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ABSTRACT 

The objective of Evolutionary Computation is to solve practical problems (e.g. 
optimization, data mining) by simulating the mechanisms of natural evolution. This thesis 
addresses several topics related to adaptation and self-organization in evolving systems 
with the overall aims of improving the performance of Evolutionary Algorithms (EA), 
understanding its relation to natural evolution, and incorporating new mechanisms for 
mimicking complex biological systems. 

Part I of this thesis presents a new mechanism for allowing an EA to adapt its behavior in 
response to changes in the environment. Using the new approach, adaptation of EA 
behavior (i.e. control of EA design parameters) is driven by an analysis of population 
dynamics, as opposed to the more traditional use of fitness measurements. Comparisons 
with a number of adaptive control methods from the literature indicate substantial 
improvements in algorithm performance for a range of artificial and engineering design 
problems. 

Part II of this thesis involves a more thorough analysis of EA behavior based on the 
methods derived in Part I. In particular, several properties of EA population dynamics are 
measured and compared with observations of evolutionary dynamics in nature. The results 
demonstrate that some large scale spatial and temporal features of EA dynamics are 
remarkably similar to their natural counterpart. Compatibility of EA with the Theory of 
Self-Organized Criticality is also discussed. 

Part III proposes fundamentally new directions in EA research which are inspired by the 
conclusions drawn in Part II. These changes involve new mechanisms which allow self-
organization of the EA to occur in ways which extend beyond its common convergence in 
parameter space. In particular, network models for EA populations are developed where 
the network structure is dynamically coupled to EA population dynamics. Results indicate 
strong improvements in algorithm performance compared to cellular Genetic Algorithms 
and non-distributed EA designs. Furthermore, topological analysis indicates that the 
population network can spontaneously evolve to display similar characteristics to the 
interaction networks of complex biological systems. 
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I(median), I(parent)-Pursuit, and I(parent) on Ackley's test function. Probability 
values are shown on a logarithmic scale over the first 2000 generations of evolution. 

93 

Figure 3-29 Search operator probability profiles for adaptive methods I(rank)-Pursuit, 
I(rank), ETV-Outlier, and ETV on Ackley's test function. Probability values are 
shown on a logarithmic scale over the first 2000 generations of evolution 94 

Figure 3-30 Performance of adaptive and non-adaptive EA designs on the System of 
Linear Equations test function. The global optimal solution is at F=0 96 

Figure 3-31 Performance of adaptive and non-adaptive EA designs on the Quadratic test 
function. The global optimal solution is at F=0 96 

Figure 3-32 Performance of adaptive and non-adaptive EA designs on Watson's test 
function. The global optimal solution is at F=2.288E-3 97 

Figure 3-33 Performance of adaptive and non-adaptive EA designs on Neumaier's function 
#2. The global optimal solution is unknown (see Appendix A) 97 

Figure 3-34 Performance of adaptive and non-adaptive EA designs on Colville's test 
function. The global optimal solution is at F=0 98 

Figure 3-35 Performance of adaptive and non-adaptive EA designs on Bohachevsky's test 
function. The global optimal solution is at F=0 98 

Figure 3-36 Performance of adaptive and non-adaptive EA designs on the Rastrigin test 
function. The global optimal solution is at F=0 99 

Figure 3-37 Performance of adaptive and non-adaptive EA designs on the 30-D Hyper 
Ellipsoid test function. The global optimal solution is at F=0 99 

Figure 3-38 Performance of adaptive and non-adaptive EA designs on the Massively 
Multimodal Deceptive Problem (MMDP). The global optimal solution is at F=0. 

100 

Figure 3-39 Performance of adaptive and non-adaptive EA designs on the Turbine Power 
Plant Problem. The global optimal solution is at F=3.05 102 

Figure 3-40 Performance of adaptive and non-adaptive EA designs on the Welded Beam 
Design problem. The global optimal solution is unknown 102 

Figure 3-41 Performance of adaptive and non-adaptive EA designs on the Tension 
Compression Spring problem. The global optimal solution is unknown 103 

Figure 3-42 Performance of adaptive and non-adaptive EA designs on the Gear Train 
Design problem. The global optimal solution is F=2.70xl0"^^ 103 



Figure 3-43 Performance of adaptive and non-adaptive EA designs on the Minimum Tardy 
Task Problem (MTTP). The global optimal solution is F=0 104 

Figure 3-44 Performance of adaptive and non-adaptive EA designs on the Frequency 
Modulation problem. The global optimal solution is F=0 104 

Figure 3-45 Performance of adaptive and non-adaptive EA designs on the Error Correcting 
Code (ECC) problem. The global optimal solution is F=0 105 

Figure 4-1 ETV size distributions for a number of panmictic EA designs, a) EA designs 
with population size A^=200, generational population updating (Gen), and selection 
methods Tournament (Tour), Truncation (Trun) and Random (Rand) selection. 
Solid line represents a power law with exponent 2.5. b) EA designs with population 
size 7V=200, steady state (SS) population updating, and selection methods 
Tournament (Tour), Truncation (Trun) and Random (Rand) selection. Solid line 
represents a power law with exponent 2.3. Results from each EA design are taken 
over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 115 

Figure 4-2 ETV size distributions for a number of spatially distributed EA designs, a) 
Cellular Genetic Algorithm (cGA) designs with population sizes (A^=100, A^=200), 
and neighborhood radius (R=l, R=5, R=30). Solid line represents a power law with 
exponent 2.2. b) Cellular Genetic Algorithm (cGA) designs with random selection 
(Rand), population size (N=200), and neighborhood radius (i?=l, R=5, jR=30). 
Solid line represents a power law with exponent 2.5. Results from each EA design 
are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test 
function 116 

Figure 4-3 ETV distributions shown primarily for spatially distributed EA designs. All EA 
designs have population size A^=200. Cellular Genetic Algorithm (cGA) designs 
vary in the use of crowding and the neighborhood radius size (R=U /?=30). 
Results from using Deterministic Crowding (DC) are also presented in the inset. 
Solid line represents a power law with exponent 2.2. Results from each EA design 
are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test 
function 117 

Figure 4-4 ETV distributions shown for selected EA designs on a range of test functions 
taken from Appendix A. Evolution occurred over 2000 generations and results 
shown are averages taken over 10 runs. To help in viewing results from a large 
number of test functions, data is grouped into bins, a) Results for an EA design 
using steady state (SS) population updating, truncation selection (Trun), and 
population size A^=200. Solid line represents a power law with exponent 2.2. b) 
Results for an EA design using generational (Gen) population updating, tournament 
selection (Tour), and population size A^=200. Solid line represents a power law with 
exponent 2.2 119 

Figure 4-5 ETV distributions shown for selected EA designs on a range of test functions 
taken from Appendix A. Evolution occurred over 2000 generations and results 
shown are averages taken over 10 runs. To help in viewing results from a large 
number of test functions, data is grouped into bins, a) Results for a distributed EA 



design (cGA) using neighborhood radius R=\, and population size 7V=200. Solid 
line represents a power law with exponent 2.2. b) Results for a distributed EA 
design (cGA) using neighborhood radius R=30, and population size N=200. Solid 
line represents a power law with exponent 2.2 120 

Figure 4-6 ETV distribution results as a function of the time span of evolution, a) Results 
for an EA design using steady state (SS) population updating, truncation selection 
(Trun), and population size N=200. Solid line represents a power law with 
exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood 
radius and population size A^=200. Solid line represents a power law with 
exponent 2.5. Data sets are labeled by a number which indicates the number of 
ETV measurements that are used to generate the distribution. For each EA run, the 
first 100 events are given to the first data set, the next 500 are given to the next data 
set and so on. Results for each EA design are averages over ten runs 121 

Figure 4-7 Record ETV statistics for cellular Genetic Algorithms (cGA) with population 
size A^=100 and neighborhood radius (R=\, R=5, R=30). ETV(Max) is the largest 
ETV found in every 200 events. Values are averages over 10 experimental 
replicates 122 

Figure 4-8 ETV distributions with varying amounts of historical uncoupling in EA 
population dynamics. Experiments are conducted with a steady state EA using 
truncation selection and population size A^=100. Evolution took place over 20,000 
generations on the 30-D Hyper Ellipsoid test function. When conducting the 
standard ETV calculation, historical event information is copied from the 
genetically dominant parent to its offspring. In these experiments, the step of 
historical transfer is skipped with probability F„ew The solid line in the graph 
represents a power law with exponent = 2.1 123 

Figure 4-9 ETV age distributions shown primarily for spatially distributed EA designs. 
The age of an ETV is defined by the number of generations from the initial event to 
the completion of the ETV calculation. All EA designs have population size 
A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and 
the neighborhood radius size R=5, R=30). Results from using Deterministic 
Crowding (DC) are also provided for a population size of A^=200. Solid line 
represents a power law with exponent 3.2 125 

Figure 4-10 ETV age distributions for several EA designs. The age of an ETV is defined 
by the number of generations from the initial event to the completion of the ETV 
calculation, a) EA designs with population sizes (A^=200, N=50X generational 
population updating (Gen) and Tournament selection (Tour). Solid line represents a 
power law with exponent 3. b) EA designs with population sizes (7V=200,7V=50), 
steady state population updating (SS), and Tournament selection (Tour). Solid line 
represents a power law with exponent 2.5. c) EA designs with population sizes 
(A^=200, A^=50), steady state population updating (SS), and Truncation selection 
(Trun). Solid line represents a power law with exponent 3.5 127 

Figure 4-11 Probability of an extinction event as a function of the fraction of all species 
killed. The distribution is derived based on a best of fit kill curve (see [170]) using 



fossil data of marine species from the Paleozoic era. Reprinted by permission from 
the Royal Society (Proceedings: Biological Sciences) [171], copyright (1996).... 130 

Figure 4-12 Local lifetime distributions for species based on North American bird 
populations, a) Lifetime distributions for data taken over different timescales. 
Power law deviations are clearly present, b) Lifetime distributions with rescaling of 
data to account for finite size effects. Data is now well approximated by a power 
law. Reprinted by permission from Macmillan Publishers Ltd: (NATURE) [173], 
copyright (1998) 132 

Figure 4-13 log-log plots of the frequency of a selected taxon with different numbers of 
sub-taxa. a) Frequency of genera with different numbers of species for birds. The 
frequency is given on the vertical axis and the number of bird species within the 
genera is given on the horizontal axis, b) Frequency of orders with different 
numbers of families for animals. The frequency is given on the vertical axis and the 
number of animal families within the order is given on the horizontal axis. Data 
points with frequencies j= \ are omitted. Similar distributions for other data sets are 
presented in [179]. Reprinted by permission from Elsevier: (J. theor. Biol.) [179], 
copyright (1990) 133 

Figure 5-1: Examples of interaction networks. The networks on the top represent 
commonly used EA population structures and are known as (from left to right) 
Panmictic, island model, and cellular population structures. Networks at the bottom 
have been developed with one or more characteristics of complex biological 
networks and are classified as (from left to right) Self-Organizing Networks 
(presented here). Hierarchical Networks [194], and Small World Networks [195]. 
Figure le is reprinted with permission from AAAS 144 

Figure 5-2: Reproduction rules that change the population structure for SOTEA and the 
cellular GA. a) SOTEA Reproduction: When an offspring is created (by asexual 
reproduction), a new node (shown in black) is added to the network through a 
connection to its parent (shown in gray). Each of the parent's connections are then 
inherited by the offspring (black dotted line) with probability Padd followed by each 
of the inherited connections being lost by the parent (gray dotted line) with 
probability Premove- Unless stated otherwise, the parameters are set as Padd = Premoye 
= 10%. This particular rule is loosely based on established models for genome 
complexification [203]. b) cellular GA Reproduction: When an offspring is 
created, a new node (shown in black) is added to the network and connected to its 
parent (shown in gray). One of the parent's connections is then transferred to the 
offspring, which allows the network to maintain a ring topology 155 

Figure 5-3: Competition rules that change the population structure for SOTEA and the 
cellular GA. The details of the competition rule are the same for SOTEA and the 
cGA, however examples are given for both EA designs in this figure. Competition 
rule: The first step is to select an individual at random. This individual then 
decides to compete for survival with its least fit neighbor. When these two 
individuals compete for survival such as the nodes shown in black and gray, the less 
fit individual is killed. The winning individual (shown in black) inherits all 
connections from the losing individual (shown in gray) that weren't already in the 



winning individual's neighborhood. Finally, the losing individual is removed from 
the network 156 

Figure 5-4: This figure shows how structural changes from SOTEA's competition rule 
depend on the fitness of individuals in the network. Starting with the network at the 
top, the individual represented by the black node must decide which of its neighbors 
it will try to kill. The networks at the bottom show what would happen if neighbor 
1, 2, or 3 had been the least fit in the black node's neighborhood. Each of the 
choices creates a new structure that is different from the other choices. Notice that 
for the networks on the bottom, the black node has been changed to gray. This is to 
indicate that either the black node or the white neighbor could have won the 
competition (the structure is the same in either case) 157 

Figure 5-5: This figure shows how the epistatic fitness (Fitepi) defined by (5-9) causes the 
fitness of an individual to depend on its local neighborhood. Parts a-c of the figure 
show a population of five individuals defined on a network. The Objective 
Function Value (Obj) and epistatic fitness defined by (5-9) are provided in the top 
and bottom (resp.) of each node (i.e. individual). For the top two individuals in part 
a), an arrow is drawn towards the individual on the left to indicate it has the lower 
epistatic fitness. The top left individual's epistatic fitness is 2/3 because its 
objective function value is better than 2 of its 3 neighbors. In part b), a new 
connection has been added to the network causing the epistatic fitness values for the 
two top individuals to now be equal. Finally in part c), a connection has been 
removed from the network, causing the top left individual to have an epistatic 
fitness that is now higher than the top right node. If the top two nodes were to 
compete for survival based on epistatic fitness, it should now be clear that the 
decision of who survives (i.e. who is more fit) will depend on the neighborhoods of 
the individuals 159 

Figure 5-6: Pseudocode for SOTEA and cellular GA network dynamics 160 
Figure 5-7: An example of the fitness lookup tables for determining the fitness contribution 

fi from bit JC/. Given an NK landscape with Nnk =8 and Km =2,f3(xs, z P , is 
the fitness contribution for X3. z/^^ and are the two bits that epistatically 
interact with X3. As shown in the figure, they have been selected as the bits to the 
left and right of xs (i.e. z/^^ = X2 and = X4). The lookup table consists of 2^( 
Knk +1) entries, each associated with a unique combination of bit states for X3, zp^ 
and Each entry in the lookup table is a number between [0,1] drawn from a 
uniform distribution 161 

Figure 5-8: Genetic Diversity Results are shown over 4000 generations for Panmictic GA, 
SOTEA, and cellular GA. Diversity for each EA is an average over 10 runs with 
diversity calculated from (5-12) using the entire population (top graph) or the 20% 
best individuals in the population (bottom graph). Experiments are conducted on 
NK models with N m =30, Knk =14. For each EA design the population size is set 
to iV=100 and epistatic fitness is used as defined by (5-9) 166 

Figure 5-9: Performance results are shown over 5000 generations for Panmictic GA, 
SOTEA, and cellular GA each operating with Epistatic Fitness. Performance for 



each EA is an average over 10 runs with performance calculated as the best 
objective function value in a run. Experiments are conducted on NK models with 
Nnk =30, Knk =14. For each EA design the population size is set to A^=100 and 
epistatic fitness is used as defined by (5-9) 167 

Figure 5-10: Genetic diversity results are shown for different amounts of landscape 
ruggedness for the Panmictic GA, SOTEA, and the cellular GA. Diversity is an 
average of calculations using (5-12) that are taken at every 20 generations (up to 
1000 generations) from the 20% best individuals in the population. This measure 
then also averaged over 5 runs. Experiments are conducted on NK models with 
Nnk =30, and Kmk varying as shown in graph. Increasing K^k indicates increasing 
levels of landscape ruggedness. For each EA design, the population size is set to 
A^=100 and epistatic fitness is used as defined by (5-9) 168 

Figure 5-11: Genetic diversity results are shown over 4000 generations for Panmictic GA, 
SOTEA, and cellular GA each operating without epistatic fitness. Diversity for 
each EA is an average over 10 runs with diversity calculated from (5-12) using the 
entire population (top graph) or the 20% best individuals in the population (bottom 
graph). Experiments are conducted on NK models with Nnk =30, Kmk =14. For 
each EA design, the population size is set to A^=100 and fitness is defined as the 
Objective Function Value. The results shown here for the Panmictic GA are 
identical to results shown in Figure 5-8. This is because the fitness rankings of 
individuals in a fully connected population are the same regardless of whether 
epistatic fitness (5-9) is used or the Objective Function Value is used. Because the 
fitness rankings are the same, the outcome of competitions will also be the same 
(hence no change to EA behavior) 169 

Figure 5-12: Selective pressure patterns in the SOTEA network with (top) and without 
(bottom) epistasis. Selective pressure in the network is shown with arrows in black 
for pressure directed away from the network center and green for other directions of 
pressure. Selective pressure directions have only been calculated for nodes located 
near the network center. The arrows are drawn by selecting a node and drawing an 
arrow from this node to its worst neighbor. The worst fit neighbor is determined by 
epistatic fitness (5-9) for the top graph and by the Objective Function Value for the 
bottom graph 171 

Figure 5-13 SOTEA networks evolved using different parameter settings for the 
reproduction rule. In the reproduction rule, a parent's connections are inherited by 
its offspring with probability Padd followed by each of the inherited connections 
being lost by the parent with probability Premove- Population interaction networks 
were evolved for a) Padd = Premove = 0.0%, b) Padd = Premove = 10%, C) Padd = Premove = 

20% 172 

Figure 5-14 Adaptive Network Rules: A selected node N1 will attempt to add, remove or 
transfer its connections based on the satisfaction of constraints and the improvement 
of properties. Add Rule: The dotted line represents a feasible new connection in 
the network assuming nodes N1 and N3 both would like to increase their number of 
connections. Remove Rule: The gray dotted line represents a feasible connection 
to remove in the network assuming nodes N1 and N2 both have an excess of 



connections. Transfer Rule: The connection between N1 and N2 (gray dotted line) 
being transferred to now connect N1 and N3 (black dotted line) represents a feasible 
transfer assuming this action results in an overall improvement to local clustering. 

179 

Figure 5-15 Performance results for the Pressure Vessel design problem are shown over 
3000 generations for SOTEA with different settings of Kmax, and for cellular GA 
with different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained 
feasibility within the first 100 generations. The global optimal solution has a fitness 
of 5850.38 185 

Figure 5-16 Performance results for the Alkylation Process design problem are shown over 
3000 generations for SOTEA with different settings of K âx, and for cellular GA 
with different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained 
feasibility within the first 1400 generations. Several instances can be observed 
where fitness values momentarily decrease. This is the result of EA runs turning 
from infeasible to feasible where the new feasible solution is lower than the average 
performance for that EA design and generation. The global optimal solution has a 
fitness of 1772.77 185 

Figure 5-17 Performance results for the Heat Exchanger Network design problem are 
shown over 3000 generations for SOTEA with different settings of Kmca, and for 
cellular GA with different values of the neighborhood radius R. Performance for 
each EA is an average over 20 runs of the best fitness (objective function) value in 
the population. Infeasible solutions are neglected from the calculations, however all 
runs obtained feasibility within the first 100 generations. The global optimal 
solution has a fitness of 7049.25 186 

Figure 5-18 Performance results for the Gear Train Design design problem are shown over 
3000 generations for SOTEA with different settings of Kmax, and for cellular GA 
with different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained 
feasibility within the first 50 generations. The global optimal solution is unknown, 
however the best result previous to this work, is reported in [220] as 2.70E-12... 186 

Figure 5-19 Performance results for the Tension Compression Spring Design design 
problem are shown over 3000 generations for SOTEA with different settings of 
Kmax, and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective 
function) value in the population. Infeasible solutions are neglected from the 
calculations, however all runs obtained feasibility within the first 50 generations. 
The global optimal solution is unknown, however the best result previous to this 
work, is reported in [221] as 0.01270 187 



Figure 5-20 Performance results for the Welded Beam Design design problem are shown 
over 3000 generations for SOTEA with different settings of Kmax, and for cellular 
GA with different values of the neighborhood radius R. Performance for each EA is 
an average over 20 runs of the best fitness (objective function) value in the 
population. Infeasible solutions are neglected from the calculations, however all 
runs obtained feasibility within the first 50 generations. The global optimal solution 
is unknown, however the best result previous to this work, is reported in [222] as 
1.7255 187 

Figure 5-21 Final performance results for the Pressure Vessel (Left), Alkylation Process 
(Middle) and Heat Exchanger Network (Right) design problems are shown with box 
plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The 
box plots represent final algorithm performance (after 3000 generations) over 20 
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the 
four cGA designs (with different parameter settings for neighborhood radius R), the 
four SOTEA designs (with different parameter settings for Kuwd, and the eight 
Panmictic EA designs described in Section 5.4.2.1. Insets are provided for the cGA 
and SOTEA box plots to highlight the difference in results between these two 
algorithms. Also notice that the Pressure Vessel and Heat Exchanger Network 
problems are Minimization problems while the Alkylation Problem is a 
Maximization problem 188 

Figure 5-22 Final performance results for the Gear Train (Left), Tension Compression 
Spring (Middle) and Welded Beam (Right) design problems are shown with box 
plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The 
box plots represent final algorithm performance (after 3000 generations) over 20 
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the 
four cGA designs (with different parameter settings for neighborhood radius R), the 
four SOTEA designs (with different parameter settings for XM«), and the eight 
Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are 
provided for the cGA and SOTEA box plots (with data shifted and plotted on a log 
scale) to highlight the difference in results between these two algorithms. All three 
design problems are Minimization problems 190 

Figure 5-23 Performance results for the Frequency Modulation problem are shown over 
3000 generations for SOTEA with different settings of Kmax, and for cellular GA 
with different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0 192 

Figure 5-24 Performance results for the error correcting code (ECC) problem are shown 
over 3000 generations for SOTEA with different settings of Kmax, and for cellular 
GA with different values of the neighborhood radius R. Performance for each EA is 
an average over 20 runs of the best fitness (objective ftinction) value in the 
population. The global optimal solution is 0.067416. Results are shifted so that 
global optima is 0 192 

Figure 5-25 Performance results for the system of linear equations problem are shown over 
3000 generations for SOTEA with different settings of Kmax, and for cellular GA 



with different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0 193 

Figure 5-26 Performance results for the Rastrigin function are shown over 3000 generations 
for SOTEA with different settings of Kmax, and for cellular GA with different values 
of the neighborhood radius R. Performance for each EA is an average over 20 runs 
of the best fitness (objective function) value in the population. The global optimal 
solution is 0 193 

Figure 5-27 Performance results for the Griewangk function are shown over 3000 
generations for SOTEA with different settings of Kmax> and for cellular GA with 
different values of the neighborhood radius R. Performance for each EA is an 
average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0 194 

Figure 5-28 Performance results for Watson's function are shown over 3000 generations for 
SOTEA with different settings of Kmax, and for cellular GA with different values of 
the neighborhood radius R. Performance for each EA is an average over 20 runs of 
the best fitness (objective function) value in the population. The global optimal 
solution is 0.01714 194 

Figure 5-29 Final performance results for the Frequency Modulation (Left), Error 
Correcting Code (Middle) and System of Linear Equations (Right) test functions are 
shown with box plots of performance data grouped by Panmictic EA, cellular GA, 
and SOTEA. The box plots represent final algorithm performance (after 3000 
generations) over 20 runs for all cGA, SOTEA, and Panmictic EA designs. This 
includes data from the four cGA designs (with different parameter settings for 
neighborhood radius R), the four SOTEA designs (with different parameter settings 
for KMOX), and the eight Panmictic EA designs described in Section 5.4.2.1. When 
necessary, insets are provided for the cGA and SOTEA box plots (with data plotted 
on a log scale) to highlight the difference in results between these two algorithms. 
All three design problems are Minimization problems 195 

Figure 5-30 Final performance results for the Rastrigin (Left), Griewangk (Middle) and 
Watson (Right) test functions are shown with box plots of performance data 
grouped by Panmictic EA, cellular GA, and SOTEA. The box plots represent final 
algorithm performance (after 3000 generations) over 20 runs for all cGA, SOTEA, 
and Panmictic EA designs. This includes data from the four cGA designs (with 
different parameter settings for neighborhood radius R), the four SOTEA designs 
(with different parameter settings for KMOX), and the eight Panmictic EA designs 
described in Section 5.4.2.1. When necessary, insets are provided for the cGA and 
SOTEA box plots (with data shifted and plotted on a log scale) to highlight the 
difference in results between these two algorithms. All three design problems are 
Minimization problems 196 

Figure 5-31 Topological properties for SOTEA with different values of KMOX and 
population sizes of TV = 50 (•), 100(H), and 200(A). Characteristics include a) the 
characteristic path length (Z), b) the correlation between c and k (c-k), c) the slope 



of the degree correlation (t>), d) the average clustering coefficient Cave and e) the 
degree average have 

Figure 5-32 SOTEA Network Visualizations with Kuax = 7 for population sizes TV = 50, = 
100, and 200. Network visuals were created using Pajek Software 202 

Figure 5-33 SOTEA Network Visualizations with Kuca = 5 for population sizes TV = 50, = 
100, and 200. Network visuals were created using Pajek Software 203 

Figure A-1 Simplified diagram of an alkylation process (recreated from [224]) 236 

Figure A-2 Diagram of the Heat Exchanger Network Design Problem involving 1 cold 
stream that exchanges heat with three hot streams. Parameters to optimize include 
heat exchange areas {xi, X2, X3) and stream temperatures (x4, X5, X6, xy, xs) 238 

Figure A-3 Pressure Vessel Drawing. Parameters of the problem include the thickness of 
the shell Ts, the thickness of the head Th, the inner radius of the vessel R and the 
length of the cylindrical section of the vessel L. This figure is taken out of [221] 
and is reprinted with permission from IEEE (© 1999 IEEE) 239 

Figure A-4: Diagram of a welded beam. The beam load is defined as P with all other 
parameters shown in the diagram defining dimensional measurements relevant to 
the problem. This figure is taken out of [221] and is reprinted with permission from 
IEEE (© 1999 IEEE) 240 

Figure A-5 Diagram of Tension Compression Spring. Parameters of the problem include 
the mean coil diameter Z), the wire diameter d and the number of active coils N 
which is represented by the number of loops of wire in the diagram. Forces acting 
on the spring are shown as P. This figure is taken out of [221] and is reprinted with 
permission from IEEE (© 1999 IEEE) 242 
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Table 3-1 Partial list of methods that have been used to adapt search operator probabilities. 
Parameters that are not specified in the method are listed as (-), parameters that are 
not applicable are listed as (*), and parameters that were varied in experiments are 
listed as the range of values tested. Parameter a in column two is the memory 
parameter given in (3-1), in column three is a parameter specific to the adaptive 
pursuit strategy and is defined by (3-3), T in column four is the adaptation cycle 
length which defines the number of generations between the updating of search 
operator probabilities, Puin in column five is the lower bound on the allowed range 
of probability values, the "Event Measuremenf in column six is described in 
Section 3.1.4.4, the "Interpretation" in column seven is the interpretation of event 
measurements as described in Section 3.1.4.5, and Nops in column eight is the 
number of search operators being adapted. The ETV event measurement and 
Outlier interpretation in the bottom two rows of the table are new event 
measurement and interpretation methods (resp.) proposed in this thesis and are 
described in Sections 3.2.2 and 3.2.4. "His. Credif refers to Historical Credit 
Assignment which is described below in Section 3.1.4.6 51 

Table 3-2 List of test functions used in experiments. Problem definitions, parameter 
settings, fitness landscape characteristics, and problem descriptions (for design 
problems) are provided in Appendix A 70 

Table 3-3: List of search operators used in EA designs. Full descriptions of each search 
operator are provided in Appendix B 71 

Table 3-4 Details of the adaptive methods used for adapting search operator probabilities 
are listed. Column one provides the label used to refer to each adaptive method. 
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Chapter 1: Introduction 

Chapter 1 Introduction 

Evolutionary Algorithms (EA) are a class of stochastic optimization methods which loosely 

follow principles of natural selection in order to solve challenging problems. Over the 

years, a strong track record (e.g. see [1], [2]) has brought them popularity in academia and 

has also started to bring acceptance from industry [3], [4]. Today a number of companies 

which specialize in providing optimized business solutions are now using EA techniques 

[5], [6], [7], [8], [9], [10], [11]. 

Although Evolutionary Algorithms have achieved impressive performance in many 

application domains, these achievements are partly the result of careful algorithm design 

which often involves substantial efforts in defining a problem's representation and/or the 

careful design of an EA's genetic operators. These significant design efforts are a 

reflection of the fact that an EA is presently not able to robustly adapt its search behavior to 

fit a particular optimization problem. One promising avenue for addressing this problem is 

learn how open-ended adaptability and robustness occurs in natural evolutionary processes 

and to incorporate these mechanisms into an EA. 

To achieve such a goal, it is expected that a number of key features of natural evolution will 

need to be integrated into an EA, some of which are not yet ftilly understood.^ Although 

we still lack a complete understanding of evolution, the post-genomic era has provided a 

number of important insights into complex biological systems as well as a better 

understanding of the evolutionary processes that created these systems. With these recent 

developments in mind, it was agreed upon at a recent workshop that a concerted effort 

should now be made to integrate the latest understanding of evolutionary processes into EA 

design [22]. 

If such efforts bear fruit over the coming years, it is anticipated that EA will become a more 

flexible, autonomous, and robust algorithm for solving today's learning, control, design, 

^ Examples of important features of natural evolution that should be of particular interest to EC research are 
discussed in [12], [13], [14], [15], [16], [17] and studied in [18], [19], [20], [21]. 
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and scheduling tasks. As the gap between natural evolution and EA behavior is narrowed 
even further, it is anticipated that EA research could also become of strategic importance 
for a number of frontier technologies where optimization methods are required but are not 
presently capable of providing viable solutions. 

1.1 Aims and Outline 

The overarching aim of this research is to make progress in narrowing the gap between EA 
and natural evolution. Hence, the research questions raised in this thesis are aimed at 
incorporating (or understanding) some of the non-trivial aspects of natural evolution that 
are missing in Evolutionary Algorithms. The key aims and research questions raised in this 
thesis are described below. 

Understanding and Designing an Adaptive System: The effectiveness of an adaptive 
system can be measured by its ability to maintain competitiveness in a changing 
environment. Natural adaptive systems have ingrained within them an ability to 
advantageously change internal components when exposed to changing external forces. 
However, it is not completely understood what features are required to make an adaptive 
process effective in Evolutionary Algorithms. An example of such an adaptive process is 
observed in the adaptive methods used for the automated control of EA design parameters. 
Within this context, this thesis aims to answer how the interactions between such adaptive 
systems and their environment can be translated into useful information for driving internal 
changes to these adaptive systems. 

To date, research into methods for adapting EA design parameters has focused on the use of 
fitness measurements for controlling adaptive behavior. Chapter 3 presents an alternative 
measurement, called ETV (Event Takeover Value), which is derived from empirical 
evidence of an individual's impact on population dynamics. The ETV is able to measure an 
individual's impact on EA population dynamics through an analysis of EA genealogical 
graphs. 

During a preliminary analysis of population dynamics (using ETV), an unexpected 
behavior is uncovered in Evolutionary Algorithms. It is found that there is a surprising 
scarcity of individuals in an EA population that cause even moderate changes to population 
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dynamics. Instead, most individuals actually have a negligible impact on the system. After 

thorough testing (mostly presented in Chapter 4), it is concluded that this is a ftindamental 

property of EA dynamics and that most interactions between the EA population and its 

environment are effectively neutral and non-informative. 

Based on this conclusion and through the use of statistical arguments, the new adaptive 

system is modified to filter out data from individuals that have a small impact on 

population dynamics. As a result, only important interactions between the adaptive system 

and its environment are used to drive adaptive changes in the system. Experiments 

conducted on a number of artificial test functions and engineering design problems indicate 

that the new method for adapting EA design parameters is superior to a number of adaptive 

methods selected from the literature. 

Understanding E A Population Dynamics: The aim of Chapter 4 is to gain a better 

understanding of the population dynamics of Evolutionary Algorithms using the ETV 

measurement derived in Chapter 3. One important observation from this chapter is that the 

probability distribution of an individual's impact on population dynamics fits a power law 

with most individuals having a negligible impact. This chapter investigates this feature of 

EA dynamics more closely with the goal of determining what experimental conditions lead 

to power laws and what conditions lead to deviations from a power law. 

By knowing what aspects of EA design can impact this characteristic of EA population 

dynamics, it is expected that this information can be used to improve EA robustness, in 

part, by driving EA behavior towards a more accurate reflection of natural evolution. After 

comparisons are made between EA results and somewhat related observations from natural 

evolution, it is concluded that some aspects of the two systems share similar patterns of 

behavior but only when certain conditions are met. In particular, the population topology is 

found to be a significant factor in the ETV results and it is found that EA populations that 

are fully connected (i.e. Panmictic) are unable to mimic the spatial properties of natural 

evolutionary dynamics. 

The experimental results from this chapter also provide evidence that the spatial properties 

of EA dynamics and its genealogy are self-organized and possible explanations for this 

behavior are given based on the Theory of Self-Organized Criticality. 
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Mimicking the Structural Organization of Complex Systems: Although the majority of 

experimental factors tested in Chapter 4 do not significantly influence EA population 

dynamics, one factor which did alter its behavior was the introduction of spatial restrictions 

within the population. Interaction restrictions also occur in biological systems, however it 

is well known that network approximations of these systems have very different topological 

properties compared to current spatially distributed EA populations. 

Structure is an emergent property of complex biological systems and plays a fundamental 

role in the robustness and general behavior of these systems. Chapter 5 reviews 

contemporary understanding of how structure emerges in nature with the goal of 

determining how similar structural organization can be integrated with EA design in order 

to improve its robustness and behavior. 

Hence, one of the primary aims of this chapter is to determine how an EA population 

structure can self-organize to exhibit topological characteristics similar to complex 

biological systems. This aim is achieved by modifying the population topology using 

localized rules that are coupled to EA population dynamics. Two different models of 

topological organization are studied and each is found to display interesting behaviors. In 

particular, the first model is found to generate non-random selection pressure patterns 

within the population topology and also is able to sustain very high levels of genetic 

diversity. The second model is intentionally designed to evolve population structures with 

high levels of modularity. Results from testing this algorithm on a suite of test problems 

indicate that the new EA design strongly outperforms a number of other algorithms 

including cellular Genetic Algorithms and several non-distributed EA designs. 

The following chapter provides general background material for this thesis. The chapter 

starts with a brief introduction to optimization including a discussion of what conditions 

make optimization challenging and why nature-inspired optimization methods are useful 

within certain contexts. A justification is also provided for the specific focus of this thesis 

on Evolutionary Algorithms as opposed to other nature-inspired methods. 
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Chapter 2 General Background of Evolutionary 

Algorithms 

This chapter reviews (briefly) the background concepts and ideas that underlie the work 

conducted in this thesis. Each subsequent chapter also introduces and critically reviews 

material that is relevant to the research questions being addressed within that chapter. The 

intention is to allow each chapter to be largely self-contained in order to improve clarity of 

the material and to keep terminology and concepts fresh in the reader's memory as they are 

introduced and subsequently explored. 

2.1 Optimization Framework 

In general, optimization problems involve setting a vector x of free parameters of a system 

in order to optimize (maximize or minimize) some objective function F(x). A solution to a 

problem can also be subject to the satisfaction of inequality constraints g(x), equality 

constraints h(x), as well as upper and lower bounds on the range of allowable parameter 

values. Given a minimization problem consisting of n parameters, q inequality constraints, 

and r equality constraints, the problem can be defined as shown below. 

MinF{x\ x = (2-1) 

Subject to: 

g,{x)<0, ke{l,...,q} (2-2) 
hj{x) = 0, j^{\,...,r} (2-3) 

xf<x,<^, ie{l,...,n} (2-4) 

This is the basic structure of the single objective optimization problems considered in this 

thesis. There are no specific conditions attached to the variable type and the function 

characteristics although many of the problems tested have multimodal fitness landscapes 

and significant levels of parameter epistasis. Other conditions which are commonly 

addressed in optimization research but will not be specifically addressed here include 

dynamic objective functions and multiple conflicting objectives. 
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Optimization problems are typically broken down into classes based on fitness landscape 

characteristics. For some combinations of characteristics, search algorithms can be 

designed with a search bias that can effectively exploit these landscape features and allow 

the problem to be solved to optimality (or near optimality) with relatively little 

computational effort. Examples of such simplifying characteristics include linear 

separability, convex feasible spaces, and smooth unimodal landscapes. 

However, many real world optimization problems have characteristics which are not as 

susceptible to simplifying assumptions. A list of arguably the most important of these 

characteristics is given below. It is important to note that many of the characteristics do not 

necessarily pose a significant challenge when they occur in isolation, however the presence 

of several of these conditions can make a problem very difficult to solve. 

Characteristics which make optimization problems challenging 

Dimensionality Uncertainty 

Multimodality Computational Costs 

Complex Constraints on Feasibility Objectives 

Epistasis "^"l^'Pl® Objectives 

Deception 

Dimensionality: The more parameters that must be varied in order to optimize a problem, 

the larger the dimensionality of the solution space. This can result in the problem size 

increasing by orders of magnitude. However, the importance of dimensionality greatly 

depends on the existence of parameter epistasis. If the additional parameters can be solved 

separately from the other parameters in the problem then the increase in complexity will 

only be additive and for the most part negligible. 

Multimodality: Multimodality refers to fitness landscapes that contain multiple fitness 

peaks (i.e. locally optimal solutions). These peaks play a critical role in the performance of 

almost all optimization methods. Their prevalence through many problems of interest has 
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been the primary impetus for research into alternatives to deterministic directed search and 

gradient-based search algorithms. 

Complex Constraints on Feasibility: Constraints determine which solutions are 

considered feasible within the solution space and they can play a significant role in the 

difficulty of an optimization problem. When constraints are nonlinear, they often result in a 

patchwork of feasible solutions where isolated islands are surrounded by infeasible solution 

space. The location of the optimal solution within this patchwork can be an important 

factor in dictating how difficult the problem is to solve for a given algorithm. 

Nonlinear constraints add to problem difficulty in a way that is somewhat similar to the 

inclusion of multiple objective functions however they also introduce unique difficulties in 

a problem. Unlike the objective function where "almost optimal" is generally good 

enough, almost feasible is rarely accepted. 

Epistasis: Epistasis is a term used to indicate the degree of interaction between parameters 

in an objective function (or in constraint functions). Problems lacking epistatic interactions 

are completely separable (i.e. decomposable) meaning that each of the parameters can be 

solved in isolation. Many real-world problems have at least some degree of epistasis. 

Epistasis is also a common contributor to multimodality and general problem difficulty. 

The impact that epistasis has on problem difficulty and on EA behavior is a significant 

topic of investigation in this thesis which is dealt with in more detail in Chapter 5. 

Deception: Deception is traditionally a term used to describe a feature of fitness 

landscapes that make them difficult to solve using Evolutionary Algorithms. This difficulty 

is due to the challenge of maintaining building blocks of genetic material that are needed 

later in the search process in order to find the optimal solution. However, the concept of 

deceptiveness can be generalized to apply to any algorithm where the search bias ingrained 

in the algorithm makes the optimal solution more difficult to find as the search progresses. 

In other words, deception is the result of an algorithm's search bias being fundamentally 

inappropriate for searching the given fitness landscape. A common form of deceptiveness 

is when hill climbing in a fitness landscape consistently drives the search away from the 

optimal solution. 
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Uncertainty: Uncertainty refers to a lack of confidence that the fitness landscape 
generated by an objective function accurately reflects the true landscape of the problem 
being solved. Uncertainty in a problem can come in many different forms. For instance, 
many real world problems are representations of a physical system where a model is 
developed using a number of assumptions and simplifications. In this case, uncertainty can 
come from the accuracy of the governing equations that are used to model the physical 
problem. Another source of uncertainty is discretisation (i.e. granularity) of the parameter 
space which is necessary for numerical optimization using computers. Discretisation can 
significantly reduce the size of the parameter space however this can also eliminate any 
chance of sampling the best parameter combinations. Depending on parameter sensitivity, 
granularity can also play a role in defining prominent characteristics of a fitness landscape 
which in turn could alter the dynamics and performance of a search process. 

Uncertainty can also come from noise in the objective function evaluation which can be 
inherent in the system, caused by measurement errors, or caused by numerical errors. A 
review of additional types of uncertainty that are experienced in optimization research and 
how they are addressed in Evolutionary Algorithms is provided in [23]. 

Computational Costs: Many real world optimization problems have large computational 
costs associated with the objective function and/or constraint evaluation. These costs are 
generally due to simulation of a real system. Metamodels such as Kriging models (e.g., see 
[24]) can be used to approximate the fitness landscape so that the more computationally 
expensive simulations are needed less frequently. However, increasing computational 
efficiency in this way will also add uncertainty to the evaluation of the objective function. 
This tradeoff means there are limits to the amount of increased computational efficiency 
that can be afforded by metamodels. Another possibility is to increase the granularity of 
the search space however there are tradeoffs with this approach as well which were 
previously discussed. 

Dynamic Objectives: Dynamic objective functions involve fitness landscapes that can 
change over time. When presented with a dynamic objective function, it is generally 
assumed that it is not possible to know how the problem definition will change or how this 
will impact the fitness landscape being searched. In this context, it is no longer sufficient to 
design a solver that can effectively search a given landscape. Instead, a solver must also 
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maintain some degree of search robustness and flexibility which can allow the search 

process to quickly account for changes in the fitness landscape. In some respects, the 

desirable search features for a dynamic optimization problem are more inline with the 

features observed in natural evolution and which are demanded by the natural environment 

and less similar to the conditions treated in traditional optimization (e.g. mathematical 

programming). 

This is not to say that traditional optimization techniques are not used in this domain, 

however they commonly assume that dynamical uncertainty can be represented using 

probabilistic models (e.g. stochastic programming). In most cases however, such models 

are unable to account for the emergent phenomena that is present in dynamic optimization 

problems involving complex systems (e.g. social systems, climate change, warfare, and 

organizational dynamics). 

Multiple Objectives: Most real world problems are not defined as having a single 

objective. Instead there are often multiple conflicting objectives which can not be 

combined into a single metric. Common examples of such objectives include various 

measures of cost, performance, efficiency, risk, and heuristic objectives based on human 

experience. This complicates a search process because we are generally no longer 

presented with a problem containing a single optimal solution or a single selection pressure 

(i.e. driving force) for searching through the solution space. Such conditions can introduce 

unique challenges but also unique opportunities, especially for population based search 

processes. For more information on multi-objective problem characteristics and 

Evolutionary Algorithms designed for this problem domain, we refer the reader to [25], 

[26]. 

2.1.1 Reconciling Optimization Research in a World of "No Free 

Lunches" 

Presented with the challenges listed above, it is important to ask whether an algorithm can 

be designed to effectively deal with all of these characteristics simultaneously and in all of 

their varied forms. In other words, is it possible to create an effective general purpose 

optimization algorithm? 
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An important development along this line of questioning was the No Free Lunch Theorems 

for Optimization (NFL) [27]. Given some basic assumptions (e.g. see [28]), NFL states 

that no optimization algorithm is better than any other when its performance is averaged 

over all possible problems. If one assumes that this equality holds true for the subset of 

real-world problems, then NFL would place severe limitations on the amount of progress 

that is possible in optimization research. 

However, experience over the years suggests that NFL has only a partial bearing on the real 

world. On the one hand, experience has shown that real-world problems cover a broad 

range of problem types and that even for problems which appear to be similar, the best 

approach to solving them can often be very different. In short, empirical evidence supports 

the notion that no best approach to optimization exists. 

On the other hand, most real-world problems do display some basic similarities in fitness 

landscape features such as the presence of correlated landscapes^ (also see [30]). 

Experience also has shown that not all optimization algorithms are equal and in fact some 

appear to be quite good at solving a reasonable range of problems (also see [30]). In 

summary, NFL should act as a guide when conducting optimization research however the 

goal of developing more effective optimization algorithms can be a reasonable aim if 

sufficient justification is provided. 

2.2 Justification of EA Research 

Following from the previous discussion, it appears that a strong argument should be given 

to justify research that focuses on advancing a particular class of optimization algorithms. 

A common and certainly valid justification would be one that is based on empirical 

evidence of strong algorithm performance. Indeed many nature-inspired algorithms and 

particularly Evolutionary Algorithms (EA), have been found to be effective in a number of 

^ One common feature of almost all real-world problems is the existence of correlated landscapes which is to 
say that one can expect (on average) that similarities between solutions in parameter space will produce 
similarities in objective function value. For correlation metrics and a review, see [29]. 
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important niche applications. As a result, the use of these methods in solving real world 

problems has steadily grown over the years. 

Today, a number of nature-inspired optimization methods exist. Examples include Ant 

Colonies, Immune Systems, Particle Swarms, and Simulated Annealing. Each are 

interesting as topics of investigation in their own right, and deserve further study. 

However, the decision to use EA as the algorithmic framework for this research was not a 

decision that was taken lightly nor was it a decision based solely on current empirical 

evidence. The decision to study Evolutionary Algorithms was instead largely based on the 

desirable qualities of its natural counterpart. 

Evolution and Optimization: Many biological systems in nature are viewed as having 

powerful problem solving abilities. Nature-inspired optimization methods attempt to 

mimic these behaviors, however few of the systems being mimicked have a clear relation to 

optimization. On the other hand, natural evolution has a number of important similarities to 

optimization that are now well recognized. 

The first link between optimization and evolution was made in relating the natural 

environment to a fitness landscape which was suggested by Sewall Wright back in 1932 

[31]. He postulated that the adaptation of species was similar to climbing up a fitness 

landscape which occurs due to genetic mutations and is driven by natural selection. It is 

quite simple (although not strictly accurate) to also think of the genome as a 

parameterization of life and to think of the thriving of a species as being due to its success 

in accomplishing some set of objectives. 

Looking at the diversity of life forms and the diversity of environments where life has 

flourished suggests that, although individual species are great specialists, the forces driving 

evolution are a powerful generalist. This ability to continually adapt and evolve new 

specialized behaviors is not possible in today's optimization algorithms although it is a 

highly desirable feature. In short, EA was selected as the topic of investigation because 

natural evolution has a capacity to robustly "solve" a range of problems in the natural 

environment which are well outside the capacity of today's algorithms. 

Other natural systems, such as the behavior of ants or the immune system, are viewed as 

very capable but highly specialized systems that have come about as a result of 
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evolutionary processes. Hence, it is doubtful whether the overall potential of these other 

algorithmic frameworks is comparable with the potential from mimicking natural evolution. 

Based on the premise that natural evolution has unique and advanced problem solving 

capabilities, this thesis focuses on ways to mimic natural evolution in an artificial 

environment for purposes of optimization. This thesis tackles this topic in a multifaceted 

approach looking at issues such as i) building an effective feedback adaptive process ii) 

comparing the dynamical behavior between EA and natural evolution and iii) creating 

models for the emergence of nature-inspired EA population structures. It is hoped that this 

work will help others to look at EA from a different perspective and will help to generate 

more effective algorithms for exploiting the power of natural evolutionary processes. 

Having now provided the motivation and justification for this thesis, the remainder of this 

chapter provides a basic review of Evolutionary Algorithms for optimization. 

2.3 Evolutionary Algorithms 

2.3.1 A Brief History 

The term Evolutionary Algorithms is used to describe a range of stochastic optimization 

methods which employ principles of natural selection and reproduction in biology to evolve 

solutions to problems. Research in the field of Evolutionary Computation (EC) started as 

early as the late 1950s [32], [33], [34], although much of the fundamental work, which is 

generally recognized as the origins of EC research, took place several years later. 

Three of the algorithmic frameworks developed in the early days of EC research are still in 

active use today and include Genetic Algorithms (GA) [35], [36], Evolutionary 

Programming (EP) [37], [38] and Evolution Strategies (ES) [39], [40]. Although there are 

differences between each of the algorithms, their similarities are much more striking and 

most research using one algorithm class is generally applicable to the others. 

Instead of reviewing each of these algorithmic classes, the following review of EA reflects 

the scope of the research presented in this thesis which deals primarily with the topic of 
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parameter optimization using population-based search heuristics. For a more thorough 

review of EC research we refer the reader to [41]. 

2.3.2 General Description 

Taking terminology from genetics, an Evolutionary Algorithm initially starts with a 

population of individuals, with each individual representing a solution to the problem being 

solved. Each individual has a chromosome made up of genes or parameters, and the set of 

all possible combinations of these genes makes up the genotypic space (i.e. solution space 

or parameter space). The individuals within a population are selected to reproduce and 

participate in the next generation in a process similar to the Darwinian principle of survival 

of the fittest. New individuals (referred to as offspring) are generated from selected parents 

using what has become a library of reproduction operators (i.e. search or variation 

operators); some of which are similar to genetic mutation and recombination. 

The selection of individuals is based on their fitness or phenotype which is typically 

defined by the objective function value and is calculated using the genes of the individual. 

This fitness then impacts an individual's chances of survival and/or procreation. By 

creating a bias toward selecting the best solutions for populating the next generation, the 

algorithm is often able to exploit information contained in these more fit solutions in order 

to reach an optimal or near optimal solution. 

A more concrete understanding of Evolutionary Algorithms is possible using the 

pseudocode in Figure 2-1 which loosely follows the framework outlined in [42]. For this 

pseudocode, the parent population of size at generation t is represented by P{t). For each 

new generation, an offspring population P\t) of size X is created using reproduction 

operators and evaluated to determine the objective function values for each offspring. The 

parent population for the next generation is then selected from P\i) and g , where g is a 

subset of P{t). Q is derived from P{t) by selecting those in the parent population with an 

age less than K. 
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t=0 
Initialize P(t) 
Evaluate P(t) 
Do 

PXt) = Variation(P(t)) 
Evaluate P^t) 
P(t+1) = Select(PXt) U Q) 
t=t+l 

Loop until termination criteria 
Figure 2-1 Pseudocode for a basic Evolutionary Algorithm design 

Although some EA designs do not fit the framework listed above, many common designs 

do. For instance, a non-elitist generational EA design refers to conditions where K^X and X 

> a steady state EA design refers to conditions where and >1 =1, a generation gap 

EA has 1< ^ < 00, and a pseudo steady state EA design typically involves and i = 

Also, when an EA design is used with elitism, this simply means that the best individual in 

a population is given its own value for K which is set to ^oo. 

Before reviewing variation and selection schemes that are commonly used in EA design, it 

is important to first provide a clearer understanding of the parameters A, and K. TO do 

this, it is helpful to temporarily neglect the mechanisms used for selecting parents and for 

creating new offspring. By doing this, search with an EA can be understood through its 

relation to a simple branching process. 

Extending this analogy, active nodes describe points in the branching process from which 

new branches can potentially be grown and for an EA, the number of active nodes is 

controlled by The parameter ¡̂  can also be thought of as providing an upper bound on 

the memory or the amount of genetic material present in the system. In a single time step 

or generation, the total number of new branches is controlled by i . Only active nodes have 

the capacity to influence where new branches occur and the composition of the new nodes 

(thereby making the branching process a Markov Chain). Furthermore, active nodes are 

forced to become inactive after K time steps. This limits the amount of time that a node can 

directly influence the creation of new nodes. 

In short, these three parameters impact the algorithm by constraining the dynamics to meet 

certain conditions of this branching process. For instance, a constant value for ̂  means that 
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the size (or memory) of the system can not change while setting /c=oo means an individual 

has the potential to directly influence future dynamics for arbitrarily long periods of time. 

The actual influence of these parameters on other qualities of the system ultimately depends 

on how selection and variation procedures are executed in the algorithm although some 

general comments can be made. For instance, decreasing K generally causes the search 

process to become more influenced by basins of attraction in the fitness landscape while 

increasing K causes the search to be more influenced by point attractors (i.e. local optima). 

Increasing fj. can increase the amount of parallel search behavior that can potentially take 

place in an EA however the actual amount of parallelism depends greatly on other aspects 

of EA design. Increasing X can increase the amount of innovation or changes to the 

makeup of the population that can potentially occur, but again the actual amount of 

innovation depends on other genetic operators. 

The remaining sections of this chapter introduce each aspect of EA design in more detail. 

The next section discusses different selection methods that have been devised for selecting 

P. Section 2.3.4 discusses variation methods which are also referred to as search operators 

or reproduction operators. Constraint handling is discussed in Section 2.3.5 (an important 

topic in fitness evaluation) while options for parameter encoding are discussed in Section 

2.3.6. Some advanced features in EA design are presented in Section 2.3.7 with a focus on 

interaction constraints between EA population members. Section 2.3.8 presents ways in 

which performance can be measured in Evolutionary Algorithms and Section 2.3.9 

discusses the uses and applications of Evolutionary Algorithms. 

2.3.3 Selection Methods 

Selection methods have the task of deciding how much each individual in the population 

will act to bias future search steps that are taken by the algorithm. There are a number of 

selection methods that have been considered in EA research and some of the more common 

schemes are briefly described in this section. In general, selection simply involves the 

creation of one population P^ by selecting individuals from another population P. Selection 

that is done with replacement means that individuals in P can be selected multiple times so 

that multiple copies of an individual can exist in P \ On the other hand, selection without 
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replacement means that, at most, only one copy of an individual from P can exist in P\ 

Several common methods for selecting individuals are described below. 

2.3.3.1 Proportional Selection 

Proportional selection selects an individual from a population with a probability 

proportional to its fitness. Given a population size of N, the probability pi that individual i 

with fitness fi is selected in a single selection event is defined by (2-5). To use proportional 

selection with minimization problems, it is necessary to define a scaling function. Scaling 

functions are also generally needed when proportional selection is used in order to address 

this method's selection pressure sensitivity to a population's distribution of phenotypes. 

Due to the necessity of problem-specific scaling functions, proportional selection is 

difficult to implement in practice. 

n f' A = — S/. 
7=1 

2.3.3.2 Linear Ranking Selection 

Linear ranking selection is an alternative selection procedure which does not have the 

scaling problems present in proportional selection. In linear ranking selection, solutions are 

ranked from most fit (Rank=l) to worst fit (Rank=AO and are selected with a probability 

that is linearly proportional to its ranking. In this way, an individual's probability of 

selection is based on how its fitness ranks among others in the population instead of being 

based on the magnitude of the fitness value. Given a population size of N and parameters 

rf and rf which control the overall selection pressure, the probability that individual i is 

selected in a single selection event is given by (2-6). In cases where linear ranking is used 

in this thesis and no values are specified for rj^ and rj', it is assumed that if =1 and rf =0. 

Other formulations for defining linear ranking are possible such as the original definition 

which is given in [43], [44]. 
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_ rj- -t]-\n-Rank) (2-6) 
P. = N 

7=1 

2.3.3.3 Exponential Ranking Selection 

Exponential ranking is sometimes used to introduce a stronger selection pressure than is 

possible with linear ranking. As the name suggests, the probability of selection follows an 

exponential function of rank so that there is a much greater chance of being selected if a 

member has a high ranking in the population. Selection pressure is controlled by c so that 

as c ^ 1, the difference in selection probability between the best and worst solutions is lost 

and as c 0, selection probability differences become increasingly larger and follow an 

exponential curve along the ranked solutions. 

c 
Pi = — 

Rank, (2-7) 

I Rank, C ' 

2.3.3.4 Tournament Selection 

Tournament selection works by randomly sampling a subset of the population with sample 

size q and then selecting the best individual from that sample. The size of q will impact the 

selection pressure from this method. A commonly used form of tournament selection is 

binary tournament selection where q=2. 

Tournament selection and tournament-based variants have a number of desirable properties 

that make them a good choice when designing an Evolutionary Algorithm. Tournament 

selection is simple to use and many advanced features in an EA can be implemented using 

tournaments such as the use of crowding and age restrictions. Furthermore, tournaments do 

not require global information in order to make selection decisions thereby making these 

designs more efficient to execute when run in a physically parallel environment. Finally, 

the selection pressure of this method can be easily tuned by changing the tournament size q. 
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2.3.3.5 Truncation Selection 

Truncation selection works by selecting with equal probability from among a fraction T, T 

G [0,1] of the best individuals in the population. With a population of size N sorted based 

on rank, the selection probability is given by (2-8). If selection is conducted without 

replacement (as is done throughout this thesis), then each of the best individuals are 

selected one time only thereby causing the selection method to be deterministic. 

P, 
yV, if\<i<TN (2-8) 

0, else 

2.3.3.6 Modified Tournament Selection 

The experimental work in this thesis uses a modified form of tournament selection that is 

defined by the pseudocode below. 

Modified Tournament Pseudocode 

• starting with individuals, conduct X tournaments 

• for each tournament, select the worst individual in the tournament and remove it from 

the A- + )Li population 

• after X tournaments, we are left with a new parent population of size )i 

• randomly select from the parent population to generate X new offspring 

This procedure is essentially equivalent to a canonical GA using elitism and tournament 

selection without replacement. The major difference with the canonical GA is in the 

application of elitism: the surviving elite are chosen statistically (by tournament) rather than 

deterministically. Furthermore, conventional elitism could be seen to over-favor the fitter 

members, which have a larger share of offspring per generation and survive more 

generations. In the modified tournament selection this favoritism happens naturally: a fitter 

member has more offspring simply by surviving longer - a phenomenon observed in many 

species. 
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2.3.3.7 Characterization and Comments 

Selection schemes introduce bias into a search process primarily by selecting points in 

solution space that are of relatively high fitness. However, selection schemes can also bias 

a search in other ways and so it is important to be able to quantify different aspects of the 

search bias present in a selection scheme. 

One aspect of a search bias is the loss of genetic diversity which can be approximated by 

measuring the proportion of individuals that are not selected during a selection phase [45]. 

Selection schemes are also commonly characterized by their selection pressure which 

indicates the extent to which the scheme is biased towards preferring more fit individuals. 

For example, the selection intensity (as defined in [46]) measures the increase in mean 

fitness resulting from a selection phase. Another possibility is to measure the takeover time 

which is the time required for the best individual to take over a population (restricted 

experimental conditions apply, e.g. see [47]). Additional ways to characterize selection 

methods have also been proposed, some of which can be found in [48], [45], and [49]. 

A number of commonly used selection schemes were briefly described in this section and 

include proportional, linear ranking, exponential ranking, tournament, and truncation 

selection. Although there are differences in these selection schemes, their similarities seem 

to be much more striking. Most have a parameter which (to a rough approximation) tunes 

the selection pressure in a manner similar to the others. Most are also global selection 

methods where selection is based only on an individual's fitness. 

More advanced selection methods do exist which take into account other factors such as 

age, genealogy, spatial locality and genotype in order to encourage different forms of 

diversity or parallel search behavior. Some of these advanced methods are reviewed in 

Section 2.3.7. 

2.3.4 Search Operators and Variation 

Search operators work by taking information from one or more individuals in the 

population as a basis for sampling new points in solution space. Early studies of 

Evolutionary Algorithms involved the use of crossover and/or mutation however many of 



Chapter 2: General Background of Evolutionary Algorithms 

the algorithms in use today employ a diverse range of search operators. Although an 

exceedingly large number of search operators have been introduced in the literature over 

the years, only a few have been able to find traction with the broader EC community. 

Some of the more popular search operators are found in Differential Evolution [50], 

Covariance Matrix Adaptation [51], and Estimation of Distribution Algorithms [52]. These 

operators generally employ the use of multiple parents and are highly successful when 

assumptions about the fitness landscape are met. 

2.3.4.1 Characterization 

A set of ten search operators are used in experiments throughout this thesis and are 

described in Appendix B. As an alternative to reviewing each of these search operators in 

detail, as well as others that have been introduced in the literature, it is possibly more 

illuminating to discuss the search operators in more general terms based on their behavior 

and intended usage. A few directions along these lines are provided below. 

Intent and Search Bias: Probably the most important questions to ask about an operator 

are; what sort of search bias is created by the operator and what sort of landscape is the 

operator expecting to search. A number of standard search operators have been developed 

over the years which can be better understood by attempting to answer these questions. 

As an example, gene swapping operators like single point crossover and uniform crossover 

(defined in Appendix B) are expecting that a partial decomposition of the problem exists 

(which does occur to some extent in many problems). However, these operators also 

expect that the problem can be separated along the specified dimensions of the parameter 

space (e.g. without the need for linear transformation) which is less often the case. These 

operators also expect to have access to a population that adequately samples each of the 

sub-problems or so-called building blocks. 

Another good example are search operators with hill-climbing characteristics. These 

operators expect that the fitness landscape will be somewhat smooth in the region in which 

the population is distributed in parameter space. One example is Wright's heuristic 

crossover [53] which generates solutions by linear interpolation between two parents or 
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extended line crossover [46], [54] which generates solutions by linear extrapolation (both 

defined in Appendix B). 

Exploitation and Exploration: Another important search operator property is the extent to 

which a search operator creates offspring that are biased to reflect the genetic material of 

the parents. In discrete spaces this can be approximated by counting how many of the 

genes in the final offspring are identical to the genes in the parents. In continuous spaces, 

such an assessment can be more difficult to make. Search operators which create offspring 

that largely reflect the parents are often labeled as exploitive. This label is also used for 

operators that are biased to predominately reflect the features of the more fit parent. In 

either case, the operators are "exploiting" a landscape feature that is common in many 

optimization problems, namely that similarities in genotype tend to correspond with 

similarities in phenotype (i.e. correlated landscapes). 

The opposite of this is exploration which generally is used to describe offspring that are 

different from their parents. However, it is worth pointing out that this definition of 

exploration does not mean that an algorithm is necessarily capable of exploring new 

regions of the solution space. From a population perspective, what really defines 

exploration is the ability to create genetic material that is not only different from the 

parents, but is also different from other individuals in the population. Moving to a global 

perspective, an accurate definition of exploration should actually change based on the 

actions and history of the search process. However, because EA is a memory-less search 

process, this latter definition of exploration can not be measured or enforced meaning that 

search by an EA can become trapped in regions of parameter space for extended periods of 

time. 

Stochasticity: The execution of most search operators involves a random variable whose 

value is drawn from some predefined distribution. This allows the operator to display a 

range of behaviors and greatly reduces the chances that the same inputs (i.e. parents) will 

generate the same output (i.e. offspring). This can potentially help to improve the 

robustness of a search process compared to deterministic operators which always give the 

same output when given identical inputs. 
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2.3.4.2 Multiple Operators 

Another option for improving the robustness of a search process is to introduce multiple 

search operators, each containing a unique search bias. Recent studies have indicated that 

the presence of multiple operators can help improve general performance of Evolutionary 

Algorithms [55], [56]. 

On the other hand, the addition of multiple search biases (or the addition of stochastic 

components to a search operator) are only advised if it is not possible to determine what the 

most effective search bias is for a given problem. If such a bias can be obtained or learned 

then the algorithm will perform substantially better on that problem. As a simple example, 

the search bias obtained from using a gradient based search operator should be greatly 

preferred over a more robust operator like random search when searching a smooth 

unimodal fitness landscape. 

However, for many complex problems, it is expected that one particular search bias may be 

insufficient for effectively searching throughout the entire fitness landscape. In these 

conditions, multiple search operators may be more effective. Since EA is often applied to 

complex problems with poorly understood fitness landscapes, it is expected that 

Evolutionary Algorithms should generally be designed using multiple search operators. 

2.3.4.3 Search Operator Probabilities 

To develop an effective search bias in an EA design, it is necessary to select a set of search 

operators for traversing the fitness landscape as well as select the usage probabilities for 

executing those operators.^ Since probability parameters can take on values equal to (or 

close to) zero, the task of selecting appropriate search operators and tuning the probability 

parameters can be thought of as similar tasks. 

Setting these parameters is often done by trial and error or by using an efficient design of 

experiments. However, instead of running the algorithm many times in order to establish 

^ This can be more or less important depending on the amount of effort given to parameter encoding, which is 
a complementary aspect of EA design that alters the fitness landscape. 
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an effective EA design, it is worth considering whether an appropriate search bias can be 

learned for a problem while the algorithm is being run. One promising option is to develop 

mechanisms that allow the probability parameter settings to adapt to the environment so 

that the overall search bias reflects what has so far been useful for traversing that particular 

fitness landscape. 

Notice that in this case, the adapted parameter settings used in the EA design are no longer 

generally robust but instead become specialized for the particular problem being solved. 

Since adapting and tuning search operator probabilities is a major topic of investigation in 

this thesis, a more detailed review will be presented in Chapter 3. 

2.3.4.4 Local Search and Expert Search Hybrids 

Search operators can also involve more than one objective function evaluation. Such 

search operators are generally classified as local search or hill climbing methods and are 

designed to exploit local features of the fitness landscape. These methods often resemble 

classic directed search methods, gradient-based search methods or use expert knowledge in 

order to intelligently select new solutions to evaluate. 

Local search operators are implemented in a lot of different ways depending on their 

purpose. In some cases they are used only on the best solution at the end of an EA run as a 

means to fine tune the final solution more quickly than is otherwise possible using standard 

EA search operators. Other times local search is used on all individuals throughout an EA 

run with the intention of modifying the fitness landscape from the perspective of the rest of 

the algorithm. In this case, the local search operators are sometimes used to only modify 

the phenotype (i.e. Baldwinian Evolution) instead of altering both the genotype and 

phenotype (i.e. Lamarckian Evolution). EA designs that are hybridized with local search 

operators are often referred to as Memetic Algorithms and are reviewed in [57]. 

2.3.5 Constraint Handling 

Many real-world optimization problems require a set of constraints to be placed on the 

parameters being optimized. Constraints can be simple bounds on the values a parameter is 
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allowed to take but they can also be complex nonlinear relationships between multiple 

parameters which can fragment the feasible solution space. Finding feasible solutions can 

be a challenging problem in itself and so the manner in which feasibility is treated is crucial 

to the effectiveness and efficiency of an optimization algorithm. In this section, several 

constraint handling techniques are presented and discussed. 

2.3.5.1 Rejection of infeasible Solutions 

A rather naïve approach to constraint handling in non-convex feasible spaces is to treat 

constraints as they are typically treated in linear, convex problems; that is, to strictly 

enforce the constraints by requiring feasibility for every solution generated. For cases 

where it is not possible to directly solve the system of nonlinear constraints, this approach 

can result in a significant computational burden. 

2.3.5.2 Constraint Handling by Repair 

Constraint handling by repair involves the development of a procedure for turning 

infeasible solutions into feasible solutions and can sometimes be as difficult to solve as the 

original problem. In some instances where expert knowledge is available, repairing 

infeasible solutions can be relatively straightforward and prove quite useful. 

2.3.5.3 Penalty Functions 

The most common and popular method for handling constraints is to incorporate penalty 

functions into the objective function. Solutions that violate one or more constraints will be 

penalized by altering their objective function value so that it represents a less fit solution. 

A few alternatives to static penalty functions are also available such as creating a dynamic 

penalty function that responds to changes in the population [58] or one that changes by a 

fixed schedule [59]. It is also worth noting that constraints can also be treated as additional 

objectives [60] or as pseudo-objectives to an optimization problem [61]. A review of 

constraint handling techniques that have been used with Evolutionary Algorithms is 

provided in [62] and [63]. 
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2.3.5.4 Stochastic Ranking 

Almost all constraint handling methods work by applying a selection pressure that aims to 
drive the population toward regions of the solution space that are both of high fitness and 
feasible. For most EA selection methods (other than proportional selection) the selection 
pressure is based on fitness rankings and not the relative difference between fitness values. 
Hence, the majority of constraint handling techniques (e.g. penalty functions) can be 
understood as altering selection pressure by altering the rankings of individuals. 

However, as discussed in [64], the use of penalty functions is prone to over-dominance or 
under-dominance. In the case of over-dominance, the penalty is too strong and all feasible 
solutions are preferred over infeasible solutions. In the case of under-dominance, the 
penalty for infeasibility is not strong enough to impact the rankings of individuals such that 
the objective function value is the only driver of population dynamics. Selecting the 
appropriate penalty weights is not only hard but the optimal penalty is also likely to be 
dynamic due to the non-stationary distribution of fitness values and the non-stationary 
distribution of constraint violations within the population. 

An effective alternative is provided by the Stochastic Ranking method of Runarsson and 
Yao [64] and is used throughout this thesis. Stochastic Ranking works by ranking 
population members using a stochastic sorting procedure that considers both the objective 
function and constraint violations. A pseudocode for Stochastic Ranking is provided in 
Figure 2-2. The decision to swap adjacent individuals (when at least one is infeasible) 
occurs based on the objective function with a probability Pf and otherwise is based on the 
extent of constraint violation. As Pf 0, the ranking of population members becomes 
dominated by the goal of attaining feasibility and as P/ ^ 1, ranking becomes completely 
based on the objective function. The parameter P/allows for direct control over the extent 
of ranking changes that occur within a population due to infeasibility. Hence, this approach 
to constraint handling eliminates any problems with fitness scaling that plague penalty 
function methods (e.g. over-dominance and under-dominance). 
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For j = 1 To N 
For k = 1 To A- - 1 

sample u e U(0,1) 
If (cpk = cpk+i = 0) or (u < Pf) Then 

If(Fk>Fk.i)Then 
swap(k, k+1) 

End If 
Else 

If (cpk > (pk+i) Then 
swap(k, k+1) 

End If 
End If 

Nextk 
If (no swap) Then Exit For 

Nextj 
Figure 2-2 Pseudocode for Stochastic Ranking procedure where U(0,1) is a uniform random number generator, ^^ 
and F* are the total constraint violation and objective function value (resp.) for individual Ar, N is the number of 
sweeps through the population, X is the population size, and Pf is the probability that infeasible solutions will be 
evaluated based on objective function values. The original description provided in [64] recommends N>X and Pf= 
0.45. 

It is worth mentioning that approaches have also been proposed in [65] that can deal with 

the issue of over-dominance and under-dominance when using penalty functions. In this 

case, mock competitions take place between members in an EA population in order to 

determine how large the penalty function must be in order to balance the competing forces 

from the objective function and the penalty function. 

2.3.6 Parameter Encoding 

Genetic encoding (also referred to as parameter encoding) is a term that is used to describe 

how solutions are represented in the chromosome. Genetic encoding methods are generally 

classified as either direct or indirect encodings. With direct encoding, each gene in the 

chromosome is a parameter that is directly used without alteration for objective function 

evaluation. In other words, binary parameters of the optimization problem are represented 

by binary valued genes, integer parameters are presented by integer valued genes, and 

continuous parameters are represented by floating point numbers, also called real-coded 

genes. Since many design problems involve continuous variables, real number 

representation is very common in EA research. A review and analysis of real-coded GAs 

(RCGA) is provided in [66]. 
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Indirect encoding, on the other hand, involves a mapping process w^here genes must be 

transformed or processed in some fashion before fitness evaluation can occur. A simple 

indirect encoding scheme is provided in the canonical GA. Here the chromosome is 

represented by a binary string which is broken up into n equal length segments 

corresponding to n genes. Each binary segment is decoded to an integer value which is 

then rescaled to fit within the boundary constraints of the corresponding parameter. 

Although arguments based on the Schema Theorem [36] have been given for preferring the 

binary encoding scheme of the canonical GA, direct encoding is more commonly used in 

EA designs today. However, some specialized indirect encoding schemes have been 

successfully applied such as that seen in Genetic Programming [67], [68] and in the 

evolution of artificial neural networks [69], [70], [71]. Similar success has yet to be seen 

for parameter optimization problems, however some interesting studies have occurred in 

recent years [72], [13'. 

2.3.6.1 Gene Expression Research 

Indirect gene encoding can be seen as an analogue to the genotype-phenotype mapping 

process in living systems and is an important open topic in EA research. Indirect gene 

encodings are of great importance because they can influence features of the fitness 

landscape potentially making a problem more or less difficult for a particular algorithm to 

search. 

Observations from Nature: Several details of the genotype-phenotype mapping process 

in nature have been uncovered over the years and this should help to guide future directions 

of artificial gene expression research. Some features of the mapping process are discussed 

below however this is not meant to be an exhaustive review of the topic. 

One important feature of the mapping process is the dominating presence of canalizing 

functions. This ubiquitous feature acts to dampen perturbations (e.g. from the 

environment) to the genotype-phenotype mapping process allowing it to quickly return to 

its intended dynamical trajectory. Canalization can also be understood as an important 

source of dynamical robustness. The term dynamical robustness is used in reference to the 

stability of phenotypic expression in the face of environmental perturbations. Evidence of 
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dynamical robustness is seen for example in the yeast cell-cycle [74]. Artificial models 

have also displayed this property to some degree as seen for instance in [75]. 

A feature that is similar to dynamical robustness is mutational robustness which is also 

known as genetic neutrality. Mutational robustness can be observed in the fitness 

landscape of natural evolving systems and is created (in part) by a many to one mapping 

from genotype to phenotype. There is evidence that high levels of neutrality are present in 

natural evolution and this feature is believed to have a dramatic impact on evolutionary 

dynamics as was first theorized by Kimura [76]. Most studies of neutrality have so far 

focused on RNA folding as seen for instance in [77], [78]. 

It has also been proposed in [79] that with sufficient neutrality, neutral networks of single 

point mutations can percolate throughout genotype space meaning that a large portion of 

the space can be reached without requiring changes in fitness. Such landscape features are 

less likely to force population convergence to a static region of genotype space and could 

play an important role in maintaining population diversity as well as improving 

evolvability. In fact, they suggest in [80] that the presence of neutral networks can cause 

entropic barriers to replace fitness barriers meaning that adaptive improvements become 

less a question of " i f and more a question of "when". 

It is worth mentioning that key features of the mapping process such as canalizing functions 

were shown to be easily created in Boolean networks [81] however similar mechanisms 

have not yet been considered in any indirect encoding schemes for EA. Also in [82], it was 

found that genetic robustness or neutrality is prevalent in some classes of distributed 

dynamical systems. 

2.3.7 Interaction Constraints in EA Populations 

Traditionally, EA population dynamics occur without restrictions or constraints on which 

individuals in the population can interact (e.g. through selection and reproduction). As a 

consequence, the population is tightly coupled and can become stuck or stalled for many 

fitness landscapes of interest. In order to provide for a more robust and parallel search 

process, restrictions in competition and/or mating are sometimes used. 
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This section reviews a number of advanced aspects of EA design which can be grouped 

under heading of interaction constraints within EA populations. The history and intent of 

the methods discussed below are often very different but they share a commonality that 

makes them an important development in EA research. 

Each of the topics reviewed below introduces a new form of diversity or heterogeneity into 

an Evolutionary Algorithm. In many cases, these changes to the algorithm have resulted in 

substantial improvements in the robustness of EA performance. In addition to issues of 

diversity in genotypes, these methods also offer other types of diversity such as diversity in 

phenotypes, ages, genetic operators, and selection pressures. In some cases, the age-old 

exploration-exploitation tradeoff no longer applies due to the fact that a range of exploitive 

and explorative behaviors can now be displayed within a single system. 

2.3.7.1 Crowding and Niche Preserving Methods 

One set of methods for restricting interactions in an EA are crowding methods which are 

generally thought of as a subclass of niching methods. Crowding methods work by forcing 

individuals to compete for survival and/or reproduce with others in the population that are 

similar. Similarity is generally defined based on the genotype or phenotype however 

historical (i.e. genealogical) similarity is also sometimes used. An example of the later 

would be restricting an offspring to only compete with its parents. A number of crowding 

methods have been developed including the original "standard crowding" proposed in [83], 

Deterministic Crowding [84], restricted tournament selection [85] and probabilistic 

crowding [86]. 

Deterministic Crowding (DC) is an interesting extension to standard crowding in that the 

method guarantees that each individual in the population, or a direct descendent of the 

individual, will survive to the next generation. From a genealogical perspective, this is an 

interesting change to the algorithm because stochastic effects are eliminated which 
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otherwise would cause a continual loss of lineages from the population."^ The result is a 

substantially parallel search process. Pseudo code for DC is presented in Figure 2-3. 

For each generation 
Do N/2 times 

Select 2 parents, pi and p2 (randomly, no replacement) 
Create 2 offspring, ci and C2 
I f ( d ( p i , C i ) + d(p2, C2)) < ( d ( p i , C2) + d(p2, C i)) 

If f(ci) > f(pi) replace pi with Ci 
If f(c2) > f(p2) replace p2 with C2 

Else 
If f(c2) > f(pi) replace pi with C2 
If f(ci) > f(p2) replace p2 with ci 

End If 
Loop 

Next 
Figure 2-3 Pseudo code for Deterministic Crowding. Distance (eitiier genotype or phenotype) is given as d{), 
fitness is given asy(), and N is the population size. 

The more general classification of niching is used to described strategies which allow an 

EA population to converge on multiple optima but do not necessarily involve a clear 

restriction of interactions within an EA population. For instance. Sharing Methods [87] are 

a form of globally-controlled niching where individuals are forced to share their fitness 

with other individuals based on distances in genotype (or phenotype) space. Because an 

intimate knowledge of the fitness landscape is needed to appropriately establish the correct 

sharing strategy and parameter settings, sharing methods are not easily used. Other 

niching methods also exist such as Clearing which was proposed in [88] and is similar to 

Fitness Sharing. 

2.3.7.2 Spatially Distributed Populations 

Another approach to restricting interactions in an EA is to define the population on a graph 

so that operators such as selection and reproduction are only able act within localized 

regions defined by the graph topology. EA designs where the population is spatially 

distributed in some manner are referred to as distributed Evolutionary Algorithms (dEA). 

^ This is not to say that population convergence can no longer occur. Convergence is also be driven by search 
operators. 
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There are two general approaches to introducing spatial restrictions in an EA population 

which are referred to in this thesis as island models and network models.^ Reviews on 

distributed EA designs as well as physically parallel implementations of Evolutionary 

Algorithms are provided in [89] and [90]. 

Island Models: Island models work by breaking the EA population into subpopulations or 

islands, with the dynamics of each subpopulation loosely coupled to the others. With 

Island Models, genetic operators can only be used between individuals within the same 

island. Occasionally, individuals are selected to move to a new island thereby allowing one 

island to influence the dynamics of another. A directed graph topology is usually 

established for the islands so that only specified islands can pass individuals to other 

specified islands. Some of the earliest work on island model EA populations was 

conducted in [91]. 

Network Models: With network models, the population is defined on a graph where each 

node represents an individual in the population. Network models are almost exclusively 

defined on a cellular grid and are often referred to as cellular Genetic Algorithms (cGA). 

These distributed EA designs work by having genetic operators such as selection and 

reproduction restricted to occur within local neighborhoods on the network. Some of the 

earliest work on network models for EA populations was conducted in [92] and [93]. 

The network topology is known to significantly impact the behavior and performance of a 

cGA as was demonstrated in [94]. Since population topology and its impact on EA 

behavior is a major topic of investigation in this thesis, a more detailed review will be 

presented in Chapter 5. 

Population updating strategies also can influence the overall dynamics of the system as well 

as the selection pressure as seen in [95] and [96]. It is also worth noting that other 

distributed dynamical systems have displayed sensitivity to the population updating 

strategy as seen for instance in the related field of complex systems research [97], [98]. 

^ In practice, combinations of the two classes are common and are referred to as Hierarchical Evolutionary 
Algorithms. 
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An example of a cGA with synchronous updating is provided in the pseudocode below. 

First, a population PQ of size N is defined on a graph (usually a 1-D or 2-D grid). For a 

single generation, each cell is subjected to standard genetic operators. For a given cell i, 

parents are selected from within its neighborhood, search operators are selected, and an 

offspring is created and evaluated. The better fit between the offspring and P(i) is stored in 

Temp{i) until all N cells are calculated. The grid is then updated (synchronously) for the 

next generation by replacing PQ with TempQ. This process repeats until some stopping 

criteria is reached. 

Initialize PQ 
Evaluate P() 
Initialize Population Topology 
Do 

For i=l to N 
Select Parents from Neighborhood(P(i)) 
Select Search Operators 
Create and Evaluate offspring 
Temp(i) = Best_of(offspring, P(i)) 

Next i 
Replace P() with Temp() 

Loop until termination criteria 
Figure 2-4 Pseudocode of a synchronous cGA 

2.3.7.3 Other Restrictions 

Age Restrictions: Other mechanisms for restricting interactions have also been considered 

such as age-based restrictions which constrain interactions to only occur between 

individuals of similar age. The age in this case refers to the total age of a search path such 

that offspring inherit the age of their parents + 1. An example of this approach is seen in 

the Age-Layered Population Structure (ALPS) presented by Hornby in [99]. Hornby has 

found that age restrictions can allow for an effective utilization of new genetic material 

when it is introduced to an EA population. 

Environmental Restrictions: As individuals in an EA population continue to internalize 

more and more algorithmic features that originally were defined globally, more interaction 

restrictions become possible. One option is to create heterogeneous island models where 

individuals are grouped based on similarity of parameter space granularity, search operator 
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type, or selection pressure [100]. Classification of an island's exploitive or explorative 

character can then be used to restrict the flow of information between islands. 

2.3.8 Performance Metrics and Analysis 

In optimization research, there have been intermittent efforts aimed at developing standards 

for performance evaluation (e.g. see [101] and references therein). This section reviews 

several ways that performance can be measured in Evolutionary Algorithms. The 

discussion is restricted to only address issues that arise within the particular experiments 

conducted in this thesis and so some context and background is necessary. A review of 

other methods for analyzing the behavior and performance of an EA is available in [102]. 

The discussion of performance metrics changes depending on whether a priori knowledge 

is available about the problem such as knowledge of optimal genotype(s) or phenotype(s). 

Here it is assumed, as is often the case for many real world optimization problems, that no 

a priori knowledge is provided. As a consequence, it is assumed that performance can not 

be measured by how close an algorithm gets to reaching the optimal solution, how fast it 

approaches the optimal solution, or how often it finds the optimal solution. Furthermore, it 

is assumed that only one best solution exists for a problem and this discussion neglects any 

additional considerations of tradeoff surfaces which occur when dealing with multiple 

objectives. 

2.3.8.1 Time Dependency 

Developing a useful performance metric requires careful treatment of an important tradeoff 

between short-term and long-term performance. It is of general interest in optimization 

research to understand how an algorithm performs over different time scales. Along with 

classification of the problem being searched, knowing the performance at different time 

scales also provides clues as to the other types of problems or conditions where the 

algorithm may prove useful. 

As a consequence, algorithm performance is often represented as a function of time or 

computational effort. Time is typically measured as the number of function evaluations (or 
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some multiple, e.g. generations) with the implied and generally valid assumption that 

computational costs not associated with objective function evaluation are negligible. 

A common mistake when presenting results is to only present performance at a single point 

in time (namely the time when the algorithm stops running). This neglects performance at 

different timescales and introduces a significant bias into any conclusions drawn from these 

results. Although a single performance measure is sometimes more satisfying to the reader, 

it does not provide a good sense of the actual usefulness of an algorithm. 

2.3.8.2 Defining Performance 

For a given instance in time, it is necessary to define a metric that is able to capture the 

salient details of algorithm performance. If an Evolutionary Algorithm performed exactly 

the same way every time it was run then its performance could be defined by the best 

solution found as a function of computational effort. However, Evolutionary Algorithms 

are a stochastic search method and their performance is sensitive to initial conditions. To 

obtain a measure of expected algorithm performance requires a sampling of experimental 

replicates to be taken with different initial conditions. Hence for a given instance in time, it 

is necessary to develop a performance metric which measures some group property of a 

sample of solution quality values taken from a set of experimental replicates. 

Most experimental results are presented by simply comparing the mean or median solution 

quality between different optimization algorithms. This is particularly useful for comparing 

results that are stated in different publications however this is not the best way to determine 

which algorithm within a set of experiments has superior performance. 

Making comparisons using a group statistic like the median does not take into consideration 

the other properties of the sample distribution (i.e. moments). This becomes particularly 

relevant when the distributions deviate from normality or the sample variance is large (both 

common occurrences in performance distributions of EA solution quality results). This 

bias is rarely (if ever) acknowledged in the presentation of EA experimental results. 

For making statements about the superiority of one algorithm over another, a suitable 

alternative is to compare algorithms based on the ranking of solution quality values that are 
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taken from a set of experimental runs. Taking the median ranking of an algorithm's 

solution quality (with each run of an algorithm ranked against the other algorithm's tested) 

provides a robust measure of how strong an algorithm performed compared to the others. 

For even better comparisons, one can use rank-based statistical tests (e.g. the Mann-

Whitney U Test) to determine the confidence level for stating that one algorithm is superior 

to another based on ranking. This approach was used for example in [103] and [104]. 

The experimental results in this thesis have been presented using several of the approaches 

described above so that the reader can obtain a well-rounded picture of algorithm 

performance. Some performance metrics focus on fmal algorithm performance while 

others present performance as a function of time (e.g. with performance profiles). 

Statistical tests are also used in order to gain a sense of which algorithms are superior to 

others and the confidence with which such statements can be made. 

2.3.9 Uses and Applications of EA 

Although Evolutionary Algorithms provide a useful tool for studying natural evolution, the 

purpose of this research, and most EC research, is towards its application in solving 

optimization problems. 

2.3.9.1 When EA is used 

There is no indisputable set of conditions that dictate when an Evolutionary Algorithm 

should be applied to an optimization problem however some fairly clear guidelines can be 

established. 

Benefits: Evolutionary Algorithms are often effective in poorly defined problems where 

little is known about the fitness landscape. They are also effective for problems with 

substantial levels of noise or other sources of uncertainty [105] and for problems containing 

a significant level of parameter epistasis. Evolutionary Algorithms do not require gradient 

information which also makes them useful for non-differentiable problems. 

Evolutionary Algorithms are effective on many problems because they allow for a global 

search through parameter space while exploiting basic landscape features (e.g. partial 
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decomposition) that are present in many problems. Their stochastic nature also provides an 

inherent robustness to the search process by introducing a search bias that is expected to be 

true on average but does not have to be strictly true for the algorithm to perform well. 

Another related benefit is their capacity to allow for some degree of parallel search to take 

place. A population of solutions allows the algorithm to search in multiple directions at a 

time and reduces its chances of becoming trapped or stuck due to the presence of local 

optima. A population of solutions can also help the algorithm deal with fitness functions 

that have multiple objectives [106] or dynamic objectives [105]. They are also less 

sensitive to numerical errors compared to gradient-based and direct search methods [107]. 

Drawbacks: Although there are many benefits to using an EA, some cautionary notes are 

also warranted. One drawback to using an EA is that it must be tailored to fit a specific 

problem. Although most design issues do not require expert knowledge of the fitness 

landscape, some expert knowledge is required in order to design search operators that 

match well with the problem being solved. Furthermore, this aspect of EA design is crucial 

to the behavior and performance of the final algorithm. The remaining aspects of EA 

design largely consist of establishing the correct parameter settings. Some have claimed 

that the non-intuitive nature of setting these parameters can make Evolutionary Algorithms 

hard to implement in practice (by non-experts). 

Another drawback of EA is that they generally do not scale well and so are rarely used on 

problems containing a large number of parameters (e.g. 1000+). The stochastic aspects 

which make EA robust also make it perform poorly if some regularity within the fitness 

landscape can be exploited (but is neglected during EA design/hybridization efforts). Even 

the slightest improvement in search bias can make huge differences in performance as the 

scale of a problem increases. A common source of regularity is the presence of smoothness 

at different scales in a fitness landscape. When such approximately smooth features are 

present, a more directed search process can sometimes be much more effective. On the 

other hand, it is quite common to integrate local search mechanisms or expert knowledge 

into an EA design which can help to address this drawback of Evolutionary Algorithms. 

Similarly, EA has generally not been used on problems where computational resources only 

allow for a small number of function evaluations. Since EA is primarily designed to be a 

global search heuristic, it tends to have relatively poor performance over short time scales 
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compared to deterministic methods. However, it is worth noting that computational costs 

are steadily becoming less of an issue when considering whether to use an EA. This is due 

to the increased availability of parallel computing resources as well as the development of 

more efficient surrogate models, both of which are conditions that EA is particularly suited 

to exploit. 

In summary. Evolutionary Algorithms are not a panacea for solving all complex problems 

in the world however they do provide search characteristics that are important for solving 

many challenging problems. In general, EA should be treated as an adaptable framework 

for solving difficult problems instead of viewing them as a collection of ready-to-use 

algorithms [108]. 

2.3.9.2 Where EA is used 

Popular application domains for Evolutionary Algorithms include data mining, 

classification, scheduling, planning, and design. Although these are active areas of applied 

EC research, it is also worth pointing out that there is a diverse range of problems being 

solved by Evolutionary Algorithms in both academia and industry with new applications 

continually surfacing. 

To get a sense of more specific applications where Evolutionary Algorithms are used, one 

can simply look at workshops that have taken place at international EC conferences over 

the years. For instance, taking a look at the Genetic and Evolutionary Computation 

Conference (GECCO), one will find workshops have dealt with applications related to the 

petroleum industry, medical applications, mechatronic design, fault tolerance, robotic 

vision, evolvable hardware machines, circuit design, sensor evolution, damage recovery in 

robots, modeling financial markets, structural design, and software testing. 

The popularity of EA in a particular application domain can also indicated by the presence 

of application-specific EA surveys and reviews. A non-exhaustive list of such surveys 

includes EA applied to computer-aided molecular design [109], job-shop scheduling [110], 

project scheduling [1], aerospace problems [111], data mining and knowledge discovery 

[112], control systems engineering [113], [114], chemistry applications [115], 
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macroeconomic models [116], and the modeling and control of combustion processes 
[117]. 

Ample evidence of its versatility can also be found in the hundreds of unique industry-
driven applications where EA has been successfully applied. A sampling of applications 
include breast cancer detection [118], design of the world's fastest race car [119], 
optimizing schedules for bringing new products to market [3], designing pharmaceutical 
drugs [120], processing MRI brain images [121], and the optimization of Intensity-
Modulated Radiation Therapy IMRT [122]. 

Evolutionary Algorithms can also be an important tool in academic research and have been 
used to build improved models of atomic force fields [123], improve interpretation of mass 
spectrometry data [124], and for the design of better molecular scale catalysts [125]. Many 
other examples can be found in the Applications of Evolutionary Computation book series 
[126]. 



Chapter 3: Adaptation of EA Design 

Chapter 3 Adaptation of EA design 

Designing an Evolutionary Algorithm involves a number of activities, from the 

development of an appropriate genetic encoding and/or an appropriate set of search 

operators, to establishing the correct selection pressure. For some aspects of EA design, 

this involves the setting of a number of parameters which control aspects of EA behavior. 

Parameter tuning is an important task in EA design because the optimal parameter settings 

will vary from one problem to the next and the use of poor parameter settings can 

significantly impact algorithm performance. 

This chapter focuses on ways in which robust EA search behavior can be attained by 

allowing traditionally static EA design parameters to adapt to their environment. Section 

3.1 starts by reviewing adaptive control of EA design parameters. The review focuses 

particularly on a general framework for the adaptation of search operator usage 

probabilities. 

Section 3.2 presents a new adaptive control procedure that is driven by empirical measures 

of an individual's impact on population dynamics. The method follows a principle of 

empirical search bias which is presented in this thesis as an alternative to the fitness driven 

search bias present in most optimization algorithms. 

Through a preliminary analysis of population dynamics, an unexpected behavior is also 

uncovered in Evolutionary Algorithms. It is found that there is a surprising scarcity of 

individuals in an EA population that cause even moderate changes to population dynamics. 

Instead, most individuals actually have a negligible impact on the system. From tests using 

a number of experimental conditions, it is concluded that this is a fundamental property of 

EA dynamics such that most interactions between the EA and its environment are 

effectively neutral and non-informative. 

Based on this conclusion and with the use of statistical arguments, the adaptive system is 

modified to filter out data from individuals with little impact on population dynamics (i.e. 
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neutral interactions). Experiments in Section 3.3, which are conducted on a number of 
artificial test functions and engineering design problems, indicate that the new adaptive 
control method is superior to several other adaptive methods in the literature. 

3.1 Approaches to Adaptation: Literature Review 

This section reviews past research on the tuning and adaptive control of EA design 
parameters. The section starts off with a justification for such research efforts and then 
presents a number of design parameters that can be adjusted in order to tune EA behavior. 
Different classes of parameter control techniques are also introduced, and finally, a 
framework is presented for the adaptive control of search operator usage probabilities. 

3.1.1 Impetus for EA design adaptation research 

Designing an Evolutionary Algorithm involves a number of activities, from the 
development of an appropriate genetic encoding and/or an appropriate set of search 
operators, to establishing the correct selection pressure. For some aspects of EA design, 
this involves setting a number of parameters which control different aspects of EA 
behavior. The number of parameters is potentially very large and each can influence the 
optimal setting of the others. Furthermore, there is no reason to assume that static EA 
parameter settings are optimal, especially considering the non-stationary environment 
caused by the search process. 

Early attempts at resolving this problem were focused on determining the best static 
parameter settings for an EA [83], [127]. Over time, it has become well recognized that the 
best parameter settings depend on the problem being solved. Other attempts have focused 
on so-called competent EA designs where general guidelines are used to quickly determine 
good parameter settings. These approaches however generally rely on a number of 
simplifications and only apply to very specific algorithm designs such as the canonical 
form of the Genetic Algorithm (e.g. see [128], [129]). 

Ironically, the problem of parameter setting for EA design actually defines an optimization 
problem. However the "optimization" of EA design is particularly difficult because we 
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generally do not have the computational resources to test a large number of algorithm 

designs. With this in mind, one alternative is to carry out a systematic investigation using 

an efficient Design Of Experiments (DOE) for finding the best parameter settings. In cases 

where algorithm design features are not as easily parameterized, the problem becomes one 

of selecting among a set of optimization algorithms. A number of methods have been 

proposed for algorithm design automation or the hybridization of multiple search 

algorithms. These approaches often involve some iterated learning process as seen in 

[130], [131], [132], [133]. 

For many optimization problems, very little if any computational resources can be devoted 

to parameter tuning, or more generally, to algorithm design automation, since optimizing 

the search method would take much more time than optimizing the problem at hand. Under 

these circumstances, one promising option is to consider ways to adapt EA design at the 

same time it is being used to solve a problem. It is not expected that an optimal EA design 

can be created by this approach however its potential to improve EA performance and 

reduce human design efforts makes such research of practical interest for EA practitioners. 

Evolutionary Algorithms which automatically tune one or more parameters are referred to 

in this thesis as Adaptive Evolutionary Algorithms. 

3.1.2 Adjustable Parameters 

Parameters can be established for many aspects of EA design which are broken down in 

this review into two general categories that are present in most optimization algorithms. 

The first is that of Selection which determines how search paths are added or lost in a 

search process. EA parameters associated with selection that have been adapted in the past 

include population size [134], population structure [135], [136 2007)], selection pressure 

[137], [138], [139], and penalty weights for constraint handling [59], [58]. 

The second general category is that of search operations and simply deals with how the 

algorithm moves from one point in parameter space to another. EA parameters associated 

with search operations include adapting crossover points [140], [141], [142], [143] adapting 

mutation step sizes [144], [145], and adapting the probability of using different search 
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operators [146], [147], [148], [149], [150], [103], [104]. Reviews of adaptation and 

parameter control in Evolutionary Algorithms are available in [151], [152], [153], [154]. 

Adapting Search Operator Probabilities: Adapting search operator probabilities is an 

aspect of EA design which has been extensively studied due to the tedious nature of tuning 

these parameters, particularly when considering more than two search operators (ten in this 

chapter). This parameter tuning problem is also of real practical interest since most EA 

designs used in industry incorporate search operators that are custom made for a particular 

problem. Deciding which of these operators to use and how often to use them presents a 

difficult design challenge that is often dealt with by trial and error. Due to its significance, 

this chapter will focus on applying adaptive methods for controlling search operator 

probabilities. 

3.1.3 EA Parameter Control Techniques 

Methods for adapting EA design parameters can be broken down into three general classes 

which are known as Deterministic, Self-Adaptive, and Supervisory (or Feedback) adaptive 

control methods. Each of these methods are briefly discussed below. 

3.1.3.1 Deterministic Methods 

With deterministic parameter control methods, parameters are adjusted by an external fixed 

schedule or by an heuristic based on EA properties during runtime. Although deterministic 

methods are included as a class of adaptive methods, there is no actual algorithm response 

to its environment and so its classification as an adaptive method is rather hard to justify. 

The success of deterministic methods is likely to be highly problem-specific and even run-

specific and the issue of defining the best deterministic method becomes a challenging 

problem possibly rivaling that of the original optimization problem. A well-known 

example of a deterministic adaptive method is the cooling schedule used in the Simulated 

Annealing algorithm [155]. 
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3.1.3.2 Self-Adaptive Methods 

With self-adaptive methods, information is encoded in the individual population members 

thereby allowing adaptation to occur while the EA is running. Research into self-adaptive 

EA originated with the self-adaptive mutation rates in Evolution Strategies [42]. 

Self-adaptive methods have some characteristics which are highly favorable. Most 

importantly, this approach can potentially allow for a diverse range of algorithm behaviors 

to be present within a single population. Such diversity has the potential to provide an 

overall robustness to search behavior and appears to have important similarities to what 

takes place in natural evolution. 

One of the main challenges with self-adaptive methods is that current EA designs tend to 

have difficulty sustaining diversity in the population. Instead, dominant individuals tend to 

spread their genetic material throughout the population which drives population 

convergence. This process happens quite quickly in many cases and search behaviors 

which exploit local landscape characteristics can exacerbate the problem. Since diversity is 

a precondition for adaptation, population convergence can limit the adaptive capacity of 

self-adaptive methods. 

Although it not typically classified as a self-adaptive method, a similar approach that 

should be mentioned is that of competitive evolution which was first proposed in [147]. In 

this approach, a set of subpopulations are created and computational resources are 

distributed based on fitness and improvement rates within the subpopulations. The 

framework naturally allows for different EA design parameters in the subpopulations or 

even different optimization algorithms altogether. The difference between this and self-

adaptive methods is that with competitive evolution, selection occurs on a larger scale so 

that multiple individuals (in a subpopulation) will have identical parameter settings. 

Somewhat similar ideas have also been used in the Hierarchical distributed Genetic 

Algorithm [156] where subpopulations are given different EA design parameters and 

communication between populations is restricted in an intelligent manner. 
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3.1.3.3 Supervisory Methods 

Supervisory adaptive methods (also referred to as feedback adaptation) use measurements 

taken of EA performance during runtime in order to adapt or control parameter settings. 

Unlike self-adaptation where the adaptive mechanism is coupled to the EA population, 

supervisory methods work usually at a higher level than individuals and are an external 

mechanism that is uncoupled from the search space of the optimization problem. 

Supervisory adaptation is used in this thesis for EA parameter control, however no claims 

are made regarding its superiority to self-adaptive methods. On the one hand, self-adaptive 

methods are admittedly more "nature-inspired", however they can also be more sensitive to 

convergence problems and the associated loss of variability in EA populations. In the 

words of Darwin "without variability, nothing can be effected" which is to say that 

adaptation is simply not possible without variation [157]. 

3.1.4 Supervisory Adaptation of search operator probabilities 

This section presents a detailed framework for supervisory adaptation which is presented 

within the context of adapting search operator probabilities. This framework is similar to 

others such as that presented in [158]. 

3.1.4.1 Operator Quality 

Given a set of Nops search operators with probabilities P^ i = {\,...JSiops), an adaptive 

method has the task of setting P in order to optimally control the usage rates of the 

operators. When an operator i is used, a reward R is returned. Since the environment is 

non-stationary during evolution, an estimate of the expected reward for each operator is 

only reliable over a short span of time. This is addressed by introducing the operator 

quality Q, which is defined such that past rewards influence operator quality by an extent 

that decays exponentially with time t as defined in (3-1). The a term in this equation 

controls the memory of the adaptive method where results in no memory but 

maximum adaptation and «->0 results in maximum memory but no adaptation. The initial 
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value for Q is g(/=0)=0. These quality values are then directly used to define search 

operator probabilities. 

QXt + \) = QMVa[RM)-Q,( t ) ] (3-1) 

3.1.4.2 Operator Probability Setting 

When adapting P, it is necessary to place a lower bound on the probability value in order to 

prevent it from reaching zero. Allowing the probability to reach zero prevents future 

assessment of the operator which is not advised considering that the environment is non-

stationary. To address this, a lower bound Puin is used to define the minimum probability 

of operator usage. Since only one operator is used at a time, the sum of all probabilities 

must equal one meaning an upper bound Puca can also be defined as PMOX = -̂Nopŝ Phim- A 

standard approach for setting search operator probabilities is the Probability Matching 

Strategy defined in (3-2) which sets probability values to be proportional to operator 

quality. For all experimental conditions where search operator probability values are 

adapted in this thesis, it is assumed that all probabilities are initialized as Pi{t=Qi) = MNops. 

Probability Matching 
Q,it) (3-2) 

Ops Min / 

7=1 

An alternative to the probability matching strategy is the Adaptive Pursuit Strategy 

proposed in [158]. This method was developed based on a perceived weakness in the 

probability matching strategy due to its sensitivity to Q scaling. As a simple example of 

this, Thierens considers a case of two search operators where each operator has a stationary 

reward value. He demonstrates that, as the difference between operator rewards becomes 

small, the difference between search operator probabilities also becomes small. In his 

argument, Thierens suggests that if one of the operators is superior, it should be strongly 

favored, even if the extent of its superiority is small. The adaptive pursuit strategy defined 

in (3-3) provides a straightforward method for allowing the distinction between search 

operators to be maximized. The extent that the best operator dominates the search process 
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is controlled in equation (3-3) through the parameter PMOX while the rate at which 

probability values change is controlled by p. In short, the adaptive pursuit strategy allows 

the best operator to reach a set maximum value regardless of its relative performance 

compared to other operators. 

Adaptive Pursuit 

(3-3) 

Implicit in the rationale for the adaptive pursuit strategy is an assumption that no significant 

interaction exists between search operators and their impact on algorithm performance (i.e. 

no epistatic interaction). However, recent studies in [55] and [56] have suggested that 

significant beneficial interactions do take place between search operators meaning that 

some operator combinations are superior to any single operator used in isolation. As a 

result, this puts into doubt whether our goal should be to overwhelmingly favor a single 

best search operator as is intended with the adaptive pursuit strategy. 

3.1.4.3 Defining Operator Rewards 

In the description of supervisory adaptation presented thus far, the reward R is simply the 

result of an operator's interaction with the environment. However the adaptive framework 

presented in this thesis draws a distinction between interactions with the environment and 

the interpretation of those interactions as is shown graphically in Figure 3-1. 
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[plronmeilt 

Figure 3-1: Framework for a supervisory adaptive system. Here, an adaptive system receives measurement data 
as a result of its interactions with the environment. These measurements are then interpreted or assessed for 
relevance. Once interpreted, the data is then allowed to drive internal changes to the system. The mechanics for 
internal change are not shown in the figure but would consist of mechanisms such as the Quality function and the 
Probability Matching Strategy. 

Interaction events between an operator and its environment (i.e. offspring creation) are 

referred to simply as events and measurements of an event are labeled as F. To give 

meaning to an event, it must be interpreted within a particular context. Using this 

distinction between event measurements F and their interpretation /, the reward for an 

operator i at time t can be defined in (3-4) as the average interpretation of a set of M 

interactions with the environment. The ¡archive term in the equation simply stores the I 

calculations from each operator. 

I 

^iTt 

(3-4) 

It is important to note that the reward at a particular time t has now been redefined so that it 

represents multiple interactions between the adaptive system and its environment. Using 

this particular setup, each increment of time t is now referred to as an adaptation cycle. The 

number of interactions that take place during an adaptation cycle is controlled by the 

adaptation cycle length T which is the number of generations before operator probabilities 

are recalculated. The meaning of each of these terms within the overall adaptive 

framework is demonstrated in the pseudocode below. 
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Do 
'add standard genetic operators here 
Gen= Gen+1 
For each offspring 

i = offspring's search operator 
Calculate F (defined in Section 3.1.4.4) 
Calculate I (defined in Section 3.1.4.5) 
M, = Mi + 1 
Iarchive(i, Mi)= I 

Next offspring 
If Gen mod T = 0 THEN 

t=t+l 
For each operator i 

Calculate R (defined in Section 3.1.4.3) 
Calculate Q (defined in Section 3.1.4.1) 
Calculate P (defined in Section 3.1.4.2) 
Mi = 0 

Next i 
End If 

Loop until termination Criteria 

The only calculation steps in the pseudocode above that have not yet been presented are for 

F and /. The next section briefly discusses possibilities for event measurements F while 

Section 3.1.4.5 describes interpretation methods / that have been used in the literature. 

3.1.4.4 Event Measurement 

Measurements of search operator events typically consist of the fitness of the offspring that 

was created in an event. Fitness is generally based on the objective function value although 

fitness measurement can also take into account the feasibility of the offspring. Somewhat 

uncommon fitness measures based on the objective function are provided in [104]. 

Since practically all previous studies have used offspring fitness as the measurement of 

choice, event measurement F is assumed to be equivalent to the offspring fitness 

throughout this thesis. Section 3.2 is devoted to a new type of event measurement which is 

not based on standard measures of fitness. 
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3.1.4.5 Interpretation 

The interpretation of search operator events involves defining an event measurement F 

within a given context. As previously mentioned, this is then used to calculate the operator 

reward R as defined in (3-4). It should also be mentioned that the interpretations methods, 

as described below, assume the problem being solved is a Maximization problem. 

3, L 4.5.1 Parent Context 

One common approach to interpreting a fitness measurement is to do so within the context 

of its parents. For instance, in // the interpretation of the offspring measurement simply 

indicates (with a binary variable) whether the offspring was superior to one of its parents. 

Here it is assumed that the best parent is always chosen for comparison. Another option is 

to measure the magnitude of improvement between an offspring and its parent as seen in I2. 

h = 
^ V ^Offspring ^ ^Parent 

0 else 

~ ^Offspring ^Parent 

h = - ) (3-7) 

The interpretation Is equals h if I2 >0 but otherwise is set to 0. The interpretation I3 was 

first defined in [159] and is described in [160], as a combination of the probability of 

improvement and the expectation of improvement. 

3,1,4,5,2 Population Context 

It is also common to consider a measurement within the context of an individual's 

population. This is seen for example in I4, which is an interpretation similar to /; except the 

context being considered is the median population fitness FMedian instead of the parent 

fitness. 

1 V ^Offspring > ^Median 
0 else 
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Also similar to h , interpretation I5 considers the size of measurement improvement 

compared to the best individual in the population Fgest- However I5 also scales the 

interpretation to take into account the distribution of measurements. This measurement was 

first introduced in [ 161 ]. 

J ^^Offspring ~ ^Best ) ( 3 - 9 ) 

i,^Best ~ ^Median ) 

Interpretations similar to h have also been considered within a population context. For 

example, in [162], they created which is the same as I3 except that Fparem is replaced with 

Fsest- Also, in [163] they created I? which is the same as I3 except that FParent is replaced 

with the F measurement in the population that represents the percentile Fgoth (i.e. Fgoth 

is the F value that is greater than 90% of other F values in the EA population). 

(3-10) 

/ , = Max{0, - ) (3-11) 

Finally, another common interpretation is to simply rank an offspring's fitness F within the 

EA population of size N as seen in Ig. 

= Z </>{Offspnng, i) ^^ ^^^ 
i=l 

1 ^f ^Offspring > 

0 else 
^{Offspring j ) = 

A number of past studies on the adaptation of search operator probabilities can be defined 
using the adaptive framework that has been laid out in this chapter. Several of these are 
presented in Table 3-1. 
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Table 3-1 Partial list of methods that have been used to adapt search operator probabilities. 
Parameters that are not specified in the method are listed as (-), parameters that are not applicable are 
listed as (*) , and parameters that were varied in experiments are listed as the range of values tested. 
Parameter a in column two is the memory parameter given in (3-1), fi in column three is a parameter 
specific to the adaptive pursuit strategy and is defined by (3-3), T in column four is the adaptation cycle 
length which defines the number of generations between the updating of search operator probabilities, 
PMin in column five is the lower bound on the allowed range of probability values, the "Event 
Measurement" in column six is described in Section 3.1.4.4, the "Interpretation" in column seven is the 
interpretation of event measurements as described in Section 3.1.4.5, and Nops in column eight is the 
number of search operators being adapted. The ETV event measurement and Outlier interpretation in 
the bottom two rows of the table are new event measurement and interpretation methods (resp.) 
proposed in this thesis and are described in Sections 3.2.2 and 3.2.4. "His. Credit" refers to Historical 
Credit Assignment which is described below in Section 3.1.4.6. 

Reference a T PMIN Event 
Measurement 

Interpretation N 

[1581 0.8 0.8 1 0.1 - - -

[1641 * 1 His. Credit 
[1601, [1491 0.3 * 4 0.1 F h 5 
[1621 0.001-0.5 * 1 0 F le 2 
[1651 * * 100/N 0.01 His. Credit I4 3 
[1631 0.001-0.1 * 1 - F, His. Credit 4 / 7 5 
[1041 0.5 * 20 0.02 F Is, Outlier 10 
[1031 0.5 * 20 0.02 F,ETV h. Outlier 10 

3.1.4.6 other Approaches 

Historical Credit Assignment: An interesting alternative for defining operator rewards 
based on a principle of historical credit assignment is presented in [146] and also used in 
[164], [165]. In this adaptive method, each individual stores a search operator tree as 
shown in Figure 3-2. The operator tree records which search operators were used to create 
the ancestors of each individual. When a search operator event occurs, credit for the event 
is assigned backward to all search operators in the operator tree with the initial credit 
defined by U. To account for the diminished importance of past events, the actual credit a 
search operator receives is adjusted to be * U where L is the path length between the 
current event and the search operator receiving credit in the operator tree. The parameter y 
controls how quickly credit decays with distance in the operator tree. 
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Cr Cr ^ Cr Mu 

\ / \ / 
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\ / 
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\ / 

Cr Mu Cr 

Mu Cr 

Cr 

Figure 3-2 Operator tree for an individual where only crossover (Cr) and mutation (Mu) events occur. The root 
node in the tree, Cr, is the search operator that was used to generate the individual that is storing the operator tree. 

Although this approach does not fit precisely within the "event measurement/ 

interpretation" adaptive framework used in this thesis, it represents the only method where 

events are measured based on the success of future offspring making this method quite 

unique. Interestingly enough, this method has a number of similarities to the new adaptive 

methods presented in the next section. It is important to emphasize however that the 

adaptive methods derived in this chapter were developed independently from the approach 

presented in [146]. Also, despite the similarities, there are a number of important 

differences in the approaches as will be seen as the new methods are introduced. 

3.2 Measuring Population Dynamics for Adaptive Control 

The following section presents a new type of event measurement that is notably distinct 

from the standard objective function value. Section 3.2.1 begins by clarifying why 

objective function values are a common form of event measurement used for driving 

parameter adaptation (and more generally used for guiding an optimization search process). 

Section 3.2.1 also provides some alternatives to fitness-based search including a newly 

proposed concept called Empirical Search Bias. The new event measurement is presented 

as an example of Empirical Search Bias in Section 3.2.2. Based on an analysis of the new 

measurement in Section 3.2.3, a new interpretation method is also developed which is 

presented in Section 3.2.4. The concepts of event measurement and measurement 

interpretation follow from the review in the last section and the framework outlined in 

Section 3.1.4. 
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3.2.1 Why is Objective Function a Standard measure for fitness? 

As previously mentioned, adaptive methods typically use a measure of fitness based on an 

individual's objective function value in order to assess the merits of different search 

behaviors. To understand why objective function values are universally used as indicators 

of fitness requires an understanding of the assumptions implicit in any search process. The 

most important of these assumptions is referred to in this thesis as the Hill-Climbing 

Assumption. 

3.2.1.1 The Hill-Climbing Assumption 

In order to search for an optimal solution to a problem, it is necessary to make assumptions 

about the fitness landscape of the problem being solved. One of the most common and 

successfully applied assumptions is that a solution's objective function value (Fitness) can 

approximate a solution's usefulness in searching for more fit solutions. Following this to 

its logical conclusion, this implies highly fit solutions will ultimately be useful in finding 

the optimal solution.^ This also implies that a solution's reproductive worth (i.e. usefulness 

as a point to search from) and the solution objective function value are roughly equivalent 

measures. For unimodal landscapes, this assumption is often sufficient for guaranteeing an 

optimal solution will be found consistently and in a reasonable amount of time. However, 

for multimodal landscapes, the Hill-Climbing Assumption can fail to produce reliable or 

acceptable results.^ 

3.2.1.2 Search Bias Assumption 

An alternative approach is to look at solving the inverse problem which is that of 

optimizing search bias. For clarity, this will be called optimization based on the Search 

Bias Assumption. Here the goal is to find solutions and search mechanisms that are most 

Similar arguments can also be applied to the V̂  and 2 derivatives of the objective function. 

^ In EA, most selection schemes involve relaxation of the Hill-Climbing Assumption. This involves treating 
the Hill-Climbing Assumption as being true in the average sense but not strictly true (i.e. a probability of it 
being true). 
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likely to reach the optimal solution reliably and in a small number of steps. Instead of 

assigning credit to a highly fit solution, we look to assign credit to solutions that participate 

in finding high fitness solutions. The underlying assumption made here is that a solution 

that was helpful in finding good solutions has a chance of being helpful in finding even 

better solutions. Furthermore, we treat this assumption as if it can be successfully applied 

throughout the fitness landscape all the way up to the globally optimal solution. One 

obvious result of this approach is that a distinction is drawn between the reproductive value 

and the objective function value of a solution which makes this markedly distinct from 

optimization under the Hill-Climbing Assumption. The Search Bias Assumption is difficult 

to implement in practice although some options for doing so are proposed in [103]. 

3.2.1.3 Empirical Bias 

The Hill-Climbing Assumption and the Search Bias Assumption represent opposite ends of 

a spectrum of possible bias for driving an optimization search process. On the one hand, 

the Hill-Climbing Assumption relies solely on the current states of the system in order to 

guide future search behaviors while the Search Bias Assumption places emphasis entirely 

on the initial conditions. In between is a realm where an intermediate reliance on history or 

search experience occurs (i.e. where history/experience partially guides the search process). 

This third option is referred to in this thesis as Empirical Bias and a proposal for 

implementing Empirical Bias is provided in the following sections. 

For the implementation considered, the core of the EA design remains unchanged so that 

the overall search process is still driven by the Hill-Climbing Assumption. However, 

search operator usage rates are driven by empirical evidence of offspring importance as 

opposed to being driven by the fitness of these offspring. 

For a population-based optimization algorithm like EA, an empirical measure of the 

importance of an individual can be obtained by measuring the individual's impact on 

population dynamics. Looking at population dynamics on a small timescale such as a 

single generation, an individual will only impact the population through competition for 

survival and/or competition to reproduce. However, if longer timescales are considered, we 

will find an individual's impact is largely a result of the survival and spread of its offspring. 
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The next section describes a procedure for measuring an individual's impact on population 

dynamics. This new event measurement, combined with a new interpretation method will 

be used to adapt search operator probabilities in the experimental work in this chapter. 

3.2.2 Measuring Impact on Population Dynamics: The Event 

Takeover Value (ETV) 

This section describes the Event Takeover Value (ETV) which is used for measuring an 

individual's impact on population dynamics. Throughout the discussion, the term event is 

used as before to describe the creation of a new individual. To help understand ETV, 

Figure 3-3 shows a directed graph which represents the family tree of an individual's 

lineage. Here different generations are indicated by positioning on the horizontal axis, 

nodes represent individuals created in a particular generation and the parents and offspring 

of an individual are indicated by connections to the left and right (resp.). Starting at the 

root node on the far left of Figure 3-3, one can observe how this individual's genetic 

material is able to spread through the population. At each generation, it is possible to count 

the number of individuals in the population that are historically linked to the root node. 

This can be thought of as an instantaneous measure of the individual's impact on 

population dynamics and is referred to as ETVgen- A more detailed description oiETVgen is 

provided in the caption of Figure 3-3. 
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ETV,eo= 1 

3 4 5 6 
Generation 

Figure 3-3: Visualizing an individual's impact on population dynamics using genealogical graphs. An individual's 
impact for a given generation (horizontal axis) is defined as the number of paths leading from the measured node 
to the current generation. This is referred to as ETVgen and can be calculated for the "Event Measured" in the 
graph above by counting the number of nodes on the dotted vertical line for a given generation. As the population 
moves from one generation to the next, one can see that the number of individuals in the population that are 
descendants of the "Event Measured" will change with each new generation. In other words, the ETVgen value is 
dynamic. To clarify this point, ETVgen values are calculated for the "Event Measured" and are shown at the top of 
the graph. The maximum impact an event has on the population is the maximum ETVgen value that is observed. 
This graphical illustration assumes a generational population updating strategy such that an individual exists in a 
single generation only. This is done to simplify the illustration however other updating strategies could be used in 
which case some nodes would be stretched across multiple generations in the graph. 

Observing Figure 3-3, it appears that a reasonable calculation of an individual's impact on 

population dynamics would be to count the total number of descendants for a given 

individual. This is equivalent to summing up ETVgen for all generations where the 

individual's lineage remains alive. The problem with this measurement is that an 

individual's lineage occasionally is able to spread throughout the entire population so that 

the cumulative ETVgen value increases indefinitely. A useful alternative which is used in 

this thesis is to define ETV as the largest ETVgen value observed. This value naturally has 

an upper bound equal to the population size of the system. For the example given in Figure 

3-3, the ETV value for the "Event Measured" would be ETV=7, which occurs in the sixth 

generation. 
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3.2.2.1 Multiple Parents and Genetic Dominance 

Figure 3-3 shows how an individual can impact population dynamics through the spread of 

its genetic material, however it does not consider the fact that offspring are often created 

from multiple parents. Also, when using multi-parent search operations, offspring tend to 

be genetically biased to be more similar to one parent than the other(s). An accurate 

measure of ETV should therefore account for the possibility of multiple parents as well as 

account for the possibility of dominance by one of the parents. 

As an alternative to assigning a weighted importance to each of the parents, a dominant 

parent is chosen instead so that (for ETV calculation purposes) the offspring is seen as 

having only a single (dominant) parent. By using dominance, it is no longer necessary to 

address the issue of distributing credit among multiple parents meaning that Figure 3-3 is 

still a valid representation of the ETV measurement process. This also helps to simplify 

implementation of the ETV calculation steps as seen later. 

Several ways for selecting the dominant parent have been tested including random 

selection, phenotypic similarity, and genotypic similarity between parents and offspring. In 

preliminary studies (results not shown), random selection resulted in mediocre EA 

performance as well as poor differentiation between search operator probabilities. 

Selecting the parent that was most genetically similar (by Normalized Euclidean Distance) 

to the offspring worked well while selecting the parent that was least genetically similar 

performed even more poorly than random selection. No significant difference in 

performance was observed between using genetic similarity and phenotypic similarity. In 

order to maintain consistency with the ETV measurement definition, genetic dominance is 

used in ETV calculations. 

3.2.2.2 Hitchhiking 

Thus far, the ETV measurement implicitly assumes that an individual's impact on future 

dynamics does not degrade with the passage of time. However the stochastic nature of an 

EA makes this time dependency true and unavoidable. Addressing time dependence in 

credit assignment has previously been done using exponential decay functions in [146], 
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[164], [165], and [103]. Another possible approach is to set a time window beyond which 

an individual's impact on population dynamics can no longer be measured. 

Through careful study of the genealogical branching process, it has been found that certain 

branching structures can indicate exactly when confidence in the ETVgen measurement is 

lost. An example of these conditions is shown in Figure 3-4. Looking at the ancestors (i.e. 

nodes to the left) of the white node, it is noticed that all ancestors have the same ETVgen 

value and that this value is obtained solely due to their historical linkage to an important 

future event. Obtaining credit in this fashion is referred to in this thesis as Genetic 

Hitchhiking. 

This phenomenon actually happens quite often. If an important event occurs, it will likely 

spread quickly throughout much of the population. However, all events prior to the 

important event also spread because they are historically linked. Care must be taken then to 

make sure an event has spread due to its own importance and not the importance of some 

later event. To account for this, ETVgen measurements of hitchhikers are disregarded. 

Current Generation 

Figure 3-4: Genetic Hitchhiking in EA population dynamics. Considering ETVgen measurements based on the 
current generation, one can easily see that all nodes to the left of the white node will have the same ETVgen value 
(i.e. they all have the same number of paths leading to the current population). However, these nodes are assigned 
their ETVgen values only because of a single important descendant (the white node). These linear structures in the 
genealogical branching process are a sign of genetic hitchhiking and can be seen in several different places in the 
graph above (seven genetic hitchhiking occurrences in total). 
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3.2.2.3 ETV Calculation Procedure 

To calculate ETV, a procedure is needed for recording genealogical information. The first 

step is to assign an ID to each event that uniquely identifies the offspring and indicates 

which search operator created it. Historical information in the form of these ID values is 

stored in each individual as an ordered list which represents the direct line of ancestry for 

that individual. An example of these ordered lists and their meaning within a genealogical 

tree is provided in Figure 3-5. When a new offspring is created, it inherits the historical 

records of the genetically dominant parent, and a new ID (representing the offspring) is 

added to the offspring's historical record. 

Parent 1 Parent 2 
History History 

P40 P40 

P33 P36 

P26 P31 

P21 P28 

P23 

Genetic 
Dominance P4a 

Offspring 

History 

P40 

P33 

P26 

P21 

New ID 

New ID 

Figure 3-5: Transfer of Historical Data. Each individual holds historical information in addition to genetic 
information. The historical information represents the direct line of ancestry for an individual. Examples of 
historical data lists are shown above for Parent 1 (/D=P21) and Parent 2 (/Z)=P23) and their meaning is 
demonstrated by the genealogical graph on the right. A new offspring only takes historical information from the 
parent that is genetically most similar (i.e. genetically dominant). In this example, Parent 1 is assumed to be the 
genetically dominant parent. In addition, the offspring creates a new ID to indicate its placement in the 
genealogical tree. 

By going over the historical records that are stored in the individuals in the current 

population and counting the number of times that the ID of an event is observed, the ETVgen 

for that event (and that generation) can be calculated. Given a maximum size Tots for the 

historical records list, an EA population size N, and individual population members M, the 

ETVgen measurement for event "ZD" can be calculated using (3-13). 
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^ f e (3-13) 

i=l 7=1 

'J 

1 if ID = M,iID^) 
0 else 

To check for genetic hitchhiking, the ETVgen value of an event must be compared with one 

of its offspring. If they are equal then the parent's ETVgen value is set to zero. Given two 

events IDi and ID2, genetic hitchhiking can be defined by (3-14). 

IF [ID, = M, [ID^)) AND [iD, = M, )) (3-14) 

AND {ID,) = (ID,)) THEN (ID,) = 0 

The final step in the ETV calculation is to compare each ETVgen value with the archived 

ETV value. If ETVgen is larger than the archived ETV, then the ETV value is updated, 

otherwise the old value is retained. The ETV calculation for an event is completed when an 

event's ETVgen is found to be zero (i.e. a hitchhiker event). 

3.2.2.4 Computational Costs of ETV Calculation 

The computational costs of the ETV calculations are reasonably small if properly 

implemented. These costs come primarily from i) the size of the "historical list" in each 

individual and ii) from the number of events that are being calculated at each generation 

(i.e. the size of the ETV archive). 

Historical List Size: The size of the historical list Tobs establishes the maximum number of 

ancestor events that can be stored in each individual in the population. If Tobs is too small, 

it effectively reduces the amount of time that an ETV can be measured however if Tobs is 

too large, it will negatively impact the computational costs of the procedure. The first step 

to improve computational efficiency was to determine how large Tabs must be in order to 

calculate ETV. This was accomplished by running experiments with EA designs varying 

by population size N (A^=30 to A^=400), selection pressures (binary tournament selection 

and random selection), and population updating (generational and steady state) on a random 

sampling of test functions taken from Table 3-2. Tobs was set to 100, which is large enough 

to ensure ETV calculations are almost always finalized. For each event, the smallest Tobs 

was recorded that would have allowed for the ETV to be calculated. Looking at the 
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cumulative distribution of these values, it was found that 99.9% (±0.04) of all ETV 

calculations complete within The completion time did not appear to be sensitive 

to any of the conditions varied in these experiments. For the 0.1% of ETV calculations that 

do not complete with the measured ETV is expected to be an undervaluation for 

these events. However, from these tests it is clear that the required size of the historical 

lists is quite small {Tobs=2{)) and has little sensitivity to test conditions (including the 

population size). 

Computational Costs from ETV Archive: At each generation, an event's ETV must be 

checked for a larger value and checked for evidence that the ETV calculation has 

completed. As a result, the computational costs will depend on the number of ETV that are 

actively being calculated at a single point in time. 

In order to determine the computational cost from ETV, it was necessary to look at the 

average size of the ETV archive^ as a function of time and as a function of population size. 

First looking at the time dependency, it was found that the ETV archive size always 

converges to a stable value. Focusing on these stable values, the ETV archive size was 

found to equal 11.47V with Â  being the population size.^ 

Also, to help understand ETV computational costs, experiments were run to determine the 

average number of generations needed to complete an ETV calculation. This was found to 

be 4.0 with no sensitivity to population size. From these tests, it was concluded that ETV 

computational costs scale linearly with population size. 

3.2.2.5 Related Research 

Recently, genealogical graphs have also been used to help understand the dynamics in 

Artificial Life systems [166]. However, to the author's knowledge, no previous work on 

genealogical graphs has addressed the issue of genetic dominance in multi-parent 

^ The archive holds the ETV value and ID number for all events held in the historical lists of the population 

^ Relationship between ETV archive size and N determined by linear regression (R^ = 0.999) with five tests 
conducted over the range 20 < Â  < 400. 
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reproduction nor has anyone previously used the concept of genetic hitchhiking when 

assessing the impact of an event in population dynamics. 

3.2.3 ETV Analysis 

3.2.3.1 Fitness as a predictor of ETV 

Considering that ETV measures an individual's impact on population dynamics, it would 

be useful to assess whether an individual's objective function is an accurate predictor of 

ETV. 

Experimental Setup: To test this, EA runs were conducted where fitness-based ranking 

and ETV values are calculated and stored for each individual. To ensure the results were 

not sensitive to experimental conditions, it was necessary to test a variety of EA designs on 

a variety of test functions. A large number of ad hoc experiments have been conducted 

with EA designs varying by selection pressure, population size, and the number of search 

operators. Few noticeable distinctions were observed in these preliminary tests and so the 

results are only presented for the EA design described in Figure 3-6. Several test functions 

have also been considered in preliminary tests with results suggesting the relationship 

between ETV and fitness is sensitive to the fitness landscape, however this sensitively is 

rather low. 

Relationship between ETV and Rank: As expected, the results shown in Figure 3-6 

indicate that almost all individuals with a large impact on population dynamics (i.e. large 

ETV) are caused by individuals of high rank. However, while a trend exists between larger 

ranks and larger ETV, this does not mean that low ranking individuals never have a strong 

impact on population dynamics. Evidence for this is provided in the box plots in Figure 3-6 

where one can see that ETV measurements rarely ever reach ETV > 5 and yet a number of 

low ranking individuals were able to obtain much larger ETV values. 
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Figure 3-6: Box plots of the size of an individual's impact on population dynamics (ETV) as a function of the 
individual's rank within the population where a rank of 1 represents the worst individual and a rank of N 

represents the best individual (based on objective function value). The data set was generated from a series of 
experiments involving a number of test functions listed in Appendix A. The EA used to generate the results was a 
real-coded, pseudo steady state EA design using binary tournament selection (without replacement) and a 
population size of N = 50. Results shown are a random sample of 5000 data points taken from a data set of 
300,000. The box plots have the standard meaning with the bottom line in the box representing the flrst quartile, 
the middle line representing the median, and the upper line representing the third quartile. The symbol ¥lt is used 
to represent outlier data points. 

Sensitivity to fitness landscape: To demonstrate how little the ETV-Rank relationship 

was sensitive to the fitness landscape, Figure 3-7 shows data from a simple unimodal test 

function and a highly deceptive test function. Here it can be seen that the relationship 

between ETV and rank is very similar for these two starkly different fitness landscapes. 

The only important difference comes in the location of extreme ETV outliers (e.g. 

ETV>40). For the deceptive problem (MMDP), the extreme ETV outliers are occasionally 

found in lower ranking individuals while for the simple unimodal test function (Quadratic 

Function), the extreme ETV outliers are more tightly associated with the highest ranked 

individuals. 
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Figure 3-7 Box plots of the size of an individual's impact on population dynamics (ETV) as a function of the 
individual's ranking within the population. Top: Results from running an EA on the Massively Multimodal 
Deceptive Problem (MMDP). Bottom: Results from running an EA on the Quadratic Test Function. Both test 
functions are defined in Appendix A. The EA used to generate the results was a real-coded, pseudo steady state 
EA design using binary tournament selection (without replacement) and a population size of iV = 50. Results 
shown for each graph are a random sample of 5000 data points taken from a data set of approximately 15,000. 
The box plots have the standard meaning with the bottom line in the box representing the first quartile, the middle 
line representing the median, and the upper line representing the third quartile. The symbol * is used to represent 
outlier data points. 

In summary, fitness-based ranking does provide some small indication of an individual's 

chances for impacting future dynamics, however its overall ability to predict future 
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behavior is marginal. In general, fitness rankings have a strong tendency to overvalue the 

actual importance of individuals in future population dynamics. 

3.2.3.2 ETV Distribution 

The results from Figure 3-6 indicate that regardless of rank, very few individuals have a 

large impact on population dynamics. Notice that even for the 20% highest ranked 

individuals (i.e. Box plot with the label Rank^SO), the median ETV value is approximately 

five which is only 10% of the maximum ETV value. In order to better understand EA 

population dynamics, the distribution of ETV measurements is provided in Figure 3-8. The 

linearity of the ETV distribution on the log-log plot indicates the distribution fits a power 

law. 

Figure 3-8 ETV probability distribution from running an EA for 20,000 generations on the 30-D Hyper Ellipsoid 
test function. The EA design has a population size A^=200, steady state population updating, and uses truncation 
selection. The solid line represents a power law with exponent 2.2. 

Importance of ETV Distribution: The existence of a power law ETV distribution (with 

exponent ~ 2) indicates that the large majority of individuals play a negligible role in 

influencing population dynamics whereas a vanishingly small number of individuals 

dominate population dynamics. This also indicates that most of the search is characterized 

by actions of questionable importance but is punctuated by the infrequent occurrence of 
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important new discoveries. The power law ETV distribution has been confirmed for a 

broad range of EA designs which is presented and discussed in Chapter 4. 

This result also has significant implications for how to best interpret the interactions 

between an adaptive system and its environment. For instance, consider the adaptive 

system that is used in this chapter, namely the adaptation of search operator probabilities. 

It is now known that no matter how good a search operator is, most of the times it is used, it 

will have little impact on population dynamics. This is not viewed as an indicator of poor 

operator performance but instead is understood as a reflection of the fundamental dynamics 

of the system. In other words, the majority of small impact interactions between a search 

operator and its environment are viewed as being not informative (effectively neutral 

interactions) whereas the small number of interactions which do have a large impact on 

population dynamics are viewed as being very informative and should be treated as 

valuable indicators of performance. The next section proposes a way to take into account 

these findings. 

3.2.4 Interpreting ETV measurements 

Based on the conclusions from the last section, the goal of this section is to interpret ETV 

data so that only informative, high impact events are able to influence search operator 

probabilities. This is accomplished by treating ETV measurements as being dominated by 

neutral measurements that fit some assumed distribution. Statistical arguments are then 

used to gauge whether an ETV measurement is important based on the extent that the ETV 

is an outlier of the neutral distribution. 

The first step is to determine the properties of the neutral distribution based on the ETV 

measurements gathered during an adaptation cycle. This is accomplished by taking all of 

the ETV measurements (gathered from the previous adaptation cycle) and calculating the 

mean and variance of the sample based on the assumption that neutral measurements 

dominate the data and fit a lognormal distribution. Other distribution assumptions have 

also been tested (e.g. Normal) with fairly similar results. 

For more information on statistical tests, see [167] 
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An ETV is an outlier when it is NOT expected statistically that the sample population 

contains at least one such measurement or any larger measurement. In other words, each 

ETV can be assigned a probability pa that the ETV is an outlier of the sample distribution. 

A quantitative formulation of this definition will now be derived from statistics. Also note 

that for the calculations below, the ETV measurements are first transformed to log ETV so 

that neutral events can be assumed to fit a normal distribution. 

3.2.4.1 Outlier Calculation 

Assuming a normal distribution for the data, individual measurements ETVj are tested 

against the sample mean and one-sided p values, defined as p~ in (3-16), are calculated 

using a z statistic as defined in (3-15). The 5 term in equation (3-15) represents the sample 

standard deviation. This calculated p^ value indicates the probability of observing a 

measurement of size ETVj or greater. Hence, this simple statistical test can be used to 

determine the extent that an ETV value is an outlier. However, one must also account for 

the fact that the number of outliers observed for a given search operator will also depend on 

the number of times that the search operator was used (i.e. the search operator sample size). 

This is relevant because different operators will generally have different operator usage 

probability values and therefore will have different ETV sample sizes. 

If a search operator / has an ETV sample size Mi, the number of measurements a that are 

of size ETVj or greater follows a binomial distribution that is given by (3-17). The 

probability pa of NOT observing a measurement greater than or equal to ETVj after Mi 

observations is therefore the probability that a < \ given by (3-18, which can be calculated 

by the binomial cumulative distribution function. 

ETV^-ju (3-15) 

p ^ = P ( z > Z j ) (3-16) 

a = Bin{M.,p^) (3-17) 

p^ = P{a < 1) (3-18) 



Chapter 3: Adaptation of EA Design 

The final result pa indicates the extent to which an ETV is an outlier that can not be easily 
accounted for by the stated distribution and the number of points sampled. Summing these 
Pa values over all events produced by a search operator indicates the extent that the 
operator can create exceptional offspring that have an unexpectedly large impact on 
population dynamics. 

Measurement interpretation by the Outlier method is defined by (3-19). The reason that the 
Pa value is multiplied by Mi in this equation is to allow this interpretation method to fit 
within the adaptive framework presented in Section 3.1.4. To be clear, this means that an 
operator's reward R is equal to the sum of its pa values (and not the average) when using 
this interpretation method. An average is not used because any sensitivity to the operator 
sample size M has already been accounted for in the statistical arguments above. 

Joiner j e M , (3-19) 

Impact of operator sample sizes: Taking a hypothetical sample of ETV data that has 
been normalized using (3-15), Figure 3-9 illustrates how the calculation o f w i l l interpret 
an ETV measurement for different ETV values and different operator sample sizes. For 
each of the sample sizes in Figure 3-9, the pa calculation places almost no value on any 
measurements found below the sample mean (z = 0). Also notice that for very high 
measurements (z > 3), the pa calculation approaches a value of 1 meaning it has high 
confidence that the measurement is an outlier (i.e. that the event had a large impact on 
population dynamics). Finally, for ETV values that are large but their classification as 
outliers is less certain, the sample size from which the measurement is taken will strongly 
influence the interpretation of the measurement. 
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Figure 3-9: p« calculation curves for sample sizes Mi=5 (—), Mi =10 ( ), and Mj =20 ( ). 

Although the Outlier interpretation method described here may seem overly complicated 

for those unfamiliar with statistical tests, it is really only a procedure for selectively using 

measurement outliers for adaptation. Many of the interpretation methods described in 

Section 3.1.4.5 are simple heuristics for placing emphasis on higher valued measurements 

and so in this way they are similar to the Outlier interpretation method. The difference with 

the present approach is that it actually quantifies the degree to which each event exceeds 

the average (in terms of probability of occurrence), and gives much more weight to "true" 

outliers. 

3.3 Experiments 

3.3.1 Experimental Setup 

This chapter has thus far reviewed a framework for adaptation of search operator 

probabilities in an Evolutionary Algorithm and has presented an approach to adaptation 

based on the ETV measurement and the Outlier interpretation method. This section 

assesses the performance of the new supervisory adaptive method by testing it on a suite of 

artificial test functions and engineering design problems (listed in Table 3-2) and 

comparing these results with a number of adaptive and non-adaptive EA designs. Details 

of the EA designs used in these experiments are described next. 
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Table 3-2 List of test functions used in experiments. Problem definitions, parameter settings, fitness landscape 
characteristics, and problem descriptions (for design problems) are provided in Appendix A. 

Artificial Test Functions Engineering Design Problems 
Bohachevsky's Turbine Power Plant 
Quadratic Welded Beam Design 
Rosenbrock's Valley Tension Compression Spring 
Rastrigin Gear Train Design 
Schwefel 
Griewangk Application-Inspired Problems 
Massively Multimodal Deceptive 
Problem (MMDP) 

Minimum Tardy Task Problem 
(MTTP) 

Watson's Error Correcting Code Problem (ECC) 
Colville's Frequency Modulation 
System of linear equations 
Ackley's Path Function 
Neumaier's Function #2 
30-D Hyper Ellipsoid 

3.3.1.1 Core EA Design 

The EA designs used in these experiments are described below with the core of the EA 

design given by the pseudocode in Figure 3-10. For each generation Gen, N new 

individuals are generated to form the offspring population. Offspring are generated by 

selecting one of the ten search operators given in Table 3-3. The operators are selected 

probabilistically in proportion to the operator probability value. Parents are then selected at 

random from the parent population, with the number of parents depending on the search 

operator used. The offspring is finally created and its objective function value is evaluated. 
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Initialize population 
Evaluate population 
Do 

'Reproduction 
For i=l to N 

select a single search operator (based on probabilities) 
select parents (at random) 
Create offspring 
Evaluate offspring 

Next i 
Gen=Gen+l 
IF (constrained problem) THEN define fitness by Stochastic Ranking 
If Adapt THEN Adapt Operator Probabilities 
'Selection 
For i=l to N 

select two individuals (at random from parents and offspring) 
keep more fit individual 

Next i 
Loop until stopping criteria 

Figure 3-10 Pseudocode of EA design 

Table 3-3: List of search operators used in EA designs. Full descriptions of each search operator are provided in 
Appendix B. 

Search Operators 
Wright's Heuristic Crossover 
Simple Crossover 
Extended Line Crossover 
Uniform Crossover 
BLX-a 
Differential Evolution Operator (DE) 
Swap 
Raise 
Creep 
Single Point Random Mutation 

Selection takes place by combining the parent and offspring populations and then 

repeatedly selecting two individuals at random and removing the worse individual until the 

total population size is reduced to N. The selection procedure is very similar to binary 

tournament selection without replacement. 
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Populations were randomly initialized (with EA experimental replicates using random 

number seeds for blocking^the population size was set to A =̂30, and the stopping criteria 

was set as a maximum of 3000 generations. Thus the final solution from each experiment 

is obtained after 90,000 objective function evaluations. Genes consisted of direct 

representations of the parameters being optimized (i.e. real coding). 

For optimization problems with nonlinear constraints, fitness is determined using the 

stochastic ranking method presented in Chapter 2 and also described in [64]. Previous 

experience with this method has indicated that Stochastic Ranking works well for many 

problems using the parameter settings specified in [64]. 

3.3.1.2 Search Operator Control 

The algorithms tested in these experiments differ only in the settings of the search operator 

probability values. A number of methods for adapting the probability values were tested 

which are described in the pseudocode in Figure 3-11 and in Figure 3-12. 

The standard adaptive procedure is described by the pseudocode in Figure 3-11 and works 

by taking the fitness measurement for each new offspring, interpreting the fitness using one 

of the interpretation formula provided in Section 3.1.4.5, and storing this interpretation with 

others from the same search operator. Every r generations, the stored data is averaged to 

calculate the Reward R, as defined in (3-4), which in turn is used to calculate the Quality Q 

for each operator as defined in (3-1). Finally the operator probability value P is calculated 

using either the probability matching strategy defined in (3-2) or the adaptive pursuit 

strategy defined in (3-3). 

Blocking is a method for designing experiments in order to reduce the variability of results arising from 
some unimportant factor. For these experiments, the unimportant factor is the sensitivity of EA performance 
to the initial conditions of the population. In this case, blocking occurs by using the same set of random 
number seeds for tests on each EA design. More information on blocking can be found in chapter five of 
[167]. 
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For each offspring 
i = offspring's search operator 
Calculate F (defined in Section 3.1.4.4) 
Calculate I (defined in Section 3.1.4.5) 
M, = Mi+l 
larchive (i, Mi)= I 

Next offspring 
IF Gen modr^O THEN 

t=t+l 
For each operator i 

Calculate R (defined in Section 3.1.4.3) 
Calculate Q (defined in Section 3.1.4.1) 
Calculate P (defined in Section 3.1.4.2) 

Next i 
END IF 

Figure 3-11 Pseudocode for standard search operator probability adaptation 

The order of calculation steps changes slightly when using ETV in place of the fitness 

measurement and so a separate pseudocode is provided in Figure 3-12. The change to the 

pseudocode is due to the fact that the ETV measurement of an offspring can take several 

generations to calculate. More information on the ETV calculation steps is provided in 

Section 3.2.2.3. When the ETV measurement is used, it is interpreted using either the 

Outlier interpretation method described in Section 3.2.4.1 or no interpretation is used, in 

which case the interpretation I is set equal to ETV. 
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Calculate ETV 
If Gen modT=0 Then 

t=t+l 
For each completed ETV 

i = ETV's search operator 
F = ETV 
Calculate I '(Options: loutiier or I=ETV) 
Mi = M,+l 
larchive ( i , M i ) = I 

Next ETV 
For each operator i 

Calculate R (defined in Section 3.1.4.3) 
Calculate Q (defined in Section 3.1.4.1) 
Calculate P (defined in Section 3.1.4.2) 
Mi = 0 

Next i 
End If 

Figure 3-12 Pseudocode for search operator probability adaptation using ETV. ETV is defined in Section 3.2.2 
and loutuer is defined in Section 3.2.4. 

The parameter settings and other design details of the adaptive methods tested in these 

experiments are provided in Table 3-4. The adaptive methods chosen were done so in an 

attempt to sample a number of the design options described in the background material 

(Section 3.1.4) including measurement interpretations which use the parent context, the 

population context, and a standard ranking interpretation (see Section 3.1.4.5). Also 

included are several adaptive methods that use the adaptive pursuit strategy and the 

probability matching strategy for adjusting search operator probabilities (see Section 

3.1.4.2). 
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Table 3-4 Details of the adaptive methods used for adapting search operator probabilities are listed. Column one 
provides the label used to refer to each adaptive method. The second column indicates whether the adaptive 
method uses the adaptive pursuit strategy (Y) or the probability matching strategy {N). The measurement of an 
event is given in column three as either the fitness (F) or the Event Takeover Value (ETV). The interpretation of 
event measurements is either one of those listed in Section 3.1.4.5 or the Outlier method of Section 3.2.4.1. For the 
"ETV" adaptive method, the interpretation is equivalent to the ETV value. Each adaptive method has the task of 
setting the operator probabilities for the 10 search operators listed in Table 3-3. Each adaptive method uses 
parameter settings a = 0.8, /V«=0.02 and r =10. The adaptive pursuit strategy also has p = 0.8. No attempt was 
made to tune these parameters and the values were chosen largely to maintain consistency with previous research 
in this topic. Preliminary testing indicated that the results are not strongly sensitive to the setting of a and r. 

Adaptive EA Adaptive Event Measurement 
design name Pursuit (Y/N) Measurement Interpretation 
I(median)-Pursuit Y F U 
I(parent)-Pursuit Y F h 
I(rank)-Pursuit Y F Is 
I(median) N F U 
I(parent) N F h 
I(rank) N F h 
ETV-Outlier N ETV Outlier 
ETV N ETV ETV 

Two EA designs which do not adapt search operator probabilities are also considered. The 

first, referred to as Static-0ps2, only uses uniform crossover with probability 0.98 and 

single point mutation with probability 0.02. All other search operators have probability 

values of zero. The second design, Static-Ops 10, uses all ten search operators listed in 

Table 3-3 with equal probability {P = 0.1). 

3.3.2 Results and Discussion 

3.3.2.1 General Performance Statistics 

This section attempts to draw general conclusions about the performance of the adaptive 

EA designs tested in these experiments. The first statistic in column two of Table 3-5 states 

the percentage of problems that an EA was found to be the best algorithm out of those 

tested. The second statistic in the third column states the percentage of problems where an 

EA found the best solution in at least one its runs. These two statistics evaluate final 

algorithm performance, however it is also useful to make statements about performance at 

other timescales. To address this. Figure 3-13 presents general algorithm performance as a 

function of time. 



Chapter 3: Adaptation of EA Design 

Table 3-5 Overall performance statistics for each of the adaptive and non-adaptive EA designs. Column two 
measures the percentage of problems where an EA design was the best EA design (comparisons based on median 
objective function value). Column three measures the percentage of problems where an EA design was able to find 
the best solution at least one time. The best solution is deflned as the best found in these experiments and is not 
necessarily the global optimal solution. 

EA Design % of problems where EA EA Design 
was best design found best 

I(median)-Pursuit 10.4% 40% 
I(parent)-Pursuit 2.9% 35% 
I(rank)-Pursuit 7.9% 40% 
I(median) 4.5% 55% 
I(parent) 12.9% 45% 
I(rank) 9.5% 45% 
ETV-Outlier 27.0% 90% 
ETV 15.4% 35% 
Static-0ps2 3.0% 15% 
Static-Ops 10 6.6% 45% 

Based on these general performance statistics, some important conclusions can be drawn. 

First, it is clear that the two operator EA design with static search operator probabilities 

(Static-0ps2) performs very poorly on almost every test function. This is a significant 

conclusion since the two operator non-adaptive EA is by far the most commonly used EA 

design. By simply including more operators without even tuning (or adapting) the 

probability parameters, it is found that substantial performance improvements occur. 

Adding adaptive mechanisms for tuning the probability parameters provides significant 

performance improvements although the best adaptive method is problem specific. It is 

important to notice that while as a class, adaptive methods were more than twice as likely 

to be the best design for a given problem (compared to the non-adaptive EA designs), no 

single adaptive method was strongly favored over all others. However, it is still somewhat 

impressive that the ETV-Outlier adaptive method is found to be the best design on 27% of 

the test functions while the average for all other adaptive methods was 9.1%. It is also 

worth pointing out that the next best adaptive method, ETV, was the best design only 

15.4% of the time. 

If one is more interested in an algorithm's ability to find good solutions over multiple runs, 

then much stronger conclusions can be made from these results. From column three of 

Table 3-5, one can see that the ETV-Outlier method is able to find a best solution in 18 of 
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the 20 problems tested while the second best algorithm, I(median), only finds a best 

solution 55% of the time. 

Finally, if one is concerned with performance at different time scales, it is also clear that the 

ETV-Outlier adaptive method exhibits strong performance throughout the 3000 generations 

tested and that the non-adaptive method, Static-0ps2, exhibits poor performance 

throughout the 3000 generations tested. It is also interesting to note in Figure 3-13 that two 

of the three adaptive methods employing the adaptive pursuit strategy are no better (on 

average) than the non-adaptive EA design, Static-Ops 10. 
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Figure 3-13 General algorithm performance for both adaptive and non-adaptive EA designs shown as a function 
of the number of generations (Gen) of evolution. In order to aggregate performance data from different test 
functions, it was necessary to deal with differences in fitness scaling. This was addressed by using the following 
ranking procedure. Each algorithm is run 20 times on each test function listed in Table 3-2. At a given generation, 
every EA run is ranked among all runs conducted on that test function (with a higher ranking being better). The 
median rank of each EA design is then calculated for each test function. Finally, these median ranks are averaged 
over all test functions and plotted against the number of generations (Gen). 

More detailed performance results for individual test functions are broken down into three 

parts. In Section 3.3.2.2, the results from a selected set of artificial test functions are 

analyzed in detail with the goal of understanding the relationship between search operator 

probability profiles and algorithm performance. In Section 3.3.2.3, performance on the 

remaining artificial test functions is presented and briefly described. Finally, Section 

3.3.2.4 looks at algorithm performance on a selected set of engineering design problems. 
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3.3.2.2 Operator Probability Profile Analysis 

The optimal features of a search operator probability profile are generally not known, 

however it is possible to venture a few educated guesses as to what such a profile might 

look like. First, the adaptive method should recognize those search operators which are not 

at all effective as a means of searching the fitness landscape. For those operators, it is 

desirable to keep their probability values very close to Pmin (i e. the smallest allowed value). 

Although it is unknown which operators are suited for a particular problem, it is believed 

that the range of search operators used in these experiments (listed in Table 3-3) is broad 

enough so that at least one or more operators are not suited for each problem. 

Also, as evolution proceeds, one can expect that the ruggedness and other fitness landscape 

characteristics will change as the population occupies different regions of parameter space. 

Hence one would expect that, on some problems, an adaptive method should modify which 

search operators it prefers as it adapts to changes in the environment. For some artificial 

test functions, the fitness landscape is fairly well understood and this knowledge is used in 

the following section to assess each of the adaptive methods. 

The Rosenbrock, Schwefel, Griewangk, and Ackley test functions have been selected for 

this analysis. Search operator probability profiles are taken from the same experiments 

used to generate the performance results. The probability values that are shown for each 

search operator represent the median value from 20 experimental replicates. 

3,3,2.2.1 Rosenbrock Test Function 

The Rosenbrock test function is a smooth unimodal test function with the global optimum 

residing inside a long and narrow parabolic shaped valley as seen in Figure 3-14. Since the 

landscape is smooth and unimodal, finding the valley is trivial, however the curvature of 

the valley makes convergence to the global optimum slow and difficult. In most runs the 

population tends to gather along the bottom of the valley then follow it towards the bottom. 

Search operators which exhibit hill climbing behaviors are expected to be more effective in 

this fitness landscape since the problem is unimodal. The extended-line operator, 

differential evolution, and Wright's heuristic crossover all have hill climbing characteristics 

(similar to directed search) so one would suspect these to be favored over the other 
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operators. Gene swapping operators like single point crossover, uniform crossover, and 

swap are not expected to perform well. 

variable 2 0.5 0 .5 variable 1 v»ri<ibie2 0.5 0 5 variaWe 1 

variable 1 vaiiabte 1 

Figure 3-14 Rosenbrock fitness landscape shown in a two dimensional parameter space. The two bottom graphs 
are shown for variable 1 and variable 2 varying over the entire parameter range [-2,2]. Graphs on the top focus on 
the parameter region containing the global optimum. The two graphs on the left show a restricted range of 
objective function values (vertical axis) to help in visualizing the fitness landscape. Images were kindly provided 
by Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images 
can also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637. 

For many of the adaptive methods presented in the figures below, Wright's heuristic 

crossover and extended line crossover are strongly favored over other search operators. 

These operators act as interpolation and extrapolation search actions (resp.) which are 

biased towards the more fit parent making them quite effective on smooth landscapes like 

Rosenbrock. It is also noticed that the differential evolution operator and BLX are also 

favored, although to a lesser extent. 

For the adaptive methods I(rank) and ETV, there is very little difference between search 

operator probabilities. These are also the two worst adaptive methods for this problem as 
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seen in Figure 3-15. On the other hand, I(median) and ETV-Outlier find the greatest 
differences between search operator probabilities. These are also two of the three best 
adaptive methods for this problem. These results taken together (particularly methods ETV 
and ETV-Outlier) indicate that poor measurement interpretations can prevent adaptive 
methods from making important distinctions between operators. 

It is also worth noting that there exists a form of symmetry in the Rosenbrock fitness 
landscape which causes the environment to be approximately stationary during most of 
evolution. As a consequence, one would expect the same search operators to be 
consistently preferred throughout the run. It is noticed however that for two of the three 
adaptive methods employing the adaptive pursuit strategy, very little consistency is present 
in the selection of search operators and in fact the operator profiles appear quite chaotic. 
This behavior is a general characteristic of the adaptive pursuit strategy which is repeatedly 
seen in the other test functions analyzed in this section. These two methods also seem to 
suffer in performance compared with their less chaotic cousin, I(median)-pursuit, as seen in 
Figure 3-15. 

Rosenbrock 
0.01 

1E-05 
1E-08 

1E-11 

1E-14 
1E-17 
1E-20 

1E-23 
1E-26 

1E-29 
1E-32 
1E-35 

"5(3D - -190&« - 1500 , ^OQO, . 2 ^ . _ 3_000 
-

^ — 
— - - — I 

\ - -

Gen 

- I(median)-Pursuit 

- I(parent)-Pursuit 

l(rank)-Pursuit 

- I(median) 

- I(parent) 

- I(rank) 

- ETV-Outlier 

-ETV 

- Static-0ps2 

Static-Ops 10 

Figure 3-15 Performance of adaptive and non-adaptive EA designs on the Rosenbrock test function. The global 
optimal solution is F=0. The optimal F value can not be shown due to log scaling on the F axis so performance 
profiles are seen to terminate when the global optima is reached. 
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Figure 3-16 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(median), I(parent)-
Pursuit, and I(parent) on the Rosenbrock test function. Probability values are shown on a logarithmic scale over 
the first 2000 generations of evolution. 
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Figure 3-17 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and 
ETV on the Rosenbrock test function. Probability values are shown on a logarithmic scale over the first 2000 
generations of evolution. 

3,3.2.2,2 Schwefel Test Function 

The Schwefel test function has a multimodal fitness landscape as seen in Figure 3-18. 

Local optima are distributed throughout parameter space with many containing fitness 

values that are similar to the global optima making the problem challenging. 
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Figure 3-18 Schwefel fitness landscape shown in two dimensions of parameter space. The landscape is shown for 
variable 1 and variable 2 varying over different parameter ranges. The entire range is shown in the bottom graph 
with each parameter varying over [-500,500]. The vertical axis shows the objective function value (minimization) 
with the global optimal solution located at the origin of parameter space. Images were kindly provided by 
Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can 
also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637. 

For the adaptive methods that can make clear distinctions between search operators, it 

appears that two general trends occur. In the first trend, which is observed in I(median), 

I(parent) and I(rank), it is found that the creep operator is consistently preferred throughout 

the span of evolution. These methods also demonstrate poor performance on this test 

function. 
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The second general trend is seen in I(rank)-pursuit, ETV-Outlier and to a lesser extent in 

I(median)-pursuit. For these methods, the creep operator is strongly favored initially but in 

the later stages of evolution, operators with hill climbing characteristics (Wright's heuristic 

crossover, extended line crossover, differential evolution) are found to be strongly favored. 

This behavior is most clearly visible in the search operator probability profile for the ETV-

Outlier adaptive method. The three adaptive methods that exhibit this second trend in 

behavior also have the best performance as seen in Figure 3-26. 
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Figure 3-19 Performance of adaptive and non-adaptive EA designs on the Schwefel test function. The global 
optimal solution is at F=0. 
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Figure 3-20 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on the Schwefel test function. Probability values are shown on a logarithmic scale over the 
first 2000 generations of evolution. 
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Figure 3-21 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and 
ETV on the Schwefel test function. Probability values are shown on a logarithmic scale over the first 2000 
generations of evolution. 

3.3.2.2 J Griewangk Test Function 

From Figure 3-22a, one can see that the fitness landscape for the Griewangk test function is 

smooth at large parameter scales. With the initial EA population randomly distributed 

throughout parameter space, it is expected that interpolative actions would be particularly 

useful in the early stages of evolution. However, as the population converges to a more 

localized region of parameter space, the landscape becomes very rugged as evidenced by 

the peaks in Figure 3-22b. Under these conditions, less exploitive operators are expected to 

be useful such as uniform crossover and BLX. Finally, when the population eventually 
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converges to a single peak like one of those shown in Figure 3-22c, the landscape again 

becomes smooth so that highly exploitive operators are expected to again be preferred. 

veM'table 2 var iab te 1 

Figure 3-22 Griewangk fitness landscape shown in two dimensions of parameter space, a) The landscape is shown 
for variable 1 and variable 2 varying over their complete range [-500,500]. b) The landscape is shown for variable 
1 and variable 2 varying over the range [-50,50]. c) The landscape is shown for variable 1 and variable 2 varying 
over the range [-8,8]. The vertical axis shows the objective function value (minimization) with the global optimal 
solution located at the origin of parameter space. Images were kindly provided by Hartmut Pohlheim and were 
generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can also be found at 
http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637. 

As anticipated, many of the adaptive methods initially prefer Wright's heuristic crossover 

which indicates an ability to exploit global landscape features (This is most notably seen in 

the ETV-Outlier method). However, most adaptive methods are not able to distinguish 

between search operators throughout the rest of the run. But notice in Figure 3-23 that 

most adaptive methods stop improving within the first 500 generations meaning that 

operator adaptation was only significant to performance during this initial phase of 

evolution. 

Although speculative, it is possible that the ETV-Outlier adaptive method was best able to 

initially exploit global landscape characteristics but that this also helped to expedite 

population convergence and ultimately was detrimental to final performance of the 
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algorithm. Considering that adaptation can only take into account performance data over 

short time scales, one might suspect that for some problems, an effective adaptive 

mechanism can actually impair algorithm performance. For the Griewangk test function, 

some of the least adaptive methods (e.g. Static-Ops 10, I(rank), ETV) also have the best 

performance which seems to support this claim. 
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Figure 3-23 Performance of adaptive and non-adaptive EA designs on the Griewangk test function. The global 
optimal solution is at F=0. 
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Figure 3-24 Search operator probability profiles for adaptive methods I(median)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on the Griewangk test function. Probability values are shown on a logarithmic scale over 
the first 2000 generations of evolution. 
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Figure 3-25 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and 
ETV on the Griewangk test function. Probability values are shown on a logarithmic scale over the first 2000 
generations of evolution. 

3J,2,2,4 Ackley's Path Function 

With Ackley's path function, the fitness landscapes is smooth on a global scale as seen in 

Figure 3-26a, however once within the region containing the global optima, the landscape 

becomes increasingly rugged as seen in Figure 3-26b. As a result, one might expect some 

exploitive search operators would be initially beneficial, however as the basin of attraction 

for the global optima is discovered, more explorative search operators would then become 

more useful. Also, since a large attractor is located in the center of parameter space, one 



Chapter 3: Adaptation of EA Design 

would expect that an interpolation operator like Wright's heuristic crossover will be 

initially very effective. 

variable 2 variable 1 variable 2 - 2 - 2 variable 1 

Figure 3-26 Ackley's fitness landscape shown in two dimensions of parameter space, a) The landscape is shown 
for variable 1 and variable 2 varying over their complete range [-30,30]. b) The landscape is shown for variable 1 
and variable 2 varying over the range [-2,2]. The vertical axis shows the objective function value (minimization) 
with the global optimal solution located at the origin of parameter space. Images were kindly provided by 
Hartmut Pohlheim and were generated using the GEATbx toolbox in Matlab® [168]. Low resolution images can 
also be found at http://www.geatbx.eom/docu/fcnindex-01.html#P85_2637. 

For the three best adaptive methods shown in Figure 3-27, I(median)-pursuit, I(median), 

ETV-Outlier, and to a lesser extend with I(rank)-pursuit, there appears to be a very brief 

initial phase (20 to 100 generations) where an exploitive operator is preferred (either 

differential evolution or Wright's heuristic crossover). The fact that this period is 

extremely brief is not surprising since all methods reach objective function values of F < 

10 in the first 50 generations which indicates that the population has already converged to 

the parameter region shown in Figure 3-26b. Next, a slightly longer phase (200 to 400 

generations) is observed where more explorative gene swapping operators are preferred. 

Finally, for the last 500 to 700 generations before reaching the global optimal solution, the 

best adaptive methods again prefer highly exploitive search operators (Wright's heuristic 

crossover, extended line crossover, differential evolution). These changes in search 

operator preferences during evolution are believed to accurately reflect changes in the 

environment and are most clearly seen in the adaptive methods I(median) and ETV-Outlier. 
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Figure 3-27 Performance of adaptive and non-adaptive EA designs on Ackley's Path Function. The global optimal 
solution is at F=0. The optimal F value can not be shown due to log scaling on the F axis so performance profiles 
are seen to terminate when the global optima is reached. 
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Figure 3-28 Search operator probability profiles for adaptive methods I(inedian)-Pursuit, I(inedian), I(parent)-
Pursuit, and I(parent) on Ackley's test function. Probability values are shown on a logarithmic scale over the first 
2000 generations of evolution. 
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Figure 3-29 Search operator probability profiles for adaptive methods I(rank)-Pursuit, I(rank), ETV-Outlier, and 
ETV on Ackley's test function. Probability values are shown on a logarithmic scale over the first 2000 generations 
of evolution. 

3.3.2.3 Performance Results on Artif icial Test Functions 

For many of the artificial test functions presented in this section, the ETV-Outlier adaptive 

method is found to perform strongly throughout the 3000 generations considered. 

Performance statistics provided in Table 3-6 also demonstrate superior final performance 

from the ETV-Outlier method for this set of test functions. Even for problems where the 

method does not clearly dominate, it generally was able to perform at least as well as the 

other EA designs. It is interesting to note that ETV-Outlier shows its worst performance on 
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the most deceptive problem, MMDP. Performance graphs are presented roughly in the 

order of best to worst performance for the ETV-Outlier method. 

The non-adaptive EA with two search operators, Static-0ps2, is often found to be 

significantly worse than all other algorithms. Also, it is interesting to note that the adaptive 

method ETV has nearly identical performance to Static-Ops 10 for every problem. This 

result should not be surprising considering that ETV (without Outlier interpretation) has 

little ability to distinguish between search operators, as was indicated in the previous 

section. 

Table 3-6 Overall performance statistics for each of the adaptive and non-adaptive EA designs run on the artificial 
test functions. Column two measures the percentage of problems where an EA design was the best EA design 
(comparisons based on median objective function value). Column three measures the percentage of problems 
where an EA design was able to find the best solution at least one time. The best solution is defined as the best 
found in these experiments and is not necessarily the global optimal solution. Results for the non-adaptive EA 
designs are shown in the bottom two rows while the rows labeled as ETV and ETV-Outlier show results for the 
new adaptive methods developed in this thesis. 

EA Design % of problems where EA EA Design 
was best design found best 

I(median)-Pursuit 16.7% 46.2% 
I(parent)-Pursuit 2.6% 38.5% 
I(rank)-Pursuit 12.8% 38.5% 
I(median) 15.4% 61.5% 
I(parent) 0.0% 38.5% 
I(rank) 7.7% 46.2% 
ETV-Outlier 29.5% 92.3% 
ETV 7.7% 30.8% 
Static-0ps2 0.0% 7.7% 
Static-Ops 10 7.7% 38.5% 
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Figure 3-30 Performance of adaptive and non-adaptive EA designs on the System of Linear Equations test 
function. The global optimal solution is at F=0. 

Quadratic 

1E-50 
1E-74 
1E-98 

1E-122 
F 1E-146 

1E-170 
1E-194 
1E-218 
1E-242 
1E-266 
1E-290 

- g a s i s s s x " " " ' r r r T " " r " " i 
1E-26 — ^ Z ^ m Z ¿ o f i tfOCgli i i ^ ^ O g ^ ¿^3^0 

• r 

Gen 

- I(median)-Pursuit 

- I(parent)-Pursuit 

l(rank)-Pursuit 

- I(median) 

- I(parent) 

- I(rank) 

- ETV-Outlier 

-ETV 

- Static-0ps2 

Static-Ops 10 

Figure 3-31 Performance of adaptive and non-adaptive EA designs on the Quadratic test function. The global 
optimal solution is at F=0. 
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Figure 3-32 Performance of adaptive and non-adaptive EA designs on Watson's test function. The global optimal 
solution is at F=2.288E-3. 
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Figure 3-33 Performance of adaptive and non-adaptive EA designs on Neumaier's function #2. The global optimal 
solution is unknown (see Appendix A). 
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Figure 3-34 Performance of adaptive and non-adaptive EA designs on Colville's test function. The global optimal 
solution is at F=0. 
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Figure 3-35 Performance of adaptive and non-adaptive EA designs on Bohachevsky's test function. The global 
optimal solution is at F=0. 
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Figure 3-36 Performance of adaptive and non-adaptive EA designs on the Rastrigin test function. The global 
optimal solution is at F=0. 
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Figure 3-37 Performance of adaptive and non-adaptive EA designs on the 30-D Hyper Ellipsoid test function. The 
global optimal solution is at F=0. 
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Figure 3-38 Performance of adaptive and non-adaptive EA designs on the Massively Multimodal Deceptive 
Problem (MMDP). The global optimal solution is at F=0. 

3.3.2.4 Performance Results on Engineering Design Problems 

Experiments are also conducted on a number of engineering design problems (and other 

application-inspired test functions) in order to gauge the effectiveness of the adaptive 

methods on practical optimization problems. Each of these problems are described in detail 

in Appendix A. 

Table 3-7 Overall performance statistics for each of the adaptive and non-adaptive EA designs run on the 
engineering design problems. Column two measures the percentage of problems where an EA design was the best 
EA design (comparisons based on median objective function value). Column three measures the percentage of 
problems where an EA design was able to find the best solution at least one time. The best solution is defined as 
the best found in these experiments and is not necessarily the global optimal solution. 

EA Design % of problems where EA EA Design 
was best design found best 

I(median)-Pursuit 0.0% 28.6% 
I(parent)-Pursuit 4.8% 28.6% 
I(rank)-Pursuit 0.0% 42.9% 
I(median) 0.0% 42.9% 
I(parent) 33.3% 57.1% 
I(rank) 0.0% 42.9% 
ETV-Outlier 33.3% 85.7% 
ETV 21.4% 42.9% 
Static-0ps2 7.1% 28.6% 
Static-Ops 10 0.0% 57.1% 
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The results from these experiments are noticeably different from results on the artificial test 

functions. Comparing the "best design" column of Table 3-7 and Table 3-6, it is interesting 

to note that three of the four algorithms that perform best on the artificial test functions are 

now the worst algorithms for the engineering problems. On the other hand I(parent), which 

is tied as the worst method in the artificial test functions, is now tied with ETV-Outlier as 

the best method for the engineering problems. In the face of these strong reversals in 

algorithm performance, it is worth noting that ETV-Outlier maintains its status as the best 

algorithm in both sets of test problems. Similar behavior is observed with the performance 

metric in the third column of the same tables, however the performance reversals are not as 

pronounced in this case. 

It is also worth mentioning that the non-adaptive methods faired better on the engineering 

problems, especially in their ability to find the best solution to a problem at least one time 

(i.e. the "found best" metric). In fact, Static-Ops 10 is tied for being the second best 

algorithm for this performance metric. 
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Figure 3-39 Performance of adaptive and non-adaptive EA designs on the Turbine Power Plant Problem. The 
global optimal solution is at F=3.05. 
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Figure 3-40 Performance of adaptive and non-adaptive EA designs on the Welded Beam Design problem. The 
global optimal solution is unknown. 
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Figure 3-41 Performance of adaptive and non-adaptive EA designs on the Tension Compression Spring problem. 
The global optimal solution is unknown. 
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Figure 3-42 Performance of adaptive and non-adaptive EA designs on the Gear Train Design problem. The global 
optimal solution is F=2.70 xlO"'^ 
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Figure 3-43 Performance of adaptive and non-adaptive EA designs on the Minimum Tardy Task Problem 
(MTTP). The global optimal solution is F=0. 
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Figure 3-44 Performance of adaptive and non-adaptive EA designs on the Frequency Modulation problem. The 
global optimal solution is F=0. 
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Figure 3-45 Performance of adaptive and non-adaptive EA designs on the Error Correcting Code (ECC) problem. 
The global optimal solution is F=0. 

3.3.3 Discussion and Conclusions 

A number of important conclusions can be drawn from the results in this chapter which are 

highlighted below and discussed within the context of EC research. 

Keys to Effective Adaptation of Search Operators: Some useful conclusions can be 

drawn about the characteristics of an effective adaptive procedure based on the probability 

profile analysis from Section 3.3.2.2. From this analysis, it is concluded that an effective 

adaptive method is one that 1) is able to select appropriate operators for exploiting the 

features of a given fitness landscape, 2) changes only in response to environmental changes 

and 3) is able to resolve the "right amount" of difference in the search operator usage rates. 

Such a description of an effective adaptive method is not surprising however what is 

surprising is that very few of the adaptive methods were able to exhibit these behaviors. 

For example, adaptive methods using the adaptive pursuit strategy almost always created 

erratic probability profiles with changes in operator preference that did not reflect changes 

in the environment. Although these methods generally failed at condition 2, they were still 

able (in most cases) to select appropriate operators for traversing the landscape (thereby 

satisfying condition 1). 
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When the ETV adaptive method was used without Outlier interpretation, it was very poor at 

resolving differences between search operators (i.e. it does not satisfy condition 3). This is 

not surprising given the ETV distribution results (e.g. see Figure 3-8) which have indicated 

that the ETV measurement is, on average, very similar for each event. Nor was it 

surprising that for a number of problems, its performance was very similar to that observed 

with Static-Ops 10 (where all search operators are used with equal probability). However, 

when the ETV-Outlier method was used, large differences in probability values were 

resolved between the operators (satisfying condition 1). This adaptive method exhibited 

strong responses to changes in the environment (satisfying condition 2) yet these transitions 

were largely non-existent in many of the other adaptive methods. Finally, the superior 

performance of the ETV-Outlier method provides evidence that it also satisfies condition 3. 

It is argued that the ETV-Outlier method exhibited this set of behaviors because of its 

ability to focus solely on important events when making decisions of which operators to 

prefer. This requires both an accurate measure of an event's importance (provided by 

ETV) and the ability to filter out events that represent neutral interactions between the 

adaptive system and its environment (provided by Outlier interpretation). 

Performance Sensitivity to Test Function and NFL Implications: Algorithm 

performance depended strongly on the set of test functions being considered. Many 

adaptive methods performed well on the first set of problems but were very bad on the 

second set (and vice versa). This did not occur nearly as much with ETV-Outlier which 

was unexpected. This adaptive method performed significantly better than the other 

adaptive and non-adaptive methods, although there were rare instances where this was not 

the case. It has been argued in this chapter that the ETV-Outlier method is an effective 

adaptive procedure which implies that it is able to exploit landscape features for short-term 

performance gains. 

However, it is worth pointing out that short-term performance gains do not guarantee long-

term performance gains for certain fitness landscapes, particularly those with deceptive 

features. Indeed, it is speculated that deceptive landscape features can prevent an otherwise 

effective adaptive method from providing long term benefits to the performance of an 

optimization algorithm. Some evidence of this may actually be seen in the results on the 
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Massively Multimodal Deceptive Problem (MMDP) where the ETV-Outlier method's 
performance is particularly poor. 

In a sense, this suggested tradeoff between short and long-term performance could be 
demonstrating some form of NFL-related limitations that are expected to occur with any 
solver. However, it is also postulated here that the subset of real-world problems, similar to 
the artificial ones selected for these experiments, are actually a biased sampling from the 
space of all possible fitness landscapes and as such will display certain landscape features 
more often than others. For example, the subset of real-world problems is expected to be 
dominated by correlated versus uncorrected and deceptive landscape characteristics [30]. 
Under these assumptions, exploitive adaptive mechanisms such as the ETV-Outlier could 
be expected to work fairly well in many optimization problems as is evidenced to some 
degree in this thesis. On the other hand, a real-world problem's fitness landscape is not 
necessarily defined as being either deceptive or not deceptive. Instead, it is expected to 
have varying degrees of both features, which suggests that's a robust search process should 
be able to maintain high levels of both explorative and exploitive behaviors within a single 
search process. Such behaviors are not explicitly accounted for within the ETV-Outlier 
adaptive method nor has this issue been adequately addressed elsewhere in the adaptive 
literature. 

As previously implied, it is possible that an adaptive method could actually be detrimental 
to a search algorithm within certain contexts. To adequately assess potential shortcomings, 
it is not only necessary to test the adaptive mechanism on a diverse set of fitness landscapes 
but also important to test a diverse range of search operators. By including highly 
exploitive search operators for instance, it is possible to see if exploitive behavior will work 
against the adaptive method (e.g. by encouraging premature convergence within 
multimodal fitness landscapes). This was accounted for in this thesis by creating the highly 
exploitive swap and creep operators which were included in the list of search operators 
used by the adaptive methods within this chapter. A possibly better test of an adaptive 
mechanism's limitations might be to include local search operators which involve a greedy 
and more exploitive multi-step search within a single operator. 

Although the conditions tested in this thesis did not appear to expose particular weaknesses 
in the ETV-Outlier method, this does not mean that this adaptive method can fully address 
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the tradeoff between short and long-term performance in all problems. Ultimately, this 

tradeoff can only be dealt with by using either an iterative search which learns about the 

fitness landscape or possibly by extending the timescale of fitness measurements which are 

used by the adaptive method (thereby making the timescale for short-term performance 

gains not as short). Considering that the ETV measurement itself can take multiple 

generations to calculate (compared to a single function evaluation for other adaptive 

methods) it is possible that this longer measurement time scale is a contributor to ETV's 

exceptional performance. 

Comparing ETV and fitness measurements: The Event Takeover Value or ETV has 

been put forth as a method for measuring an individual's impact on population dynamics. 

Comparisons between ETV and fitness-based ranking measurements have shown that a 

correlation does exist however the scaling and distribution of the measurements is 

dramatically different. Most importantly, it was found that very few individuals have any 

significant impact on population dynamics. This was interpreted to mean that most 

interactions between the adaptive system and its environment are effectively neutral. This 

conclusion fits well with observations of other adaptive systems in nature and it is possible 

that power law scaling (see Figure 3-8) is a general feature of interactions between many 

adaptive systems and their environment. This phenomena may even be the motivating 

force for the repeated emergence of threshold phenomena in biological systems (e.g. in 

gene regulation, neural activation). 

As an alternative to defining an arbitrary threshold, statistical arguments were used in this 

chapter to quantify the importance of interactions between an adaptive system and its 

environment. This eliminated any need for threshold tuning and provided strong 

performance gains in the ETV-Outlier adaptive method. 

ETV adaptation as a generic tool for optimization: There are a few important issues that 

still need to be addressed before the ETV-Outlier adaptive method can be readily 

implemented as a generic add-on tool for multi-search operator metaheuristics. First, 

although the results in this chapter were promising, it is necessary to test the adaptive 

method on additional problems, particularly application-inspired problems. There are many 

EA application domains where a large number of specialized search operators have been 

proposed in the literature (e.g. scheduling problems) and where it is not clear which search 
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operators should be used for which problem instances. These problems would provide an 

ideal environment for testing the performance of an adaptive method in its ability to 

advantageously select and control operator usage. 

There are also some potential drawbacks with the ETV-Outlier method that should be 

pointed out. One possible concern with the ETV-Outlier method is its computational 

efficiency. Although Section 3.2.2.4 indicates that memory costs are actually small and 

that memory and computational costs scale linearly with population size, the method still 

could be deemed to be somewhat computationally costly when used on simple test 

functions (which is where most EC research takes place). It is also worth pointing out that 

the adaptive method is quite complicated in comparison to the elegance of the original GA, 

requiring a substantial degree of record keeping and statistical tests. This does not make it 

difficult to implement per se but could make the algorithm difficult to understand and act as 

a potential deterrent to its use. 

Final Remarks: It is generally understood that individuals in an EA population have a 

usefulness in the overall search process which extends beyond their individual genotype 

and phenotype. However, few if any previous attempts have been made in measuring how 

individuals impact the search process or have considered ways in which this information 

might be used to improve algorithm performance. This chapter attempted to make some 

inroads into this topic using metrics derived from genealogical graphs. It was also pointed 

out that this new ETV measurement involves a new type of search bias assumption that was 

labeled as Empirical Bias and is notably distinct from the standard Hill Climbing 

Assumption. The experimental results provided evidence that the adaptive method ETV-

Outlier has many of the characteristics that are desired in an adaptive procedure and are 

arguably missing in previous methods for adapting EA design parameters. 
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Chapter 4 Large Scale Features of EA Population 
Dynamics 

The previous chapter presented the Event Takeover Value (ETV) as a way to measure an 

individual's impact on EA population dynamics. The ETV is able to approximate an 

individual's impact on population dynamics through an analysis of EA genealogical graphs. 

From preliminary tests in Chapter 3, it was found that the ETV probability distribution fits 

a power law with an exponent of approximately 2. This distribution indicates that a large 

proportion of individuals do not significantly impact EA population dynamics while a small 

minority of individuals dominate population dynamics. 

The aim of this chapter is to gain a better understanding of the population dynamics of 

Evolutionary Algorithms using the ETV measurement derived in Chapter 3. In particular, 

this chapter investigates what experimental conditions can significantly impact the ETV 

distribution. After a broad range of conditions are tested in Section 4.1, it is concluded that 

only i) the population topology and ii) the introduction of completely new (i.e. randomly 

created) individuals can result in significant changes to the ETV distribution. If the EA 

population topology is a fully connected graph or if no new individuals are inserted into the 

population then the ETV distribution is found to be well approximated by a power law. 

However, when these conditions are not met, the ETV displays power law deviations for 

large ETV sizes. From these power law deviations, it is concluded that these EA designs 

are not capable of being dominated by a small number of individuals and hence are able to 

exhibit a higher degree of parallel search behavior. 

Section 4.2 reviews and discusses several studies on the spatial and temporal properties of 

natural evolutionary dynamics which are found to exhibit similarities to the results 

presented in this chapter. Although the actual form of the measurements used to study 

natural evolution is not identical to the ETV measurements used here, these results do 

suggest that power law behavior and scale-invariant properties are prevalent in evolution. 
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Section 4.3 describes the Theory of Self-Organized Criticality and presents the theory as a 

possible explanation for the spatial and temporal patterns observed in EA and natural 

evolution. The chapter is concluded with Section 4.4 which discusses the relevance of 

these results to EA research and provides some motivations for the final chapter of this 

thesis. 

4.1 Analysis of EA dynamics using ETV 

This section studies EA population dynamics using the ETV measurement. Section 4.1.1 

first describes the experimental conditions that are used throughout this chapter. Section 0 

then investigates the experimental conditions that affect the distribution of ETV sizes in EA 

population dynamics. Section 4.1.3 follows with an investigation of the conditions 

affecting the distribution of ETV ages where the age is the total amount of time that an 

individual is able to influence EA population dynamics. 

4.1.1 Experimental Setup 

The experiments presented in this chapter were conducted using a number of artificial test 

problems. Definitions and problem descriptions are provided in Appendix A. A number of 

Evolutionary Algorithm designs have also been used in these experiments as elaborated on 

below. 

4.1.1.1 Panmictic EA designs 

The Panmictic EA design refers to the standard EA design where spatial restrictions are not 

imposed on the population. A high level pseudocode is given below with the parent 

population of size ¡A at generation t defined by P(t). For each new generation, an offspring 

population P'fy of size X is created through variation of the parent population. The parent 

population for the next generation is then selected from P ^(t) and Q, where Q is subset of 

P(t). Q is derived from P(t) by selecting those in the parent population with an age less 

than or equal to K. 

I l l 
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Pseudocode for Panmictic EA designs 
t=0 
Initialize P(t) 
Evaluate P(t) 
Do 

PXt) = Variation(P(t)) 
Evaluate (P^t)) 
P(t+1) = Select(PXt) U Q) 
t=t+l 

Loop until termination criteria 

Population updating: The generational (Gen) EA designs that were tested in these 

experiments used elitism for retaining the best parent and parameter settings ^=NI2,1=N, 

K=\ (K=CO for best individual). The steady state (SS) EA design that was used in these 

experiments actually involves a pseudo steady state population updating strategy with 

parameter settings fi=X=N, K^OO. 

Selection: Selection occurs by either binary tournament selection without replacement 

(Tour), truncation selection (Trun), or random selection (Rand). Random selection is 

implemented in the same fashion as binary tournament selection except the winner of a 

tournament is chosen at random (without regard for fitness of the individuals). 

Search Operators: For each EA design, an offspring is created by using a single search 

operator that is selected at random from the list in Table 4-1. Search operator descriptions 

are provided in Appendix B. 

Crowding: Crowding in Panmictic populations was implemented using Deterministic 

Crowding (DC) which is described in Chapter 2. 

4.1.1.2 Spatially Distributed Populations 

All distributed EA designs that are tested in this chapter involve a cellular Genetic 

Algorithm (cGA) which is described in the pseudocode below. The algorithm starts by 

defining the initial population P on a ring topology with each node connected to exactly 

two others. For a given generation /, each node in the population is subject to standard 

genetic operators. Each node N1 is selected as a parent and a second parent N2 is selected 

among all neighbors within a radius R using linear ranking selection. An offspring is 
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created using the two parents plus a single search operator selected at random from the list 

in Table 4-1. The better fit between the offspring and N1 is then stored in a temporary list 

Temp(7V7) while genetic operators are used on each of the remaining nodes in the 

population. To begin the next generation, the population is updated with the temporary list. 

This process repeats until some stopping criteria is met. 

Pseudocode for cGA 
t=0 
Initialize P(t) (at random) 
Initialize population topology (ring structure) 
Evaluate P(t) 
Do 

For each N1 in P(t) 
Select N1 as first parent 
Select N2 from Neighborhood(Nl,R) 
Select Search Operator (at random) 
Create and evaluate offspring 
Temp(Nl) = Best_of(offspring, Nl) 

NextNl 
t=t+l 
P(t) = Tempo 

Loop until stopping criteria 

Crowding: Distributed EA designs that include crowding procedures are modified so that 

the offspring competes with the parent {Nl or N2) that is most similar in phenotype. 

Table 4-1 Names of the seven search operators used in the cellular GA and Panmictic EA designs are listed below. 
More information on each of the search operators can be found in Appendix B. 

Search Operator Names 
Wright's Heuristic Crossover 
Simple Crossover 
Extended Line Crossover 
Uniform Crossover 
BLX-a 
Differential Operator 
Single Point Random Mutation 
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4.1.2 ETV Size Results 

This section is concerned with determining what experimental conditions can influence the 

ETV distribution. There are many aspects of an EA design that have been modified or 

extended over the years meaning that any attempt at making broad statements about EA 

population dynamics requires a broad range of experimental conditions to be tested. 

Because a large number of experiments were necessary, only selected results are presented 

based on their capacity to illuminate system behavior. Section 4.1.2.1 looks at the impact 

that EA design features have on the ETV distribution while Section 4.1.2.2 investigates the 

impact of the fitness landscape. Section 4.1.2.3 follows up with an investigation of whether 

the ETV distribution is sensitive to the amount of time that evolution is observed. 

4.1.2.1 Impact of EA design 

The first EA design factors tested consisted of selection methods and population updating 

strategies for Panmictic EA designs, with results shown in Figure 4-la and Figure 4-lb. 

Selection pressures varied from very weak (e.g. random selection) to very strong (e.g. 

truncation selection) and the population updating strategy varied from infinite maximum 

life spans (steady state) to single generation life spans (generational). The most remarkable 

conclusion from these results is that the ETV distribution has very little sensitivity to these 

design factors and consistently takes on a power law distribution. Particularly surprising 

was the results using random selection, which has no sensitivity to the fitness landscape of 

the test problem being used. When random selection is used, the ETV distribution appears 

to take on a slightly smaller distribution tail although a power law is still clearly observed. 

Experiments were also conducted to determine the impact of the population size. As seen 

in Figure 4-2a, EA designs which differ only in the value of N have nearly identical ETV 

distributions. The insensitivity to N was also observed for the other EA designs tested in 

Figure 4-la and Figure 4-lb with Â  varying from 50 to 400 (results not shown). 

The results in Figure 4-2 present what was found to be the most important factor impacting 

the ETV distribution. These experiments, which were run using the cellular Genetic 

Algorithm, found that spatial restrictions result in power law deviations for large ETV 

sizes. Furthermore, the extent of the deviation was clearly dependent upon the degree of 
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spatial restrictions in the system. As seen in Figure 4-2b, the use of random selection 

changes the exponent of the power law (that best approximates the data) however power 

law deviations are still present. 
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Figure 4-1 ETV size distributions for a number of panmictic EA designs, a) EA designs with population size 
A^=200, generational population updating (Gen), and selection methods Tournament (Tour), Truncation (Trun) 
and Random (Rand) selection. Solid line represents a power law with exponent 2.5. b) EA designs with 
population size A^=200, steady state (SS) population updating, and selection methods Tournament (Tour), 
Truncation (Trun) and Random (Rand) selection. Solid line represents a power law with exponent 2.3. Results 
from each EA design are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 



Chapter 4: Large Scale Features of EA Population Dynamics 

0.00001 -

0.000001 

ETV 1000 

b) 

0.01 -

> I-

ST 

0.0001 -

0.000001 
1 

• cGA-R1-N200-Rand 
• cGA-R5-N200-Rand 

cGA-R30-N200-Rand 

10 ETV 100 1000 

Figure 4-2 ETV size distributions for a number of spatially distributed EA designs, a) Cellular Genetic Algorithm 
(cGA) designs with population sizes (A^=100, A^=200), and neighborhood radius (/f=l, R=5, /f=30). Solid line 
represents a power law with exponent 2.2. b) Cellular Genetic Algorithm (cGA) designs with random selection 
(Rand), population size (7V=200), and neighborhood radius (i?=l, /?=5, ;?=30). Solid line represents a power law 
with exponent 2.5. Results from each EA design are taken over 20,000 generations of evolution on the 30-D Hyper 
Ellipsoid test function. 

Given that spatial restrictions are so far the only EA design factor significantly influencing 

the ETV distribution, it was decided to consider other mechanisms for restricting 

interactions within an EA population. A common approach for restricting interactions are 

so called crowding methods where offspring are forced to compete with similar individuals 

in the population. The results in Figure 4-3 show that crowding does have a significant 

impact on the ETV distribution, but only for spatially distributed EA designs. For all but 
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the smallest ETV value (ETV=1), the use of crowding decreases the ETV's probability of 

occurrence by roughly an order of magnitude in the cGA. However, for Panmictic EA 

designs, the use of crowding did not appear to have a significant impact on the ETV 

distribution which is demonstrated using Deterministic Crowding (see inset of Figure 4-3). 
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Figure 4-3 ETV distributions shown primarily for spatially distributed EA designs. All EA designs have 
population size A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and the 
neighborhood radius size (/?=1, /f=5, /?=30). Results from using Deterministic Crowding (DC) are also presented 
in the inset. Solid line represents a power law with exponent 2.2. Results from each EA design are taken over 
20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 

All results presented thus far have been taken with evolution occurring on the 30-D Hyper-

Ellipsoid test function. This test function was selected because each of the EA designs 

were able to evolve for long periods of time (achieving 1 million to 10 million events) 

which allowed for greater clarity in the distribution results. The next section addresses the 

impact of the fitness landscape. 

4.1.2.2 Fitness Landscape Dependencies 

The fitness landscape that an EA population evolves on will obviously impact the trajectory 

that the population takes through parameter space. Hence, it came as a surprise to find how 

little the fitness landscape influenced the ETV distribution results. Test functions were 

selected from Appendix A and include unimodal and multimodal functions, linear and 

nonlinear functions, functions with strong and weak epistasis, as well as deceptive and non-

deceptive functions. Results shown in Figure 4-4 and Figure 4-5 demonstrate little 
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sensitivity to the fitness landscape on which evolution occurs. Other Panmictic EA designs 

were also tested with similar results (results not shown). For the distributed EA results, 

some sensitivity to the fitness landscape was observed when strong spatial restrictions were 

present in the EA population (e.g. see Figure 4-5a). However, the general conclusions from 

the previous section remain unchanged; only spatial restrictions in the EA population result 

in significant changes to the ETV distribution. 

Another way to test the influence of the fitness landscape on ETV results is to use a random 

selection pressure as was done in the previous section. The use of random selection in an 

EA design is similar to evolving on a completely flat fitness landscape. The use of 

different search operators is also expected to have an impact that is similar to changing the 

fitness landscape. Some preliminary work has tested the use of different search operators 

(results not shown) and this was found to have a similar effect to varying the test function 

although these results displayed even less sensitivity (possibly due to the range of operators 

used). 
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Figure 4-4 ETV distributions shown for selected EA designs on a range of test functions taken from Append« A. 
Evolution occurred over 2000 generations and results shown are averages taken over 10 runs. To help in viewing 
results from a large number of test functions, data is grouped into bins, a) Results for an EA design using steady 
state (SS) population updating, truncation selection (Trun), and population size A=200. Solid line represents a 
power law with exponent 2.2. b) Results for an EA design using generational (Gen) population updating, 
tournament selection (Tour), and population size iV=200. Solid line represents a pow er law with exponent 2.2. 
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Figure 4-5 ETV distributions shown for selected EA designs on a range of test functions taken from Appendix A. 
Evolution occurred over 2000 generations and results shown are averages taken over 10 runs. To help in viewing 
results from a large number of test functions, data is grouped into bins, a) Results for a distributed EA design 
(cGA) using neighborhood radius R=\, and population size A^=200. Solid line represents a power law with 
exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood radius ^=30, and population size 
A^=200. Solid line represents a power law with exponent 2.2. 

4.1.2.3 Impact of time length of evolution 

In this section, tests were conducted with evolution taking place over different lengths of 

time. As seen in Figure 4-6, during the initial stages of evolution, the ETV distribution 
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displays power law deviations for large ETV sizes however these deviations disappear as 

evolution is observed over longer periods of time. 
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Figure 4-6 ETV distribution results as a function of the time span of evolution, a) Results for an EA design using 
steady state (SS) population updating, truncation selection (Trun), and population size N=200. Solid line 
represents a power law with exponent 2.2. b) Results for a distributed EA design (cGA) using neighborhood radius 
R=i, and population size A^=200. Solid line represents a power law with exponent 2.5. Data sets are labeled by a 
number which indicates the number of ETV measurements that are used to generate the distribution. For each EA 
run, the first 100 events are given to the first data set, the next 500 are given to the next data set and so on. Results 
for each EA design are averages over ten runs. 

The fact that ETV distribution results have only a brief transient where the distribution is 

sensitive to time, but is insensitive thereafter, indicates that the distribution approaches a 

stationary state. However, record statistics of ETV in Figure 4-7 provide evidence that 

maximum ETV sizes have an initial time dependency. This could mean that the system 
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does not initially start with population dynamics being defined by a power law distribution 

but instead that the system evolves to achieve that state over time. 
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Figure 4-7 Record ETV statistics for cellular Genetic Algorithms (cGA) with population size 7V=100 and 
neighborhood radius (R=l, R=5, R=30). ETV(Max) is the largest ETV found in every 200 events. Values are 
averages over 10 experimental replicates. 

It has been determined that the reason for this initial dynamical behavior is actually due to 

the lack of a genealogical or a historical coupling between individuals in the initial 

population. To confirm this, Figure 4-8 shows ETV distribution results where each new 

offspring has a probability Pnew of being historically uncoupled from the rest of the 

population. Historical uncoupling is simply done by preventing offspring from inheriting 

historical data from their parents. From a population dynamics perspective, this is 

equivalent to an EA design which includes a steady introduction of new individuals into the 

EA population. As seen in Figure 4-8, a small amount of historical uncoupling can result in 

power law deviations for the largest ETV sizes. However, as P„ew is increased, the extent 

that the distribution deviates from a power law is found to increase only slightly. 
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Figure 4-8 ETV distributions with varying amounts of historical uncoupling in EA population dynamics. 
Experiments are conducted with a steady state EA using truncation selection and population size A'̂ =100. 
Evolution took place over 20,000 generations on the 30-D Hyper Ellipsoid test function. When conducting the 
standard ETV calculation, historical event information is copied from the genetically dominant parent to its 
offspring. In these experiments, the step of historical transfer is skipped with probability Pnew The solid line in the 
graph represents a power law with exponent = 2.1 

4.1.2.4 Other Experimental Conditions 

Additional tests were also conducted (results not shown) to help ensure that the ETV 

distribution results that have been presented so far in this chapter were not biased due to 

other experimental factors. This included experiments on selected EA designs at 

population sizes up to A^=500, running evolution up to 100,000 generations, and 

experiments with the ETV calculation parameter Tots set as high as 500. These 

experiments resulted in no observable changes to ETV distribution results. 

4.1.3 ETV Age Results 

In addition to measuring the size of an individual's impact, one can also measure the 

amount of time that an individual is able to impact population dynamics. This is measured 

by recording the number of generations required for an individual's ETV calculation to 

finish, which is referred to in this thesis as the ETV age. This section investigates this 

aspect of EA dynamics more closely, again with the aim of determining what experimental 

conditions impact the ETV age distribution. 
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Looking at Figure 4-9 and Figure 4-10, these results demonstrate that the ETV age 

repeatedly approximates a power law however different sensitivities to EA design 

conditions have emerged (compared with ETV size distribution results shown previously). 

Although there is still no sensitivity to the population size, these results reveal that the 

selection method and population updating strategy do have an impact on the ETV age 

distribution for Panmictic populations. This is seen for instance in the results presented in 

Figure 4-10b where EA designs with steady state population updating and tournament 

selection are found to have a clear power law deviation for large ages. On the other hand, 

the introduction of spatial restrictions to the EA population does not have any influence on 

this characteristic of population dynamics as seen in Figure 4-9. This is surprising 

considering the importance of spatial restrictions in the previous ETV size distribution 

results. Also shown in Figure 4-9, the addition of crowding to the cGA has a completely 

unexpected impact on the age distribution and appears to result in an almost log-periodic 

behavior that on average still tends toward a power law distribution. On the other hand, the 

addition of crowding in Panmictic Populations (e.g. Deterministic Crowding) was found to 

have little influence on the age distribution. In summary, these results indicate that most 

ETV age distributions are well approximated by power laws although changes to the 

distribution shape do occur under certain conditions. 
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Figure 4-9 ETV age distributions shown primarily for spatially distributed EA designs. The age of an ETV is 
defined by the number of generations from the initial event to the completion of the ETV calculation. All EA 
designs have population size A^=200. Cellular Genetic Algorithm (cGA) designs vary in the use of crowding and the 
neighborhood radius size (/?=!, /?=5, jR=30). Results from using Deterministic Crowding (DC) are also provided 
for a population size of A^=200. Solid line represents a power law with exponent 3.2. 

As a final comment on these results, it is also worth mentioning that although the ETV has 

a maximum size equal to N, the ETV age measured here is only constrained by the amount 

of time that the system is observed. For these experiments, evolution was observed for up 

to 20,000 generations and ETV ages were found approaching 1000 without any evidence of 

power law deviations at large ages. Based on the observed distributions, it is concluded 

that the maximum age of events in EA dynamics is only limited by the amount of time that 

evolution is allowed to take place. 12 

The m a x i m u m age can also be l imited by the E T V calculat ion procedure , for instance by limits placed on 
the size of the historical records kept in the E A popula t ion. In these exper iments , the m a x i m u m record size 
was set to Tobs^^A^) and under these condi t ions , it w a s found that roughly one in every 50,000 events failed to 
finish the E T V calculation be fore reaching a m a x i m u m record posit ion. 
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Figure 4-10 ETV age distributions for several EA designs. The age of an ETV is defined by the number of 
generations from the initial event to the completion of the ETV calculation, a) EA designs with population sizes 
(A^=200, N=50), generational population updating (Gen) and Tournament selection (Tour). Solid line represents a 
power law with exponent 3. b) EA designs with population sizes (A^=200, A^=50), steady state population updating 
(SS), and Tournament selection (Tour). Solid line represents a power law with exponent 2.5. c) EA designs with 
population sizes (A^=200, A^=50), steady state population updating (SS), and Truncation selection (Trun). Solid line 
represents a power law with exponent 3.5. 

4.1.3.1 Caveats 

It should be mentioned that, despite considerable efforts, the experiments were not 

exhaustive and so it is possible that other EA designs and certain landscape characteristics 

could result in ETV distributions which deviate from a power law or are otherwise different 

from what was presented here. As an example, EA designs which parameterize the amount 

of interaction between population subgroups (i.e. island model population structure) could 

be one unaccounted for situation where power laws would only be observed with the 

appropriate parameter tuning. 

4.1.4 Conclusions 

A number of conclusions can be drawn from the results presented in this chapter. First, it 

was found that the probability of an individual's impact on EA dynamics fits a power law 

(exponent between 2.2 and 2.5). This is a robust property of the system which is largely 

insensitive to most experimental conditions including changes to population size, search 
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operators, fitness landscape, selection scheme, population updating strategy, and the 

presence of crowding mechanisms. 

Two experimental conditions were however found to result in power law deviations for 

large ETV sizes. The first is the steady introduction of new individuals that have no 

relation to others in the population (i.e. historically uncoupled). The second condition is 

the introduction of spatial restrictions into an EA population. Using either of these 

conditions effectively removes the possibility of single individuals dominating the 

dynamics of the entire population. The associated power law deviations can be understood 

as an indicator of parallel computation within the system. 

The amount of time than an individual influences EA dynamics (i.e. ETV age) also was 

found to fit a power law with most individuals influencing the system for only brief periods 

of time. However, as suggested by the power law relation, there is a non-negligible 

probability that an individual will influence EA dynamics over very large time scales. This 

behavior was found to be robust and was almost completely insensitive to all experimental 

conditions tested. 

4.2 Discussion: Comparisons between EA and nature 

From the last section it was concluded that EA population dynamics exhibit power laws in 

ETV spatial and temporal properties with little sensitivity to experimental conditions. 

Some of the measurements that have been taken of the spatial and temporal properties of 

natural evolution have also been found to exhibit power law relations. This section briefly 

reviews the results from natural evolution and compares and contrasts them the results from 

this chapter. 

It is important to point out that no known measurements of natural evolution are exactly 

equivalent to ETV and so strong conclusions about similarities or differences in behavior 

are not possible. Instead, this section is provided to simply review and discuss current 

evidence that spatial and temporal patterns in EA population dynamics are similar to those 

observed in natural evolution. 
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Section 4.2.1 reviews past studies on extinction size distributions that are derived from the 

fossil record and compares this with ETV size distribution results. Section 4.2.2 reviews 

past studies on the distribution of species life times and compares this with ETV age 

distribution results. Finally, Section 4.2.3 looks at some topological properties of 

taxonomic structure in natural evolution and compares this with the genealogical structure 

of EA populations. 

4.2.1 Extinction Sizes 

The first large scale feature of evolutionary dynamics that is discussed deals with the 

characterization of extinction event sizes. Extinction event sizes are measured as the 

number of species (or percentage of species) which become extinct over a predefined time 

interval. Using fossil data that has been compiled by Sepkoski [169], several studies have 

analyzed extinction records [170], [171] and have found the distribution of extinction sizes 

to be very broad and well approximated by a power law. This is shown for instance in 

Figure 4-11, which is taken from [171]. In this figure, a best fit "kill curve", which was 

developed in [170], is used to create the extinction distribution for Paleozoic marine 

species. Using this model, a power law distribution is clearly observed for all but the very 

largest extinction events. 
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Figure 4-11 Probability of an extinction event as a function of the fraction of all species killed. The distribution is 
derived based on a best of fit kill curve (see [170]) using fossil data of marine species from the Paleozoic era. 
Reprinted by permission from the Royal Society (Proceedings: Biological Sciences) [171], copyright (1996). 

Comparing Extinction sizes and ETV: The ETV measurement is similar in some ways to 

the measurement of extinction sizes in natural evolution however there are also some 

important differences. The most significant similarity is that both the ETV and the 

extinction size are a measure of the magnitude of changes that are taking place within each 

of their respective systems. On the other hand, while ETV is measuring the spread of 

genetic material in a population, the extinction size is measuring the removal of species 

(which can also be thought of as a loss of genetic material). Another important difference 

is that ETV measures the changes resulting from a particular event while extinction sizes 

from the fossil record look at changes occurring over a time window. 

Comparing Results: Despite these difference, the broad degree distributions for ETV 

sizes is found to approximate a power law (exponent = 2.2 to 2.5) which is arguably similar 

to what has been observed in nature (exponent ~ 2) for extinction sizes. However, it does 

appear from Figure 4-11 that extinction sizes in natural evolutionary dynamics exhibit 

power law deviations for large extinctions while this is largely not the case in most of the 

ETV distribution results. 

Some have suggested [172] that the power law deviations in the fossil record are a result of 

the system being in a state of disequilibrium and that more time is needed before a power 

law is observed. This is similar to the argument in [173] and shown in Figure 4-12, that 

power law deviations can occur due to finite size effects suggesting that a larger time 

window is needed before the fossil record can display a clear power law. Assuming for the 
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moment that the power law behavior in EA and natural evolution has a similar origin, the 

ETV results from this chapter would then seem to support the disequilibrium argument. As 

demonstrated in Figure 4-6, running an EA for smaller periods of evolution results in ETV 

distributions with power law deviations for large ETV sizes. 

However, it is possible that other factors contribute to power law deviations in the fossil 

record. In the experiments with EA, it was also found that spatial restrictions were a 

primary cause of power law deviations. Obviously, some amount of spatial restriction is 

present in natural evolution (e.g. geographical isolation) and it is speculated that this at least 

contributes to the observed power law deviations for extinction sizes in nature. 

4.2.2 Species Lifetime Distributions 

Another way to characterize natural evolutionary dynamics is to measure the lifetimes of 

species (or other taxa) as shown for example in Figure 4-12. Several studies [173], [169] 

have found a broad distribution of lifetimes however there is disagreement as to whether 

some of the reported results fit an exponential function [174], [175] or a power law, [173], 

[176]. 

The difference actually has great relevance to our understanding of evolution. As explained 

in Section 4.1.2 of [177], an exponential distribution would indicate that the age of a 

species has no impact on its likelihood of survival. In other words, older species are not 

better adapted to their environment compared to newer species. However, a more broad 

distribution such as a power law would indicate a correlation exists between age and 

extinction probability meaning that older species are better adapted compared to newer 

species. The results taken from [173] and presented in Figure 4-12 indicate that a 

correlation does exist and that the age distribution does fit a power law. 
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Figure 4-12 Local lifetime distributions for species based on North American bird populations, a) Lifetime 
distributions for data taken over different timescales. Power law deviations are clearly present, b) Lifetime 
distributions with rescaling of data to account for finite size effects. Data is now well approximated by a power 
law. Reprinted by permission from Macmillan Publishers Ltd: (NATURE) [173], copyright (1998). 

Comparing Species Lifetimes and ETV ages: The ETV age measurement from Section 

4.1.3 and the lifetime of a species in natural evolution are both measurements of relevant 

timescales of events in their respective systems. However, the two measurements are also 

different for a number reasons. For instance, if one thinks of events in EA population 

dynamics as being speciation events, then the species lifetime measurement for an EA 

would simply be the life time of individuals in the EA population. The ETV age, on the 

other hand, measures the total lifetime of all species that contain a strong genealogical link 

to an original speciation event. There are no known studies of the fossil record which have 

attempted an analogous metric of natural evolutionary dynamics. 

Comparing Results: Despite these differences, it is still interesting to note that both ETV 

age distributions and species lifetime distributions are very broad and are well 

approximated by power laws. However the power law exponents are quite distinct with the 

ETV age distribution having an exponent of 2.5 to 3.5 while the results on bird species 

taken from [173] have an exponent of 1.6. 

4.2.3 Fractal Taxonomic Structures 

Yet another way to characterize natural evolutionary dynamics is to measure the 

topological properties of its taxonomic structure. As briefly reviewed in [177], several 

studies have looked at the frequency distribution of the number of species within a genus 
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[178] as well as frequency distributions in higher taxa [179]. From these results, some of 

which are reproduced in Figure 4-13, it appears that the frequency distribution fits a power 

law with exponents reported to vary between 1.5 and 2.3. 

ANIMALS 

Figure 4-13 log-log plots of the frequency of a selected taxon with different numbers of sub-taxa. a) Frequency of 
genera with different numbers of species for birds. The frequency is given on the vertical axis and the number of 
bird species within the genera is given on the horizontal axis, b) Frequency of orders with different numbers of 
families for animals. The frequency is given on the vertical axis and the number of animal families within the 
order is given on the horizontal axis. Data points with frequencies/=1 are omitted. Similar distributions for other 
data sets are presented in [179]. Reprinted by permission from Elsevier: (J. theor. Biol.) [179], copyright (1990). 

Comparing EA Genealogy and Evolutionary Taxonomy: To compare the topological 

properties of taxonomic structure (in natural evolution) with the genealogical structure of 

EA populations, it is necessary to clarify exactly what topological properties are being 

measured in Figure 4-13. 

If one thinks of taxonomic structure in terms of a branching process, then the number of 

sub-taxa within a taxon (the horizontal axis of Figure 4-13) is equivalent to the number of 

branches that extend away from a node in the taxonomic tree. This is what is measured in 

Figure 4-13 with the addition of a few restrictions on the data used. In particular, data is 

restricted to particular groupings (e.g. birds, animals) and particular levels of hierarchy 

within the taxonomic structure (e.g. species/genera, families/order). 

Figure 4-13a provides results for the number of species within a genera which are the 

lowest and second lowest levels of the taxonomic hierarchy (resp.). An equivalent measure 

in EA genealogical graphs would be that of the number of offspring created by a parent. 

This aspect of EA genealogy has been studied in detail in [180] where the distribution was 
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found to fit a power law under a range of conditions. They also found that spatial 

restrictions in the EA population can result in power law deviations but only in cases where 

high levels of spatial restrictions were imposed.^^ Comparisons at higher levels of EA 

genealogy would be possible by reconstructing the genealogical graphs of an evolving EA 

population, however this was not considered here. 

It is also interesting to note that similar studies have looked at human genealogy through an 

analysis of surname distributions [181] (also see [182] and references therein). In these 

studies, it has been determined that the surname distribution is also well approximated by a 

power law. In summary, the taxonomy of natural evolution has been found to have a fractal 

structure (as evidenced by the stated power laws) which is also observed in both human 

genealogies and the genealogical trees of Evolutionary Algorithms. 

4.2.4 Summary of Conclusions 

The ETV distribution results presented in this chapter were found to be similar to the 

extinction distributions in natural evolution. However the distribution of extinction sizes in 

natural evolution also displays power law deviations for large extinction sizes. From the 

limited sources of power law deviations in the ETV results with EA, it was speculated that 

that these deviations could be caused by either an insufficient amount of time that evolution 

has taken place or the presence of geographical isolation. 

The ETV age distribution results were generally found to be similar to the species lifetime 

distributions in natural evolution with the power law exponent of the distribution being the 

only significant difference. Finally, a review of natural evolution taxonomy, human 

genealogy, and EA genealogy has found that each displays fractal characteristics as 

evidenced by power law distributions of structural features. In particular, fractal 

characteristics are found to be pervasive throughout natural evolution taxonomy. 

Notice that similar conclusions have also been made in this chapter with ETV distribution results. 
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4.3 Self-Organized Criticality 

The review from the previous section has indicated that a number of spatial and temporal 
properties in natural evolution do not have a characteristic scale (as evidenced by a power 
law). The experiments conducted in this chapter also provide evidence that some spatial 
and temporal properties in Evolutionary Algorithms do not have a characteristic scale. 
These macro scale features have great relevance to the behavior of these systems and to our 
understanding of evolution. For example, a power law relation in species lifetimes 
provides strong evidence that older species are better adapted (on average) than younger 
species. This information has also helped to improve our understanding EA behavior. For 
instance, in the previous chapter the ETV size distribution provided convincing evidence 
that most interactions between an EA and its environment are effectively neutral. This new 
understanding was used to build a more effective approach to the adaptation of EA design 
parameters. 

It could potentially be of great benefit to understand how this behavior emerges in natural 
evolution and Evolutionary Algorithms. One contender for explaining the macro features 
of evolutionary dynamics is the Theory of Self-Organized Criticality (SOC). This theory is 
briefly described next, followed by a set of conditions that any dynamical system is 
expected to satisfy in order to be compatible with SOC theory. Section 4.3.2 provides 
evidence that Evolutionary Algorithms meet a number of these conditions, with evidence 
based primarily on the ETV distribution results of this chapter. 

4.3.1 SOC Definition 

The Theory of Self-Organized Criticality was first put forth by Bak, Tang, and Wiesenfeld 
[183] and has been used to explain a range of physical phenomena such as flicker noise (1// 
noise) which is observed in the light emitted from quasars, the intensity of sunspots, current 
through resistors, sand flow in an hour glass, the flow of rivers, and stock exchange price 
indices (see [183] and references therein). The theory claims that some coupled dynamical 
systems are driven or attracted to a critical state where the system displays self-similarity in 
both space and time. This behavior is in contrast to other critical phenomena (e.g. phase 
transitions) where an environmental parameter (e.g. temperature) must be tuned in order for 
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the system to reach a critical state. A more detailed discussion of critical phenomena is 

beyond the scope of this thesis however an introduction to the topic can be found in [184].̂ "̂  

Conditions for SOC: Although there is no generally agreed upon litmus test for SOC 

behavior, a number of basic conditions are expected. Given a system of loosely coupled 

components, an SOC system will evolve to a (critical) stationary state where interactions at 

a local level (i.e. localized disturbances) can propagate and reach any size (including the 

size of the entire system) with a non-negligible probability. Such a state is popularly 

indicated through the presence of power laws in spatial and temporal properties. 

For an SOC system, critical dynamics should not be fragile to experimental conditions; 

otherwise this would indicate some sort of tuning is necessary. Hence, a broad range of 

experimental conditions should be tested before any claims of SOC are made. Finally, 

since SOC systems are attracted to a critical state, but do not start in one, it is expected that 

some transient exists where the system is initially not critical (i.e. power law deviations 

exist during the transient). Using these general conditions as a guide, the next section 

considers whether Evolutionary Algorithms are compatible with SOC theory using 

arguments based on the ETV results from this chapter. 

4.3.2 Compatibility of EA with SOC 

EA populations are already known to be loosely coupled dynamical systems and so it is 

assumed that some form of self-organization will take place. The question is simply 

whether the attractor for the system is a critical one. To provide support for this statement, 

one must show that i) the distribution of disturbance sizes fits a power law and ii) the power 

law is a robust property that occurs under many conditions. Disturbances to an EA 

population can be measured by ETV as described below. 

Defining ETV as a measure of disturbance: First a brief explanation is needed of how 

ETV is a measure of disturbance size in EA populations. The explanation given here for 

Critical phenomena also has relevance to other aspects of evolution which are not covered in this thesis. 
The interested reader can find studies on its relevance to evolvability and fitness landscapes in [17], and its 
relevance to evolutionary dynamics on neutral networks in [80]. 
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describing population dynamics on a graph is equivalent to the description provided for the 

measurement of ETV that is given in the previous chapter. 

The spatio-temporal process of EA population dynamics can be represented by a sparse 

directed graph where individuals are represented by nodes and directed connections 

between nodes indicate that one individual (with outgoing connection) has influenced the 

creation of another (with incoming connection). As has been done in similar studies, weak 

interactions (i.e. connections) in the system are ignored meaning in this case that only the 

dominant parent is considered to be connected to an offspring.^^ This results in a graph 

topology where each node has only one input connection. This graphical model of EA 

dynamics is identical to the EA genealogical tree shown in the last chapter. 

The creation of each new node (i.e. individual) is assumed to represent a new disturbance to 

the system (i.e. genotypic and phenotypic change to population makeup). To observe the 

growth of a disturbance, we look at the total number of nodes in the current state of the 

system (i.e. population members) that have a path leading to this node. This represents the 

current size of the system that is affected by a disturbance at a given point in time (i.e. 

generation). The maximum impact of the disturbance would be calculated in an identical 

fashion to the ETV measurement. Therefore, one can see that disturbances to genotypic 

and phenotypic characteristics of the population can propagate from one node to another 

and the eventual size of the disturbance is precisely what ETV measures. 

Evidence that EA populations are self-organized to a critical state: Tests conducted in 

this chapter under a broad range of experimental conditions have indicated that the ETV 

size and age distributions are well approximated by power laws and that the power laws are 

a robust property of the system. The experimental results shown in Figure 4-6 also indicate 

that a short transient occurs before the population dynamics organize to a stationary power 

law distribution. During this transient, larger ETV are less likely to be observed. This 

indicates that disturbances initially remain localized and that the EA population starts in an 

ordered state but is quickly driven to a critical one. In summary, the results from this 

The use of a threshold criteria for considering only large interactions in a dynamical system is a standard 
approach employed when one only wants to study the existence of interactions and not the relative strengths 
of interactions, the latter being more complicated. For example see [185]. 
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chapter demonstrate that Evolutionary Algorithms meet the conditions necessary for 
compatibility with SOC theory. 

Alternative Explanations: Despite this apparent compatibility, it is also worth pointing 
out that both spatial and temporal properties of EA population dynamics were derived from 
genealogical graphs which are a type of branching process. Furthermore, it is known that 
branching processes exhibit criticality when the average death rate equals the average 
growth rate of new branches (e.g. see [186] and [187]). This condition is the same as the 
requirement in static EA population sizes that the number of individuals removed from an 
EA population is equal to the number added to the population. Hence, it is likely that the 
use of a static EA population size is an important contributing factor to the ETV results 
presented in this chapter. 

Although the underlying causes are not fully understood, the ETV results from this chapter 
allow for tentative statements to be made regarding the sufficient conditions for a system's 
historical coupling to self-organize to a critical state. In particular, this behavior has been 
shown to take place in a closed system that contains a reproducing Panmictic population 
with a static population size. More experimentation is needed to further expand our 
understanding of this aspect of EA dynamics. It would also be a significant contribution if 
this form of dynamical behavior could be related back to the dynamics of an EA in 
parameter space. 

4.4 Relevance to EA research 

What is most remarkable from the results of this chapter is not that measurements of EA 
population dynamics (as measured by ETV) fit a power law. What is remarkable is how 
little sensitivity the measurement results displayed to the selection pressure, the fitness 
landscape, or the medium (artificial or natural) in which evolution took place. 

Furthermore, many other complex systems that are unrelated to evolution, ranging from 
earthquakes to solar flares to turbulence, also spontaneously organize to display similar 
spatial and temporal patterns (see [185] and references therein). This is of importance to 
Evolutionary Computation research because it indicates that at least some properties of 
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natural evolution are not reliant on the specific context of "nature" and instead are a 
consequence of very general and easily reproduced conditions and driving forces. 

4.4.1 Impetus for SOTEA Chapter 

In recent years there has been growing evidence that many significant features of biology 
are not a consequence of natural selection but instead are a result of physical conditions and 
constraints. For instance, genome complexification models have been developed which, 
when randomly evolved (without a particular selection pressure), are able to generate 
topological characteristics that are similar to gene regulatory networks [188] and protein 
interaction networks [189]. 

In another important development, characteristics such as modularity and hierarchy, which 
are heavily exploited in natural evolution, have been found to emerge from simple localized 
rules [190] and do not require the presence of natural selection. Models of genome 
complexification have also been proposed recently where modularity is expected to emerge 
without the influence of natural selection [20]. 

These findings suggests that the unique quality of life is not generated solely from natural 
selection in reproducing populations but is also heavily reliant on the physical laws and 
constraints that are imposed on these evolving systems. 

If our goals as EA researchers are to mimic the salient features of life in order to exploit it 
for purposes of optimization, it behooves us to actively explore what other conditions 
(beyond Darwinian theory) are necessary to acquire the robust and adaptive properties of 
life. Furthermore, with growing evidence that Darwinian principles only provide a partial 
explanation for life, one could reasonably speculate that only so much progress is possible 
in EA research from tweaking the traditional controls of natural selection (e.g. through the 
development of search operators and selection pressures). 

On the other hand, the results from this chapter have shown that other factors such as 
spatial restrictions can cause significant changes to large scale dynamical features of a 
system. These results have also indicated that some form of self-organization already 
occurs in EA population dynamics which is notably distinct from its well-known 
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organization in parameter space. This raises tlie question as to what other self-organizing 

processes occur in nature and could be of benefit to EA performance. The final chapter of 

this thesis focuses squarely on these issues. 
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Chapter 5 Self-Organizing Topology Evolutionary 

Algorithms 

Within the last several years, it was discovered that the interaction networks of complex 

biological systems have evolved to take on several non-random topological characteristics, 

some of which are believed to positively impact system robustness. A number of network 

growth models have also been discovered that can successfully recreate many of these 

structural characteristics using simple rules and in the absence of a selection pressure. 

In the previous chapter, it was shown that spatial constraints (i.e. population topology) have 

a significant impact on EA population dynamics. This chapter focuses on ways in which 

the population topology can self-organize to exhibit topological characteristics similar to 

complex biological systems. The aim of this chapter is not only to mimic the structural 

characteristics of biological systems but also to acquire some of the desirable qualities 

found in these systems. 

The next section presents a critical review of previous work related to the application, 

characterization, and evolution of interaction networks. This is followed by Section 5.2 

which presents the motivations and aims of this chapter. Section 5.3 then describes the first 

of two network models. The first model is designed to sustain population diversity in 

rugged fitness landscapes which it accomplishes, in part, by mimicking the process of 

genome complexification in natural evolution. The second model is described in Section 

5.4 and is designed for the purpose of evolving important topological properties such as 

modularity. This model is also designed with a focus on EA performance with tests 

conducted on a number of artificial test functions and engineering design problems. The 

results from these experiments provide strong evidence that the new Self-Organizing 

Topology Evolutionary Algorithms (SOTEA) are able to exhibit robust search behavior 

with strong performance over both short and long time scales. 
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5.1 Critical Review of Previous Work 

This section provides a review of topics that are relevant to the work presented in this 

chapter. It starts by reviewing approaches to constraining interactions in population-based 

systems with a focus on spatially distributed systems that are defined on a network. The 

section then reviews metrics for characterizing network topology. The section concludes 

by presenting a number of network models that have been successful in mimicking the 

topological characteristics of complex biological systems. 

5.1.1 Interaction Constraints 

In recent years, there has been an increasing awareness of the importance of locality or 

interaction constraints when modeling complex systems. Restricting interactions in 

population-based systems has been a key factor in topics such as robustness against 

parasitic invasion [191], [192], enabling speciation [193], sustaining population diversity in 

rugged landscapes [136 2007), 2007)], the emergence of cooperative behavior [18], and 

robustness to random attack [75]. Furthermore, convincing arguments have been made for 

its role in natural evolution and in particular, its impact on system evolvability [17]. 

Parallel developments have also taken place in population based search heuristics such as 

Evolutionary Algorithms, where it has been recognized that restricting interactions between 

population members can result in significant changes to algorithm behavior. This has been 

observed in several seemingly disparate topics such as the age restrictions present in the 

Age Layered Population Structure (ALPS) for Genetic Algorithms [99], the genealogical 

and phenotypic restrictions present in Deterministic Crowding [84], coarse-grained 

restrictions in interactions between heterogeneous subpopulations [100], and explicit static 

topologies for constraining interactions in the cellular Genetic Algorithm (cGA). 

5.1.1.1 Population Networks for Evolutionary Algorithms 

This chapter limits its focus to interaction constraints that are implemented by defining an 

EA population on a network. The use of explicitly defined interaction networks provides a 

useful framework for understanding system constraints and their impact on system 
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dynamics. This is, in part, because network representations of systems can be probed using 
a number of tools developed in statistical mechanics. 

Defining an EA population on a network impacts an EA through the localization of genetic 
operators. For instance, actions such as reproduction and selection only occur among 
individuals directly connected (i.e. linked) or near each other in the network. The three 
types of population structures typically considered for EA populations are shown on the top 
row of Figure 5-1. 

The fully connected graph in Figure 5-la represents the canonical EA design, which is 
referred to in this thesis as the Panmictic GA. Here, each individual (represented by nodes 
in the graph) can interact with every other individual such that no definition of locality is 
possible. The network in Figure 5-lb represents a typical island model population structure 
where individuals exist in fully-connected subgroups which are largely isolated from other 
population subgroups. Here the large arrows represent interactions which take place 
between subgroups but occur at a time scale much greater than that of interactions within 
subgroups. As a consequence of this setup, the locality of island model networks is defined 
on a scale that is significantly larger than the individual. The final EA structure shown in 
Figure 5-lc represents a cellular EA population structure which is referred to in this thesis 
as the cellular Genetic Algorithm or cGA. Similar to cellular Automata, the network of 
interactions takes on a lattice structure with interactions constrained by the dimensionality 
of the lattice space. With the cellular GA, each individual has a unique environment 
defined by its own unique set of interactions which is referred to as a neighborhood. 
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Figure 5-1: Examples of interaction networks. The networks on the top represent commonly used EA population 
structures and are known as (from left to right) Panmictic, island model, and cellular population structures. 
Networks at the bottom have been developed with one or more characteristics of complex biological networks and 
are classified as (from left to right) Self-Organizing Networks (presented here), Hierarchical Networks [194], and 
Small World Networks [195]. Figure le is reprinted with permission from AAAS. 

The ratio of neighborhood size (i.e. number of connections per node) to system size (i.e. 

total number of nodes) can be seen as a measure of locality and it is worth noting that this 

ratio decreases in the EA population structures from left to right on the top row of Figure 

5-1. Although the three population structures clearly have different degrees of locality, 

they also have some important similarities. For each population structure, the nodes within 

the network each have the exact same number of interactions and the same type of 

interactions (i.e. regular graphs). Furthermore, the networks for all three cases are static 

and predefined. 

5.1.2 Structural Characteristics of Complex Networks 

5.1.2.1 Properties of real networks 

Many natural and man made systems consist of a large number of dynamical interacting 

components. Examples are seen in biology (metabolic networks, protein interaction 
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networks, gene regulatory networks, food webs, neural networks), social systems 
(coauthorship, relationships) and man made systems (World Wide Web, Internet, power 
grids). 

Despite the significant simplifications necessary to create network representations of these 
systems and despite their inherent differences in scale, environmental context and 
functionality, most real networks have a great deal of similarity in their topological 
properties. These similarities include 1) small characteristic path lengths, 2) high clustering 
coefficients, 3) fat-tailed degree distributions (e.g. power law), 4) degree correlations, 5) 
low average connectivity, as well as other properties reviewed in [196]. Each of these 
features are notably distinct from random graphs and regular lattices. The next section 
reviews a number of topological properties that are commonly measured when studying 
networks. Comprehensive reviews of this topic are provided in [196], [197], and [198]. 

5.1.2.2 Topological Property Metrics 

To help understand the interaction networks of complex systems, a few simple measures 
are introduced which are commonly used to assess network structural characteristics. 
Throughout this paper, networks are represented by an adjacency matrix J such that 
individuals i and j are connected (not connected) when (Jy=0). 

Characteristic Path Length: The path length is the shortest distance between two nodes 
in a network. The characteristic path length L is the average path length over all node pair 
combinations in a network. Generally, L grows very slowly with increasing system size 
(e.g. population size) N in complex systems. For instance, networks exhibiting the "Small 
World" property, such as the network in Figure 5-If, have L proportional to log Â  [199]. 

Degree Average: The degree ki is the number of connections that node i has with other 
nodes in the network which is defined in (5-1). The degree average kave is simply k 
averaged over all nodes in the network. The degree average is expected to remain small, 
even for large networks, as reviewed in [196]. 



Chapter 5: Self-Organizing Topology Evolutionary Algorithms 

7=1 

Degree Distribution: The degree distribution has been found to closely approximate a 
power law distribution for biological complex systems with power law and exponential 
distributions often fitting abiotic complex systems [198]. Networks which display a power 
law k distribution are often referred to as scale free networks in reference to the scale 
invariance of k. 

Clustering Coefficient: Many complex biological systems have high levels of modularity 
which is typically indicated by the clustering coefficient. The clustering coefficient c/ is a 
measure of how well the neighbors of a given node are locally interconnected. More 
specifically, this is defined in (5-2) as the ratio between the number of connections 
among the ki neighbors of node i and the maximum possible number of connections 
between these neighbors which is ki{ki'\)l2. 

_ le, (5-2) 

Although in practice, more efficient calculation methods are used, ei can be formally 
defined using the adjacency matrix y as shown in (5-3). 

y=i V k=\ y 

Clustering-Degree Correlations: A common feature of biological and social systems is 
the existence of an hierarchical architecture. Such an architecture implies that sparsely 
connected nodes form tight modular units or clusters and communication paths between 
these modular units are maintained via the presence of a few highly connected hubs [199]. 
Figure 5-le shows a network with these hallmark signs of modularity and hierarchy which 
was grown using the deterministic models presented in [194]. 

The existence of hierarchy in a network is typically measured by looking at the correlation 
between the clustering coefficient and the node degree. Based on the description given 
above, an hierarchical network is expected to exhibit higher connectivity for nodes with 
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low clustering (i.e. hubs) and vice versa. Furthermore, for the feature of hierarchy to be a 

scale invariant property of the system, c should have a power law dependence on k. 

Degree-Degree Correlations: For many complex networks, there exist degree correlations 

such that the probability that a node of degree k is connected to another node of degree k^ 

depends on k. This correlation is typically measured by first calculating the average nearest 

neighbors degree which is defined in (5-4). 

1 ^ 

l^i j=\ 

(5-4) 

Networks are classified as assortative if km increases with k or disassortative if 

decreases with k. Degree correlations are often reported as the value of the slope v for km 

as a linear function of k. 

Random Networks: Thus far, only qualitative statements have been given regarding the 

topological properties of complex networks. In practically all cases, when topological 

properties are mentioned as being large or small (as has been mentioned above), the 

statements are referring to property values in relation to those values observed in random 

graphs and particularly the models developed by Erdos and Renyi [200], [201]. As 

reviewed in [197], random graphs have i) a characteristic path length ¿Rand similar to that 

observed in complex networks and approximated by (5-5), ii) a Poisson degree distribution 

(as opposed to the fat tailed degree distribution in complex networks), and iii) a clustering 

coefficient CRand given by (5-6) which is orders of magnitude smaller than what is typically 

seen in complex networks [195]. Random graphs also do not exhibit any degree 

correlations or correlations between the degree and the clustering coefficient. 

. In(A^) (5-5) 

'Rand N 
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5.1.3 Network Evolution Models 

In order to mimic complex systems, it is important to understand how they obtain their 

interesting behaviors and properties. For both man-made and biological complex systems, 

it is generally understood that the development of interaction networks in these systems 

occurs through a process of constrained growth. Examples would include growth of the 

World Wide Web, the developmental process in multi-cellular organisms, and the 

complexification of the genome. 

Over the last decade, substantial progress has been made in the development of network 

growth models which can evolve to display characteristics similar to real systems. 

Exemplars of this success can be seen in the Barabasi-Albert (BA) Model [202], the 

Duplication and Divergence (DD) Model [203], the intrinsic fitness models of [204] and the 

random walk models of [190]. Common to many successful models is the emergence of 

relevant network characteristics, such as those previously mentioned (e.g. L ~ log N, Power 

law k distribution), through the use of simple, locally defined rules which constrain 

structural dynamics (including, but not limited to, network growth). Furthermore, these 

structural dynamics are driven by one or more state properties of the nodes. This simply 

means that connections in the network change and nodes are added or removed with a bias 

derived by property values assigned or calculated for each node. Properties that have been 

used in models include the degree of a node k [202], measures of node modularity [205], as 

well as measures of node fitness [204]. The remainder of this section presents several 

network evolution models that are important contributions to the field and have been 

particularly important in development of the SOTEA models presented in this thesis. 

5.1.3.1 The BA Model: 

The Barabasi-Albert (BA) model works on the basis of network growth and preferential 

attachment. These principles are inspired by experiences with real systems and they are 

prevalent in a number of large complex systems. Examples of systems driven by growth 

include the World Wide Web, collaboration networks, genome complexification and many 

more. The concept of preferential attachment is also observed in many systems such as 
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citation networks where a new manuscript is more likely to cite well-known and already 

well-cited papers compared with its less-cited peer papers. Preferential attachment is also 

seen in a number of other social networks as mentioned in [202]. 

Model Description: Starting with a small number {mo) of nodes, at every time step a new 

node is added with m (< mo) links that connect the new node to m nodes already present in 

the system. To incorporate preferential attachment, the probability PNI,N2 that a new node 

N1 is connected to an existing node N2 depends on the degree fc of node N2. 

Furthermore, it is assumed that this dependence is linear as expressed in (5-7). 

p k^, (5-7) 

(=1 

Model Characteristics: This model creates networks with power law k distributions with 

exponent similar to that observed in real systems. These networks also have a path length 

L~ log log N which obviously grows very slowly with increasing system size N. However, 

these models produce networks with no correlation between k and c [199]. 

5.1.3.2 The Duplication and Divergence Model 

Genome Complexification: As far as complex systems are concerned, the genome and its 

associated expression represent the largest and most interesting case of network evolution. 

Hence it is of great interest that large data sets of these systems are now available as well as 

the tools necessary for probing their structural organization. For instance, recent analysis 

of protein interaction networks and metabolic networks have found them to be 

characterized as having power law degree distributions, high modularity, low characteristic 

path lengths, and a low degree average [206], [195], [207]. 

Evolutionary processes associated with genome complexification are known to be initiated 

by a process of gene duplication and gene mutation, which is also referred to as Duplication 

and Divergence (DD). In the review presented in [208], studies are cited which have found 

that roughly 40% of the human genome can be confirmed as being derived from past 

duplication events (with even higher values observed in other species). 
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Due to the nature of the divergence process, it is also likely that the 40% estimate is a 

conservative lower bound on the actual number of duplicated genes in the human genome. 

Knowing that gene divergence occurs by a series of random mutations, the process 

approximates a random walk which acts to reduce (over time) any ability to recognize two 

genes as having a similar historical origin. Hence, it is speculated here that DD is the 

predominate cause of genome complexification. 

Although several duplication and divergence models are available from the literature, the 

one presented in [189] has been selected due to its simplicity and its proven capacity to 

generate power laws for k. 

Model Description: Starting with an unspecified initial network size, at every time step a 

node is randomly chosen and duplicated. Links of the duplicated node are removed with 

probability 6. New links are added to the duplicated node between itself and randomly 

selected nodes in the network with probability a. In this model, S is set to 0.53 and a is set 

to 0.06/A^ where A/̂  is the network size at a given time step. 

The duplication step in the model represents gene duplication where the original and 

duplicated genes retain the same structural properties meaning they initially have an 

identical set of interactions. The rewiring steps (involving probabilities d and a) represent 

mutations in the duplicated gene which cause its set of interactions to diverge from those of 

the original gene. The parameter settings listed above for S and a are set in [189] based on 

empirical observations of protein interactions networks in yeast and the interaction 

networks of other complex systems. 

Simplifying Assumptions: Although this model for genome complexification was 

selected in part due to its simplicity, it is still important to highlight the simplifying 

assumptions that have been made. 

• The first simplification is that it does not allow for the presence of multiple duplications 

at a single instance in time. This is known to occur in natural evolution with 

duplication involving sizes up to and including the entire genome [209], [210]. A 

model considers multi-gene duplications is presented in [203]. 
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• Another difference between this DD model and nature is that gene divergence 

mechanisms can potentially take place for both the duplicated and original genes. Also 

divergence occurs as a slow and possibly continuous process instead of happening in a 

single time step. 

• Finally the removal of genes from the genome is also neglected thereby implying that 

natural selection pressures present in real genome complexification will have roughly 

the same impact on topology as random rewiring of the duplicated gene. 

It is not clear what impact these additional features would have on the model and its 

structural characteristics, however it is interesting to notice (as indicated below) that this 

model does provide many similarities to complex biological systems without the presence 

of natural selection pressures or the other assumptions listed above. 

Model Characteristics: In [189], structural characteristics of this DD model are compared 

with data available on the yeast proteome. Results indicate the model creates a network 

with characteristics similar to yeast for values of have, k distribution, Cave, and L. Correlation 

measurements were not considered in this study. 

5.1.3.3 The Fitness Model: 

The model presented in [204] proposes a "good-get-richer" mechanism for network 

dynamics where nodes of higher fitness are more likely to become highly connected. This 

is presented as an alternative to preferential attachment or the so called "rich-get-richer" 

schemes present in the BA and DD models where an historical bias in network connectivity 

drives future connectivity. 

The fitness model is based on the concept of mutual attraction. One example they provide 

of such a system is a sexual interaction network where it is assumed interactions take place 

due to mutual attraction between two partners. They argue that knowledge of sexual 

promiscuity (i.e. knowledge of k which is a precondition for preferential attachment) would 

actually have the reverse impact on the probability of interactions in such networks. 

Another example they provide is the protein interaction networks inside cells where 

interactions are driven by chemical affinity. This second example is less convincing 
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however because protein specificity is an evolved trait meaning that both historical (i.e. 

evolutionary) bias as well as principles of mutual attraction play a role for such systems. 

The fitness model description given in [204] is provided below. 

Model Description: In this version of the fitness model, they neglect mechanisms for 

network growth and instead start off with a fixed number of nodes N containing no links. 

For every node, a fitness value jc, is assigned randomly from a probability distribution p{x). 

For every possible pair of nodes i j , a link is created with probability Xj) which is given 

by (5-8) where xm is the maximum value possible for jc. 

. . (5-8) 
X M 

Model Characteristics: When p{x) takes an exponential form, this model creates networks 

with power law k distributions with the power law exponent similar to that observed in real 

systems. The resulting networks also have clear correlations in Rnn-K and in c-k [204]. 

5.2 Motivations and Aims 

Currently implemented network structures for EA populations have proved beneficial to 

EA performance, however the population structures do not actually resemble the interaction 

networks of complex biological systems as indicated in the previous review. This puts into 

question how "nature-inspired" these EA designs are and what additional benefits might be 

derived from more accurate representations of the structure and dynamics of complex 

systems. 

Over the last several years, the interaction networks of many complex systems have been 

studied. It is now known that these systems display some interesting non-random 

characteristics that are similar among many biological and even manmade systems [197]. 

These characteristics are believed to be highly relevant to the behavior of these systems and 

particularly important to emergent qualities such as robustness. 

A primary aim of this chapter is to improve upon the performance and behavior of 

distributed Evolutionary Algorithms by mimicking the self-organizing processes of 
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complex systems within the population topology. Evolutionary Algorithms which have this 

behavior are referred to in this thesis as Self-Organizing Topology Evolutionary 

Algorithms (SOTEA). 

To date, few have investigated the importance of dynamic population topologies for an EA. 

One exception is seen in [135] where the grid shape of a cellular GA adapts in response to 

performance data using a predefined adaptive strategy. In that work, structural changes are 

globally controlled using statistics on system behavior. SOTEA algorithms, on the other 

hand, adapt to local conditions through a coevolution of network structure and population 

dynamics. 

5.3 SOTEA model I 

This section describes the first of two SOTEA designs that are developed and tested in this 

thesis. As previously mentioned, a general aim of this chapter is to create EA population 

networks which are topologically similar to the interaction networks of complex biological 

systems. This first SOTEA model also looks at how this can benefit EA behavior on 

optimization problems containing rugged fitness landscapes. 

Section 5.3.1 describes SOTEA and a cGA variant that is used for comparison purposes. 

Section 5.3.2 describes the experimental setup including a description of a tunable fitness 

landscape that is used to test algorithm behavior when exposed to different amounts of 

landscape ruggedness. The results are presented in Section 5.3.3 including algorithm 

performance, analysis of population topology, and the impact of SOTEA design features 

and fitness landscape features on population diversity. From these experiments, it is found 

that SOTEA exhibits strong performance and is able to sustain high levels of population 

diversity for evolution on rugged fitness landscapes. The population topology for SOTEA 

is also found to have some similarities to known features of complex biological systems. 

This is followed by a discussion of these results in Section 5.3.4 as well as conclusions in 

Section 5.3.5. 
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5.3.1 Model Description 

For all EA designs, the population is defined on a network. Besides the trivial case where 

the network is ililly connected (i.e. Panmictic GA), two other network designs are used and 

are referred to as the cellular GA (cGA) and the Self-Organizing Topology Evolutionary 

Algorithm (SOTEA). For the cGA and SOTEA, the population is initially defined in a ring 

structure with each node connected to exactly two others (e.g. Figure 5-lc). A change to 

the network structure (i.e. network dynamics) simply refers to the addition or removal of 

nodes or links. The rules for defining network dynamics are described next. 

5.3.1.1 SOTEA and cGA Network Dynamics 

For both the cGA and SOTEA, a node is only added to the network when a new offspring is 

added to the population and a node is only removed when an individual dies. Network 

changes due to offspring creation are referred to as reproduction rules and changes due to 

death of individuals are referred to as competition rules. The reproduction and competition 

rules define how network dynamics occur and are described next. 

Reproduction Rule: The reproduction rule (described in Figure 5-2) is used in SOTEA 

and the cGA when a new offspring is created. The first step in the reproduction rule 

involves making a copy of a parent and then mutating that copy to create an offspring.^ 
16 

Structural changes from the reproduction rule involve the addition of a new node 

(offspring) to the network, connection of the offspring to its parent, and then (depending on 

the EA design) the possibility of additional connections being added to the offspring node 

and the possibility of connections being removed from the parent node. Complete details 

of the addition and removal of connections in the reproduction rule are provided in Figure 

5-2. 

Notice this means an offspring only has a single parent 
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Figure 5-2: Reproduction rules that change the population structure for SOTEA and the cellular GA. a) SOTEA 
Reproduction: When an offspring is created (by asexual reproduction), a new node (shown in black) is added to 
the network through a connection to its parent (shown in gray). Each of the parent's connections are then 
inherited by the offspring (black dotted line) with probability Paoa followed by each of the inherited connections 
being lost by the parent (gray dotted line) with probability Premove- Unless stated otherwise, the parameters are set 
as Padd = Premove = 10%. This particular rule is loosely based on established models for genome complexification 
[203]. b) cellular GA Reproduction: When an offspring is created, a new node (shown in black) is added to the 
network and connected to its parent (shown in gray). One of the parent's connections is then transferred to the 
offspring, which allows the network to maintain a ring topology. 

It is worth noting that the reproduction rule represents the only difference between SOTEA 
and the cellular GA. With SOTEA, the addition of new nodes causes changes to the 
network topology (see Figure 5-2a). These changes to network structure turn out to be a 
crucial source of structural innovation needed for the self-organization of the SOTEA 
network. 

Competition Rule: The competition rule (described in Figure 5-3) is the same for SOTEA 
and the cellular GA. With this rule, a randomly selected individual tries to kill its weakest 
(i.e. least fit) neighbor. If instead, the selected individual is worse than its worst neighbor, 
then it will die. Structural changes from the competition rule involve removal of the dead 
individual and the transfer of its connections to the individual that survived. 
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Figure 5-3: Competition rules that change the population structure for SOTEA and the cellular GA. The details 
of the competition rule are the same for SOTEA and the cGA, however examples are given for both EA designs in 
this figure. Competition rule: The fîrst step is to select an individual at random. This individual then decides to 
compete for survival with its least fit neighbor. When these two individuals compete for survival such as the nodes 
shown in black and gray, the less fit individual is killed. The winning individual (shown in black) inherits all 
connections from the losing individual (shown in gray) that weren't already in the winning individual's 
neighborhood. Finally, the losing individual is removed from the network. 

This rule is particularly important because it allows for structural changes to depend on 

node states. Figure 5-4 is provided to help clarify this point. Notice that once a node has 

been selected for the competition rule, this node must decide who to compete with. The 

decision of who to compete with depends on which of the nodes is worst in the 

neighborhood. As a result, structural changes are always driven towards those nodes with 

the lowest fitness. Notice that if an individual decided to kill one of its neighbors at 

random then this decision would no longer depend on the node states and the network 

structural dynamics would no longer depend on (i.e. be coupled to) the population 

dynamics. 
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Figure 5-4: This figure shows how structural changes from SOTEA's competition rule depend on the fitness of 
individuals in the network. Starting with the network at the top, the individual represented by the black node 
must decide which of its neighbors it will try to kill. The networks at the bottom show what would happen if 
neighbor 1, 2, or 3 had been the least fit in the black node's neighborhood. Each of the choices creates a new 
structure that is different from the other choices. Notice that for the networks on the bottom, the black node has 
been changed to gray. This is to indicate that either the black node or the white neighbor could have won the 
competition (the structure is the same in either case). 

5.3.1.2 SOTEA and cGA State Dynamics 

To mimic the interaction networks of complex systems, it is important to recognize that 

state dynamics occurring on these networks play a significant role in the system's behavior. 

In complex systems, the states of a node are (by definition) dependent upon the states of 

neighboring (i.e. connected) nodes. Significant progress has taken place recently in 

understanding the state dynamics of complex systems. Some current directions of research 

include exploring the synchronization of component states [211], [212], robustness of 

dynamical expression [213], [75] and the coupled dynamics of states and network 

structures [214], [215], [216]. 

In the previous section it was pointed out that the competition rule forces changes in 

network structure to depend on the fitness (i.e. the state) of population members. As a 

consequence, network structural dynamics are driven by population dynamics. This section 

considers how a reverse coupling of state and structural dynamics could be achieved. In 
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other words, how can a node's state depend on the states of the other nodes it is connected 

to. 

Along these lines, a measure of fitness called Epistatic Fitness is defined to be sensitive to 

the fitness values of individuals in a neighborhood. The definition of epistatic fitness that is 

used in the SOTEA algorithm is provided in (5-9). 

^ . . k-Rank-\ (5-9) Epistatic Fitness = ^ 

In (5-9), Rank refers to the rank of an individual's objective function value among all of its 

k neighbors. Here the objective function is not a direct measure of fitness but only an 

intermediate value used to compute (epistatic) fitness. A rank of 1 indicates that the 

individual is better than all its neighbors, resulting in epistatic fitness taking on its 

maximum value of 1. A rank of k+\ indicates that the individual is worse than all its 

neighbors, resulting in epistatic fitness taking on its minimum value of 0. The term 

epistatic fitness is used in reference to the measure's similarity to genetic epistasis.^^ 

Using epistatic fitness (5-9) results in the fitness of an individual being dependent on the 

network structure. In other words, the fitness is contextual. Figure 5-5 provides an 

example to help clarify how (5-9) causes an individual's fitness to be dependent upon the 

network structure. 

In the Genome, genetic epistasis refers to interactions between genes which have a noticeable impact on the 
phenotype. Similarly, nodes in the population network will now interact in a way such that they impact each 
other's fitness values. 
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Figure 5-5: This figure shows how the epistatic fitness (Fitepi) defined by (5-9) causes the fitness of an individual to 
depend on its local neighborhood. Parts a-c of the figure show a population of five individuals defined on a 
network. The Objective Function Value (Obj) and epistatic fitness defined by (5-9) are provided in the top and 
bottom (resp.) of each node (i.e. individual). For the top two individuals in part a), an arrow is drawn towards the 
individual on the left to indicate it has the lower epistatic fitness. The top left individual's epistatic fitness is 2/3 
because its objective function value is better than 2 of its 3 neighbors. In part b), a new connection has been added 
to the network causing the epistatic fitness values for the two top individuals to now be equal. Finally in part c), a 
connection has been removed from the network, causing the top left individual to have an epistatic fitness that is 
now higher than the top right node. If the top two nodes were to compete for survival based on epistatic fitness, it 
should now be clear that the decision of who survives (i.e. who is more fit) will depend on the neighborhoods of the 
individuals. 

It is important to mention that an interesting situation arises when SOTEA is used with 
epistatic fitness. In this case, the fitness values depend on network structure (due to 
epistatic fitness) and structural changes depend on fitness values (due to the competition 
rule). The result is a coupling of structural changes to states plus a coupling of state 
definitions to structure. It is believed that such a dual coupling is unique among existing 
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network evolution models. The competition and reproduction rules that are used for 

SOTEA and the cellular GA are summarized in the pseudocodes in Figure 5-6. 

Pseudocode: Competition Rule (SOTEA and Cellular GA) 
-Select Individual (randomly from Parents + Offspring) 
-Compare selected individual with its least fit* neighbor 
-Better individual inherits all links of worse individual 
-Worse indi\idual is remov̂ ed from population (and node removed from network) 
•fitness is epistatic fitness 

Pseudocode: SOTEA Reproduction Rule 
-Add new node (offspring) to network 
-Link offspring and parent 
-Offepring inherits Parent links with probability Padd==01 
-If inherited. Parent loses link with probability Prénom 1 

Pseudocode: Cellular GA Reproduction Rule 
-Add new node (offspring) to network 
-Link offspring and parent 
-Offepring inherits one of Parent's links 
-Parent loses inherited link 

Figure 5-6: Pseudocode for SOTEA and cellular GA network dynamics. 

5.3.2 Experimental Setup 

This section presents the remaining aspects of the Evolutionary Algorithm designs as well 

as the test function generator used in these experiments. 

5.3.2.1 NK Landscape Test Function 

The NK landscape, originally developed by Kauffinan in [81], is a test function generator 

with a tunable amount of ruggedness and a tunable problem size. The following 

description of the NK landscape has been adapted from [217]. The NK landscape is a 

function/- ^ R where 5 = [0,1], Â  is the bit string length, and K is the number of bits 

in the string that epistatically interact with each bit. To help reduce confusion with other 

notation in this thesis, the Â  and ^ parameters of the NK landscape are relabeled as NNK and 

KNK (resp.) 
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Figure 5-7: An example of the fitness lookup tables for determining the fitness contribution/) from bit jc,. Given 
an NK landscape with TVyvjf =8 and K̂ k̂ ==2,/̂ (jĉ , Zî K Zẑ )̂ is the fitness contribution for X3. zP^ and Zẑ ^ are the 
two bits that epistatically interact with X3. As shown in the figure, they have been selected as the bits to the left and 
right of X3 (i.e. = X2 and - X4). The lookup table consists of K^k +1) entries, each associated with a 
unique combination of bit states for X3, z P and Z 2 . Each entry in the lookup table is a number between [0,1] 
drawn from a uniform distribution. 

Each bit Xi provides a fitness contribution / . : ^^^^^^ R whose value depends on the 

state of bit xi and the states of the Kî k bits interacting with x/. The Km bits interacting with 

Xi are labeled as . NK Landscapes are stochastically generated with the 

fitness contribution fi of bit xt being a number drawn from a uniform distribution in the 

range [0,1]. To determine the fitness contribution/, a lookup table is used such as the one 

shown in Figure 5-7. The final fitness value fix) is an average of each of the fitness 

contributions as defined below. For a given instance of the NK landscape, the maximum 

fitness value is not known however fitness values are bounded between [0,1]. 

-iV , 

(5-10) 

NK '=1 

In the original description [81], the Knk bits that epistatically interact with Xi are those 

adjacent to x, in the bit string as seen in Figure 5-7. In this work, each Zi is randomly 

selected to be any of the bits (other than JC/) and not just those adjacent or nearby. Notice 

that without epistatic interactions {Knk =0), the problem is completely decomposable and 
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trivial to solve. However, as Knk increases, so too does the phenotypic interdependence of 

genes. Genetic encoding of the NK landscape is simple with each bit Xi representing a 

binary gene and Nnk being the size of the genome. 

For most of these experiments Nm = 30, K^k = 14. These parameters have been selected 

based on a tradeoff between the problem size, degree of ruggedness, and memory costs of 

the model which are proportional to N x l ^ " " . More detailed descriptions of the NK 

landscape model and its properties can be found in [217], [218], [79]. 

5.3.2.2 Core EA Design 

A binary coded EA is used with population size N varying over the range [50,400]. Only 

asexual reproduction is considered via parent duplication plus mutation with a bit flip 

mutation rate of 2/Nnk for Nnk binary genes. Evolution occurs using a pseudo steady state 

updating strategy where the parent population of size N is randomly uniformly sampled 

(with replacement) N times to generate N offspring. The parents + offspring then compete 

for survival to the next generation. A high level pseudocode for each of the EA designs is 

provided below. 
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Pseudocode for all three EA designs: 
Initialize population 
If SOTEA or cellular GA: Connect individuals with ring topology 
Loop 

Loop N times 
Randomly select an individual i 
Generate offspring by mutation 
If SOTEA: apply SOTEA reproduction rule (Figure 5-6) 
If cellular GA: apply cellular GA reproduction rule (Figure 5-6) 

End loop 
Loop N times 

Randomly select an individual i 
If Panmitic GA: Select random neighbour 
If SOTEA or cellular GA: Select worst neighbour 
Eliminate worse of i or its chosen neighbour 
If SOTEA or cellular GA: assign links of loser to winner 

End loop 
Gen=Gen+l 

Until maximum number of generations 
A few comments should be made about the similarities and differences between the three 
EA designs. First, it should be noted that the cGA and SOTEA only differ in the 
reproduction rule used, which is described in Figure 5-6. In particular, SOTEA uses a 
reproduction rule that is loosely based on genome duplication and divergence while the 
cGA uses a rule that ensures the ring topology is maintained. 

The Panmictic GA also clearly differs from the distributed EA designs in that its population 
is defined on a static fully connected network. However there is another difference in the 
Panmictic GA that needs to be explained and justified. As demonstrated in the pseudocode 
above, the Panmictic GA uses a selection method that is similar to binary tournament 
selection (without replacement). This selection method was used in order to provide the 
Panmictic GA with a better chance of maintaining genetic diversity. If the Panmictic GA 
incorporated the same selection procedure as the distributed EA designs, this would be 
equivalent to truncation selection. Truncation selection was not used with the Panmictic 
GA because preliminary results (not shown) have indicated that this selection method 
causes poor performance and low genetic diversity when a Panmictic GA is run on the NK 
fitness landscape. 
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5.3.3 Results 

The experimental results start off by assessing the topological characteristics of the EA 

populations to determine if any of the EA designs are able to acquire the topological 

characteristics of complex biological systems. Experiments are also conduced to see if any 

other behavioral qualities of complex biological systems are acquired. One important 

quality that would be of great value in an EA design is the capacity to sustain diversity 

within a competitive environment. This section investigates whether any of the EA designs 

can sustain high levels of genetic diversity and also investigates whether this provides a 

benefit to algorithm performance. 

5.3.3.1 Topological Characteristics of Interaction Networks 

This section looks at the structural characteristics of the interaction networks for each of the 

EA designs and compares them to what is observed in complex systems. For each of the 

structural characteristics presented in Table 5-1, only the SOTEA network was found to 

have characteristics similar to that seen in complex systems. 

The last column in Table 5-1 highlights the fact that every individual has the same 

neighborhood size k in the Panmictic GA and the cellular GA, however k takes on a 

distribution of values for SOTEA. The distribution for k is fat tailed (closely fitting an 

exponential function), meaning that there is large heterogeneity in the neighborhood size. 

Keeping in mind that only neighbors can compete in a structured EA, the neighborhood 

size k impacts the selection pressure within the population. Since there is large 

heterogeneity in neighborhood sizes for SOTEA, it is reasonable to suspect that there will 

also be significant heterogeneity in selection pressure. 
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Table 5-1: Topological Characteristics for the interaction networks of the Panmictic GA, cellular GA, and 
SOTEA, For comparison, common topological characteristics of complex networks are also provided (taken from 
[198], and references therein). L is the characteristic path length, k is the node degree, kaye ¡s the average node 
degree, N is the population size, and /i is a correlation coefficient for the stated proportionalities. 

System L l̂ ave k distribution 
Panmictic GA 1 kave = N-l k = N-l 
cellular GA L ~ N kave 2 k = 2 
SOTEA L ~ l o g N 

(R^=0.969) 
kave ~ log log N 
(R^=0.989) 

Exponential 
(R^=0.991) 

Complex 
Networks 

L ~ l o g N kave « N Fat Tail (e.g. Power 
Law, Exponential) 

5.3.3.2 Genetic Diversity 

This section looks at the genetic diversity that is maintained in each of the EA designs. 

Measuring genetic diversity of the population is done in a straightforward manner. Genetic 

Diversity is calculated as the average Hamming Distance between population members 

divided by the average Hamming Distance between random points in solution space. For a 

single binary gene, two randomly selected gene values have a 50% chance of being 

different making the Hamming Distance between random individuals of Nm genes equal to 

Nnk /2. The Hamming Distance is defined in (5-11) as a summation of 1 minus the 

Kronecker Delta function d(Xî h, Xĵ h), The Kronecker Delta function has a value of 1 if 

= Xĵ h and 0 otherwise. Xî h and Xĵ h represent the gene for individuals i and j (resp.). 

h=\ 

N N 

(5-11) 

(5-12) 

N{N-\ N NK, 

Diversity results are shown in Figure 5-8 with each of the EA designs using epistatic 

fitness. Results are given for genetic diversity of the entire population as well as diversity 

for the 20% best individuals in the population. It is useful to measure diversity for the top 

20% because it is often very difficult to maintain diversity among the best individuals in a 

population. As expected, the results demonstrate that the Panmictic GA is not able to 

sustain genetic diversity, particularly in the top 20% of the population. The cellular GA has 

much higher levels of diversity although this is significantly reduced in the top 20%. 
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SOTEA exhibits sizeable improvements in diversity compared to the other EA designs, 

particularly for 20% best individuals in the population. 

Total Population Diversity 
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Figure 5-8: Genetic Diversity Results are shown over 4000 generations for Panmictic GA, SOTEA, and cellular 
GA. Diversity for each EA is an average over 10 runs with diversity calculated from (5-12) using the entire 
population (top graph) or the 20% best individuals in the population (bottom graph). Experiments are conducted 
on NK models with NNK =30, K^ =14. For each EA design the population size is set to 7V=100 and epistatic fitness 
is used as defined by (5-9). 

5.3.3.3 Performance Results 

Performance results are shown in Figure 5-9 with each of the EA designs using epistatic 

fitness. These results demonstrate that the Panmictic GA is not able to continually locate 
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improved solutions while SOTEA and the cellular GA both are able to make steady 

progress throughout the 5000 generations considered. However, SOTEA was found to 

have better performance than the cellular GA during the later stages of evolution. 
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Figure 5-9: Performance results are shown over 5000 generations for Panmictic GA, SOTEA, and cellular GA 
each operating with Epistatic Fitness. Performance for each EA is an average over 10 runs with performance 
calculated as the best objective function value in a run. Experiments are conducted on NK models with N^^K =30, 
Km =14. For each EA design the population size is set to A^=100 and epistatic fitness is used as defined by (5-9). 

5.3.3.4 Impact of Ruggedness 

This section considers the impact that landscape ruggedness has on genetic diversity of the 

population for each of the EA designs. Landscape ruggedness is varied by changing the 

KNK parameter of the NK model as shown in Figure 5-10. These results clearly show that 

as the NK landscape becomes completely smooth (i.e. KNK 0), each of the EA designs 

loses the capacity to sustain genetic diversity. However as ruggedness increases, each EA 

design approaches its own asymptotic limit indicating its maximum capacity for genetic 

diversity. Notice that the asymptote for SOTEA was not observed over the range of KNK 

values tested. Larger values of KNK were not considered due to computational costs. 

Knowing that a diversity measure equal to 1 approximates a uniform distribution in 

genotype space, the fact that SOTEA has diversity close to 0.8 among its top 20% 

individuals indicates that SOTEA is able to distribute the search process across many 

promising regions of genotype space. 
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Figure 5-10: Genetic diversity results are shown for different amounts of landscape ruggedness for the Panmictic 
GA, SOTEA, and the cellular GA. Diversity is an average of calculations using (5-12) that are taken at every 20 
generations (up to 1000 generations) from the 20% best individuals in the population. This measure then also 
averaged over 5 runs. Experiments are conducted on NK models with Nĵ ic =30, and K^k varying as shown in 
graph. Increasing K^k indicates increasing levels of landscape ruggedness. For each EA design, the population size 
is set to A^=100 and epistatic fitness is used as defined by (5-9). 

5.3.3.5 Impact of Epistasis 

All results presented thus far have considered EA designs with individual fitness defined by 

(5-9) (i.e. epistatic fitness). Figure 5-11 extends the analysis of population diversity for 

cases where the individual fitness is defined in the standard way (as the raw objective 

function value). Compared to the results with epistatic fitness (see Figure 5-8), both 

SOTEA and cellular GA have significantly less diversity and are hard to distinguish from 

the diversity present in the Panmictic GA. This result provides evidence that epistasis can 

play an important role in sustaining diversity in structured populations including in the 

cellular GA. 
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Figure 5-11: Genetic diversity results are shown over 4000 generations for Panmictic GA, SOTEA, and cellular 
GA each operating without epistatic fitness. Diversity for each EA is an average over 10 runs with diversity 
calculated from (5-12) using the entire population (top graph) or the 20% best individuals in the population 
(bottom graph). Experiments are conducted on NK models with Nj^^ =30, KJ^K =14. For each EA design, the 
population size is set to A'=100 and fitness is defined as the Objective Function Value. The results shown here for 
the Panmictic GA are identical to results shown in Figure 5-8. This is because the fitness rankings of individuals in 
a fully connected population are the same regardless of whether epistatic fitness (5-9) is used or the Objective 
Function Value is used. Because the fitness rankings are the same, the outcome of competitions will also be the 
same (hence no change to EA behavior). 
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5.3,3.5.1 Selection Pressure Patterns 

A better understanding of the impact of epistatic fitness on SOTEA is possible by observing 

its influence on the selection pressure within the SOTEA network. The networks in Figure 

5-12 are examples of SOTEA networks grown with and without epistatic fitness. 

To represent selection pressure in the system, each node is selected in a mock competition 

trial and arrows are drawn to its worst neighbor. Arrows are drawn in this way because, in 

SOTEA and the cellular GA, competition occurs by first selecting an individual and then 

having it compete against its worst neighbor. Arrows in black represent selection pressure 

directed away from the network center, while arrows in green indicate selection pressure 

that is not directed away from the center. 

For networks evolved with epistatic fitness, selection pressure points away from the 

network center but without epistatic fitness, selection pressure points both toward and away 

from the network center. It was also found that older and better fitness nodes tend to be 

located more towards the center of the network. Additional experiments are needed in 

order to better understand this behavior of SOTEA, however it is believed that the selection 

pressure patterns shown here ultimately play an important role in explaining why genetic 

diversity is maintained at such high levels in SOTEA. 

It should also be mentioned that the two networks shown in Figure 5-12 are taken after 100 

generations of SOTEA evolution. Typically the amount of time required for the self-

organization of network structure to take place was less than 100 generations however no 

attempt was made at determining the exact time when this transient was complete. Beyond 

100 generations, it was found that topological characteristics of the SOTEA network as 

well as network visualizations were very consistent. 
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Figure 5-12: Selective pressure patterns in the SOTEA network with (top) and without (bottom) epistasis. 
Selective pressure in the network is shown with arrows in black for pressure directed away from the network 
center and green for other directions of pressure. Selective pressure directions have only been calculated for nodes 
located near the network center. The arrows are drawn by selecting a node and drawing an arrow from this node 
to its worst neighbor. The worst fit neighbor is determined by epistatic fitness (5-9) for the top graph and by the 
Objective Function Value for the bottom graph. 

5.3.3.6 The Impact of SOTEA model parameters 

The SOTEA model includes parameters Padd and Premove for controlling how much the 

connections of an offspring are different from the connections of its parent. These 

parameters are conceptually similar to a mutation rate for network topology and they will 
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control the amount of structural innovation that is introduced to the network. This in turn is 

expected to impact the range of topologies that are possible during evolution. To get a 

sense of the impact of these parameters, Figure 5-13 presents networks that were evolved 

with different settings for Padd and Premove- As seen in Figure 5-13a, when no innovation is 

possible {Padd Premove = 0), the nctwork consistently takes on a structure that resembles a 

simple branching process. When both parameters are increased to 0.1, as seen in Figure 

5-13b, some clustering begins to emerge. However, when the parameters are increased a 

little more to 0.2 (see Figure 5-13b), the structure changes dramatically and is dominated by 

a single highly connected cluster. 

Figure 5-13 SOTEA networks evolved using different parameter settings for the reproduction rule. In the 
reproduction rule, a parent's connections are inherited by its offspring with probability Padd followed by each of 
the inherited connections being lost by the parent with probability Premove- Population interaction networks were 
evolved for a) Padd = Premove = 0.0%, b) Padd = Premove = 1 0 % , C ) PaOd = Premove = 20%. 
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5.3.4 Discussion 

5.3.4.1 SOTEA Guidelines 

It would be useful to be able to generalize the results shown in this work and develop a 

framework under which network dynamics would be beneficial to an EA population. 

Along these lines, several aspects of SOTEA have been highlighted as important features of 

the design. 

First, the most important precondition for network self-organization was to have changes in 

network structure be driven by the same forces that drive population dynamics; namely a 

fitness-based selection pressure. 

The SOTEA model also used a dual coupling between network states and structure which 

substantially improved the behavior of the system. In particular, network dynamics 

depended upon node states (due to the SOTEA competition rule) and node states depended 

upon network structure (due to the use of epistatic fitness). It is worth mentioning that the 

coevolution of structure and states is a topic of great significance to the study of complex 

networks. To this author's knowledge, a dual coupling between states and structure is not 

present in any other model of complex systems available in the literature. 

It is also interesting to note that selecting the worst neighbor in the competition rule is also 

similar to the extremal dynamics used in most models of self-organized critical systems as 

reviewed in [177]. By eliminating the worst individual in a neighborhood, SOTEA may 

actually be using an important driving force for some self-organizing processes in nature. 

Additional experimentation is needed to substantiate these claims. 

5.3.4.2 The NK Model as an optimization research tool 

There are valid concerns about the extent to which the NK model, as currently defined, 

represents real optimization problems of interest. One concern is that the topological 

properties of the NK landscape's gene interaction network are similar to a random graph 

and do not correspond with the topological properties of many real world systems. 
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As reviewed in this chapter, many complex systems have a number of similarities in their 

topological properties and these properties are also clearly non-random. Given an 

appropriate problem representation, it is speculated that this (approximate) universality 

could extend to a large and interesting class of optimization problems based on the fact that 

many problems of interest are large complex systems of interacting components. To test 

this simple idea, it would be necessary to develop course-grained network approximations 

of fitness landscapes for a number of real-world optimization problems. Real world 

problems could then be probed using tools developed in statistical mechanics in order to 

determine whether any common structural properties exist. 

Under the reasonable assumption that some topological properties are repeated in many real 

world problems, it should be possible to develop network evolution models which can 

evolve similar structures. Given the success of recent models in mimicking topological 

properties of complex systems, this task should not be too difficult. The result of these 

efforts would be a fitness landscape generator, similar in principle to the NK landscape, but 

one that has the capacity to generate problem instances with properties that are similar to 

real world problems. It is also worth mentioning that this suggestion has some similarities 

to the proposal by Kauffman for probing gene regulatory networks [219]. 

5.3.5 Conclusions 

This work was intended as an initial investigation into the self-organization of interaction 

networks for an Evolutionary Algorithm. Motivating this research was a desire to acquire 

structural characteristics of complex biological systems which are believed to be relevant to 

their behavior. In addition, this work also aimed to create an artificial system with a 

capacity for sustainable coexistence of distinct components within a competitive 

environment (i.e. sustainable diversity). 

Population diversity was not imposed upon the EA as is traditionally done but instead 

emerges in the system as a natural consequence of population dynamics. The 

environmental conditions which enable sustainable diversity are similar to what is observed 

in complex biological systems. These conditions involved a self-organizing interaction 

network and a contextual definition of individual fitness which was referred to as epistatic 
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fitness. In addition, high levels of diversity also required evolution to take place within a 

rugged fitness landscape. 

5.4 SOTEA Model II 

The previous SOTEA model demonstrated that fitness was a natural property for tying 

network structural dynamics to the evolutionary dynamics of an EA population. Different 

forms of fitness measurements were considered including a contextual form (called 

epistatic fitness) where an individual's fitness is defined by its own local environment. 

The next SOTEA model focuses on the emergence of additional structural properties that 

were not present in the first SOTEA model. One of these properties is modularity which is 

a structural feature that is heavily exploited in natural evolution. To encourage modularity, 

the second model uses both fitness and measures of community cohesion to drive network 

dynamics. The new SOTEA is also designed for use with multi-parent search operators 

which are standard in most EA designs and were missing in the first SOTEA model. 

Section 5.4.1 describes the new SOTEA model including new driving forces for network 

dynamics and new rules for implementing changes to network structure. Section 5.4.2 

presents the experimental setup including the remaining aspects of the core EA design. 

Results are presented in Section 5.4.3 and include both an analysis of performance and a 

comparison of topological properties between SOTEA and complex biological systems. 

The performance results provide evidence that the new SOTEA exhibits robust search 

behavior with strong performance on many problems. Discussion and conclusion sections 

finish the chapter in Sections 5.4.4 and 5.4.6. 

5.4.1 Model Description 

This section describes the new SOTEA network model used to couple the network topology 

to the population dynamics of an Evolutionary Algorithm. With the new model, network 

dynamics are driven by a measure of node fitness and by a measure of node modularity as 

described in Section 5.4.1.1. These dynamics are implemented by rewiring localized 

regions of the network as described in Section 5.4.1.2. 
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As previously mentioned, the network is described by an adjacency matrix J such that 

individuals / and j are connected (not connected) when Jij=\ (Jy=0). This work only deals 

with undirected networks such that Jy = Jp. The terms individual and node are used 

interchangeably to refer to individual members of the EA population situated within the 

population network. Also, the terms links and connections are used interchangeably to 

refer to directly connected nodes (i.e. individuals that are neighbors in the population). 

5.4.1.1 Driving Forces 

Two properties are used to drive network dynamics in this SOTEA model which are 

described in this section. 

5.4,1,1,1 k Adaptation 

For most real networks, the degree k is not constant (unlike what is seen in lattices) but 

instead takes on a distribution of values often fitting exponential or power law distributions. 

How nodes come to obtain k values that are higher than others depends on the system under 

study and could be historically motivated or could be motivated by some form of intrinsic 

node fitness. The former has been theorized to take place in the process of genome 

complexification which has been modeled primarily by the previously mentioned DD 

model. Other popular models such as the BA model and its associated mechanism of 

"preferential attachment" also appear to derive k distributions using an historical bias. An 

alternative is the "good get richer" concept [204] introduced in the fitness model in Section 

5.1.3.3, where individuals of high fitness are driven to obtain higher k. 

In this model, an adaptive set point Kset is used to define a node's desired number of links 

such that high fitness individuals in the population are encouraged to acquire a larger 

number of connections as defined in (5-13). Although conceptually similar to the work in 

[204], the node's fitness will have an ability to evolve due to the dynamics of the EA 

population which is something previously unexplored in network evolution models. The 

Kset parameter is defined in (5-14) as a quadratic function of rank which has a lower bound 

of KMin = 3 and an upper bound Kuax which must be set by the user. The Rank term in 

(5-14) refers to an individual's fitness based ranking with Rank = 1 being the best 

individual and Rank = A t̂he worst individual in the population. 
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Min 

/ / N -Rank 
Max ~ ^Mir 

^ / 

(5-13) 

(5-14) 

5,4,1,1,2 Weighted Clustering Coefficient 

As mentioned in the review of network properties in Section 5.1.2, many complex 

biological systems have a high level of modularity (as measured by the clustering 

coefficient) and a clear hierarchical structure. Networks with hierarchical structure are 

expected to have a clustering coefficient that is inversely related to a node's degree (i.e. c-k 

correlations). The second property used to drive network dynamics attempts to explicitly 

address both observations. 

Based on the previously stated driving force for k adaptation, it is expected that nodes in 

SOTEA networks with higher fitness will also have higher k. To encourage high levels of 

modularity as well as the inverse relationship between c and k (needed for hierarchy), 

network rewiring is driven to maximize a weighted version of the clustering coefficient as 

defined in (5-15). In this new version of the clustering coefficient, a connection's 

contribution to c is weighted to give less importance to connections involving nodes of 

higher fitness. The weight W for each connection is defined in (5-17) which alters the 

term of the clustering coefficient equation, as seen in (5-16). Notice the similarity between 

W and the intrinsic fitness measure which is defined in (5-8) and was first presented in 

[204]. 

. . . 2e; (5-15) 
Max C, =—7—^—r 

k,{k-\) 

7=1 k=\ 

Rank, X Rank, (5-17) 
Wjk = ^ 
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5.4.1.2 Mechanics of Network Rewiring 

The previous section described two properties which will act as driving forces for network 

dynamics. In particular, each node will be driven to obtain a specific value of k based on its 

fitness and defined in (5-14) and each node will be driven to maximize the value of a 

weighted clustering coefficient given in (5-15). To obtain these goals, changes to network 

structure must take place involving the addition, removal, and local transfer of links in a 

network. Although conceptually simple, these rules must satisfy a number of constraints in 

addition to and sometimes superseding the driving forces previously stated. These rules are 

described next and are also demonstrated in Figure 5-14. 

The "Add Link Rule" and the "Remove Link Rule" are two rewiring rules that have been 

created in order to allow the k value for each node to reach Kset-

Add Link Rule: Starting with a selected node Nl, a two step random walk is taken, 

moving from node Nl to node N2 to node N3. If Nl wants to increase its number of links 

{k^i < Kset) and N3 wants to increase its number of links ( f c < Kset) then add a link 

between Nl and N3. 

Remove Link Rule: For a selected node Nl with kNj > Kset, a two step random walk is 

taken, moving from node Nl to node N2 to node N3. If N3 is already connected to Nl 

(JN].N3 =1) and KNS > KSET then remove the connection between Nl and N3. Notice the 

presence of N2 with JN2,NI = JN2,N3 = 1 ensures that connections removed using this rule do 

not result in network fragmentation. 

The "Transfer Link Rule" allows for the improvement of clustering locally within the 

network. However, this rule is not allowed to result in net violations to k adaptation. 

Transfer Link Rule: For a selected node Nl a two step random walk is taken, moving 

from node Nl to node N2 to node N3. If fe < Kset, then the connection between Nl and N2 

is transferred to now be between Nl and N3 (i.e. JN],N2 = 1, JNJ,N3 = 0 changes to JNI,N2 = 0, 

=1 ) . To determine if the transfer will be kept, the local modularity is calculated 

using (5-15) for Nl, N2 and N3 both BEFORE and AFTER the connection transfer. If 

(p*̂ ^ + c^^ + c^^) increases after the connection transfer then the transfer is kept, otherwise 
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it is reversed. In this way connections are only added which strengthen the weighted 

clustering metric and don't cause a net increase in Kset violations. 

Transfer 

Figure 5-14 Adaptive Network Rules: A selected node N1 will attempt to add, remove or transfer its connections 
based on the satisfaction of constraints and the improvement of properties. Add Rule: The dotted line represents 
a feasible new connection in the network assuming nodes N1 and N3 both would like to increase their number of 
connections. Remove Rule: The gray dotted line represents a feasible connection to remove in the network 
assuming nodes N1 and N2 both have an excess of connections. Transfer Rule: The connection between N1 and 
N2 (gray dotted line) being transferred to now connect N1 and N3 (black dotted line) represents a feasible transfer 
assuming this action results in an overall improvement to local clustering. 

Since there are several constraints that the random walks (in the rewiring rules) must 

satisfy, up to a maximum of 10 random walks are conducted starting from N1 for each 

instance of rule execution in an attempt to satisfy the conditions. An upper bound on the 

number of walks is needed because there is no guarantee that a random walk exists which 

satisfies all conditions. 

5.4.2 Experimental Setup 

5.4.2.1 Algorithm Designs 

SOTEA: A high level pseudocode for SOTEA is provided below. The algorithm starts by 

defining the initial population P on a ring topology with each node connected to exactly 

two others (e.g. Figure 5-lc). For a given generation t, each node is subjected to both 

network rewiring rules and standard genetic operators. For a given node Nl, each of the 
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three network rewiring rules are executed (defined in Section 5.4.1.2). Afterwards, N1 is 
selected as a parent and a second parent N2 is selected by conducting a two step random 
walk across the network. An offspring is then created using the parents and a single search 
operator selected at random from the list in Table 5-2.̂ ^ The better fit between the 
offspring and N1 is stored in a temporary list Temp(7V /̂) while the network rewiring rules 
and genetic operators are repeated on each of the remaining nodes in the population. To 
begin the next generation, the population is updated with the temporary list. This process 
repeats until some stopping criteria is met. In this case, the stopping criteria is a maximum 
of 3000 generations. 

Pseudocode for SOTEA 
t=0 
Initialize P(t) (at random) 
Initialize population topology (ring structure) 
Evaluate P(t) 
Do 

For each N1 in P(t) 
Add LinkRule(Nl) 
Remove Link Rule(Nl) 
Transfer Link Rule(Nl) 
Select N1 as a first parent 
Select parent N2 by conducting a two step random walk from N1 
Select Search Operator (at random) 
Create and Evaluate offspring 
Temp(Nl) = Best_of(offspring, Nl) 

NextNl 
t=t+l 
P(t) = Tempo 

Loop until stopping criteria 

cellular GA: A cellular GA is also tested in these experiments which is identical to 
SOTEA except for two design changes. First, the cGA does not use any of the network 
rewiring rules (Add, Remove, Transfer) that are used in SOTEA. This means the cGA has 
a static ring topology. Also, when creating an offspring, the second parent N2 is selected 

No parameter tuning was attempted and all search operators are used with equal probability. 
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among all neighbors within a radius R of N1 using linear ranking selection. A high level 

pseudocode is for the cGA is provided below. 

Pseudocode for cGA 
t=0 
Initialize P(t) (at random) 
Initialize population topology (ring structure) 
Evaluate P(t) 
Do 

For each N1 in P(t) 
Select N1 as first parent 
Select N2 from Neighborhood(Nl,R) 
Select Search Operator (at random) 
Create and evaluate offspring 
Temp(Nl) = Best_of(offspring, Nl) 

NextNl 
t=t+l 
P(t) = Tempo 

Loop until stopping criteria 

Panmictic EA: SOTEA is also compared against a number of Panmictic EA designs. The 

core of the Panmictic EA is given by the pseudocode below. For this pseudocode, the 

parent population of size // at generation t is defined by P{t). For each new generation, an 

offspring population P\t) of size is created through variation (search) operators and is 

evaluated to determine fitness values for each offspring. The parent population for the next 

generation is then selected from P\t) and Q, where Q is subset of P{t). Q is derived from 

P{t) by selecting those in the parent population with an age less than K. 

Pseudocode for Panmictic EA 
t=0 
Initialize P(t) 
Evaluate P(t) 
Do 

PXt) = Variation(P(t)) 
Evaluate (P^t)) 
P(t+1) = Select(PXt) U Q) 
t=t+l 

Loop until stopping criteria 

Eight EA designs are tested which vary by the use of generational (with elitism) vs. pseudo 

steady state population updating, the use of binary tournament selection vs. truncation 
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selection, and by the number of search operators. Details are given below for each of the 

design conditions. 

Population updating: The generational EA design (with elitism for retaining the best 

parent) has the parameter settings (K=OO for best individual). The pseudo 

steady state EA design has the parameter settings N=X=fi, k^co. Unless otherwise stated, 

A^=50. Each experiment ran for 3000 generations meaning that 150,000 objective function 

evaluations are required to obtain a final solution in each experimental run. 

Selection: Selection occurs by either binary tournament selection (without replacement) or 

by truncation selection. Both selection methods are described in Chapter 2. 

Search Operators: For each EA design, an offspring is created by using a single search 

operator. Two designs were considered: i) a seven search operator design and ii) a two 

search operator design. For the seven operator case, an offspring is created by an operator 

that is selected at random from the list in Table 5-2 (no parameter tuning was attempted). 

For the two operator case, uniform crossover is used with probability = 0.98 and single 

point random mutation is used with probability = 0.02. Search operator descriptions are 

provided in Appendix B. 

Table 5-2: Names of the seven search operators used in the cellular GA, SOTEA, and selected Panmictic EA 
designs are listed below. More information on each of the search operators can be found in Appendix B. 

Search Operator Names 
Wright's Heuristic Crossover 
Simple Crossover 
Extended Line Crossover 
Uniform Crossover 
BLX-a 
Differential Operator 
Single Point Random Mutation 

Constraint Handling: Each of the engineering design case studies involve nonlinear 

inequality constraints meaning that solution feasibility must be addressed. Feasibility is 

dealt with by defining fitness using the Stochastic Ranking method presented in [64] as 

opposed to defining fitness by the objective function. The parameter settings for Stochastic 

Ranking were taken from the suggestions in [64]. 
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5.4.2.2 Engineering Design Case Studies 

Experiments for assessing SOTEA performance are conducted on six engineering design 

problems and six artificial test problems taken from the literature (described in Appendix 

A) and compared against cellular Genetic Algorithms and Panmictic Evolutionary 

Algorithm designs. 

The first four engineering design problems were chosen due to a prior difficulty in solving 

these problems using Panmictic Evolutionary Algorithms and the difficulty that others have 

had in solving these problems in general. Some of these test problems are small enough 

that mathematical programming techniques have been used to solve for the global optimal 

solution (problems 1, 2, and 3) v^hich has helped in the assessment of algorithm 

performance. In preliminary experiments conducted on the last two engineering design 

problems, some Panmictic EA designs were able to find solutions that were better than 

those reported in the literature. These problems were included in this work to see if 

additional improvements could be made using SOTEA. 

5.4.3 Results 

General Performance Statistics: This section attempts to draw general conclusions about 

the three EA design classes (Panmictic EA, cellular GA, and SOTEA) tested in these 

experiments. The first statistic shown in column two of Table 5-3 measures the percentage 

of runs that an EA design class was able to find the optimal solution (optimal defined as the 

best solution value found in all experiments). This percentage is an average over all test 

problems. The second statistic shown in column three measures the percentage of runs 

where an EA design class finds a solution that ranks in the top 5% of all solutions found in 

these experiments. The third statistic shown in column four is a value for the Mann-

Whitney U-test where the statistical hypothesis is that the given EA design class is superior 

to the other two EA design classes. The fourth statistic shown in column five measures the 

percentage of problems where the best EA design belonged to a particular design class^^. 

^̂  Notice that eight Panmictic EA designs were used in these experiments while only four cellular GA and 
four SOTEA designs were used. This should bias columns 3 and 6 of Table 5-3 to favor the Panmictic EA. 
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The sixth column looks at the percentage of problems where an EA design class was able to 

find the best solution at least one time. 

For each of the statistics in Table 5-3, SOTEA is found to be significantly better than the 

other EA design classes based on the 12 problems tested in these experiments. Particularly 

impressive are the results in column five which indicate that the SOTEA design is the best 

EA design in about 80% of the problems tested. 

Table 5-3 Overall performance statistics for the Panmictic EA, the cellular GA, and SOTEA. Column two 
measures the percentage of runs where the optimal solution was found. The optimal solution is defined as the best 
solution found in these experiments. Column three measures the percentage of runs where the solution ranks in 
the top 5% of solutions from all EA designs. In column four, "p" indicates the p value for the Mann-Whitney li-
test where the hypothesis is that the given EA design class is superior to the other two EA design classes. Column 
five measures the percentage of problems where the best EA design belonged to a particular design class. Column 
six measures the percentage of problems where an EA design class was able to find the best solution at least one 
time. Statistics in columns 1-3 are an average value over all test problems. 

EA Design % of runs w here EA U-Test % of problems wl lere EA EA Design 
found best was top 5% P was best design found best 

Panmictic EA 4.2% 5.1% 0.87 8.3% 16.7% 
cellular GA 9.4% 11.6% 0.50 12.5% 66.7% 
SOTEA 16.9% 25.2% 0.13 79.2% 83.3% 
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5.4.3.1 Engineering Design Performance Results 
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Figure 5-15 Performance results for the Pressure Vessel design problem are shown over 3000 generations for 
SOTEA with different settings of K^ax, and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 100 
generations. The global optimal solution has a fitness of 5850.38. 
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Figure 5-16 Performance results for the Alkylation Process design problem are shown over 3000 generations for 
SOTEA with different settings of K^^x, and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 1400 
generations. Several instances can be observed where fitness values momentarily decrease. This is the result of EA 
runs turning from infeasible to feasible where the new feasible solution is lower than the average performance for 
that EA design and generation. The global optimal solution has a fitness of 1772.77. 
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Heat Exchanger Network Design 
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Figure 5-17 Performance results for the Heat Exchanger Network design problem are shown over 3000 
generations for SOTEA with different settings of K ^ , and for cellular GA with different values of the 
neighborhood radius R. Performance for each EA is an average over 20 runs of the best fitness (objective function) 
value in the population. Infeasible solutions are neglected from the calculations, however all runs obtained 
feasibility within the first 100 generations. The global optimal solution has a fitness of 7049.25. 
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Figure 5-18 Performance results for the Gear Train Design design problem are shown over 3000 generations for 
SOTEA with different settings of K^ax', and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 50 
generations. The global optimal solution is unknown, however the best result previous to this work, is reported in 
(220] as 2.70E-12. 
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Figure 5-19 Performance results for the Tension Compression Spring Design design problem are shown over 3000 
generations for SOTEA with different settings of K^ax, and for cellular GA with different values of the 
neighborhood radius R. Performance for each EA is an average over 20 runs of the best fitness (objective function) 
value in the population. Infeasible solutions are neglected from the calculations, however all runs obtained 
feasibility within the first 50 generations. The global optimal solution is unknown, however the best result previous 
to this work, is reported in [221] as 0.01270. 
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Figure 5-20 Performance results for the Welded Beam Design design problem are shown over 3000 generations for 
SOTEA with different settings of jfiT̂ ô , and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
Infeasible solutions are neglected from the calculations, however all runs obtained feasibility within the first 50 
generations. The global optimal solution is unknown, however the best result previous to this work, is reported in 
[222] as 1.7255. 
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Figure 5-21 Final performance results for the Pressure Vessel (Left), Alkylation Process (Middle) and Heat 
Exchanger Network (Right) design problems are shown with box plots of performance data grouped by Panmictic 
EA, cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000 generations) over 
20 runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA designs (with 
different parameter settings for neighborhood radius R), the four SOTEA designs (with different parameter 
settings for Ajj/«), and the eight Panmictic EA designs described in Section 5.4.2.1. Insets are provided for the 
cGA and SOTEA box plots to highlight the difference in results between these two algorithms. Also notice that the 
Pressure Vessel and Heat Exchanger Network problems are Minimization problems while the Alkylation Problem 
is a Maximization problem. 

Results for Pressure Vessel Design Problem: For the Pressure Vessel design problem, all 

but one of the SOTEA algorithms outperformed all of the cellular GA designs as seen in 

Figure 5-15. Performance also tended to improve as network connectivity was reduced for 

both SOTEA and the cGA. In light of this trend, it is not surprising to see the performance 

of the suite of Panmictic EA designs performed very poorly on this problem as seen in 

Figure 5-21. Comparing results between Figure 5-15 and Table C-7 (in Appendix C), the 

best final solution for a Panmictic EA design is beaten by all SOTEA designs after only 300 

generations. 

Comparisons to work from previous authors highlights the strong performance of both of 

the distributed Evolutionary Algorithms. Of the 8 papers referenced in and including [223], 

only one other algorithm has been able to reach the objective function values obtained by 
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the distributed EA designs employed here. Performance comparison tables are provided in 

Appendix C. 

Results for Alkylation: For the Alkylation Process design problem, all but one of the 

SOTEA algorithms outperformed the cellular GA designs as seen in Figure 5-16. In this 

problem there was no clear trend between performance and network connectivity. It is also 

clear that many of the algorithms were able to fmd improvements throughout the run 

suggesting that convergence did not occur within the 3000 generations considered. Hence, 

it is possible that the conclusions drawn here would change if evolution was considered 

over a larger time scale. The Panmictic EA designs again performed relatively poorly on 

this problem as seen in Figure 5-21. 

Comparisons to work from previous authors highlights the strong performance of the 

distributed Evolutionary Algorithms. Of the stochastic search methods described in the 5 

papers referenced in [224] including their own Differential Evolution Algorithm, none 

reached the fitness values obtained by the distributed EA designs employed here. 

However, two aBB (Branch and Bound Non-Linear Programming) algorithms were cited 

which did fmd the global optimum. Performance comparison tables are provided in 

Appendix C. 

Results for HEN: For the Heat Exchanger Network design problem, all of the SOTEA 

algorithms outperformed the cellular GA designs as seen in Figure 5-17. Performance also 

tended to improve as network connectivity was increased for both SOTEA and the cGA. 

Such a trend seems to suggest that interaction constraints are not needed for this problem 

which makes the poor performance of the Panmictic EA designs (see Figure 5-21) a little 

surprising. Comparing results between Figure 5-17 and Table C-7 (in Appendix C), the 

best final result for a Panmictic EA design is beaten by all SOTEA designs after only 400 

generations. 

Comparisons to other work are less favorable in this case. For instance, in [224], they 

introduce a Differential Evolution Algorithm that can find the optimal solution 100% of the 

time in under 40,000 evaluations. None of the algorithms employed here were able to 

obtain that level of performance for this problem. In fact, the best algorithm (SOTEA with 

Kmax = 7) was only able to find the optimal solution 65% of the time in 150,000 evaluations. 
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To make a fair comparison to the results in [224], the results from this thesis were also 

analyzed at 40,000 evaluations and under these conditions only two of the SOTEA 

algorithms (and none of the cellular GAs) were able to find an optimal solution in that 

amount of time (with the optimal being found only 10% of the time). It is worth 

mentioning that this was one of the simplest design problems tested with only a marginal 

level of epistasis between parameters (e.g. see problem definition in Appendix A). 
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Figure 5-22 Final performance results for the Gear Train (Left), Tension Compression Spring (Middle) and 
Welded Beam (Right) design problems are shown with box plots of performance data grouped by Panmictic EA, 
cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000 generations) over 20 
runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA designs (with different 
parameter settings for neighborhood radius R), the four SOTEA designs (with different parameter settings for 
KMWC)^ and the eight Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are provided for 
the cGA and SOTEA box plots (with data shifted and plotted on a log scale) to highlight the difference in results 
between these two algorithms. All three design problems are Minimization problems. 

Results for Gear Train Design Problem: For the gear train design problem, there was no 

clear distinction in performance between the cellular GA and SOTEA. One of the cellular 

GA designs (R=\2) was found to have better average performance than any of the SOTEA 

designs as seen in Figure 5-18 however comparison of end performance between the 

cellular GA, SOTEA, and the Panmictic EA shows very little difference as seen in Figure 
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5-22. Of the two papers referenced in and including [220], one previous method has been 

able to find the solutions achieved in this work. 

Results for Tension Compression Spring Design Problem: For the tension compression 

spring design problem, all but one of the distributed EA designs were found to converge to 

nearly identical values as seen in Figure 5-19. The SOTEA design with XMBC=5 was found 

to have worse performance than the other designs. However, comparison of end 

performance as shown in Figure 5-22 shows SOTEA did have a better median performance 

compared to the cellular GA. 

Comparisons to work from previous authors highlights the strong performance of both of 

the distributed Evolutionary Algorithms. Of the three papers referenced in and including 

[221], no previous method has been able to find the solutions achieved in this work. 

Results for Welded Beam Design Problem: For the welded beam design problem, each 

of the distributed EA designs were found to converge to nearly identical values as seen in 

Figure 5-20. Both distributed EA designs strongly outperformed the Panmictic EA as seen 

in Figure 5-22. 

Comparisons to work from previous authors highlights the strong performance of both of 

the distributed Evolutionary Algorithms. Of the 3 papers referenced in and including [222], 

no previous method has been able to find the solutions achieved in this work. 
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5.4.3.2 Artificial Test Function Results 
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Figure 5-23 Performance results for the Frequency Modulation problem are shown over 3000 generations for 
SOTEA with different settings of K„iax, and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0. 
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Figure 5-24 Performance results for the error correcting code (ECC) problem are shown over 3000 generations 
for SOTEA with different settings of K^ax, and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0.067416. Results are shifted so that global optima is 0. 
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Figure 5-25 Performance results for the system of linear equations problem are shown over 3000 generations for 
SOTEA with different settings of K âxy and for cellular GA with different values of the neighborhood radius R. 
Performance for each EA is an average over 20 runs of the best fitness (objective function) value in the population. 
The global optimal solution is 0. 
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Figure 5-26 Performance results for the Rastrigin function are shown over 3000 generations for SOTEA with 
different settings of Kmax-, and for cellular GA with different values of the neighborhood radius R. Performance for 
each EA is an average over 20 runs of the best fitness (objective function) value in the population. The global 
optimal solution is 0. 
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Figure 5-27 Performance results for the Griewangk function are sliown over 3000 generations for SOTEA with 
different settings oiK^ax-, and for cellular GA with different values of the neighborhood radius R. Performance for 
each EA is an average over 20 runs of the best fitness (objective function) value in the population. The global 
optimal solution is 0. 

Figure 5-28 Performance results for Watson's function are shown over 3000 generations for SOTEA with different 
settings oiKn^^, and for cellular GA with different values of the neighborhood radius R. Performance for each EA 
is an average over 20 runs of the best fitness (objective function) value in the population. The global optimal 
solution is 0.01714. 
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Figure 5-29 Final performance results for the Frequency Modulation (Left), Error Correcting Code (Middle) and 
System of Linear Equations (Right) test functions are shown with box plots of performance data grouped by 
Panmictic EA, cellular GA, and SOTEA. The box plots represent final algorithm performance (after 3000 
generations) over 20 runs for all cGA, SOTEA, and Panmictic EA designs. This includes data from the four cGA 
designs (with different parameter settings for neighborhood radius R), the four SOTEA designs (with different 
parameter settings for A^a )̂, and the eight Panmictic EA designs described in Section 5.4.2.1. When necessary, 
insets are provided for the cGA and SOTEA box plots (with data plotted on a log scale) to highlight the difference 
in results between these two algorithms. All three design problems are Minimization problems. 

Results for Frequency Modulation: For the frequency modulation problem, SOTEA 

designs are found to be both the best and worst performers (compared to the cellular GA) 

throughout the optimization runs as seen in Figure 5-23. The larger distribution of SOTEA 

performance is also evident in the final performance results shown in Figure 5-29. Here it 

can also see that while both SOTEA and the cellular GA have much better median 

performance than the Panmictic EA, only SOTEA and one of the Panmictic EAs were able 

to find the global optimal solution. 

Results for ECC: For the error correcting code problem, both SOTEA and the cellular GA 

designs are able to make steady progress toward the optimal solution with little difference 

between the two designs as seen in Figure 5-24. However, in the final distribution of 
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results shown in Figure 5-29, only SOTEA and one of the Panmictic EAs were able to find 

the global optimal solution. 

Results for System of Linear Equations: For the system of linear equations test function, 

SOTEA designs overwhelmingly outperform the cellular GA as seen in Figure 5-25 and 

Figure 5-29. Also seen in Figure 5-29, both distributed EA designs were able to strongly 

outperform the Panmictic EA designs. 
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Figure 5-30 Final performance results for the Rastrigin (Left), Griewangk (Middle) and Watson (Right) test 
functions are shown with box plots of performance data grouped by Panmictic EA, cellular GA, and SOTEA. The 
box plots represent final algorithm performance (after 3000 generations) over 20 runs for all cGA, SOTEA, and 
Panmictic EA designs. This includes data from the four cGA designs (with different parameter settings for 
neighborhood radius R), the four SOTEA designs (with different parameter settings for KMOX)^ and the eight 
Panmictic EA designs described in Section 5.4.2.1. When necessary, insets are provided for the cGA and SOTEA 
box plots (with data shifted and plotted on a log scale) to highlight the difference in results between these two 
algorithms. All three design problems are Minimization problems. 

Results for Rastrigin: For the Rastrigin test function, SOTEA designs overwhelmingly 

outperform the cellular GA and the Panmictic EA as seen in Figure 5-26 and Figure 5-30. 

Although both distributed EA designs have significantly better median performance than 
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the Panmictic EA designs, there is some indication that the Panmictic EA can occasionally 

find better quality solutions than the cellular GA as seen in Figure 5-30. 

Results for Griewangk: For the Griewangk test function, SOTEA designs are very similar 

in performance to the cellular GA as seen in Figure 5-27. Both distributed EA designs 

perform better than the Panmictic EA designs as seen in Figure 5-30. However, from 

Figure 5-30 it also appears that SOTEA can occasionally fmd better quality solutions than 

the cellular GA. 

Results for Watson: For Watson's test function, SOTEA designs overwhelmingly 

outperform the cellular GA as seen in Figure 5-28. Both distributed EA designs perform 

better than the Panmictic EA designs as seen in Figure 5-30. 

5.4.3.3 Structural Analysis 

This section presents the structural characteristics of SOTEA and compares this with the 

cellular GA, the Panmictic EA, and values observed in complex biological systems. These 

results indicate that, unlike standard EA population topologies, SOTEA obtains several 

characteristics observed in complex biological systems. 

Methods for SOTEA Topological Analysis: Because network dynamics in SOTEA take 

place due to changes in node fitness and because node fitness is constantly evolving (due to 

population dynamics), the SOTEA network never fully converges to a stable structure. In 

order to determine topological characteristics, measurements are taken every 50 generations 

for SOTEA run 10 times over 1000 generations. To consider the impact of system size, 

topological properties for population sizes o i N = 50, 100 and 200 have been measured with 

results shown in Figure 5-31. Here it is seen that most properties show little dependency on 

the population size except for L which is generally smaller for smaller systems. Figure 

5-31 also indicates that the topological properties of SOTEA are sensitive to the setting of 

KMOX which is the only extra parameter of the SOTEA design. The topological property 

values for SOTEA with N=50 are also reported in Table 5-4, which are taken as an average 

over all KMOX settings considered in this work {KMOX = 3, 5, 7, 9). 
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Figure 5-31 Topological properties for SOTEA with different values of KMOX and population sizes of Â  = 50 (•), 
100(B), and 200( ). Characteristics include a) the characteristic path length (L), b) the correlation between c and 
k {c-k), c) the slope of the degree correlation (u), d) the average clustering coefficient c^^ and e) the degree average 
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Table 5-4: Topological characteristics for the interaction networks of the Panmictic EA, cellular GA, and SOTEA. 
SOTEA networks are averages taken over all settings for KMOX as described elsewhere. For comparison, common 
topological characteristics of several biological systems are also provided (taken from [196] and references 
therein). Characteristics include the characteristic path length L, the degree average have, the linkage distribution 
(k dist.), the average clustering coefficient Cave> correlation between c and k {c-k), and degree correlations {k-ksN). 
For the k distribution, / refers to the exponent for k distributions that fit a power law. Two values for y are given 
for the metabolic network and refer to the in/out-degree exponents (due to this being a directed network). Results 
for degree correlations are given as the slope T> of ÂTV VS k. N is the population size, and R is a correlation 
coefficient for the stated proportionalities. 

System N L kave k dist. Cave 
(Crand) 

c-k k-kNN 

Panmictic 
EA 

5 0 L = 1 kave = N - l k = N-l 1 ( 1 ) no no 

cellular 
GA 

5 0 L ~ N kave ~ 2 k = 2 0 ( 0 . 0 4 ) no no 

SOTEA 5 0 5 . 9 7 3 . 6 Poisson 0 . 6 8 7 
( 0 . 0 7 ) 

c = - 4 . 7 5 k D = 1 L 8 

Complex 
Networks 

Large L ~ l o g N kave « N Power Law, 
2<y<3 
(Scale Free 
Network) 

Cave 
^^Crand 

Power Law 
(Hierarchical) 

either 
D > 0 
or < 0 

Protein 2 , 1 1 5 2 . 1 2 6 . 8 0 Power Law, 
j = 2A 

0 . 0 7 
( 0 . 0 0 3 ) 

Power Law \ ) < 0 

Metabolic 7 7 8 7 . 4 0 3 . 2 Power Law, 
7 = 2 . 2 / 2 . 1 

0 . 7 
( 0 . 0 0 4 ) 

Power Law D < 0 

5,4,3.3,1 Topological Properties of SOTEA 

This section briefly comments on some of the topological properties of SOTEA and the 

relevance of these properties to algorithm behavior. 

Characteristic Path Length L: The total distance genetic material must travel across the 

network is always small as indicated by small L suggesting there is always a potential for 

any two nodes to influence each other over a relatively small time scale. However, it 

should be mentioned that a small path length does not necessarily mean strong interactions 

occur between different regions of the network (as suggested below). Additional studies on 

the population dynamics of these systems are needed to verify the impact of small L. 

Clustering Coefficient: The high value of the average clustering coefficient is potentially 

very important to population dynamics and algorithm behavior in general. For example, 

consider the impact of clustering on the random walks used for reproduction in SOTEA. 

Random walks starting from within highly clustered regions of the network are unlikely to 

travel outside the cluster (due to high levels of interconnectivity among neighbors). Such a 
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topological feature may act to reduce the amount of communication between clusters, a 

behavior reminiscent of the island model GA. 

Degree Average: The low value for have suggests the SOTEA network maintains a 

sparsely connected architecture with high levels of locality similar to that of the cellular 

GA. 

Degree distribution: k approximates a Poisson distribution which is not similar to the fat 

tailed distributions observed in complex systems or the distributions observed in the first 

SOTEA algorithm developed in Section 5.2. The distributions results suggest relatively 

little heterogeneity in k is present such that the level of locality is roughly uniform within 

the system. 

Previous studies, as reviewed in [197], have indicated that placing upper bounds on k can 

result in strong deviations from a power law. This SOTEA model introduces very tight 

constraints on the values of k (e.g. upper and lower bounds, quadratic set point) so k 

distribution results should not be surprising. Future work will try to allow for higher levels 

of connection heterogeneity in the system, which is expected to become increasingly 

relevant to system behavior as larger population sizes are considered. 

Degree-Degree correlations: The assortative character of the SOTEA networks {p > 0) 

suggests high fitness nodes are driven to preferentially interact with other high fitness 

nodes. Such a population topology might provide a natural robustness to the search process 

allowing for the coexistence of explorative and exploitive behaviors within a single system. 

Clustering-Degree correlations: The linear relation between c and k suggests that some 

marginal levels of hierarchy exist within the network however its presence is unlikely to 

persist with larger population sizes. In the current SOTEA design, it is not clear what role 

(if any) that hierarchy would play in algorithm behavior however this could change if nodes 

were able to take on a diverse range of behaviors and actions. 

5,4.3,3,2 SOTEA Scaling 

It is also helpful to analyze networks visually to understand network structure. Figure 5-32 

shows SOTEA networks after 400 generations of evolution with varying population sizes 

(A^=50, 100, 200) and KMOX = 7. Figure 5-33 shows the same conditions but with KMOX = 5. 
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One very noticeable consequence of the SOTEA model is that many nodes are found in 

four neighborhood clusters and in particular, there appears to be a "kite" motif present in 

the network.^^ It is expected that this is in part due to the degree lower bound of K^m = 3 in 

the SOTEA model. 

In the network visualizations, node sizes are adjusted to reflect individual fitness with 

larger nodes representing individuals with better fitness. It was disappointing to see that 

higher fitness nodes did not clearly take network hub positions even though the network 

rewiring rules encourage high fitness nodes to acquire more connections and be less 

attracted to clusters. Also, one can notice that as population size increases, residual ring-

like structures can still be observed in the network, even after 400 generations. This 

indicates that initial topological bias continues to impact the network structure over long 

periods of time for larger systems. It is suspected that this structural bias can significantly 

impact algorithm behavior which may be investigated in future work. 

A motif refers to an over-represented sub-graph within a network. In other words, there exists a structural 
pattern within the network that is repeated at a frequency that is unlikely to occur by chance alone. 
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Figure 5-32 SOTEA Network Visualizations with KMOX = 7 for population sizes Â  = 50, TV = 100, and N = 200. 
Network visuals were created using Pajek Software. 



Chapter 5: Self-Organizing Topology Evolutionary Algorithms 

Figure 5-33 SOTEA Network Visualizations with Km„x = 5 for population sizes TV = 50, TV = 100, and N = 200. 
Network visuals were created using Pajek Software. 

Another interesting but potentially worrisome attribute of this SOTEA model can be 

observed in the network with A^=200 in Figure 5-33. Here one can see that, for the lower 

half of the network, the nodes are generally much larger indicating they are of relatively 
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higher fitness than the upper section. Under such conditions, the use of a global fitness 

ranking to control Kset in the SOTEA algorithm could cause entire regions of the network to 

become highly connected while leaving the rest of the network with very little connectivity. 

The possibility of this situation occurring could be mitigated by replacing the global fitness 

measure with one that is locally defined. This would not impact selection pressure since 

selection is based on local pair-wise comparisons and not based on the magnitude of fitness 

values. Furthermore, a localized fitness measure would remove the only global information 

currently used in SOTEA which would make SOTEA more efficient in physically 

distributed implementations of the algorithm. 

5.4.4 Discussion 

SOTEA Network Model: The model for network dynamics used in this SOTEA 

algorithm was developed using several guiding principles. First, it was desired to have 

topological changes be driven by, and enacted on, local regions of the network. This not 

only occurs for many real-world complex systems, it also is a prerequisite for physically 

parallel implementations of the algorithm. This led to the use of network rewiring rules 

based on short random walks as well as node property values which are almost completely 

derived from local information (except for fitness ranking). 

Second, it was recognized (in both SOTEA models) that for many complex systems, self-

organization is at least partly driven by component fitness or attractive forces between 

system components. Clearly the concept of fitness also plays an important role in 

optimization. This made an individual's fitness a natural choice for coupling the structural 

dynamics of the network to the dynamics of the EA population. 

Distributed EA research: A large amount of research efforts have been devoted to the 

study of distributed Evolutionary Algorithms. These efforts include the study of fine-

grained (e.g. cellular grids), coarse-grained (e.g. island models), and hybrid structures (e.g. 

hierarchical). The highly modular topology of the second SOTEA model combined with 

short random walk interactions within the system could create fuzzy or partial islands 

within the system where interactions within a cluster are much more likely to occur 

compared to interactions between clusters. Quantifying the prevalence of this behavior 
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could be accomplished by calculating the characteristic residence time of random walkers 

on local regions of the network using methods outlined in Section 2.3 in [225]. Assuming 

that clusters can become fairly isolated from other clusters, this would allow for a more 

nature-inspired approach to the integration of fme-grain and coarse-grain structures within 

an EA population (as opposed to explicitly defined hierarchical topologies). 

5.4.5 Future Work 

There are other issues which have not been addressed here and will be left to fiiture work. 

One issue is that the network models are not directed so that information can flow in any 

direction across the network. This is often not the case for many biological systems due to 

thermodynamic law and other irreversible processes. 

It would also be interesting to investigate whether the structural bias in the initial 

population changes the algorithm's performance sensitivity to initial conditions. It is 

speculated that the combination of genetic bias and structural bias (in the initial population) 

could offer an extended range of flexibility to the algorithm. For example, combining these 

two features could force interactions between certain initial genotypes to take place with a 

frequency that is much greater than would occur under other circumstances. In other 

words, this provides some control over which regions in solution space are able to initially 

interact. Combining this with a highly modular adaptive network like SOTEA could also 

allow for some control over the timing of fiiture interactions between genetic material. In 

short, optimizing structural bias in SOTEA could provide some limited capacity to control 

not only which points in solution space are able to interact but also the timing in which 

these interactions occur. This might also provide a viable path for mitigating the effects of 

deleterious (e.g. deceptive) attractor basins within a particular fitness landscape. 

Finally, it should be mentioned that network models currently exist (e.g. see [190]) which 

can acquire the structural characteristics of complex systems without the presence of 

driving forcing that encourage these characteristics to emerge (e.g. the weighted clustering 

coefficient in SOTEA). SOTEA would be significantly improved if it could allow for the 

emergence of important topological properties using a simplified model while still 

exhibiting robust performance on optimization problems. 
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5.4.6 Conclusions 

The Self-Organizing Topology Evolutionary Algorithm or SOTEA is a distributed EA 

containing a population structure that coevolves with EA population dynamics. With the 

population defined on a network, rules are used to modify the network topology based on 

the current states of the population. 

SOTEA Network Model: The second SOTEA model presented in this chapter was 

designed with an emphasis on locality of network information and locality in network 

dynamics. Network dynamics were driven by i) an adaptive connectivity where higher 

fitness individuals were encouraged to obtain higher levels of connectivity and ii) an 

adaptive definition of community which attempted to encourage high levels of clustering in 

nodes of low fitness. 

To this author's knowledge, this model was unique among network models in that it 

considered two driving forces instead of just one. Also, this SOTEA model was the first 

network model which evolves due to a dynamic state value of the nodes (i.e. fitness). The 

dynamics of node fitness were a natural consequence of the dynamics of the EA population. 

Topological Analysis: The second SOTEA model allows for a self-organization of 

population network topology resulting in a large degree of clustering, small characteristic 

path length, and correlations between the clustering coefficient and a node's degree. Each 

of these characteristics are similar to what is observed in complex biological systems. 

However, a number of topological properties observed in complex systems were not 

attained in the current model including properties achieved in the first SOTEA algorithm 

such as a fat-tailed degree distribution. Future work will attempt to address these 

shortcomings as well as attempt to create a clearer fi-amework for the integration of 

multiple driving forces in an adaptive network. The network rewiring rules were also 

developed in a somewhat ad hoc fashion and future work will look to develop a more 

intuitive framework for structural dynamics. 

Performance: A number of engineering design problems and artificial test functions were 

selected to test the effectiveness of the new SOTEA algorithm against another distributed 

design, the cellular GA. Results indicate the SOTEA algorithm was able to provide 
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improved performance and more consistent results compared with the cGA. Both of the 

distributed Evolutionary Algorithms strongly outperformed a suite of eight other 

Evolutionary Algorithms tested. 
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Chapter 6 Summary of Findings 

The primary goal of this thesis was to improve the performance and general robustness of 

Evolutionary Algorithms using principles inspired by nature. Contributions from this thesis 

include: i) reducing the practical difficulties associated with designing an Evolutionary 

Algorithm by developing a more effective procedure for adapting EA design parameters, ii) 

determining the aspects of EA design which impact population dynamics and enable 

parallel search behavior, and iii) mimicking the structural self-organization in complex 

biological systems as a means to obtain advanced behaviors and improved performance in 

distributed Evolutionary Algorithms. 

Designing an Effective Adaptive Process: Chapter 3 proposed mechanisms for making a 

more effective adaptive process for supervisory control of EA design parameters. To make 

the adaptive process more effective, two modifications were proposed. The first 

modification was to use an empirical measure of an individual's importance on future 

population dynamics instead of estimating its importance through the use of fitness 

measurements. The second modification was to reduce the influence of non-informative 

interactions between the adaptive system and its environment. This was deemed to be 

particularly relevant due to evidence presented in this chapter that non-informative 

measurements dominated the data received by the adaptive system. This second 

modification to the adaptive system was accomplished by using statistical arguments that 

quantified the importance of measurements. 

Not only did the new adaptive method outperform all other methods on the majority of 

problems tested, it was also found to be much more robust compared to the other adaptive 

methods. In particular, it's performance was not strongly sensitive to the class of problems 

(artificial test functions vs. engineering design problems) that it was tested on. 

The impact of EA design on population dynamics: Chapter 4 started with the goal of 

understanding how EA design factors can influence EA population dynamics. It was 

concluded that the probability distribution of an individual's impact on population 

dynamics fits a power law regardless of almost all experimental conditions. This result 
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indicates that a small number of individuals are capable of driving EA population dynamics 

while most other individuals have only a small impact. The existence of power law 

deviations in the probability of large impact sizes (i.e. large ETV) was seen as an indicator 

that such systems were not capable of being driven by single individuals and instead were 

able to exhibit higher levels of parallel search behavior. 

The most significant factor that enables parallel search behavior was the topology of the EA 

population. As the population topology came closer to approximating a Panmictic 

population, the system became increasingly driven by only a select few individuals. On 

the other hand, as spatial restrictions were increased in the population, single individuals 

were no longer capable of dominating the dynamics of the entire population. It is 

speculated that this could account for the strong and robust performance gains that have 

been repeatedly observed in distributed Evolutionary Algorithms over the years. Another 

factor which was found to create a smaller degree of parallel search behavior was the 

introduction of completely randomized new individuals into an EA population. 

The Self-Organization of Interaction Networks for EA population topology: The aim 

of Chapter 5 was to create EA populations with topological features that are similar to those 

observed in complex biological systems. It was speculated that mimicking this aspect of 

nature could provide additional improvements to algorithm behavior compared to those 

already observed in distributed EA designs. This chapter has demonstrated that the self-

organization of population topology can induce a number of interesting new behaviors in an 

EA and has the potential to significantly improve its performance on challenging 

optimization problems. It is hoped that this work will inspire others to investigate the use 

of network models for the self-organization of population structure and that these research 

efforts will help to narrow the gap between EA and natural evolutionary processes. 
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APPENDIX A TEST FUNCTION DEFINITIONS 
A. 1 Artificial Test Functions 
Table A-1 Artificial Test Function Characteristics Table. Epi: Epistasis or Tight Linkage (i.e. Non-Separable), 
Con = Continuous, n = problem dimensionality (* indicates /i is a parameter of the problem), Ref. = reference to 
problem description used, MM = multimodal fitness landscape, Params = parameters of the problem. 

Name Epi Con n MM Ref. Params. 
MTTP Yes No * Yes [1351 « = 200 
ECC Yes No * Yes [135] n^M*N 

M=24 
N= 12 

MMDP Yes No • Yes [226] n = 6k 
k=20 

Frequency Modulation Yes Yes 6 Yes [56] 
NK Landscape varies No * Yes [81] n^N 

N, K varies 
Rosenbrock Yes Yes • No [56] n = 2 
Rastrigin No Yes * Yes [56] n^20 
Schwefel No Yes • Yes [227] « = 20 
Griewangk Yes Yes * Yes [56] « = 1 0 
Bohachevsky's Yes Yes 2 Yes [56] 
Watson's No Yes 5 No [56] 
Colville's Yes Yes 4 Yes [56] 
System of linear 
equations 

No Yes 10 No [56] 

Ackley's Function No Yes 25 Yes [56] 
Neumaier's Function #2 No Yes 4 Yes [228] 
Hyper Ellipsoid No Yes • No [83] « = 30 

A.1.1 Minimum Tardy Task Problem (MTTP) 

The Minimum Tardy Task Problem (MTTP) [229] is a task scheduling problem where the 

objective is to execute as many tasks as possible within the time constraints and precedence 

relations. Each task TjJ e {1,2,...,«) has a time length Lj (time needed to execute task), a 

deadline Dj (before which the task must be completed), and a weight Wj (indicating the 

penalty cost from not completing the task). L, A and Wall take on positive integer values 

and the scheduling tasks are executed in sequential order. The scheduling problem is then 

to fmd a subset S of 7 which executes within the allocated time and minimizes the sum of 

all penalties for tasks that were not completed. A penalty term P is added for infeasible 

solutions involving tasks that are started but not finished within the allocated time. P is 

given as the sum of all task weights thereby ensuring that infeasible solutions are assigned a 

worse fitness than feasible solutions. 



MinF{x)=P+ Y j ^ j 
JeT-S 

JsT 

X, e (0,1) 
Candidate schedules S are represented as a binary vector x indicating which tasks are to be 
executed. A candidate schedule is therefore the set of all tasks where Xj=\. As enforced by 
the problem generation method, tasks are ordered in the candidate schedule by their 
deadlines and are also executed in that order. (This is easy to see since Dj as defined below 
is a monotonically increasing function of j). The size of the problem n can be controlled 
using the problem generation method specified below (and taken from [230]) where « is a 
multiple of 5. 

Dj = 

Problem Generation Method 
4 if J>5 
3 j else 
D.+lAm if j>5 
5 j else 
WXm + i) if j>5 

60 if j = l 
40 if y = 2 
7 if j = i 
3 if J = 4 
50 if j = 5 

/ = ( /Mod5)+1 , m=j/5, j=\,...,n 
Optimal Solution = In 

Wj = 



MTTP as implemented in Code 
Function F(x) 'xj jG{l,2,...,n) ' parameters to optimize 

= 0 ' start time for a task 
For j = 1 To n 

If Xj = 1 Then 'Is task being executed? 
If (T® + I^)< Dj Then 'can we complete task in time? 

T° = r + Lj 
Else 

Infeasible = True 
Cost = Cost + Wj 

End If 
Else 

Cost = Cost + Wj 
End If 

Next i 
P = sum(Wj) 

If Infeasible Then Cost = Cost+ P 
F(x) = 2n-Cos t 'Fopt = 0 

A.1.2 Error Correcting Code Problem (ECC) 

The Error Correcting Code Problem (ECC) [231] is a problem where we try to minimize 

the error in reading coded messages (error due to input noise) by maximizing the distance 

between code words in the code parameter space. Given a set of M binary code words, 

each of length N, the objective is to maximize the Hamming distance d between any pair of 

code words. 

MaxF{x)=^ l 

Z I ^ 
X, €(0,l), / G{1,...,«} 
n = M*N 

Optimal (for M=24, N=\2,F= 0.067416) 



A.1.3 Massively Multimodal Deceptive Problem (MMDP) 

i=\ 

6 

m=\ 

Y= {yi, y2, ys, y4, ys, ye) = (1, 0, 0.360384, 0.640576, 0.360384, 0, 1) 
X, g(0,1), Z 6 {!,...,«} 

n = 6k 

A.1.4 Frequency Modulation 

The problem is to specify six parameters of the frequency modulation sound model 

represented byXO-

Original Parameters: X= (xj, X2, xs, X4, X5, xe) = {aj, wj, a2, W2, as, W3) 
100 

M m F i x } = j ; ^ ( y i X , t ) - y { X „ t ) y 

t=Q 

y(X,t) = x^ smipc^tO + X3 sin(x4/6' + X5 sin(x6/^))) 

e = 
' i T l ^ 

100 
Xo = (1.0, 5.0, 1 .5 ,4 .8 , 2 .0 ,4 .9 ) 

yiwuy 
-6.4<Xi <6.35, /g{1,...,«} 

X/ G R, n = 6 

Optimal (F, xi, X2, X3, X4, xs, xe) = (0, 1.0, 5.0, 1.5, 4.8, 2.0, 4.9) 

A.1.5 Quadratic Function 
M i n F { x ) = x l + x l +JC3 

-5.12 <Xi <5.12, /G{1,...,«} 
X/ G R, « = 3 

Optimal (F, xi, X2, X3) = (0, 0, 0, 0) 



A.1.6 Generalized Rosenbrock's Function 

Min = f (l - x^ f + ( x , - I f ) 
i=l 

- 2 < X j < 2 , ZG {!,...,«} 
XiG R, n = 2 

Optimal {F, xi, xi) = (0, 1.0, 1.0) 

A.1.7 Rastrigin's Function 

Min F{X) = 10« + ̂  {x^ - cos(2;rc,)) 
i=\ 

-5.12 <Xi <5.12, ze{l,...,«} 
X/ e R, « = 20 

Optimal(i^, 0,...,0) 

A.1.8 Schwefel's Function 

Min F{X) = x{i)Sin[Abs{x{i)Y) 
/=i 

-500<Xi <500, /g{1,...,«} 
JC/ G R, « = 20 

Optimal (F, Xi, ...;£;„) = (0, 0,...,0) 

A.1.9 Griewangk's Function 
/ \ 

Min F(X) = Y ^ f - t l 
^ 4000 t i i f 

-600 <x^ <600, /G{1,...,«} 
x/6 R, «=10 

Optimal (F, Xi, ...Xrd = (0, 0,...,0) 

vV/y 



A.1.10 Bohachevsky's Function 
Min F{X)^xI +1x1 -0.3cos(3;cCi)cos(4;zx2)+0.3 
-50<Xi <50, 
jc/ e R, n = 2 

Optimal {F, Xi, X2) = (0, 0, 0) 

A.1.11 Watson's Function 

30 

Min F{X) = Yu 
/=i 7=1 

X 
\2 

- 1 

z - l a. = 
' 29 

-2<Xi<2 , /E {!,...,«} 
X/ e R, n = 6 

Optimal {F, Xi,..., Xn) = (2.288E-3, -0.0158, 1.012, -0.02329, 1.260, -1.513, 0.09928) 

A.1.12 Colville's Function 

Min F { X ) = 100(x2 - xf + (l - + 9o(x4 - x ] + (l - + 

10.l((x2 -1)' +{x, -1)')+19.8(^2 -1X^4 -1) 
-10<Xi<10, /g{1,...,«} 
X/ G R, n = 4 

Optimal {F, Xi,..., = (0, 1,..., 1) 



A.1.13 System of linear equations 

;=1 y=l 

Ax = bis given by: 

5 4 5 2 9 5 4 2 3 
9 7 I 1 7 2 

^ 6 6 
3 1 8 6 9 7 4 2 1 
8 3 7 3 7 5 3 9 9 
9 5 1 6 3 4 2 3 3 
1 2 3 1 7 6 6 3 3 
1 5 7 8 1 4 7 8 4 
9 3 8 6 3 4 7 1 8 
8 2 8 5 3 8 7 2 7 
2 1 2 2 9 8 7 4 4 

- 9<x, ¿9, - { 1 

40 
50 
47 
59 
45 
35 
53 
50 
55 
40 

jc/e R, «=10 

Optimal {F, Xi,..., x„) = (0, 1,..., 1) 

A.1.14 Ackley's Function 

M/>2F(x) = -20exp 
/ \ 

n f 

-exp 
V 

n 

+ 20 
V /=i 

-32.768 <x, <32.768, zg{1,...,«} 
JC/ G R, n = 15 

Optimal {F, Xi,..., Xn) = (0, 0,..., 0) 

A.1.15 Neumaier's Function #2 

Original definition 

Mm F{x)=Y, 
¿=1 V '=1 y 

b = (8, 18, 44, 114) 
0<Xi<« , z e{l, 
X/ G R, « = 4 

Optimal {F, X], X2, xj, X4) = (0, 1, 2, 2, 3) 



Modified definition (used in all experiments) 

Min 
A : = l 

k f n \ 

;=1 V i=l y 
b = (8, 18,44, 114) 
0<Xi<«, ze {!,...,«} 

X/ G R, « = 4 

Optimal unknown 

A.1.16 Hyper Ellipsoid 

Min 
/=1 

Xi G R, « = 30 

Optimal {F, xi,..., Xn) = (0, 0,..., 0) 

A.2 Engineering Design Test Problems 
A.2.1 Turbine Power Plant 
Min F{X)=XJ^ 

g, (X) = 0.8008 + 0.203 + 0.000916^2 
g^ (X) = 0.7266 + 0.2256^2 + 0.000778x2 
/ i (X) = 1.4609 + 0.151 86jCI +0.00145xf 
/2 (X) = 1.5742 + 0.163 \x, + 0.001358^; 

Subject to: 
BFG = {\-x,)f,+{l-x,)g,< 10.0 
(18, 14, 0, 0) < (xj, X2, X3, X4) < (30, 25, 1, 1) 
JC/ G R, n = 4 

Optimal Solution (F, xj, X2, X3, X4) = (3.05, 30, 20, 0, 0.58) 



A.2.2 Alkylation Process 

Figure A-1 Simplified diagram of an alkylation process (recreated from [224]) 

The alkylation process design problem, originally defined in [232], has the goal of 

improving the octane number of an olefin feed stream through a reaction involving 

isobutene and acid. The reaction product stream is distilled with the lighter hydrocarbon 

fraction recycled back to the reactor. The objective function considers maximizing alkylate 

production minus the material (ie feed stream) and operating (ie recycle) costs. Design 

parameters all take on continuous values and include the olefin feed rate xi (barrels/day), 

acid addition rate (thousands of pounds/day), alkylate yield X3 (barrels/day), acid strength 

X4 (wt. %), motor octane number xj, external isobutene to olefin ratio xe, and F-4 

performance number x?. 



MCIXF{X)^\.1\5X^ +0M5X,X^ +4.0565X3 +IO.OX2 -0.063X3X5 

Subject to: 

gi(x)=0.0059553571x6'x, +0.88392857x3 -0.1175625x6xi-Xj < 0 
g2(^)=1.1088x, +0.1303533xjx, -0.0066033x^x6 
g,{x) = 6.66113269x1 +172.39878x5 -56.596669x, -m.20592x, -10000 < 0 

g4(x)= 1.08702x6 +0.32175x4 -0.03762x6 -X5 + 56.85075 <0 
g5(x) =0.006198X7X4X3 +2462.3121x2 -25.125634X2X4 -X3X4 <0 
g6(x)= 161.18996X4X3 +5000X2X4 -489510x2 -X3X4XJ <0 
g, (X) = 0.33x7 - + 44.333333 < 0 
gg (x)=0.022556x5 - 0.007595x7 -1.0 < 0 
g, (X) = 0.00061x3 - 0.0005xi -1.0 < 0 
gio(x)= 0.819672xi -X3 +0.819672 < 0 
gii(X) = 24500.0x2 - 250.0X2X4 - X3X4 < 0 
gi2(x) = 1020.4082X4X2 +1.2244898X3X4 -100000x2 ^0 
gi3 (X) = 6.25x^x6 + 6.25xi - 7.625x, -100000 < 0 
gi4(x) = 1.22x3 +1-0 <0 

(1500, 1, 3000, 85, 90, 3, 145) < (x/, X2, xj, X4, X5, xe, xj) < (2000, 120, 3500, 93, 95, 12, 
162) 
X/ G R, n = l 

Optimal Solution {F, x/, X2, X5, X4, xj, x̂ , x?) = (1772.77, 1698.18, 53.66, 3031.3, 90.11, 95, 
10.5, 153.53) 



A.2.3 Heat Exchanger Network Design 
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Figure A-2 Diagram of the Heat Exchanger Network Design Problem involving 1 cold stream that exchanges heat 
with three hot streams. Parameters to optimize include heat exchange areas {xj, X2, a:̂ ) and stream temperatures {X4, Xs, X6, X7, Xg). 
The Heat Exchanger Network design problem, originally defined by [233], has the goal of 
minimizing the total heat exchange surface area for a network consisting of one cold stream 
and three hot streams. As shown in Figure A-2, there are eight design parameters 
consisting of the heat exchanger areas (x/, X2, X3), intermediate cold stream temperatures 
{X4, X5) and hot stream outlet temperatures (xs, xj, xi). The problem is presented below in a 
reformulated form taken from [234] where a variable reduction method has been used to 
eliminate equality constraints. 

Min F{x) = jCj + X2 + X3 

Subject to: 
g, (X) = 1 OOx, - X, (400 - XJ + 833.33252^4 - 83333.333 < 0 
g2{x) = x^x, -x^iAOO-x, +X4)-1250^4 +1250x5 <0 
g, (X) = X3X5 - JC3 (100 + X5)- 2500x5 +1250000 < 0 
(100, 1000, 1000, 10, 10) < ( x ; , X5, JC4, x j ) <(10000, 10000, 10000, 1000, 1000) 

JC/ G R, n = 5 
Optimal Solution (F, xj, X2, xs, X4, X5) = (7049.25, 579.19, 1360.13, 5109.92, 182.01, 
295.60,) 
remaining parameters are calculated from equality constraints. Their optimal values are: 
(X6, X7, Xs) = (217.9, 286.40, 395.60) 



A.2.4 Pressure Vessel 

r T, 

Figure A-3 Pressure Vessel Drawing. Parameters of the problem include the thickness of the shell T„ the thickness 
of the head Th, the inner radius of the vessel R and the length of the cylindrical section of the vessel L. This figure 
is taken out of [221] and is reprinted with permission from IEEE (© 1999 IEEE). 

The pressure vessel design problem, originally defined by [235], has the goal of minimizing 

the cost of a pressure vessel as calculated based on material, forming and welding costs. 

The design is subject to dimensional constraints which are set to meet ASME standards for 

pressure vessels. As shown in Figure A-3, there are four design parameters to optimize 

consisting of the thickness of the shell Ts, the thickness of the head Th, the inner radius R 

and the length of the cylindrical section of the vessel L. Ts and Th take on integer values 

indicating the number of rolled steel plates (where each steel plate is 0.0625 inches thick) 

and R and L are continuous variables. 



Original Parameters: X = ( i ? , { x ^ , J C 2 , X 3 , ) 

Min 0.6224xix2(0.0625x3)+1.7781xf (0.0625x4) 

+ 3.1661x2 (0.0625x3+19.84xi (0.0625x3 

Subject to: 
g i ( x ) =-0.0625x3 +0.0193xi < 0 
g 2 ( ^ ) =-0.0625x4 +0.00954xi < 0 
g^{x) = -7ixlx^-^TDcl +1,296,000 < 0 
g 4 ( x ) = X2 - 2 4 0 < 0 

(1, 1, 1, 1) < (X/, X2, Xi, X4) < (100, 400, 20, 20) 
xi, X2 e R, xs, X4^'L, n = A 

Optimal Solution unknown 

A.2.5 Coello's Welded Beam Design 

Figure A-4: Diagram of a welded beam. The beam load is defmed as P with all other parameters shown in the 
diagram defming dimensional measurements relevant to the problem. This figure is taken out of [221] and is 
reprinted with permission from IEEE (© 1999 IEEE). 

The Welded beam design problem has the goal of minimizing the cost of a weight bearing 

beam subject to constraints on shear stress r, bending stress cr, buckling load on the bar Pc, 

and dimensional constraints [221]. There are four design parameters to optimize consisting 

of the dimensional variables /z, /, and b shown in Figure A-4. 

The original formulation of the problem can be found in {Rekalitis, #336}. A change to 

the Pc term in the problem formulation (stated below) appears to have occurred in [221] and 



some publications have implemented this new problem definition including the work 

presented in this thesis and others cited in Appendix C. 

Original Parameters: X = (//,/,T,B) = (JCJ 

Min F{X) = 1.10471jcf + 0.04811X3X4(14 + ) 

Subject to: 

g4(X) = 0.10471;cf + 0.0481 IX3X,(l4 + ) - 5 < 0 
g5(x) = 0.125-x, < 0 

<0 

g,{x)=p-pXx)<o 

Where: 

= = M = P 
/ \ 

V2xjx. J 
L + 

R = 
X. 

+ 
I 

\2 

= S{X) = 

J = 2< 

4PL' 

V2xix. 

V ^ y 
.2 / X. 

12 
+ 

X J 1 \2 

V 

X̂ X̂  

4.013E 
36 E 

L^ Y ILUG 
V y 

P = 6000 lb, Z=14 in , = 0.25 in, ^ = 30xl0^psi , G = 1 2 x l 0 ^ p s i , 
Tmax = 13,600 pSi, (Tmax = 30,000 psi 
(0.1, 0.1, 0.1, 0.1) < (Xy, X2, Xj, x^) < (2, 10, 10 ,2) 

X/ £ R, N = 4 

Optimal Solution unknown 



A.2.6 Tension Compression Spring 

H - d 
Figure A-5 Diagram of Tension Compression Spring. Parameters of the problem include the mean coil diameter 
D, the wire diameter d and the number of active coils N which is represented by the number of loops of wire in the 
diagram. Forces acting on the spring are shown as P. This figure is taken out of [221] and is reprinted with 
permission from IEEE (© 1999 IEEE). 

The Tension Compression Spring problem, shown in Figure A-5, has the goal of 

minimizing the weight of a tension/compression spring subject to constraints on minimum 

deflection, shear stress, surge frequency, and dimensional constraints [221]. There are 

three design parameters to optimize consisting of the mean coil diameter D, the wire 

diameter d and the number of active coils N. 

Original Parameters: X = ( j , Z), N) = (xj, Xj, X3) 
MinF{x)={N + 2)Dd^ 

Subject to: 
D^N 

i m s d ' 
2 

<0 

AD-dP 

63V / 

- 1 < 0 

(0.05, 0.25, 2) < {xi, X2, X3) < (2, 1.3, 15) 
Xi, JC2 G E, Xi € Z, « = 3 

Optimal Solution unknown 



A.2.7 Gear Train Design 

The gear train design problem was originally defined by [235] consists of optimizing a gear 

train such that the gear ratio approach as close as possible to 1/6.931. There are four design 

parameters consisting of integer values for the number of teeth for each gear. 

Original Parameters: X = {x, 
i t ^ V 

MmF{x) = 
/ n 2 

1 JĈ ^ 2 
6.931 

12<Xi <60, ze{l,...,w} 
X/ G Z, n = 4 

Optimal Solution (F, xj, X2, X3, X4) = (2.70 xlO'^^ 19, 16, 43, 49) 



APPENDIX B SEARCH OPERATORS 
For the search operator descriptions, the offspring is defined as and the f 
parent is defined as G = For all search operators, the first parent is always the 
best of the selected parents. 

Also in the description, variables randomly assigned over a Uniform distribution with upper 
and lower bounds U and L are stated as Uniform(i/, Z), variables randomly assigned over a 
Normal distribution with mean ^ and variance cP' are stated as c^). 

Table B-1: List of search operators used in experiments. Details provided in this table include the search operator 
name, other common name, reference for description, and parameter settings if different from reference. 

Search Operator Name Other Name Parameter Settings Reference 
Wright's Heuristic Crossover Interpolation r^O.5 [531 
Simple Crossover Single point 

Crossover 
— [66] 

Extended Line Crossover Extrapolation a-0.3 [461 
Uniform Crossover Discrete Crossover — [46] 
BLX-a «=0.2 [2361 
Differential Evolution — [501 
Swap — [1041 
Raise = 0.01 [1041 
Creep yi = 0.001 [541 
Single Point Random Mutation — [661 

B. 1 Single Point Random l\/lutation 
This operator is described in [66] and requires a single parent The gene is defined 
by: 

k = r 
g; 

if i=k 
else 

k = Uniform^, n\ k eZ 
r = Uniform{hr',hr) 

B.2 Creep 
The creep operator is a variant of Gaussian mutation and was originally described in [54]. 
Creep requires a single parent G^ The gene is defined by: 



^ if i = k 
1 g! else 

k = Uniform]^, n\ k eZ 

7 MAX _ JMIN 
cj^li ^ 

1000 

S.3 Raise 

This operator is described in [104] and requires a single parent The f gene is defined 

by: 

iMAX _ iMIN 
CJ = ' 

100 

BA Swap 

This operator is described in [104] and requires two parents, G^ and G^. Defining G^ as the 

more fit parent, the gene is defined by: 

h = 
g; if R^>oc 
gf else 

R,=Rank{ g] - gf ) 

The function Rank() gives the ranking of the absolute difference between gene values of 

two parents (Rank = 1 being the greatest absolute difference). 

Parameter Specifications: In this work, a = This means only the single most similar 

gene between the parents will be swapped. 

B.5 Uniform Crossover 

This operator was originally described by [46] and requires two parents, G^ and G^. The 

gene is defined by: 



^ U) if ^,>0.5 
[ gf else 

r, = Uniform 0,1 

S.6 Single Point Crossover 
This operator requires two parents, G^ and G .̂ The offspring / / i s then defined by: 

(g/, g2\ ..., gL gn) 
i = Uniform[0, n\ i eZ 

B. 7 BU(- a Crossover 
This operator was originally described by [236] and requires two parents, G^ and G .̂ The 

gene is defined by: 

gmu. =Max{g;,gf) 

^ ~ g max g mm 

Specifications: The parameter a must be set by the user. In this work, a = 0.2 

B.8 Wright's Heuristic Crossover 
This operator was originally described in [53] and requires two parents, G^ and G .̂ 

Defining G^ as the more fit parent, the f^ gene is defined by: 

r = Uniform^,\ 
Modifications: In this work, r is a static value set at 0.5. This operator has been modified 

to create a single offspring instead of two offspring by defining G^ as the more fit parent. 



B.9 Extended Line Crossover 
This operator was originally described in [46] and requires two parents, G^ and G .̂ 
Defining G^ as the more fit parent, the gene is defined by: 

h, = r{gf - g:)+g] 
r = Uniform^- 0.25,1.25 
Modifications: In this work, r is a static value set at 0.3. This operator has been modified 
to create a single offspring instead of two offspring by defining G^ as the more fit parent. 

B.10 Differential Evolution Operator 
This operator was originally described in [50] and requires four parents G \ G ,̂ G \ and G"̂ . 
The f^ gene is defined by: 

h = 
g- +a[g]-g^)-^ p>r 

g] else 
r = Uniform^,\ 
Specifications: a and P are parameters that must be set. In this work, a = I and ̂  = 0.5 



APPENDIX C ADDITIONAL RESULTS FROM 
CHAPTER 5 

C.1 Engineering Design Problems: Performance 
Comparisons with the Literature 

Tables are provided below which compare solution results from experiments in Chapter 5 

with other results stated in the literature. The first column lists the authors (with reference), 

the second column states the reported fitness values, and the third column provides the 

number of objective function evaluations used to obtain the fitness values reported in 

column two. It is important to keep in mind that the results taken from the literature 

represent the best solution among all algorithms tested in that reference. Also, some studies 

implement different requirements for constraint feasibility making some of the results 

difficult to compare. For the constraint function values reported in this section, negative 

values are used to indicate the satisfaction of inequality constraints. 

Table C-1 Comparison of results for the alkylation process design problem (maximization problem). Results from 
other authors were reported in [224]. The best solution found in these experiments was (F, Xj, X2, Xj, x^, X5, X6, X7) = 
(1772.77,1698.18, 54.73, 3029.65, 90.25, 95, 1035,153.53) with constraints {gi, g2, gj, g^ gs, go, g?, gs, g9, gio, gii, gn, 
gn, gi4) = (0, 0,4.70E-11, 0, 0,3.72E-11, 9.98E-8, -0, 0, 0,0, 0, 0, 0). 

Reference Fitness Objective Function Evaluations 
Bracken and McCormick, 1968 
[2371 

1769 not reported 

Marañas and Floudas, 1997 [238] 1772.77 not reported 
Adjimanetal., 1998 [2391 1772.77 not reported 
Edgar and Himmelblau, 2001 [2401 1768.75 not reported 
Babu and Angira, 2006 [2241 1766.36 92287 (average value) 
SOTEA (This Thesis) 1772.77 150,000 
cGA (This Thesis) 1772.77 150,000 
Panmictic EA (This Thesis) 1771.35 150,000 



Table C-2 Comparison of results for the heat exchanger network design problem (minimization problem). Results 
from other authors were reported in [224]. The best solution found in these experiments was (F, Xj, X2, Xs, X4, X5) = 
(7049.25, 579.19,1360.13, 5109.92,182.01,295.60) with constraints {gi, g2, gs) = (-2.06E-3, -6.22E-3, -4.60E-3). 

Reference Fitness Objective Function Evaluations 
Angira and Babu, 2003 [2341 7049.25 36620 
Babu and Angira, 2006 [2241 7049.25 31877 
SOTEA (This Thesis) 7049.25 150,000 
cGA (This Thesis) 7049.25 150,000 
Panmictic EA (This Thesis) 7053.47 150,000 

Table C-3 Comparison of results for the pressure vessel design problem (minimization problem). Results from 
other authors were reported in [223]. Results are also reported for [222] however their solution violates integer 
constraints for the 3'̂ '' and 4*** parameters making their fmal solution infeasible. It should also be mentioned that 
equations for defming the problem have errors in [221] and [223]. Previous studies have used different bounds for 
the solution parameters in this problem which are stated in Column 4. These bounds can change the location of 
the optimal solution making it hard to compare experimental results from different authors. The best solution 
found in these experiments was (F, Xj, X2, X3, x^) = (5850.37,38.8601,221.365,12, 6) with constraints {gi, g2, gs, g^) = 
(-7.00E-8, -4.27E-3, -0.53, -18.66). 

Reference Fitness Objective 
Function 

Evaluations 

Parameter Bounds 

Sandgren, 1990 [2351 8129.80 not reported not reported 
Fuet. al., 1991 [2411 8084.62 not reported not reported 
Kannan and Kramer, 1994 [2421 7198.04 not reported not reported 
Cao and Wu, 1997 [2431 7108.62 not reported not reported 
Lin et. al., 1999 [2201 6370.70 50,000 not reported 
Coello, 1999 [2211 6288.74 900,000 1 <x i<99 , 

1 < X 2 < 9 9 , 
10.0000 <X3< 200.0000, 
10.0000 <X4< 200.0000 

Zeng et al., 2002 [222] 580139 not reported 0 < x i < 10, 
0 < X 2 < 10, 

0 < X 3 < 1 0 0 , 
0 < X4 < 240 

Li et al., 2002 [2231 5850.38 not reported not reported 
SOTEA (This Thesis) 5850.37 150,000 1 <x i<20 , 

1 < X2 < 20, 
1 <X3< 100, 
1 < X 4 < 4 0 0 

cGA (This Thesis) 5850.37 150,000 
1 <x i<20 , 
1 < X2 < 20, 
1 <X3< 100, 
1 < X 4 < 4 0 0 

Panmictic EA (This Thesis) 5857.39 150,000 

1 <x i<20 , 
1 < X2 < 20, 
1 <X3< 100, 
1 < X 4 < 4 0 0 



Table C-4 Comparison of results for the welded beam design problem (minimization problem). Results from other 
authors were reported in [2221. The best solution found in these experiments was (F, Xt, X2, Xj, x^) = (1.72485, 
0.20572973978, 3.47048651338, 9.0366239103, 0.2057296397) with constraints (gj, gj, gj, g„ gs, go, g?) = (0, 0, -
9 .99E-8 ,0 ,0 ,0 ,0 ) . 

Reference Fitness Objective Function Evaluations 
Coello, 1999 [221] 1.74830941 900,000 
Zeng et al. 2002 [2221 1.72553637 not reported 
SOTEA (This Thesis) 1.72485217 150,000 
cGA (This Thesis) 1.72485217 150,000 
Panmictic EA (This Thesis) 1.72485218 150,000 

Table C-5 Comparison of results for the tension compression spring problem (minimization problem). Results 
from other authors were reported in [221]. The best solution found in these experiments was (7% Xj, Xz, Xj) = 
(0.0126652303,0.051838, 0.360318,11.081416) with constraints (gj, gz, gs, gJ) = (-3.16E-5,1.47E-5, -4.06, -0.725). 

Reference Fitness Objective Function Evaluations 
Belegundu,1982 [244] 0.0128334375 not reported 
Arora, 1989 [245] 0.0127302737 not reported 
Coello, 1999 [2211 0.0127047834 900,000 
SOTEA (This Thesis) 0.0126652303 150,000 
cGA (This Thesis) 0.0126652303 150,000 
Panmictic EA (This Thesis) 0.0126652593 150,000 

Table C-6 Comparison of results for the gear train design problem (minimization problem). Results from other 
authors were reported in [220]. The best solution found in these experiments was (F, Xj, X2, X3, X4) = (2.70 xlO"̂ ,̂ 
19,16, 43, 49). 

Reference Fitness Objective Function Evaluations 
Fu et. al., [2411 4.5 xlO-^ not reported 
Cao and Wu, 1997 [2431 2.36x10-' not reported 
Deb and Goyal, 1997 [2461 2.70 xlO-'' not reported 
Lin et al. 1999 [2201 2.70 xlO-'" 50,000 
SOTEA (This Thesis) 2.70 xlO-̂ ^ 150,000 
cGA (This Thesis) 2.70x10-'^ 150,000 
Panmictic EA (This Thesis) 2.70x10-'^ 150,000 



C.2 Panmictic EA Performance Tables 
Table C-7: Final performance results for eight Panmictic Evolutionary Algorithms run for 3000 generations with 
algorithm designs varying by the use of generational (Gen) or pseudo steady state (SS) population updating, the 
use of binary tournament selection (Tour) or truncation selection (Trun), and the number of search operators 
(Nops). Performance is presented as the single best objective function value found in 20 runs Fgggf as well as the 
average objective function value over 20 runs pAve- None of the Evolutionary Algorithms listed below failed to 
obtain a feasible solution within 3000 generations. The single best fitness values found for each problem are in 
bold. 

Gen Sel N Pressure Vessel Heat Exchanger 
Network 

Alkylation Process 

Fsest pAve Fsest pAve pBest pAve 

SS Tour 7 6059.70 6190.31 7053.47 7109.20 1771.35 1750.38 
SS Trun 7 6059.73 6214.31 7056.09 7179.02 1760.77 1630.90 
Gen Tour 7 5953.06 6123.22 7116.72 7213.38 1711.00 1667.34 
Gen Trun 7 5964.23 6174.55 7186.97 7250.82 1641.47 1495.13 
SS Tour 2 5867.87 6382.61 7070.57 7233.18 1756.00 1708.38 
SS Trun 2 5857.39 6449.57 7093.12 7269.02 1748.95 1661.17 
Gen Tour 2 6144.69 6340.23 7235.69 7412.11 1621.77 1510.93 
Gen Trun 2 6188.86 6391.15 7184.51 7398.23 1501.24 1343.48 

Gear Train 
Tension Compression 

Spring Welde( Beam 
pBest pAve pBest pAve pBest pAve 

SS Tour 7 2.70E-12 2.62E-10 0.012665 0.012758 1.72485 1.74602 
SS Trun 7 2.70E-12 7.70E-10 0.012665 0.012778 1.72494 1.80945 
Gen Tour 7 2.70E-12 2.70E-12 0.012679 0.012710 1.75465 1.77920 
Gen Trun 7 2.70E-12 1.09E-11 0.012687 0.012725 1.76485 1.79732 
SS Tour 2 2.70E-12 1.12E-09 0.012701 0.013861 1.73570 1.96193 
SS Trun 2 2.31E-11 1.81E-09 0.012804 0.015078 1.73060 2.06087 
Gen Tour 2 2.70E-12 4.74E-12 0.012739 0.013035 1.83742 1.93124 
Gen Trun 2 2.70E-12 2.70E-12 0.012694 0.012864 1.75302 1.88472 

Frequency 
Modulation Error Correcting Code 

System of Linear 
Equations 

pBest pAve pRest pAve pBest pAve 

SS Tour 7 0.00 15.36 3.53E-03 4.32E-03 8.53E-14 2.12E-05 
SS Trun 7 6.69 18.28 3.68E-03 4.29E-03 3.16E-05 1.32 
Gen Tour 7 23.07 26.95 2.47E-03 3.75E-03 10.90 14.58 
Gen Trun 7 22.87 25.97 3.44E-03 4.13E-03 2.45 5.27 
SS Tour 2 8.98 15.87 2.70E-07 3.84E-03 1.67 3.54 
SS Trun 2 0.55 16.49 3.43E-03 3.96E-03 4.26 5.90 
Gen Tour 2 23.35 26.33 4.18E-03 4.77E-03 50.21 74.11 
Gen Trun 2 21.95 26.77 2.70E-07 3.17E-03 35.69 51.75 

Rastigrin Griewangk Watson 
Fsest pAve pBest pAve pBest pAve 

SS Tour 7 1.25E-10 1.65E-06 0.012 0.052 1.716E-02 2.025E-02 
SS Trun 7 4.24E-02 1.26E-01 0.049 0.158 1.728E-02 2.922E-02 
Gen Tour 7 6.33E-01 9.17E-01 0.615 0.751 1.778E-02 1.941E-02 
Gen Trun 7 8.82E-02 1.96E-01 0.348 0.508 1.730E-02 1.828E-02 
SS Tour 2 3.10E-02 6.92E-02 0.131 0.216 1.804E-02 4.887E-02 
SS Trun 2 1.64E-01 2.83E-01 0.154 0.366 1.829E-02 4.369E-02 
Gen Tour 2 7.82 10.51 1.476 2.729 2.444E-02 5.673E-02 
Gen Trun 2 4.89 7.53 1.474 2.199 2.205E-02 4.111E-02 
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