 1996.

[175] N. C. Stenseth and J. M. Smith, "Coevolution in Ecosystems: Red Queen Evolution
or Stasis?," Evolution, vol. 38, pp. 870-880, 1984.

[176] M. E. J. Newman and P. Sibani, "Extinction, diversity and survivorship of taxa in
the fossil record," Proceedings of the Royal Society of London Series B, vol. 266,
pp. 1593-1593, 1999.

[177] B. Drossel, "Biological evolution and statistical physics," Advances in Physics, vol.
50, pp. 209-295, 2001.

[178] J. C. Willis, "Age and Area," The Quarterly Review of Biology, vol. 1, pp. 553-571,
1926.

[179] B. Burlando, "The fractal dimension of taxonomic systems," Journal of Theoretical
Biology, vol. 146, pp. 99-114, 1990.

[180] J. L. Payne and M. J. Eppstein, "Emergent mating topologies in spatially structured
genetic algorithms," in Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, 2006, pp. 207-214.

[181] S. Miyazima, Y. Lee, T. Nagamine, and H. Miyajima, "Power-law distribution of
family names in Japanese societies," Physica A: Statistical Mechanics and its
Applications, vol. 278, pp. 282-288, 2000.

[182] S. C. Manrubia and D. H. Zanette, "At the boundary between biological and cultural
evolution: the origin of surname distributions," Journal of Theoretical Biology, vol.
216, pp. 461-77, 2002.

[183] P. Bäk, C. Tang, and K. Wiesenfeld, "Self-organized criticality: An explanation of
the 1/f noise," Physical Review Letters, vol. 59, pp. 381-384, 1987.

[184] J. S. S. Martins and P. M. C. Oliveira, "Computer simulations of statistical models
and dynamic complex systems," Brazilian Journal of Physics, vol. 34, pp. 1077-
1101,2004.

[185] M. Paczuski, "Networks as Renormalized Models for Emergent Behavior in
Physical Systems,'' Arxiv preprint physics/0502028, 2005.

[186] A. Saichev and D. Somette, "Vere-Jones' self-similar branching model," Physical
Review E, vol. 72, p. 56122, 2005.

[187] C. Adami and J. Chu, "Critical and near-critical branching processes," Physical
Review E, vol. 66, p. 11907, 2002.

[188] D. V. Foster, S. A. Kauffinan, and J. E. S. Socolar, "Network growth models and
genetic regulatory networks," Physical Review E, vol. 73, p. 31912, 2006.

[189] R. V. Solé, R. Pastor-Satorras, E. Smith, and T. B. Kepler, "A Model of Large-Scale
Proteome Evolution," Advances in Complex Systems, vol. 5, pp. 43-54, 2002.

[190] A. Vazquez, "Growing network with local rules: Preferential attachment, clustering
hierarchy, and degree correlations," Physical Review E, vol. 67, p. 56104, 2003.

[191] H. Sayama, M. A. M. Aguiar, Y. Bar-Yam, and M. Baranger, "Spontaneous pattern
formation and genetic invasion in locally mating and competing populations,"
Physical Review E, vol. 65, p. 51919, 2002.

[192] M. C. Boerlijst and P. Hogeweg, "Spiral wave structure in pre-biotic evolution:
hypercycles stable against parasites," PhysicaD, vol. 48, pp. 17-28, 1991.

[193] M. J. Eppstein, J. L. Payne, and C. Goodnight, "Sympatric speciation by self-
organizing barriers to gene flow in simulated populations with localized mating," in
Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, Seattle, 2006.

[194] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási,
"Hierarchical Organization of Modularity in Metabolic Networks," Science, vol.
297, pp. 1551-1555, 2002.

[195] D. J. Watts and S. H. Strogatz, "Collective dynamics of'small-world' networks,"
Nature, vol. 393, pp. 409-10, 1998.

[196] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, "Complex
networks: Structure and dynamics," Physics Reports, vol. 424, pp. 175-308, 2006.

[197] R. Albert and A. L. Barabási, "Statistical mechanics of complex networks," Reviews
of Modern Physics, vol. 74, pp. 47-97, 2002.

[198] M. E. J. Newman, "The structure and function of complex networks," SIAMReview,
vol. 45, pp. 167-256, 2003.

[199] A. L. Barabási and Z. N. Oltvai, "Network biology: understanding the cell's
functional organization," Nature Reviews Genetics, vol. 5, pp. 101-113, 2004.

[200] P. Erdos and A. Rényi, "On random graphs," Publ Math. Debrecen, vol. 6, pp. 290-
297, 1959.

[201] P. Erdos and A. Rényi, "On the evolution of random graphs," Bulletin of the
Institute of International Statistics, vol. 38, pp. 343-347, 1961.

[202] A. L. Barabási and R. Albert, "Emergence of Scaling in Random Networks,"
Science, vol. 286, p. 509, 1999.

[203] A. Wagner, "Evolution of Gene Networks by Gene Duplications: A Mathematical
Model and its Implications on Genome Organization," Proceedings of the National
Academy of Sciences, vol. 91, pp. 4387-4391, 1994.

[204] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz, "Scale-Free Networks
from Varying Vertex Intrinsic Fitness," Physical Review Letters, vol. 89, p. 258702,
2002.

[205] P. Pollner, G. Palla, and T. Vicsek, "Preferential attachment of communities: The
same principle, but a higher level," Europhysics Letters, vol. 73, pp. 478-484, 2006.

[206] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, "The large-scale
organization of metabolic networks," Nature, vol. 407, pp. 651-654, 2000.

[207] D. A. Fell and A. Wagner, "The small world of metabolism," Nature Biotechnology,
vol. 18, pp. 1121-1122, 2000.

[208] J. Zhang, "Evolution by gene duplication: an update," Trends in Ecology and
Evolution, vol. 18, p. 292, 2003.

[209] K. H. Wolfe and D. C. Shields, "Molecular evidence for an ancient duplication of
the entire yeast genome," Nature, vol. 387, pp. 708-713, 1997.

[210] M. Kellis, B. W. Birren, and E. S. Lander, "Proof and evolutionary analysis of
ancient genome duplication in the yeast Saccharomyces cerevisiae," Nature, vol.
428, pp. 617-624, 2004.

[211] R. E. Amritkar and S. Jalan, "Coupled dynamics on networks," Physica A:
Statistical Mechanics and its Applications, vol. 346, pp. 13-19, 2005.

[212] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, "The
synchronization of chaotic systems," Physics Reports, vol. 366, pp. 1-101, 2002.

[213] M. E. Wall, W. S. Hlavacek, and M. A. Savageau, "Design of gene circuits: lessons
from bacteria," Nature Reviews Genetics, vol. 5, pp. 34-42, 2004.

[214] S. Bomholdt and T. Rohlf, "Topological Evolution of Dynamical Networks: Global
Criticality from Local Dynamics," Physical Review Letters, vol. 84, pp. 6114-6117,
2000.

[215] P. Fronczak, A. Fronczak, and J. A. Holyst, "Self-organized criticality and
coevolution of network structure and dynamics," Physical Review E, vol. 73, p.
046117,2006.

[216] M. G. Zimmermann, V. M. Eguiluz, and M. San Miguel, "Coevolution of
dynamical states and interactions in dynamic networks," Physical Review E, vol. 69,
p. 65102, 2004.

[217] H. Aguirre and K. Tanaka, "A Study on the Behavior of Genetic Algorithms on NK-
Landscapes: Effects of Selection, Drift, Mutation, and Recombination," lEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 86, pp. 2270-2279, 2003.

[218] N. Geard, J. Wiles, J. Hallinan, B. Tonkes, and B. Skellett, "A comparison of
neutral landscapes-NK, NKp and NKq," Proceedings of the 2002 Congress on
Evolutionary Computation (CECV2), vol. 1, 2002.

[219] S. Kauffman, "A proposal for using the ensemble approach to understand genetic
regulatory networks," Journal of Theoretical Biology, vol. 230, pp. 581-90, 2004.

[220] Y. C. Lin, F. S. Wang, and K. S. Hwang, "A hybrid method of evolutionary
algorithms for mixed-integer nonlinear optimization problems," Proceedings of the
1999 Congress on Evolutionary Computation (CEC '99), vol. 3, 1999.

[221] C. A. C. Coello, "Self-adaptive penalties for GA-based optimization," Proceedings
of the 1999 Congress on Evolutionary Computation (CEC '99), vol. 1, 1999.

[222] S. Y. Zeng, L. X. Ding, and L. S. Kang, "An evolutionary algorithm of contracting
search space based on partial ordering relation for constrained optimization
problems," Proceedings of the Fifth International Conference on Algorithms and
Architectures for Parallel Processing, pp. 76-81, 2002.

[223] Y. Li, L. Kang, H. De Garis, Z. Kang, and P. Liu, "A Robust Algorithm for Solving
Nonlinear Programming Problems," International Journal of Computer
Mathematics, vol. 79, pp. 523-536, 2002.

[224] B. V. Babu and R. Angira, "Modified differential evolution(MDE) for optimization
of non-linear chemical processes," Computers and Chemical Engineering, vol. 30,
pp. 989-1002, 2006.

[225] A. Lesne, "Complex Networks: from Graph Theory to Biology," Letters in
Mathematical Physics, vol. 78, pp. 235-262, 2006.

[226] D. E. Goldberg, K. Deb, and J. Horn, "Massive Multimodality, Deception, and
Genetic Algorithms," Parallel Problem Solving from Nature, 2, pp. 37-46, 1992.

[227] H. Mühlenbein, M. Schomisch, and J. Bom, "The parallel genetic alghorithm as
function optimizer," PöraZ/e/COw/?w/z>2g, vol. 17, pp. 619-632, 1991.

[228] E. Janka, Vergleich Stochastischer Verfahren zur Globalen Optimierung:
Diplomarbeit, Mathematisches Inst., Universität Wien, 1999. A shorter online
version in English language is at
www.mat.univie.ac.at/~neum/glopt/janka/gopteng.html, 1999.

[229] D. R. Stinson, An Introduction to the Design and Analysis of Algorithms. Winnipeg,
MB, Canada: Charles Babbage Research Centre, 1987.

[230] S. Khuri, T. Bäck, and J. Heitkötter, "An evolutionary approach to combinatorial
optimization problems," in Proceedings of the 22nd annual ACM computer science
conference on Scaling up: meeting the challenge of complexity in real-world
computing applications, 1994, pp. 66-73.

[231] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes:
North-Holland Amsterdam, 1977.

[232] R. N. Sauer, A. R. Colville, and C. W. Burwick, "Computer Points Way to More
Profits " Hydrocarbon Processing, vol. 84, 1964.

[233] C. A. Floudas and P. M. Pardalos, A Collection of Test Problems for Constrained
Global Optimization Algorithms: Springer, 1990.

[234] R. Angira and B. V. Babu, "Evolutionary Computation for Global Optimization of
Non-Linear Chemical Engineering Processes," in Proceedings of International
Symposium on Process Systems Engineering and Control (ISPSEC'03)-For
Productivity Enhancement through Design and Optimization Mumbai, 2003, pp. 3-
4.

[235] E. Sandgren, "Nonlinear integer and discrete programming in mechanical design
optimization," Journal of Mechanical Design, vol. 112, pp. 223-229, 1990.

[236] L. J. Eshelman and J. D. Schaffer, "Real-coded genetic algorithms and interval-
schemata," in Foundations of Genetic Algorithms, vol. 2, 1993, pp. 187-202.

[237] J. Bracken and G. P. McCormick, Selected Applications of Nonlinear
Programming: Wiley New York, 1968.

[238] C. D. Marañas and C. A. Floudas, "Global optimization in generalized geometric
programming," Computers and Chemical Engineering, vol. 21, pp. 351-369, 1997.

[239] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, "A Global Optimization
Method, BB, for General Twice-Differentiable Constrained NLPs: II.
Implementation and Computational Results," Computers and Chemical
Engineering vol. 22, pp. 1159-1179, 1998.

[240] T. F. Edgar, D. M. Himmelblau, and L. S. Lasdon, Optimization of Chemical
Processes: McGraw-Hill, 2001.

[241] J. Fu, R. G. Fenton, and W. L. Cleghom, "A mixed integer-discrete-continuous
programming method and its application to engineering design optimization,"
Engineering optimization, vol. 17, pp. 263-280, 1991.

[242] B. K. Kannan and S. N. Kramer, "Augmented Lagrange multiplier based method for
mixed integer discrete continuous optimization and its applications to mechanical
design," vol. 65, pp. 103-112, 1993.

[243] Y. J. Cao and Q. H. Wu, "Mechanical design optimization by mixed-variable
evolutionary programming," Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 443-6, 1997.

[244] A. Belegundu and J. Arora, "A study of mathematical programming methods for
structural optimization, part i: theory," International Journal for Numerical
Methods in Engineering, vol. 21, pp. 1583-1599, 1985.

[245] J. S. Arora, Introduction to Optimum Design: McGraw-Hill, 1989.

[246] K. Deb and M. Goyal, "Optimizing Engineering Designs Using a Combined
Genetic Search," Proceedings of the Sixth International Conference on Genetic
Algorithms (ICGA-97), pp. 521-528, 1997.

APPENDIX A TEST FUNCTION DEFINITIONS
A. 1 Artificial Test Functions
Table A-1 Artificial Test Function Characteristics Table. Epi: Epistasis or Tight Linkage (i.e. Non-Separable),
Con = Continuous, n = problem dimensionality (* indicates /i is a parameter of the problem), Ref. = reference to
problem description used, MM = multimodal fitness landscape, Params = parameters of the problem.

Name Epi Con n MM Ref. Params.
MTTP Yes No * Yes [1351 « = 200
ECC Yes No * Yes [135] n^M*N

M=24
N= 12

MMDP Yes No • Yes [226] n = 6k
k=20

Frequency Modulation Yes Yes 6 Yes [56]
NK Landscape varies No * Yes [81] n^N

N, K varies
Rosenbrock Yes Yes • No [56] n = 2
Rastrigin No Yes * Yes [56] n^20
Schwefel No Yes • Yes [227] « = 20
Griewangk Yes Yes * Yes [56] « = 1 0
Bohachevsky's Yes Yes 2 Yes [56]
Watson's No Yes 5 No [56]
Colville's Yes Yes 4 Yes [56]
System of linear
equations

No Yes 10 No [56]

Ackley's Function No Yes 25 Yes [56]
Neumaier's Function #2 No Yes 4 Yes [228]
Hyper Ellipsoid No Yes • No [83] « = 30

A.1.1 Minimum Tardy Task Problem (MTTP)

The Minimum Tardy Task Problem (MTTP) [229] is a task scheduling problem where the

objective is to execute as many tasks as possible within the time constraints and precedence

relations. Each task TjJ e {1,2,...,«) has a time length Lj (time needed to execute task), a

deadline Dj (before which the task must be completed), and a weight Wj (indicating the

penalty cost from not completing the task). L, A and Wall take on positive integer values

and the scheduling tasks are executed in sequential order. The scheduling problem is then

to fmd a subset S of 7 which executes within the allocated time and minimizes the sum of

all penalties for tasks that were not completed. A penalty term P is added for infeasible

solutions involving tasks that are started but not finished within the allocated time. P is

given as the sum of all task weights thereby ensuring that infeasible solutions are assigned a

worse fitness than feasible solutions.

MinF{x)=P+ Y j ^ j
JeT-S

JsT

X, e (0,1)
Candidate schedules S are represented as a binary vector x indicating which tasks are to be
executed. A candidate schedule is therefore the set of all tasks where Xj=\. As enforced by
the problem generation method, tasks are ordered in the candidate schedule by their
deadlines and are also executed in that order. (This is easy to see since Dj as defined below
is a monotonically increasing function of j). The size of the problem n can be controlled
using the problem generation method specified below (and taken from [230]) where « is a
multiple of 5.

Dj =

Problem Generation Method
4 if J>5
3 j else
D.+lAm if j>5
5 j else
WXm + i) if j>5

60 if j = l
40 if y = 2
7 if j = i
3 if J = 4
50 if j = 5

/ = (/Mod5)+1 , m=j/5, j=\,...,n
Optimal Solution = In

Wj =

MTTP as implemented in Code
Function F(x) 'xj jG{l,2,...,n) ' parameters to optimize

= 0 ' start time for a task
For j = 1 To n

If Xj = 1 Then 'Is task being executed?
If (T® + I^)< Dj Then 'can we complete task in time?

T° = r + Lj
Else

Infeasible = True
Cost = Cost + Wj

End If
Else

Cost = Cost + Wj
End If

Next i
P = sum(Wj)

If Infeasible Then Cost = Cost+ P
F(x) = 2n-Cos t 'Fopt = 0

A.1.2 Error Correcting Code Problem (ECC)

The Error Correcting Code Problem (ECC) [231] is a problem where we try to minimize

the error in reading coded messages (error due to input noise) by maximizing the distance

between code words in the code parameter space. Given a set of M binary code words,

each of length N, the objective is to maximize the Hamming distance d between any pair of

code words.

MaxF{x)=^ l

Z I ^
X, €(0,l), / G{1,...,«}
n = M*N

Optimal (for M=24, N=\2,F= 0.067416)

A.1.3 Massively Multimodal Deceptive Problem (MMDP)

i=\

6

m=\

Y= {yi, y2, ys, y4, ys, ye) = (1, 0, 0.360384, 0.640576, 0.360384, 0, 1)
X, g(0,1), Z 6 {!,...,«}

n = 6k

A.1.4 Frequency Modulation

The problem is to specify six parameters of the frequency modulation sound model

represented byXO-

Original Parameters: X= (xj, X2, xs, X4, X5, xe) = {aj, wj, a2, W2, as, W3)
100

M m F i x } = j ; ^ (y i X , t) - y { X „ t) y

t=Q

y(X,t) = x^ smipc^tO + X3 sin(x4/6' + X5 sin(x6/^)))

e =
' i T l ^

100
Xo = (1.0, 5.0, 1 .5 ,4 .8 , 2 .0 ,4 .9)

yiwuy
-6.4<Xi <6.35, /g{1,...,«}

X/ G R, n = 6

Optimal (F, xi, X2, X3, X4, xs, xe) = (0, 1.0, 5.0, 1.5, 4.8, 2.0, 4.9)

A.1.5 Quadratic Function
M i n F { x) = x l + x l +JC3

-5.12 <Xi <5.12, /G{1,...,«}
X/ G R, « = 3

Optimal (F, xi, X2, X3) = (0, 0, 0, 0)

A.1.6 Generalized Rosenbrock's Function

Min = f (l - x^ f + (x , - I f)
i=l

- 2 < X j < 2 , ZG {!,...,«}
XiG R, n = 2

Optimal {F, xi, xi) = (0, 1.0, 1.0)

A.1.7 Rastrigin's Function

Min F{X) = 10« + ̂ {x^ - cos(2;rc,))
i=\

-5.12 <Xi <5.12, ze{l,...,«}
X/ e R, « = 20

Optimal(i^, 0,...,0)

A.1.8 Schwefel's Function

Min F{X) = x{i)Sin[Abs{x{i)Y)
/=i

-500<Xi <500, /g{1,...,«}
JC/ G R, « = 20

Optimal (F, Xi, ...;£;„) = (0, 0,...,0)

A.1.9 Griewangk's Function
/ \

Min F(X) = Y ^ f - t l
^ 4000 t i i f

-600 <x^ <600, /G{1,...,«}
x/6 R, «=10

Optimal (F, Xi, ...Xrd = (0, 0,...,0)

vV/y

A.1.10 Bohachevsky's Function
Min F{X)^xI +1x1 -0.3cos(3;cCi)cos(4;zx2)+0.3
-50<Xi <50,
jc/ e R, n = 2

Optimal {F, Xi, X2) = (0, 0, 0)

A.1.11 Watson's Function

30

Min F{X) = Yu
/=i 7=1

X
\2

- 1

z - l a. =
' 29

-2<Xi<2 , /E {!,...,«}
X/ e R, n = 6

Optimal {F, Xi,..., Xn) = (2.288E-3, -0.0158, 1.012, -0.02329, 1.260, -1.513, 0.09928)

A.1.12 Colville's Function

Min F { X) = 100(x2 - xf + (l - + 9o(x4 - x] + (l - +

10.l((x2 -1)' +{x, -1)')+19.8(^2 -1X^4 -1)
-10<Xi<10, /g{1,...,«}
X/ G R, n = 4

Optimal {F, Xi,..., = (0, 1,..., 1)

A.1.13 System of linear equations

;=1 y=l

Ax = bis given by:

5 4 5 2 9 5 4 2 3
9 7 I 1 7 2

^ 6 6
3 1 8 6 9 7 4 2 1
8 3 7 3 7 5 3 9 9
9 5 1 6 3 4 2 3 3
1 2 3 1 7 6 6 3 3
1 5 7 8 1 4 7 8 4
9 3 8 6 3 4 7 1 8
8 2 8 5 3 8 7 2 7
2 1 2 2 9 8 7 4 4

- 9<x, ¿9, - { 1

40
50
47
59
45
35
53
50
55
40

jc/e R, «=10

Optimal {F, Xi,..., x„) = (0, 1,..., 1)

A.1.14 Ackley's Function

M/>2F(x) = -20exp
/ \

n f

-exp
V

n

+ 20
V /=i

-32.768 <x, <32.768, zg{1,...,«}
JC/ G R, n = 15

Optimal {F, Xi,..., Xn) = (0, 0,..., 0)

A.1.15 Neumaier's Function #2

Original definition

Mm F{x)=Y,
¿=1 V '=1 y

b = (8, 18, 44, 114)
0<Xi<« , z e{l,
X/ G R, « = 4

Optimal {F, X], X2, xj, X4) = (0, 1, 2, 2, 3)

Modified definition (used in all experiments)

Min
A : = l

k f n \

;=1 V i=l y
b = (8, 18,44, 114)
0<Xi<«, ze {!,...,«}

X/ G R, « = 4

Optimal unknown

A.1.16 Hyper Ellipsoid

Min
/=1

Xi G R, « = 30

Optimal {F, xi,..., Xn) = (0, 0,..., 0)

A.2 Engineering Design Test Problems
A.2.1 Turbine Power Plant
Min F{X)=XJ^

g, (X) = 0.8008 + 0.203 + 0.000916^2
g^ (X) = 0.7266 + 0.2256^2 + 0.000778x2
/ i (X) = 1.4609 + 0.151 86jCI +0.00145xf
/2 (X) = 1.5742 + 0.163 \x, + 0.001358^;

Subject to:
BFG = {\-x,)f,+{l-x,)g,< 10.0
(18, 14, 0, 0) < (xj, X2, X3, X4) < (30, 25, 1, 1)
JC/ G R, n = 4

Optimal Solution (F, xj, X2, X3, X4) = (3.05, 30, 20, 0, 0.58)

A.2.2 Alkylation Process

Figure A-1 Simplified diagram of an alkylation process (recreated from [224])

The alkylation process design problem, originally defined in [232], has the goal of

improving the octane number of an olefin feed stream through a reaction involving

isobutene and acid. The reaction product stream is distilled with the lighter hydrocarbon

fraction recycled back to the reactor. The objective function considers maximizing alkylate

production minus the material (ie feed stream) and operating (ie recycle) costs. Design

parameters all take on continuous values and include the olefin feed rate xi (barrels/day),

acid addition rate (thousands of pounds/day), alkylate yield X3 (barrels/day), acid strength

X4 (wt. %), motor octane number xj, external isobutene to olefin ratio xe, and F-4

performance number x?.

MCIXF{X)^\.1\5X^ +0M5X,X^ +4.0565X3 +IO.OX2 -0.063X3X5

Subject to:

gi(x)=0.0059553571x6'x, +0.88392857x3 -0.1175625x6xi-Xj < 0
g2(^)=1.1088x, +0.1303533xjx, -0.0066033x^x6
g,{x) = 6.66113269x1 +172.39878x5 -56.596669x, -m.20592x, -10000 < 0

g4(x)= 1.08702x6 +0.32175x4 -0.03762x6 -X5 + 56.85075 <0
g5(x) =0.006198X7X4X3 +2462.3121x2 -25.125634X2X4 -X3X4 <0
g6(x)= 161.18996X4X3 +5000X2X4 -489510x2 -X3X4XJ <0
g, (X) = 0.33x7 - + 44.333333 < 0
gg (x)=0.022556x5 - 0.007595x7 -1.0 < 0
g, (X) = 0.00061x3 - 0.0005xi -1.0 < 0
gio(x)= 0.819672xi -X3 +0.819672 < 0
gii(X) = 24500.0x2 - 250.0X2X4 - X3X4 < 0
gi2(x) = 1020.4082X4X2 +1.2244898X3X4 -100000x2 ^0
gi3 (X) = 6.25x^x6 + 6.25xi - 7.625x, -100000 < 0
gi4(x) = 1.22x3 +1-0 <0

(1500, 1, 3000, 85, 90, 3, 145) < (x/, X2, xj, X4, X5, xe, xj) < (2000, 120, 3500, 93, 95, 12,
162)
X/ G R, n = l

Optimal Solution {F, x/, X2, X5, X4, xj, x̂ , x?) = (1772.77, 1698.18, 53.66, 3031.3, 90.11, 95,
10.5, 153.53)

A.2.3 Heat Exchanger Network Design

300 400

100 A4 ^ w w * » ^ T

• t
A?

5 0 ^

t
.Vs

Figure A-2 Diagram of the Heat Exchanger Network Design Problem involving 1 cold stream that exchanges heat
with three hot streams. Parameters to optimize include heat exchange areas {xj, X2, a:̂) and stream temperatures {X4, Xs, X6, X7, Xg).
The Heat Exchanger Network design problem, originally defined by [233], has the goal of
minimizing the total heat exchange surface area for a network consisting of one cold stream
and three hot streams. As shown in Figure A-2, there are eight design parameters
consisting of the heat exchanger areas (x/, X2, X3), intermediate cold stream temperatures
{X4, X5) and hot stream outlet temperatures (xs, xj, xi). The problem is presented below in a
reformulated form taken from [234] where a variable reduction method has been used to
eliminate equality constraints.

Min F{x) = jCj + X2 + X3

Subject to:
g, (X) = 1 OOx, - X, (400 - XJ + 833.33252^4 - 83333.333 < 0
g2{x) = x^x, -x^iAOO-x, +X4)-1250^4 +1250x5 <0
g, (X) = X3X5 - JC3 (100 + X5)- 2500x5 +1250000 < 0
(100, 1000, 1000, 10, 10) < (x ; , X5, JC4, x j) <(10000, 10000, 10000, 1000, 1000)

JC/ G R, n = 5
Optimal Solution (F, xj, X2, xs, X4, X5) = (7049.25, 579.19, 1360.13, 5109.92, 182.01,
295.60,)
remaining parameters are calculated from equality constraints. Their optimal values are:
(X6, X7, Xs) = (217.9, 286.40, 395.60)

A.2.4 Pressure Vessel

r T,

Figure A-3 Pressure Vessel Drawing. Parameters of the problem include the thickness of the shell T„ the thickness
of the head Th, the inner radius of the vessel R and the length of the cylindrical section of the vessel L. This figure
is taken out of [221] and is reprinted with permission from IEEE (© 1999 IEEE).

The pressure vessel design problem, originally defined by [235], has the goal of minimizing

the cost of a pressure vessel as calculated based on material, forming and welding costs.

The design is subject to dimensional constraints which are set to meet ASME standards for

pressure vessels. As shown in Figure A-3, there are four design parameters to optimize

consisting of the thickness of the shell Ts, the thickness of the head Th, the inner radius R

and the length of the cylindrical section of the vessel L. Ts and Th take on integer values

indicating the number of rolled steel plates (where each steel plate is 0.0625 inches thick)

and R and L are continuous variables.

Original Parameters: X = (i ? , { x ^ , J C 2 , X 3 ,)

Min 0.6224xix2(0.0625x3)+1.7781xf (0.0625x4)

+ 3.1661x2 (0.0625x3+19.84xi (0.0625x3

Subject to:
g i (x) =-0.0625x3 +0.0193xi < 0
g 2 (^) =-0.0625x4 +0.00954xi < 0
g^{x) = -7ixlx^-^TDcl +1,296,000 < 0
g 4 (x) = X2 - 2 4 0 < 0

(1, 1, 1, 1) < (X/, X2, Xi, X4) < (100, 400, 20, 20)
xi, X2 e R, xs, X4^'L, n = A

Optimal Solution unknown

A.2.5 Coello's Welded Beam Design

Figure A-4: Diagram of a welded beam. The beam load is defmed as P with all other parameters shown in the
diagram defming dimensional measurements relevant to the problem. This figure is taken out of [221] and is
reprinted with permission from IEEE (© 1999 IEEE).

The Welded beam design problem has the goal of minimizing the cost of a weight bearing

beam subject to constraints on shear stress r, bending stress cr, buckling load on the bar Pc,

and dimensional constraints [221]. There are four design parameters to optimize consisting

of the dimensional variables /z, /, and b shown in Figure A-4.

The original formulation of the problem can be found in {Rekalitis, #336}. A change to

the Pc term in the problem formulation (stated below) appears to have occurred in [221] and

some publications have implemented this new problem definition including the work

presented in this thesis and others cited in Appendix C.

Original Parameters: X = (//,/,T,B) = (JCJ

Min F{X) = 1.10471jcf + 0.04811X3X4(14 +)

Subject to:

g4(X) = 0.10471;cf + 0.0481 IX3X,(l4 +) - 5 < 0
g5(x) = 0.125-x, < 0

<0

g,{x)=p-pXx)<o

Where:

= = M = P
/ \

V2xjx. J
L +

R =
X.

+
I

\2

= S{X) =

J = 2<

4PL'

V2xix.

V ^ y
.2 / X.

12
+

X J 1 \2

V

X̂ X̂

4.013E
36 E

L^ Y ILUG
V y

P = 6000 lb, Z=14 in , = 0.25 in, ^ = 30xl0^psi , G = 1 2 x l 0 ^ p s i ,
Tmax = 13,600 pSi, (Tmax = 30,000 psi
(0.1, 0.1, 0.1, 0.1) < (Xy, X2, Xj, x^) < (2, 10, 10 ,2)

X/ £ R, N = 4

Optimal Solution unknown

A.2.6 Tension Compression Spring

H - d
Figure A-5 Diagram of Tension Compression Spring. Parameters of the problem include the mean coil diameter
D, the wire diameter d and the number of active coils N which is represented by the number of loops of wire in the
diagram. Forces acting on the spring are shown as P. This figure is taken out of [221] and is reprinted with
permission from IEEE (© 1999 IEEE).

The Tension Compression Spring problem, shown in Figure A-5, has the goal of

minimizing the weight of a tension/compression spring subject to constraints on minimum

deflection, shear stress, surge frequency, and dimensional constraints [221]. There are

three design parameters to optimize consisting of the mean coil diameter D, the wire

diameter d and the number of active coils N.

Original Parameters: X = (j , Z), N) = (xj, Xj, X3)
MinF{x)={N + 2)Dd^

Subject to:
D^N

i m s d '
2

<0

AD-dP

63V /

- 1 < 0

(0.05, 0.25, 2) < {xi, X2, X3) < (2, 1.3, 15)
Xi, JC2 G E, Xi € Z, « = 3

Optimal Solution unknown

A.2.7 Gear Train Design

The gear train design problem was originally defined by [235] consists of optimizing a gear

train such that the gear ratio approach as close as possible to 1/6.931. There are four design

parameters consisting of integer values for the number of teeth for each gear.

Original Parameters: X = {x,
i t ^ V

MmF{x) =
/ n 2

1 JĈ ^ 2
6.931

12<Xi <60, ze{l,...,w}
X/ G Z, n = 4

Optimal Solution (F, xj, X2, X3, X4) = (2.70 xlO'^^ 19, 16, 43, 49)

APPENDIX B SEARCH OPERATORS
For the search operator descriptions, the offspring is defined as and the f
parent is defined as G = For all search operators, the first parent is always the
best of the selected parents.

Also in the description, variables randomly assigned over a Uniform distribution with upper
and lower bounds U and L are stated as Uniform(i/, Z), variables randomly assigned over a
Normal distribution with mean ^ and variance cP' are stated as c^).

Table B-1: List of search operators used in experiments. Details provided in this table include the search operator
name, other common name, reference for description, and parameter settings if different from reference.

Search Operator Name Other Name Parameter Settings Reference
Wright's Heuristic Crossover Interpolation r^O.5 [531
Simple Crossover Single point

Crossover
— [66]

Extended Line Crossover Extrapolation a-0.3 [461
Uniform Crossover Discrete Crossover — [46]
BLX-a «=0.2 [2361
Differential Evolution — [501
Swap — [1041
Raise = 0.01 [1041
Creep yi = 0.001 [541
Single Point Random Mutation — [661

B. 1 Single Point Random l\/lutation
This operator is described in [66] and requires a single parent The gene is defined
by:

k = r
g;

if i=k
else

k = Uniform^, n\ k eZ
r = Uniform{hr',hr)

B.2 Creep
The creep operator is a variant of Gaussian mutation and was originally described in [54].
Creep requires a single parent G^ The gene is defined by:

^ if i = k
1 g! else

k = Uniform]^, n\ k eZ

7 MAX _ JMIN
cj^li ^

1000

S.3 Raise

This operator is described in [104] and requires a single parent The f gene is defined

by:

iMAX _ iMIN
CJ = '

100

BA Swap

This operator is described in [104] and requires two parents, G^ and G^. Defining G^ as the

more fit parent, the gene is defined by:

h =
g; if R^>oc
gf else

R,=Rank{ g] - gf)

The function Rank() gives the ranking of the absolute difference between gene values of

two parents (Rank = 1 being the greatest absolute difference).

Parameter Specifications: In this work, a = This means only the single most similar

gene between the parents will be swapped.

B.5 Uniform Crossover

This operator was originally described by [46] and requires two parents, G^ and G^. The

gene is defined by:

^ U) if ^,>0.5
[gf else

r, = Uniform 0,1

S.6 Single Point Crossover
This operator requires two parents, G^ and G .̂ The offspring / / i s then defined by:

(g/, g2\ ..., gL gn)
i = Uniform[0, n\ i eZ

B. 7 BU(- a Crossover
This operator was originally described by [236] and requires two parents, G^ and G .̂ The

gene is defined by:

gmu. =Max{g;,gf)

^ ~ g max g mm

Specifications: The parameter a must be set by the user. In this work, a = 0.2

B.8 Wright's Heuristic Crossover
This operator was originally described in [53] and requires two parents, G^ and G .̂

Defining G^ as the more fit parent, the f^ gene is defined by:

r = Uniform^,\
Modifications: In this work, r is a static value set at 0.5. This operator has been modified

to create a single offspring instead of two offspring by defining G^ as the more fit parent.

B.9 Extended Line Crossover
This operator was originally described in [46] and requires two parents, G^ and G .̂
Defining G^ as the more fit parent, the gene is defined by:

h, = r{gf - g:)+g]
r = Uniform^- 0.25,1.25
Modifications: In this work, r is a static value set at 0.3. This operator has been modified
to create a single offspring instead of two offspring by defining G^ as the more fit parent.

B.10 Differential Evolution Operator
This operator was originally described in [50] and requires four parents G \ G ,̂ G \ and G"̂ .
The f^ gene is defined by:

h =
g- +a[g]-g^)-^ p>r

g] else
r = Uniform^,\
Specifications: a and P are parameters that must be set. In this work, a = I and ̂ = 0.5

APPENDIX C ADDITIONAL RESULTS FROM
CHAPTER 5

C.1 Engineering Design Problems: Performance
Comparisons with the Literature

Tables are provided below which compare solution results from experiments in Chapter 5

with other results stated in the literature. The first column lists the authors (with reference),

the second column states the reported fitness values, and the third column provides the

number of objective function evaluations used to obtain the fitness values reported in

column two. It is important to keep in mind that the results taken from the literature

represent the best solution among all algorithms tested in that reference. Also, some studies

implement different requirements for constraint feasibility making some of the results

difficult to compare. For the constraint function values reported in this section, negative

values are used to indicate the satisfaction of inequality constraints.

Table C-1 Comparison of results for the alkylation process design problem (maximization problem). Results from
other authors were reported in [224]. The best solution found in these experiments was (F, Xj, X2, Xj, x^, X5, X6, X7) =
(1772.77,1698.18, 54.73, 3029.65, 90.25, 95, 1035,153.53) with constraints {gi, g2, gj, g^ gs, go, g?, gs, g9, gio, gii, gn,
gn, gi4) = (0, 0,4.70E-11, 0, 0,3.72E-11, 9.98E-8, -0, 0, 0,0, 0, 0, 0).

Reference Fitness Objective Function Evaluations
Bracken and McCormick, 1968
[2371

1769 not reported

Marañas and Floudas, 1997 [238] 1772.77 not reported
Adjimanetal., 1998 [2391 1772.77 not reported
Edgar and Himmelblau, 2001 [2401 1768.75 not reported
Babu and Angira, 2006 [2241 1766.36 92287 (average value)
SOTEA (This Thesis) 1772.77 150,000
cGA (This Thesis) 1772.77 150,000
Panmictic EA (This Thesis) 1771.35 150,000

Table C-2 Comparison of results for the heat exchanger network design problem (minimization problem). Results
from other authors were reported in [224]. The best solution found in these experiments was (F, Xj, X2, Xs, X4, X5) =
(7049.25, 579.19,1360.13, 5109.92,182.01,295.60) with constraints {gi, g2, gs) = (-2.06E-3, -6.22E-3, -4.60E-3).

Reference Fitness Objective Function Evaluations
Angira and Babu, 2003 [2341 7049.25 36620
Babu and Angira, 2006 [2241 7049.25 31877
SOTEA (This Thesis) 7049.25 150,000
cGA (This Thesis) 7049.25 150,000
Panmictic EA (This Thesis) 7053.47 150,000

Table C-3 Comparison of results for the pressure vessel design problem (minimization problem). Results from
other authors were reported in [223]. Results are also reported for [222] however their solution violates integer
constraints for the 3'̂ '' and 4*** parameters making their fmal solution infeasible. It should also be mentioned that
equations for defming the problem have errors in [221] and [223]. Previous studies have used different bounds for
the solution parameters in this problem which are stated in Column 4. These bounds can change the location of
the optimal solution making it hard to compare experimental results from different authors. The best solution
found in these experiments was (F, Xj, X2, X3, x^) = (5850.37,38.8601,221.365,12, 6) with constraints {gi, g2, gs, g^) =
(-7.00E-8, -4.27E-3, -0.53, -18.66).

Reference Fitness Objective
Function

Evaluations

Parameter Bounds

Sandgren, 1990 [2351 8129.80 not reported not reported
Fuet. al., 1991 [2411 8084.62 not reported not reported
Kannan and Kramer, 1994 [2421 7198.04 not reported not reported
Cao and Wu, 1997 [2431 7108.62 not reported not reported
Lin et. al., 1999 [2201 6370.70 50,000 not reported
Coello, 1999 [2211 6288.74 900,000 1 <x i<99 ,

1 < X 2 < 9 9 ,
10.0000 <X3< 200.0000,
10.0000 <X4< 200.0000

Zeng et al., 2002 [222] 580139 not reported 0 < x i < 10,
0 < X 2 < 10,

0 < X 3 < 1 0 0 ,
0 < X4 < 240

Li et al., 2002 [2231 5850.38 not reported not reported
SOTEA (This Thesis) 5850.37 150,000 1 <x i<20 ,

1 < X2 < 20,
1 <X3< 100,
1 < X 4 < 4 0 0

cGA (This Thesis) 5850.37 150,000
1 <x i<20 ,
1 < X2 < 20,
1 <X3< 100,
1 < X 4 < 4 0 0

Panmictic EA (This Thesis) 5857.39 150,000

1 <x i<20 ,
1 < X2 < 20,
1 <X3< 100,
1 < X 4 < 4 0 0

Table C-4 Comparison of results for the welded beam design problem (minimization problem). Results from other
authors were reported in [2221. The best solution found in these experiments was (F, Xt, X2, Xj, x^) = (1.72485,
0.20572973978, 3.47048651338, 9.0366239103, 0.2057296397) with constraints (gj, gj, gj, g„ gs, go, g?) = (0, 0, -
9 .99E-8 ,0 ,0 ,0 ,0) .

Reference Fitness Objective Function Evaluations
Coello, 1999 [221] 1.74830941 900,000
Zeng et al. 2002 [2221 1.72553637 not reported
SOTEA (This Thesis) 1.72485217 150,000
cGA (This Thesis) 1.72485217 150,000
Panmictic EA (This Thesis) 1.72485218 150,000

Table C-5 Comparison of results for the tension compression spring problem (minimization problem). Results
from other authors were reported in [221]. The best solution found in these experiments was (7% Xj, Xz, Xj) =
(0.0126652303,0.051838, 0.360318,11.081416) with constraints (gj, gz, gs, gJ) = (-3.16E-5,1.47E-5, -4.06, -0.725).

Reference Fitness Objective Function Evaluations
Belegundu,1982 [244] 0.0128334375 not reported
Arora, 1989 [245] 0.0127302737 not reported
Coello, 1999 [2211 0.0127047834 900,000
SOTEA (This Thesis) 0.0126652303 150,000
cGA (This Thesis) 0.0126652303 150,000
Panmictic EA (This Thesis) 0.0126652593 150,000

Table C-6 Comparison of results for the gear train design problem (minimization problem). Results from other
authors were reported in [220]. The best solution found in these experiments was (F, Xj, X2, X3, X4) = (2.70 xlO"̂ ,̂
19,16, 43, 49).

Reference Fitness Objective Function Evaluations
Fu et. al., [2411 4.5 xlO-^ not reported
Cao and Wu, 1997 [2431 2.36x10-' not reported
Deb and Goyal, 1997 [2461 2.70 xlO-'' not reported
Lin et al. 1999 [2201 2.70 xlO-'" 50,000
SOTEA (This Thesis) 2.70 xlO-̂ ^ 150,000
cGA (This Thesis) 2.70x10-'^ 150,000
Panmictic EA (This Thesis) 2.70x10-'^ 150,000

C.2 Panmictic EA Performance Tables
Table C-7: Final performance results for eight Panmictic Evolutionary Algorithms run for 3000 generations with
algorithm designs varying by the use of generational (Gen) or pseudo steady state (SS) population updating, the
use of binary tournament selection (Tour) or truncation selection (Trun), and the number of search operators
(Nops). Performance is presented as the single best objective function value found in 20 runs Fgggf as well as the
average objective function value over 20 runs pAve- None of the Evolutionary Algorithms listed below failed to
obtain a feasible solution within 3000 generations. The single best fitness values found for each problem are in
bold.

Gen Sel N Pressure Vessel Heat Exchanger
Network

Alkylation Process

Fsest pAve Fsest pAve pBest pAve

SS Tour 7 6059.70 6190.31 7053.47 7109.20 1771.35 1750.38
SS Trun 7 6059.73 6214.31 7056.09 7179.02 1760.77 1630.90
Gen Tour 7 5953.06 6123.22 7116.72 7213.38 1711.00 1667.34
Gen Trun 7 5964.23 6174.55 7186.97 7250.82 1641.47 1495.13
SS Tour 2 5867.87 6382.61 7070.57 7233.18 1756.00 1708.38
SS Trun 2 5857.39 6449.57 7093.12 7269.02 1748.95 1661.17
Gen Tour 2 6144.69 6340.23 7235.69 7412.11 1621.77 1510.93
Gen Trun 2 6188.86 6391.15 7184.51 7398.23 1501.24 1343.48

Gear Train
Tension Compression

Spring Welde(Beam
pBest pAve pBest pAve pBest pAve

SS Tour 7 2.70E-12 2.62E-10 0.012665 0.012758 1.72485 1.74602
SS Trun 7 2.70E-12 7.70E-10 0.012665 0.012778 1.72494 1.80945
Gen Tour 7 2.70E-12 2.70E-12 0.012679 0.012710 1.75465 1.77920
Gen Trun 7 2.70E-12 1.09E-11 0.012687 0.012725 1.76485 1.79732
SS Tour 2 2.70E-12 1.12E-09 0.012701 0.013861 1.73570 1.96193
SS Trun 2 2.31E-11 1.81E-09 0.012804 0.015078 1.73060 2.06087
Gen Tour 2 2.70E-12 4.74E-12 0.012739 0.013035 1.83742 1.93124
Gen Trun 2 2.70E-12 2.70E-12 0.012694 0.012864 1.75302 1.88472

Frequency
Modulation Error Correcting Code

System of Linear
Equations

pBest pAve pRest pAve pBest pAve

SS Tour 7 0.00 15.36 3.53E-03 4.32E-03 8.53E-14 2.12E-05
SS Trun 7 6.69 18.28 3.68E-03 4.29E-03 3.16E-05 1.32
Gen Tour 7 23.07 26.95 2.47E-03 3.75E-03 10.90 14.58
Gen Trun 7 22.87 25.97 3.44E-03 4.13E-03 2.45 5.27
SS Tour 2 8.98 15.87 2.70E-07 3.84E-03 1.67 3.54
SS Trun 2 0.55 16.49 3.43E-03 3.96E-03 4.26 5.90
Gen Tour 2 23.35 26.33 4.18E-03 4.77E-03 50.21 74.11
Gen Trun 2 21.95 26.77 2.70E-07 3.17E-03 35.69 51.75

Rastigrin Griewangk Watson
Fsest pAve pBest pAve pBest pAve

SS Tour 7 1.25E-10 1.65E-06 0.012 0.052 1.716E-02 2.025E-02
SS Trun 7 4.24E-02 1.26E-01 0.049 0.158 1.728E-02 2.922E-02
Gen Tour 7 6.33E-01 9.17E-01 0.615 0.751 1.778E-02 1.941E-02
Gen Trun 7 8.82E-02 1.96E-01 0.348 0.508 1.730E-02 1.828E-02
SS Tour 2 3.10E-02 6.92E-02 0.131 0.216 1.804E-02 4.887E-02
SS Trun 2 1.64E-01 2.83E-01 0.154 0.366 1.829E-02 4.369E-02
Gen Tour 2 7.82 10.51 1.476 2.729 2.444E-02 5.673E-02
Gen Trun 2 4.89 7.53 1.474 2.199 2.205E-02 4.111E-02

PUBLICATIONS
Journals

Whitacre, J. M., Sarker, R. A., and Pham, T. Q., "The Self-Organization of Interaction
Networks for Nature-Inspired Optimization." IEEE Transactions on Evolutionary
Computation, (Accepted March, 2007)
http://www.ceic.unsw.edu.au/staff/Tuan Pham/Whitacre SOTEA 2007.pdf

Whitacre, J. M., Sarker, R. A., and Pham, T. Q., "The Self-Organized Criticality of
Population Dynamics and its Relevance to Adaptive Evolutionary Algorithms." IEEE
Transactions on Evolutionary Computation, (Submitted November, 2006)

Whitacre, J. M., Sarker, R. A., and Pham, T. Q., "The influence of population topology
and historical coupling on Evolutionary Algorithm population dynamics." Applied Soft
Computing, (Submitted September, 2007)

Whitacre, J. M., Sarker, R. A., and Pham, T. Q., "A Self-Organizing Topology for
distributed Evolutionary Algorithms based on fitness-driven community structures."
IEEE Transactions on Evolutionary Computation, (Submitted September, 2007)

Conference Proceedings

Whitacre, J. M., Pham, T. Q., and Sarker, R. A., "Use of statistical outlier detection method in
adaptive evolutionary algorithms." In Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation (Seattle, Washington, USA, July 08- 12, 2006). GECCO '06.
ACM Press, New York, NY, 1345-1352, 2006.
www.ceic.unsw.edu.au/staff/Tuan Pham/fp 122-whitacre.pdf

Whitacre, J. M., Pham, T. Q., and Sarker, R. A., "Credit assignment in adaptive evolutionary
algorithms." In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation (Seattle, Washington, USA, July 08 - 12, 2006). GECCO '06. ACM Press, New
York, NY, 1353-1360, 2006. www.ceic.unsw.edu.au/staff/Tuan Pham/fp 123-whitacre.pdf

	TITLE PAGE - Adaptation and Self-Organization in Evolutionary Algorithms
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS

	Chapter 1 - Introduction
	Chapter 2 - General Background of Evolutionary Algorithms
	Chapter 3 - Adaptation of EA design
	Chapter 4 - Large Scale Features of EA Population Dynamics
	Chapter 5 - Self-Organizing Topology Evolutionary Algorithms
	Chapter 6 - Summary of Findings
	REFERENCES
	APPENDIX A - TEST FUNCTION DEFINITIONS
	APPENDIX B - SEARCH OPERATORS
	APPENDIX C - ADDITIONAL RESULTS FROM CHAPTER 5
	PUBLICATIONS

