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Abstract 
Matching spectra is necessary for database searches, assessing the source of an unknown 
sample, structure elucidation, and classification of spectra. A direct method of matching is to 
compare, point by point, two digitized spectra, the outcome being a parameter which quantifies 
the degree of similarity or dissimilarity between the spectra. Examples studied here are 
correlation coefficient squared, and Euclidean cosine squared, both applied to the raw spectra 
and first difference values of absorbance. It is shown that spectra do not fulfill the requirements 
for a normal statistical interpretation of the correlation coefficient; in particular they are not 
normally distributed variables. It is therefore not correct to use a Student-t test to calculate the 
probability of the null hypothesis that two spectra are not correlated on the basis of a 
correlation coefficient between them. We have investigated the effect on the similarity indices, 
of systematically changing the mean and standard deviation of a single Gaussian peak relative 
to a reference Gaussian peak; and of changing one peak, and of changing many peaks, in a 
simulated ten-peak spectrum. Squared Euclidean cosine is least sensitive to changes and the 
first difference methods are most sensitive to changes in mean and standard deviation of peaks. 
A shift of the center of a peak has a greater effect on the indices than increases in peak width, 
but a decrease in peak width does lead to significant changes in the indices. We recommend 
that if these indices are to be used to match spectra, appropriate windows should be chosen to 
avoid dilution by regions with no significant change. 
 
Keywords: Matching spectra, correlation coefficient, Euclidean cosine, similarity index 
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1. Introduction 
The comparison of two spectra is necessary for classification of a spectrum [1], searching a 
database of spectra to identify an unknown sample [2], to decide if two materials come from a 
common source[3], in process control against the target spectrum of an acceptable product [4], 
or to elucidate the structure of a compound [5]. It is realized using a measure of the similarity 
between the spectra, or, conversely, the distance of one spectrum from the other in some 
measurement space. If the queried spectrum is in the database a perfect match can be achieved, 
but if only part of spectrum can be found, the result might  be a number of  partially matched 
hits. In environmental analysis, when material spilled in the environment is exposed to 
weathering, chemical, physical and biological processes will happen [6]. If so, the spectrum of 
a spill will not always make an exact match with the spectrum of its source, and so to correctly 
identify a spill for forensic applications requires some allowed tolerance to be applied. In 
quality control of herbal medicines, due to the changes of season, place of harvest, pre-
processing and the conditions of analyses, chromatographic fingerprints of the same herbal 
medicine are not always the same [7]. Therefore any method of matching spectra will need to 
distinguish between the same material that has been changed, and different materials with 
similar spectra. 
Methods for comparing spectra can be divided into direct and indirect methods. Direct 
matching methods use the spectral data directly, and indirect matching methods use derived 
information from spectra. The latter rely on identification of selected peaks and the extraction 
of information from them, and have been used by human experts employing visual comparison 
[8], old computer spectral databases or comparison by simple mathematical calculations such 
as the measurement of ratios [9]. Multivariate data analysis techniques [10], artificial neural 
networks [11] and distance/angle [12] methods are direct methods which treat digitized spectra 
directly without any prior identification of peaks. (Note that it is also possible to use 
multivariate methods on peak area, or ratio data). 
Vibrational and electronic spectra of mixtures can rarely be deconvoluted and assigned to 
individual components in contrast to the output of other methods such as nuclear magnetic 
resonance (NMR), chromatography or mass spectrometry, in that individual molecules do not 
give a single, or a small number of, identifiable peaks. Small informative peaks and overlapped 
peaks in Fourier Transform infrared (FTIR) spectra are not easily identified by computer 
software and the shape of a peak, which is important for comparison, is difficult to describe  
accurately. These difficulties can be partially avoided by using point-to-point matching 
methods because all the data points in a spectrum are used. Similarity/distance methods based 
on point-to-point matching  also have the distinct advantage, compared to pattern recognition 
techniques, that they only require two spectra, and  not a set of spectra belonging to different 
classes. Point-to-point matching is a direct method in which equal length vectors describing 
two spectra (intensities, absorbances or detector response) are compared point by point, and a 
single statistic calculated. The Pearson correlation coefficient is an example of such a 
similarity index. 
 In our previous work [13] on matching spectra of petroleum oils, we have found that although 
different oils can exhibit very different spectra, they can also be very similar. A spectrum of a 
slightly weathered oil is almost identical to the spectrum of a fresh sample,  but it is possible 
that the difference between the spectrum of a fresh oil and its weathered derivative is greater 
than the difference between this spectrum and the spectrum of another, highly similar, fresh oil. 
If we draw the distributions of a similarity measure of such a situation, we  see a broader 
distribution of the spectral similarity of different oils, a narrower distribution for spectra of the 
same oil but there is often an overlap region leading to false positive or false negative 
assignments. The success, or otherwise, of a matching method, therefore rests on its ability to 
discriminate subtle differences in samples that are inherently similar. The task becomes harder 
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with real samples from the environment because of weathering and introduction of interfering 
species such as water. 
Measures of similarity usually have a defined range,  for example, the Pearson’s correlation 
coefficient  lies between –1 to 1, or its square between 0 and 1. The minimum or maximum 
similarity is not always met in the real world, nor is the distribution of values normal. The 
meaning of the actual value of a similarity index depends on the situation in which it is applied. 
A correlation coefficient of 0.99 does not mean a match in all situations. It is the analyst’s 
responsibility to decide whether a pair of spectra match according the actual situation. This 
cannot be done without a knowledge (explicit or from experience) of the distribution of the 
index, against which a particular result is judged.  
An IR spectrum not only depends on the particular functional groups, it also reflects the 
arrangement of these functional groups within a molecule. An IR spectrum is thus, in contrast 
to NMR or mass spectra, predominantly a property of the whole molecule and not just the sum 
of the properties of it’s constituents. The characteristic band of a functional group and the 
shifts when it connects to different neighboring structures have been described [14,15]. Not 
only is there not a complete spectral library of the form of bands arising from a particular 
group in all chemical environments, but also the simple summation of the contributions of all 
the bands of functional groups in a molecule does not give the real spectrum.  It is therefore not 
possible to predict the spectrum of a complex environmental sample, even if the constituent 
compounds are known. The only thing we can do is to investigate the effect of the change of 
peaks of a spectrum itself. To deconvolute an IR spectrum into Gaussian peaks is more 
difficult than to fit, for example, an x-ray photoelectron spectroscopy (XPS) spectrum. It is 
impossible to start from a real spectrum and decompose it into small Gaussian peaks.  We have 
therefore conducted the study reported here by simulating increasingly complex spectra, which 
have been compared pair-wise to yield distributions of similarity indices. Starting from a two 
simulated Gaussian peaks we investigate the effect, on a number of similarity measures, of 
differences in the position and width. The study is extended to changes in a single peak among 
a simulated spectrum of ten random Gaussian peaks, then to changing more peaks. Finally we 
report the distribution of similarity indices for real spectra, augmented by simulated spectra 
derived from the variance of Fast Fourier Transform (FFT) coefficients. 

2. Theory 

2.1 Similarity indices 
A number of measures of similarity have been proposed that can be classed as a Minkowski 
distance 

 (1) 

The spectra are described by vectors of equal length   with individual elements x1,i and x2,i . The 
Euclidean distance is given by m = 2, and Manhattan (city block) distance is when m = 1. 
Statistical measures include the correlation coefficient, and for approaches based on binary 
variables the best known is the  Tanimoto index, which counts the proportion of points that are 
mutually above or below a threshold [16]. Similarity indices for use with infrared are discussed 
by Varmuza et al. [20]. 
 Four point-to-point similarity indices are studied here: squared correlation coefficient (Cor), 
squared first difference correlation coefficient (DCor), squared Euclidean cosine (Euc) and 
squared first difference Euclidean cosine (DEuc). Their definitions can be found in Table 1.  
It is seen that the difference between correlation coefficient and Euclidean cosine is that the 
data is mean centered in the calculation of correlation coefficient. For a symmetrical peak, on 
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taking the first difference, the mean of the spectrum is zero and so DCor = DEuc. The first 
derivative of a spectrum is often taken to remove the effect of a sloping baseline. 
 
Table 1. Definitions of similarity indices. A1 (A2) is the vector of intensities or absorbances of 
spectrum 1 (2), with individual element A1,i, (A2,i)and mean  ( ) 

Squared correlation coefficient (Cor)  

Squared first difference correlation 
coefficient (DCor) 

      

where  ∆A1,i = A1,i+1 – A1,i    

Squared Euclidean cosine (Euc)  

Squared first difference Euclidean cosine 
(DEuc) 

   

where ∆A1,i = A1,i+1 – A1,i   
 

2.2 Simulation of spectra 
The squared correlation coefficient or other similarities defined by the formulae in Table 1 do 
not have any chemical meaning as such and cannot offer insights into changes in composition 
or structure. It is well known that the points in a spectrum are not random and they can be 
described as part of a Gaussian peak or the summation of Gaussian peaks. But it is by no 
means easy to deconvolute a real spectrum into a series of peaks of given distribution. Our 
simulation, therefore, is of a spectrum for which we have all details of each peak from the 
beginning of the investigation.  
A Gaussian peak can be described with three parameters: the center = λ (µ = λ), the peak 
height (h) and the full width at half maximum (FWHM)  = w, (σ = 2.35 w) and an IR spectrum 
s at a vector of wavelengths (x) with n Gaussian peaks can be formulated as: 

 (2) 

where 

 (3) 

The spectral simulations were performed on a Pentium 4 personal computer using Matlab 6 
R12 for Windows (The Mathworks Inc., USA). The spectral comparisons, calculation of 
similarity indices and plotting of distributions were carried out using programs in Matlab, 
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Excel (Microsoft Corporation, Redmond)  and custom programs which were developed in our 
laboratory. We investigated two single peak spectra, ten-peak spectra, and simulated spectra 
based on experimental data, with details given in the following sections.  

2.2.1 Single peak 
For a single peak spectrum, because there are only three parameters (height, width and 
position), an exhaustive investigation of the effects of the changes of the parameters is 
possible. A new Gaussian peak was generated according to Equation 3 from a reference peak 
λ = 0;  w = 2.35 (corresponding to a standard deviation of 1) with each parameter changed 
according to 
Pnew = Pref * (1 + ∆)  (4) 
where 0 ≤ ∆ ≤ 1, and P is λ or w. 
The similarity indices used are insensitive to simple scaling (changing h in Equation 3), and so 
this parameter is not investigated.  For each parameter, ∆ was varied and the effect on the 
similarity indices investigated. 

2.2.2 Ten-peak spectra 
A ten-peak spectrum was created at random in the interval λ = 0 to λ = 10, calculated at 
intervals of  λ = 0.1 as the reference spectrum for the study (Figure 1). 

 

Figure 1. Simulated ten-peak spectrum (solid line) and it’s constituent peaks (dotted lines). The peak 
indicated by marker points is the reference peak used to determine the effect of changes on similarity 
indices (λ = 4.7, σ = 0.2). 
 Because of the number of peaks the number of possible combinations of the changes of 
parameters is huge. As a first example, we chose a middle peak (circles in Figure 1, λ = 4.7, 
w = 0.477) and created new spectra with changes in the position and, separately, the width of 
the peak. The position was varied between λ = 3.7 and λ = 5.7, and the width between w = 0.03 
to w = 1. In the presence of other peaks, changes do not have a symmetrical effect and so 
values were varied either side of the reference peak values. With a single value changing it is 
possible to graph the effect on the similarity indices. When a number of peaks were changed, a 
Monte Carlo approach was taken and the distributions of indices recorded. Each parameter was 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

x (arbitrary scale)

y 
(a

rb
itr

ar
y 

sc
al

e)



Li et al,  Point-to-point matching 6 

 6 

changed in a uniform random range of ∆  (Equation 4) from –0.5 to +0.5. The change of the 
center of a peak was limited to ±FWHW. Using this procedure 10,000 spectra were generated, 
compared with the reference spectrum,  and the distribution of values of the similarity indices 
calculated.  

2.2.3 Simulation based on a Fast Fourier Transform of real spectra 
To generate simulated spectra based on a real spectrum, ten replicate spectra of the same 
sample of calcium carbonate were collected and FFT was used to decompose each of them into 
frequency information. The means and standard deviations of each of the first 255 coefficients 
of the FFT were calculated.  From these one hundred normally distributed random numbers 
were generated for each coefficient and thus one hundred simulated IR spectra were generated. 
The pair wise similarity indices were then computed of the 110 spectra, giving 110 x 109/2 = 
5995 values. 

3. Experimental  
Infrared spectra of CaCO3 (Analytical reagent purity, dried and ground before use) were 
collected on a Fourier transform infrared spectrophotometer (Excalibur FTS 3000, Bio-Rad). 
The samples were analyzed under the same conditions using the same KBr cell, which was 
cleaned between samples, and the spectra were recorded from 4000 to 652 cm-1. 32 scans at a 
resolution of 4 cm-1 were collected and averaged for the background and for each sample. A 
0.05 mm spacer in the cell ensured consistent thickness of the oil sample. The data for the 
calculation of similarity indices for these samples was a vector of 837 mean absorbances, and 
the calculations were performed using programs written in the Matlab (release 12.1, The 
Mathworks Inc, USA) environment. 

4. Results and discussion 

4.1 The applicability of the Student-t test for matching spectra 
The significance of the linear correlation of two vectors given a Pearson’s correlation 
coefficient can be tested using  

  (5) 

to transform the correlation coefficient to a Student- t value [17]. The prerequisites of using the 
t-test, for the null hypothesis that the two vectors are uncorrelated, are that the elements of each 
vector are normally distributed; (i.e. each vector is a random variable) and each pair of 
elements of the vectors is independent (i.e. the order of the pairs of elements does not affect r).  
Testing r at the 95% level (α = 0.05, one tail) means that we reject the hypothesis that the two 
spectra are not correlated at all when the probability of finding the particular value t (calculated 
from r by Equation5) falls below 0.05.  For infinite degrees of freedom Pr(T  ≥ t) < 0.05 when 
r2 > 0.74, and this is only increased to r2 > 0.77 for ten degrees of freedom. This is shown in 
Figure 2.   

21 r
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Figure 2. The probability of H0 that two vectors are not linearly correlated as a function of the squared 
correlation coefficient. Degrees of freedom: solid line – infinity, dashed line – ten, dash-dot line – two. A 
horizontal dotted line is drawn at Pr(T≥t) = 0.05. 
 We first note that the distribution of intensities of a Gaussian peak is not at all normal, thus 
violating the first assumption of the use of a correlation coefficient (see Figure 3 ).  

 

Figure 3. The distribution of intensities of a Gaussian peak with mean 0 and standard deviation 1, 
calculated at 600 points between x = -3 and x = +3 
The classical Student-t test for Pearson’s correlation coefficient does not fit well for the 
comparison of IR spectra because of the violation of the assumptions of the distribution. Other 
distributions of correlation coefficient under other conditions have been studied and the exact 
analytical resolutions are provided in texts by Anderson [18] and Muirhead [19]. 
Unfortunately, the distributions are complicated and not easily used for spectral comparison. 
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Also because the distribution of spectral intensity is unknown, but clearly not a Gaussian 
distribution for real spectra, it is not possible to predict the distribution of the correlation 
coefficient of two spectra using classical statistical methods.  

4.2 Comparison of single peak spectra 
The effects of changing the width of a single peak and its position are very different. For the 
simple Gaussian peak a change in position by 0.5 σ leads to a value of r2 of 0.74 which has a t 
value (Equation 5) of 1.67 and probability of 0.05. In this case, therefore, a peak shift of half a 
standard deviation (or FWHM of 1.17) leads to rejection of the hypothesis that the spectra are 
perfectly correlated. On the other hand, for a second peak centered on the reference peak but 
with greater width, it is impossible to broaden the peak sufficiently to lead to a non-significant 
t-value, i.e. no amount of broadening can destroy the conclusion that the peaks are correlated. 
A narrower peak does become significantly different (i.e. the correlation coefficient no longer 
fails the t-test) when σ = 0.48. Figure 4 shows the changes in the peak that have to occur to 
conclude that there is a significant difference between it and the reference.  

 

Figure 4. A reference Gaussian peak (solid line, µ = 0, σ = 1), solid line, with peaks for which the correlation 
coefficient just fails the significance test of Equation 5 at the 95% level (α = 0.05). Dashed line: µ = 0 and σ 
= 0.46,  circles: with µ = 0.50 and σ = 1. 
The Euclidean cosine and difference statistics behave in a similar manner.   The effects of 
changing the mean and standard deviation on the different indices are shown in Figure 5. 
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A 

B 

Figure 5. Values of similarity indices as a function of changes in the parameters of a single Gaussian peak 
relative to a reference peak with µ = 0 and σ = 1. ○, Euclidean cosine squared, ×, correlation coefficient 
squared, ■, first difference correlation coefficient squared. 
A: Change in the position of the peak (µ); B: Change in the width of the peak (σ). 
A single-peak spectrum is a simplified case in which there is no significant extent of baseline, 
and all measurements are informative. From the results shown in Figure 5, it can be seen that 
the position of the center of a peak strongly influences the similarity index of two spectra. A 
sharper peak (than the reference peak) can have a low index, but broader peaks limit to an 
index value that might still indicate a significant match, if they are centered on the reference 
peak.  
As the mean shifts away from the reference peak, the indices eventually turn over. This is 
because the correlation coefficient (or cosine) goes through zero and then becomes negative, 
and when squared now appears as a positive index. For a symmetrical single peak the first 
difference has a mean of zero, with equal positive and negative components. This leads to the 
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equality of correlation coefficient and Euclidean cosine (see definitions in Table 1, with  = 
 = 0). The correlation coefficient is mean centered, and the cosine is not, so if the mean is 

zero, they will be the same. 

4.3 Changing a single peak in a ten-peak spectrum 
A middle peak of the simulated ten peak spectrum (Figure 1) was chosen as an example to 
show the influence of the change of a peak in a more realistic spectrum on the distribution of 
similarity indices. The target peak is overlapped with another peak and is in a unsymmetrical 
environment having another peak close to it’s right. The similarity indices were calculated 
between the whole reference spectrum of Figure 1 and the spectrum with the changed peak. 
The effects of changing the position of the peak at constant width, and the width of the peak at 
constant position, are shown in Figure 6. 
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Figure 6. Values of similarity indices as the parameters of a Gaussian peak with base values λ = 4.7, σ = 0.2 
are changed in a ten peak spectrum. ○, Euclidean cosine squared, ×, correlation coefficient squared, ■, first 
difference correlation coefficient squared. 
A: Change in the position of the peak (λ); B: Change in the width of the peak (σ). 
As with a single peak spectrum, the effect of changing the position of a peak is the greatest, but 
when embedded in a multi-peak spectrum, the effect is diluted by the presence of the other 
peaks. As a peak is moved away from the position of the reference peak, it can come within the 
domain of other peaks to which it can correlate. The ability of the difference methods to 
subtract the effects of the baseline is shown in Figure 6, where the absolute methods give a 
limiting index much greater than that of the difference methods. As with a single peak, the first 
difference correlation coefficient is very similar (but no longer identical) in value to that of the 
first difference cosine. 

4.4 Changing many peaks in a ten-peak spectra 
For changes in many peaks, the influence on a similarity index of the change of any one peak is 
not easy to identify from a general knowledge of the influence of a change, and it is not 
possible to analyze the influence of a given parameter of a single peak on the spectral 
similarity. The distributions of similarity indexes are not normal and although they are 
different from method to method the same pattern is found throughout. Figure 7 shows the 
distributions for changing two, five and all ten peaks at random as described above, for the 
squared Euclidean cosine and first difference squared correlation coefficient, as examples. As 
more peaks differ between the spectra the distribution  moves from high index values to lower 
index values. Squared Euclidean cosine gives the highest similarities, and the smallest changes, 
in all four investigated situations. Even for 10 peaks changed at the same time, no squared 
cosine is 0 and the distribution has a maximum at 0.8. In contrast to the squared Euclidean 
cosine, the squared first difference correlation coefficient is the most sensitive to any change of 
peak. In the case of the change of two peaks it has some zeros and no value is greater than 0.7 
in the case of a change of ten peaks.  
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B 

Figure 7. Distributions of similarity indices with 10,000 random changes in peak parameters in a ten-peak 
simulated spectrum. (a) Changing two peaks, (b) changing five peaks, (c) changing ten peaks. 
A: Squared Euclidean cosine; B: Squared first difference correlation coefficient. 

4.5 FFT simulation based on real spectra 
One hundred simulated spectra and their ten template real spectra are shown in Figure 8. The 
simulated spectra keep very well not only the general profile of the parent spectra but also 
show appropriate noise.  

 

Figure 8. 100 simulated and 10 template experimental spectra of Ca2CO3. 
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We now consider the pair wise matching of these 110 spectra. The distributions in Figure 9 
represent the expected distributions of genuinely matching spectra. The distributions are more 
narrow than the simulations in which greater changes were made. However the order of the 
maxima of the distributions does follow the simulations described above, with Euclidean 
cosine being the least affected by change (and hence giving values near one), and the squared 
first difference correlation coefficient giving the greatest spread of values, being the index 
most sensitive to change. 

 

Figure 9. Distributions of the similarity indices for pairwise comparisons among the simulated and 
template spectra of Ca2CO3. A: Squared correlation coefficient, B: squared first difference correlation 
coefficient, C: squared Euclidean cosine, D: squared first difference Euclidean cosine 

4.6 General discussion 
The reason for using spectral matching is that similar structures have similar spectra and vice 
versa, that observed similar spectra imply similar structures. This assumption is not always 
true. Besides that, not all structural information hidden in a spectrum can be retrieved by a 
search system or an analyst. Whether the similarity index is sensitive and reliable is another big 
issue for a successful spectral comparison. A similarity index depends on the capacity 
(volume) of the information to be compared and the differences in this information space. 
When the information space is small, the relative difference can be great, as seen in the single 
peak simulation. Point-to-point comparison methods do not use any chemical information and  
therefore the difference revealed by the methods might not give the expected conclusion based 
on chemical knowledge. When the information space is small, the numerical result follows the 
chemical difference and drawbacks of the method are hidden. When the information space is 
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large and there are great differences across the entire spectrum, the deviation is also obvious. 
However in our study, the squared Euclidean cosine still has relative high values when even 
50% of the peaks change at the same time (see Figure 7A).  
Varmuza et al. [20] have investigated the relationship between IR spectral similarity (as 
measured by indices such as those used here) and structural similarity, measured by a 
Tanimoto index of 1365 sub-structure elements, applied to 13,484 compounds in a database. It 
is interesting that their distributions of the structural similarity index for pairs of compounds 
that have high spectral similarity, and for randomly chosen pairs, mirror those observed by us 
for similarity coefficients of spectra of same and different oils [13], and the results here of 
distributions with increasing changes of peaks. The work by Varmuza and that presented here 
highlights the problem faced when trying to establish whether two chemical samples are 
similar (or the same). Even if they are pure compounds the trail that proceeds: chemical 
structures → spectra →  similarity index has the potential loss of information going from one 
term to the next. The measures investigated here do not vary linearly with the changes in the 
underlying spectra, and the spectra do not change linearly with chemical structure. We must 
therefore choose the most appropriate spectroscopy that accurately reflects changes of 
chemical structure for the system under investigation, and then again choose the most sensitive 
index to allow the correct inference to be made concerning the structures. Although not a part 
of this investigation, we note that the choice of infrared method, for example between FTIR 
and ATR, or use of absorbance spectra and transmittance spectra, will have an effect on the 
similarity indices and discrimination. Absorbance spectra may be preferred because of the 
linear relation with concentration through Beer’s Law. 
In forensic analysis for which no database can be used, a local comparison is needed if 
accuracy is important. Even the average of similarity indexes, a biased estimation of the 
similarity between spectra, is better than the single number obtained from the whole range of 
the spectra. This has been demonstrated by our work of the comparison oil spill with suspects 
using FTIR. Maximal common substructure is another way to screening the spectral searching 
results [21,22]. 

5. Conclusions 
Not all structural information can be retrieved using one analytical technique and not all 
spectral information can be acquired by a spectral interpretation method. If the contribution of 
a component is small, it is difficult to identify it from the peak in a spectrum of a mixture. 
Squared correlation coefficient and squared cosine can lead to false positive results while 
squared first difference correlation coefficient and squared first difference cosine have false 
negative results. Based on these realizations, we recommend testing in windows of a spectrum, 
i.e. by employing regional comparison when comparing spectra for structural elucidation, thus 
focusing attention on regions that are changing. Using different methods, a balance between 
accurate match and tolerance of the noise factor, e.g. weathering, small contamination, etc. can 
be achieved.  
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