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Abstract

Modelling and control of dynamic systems are faced by multiple technical challenges, mainly due to the nature of uncertain
complex, nonlinear, and time-varying systems. Traditional modelling techniques require a complete understanding of system
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disturbances are also conducted to validate the efficacy of the ESAF2C. Yet another contribution of this thesis is the development
of a type-2 evolving fuzzy control system (T2-EFCS) to facilitate self-learning (either from scratch or from a certain predefined
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Abstract

Modelling and control of dynamic systems are faced by multiple technical challenges,
mainly due to the nature of uncertain complex, nonlinear, and time-varying systems. Tra-
ditional modelling techniques require a complete understanding of system dynamics and
obtaining comprehensive mathematical models is not always achievable due to limited
knowledge of the systems as well as the presence of multiple uncertainties in the environ-
ment. As universal approximators, fuzzy logic systems (FLSs), neural networks (NNs) and
neuro-fuzzy systems have proved to be successful computational tools for representing the
behaviour of complex dynamical systems. Moreover, FLSs, NNs and learning-based tech-
niques have been gaining popularity for controlling complex, ill-defined, nonlinear, and
time-varying systems in the face of uncertainties. However, fuzzy rules derived by experts
can be too ad-hoc, and the performance is less than optimum. In other words, generating
fuzzy rules and membership functions in fuzzy systems is a potential challenge especially
for systems with many variables. Moreover, under the umbrella of FLSs, although type-
1 fuzzy logic control systems (T1-FLCs) have been applied to control various complex
nonlinear systems, they have limited capability to handle uncertainties. Aiming to ac-
commodate uncertainties, type-2 fuzzy logic control systems (T2-FLCs) were established.
This thesis aims to address the shortcomings of existing fuzzy techniques by utilisation of
type-2 FLCs with novel adaptive capabilities.

The first contribution of this thesis is a novel online system identification technique by
means of a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique
(IT2-TS-FC) to accommodate the footprint-of-uncertainties (FoUs). This development
is meant to specifically address the shortcomings of type-1 fuzzy systems in capturing
the footprint-of-uncertainties such as mechanical wear, rotor damage, battery drain and
sensor and actuator faults. Unlike previous type-2 TS fuzzy models, the proposed method
constructs two fuzzifiers (upper and lower) and two regression coefficients in the consequent
part to handle uncertainties. The weighted least square method is employed to compute
the regression coefficients. The proposed method is validated using two benchmarks,
namely, real flight test data of a quadcopter drone and Mackey-Glass time series data.
The algorithm has the capability to model uncertainties (e.g., noisy dataset).

The second contribution of this thesis is the development of a novel self-adaptive inter-
val type-2 fuzzy controller named the SAF2C for controlling multi-input multi-output
(MIMO) nonlinear systems. The adaptation law is derived using sliding mode control

iv



(SMC) theory to reduce the computation time so that the learning process can be ex-
pedited by 80% compared to separate single-input single-output (SISO) controllers. The
system employs the ‘Enhanced Iterative Algorithm with Stop Condition’ (EIASC) type-
reduction method, which is more computationally efficient than the ‘Karnik-Mendel’ type-
reduction algorithm. The stability of the SAF2C is proven using the Lyapunov technique.
To ensure the applicability of the proposed control scheme, SAF2C is implemented to con-
trol several dynamical systems, including a simulated MIMO hexacopter unmanned aerial
vehicle (UAV) in the face of external disturbance and parameter variations. The ability
of SAF2C to filter the measurement noise is demonstrated, where significant improvement
is obtained using the proposed controller in the face of measurement noise. Also, the
proposed closed-loop control system is applied to control other benchmark dynamic sys-
tems (e.g., a simulated autonomous underwater vehicle and inverted pendulum on a cart
system) demonstrating high accuracy and robustness to variations in system parameters
and external disturbance.

Another contribution of this thesis is a novel stand-alone enhanced self-adaptive interval
type-2 fuzzy controller named the ESAF2C algorithm, whose type-2 fuzzy parameters are
tuned online using the SMC theory. This way, we expect to design a computationally
efficient adaptive Type-2 fuzzy system, suitable for real-time applications by introduc-
ing the EIASC type-reducer. The proposed technique is applied on a quadcopter UAV
(QUAV), where extensive simulations and real-time flight tests for a hovering QUAV under
wind disturbances are also conducted to validate the efficacy of the ESAF2C. Specifically,
the control performance is investigated in the face of external wind gust disturbances,
generated using an industrial fan. Stability analysis of the ESAF2C control system is
investigated using the Lyapunov theory.

Yet another contribution of this thesis is the development of a type-2 evolving fuzzy control
system (T2-EFCS) to facilitate self-learning (either from scratch or from a certain prede-
fined rule). T2-EFCS has two phases, namely, the structure learning and the parameters
learning. The structure of T2-EFCS does not require previous information about the fuzzy
structure, and it can start the construction of its rules from scratch with only one rule.
The rules are then added and pruned in an online fashion to achieve the desired set-point.
The proposed technique is applied to control an unmanned ground vehicle (UGV) in the
presence of multiple external disturbances demonstrating the robustness of the proposed
control systems. The proposed approach turns out to be computationally efficient as the
system employs fewer fuzzy parameters while maintaining superior control performance.
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4.19 Response of cart velocity ẋ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.20 Response of pendulum angle θ. . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.21 Control force (N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.22 Responses of Cart position x with respect to random noise. . . . . . . . . . 113

4.23 Response of pendulum angle θ with random noise. . . . . . . . . . . . . . . 113

4.24 Response of pendulum angle θ with with disturbance. . . . . . . . . . . . . 114

4.25 Responses of cart position x with respect to disturbance . . . . . . . . . . . 114

4.26 Disturbance signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.27 AUV six degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.28 Closed-loop control system for AUV using adaptive IT2FLCs. . . . . . . . . 118

4.29 Proposed IT2FLCs desgin demonstrating surge, yaw, and pitch dynamics
of an AUV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.30 The motion of AUV in XY plane using our proposed controller . . . . . . . 119

4.31 The motion of AUV in XZ plane using our proposed controller . . . . . . . 119

4.32 Pitch response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.33 Yaw response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.34 Pitch response with disturbance . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.35 Yaw response with disturbance . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Coordinate frame of a QUAV. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Control structure based on ESAF2C for position tracking of a nonlinear
quadcopter plant, where we employ the attitudes and the thrust to create
a position control loop outside the velocity loop of the Parrot AR.Drone. . 128

5.3 General interval type-2 trapezoidal membership function. . . . . . . . . . . 129

xviii



5.4 Proposed ESAF2C structure for QUAV control, where ux, uy, uz represent
the control signals for the xyz-axes, respectively. . . . . . . . . . . . . . . . 135

5.5 Simulation results for position control in the xyz-axes for different con-
trollers on the nominal system (step input). . . . . . . . . . . . . . . . . . . 138

5.6 Simulation results for position control in the xyz-axes for different con-
trollers on the nominal system (sine input). . . . . . . . . . . . . . . . . . . 138

5.7 Simulation results for the error signals for IT2-FSMC and ESAF2C on the
nominal system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 Simulation results for the control signals for IT2-FSMC and ESAF2C on
the nominal system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Simulation results for different controllers for position control in the xyz-
axes under disturbances (step input). . . . . . . . . . . . . . . . . . . . . . . 141

5.10 Simulation results for different controllers for position control in the xyz-
axes under disturbances (Sine input). . . . . . . . . . . . . . . . . . . . . . . 142

5.11 Simulation results for the error signals for IT2-FSMC and ESAF2C under
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.12 Simulation results for the control signals for IT2-FSMC and ESAF2C under
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.13 Measurement noise effect (comparison between ESAF2C, IT2-FSMC and
T1-FSMC), Z-position control. . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.14 Information flow loop used for the flight tests. . . . . . . . . . . . . . . . . . 145

5.15 The body-frame {B} of a Parrot AR.Drone, where (θ, φ, ψ) represents the
rotation along the xyz-axes respectively. . . . . . . . . . . . . . . . . . . . . 146

5.16 Data flow of the overall system architecture, demonstrating the information
flow of the QUAV including the position, orientation, velocity, acceleration,
angular rates, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.17 Output xyz positions of the QUAV during real-time flight tests (hover
mode) for different controllers. . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.18 Output xyz positions under external disturbances during real-time flight
tests (hover mode) for different controllers. . . . . . . . . . . . . . . . . . . 149

5.19 Output xyz positions under external disturbance during real-time flight
tests (hover mode) in 3-D shape. . . . . . . . . . . . . . . . . . . . . . . . . 149

xix



5.20 Upper figure shows the online parameters learning using the ESAF2C in
hover mode (nominal condition), lower figure shows online parameters learn-
ing using the ESAF2C (under disturbance). . . . . . . . . . . . . . . . . . . 150

6.1 A simplified model-free self-evolving controller structure . . . . . . . . . . . 158

6.2 Flowchart of the evolving fuzzy controller . . . . . . . . . . . . . . . . . . . 160

6.3 Single inverted pendulum plant . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4 Position tracking in normal condition . . . . . . . . . . . . . . . . . . . . . . 162

6.5 Velocity response in normal condition . . . . . . . . . . . . . . . . . . . . . 163

6.6 Position tracking in the presence of uncertainties . . . . . . . . . . . . . . . 163

6.7 Velocity response in the presence of uncertainties . . . . . . . . . . . . . . . 164

6.8 Performance under nominal condition (a) Error, (b) Number of evolving
fuzzy rules, (c) Control signal . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.9 Performance under uncertain condition (a) Error, (b) Number of evolving
fuzzy rules, (c) Control signal . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.10 Performance under uncertain condition (a) Adaptive parameters in the pres-
ence of uncertainties, (b) Sliding surface changes with time in the presence
of uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.11 Structure of EIT2FLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.12 Flowchart of the T2-EFCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.13 Kinematic model of the differential-drive mobile robot. . . . . . . . . . . . . 175

6.14 Overall closed-loop control system with added noise as sensor uncertainties. 177

6.15 Desired vs. actual positions of the xy-axes. . . . . . . . . . . . . . . . . . . 178

6.16 Desired vs. actual positions of 8-shape. . . . . . . . . . . . . . . . . . . . . . 178

6.17 Distance error evolution for different control systems. . . . . . . . . . . . . . 178

6.18 Evolution of the fuzzy rules for the proposed T2-EFCS. . . . . . . . . . . . 179

6.19 Desired vs. actual positions of 8-shape in the face of sensor noise. . . . . . . 180

6.20 Distance error evolution for different control systems in the face of mea-
surement noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xx



6.21 Evolution of the fuzzy rules for T2-EFCS in the face of measurement noise. 180

6.22 Desired vs. actual positions of 8-shape in the face of external disturbance. . 181

6.23 Distance error evolution for different control systems in the face of external
disturbance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.24 Evolution of the fuzzy rules for the proposed T2-EFCS in the face of external
disturbance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xxi



List of Tables

2.1 Adaptive vs. evolving fuzzy systems . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Pixhawk features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 NDEI values for different scaling factor - FoU . . . . . . . . . . . . . . . . . 72

3.3 Normalized RMSE values of different modeling methods . . . . . . . . . . . 72

3.4 Normalized MAE values for the proposed IT2-TS-FC . . . . . . . . . . . . . 73

4.1 Comparative study of multiple controllers’ performance under different flight
scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 RMS error values for MIMO nonlinear systems. . . . . . . . . . . . . . . . . 102

4.3 Computational time and RMSE values of different type-reductions. . . . . . 105

4.4 RMSE values with different FoUs. . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 IT2FLCs and PD Controllers performance on pendulum angle control (RMSE).115

4.6 IT2FLCs and PD Controllers performance on cart position control (RMSE) 115

4.7 Adaptive IT2-FLC vs a fixed IT2-FLC performance (normalized-RMSE) . . 121

5.1 X-control fuzzy rules representation . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Y-control fuzzy rules representation . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Z-control fuzzy rules representation . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Simulation results for multiple controllers with disturbances . . . . . . . . . 141

5.5 Computation load for various controllers. . . . . . . . . . . . . . . . . . . . 144

xxii



5.6 Experimental evaluation using three different controllers in hovering mode
with high-wind disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 RMSE values for tracking a sine wave reference . . . . . . . . . . . . . . . . 163

6.2 Summary of the experimental comparison of the performance of different
controllers in nominal condition. . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3 Summary of the experimental comparison of the performance of different
controllers in the face of measurement noise. . . . . . . . . . . . . . . . . . . 181

6.4 Summary of the experimental comparison of the performance of different
controllers in the face of external disturbance. . . . . . . . . . . . . . . . . . 182

xxiii



Abbreviations

AUVs Autonomous Underwater Vehicles
AGVs Autonomous Ground Vehicles
CMAC Cerebellar Model Articulation Controller
CoTS Commercial-off-the-Shelf
DOF Degrees of Freedom
EA Evolutionary Algorithm
EFSs Evolving Fuzzy Systems
EIASC Enhance Iterative Algorithm with Stop Condition
EIS Evolving Intelligent System
EKF Extended Kalman Filter
ESAF2C Enhanced Self-Adaptive Interval Type-2 Fuzzy Controller
ESCs Electronics Speed Controllers
eTS evolving Takagi Sugeno
FBL Feedback Linearization
FCM Fuzzy C-Means
FCRM Fuzzy C-Regression Model
FIS Fuzzy Inference System
FLCs Fuzzy Logic Control System
FLSs Fuzzy Logic Systems
FNN Fuzzy Neural Network
FoU Footprint of Uncertainty
FQL Fuzzy Q-learning
GA Genetic Algorithm
GCS Ground Control Station
GRNN Generalized Regression Neural Network
IMUs Inertial Measurement Units
IP Inverted Pendulum
IT2FLCs Interval Type-2 Fuzzy Logic Control System
IT2-FLSs Interval Type-2 Fuzzy Logic Systems
IT2-TS-FC Interval Type-2 Takagi-Sugeno Fuzzy C-means Clustering
KM Karnik Mendel
LQR Linear Quadratic Regulator
MAVLink Micro Air Vehicle Link
MF Membership Function

xxiv



MIMO Multi-Input-Multi-Output
MISO Multi-Input-Single-Output
MPC Model Predictive Controller
MSE Mean Squared Error
NARMAX Nonlinear Autoregressive Moving Average Model with Exogenous
NDEI Non-Dimensional Error Index
NFSs Neuro-Fuzzy Systems
NNs Neural Networks
NT Nie-Tan Type-Reduction
OBC OnBoard Computer
PID Proportional Integral Derivative
RBFNN Radial Basis Function Neural Network
RLS Recursive Least Square
RMSE Root Mean Squared Error
ROS Robot Operating System
RT Rise Time
SAF2C Self-Adaptive Interval Type-2 Fuzzy Controller
SE-TS-FC Self-Evolving Takagi-Sugeno Fuzzy Controller
SISO Single-Input-Single-Output
SMC Sliding Mode Control
ST Settling Time
T1-EFCS Type-1 Evolving Fuzzy Control System
T1-EFSs Type-1 Evolving Fuzzy Systems
T1FLCs Type-1 Fuzzy Logic Control System
T1-FLSs Type-1 Fuzzy Logic Systems
T1-FSs Type-1 Fuzzy Sets
T2-EFCS Type-2 Evolving Fuzzy Control System
T2-EFSs Type-2 Evolving Fuzzy Systems
T2FLCs Type-2 Fuzzy Logic Control System
T2-FLSs Type-2 Fuzzy Logic Systems
T2-FSs Type-2 Fuzzy Sets
TR Type Reduction
TS Takagi-Sugeno
TSK Takasi-Sugeno-Kang
UAS Unmanned Autonomous Systems
UASs Unmanned Aerial Systems
UAVs Unmanned Aerial Vehicles
UGVs unmanned ground vehicles

xxv



Nomenclature

t Time
u, v, w Velocity components along the (x, y, z)-axes. (u, v, w) ∈ B
p, q, r Angular rates along the (x, y, z)-axes. (p, q, r) ∈ B
X, Y, Z Location of drone donated in the inertial frame
X, Y , Z Global velocities
θ Euler Pitch angle
φ Euler Roll angle
ψ Euler Yaw angle
ψ Dead-zone parameter for SAF2C
Ss(t) Sliding surface - SAF2C
γ Learning rate - SAF2C
Λ Adaptive parameter - SAF2C
ψ Boundary layer thickness - SAF2C
θ Pendulum angle - IP control
x Cart position - IP control
F Force on the cart - IP control
mpen Pendulum mass - IP control
η Learning rate - IP control
γ Sliding surface slope - IP control
XE , YE , ZE Location of AUV donated in the inertial frame
XB, YB, ZB Location of AUV donated in the body frame
η Position and orientation vector of the AUV in the fixed frame
ν Linear and angular velocity vector
M(ν) Inertia matrix
C(ν̇) Coriolis and Centripetal forces matrix
D(ν̇) Hydrodynamic damping matrix
G(η) Vehicle’s buoyancy and gravitational forces matrix
τν Control efforts- AUV control
sAUV Sliding surface- AUV control
γ Sliding surface positive term- AUV control
J(η) Euler angle mapping matrix
V∞ Free-stream velocity
Vi Rotor induced velocity
Vn Normal free-stream velocity

xxvi



Vt Tangential free-stream velocity
θ0 Blade Pitch
µ Advance ratio
Ω Rotational speed of the blade
a Blade lift curve slope
B Rotation matrix
Ab Total blade area
N Blades number
T Thrust of main rotor
A Disk area of rotor
R Rotation matrix
D Drag
L Lift
g Gravity vector
ω Blade rotational speed
c Blade chord
Ptot Main rotor power
Fx Force acting in x-axis direction
Fy Force acting in y-axis direction
Fz Force acting in z-axis direction
Vc Climbing Speed of the rotor
Ixy Cross product moments of inertia around xy-axes
Iyz Cross product moments of inertia around yz-axes
Ixz Cross product moments of inertia around xz-axes
L M N Net torque to the angular momentum rate of change
Ix Moment of inertia about x-axis
Iy Moment of inertia about y-axis
Iz Moment of inertia about z-axis
m Mass
CG centre of gravity
q0, q1, q2, q3 Quaternion parameters
kp PID control proportional gain
kd PID control derivative gain
ki PID control integral gain

xxvii



xxviii



Chapter 1

Introduction

1.1 Background and Motivation

Most real-world physical systems are highly nonlinear, complex, and uncertain. While tra-

ditional control methods heavily rely on the accessibility of accurate mathematical mod-

els, for many nonlinear systems (e.g., aerial robots), building comprehensive mathematical

models is not always possible due to limited knowledge of the systems as well as multi-

ple uncertainties in the systems. On the other hand, data-driven (system identification)

techniques provide more realistic solutions to model the dynamics of complex systems.

As universal approximators, computational intelligence approaches such as fuzzy logic

systems (FLSs), neural networks (NNs), and Neuro-Fuzzy systems (NFSs) have proved

to be successful computational tools to describe the behavior of complex dynamical sys-

tems [2–14].

With the advancement of computing technology, a large amount of information can be

simultaneously processed to analyze the behaviour of nonlinear systems under different

operating conditions. Fuzzy systems provide an alternative to describe the dynamics of

nonlinear uncertain dynamical systems. Although type-1 fuzzy logic systems (T1-FLSs)

have been applied to model various complex nonlinear systems, they have limited ca-
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pability to handle uncertainties (e.g., due to errors in measurement, change of actuator

characteristics, uncertainties associated with any change of the operating conditions or

due to unmodeled dynamics). Aiming to accommodate uncertainties, type-2 fuzzy logic

systems (T2-FLSs) (i.e., with interval membership functions) were established which in-

troduce the concept of a footprint-of-uncertainties (FoUs) [15–21]. FoUs introduces new

degrees of freedom, allowing a type-2 fuzzy system to represent uncertainty [22]. FoUs

can be expressed as the union of all primary membership functions as it will be explained

in the coming chapters.

In the last few decades, adaptive control systems have been a very topical research area.

Under the umbrella of adaptive control, intelligent control approaches have been gaining

popularity [23, 24] and such systems (e.g., FLSs, NNs, NFSs) have the ability to control

complex, ill-defined, nonlinear, and time-varying systems in the face of uncertainties. For

instance, in aerial robots, system parameters often differ between platforms and over time

due to issues such as environmental changes, mechanical wear, damage to rotors, battery

drain or ground effect [25, 26]. Various adaptive FLS/NNs based control methods have

been proposed to cope with large uncertainties. This thesis introduces new adaptive

control approaches, where the efficacy of the proposed systems is highlighted through

rigorous numerical simulations in the face of various uncertainties.

The the practical implementation of T2-FLSs based control systems in real-time is some-

what restricted due to high computational costs, such as type-reduction techniques needed

to convert the T2-FSs into their type-1 counterparts [22]. Therefore, to ease the compu-

tational burden while maintaining the benefits of T2-FLSs, interval type-2 fuzzy logic sys-

tems (IT2-FLSs) were introduced in [27], where the secondary grade variables of IT2-FLSs

can be simply set to be equal to 1. In other words, IT2-FLS were utilized to accelerate the

response to uncertain input membership functions, allowing greater freedom in designing

the desired control law while providing the ability to accommodate more uncertainties

typically found in nonlinear systems [28]. This thesis examines different type-reduction

methods aiming to achieve less computation cost that is suitable for real-time control

applications.
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The use of IT2-FLSs for control can improve closed-loop control performance compared to

type-1 FLS and achieves greater robustness to accommodate uncertainties as demonstrated

in various research papers [19, 20, 22, 29–34]. Hence, the development of the proposed

control systems, in this research work, is based on IT2-FLSs.

However, implementation of knowledge-based systems is often challenging, time-consuming,

require expert knowledge, and can be inefficient to design [11, 14]. Besides, fuzzy rules

derived by experts can be too ad-hoc, and the performance is less than optimum. Also,

generating fuzzy rules and membership functions in fuzzy systems is a potential challenge

especially for systems with many variables [35, 36]. Employing evolutionary algorithms

to find optimal fuzzy parameters may be less desirable due to their computational de-

mand. Under the umbrella of intelligent and adaptive control, this research investigates

the development of evolving fuzzy systems (EFSs) that have the ability to autonomously

learn fuzzy structure and parameters in an online manner. As a proof of concept, the

work in this thesis is deployed in various autonomous systems. Recently, evolving fuzzy

systems have become popular in various engineering applications. They are implemented

for system identification, regression, classification and control [28,37–55].

1.2 Scope of Research

This thesis represents the development and implementation of IT2-FLSs for modeling and

control of nonlinear dynamical systems in the presence of various uncertainties. This re-

search starts with highlighting the limitation of existing system identification techniques.

It also discusses the limitations of the existing nonlinear control methods used for multiro-

tor unmanned aerial vehicles (UAVs) and the feasibility of applying IT2-FLSs to real-time

control applications. Fig. 1.1 illustrates the structure of this research work.

At first, this thesis concentrates on developing an efficient online system identifier based on

IT2-FLSs for multirotor UAVs. The proposed method is based on the C -means clustering

technique. A built-from-scratch quadcopter UAV is developed to highlight the efficacy of
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the proposed system identification technique by conducting several flight tests to collect

the necessary data using sensors on the UAV and an optical motion capture system.

Second, this thesis focuses on developing robust self-adaptive IT2-FLCs for MIMO non-

linear systems. The proposed technique is employed to control a MIMO multirotor drone.

Furthermore, the robustness of the proposed approach is considered under different con-

ditions, such as in the face of external disturbance (e.g. wind gusts) and parameter

variations.

Third, this thesis focuses on the development of a novel stand-alone enhanced self-adaptive

interval type-2 fuzzy control strategy for position control of a multirotor UAV, whose type-

2 fuzzy parameters are tuned online using the sliding mode control theory. It also focuses

on conducting real-time experiments under various disturbances to validate the efficacy of

the proposed control system.

Finally, the thesis contributes to the development of an evolving fuzzy controller for nonlin-

ear systems. The structure of the proposed method does not require previous information

about the fuzzy structure and it starts its construction from scratch with only one rule.

The rules can be added and deleted in an online manner to achieve the control objectives.

The capability of the proposed technique is investigated in the face of uncertainties.

1.3 Contributions of the Thesis

The research contributions of this thesis include the following:

1. Development of a novel IT2-FLS online system identification model for a multirotor

aircraft collected from real-time flight tests. The designed approach deploys the

Lagrange approach to minimize the objective function. Unlike previous IT2-FLSs

models, this method constructs two fuzzifiers (upper and lower) and two regression

coefficients in the consequent part to handle uncertainties in multirotor UAVs. The

algorithm has the capability to model uncertainties (e.g., noisy dataset).
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2. Design of a new self-adaptive interval type-2 fuzzy controller named the SAF2C

to control MIMO nonlinear dynamical systems. The algorithm deploys an efficient

type-reduction method to reduce the computational burden of the Karnik-Mendel

(KM) algorithm. The proposed SAF2C is employed to regulate the position and

velocity of a simulated MIMO hexacopter UAV, where about 80% reduction of the

execution time is achieved compared to the SISO SAF2C controller. The robustness

of the proposed method is investigated under different conditions, such as in the face

of external disturbances and parameter variations (e.g. wind gusts) for the case of the

hexacopter UAV. The proposed approach has the ability to filter the measurement

noise, where significant improvement is obtained using the SAF2C controller in the

presence of measurement noise.

3. Implementation of real-time experiments using quadrotor UAVs to test the proposed

adaptive fuzzy control systems. Specifically, the control performance is investigated

in the face of external wind disturbance, using an industrial fan in the hover mode.

The findings show that the proposed control technique has the capability to learn

its parameters in an online manner and to handle external wind gust disturbance

efficiently.

4. Development of a novel type-2 evolving fuzzy control system, named the T2-EFCS,

which starts the construction of knowledge from scratch with only one rule. The

fuzzy rules are then added and pruned in an online manner to achieve the desired

set-point. Unlike most of the existing work, the proposed approach is model-free

which does not require any information about the plant dynamics. Moreover, the

adaptive law for parameter tuning is derived using sliding mode control (SMC)

theory, making the system robust to variations in system parameters and external

disturbance. The proposed control mechanism has been implemented to control an

unmanned ground vehicle (UGV) in the presence of multiple external disturbances

demonstrating promising tracking performance.
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1.4 Organization of the Thesis

This thesis is divided into seven chapters. Chapter 2 describes the basis of T1-FLSs, T2-

FLSs, and IT2-FLSs. It also reviews their application in modeling and control of nonlinear

systems, followed by identifying the research gaps of the existing studies. Sequentially,

Chapters 3 - 6 present the major technical contributions of this research work. In Chapter

3, the experimental setup for collecting real-time data is presented. It also proposes an

online system identifier for modeling a quadrotor aircraft from real-time experimental flight

data. Besides, the efficacy of the proposed approach is validated using a noisy dataset.

Chapter 4 provides a new control technique based on IT2-FLSs with an efficient type-

reduction technique that is suitable for real-time implementation and validated in various

benchmark nonlinear systems. The robustness is investigated under different scenarios.

Chapter 5 addresses the real-time implementation using a novel IT2-FLC. The efficiency

against disturbances is also provided. Chapter 6 introduces a self-evolving fuzzy controller.

The proposed method is model-free, meaning the control system does not require any

information about the plant dynamics and its effectiveness is investigated in the presence

of external disturbances. Finally, a summary of the findings of all technical contributions

and some future research directions are identified in Chapter 7.
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2.1. INTRODUCTION

2.1 Introduction

Inspired by the capability of fuzzy logic systems (FLSs) to learn complex nonlinear dy-

namics, they have been used to identify and model nonlinear dynamic systems. To address

large uncertainties in dynamic systems, as well as to compensate for the systems’ changing

and uncertain environments such as external disturbances, the concept of interval type-2

fuzzy systems (IT2-FLSs) was developed, thanks to the footprint-of-uncertainties (FOU)

in IT2-FLSs, to incorporate uncertainties efficiently.

Moreover, intelligent fuzzy logic controllers (FLCs) have been extensively employed to

control nonlinear systems with complex dynamics. Inspired by the ability of FLCs to

represent uncertainties in nonlinear systems by their continuous membership functions

(MFs), they have been utilized to control various nonlinear systems. Nevertheless, since

uncertainty information is not incorporated in the membership function of type-1 fuzzy

sets (T1-FSs), controlling nonlinear systems subjected to uncertainties cannot be handled

precisely. Therefore, interval type-2 fuzzy logic controllers (IT2-FLCs) were developed

based on type-2 fuzzy sets (T2-FSs) to handle such uncertainties captured by their IT2

fuzzy membership functions.

To get a broad understanding of fuzzy systems, this chapter describes the basics of FLSs,

IT2-FLSs, FLCs, IT2-FLCs, and their applications in the modeling and control of au-

tonomous systems. To begin, a short review of type-1 fuzzy logic systems (T1-FLSs) is

provided owing to the fact that IT2-FLSs build upon T1-FLSs. This chapter also provides

a survey of their applications in the modeling and control of nonlinear dynamic systems. In

addition, the concept of evolving fuzzy systems (EFSs) and their applications in modeling

and control dynamic systems are discussed in this chapter. To provide context for appli-

cations of fuzzy logic control to unmanned autonomous systems (UASs), an overview of

UASs is highlighted including unmanned aerial vehicles (UAVs), autonomous underwater

vehicles (AUVs), and autonomous ground vehicles (AGVs). As unmanned autonomous

systems are highly nonlinear, complex, and time-varying systems, they are convenient

platforms for testing new algorithms. Finally, the research gaps of the existing methods
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are addressed, which motivates the research work pursued in this thesis.

The remainder of this chapter is structured as follows: the basic principles of T1-FLSs, T2-

FLSs, IT2-FLSs and their associated concepts are presented in Sections 2.2. Subsequently,

Section 2.3 provides the literature survey on modeling and system identification of dynamic

systems. Section 2.4 presents methods of nonlinear control systems and a survey of the

applications of IT2-FLCs in dynamic systems. The general design of EFSs is demonstrated

in Section 2.5. This is followed by a brief review of Unmanned Autonomous Systems in

Section 2.6. Also, the limitations of the existing studies are identified in Section 2.7.

Finally, a summary of this chapter is provided in Section 2.8.

2.2 Basic Principles of Fuzzy Logic System

FLSs were firstly introduced by Zadeh in 1965 [56–58] and have been deployed in various

engineering areas over the past few decades [55, 59–62]. Unlike conventional sets, a fuzzy

set continuously defines the degree to which an object belongs to a certain set between ‘0’

and ‘1’ [14, 63, 64]. FLSs imitate human reasoning which derives a conclusion based on a

set of expert fuzzy If-Then rules in a range between ‘0’ and ‘1’.

Due to the necessity to accommodate uncertainties occurring in systems, Zadeh [57] in-

troduced an enhanced version of the standard T1-FLSs which are nowadays referred to

as T2-FLSs, where a new parameter called footprint of uncertainty was introduced. Al-

though T1-FLSs reveal the denotation of uncertainties, they have a limited ability to

model and to minimize the influence of uncertainties in nonlinear systems. Therefore,

T2-FLSs can be an encouraging method to handle uncertainties associated with real-time

applications as they incorporate uncertainties in their structure which are not incorpo-

rated in T1-FLSs [63,65,66]. In other words, the structure of T2-FLSs takes uncertainties

into account and inherently encodes an uncertainty factor that is not addressed in T1-

FLSs [64]. T2-FLSs appear to be more capable of handling problems with uncertainties

and time-varying systems compared to their type-1 counterpart [30,34,64–67].

12



2.2. BASIC PRINCIPLES OF FUZZY LOGIC SYSTEM

2.2.1 Type-1 Fuzzy Logic Systems (T1-FLSs)

2.2.1.1 Type-1 Fuzzy Sets (T1-FSs)

In T1-FLSs, a fuzzy set A can be represented as (x, µA(x)), where x ∈ X, and µA(x) ∈

[0, 1]. The (MF) of A is labeled as µA(x), while X denotes the universe of discourse (which

specifies the range of permissible values for a variable).

Definition 2.2.1 T1-FSs can be expressed as follows:

A = {(x, µA(x))|∀x ∈ X,µA(x) ∈ [0, 1]} . (2.1)

The fuzzy set A can also be denoted in a continuous universe as:

A =
∫
x∈X

µA(x)/x, (2.2)

or for a discrete universe Xds as:

A =
∑
x∈Xds

(x, µA(x), (2.3)

where
∫
and ∑ represents the collections of elements with a set A.

2.2.1.2 T1-FSs - Theoretic Operations

T1-FSs can be aggregated using union (s-norm) operation, intersection (t-norm) operation

and the complement operation. The (s-norm) operators are also known as (t-conorm). The

maximum and the algebraic sum are fuzzy union, while the minimum and the algebraic

product are fuzzy intersection. In the following equations, the minimum and the maximum

representations are adopted.

Definition 2.2.2 Let M1 and M2 be two T1-FSs in A, which are represented by their

MFs µM1(x) and µM2(x). The union of M1 and M2, M1 ∪M2, is expressed by its MF

µM1∪M2(x), that is,

µM1∪M2(x) = max

[
µM1(x), µM2(x)

]
, ∀x ∈ X. (2.4)
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The fuzzy intersection of M1 and M2, M1 ∩M2, is expressed by its MF µM1∩M2(x), that

is,

µM1∩M2(x) = min

[
µM1(x), µM2(x)

]
, ∀x ∈ X. (2.5)

Additionally, the complement of a fuzzy set A can be expressed by the MF µĀ(x) as:

µĀ(x) = 1− µA(x), ∀x ∈ X. (2.6)

2.2.1.3 Structure of T1-FLSs

The structure of T1-FLSs consists of four elements as follows (Fig. 2.1) [30]:

Fuzzification

Rule-Base

Inference engine

Crisp

 Values
Defuzzification

Crisp

 Outputs

Figure 2.1: T1-FLSs structure.

• Fuzzification: this process transforms crisp values into fuzzy sets. The crisp values

can be defined as the measured data from sensors (e.g. the altitude of an aircraft).

In the fuzzification process, there are two types of fuzzifiers: singleton and non-

singleton [22,63].

• Rule-base: a set of rules, which consist of antecedent and consequent parts. These

rules can be provided by experts or can be extracted from domain-specific data [22].

In this thesis, the first-order TSK rule structure is utilized, which can be presented

as follows:

Rl : IF x1 is A
l
1 and ... and xj is A

l
j , THEN Gl = cl0 + cl1x1 + ...+ cljxj ,
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where xi(t) denotes the ith input to fuzzy system; Ali labels the T1-FSs of input

state i in rule l; Gl is the output of the lth rule; cl1, ..., clj denote the coefficients of

the output function, and l = 1, ..., N , where N is the number of fuzzy rules. The

linguistic term Ali can be represented using several different shapes of MFs such as

trapezoidal, triangular, Gaussian, Sigmoidal and bell-shaped [22,64] as shown in Fig.

2.2.
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Figure 2.2: Different types of T1-FLSs membership functions, where MD denotes the
membership degree.

• Inference System: this mechanism implements the required algebra to manipulate

fuzzy sets. This manipulation can be performed using several algebraic operations

as discussed in the theoretic operations subsection. The firing strength for each rule

can be calculated using the product t-norm operator as follows:

f l = µAl1
(x1)× ...× µAlj (xj). (2.7)

• Defuzzification: this step aggregates the fuzzy output sets into crisp values. There

are various defuzzification methods including: centroid, center-of-sets, height and

etc. The defuzzifier of a first-order TSK-type can be represented in two forms; the

un-normalized TSK fuzzy system and the normalized TSK fuzzy system. The former
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can be represented using the following equation as described in [22]:

y =
N∑
l=1

f l.Gl, (2.8)

while the latter is described as follows:

y =
∑N
l=1 f

l.Gl∑N
l=1 f

l
. (2.9)

2.2.2 Type-2 Fuzzy Logic System (T2-FLSs)

T2-FLSs have been applied with great success in various engineering applications demon-

strating better performance than T1-FLSs to handle uncertainties as reported in the lit-

erature. T2-FLSs have been implemented in numerous disciplines such as signal process-

ing [68], pattern recognition [18], mathematical modeling [69] and control systems [70,71].

The structure of T2-FLSs is depicted in Fig. 2.3.

Fuzzification

Rule-Base

Inference engine

Type-

Reduction

Crisp

 Values

Reduced 

type set 

(Type-1 )

Defuzzification
Crisp

 Outputs

Figure 2.3: T2-FLSs structure.

In general, the scheme of T2-FLSs is similar to T1-FLSs, which includes a fuzzifier, a fuzzy

inference engine, a rule-base, and an output processor. The main difference between them

can be demonstrated in the defuzzification process, wherein T2-FLSs, a type-reduction is

required before carrying out the defuzzification process [18–20,72].

Uncertainties can affect decision-making in various ways, as the available data may be

imprecise, incomplete, vague or fragmented [23, 31]. From a control perspective in FLCs,
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uncertainties can occur from input devices to the FLCs, which can be translated into

uncertainties in the antecedents’ membership functions. This could be caused due to input

sensors, where their characteristics may be changed by the environmental conditions (e.g,

wind, rain, humidity, sunshine, etc.). Also, a change of actuator characteristics (e.g, wear,

tear of the actuators) can occur, causing various uncertainties in the overall control system.

All the above-mentioned uncertainties can be translated into uncertainties in the overall

FLCs structure [25,73].

The utilization of T2-FLSs in real-time applications is moderately uncommon due to a

high computational cost in the type-reduction operation needed to convert the type-2 fuzzy

sets (T2-FSs) into their type-1 counterparts [22]. Therefore, to simplify the computational

burden of the generalized T2-FLSs and to maintain their main advantages, IT2-FLSs were

introduced [15, 27], where the secondary grade variables of an interval type-2 fuzzy sets

(IT2-FSs) are set to unity = 1. In other words, IT2-FLSs were designed to accelerate the

response to uncertain input membership functions, allowing greater freedom in designing

the desired control law while providing the ability to accommodate more uncertainties

typically found in nonlinear systems [16,17,28].

2.2.2.1 Type-2 Fuzzy Sets (T2-FSs)

Definition 2.2.3 A typical type-2 fuzzy set, represented by Ã, is characterized by a type-2

membership function µÃ(x, u), where for every x ∈ X, and u ∈ Jx ⊆ [0, 1] as follows [22]:

Ã =
{
((x, u), µÃ(x, u))|∀x ∈ X, |∀u ∈ Jx ⊆ [0, 1], µÃ(x, u) ⊆ [0, 1]

}
, (2.10)

where u is called the primary membership function and µÃ(x, u) is the secondary mem-

bership function. Ã can be described in fuzzy set notation for a continuous universe as:

Ã =
∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1]. (2.11)
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or for a discrete universe as:

Ã =
∑
x∈X

∑
u∈Jx

((x, u), µÃ(x, u)) Jx ⊆ [0, 1]. (2.12)

2.2.2.2 Footprint-of-Uncertainties (FoUs)

Uncertainty in the primary membership function of a T2FS, Ã, is made up of the bounded

region, as shown in Fig. 2.4, which is named the footprint of uncertainty (FoU). FoU(Ã)

can be expressed as the union of all primary memberships, which can be defined as follows:

FoU(Ã) = ∪
x∈X

Jx. (2.13)

The upper bound of FoU is called upper membership function (UMF), denoted by µÃ(x)

and the lower bound of FoU is named lower membership function (LMF), which is denoted

by µ
Ã

(x), that is,

µÃ(x) = UMF (Ã) (2.14)

µ
Ã

(x) = LMF (Ã). (2.15)
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2.2.3 Interval Type-2 Fuzzy Logic Systems (IT2-FLSs)

IT2-FLSs were introduced as a method to reduce the computational cost while maintaining

the main advantages of T2-FLSs [15]. The secondary grade values of IT2-FLSs are set to

unity as shown in Fig. 2.4.

2.2.3.1 Interval Type-2 Fuzzy Sets (IT2-FSs)

Mathematically, IT2-FSs can be expressed as:

Ã = {((x, u), 1)|∀x ∈ X, |∀u ∈ Jx ⊆ [0, 1]} (2.16)

Ã can be described in fuzzy set notation for a continuous universe as:

Ã =
∫
x∈X

∫
u∈Jx

µÃ(x, u)/1 Jx ⊆ [0, 1]. (2.17)

or for a discrete universe as:

Ã =
∑
x∈X

∑
u∈Jx

((x, u), 1) Jx ⊆ [0, 1]. (2.18)

2.2.3.2 IT2FSs - Theoretic Operations

IT2FSs can be aggregated using union, intersection and complement operations [20].

Definition 2.2.4 Let M̃1 and M̃2 be two IT2FSs in Ã, which are represented by their

MFs µM̃1
(x) and µM̃2

(x). The union of M̃1 and M̃2, M̃1 ∪ M̃2, is expressed as follows:

M̃1 ∪ M̃2 = 1/
[
µ
M̃1

(x) ∨ µ
M̃2

(x), µM̃1
(x) ∨ µM̃2

(x)
]
,∀x ∈ X. (2.19)

The fuzzy intersection of M̃1 and M̃2, M̃1 ∩ M̃2, is expressed as follows:

M̃1 ∩ M̃2 = 1/
[
µ
M̃1

(x) ∧ µ
M̃2

(x), µM̃1
(x) ∧ µM̃2

(x)
]
,∀x ∈ X. (2.20)

and, the complement of IT2FSs Ã can be expressed as:

Ã = 1/
[
1− µÃ(x), 1− µ

Ã
(x)
]
,∀x ∈ X. (2.21)
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2.2.3.3 Structure of IT2-FLSs

The architecture of IT2-FLSs is similar to T2FLSs. It includes five different layers con-

nected sequentially. The structural detail of each layer can be presented as follows:

1. Layer 1 (the fuzzification layer): this process maps the input values into IT2-

FSs. There are different types of membership functions to represent IT2-FSs such

as trapezoidal and Gaussian membership functions as shown in Fig. 2.4.

2. Layer 2 (Fuzzy Rules): the two main common rule of fuzzy rules for an IT2-FLSS:

(1) Mamdani fuzzy rule, (2) Takagi-Sugeno (TS) type of fuzzy rule [74,75].

• Mamdani rule: in the Mamdani rule, the consequent part is represented by a

fuzzy set. The structure of the Mamdani fuzzy rules can be described as follows:

Rl : IF x1 is Ã
l
1 and ... and xj is Ã

l
j , THEN yl is G̃l, l = 1, ..., N,

where Rl denotes lth fuzzy rule, Ãl labels linguistic terms of the lth rule and jth

input attribute, while G̃l denotes the lth rule and N th output variables.

• TS rule: in the TS fuzzy rules, the consequent part is a combination of linear

and nonlinear functions of the inputs. The structure of a first-order TSK rule

for an IT2-FLSS can be described as follows:

Rl : IF x1 is Ã
l
1 and ... and xj is Ã

l
j , THEN yl = [cl0 + cl1x1 + ...+ cljxj ],

where Rl is the lth fuzzy rules, Ãl denotes linguistic terms, clj are the consequent

polynomial parameters, xj denotes the fuzzy system inputs and yl is a linear

combination of the j states, which represent the fuzzy system output.

There are advantages of both the Sugeno and the Mamdani methods. For the

Sugeno method: (1) it is computationally efficient; (2) it can be represented as

a linear function, resulting in working efficiently with linear control approaches

(e.g., PID controller); (3) more suitable for mathematical analysis and opti-

mization techniques. For the Mamdani method: (1) it is an intuitive approach;

(2) more suitable for human interpretation [76].
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3. Layer 3 (Inference Engine): the function of the fuzzy inference engine is to

combine all rules and gives the mapping from input fuzzy sets to output fuzzy sets.

This layer is also called the firing layer, where the firing level is calculated. For

T2-FLSs, the firing level is represented by a firing interval. This process can be

achieved using the basic theoretic operations. The firing interval can be calculated

as follows:

f l (x1, ..., xn) = [f l (x1, ..., xj), f
l (x1, ..., xj)]

= [f l, f l].
(2.22)

The expressions for f l and f l are given as follows:

f
l

=
j∏
l=1

µÃlj
, f l =

j∏
l=1

µÃlj
. (2.23)

4. Layer 4 (Type-Reduction): one major step in any rule-based fuzzy system is the

process to convert a fuzzy set to a real number. In T1-FLSs, this process is done

by the defuzzification process. For T2-FLSs, there are two possible avenues: (1)

direct defuzzification, by a direct mapping of T2-FSs into a crisp value, or (2) by

converting T2-FSs into T1-FSs (this process called type-reduction), then from T1-

FSs into crisp numbers (defuzzification). There are many type-reduction approaches

in the literature [17,77], such as centroid TR [78], the Karnik-Mendel (KM) TR [15],

the enhanced KM TR [79], the enhanced iterative algorithm with stop condition

(EIASC) [80] and the Nie and Tan closed-TR method [81]. In this research, we

deploy several type-reduction methods including the EIASC and the NT closed-

form TR algorithms to improve its efficiency for real-time implementation and also

to reduce the computational burden of the KM algorithm.

The Karnik-Mendel type-reducer is the most popular approach, which is an iterative

method that calculates the left and right outputs [yl, yr] for the centroids of T2-FSs

(or Center-of-Sets (COS), Height, modified Height, etc). Hence, the [yl, yr] can be

computed as [78]:

yl(x) =
∑L
i=1 cl(G̃)f(x) +∑M

i=L+1 cl(G̃)f(x)∑L
i=1 f(x) +∑M

i=L+1 f(x)
(2.24)
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yr(x) =
∑R
i=1 cr(G̃)f(x) +∑M

i=R+1 cr(G̃)f(x)∑R
i=1 f(x) +∑M

i=R+1 f(x
, (2.25)

where yl in layer 2 ∈ [cl(G̃), cr(G̃)], which replaces the IT2FS, G̃, using the COS

type-reducer; L and R are called the switching points. These points have no

closed-form solutions; however, they can be computed using the KM method or

the EIASC algorithm. One interesting property of the EIASC algorithm is that no

rule-reordering is required; unlike the KM-TR algorithm, where the consequent pa-

rameters need to be reordered in ascending order. Hence, EIASC has been adopted

in our proposed designs.

5. Layer 5 (Defuzzification): the final step is to calculate the crisp defuzzified output

as follow:

Y (x) = (yl(x) + yr(x))/2. (2.26)

2.2.3.4 Several Considerations on Practical IT2-FLSs

There are several considerations when designing practical IT2-FLSs, which can be sum-

marized as follows [19,82]:

• Fuzzifier (singleton or non-singleton): the recommendation in [19] refers to the uti-

lization of a non-singleton fuzzifier in the presence of measurement noise. Otherwise,

the designer should start with singleton fuzzification due to its simplicity. For single-

ton fuzzification, the measurement is considered to be perfect and modeled as crisp

values, while for non-singleton fuzzification, the measurements are considered to be

corrupted and modeled as fuzzy sets [75],

• Membership function type: the two most widely used membership functions are

Gaussian and piecewise linear functions. For Gaussian IT2 membership function,

three parameters are required to define it (m1,m2, σ) or (m,σ1, σ2), where m is

the mean and σ is the width. On the other hand, nine parameters are needed to

construct a piecewise linear MF. The trapezoidal MF shape is the most widely used
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piecewise linear MF form in fuzzy systems [19]. Hence, one can conclude that it is

simpler to use an IT2 Gaussian membership function as it requires a fewer number of

parameters. However, the analytical structure of an IT2 piecewise function is easier

to derive [19].

• Number of membership functions: although there is no restriction on the number of

MFs, in practice some limitations may hinder the designer from using too manyMFs.

In [19], it is recommended to utilize ≤ 7 MFs for each input domain to facilitate

interpretation and to minimize computational cost.

• Optimization: For the sake of performance and accuracy, it is important to opti-

mize fuzzy MFs. In the literature, the most widely used methods are the steepest

descent algorithm (which is also referred to as the back-propagation technique), and

evolutionary computation algorithms [82].

• Computational Cost: the use of traditional Karnik-Mendel (KM) type-reducer in the

real-world application might be rare due to its computational cost. Hence, several

algorithms are proposed to reduce the computational cost such as the Enhanced

Iterative Algorithm with Stop Condition (EIASC) [83], Enhanced KM algorithm [22],

optimized direct approach [84]. EIASC is recommended for its speed and simplicity

[19,74].

2.3 Modeling and System Identification of Dynamic Sys-

tems

Numerous researchers have studied techniques to model nonlinear dynamic systems. These

techniques include: (1) first principle modeling approach, also known as, the direct com-

putation modeling approach, which is based on physics laws and also known as white-box

approach, and (2) experiment-based system identification approach, either black-box or

grey-box techniques, also known as data-driven modeling approach [11,60,85]. The black-

box approach requires observation of the input-output data in order to parametrize a
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function. The white-box approach is based on comprehensive first-principles derivations.

Moreover, the grey-box, which is connected to semi-physical modelling and the steel-grey

technique, is based on the concept of developing local modes (linearization) to handle

nonlinearities [37]. While the first principle modeling technique has several merits and

can provide an accurate understanding of systems’ dynamics, this approach is impractical

in many dynamic systems due to the associated complexity and the unknown dynamic

behaviors [85]. On the other hand, experiment-based data-driven modeling techniques

using input-output data may achieve more accurate and realistic solutions, especially

in the case of aerial robotics, where the system is not only nonlinear but also uncer-

tain. There are several ways to describe the relationship between input/output variables.

These include the polynomial model using the linear/nonlinear Auto-Regressive with eX-

ogenous input (ARX/NARX), and linear/nonlinear autoregressive moving-average (AR-

MA/NARMA) [86]. Although these techniques appear to be easy to implement, they have

several constraints; particularly when it comes to highly nonlinear systems, in addition to

constraints in the presence of other uncertainties [4, 85].

There exist some challenges in these data-driven techniques, such as the need to conduct

several experiments before obtaining a robust model [87]. However, with the advancement

of technology, sensing methods and fast processors, large amounts of information can

be obtained which can be utilized to analyze the performance of a dynamic system in

different operating conditions without the need to understand the mathematics of the

system [11,88].

To overcome the issue of the traditional data-driven modeling techniques, artificial in-

telligence based-methods such as fuzzy logic systems, neural networks, and neuro-fuzzy

systems are used, where the exact analytical model can be avoided [13,14,89]. These meth-

ods have been employed successfully to model nonlinear systems, thanks to their universal

approximation and their learning capabilities [2–10,12,36]. In other words, these systems

can process vague data and produce acceptable outputs without the need for complex

mathematical computations.
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2.3.1 IT2-FLSs for System Identification of Nonlinear Systems

Fuzzy system identification techniques have been extensively used in various nonlinear

systems to obtain accurate models using input-output data [3, 11, 14, 85, 90]. One of the

most popular fuzzy modeling approaches is the Takagi-Sugeno (TS) fuzzy-based model.

The main task of the TS fuzzy model is to build several local models that can approximate

the dynamics of a nonlinear system [90]. The construction of the TS fuzzy model consists

of three phases: (1) fuzzy structure identification; (2) fuzzy parameter identification; (3)

model validation [91]. There are various automated methods for developing fuzzy models

such as: (1) Batch least squares (BLS); (2) Recursive least squares (RLS); (3) Learning

from example (LFE); (4) Modified learning from example (MLFE); (5) Gradient method

(GM); and (6) Clustering method (CM) [92]. Fig. 2.5 demonstrates the architecture of

FLSs for online system identification of dynamic systems.
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Figure 2.5: Architecture of online fuzzy system identification for dynamic systems.

Although T1FLSs have been applied to model various complex nonlinear systems, they

have limited capability to handle uncertainties [30, 74, 90]. Therefore, T2-FLSs (i.e. with

interval membership functions) were established [15–17].

The most significant process to establish a fuzzy model is the structure identification that

is concerned with the selection of fuzzy inputs, the number of rules, and the membership

functions [93]. Among the most common methods for fuzzy structure identification is the

fuzzy clustering technique. There are various fuzzy clustering methods in the literature,

such as the Fuzzy C -means (FCM) by Bezdek [94], modified Gath-Geva fuzzy cluster-
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ing [95] and fuzzy C-regression model (FCRM) [96]. Nevertheless, type-1 fuzzy clustering

techniques have limited ability to handle uncertain behaviors in real systems [97, 98].

Therefore, an interval type-2 fuzzy method based on the C -means clustering technique

is proposed in [99] to handle uncertainties. A type-2 fuzzy clustering method using a

differential evolution optimization approach was proposed in [100]. Moreover, a modified

interval type-2 FCM approach was presented in [90, 101]. All of these methods were pro-

posed to accommodate uncertainties in nonlinear systems and to improve the performance

over the type-1 fuzzy counterpart.

2.4 Control of Dynamic Systems

There are several factors that involve designing closed-loop control systems (Fig. 2.6).

Some of these factors can be summarized as follows [102]:

Disturbance 
rejection 

capability. 

Plant parameter 
variations (e.g., 

mass variations). 
Stability. Settling-time. 

Overshoot (%). Rise-time. 
Steady-state 

error. 
Computation 
complexity. 

Adaptability. Speed. 

Figure 2.6: Some of performance objectives in closed-loop control design.

• Disturbance rejection capability: disturbance can affect the performance of the

overall control system (e.g., wind gust, measurement noise) in aerial robotics [103].

• Stability: it is crucial to guarantee that the system output will converge to the

desired set-point.

• Ability to handle system parameter variations: the control system should

have the ability to compensate for variation of parameters (e.g., variation of mass,
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external load in aerial robotics).

• Rise-time: defined as the time required for a unit-step response to rise from 10%

of the steady-state value to 90% of the steady-state value [104].

• Overshoot: it can occur when the actual output exceeds its reference/desired input

and can be described as [104]:

% Overshoot = 100× Max value− steady state value
steady state value

. (2.27)

• Settling-time: defined as the time required for a step response of a system to reach

within 2% of its set-point value [105].

• Steady-state error: defined as the error between the desired set-point and the

actual output.

• Others: such as computation complexity, adaptability, and speed.

2.4.1 Control Methods

There are myriads of methods for constructing stable control systems. Some of these

methods are listed as follows (Fig. 2.7) [102]:

• Proportional-integral-derivative (PID) controller: PID controllers are con-

sidered as reliable, simple and easy to understand and to tune. Control engineers

often use intelligent controllers (e.g., fuzzy controllers, neural network controllers)

to tune PID control parameters. The general continuous-time linear PID controller

form can be described by the following expression:

u(t) = K

(
e(t) + 1

Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

)
, (2.28)

where e(t) represents the error signal, that is, e(t) = r(t) − y(t), where r(t) is the

reference signal; y(t) is the output of the system; K is a gain; Ti is the integration
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Figure 2.7: Types of closed-loop control systems.

time; and Td is the derivative time. Nevertheless, for complex, nonlinear and time-

variant systems, the effectiveness of conventional controllers becomes poor [106,107].

• Classical methods: which include lead-lag compensation, root-locus approach,

Nyquist approach.

• Optimal control: such as Linear Quadratic Regulators (LQR).

• Robust control: (e.g., H2 or H∞ techniques, loop shaping, quantitative feedback

theory).

• Nonlinear control techniques: (e.g., sliding mode control (SMC), Lyapunov

method, feedback linearization (FBL), backstepping control).

• Adaptive control: (e.g., self-tuning regulators, model reference adaptive con-

trollers, nonlinear adaptive controllers, adaptive intelligent controllers).

• Intelligent control methods: (e.g., fuzzy controllers, neural network controllers,

neuro-fuzzy controllers). A more detailed explanation of intelligent controllers is

discussed in the following section.
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2.4.2 Intelligent Control - Fuzzy Controllers

While some conventional control strategies intensely rely upon the exact model of con-

trolled process/system, FLCs can be designed instinctively based on the knowledge gained

about a systems’ behaviors. This knowledge is often acquired through experience and com-

mon sense. FLCs rely on the reasoning approximation that derives a decision based on a

set of fuzzy IF-THEN rules that mimic human-like reasoning [14]. FLCs are a practical

option for a variety of complex control applications for their suitability to construct non-

linear controllers via the use of heuristic knowledge, where such heuristic knowledge can be

acquired from experts who act as human-in-the-loop controllers for a certain process [102].

The general structure of the closed-loop FLCs structure can be depicted in Fig. 2.8. In

this thesis, several type-1/type-2 fuzzy control strategies are proposed and discussed in

detail.
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Plant/ Process 

Adaptation law 
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Control 
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Figure 2.8: Closed-loop FLCs structure with disturbance signal.

2.4.3 Intelligent Control - Neural Networks Controllers

In recent years, neural networks (NNs) have attracted great attention and have been

used in many different applications. NNs-based controllers can be regarded as one of

the adaptive nonlinear controllers consisting of interconnected neurons which exchange

information with each other [14]. Inspired by the structure of neurons, NNs were developed

to emulate the learning capability of biological neural systems [48,108,109].

The basic mathematical model of shallow NNs comprise of three layers: (1) the input
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Figure 2.9: Neural networks structure. (top) perceptron neuron structure, (bottom) Dif-
ferent network architectures.

layer; (2) the hidden layer; (3) and lastly the output layer. Unlike FLSs, NNs have the

capability of learning and the ability of parallel processing [14,110]. In the first stage, the

inputs [x1, x2, ..., xn] are multiplied by their respective weights [w1, w2, .., wn], so that the

resulting summation, net = (w1.x1 + w2.x2 + ...+ wn.xn). This can be written as [111]:

net =
(

n∑
i=1

wi.xi

)
= W TX. (2.29)

Additionally, a threshold value b, named bias, plays an important role in some NNs models,

so that Eq. (2.29) can be expanded as:

net =
(

n∑
i=1

wi.xi

)
+ b. (2.30)

Lastly, the final output can be described as:

y = f(net) = f(W.x+ b) (2.31)

where f(.) is a nonlinear activation function in the neuron arrangement. There are variety

of activation functions. Among them: (1) the sign function, (2) the step function, (3)

the sigmoid (logistic) function, (4) the exponential activation function, (5) the reciprocal
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activation function, (6) the Gaussian activation function, (7) the saturation activation

function [112]. Various NN architectures are represented in Fig. 2.9, where the top

figure represents the architecture of a simple perceptron neuron model, while the bottom

figure elaborates various NN architectures, which include single layer feed-forward network,

multi-layer feed-forward network, and multi-layer recurrent network [113].

2.4.4 Intelligent Control - NeuroFuzzy Controllers

FLCs and NNs have shown the ability to deal with complex, nonlinear and time-varying

systems in the presence of uncertainties due to their universal approximation and learning

capabilities. Manual tuning of FLCs can be a tedious task and time-consuming for hu-

man operators to examine all the possible input-output data scenarios to find an optimal

solution of dynamic systems [114]. By merging the human-like reasoning style of FLCs

with the learning structure of NNs, neuro-fuzzy hybridization produces a hybrid intelligent

system that synergizes these two methodologies. The lack of interpretability of NNs, on

the one hand, and the poor learning power of fuzzy systems, on the other, are both issues

that limit their use. Neuro-fuzzy systems are hybrid systems that attempt to tackle this

challenge by merging connectionist models’ learning capabilities with fuzzy systems’ inter-

pretability attribute [14, 42, 113,115]. Several studies have been investigated to automate

knowledge acquisition for FLSs by the means of automatic learning using NNs. There can

be several ways to combine FLCs with NNs. Among them [111], NNs can be utilized to

fine-tune FLSs parameters, to learn fuzzy rules and to determine the number of MFs.

2.4.5 IT2FLCs in Nonlinear Control Systems

Most robotic systems are dynamically unstable, nonlinear, and are multi-input multi-

output (MIMO) systems, and therefore, robust control systems are required to stabilize

them [98]. The classical model-based control approaches such as PID controllers [116],

LQR [117], and model predictive controllers (MPC) [118] can provide optimal control per-

formance when the model is well-defined, precise and there are no external uncertainties.
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Nevertheless, there are inevitable uncertainties, (e.g. lack of modeling, mechanical wear,

rotor damage, battery drain, and sensor and actuator faults [25, 119]). In the face of the

aforementioned uncertainties, the control performance of conventional methods becomes

poor [30]. In other words, designing a reliable closed-loop control system is a challenging

task in the face of uncertainties [120].

In general, adaptive control methods have proven to be more effective than fixed gain con-

trollers [30,98]. Intelligent control systems such as FLCs, NNs-based controllers, and their

combinations have been extensively employed to control nonlinear systems with complex

dynamics [23, 121–124]. Under the umbrella of FLCs, Takagi-Sugeno (TS) fuzzy control

systems have several advantages. Among them, TS fuzzy systems allow a description

of a nonlinear system via a set of local linear system domains with corresponding well-

designed MFs [125]. Moreover, FLCs can represent uncertainties in nonlinear systems by

their continuous MFs [22].

Nevertheless, since uncertainty information is not incorporated in the membership function

of type-1 fuzzy logic control systems (T1FLCs), controlling nonlinear systems subjected

to uncertainties cannot be handled precisely. In other words, parameter uncertainties in

nonlinear systems may lead to uncertain membership degree, and hence, the scheme of

T1FLCs become more conservative [126]. To overcome this drawback, type-2 fuzzy logic

control systems (T2FLCs) and interval type-2 fuzzy logic control systems (IT2FLCs) can

be a good solution to achieve higher accuracy and greater robustness to system uncertain-

ties as demonstrated in various research papers [19,20,22,29–31,34,127–129].

Several studies combine T2FLCs and the sliding mode control (SMC) theory. Combining

fuzzy systems with SMC theory has the advantages of achieving higher computational

efficiency and improving the performance of the system by eliminating the chattering

effect of the SMC controllers [128,130,131]. IT2FLCs based on SMC were implemented to

control nonlinear systems such as unmanned aerial vehicles (UAVs) [29,132], and also for

obstacle avoidance and control for mobile robots [114] achieving reasonably good results.

Nevertheless, the control law is designed as a combination with other conventional control

approaches (e.g, PID controller) demanding additional tuning for its parameters. Similarly,
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in [133], a hybrid IT2FLC-based PID controller was proposed for a power system, where

the fuzzy parameters were tuned using the firefly algorithm-particle swarm optimization

technique. Nevertheless, their proposed representation requires extra tuning for the PID

parameters.

In the work by [107], a fault-tolerant control based on interval type-2 fuzzy neural networks

and sliding mode controller was developed for a 6-DOF octocopter UAV. Although their

proposed controller can guarantee the stability of the proposed control system, it lacks

experimental validation.

In [134–136], the SMC technique was also implemented with fuzzy systems to improve

the robustness of dynamic systems. Although their studies achieved good tracking perfor-

mance, the closed-loop control design was based on multiple SISO systems, which is less

efficient than having a single MIMO controller in the loop. In [136, 137], IT2FLCs based

on SMC were designed for an inverted pendulum, where simulation results demonstrated

the robustness of the system. However, their proposed control design was based on the

KM type-reduction method, which is computationally intensive.

In recent studies, IT2FLCs have been combined with other control techniques to handle

parameter uncertainties, disturbance rejection and robust stabilization. In [138], aH2/H∞
based IT2FLCs was proposed for nonlinear systems with minimal control effort to handle

uncertainties such as disturbance and measurement noise, where better tracking perfor-

mance was obtained compared to a T1FLCs. An IT2FLCs-based MPC was considered

for nonlinear networked control systems in the presence of parameter uncertainties and

defective communication links with good results in [139]. Moreover, a robust nonlinear

control system based on the FBL technique, assisted with IT2FLCs was proposed in [140],

for controlling the dynamics of a flapping-wing vehicle.
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2.5 Evolving Fuzzy Systems (EFSs)

FLSs can provide a large avenue for classifying, modeling and controlling various appli-

cations. However, traditional approaches of deriving fuzzy rules are often tedious, time-

consuming, require knowledge from experts and inefficient [14]. Moreover, the fuzzy rules

derived by an expert are too heuristic which means they cannot be verified analytically

due to their nontrivial nature. Therefore, the development of automatic fuzzy evolving

systems is required. Generating fuzzy rules and membership functions in fuzzy systems

is a potential challenge especially for systems with many variables [35]. Moreover, em-

ploying evolutionary algorithms to find optimal fuzzy parameters is not desirable due to

the large population space which results in slow performance. Hence, researchers have

proposed several evolving fuzzy systems (EFSs) for the structure and parameter learn-

ing of FLSs. EFSs can be defined as adaptive intelligent systems, which can learn their

Table 2.1: Adaptive vs. evolving fuzzy systems

Method Fuzzy
parameters

Fuzzy
structure

Number
of rules

Location of
MFs

Consequences

Adaptive Adjusted Fixed Fixed Adjusted Adjusted
Evolving Adjusted Adjusted Adjusted Adjusted Adjusted

fuzzy structure and parameters simultaneously in an online manner [55]. Table 2.1 shows

the main differences between adaptive and evolving fuzzy systems. In [141], EFSs were

referred to as Smart Adaptive Systems, where they differ from ‘simple’ adaptive systems

and have the following features: (1) autonomy, where they are able to evolve on their

own; (2) flexibility to change, where they are able to simultaneously evolve both their

structure and parameters; (3) ability to respond to a surprise (e.g., unexpected inputs);

(4) ability to accumulate experience (e.g., able to build-up their architecture during the

routine process); (5) they are smart (able to make decisions). The basic architecture of

smart adaptive systems/ EFSs is illustrated in Fig. 2.10 [141].

The field of evolving intelligent systems (EIS) was first conceptualized in [142], for single-

pass incremental learning, with self-constructing neural fuzzy inference network (SONFIN)

capabilities. SONFIN can learn both structure and parameters in an online manner.
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Figure 2.10: Basic architecture of smart adaptive systems/ EFSs

Nevertheless, it does not have the ability to remove ineffective rules. Besides, Kasabov

and Song [143] proposed a new technique named a dynamic evolving neural fuzzy inference

system (DENFIS) based on the evolving clustering method (ECM), where ECM requires a

threshold value for defining the maximum distance between each date sample and cluster

centers. Angelov and Filev [144] have developed an evolving Takagi-Sugeno (eTS) fuzzy

system that can evolve its structure from scratch without any prior knowledge of the

system. However, their proposed algorithm is not capable to eliminate useless rules. In

[145], a sequential adaptive fuzzy inference system (SAFIS) was proposed, where the

Kalman filter is utilized for updating the parameters. Angelov [146] developed a new

version of eTS called eTS+, where the online dimensionality was reduced compared to the

original eTS. In [47], a parsimonious network based on fuzzy inference system (PANFIS)

was developed as an improved version of SAFIS, where the extended recursive least square

method was utilized to guarantee the stability of the learning algorithms.

The integration of EFSs and IT2-FLSs was first introduced by Juang and Tsao [147],

where an improvement over their proposed SONFIN is made using T2-FSs. In [147], a

self-evolving FLS is developed to generate fuzzy rules from scratch for modeling nonlinear

systems. Their proposed algorithm utilized the Kalman filter for parameter learning of the

consequent part while the antecedent part was learnt by the gradient descent method. The

same algorithm was implemented in [148] for system identification of nonlinear systems.

In [149,150], fuzzy rules were generated from input-output data and an entropy criterion
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was used to determine when to extract and to generate a new fuzzy rule. However, one

drawback of this framework is that once the rule is created, it cannot be pruned. Also,

two rules should be combined into a single fuzzy rule if they are similar to each other.

This combination reduces the complexity of rule base design and improves the readability

and interpretability of rule semantics [151,152].

Recently, EFSs have become popular in various engineering applications. They have been

used for system identification, regression, classification and control [28, 37–54, 153]. In

general, EFSs are made up of three major elements: (1) rule addition; (2) rules pruning;

and (3) learning of fuzzy parameters [50]. Besides, some new concepts such as rules

merging and rules splitting were introduced [55].

2.5.1 Structure Learning (Rule Addition in EFSs)

Rule addition is the most essential element in EFSs [55]. A new rule is added when new

samples contain important novelty content. There are various techniques to determine

when and in which place to add a fuzzy rule in the data space. In other words, new

fuzzy rules are generated when satisfying certain thresholds. Among these thresholds

[5, 50, 55, 154]: (1) based on the current error of the system (the difference between the

measured and the estimated outputs); (2) measures of distance (e.g., Euclidean distance);

(3) density-based approaches (e.g., to measure how close the current sample to the recent

estimation of the density); (4) based on the guarantee of ε− completeness , that is related

to the membership degree/ firing strength of the current sample. Besides, several other

methods such as the entropy [37], and mutual information [47] are utilized for adding new

rules in EFSs.

2.5.2 Structure Learning (Rule Pruning in EFSs)

Mechanisms of pruning rules in EFSs are convenient to remove inactive rules, which are

no longer useful [155]. This reduces the redundancy of fuzzy models and also results in

36



2.5. EVOLVING FUZZY SYSTEMS (EFSS)

faster computation time during the adaptation of parameters. Various pruning techniques

were studied in the literature to guarantee a successful pruning of unnecessary rules. One

of the most widespread approaches for pruning existing rules is based on the contribution

of membership grade, so when it is smaller/bigger than a prior threshold value, the rule is

deleted [156]. In [157], the mechanism of removing rules was based on the age of the rule.

Besides, the deletion of rules was based on the contribution of a fuzzy rule to the model

output error in [145,158,159].

2.5.3 T1/T2 EFSs in System Identification of Nonlinear Systems

In recent years, evolving systems have been successfully employed for nonlinear system

identification. Most real-world systems are nonlinear, which may vary over time. In other

words, the behavior of these systems changes over time. Nevertheless, a large amount of

data are generated from multiple sources, which may result in high dimensional data [55].

Hence, the use of evolving systems is essential to handle and to process big data in real-

time [160,161].

There are various intelligent evolving methods in the literature, which are based on FLSs,

NNs or neuro-fuzzy-based concepts. Among the EFSs models [55]: evolving Takagi-Sugeno

(eTS) [141,144,160], eTS+ [146], flexible fuzzy inference systems (FLEXFIS) [162], FLEX-

FIS+ [163], generalized smart evolving fuzzy systems (GS-EFSs) [164], fuzzy set based

evolving modeling (FBeM) [165], type-2 evolutionary Takagi-Sugeno fuzzy inference sys-

tems with information entropy-based pruning technique (T2-ETS-IE) [37] and evolving

fuzzy model (eFuMo) [166].

In [167], an evolving neuro-fuzzy system was developed for modeling a hexacopter plant,

where the learning mechanism was built from scratch with very limited knowledge about

the system. In another study by [168], a self-adaptive Takagi-Sugeno fuzzy system was

developed for online identification of a UAV quadcopter using C -means clustering tech-

nique. However, their proposed technique was based on T1-FLSs which have a limited

capacity to accommodate the FoU.
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To accommodate more uncertainties in capturing the dynamics of nonlinear systems, sev-

eral EFSs based on T2-FLSs were proposed in the literature. In [42], self-organizing

IT2-FLSs combined with a neural network was proposed for system identification of non-

linear systems. Their proposed approach was based on the intensity of the transmitting

information algorithm to determine the firing neurons. In [37], learning from scratch

evolving T2-FLSs was proposed for system identification of nonlinear systems using the

concept of information entropy. Their proposed work showed better accuracy compared

to evolving T1-FLSs, with a fewer number of membership functions. A self-evolving re-

current T2-FLSs based on radial basis function network (RBFN) named T2FRBFN was

developed by [51] for dynamic system identification. Their proposed technique illustrated

better accuracy compared to a conventional RBFN. A reduced-interval type-2 neuro-fuzzy

system was proposed in [169] using weighted bound-set boundaries, with online tuning

capability. Their proposed algorithm was based on the Takagi-Sugeno-Kang (TSK) in-

ference system and was verified through simulations of sequence prediction and process

modeling. In [156], a function-link self-evolving type-2 neuro-fuzzy-based system was pro-

posed for nonlinear system identification and control, where their proposed technique has

the ability to construct the rule base from scratch. Their proposed technique was verified

using computer simulation for timing-varying systems. A TSK type-2 self-evolving neuro-

fuzzy system was proposed in [43], named as the TSCIT2FNN for system identification

and noise cancellation using a compensatory operator. Their proposed TSCIT2FNN can

adapt the T2-FLSs parameters and learn their structure online.

2.5.4 T1/T2 EFSs for Nonlinear Control Systems

This section presents a survey of type-1 evolving fuzzy systems (T1-EFSs) and type-2

evolving fuzzy systems (T2-EFSs) in control systems. One major issue of the conventional

fuzzy control techniques is their fixed structure which is not able to adapt to any changes

in the dynamical systems. Hence, EFSs come into the picture [144,170]. In [41], a generic

self-evolving neuro-FLCs was designed for trajectory tracking of a bio-inspired UAV and

also to achieve a robust control performance of a voice coil motor in [171]. These recent
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controllers learnt their structure from scratch and utilized the sliding mode control theory

to adapt fuzzy parameters. In another study by [13], a self-evolving FLC was designed for a

hypersonic vehicle with online structure and parameter learning. Their simulation results

demonstrated superior performance over a fixed structure FLC. However, their proposed

controller is model-based, requiring an accurate mathematical model of the system. Fur-

thermore, most of the real-world applications are nonlinear, making it difficult to establish

an accurate mathematical model, especially in the presence of external disturbances and

other types of uncertainties.

EFSs were also used for fault-tolerant control in [172], where a self-constructing FLC was

proposed for aircraft fault-tolerant control. Their simulation results depicted that the

trajectory of the faulty system can reach the equilibrium point within a finite time.

Nevertheless, EFSs-based T1-FLSs have limited ability to handle uncertainties. Therefore,

EFSs based IT2-FLSs were proposed to capture more uncertainties in nonlinear systems,

thanks to the FoU in IT2-FLSs. In the work by [106], an evolving IT2FLCs was developed

to control a redundant robotic manipulator, where genetic algorithms optimization tech-

nique was utilized to optimize the scaling factors of IT2FLCs. Their proposed technique

was tested in the presence of external disturbances, random noise and parameter variation

resulting in robust performance. In [130, 156, 173], self-learning T2FLCs were proposed,

resulting in superior performance to handle uncertainties in dynamic systems. The de-

velopment of evolving IT2FLCs helps to cope with sudden variations and disturbances in

nonlinear systems.

A self-organizing cerebellar model articulation controller (CMAC) for MIMO nonlinear

systems was proposed in [174]. The gradient-descent method was utilized for online tuning

of fuzzy parameters. The stability of their technique was guaranteed using the Lyapunov

theory. An improved version of self-organizing CMAC was proposed in [175] using mixed

Gaussian membership functions. Their proposed technique was deployed to control a

double inverted pendulum system and a magnetic levitation plant. Nevertheless, these

proposed methods were based on T1-FLCs. An improved version of the CMAC algorithm

based on ITFLCs was proposed in [176], where the particle swarm optimization technique
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was used to optimize the control parameters. PSO-based optimization technique was also

used to find the optimal learning rates in [177] to construct their proposed interval type-

2 fuzzy brain emotional learning control system (IT2FBELC). However, the efficacy of

their proposed approaches in the face of various uncertainties has not been investigated

adequately.

2.6 Unmanned Autonomous Systems (UAS)

Recently, Unmanned autonomous systems (UAS) have been attracting a large amount of

consideration in the last few decades. UAS are advanced, intelligent machines that have

the capability to travel by air, sea or land without the need for a human personnel on-

board [178]. They have been utilized in both military and civil sectors [179]. Fig. 2.11

demonstrates different types of UAS. In this section, UAS are classified into three different

categories: UAVs, AUVs, and AGVs.

y

Quadcopter Drone Miniature Quadcopter

Mobile RobotAutonomous Underwater Vehicle 

Figure 2.11: Nonlinear systems including aerial robots, ground robots, underwater robots
(AUV image is taken from [1]).
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2.6.1 Unmanned Aerial Vehicles (UAVs)

In recent years, Unmanned Aerial Vehicles (UAVs), known as drones, have brought several

benefits in modern societies. UAVs, compared to manned aircraft, have been used in a

myriad of applications (e.g. transportation [180], inspection of power transmission lines

[181], search and rescue missions [182], and collecting traffic information [183]). Aerial

vehicles can be categorized into four subdivisions as follows: (1) rotary-wing vehicles which

include quadcopters, helicopters, octocopters, hexacopters, etc; (2) fixed-wing vehicles; (3)

flapping-wing UAVs; and (4) blimps [60,184]. Among different types of UAVs, multirotor

UAVs are commonly used due to their high maneuverability [185]. They are also convenient

platforms due to their compact size, ease of maintenance, safety for human interaction and

suitability for hazardous situations due to their high maneuverability [186], which makes

them suitable platforms for research purposes. Moreover, they have the capability to hover,

perform vertical take-off and landing (VTOL), and fly in confined spaces [14,60,187–191].

However, this type of aircraft is hard to model and control across its full flight envelope due

to various forms of uncertainties in addition to its complex and nonlinear nature [11,192].

Although modeling multirotor UAVs from first principles has several advantages and can

provide an accurate understanding of their behaviors, this approach results in compu-

tational load for physical and mathematical computations and is also time-consuming

[193, 194]. Furthermore, these models usually neglect the impact of various factors such

as motor dynamics, relative airspeed, motor breakdown, variations in payload and ground

effect, which are not trivial to model.

One way to address this drawback is to build models from data using input-output system

identification methods. Instead of using a physically relevant state vector, the state of the

system can be represented by a finite number of historical inputs and outputs of the system

[195]. For instance, FLSs [3, 4, 11, 196], and NNs [7, 9, 197] are two common approaches

that have been successfully implemented to approximate the dynamics of multirotor UAVs.

In other words, data-driven modeling approaches provide more accurate models and are

computationally simpler.
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From a control perspective, various techniques have been proposed for UAV flight control

systems including the PID controller [198], H∞ controller [194], LQR controller [117], and

other nonlinear controllers such as the SMC [199], backstepping control [200] as well as

the MPC control techniques [118]. However, one shortcoming of model-based controllers

is their limited ability to handle uncertainties that occur in the dynamics of many real-life

systems.

On the other hand, intelligent controllers have demonstrated better performance and have

been applied successfully in various nonlinear systems. In the case of multirotor UAVs,

FLCs (T1FLCs and T2FLCs) and NNs have been successfully applied in multirotor control

[3,74,201–205], with good results being achieved. Although T1FLCs have been applied to

control multirotor UAVs, they have limited capability to handle uncertainties [30, 74, 90].

Therefore, T2FLCs (i.e. with interval membership functions) can be a solution to T1FLCs

to achieve higher accuracy [15–17]. The use of T2FLCs in aerial robotics is useful to the

FLCs community due to various reasons. Among these reasons, they can provide better

control performance compared to their type-1 counterparts and are more robust to system

uncertainties as demonstrated in various research papers, where better system accuracy is

achieved for many real-time applications [20].

2.6.2 Autonomous Underwater Vehicles (AUVs)

Autonomous Underwater Vehicles (AUVs) have attracted a lot of interest in recent years

as a tool to perform various underwater tasks in both civilian and military sectors. One

of the main advantages of AUVs is that no human operator is required. Hence, they are

capable of carrying operations in an autonomous manner [206–209]. AUVs can be utilized

to perform various tasks such as pipeline surveying, underwater resource assessment, port

safety defenses, and many other applications [210]. Controlling AUVs is a challenging

task due to their nonlinear and time-varying dynamics. Over the past few years, several

control techniques have been proposed. These include linear controls [211, 212], sliding

mode control [213], LQR control [214], [215], and model predictive control [216–218]. In
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chapter 4, a new intelligent control system is proposed for AUVs.

2.6.3 Autonomous Ground Vehicles (AGVs)

The development of Autonomous Ground Vehicles (AGVs) has become one of the most

fruitful research areas in the field of autonomous systems. Currently, AGVs have been

used in numerous applications such as military operations [219, 220], agriculture [221],

and urban logistics [222]. Various nonlinear control systems for mobile robots have been

proposed. As such, numerical approaches have been developed for trajectory tracking

[223, 224], navigation [225], parking [226], and obstacle avoidance [114]. In chapter 6, a

novel intelligent evolving type-2 fuzzy controller is proposed for AGVs.

2.7 Research Gaps

From studies reviewed in this chapter, the main limitations are identified as follows:

• Most of the data-driven fuzzy system identification techniques for multirotor UAVs

are offline and based on T1-FLSs, which have limited ability to model and to min-

imize the influence of uncertainties in nonlinear systems. To solve this limitation,

IT2-FLSs based on the C -means clustering technique is proposed for online system

identification of multirotor UAVs in the presence of disturbances in Chapter 3.

• Most of the existing IT2FLCs approaches are SISO-based controllers and commonly

utilize the ‘Karnik-Mendel’ type-reduction algorithm, which is computationally ex-

pensive. To fill this gap, in Chapter 4, a new MIMO intelligent control system named

SAF2C is developed to control nonlinear dynamic systems and to reduce the compu-

tation time of SISO controllers in the face of various uncertainties (e.g., wind gust,

parameters variation, measurement noise). Also, the Enhanced Iterative Algorithm

with Stop Condition type-reducer is accommodated to reduce the computation cost

of the KM type-reducer. The proposed method is validated using various benchmark
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dynamic systems. Moreover, the stability analysis of the proposed method is studied

using the Lyapunov theory.

• The development of IT2FLCs in real-world applications as stand-alone controllers

has not been addressed adequately; mainly for multirotor UAVs. To fill this gap,

in chapter 5, a novel ESAF2C is developed for real-time control of a quadcopter

UAV, where several flight tests were conducted to prove the efficacy of the proposed

method in the face of external disturbances. Also, the stability analysis of the

proposed method is investigated using the Lyapunov theory.

• Most of the T1-EFSs and T2-EFSs focused on modeling/regression problems, which

are well-established in the literature. Nevertheless, there is a lack of research on

using T1-EFSs and T2-EFSs in nonlinear control systems; especially in the face of

various uncertainties. Therefore, in Chapter 6, to address this gap, T1-EFCs and

T2-EFCs are developed to control nonlinear dynamic systems, having the ability to

evolve both their structure and parameters in an online manner, and to minimize

the complexity of designing FLCs.

2.8 Summary

In this chapter, the basic concepts of T1-FLSs, T2-FLSs, and IT2-FLSs were reviewed.

Sequentially, we reviewed their applications on modeling and control of autonomous sys-

tems. Besides, a survey of the fundamental concept of EFSs and their applications on

modeling and control was highlighted. Lastly, the research gaps of the existing studies

were unveiled, which motivates the research work pursued in this thesis.

To address the limitation of system identification of dynamic systems, a novel online

system identification technique using IT2-FLSs based on C -means clustering technique is

proposed in Chapter 3. Besides, Chapter 4 addresses the limitation of adaptive control

systems using MIMO IT2FLCs for various nonlinear dynamic systems including multirotor

UAVs, AUVs, and an inverted pendulum system in the face of various uncertainties such
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as external disturbances, and variation of plant parameters. The limitation of real-time

implementation of IT2-FLCs is addressed in Chapter 5. Lastly, Chapter 6 addresses the

advantages of EFSs to control nonlinear systems using T1-FLSs, and builds an improved

version of EFSs for controlling nonlinear systems using T2-FLSs.
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Chapter 3

System Identification of Dynamic

Systems Using IT2-FLSs

Parts of this chapter have been taken from the following publications:

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). Online

System Identification for Nonlinear Autonomous Systems Using Recursive Interval

Type-2 TS Fuzzy C -means Clustering. 2020 IEEE Symposium Series on Computa-

tional Intelligence (SSCI) [91].

• Al-Mahturi, A., Santoso, F., Garratt, M. A., Anavatti, S. G., and Ferdaus, M.

M. (2019). Online Takagi-Sugeno Fuzzy Identification of a Quadcopter Using Ex-

perimental Input-Output Data. 2019 IEEE Symposium Series on Computational

Intelligence (SSCI) [11].

3.1 Introduction

Most real-world systems are highly nonlinear in nature and they cannot be fully described

using linear differential equations. For example, modeling multirotor aircraft is a challeng-

ing research task due to the inherent nonlinear, complex, over-actuated or under-actuated
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system dynamics. As discussed in the previous chapter, data-driven modelling techniques

are desirable since they have no dependency on the physical laws of nature. Rather, data-

driven methods are based on the input-output data obtained from experiments. Therefore,

the first part of this chapter discusses a sequential learning machine based on the Takagi-

Sugeno (TS) fuzzy inference system to model the dynamics of a multicopter drone using

experimental data. This is followed by proposing a novel IT2-FLS system identifier by

means of the C-means clustering technique to improve the performance of a T1-FLS sys-

tem identifier. This chapter leverages the advantages of nonlinear system identification,

which can incorporate various uncertainties such as noise and wind gusts that occur in

nonlinear dynamics of multirotor systems.

The remainder of this chapter is structured as follows. The contributions of this chapter

are listed in Section 3.2. Section 3.3 discusses the experimental setup. Next, Section 3.5

presents the proposed T1-FLS system identification method to model the dynamics of

multirotor aircraft. This is followed by a novel IT2-FLS system identification technique

to model the dynamics of nonlinear systems in Section 3.6. Finally, a summary of this

chapter is provided in Section 3.7.

3.2 Contributions of this chapter

Inspired by the previous work in fuzzy system-based data-driven modeling, a novel online

system identification approach by means of a recursive interval type-2 TS fuzzy C-means

clustering (IT2-TS-FC) method is developed for modeling of a multirotor UAV is described

in Section 3.3. The data is collected from real-time flight tests. The designed approach

deploys the Lagrange method to minimize the objective function (the modeling error and

the membership functions). Unlike previous IT2-FLSs models, this method constructs

two fuzzifiers (upper and lower) and two regression coefficients in the consequent part to

handle uncertainties. Besides, the weighted least square method to compute the regression

coefficients is deployed. Moreover, the proposed approach is validated using two set of data,

namely, the real flight test of a quadcopter drone and the Mackey-Glass time series data
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[227]. Lastly, to investigate the robustness of this approach, an online system identification

using a noisy dataset is conducted, providing results that demonstrate the capability of

this method to capture uncertainties in nonlinear systems.

3.3 Design of Experimental Setup

This section describes the experimental setup, including the commercial-off-the-shelf (CoTS)

autopilot and air-frame. A brief description of the robotic operating system (ROS) im-

plementation used on the UAV is provided. Finally, an explanation of integration of the

drone with the VICON optical motion capture system and ground control station (GCS)

is presented.

3.3.1 Pixhawk Autopilot

Autopilots can be defined as systems that combine both hardware and software, making

them capable to guide autonomous systems during operations [228]. Autopilots can per-

form fully autonomous missions replacing a human-in-the-loop, or provide partial auton-

omy via remote control commands. To achieve these missions, autopilot boards usually

consist of power management modules, inertial measurement units (IMUs), peripheral

sensors, communication links, on-board computers etc. The on-board software includes

mission planning, control, and trajectory generation [228–230]. The typical avionics di-

agram implemented for multirotor aircraft, a quadcopter in this research study, can be

illustrated in Fig. 3.1. There are different types of autopilots in the literature. In this

study, the Pixhawk autopilot hardware is accommodated.

There are several flight controllers including Ardupilot [231] and PX4 [232]. They are open-

source and all-in-one autopilot systems developed by engineers that have the capability to

control aircraft, unmanned ground vehicles and many other autonomous platforms [233].

In this study, the PX4 autopilot system is utilized.
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Figure 3.1: Common on-board avionics system on multirotor UAVs (in this case: a quadro-
tor).
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Fig. 3.2 shows the top view and interfaces available on the Pixhawk autopilot hardware.

The key features of the Pixhawk autopilot hardware are tabulated in Table. 3.1. For more

details, readers can refer to the documentations in [228,233].
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1 DSM receiver

2  Radio telemetry

3 Telemetry – onscreen display

4 USB 

5  SPI bus

6  Power module 

7 Safety switch

8 Buzzer 

9 Serial

10 GPS module

11 CAN bus 

12 Compass module

13 ADC 6.6V

14 ADC 3.3V

CAN: Controller Area Network

SPI: Serial Peripheral Interface

ADC: Analog to Digital Converter 

Figure 3.2: Pixhawk Autopilot top view.

Features Pixhawk
Support of various UAVs Helicopter, Multirotor and Airplanes

Memory 256KB RAM - 2 MB Flash
Processors 32bit - STEM32F427-

CortexM4-168MHz
Control modes Manual, Auto, Assistant

OS Nuttx
Interfaces CAN, 12C, PWM, ADC, SPI

Redundancy IMU
IMU 2x 6DOF inertials, 1x Magnetometer

Sensors ST Micro L3GD20H 16 bit gyro
LSM303D 14 bit

accelerometer/magnetometer
Invensense MPU 6000 3-axis
accelerometer/gyroscope
MEAS MS5611 barometer

Table 3.1: Pixhawk features
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3.3.2 VICON Motion Capture System (MCS)

The Vicon Tracker software is a robust tool for tracking objects, that provide unrivaled

data accuracy to be integrated into 3-D applications. It provides users with the capability

to utilize Vicon camera hardware to track rigid bodies resulting in accurate streaming of

6-DOF data in real-time with minimal latency [234].

· 

· 

· 

· 

· 

· 

· 

Testbed 

12-port PoE+ Switch

Cameras

LAN

Ethernet Cable

Up to 12 on primary PoE+

Power over EthernetPoE:

Figure 3.3: Indoor test area using VICON optical motion capture system.

Fig. 3.3 illustrates the indoor test area equipped with 19 Vicon cameras at the UNSW

Canberra Autonomous Systems laboratory. This facility is used for experiments to capture

motions of various autonomous vehicles for closed loop control and data logging purposes.

The Vicon optical capture system utilizes a series of Near Infrared (NIR) strobe units

attached to the front of each Vicon camera for test area illumination. Also, markers are

used and placed onto objects being tracked in a unique pattern. The markers are captured

by the Tracker software based on their reflections of the NIR strobe. The interface with

objects in 3D using the Vicon tracker software is shown in Fig. 3.4.
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Figure 3.4: Interface with objects in 3D plane using VICON tracker software.

3.3.3 Companion Computers

In this work, the ODroid-XU4 companion computer is utilized to interface and commu-

nicate with the PX4-autopilot during operation via the micro air vehicle link (MAVLink)

protocol over a serial connection as illustrated in Fig. 3.5. MAVLink is a serial protocol

that is widely to communicate between unmanned systems and GCS [235].

Moreover, the GCS used in this work is the QGroundcontrol, which provides complete

flight control and mission planning capabilities for any drone equipped with MAVLink

messaging protocol. This enables users to update firmware, calibrate flight sensors and

the radio control system, set and tune flight control parameters, as well as plan and track

flight trajectories [236].

53



CHAPTER 3. SYSTEM IDENTIFICATION OF DYNAMIC SYSTEMS USING
IT2-FLSS

GND

TxD

RxD

5v

Telem1

Pixhawk 

PX4 firmware

IMU

Odroid-XU4 

Companion computer

Sensor_msgs/imu
FTDI cable

Figure 3.5: Communication between Onboard computer ODroid-XU4 and Pixhawak au-
topilot via MAVLink.

3.3.4 Robotic Operating System (ROS)

The Robot Operating System (ROS) is an open-source framework, that has been widely

used by researchers in the robotics community [237]. It was initially developed by the

Stanford Artificial Intelligence Laboratory in 2007. ROS provides services as a middle-

ware system (a collection of software frameworks for robot software development) and

is packed with various useful functionalities that include package management, hardware

abstraction, distributed computing, message passing and low-level device control [237,238].

Interested readers may refer to [237,238] for detailed information about ROS architecture.

The communication between the companion computers running ROS, GCS or peripherals

is implemented using the MAVROS package for any MAVLink enabled autopilots. In other

words, MAVROS is a ROS package that facilitates communication between the companion

computers (e.g., ODROID-XU4) and the PX4 flight software using the MAVLink protocol.

The detailed installation guide of MAVROS can be found at [232].
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3.3.5 Airframe

The aircraft used for this work was the DJI F450 quadrotor. As with rotorcraft vehicles,

the system has the ability to hover and to perform vertical take-off and landing tasks.

Quadcopters have various configurations namely: quad X, quad +, quad H and quad V

configurations. The most common configurations are the plus (+) and cross (X) config-

urations. Fig. 3.6 represents an X-configuration used in this research study. Quadrotors

y

1
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4

5

6

1 Motors with propellers

2 Odroid XU4 Processor

3 Power module

4 Radio receiver 

5 Markers 

6 Onboard avionics

7  ESC

8 Pixhawk autopilot (below the white board)

7

4

66

7777

8

F450

13

42

Figure 3.6: The configuration of DJI F450 quadrotor (X)-configuration.

have six degrees of freedom (DOF), where six variables are considered. As quadcopters

have four control variables, the system is under-actuated as there are only four variables

to be directly controlled, that is, the pitch, roll, and yaw angles as well as the altitude

to deal with their 6-DoF. Meanwhile, the x and y coordinate positions can only be in-

directly controlled through the pitch and roll control loops. The schematic diagram of a

quadcopter is shown in Fig. 3.6, where rotors 1 & 3 rotate clockwise, and rotors 2 & 4

rotate anticlockwise. The control input is achieved by changing the speed of each rotor

using electronics speed controllers (ESCs) coupled to the DC motors. By applying the
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same amount of thrust to the four individual motors, the drone is set to hover. Pitching

and rolling are achieved by adjusting the amount of thrust given to one rotor and less to

the diametrically opposite rotor.

An industrial fan with three different speed modes was utilized for wind gust generation

during flight tests as shown in Fig. 3.7.

3.4 Performance Indices

The performance indices used in this research are the Root Mean Square Error (RMSE),

Mean Square Error (MSE) and the Non-Dimensional Error Index (NDEI), which are

described in (3.1), (3.2) and (3.3).

RMSE =

√√√√√ N∑
k=1

(yactual − ŷk)2

N
(3.1)

Figure 3.7: Industrial fan to generate wind gust disturbance.
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MSE = 1
N

N∑
k=1

(yactual − ŷk)2 (3.2)

NDEI = RMSE
STD(T ) (3.3)

where yactual is the actual output of the system; ŷk represents the estimated fuzzy output;

N represents the number of observations; and STD(T ) denotes a standard deviation

function.

3.5 Sequential Learning Machine Based on TS Fuzzy Sys-

tem Identification

To model a nonlinear system like a quadrotor, there are several existing data-driven tech-

niques. Among these data-driven techniques, FLSs and NNs have been employed success-

fully in recent times due to their universal approximation and learning capability. Besides,

the use of artificial intelligence such as FLSs provides an advantage, where it is not possible

to derive comprehensive mathematical models of the system. [13,14]. In this section, a se-

quential learning machine based on the TS-fuzzy inference system to model the dynamics

of a MIMO nonlinear quadcopter using experimental data are presented. Unlike conven-

tional knowledge-based TS-fuzzy systems, all the antecedent and consequent parameters

of the proposed TS-fuzzy model are updated using the gradient descent-based algorithm.

3.5.1 TS Fuzzy Online System Identifier

3.5.1.1 Problem Statement

In the following, a nonlinear system identification is described using the relation between

the inputs and outputs as follows:

ŷ(k) = f (u(k), ..., u(k − n+ 1), y(k), y(k − 1), ..., y(k −m+ 1)) , (3.4)
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where ŷ(.) indicates the identified model output; f(.) represents the unknown nonlinear

function; n and m denote the previous input u and output y data, respectively.

Nonlinear Plant 

Online fuzzy 

identifier
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Figure 3.8: Block diagram using series-parallel architecture. The error is calculated as the
difference between the plant outputs and the output of the identified fuzzy model, that is,
e = ŷ − y.

Following the work in [239], identification of dynamic systems can be obtained using

online and offline techniques to describe the relationship between the input and output

data. If the identified model is entirely trained before its use, the model becomes offline.

However, if the model is progressively trained during its use, it becomes online. Online

system identification approaches are described as adaptive models, where the parameters

are adapted at every sample time [239]. Moreover, this technique is suitable when the

system parameters keep changing continuously with time. In this work, the online system

identification technique is adopted.

The proposed dynamic fuzzy model for the multi-copter UAV is constructed by adopting

the MIMO structure in Eq. (3.5) to Eq. (3.8).

y1(k) = f1 (u1(k), u2(k), u3(k), u4(k)) (3.5)

y2(k) = f2 (u1(k), u2(k), u3(k), u4(k)) (3.6)
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y3(k) = f3 (u1(k), u2(k), u3(k), u4(k)) (3.7)

y4(k) = f4 (u1(k), u2(k), u3(k), u4(k)) (3.8)

where u1, u2, u3, and u4 represent the four inputs; and y1, y2, y3, and y4 are the outputs

of the MIMO fuzzy system.

There are two main techniques of fuzzy system identification, namely, the series-parallel

and the parallel architectures. The difference between the two architectures is that the

parallel structure applies the history of outputs from the identified model, while the series-

parallel structure, as in Fig. 3.8, utilizes the plant true output as the input to the fuzzy

model resulting in a better accuracy since the prediction error is not accumulated or

propagated by the system [240].

3.5.2 System Structure

As a recap from Chapter 2, the structure of T1-FLSs consists of four steps: (1) fuzzification;

(2) knowledge base; (3) inference system; (4) defuzzification. Knowledge base layer is

made of a set of rules, which consists of antecedents and consequents. The Gaussian

MFs are utilized in the fuzzification process as shown in Fig. 3.9. In this work, all the
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Figure 3.9: Four T1-FLSs Gaussian MFs.
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antecedents and consequents parameters of the FLS are updated using the descent-based

back-propagation method. A T1 Gaussian MF is used to perform the fuzzification process

for the antecedents, which can be represented as follows:

µAi(xj , cij , σij) = exp

(
−((xj − cij)2

2σ2
ij

)
(3.9)

where cij and σij denote the centre and the width of the membership function and xj is the

ithinput variable. This work uses the Gaussian membership function to map the inputs,

while using the delta function, which is an impulse function of zero width that has only

one value with full membership located at qi to map the outputs. Following the work

in [85, 92], the final estimated output of a first-order TS fuzzy model can be represented

as follows:

ŷ =
R∑
i=1
γi
(
q0
i + q1

ix1 + ...+ qki xk
)

(3.10)

where

γi =

∏P
j=1 exp

(
−((xj − cij)2

2σ2
ij

)
∑R
i=1

∏P
j=1

(3.11)

For Eq. (3.11), R represents the number of rules in the rule-base; and p represents the

number of inputs per data-tuple.

3.5.3 Parameters Learning

The performance index function of the training process to be minimized can be written

as follows:

J = 1
2 (y(t)− ŷ(t))2 (3.12)

The error between the estimated and the actual value can be written as follows:

e = y − ŷ, (3.13)

where y and ŷ illustrate the actual and the estimated signals, respectively.

The update law for consequent weights qi is given as follows [85,92]:

qi(t+ 1) = qi + ηγie, i = 1, 2, .., R. (3.14)
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Similarly, the antecedents update law is given as follows:

cij(t+ 1) = cij(t) + 2ηγie (qi − ŷ) xj − cij(t)
σ2
ij

(3.15)

σij(t+ 1) = σij(t) + 2ηγie (qi − ŷ) (xj − cij)2

σ3
ij

, (3.16)

where η ∈ [0, 1] is the learning rate.

3.5.4 Data normalization

Utilizing the Min-Max normalization method, the data are normalized between ‘0’ and ‘1’

as follows:

zj =
(

xj − xmin
xmax − xmin

)
(3.17)

where zj is the jth new normalized values; xj represents the current values.

3.6 A Novel System Identification Based on the Recursive

IT2-FLS TS C-means Clustering Technique

As a recap, fuzzy system identification techniques have been extensively used in various

nonlinear systems to obtain accurate models using input-output data [3,11,85,90]. One of

the most popular fuzzy modeling approaches is the Takagi-Sugeno (TS) fuzzy model. The

main task of the TS fuzzy model is to build several local models that can approximate

the dynamics of a nonlinear system [90]. The construction of the TS fuzzy model consists

of two phases: fuzzy structure identification and fuzzy parameter identification. The

most significant process to establish a fuzzy model is the structure identification that is

concerned with the selection of fuzzy inputs, the number of rules, and the membership

functions [93].
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Modeling of autonomous systems such as multi-rotor drones has several challenges due

to their complex, nonlinear, and under-actuated system dynamics [11, 85]. As universal

approximators, artificial intelligent systems such as fuzzy logic [11,85,241,242] have proved

to be successful computational tools to model nonlinear systems [2, 241].

Although type-1 fuzzy systems have been applied to model various complex nonlinear

systems, they have limited capability to handle uncertainties [30,74,90]. Therefore, type-2

fuzzy systems (T2FS) (i.e. with interval membership functions) were established [15–17,

243]. Among the most common methods for fuzzy structure identification is the fuzzy

clustering technique. There are various fuzzy clustering methods in the literature, such

as the Fuzzy C-means (FCM) by Bezdek [94], modified Gath-Geva fuzzy clustering [95]

and fuzzy C-regression model (FCRM) [96]. Since T1-FLSs based clustering techniques

have limited ability to handle uncertainty in real systems [97], several T2-FLSs/IT2-FLSs

based C-means clustering techniques were proposed [90,99–101].

In this section, a novel online system identification technique based on a recursive interval

type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) is presented. The

construction of the IT2-TS-FC antecedent parameters is based on the interval type-2 fuzzy

C-means clustering (IT2FCM) technique, while the weighted least square (WLS) algorithm

is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a

scaling factor to represent the FoU is introduced to convert T1-FSs and T2-FSs. The

efficacy of the proposed algorithm is validated using two benchmark system datasets,

namely, the flight test data from a quadcopter and the Mackey-Glass time series data.

Besides, a comparison with a type-1 fuzzy C-means technique is conducted. The robustness

of the proposed method is investigated by means of a noisy dataset.

3.6.1 IT2-TS-FC Structure Identification

Fuzzy clustering is a well-known technique for fuzzy space partition. It is also a popular

method for the identification of fuzzy antecedent parameters [90, 101]. Assume a data

set D = {(x1, y1), ..., (xk, yk)}, with a k number of input-output patterns, in which an ith
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fuzzy regression model is extracted. The data pairs (k = 1, ..., n) are sorted in c cluster,

whereas the data samples in the ith cluster can be represented as a linear regression model

as follows:
yik = f i(xk, θi) = θ0

i + θi1xk1 + ...+ θiMxkM

= [xk 1]θiT ,
(3.18)

where xk = [xk1, ..., xkn] represents the kth input variables; yk describes the ith regression

model of the fuzzy output; and θi = [θi1, ..., θin] are the coefficients vector of the linear

regression model. The modeling error can be computed by taking the difference between

the actual signal yk and the prediction yik, that is,

E2(θi) =
(
yk − f i(xk, θi)

)2
. (3.19)

The objective function of IT2-TS-FC is to minimize the modeling errors. In type-2 fuzzy

modeling, two fuzzifiers (or can be called weighting exponents of IT2-FSs) are required,

which brings up two objective functions, which can be defined as follows:
Jm1(U, θ)

Jm2(U, θ)

=

=

min
∑n
k=1

∑C
i=(µik)m1Eik(θi)

min
∑n
k=1

∑C
i=(µik)m2Eik(θi),

(3.20)

where µik = [µik, µik] ∈ [0, 1] is the fuzzy membership degree of kth data belong to the

ith cluster [244]. This is subjected to the following constraint:

C∑
i=1

µik = 1, ∀k = 1, ..., n. (3.21)

To minimize the objective function, the Lagrange method is implemented for obtaining

the upper and the lower membership degrees, µik and µ
ik
, as follows [245]:

µik =



1∑C

m=1

[
Eik(θi)
Emk(θi)

] 1
m1−1

1∑C

m=1

[
Eik(θi)
Emk(θi)

] 1
m2−1

for 1∑C

m=1
Eik(θi)
Emk(θi)

< 1
C

otherwise

(3.22)
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µ
ik

=



1∑C

m=1

[
Eik(θi)
Emk(θi)

] 1
m1−1

1∑C

m=1

[
Eik(θi)
Emk(θi)

] 1
m2−1

for 1∑C

m=1
Eik(θi)
Emk(θi)

≥ 1
C

otherwise

(3.23)
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Figure 3.10: IT2-FLSs Gaussian MF used for the proposed design

The WLS approach is utilized to calculate the regression coefficients of the upper and

lower θi, where X = [xk 1]n×(M+1), y = [yk]n×1, as follows:

θ
i =

[
XTP iX

]−1
XTP iy (3.24)

θi =
[
XTP iX

]−1
XTP iy (3.25)

The membership degree of the partition matrix P i and P i are utilized as weights and can

be represented as follows:

P i =



µi1 0 · · · 0

0 µi2 · · · 0
...

... . . . ...

0 0 · · · µin


∈ Rn×n (3.26)
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P i =



µi1 0 · · · 0

0 µi2 · · · 0
...

... . . . ...

0 0 · · · µin


∈ Rn×n. (3.27)

In order to reduce the complexity of the framework, the regression coefficient θi can be

obtained as follows:

θi =

(
θ
i + θi

)
2 . (3.28)

3.6.2 IT2-TS-FC Parameters Identification

3.6.2.1 Antecedent Parameters Identification

Type-2 Gaussian membership functions are adopted in this research study as shown in

Fig. 3.10. The upper and lower centers and the widths of the Gaussian functions can be

computed as follows:

cij =
∑n
k=1 µikxkj∑n
k=1 µik

(3.29)

cij = δ1cij (3.30)

where i = 1, ..., c represents the number of clusters, j = 1, ...,M denotes the number of

variables, k = 1, ..., n represents the number of data samples and δ1 is a scaling factor.

σij =
√

2∑n
k=1 µik(xkj − cij)2∑n

k=1 µik
. (3.31)

σij = δ2σij , (3.32)

where δ2 is a scaling factor to represent footprint of uncertainties (FoUs). The lower and

upper membership functions are calculated based on Chapter 2.
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3.6.2.2 Consequent Parameters Identification

After identifying the antecedent parameters, the consequent parameters can be obtained

using the following equation:

ŷ = Ξθ, (3.33)

where θ = [θ1
0, θ

1
M , ..., θ

C
0 , ..., θ

C
M ] is the consequent parameters, y = [y1, y2, ..., ym] is the

target output and Ξ ∈ Rn×(c×(M+1)) denotes the coefficient matrix, as follows:

Ξ =



χ1
1 χ1

1x11 · · · χ1
1x1N · · · χc1 · · · χc1x1N

χ1
2 χ1

2x21 · · · χ1
2x2N · · · χc2 · · · χc2x2N

...

χ1
M χ1

MxM1 · · · χ1
MxMN χcM · · · χcM χcMxMN


(3.34)

The χik is the normalized weight of MFs, which has the following expression,

χik = wik

C∑
i=1

wik
, (3.35)

where wik is the firing strength average of the upper and the lower MF, which can be

calculated based on Chapter 2. If an upper Gaussian MF is represented by A
i
j , and a

lower Gaussian MF is represented by Aij , the upper and the lower firing strengths can be

represented by wik = min{Aij}, wik = min{Aij}. Hence, wik = wik+wik
2 .

3.6.3 Results and Discussion

The proposed IT2-TS-FC is implemented for input-output data partition [x(t), y(t)] into

c hyper planed clusters. After generating the upper and lower membership functions,

IT2-FSs are transformed into T1-FSs. The consequent parameters are obtained using the

WLS method. Moreover, different levels of FOUs are performed to study the robustness of

the identified model against uncertainties. The performance of the proposed system was

evaluated under three different scaling factor that represents the FoUs at 25%, 50% and

75% as demonstrated in Table 3.2. The identified model is validated using two benchmark

systems. First, a Macky-Glass chaotic system is modeled using the proposed method.

Second, the proposed approach is deployed to model the aircraft dynamics.
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Figure 3.11: Online recursive IT2-TS-FC system identification block diagram. The system
employs the prediction error to constantly learn the dynamics of the systems.

3.6.3.1 Online Identification of Mackey-Glass (MG) Chaotic System

The Mackey-Glass (MG) time series is labeled by the delayed differential equation [227].

It is recognized as a benchmark model for comparing the learning ability of various algo-

rithms. The MG chaotic time series can be represented as follows:

ẋ(t) = 0.2(t− 20)
1 + x10(t− 20) − 0.1x(t). (3.36)

In this work, the initial condition is set as x(0) = 1.2. The sampling time ts = 1 sec and

x(t− τ) = 0 for t < τ , where τ = 20. In general, the standard prediction technique is to

create a mapping from sample data points space D as follows:

D = [x(t) y(t)], t = 1, ..., 1200

x(t) = [x(t− 3)x(t− 2)x(t− 1)x(t)]

y(t) = x(t+ 1)

(3.37)

In other words, four consecutive known values were utilized to predict the next time-series

value. The performance of the IT2-TS-FC model is shown in Fig. 3.12. The NDEI and
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Figure 3.12: Mackey-Glass Chaotic Time Series identified model

RMSE values are listed in Tables 3.2 & 3.3, where better accuracy is obtained compared

to a T1-FLSs based C-means clustering model.

3.6.3.2 Identification of the Attitude and Altitude Dynamics

Data are collected during the flight using an indoor VICON motion capture system (MCS).

The MCS transmits the aircraft position and orientation in real-time to a GCS using WIFI,

where all data are being recorded in the drone. Control inputs are also transmitted to

the GCS from the aircraft. To collect data, the drone was flown in manual mode, where

the system was excited sufficiently in order to capture drone dynamics. Six reflective

markers were attached to the DJI F450 quadrotor to enable the VICON MCS to track the

quadrotor’s position and orientation. The data was collected with a sampling rate of 100

Hz. The experimental setup is shown in Fig. 3.13.

In this section, 9000 samples for online identification of the pitch, roll, yaw, and altitude

motions are utilized. To study the robustness of the proposed technique, an artificial white

Gaussian noise was added to the measurement data. Moreover, the dataset was normalized

between the range [0, 1] as illustrated in the graphs. The performance of the identified

type-2 fuzzy model is compared with a type-1 fuzzy model that was designed in the

previous section. Also, the model was bench-marked against a type-1 fuzzy based c-means

clustering model. In the proposed model, five clusters were used to perform the system

identification. The centres, [m1, m2], were selected as [1.8, 2.2], respectively. These
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Figure 3.13: Experimental setup for data acquisition of a quadcopter drone. Our indoor
flight test facility is equipped with 20 VICON motion capture cameras with millimetre
accuracy.

parameters were selected by performing several experiments on the NDEI and RMSE

values. The performance of the system was assessed at different scaling factor as shown

in Table 3.2.

The NDEI and RMSE values were recorded as shown in Tables 3.2 & 3.3 for the nor-

malized dataset. Also, Figs 3.19-3.23 provides the original experimental dataset without

the normalization process. Moreover, the mean absolute error (MAE) values were mea-

sured for the proposed technique. Table 3.4 illustrated the MAE values for the proposed

IT2-TS-FC.

• Identification of the pitch dynamics: the pitch angle was regulated by the operator

to set the desired reference, which is manually set. The oscillations were attained by

applying different inputs to front actuators with respect to the rear actuators. As

shown in Fig. 3.14, the accuracy of the IT2-FLS model is better than its T1-FLS

counterpart to represent the dynamics of the pitch loop.

• Identification of the roll dynamics: similar to the pitch dynamics, the roll angle

was controlled manually by the operator to give the desired reference signal within

the specific range of the indoor flight test area. Whilst collecting the roll data, the

system was excited with an oscillating roll motion [240]. Similarly, the performance
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Figure 3.14: Predicted vs. actual signals of the pitch loop of the quadcopter

of the proposed IT2-FLS identification model was compared with a T1-FLS model,

where better accuracy was attained using the proposed method, thanks to the FOU

in IT2-TS-FC.
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Figure 3.15: Predicted vs. actual signals of the roll loop of the quadcopter

• Identification of the yaw dynamics: the pilot applied yaw control inputs during flight.

Likewise, higher accuracy was achieved with lower RMSE values between the actual

and predicted model using the proposed IT2-FLS model as demonstrated in Fig.

3.16.
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Figure 3.16: Predicted vs. actual signals of the yaw loop of the quadcopter.

• Identification of the altitude dynamics: to model the vertical dynamics, the pilot

applies the same thrust to each actuator. Fig. 3.17 demonstrated the identified

IT2-FLS model for the altitude dynamics. Lower RMSE values were obtained as

shown in Table 3.3.
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Figure 3.17: Predicted vs. actual signals of the vertical loop of the quadcopter.

• Identification of the altitude dynamics (with noisy samples): To investigate the

robustness against uncertainties, artificial white Gaussian noise was added to the

samples to corrupt measurement data in the vertical loop. Fig. 3.18 shows the
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adaptation power of the proposed IT2-FLS method with low RMSE values compared

to its type-1 counterpart.
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Figure 3.18: Predicted vs. actual signals of the vertical loop of the quadcopter with noisy
flight data (different dataset).

Table 3.2: NDEI values for different scaling factor - FoU

Properties FoU=0.25 FoU=0.5 FoU=0.75
Pitch 0.0461 0.0460 0.0455
Roll 0.0436 0.0433 0.0435
Yaw 0.0234 0.0234 0.0233

Z-Altitude 0.053 0.055 0.047
Z-noisy 0.5633 0.5633 0.5569
MG 0.0361 0.0278 0.0263

Table 3.3: Normalized RMSE values of different modeling methods

Properties TS Fuzzy TS Fuzzy
C-means

Clustering [11]

IT2-TS-FC

Pitch 0.00734 0.0853 0.0063
Roll 0.00855 0.0833 0.0080
Yaw 0.00856 0.03848 0.0027

Z-Altitude 0.00906 0.07434 0.0078
Z-noisy 0.2274 0.5045 0.1274
MG 0.0082 0.04532 0.0069
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Table 3.4: Normalized MAE values for the proposed IT2-TS-FC

Properties MAE (Normalized)
IT2-TS-FC
Clustering

Pitch 0.0047
Roll 0.0054
Yaw 0.0013

Z-Altitude 0.0060
Z-noisy 0.0508
MG 0.0052
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Figure 3.19: Predicted vs. actual signals of the pitch loop of the quadcopter
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Figure 3.20: Predicted vs. actual signals of the roll loop of the quadcopter
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Figure 3.21: Predicted vs. actual signals of the yaw loop of the quadcopter
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Figure 3.22: Predicted vs. actual signals of the vertical loop of the quadcopter.
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Figure 3.23: Predicted vs. actual signals of the vertical loop of the quadcopter with noisy
flight data (different dataset).

3.7 Summary

This chapter provided an overview of the experimental setup used in this thesis. This

was followed by designing an efficient online system identification technique to model a

quadcopter dynamics employing a recursive interval type-2 fuzzy C-means clustering tech-

nique. Simulation results illustrated that the accuracy of the acquired IT2-TS-FC models

was better than the accuracy of its type-1 fuzzy counterpart as shown by their moderately

smaller RMSE and NDEI values. This approach leverages the superior performance of

IT2-FLSs for modeling dynamic systems, especially in the presence of noisy datasets. The

system was computationally efficient and is suitable for online modeling and control of

robotic systems.
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Chapter 4

Self-Adaptive IT2FLCs for MIMO

Nonlinear Systems

The content of this chapter has been taken from the following publications:

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). A Robust

Self-Adaptive Interval Type-2 TS Fuzzy Logic for Controlling Multi-Input-Multi-

output Nonlinear Uncertain Dynamical Systems. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, [246].

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). An

Intelligent Control of an Inverted Pendulum Based on an Adaptive Interval Type-

2 Fuzzy Inference System. 2019 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), [30].

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). A

Robust Adaptive Interval Type-2 Fuzzy Control for Autonomous Underwater Ve-

hicles. 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence,

and Communications Technology (IAICT), [36].
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4.1 Introduction

To date, adaptive closed-loop control systems have received much attention from re-

searchers. Developing adaptive controllers to obtain high accuracy and robustness is usu-

ally difficult due to multiple disturbances and uncertainties in the systems. Therefore, the

development of intelligent controllers that have the capability of learning to accommodate

the footprint-of-uncertainties is necessary. Recently, there has been a growing interest in

using intelligent control techniques for various applications such as in autopilot control

systems. Smart control techniques such as FLCs, ANNs and learning-based techniques

have been gaining popularity [3, 23, 202, 247–251]. The efficacy of FLCs to accommodate

uncertainties and nonlinearities has been established beyond doubt. They have demon-

strated the ability to handle complex, ill-defined, nonlinear, and time-varying systems.

For instance, T1FLCs were utilized for controlling nonlinear systems in [206, 252, 253].

However, to date, most of the existing fuzzy controllers are type-1 FLCs leading to the

limited ability of the closed-loop control systems to accommodate the uncertainties.

In contrast to T1FLCs, IT2FLCs provide further flexibility to handle uncertainties as

they are specifically designed to adapt with the FoU in the system [129]. Several studies

combine IT2FLCs and sliding mode control (SMC) theory. Combining fuzzy systems with

SMC theory has the advantages of achieving higher computational efficiency and improving

the performance of the system by eliminating the chattering effect of the SMC controllers

[128, 131, 254]. Type-2 fuzzy-based sliding mode controllers have been implemented to

control nonlinear systems such as UAVs [29, 132], and also for obstacle avoidance and

control for mobile robots [114, 254]. Nevertheless, the control laws used in these works

also require augmentation by other control approaches such as PID control, which requires

additional tuning for its parameters.

In [134–136], the SMC technique was also implemented with fuzzy systems to improve

the robustness of some nonlinear control systems. Although their studies achieved good

tracking performance, the closed-loop control design was based on multiple SISO systems,

which is less efficient than having a single MIMO controller in the loop. In [136, 137],
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a type-2 fuzzy sliding mode controller was designed for an inverted pendulum, where

simulation results demonstrated the robustness of the system. However, their proposed

control design was based on the Karnik-Mendel (KM) type-reduction (TR) method, which

is computationally intensive.

In recent studies, IT2FLCs have been combined with other control techniques to handle

parameter uncertainties, disturbance rejection and robust stabilization. In [138], aH2/H∞
based interval type-2 fuzzy controller was proposed for nonlinear systems with minimal

control effort to handle uncertainties such as disturbance and measurement noise, where

better tracking performance was obtained compared to a type-1 fuzzy controller. An

IT2FLCs-based model predictive controller (MPC) was considered for nonlinear networked

control systems in the presence of parameter uncertainties and defective communication

links with good results in [139]. Moreover, a robust nonlinear control system based on

the feedback linearization technique, assisted with IT2FLCs was proposed in [140], for

controlling the dynamics of a flapping-wing vehicle.

The remainder of this chapter is structured as follows. The contributions are stated in

Section 4.2. Section 4.3 provides the design of the proposed SAF2C, including the stabil-

ity analysis, followed by the simulation results showing the effectiveness of the proposed

control system in dealing with a highly nonlinear system in Section 4.4. Besides, a similar

control design is implemented to regulate both the cart position and pendulum angle of

an inverted pendulum system in 4.5. Moreover, a similar approach is also proposed for

the position and the attitude control of an autonomous underwater vehicle in Section 4.6.

Finally, section 4.7 provides a summary of this chapter.

4.2 Contribution of this Chapter

Addressing the aforementioned, the contributions of this chapter can be summarized as

follows:

1. A new self-adaptive interval type-2 fuzzy controller, named the SAF2C controller,
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is introduced whose parameters are tuned automatically using the sliding surface

theory. Unlike much of the existing work in T2-FLCs, where the KM type-reduction

is utilized, this study employs several type-reduction methods, including the the

enhanced iterative algorithm with stop condition (EIASC) and the Nie-Tan (NT)

closed-form TR algorithms to improve its efficiency for real-time implementation

and also to reduce the computational burden of the KM algorithm. This study also

compares the execution time of the three different TR methods.

2. The proposed control system is employed to regulate the position and velocity of

a simulated MIMO hexacopter UAV, where the proposed algorithm could achieve

about 80% reduction of the execution time compared to the SISO SAF2C controller.

3. The robustness of the proposed controller is investigated in the face of different

conditions, such as in the face of external disturbance and parameter variations (e.g.

wind gusts) for the case of the hexacopter UAV. Besides, a rigorous comparative

study of this controller is performed with respect to the T1FLCs and a conventional

PID controller. The outcomes of this research indicate that the proposed SAF2C

controller demonstrates an improvement of 20% and 50% in the RMSE values with

respect to its type-1 counterpart and the conventional PID controller.

4. Another important consideration in the proposed control design is its ability to

filter the measurement noise, where significant improvement is obtained using the

proposed controller in the face of measurement noise. The average standard deviation

and the mean of the tracking error values are computed for 10 different iterations.

5. The stability analysis of the proposed closed-loop control system is conducted using

the Lyapunov theorem.

6. Lastly, we implement our proposed self-adaptive closed-loop control systems in typ-

ical uncertain non-linear dynamical systems, namely, an inverted pendulum system

and an autonomous underwater vehicle.
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4.3 SAF2C Design

The architecture of the interval type-2 fuzzy controller is shown in Fig. 4.1. The an-

tecedent part of the proposed controller utilizes interval type-2 fuzzy sets with trapezoidal

membership functions, while the consequent part is of the Takagi-Sugeno (TS) type with

interval weights. In this work, the rules used are of the TS-type consequent part as follows:

IF x1(t) is Ãl1 and .... xm(t) is Ãlm

THEN ufuzz = cl0 +
m∑
i=1

clixi(t),

where [x1(t), ..., xm(t)] are the premise variables, ufuzz(t) is the output fuzzy variables,

which form the control signal, Ãli is the interval type-2 membership functions for the ith

input variable and cli are the consequent parameters.

The architecture of the proposed control system is made up of five different layers con-

nected sequentially. The structural detail of each layer can be presented as follows:

Input 

1

Input

 2

Output 

Control 

signal 
 

Layer

 1

Layer

 2

Layer

 3

Layer

 4

Layer

 5

Figure 4.1: Interval type-2 fuzzy controller structure: layer 1 is the input, layer 2 is the
fuzzification layer, layer 3 is the firing layer, layer 4 is the consequent layer, and layer 5 is
the output control signal.

1. Layer 1 (the input layer): this layer is the input signals which are crisp values.

In this study, the inputs are considered to be the error e(t) and its derivative ė(t).
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This layer has no weights to be adjusted.

2. Layer 2 (the fuzzification layer): this layer performs the fuzzification task and

assigns a membership degree for each input variable. There are various forms of

membership functions. In this work, a IT2 trapezoidal fuzzy set was utilized. Gen-

erally, nine parameters are required to represent IT2 FSs [82]. To simplify the design,

a symmetric trapezoidal IT2 FS was utilized, which has six parameters, (a,b,c,d,m,h)

as demonstrated in Fig. 4.2. The output of the interval type-2 membership func-

tions, Ã, can be described by the upper and lower membership functions within the

interval [µÃ, µÃ].

Meanwhile, the trapezoidal type-l fuzzy set is determined by four parameters (if

we consider p = 1 in T1-FSs) as shown in the blue dotted line in Fig. 4.2 and its

membership functions can be represented as follows:

µA(x′) =



x′−à
b̀−à

, à < x′ < b̀

p, b̀ ≤ x′ ≤ c̀

d̀−x′
d̀−c̀

, c̀ < x′ < d̀

0 otherwise.

(4.1)

To get the degree of membership of a given input using the trapezoidal FSs, a

linear interpolation is implemented. For two values x1 < x2, and y1 = f(x1) and

y2 = f(x2), the linear interpolation of an input x′ is given as follows:

f(x′) = f(x1) + f(x2)− f(x1)
x2 − x1

· (x′ − x1). (4.2)

3. Layer 3 (the firing layer): the firing strength Fi(x′) is computed in this layer to

perform the aggregation operation. Each node in layer 3 represents the antecedent

part of the fuzzy rule and the firing strength is computed. To calculate the firing

strength Fi(x′), a fuzzy meet operation is performed in each node for the received

inputs from layer 3 using a product (t-norm) operation as discussed in Chapter

2 [255].
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Figure 4.2: An interval type-2 trapezoidal membership function, where the blue dotted
line, A, represents the type-1 fuzzy membership function and the blurry area between Ā
and A is called the Footprint-of-Uncertainty (FoU).

4. Layer 4 (the consequent layer): the TS fuzzy structure is utilized in this design

since it has some structural advantages over the Mamdani-type fuzzy counterpart,

where the consequent fuzzy part can be represented in the form of linear equations

as in (4.3). Each node in the 4th layer receives inputs from the previous layer and

also from the input data in the first layer. The consequent part can be written as

follows:

W l(x′) = C l0 + C l1e+ C l2ė, (4.3)

where C li = [lli, rli] i = 1, .., p and l and r denote the left and right bound of an

interval; e(t) and its derivative ė(t) are the inputs to fuzzy control system. The

output W l(x′) is a type-1 interval fuzzy number [256].

Definition 4.3.1 [256] A type-1 interval fuzzy number M is a type-1 fuzzy number

so that µM (x′) = 1, x ∈ [l, r].

To simplify the notation, the output of this node can be expressed by [256]:

wll =
p∑
i=1

ll0 + llix
′
i, (4.4)
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wlr =
p∑
i=1

rl0 + rlix
′
i, (4.5)

where p is the number of inputs and x0 = 1.

By using the EIASC algorithm, the left L and right R end points can be computed.

One interesting property of the EIASC algorithm is that no rule-reordering is re-

quired; unlike the KM-TR algorithm, where the consequent parameters need to be

reordered in ascending order. As a recap from chapter 2, the node output of this

layer is in the form of the interval type-1 set [ytsk,l, ytsk,r] as follows:

ytsk,l =
∑L
i=1 f iw

l
l +∑M

i=L+1 f iw
l
l∑L

i=1 f i +∑M
i=L+1 f i

(4.6)

ytsk,r =
∑R
i=1 f iw

l
r +∑M

i=R+1 f iw
l
r∑R

i=1 f i +∑M
i=R+1 f i

(4.7)

In (4.6) and (4.7), f i and f i represent the end points of the firing strength interval

for ith rule, which can be computed using (2.21) and (2.22).

5. Layer 5 (the output layer): this layer computes the final defuzzified value

yfuzz(x′) by taking the average of ytsk,l and ytsk,r, using the following equation:

yfuzz(x′) = ytsk,l + ytsk,r
2 . (4.8)

The proposed IT2 fuzzy controller has the following four fuzzy rules:

R1 : IF e is F e1 and ė is F ė1 , THEN u1 = C01 + C11e+ C21ė

R2 : IF e is F e1 and ė is F ė2 , THEN u2 = C02 + C12e+ C22ė

R3 : IF e is F e2 and ė is F ė1 , THEN u3 = C03 + C13e+ C23ė

R4 : IF e is F e2 and ė is F ė2 , THEN u4 = C04 + C14e+ C24ė,

where e represents the closed-loop feedback error, ė indicates the change of error, ui is

the control output, and F e1,2 and F ė1,2 denote the upper and lower membership degrees of

e and ė respectively. Finally Ci = [li, ri] i,= 1, .., 3 are the adaptive consequent fuzzy

values, where l and r denote the left and right limits as discussed in (4.3).
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4.3.1 Sliding Surface Design

Consider a nonlinear dynamic system of nth order as:

x(n) = F(x, t) + g(x, t)u(t) + d(t), (4.9)

where x = [x, ẋ, ..., x(n−1)]T ∈ Rn represents the state vector, F(x, t) and g(x, t) are

nonlinear functions of the state vector, u(t) is the control input and d(t) is the external

disturbance. For the theoretical study, it is assumed that the nonlinear terms in Eq. (4.9)

are known, bounded and g−1(x, t) exists for all x. The tracking error of the state variables

can be defined as:

e(t) = xd(t)− x(t) =
[
e(t), ė(t), ..., e(t)(n−1)

]T
, (4.10)

where xd = [xd, ẋd, ..., x(n−1)
d ]T is the desired tracking vector. Hence, (4.10) can be ex-

tended as:
ė1(t) = e2(t),

ė2(t) = e3(t),
...

ėn(t) = ẋdn − F(x, t)− g(x, t)u(t).

(4.11)

The sliding surface s(e, t) = 0 can be defined as:

ss(t) = γe(t) + ė(t), (4.12)

where γ is a strictly positive real constant. If all the nonlinear functions of (4.9) are known,

a control law can be written as [257]:

utot(t) = 1
g(x, t) [ẋdn(t)− F(x, t)− ė(t)− d(t) + ṡs(t) + γss(t)] . (4.13)

The error e(t) and its derivative ė(t) can be considered as the input variables to the pro-

posed fuzzy controller. To produce the control signal u(t), fuzzy operations are employed

so that the equivalent control law utot(t) can be approximated. The purpose of SMC is

to derive the system dynamics to the sliding surface ss(t) = 0, so that ė(t) + γe(t) = 0.

Similarly, if we consider the sliding surface and its derivative as the input variables to the
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fuzzy system and also by following the control law utot(t), the dynamic behavior of the

closed-loop control system is asymptotically stable [257], that is,

γss(t) + ṡs(t) = 0. (4.14)

Both the sliding surface ss(t) and its derivative ṡs(t) will eventually converge to zero since

γ is always positive value. In addition, the errors [e(t), ė(t)] of the system output states

will also converge to zero based on the definition in (4.12). Instead of the model-based

calculation, this study will employ a fuzzy system to map between the sliding variables

and the control law ufuzz(t). The fuzzy control input in this case may have differences

with the optimal control law utot(t) and can be derived from Eqs. (4.11) and (4.13) as

follows:

ṡs(t) = g(x, t) [utot(t)− ufuzz(t)]− γss(t). (4.15)

By multiplying (4.15) with s(t), it yields to:

ṡs(t)ss(t) = ss(t) (g(x, t) [utot(t)− ufuzz(t)]− γss(t)) . (4.16)

Remark 1 There are two phases in the SMC design: 1) the reaching phase, where the

trajectory of a system should reach a sliding surface in a finite time, 2) the sliding phase

in which the desired system response should follow the desired sliding surface [202].

According to the Lyapunov theorem, the sliding surface-reaching condition is ss(t) · ṡs(t) <

0. Hence, if the outcome of this study is to design a control signal u(t) that satisfies the

aforementioned condition, the convergence of the control system to the phase plane is

guaranteed.

4.3.2 Adaptation Law

From (4.3) and (4.8), the adaptation law of the proposed SAF2C controller is derived

based on the gradient descent method to decrease the ss(t)ṡs(t) with respect to ci. Hence,
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the modified ci can be expressed as follows [257]:

cnew = ci − Λ∂ss(t)ṡs(t)
∂ci(t)

, (4.17)

where Λ is an adaptive parameter and ci is the consequent fuzzy values at t = 0. Also,

cnew has the left and right terms as explained in (4.3). By employing the chain rule, (4.17)

can be rewritten as:

cnew = ci − Λ∂ss(t)ṡs(t)
∂u(t)

∂u(t)
∂ci(t)

= ci + Λg(x, t)ss(t)
∂u(t)
∂ci(t)

. (4.18)

For further simplification, the adaptive parameter Λ can be combined with the system

input parameter g(x, t) to form the learning rate ζ. Hence, for practical implementation,

the adaptation law of the consequent part ci can be written as:

cnew = ci + γss(t)
(

f i(x′))∑m
i=1(f i(x′) + f

i
(x′))

+
f
i
(x′))∑m

i=1(f i(x′) + f
i
(x′))

)
.

(4.19)

To enhance the performance of the IT2FS and to minimize the drift of the fuzzy consequent

parameters, a modification in [258] and the dead-zone concept in [259] are introduced.

Therefore, the modified equation of the interval type-2 fuzzy consequent parameter can

be represented as follows:

cnew = 0, if ss ≤ ψ

cnew = κ|ss|ci + γss(t)
(

f i(x′))∑m

i=1(f i(x′)+f i(x
′))

+ f
i
(x′))∑m

i=1(f i(x′)+f i(x
′))

)
, if ss > ψ,

(4.20)

where κ is > 0 and ψ is the dead-zone parameter.

4.3.3 Stability Analysis

One of the most popular stability methods is the Lyapunov stability technique. Hence, in

this section, it is implemented to study the stability property of our proposed controller.
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Figure 4.3: Block diagram of the control loop describing the learning algorithm of the
proposed adaptive controller.

A fuzzy system can be utilised to represent and approximate any nonlinear function to

obtain reasonable accuracy. The following basic assumptions were made in order to assess

the stability of the proposed SAF2C.

Lemma 4.3.1 [257] If an optimal consequent parameters vector C exists, leading to the

control law ufuzz, the total approximation of the control law utot has bounded error of < γ,

then:

max|ũ(x, C̄)− utot(x)| < γ, (4.21)

where ũ(x,C) = ∑m
i=1 Ψici = CTΨ and utot(t)(x) = CTΨ + γ.

If we define C̄ = C − C̃ as the difference between the actual and the desired fuzzy conse-

quent parameters, (4.15) can be rewritten as follows:

ṡs(t) = g[ΨiC̄
T + γ]− λss(t). (4.22)

In this study, the Lyapunov function is chosen as:

V (s) = 1
2s

2
∇ + g

2ξ C̄
T C̄, ζ 6= 0, (4.23)

where s∇ ≡ ss − ψ • (ss/ψ) and ψ represents the boundary layer thickness [257].
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Differentiating (4.23) with respect to time, we finally arrive at:

V̇ = s∇ṡ∇ + g
ξ C̄

T ˙̄C + ġ
2ζ C̄

T C̄

= s∇ṡ∇ + g
ξ C̄

T
[
Ċ − ˙̃C

]
+ ġ

2ζ C̄
T C̄

= s∇
[
−λs+ g

(
C̄TΨ + γ

)]
−gC̄T

(
s∇Ψ− κ

ζ |s∇|C̃
)

+ ġ
2ζ C̄

T C̄

= s∇ [−λ(s∇ + ψ) + gγ] + gκ|s∇|C̄T C̃ + ġ
2ζ C̄

T C̄

≤ |s∇|
(
−λ|s∇| − λψ + gγ − g κζ C̄

T C̄ + κ
ζ g|C̄||C|

)
+ ġ

2ζ C̄
T C̄

= −|s∇|Θ− 1
ζ

[
|s∇|gκ− ġ

2

]
C̄T C̄

(4.24)

where Θ =λψ + λ|s∇| − g
(
γ + κ

ζ |C̄||C|
)
.

By choosing appropriate parameters for ψ and κ for Θ > 0, (4.24) implies that V̇ < 0

whenever s∇ /∈ R ≡
(
|s∇| < ( ġ

2ζκg )
)
. Hence, the control system is stable based on the

Lyapunov theorem as the Lyapunov function is steadily reduced. In addition, the sliding

surface ss(t) and its derivative ṡs(t) converge into the boundary layer as long as C̄ remains

bounded, where the value of the boundary layer depends on the dead-zone parameter ψ

and the approximate error of the fuzzy system γ.
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Figure 4.4: Simplified structure of the proposed SAF2C MIMO system with disturbance
signal.
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4.4 Simulation Results and Discussion

This section studies the performance of the closed-loop control system for SISO and MIMO

systems. The performance of the closed-loop control system will be explored and bench-

marked with respect to a type-1 fuzzy SMC controller and a conventional PID controller.

In addition, the SAF2C is explored with different TR methods and different levels of FoUs.

4.4.1 Case A: second order Van Der Pol system

For a SISO system, the Van Der Pol second-order nonlinear system is chosen to highlight

the efficacy of the proposed controller, which can be represented as follows:

mẍ+ 2c(x2 − 1)ẋ+ x = u, (4.25)

where x indicates the position coordinate, which is a function of time (t); c is a scalar

parameter expressing the nonlinearity of the damping; m is a positive constant and u is

the control force.

Several tracking trajectories were utilized to investigate the efficacy of the proposed

controller, where the time step is 0.02 sec. The performance of the proposed SAF2C

controller with respect to a step reference signal and also a sine wave reference, with

a frequency of 0.25 (rad/s) and an amplitude of 2 m, can be shown in Figs. 4.5.a &

4.5.b, respectively. The performance of the closed-loop control system is compared with

respect to the type-1 fuzzy and conventional PID controller. Higher tracking accuracy

was obtained for using the SAF2C controller as indicated by the lower RMSE values as

summarized in Table 4.1.

4.4.2 Case B: Altitude control of a hexacopter

To investigate the efficacy of the proposed controller in the face of nonlinearity, it is applied

to control the nonlinear aerodynamics of a hexacopter described in [201,260].
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Figure 4.5: The Van Der Pol Oscillator SISO System with respect to a step and a sine
reference signals.
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The motion of a hexacopter model can be expressed by the following variables:

x = [u v w p q r φ φ̇ θ θ̇ ψ ψ̇]T

where [u, v, w]T denotes the velocity components along the (x, y, z)-axes. Likewise,

[p, q, r]T are the body rotation rates. Additionally, [θ, ψ, φ]T are the three Euler angles,

which are introduced to describe the aircraft orientation (pitch, yaw, and roll), respectively.

The angular velocities of the aircraft are represented by [θ̇, ψ̇, φ̇]T . To calculate the rotor

thrust and the induced velocity in both the forward flight mode and the hover mode,

Glaeurt’s induced flow model [261,262] is employed.
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Figure 4.6: Altitude tracking performance of a Hexacopter using the SAF2C controller
(step and sine wave reference signals).

In general, hexacopter rotors experience the free-stream velocity due to V∞ given by

(4.26). The actuator disk deflects the air-stream by the speed of Vi and this changes

the downstream flow by 2Vi. This flow consists of two components, namely the normal

velocity of Vn and the tangential velocity Vt. The computation of Vn and Vt can be done by

summing up the normal and tangential components of V∞ to the airflow, which is created

by pitching, rolling and yawing motions of each rotor.

V 2
∞ = u2 + v2 + w2 = V 2

n + V 2
t . (4.26)
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In this model, we consider a uniform inflow, where it is assumed that the inflow Vi remains

unvaried with radius or azimuth. The thrust can be represented by considering a uniform

inflow, where it is assumed that the inflow Vi remains unvaried with radius or azimuth.

Therefore, the model can be obtained by integrating the elemental forces as a function

of the inflow relative to the rotor disk (λ′), the blade pitch (θ0) and advance ratio (µ) as

follows:

T = ρa(ΩR)2Ab
2

[1
3θ0

(
1 + 3

2µ
2
)
− 1

2λ
′
]
, (4.27)

where Ω represents the rotational speed of the blade, Ab denotes the total blade area (N

blades), a is the lift curve slope and µ = Vt
ΩR whereas λ′ = Vi+Vn

ΩR . The details of the drone

mathematical model can be found in [260].

For the purpose of control analysis, we assume that the hexacopter drone is a rigid body.

Hence, we utilize Newton’s second law of motion to determine the relationship between all

forces and moments, and also the relationship between the linear and angular accelerations.

By considering our hexacopter UAV to be of a conventional mass distribution, the drone

is symmetrical around the xz plane, so that the cross product moments of inertia (Ixy and

Iyz) are both zero. The rigid body dynamic equations of our drone can be found in most

flight mechanics textbooks, such as the textbook written by Nelson [263,264] as follows:

Fx = m(u̇+ qw − rv)

Fy = m(v̇ + ru− pw)

Fz = m(ẇ + pv − qu)

L = Ixṗ− Ixz ṙ + qr(Iz − Iy)− Ixzpq

M = Iy q̇ + rp(Ix − Iz) + Ixz(p2 − r2)

N = −Ixzṗ + Iz ṙ + pq(Iy − Ix) + Ixzqr,

(4.28)

wherem represents mass; [L M N ]T denotes the net torque to the angular momentum rate

of change; Fx, Fy, Fz and Ix, Iy, Iz denote the forces and moments around (x, y, z)-axes.

The simulated hexacopter attitudes are represented as a quaternion and updated using

(4.29) as explained in [265]. By using this method, the requirement to deploy trigonometric
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functions for integrating the Euler angle differential equations is eliminated [264].

q̇0

q̇1

q̇2

q̇3


= −0.5



0 p q r

−p 0 −r q

−q r 0 −p

−r −q p 0





q0

q1

q2

q3


. (4.29)

The final process for updating the position of the hexacopter drone in global coordinates

relative to an earth-fixed axes system can be performed using the rotation matrix B as

in [260], where the linear velocities [u, v, w] are first transformed to the global velocities

[X, Y , Z]T = B[u v w]T . The rotation matrix B can be represented as follows:

B =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q2 + q0q3)

2(q1q2 − q0q3) q2
0 + q2

1 − q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q1q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 , (4.30)

where



q0 = cos φ2 cos θ2 cos ψ2 + sin φ
2 sin θ

2 sin ψ
2

q1 = sin φ
2 cos θ2 cos ψ2 − cos φ2 sin θ

2 sin ψ
2

q2 = cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

q3 = cos φ2 cos θ2 cos ψ2 − sin φ
2 sin θ

2 cos ψ2 .

(4.31)

The simulated dynamic model was implemented in MATLAB/SIMULINK using S-function,

where the state variables are: the (1) position; (2) velocity; (3) rotational rates; (4) quater-

nion attitude.

The proposed SAF2C controller is designed to control a nonlinear 6-DOF hexacopter plant.

First, we employ our controller to regulate the altitude loop of the hexacopter plant in

a nominal condition with various tracking trajectories. The effectiveness of the proposed

SAF2C is evaluated with the nominal hexacopter model. For all the trajectories, the

performance of our proposed SAF2C is compared with the conventional PID controller

in addition to the type-1 fuzzy-based sliding mode control (T1-SMC). Fig. 4.6 shows the

94



4.4. SIMULATION RESULTS AND DISCUSSION

Hexacopter 

Dynamics

System 

States

Inner loop 

(attitude 

controller)

Yaw Controller

Height 

Controller

Forces 

& moments

W1

W2

W3

W4

W5

W6

W1

W2

W3

W4

W5

W6

Roll

Pich

Yaw

Thrust

Velocity 

control 

loop

Roll 

command

Pitch 

Command

Ref (x)

Ref (y)

e

e

e

e

e

e

Yaw 

Reference

Altitude 

Reference

Control 

mixing 

-

-

-

-

-

-

Position 

control loop

-

-

Figure 4.7: Simulated model of an over-actuated hexacopter.

response to a step and sine wave input, where the step signal has an amplitude of 1 m and

the sine wave signal has a frequency of 0.5 (rad/s) and an amplitude of 1 m. As can be

seen, the system can achieve faster convergence using our proposed controller and also the

results of the SAF2C controller outperformed the benchmark controllers as represented by

its lower Root Mean Square Error (RMSE) values as summarized in Table 4.1. Moreover,

the error signal and the control signal of our proposed SAF2C are shown in Fig.4.11.

4.4.3 Robustness Analysis

To evaluate the robustness of the proposed SAF2C controller, we use several parameters

such as the RMSE values, the settling time (s), and the rise time (s). For the altitude con-

trol loop, the proposed controller’s performance was tested in the presence of disturbance.

Also, the performance indices were evaluated in the presence of high wind-gusts.

4.4.3.1 Simulation results of a hexacopter in the face of disturbance

To evaluate the efficacy of our proposed controller, a pulse signal was added at time 8 sec

(see Fig. 4.9. a) to the feedback of the altitude state. The response of the closed-loop
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control system with respect to a step input and sine wave trajectory with a frequency of 0.5

(rad/s) and an amplitude of 1m can be seen in Fig. 4.8. The performance is also compared

with a conventional PID controller and T1-SMC. It is observed that better accuracy was

obtained using our proposed controller with lower RMSE values as summarized in Table

4.1. It can also be seen that the PID controller fails to follow the desired trajectory when

disturbances occurred. Lastly, the learning parameters of the consequent fuzzy parts

for the hexacopter altitude control scenario in the presence of disturbances are shown in

Fig.4.11.
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Figure 4.8: Altitude tracking performance of our hexacopter using our proposed controller
in the presence of external disturbances (step and sine wave reference signals).

4.4.3.2 Simulation results of a hexacopter in the face of wind-gusts

To investigate the efficacy of our proposed controller, artificial wind gusts were added to

the system with a maximum velocity of 2 (m/s) and an amplitude of 5 m for the xyz-axes

as shown in (Fig. 4.9.b). The signal was added to the plant after 5 sec to study the
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Figure 4.9: (a) The disturbance signal. (b) The wind gust disturbance signal.
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Figure 4.10: Altitude tracking capability of our hexacopter using our proposed controller
with wind-gusts (step and sine wave reference signals).
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Table 4.1: Comparative study of multiple controllers’ performance under different flight
scenarios

Robustness
Analysis

Measured
Features

Sine Wave
Reference

Step Reference

PID T1-
SMC SAF2C PID T1-

SMC
SAF2C

Van der Pol
oscillator

Test
RMSE 0.0107 0.0110 0.0024 0.0538 0.0710 0.0168

Settling
time
(sec)

2.0140 2.0093 2.0023 4.2235 6.8998 3.3770

Rise time
(sec) 0.2473 0.2395 0.2186 2.4470 4.0611 0.4148

Altitude control
in nominal
condition

Test
RMSE 0.174 0.0615 0.00345 0.4229 0.15437 0.12489

Settling
time
(sec)

1.0409 1.002 1.0009 6.422 7.3404 7.0069

Rise time
(sec) 2.009 8.190 1.993 0.3505 3.6361 3.8716

Altitude control
with

disturbance

Test
RMSE 0.6466 0.0654 0.02275 0.7474 0.15529 0.12595

Settling
time
(sec)

1.05 1.003 1.0454 16.619 13.670 12.670

Rise time
(sec) 1.775 7.94 1.7498 0.3505 3.63619 3.8716

Altitude control
with wind-gust

Test
RMSE 0.16685 0.0615 0.00345 0.4254 0.1543 0.12489

Settling
time
(sec)

1.03549 1.0028 1.00107 1.541 0.899 0.899

Rise time
(sec) 2.5690 8.192 1.9946 0.319 3.619 3.8637
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robustness against uncertainties and perturbations. Fig. 4.10 illustrates the efficacy of

our proposed SAF2C, where the effect of strong wind gusts was reduced sharply using the

proposed SAF2C. The RMSE values were tabulated in Table 4.1. Moreover, a significant

deterioration in tracking the desired trajectories was observed using the conventional PID

controller.

4.4.3.3 The RMSE criterion

The RMSE criterion in (4.32) is utilized to assess the performance of our proposed SAF2C

with other benchmark controllers such as the type-1 fuzzy SMC and the conventional PID

controller. The RMSE is calculated by finding the difference between the desired reference

and the actual state.

RMSE =

√∑N
i=1 (x(i)− xd(i))2

N
, (4.32)

where x and xd are the actual and desired states, and N denotes the total number of

observations.

4.4.4 Case C: MIMO nonlinear systems

The concept of controlling SISO systems can be extended to MIMO systems. To examine

the effectiveness of the proposed SAF2C, it was employed to control a coupled nonlinear

benchmark system [202] and also a hexacopter MIMO nonlinear model as elaborated in

Examples 1 and 2.

4.4.4.1 Example 1: A MIMO nonlinear coupled system

To assess the tracking ability of our proposed controller, we employed our adaptive fuzzy

control system to regulate the MIMO nonlinear system, whose dynamics can be described
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Figure 4.11: (a) Control signals of our hexacopter plant, (b) error signals of our hexacopter,
(c) the Adaptation of the consequent parts of the altitude control of our hexacopter with
disturbance.
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as follows:  ẋ1(t)

ẋ2(t)

 =

 x1(t) x2(t) + sin(x1(t))

x1(t)3 + 0.5 sin(x2(t))

+

 1 0

0 1

u(t). (4.33)

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

Reference

PID

T1-FSMC

SAF2C-KM

SAF2C-NT

SAF2C-EIASC
5 10

0

1

2

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

Reference

PID

T1-FSMC

SAF2C-KM

SAF2C-NT

SAF2C-EIASC
5 10

-2

0

2

Figure 4.12: The proposed control performance for MIMO system - x1, x2 with sine wave
reference in the presence of external disturbance.

Likewise, in the presence of external disturbance, a sine wave signal with an amplitude of

2 m and a frequency of 0.25 (rad/s) was utilized as a desired tracking trajectory as shown

in Fig. 4.12. The system is highly nonlinear, coupled, and MIMO. The performance of our

proposed controller is observed and compared with respect to the benchmark controllers,

where better tracking results are achieved from the proposed SAF2C controller. The

RMSE values were tabulated in Table 4.2.

4.4.4.2 Example 2: Hexacopter position and velocity control

Similarly, the proposed controller was employed to control the position and the velocity

of a MIMO hexacopter in the x and the y directions.
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Table 4.2: RMS error values for MIMO nonlinear systems.

Variables
to be
controlled

RMSE Values

PID T1-SMC
Proposed
SAF2C

controller
x1 (m) 0.1413 0.0126 0.0020
x2 (m) 0.2234 0.0159 0.0038
Position

x− axis (m) 0.1153 0.0394 0.0231

Position
y − axis (m) 0.1063 0.1416 0.0379

Vx (m/s) 0.0767 0.0115 0.0094
Vy (m/s) 0.2064 0.0185 0.0168

1. MIMO position control loop. The proposed controller was employed to regulate

the xy-positions of the simulated over-actuated hexacopter. The performance of

tracking a sine wave along the xy-axes is presented in Fig. 4.13. It is shown that

our proposed control system has closely followed the trajectory with higher accuracy

compared to the other two benchmark controllers. Moreover, the overall performance

of the closed-loop control system in 2-D and 3-D planes can be seen in Fig. 4.14,

where lower RMSE values were obtained as tabulated in Table 4.2.

2. MIMO velocity control loop. The proposed SAF2C controller was implemented

to control the velocity of an over-actuated hexacopter plant in the x-axis (vx) and

the y-axis (vy). The performance was tested using a trajectory of a sine wave as

shown in Fig. 4.15. In both cases, better tracking accuracy was observed from our

proposed controller than that of the other two benchmark controllers. Lastly, the

RMSE values were calculated in Table 4.2.

4.4.5 Computational time of different type-reduction methods

We compared the computational time of three different TR algorithms including KM, NT,

and EIASC in Table 4.3. The computational costs for every algorithm were evaluated by
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Figure 4.13: Sine wave tracking along the xy-axes.

the computation time, which was collected using the tic and toc MATLAB functions. It is

observed that the EIASC algorithm outperformed the KM and NT algorithms. It can be

also reported that all TR algorithms converge to the correct solution in a finite number

of iterations, and these outcomes match up with the results from a similar study in [22].

4.4.6 Measurement Noise rejection performance

Another important consideration is to examine our proposed controller in the presence

of measurement noise. We performed several experiments in which the actual output of

the nonlinear plant was corrupted with different levels of noise power (W ). The noise

rejection capability was investigated in our simulated hexacopter system. The RMSE

values were plotted against different levels of noise power as shown in Figs. 4.16. The

performance of our proposed controller was validated using different percentages of the

FoUs and compared with the T1-SMC controller. As can be seen in Table. 4.4, at 0% FoU,
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Figure 4.14: Trajectory tracking in 2D and 3D planes: top and middle figures depict the
trajectory tracking along the xy plane with different shapes, bottom figure shows complete
3D trajectory tracking.
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Figure 4.15: Velocity tracking in the xy-axes using the proposed controller.

Table 4.3: Computational time and RMSE values of different type-reductions.

TR
Nominal
condi-
tion

with dis-
turbances

Computation
time (s)

NT 0.8489 0.8918
KM 0.9415 0.9825

EIASC 0.7399 0.7704

RMSE (m)
NT 0.0020 0.038
KM 0.0020 0.038

EIASC 0.0020 0.038
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Table 4.4: RMSE values with different FoUs.

Noise
power
(W)

RMSE VALUES WITH MEASUREMENT NOISE
T1-SMC SAF2C -

0% FoU
SAF2C -

25%
FoU

SAF2C -
35%
FoU

SAF2C -
50%
FoU

0.0001 0.0489 0.0489 0.0235 0.0234 0.0229
0.001 0.0516 0.0516 0.0288 0.0297 0.0269
0.01 0.2780 0.2780 0.2744 0.2440 0.2486
0.1 1.9344 1.9344 2.0823 1.2984 1.3526

the RMSE value of our SAF2C is smaller than the one of T1-SMC especially at higher

FoUs. For example, the best performance was obtained using the 50% FoU to handle

small noise power, while the 35% FoU was sufficient to produce the lowest RMSE values

for handling higher noise powers. However, for both cases, our SAF2C outperforms the

T1-SMC system as summarized in Table 4.4 and Fig. 4.16.
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Figure 4.16: Noise rejection capability of SAF2C relative to T1-SMC.

4.4.7 Statistical Analysis

The parameters of our SAF2C were initialized with zero. For the purpose of statistical

analysis, we ran our simulations 10 times to get the mean and the average standard

106



4.4. SIMULATION RESULTS AND DISCUSSION

deviation of the tracking error values. We initialized our SAF2C with random values in

the interval [0,1] and we ran the simulation 10 times, whilst collecting the MIMO tracking

errors. The average standard deviations of x1 and x2 were close to zero [0.00094728(m)

and 0.00026268(m)], while the mean values were [0.0044(m) and 0.0023(m)], respectively.

This illustrates that our SAF2C has the learning capability to minimize the tracking error

of nonlinear MIMO systems.

4.4.8 Discussion

The simulations were performed using the MATLAB/SIMULINK environment with a time

step of 0.02 sec. A trapezoidal interval type-2 fuzzy membership function was utilized in

this design for input fuzzification. It was assumed that the trapezoidal membership func-

tion is symmetric so it can be represented by 6 points instead of the 9-points representation

as in [266]. This reduction minimizes the number of variables employed. Different levels

of FoUs were performed and compared with a T1-SMC to investigate the effects of mea-

surement noise. Moreover, the execution time of the three different TR approaches was

recorded.

The execution time of the proposed MIMO controller was reduced by 80% compared to

the SISO controller. The SISO and MIMO control algorithms were executed utilizing a

Core i7 Processor @ 3.4GHz, with 16 GB of RAM. The controller parameters are given as

follows:

• For the altitude control loop, we used a learning rate Γ = 0.5 and a sliding surface

gain γ = 0.55.

• For MIMO system in example 1, we used a learning rate Γ = 0.255, 0.5 and a sliding

surface gain γ = 5, 2 for x1 and x2 respectively.

• For the position control loop, we used a learning rate Γ = 0.07, 0.05 and a sliding

surface gain γ = 0.7, 0.9 for x and y, respectively.
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• For the velocity control loop, we used a learning rate Γ = 0.007, 0.005 and a sliding

surface gain γ = 0.7, 0.2 for vx and vy, respectively.

The choice of those parameters is based on Section III. The proposed controller utilizes

only four rules with only two membership functions, which is computationally efficient.

Since our SAF2C consequent parameters start learning from scratch, it is expected to have

a slower transient response compared to fixed controllers as shown in Fig. 4 (a) and Fig.

6 (a). Thus, one way to improve the transient response is by initializing fuzzy parameters

using bootstrapped values from previous experiments in order to improve the learning

process, which leads to an improvement in the transient response.

Lastly, simulation results illustrate the effectiveness of our proposed SAF2C system com-

pared to the other two benchmark controllers, especially in the face of uncertainties such

as external disturbances. Although our proposed controller has several advantages, some

of its parameters need to be properly tuned, including the learning rate Γ and the slid-

ing surface gain γ. These two parameters are important to ensure both stability and

performance of the closed-loop control system.

4.5 Application to Inverted Pendulum on a Cart System

4.5.1 Overview

An inverted pendulum is an unstable nonlinear system. It is also an under-actuated system

such that the number of control inputs is less than the degrees of freedom [267]. Therefore,

controlling such system is a challenging task. Inverted pendulums are a convenient bench-

mark for testing algorithms and comparing the performance of different contemporary and

classical control approaches. The purpose of this study is to derive a control law that can

stabilize the pendulum so that it can maintain the desired vertical position while moving

the cart to the desired position quickly and accurately [268]. The contribution of this

research work can be demonstrated by accommodating two variables of interest, namely,
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the pendulum angle θ and the position of the cart x. To mitigate the manual tuning of

fuzzy parameters, the consequent parts are tuned using the SMC theory. Moreover, the

EIASC algorithm for type-reduction to reduce the computational cost is deployed.

4.5.2 Nonlinear Mathematical Model of an Inverted Pendulum on a

Cart

The inverted pendulum plant can be demonstrated in Fig. 4.17, where x represents the

position of the cart and θ is the angle of the pendulum. From [268], the nonlinear model

Mcart

Input Force

X-axis

Gravity (g)

mpendulum θ 

Figure 4.17: Schematic representation of an inverted pendulum on a cart

can be represented in a state space form as follows:

dx

dt
= f(x, F, t) (4.34)

The state variables can be written as:

x1 = θ;x2 = θ̇ = ẋ1;x3 = x;x4 = ẋ = ẋ3 (4.35)

The final state space representation of an inverted pendulum on a cart can be written as:



ẋ1

ẋ2

ẋ3

ẋ4


=



θ̇

θ̈

ẋ

ẍ


=



x2

f1(x1, x2)

x4

f2(x1, x2)


(4.36)
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y = Cx =

 θ

x

 =

 1 0 0 0

0 0 1 0




θ

θ̇

x

ẋ


(4.37)

f1(x1, x2) = [Fcos(x1)−(mpend+mcart)gsin(x1)+mpendlcos(x1)sin(x1)x2
2]

a

f2(x1, x2) = [F+mpendlsin(x1)x2
2−mgcos(x1)sin(x1)]
b

where
a = mpendlcos

2(x1)− (mpend +mcart)l

b = mpend +mcart −mpendcos
2(x1)

where the pendulum angle from vertical direction is θ = x1; the pendulum angular velocity

is x2 = θ̇ = ẋ1; the cart position is x3 = x; the cart angular velocity is x4 = ẋ = ẋ3; the

pendulum length is l = 1m; the force on the cart in the x direction is F in (N); the mass

of the cart mcart and mass of the pendulum mpen are 0.1kg and 1kg respectively; and the

gravity g = 9.8m
s2 .

4.5.3 Results and Discussion

4.5.3.1 Controller Design

The objective of the proposed controller is to balance an inverted pendulum on a cart

where the pendulum should be in the upright position while driving the cart to the desired

position. Similar to the previous section, the adaptive IT2FLCs utilizes a trapezoidal

membership function with four rules.

In this proposed controller, the consequent parameters of the four fuzzy rules are initialized

with zeros. The adaptation law for the type-2 consequent parameters of the proposed

controller is based on sliding mode control theory [269]. This method can guarantee the

system’s robustness against parameter variations and unknown uncertainties. The sliding

surface to control an inverted pendulum system can be expressed as ssurface = γe + ė,
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where e is the error and ė is the derivative of error. The slope of the sliding surface is

represented by γ > 0. Hence, the new parameters of the premise part can be expressed

as, Cnew = Cold + η ∗Ssurface, where η is the learning rate and it is set in such a way that

the sliding surface parameters can achieve the optimal values of the premise fuzzy part in

a short time.

An adaptive IT2FLCs is proposed to control both the pendulum angle θ and also the

cart position x. The purpose of the control law is to maintain the pendulum in the

upright position where θ = 0. The control law is designed to control a nonlinear inverted

pendulum in different scenarios. First, it was tested under nominal condition. Second,

the proposed controller was tested against disturbance rejection and lastly the system was

examined against random noise rejection. To evaluate the performance of the proposed

interval type-2 controller, a comparison with a PID controller is drawn. Tables 4.5 & 4.6

show the performance of the proposed controller versus a PID controller under the three

different scenarios where lower RMSE values are achieved from the proposed type-2 fuzzy

controller. To obtain satisfactory results against disturbance and random noise, the SMC

learning theory is adopted where the consequent parameters of the proposed controller are

updated recursively.

4.5.3.2 Simulation results under nominal conditions

The performance of the proposed controller was evaluated and compared with a conven-

tional PID controller under nominal conditions. The responses of cart position and cart

velocity are shown in Fig. 4.18 & 4.19 respectively where a faster convergence is observed

using the proposed type-2 controller. Similarly, Fig. 4.20 demonstrates the responses of

the pendulum angle where the response of the pendulum angle is better for the proposed

controller. The control signal for the proposed controller can be depicted in Fig. 4.21.
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Figure 4.18: Responses of cart position x.

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4
IT2-FLCs

PID

Figure 4.19: Response of cart velocity ẋ.
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Figure 4.20: Response of pendulum angle θ.
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Figure 4.21: Control force (N).
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4.5.3.3 Simulation results in the face of random noise

To examine the robustness of the proposed controller against noise rejection, a band-

limited white noise signal is added to the system as a disturbance input. The disturbance

signal parameters are as follows: sampling time=0.01, and the power of the band-limited

white noise = 0.001 [268]. The control input is bounded between [−5, 5]. From Fig. 4.22

and Fig. 4.23, it is observed that the pendulum stabilizes in the vertical position with

minor oscillation in the case of type-2 fuzzy control while it stabilizes with major oscillation

for the case of the PID controller. The position of the cart reached the specified position

(0.1m) smoothly for the case of type-2 fuzzy while it has reached the desired position with

oscillations for the case of the PID controller.
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Figure 4.22: Responses of Cart position x with respect to random noise.
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Figure 4.23: Response of pendulum angle θ with random noise.

4.5.3.4 Simulation results in the face of external disturbance

Another measurement to study the robustness analysis of the proposed controller is to

test it against external disturbance. The external disturbance (as shown in Fig. 4.26)
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is added at time 7 sec to the deflection angle of the pendulum. The performance of the

pendulum angle and the cart position in the presence of external disturbance are shown in

Fig. 4.24 & 4.25 respectively. It can be seen that our proposed controller is more robust

than the PID controller with lower RMSE values for maintaining the pendulum angle in

the vertical position.
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Figure 4.24: Response of pendulum angle θ with with disturbance.
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Figure 4.25: Responses of cart position x with respect to disturbance
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Figure 4.26: Disturbance signal.
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Table 4.5: IT2FLCs and PD Controllers performance on pendulum angle control (RMSE).

Controller RMSE
Nominal condition Random Noise External disturbance

IT2FLCs 0.000268 0.0114 0.000203
PID 0.0012 0.0864 0.0018

Table 4.6: IT2FLCs and PD Controllers performance on cart position control (RMSE)

Controller RMSE
Nominal condition Random Noise External disturbance

IT2FLCs 0.0268 0.0309 0.0303
PID 0.0397 0.0373 0.3383

4.6 Self-Adaptive IT2FLCs for AUVs

4.6.1 Overview

Controlling AUVs is a challenging task due to their nonlinear and time-varying dynamics.

Recently, there has been a growing interest in intelligent control techniques for various

applications due to their capability to achieve autopilot control systems. Fuzzy and neu-

ral networks have been implemented to control multiple robotic platforms [3,108,202,251,

270,271]. The efficacy of fuzzy control systems to accommodate uncertainties and nonlin-

earities has been established beyond doubt. For instance, type-1 fuzzy logic control was

utilized in [206], [253], [252] where good performance was obtained. However, most of the

existing fuzzy controllers are type-1 fuzzy. As such, implementing type-2 fuzzy to control

AUVs is a new research scheme.

Due to the necessity to accommodate uncertainties in the AUV control design, there has

been a growing interest in utilizing type-2 fuzzy logic control [30, 34, 67]. Interval type-

2 fuzzy was developed in [272] and [273] for path planning and control with obstacle

avoidance. However, manual tuning of fuzzy control is a tedious task [29], [114]. Hence,

there is a need for automatic tuning of fuzzy parameters. In this work, a nonlinear and

time-varying autonomous underwater vehicle model is first developed. Second, a self-

adaptive IT2-FLC is proposed, where the consequent parameters are tuned using the
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SMC technique. Third, the robustness of the proposed control technique is investigated.

Figure 4.27: AUV six degree of freedom

4.6.2 AUVs nonlinear dynamics

The AUV equations of motion can be expressed with respect to a fixed frame, (XE , YE , ZE),

or moving body reference frame (XB, YB, ZB) as shown in Fig. 4.27. The mapping be-

tween coordinate systems can be represented using the velocity transformation as follows:

η̇ = J(η)ν (4.38)

where η depicts the position and orientation vector of the vehicle defined in the fixed

frame, which can given as:

η = [x y z φ θ ψ]T , (4.39)

ν is the linear and angular velocity vector, which can be described as follows:

ν = [p q r u v w]T (4.40)

and J(η) denotes the Euler angle mapping matrix [274].

The equations of motions with respect to the earth fixed reference via the kinematics

transformations in terms of position and attitude as follows [274–276]:

Mη(η)(η̈) + Cη(η, η̇)η̇ +Dη(η, η̇)η̇ +Gη(η) = τη, (4.41)
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where 

Mη(η)(η̈) = J−T (η)MJ−1(η)

Cη(η, η̇) = J−T (η)[C(ν)−MJ−1(η)J̇(η)]J−1(η)

Dη(η, η̇) = J−T (η)DηJ
−1(η)

Gη(η) = J−T (η)Gη

τη(η) = J−T (η)τ

where Mη(η) is the inertia matrix, which is a symmetric and positive definite (6x6) ma-

trix; Cη(η, η̇) is a matrix that describes the Coriolis forces; Dη(η, η̇) is the matrix of the

hydrodynamic damping term; G(η) is a (6x1) matrix, which represents the vehicle’s gravi-

tational forces and moments; and τ denotes the control inputs. The detailed mathematical

model can be found in [253,275].

4.6.3 Results and Discussion

4.6.3.1 Controller Design

Similar to previous sections, this study deploys the SMC theory for adapting fuzzy conse-

quent parameters. The overall closed-loop control system for the AUV is depicted in Fig.

4.28. The sliding surface (sAUV ) for an AUV is designed as, sAUV = uf = γe+ d
dte, where

e = η − ηd, η is the actual output obtained from (4.39), ηd is the desired trajectory and γ

is a positive constant, uf is the control signal from the fuzzy controller.

The feedback control mechanism can be seen in Fig. 4.29. The objective function is to

minimize the error between the desired input and the actual output. For the attitude

control of an AUV, three controllers are designed for the surge, yaw and pitch controls.

By utilizing the SMC theory combined with a PD controller [277], the adaptive control

structure of the proposed controller is depicted in Fig. 4.28. Hence, the control law can

be defined as, u = upd − uf , where upd = kpe+ kd ė and [kp, kd] are the controller gains.

The error and the change of error signal are the two input signals to the fuzzy inference
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Figure 4.28: Closed-loop control system for AUV using adaptive IT2FLCs.
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Figure 4.29: Proposed IT2FLCs desgin demonstrating surge, yaw, and pitch dynamics of
an AUV.
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system. The purpose of the developed control law is designed so that the AUV follows the

desired trajectory. Surge, pitch and yaw controllers are designed to maintain the depth

of the AUV and to determine the AUV orientation in three dimensions. The controller

performance is tested in a nominal case and also in the presence of disturbance.

4.6.3.2 System performance in a nominal condition

The performance of the proposed adaptive IT2-FLC is evaluated in a nominal condition.

It is compared with a fixed IT2-FLC. The designed fuzzy control system has four rules

and two membership functions for each input. Figures 4.30 & 4.31 show the simulation

results of the 6-DOF AUV response in XY -plane and XZ-plane, where good tracking

is obtained. The pitch and yaw responses can be seen in Figs. 4.32 and 4.33, where a

successful tracking and a reasonably shorter settling time were obtained. The RMSE values

are reduced significantly by accommodating the SMC theory for tuning fuzzy consequent

parameters as shown in Table 4.7.
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Figure 4.30: The motion of AUV in XY plane using our proposed controller
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Figure 4.31: The motion of AUV in XZ plane using our proposed controller
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Figure 4.32: Pitch response
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Figure 4.33: Yaw response

4.6.3.3 System performance in the face of disturbance

In order to investigate the robustness of the proposed controller, an external disturbance

was added between [60, 120] sec. As can be seen in Figs. 4.34 & 4.35, the proposed

controller can cancel it within a reasonable period of time. The comparative RMSE values

of the system are presented in Table 4.7.
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Figure 4.34: Pitch response with disturbance
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Figure 4.35: Yaw response with disturbance

Table 4.7: Adaptive IT2-FLC vs a fixed IT2-FLC performance (normalized-RMSE)

RMSE
Values

Angles
(Nominal
condition)

Angles (with
disturbance)

Pitch Yaw Pitch Yaw
Fixed IT2-FLC 0.403 0.591 1.204 1.756

Adaptive IT2-FLC 0.101 0.179 0.565 0.698

4.7 Summary

The proposed SAF2C controller has several advantages for accurate trajectory tracking,

including its stability, learning ability and the extension to MIMO systems. Moreover,

utilizing the SMC theory to adapt fuzzy parameters can improve its robustness against

various uncertainties (e.g. disturbance, and wind/gust). Simulation results have demon-

strated the effectiveness of our proposed fuzzy controller in regulating MIMO systems.

The results of the proposed controller were compared with the type-1 counterpart and the

conventional PID controller, where a 20% improvement relative to a type-1 fuzzy system

was obtained and a 50% enhancement with respect to a PID controller was achieved. We

also implemented three different TR methods and calculated their computation time in

the existence of measurement noise.

The proposed MIMO controller is computationally efficient, where the execution time

was reduced by 80%. Moreover, the proposed controller employed only four linguistic

rules with only two membership functions, which is computationally efficient. This effi-

ciency makes it more suitable for real-time experiments. Lastly, our proposed controller
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demonstrated better robustness against uncertainties, namely, external disturbance and

wind gusts, where superior disturbance rejection was shown through extensive computer

simulations compared to the benchmark type-1 fuzzy and PID controller.

Secondly, for the inverted pendulum, the proposed closed-loop control design was devel-

oped so that the pendulum was maintained in the upright position. Simulation results

of the proposed controller were promising compared to the conventional PID controller.

Besides, the RMSE values were also minimized.

Thirdly, for the AUV, an adaptive IT2FLCs was designed to control the position and

attitude, namely, surge, pitch, and yaw motions. The tracking performance of the proposed

control system was compared with a fixed fuzzy controller, where better results were

observed from the adaptive IT2FLC system with smaller RMSE values.
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Chapter 5

Enhanced Self-Adaptive Interval

Type-2 Fuzzy System (ESAF2C)

for Aerial Robotics: Control

Design and Real-Time Flight Tests

The work illustrated in this chapter has been submitted to the following journal:

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). Self-

Learning in Aerial Robotics Using Type-2 Fuzzy Systems: Case Study in Hovering

Quadrotor Flight Control. IEEE Access [278].

5.1 Introduction

Drones, a prominent nickname for unmanned aerial vehicles (UAVs), have been attracting

a large amount of consideration in the last few decades. They have been used in a myriad

of applications (e.g. transportation [180], inspection of power transmission lines [181],

search and rescue missions [182], and collecting traffic information [183]). One major
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benefit of multirotor UAVs is their capability to hover, to perform vertical take-off and

landing (VTOL), and to fly in confined spaces [14,60,187].

The classical model-based control approaches for UAVs, such as PID controller [116],

LQR [117], and MPC [118] can provide optimal control performance when the model is

well-defined, precise, and there are no uncertainties. Nevertheless, there are inevitable

uncertainties in aerial robots, (e.g., lack of modeling, mechanical wear, rotor damage, bat-

tery drain and sensor and actuator faults [25,119]). Another aerodynamic challenge when

flying a rotorcraft vehicle at a reasonably low altitude is the ground effect, which occurs

due to the blockage and distortion of the rotor downwash by the ground beneath a hover-

ing UAV [279, 280]. The ground effect brings significant nonlinearity (altering the thrust

characteristic) and introducing uncertainties into the closed-loop control system [280]. As

such, the control performance of conventional model-based methods may deteriorate in

the face of uncertainty. [23,30,121,122,281].

As a recap, Takagi-Sugeno fuzzy logic control systems allow a description of a nonlinear

system via a set of local linear system domains via relevant membership functions [125].

Nevertheless, since uncertainty is not incorporated in the membership function of T1-FSs,

it seems contradict with the definition of "fuzzy" itself. As such, T1-FSs have limited

ability to handle uncertainties [126]. Hence, IT2FSs were proposed in [15] based on type-2

fuzzy sets. Although there are several studies of multirotor drone control based FLCs,

most of these studies are based on T1-FLCs.

Since IT2FLCs provide an extra degree of freedom to handle the footprint-of-uncertainties,

they have been applied for controlling quadcopter UAVs. In [74], IT2FLCs were proposed

for quadcopter altitude control, where good results were achieved. Nevertheless, the fuzzy

parameters were tuned manually. Manual tuning of FLCs can be a time-consuming, ineffi-

cient, and tedious task [29]. There are several studies where IT2FLCs were combined with

sliding mode control (SMC), resulting in improvement of the overall control performance

by canceling the chattering effect on SMC control systems [282]. In [29], an IT2FLC

based SMC theory was proposed for a quadcopter UAV (QUAV), achieving reasonably

good control performance compared to a T1-FLC and conventional PID controllers. How-
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ever, the fuzzy control law was designed as a combination of both an IT2FLC system and

a PID controller, resulting in extra effort for tuning PID parameters. In the work by [107],

a fault-tolerant control based on interval type-2 fuzzy neural networks and sliding mode

controller was developed for a 6-DOF octocopter UAV. Although their proposed controller

has the ability to guarantee the stability of the proposed control system, it lacks exper-

imental validation. Furthermore, IT2FLC parameters are reduced to type-1 fuzzy sets,

resulting in similar behavior to T1-FLCs, as the FOU is not explicitly included in the

fuzzy design. Lastly, there is also a lack of real-time experiments using IT2FLCs.

The remainder of this chapter is structured as follows. The contributions are listed in

Section 5.2. The dynamic model of the QUAV is provided in Section 5.3. The proposed

closed-loop control system is explained in Section 5.4, including the stability analysis. This

is followed by the computer simulation results illustrating the efficacy of the proposed

control system in Section 5.5. Real-time flight test results are presented in Section 5.6

for a hovering quadcopter in the face of wind disturbance. Finally, Section 5.7 provides a

summary of this chapter.

5.2 Contributions of this chapter

Motivated by the aforementioned research gaps, the contributions of this chapter can be

highlighted as follows:

• A novel stand-alone enhanced self-adaptive interval type-2 fuzzy controller, named

the ESAF2C, is proposed for position control of a hovering QUAV, whose type-2

fuzzy parameters are tuned online using the sliding mode control theory. Unlike

most of the state-of-the-art work in the literature, the chattering phenomenon is

eliminated by smoothing out the control discontinuity around the sliding surface.

The ‘Enhanced Iterative Algorithm with Stop Condition’ (EIASC) type-reducer is

accommodated in designing the ESAF2C, which is more suitable for real-time im-

plementation than other type-reducers for its computational efficiency. Moreover,
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the proposed control law does not require augmentation by other control approaches

making it a stand-alone controller.

• The robustness of the proposed controller is investigated in the face of external

disturbances (e.g. ground effects, wind gust, measurement noise) and a rigorous

comparative study is performed with respect to T1-FLC and its conventional coun-

terpart. This research demonstrates the ability of our algorithm to improve distur-

bance rejection of the controller. Moreover, the proposed closed-loop control system

proves its ability to filter measurement noise as investigated in the simulation section.

• Real-time flight tests are conducted for a hovering QUAV under stochastic wind

disturbances to validate the efficacy of the theoretical claims. Specifically, the con-

trol performance in the face of external wind disturbance is investigated, using an

industrial fan in the hover mode. The research findings show that the proposed

control technique has the capability to learn its parameters in an online manner and

to handle external stochastic wind gust disturbances better than its T1-FLC and

conventional PID counterparts.

• The stability analysis of the proposed control system is investigated using the Lya-

punov theory.

5.3 QUAV dynamic model

QUAVs have six degrees of freedom (DOF), with high mobility and four rotors. The

motion of a QUAV can be expressed by the following twelve state variables, namely,

~x = [X,Y, Z, Ẋ, Ẏ , Ż, θ, φ, ψ, p, q, r]T , (5.1)

where [X,Y, Z]T represents the linear positions in the inertial frame {A}; [Ẋ, Ẏ , Ż]T de-

notes the linear velocities across the xyz-axes; [θ, φ, ψ]T are the three Euler’s angles,

namely, the pitch, roll and yaw, respectively; [p, q, r]T denotes the angular rates in the
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Figure 5.1: Coordinate frame of a QUAV.

body frame {B} of the QUAV (see Fig. 5.1). The total thrust and moments for the four

control inputs on each control axis can be described as follows:

~U = [U1, U2, U3, U4]T =
[
T∑,M1,M2,M3

]T
, (5.2)

where ~U represents control variables; T∑ = ∑N
i=1 Ti is the total sum of thrusts along {B};

and M1,2,3 denote the moments generated by N number of rotors [283]. In the case of

QUAV, N = 4, hence the angular speed of each rotor can be described as:

T∑
M1

M2

M3


=



1 1 1 1

0 l 0 −l

l 0 −l 0

Kq/KT −Kq/KT Kq/KT −Kq/KT





T1

T2

T3

T4


, (5.3)

where T1,2,3,4 are the thrust from each individual motor; Kq [kg.m2] represents the lumped

rotor torque coefficient; KT [kg.m] denotes the lumped rotor thrust coefficient; and l [m]
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is the arm length. Finally, the equations of motion can be summarized as follows:

Ẍ = −(sinψ sinφ+ cosψ sin θ cosφ)TΣ
m

Ÿ = −(− cosψ sinφ+ sinψ sin θ cosφ)TΣ
m

Z̈ = g − (cos θ cosφ)TΣ
m

ṗ = Iyy−Izz
Ixx

· qr + 1
Ixx
·M1

q̇ = Izz−Ixx
Iyy

· rp+ 1
Iyy
·M2

ṙ = Ixx−Iyy
Izz

· pq + 1
Izz
·M3,

(5.4)

where Ixx,yy,zz represent the moment of inertia on the xyz-axes. The detailed physical

parameters of the QUAV and the meaning of each symbol can be found in [283]. Fig. 5.2

illustrates the position control structure for the QUAV.
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Figure 5.2: Control structure based on ESAF2C for position tracking of a nonlinear quad-
copter plant, where we employ the attitudes and the thrust to create a position control
loop outside the velocity loop of the Parrot AR.Drone.
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5.4 ESAF2C Design

5.4.1 ESAF2C Structure

As a recap, the structure of IT2FLCs is constructed of four major elements, namely,

fuzzifier, rule base fuzzy system, type reduction, and defuzzifier. First, the trapezoidal

MFs were chosen for the fuzzification process to transform crisp input values into T2-

FSs. The reason for choosing trapezoidal MFs is that their analytical structure is easy to

derive [284]. Similar to the previous chapter, a symmetric trapezoidal IT2 FS was adopted

for its simplicity, and it has been widely used in IT FSs [82,285]. In IT2FLCs, MFs provide

a three-dimensional (3D) representation, which combines the upper membership function

(UMF) and the lower membership function (LMF) as shown in Fig. 5.3. The upper and

the lower IT2-trapezoidal MFs can be represented as follows [285]:

Figure 5.3: General interval type-2 trapezoidal membership function.

µ
F̃

(x) =



0, x ≤ m̂− â or x > m̂+ â

w x−m̂+â
â−ĉ , m̂− â < x ≤ m̂− ĉ

w, m̂− ĉ < x ≤ m̂+ ĉ

w m̂+â−x
â−ĉ m̂+ ĉ < x ≤ m̂+ â

(5.5)
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µF̃ (x) =



0, x ≤ m̂− b̂ or x > m̂+ b̂

x−m̂+b̂
b̂−d̂

, m̂− b̂ < x ≤ m̂− d̂

1, m̂− d̂ < x ≤ m̂+ d̂

m̂+b̂−x
b̂−d̂

m̂+ d̂ < x ≤ m̂+ b̂

, (5.6)

where â, b̂, ĉ, d̂ and w are constrained. To simplify the design and for the sake of real-time

implementation, we set â = b̂, ĉ = 0, w = 1. Hence, there are only three free parameters

to be tuned.

An IT2 FS F̃ is symmetric with respect to its centre m̂ if, for ∀x ∈ X, its upper and lower

MFs satisfy Eq. (5.7) [285].

µ
F̃

(m̂+ x) = µ
F̃

(m̂− x), µF̃ (m̂+ x) = µF̃ (m̂− x). (5.7)

Second, the TS rule base fuzzy system was chosen in this proposed control design, having

the following structure:

IF e1 is F̃
i
1 and e2 is F̃

i
2 and en is F̃in ,

THEN Y i = [υli υri ],

where en represents an input variable; F̃ni labels IT2-FSs antecedents; Y i denotes the out-

put of the ith rule base; and υli and υri express the lower and upper consequent parameters,

respectively. In this work, nine rules were utilized. The interpretation of these rules can

be shown in Table 5.1-5.3, where N means negative, Z denotes zero, and P represents

positive.

Third, the firing level is represented by a firing interval. This process can be achieved using

the product (t-norm) operation. The firing interval can be calculated as F i (x1, ..., xn) =

[f i, f i], where f i and f i are given as f
i

= ∏n
i=1 µF̃ in , f i = ∏n

i=1 µF̃ in .

Finally, a center-of-sets with the EIASC algorithm type-reduction was implemented in this

design, Ycos = [yl, yr]. EIASC algorithm has been found faster than the widely used KM

type-reducer as no rule ordering is needed [22]. Lastly, the final output y was calculated

by taking the average of yl and yr as y = (yl + yr)/2.
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Table 5.1: X-control fuzzy rules representation

Rules Inputs Outputs
ex ėx x position

r1 N N υl1 = vl01 + vl11ex + vl21ėx υr1 = vr01 + vr11ex + vr21ėx
r2 N Z υl2 = vl02 + vl12ex + vl22ėx υr2 = vr02 + vr12ex + vr22ėx
r3 N P υl3 = vl03 + vl13ex + vl23ėx υr3 = vr03 + vr13ex + vr23ėx
r4 Z N υl4 = vl04 + vl14ex + vl24ėx υr4 = vr04 + vr14ex + vr24ėx
r5 Z Z υl5 = vl05 + vl15ex + vl25ėx υr5 = vr05 + vr15ex + vr25ėx
r6 Z P υl6 = vl06 + vl16ex + vl26ėx υr6 = vr06 + vr16ex + vr26ėx
r7 P N υl7 = vl07 + vl17ex + vl27ėx υr7 = vr07 + vr17ex + vr27ėx
r8 P Z υl8 = vl08 + vl18ex + vl28ėx υr8 = vr08 + vr18ex + vr28ėx
r9 P P υl9 = vl09 + vl19ex + vl29ėx υr9 = vr09 + vr19ex + vr29ėx

Table 5.2: Y-control fuzzy rules representation

Rules Inputs Outputs
ey ėy y position

r1 N N υl1 = vl01 + vl11ey + vl21ėy υr1 = vr01 + vr11ey + vr21ėy
r2 N Z υl2 = vl02 + vl12ey + vl22ėy υr2 = vr02 + vr12ey + vr22ėy
r3 N P υl3 = vl03 + vl13ey + vl23ėy υr3 = vr03 + vr13ey + vr23ėy
r4 Z N υl4 = vl04 + vl14ey + vl24ėy υr4 = vr04 + vr14ey + vr24ėy
r5 Z Z υl5 = vl05 + vl15ey + vl25ėy υr5 = vr05 + vr15ey + vr25ėy
r6 Z P υl6 = vl06 + vl16ey + vl26ėy υr6 = vr06 + vr16ey + vr26ėy
r7 P N υl7 = vl07 + vl17ey + vl27ėy υr7 = vr07 + vr17ey + vr27ėy
r8 P Z υl8 = vl08 + vl18ey + vl28ėy υr8 = vr08 + vr18ey + vr28ėy
r9 P P υl9 = vl09 + vl19ey + vl29ėy υr9 = vr09 + vr19ey + vr29ėy

Table 5.3: Z-control fuzzy rules representation

Rules Inputs Outputs
ez ėz z position

r1 N N υl1 = vl01 + vl11ez + vl21ėz υr1 = vr01 + vr11ez + vr21ėz
r2 N Z υl2 = vl02 + vl12ez + vl22ėz υr2 = vr02 + vr12ez + vr22ėz
r3 N P υl3 = vl03 + vl13ez + vl23ėz υr3 = vr03 + vr13ez + vr23ėz
r4 Z N υl4 = vl04 + vl14ez + vl24ėz υr4 = vr04 + vr14ez + vr24ėz
r5 Z Z υl5 = vl05 + vl15ez + vl25ėz υr5 = vr05 + vr15ez + vr25ėz
r6 Z P υl6 = vl06 + vl16ez + vl26ėz υr6 = vr06 + vr16ez + vr26ėz
r7 P N υl7 = vl07 + vl17ez + vl27ėz υr7 = vr07 + vr17ez + vr27ėz
r8 P Z υl8 = vl08 + vl18ez + vl28ėz υr8 = vr08 + vr18ez + vr28ėz
r9 P P υl9 = vl09 + vl19ez + vl29ėz υr9 = vr09 + vr19ez + vr29ėz
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5.4.2 PROBLEM FORMULATION

Consider a nonlinear dynamic system nth order as

x(n) = f(x, t) + b(x, t)u(t) + d(t), (5.8)

where the state vector x can be represented as x =
[
x ẋ ... x(n−1)

]T
; f(x, t) and

b(x, t) denote the state vector of nonlinear functions; u(t) represents the control input;

and d(t) expresses an external disturbance.

Considering the tracking error that is, the difference between the desired and the actual

values as:

e = xd − x =
[
e(t) ė(t) ... e(t)(n−1)

]T
, (5.9)

where xd =
[
xd ẋd ... x

(n−1)
d

]T
is the desired tracking values, and x is the actual

value. Eq. (5.9) can be expanded as follows:

ė1 = e2(t)

ė2 = e3(t)
...

ėn(t) = ẋdn − f(x, t)− b(x, t)u(t)− d(t)

(5.10)

Remark 2 Practically, it is difficult to measure all state variables of the system. Hence,

this study selects two major control variables, named, the error en(t) and its derivative

ėn(t).

5.4.3 Design of Sliding Surface

Remark 3 The design of SMC consists of two stages: 1) design of the reaching phase,

and 2) design of a sliding surface phase. Such control techniques employ a discontinuous

control law that has the ability to drive the system to a specified sliding surface S(t), and

also to preserve its motion along S(t) [121,286].
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A sliding surface S(e, t) = 0 can be defined as follows:

S(t) = δe(t) + ė(t), (5.11)

where δ is a strictly positive constant. For the theoretical study, it is appropriate to

assume the nonlinear terms in Eq. (5.8) are known. However, this may not be true in real

life. Hence, the control law ufinal(t) can be constructed as follows [246]:

ufinal(t) = b(x, t)−1[ẋdn(t)− f(x, t)− ėn(t) + Ṡ(t) + δS(t)]. (5.12)

The inputs to the proposed fuzzy controller are e(t) and ė(t). Moreover, for producing

the control signal u(t) in Eq. (5.8), fuzzy operations are deployed to approximate the

equivalent control law ufinal(t). It is worth mentioning that the purpose of using SMC is

to derive the dynamics of the system so that S(t) = δe(t) + ė(t) = 0. By following the

equivalent control law ufinal(t) and by considering the sliding surface and its derivative as

the inputs to the fuzzy control system, the system is asymptotically stable [257], so that

δS(t) + Ṡ(t) = 0.

The convergence of S(t) and Ṡ(t) to zero is guaranteed as δ is always a positive number.

Likewise, the convergence of e(t) and ė(t) to zero is always guaranteed according to the

definition in Eq. (5.11). To avoid the complexity of model-based computations, this study

utilized fuzzy system capability to map between the input variables and the control law

u(t). In this case, the control input might have differences from the optimal control law

ufinal(t). Hence, using Eqs. (5.10) and (5.12), the following equation can be derived as

Ṡ(t) = b(x, t)[ufinal(t)− u(t)]− δS(t). (5.13)

Multiplying Eq. (5.13) with S(t), it yields:

Ṡ(t)S(t) = S(t)
(
b(x, t)[ufinal(t)− u(t)]− δS(t)

)
(5.14)

Following the Lyapunov theory leads to Ṡ(t)S(t) < 0, which represents the reaching phase

of the sliding surface. Therefore, the purpose of this study is to design a control signal u(t)

that satisfies the reaching condition to guarantee the convergence of the overall control

system.
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Remark 4 To obtain a robust control performance against system dynamics uncertain-

ties, a discontinuous term is added to the final control part across the sliding surface S(t).

In other words, the discontinuous term acts as a robustness term, and can be added as the

reaching control element of the control effort [287].

The discontinuous term can be represented as:

urobust = β(t)sgn(S(t)), (5.15)

where β(t) > 0 and sgn represents the signum function, which can be defined as follows:

sgn(S(t)) =


1, if S(t) > 0

−1, if S(t) < 0
(5.16)

where sgn(S(t)) = 0 if S(t) = 0. Nevertheless, employing the signum function causes a

chattering phenomenon. One way to eliminate the chattering phenomenon is by smoothing

out the continuity of the signum function and employing a smooth function such as sat or

tanh. In this design, the sat function is deployed, which can be expressed as follows [288]:

sat (S, ι) =


S
ι , if |S| ≤ |ι|

sgn(S), otherwise

(5.17)

where ι is a design factor representing the thickness of the boundary layer. Finally, the

constructed control law considering uncertainties can be written as:

u(t) = ufinal(t) + urobust(t), (5.18)

where urobust(t) = β(t)sat(S(t)/ι).

5.4.4 ESAF2C Adaptive Law

The proposed adaptation law for the ESAF2C is obtained using the gradient descent

method, that is to minimize the S(t)Ṡ(t) with respect to υl and υr in Eq. (5.4.1). The
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proposed structure can be depicted in Fig. 5.4. Hence, the modified υl and υr can be

expressed as follows: 
υlt+1 = υl(t)− Λ∂S(t)Ṡ(t)

∂υl(t)

υrt+1 = υr(t)− Λ∂S(t)Ṡ(t)
∂υr(t) ,

(5.19)

where Λ is a design adaptive parameter and [υl, υr] are the consequent fuzzy parameters.

By applying the chain rule, Eq. (5.19) can be rewritten as:
υlt+1 = υl(t)− Λ∂S(t)Ṡ(t)

∂u(t)
∂u(t)
∂υl(t) = υl(t) + Λb(x, t)S(t) ∂u(t)

∂υl(t) .

υrt+1 = υr(t)− Λ∂S(t)Ṡ(t)
∂u(t)

∂u(t)
∂υr(t) = υr(t) + Λb(x, t)S(t) ∂u(t)

∂υr( t)
.

(5.20)
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Figure 5.4: Proposed ESAF2C structure for QUAV control, where ux, uy, uz represent the
control signals for the xyz-axes, respectively.

To simplify (5.20) further, we combine the design adaptive parameter Λ with the overall

system input parameter b(x, t) as a learning parameter, λ, [246, 289]. Therefore, for the

sake of practical implementation, the adaptive law with respect to the firing strength can

be rewritten as follows:
υlt+1 = υl(t) + λS(t)

 f i(t))∑m

i=1

(
f
i(t)+f i(t)

)
υrt+1 = υr(t) + λS(t)

 f
i(t))∑m

i=1

(
f
i(t)+f i(t)

) . (5.21)

In the work by [258, 259], a dead-zone concept was introduced to reduce the drift effect
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of the fuzzy consequents. Hence, the modified equations for updating the consequent

parameters can be rewritten as follows:

υlt+1 = 0, if S ≤ ι

υrt+1 = 0, if S ≤ ι

υlt+1 = κ|S|υl(t) + λS(t)

 f i(t))∑m

i=1

(
f
i(t)+f i(t)

) , if S > ι

υrt+1 = κ|S|υr(t) + λS(t)

 f
i(t))∑m

i=1

(
f
i(t)+f i(t)

) , if S > ι

(5.22)

where κ is a design parameter > 0; and ι is the thickness of the boundary layer as discussed

in (5.17).

5.4.5 Stability Analysis

A fuzzy system can be utilised to represent and approximate any nonlinear function to

obtain reasonable accuracy. The following basic assumptions were made in order to assess

the stability of the proposed ESAF2C as described in Remark 5.4.1 using the Lyapunov

theory.

Lemma 5.4.1 [246] If optimal upper and lower consequent parameters υl and υr exist,

which lead to the control law ũ, the final approximate of the control law ufinal has bounded

error of ζ, for each of the control inputs of the system, that leads to:

max|ũ(x, ῡ)− ufinal(x)| < ζ, (5.23)

where ũ(x, υ) = υTW; ufinal(t)(x) = υTW + ζ;

W = [Wl,Wr] =

 f i(t))∑m

i=1

(
f
i(t)+f i(t)

) , f
i(t))∑m

i=1

(
f
i(t)+f i(t)

) and ῡ =
[
ῡl, ῡr

]
.

If we describe ῡ = υ − υ̃, which can be defined as the difference between the desired and

actual consequent, we can rewrite (5.13) as:

Ṡ(t) = b[ῡTW + ζ]− δS(t). (5.24)
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This study selects the Lyapunov function as follows:

V = 1
2s

2
∇ + b

2λῡ
T ῡ, λ 6= 0, (5.25)

where s∇ ≡ S − ι • sat(S/ι) and ι denotes the thickness of the boundary layer [257].

By differentiating (5.25) with respect to time, it leads to:

= s∇ṡ∇ + b
λ ῡ

T ˙̄υ + ḃ
2λ ῡ

T ῡ

= s∇ṡ∇ + b
λ ῡ

T
[
υ̇ − ˙̃υ

]
+ ḃ

2λ ῡ
T ῡ

= s∇
[
−δs+ b

(
ῡTW + ζ

)]
−bῡT

(
s∇W− κ

λ |s∇|υ̃
)

+ ḃ
2λ ῡ

T ῡ

V̇ = s∇
[
−δ(s∇ + ι) + bζ

]
+ b

λκ|s∇|ῡ
T υ̃ + ḃ

2λ ῡ
T ῡ

≤ |s∇|
(
−δ|s∇| − δι+ bζ − 1

λbκῡ
T ῡ

+ 1
λbκ|ῡ||υ|

)
+ ḃ

2λ ῡ
T ῡ

= −|s∇|Θ− 1
λ

[
|s∇|bκ− ḃ

2

]
ῡT ῡ,

(5.26)

where Θ = δι+ δ|s∇| − b
(
ζ + 1

λκ|ῡ||υ|
)
.

Following the work in [246], choosing suitable parameters for ι and κ for Θ > 0, (5.26)

indicates that V̇ < 0 at any time that s∇ /∈ R ≡
(
|s∇| < ( ḃ

2κbλ)
)
. Therefore, the stability

of the control system is guaranteed based on the Lyapunov theory.

5.5 Simulation Results

In this section, the efficacy of the proposed adaptive control system in stabilizing the

QUAV is investigated. The performance of the proposed ESAF2C is examined in the

presence of external disturbances and measurement noise while tracking various reference

signals along the (xyz)-axes. A comparison of the proposed method with a conventional

PID controller and both T1-FLC and IT2FLC counterparts is reported. The performance
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indices such as the root mean square error (RMSE), rising time (tr), and settling time (ts)

are reported in this section.

Nine rules were employed, with three membership functions for each input. The inputs to

the proposed fuzzy controllers are the error and its derivative as depicted in Fig. 5.3. The

sliding surface parameters were chosen as: δx = 0.8, δy = 0.7, δz = 1.1. The consequent

parameters started learning from scratch and were initialized with zeros.
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Figure 5.5: Simulation results for position control in the xyz-axes for different controllers
on the nominal system (step input).
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Figure 5.6: Simulation results for position control in the xyz-axes for different controllers
on the nominal system (sine input).
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Figure 5.7: Simulation results for the error signals for IT2-FSMC and ESAF2C on the
nominal system.
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Figure 5.8: Simulation results for the control signals for IT2-FSMC and ESAF2C on the
nominal system.
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5.5.1 Case 1: nominal condition

First, a step reference was fed as the desired trajectory at a hovering point of [0.7, 0.8, 1] m

for the xyz-axes respectively. For the altitude position, the set-point was increased to 1.2m

after 5 sec. A better control system performance was obtained using the proposed ESAF2C

compared to its T1-fuzzy and T2-fuzzy counterparts, which demonstrates comparable

performance to a conventional PID controller in the case of nominal condition as shown

in Fig. 5.5. Besides, the analysis was performed with different reference signals (e.g.,

sine wave signal), where better closed-loop control performance was observed using the

proposed method compared to other controllers as shown in Fig. 5.6. The tracking errors

and the control efforts throughout the experiment are shown in Fig. 5.7 and Fig. 5.8,

demonstrating a favorable performance using the ESAF2C.

5.5.2 Case 2: disturbance condition

For further investigation of the proposed technique, an artificial stochastic wind/gust

disturbance was injected to the system. For simulating the wind/gust disturbance, it

is generated using a discrete wind/gust MATLAB/SIMULINK block, which have the

following setting: gust length [dx = 50m, dy = 50m, dz = 30m], wind velocity=2m/s

and gust amplitude of [ug = 5m/s, vg = 5m/s, wg = 5m/s]. The discrete wind/gust

block can be found in the Aerospace MATLAB blockset library.

As can be seen in Figs. 5.9 & 5.10, the conventional PID controller failed to stabilize the

system in the presence of disturbances, while a stable performance was observed using

the ESAF2C technique. For more visualization, the dotted squares and dotted circles in

Figs. 5.9, 5.10, 5.11 are presented, which demonstrate the improvement of the proposed

technique compared to the other controllers. The proposed ESAF2C performed better

than their type-1 and type-2 fuzzy counterparts as indicated by its lower error values

shown in Fig. 5.11 and Table. 5.4. Moreover, as can be seen in Fig. 5.12, the chattering

effect was eliminated using the ESAF2C by adopting the saturation function to smooth

out the chattering control discontinuity of the sliding surface.
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Table 5.4: Simulation results for multiple controllers with disturbances

x− position

Metrics PID T1-FSMC IT2-
FSMC

ESAF2C Units

tr 0.78 3.63 3.52 1.79 (s)
ts 25.92 17.85 15.85 2.35 (s)

RMSE 0.356 0.125 0.109 0.0721 (m)
y − position

Metrics PID T1-FSMC IT2-
FSMC

ESAF2C Units

tr 1.26 21.52 20.56 5.86 (s)
ts 24.36 3.89 3.85 2.593 (s)

RMSE 0.221 0.115 0.095 0.0833 (m)
z − position

Metrics PID T1-FSMC IT2-
FSMC

ESAF2C Units

tr 1.52 4.12 4.08 3.25 (s)
ts 29.81 16.42 14.25 5.84 (s)

RMSE 0.542 0.215 0.1152 0.1013 (m)
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Figure 5.9: Simulation results for different controllers for position control in the xyz-axes
under disturbances (step input).
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Figure 5.10: Simulation results for different controllers for position control in the xyz-axes
under disturbances (Sine input).
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Figure 5.11: Simulation results for the error signals for IT2-FSMC and ESAF2C under
uncertainties.

142



5.5. SIMULATION RESULTS

0 5 10 15 20 25 30
-0.2

0

0.2

0 5 10 15 20 25 30
-0.2

0

0.2

0 5 10 15 20 25 30
0

10

20

IT2-FSMC ESAF2C

Figure 5.12: Simulation results for the control signals for IT2-FSMC and ESAF2C under
uncertainties.

5.5.3 Case 3: sensor measurement noise effect

For further investigation of robustness, band-limited white noises with various noise powers

were added to the sensor data, while having the stochastic artificial winds present. In other

words, the noise was added to the position signals (x, y, z). As shown in 5.13, ESAF2C

proved its robustness and ability to handle noisy sensor data efficiently compared to T1-

FSMC and IT2-FSMC counterparts.
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Figure 5.13: Measurement noise effect (comparison between ESAF2C, IT2-FSMC and
T1-FSMC), Z-position control.
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5.5.4 Case 4: Computational Load

The quantification of the computation load was evaluated under Core i7-10750H CPU

@ 2.6GHz with 16.0 GB of RAM, which was collected using the tic and toc MATLAB

functions. The sampling time = 0.01sec and the simulation time is 30sec. Table 5.5

illustrates that the computation cost for the proposed method is higher than the PID and

the T1-FSMC controllers. Despite being more computationally expensive, the performance

of our adaptive fuzzy ESAF2C is superior compared to benchmark controllers, especially

in the face of uncertainty. Today, with current speed of computer, this burden should not

be a problem as it was in the past.

Table 5.5: Computation load for various controllers.

Control method Computational load (sec)
PID 10.16

T1-FSMC 33.34
IT2-FSMC 56.46
ESAF2C 53.68

5.6 Experimental Results

To investigate the practical capability of the proposed method, multiple real flight tests

were conducted using the Parrot AR.Drone (see Fig. 5.15). The experimental setup was

discussed in chapter 3, except that the platform utilized in this chapter is the Parrot

AR.Drone. This platform was chosen due to its lightweight and susceptibility to wind/-

gusts.

The experiments were performed in the indoor flight test space, which is equipped with

19 VICON motion capture cameras. These powerful cameras have the ability to track

all motions of the QUAV. We utilize the VICON Motion Tracker software to analyze and

store real-time flight data (e.g., position, velocity, Euler angles, acceleration, and angular

rates). The AR.Drone autonomy package, installed in a ground station computer, was
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subsequently utilized to control the QUAV via Wi-Fi at a frequency of 100 Hz, thanks to

the Robot Operating System (ROS) protocol. The autonomy package enabled the QUAV

to be remotely controlled through yaw rate, pitch rate, roll rate and thrust commands.

Fig. 5.14 shows the information flow loops used for the flight tests.

VICON Camera
PC running motion 

tracking software

PC running AR.Drone 

Autonomy package
AR.Drone

Roll rate, pitch rate, and

Thrust

Figure 5.14: Information flow loop used for the flight tests.

Besides, we utilized nine fuzzy rules and a trapezoidal MF for real-time implementation,

where the proposed model was first designed using computer simulation. Moving from

simulation to real-time implementation, nine fuzzy rules were selected to achieve a delicate

balance between computational complexity and accuracy. The initial parameters were also

tuned using computer simulation, which then transferred to real-time implementation. The

proposed controller was used to control the outer loop (position control loop) to track a

given trajectory reference, while the inner loop is controlled using the PID control method

as shown in Fig. 5.2.

The experimental setup and the data flow of the overall system architecture are demon-

strated in Fig. 5.16. The performance indices were reported in Table 5.6. Besides, we
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demonstrated the adaptation trajectory of the upper and the lower ESAF2C parameters

during the flight tests.

Vy

Y- axis

Vx

X- axis Vz

Z- axis

� 

� 

� 

Figure 5.15: The body-frame {B} of a Parrot AR.Drone, where (θ, φ, ψ) represents the
rotation along the xyz-axes respectively.

5.6.1 Case 1: nominal closed-loop position control

Various experiments were conducted to control the (xyz) positions of the QUAV. As

depicted in Fig. 5.17, the performance of three different controllers was compared. In this

flight test, the desired tracking set points were set to be [0, 0, 1− 1.2]m for the xyz-axes,

respectively. Fig. 5.17 shows a comparable performance of the PID and type-2 fuzzy

counterparts with respect to the proposed ESAF2C technique. Besides, a shorter settling

time was reported from the conventional PID controller, as the proposed ESAF2C requires

time to adapt its parameters.

5.6.2 Case 2: external disturbance closed-loop position control

To validate the theoretical study, the performance under external disturbance is inves-

tigated. To do that, an industrial fan was utilized to act as a wind disturbance. The

experimental results indicated that the performance of the proposed ESAF2C is better
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than its type-1 fuzzy and conventional PID counterparts as shown in Figs. 5.18 & 5.19,

thanks to the FOU in IT2FLCs, that incorporate uncertainties efficiently. The online

learning of the upper and the lower ESAF2C parameters are plotted in Fig. 5.20. The

fuzzy parameters were varying according to the amount of applied gusts. In other words,

Fig. 5.20, shows the convergence of the six parameters. Moreover, it is worth mentioning

that the upper and the lower parameters started learning from scratch, where they were

initialized with zeros. Table 5.6 shows the experimental evaluation for three different con-

trollers under external wind disturbance, where lower RMSE values were recorded using

the ESAF2C system.

Table 5.6: Experimental evaluation using three different controllers in hovering mode with
high-wind disturbance

X − position

Metrics PID T1-Fuzzy ESAF2C Units
tr 13.86 5.55 2.43 (s)
ts 59.39 58.94 55.90 (s)

RMSE 0.1936 0.26 0.14 (m)
Y − position

Metrics PID T1-Fuzzy ESAF2C Units
tr 36.9 5.96 2.34 (s)
ts 58.98 42.54 35.32 (s)

RMSE 0.30 0.23 0.19 (m)
Z − position

Metrics PID T1-Fuzzy ESAF2C Units
tr 4.0711 0.2479 0.1216 (s)
ts 60.4351 58.9833 52.3981 (s)

RMSE 0.201 0.163 0.095 (m)
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Figure 5.16: Data flow of the overall system architecture, demonstrating the information
flow of the QUAV including the position, orientation, velocity, acceleration, angular rates,
etc.
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Figure 5.17: Output xyz positions of the QUAV during real-time flight tests (hover mode)
for different controllers.
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Figure 5.18: Output xyz positions under external disturbances during real-time flight tests
(hover mode) for different controllers.
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Figure 5.19: Output xyz positions under external disturbance during real-time flight tests
(hover mode) in 3-D shape.
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Figure 5.20: Upper figure shows the online parameters learning using the ESAF2C in
hover mode (nominal condition), lower figure shows online parameters learning using the
ESAF2C (under disturbance).

5.7 Summary

In this chapter, a novel ESAF2C controller was proposed to stabilize a quadcopter drone

under external disturbances. On the basis of the SMC scheme, a self-tuning technique was

implemented to tune SMC parameters, where SMC was utilized to tune fuzzy upper and

lower variables. This approach was validated using extensive numerical simulations and

real-time flight tests. The proposed method was performed and implemented in the ROS

environment. The stability analysis was examined using the Lyapunov theory.

The proposed fuzzy control system approach can be considered as a promising technique.

The proposed control scheme was computationally efficient as it requires only three mem-

bership functions, resulting in nine fuzzy rules only. Moreover, the proposed technique

system demonstrated better control performance in the face of uncertainties (ground ef-

fects) and external disturbance (wind gusts) when compared to its type-1 fuzzy and con-

ventional PID counterparts. Furthermore, the proposed closed-loop control system proved

its ability to filter measurement noise that might occur during real-time implementation.
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In addition, the outcomes of this chapter provided extra flexibility to fine-tune IT2FLCs

and demonstrated the capability to implement IT2FLCs in real-time.
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Chapter 6

Evolving Interval Type-2 Fuzzy

Control for Uncertain Dynamic

Systems

The work furnished in this chapter has been taken from the following publications:

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020). A

Novel Learning-from-Scratch Evolving Type-2 Fuzzy System for Robotic Control.

Preparing to be submitted to IEEE Transactions on Intelligent Transportation Sys-

tems, [103].

• Al-Mahturi, A., Santoso, F., Garratt, M. A., and Anavatti, S. G. (2020).A Sim-

plified Model-Free Self-Evolving TS Fuzzy Controller for Nonlinear Systems with

Uncertainties. 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems

(EAIS), [290].
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6.1 Introduction

The development of nonlinear control systems for mobile robots has been an important

research area in recent years. For example, modern control methods have been developed

for trajectory tracking [223, 224], navigation [225], parking [226], and obstacle avoidance

[114]. Traditional control methods have been proposed for tracking control of mobile

robots [223] and feedback linearization [291]. Nevertheless, these algorithms can provide

a satisfactory tracking performance only if the plant’s mathematical dynamic model is

properly known, which may be impractical due to various uncertainties, such as, modelling

errors, noisy measurements, etc [130].

On the other hand, computational intelligence control approaches such as FLC and ANN

have been applied successfully to deal with uncertainties, such as in trajectory tracking con-

trol problems, where multiple uncertainties exist in the environment. Intelligent controllers

can learn the dynamics of robots while accommodating the footprint-of-uncertainties

(structured and unstructured) in an online manner. This way, the controller parame-

ters and structure can be automatically adjusted based on the operating conditions of the

robot without the need for a comprehensive mathematical model of the plant [130].

For instance, T1-FLCs have been implemented for mobile robots [292]. However, T1-

FLCs have limited ability to handle uncertainties in the system, especially to handle

new operating conditions, where the performance of the closed loop control system may

decrease significantly [114]. Accordingly, T2-FLCs can be considered as an alternative to

solve the limitation of T1-FLCs. T2-FLCs have been proposed for mobile robot control

problems [114, 254, 293–295], where better tracking performance compared to T1-FLCs

were reported.

Nevertheless, these conventional T2-FLCs have a static structure and lack the ability

to evolve their structure in an online manner. Generating type-2 fuzzy rules and their

associated membership functions is a potential challenge especially for systems with many

variables [35,36,169]. Employing evolutionary algorithms to find optimal fuzzy parameters
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is not desirable due to the large population space which results in slow performance.

Hence, the development of a type-2 evolving fuzzy control system (T2-EFCS) is essential

to facilitate self-learning (either from scratch or from a certain predefined rule). As a

recap, EFSs can be defined as adaptive intelligent systems, which can learn their fuzzy

structure and parameters simultaneously in an online manner [10, 55, 296, 297]. Recently,

EFSs have become popular in various engineering applications from system identification

and regression problems to classification and control problems [28,37–49,51,298].

T2-EFCS has two phases, namely, structure learning and parameters learning. The struc-

ture of T2-EFCS does not require previous information about the fuzzy structure, and

it can start the construction of its rules from scratch with only one rule. The rules are

then added and pruned in an online fashion to achieve the desired set-point. In this chap-

ter, a novel technique is deployed to control an unmanned ground vehicle (UGV) in the

presence of multiple external disturbances, where the research outcomes in this chapter

demonstrate the robustness of the proposed control systems as will be presented in the

following sections.

The remainder of this chapter is structured as follows. The contributions of this chapter

are listed in Section 6.2. Section 6.3 presents the proposed type-1 evolving fuzzy-based

control system (T1-EFCS) design. This is followed by a novel design of an evolving type-2

fuzzy logic controller (T2-EFCS) in Section 6.4 including the simulation results. Lastly,

Section 6.5 provides a summary of this chapter.

6.2 Contributions of this chapter

Inspired by the previous work in EFSs, the contributions of this chapter can be summarized

as follows:

1. First, a novel type-1 evolving fuzzy-based control system (T1-EFCS) is developed,

where the structure of the proposed controller does not require previous information

about the fuzzy structure and it starts its construction from scratch with only one
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rule. The rules are then added and deleted in an online manner to achieve the desired

trajectory. The adaptive law for tuning its parameters is derived using the SMC

theory, making the system robust to variations in system parameters and external

disturbance. The proposed technique is investigated in the presence of external

disturbances.

2. Second, to achieve better tracking performance over T1-EFCS, a novel evolving

type-2 fuzzy logic controller (T2-EFCS) is introduced, where a new adding and

deleting mechanism of its type-2 fuzzy rules is proposed. The adaptive law is derived

using the SMC theory to guarantee robustness against uncertainties. The proposed

closed-loop control system is employed to control a simulated mobile robot, where its

robustness is investigated in the presence of external disturbance (e.g., in the face of

measurement noise and external disturbance). Besides, a rigorous comparative study

of T2-EFCS is performed with respect to three different controllers such as T1-FLC,

T2-FLC, and T1-EFCS, where the outcomes of this study show the superiority of

the proposed method with lower RMSE values. Lastly, the stability analysis of the

proposed method is implemented using the Lyapunov stability theory.

6.3 T1-EFCs Design

6.3.1 Architecture of T1-EFCs

In this section, the notation used to represent FLS is described. From previous chapters,

the Takagi-Sugeno fuzzy logic structure has the following general representation:

RULEm : If (x1 is A
m
1 , x2 is A

m
2 , . . . , xn is A

m
n ),

THEN ym = am0 + am1 x1 + am2 x2 + . . .+ amn xn,

where x = [x1, . . . , xn] are the inputs to the fuzzy controller, m = 1, 2, ..,M , where M is

the number of fuzzy rules, Amn denotes the membership functions, ym is the fuzzy output,
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amn is the adjustable consequent parameters. For each input, the degree of membership

function Amn is µm,n(xn) and the firing strength of every rule is given as follows:

fm = Am1 (x1)× . . .×Amn (xn). (6.1)

The output of the TS fuzzy controller can be represented as follows:

Yts =
∑M

m=1 fm.ym∑M

m=1 fm

=
∑M

m=1

(
fm.
[∑M

m=1 amxm+a0
])∑M

m=1 fm

(6.2)

This can be written as:

Yts =
M∑
m=1

f̃m.ym, (6.3)

where f̃m = fm∑M

m=1 fm
.

The Gaussian membership function is represented as:

Ai = exp

(
‖ xi − ci ‖2

2σ2
i

)
, (6.4)

where cj represents the center of the Gaussian function and σi is the width vector of the

Gaussian function. The input vector to our controller are x =

 e

ė

, where (e, ė) is the

error and its derivative.

Our fuzzy controller has the ability to add new rules, prune the existing rules, and learn the

fuzzy parameters. Figs. 6.1 depicts the structure of our proposed model-free self-evolving

controller.

6.3.2 T1-EFCs Structure Learning

6.3.2.1 Rule adding mechanism

The first data sample of the e and ė are used to generate the first rule of the fuzzy controller.

Since we are considering the error and its derivative as the inputs to our controller, two
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Figure 6.1: A simplified model-free self-evolving controller structure

membership functions are generated initially.

For a new incoming data x(t), we calculate the Euclidean distance using (6.5).

D(x, c) =
√∑n

i=1(xi − ci)2,

= ‖ xi − ci ‖
, (6.5)

where ci ∈ R is the nearest vector center to the current input state x(t), which constructs

the Gaussian membership function. For a new incoming data x(t), the proposed controller

generates a new rule if the following condition is satisfied:

‖ xi − ci ‖min> dadd, (6.6)

where dadd > 0 is a predefined thresholds value ∈ (0, 1). Once a new rule n = n + 1 is

constructed, a corresponding fuzzy set for each input variable is generated. The initial

fuzzy parameters of the newly added fuzzy rule are as follows:
an+1 = 0

cn+1 = xi

σn+1 = α ‖ xi − ci ‖

(6.7)

where α is an overlap value between different rules and an is the adjustable consequent

parameter as explained in section 6.3.

Remark 5 the threshold value is confined in (0, 1) based on the fuzzy set reduction method

in [147]. If the threshold value dadd is set to one, then the number of fuzzy sets in each
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input variable is equal to the number of rules. Conversely, if the threshold value dadd is

set to zero, then only one fuzzy set is generated in each input variable [147].

6.3.2.2 T1-EFCs Rule Pruning Mechanism

Some existing methods in the literature have the ability to generate rules. However, once

the rules are generated, they cannot be deleted. In this proposed technique, deleting

unnecessary rules is considered. The process of pruning existing rules is based on the

contribution of membership grade, so when it is smaller than the prior threshold value,

the rule is deleted. The rule pruning is done if the following condition is satisfied:

fm < ddel (6.8)

where fm is the firing strength and can be calculated using Equation (6.1), ddel is a

predefined thresholds value ∈ (0, 1). Hence, the redundant fuzzy rule is removed, hence,

the fuzzy parameters are as follows:

a = φ

c = φ

σ = φ

n = n− 1.

(6.9)

6.3.3 T1-EFCs Parameters Learning

The parameters of our fuzzy controller are tuned based on the SMC theory. Let the desired

output be yd and the actual output be y, where the error and its derivative can be defined

as:

e(t) = y − yd, ė = ẏ − ẏd. (6.10)

We design the sliding surface function as follows:

s(t) = δe(t) + ė, (6.11)
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Figure 6.2: Flowchart of the evolving fuzzy controller

ṡ(t) = ë+ δė, (6.12)

where δ must be > 0. The adaptive law to minimize sṡ with respect to the consequent

parameters am can be derived using the gradient descent method as follows [30]:

an+1 = an + τ
∂s(t)ṡ(t)
∂an(t) , (6.13)

where τ is the learning rate. Equation (6.13) can be rewritten as follows:

an+1 = an + τ ∂s(t)ṡ(t)∂u(t)
∂u(t)
∂an(t)

...

= an + τs(t) fm(x)∑m

i=1 fm(x) .

(6.14)

In our design, τ = 2 and δ = 0.05. The flowchart of our proposed controller is described

in Fig. 6.2.
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6.3.4 System Description

Consider a single inverted pendulum system with a disturbance signal in Fig. 6.3, where

the dynamic equation can be described as follows:

ẋ1 = x2, (6.15)

ẋ2 = f(x) + g(x)u+ d(t), (6.16)

f(x) = gsinx1 −mlx2
2cosx1sinx1/(mcart +m)

l(4/3−mcos2x1/(mcart +m)) , (6.17)

g(x) = cosx1(mcart +m)
l(4/3−mcos2x1/(mcart +m) . (6.18)

The angle and its angular speed are x1 and x2; while u is the control signal; and d(t) is an

external disturbance. The parameters of the single pendulum are given as: g = 9.8m/s2;

the mass of the pendulum m = 0.1kg; the mass of the cart mcart = 1kg; and the half

length of the pendulum l = 0.5m.

mcart
u

X-axis

Gravity (g)

m

θ 

disturbance

Figure 6.3: Single inverted pendulum plant

6.3.4.1 T1-EFCs Results and Discussion

In this section, the system performance is investigated in two different scenarios: under

the nominal condition and in the presence of an external disturbance. The simulation time
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is 20 sec, with a fixed step size of 0.01s. The initial values of the consequent parameters

are zeros. In this proposed design, the distance indicating the similarity measure threshold

value is 0.1, while the firing strength threshold value is 0.2.

6.3.5 System performance under nominal condition

The performance of the proposed evolving controller is evaluated under a nominal condi-

tion. It is compared with an adaptive fuzzy controller [299]. The design of the adaptive

fuzzy controller has five rules and two Gaussian membership functions for each input.

However, for the proposed evolving controller, only two rules are evolved to track the de-

sired trajectory. It can be seen that a lower number of rules are obtained from the evolving

controller compared to the adaptive fuzzy controller. Also, better tracking results are ob-

tained from the proposed controller as shown in Figs. 6.4 & 6.5 with less RMSE values as

summarized in Table 1. The error, number of fuzzy rules, and the control signals under

nominal conditions are plotted in Fig. 6.8.

0 2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1

1.5

Figure 6.4: Position tracking in normal condition

6.3.5.1 System Performance Under Uncertainties

For robustness analysis, the performance of the proposed controller is studied in the pres-

ence of external disturbance, where a disturbance signal d = 0.5cos(t) is injected into the

simulated model. As can be seen from Figs. 6.6 & 6.7, the proposed evolving controller

can handle the disturbance within a reasonable period of time. The sliding surface and the
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Figure 6.5: Velocity response in normal condition

Table 6.1: RMSE values for tracking a sine wave reference

Controller
Type

Nominal
condi-
tion

with dis-
turbance

Adaptive fuzzy 0.0124 0.0928
Evolving Fuzzy 6.5694e-04 0.0195

adaptation of the consequent parameters with time in the case of uncertainties are plotted

in Fig. 6.10. The error, number of fuzzy rules, and the control signals under uncertainties

are plotted in Fig. 6.9.
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Figure 6.6: Position tracking in the presence of uncertainties

163



CHAPTER 6. EVOLVING INTERVAL TYPE-2 FUZZY CONTROL FOR
UNCERTAIN DYNAMIC SYSTEMS

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

Figure 6.7: Velocity response in the presence of uncertainties
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Figure 6.8: Performance under nominal condition (a) Error, (b) Number of evolving fuzzy
rules, (c) Control signal
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Figure 6.9: Performance under uncertain condition (a) Error, (b) Number of evolving
fuzzy rules, (c) Control signal
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Figure 6.10: Performance under uncertain condition (a) Adaptive parameters in the pres-
ence of uncertainties, (b) Sliding surface changes with time in the presence of uncertainties.
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6.4 T2-EFCS Design for a Mobile Robot

6.4.1 Problem Formulation

A class of a n− th order nonlinear dynamic system can be described as follows:
x(n) = f(x) + b(x)u+ d(x)

y = x

(6.19)

where the state vector x ∈ <m can be defined as x =
[
x ẋ . . . x(n−1)

]T
∈ <m;

x ∈ <mrepresents the state; f(x) ∈ <m and b(x) ∈ <m×m are the system nonlinear

functions; u depicts the control input; y is the system output; and d(x) ∈ <m expresses

unknown uncertainties. For the theoretical study, it is assumed that the nonlinear terms

in (6.19) are known, bounded and b−1(x) exists for all x.

Assumption 1 If there exist inevitable modeling uncertainties between the real system

and the simulated systems, they can be absorbed in the uncertainty function.

The purpose of the closed-loop control system is that the system output y has the ability

to track a desired signal yd. Consider the tracking error as

e = yd − y, (6.20)

and the system tracking vector can be written as

e =
[
e(t) ė(t) . . . e(t)(n−1)

]T
∈ <nm. (6.21)

Define an integrated sliding surface as:

SEFC ≡ en−1 + κ1e
n−2 + . . .+ κn

∫ t

0
e(τ)dτ, (6.22)

where κi ∈ <m×m is a strictly positive constant matrix, where i = 1, 2, 3 . . . , n; and

κ = [κ1, .., κn]T ∈ <nm×m. If the nonlinear terms f(x) and b(x) and also the d(x) are

known, an ideal control law ufin(t) can be designed as follows [156,174,177]:

ufin = b(x)−1
[
y

(n)
d − f(x)− d(x) + κT e

]
. (6.23)

165



CHAPTER 6. EVOLVING INTERVAL TYPE-2 FUZZY CONTROL FOR
UNCERTAIN DYNAMIC SYSTEMS

Using (6.23) and (6.19), we can derive the following error dynamic equation as:

ṠEFC = e(n) + κT e = 0 (6.24)

From (6.24), it is clear that if κ is chosen to correspond to the Hurwitz polynomial coef-

ficients, it leads to a convergence of the tracking error to zero when the time approaches

infinity [174]. Nevertheless, in real-time applications, the uncertainty term d(x) cannot

be precisely known. Therefore, the ideal control law in (6.23) is not available. Hence, the

proposed closed-loop control system is designed to meet the desired control objective.

6.4.2 T2-EFCS control system design

6.4.2.1 T2-EFCS Architecture

The structure of the proposed evolving interval type-2 fuzzy system is discussed in this

section. It consists of five layers, namely, the input layer, the fuzzification layer, the firing

strength layer, the consequent layer, and the output layer as shown in Fig. 6.11. Each

rule has the following form:

RULEm : If (x1 is X̃
m
1 , x2 is X̃

m
2 , . . . , xn is X̃

m
n ),

THEN ỹm =
M∑
n=1

Wn
m(t)xn(t),

where x = x1, . . . , xn denotes the inputs variables to T2-EFCS, m = 1, 2, ..,M ; where M

represents the number of fuzzy rules, X̃m
n and ỹ are the IT2F membership functions for

the input and output, respectively. Each layer can be described as follows:

• Layer 1 (Input layer): this layer is the input signals with (n× 1) vector. In this

study, the error and its derivative are the two inputs to the system.

• Layer 2 (Fuzzification layer): this layer is first hidden layer, which can be ex-

pressed by IT2 membership functions. In this study, a Gaussian MF with fixed width
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Figure 6.11: Structure of EIT2FLCs

σmn and uncertain means [mmn,mmn] is deployed, which can be given as follows:

µmn = exp

{
−1

2

(
xn −mmn

σmn

)2
}
, (6.25)

µ
mn

= exp

{
−1

2

(
xn −mmn

σmn

)2
}
, (6.26)

• Layer 3 (Firing layer): the firing strength Fm is computed in this layer to perform

the aggregation operation.

Fm = [f
m
, fm] (6.27)

where 
f
m

= ∏p
n=1 µmn

fm = ∏p
n=1 µmn

• Layer 4 (Consequent layer): the output of this layer has two consequent values
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as follows: 
y(t) =

∑M
m=1 fm(t)ym(t)∑M

n=1 fm(t)

y(t) =
∑M
m=1 fm(t)ym(t)∑M

m=1 fm(t)

(6.28)

ym(t) =
M∑
n=1

Wnm(t)xn(t) (6.29)

where y(t) and y(t)are the upper and lower outputs of the consequent part, respec-

tively; ym(t) represents T1-FSs consequent parameters. In this layer, the center-of-

sets and the ‘Enhanced Iterative Algorithm with Stop Condition’ type-reducer were

utilized to calculate the interval outputs [y(t), y(t)].

• Layer 5 (Output layer): the computation of the output value of the last layer is

given as follows:

y = %y(t) + (1− %)y(t) (6.30)

where % ∈ [0, 0.5] represents a weighting parameter.

6.4.2.2 T2-EFCS Structure Learning

• Rule Adding Mechanism: The rule generation of T2-EFCS is based on the dis-

tance between the incoming data and the upper and lower means of the type-2

Gaussian function, so that when max DT2 > Tadd, a new rule is generated. The Eu-

clidean distance of the upper and lower means can be computed using the following

equation:

DT2(xn,mM ) = ‖ xn −mM ‖2 , (6.31)

where xn represents the incoming data of e and ė; mM = ((mM +mM )/2) is the

mean. If we define a MAX-MIN approach to identify when to add a new type-2

fuzzy rule as, M̂ = arg min
1≤M≤nM

D(xn,mM ), the T2-EFCS finds:

If (max DT2 > Tadd) THEN Generate new type-2 fuzzy rule (6.32)

where Tadd denotes a prior threshold value for rule generation, and M̂ is the math-

ematical representation for the argument of the minimum.
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The initial type-2 fuzzy MF parameters are set as:
[
m1

1n,m
2
1n
]

= [xn −∆x, xn + ∆x]

σ = σfixed

(6.33)

where σfixed denotes a predefined value (in this work, σfixed = 0.5), which determine

the width of the membership functions associated with a new generated rule.

Once a new type-2 fuzzy rule is generated, the same procedure implemented for the

first rule is utilized to assign the uncertain mean and the width as follows:
[
m
M(t)+1
1n ,m

M(t)+2
1n

]
= [xn −∆x, xn + ∆x]

σM(t)+1 = ξ.

∣∣∣∣xn − (mI12+mI12
2

)∣∣∣∣ (6.34)

where ξ represents an overlapping parameter (ξ is set to 0.5 in this work); and the

M(t) represents the total number of type-2 fuzzy rules at the tth step.

Remark 6 If the uncertainty associated with the mean ∆x is very small, the type-2

GF becomes similar to type-1 GF. Nevertheless, if the uncertain region of type-2 GF

with is extremely large, it covers all input domains, where a lower number of rules

is generated [109,156].

• Rule Pruning Mechanism: In this proposed technique, deleting unnecessary rules

is considered. The process of pruning existing rules is based on the contribution of

membership grade so when it is smaller than the prior threshold value, the rule is

deleted. This approach can be expressed as follows:

If (Fm < Tdel) THEN delete type-2 fuzzy rule (6.35)

where Tdel denotes a prior threshold value for rule deletion; and FT2 = Fm which

denotes the firing strength in (6.27) for each incoming data.

Automatic rules generation and pruning is efficient, which determine the optimum

number of fuzzy rules. Fig. 6.12 illustrates the flowchart of the proposed method.

The online updates of type-2 fuzzy parameters is presented in the following section.
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Figure 6.12: Flowchart of the T2-EFCS
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Remark 7 The selection of the adding/pruning threshold parameters Tadd and Tdel is

based on the maximum number of fuzzy rules (MNFR), where MNFR is a design parameter

that determines the maximum number of fuzzy rules when a fuzzy structure evolves. Similar

to 5, these threshold values are confined in (0,1). The empirical relationship between

the adding/pruning thresholds values (Tadd, Tdel) and MNFR is described as: [Tadd ≥

(1/MNFR)] and [Tdel ≥ (1/MNFR)]. This way, the parameters of the T2-EFCS are

meaningful to the user. For instance, if MNFR is selected to be 7, then Tadd and Tdel

should be selected ≥ 0.143. If MNFR is selected to be 15, then Tadd and Tdel should

be ≥ 0.067. Higher MNFR values result in higher accuracy, but also higher processing

time. The selection of MNFR is a trade-off between the processing unit capabilities and

controllers’ accuracy [49].

6.4.2.3 T2-EFCS Parameters Learning

The gradient descent method is applied to minimize the error function between the desired

and the actual output. The online adaptation law of the proposed T2-EFCS is given in

the following equations as [156,177]:

m̂mn(t+ 1) = m̂mn(t)− η̂m
∂sEFC(t)ṡEFC(t)

∂m̂mn
(6.36)

m̂mn(t+ 1) = m̂mn(t)− η̂m
∂sEFC(t)ṡEFC(t)

∂m̂mn

(6.37)

σ̂mn(t+ 1) = σ̂mn(t)− η̂σ
∂sEFC(t)ṡEFC(t)

∂σ̂mn
(6.38)

Ŵnk(t+ 1) = Ŵnk(t)− η̂W
∂sEFC(t)ṡEFC(t)

∂Ŵnk

(6.39)

where η̂m, η̂σ, and η̂W are the learning rates to update T2-EFCS parameters. By applying

the chain rule, the following equations can be derived:

∂sEFC(t)ṡEFC(t)
∂m̂mn

= 1
2
∂sEFC(t)ṡEFC(t)
∂ŷT2−EFCS

(
∂y

∂f
m

∂f
m

∂m̂mn
+ ∂y

∂fm

∂fm
∂m̂mn

)
= 1

2sEFC(t)
(

(wm−y)∑M

m=1 fm

∂f
m

∂m̂mn
+ (wm−y)∑M

m=1 fm

∂fm
∂m̂mn

) (6.40)
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∂sEFC(t)ṡEFC(t)
∂m̂mn

= 1
2
∂sEFC(t)ṡEFC(t)
∂ŷT2−EFCS

(
∂y

∂f
m

∂f
m

∂m̂mn
+ ∂y

∂fm

∂fm
∂m̂mn

)
= 1

2sEFC(t)
(

(wm−y)∑M

m=1 fm

∂f
m

∂m̂mn
+ (wm−y)∑M

m=1 fm

∂fm
∂m̂mn

) (6.41)

∂sEFC(t)ṡEFC(t)
∂σ̂mn

= 1
2
∂sEFC(t)ṡEFC(t)
∂ŷT2−EFCS

(
∂y

∂f
m

∂f
m

∂σ̂ + ∂y

∂fm

∂fm
∂σ̂

)
= 1

2sEFC(t)
(

(wm−y)∑M

m=1 fm

∂f
m

∂σ̂ + (wm−y)∑M

m=1 fm

∂fm
∂σ̂

) (6.42)

∂sEFC(t)ṡEFC(t)
∂Ŵnk

= 1
2
∂sEFC(t)ṡEFC(t)
∂ŷT2−EFCS

∂ŷT2−EFCS
∂y

∂y
∂W

= 1
2sEFC(t)

(
f
m∑M

m=1 fm

+ fm∑M

m=1 fm

) (6.43)
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µmn

µmn
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= fm
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(σ̂mn)3

∂f
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∂ ˆσmn = ∂f
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∂µ
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∂µ
mn
∂σ̂ = f

m

(xn−m̂mn)2

(σ̂mn)3

∂fm
∂σ̂mn

= ∂fm
∂µmn

µmn
∂σ̂ = fm

(xn−m̂mn)2

(σ̂mn)3

(6.44)

6.4.2.4 T2-EFCS Robustness Term

Similar to the work in chapter 5, for obtaining a robust control performance in the face of

uncertainties, a disturbance elimination term, urobust, is added to the final control input.

Therefore, the final control input can be expressed as:

utotal = ufin + urobust, (6.45)

where ufin is obtained using Eq. (6.23) and urobust is a robustifying term [287,288], which

can be represented as follows:

urobust = β sat(SEFC(t)), (6.46)

where β denotes a design parameter and sat can be defined as follows:

sat (SEFC , ι) =


SEFC
ι , if |SEFC | ≤ |ι|

sgn(SEFC), otherwise

(6.47)
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where ι is a design factor representing the thickness of the boundary layer. The sgn

represents the signum function, which can be defined as follows:

sgn(SEFC(t)) =


1, if SEFC(t) > 0

0, if SEFC(t) = 0

−1, if SEFC(t) < 0

(6.48)

6.4.2.5 T2-EFCS Stability Proof

The Lyapunov function is defined as [156,177]:

V (sEFC(t)) = 1
2s

2
EFC(t) (6.49)

V̇ (sEFC(t)) = sEFC(t)ṡEFC(t) (6.50)

Following the derivation on [156], one can introduce a matrix such thatQO(t) = ∂ŷT2−EFCS
∂O ,

for O = m̂, m̂, σ̂, Ŵ where

Qm̂(t) = ∂ŷT2−EFCS
∂m̂

=
[
∂ŷT2−EFCS

∂m̂11
, . . . ,

∂ŷT2−EFCS
∂m̂1nj

, . . . ,
∂ŷT2−EFCS

∂m̂21

. . . ,
∂ŷT2−EFCS
∂m̂2nj

, . . . ,
∂ŷT2−EFCS
∂m̂ninj

, . . . ,
∂ŷT2−EFCS
∂m̂ninj

]

Qm̂(t) = ∂ŷT2−EFCS

∂m̂
=
[
∂ŷT2−EFCS

∂m̂11
, . . . ,

∂ŷT2−EFCS

∂m̂1nj
, . . . ,

∂ŷT2−EFCS

∂m̂21

. . . ,
∂ŷT2−EFCS

∂m̂2nj
, . . . ,

∂ŷT2−EFCS

∂m̂ninj

, . . . ,
∂ŷT2−EFCS

∂m̂ninj

]

Qσ̂(t) = ∂ŷT2−EFCS
∂σ̂

=
[
∂ŷT2−EFCS

∂σ̂11
, . . . ,

∂ŷT2−EFCS
∂σ̂1nj

, . . . ,
∂ŷT2−EFCS

∂σ̂21

. . . ,
∂ŷT2−EFCS
∂σ̂2nj

, . . . ,
∂ŷT2−EFCS
∂σ̂ninj

, . . . ,
∂ŷT2−EFCS
∂σ̂ninj

]

QŴ (t) = ∂ŷT2−EFCS

∂Ŵ
=
[
∂ŷT2−EFCS

∂Ŵ11
, . . . ,

∂ŷT2−EFCS

∂Ŵ1nj
, . . . ,

∂ŷT2−EFCS

∂Ŵ21

. . . ,
∂ŷT2−EFCS
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, . . . ,
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, . . . ,
∂ŷT2−EFCS

∂Ŵninj

]
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By applying the gradient descent technique, (6.50) can be represented as

V̇ (sEFC(t+ 1)) = V̇ (sEFC(t)) +∆V̇ (sEFC(t))
∼= V̇ (sEFC(t)) +

[
V̇ (sEFC(t))

∂O

]T
∆O

(6.51)

where ∆V̇ (sEFC(t)) represents the change in V̇ (sEFC(t)); ∆O is the change in O.

By utilizing the chain rule, the following equation can be derived as:

∂V̇ (sEFC(t))
∂O

= ∂V̇ (sEFC(t))
∂ŷT2−EFCS

∂ŷT2−EFCS
∂O

= ∂sEFC(t)ṡEFC(t)
∂ŷT2−EFCS

∂ŷT2−EFCS
∂O

(6.52)

and by utilizing (6.40-6.43) and (6.51), it yields to:

∂V̇ (sEFC(t))
∂O

= −sEFC(t)∂ŷT2−EFCS
∂O

= −sEFC(t)QO(t) (6.53)

where

∆O = −η̂O
∂sEFC(t)ṡEFC(t)

∂O
= η̂OsEFC(t)QO(t) (6.54)

By substituting (6.53), (6.54) into (6.51),

∆V̇ (sEFC(t)) =
[
V̇ (sEFC(t))

∂O

]T
∆O

= [−sEFC(t)QO(t) ∗ η̂OsEFC(t)QO(t)]

= −η̂Os2
EFC(t)QO(t)

(6.55)

From (6.55), if η̂O is selected as η̂O > 0 , it yields to ∆V̇ (sEFC(t)) < 0. Hence, the

convergence of the proposed fuzzy parameters is guaranteed by the Lyapunov stability

theory [156].

6.4.3 System Description for Autonomous Mobile Robot

The absolute position of the robot can be represented in the Cartesian plane, with respect

to the global frame, by the following three variables as:

p = [x, y, θ]T (6.56)

where x and y denotes the coordinates of the robot center of the mass, while θ represents

the robot orientation, as illustrated in Fig. 6.13. The robot can be controlled by:

q = [υ,w]T (6.57)
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where [υ,w] are the linear and angular velocities, respectively. Therefore, the mobile robot

kinematic model can be described by the following equation:
ẋ

ẏ

θ̇

 =


cosθ 0

−sinθ 0

0 1


 υ

w

 . (6.58)

Y

X

YB

YG

d/2

XBXG
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Xr
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G a
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Yr

Figure 6.13: Kinematic model of the differential-drive mobile robot.

Our mobile robot belongs to the class of differential-drive ground robots. Hence, the

linear and angular velocities can be described using the left Vl and right Vr wheels as

follows: [114,300]:

υ = Vl+Vr
2 (6.59)

w = Vr−Vl
d

(6.60)

where d is the distance between wheels. The robot rotation radius, r, can be computed

as

r = d(Vl+Vr)
2(Vr−Vl) = υ

w
(6.61)
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Lastly, the full kinematic model of the autonomous mobile robot can be represented as

follows: 
x

y

θ

 =


r(dcosθ−asinθ)

2d
r(dcosθ+asinθ)

2d
r(dsinθ−acosθ)

2d
r(dsinθ−acosθ)

2d
r
2d

−r
2d


 wr

wl

 , (6.62)

where[wr, wl] are the right and left wheels angular speed, respectively. The dynamic model

of the mobile robot can be represented using the Euler-Lagrangian method in the following

form [301]:

M(q)(q̈) + C(q, q̇)(q̇) + F (q̇) = B(q)u−A(Q)∇ (6.63)

where M(q) is the inertia matrix; q̇ represents the velocity vector of both position and

orientation; q̈ denotes the acceleration vector of position and direction; C(q, q̇) denotes the

Centripetal/Coriolis matrix; F (q̇) represents a friction vector; A(q) is a constraint matrix;

B(q) is the input transformation matrix; u is the control input vector; and ∇ denotes a

Lagrange multiplier vector.

6.4.4 T2-EFCs Results and Discussion

In the following section, the effectiveness of the proposed control system is investigated

under three different scenarios. First, the proposed method is utilized to regulate the

dynamics of a differential-drive mobile robot to follow the desired trajectory under nominal

conditions. Second, band-limited white noise was injected into the feedback loop using

a MATLAB/SIMULINK block as illustrated in Fig. 6.14. Third, external disturbance

was added to the system’s dynamics as dx = 2 cos(t) for the x-axis and dy = 2 sin(t)

for the y-axis. In addition, the efficacy of the proposed method is compared with three

other controllers, namely, type-1 fuzzy logic control (T1FLC), type-2 fuzzy logic control

(T2FLC), and a type-1 evolving fuzzy control system (T1-EFCS). The root mean square

error (RMSE) criterion is utilized to evaluate the performance of the proposed control

system. The prior threshold values are chosen as Tadd = 0.11 and Tdel = 0.07. The

desired/reference trajectory of the mobile robot can be represented as pr = [xr, yr, θr]T ,

where we use the velocity reference model to obtain the expected velocity as qr(t) =

176



6.4. T2-EFCS DESIGN FOR A MOBILE ROBOT

[vr, wr]. Therefore, the velocity error can be defined by:

edesired = qr − q = [ev, ew]T . (6.64)

In the simulation model, the following parameters are set as: m = 10kg; r = 0.05m;

d = 0.4m; F (q̇) = 0. The desired trajectory is set to follow a sine wave reference for the

x-axis, and a cosine wave reference for the y-axis.

∑ 
Robot  

Evolving T2-

FLC-

+

Desired 

input

e

Noise

Actual 

Output 

Measured 

Position 

Error, e 

∆ e

(sensor uncertainty)

Figure 6.14: Overall closed-loop control system with added noise as sensor uncertainties.

6.4.4.1 Performance Under Nominal Condition

As can be depicted in Figs. 6.15-6.16, the simulation results for different controllers for

position control in the xy-axes were presented, where the proposed T2-EFCS achieved a

favorable tracking performance compared to other benchmark controllers demonstrated

by their RMSE values in Table. 6.2. Moreover, the distance error between the desired and

the actual trajectory for the four controllers was illustrated in Fig. 6.17, where the error

decreased from around 0.19m to almost zero value in a very short time using our proposed

method. Since the proposed T2-EFCS evolves with time, it is important to report the

evolving rules with respect to simulation time. It can be seen in Fig. 6.18 that only two

rules were required to track the desired trajectory using T2-EFCS. This clearly indicates

the simplicity of the proposed control algorithm, making it suitable for small systems with
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limited computational payloads.
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Figure 6.15: Desired vs. actual positions of the xy-axes.
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Figure 6.16: Desired vs. actual positions of 8-shape.
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Figure 6.17: Distance error evolution for different control systems.
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Figure 6.18: Evolution of the fuzzy rules for the proposed T2-EFCS.

Table 6.2: Summary of the experimental comparison of the performance of different con-
trollers in nominal condition.

RMSE Values (Nominal Condition)
Metrics Errorx[m] Errory[m] Errordis[m]
T1FLC 0.025 0.006 0.026
T2FLC 0.021 0.005 0.022
ET1FLC 0.018 0.004 0.019
ET2FLC 0.017 0.005 0.018

6.4.4.2 Performance in the face of measurement noise

In this section, the robustness analysis is presented by injecting a band-limited white noise

to the feedback loop using MATLAB/SIMULINK block. The position tracking in the xy-

axes was shown in Fig. 6.19. The simulation results illustrated that the proposed evolving

method can handle the disturbance within a reasonable period of time. Also, the distance

error between the desired and the actual trajectory for the four controllers was plotted in

Fig. 6.20. Lower RMSE values were obtained using the proposed method compared to

other benchmark control systems as tabulated in Table. 6.3. Lastly, the rules were pruned

according to plant’s dynamics to accommodate measurement noise as shown in Fig. 6.21.
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Figure 6.19: Desired vs. actual positions of 8-shape in the face of sensor noise.
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Figure 6.20: Distance error evolution for different control systems in the face of measure-
ment noise.
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Figure 6.21: Evolution of the fuzzy rules for T2-EFCS in the face of measurement noise.
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Table 6.3: Summary of the experimental comparison of the performance of different con-
trollers in the face of measurement noise.

RMSE values (Uncertain Condition-Noisy Sensor data)
Metrics Errorx[m] Errory[m] Errordis[m]
T1FLC 0.0391 0.012 0.041
T2FLC 0.0269 0.008 0.028
ET1FLC 0.019 0.010 0.021
ET2FLC 0.020 0.006 0.021

6.4.4.3 Performance Under Unknown Disturbance

Additionally, the controller’s performance has been assessed by observing the tracking

performance in the face of external disturbance. The position tracking in the xy-axes under

external disturbance was shown in Fig. 6.22, where the simulation results illustrated the

efficacy of the proposed method to handle the external disturbances. Similarly, the RMSE

criterion was used for comparing the tracking performance with benchmark controllers as

presented in Table. 6.4. The distance error between the desired and the actual trajectory

for the four controllers was plotted in Fig. 6.23. Lastly, more rules were evolved to face

uncertainties as shown in Fig. 6.24.
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Figure 6.22: Desired vs. actual positions of 8-shape in the face of external disturbance.
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Figure 6.23: Distance error evolution for different control systems in the face of external
disturbance.
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Figure 6.24: Evolution of the fuzzy rules for the proposed T2-EFCS in the face of external
disturbance.

Table 6.4: Summary of the experimental comparison of the performance of different con-
trollers in the face of external disturbance.

RMSE Values (Uncertain Condition-External disturbance)
Metrics Errorx[m] Errory[m] Errordis[m]
T1FLC 0.0307 0.0140 0.0337
T2FLC 0.0232 0.0112 0.0258
ET1FLC 0.0306 0.0164 0.0347
ET2FLC 0.0224 0.0049 0.0229
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6.5 Summary

In the first part of this chapter, a simplified model-free type-1 fuzzy evolving controller was

designed for uncertain nonlinear dynamic systems. Simulation results illustrated a better

trajectory tracking performance using the proposed self-evolving fuzzy control system

compared to the adaptive fuzzy controller. The main benefit of the proposed controller is

due to its ability to accommodate uncertainties and variations in plant dynamics.

The second part of this chapter proposed a novel type-2 evolving fuzzy control system,

named the T2-EFCS, for uncertain dynamic systems. The proposed method was imple-

mented to regulate the position of a mobile robot system. The self-evolving framework can

perform self-learning which adds and prunes its fuzzy rules efficiently. To investigate the

robustness of T2-EFCS, an external disturbance was added to the nonlinear model, where

simulation results illustrated that T2-EFCS can handle uncertainties in systems’ dynam-

ics. Moreover, lower RMSE values were reported from the proposed T2-EFCS compared

to other benchmark controllers. The newly developed method leverages the advantages of

evolving fuzzy systems for controlling uncertain nonlinear systems.
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Chapter 7

Conclusions

7.1 Research and Outcomes

As universal approximators, fuzzy logic systems have proved to be successful computa-

tional tools for representing the behavior of complex nonlinear dynamical systems. They

also can provide a large avenue for classification, modeling, and controlling various en-

gineering applications. Nevertheless, traditional techniques for deriving fuzzy rules are

often tedious and time-consuming. They require expert knowledge and their performance

is less than optimum. Addressing the shortcomings, the main motivation of this thesis is to

design self-learning type-2 fuzzy systems for system identification and control of dynamic

systems. Besides, since the footprint-of-uncertainty is not incorporated in the membership

function of type-1 fuzzy sets, such systems have limited ability to handle uncertainties.

As such, the development of type-2 fuzzy systems in this thesis has been presented to

mitigate the limited capability of type-1 fuzzy systems to accommodate the footprint-of-

uncertainty, in particular for autonomous systems, where uncertainty is unavoidable.

In chapter 3, a novel online system identification approach, named the IT2-TS-FC tech-

nique, was proposed, by employing a recursive interval type-2 fuzzy C-means clustering

technique. The algorithm of IT2-TS-FC utilized the Lagrange method to minimize the
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objective function. As with its predecessors, IT2-TS-FC was equipped with two fuzzifers

to represent the upper and lower membership functions while employing the WLS method

to determine the fuzzy consequent parameters. The algorithm was intended to model a

Mackey-Glass time series as well as describe the dynamics of a quadcopter. The online

prediction accuracy of the IT2-TS-FC identifier was better than the accuracy of the other

benchmark techniques. The proposed method leverages the benefits of IT2-FLSs for mod-

eling dynamic systems, especially in the presence of a noisy dataset, thanks to the FOU

in IT2FLSs.

In Chapter 4, a new self-adaptive interval type-2 fuzzy controller, named SAF2C, was

presented to control MIMO dynamic systems. SAF2C was based on the Takagi-Sugeno

fuzzy model and it accommodated the ‘Enhanced Iterative Algorithm with Stop Con-

dition’ type-reducer, which is more computationally efficient than the ‘Karnik-Mendel’

type-reduction algorithm. The proposed method was designed to expedite the learning

process of the control algorithm by 80% compared to separate SISO controllers. The

proposed control system was deployed to control various nonlinear systems, including a

hexacopter UAV, where the outcomes of this chapter suggest a 20% improvement in tran-

sient response, in addition to achieving a better noise rejection capability with respect

to its T1-FLC counterpart. Moreover, SAF2C demonstrated better robustness against

uncertainties (e.g., external disturbance and wind/gust), where superior disturbance re-

jection was shown through extensive computer simulations compared to the benchmark

type-1 fuzzy and PID controller. Besides, the proposed closed-loop control system was

applied to control other benchmark dynamic systems (e.g., a simulated autonomous un-

derwater vehicle and inverted pendulum on a cart system) demonstrating high accuracy

and robustness to variations in system parameters and external disturbance.

Another novel stand-alone enhanced self-adaptive interval type-2 fuzzy controller named

the ESAF2C algorithm was proposed in chapter 5. ESAF2C was developed as an en-

hanced version of SAF2C and for mitigating the challenges for real-time deployment. The

parameters of the ESAF2C algorithm were tuned in an online fashion using the SMC

theory making the system robust to variations in system parameters and external dis-

186



7.1. RESEARCH AND OUTCOMES

turbances. The proposed technique was applied on a quadcopter UAV, where extensive

simulations and real-time flight tests for a hovering QUAV under wind disturbances were

also conducted. Specifically, the controller’s performance has been assessed by studying

the tracking performance in the face of external wind/gust disturbances, generated using

an industrial fan. The promising outcomes of the proposed method open the door for

utilizing the ESAF2C in various real-world systems.

Additionally, the development of a type-2 self-evolving fuzzy control system, named the

T2-EFCS, was presented in chapter 6 to facilitate self-learning (either from scratch or from

a certain predefined rule). T2-EFCS was proposed to mitigate the limitation of the static

structure of fuzzy systems. T2-EFCS has two phases, namely, structure learning and pa-

rameters learning. The structure of T2-EFCS did not require previous information about

the fuzzy structure, and it can start the construction of its rules from scratch with only one

rule. The rules were then added and pruned in an online fashion to achieve the desired set-

point. The self-evolving closed-loop control mechanism has been implemented to control

an unmanned ground vehicle in the presence of multiple external disturbances demonstrat-

ing promising tracking performance. The T2-EFCS parameters have been tuned using the

SMC theory making the system robust to variations in system parameters and external

disturbance. The integration of self-evolving approaches with the SMC-based adaptive

law resulted in fast learning and compact structure. The proposed T2-EFCS was compu-

tationally efficient while maintaining superior control performance.

Prior to the development of the T2-EFCS, a simplified type-1 evolving fuzzy control sys-

tem, named the T1-EFCS, was introduced in the first part of chapter 6. The structure

of T1-EFCS had no dependency on previous information about the fuzzy structure and

it started its construction from scratch with only one rule. The rules were then added

and deleted in an online fashion. Achievements have been compared with an adaptive

T1-FLC.

In the end of this thesis, stability analysis of the proposed control frameworks in this thesis

was conducted using the Lyapunov theory to ensure the convergence of fuzzy parameters.

Moreover, throughout this thesis, the performance of the proposed control systems was
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tested in the face of various uncertainties (e.g. disturbance, sensor noise, and wind/gust).

7.2 Recommendations for Future Research

Although this thesis has identified numerous limitations of the existing type-2 fuzzy sys-

tems for system identification and control of dynamic systems and presented new ap-

proaches to mitigate these limitations, there are still several potential research problems

that can be pursued to enhance the developed methodology. The following are some

potential research areas in adaptive and evolving type-2 fuzzy systems:

• The learning rates Γ and λ of the SAF2C and ESAF2C control systems were se-

lected based on the input frequency and the system’s rate-of-change, which decide

the learning speed of the type-2 fuzzy system. As such, choosing high learning

rates values will result in an unstable response. On the other hand, choosing small

learning rates leads to slow convergence of type-2 fuzzy parameters. Although it is

recommended to commence with low values and increase gradually until the desired

performance is observed, for future work, an automatic learning algorithm can be

investigated to select the learning rate parameters in an online fashion.

• The proposed T2-EFCS requires the initialization of the predefined threshold param-

eters when adding and pruning fuzzy rules. This can be improved in future studies

to find these optimal values without the need for user-defined parameters. In ad-

dition, the stability of the proposed T2-EFCS has been proven using the Lyapunov

stability theory and assessed by numerical simulations to control an autonomous

ground vehicle, for future studies, this promising method can be implemented for

MIMO ground robots in real-time to reduce the execution time.

• Evolving type-2 fuzzy systems can be implemented in fault-tolerant control prob-

lems. For instance, actuator failures are one of the most common problems that

may occur in dynamic systems, resulting in poor system behaviour or even catas-

trophic accidents. To handle these failures, the proposed T2-EFCS approach can be
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implemented to reconfigure the plant such that safe and secure operations can be

achieved in the face of faults.

• The efficacy of the proposed IT2-TS-FC can be further compared with other univer-

sal approximator system identification techniques such as NNs-based approaches.

• Lastly, reinforcement learning is becoming one of the most prominent AI-based ap-

proaches as it resembles the way humans learn. For example, in literature, the fuzzy

Q-learning (FQL) method has been implemented in various applications, however,

the fuzzy structure is still determined by a priori knowledge. To tackle this problem,

the integration of reinforcement learning and self-evolving fuzzy systems can be de-

ployed in various possible control applications such as in an unknown environment

for mobile robots, allowing an elastic structure of FQL approaches.

7.3 Concluding Remarks

Benefiting from the footprint-of-uncertainties provided in T2-FSs, self-learning type-2

fuzzy systems have many advantages over type-1 fuzzy systems to handle uncertainties

in system identification and control problems. This is demonstrated by their promis-

ing tracking performance, robustness against external disturbance and noise rejection.

Besides, T2EFSs has an additional feature, where their structure evolves autonomously

making them able to cope with sudden changes to systems’ dynamics. There are still is-

sues to be tackled when selecting fuzzy learning parameters but there is doubtlessly much

hope that this can be resolved.
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