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S u m m a r y 

T h i s t h e s i s e x a m i n e s the r a p i d l y v a r i e d f l o w p h e n o m e n o n in a 

two l a y e r d e n s i t y s t ra t i f i ed sys tem» Only one l a y e r f l o w s , the o ther 

b e i n g s ta t i onary . The f l o w r e g i m e c h a n g e s f r o m s u p e r c r i t i c a l to s u b -

c r i t i c a l a c r o s s the r e g i o n of r a p i d l y v a r i e d f l o w . The a n a l a g o u s 

p h e n o m e n o n in open channe l h y d r a u l i c s i s the h y d r a u l i c jump . In 

s t r a t i f i e d f l o w s it w i l l b e r e f e r r e d to a s a dens i ty j u m p b e c a u s e it i s 

g e n e r a l l y a c c o m p a n i e d b y a change in the d e n s i t y o f the f l o w i n g l a y e r . 

It i s shown t h e r e i s a fundamenta l d i f f e r e n c e b e t w e e n the h y d r a u l i c 

and the d e n s i t y j u m p in that the c o n j u g a t e c o n d i t i o n s on e i ther s ide of 

a d e n s i t y j u m p a r e not unique ly r e l a t e d a s they a r e with the h y d r a u l i c 

j u m p . T h e r e a r e a r a n g e of p o s s i b l e s ta tes wh i ch m a y b e attained 

d o w n s t r e a m of a d e n s i t y j u m p f o r a g iven u p s t r e a m state. It i s shown 

that the ra te of en t ra inment of a m b i e n t f luid into a d e n s i t y j u m p and 

t h e r e f o r e the c o n d i t i o n s d o w n s t r e a m of the j u m p a r e a func t i on of the 

d o w n s t r e a m c o n t r o l . The l i m i t i n g c a s e s of m a x i m u m and m i n i m u m 

e n t r a i n m e n t and the c o n t r o l m e c h a n i s m within the j u m p a r e e x a m i n e d . 

S e v e r a l f o r m s of c o n t r o l a r e inves t iga ted a m o n g t h e s e b e i n g the b r o a d -

c r e s t e d w e i r , a f r e e o v e r f a l l and channel f r i c t i o n . 

A n e n t r a i n m e n t funct ion i s d e r i v e d , r e l a t i n g a l o c a l e n t r a i n m e n t 

p a r a m e t e r to a l o c a l F r o u d e n u m b e r within the entra in ing z o n e of a 

d e n s i t y j u m p . 



Some features of unsteady density f lows are examined and it is 

shown that all the propert ies of starting flow or nose are control led 

by the fol lowing layer, which in turn, i s generally controlled by 

boundary fr ict ion. 

An approximate expression is derived f or the fall in momentum 

flux a c r o s s a density jump and this i s compared with experimental 

data. 

Finally, experimental velocity and density distributions down-

stream of density jumps are presented, and are shown to be functions 

of the Froude number of the flow upstream of the density jump, and 

the rate of entrainment within the jump. 

The significant result aris ing f rom this work is that conditions 

downstream of density jump, which will occur , for example, at power 

station cool ing pond outfalls and some ocean sewage outfalls, can be 

predicted, A design example, showing how power station cool ing pond 

e f f i c i enc ies can be optimised, by the control of mixing at the outfall, 

i s included in the appendices. 
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C h a p t e r 1 - G e n e r a l I n t r o d u c t i o n 

The t e r m 'densi ty c u r r e n t ' i s used to d e s c r i b e the motion of a 

fluid within another fluid of sl ightly di f fer ing density. The d i f f e rence 

in spec i f i c weight of the two fluids provides the dr iving f o r c e for the 

motion» The density d i f f e r e n c e m a y be due to dissolved s a l t s o r t e m p -

e r a t u r e variation» The name gravity c u r r e n t i s probably a m o r e exact 

d e s c r i p t i o n of the motion; n e v e r t h e l e s s the t e r m 'densi ty c u r r e n t ' i s 

f i r m l y entrenched in the l i t e r a t u r e and wil l be used. The t e r m 

' turbidi ty Current ' i s used when a suspension of sol ids c a u s e the density 

d i f f e r e n c e . 

Many densi ty f lows o c c u r in nature . T h e s e a r e genera l ly l a r g e 

s c a l e phenomena such a s a t m o s p h e r i c cold f r o n t s o r geos t ropic ocean 

c u r r e n t s . Al l these density f lows a r e of c o n c e r n to man ; they af fec t 

e i t h e r h i s environment^ h i s comfort;, o r h i s pocket, and he t h e r e f o r e 

w i s h e s to gain some understanding of the i r behaviour . 

I n t e r e s t in densi ty flows^at i h i s laboratory^ or ig inated when advice 

w a s sought by the E l e c t r i c i t y C o m m i s s i o n of New South Wales^ on out-

fa l l design for power station cool ing ponds. 

P o w e r s ta t ions r e q u i r e huge v o l u m e s of cool ing w a t e r to condense 

s t e a m which h a s p a s s e d through the turbines , used to dr ive the gen-

e r a t o r s . The e f f i c i ency of the generat ion c y c l e s i s in par t dependent 

on the t e m p e r a t u r e of the cool ing watery the lower the t e m p e r a t u r e » the 



g r e a t e r the efficiencyo The cooling water i s s o m e t i m e s drawn f r o m a 

nearby r e s e r v o i r constructed for that purpose . Hence, the caa tm^— 

water , l ike the s team, r e c i r c u l a t e s . When the cool ing water i s d i s -

charged back into the r e s e r v o i r it i s w a r m e r than the surrounding pond 

water . The d i f fe rence in density of the inflowing and ambient f lu ids 

c a u s e s the hot water to spread and form a l ayer at the s u r f a c e of the 

r e s e r v o i r . Density s t ra t i f ica t ion of this type i s d e s i r a b l e in cooling 

ponds, s ince it p r o m o t e s m a x i m u m heat t r a n s f e r f rom the heated water 

to the a tmosphere b e f o r e the cooling water i s r e - u s e d . 

Evaporat ion and radiat ion a r e the dominant m e c h a n i s m s of heat ex-

change in the pond, and these a r e opt imised when the s u r f a c e l ayer i s 

a s hot and a s thin a s p o s s i b l e . This i s achieved by m i n i m i s i n g m i x i n g 

of the inflowing and ambient f lu ids at the outfall . 

The l abora tory w a s a sked to invest igate the outfall r e q u i r e m e n t s 

n e c e s s a r y to achieve these optimal conditions. The invest igat ion d e s -

cr ibed in this repor t a r o s e out of ea r l i e r s tudies into the outfal l prob lem 

(Wood, 1967), 

The problem of outfall des ign i s not spec i f i ca l ly geographic in 

nature but i s m o r e a question of b a s i c fluid m e c h a n i c s . It i s n e c e s s a r y 

to gain an understanding of the phys ica l m e c h a n i s m s opera t ing at a 

cool ing pond outfall . Only then, can an attempt be m a d e at pred ic t ing 

the extent of mixing, and l ayer th ickness at an outfal l . 



Before proceeding with this problem, some basic general features 

of density flow are reviewed« 

The same laws govern the motion of density currents as .govern free 

surface flow^ and in the appropriate places many of the approximations 

made in deriving the open channel flow equations may be applied to den-

sity current flowo 

For a density current consisting of a single flowing layer and pro -

vided the streamline curvature is small? the gradually varied flow 

assumption leads to subcriticai and supercritical flow regimes. 

Two major differences exist between the flow described above and 

free surface flows„ 

(i) Firstly^ since differences in density of the fluids are generally 

small the resulting forces , causing the motions^, will also be smalL 

However, the fluid inertia remains unchanged, so that accelerations in 

the density current will be orders l ess than in analagous free surface 

flow» Hences density currents move with a characteristic slow motion» 

It is this slowness of movement which makes density currents so in-

teresting to observe, especially if the flow is unsteady. Starting flows 

such as occur in the "dam-break" problem are quite beautiful to watch 

in the exaggerated time scale associated with density flows, 

(ii) The second major difference between density and free surface flows 

arise from the fact that density flows are generally miscible with the 



4. 

surrounding fluid» If there i s suff icient turbulence at the i n t e r f a c e of 

the density c u r r e n t and the ambient fluid, the two will m i x . 

Density gradients in a fluid tend to suppress turbulence n o r m a l to 

that gradient, so that in cer ta in c a s e s , density c u r r e n t s can flow for 

apprec iab le d i s tances and only m i x very slightly with the surrounding 

fluid (Lofquist I960) . It i s this feature of density flows that i s d e s i r a b l e 

to promote in power station cooling ponds. 

It was stated previously that density flows, l ike open channel f lows ^ 

have s u p e r c r i t i c a l and subcr i t i ca l regimes» An hydraulic jump i s the 

m e c h a n i s m by which an open channel flow changes f rom the f o r m e r to 

the la t te r regime» Such a transi t ion can occur in density flows, and 

will a lmost always form at a power station cooling pond outfall . Although 

the Froude number of the flow in the outfall channel may be subcr i t i ca l , 

the flow,when considered a s a density c u r r e n t , will a lmost always be 

supercr i t ica l» 

It i s shown l a t e r that s u p e r c r i t i c a l density flows a r e unstable at an 

outfall, and a transi t ion to subcr i t i ca l flow will occur» Such a t ransi t ion 

i s analagous to the open channel hydraulic jump and i s s i m i l a r to it in 

many ways» T h e r e is , however, a s ignif icant di f ference between the 

two phenomena» The density of a density c u r r e n t general ly changes at 

a t ransi t ion from supercr i t i ca l to subcr i t i ca l flow. F o r this reason , the 

t ransi t ion will be r e f e r r e d to a s a density jump» The r e a s o n for this 



change in density at a density jumps is that part of the upstream energy 

is dissipated entraining ambient fluid. If the two fluids are miscible, 

the fluid entrained at the jump will change the density of the downstream 

flowo Some interesting cases of naturally occurring density jump have 

been reported in the literature. Density jumps have been observed in 

Föhn winds and the katabatic flows in Antarctica (Schweitzer, 1953, and 

Ballo 1956p 57, 59) „ Lied (1961) gives a particularly vivid account of 

meteorological measurements taken through a jump in katabatic flow» 

The depth of flow on the supercritical side of the jump was typically 60 

to 100 feet and on the subcritical side 100 to 300 feet^ varying with 

different jumps» Pressure drops of up to 20 m . b , were measured across 

the jumpp in one instance, over a distance of only 60 yards. Lied's account 

of his walking through a jump is worth recounting. 

"The experience of actually walking through a standing katabatic 

jump is somewhat unusual. Invariably the following sequence of events 

took place 

(i) The observer walked upslope in calm conditions, or with light and 

variable winds. 

(ii) Taking measurements of pressure, temperature, and wind-speed 

and direction downhill from the jump while still in the calm air, the ob-

server had the odd sensation of approaching a strongly roaring wall of 

drift snow, which was neither retreating nor advancing, and towering up 

to 300 feet above him. 



liii) Series of measurements were taken immediately outside the edge 

of the jump, whereafter the observer stepped into a totally different 

world, like walking through a door opening out into a full blizzardo At 

the very edge of the jump violently rotating swirls of wind and snow, with 

strong updrafts and downdrafts alternately forced snow up into his nostrils 

and eyes and at the next moment blew it down his neck, A severe buffeting 

was experienced. 

(iv) At this point further measurements were taken. These showed a 

sudden drop in pressure^ an immediate rise in temperature, and just in= 

side the very turbulent edge of the jump, a violent increase in wind speed, 

blowing downslope with strong gusts, and accompanied by moderate to 

dense drift snow. 

(v) To make sure of his measurements the observer passed in and out 

of the jump a number of times repeating his observations on either side 

of it. He then walked upslope into the wind to obtain measurements well 

behind the turbulent edge of the jump. 

(vi) Upslope the wind was usually stronger than near the edge, with 

denser drift, and the differences in pressure and temperature from the 

values obtained in the calm air also increased upslope. 

«vii) Walking downslope with the wind behind him the observer could de-

termine the standing edge of the jump by the sudden increase in turbulence. 

On leaving the jump, the transition from highly turbulent to calm, or light 



and variable conditions usually occurred over a distance of only about 
f) 

5 yards. 

It has been shown experimentally, and was anticipated from analysis, 

that a density jump with upstream conditions fixed, can entrain varying 

amounts of ambient fluid, depending upon the tailwater control» The mech-

anism by which a jump var ies its entrained flow is worth examining in 

some detail. Figure (1) shows a typical density jump. A jet of dense 

fluid, say salt water, issues from the inlet slot which extends the full 

width of the test tank. The tank is filled with less dense fluid, say 

fresh water. When the flow is started,a vortex f o rms which moves away 

from the slot, followed by a layer of diluted, salt water. The starting 

vortex is subsequently called a nose and moves initially with a velocity 

which i s solely a function of the flux of density difference. 

Figure (1) shows the form of the density current a short time after 

commencement of flow. At this stage, the jump closely resembles a 

neutral jet except for the downstream region where the density dif ference 

acts to suppress turbulence, and mixing finally decreases to a negligible 

amount. The interfacial slope of this type of density jump is noticeably 

l ess than the slope of an open channel jump. The surface rol ler observed 

in open channel jumps is absent in this density jump. 

The mean velocity in the layer behind the nose is very nearly equal 

to the velocity of the nose. This will be shown in Cahpter 5 which deals 

with unsteady density currents. The starting vortex or nose acts as the 



tailwater control and it will be shown that this i s a possible conjugate 

state for the jump. 

Unlike the open channel jump the conjugate conditions for a density 

jump are not unique. The reason for this is that a density jump can en-

train, within limits, varying amounts of ambient fluid, to satisfy a range 

of conjugate depths. The mechanism by which this happens is now ex -

amined. 

Consider an open channel jump controlled downstream by an o v e r -

shot gate, which has been adjusted so that the jump f o r m s next to the 

slot as shown in Figure 2. If the gate is raised abruptly by a small 

amount, a wave will travel upstream causing the jump to partially flood 

so that the outlet becomes submerged (Figure 2b). The unique conjugate 

conditions which enable a jump to form are no longer satisfied« If the 

same experiment is performed on a density jump, again a wave m o v e s 

upstream, but instead of submerging the inlet as happened above, a rol ler 

will be observed to form on the downstream end of the existing jump as 

shown in Figure 3„ The interfacial slope of this ro l ler i s noticeably 

steeper than the original jump, which itself remains unchanged. The 

ro l ler which f o r m s at the interface in this type of density jump, i s s im-

ilar in form to the ro l ler observed in open channel hydraulic jumps. This 

roller, when present in a density jump, causes a marked reduction in in-

terfacial shear, resulting in reduced entrainment. The steeper slope of 
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the ro l ler region results in a shortening of the transition zone. The 

mixing remains unchanged in the initial section of the jump., which will 

be re f e r red to as the entrainment zone» If the gate controlling the tail-

water depth is raised further^ the ro l ler advances further upstream, re = 

ducing the entrained flow until the limit is reached where the entrainment 

zone is entirely replaced by the rol ler region. This density jump is non-

entraining and is exactly similar in appearance to the f ree surface hydraulic 

jump„ If the tailwater level is increased further, the outlet and the up-

stream end of both the hydraulic and density jumps becomes submerged 

as shown in Figure 2b, Jumps in this state will in future be re ferred to as 

flooded jumps» The non-entraining jump represents one limiting case of 

the density jump» 

Summary ° The Characterist ics of a Density Jump 

Brief ly , the distinguishing features of a density jump are as f o l l ows : -

U) The density jump generally consists of two zones although at the l imits 

either zone could only be present. There is an entrainment zone followed 

by a ro l ler region over which there is very little entrainment» The ro l ler 

region is similar in appearance to the open channel hydraulic jump» 

12) The relative length of these zones i s controlled by the tailwater 

conditions» 

(3) Non-entraining and flooded jumps are exactly analagous in appearance 

and behaviour to the f ree surface hydraulic jump» 



i o . 

The following chapters examine the various conjugate states attain-

able by a density jump, and compare these with experimental data. Sev 

eral f o r m s of tailwater control are then analysed, and the feed back 

phenomenon between control and jump is examined in the light of ex -

perimental results« 

Finally the form of the entrainment function is examined, together 

with the unsteady density current or nose. 
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C h a p t e r 2 - T h e F o r c e F l o w E q u a t i o n 

2„ 1 Introduction 

In this chapter it is proposed to examine the conditions under which 

a density jump can form. The conjugate states either side of a density 

jump are not necessarily unique. Ambient fluid may be entrained into 

the density jump, thereby increasing discharge and lowering the density 

difference downstream. The flow is approximately uniform on either 

side of the jump. A density current issuing from a slot does not become 

unstable immediately, as can be seen from the photograph in Fig. 4. 

There is a short region over which the flow is uniform and hence the 

pressure is hydrostatic. Downstream of the density jump, the turbulence 

has been suppressed and the flow is again nearly uniform. 

2o 2 Analysis - The Continuity Equation 

The equation of conservation of mass, for a steady incompressible 

two dimensional flow, is given by: -

^ - ^ i p ^ ) - o (1) 

where ¡O is the fluid density and u and v are the velocity components in 
I 

the X and y directions respectively as shown in Figure 5. Molecular 

diffusion, in the flows considered here, is of a lower order than the 

terms in equation 1 and has therefore been neglected (Koh, 1964) 

The density of the ambient fluid ( ^ o ) is uniform throughout. Let 

the density of the flowing layer be p^-tAjO where is a function of 



J 

depth iy). It is assumed the section under examination is sufficiently far 

upstream or downstream of the jump for conditions to be uniform in the 

X direction. 

When equation (1) is integrated across a section normal to the velocity 

vector , as in Figure one has 

(p, A p ) i ^ C^ == a constant, where D is the distance to the 

upper fluid boundary (the f ree surface in this case). Howeverg since the 
D 

flow is incompressible and steady - Co = a constant, hence 
O -^o 

I ^ - Cg = 0 where ^ is also a constant. The 
equation p 

= ^ (2) 

will be referred to as the equation of continuity of density dif ference. 

(¡3 is termed the flux of density dif ference. 

2. 2 The Boussinesq Assumption 

The following analysis is much simplified if the Boussinesq assumption 

is made (Batchelor 1953), (Rouse, Yih and Humphries 1952), Di f ferences 

m density of the moving and ambient fluids are assumed small, so that 

variation in inertial f o r c e s can be ignored. Mathematically this may be 

expressed as ,, - _ ^ ^ 
f / i i 

The change in density is only considered important when associated with 

gravity and acts as a buoyancy force» The e r ror introduced by making 

this assumption was less than 0. 5 per cent for the thermal density 



Fig. 4: The uniform flow region upstream of a 
density jump. 
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currents used in experiments, 

3 The Equation of Motion 

The equation of motion for the steady flow shown in Figure 5 is given 

by 
p J u L ^ U ^ 4, „ -h ^ ^ Ĉ ) 
I \ ^ ^ 

This may be rearranged to give 

If equation (4) is integrated across a section of the tank with the 

l imits y = 0 at the lower boundary, and y ^ D at the free surface^ the con-

vective terms reduce to 
UL V 

I o Ì 
pd A . f U^ cU ^ 

n ^ 4 
r 1 where iu v̂  - 0 - -io 

The streamlines are not curved. Therefore pressures are hydrostatic, 

Hence 

and on integrating across the section one obtains 

- r^ ^à'h- - - f ^ f fp^ ^^^ 

J , iZ " - 'o " 

However, upstreamj and far downstream of the jump^ ^ is independent 

of X, so that the partial differential with respect to x may be taken outside 

the integralo The right hand side of the above equation reduces to : -

Ó7C ^ o ' 



1 4 , 

D 

Integration of the shear force across the section y i l eds : - l^-'J^ ' "" ^̂ ^ 

where T. ^ i s the bottom shear stress^ since shear at the f ree surface 

i s negligible» The equation of motion, for the case under examination can 

be written as : -
. 0 o 

( L J I ^ p rj-u 

' ' 9 ^ / (5) 

It i s convenient to define new parameters dealing with the mean flow» 

Equation 5 may then be expressed in terms of mean flow parameters^ 

A character ist ic depth of the density current (y') i s defined as the dis-

tance between the fixed boundary^ against which the density current flows, 

and the mean position of the visual interface. It was found that the 

character is t ic depth generally coincided with the depth to maximum vel -

ocity and density gradients. This was fortunate s ince the latter depth 

has been used as the character ist ic depth by other investigators (Ellison 

and Turner 1959). The wri ter defined the character is t ic depth to the 

visual interface because the latter could be rapidly and simply detected 

by dyeing the moving layer . The position of the visual interface was 

found to be independent of the concentration of dye in the layer , and co-

incided with the region of steepest density gradient. This was verif ied 

experimentally, for numerous layers , with varying dye concentrations 

and density gradients. The interface in most laboratory experiments was 

laminar, so the interfacial depth could be measured accurately. Hence-
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forth the chamcterist ic depth shall be simply re ferred to as the depth 

of a density current. 

The velocity and density distributions downstream of a jump are gen-

erally non-uniform a c r o s s the section. Hence a characterist ic velocity 

(uO is defined as 
(A, cL^ / _ , ^ ^ 

Similarly a characterist ic density dif ference (^a ) is defined by. 

(6) 

(7) 

If the density distribution is uniform a c r o s s the section and the density 

discontinuity coincides with the visual interface, the characterist ic den-

sity i s given by : 

The latter is independent of the velocity distribution. However^ if as 

i s generally the case, the density is non-uniform a c r o s s the section, ,the 

character ist ic density is dependent on the velocity distribution. 

It i s convenient to define a momentum distribution correct ion factor 

a s ; r^ a. J 
^ _ L _ / OL c L ^ 

UC^^' ^o ^ (8) 

Sjn i s unity if the velocity i s uniform from y = 0 to y = y' and zero 

elsewhere. Experimental values of S ^ were found to lie in the range 

1 .05 to 1. 32. 
Secondly a hydrostatic f o r ce correct ion factor i s defined as : 
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Sĵ  is unity if the density is uniform from y = 0 to y = y' and 

is zero thereafter. Sjj was found to be l e ss than one and lay in the range 

0. 59 to LO. 

Equation (5) may be written in terms of the new parameters a s : -
•6 f ^ ) - " 

t|ie density flow Q, is defined as 

Q ^ I u dy = u 'y ' 
•J 

and from equation (7) 

A = i (10) 

On substituting for u'y' and ^ , the equation of motion reduces to 
/ ^ \ 

0 / Sry- O. ^ Sh ' 0] — T W 
9 a ' ' / 

Integration of the above with respect to x gives 

»— ~ rJ— ' 
^ M ^ Mf - i cl-^ 

The variable M is equal to the sum of the horizontal momentum flux 

and pressure force per unit span, at a c r o s s section of the flow. 

Ml is.the magnitude of M at some re ference section (1 in Figure 5). 

The integral term, in equation 12, is the total boundary shear f o r c e 

acting on the flow between the reference section and the section of interest, 

Boundary shear f o r c e s are usually neglected in the hydraulic jump 

analysis because of their small magnitude» However, since the Reynolds 

numbers associated with density f lows are generally low, the shear f o r c e s 
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are proportionately larger^ The ratio of upstream fo r ce flow to the 

boundary shear between Sections 1 and 2 was found to be fifteen to 

thirty per cent. It was therefore necessary to account for boundary 

shear in the analysis of the density jump. 

It i s convenient to non-dimensionalise Equation 12. This may be 
2 

accomplished by dividing equation 12 by ^ Ic . The variable i s 
Ql 

the cr i t ical depth of the upstream density flow; defined by 
O, 1/3 

y i „ 5 i 1 (13) 

The subscripts 1 and 2 re fer to sections upstream and downstream of 

the jump respectively. 

Equations (10) and (13) can be combined to give 0 = 

Hence 

. Ql 

It is convenient to define two dimensionless parameters K and Y 

K is defined as the ratio of f lows upstream and downstream of the density 

jump, so that 

The flow upstream of the jump will have a K value of one. That 

downstream of the jump must be equal to, or greater than one, depending 

on the quantity of ambient fluid entrained. 

The second dimensionless parameter Y is defined as the ratio of 



tnc- c n a r s t c i e r i s i i c dc.pin of fiowg ai the s e c t i o n of i n t e r e s t ^ to the c r i t i c a l 

u p s t r e a m dep th y^^^ h e n c e 
y . . ^ (15) 

y i c 
U p s t r e a m of a j u m p Y m u s t be l e s s than one, a s the f low i s s u p e r -

c r i t i c a l . It w i l l be shown, tha t if the u p s t r e a m dep th i s e q u a l to, o r 
g r e a t e r t han c r i t i c a l depth , no j u m p wi l l o c c u r . T h i s r e s u l t m i g h t b e ex-
p e c t e d f r o m knowledge of h y d r a u l i c j u m p b e h a v i o u r . D o w n s t r e a m of the 
j u m p Y i s g r e a t e r than one. 

The n o n - d i m e n s i o n a l equa t ion of m o t i o n i s g iven be low. 

+ (16) 
' r ^ K 

Equa t ion (16) wil l be r e f e r r e d to a s the f o r c e f low equa t ion w h e r e the 
quant i ty " ^ „ I s i s t e r m e d the f o r c e f low ( B e n j a m i n 1962). AiQiJ 

^ ° ^ The F o r c e low D i a g r a m 
The f o r c e f low equa t ion i s p lo t ted in F i g u r e 6 wi th the f o r c e f low and Y 

a s the a b s c i s s a and o r d i n a t e a x e s r e s p e c t i v e l y . The f low r a t i o (K) i s u s e d 
a s the p lo t t i ng p a r a m e t e r , and it can be s een tha t a f a m i l y of c u r v e s e x i s t s 
bounded by an enve lope (DF in F i g u r e 6) and the f o r c e f low a x i s . Only f o r c e 
flow c u r v e s wi th K v a l u e s of one o r g r e a t e r a r e of p r a c t i c a l i n t e r e s t . 
V a l u e s of K l e s s than one a r e p h y s i c a l l y u n a t t a i n a b l e . 

The m o m e n t u m and h y d r o s t a t i c f o r c e c o r r e c t i o n f a c t o r s ( S ^ and Sj^) 
h a v e b e e n taken a s un i ty when p lo t t i ng t h e d i a g r a m . Since i t s p u r p o s e i s 
i l l u s t r a t i v e , and i s not in t ended to b e q u a n t i t a t i v e , the s e l e c t i o n of S ^ and 
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Sj^ v a l u e s i s not i m p o r t a n t . 

Any s u p e r c r i t i c a l ups t r eana flow m a y be r e p r e s e n t e d by a point on 

t h e l o w e r a r m of the K = 1 .0 c u r v e (AB in F i g u r e 6). If a dens i ty j ump 

o c c u r s wi thout e n t r a i n m e n t , the con juga t e s t a t e i s found d i r e c t l y above 

on the u p p e r a r m of the K = 1,0 c u r v e . The con juga t e r a t i o s of the non-

e n t r a i n i n g dens i t y jump, a r e i den t i ca l to those of the open channel , hyd-

r a u l i c jump, fo r which K i s a lways uni ty . 

An an example , c o n s i d e r the depth Y^ in F i g u r e 6. The con juga t e 

s t a t e f o r a n o n - e n t r a i n i n g jump wi th z e r o b o u n d a r y f r i c t i o n , i s given by 

m o v i n g v e r t i c a l l y up to the point on the K = 1.0 c u r v e . The r a t i o 

Yo 
_ i s the c o n j u g a t e depth r a t i o . 

The K = 1 .0 c u r v e h a s a m i n i m u m va lue of f o r c e f low a t t he point A 

(Y = 1 .0 and = 1. 5). The depth at th i s point i s c r i t i c a l and the / 'oQl^ 
F r o u d e n u m b e r def ined a s . ^ 

Y F 5 (17) 

i s equa l to uni ty . A s one m o v e s away f r o m the m i n i m a on the l o w e r a r m of 

the K = 1.0 curvep the u p s t r e a m F r o u d e n u m b e r i n c r e a s e s in va lue , whi le 

on the u p p e r a r m the d o w n s t r e a m F r o u d e n u m b e r d e c r e a s e s . 

Equa t ion (16) i s a cubic in K. Hence t h e r e a r e t h r e e v a l u e s of K, 

wh ich wi l l s a t i s f y the f o r c e flow equat ion, at any point below the 

enve lope (DF) of the f o r c e flow d i a g r a m ( F i g u r e 6). One K v a l u e i s 



dlvVdys n e g a t i v e and i s of no i n t e r e s t ; the o t h e r two s o l u t i o n s a r e r e a l 
cxnd pos i t ive» Both v a l u e s of K a r e p h y s i c a l l y p o s s i b l e in c e r t a i n r e g i o n s 
of the f o r c e f low d i a g r a m ; in o t h e r s , only one o r no so lu t ion h a s m e a n i n g . 
At any po in t in the zone b e t w e e n the e n v e l o p e and the a b s c i s s a a x i s , t h e 
u p p e r v a l u e of K s h a l l b e deno ted by K^ and the l o w e r v a l u e by K ^ , 

Al l p o s s i b l e s t a t e s u p s t r e a m of a d e n s i t y j u m p l i e on the l i ne AB in 
F i g u r e 6. 

It i s ev iden t f r o m the above^ tha t only c e r t a i n r e g i o n s of the f o r c e 
f low d i a g r a m r e p r e s e n t p h y s i c a l l y a t t a i n a b l e , d o w n s t r e a m s t a t e s , f o r a 
d e n s i t y j u m p . 

D i m e n s i o n a l a n a l y s i s s h o w s if f r i c t i o n a l f o r c e s a r e neglected , , a 
d e n s i t y c u r r e n t f l owing a s shown in F i g u r e 5 i s f u l l y d e f i n e d by i t s 
F r o u d e n u m b e r (F) w h e r e F = (— r- p r o v i d e d D i s m u c h l a r g e r than \ y3 / 

It i s shown in C h a p t e r 6, tha t f o r the f low g e o m e t r y b e i n g e x a m i n e d , 
f l o w s wi th F r o u d e n u m b e r s g r e a t e r than un i ty a r e u n s t a b l e and c a n e n -
t r a i n a m b i e n t f luid un t i l the F r o u d e r e d u c e s to un i ty . The un i ty l i m i t 
on the F r o u d e n u m b e r a p p l i e s only if the v e l o c i t y and d e n s i t y d i s t r i b u t i o n s 
a r e u n i f o r m . It wi l l b e shown the g e n e r a l l i m i t i s g iven w h e n F ={S!tj/Sm)^= 

M e a n i n g f u l s o l u t i o n s f o r the f o r c e f low equa t ion m u s t h a v e s u b -
c r i t i c a l flow d o w n s t r e a m of a d e n s i t y j u m p . T h e r e f o r e ^ the F r o u d e 
n u m b e r in t h i s r e g i o n m u s t b e un i ty o r l e s s . 
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Before proceeding further with examination of the zonesof the force 

flow diagram it is advisable to familiarise oneself as to how the Froude 

number plots on the force flow diagram. 

It will now be shown that a curve of constant Froude number is a 

straight line passing through the origin of the force flow diagram and lies 

on, or below the envelope. The Froude number is defined by 

butwhen.y^j = y^^, then 

^^^ - - { - ^ Y - 1 . 0 

Equations (14) and (15) may be combined with the above to show 

F = ( | ) (18) 

The force flow equation can be rearranged into 

= f a . I W 
2 K V Y ^ / 

SH / I W 
7i / 2 

Hence for a constant Froude Number 
. Y 

^ ^ 2 SH ^ ^ 

£ F^Ti 

S^ and Sjj are both taken as unity on the force flow diagram. Therefore 

the plot of equation (19) is a straight line passing through the origin. Its 

slope { ^ ) is a function of the Froude number. 



F i s double va lued f o r any except at the m a x i m a , w h e r e 
Yi - i = O 
^^V 3 F^^^ 

and F - A plot of v e r s u s F i s shown in F i g u r e w h e r e it c a n 
b e seen i s a m a x i m u m when F = -J, It f o l l ows f r o m equat ion (18) 

^ F 
tha t ^ ^ i s pos i t ive , hence f o r a given va lue of Y, K^ wi l l be a s s o c -
i a t ed wi th the l a r g e r va lue of F r o u d e n u m b e r and K L wi th a l o w e r va lue . 
F i s only s ingle va lued at the s t a t i o n a r y point . Hence K a l s o i s s ing le 
va lued at t h i s point . T h e r e f o r e the l ine F = i i s the enve lope of the f o r c e 
flow d i a g r a m . 

2 . 4 1 Z o n e s of the F o r c e F low D i a g r a m 
The f o r c e flow d i a g r a m can be divided into z o n e s a s shown in F i g u r e 9 
No so lu t ions ex is t in the r eg ion above the enve lope ODF. All po in t s 

be low t h i s envelope r e p r e s e n t m a t h e m a t i c a l so lu t ions to the f o r c e flow 
equa t ions . F o r t h e s e so lu t ions to r e p r e s e n t a p h y s i c a l s t a t e d o w n s t r e a m 
of a dens i ty j ump two f u r t h e r cond i t i ons m u s t be s a t i s f i e d 

(i) K m u s t b e equal to o r g r e a t e r than one and 
(ii) F m u s t be equal to o r l e s s than one. 

K c u r v e s having f o r c e flow m i n i m a to the l e f t of the K = 1 .0 c u r v e m i n i m a 
(A), in F i g u r e s 6 and 8, have K v a l u e s of l e s s than one and t h e r e f o r e do 
not r e p r e s e n t p h y s i c a l l y a t t a m a b l e so lu t ions . Hence i t can b e shown that 
a l l KL po in t s l y m g below the K = 1.0 c u r v e (ADEC) do not r e p r e s e n t 
p h y s i c a l so lu t ions . C u r v e s of cons t an t F r o u d e n u m b e r ly ing below the 
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F = 1.0 curve (AEG) and associated with a K^ value have Froude 

numbers greater than one. These also do not represent physically attain-

able downstream states. 

The three zones where downstream solutions do exist are : -

Zone 1 ADEA is bounded by the K = 1.0 (ADE) curve and the F = 1.0 

line (AE) only the upper K value has meaning since the lower value is less 

than one. 

Zone 2GEDF is bounded by the F = i line (DF), the F = 1.0 line (EG) 

and the K = 1.0 (DE) curve. Both K values can be attained in this zone. 

Zone 3 (CEG) is bounded by the F = 1. 0 line (EG) and the K = 1.0 

curve (EC). The K^ values yield Froude numbers greater than one in this 

zone; therefore only the KL values can represent a tailwater condition. 

It is apparent from the above that^ unlike an open channel hydraulic 

jump, depths and densities downstream of a density jump cannot be pre -

dicted from upstream conditions alone. Limits to the conjugate state can 

be established, but within those limits, entrainment and depths down-

stream are dependent on the tailwater control, 

2. 5 Further Deductions from the Force Flow Diagram 

Minimum depth is given by conjugate states lying along the curve 

AEC. Along the AE of this curve entrainment is a maximum and along 

EC there is no entrainment. The point E is the transition point for these 

two minimum depth regimes. The point E has a force flow of 4. 15 and 
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ihe upstream Froude number associated with this value of force flow 

is 7. 3s, as shown in Figure 

Maximum depth is given by conjugate states lying along the curve 

ADF. It can be seen in Figure 6 that conjugate states having force flows 

less than 88, and therefore upstream Froude numbers less than IF^=2„ 2 5 

lie to the left of D. In this case conjugate depth is a maximum when there 

is no entrainment at the density jump. Conjugate states of density jumps 

with force flows greater than 1. 88 lie to the right of D, and have maximum 

conjugate depths when the conjugate state lies on the envelope DF. It has 

been shown previously that along the envelope the Froude number is single 

valued and equal to one-half. 

The conjugate depth ratio (r) is defined as the ratio of depths upstream 

and downstream of a density jump. Hence 

r = Z l ' 
y i ' 

The equations of the limits to the conjugate depth ratio as stated above 

are tabulated below. These limiting equations are plotted in Figure 8. 

Maximum Entrainment 

It can be seen from the force flow diagram that maximum entrainment 

occurs when the conjugate state l ies on the minima of a K curve, the point 

J in Fig. 6. At this point ^^( /^c f iT^/ ~ —^f^i^— ' 
/ S '/z so +he Froude number is equal to \ . 
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As Sjj and Sj^ are taken as unity on the force flow diagram, the 

downstream Froude nunaber is equal to one when entrainment is a maA 

imum. 

The F = 1„0 line (AEG) in Figure 6 is therefore one limit to the en 

trainment (a maximum) „ No entrainment ( ADEC) in Figure 6 is the 

second limitmg condition, 

3o Limits on the Downstream Depths 

;l — — 1 
Range | Conjugate 

depth 
ratio 

Section in 
Fig, 9 

No, " 
1 Force Flow Froude No. 1 -

Conjugate 
depth 
ratio 

Section in 
Fig, 9 

No, " 

1 min, 1 maXo min. max. 

3 ( 2 F i ) ^ 

\ • 

AD 1 i ' 
i • ! 

DF i 11 
i : 

r '1 
1 L 50 j 1, 88 
( 1 
1 1,88 CO 
I i 

LOO 2,25 

2, 25 1 ^ 
i 

3 ( 2 F i ) ^ 

\ • 

AD 1 i ' 
i • ! 

DF i 11 
i : 

Minimum Depth Ratios 
L 50 1 4, 10 L a 1 7. 3 + 1 

i \ I 
4, 10 oO 7, 3 CO 

3 F f ' 5 

AE j 

EC 
! 

111 i 

Unlike the open channel hydraulic jump, the density jump problems 

cannot be solved using the force flow equation alone. Characteristics oi 

the control downstream of the density junap must also be known. The 

downstream control determines the degree of entrainment into a density 

jump and hence its form» Before proceeding further with the mathemaac^: 

analysis of the density jump, the physical aspects of the phenomena are 

examined. This is done in the following chapter. 
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C h a p t e r 3 - T h e M e c h a n i c s o f the 
D e n s i t y J u m p . 

It is necessary to examine the mechanism of a density jump in some 

further detail» before the interaction between a density jump and its con-

trol can be fully appreciated. Therefore, the characteristics of the 

density jump itself are now discussed» 

1 The Zones of a Density Jump 

The density jump^ in general, can be divided into two distinct zones^ 

an entrainment zone followed by a roller region« Nearly all the entrain-

ment which occurs at the jump takes place in the entrainment zone» 

The roller region is characterised by a flow in the reverse direction 

to the main flow^ close to the interface» This roller is similar in appear-

ance to the roller observed in open channel jumps» The roller region may 

be regarded as surge, which under steady flow conditions remains 

stationary, and covers the downstream end of the entrainment zone» The 

presence of the roller causes the interfacial shear to fall to a low level 

as shown in Figure 10» The change in profile of the jump, before and 

after raising a controlling weir, is also shown» The roller region is 

quite distinct in the exaggerated scale used for plotting» The change of 

profile is l e s s easily detected in experiments» Dye probes were used to 

find the region of reverse flow and so determine the boundary of the 

rol ler region and the entrainment zone» The roller region can be forced 

upstream by a control, so as to cover the entire entrainment zone» The 
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THE EFFECT OF DOWNSTREAM CONTROL ON THE PROFILE AND 
VELOCITY DISTRIBUTION IN A DENSITY JUMP 

FIGURE 10. 
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ro l l e r region then extends the full length c i the jump which b e c o m e s non-

entraining. The control can also be adjusted so as to cause the ro l ler 

region to retreat so that in the l imit the jump i s of the maximum entrain-

ing type with no ro l l e r region. 

3. 2 The Control Mechanism 

The control downstream of a density jump acts directly on the ro l ler 

region of that jump. Adjustment of the downstream control will cause the 

ro l ler region to migrate . The migration will be upstream if the adjustment 

has caused a temporary increase in the downstream f o r c e f low. Conversely 

the migration will be downstream if the adjustment results in a temporary 

fall in the downstream f o r c e f low. 

The direction of migration is important as it will affect the equilibrium 

of the jump, Ccnsider as an example a density jump controlled by a weir 

downstream (Figure 11). If the weir height i s raised by a small amount, 

the f o r c e flow at the weir will be temporari ly increased. A positive surge 

wi l l m o v e upstream causing the rol ler region to migrate further upstream 

a nd entrainment at the jump will be reduced. Now provided the reduction 

in entrairjnent causes a drop in the downstream f o r c e flow, which can 

compensate for the initial increment, a new equilibrium will be obtained. 

The new equilibrium will result in new values of depth and discharge 

downstream of the jump. 

However, if the reduction in entrainment had lead to an increase in the 
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d o w n s t r e a m f o r c e f low, t h e n a n e w e q u i l i b r i u m c o u l d no t b e o b t a i n e d 

and t h e j u m p w o u l d b e c o m e u n s t a b l e . T h e i m b a l a n c e of f o r c e f low u p -

s t r e a m and d o w n s t r e a m of t h e j u m p w o u l d c a u s e t h e r o l l e r r e g i o n to 

m o v e f u r t h e r i n to t h e e n t r a i n i n g z o n e so t h a t e v e n t u a l l y t h e j u m p w o u l d 

f l o o d . 

U n d e r c e r t a i n c o n d i t i o n s d e n s i t y j u m p s do b e c o m e u n s t a b l e a s w i l l 

b e s e e n in t h e f o l l o w i n g c h a p t e r . 

3, 3 E f f e c t of R o l l e r R e g i o n M i g r a t i o n on t h e D o w n s t r e a m S t a t e of a 
D e n s i t y J u m p 

T h e d o w n s t r e a m s t a t e of a d e n s i t y j u m p c a n b e e x p r e s s e d in t e r m s 

of two f a c t o r s ; f i r s t l y t h e u p s t r e a m f l o w s t a t e , a s d e f i n e d by t h e u p s t r e a m 

F r o u d e n u m b e r and s e c o n d l y , by t h e a m o u n t of e n t r a i n m e n t a t t h e j u m p . 

T h e d o w n s t r e a m c o n t r o l on ly a f f e c t s e n t r a i n m e n t by d e t e r m i n i n g t h e 

l e n g t h of t h e e n t r a i n i n g z o n e . T h e e n t r a i n m e n t m e c h a n i s m i s e n t i r e l y 

i n d e p e n d e n t of t h e d o w n s t r e a m c o n t r o l . 

T h e r e f o r e in o r d e r to u n d e r s t a n d how r o l l e r r e g i o n m i g r a t i o n a f f e c t s 

t h e d o w n s t r e a m s t a t e of a j u m p i t i s n e c e s s a r y to e x a m i n e how t h e r o l l e r 

r e g i o n a f f e c t s e n t r a i n m e n t . 

If one c o n s i d e r s a h i g h l y s u p e r c r i t i c a l d e n s i t y c u r r e n t , t h e f l u i d 

m o m e n t u m i s t h e d o m i n a n t c o m p o n e n t of t h e f o r c e f l ow , and t h e h y d r o -

s t a t i c p r e s s u r e f o r c e i s s m a l l . In t h e l i m i t i n g c a s e , w h e r e t h e m o m e n t u m 

c o m p o n e n t c o m p l e t e l y d o m i n a t e s , i t c o u l d b e e x p e c t e d t h a t t h e d e n s i t y 

c u r r e n t w o u l d b e h a v e in a s i m i l a r m a n n e r to a n e u t r a l l y b u o y a n t j e t . 
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When a neutral jet i s s u e s from a slot a s shown in F i g u r e 12, the 

s e v e r e velocity gradient between the moving fluid and the ambient fluid 

g ives r i s e to high local shear . Eddies a r e generated in this zone of max-

imum instabil ity and the ambient fluid i s entrained into the jet , 

A supercr i t i ca l density current i s unstable in the s ame way under s i m -

i lar boundary conditions. 

It can be seen from the force flow equation (19), that a s the density 

current s p r e a d s the local Froude F number reduces in value, A continuous 

range of local Froude numbers will exist along the length of the entrainment 

/ s 

zone, ranging from F = F^ to a poss ib le minimum of (^"^"J unity in the 

idea l i sed ca se . 

A s there i s negligible entrainment in the ro l ler region of a density 

jump, the ro l ler region can be modelled mathematical ly , a s a non-

entraining hydraulic jump, and r e p r e s e n t s a discontinuity in depth but not 

in d i scharge nor density. The local Froude number at the end of the en-

trainment zone or the commencement of the ro l ler region, i s therefore 

re la ted to the Froude number downstream of the jump by the s ame equation 

used to re la te conjugate Froude Numbers in hydraulic jumps , 

3, 4 Summary 

A density jump can general ly be divided into tv/o zonesj an entrain-

ment zone and a ro l l e r region. The entrainment zone, which i s perhaps 

m o r e exactly descr ibed a s a negatively buoyant jet, occupies the ups t ream 
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end of the jump. The ro l ler region, character ised by an interfacial 

ro l ler , occupies the downstream end of the jump. Nearly all entrain-

ment into the density jump o c c u r s in the entrainment zone. 

The l imits of f orm of a density jump occur when only one of either of 

the zones i s present. A continuous range of f o r m s between these l imits 

i s available. The ro l ler region can be regarded as a non-entraining jump 

whose position is determined by the downstream control . If the ro l l e r 

region i s forced further into the entrainment zone, the Froude number at 

the upstream end of the ro l ler region is increased and the Froude number 

downstream of the jump i s correspondingly reduced. 
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Fig. 12: A jet of neutral density. 

Note the region of uniform flow near the inlet. 
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Chapter 4. Control of a Density Jump 

4. 1 Introduction 

The downstream state of a density jump i s not necessar i ly a direct 

function of the upstream conditions. Unlike the hydraulic jump, the 

Froude numbers of the f lows upstream and downstream of a density- jump 

are not uniquely related. 

It i s now proposed to examine the various tx^Des of tailwater control 

and their interaction with a density* jump. 

The method of analysis i s similar f o r all types of control . First ly 

the f o r c e tlow equation (16) is used to relate the flow either side of the 

density jump (sections 1 and 2 in Figure 13). The section downstream of 

the jump and upstream of the control i s equated to the section at the control 

by means of the energy equation. This latter section will be denoted by the 

subscript 3. 

The flow changes from subcritical to supercrit ical at the control ; and 

energy is generally conser\^ed betw^een sections 2 -3 except for minor 

l o s s e s caused by boundary friction. There i s no further entrainm.ent b e -

tw^een sections 2 -3 so that the upstream and downstream discharges are 

the same. 

The density jump analysis i s similar for all f o r m s of control , there-

f o r e general equations relating bet\veen sections (1) and (2) ^%-ill be 

derived f i rst . The later analvsis will examine individual contro ls in 
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some detail. The theoretical derivations will be compared with the 

experimental results. 

4= 2 Analysis - Conjugate Equations at the Jump 

The critical depth of the flow downstream of the jump, is a use-

ful reference parameter by which to relate sections 2 and 3. As there is 

no entrainment between these sections, critical depth at either will be 

the same, hence 

y2c = ysc 

The force flows, upstream and downstream of the jump, may be 

equated using equation (19) , so that 

v: ,,-A: . „ 

where 6 , the force flow ratio across the density jump is defined by 
-

® - Tvlf - r - i f o 
Ml 

/ 2/3 ' 2/3 But y^c ^ ^^^ ^2c ^2^2 ^^^ ^^ substitution into the 

above equation one finds 
•f 

r : ' ' " - i i r T i ' f T " ^ .. ' (20) 

The energy equations between sections 2 and 3 may be used to ex-

press the variable yg ,̂ in terms of a control parameter, say a weir 

height,, or a channel contraction ratio, depending on the individual control, 

To avoid confusion, the density difference will be assumed to be an 
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excess; so that density currents will flow along the bottom of a channel. 

Up and down have their usual directions. Later when density currents with 

density deficits are discussed, it will be convenient to have the directions 

of up and down reversed» By definition then, down is understood to be in 

the direction of the body, or apparent gravity force. 

Boundary friction except where it itself acts as a control, has been ig -

nored in the following analysis. It was convenient to do this so that ex-

plicit solutions could be obtained. Numerical solutions or backwater 

calculations which included boundary friction could have been determined, 

but this was not the writer 's aim. It was desired that the effect of in-

dividual controls could be examined independently. The inclusion of 

friction in the analysis would have masked individual behaviour. Friction 

as a control of a density jump was examined separately. 

4. 3 The Broad Crested Weir 

4„ 31 Introduction 

The mechanism by which a density jump can vary its entrainment to 

comply with a downstream control has already been described, so that 

only a brief review will be repeated. 

A free overfall is a limiting state of a broad-crested weir where the 

weir height (h) is zero. 

In this limiting case, as will be shown in Section 4.4, the density 

jump will be of the maximum entraining type. A control which could 

establish a back water and roller region in the jump does not exist. 
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A s a r e s u l t , +he d e n s i t y j u m p e n t r a i n s a l o n g the l eng th of the e s t a b l i s h -
m e n t zone . 

U n d e r t h e s e c o n d i t i o n s the F r o u d e n u m b e r of t h e f low d o w n s t r e a m 
S R 2 h of the j u m p i s g iven by F 2 = ( ^ ) and the r a t i o r i s z e r o . When 

t h e w e i r i s r a i s e d a s u r g e m o v e s u p s t r e a m to f o r m a r o l l e r r e g i o n o r 
s t a n d i n g s u r g e a t the d o w n s t r e a m end of the d e n s i t y j u m p . 

F u r t h e r r a i s i n g of the w e i r c a u s e s the l eng th of the r o l l e r r e g i o n to 
i n c r e a s e and the e n t r a i n e d f low i s reduced= It would a p p e a r ^"hat if t h i s 
p r o c e s s i s con t inued , the r o l l e r r e g i o n would e v e n t u a l l y c o v e r t h e e n t i r e 
e n t r a i n m e n t zone and e n t r a i n m e n t at the j u m p would c e a s e . F u r t h e r 
r a i s i n g of the ga t e would c a u s e the j u m p to f lood . 

Al though the above p i c t u r e s a t i s f a c t o r i l y d e s c r i b e s the p h e n o m e n a a t 
u p s t r e a m F r o u d e n u m b e r s l e s s than 13. 2, i t w i l l be shown in t he f o l l o w i n g 
a n a l y s i s , t ha t a t F r o u d e n u m b e r s g r e a t e r than 13. 2, the j u m p f l o o d s b e -
f o r e the s t age of z e r o e n t r a i n m e n t i s r e a c h e d . The r e a s o n f o r t h i s l i e s 
in the f o r m of the e n e r g y equa t ion , w h i c h r e l a t e s the d o w n s t r e a m F r o u d e 
n u m b e r to the w e i r he igh t . Two v a l u e s of d o w n s t r e a m F r o u d e n u m b e r 
s a t i s f y the e n e r g y e q u a t i o n s f o r any w e i r h e i g h t b e l o w a c r i t i c a l m a x i m u m 
h e i g h t . 

When the F r o u d e n u m b e r u p s t r e a m of t he j u m p i s g r e a t e r t han 13. 2, 
i t w i l l b e shown both d o w n s t r e a m F r o u d e n u m b e r s a r e p o s s i b l e s o l u t i o n s , 
but tha t only the u p p e r v a l u e i s a s t a b l e so lu t ion . T h e r e f o r e ^ the m i n i m u m 
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stable Froude number downstream of a jump controlled by a broad 

crested weir is 0 .17, the Froude number at which the critical weir height 

is reached. The minimum conjugate Froude number to this value is that 

for a non-entraining density jump and is equal to 13. 2. 

4o 32 Analysis 

The energy equation is used to equate flows upstream and at the control 

point of a broad-crested weir (see Figure 3). If one makes the Boussinesq 

assumption the total energy flow in a steady density current is given by:-

(f = ^ 
2 ^ 

^U^ cii I I f^ ^ 
21) 

where £ is the energy flowc The first term is the kinetic energy, 

the second is the pressure energy and the third is the potential energy of 

the density current. 

If correction factors SK and S p are defined as 

5K a " u d 
' 2, 

5 = 6? a 
ro 0 

then the energy equation can be written in the form 

a SK a' Sp ¿^^ / \ 

If S-^ is defined as = 

the above equation reduces to 

<f - a 5p / 5B a -t 
, 2 

A 

J 
(22) 



form 
- i 

Further discussion on the above equation is included in section 4„44 

of this chapter. 

If equation 22 is differentiated with respect to x and it is assumed 

that 

(a) energy is conserved 

(b) the velocity distribution is self preserving 

(c) there is no entrainment between Sections 2 and 3, then 

I - a^ ^ .A 1 - (2 3) 

At critical depth there is a transition from subcritical to supercritical 

d ' 
flow hence is negative and non-zero, 

dx 

It follows then at the point of control 

= 1 (24) 

Since there is no further entrainment downstream of the density jump 
y's ^ y2c 

K3 = K 

and A 3 = À 2 

Equating energy f lows at the control and upstream one finds 

and on substituting equation 24 into the above one obtains 
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A 
Jg = 3 g ^¿ c (25) 

^^^ f / f 2 
Equation (24) and continuity may be combined to give 

- V3 

? I 

Substituting for in equation 25 and rearranging one obtains 

^ ^ s/s'^^iS^zF^ b) -

(26) 

(27) 

Equation 27 gives the we ir height in terms of the downstream ref -

erence depth, as a function of the downstream Froude number. Equation 

27 is not in a useful form because is also a function of downstream ^ 2c 

conditions. niay be eliminated by use of the force flow equation 20 

derived earlier. This equation relates the conjugate states either side 

of the density jump in terms of the reference depth 'y2c° fi^i^ce one can 

show 

where 

f = ^ 

(2 8) 

(29) 

Equation (28) relates the weir height to the downstream Froude 

number and plotted in Figure 14. 

Several significant points arise from examination of this figure, 

(a) Firstly when the weir height is zero, and in the absence of friction 



or anv oiher aownstream coniroi , the density jump will be of the max-

imum entraining type and the downstream Froude number will be equal 

Sh ^ 

to ( ) . This limiting case is examined in m o r e detail in Section 

4„4 later in ihis chapter, 

(bi Secondly it can be seen the density jump is initially very sensitive to 

w eir height. Raising of the weir to only 5-6 pc. of its potential height 

for flooding, at Froude numbers greater than 13.2 causes the downstream 

Froude number +0 drop from 1.0 to 0 . 8. 

\c) There is a maximum value of — f for which a solution is possible» ^Ic 

If a weir i s raised above this maximum the jump must flood, since the 

f o r c e flow downstream has been increased above that attainable upstream» 

Consider a density jump having a high upstream Froude number. A s 

the weir is raised, the downstream state m o v e s up the curve f rom the 

starling point at f ^ 0 and F^ - 1. 0 in Figure 14. y i c 

The Froude number downstream of the jump will continually decrease 

in value as the weir height increases , and the ro l l er region lengthens, 

covering m o r e and m o r e of the entrainment zone. The p r o c e s s continues 

until the maximum weir height for which a solution is possible i s reached 

at F2 - 0» 17 and — ~ — f - 0, 322. At this stage the density jump would y i c 

appear as shown in Figure 15. The jump is still entraining ambient fluid. 

Further increase in the weir height results in an increase in the 

f o r c e flow downstream, which can no longer be balanced by any change 
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in entrainment at the jump. The roller region is seen to move up-

stream as a surge which rapidly covers the entire entrainment zone« 

Flooding of the density jump continues until the hydrostatic pressure 

at the flooded upstream end of the jump balances the downstream force 

flowo When equilibrium of force flows upstream and downstream of the 

flooded jump is attained^ the jump appears as shown in Figure 16„ 

Figures 17 and 18 show photographs of the jump just before and after 

flooding has taken place. 

From Figure 14 it can be seen two values of F2 satisfy equation 28 

for any weir height less than the maximum at F2 = 0, 17„ 

It should be noted that downstream Froude numbers less than 0„ 17 

are only potentially accessible to density jumps with upstream Froude 

numbers greater than 13.2 since this is the minimum value of Fj con-

jugate to F2 = 17. Density jumps with F-̂  less than 13. 2 will flood 

before F2 reaches 0, 17. Once a jump has flooded entrainment ceases, 

and its equilibrium conditions are no longer given by Equation 28. 

Analysis of the flooded density jump is given in Appendix A. 

It will now be shown that downstream Froude numbers of less than 

0.17 are unattainable by all entraining density jumps, irrespective of 

their upstream Froude number. 

The reasons for this can be best understood by tracing a cycle of 

weir raising and lowering on a plot of —- f vs Fg. 
^Ic 



The locus of a weir rais ing- lowering cyc le is shown in Figure 19 

for a density jump with an upstream Froude number of 50. Commencing 

at point A w ith a weir of zero height and a maximum entraining density 

jump, as the weir height is increased the downstream Froude number 

decreases . This mechanism has been descr ibed in the previous chapter. 

The p r o c e s s continues until the point B is reached. At this stage the den-

sity jump is still entraining ambient fluid. An increase in weir height 

will cause the jump to flood to point-C. The downstream flow rate 

abruptly decreases as entrainment ceases and it can be shown that the 

flooded state of the jump can be represented by the line PCD (Appendix A). 

Lowering of the weir will not cause the jump to revert to its entraining 

state. The small positive perburbation in h at the point B caused a dramatic 

i r revers ib le change in the jump f o rm. Therefore as the weir i s lowered 

the jump remains flooded and followsthe curve f or a f looded density jump 

PCD. This curve i s derived in Appendix A. A s the weir i s lowered the 

depth of dense fluid lying above the inlet dec reases finally reducing to 

zero at D. The density jump b e c o m e s a non-entraining jump and the 

ro l l e r region extends the length of the establishment zone. 

It was shown in Section 3.4 that the non-entraining ro l ler region of 

a density jump is analgous to the open channel hydraulic jump. Hence 

lowering of a weir downstream of a density jump results in a downstream 

migration of the ro l ler region, until a new equilibrium i s established. 
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Fig. No. 17: A density jump immediately before flooding - a non-entraining density jump. 
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When the r o l l e r region m o v e s downstream, a g r e a t e r length of ent ra in-

m e n t zone i s exposed^ so that total entra inment at the jump i n c r e a s e s . 

The flow downstream of the density jump t h e r e f o r e i n c r e a s e s until 

the i n t e r f a c i a l slope i s equal to the bottom slope and equil ibrium i s 

r e s t o r e d . 

If the w e i r i s raised^ then by the same m e c h a n i s m , the r o l l e r region 

m i g r a t e s u p s t r e a m and entrainment i s reduced. 

It i s now shown that downstream migrat ion of the r o l l e r region wil l 

r e s u l t in ait^^increase in the Froude number (F2) downstream of a density 

jump. If F^ denotes the l o c a l Froude number at the t ransi t ion of the 

r o l l e r region and the entrainment zone, a whole range of va lues for F^ 

/ S 

a r e avai lable between the l i m i t s F t = F^ and F^ = ( S^ ) ' ^̂  ^^^ r o l l e r 

region m o v e s downstream, F^ must d e c r e a s e in value. Now the down-

s t r e a m F r o u d e number (F2) i s re la ted to F-(- by the same equation that r e 

l a t e s conjugate F r o u d e n u m b e r s in hydraulic jumps (Bakmettef 1932. ) 

It can be seen from the above equation that a s F^ d e c r e a s e s in value 

F ^ - m u s t i n c r e a s e in value. Hence one can conclude that if a contro l 

downstream of a density jump i s perturbed a s to cause a fa l l in the in ter -

f a c i a l slope, the downstream Froud e number wil l i n c r e a s e in value. 

Cons ider now a density jump whose state i s d e s c r i b e d by the point D 
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in Figure 20a. It has been shown this state can be reached by lower-

ing a weir downstream of a flooded density jump having a sufficiently high 

upstream Froude number. At D the density jump is at the limit of f lood-

ing and is therefore non-entraining. If the weir height is now dropped by 

a small amount ( S h), +he interfacial slope will become negative^ the 

rol ler region will move downstream and the jump will commence to en-

train. Its downstream Froude number will increase in value. It can be 

seen in Figure 20a that if the Froude number is to increase in value, 

equilibrium cannot be attained until the point E is reached. A density 

jump whose state is given by points to the left of B in Figure 20a are 

unstable for negative perturbations in h, the weir height. The perturb-

ation will cause a dramatic change in the flow rate and depth downstream 

of the jump, as the form of the density jump itself is changed. 

It is also necessary to examine the effects of a positive perturbation 

in weir height for a density jump at D (Figure 20b). This time a positive 

surge will travel upstream from the weir. The rol ler region will be forced 

further upstream and flooding of the jump will ensue. Further raising of 

the weir would cause the jump to move back along the curve for a flooded 

jump DCP. 

It can be seen that density jumps given by points to the left of B in 

Figure 19 are unstable for negative perburbations in h. Perburbations 

in the controlling weir will cause the jump to either flood if the perturb -

ation is positive, or the roller region shorten and the downstream Froude 
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number to increase rapidly, if the perturbation is negative. 

Mathematically the stability of a density jump to negative perturb 

ations in a controlling weir downstream are given by -

D h 

ve stable 

+ ve unstable 

= 0 limit of stability 
^ F2 

It can be seen in Figure 20 that the limit of stability is given by the 

point B where F^ = 0. 17, Regions of the curve to the right of B are 

stable (AEB) and regions to the left are unstable (BDO). 

4, 33 Experimental Results 

Equation 28 has been plotted in Figure 14 together with experimental 

data. It can be seen agreement between theory and experiment is close. 

It should be noted, however, that the theoretical curve was plotted for 

^E» ^H ^^^ ^ values of one. The closeness of the curve and the data 

indicates that the various correction factors are self compensatory. This 

is indeed fortunate since the correction parameters are not simple 

functions of F2 so that no general curve could have been plotted relating 

weir height and downstream Froude number. 

In Figure 14 the flooding points of experimental density jumps have 

been indicated for jumps with upstream Froude numbers of 10, 5 and 

16, 5. 
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Unfortunately, with the experimental apparatus available, Froude 

numbers greater than 16.5 could not be attained. It was not possible 

therefore to experimentally verify with any certainty, the stability 

arguments. 

Flooding of the density jump with F^ = 16. 5 at a downstream Froude 

number of 0= 19 was earlier than its non-entraining value. However, 

experimental accuracy was not sufficient to observe any hysteris effect 

which itself would have been small for this value of upstream Froude 

number. 

A further intriguing relationship exists between weir height and 

depth downstream of the jump. 

It has already been shown that the depth downstream of a jump can be 

expressed as a function of the upstream and downstream Froude numbers, 

From the force flow equation (19) one has 
/ 

^ ^ (9 - ^ ^ ^ ^ 

It follows from continuity that 

•1. - 2 / 3 

and f has already been defined in equation 2 9 

f - t f l 
+ 1 

so that 
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2. 

Pc a , 
'A-f 

Hence 

^ r 

(30) 

(31) 

The above equation i s plotted in Figure 21„ 

The downstream Froude number-depth equation (31) can be solved 

with the weir height-Froude number equation (28) to obtain downstream 

depth in terms of the weir height. Unfortunately, this is not an explicit 

relationship and so a graphical solution i s given in Figure 22„ 

The feature of interest^ illustrated in this plot i s a decrease in 

depth downstream of the jump, with increase in the weir height for 

downstream Froude numbers l e ss than one half. 

Although this result could be anticipated f rom the downstream Froude 

number-depth relationship the result i s quite novel; an increase in weir 

height causing a drop in level , upstream of the weir . 

4. 35 Note on the Validity of the Energy Equation Used 

The energy equation (22) used in deriving the rating relationships i s 

not strictly valid unless the density distribution in the moving layer i s 

uni form. 

However, use of the energy equation in the present f orm is justified, 

provided the d i f ferences in density within the moving layer are small 

compared with the density di f ference between the layer and the ambient 
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fluid. When this is not the case, density stratification within the layer 

can lead to blockage effects and selective withdrawal of only part of the 

layer (Wood 1968). However, for selective withdrawal to occur it is 

necessary that (a) the density gradient within the layer be steep and (b) 

the Froude number of the layer be low. 

These conditions are never satisfied simultaneously downstream of a 

density jump. 

Density jumps having low downstream Froude numbers will always 

have fairly uniform downstream densities. Firstly, because there is 

little entrainment at the jump. Secondly, the fluid which is entrained, 

is thoroughly mixed with incoming flow in the roller region. It would 

appear then, that blocking is most unlikely to occur, and hence there 

is reasonable justification in using the energy equation in the present 

form. Experimental results tend to confirm this. 

4. 4 The Maximum Entraining Density Jump 

Maximum entrainment represents one limit on the form a density 

jump may take. A maximum entraining density jump forms when 

(a) there is a weir of zero height downstream, i. e. effectively a free 

overfall, or (b) the jump is friction controlled and the slope is such 

that the uniform flow depth is critical depth» In the ideal case, where 

the downstream density and velocity distributions are uniform, the 

Froude number downstream of a maximum entraining density jump will 
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wil l be one. However, this i s generally not so; the velocity and 

density distributions are non-uniform as can be seen in Figures 2 3 

and 24„ A s a result of this the downstream Froude number at which 

entrainment c e a s e s and uniform downstream conditions are attained, 

i s l e s s than one. It will be shown in Chapter 6 where the mechanism 

of entrainment i s examined in some detail, that the maximum Froude 

number attainable downstream of a density jump is equal to ( ^ = 
I ^m/ 

This i s found to be l e ss than one as shown in Figure 25. 

Ambient fluid i s entrained along the length of the establishment 

zone in this type of jump (Figure 2 6). There is no downstream control 

in the accepted sense» A control i s not necessary for the formation of 

the entraining zone of a density jump. The entrainment zone results 

f r o m an instability of the supercrit ical density flow under the boundary 

conditions of the experiment, A neutral wall jet i s unstable in an ex -

actly similar way. 

When a control i s present it must act such that its upstream flow 

i s at cr i t i ca l depth if the density jump i s to be of the maximum entrain-

ing type. Two f o r m s of control where this i s possible are (a) a f r ee 

overfal l and (b) fr ict ion on a sloping channel. 

The case of a density jump with a f r ee overfal l as control or equiv-

alently a we i r of zero height will be examined in m o r e detail. The 

latter case (b) of a fr ict ion controlled jump i s discussed in Section 4. 5. 
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4 , 4 1 The D e n s i t y J u m p wi th a F r e e O v e r f a l l D o w n s t r e a m 
4 , 4 1 1 I n t r o d u c t i o n 

In open c h a n n e l f l o w s , a f r e e o v e r f a l l w i l l on ly a c t a s a c o n t r o l if 
t h e u p s t r e a m f low i s a l r e a d y s u b c r i t i c a l . T h e s u b c r i t i c a i f low i s g e n -
e r a l l y f r i c t i o n c o n t r o l l e d and the f r e e o v e r f a l l w i l l on ly c o n t r o l d e p t h s 
in i t s i m m e d i a t e v i c i n i t y . It i s no t c o r r e c t , t h e r e f o r e , to r e g a r d a f r e e 
o v e r f a l l a s a c o n t r o l in t h e s a m e w a y a w e i r i s a c o n t r o l . A d m i t t e d l y 
t h e r e i s a c h a n g e in f low r e g i m e f r o m s u b c r i t i c a l u p s t r e a m to s u p e r -
c r i t i c a l d o w n s t r e a m of a f r e e o v e r f a l l , bu t u n l e s s t h e r e i s s o m e o t h e r 
c o n t r o l l i n g i n f l u e n c e , such a s f r i c t i o n a c t i n g on t h e u p s t r e a m f low, t h e 
f r e e o v e r f a l l c a n n o t g e n e r a t e a s u b c r i t i c a l b a c k w a t e r . A l l t h a t can b e 
sa id of a f r e e o v e r f a l l in open c h a n n e l f l o w s i s t ha t i t p r o v i d e s a u s e f u l 
m e t e r i n g o r r e f e r e n c e po in t . S imp le o n e d i m e n s i o n a l a n a l y s i s i n d i c a t e s 
t h e dep th of f low a t t h e b r i n k if a f r e e o v e r f a l l i s c r i t i c a l . However. , 
f low in the v i c i n i t y of t he b r i n k i s h igh ly c u r v i l i n e a r , and f a r r e m o v e d 
f r o m t h e a p p r o x i m a t i o n s of one d i m e n s i o n a l t h e o r y . A s a r e s u l t , c r i t -
i c a l d e p t h o c c u r s a d i s t a n c e a p p r o x i m a t e l y f i v e t i m e s the b r i n k dep th , 
u p s t r e a m of t h e o v e r f a l l . E x p e r i m e n t s p e r f o r m e d by R o u s e (1936) and 
o t h e r s h a v e shown t h e d e p t h a t t he b r i n k (yb) i s 0 . 712 t i m e s c r i t i c a l 
d e p t h . D e p t h s of d e n s i t y f l o w s in the v i c i n i t y of a b r i n k a r e e x a m i n e d 
in Append ix B. 

T h e f r e e o v e r f a l l by i t s e l f c a n n o t a c t a s a c o n t r o l of an o p e n c h a n n e l 
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h y d r a u l i c jump» How e v e r , a d e n s i t y j u m p wi l l f o r m u p s t r e a m of a 
f r e e over fa l l^ not b e c a u s e the d e n s i t y j u m p i s c o n t r o l l e d by the f r e e 
o v e r f a l l , bu t b e c a u s e the d e n s i t y j u m p i s self f o r m i n g and i s due to the 
i n s t a b i l i t y of the s u p e r c r i t i c a l u p s t r e a m flow« The f r e e o v e r f a l l c r e a t e s 
no backwa te r^ so t ha t no r o l l e r r e g i o n f o r m s . The d e n s i t y j u m p i s t h e r e -
f o r e of the m a x i m u m e n t r a i n i n g type , 

4. 412 A n a l y s i s 

It w a s s t a t ed e a r l i e r and i s shown in C h a p t e r 6 tha t e n t r a i n m e n t 
in to a d e n s i t y j u m p i s a m a x i m u m when the d o w n s t r e a m F r o u d e n u m b e r 1 S ^ 
i s equa l to ( ) s o r un i ty in the i d e a l i s e d c a s e . Knowing the v a l u e of 
the F r o u d e n u m b e r d o w n s t r e a m of a d e n s i t y jump , one can ob ta in t he 
c o n j u g a t e dep th r a t i o and the flow r a t i o in t e r m s of the F r o u d e n u m b e r 
of t h e f low u p s t r e a m of the d e n s i t y j u m p . The c o n j u g a t e dep th r a t i o of 
a m a x i m u m e n t r a i n i n g j u m p i s obta ined by equa t ing f o r c e f lows , u p s t r e a m i 
and d o w n s t r e a m of the j u m p and subs t i t u t i ng (Sjj2/ ^ F r o m 
E q u a t i o n (19) one f i n d s 

Smz Shz T = ^ ' Q (33) 
3 

w h e r e O i s the f o r c e flow r a t i o . The e n t r a i n m e n t r a t i o K c a n be d e -
t e r m i n e d f r o m equat ion(32)by m e a n s of equa t ion (18) 

^ [ Y j <33) 
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3/2 ii follows -c - I 1 \ 

a n d F o = = _K ,3 /2 
Y< 

so that 

2. 

hence 
5h2. K = S r r , , F , / 

3 

(34) 

(35) 

4. 41-3 Experimental Results 

The conjugate depth ratio and the entrainment ratio are plotted as 

functions of the upstream Froude number, in Figures 2 8 and 29 

respectively« It can be seen the experimental data, in both cases, l ies 

below the theoretical curves for which the force flow ratio is assumed to 

be unity and the upstream velocity distribution is assumed uniform. 

The effect of friction on the experimental density jump is far greater 

than that experienced in tests on open channel hydraulic jumps. 

Measured velocity distributions indicated that the boundary layer in the 

density jumps was laminar, so that relatively high boundary shears are 

to be expected» Reynolds numbers based on u' apd y' of the density flows 

investigated were in the range 500 to 3000, 

Force flow losses calculated using boundary layer theory in Chapter 

7 agree with measured falls in force flow. 
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When the theoretical depth and entrainment functions are cor rec ted 

for the l o s s in f o r c e flow agreement between experiment and theory is 

satisfactory, as may be seen in Figures 28 and 29. 

4o414 Effect of Non-Uniform Density and Velocity Distributions 

The entrainment and depth downstream of a density jump are insep-

arably tied in with the downstream density and velocity distributions. 

Dimensional analysis gives two parameters, the upstream and downstream 

Froude numbers, which fully descr ibe any density jump. However, in the 

case under analysis where the downstream Froude number i s always a 

maximum, it itself is a function of the upstream Froude number. There -

f o re a maximum entraining density jump can be fully defined in terms of 

one variable, the upstream Froude number. The velocity and density 

distributions determine the f o r ce flow and hydrostatic f o r ce correct ion 

t e rms which are now examined. 

(a) The f o r ce flow correct ion factor was found to remain constant in 

value, f o r upstream Froude numbers greater than three (Figure 27). 

Experiments indicated that velocity distributions in the entraining zone 

of a density jump are self preserving. It fol lows, therefore., that m.ax-

imum entraining density jumps with upstream Froude numbers greater 

than three will have similar downstream velocity distributions. This 

s imilarity of the downstream velocity distribution can be seen in Figure 

2 3 where a number of velocity distributions downstream of maximum 
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entraining density jumps are plotted for a range of upstream Froude 

numbers. 

(b) The density distribution is far m o r e dependent on the upstream 

Froude number than is the velocity distribution. Relatively m o r e 

fluid will be entrained into a maximum entraining jump with a high up-

stream Froude number than would be entrained into a maximum entrain-

ing jump of low upstream Froude number. It is to be expected then, 

that the downstream density distributions of the above jumps will d i f fer . 

Typical density distributions for maximum entraining density jumps, 

at high and low upstream Froude numbers, are shown in Figure 24. 

The di f ference in f orm is notable. F o r the limiting case under examin-

ation, the hydrostatic pressure correct ion factor is fully defined by the 

upstream Froude number and a graph of the relationship i s shown in 

Figure 30. 

4. 5 Frict ion as a Control of a Density Jump 

4 .51 Introduction 

So far, the e f fects of boundary fr ict ion as a control l ing influence 

downstream of a density jump, has been ignored. Bed slopes and fr ict ion 

s lopes have been taken as zero and, in experiments, the var ious contro ls 

were situated c lose to the downstream end of the jump so as to minimise 

fr ict ional influence. The bed slope was horizontal in these experiments. 

The ef fect of fr ict ion was examined experimentally using a long 

sloping channel downstream of the jump, and adjusting an overshot weir 
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at the end of the channel, until uniform conditions were obtained in 

in the X direction« The fr ict ion slopes were very high by open channel 

standards and subcritical flow was maintained at a slope of 1 pc. The 

low Reynold numbers associated with the density f lows are the cause of 

the relatively high frictional f o r c e s . Reynolds numbers of the boundary 

layer , based on boundary layer thickness and mean layer velocity, were 

in the range 100-600. Measured velocity distributions showed that the 

main flow was turbulent with laminar boundary layers at the interface 

and the solid boundary. 

In the following analysis the shear f o r c e s acting on the moving layer 

are calculated in terms of the velocity and velocity distribution of the flow. 

It i s shown that the interfacial shear of f lows downstream of a density 

jump i s small compared with the boundary shear. The equation of motion 

for uniform flow of a density layer down an incline i s expressed in terms 

of the Froude number and Reynolds number of the flow. The uniform flow 

equation is then related to the f o r ce flow equation at the density jump; 

Finally, the Froude number downstream of the density jump is expressed 

as a function of the known Froude and Reynolds numbers of the upstream 

flow and the slope of the channel, 

4. 52 Boundary Layer Analysis 

The boundary layer at the channel bottom and sides remained laminar, 

even in the entraining zone, so that the functional dependence of the 
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boundary shear stress could be calculated. It will be shown in Chapter 7 

(Fall in force flow at a density jump) that the wall stress is given by 

^ = 2- yt/C u J ' r 
where ^^ is the ratio of boundary layer thickness to the depth of 

flow 

relates the mean velocity to the velocity at the edge of the 

laminar boundary layer, and 

is the dynamic viscosity of the fluid 

The boundary layer thickness is defined as the distance between the 

boundary and the velocity maxima (see Section 7. 2 for details). 

It was found in experiments, that the ratio remained fairly 

constant in value, and so it is convenient to write 
0 s: Z = a constant 

Hence t T ^ . ^ ^ J ^ (36) 

The experimentally determined value of ^ was found to be 14. 3. 

Consider a uniform flow down an inclined plane, as shown in Figure 31 

and examine the equilibrium of a section of length Sx. Equating f orces 

in the X direction one obtains / 

Lw) tuj = UJ- Sx j^ A^ sin e ct^ 
/ 

= p y U y / ¿xy S yc 

where w is the width of a rectangular channel. 



DEFiNITlON SKETCH — DENST^Y FLOW DOWN AN INCLINE 

F IGURE 3L 



55. 

In writing the above equation it has been assumed the shear stress 

at the sides of the channel and at the bottom are equal, and the shear 

stress at the interface is zero. 

It will be shown in the discussion that follows this analysis, that the 

above approximations are justifiable for flows downstream of a density 

jump. 

The above expression which equates the forces acting on elemental 

section of the flow, can be reduced to 
2 

F's, - R2. ,S/n 6 . ¿^y (37) 

by dividing the previous equation by ' ^^^ Reynolds number 

of the flow defined by 

^ Po ' ^ L j i i (38) 

and or^ = (39) 

Equation (37) can be rearranged into the form 

f f ^ K R, ainS 

or K ^ ^ j f k (40) /?, sm e 

Equation (40) can be related to known conditions upstream of the 

jump by means of the force flow equation (20) in idealised form 

^ 2F, ^ / , f f 
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The equations of continuity and the defined Froude number give 

a^ = I H ^ ^ I 
K 

so that = K (41) 
y i c 

The friction equation (40), the f o r c e flow equation (20) and thei 

above equality (41) may be solved to give 

R, smO ^ { ¿ f I ^ l) f T (42) 
/S f 2 

where f i s as defined in Equation (29). 

The left hand side of the above equation will be re f e r red to as the 

fr ict ion function. In equation (42) the downstream Froude nurrb er i s 

given as a function of the bed slope and upstream conditions which are 

assumed predetermined, 

4„ 53 Experimental Results 

The fr ict ion function i s graphed against downstream Froude number 

in Fig, 32„ Experimental data are also plotted in the f igure and a g r e e -

ment between the theory and experiment i s reasonable. Some scatter 

exists but this is believed to be largely caused by difficulty in establ ish-

ing a truly uniform flow. A short crested weir at the downstream end 

of the channel was adjusted until uniform depths were established along 

the length of the channel. The jump is then ef fect ively fr ict ion controlled. 

This may be ver i f ied by making appreciable adjustment to the we ir height 
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and observing only slight changes immediately downstream of the jump. 

4. 54 Discussion 

In this section the assumptions made in the previous analysis are 

investigated. 

Firstly in deriving equation (37), it was assumed that -

(a) shear at the interface was negligible and 

(b) the shear at the sides of the channel was equal to that at the bottom. 

Inspection of a typitial velocity distribution, taken at the centre line 

of the channel (Fig. 33) indicates that the shear at the interface (T^) is 

small compared with that at the channel bed. In the example given 

^ =0.08 
"CcAX 

SO that as a first approximation the interfacial shear will be neglected. 

The ratio of interfacial to bottom shear is considerably less than 

that quoted in the literature. The ratio is given ranging from 0. 43 for 

turbulent density flows (Bata 1959) to 0. 64 for wholely laminar flows 

(Keulegan 1944). 

The density currents observed in experiments, were turbulent with 

laminar boundary layers and therefore the value of shear ratio obtained 

might have been expected to lie somewhere between the two extremes 

quoted. 

However^ the velocity distribution downstream of the jump is determined 

by the jump itself, and is markedly non-uniform. 
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Once established, the velocity distribution showed no noticeable 

change o\ er the channel length, which was generally about forty tinĉ es 

the depth of flow. The density gradient within the moving layer inhibited 

turbulent diffusion in the y direction. Therefore, velocity distributions, 

once established at the jump, tended to be self preserving or to change 

only very slowly. 

The reason then for the low ihterfacial shear observed in flow down-

stream of a density jump, was the low velocity gradient which exists 

near the interface, under these conditions. The interfacial shear 

measured by other experimenters had been determined from density 

flow s in which the initial velocity distribution was nearly uniform in the 

case of turbulent flows or had well developed boundary layers in the case 

of lajmlnar flows. 

Figure 33 also indicates that the second approximation (b) is probably 

pol strictly correct either. Velocities near the bottom of the channel 

are greater than those near the interface, so it might be expected that 

Side shear forces will be less than those at the channel bottom. How-

e er, assumptions (a) and (b) do compensate one another to some extent. 

Equation (37) ^ f^ = R^ Sm B OO^ 

i£ Simply the equation of motion for the downstream flow. It was stated 

that i'-< „ a function of the dimensionless velocity distribution, retriained 

fairly constant in value. This can be checked by plotting the right hand 

2 side of li^quation (37) against F , This has been done in Figure 34 and 
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it can be seen a straight line passing through the origin fits the ex -

perimental data satisfactorily. Although some scatter is apparent, the 

data tends to justify the assumptions made in deriving equation (37). 

The value of ^ obtained from the slope of the line of best fit is 14, 3. 

can also be determined from the typical velocity distribution shown 

in Figure 33, 

is defined as equal to ^ ^ ^ 

IB, is equal to the ratio of laminar boundary layer thickness to the 

depth of flow y ' . For the example shown = 0, 20, 

equal to the ratio of velocity at the edge of the boundary layer to 

the mean flow velocity and for Figure 33., - 1, 50, 

The value of ^ calculated from these values is 15, very c l o s e to 

that calculated from the mean data in Figure 34. 

4, 55 Rough Turbulent Flow 

Analysis and Discussion 

The case just examined was for a smooth turbulent flow and it was 

shown the Froude number of a density current flowing down a slope, was 

related to the Reynolds number of that flow. When the flow is rough 

turbulent, the downstream Froude number is dependent on the boundary 

properties., roughness and slope and to a far l e sser extent on the v iscos i ty 

of the fluids. 

The boundary shear stress is given by 

Too ^ f p (jd ^ P l^L 
¿t Z 
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where f is a friction factor (Streeterj 1961) which for the case in 

question is a function of the boundary roughness only, since interfacial 

shear., downstream of a density jump, i s small by comparison. 

Consider the equilibrium of a section of the flow. One has for a 

two dimensional flow 

r p = ^^ S/n O 
f 2 

and on dividing both sides by A . y ' the above reduces to ¿d 
r^ £ ^ Fp ~ Q 

2 

or = s 
The above equation is particularly interesting. The Froude number 

downstream of a density jump i s determined by the boundary propert ies 

only. It i s quite independent of the density jump itself . 

This Froude number, unlike the previous case, is analagous to the 

normal depth of open channel flow. Normal depth is not a useful concept 

when dealing with density f lows since entrainment can cause variation in 

the flow rate» 

This result i s particularly interesting since most naturally occurr ing 

density currents are rough turbulent f lows. It has been ëiown above that 

the Froude number at which any subcritical rough turbulent flow will 

move down an incline is a function of only the roughness and slope of 

that incline. Downstream conditions are quite independent of upstream 
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p a r a m e t e r s . 

56 The E f f e c t of Bed Slope on the D e n s i t y J u m p 
B e d s l o p e s of up to two o r t h r e e p e r c e n t h a v e n e g l i g i b l e e f f e c t on a 

d e n s i t y j u m p . T h i s can b e shown by e x a m i n i n g o r d e r s of m a g n i t u d e of the 
r e s p e c t i v e f o r c e c o m p o n e n t s a c t i n g on such a j u m p . T h e body w e i g h t 

c o m p o n e n t of the f o r c e f low i s a p p r o x i m a t e l y 
^ L s^n 5 ^ ^^ O / B 

w h e r e L i s t he l e n g t h of t h e d e n s i t y j u m p and i s of t he o r d e r of . , 2 
T h e d o w n s t r e a m f o r c e f low i s of t he o r d e r — ^^ that t he 

body f o r c e c o m p o n e n t on s l igh t s l o p e s i s n e g l i g i b l e by c o m p a r i s o n . 
4. 6 S teady D e n s i t y F l o w s - C o n c l u d i n g R e m a r k s 

So f a r , only s t e a d y d e n s i t y f l o w s h a v e b e e n c o n s i d e r e d ; t h e s e b e i n g 
t h e d e n s i t y j u m p c o n t r o l l e d by a b r - o a d c r e s t e d w e i r and the d e n s i t y j u m p 
c o n t r o l l e d by d o w n s t r e a m f r i c t i o n . In Append ix C d e n s i t y j u m p s c o n t r o l l e d 
by s h a r p c r e s t e d and u n d e r s h o t we i r s a r e e x a m i n e d bo th t h e o r e t i c a l l y and 
e x p e r i m e n t a l l y . T h e o r y f o r a d e n s i t y j u m p c o n t r o l l e d by a c h a n n e l c o n -
t r a c t i o n i s a l s o p r e s e n t e d . T h e e x a m p l e s g iven in A p p e n d i x C a r e no t 
i n c l u d e d in t he p r e s e n t t ex t , a s the l i n e of a n a l y s i s i s s i m i l a r to tha t 
u s e d e a r l i e r in t h i s c h a p t e r . 

It h a s b e e n shown tha t , a t a t r a n s i t i o n f r o m s u p e r c r i t i c a l to s u b -
c r i t i c a l f low in a d e n s i t y c u r r e n t ^ a c h a n g e in t he d e n s i t y and r a t e of 
f low c a n o c c u r d o w n s t r e a m of the t r a n s i t i o n . T h i s c h a n g e r e s u l t s 
f r o m e n t r a i n m e n t in t he t r a n s i t i o n r e g i o n . T h i s r e g i o n h a s b e e n c a l l e d 
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a density jump. It has been shown that the form of the jump and the 

degree of entrainment which can occur are determined by a control 

downstream of the jump. It was found definite limits exist to the 

entrainment and conjugate states of the density jump. 
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Chapter 5 - Unsteady Density Flows 

5. 1 Introduction 

In this chapter the unsteady nose or front of a density flow is 

examined. The control of a density junap by an unsteady layer down-

stream is also investigated. 

It i s interesting to examine the development of a starting density 

flow. The formation of the starting vortex and its subsequent motion 

is shown in the sequence of photographs in Figure 35, 

Immediately the density current begins flowing f rom the slot, a 

characteris ing starting vortex f o r m s (Fig, 35a). This grows to a 

stable size and m o v e s away f rom the slot (Figs, 35b and 35c). Behind 

the starting vortex, or nose, i s a layer of depth approximately half 

that of the nose. This layer moves with a velocity equal to that of the 

nose (Wood, 1965) so that the depth of this layer i s uniform. A density 

jump i s found at the upstream end of the layer as can be seen in 

Figure 35c, 

5. 2 Behaviour of the Nose 

The motion of the nose i s now examined in some detail. Consider 

the diagrammatic sketch of an unsteady density flow shown in Figure 36, 



6 4. 

If one makes the Boussinesq assumption, dimensional analysis y ie lds 

V „ ^ function ( ^ ^ , ^ , ; ^ , , © j 

' PlT i f ^A/ a 
where V̂ ^ i s the nose velocity, 

distance travelled by the nose and 

0 i s bottom slope. 
1//V It will be shown the f i rst term //- i s a form of Froude 

number. The second term is a Reynolds number and the third term is 

the interfacial slope of the layer behind the nose. 

Just after flow commences and provided the bottom slope is slight 

( < 1 p c j , the last three parameters have little influence on the initial 

motion of the density flow. Frict ional f o r c e s are small compared with 

inertial and pressure f o r c e s (the Reynolds number i s large) and the 

interfacial slope has no effect on the motion. Therefore it fo l lows that 

initially, the term 
w 

^f equals a constant. 

This has been veri f ied experimentally by the writer who f rom the 

results of ten experiments found ^ - 1.045 - 0 .047 . This f igure 

agrees c lose ly with values of obtained by other experimenters ; 

Wood (1965) = 1.06 ^ 0. 10, Keulegan (1957) ^ = 1.05, Ellison and 

Turner (1959) and Middleton (1966). 

The initial nose velocity is plotted against the flux of density 
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Fig. 35 

The starting phenomena. 
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difference to the power one third, for the writer ' s experiments, in 

Figure 37, 

The nose velocity does not generally remain constant, as can be 

seen in Figure 38, As the nose moves downstream, frictional forces 

begin to retard its motion. The nose whose velocity is plotted in Figure 

38 moved along a bed of zero slope and the nose velocity is seen to con-

tinually decrease. In Figures 39a and 39b nose velocity is plotted against 

distance travelled for an unsteady density current flowing down a slope. 

After travelling some distance the flow approaches an equilibrium and the 

velocity asymptotically approaches a constant value. Raw data for a 

single experiment are plotted in Figure 40. Figures 37 and 38 were r e -

duced from diagrams such as this. 

5, 3 The Unsteady Layer 

It can be seen in Figure 35 (b and c) that a layer of fluid is left be=-

hing a moving nose. Experiments show that this layer moves with a 

velocity equal to that of the nose. This is not altogether surprising since 

it is the layer behind the nose which provides the driving force . If the 

nose were to move faster than the layer its depth would decrease. The 

nose would lose its driving force and slow down, allowing the layer to 

catch up. Therefore, the nose is attached to the flowing layer and the 

nose and the layer cannot move independently of each other. As the 

layer velocity is friction controlled then so is the nose. The asymptotic 
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nose ve l o c i ty wi l l t h e r e f o r e be equal to the un i f o rm f low ve l o c i ty of the 

density current . The condit ions f o r un i form f low of a density cur rent 

w e r e examined in the p r e v i o u s chapter (4, 5). 

A density jump f o r m s at the ups t ream end of the m o v i n g layer 

(Fig , 35c) , Initially this density jump i s of the m a x i m u m entraining 

type. This can be shown f r o m the re lat ionship which ex i s t s between 

and the F r o u d e number of the m o v i n g l a y e r , i 
q 2 ^ 

The Froude number has a l ready been defined as F = — 

The above can be written in t e r m s of the c h a r a c t e r i s t i c v e l o c i t y as 

2 
/ u 

where A 2*̂ 2 ^^ ^^^ ^^^^ density d i f f e rence . Howeverp the mean or 

c h a r a c t e r i s t i c ve l o c i ty (u') equals the nose ve loc i ty . T h e r e f o r e 

T h e r e f o r e if the ratio of nose ve l o c i ty to the third power of the f lux 

of density d i f f e r e n c e i s unity, then the Froude number of the l ayer i s 

a l s o unity. The density jump upstream of this layer must be of the 

m a x i m u m entraining type. 

The ve loc i ty of the nose d e c r e a s e as f r i c t i on s lows the f o l l owing 

layer„ The Froude number of the layer fa l l s and a r o l l e r reg ion f o r m s 

at the density jump. The r o l l e r reg ion cont inues to m i g r a t e upstream 
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until an equilibrium i s attained in the downstream flow. If the 

bottom slope i s zero, a s in Figure 38, no equilibrium condition ex is ts 

and the velocity of the flow will-continue to fal l , eventually causing the 

density jump to flood a s in experiment 6, (Figure 40). 

Pre l iminary experiments indicated that any instant, the velocity 

of flow i s constant along the length of an unsteady density flow» This 

was deduced by observing the nose velocity at the instant of flooding 

of the density jump for density currents moving on a horizontal bottom. 

This nose velocity was found to be very near ly equal to the calculated 

l ayer velocity immediately downstream of the jump at the instant of 

flooding. It was also noted that the layer depth was constant along the 

length of the l aye r . Hence it follows the l ayer velocity must also be 

constant over the same length. 

It should be noted these conclusions resul t from only f ive ex-

per iments and a re therefore based on l imited data. 

It was shown in the previous chapter that the Froude number for 

uniform flow of a density l ayer i s related to the downstream Froude 

number by the equation 

^ F - f^^ s/n B uJi-

where ^ was found to equal 14. 3. 

It has been shown that F^ = J ' Hence the above equation r e -

duces to ^ 
-e ^ J^ son e UJ-^ 
^ /3 
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The parameter ^ is dependent on the veloc i ty distribution 

in the moving layer. The value of ^ obtained for the present ser i es 

of experiments was 15. 3. It can be seen in Figure 41 that j S i s 

fairly constant in value and shows no dependence on the Reynolds 

number of the flow. 

There is, however, one important d i f ference between the friction 

controlled flow examined in the previous chapter and that examined 

here„ In the earl ier experiments downstream density and velocity d i s -

tributions were measured only a relatively short distance (2-3 feet) 

downstream of the density jump. It was noted previously, in these 

experiments the interfacial shear, as obtained f rom measured velocity 

prof i les , was low. It was put forward that the f orm of velocity distr ib-

ution was determined by the density jump and not solely by fr ict ion as 

in the case with uniform open channel f lows. The length of the channel 

in these earl ier tests was seven feet. 

It can be seen that in the present ser ies of tests, which were con -

ducted in a tilting flume, 120 feet long and 2 feet wide, that uniform 

veloc i t ies were not attained until the nose had travelled 40 feet or so 

(Figs. 39a and 39b), 

The tilting flume was only available for a limited period. There -

fore , detailed analyses of the unsteady density f lows were not made. 

Density and velocity distributions in the layer behind the nose were not 
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obtained. However, the similarity in the values obtained for ^ 

(14. 3 and 15, 3) suggests the velocity distribution formed immediately 

downstream of the jump remains stable further downstream. It was 

noted in the previous chapter^ that the frictional f o rces acting on the 

density flows downstream of a density jump are less than those ob-

tained by other experimenters working with density currents of uniform 

density. This difference appears to result from the velocity distrib-

ution within the flowing layer being controlled by the non-uniform 

density distribution rS.ther than boundary friction, Interfacial shear 

is considerably less than that measured for uniform density flows. 

It is important to note that the bottom and interfacial boundary 

layers were laminar for all experiments involving unsteady flows. 
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6. The Entrainment Function 

6. 1 Introduction 

In this chapter it is proposed to analyse the entrainment region of a 

density jump; particularly the ef fect of gravity on entrainment. 

The entraining zone of a density jump has been compared to the 

spread of a neutral jet. The neutral jet can be considered as the l imiting 

case of a density jump, as the upstream Froude number approaches in-

finity, This can be seen f rom the definition of the Froude number as the 

ratio of fluid momentum to hydrostatic pressure f o r c e at a section a c r o s s 

the flow. The hydrostatic pressure f o r c e of a neutral jet i s zero . There -

fore the Froude number of such a jet would approach infinity. Arithmetic ' 

ally, the above may be expressed b y : - ^ 

Q / o 2 
F = 

I A y 3 / 
There fore as A? the density excess approaches zero , the Froude number 

must approach infinity. 

It i s important to note also, for a given density current, with a spec -

ified density excess , the Froude number wil l approach infinity as the 

depth of flow is reduced to zero . 

It fo l lows, therefore^ that the character i s t i cs of the upstream end of 

a density jump, for large values of the upstream Froude number, wil l 

approach those of a neutral jet. 
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6. 2 Analysis 

Consider the f o r c e flow equation (12) x^ 
Q^ ^ = M = M , - / CUC. 

Y 2A ^ ^x, A 

The assumption is now made that the velocity and density distributions 

are self preserving in the entraining zone» Experiments showed this to be 

a good assumption for the range of Fĵ  and R^ used as can be seen in 

Figure 42« 

Equation 12 assumes that the pressure distribution i s hydrostatic. 

The angle of spread of the entraining zone was l ess than tan~^ 0„ 16 so 

that accelerat ions in the y direction are of an order l ess than those in the on 

X direction and their effect the pressure distribution is negligible » M e a s -

urements along the bottom boundary of submerged hydraulic jump have 

shown the pressure distribution to be very nearly hydrostatic (Rajaratnam, 

1964)o The flow geometry in Rajaratnam's experiments is very similar to 

that for density jumps and they therefore provide supporting evidence for 

the hydrostatic assumption» Boundary friction is ignored in the following 

analysis» The effect of this assumption as regards entrainment i s d i s -

cussed later in this chapter» 

An interesting point ar ises when equation (12) i s differentiated with 

respect to y'» One finds 
, da 

Z R 3 ¿s?̂  

/2T 
' = O 

and substituting for using w W GL 

^ Z 3 
= a - Q 

^ 9 
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the above expression reduces to 

<L ^ ^ Z G l Sr^ F^^ - 5 H (43) 

The significant feature of the above equation is that as the Froude 
1 

number approaches the value F = , entrainment ceases . Hence 

Q approaches a constant value. Simultaneously the depth of f low y' must 

approach a constant value. This results f rom Equation 12 where Q and y' 
1 

SfT 2 

are the only variables„ If F were to go below the value F = ( - — ) then 

dQ 

, would be negative. 

This is c lear ly impossible since it would involve a negative diffusion 

p r o c e s s : salt water becoming fresh or heat concentration and temperature 

r i se without additional energy. Both violate the second law of thermo-

dynamics and will not occur . The minimum Froude number attainable 

in the entraining zone of a density jump is therefore equal to Sf j / Ŝ ^ to 1 the power one half. (S^/ Sj^) ^ i s equal to one if the ve loc i t ies and den-
1 1 

S "2 

sities are uniform. Generally (Sfj / ^rn)^ will be l e s s than one. ( ) 

values together with values of F2 are plotted against F̂ ^ in Figure 2 5 

for maximum entraining density jumps. 

The Entrainment Parameter 

The entrainment parameter is a useful concept in that it expresses 

loca l entrainment at a section^ in terms of loca l f low character is t i cs . 

Ellison and Turner (1959) defined an entrainment parameter (E) as the 



o 0-5 

1.1/ 
uu' 

l O 2 0 

0 - 2 

0-4 

0 - 6 

0 - 8 -

A o 
/ Assumed profile 

I' for a surfacc jet 

/ 

/ 
/ 

/ 
7 / 

J Interface 

G 
+ 

A 

Froude No. 
7 0 
4 0 
3. I 
2 2 
0-73 

VELOCITY DISTRIBUTIONS IN THE ENTRAINMENT ZONE 
OF A DENSITY JUMP 

FIGURE 42. 



73. 

ratio of an entraining ve loc i ty , normal to the direct ion of f low of the 

density current , to the mean ve loc i ty at the section of interest„ In 

mathematica l t e r m s the entrainment parameter i s defined as -

i r £ (y 'uo (44) 

El l ison and Turner defined the depth of their density currents as 

the mean of the depth to the greatest ve loc i ty gradient and the depth of 

maximum density gradient. Since the ve loc i ty and density distributions 

are self preserv ing , the depth as defined by Ell ison and Turner can be 

d i rec t ly related to the interfacial depth. The w r i t e r ' s exper iments 

showed the two depths w e r e equaL 

Equation (44) can also be written as 

F r o m Equation (43) one has 

2. 
dQ ^ 5M F - 5H dy' 
^^ " ° ^SR^F^^ SH ° ^^ 

and f r o m equation (45) 

dQ ^ E ^ 
dx y 

so that equating the above two express ions one has 

z(s m F - SH) OLY! 

The above express ion i s a function which re lates the entrainment 

parameter to the l oca l Froude number and the interfac ial slope. The 
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latter factor , however^ is an unknown quantity. Although a theoretical 

express ion could not be derived for the interfacial slope as a function of 

X, an expression which satisfied the four necessary boundary conditions 

was found. The boundary conditions will now be examined, 

(i) At the Origin 

If one cons iders a density jump originating with a finite Q and Z^ 

f rom a virtual origin, the Froude number at the origin will be infinite. 

This fact has been discussed previously where it was shown that as the 

Froude number approaches infinity, the behaviour of the entraining den-

sity current approaches that of a neutral jet. It can be shown that the 

spread of a se l f -preserv ing neutral jet i s linear with distance (Streeter,, 

1961). 

Considerable experimental data are available on the entraining 

character is t i cs of a neutral jet. Townsend (1956) measured the spread 

of a neutral two dimensional let and found = 0. 15 . 

X 

Measurements of a two dimensional wall jet by Bakke (1957) gave 
dy' ^ 

= 0. 144. The measured velocity distributions resemble those of a 

semi - two dimensional jet, except for a thin boundary layer next to the 

wall. The boundary stress acted to reduce entrainment but by only a 

small amount. Conditions at the virtual origin are listed below. 

(a) y ' = 0 (b) F CO (c) = c< = 0. 150 dx 
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(ii) Conditions far downstream 

It has been shown that uniform conditions are attained when 
- HO 

F = (Spj/ ^rn) ^ provided is to be a continuous function. The case 
dQ 

where — , is not continuous will be discussed at the end of this chapter, 

If a critical depth y^., is defined as the uniform flow depth when 

F = ("l^ then from equations (17) and (10) y ^ = ( ^ ) ^ . ^C ^ SH ^ 0 

Then at the far downstream end of the entraining zone, the following 

conditions apply. 

(a) y' = yc 

(b) F = 

(c) = 0 dx 

A depth profile which satisfies all the boundary conditions and is in 

fair agreement with measured depth profi les is given by 

r ! - C < 

-iL- = 1 - e ^c (47) 
Yc 

This assumed profile is plotted together with measured profi les in 

Fig, 43. It will be seen that the above expression is a convenient 
dy' function as it enables -r^ to be expressed in terms of a local Froude dx 

number. Therefore» the entrainment function can be expressed solely 

dv' 

as a function of the local Froude number, by substituting for in 

Equation (46). 
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If equation (47) is differentiated with respect to x, one finds -

/ 

dx = (><{1 -
Yc 

(48) 

y 

can be eliminated f rom the above equation by means of the f o r c e 

f low equation. 

The f o r ce flow as expressed in Equation 19 may be used to calculate S, 

yc 
Hence M 

poQ: 
^ = 

and when y' = y^» F = ^hI 
so that SH 

^k^LEltil y 
2 • 

3 

(19) 

p.af- ' z (SH/s^y/^'fz 
If one equates Equation (19) and (49) one obtains 

(49) 

i r 
r 

The depth ratio — 
y c 

(50) ^-/s.F^^ i) 
can be eliminated f rom the interfacial slope 

equations to give 

^ = ^ dx. 
/ -

(Z F^ -h I) 
The expression for the entrainment function can now be written in 

terms of the local Froude number 
h - I 

/ — 3 F 
2 Ti ^ / 

The above equation is graphed in Figure 44. 

o< (51) 

6, 3 Experimental Veri f ication 

Experimental data taken directly f rom Ellison and Turner ' s 1959 

paper i s also plotted in Figure 44 and shows c l ose agreement with the 



0-8 

Ob 

1 % 
OA 

02 

O 

o Measured Profiles 

12 

DEPTH PROFILES ENTRAINING REGION OF A DENSITY JUMP 

FIGURE 43. 



0 0 8 -

o Experimental Data 

(Ellison t Turner) 

0 0 6 -

E 0 0 4 -

0 0 2 -

O 

ENTRA INMENT PARAMETER VERSUS LOCAL 

FROUDE No. 

FIGURE 44. 



7 7. 

t h e o r e t i c a l curve» The data w e r e obtained f r o m F i g u r e 2 of the above 

p a p e r where the entra inment p a r a m e t e r i s plotted a g a i n s t the 

R i c h a r d s o n number of the flow. The R ichardson number i s equivalent 

to i n v e r s e s q u a r e of the F r o u d e number . 

E l l i son and T u r n e r ' s exper imenta l r e s u l t s w e r e for a s u r f a c e , 

f r e s h w a t e r c u r r e n t f lowing over an ambient l a y e r of sa l t w a t e r . T h e r e -

f o r e the z e r o boundary shear a s sumpt ion m a d e in the a n a l y s i s i s a 

r e a s o n a b l e approx imat ion for this c a s e . E l l i son and T u r n e r ' s flow 

p a r a m e t e r s w e r e defined sl ightly d i f ferent ly to those of the author so 

that it w a s n e c e s s a r y to convert the f o r m e r ' s data b e f o r e it could be 

c o m p a r e d with the der ived e x p r e s s i o n for entrainment. It might be 

mentioned that E l l i s o n and T u r n e r ' s data f i t s the theore t ica l curve 

m o r e c l o s e l y if it i s not ad jus ted . A s m a l l d i s c r e p a n c y in theory and 

e x p e r i m e n t d o e s ex i s t , however, and i s c a u s e d by the choice of depth 

p r o f i l e . 

6. 4 Veloci ty and Dens i ty Di s t r ibut ions in the Entra inment Zone 

The ve loc i ty u s e d in ca lcu la t ing the R ichardson number w a s the 

s u r f a c e ve loc i ty s ince it could be e a s i l y m e a s u r e d . It i s r e a s o n a b l e to 

s u p p o s e the ve loc i ty d i s t r ibut ion of E l l i s o n and T u r n e r ' s densi ty c u r r e n t s 

w a s s i m i l a r to that obtained by the wr i t e r b e c a u s e of the s i m i l a r i t y of 

e x p e r i m e n t a l se t up. The only s igni f icant d i f f e r e n c e would be the 

a b s e n c e of the boundary l a y e r c a u s e d by the f a l s e bottom in the w r i t e r ' s 



78. 

experiments. If one extrapolates a surface velocity from the velocity 

distribution in Figure 42 one finds U^^^ = 1, 85 u^ nil ax 

Ellison and Turner's characteristic depths taken as the mean depth 

to maximum velocity and density gradients, was found to occur at the 

interface so that depth measurements required no correction. 

The density gradient near the interface steepens slightly as the 

Froude number decreases. This results from the fall in the rate of 

energy dissipation and therefore the turbulences level as uniform con-

ditions are approached. 

Turbulent exchange across the interface is reduced and the interface 

becomes more distinct at the downstream end of the entraining zone. 

A further point arising from the forms of the velocity and density 

distributions (Figs. 42, 45) is that there appears to be a layer containing 

stagnant fluid of different density to the ambient fluid from = 1.0 to 1. 3, 
y 

This layer does not really exist but results from intermittency of the 

fluctuating interface affecting mean density readings in this range. The 

density measuring device takes a temporal mean reading at a given 

depth and therefore readings close to a turbulent interface, such as 

exists in the entraining zone, can easily lead to an erroneous impression 

of the actual density distribution. The writer believes the true density 

gradient close to the interface at any instant is far steeper than that 

indicated in Figure 45. 
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Self preservation of velocity and density distributions was assumed 

when deriving the entrainment function. This approximation was quite 

reasonable as can be seen f rom Figures 42 and 45, The veloc i ty d i s -

tribution showed no detectable change along the length of the entrainment 

zone. Values of 1. 36 and 0. 60 were reduced f rom the above f igures for 

Sj^ and Sjj respect ive ly for the surface jet. 

Conversion of Ellison and Turner ' s data was effected as given below 

= I ,, ^ O- 8a 
15«/ [0-6O/ I-S5 Ri^ Ri'^z 

and was plotted against the entrainment parameter, 

6, 5 Sources of E r r o r 

Experimental data l i es slightly above the derived curve. It is b e -

l ieved this e r r o r i s largely attributable to the selected depth pro f i le 
which l ies below the experimental prof i le . Under estimation of y' 

dy' 

causes to be underestimated in the form of equations selected.. 

The entrainment parameter is directly proportional to the interfacial 

slope. Therefore , values of E calculated f rom Equation 51 will be 

l e s s than experimental values. This e r ror i s only apparent at lower 

Froude numbers in the range one point four to three. 

A s already discussed, S-^ also changes slightly at lower Froude 

numbers due to the reduction in interfacial turbulence. This is another 

source of e r r o r . 
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6. 6 Effect of Boundary Frict ion on Entrainment 

The presence of boundary friction at a density junnp results in a 

decrease in -entrainment. 

Boundary fr ict ion was not included in the earl ier analysis for two 

reasons ; f irst ly its neglect is a good approximation for density jumps 

at a f ree surface^ for which experimental data were available, and 

secondly the differential entrainment equation could not be solved ex -

actly if fr ict ion was included. 

The entrainment equation containing a fr ict ion term can be solved 

numerically. However^ this was not attempted, as the w r i t e r ' s interest 

was centred m o r e on the analysis of the entrainment function rather than 

the secondary e f fects of fr ict ion. 

The influence of fr ict ion on entrainment can be seen f rom the f o r c e 

flow diagram shown in Figure 46, Consider a density jump with its 

upstream state given by the point A„ If there i s no boundary shear, the 

f o r c e flow M w i l l remain constant along the length of the entrain-
^ o a f 

ment zone. Therefore the value of the flow ratio (K) at any depth Y i s 

given by a point lying on the line of constant M passing through A 

i, e, AB, The point B represents the downstream condition of the en-

trainment region where, in the ideal case, the Froude number i s unity. 

If boundary shear is present, it can be seen f rom Equation (12) that dx 
is negative. Since is everywhere positive it fo l lows will 

%7 
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always be negat ive . T h e r e f o r e a plot of flow r a t i o against depth, f o r 

an entra ining zone sub jec t to boundary f r i c t ion , i s given by a l ine s i m -

i l a r to AC in F i g u r e 4 6 , It can b e seen entra inment in this c a s e i s l e s s 

than it w a s when t h e r e was no f r i c t ion along AB. Va lues of K a r e l e s s 

at c o r r e s p o n d i n g depths along AC, than along AB, 

The downstream state of the jump i s f r i c t ion control led provided no 

other contro l a c t s . T h e r e f o r e , u n l e s s the slope i s c r i t i c a l , the point C 

i s not r e a c h e d and a discontinuity in o c c u r s , in the form of a 
1/ 

r o l l e r region. T h i s poss ib i l i ty i s examined in the sect ion following, 

6, 7 Discont inui t ies in dQ/ dy' 

It h a s been shown that the minimum Froude number at ta inable in the 

entraining zone of a density jump i s ° F u r t h e r m o r e uniform flow 

condit ions a r e not reached until this value of F r o u d e number i s attained. 

It fol lows, t h e r e f o r e , the maximum Froude number poss ib le downstream 

of a densi ty jump, o c c u r s when the entra inment zone extends the whole 

length of the jump. Under these conditions entra inment i s a maximum 

/S E x p e r i m e n t s have shown that Froude n u m b e r s l e s s than ( — a r e 
\ S^/ 

p o s s i b l e . The m e c h a n i s m of the r o l l e r region a s s o c i a t e d with these 

j u m p s h a s been d i scussed previously . Mathemat ica l ly , the r o l l e r region 

dŷ  
dQ r e p r e s e n t s a discontinuity in -—7- = As there i s v e r y l i t t l e entra inment 

dQ 

in the r o l l e r region, , c e a s e s to be continuous once the loca l F r o u d e 

number i s conjugate to the non-entra in ing Fr oud e number of the down-
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s tream f low. The r o l l e r reg ion i s d i rec t ly analagous to the open 

channel hydraulic jump and r e s p o n d s to a downstream contro l in a s i m -

i lar fashion. Th-e entrainment zone p r e s e n t s a continuous range of p o s s 

ib le states To which a s imi lar range of downstream flow^s can b e coupled , 

The l i m i t s of this range o c c u r when, 

(a) the entraining reg ion o c c u p i e s entire length of the jump and the down-

is ̂ ^^ 
s tream F r o u d e number i s equal to » 

(b) ':he r o l l e r reg ion i s f o r c e d back so as to c o v e r the entrainment zone. 

The jump i s then of the non-entraining type. Under cer ta in condit ions , 

f o r example- w^hen a w e i r c o n t r o l s the downstream f low, the jump wi l l 

r e a c h an instabil ity b e f o r e the non-entraining state can be establ ished. 
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The Fal l in F o r c e Flow at a Density Jump 

7. 1 Introduction 

Experiments indicated that the l o ss in f o r c e flow a c r o s s a density 

jump was as much as 30 per cent.significantly greater than that ex -

perienced in open channel j u m p s j n this chapter an attempt i s made at 

estimating the probable l o s s in f o r ce flow a c r o s s a density jump„ 

It wil l be shown that for density jumps with high upstream Froude 

numbers, the major proportion of f o r ce flow is lost in overcoming 

boundary shear at the upstream end of the jump. Most f o r c e flow is 

lost in the upstream half of the density jump, the region where ve loc i t i es 

and shears are highest. Two-other important observations concerning 

the upstream end of a density jump were made. These were as fo l lows 

(i) Th e v e l o c i t y d i s t r i b u t i o n w a s found to b e sel f p r e s e r v i n g and c o n -

s i s t e d of a l a m i n a r r e g i o n b e t w e e n the so l id b o u n d a r y and the v e l o c i t y 

m a x i m u m , and a turbulent r e g i o n extending f r o m the v e l o c i t y m a x i m u m 

to the i n t e r f a c e . 

(ii) T h e r e f o r e if the b o u n d a r y l a y e r i s de f ined a s b e i n g the r e g i o n b e t w e e n 

the so l id b o u n d a r y and the v e l o c i t y m a x i m u m , then the b o u n d a r y l a y e r 

i s laminar. 

( i i i ) The s p r e a d of the d e n s i t y j u m p in the u p s t r e a m r e g i o n w a s found to 

be linear and it fo l lows f rom observation (i) that the spread of the boundary 

layer in this region of jump is also l inear. 
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A s impl i fy ing assumption i s made in the f o l l owing analysis , this 

being that the p r e s s u r e gradient in the x d i rec t i on i s neg lec ted . The 

prob lem i s treated as a neutral ly buoyant wal l jet„ The p r e v i o u s ana lys i s 

shows that gravitational inf luence in the entrainment zone of a densi ty 

jump i s smal l f o r l o c a l F r o u d e n u m b e r s greater than four o r f ive . 

T h e r e f o r e , it i s a reasonab ly good approximat ion to treat the ups t ream 

end of the density jump as a wal l jet. 

7. 2 Ana lys i s 

The analys is takes the fo l lowing f o r m : -

(a) The boundary shear i s e x p r e s s e d as a function of the known s e l f -

p r e s e r v i n g v e l o c i t y distribution. 

(b) The e x p r e s s i o n f o r boundary shear i s substituted into a d i f f erent ia l 

f o r m of the f o r c e f low equation f o r a neutral jet. 

(c) A solution i s found f o r the d i f ferent ia l equation giving the fal l in 

f o r c e f l ow at a sect ion as a function of i ts d istance f r o m the or ig in and 

the upstream Reynolds number . 

The Boundary Shear 

The boundary shear can be determined f r o m the v e l o c i t y distr ibution 

at any sect ion. The total shear f o r c e exerted by the boundary on the f l ow 

wi l l equal the change in f o r c e f low of the density current . The total 

shear f o r c e i s found by integrating the boundary shear between sec t i ons 

of interest . 
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Consider the veloc i ty distribution shown in Figure 47 where S 

denotes a distance in the y direction within the laminar boundary layer„ 
/ 

The boundary layer thickness ( b ), is defined as the distance frona the 

boundary to the veloc i ty maxima. Since the velocity distribution for a 

wall jet i s se l f -preserv ing (Swartz and Cosart, 1961) the two constants 

jtS ̂  andjg^ can be defined b y : -

A = 

and = ^niax 
u 

where y' and u' a re as previously defined. As the boundary layer is 

laminar the veloc i ty distribution within the boundary layer i s parabol ic 

so that a d imensionless equation relating ve loc i t ies and depths can be 

written: 

^ - 4 (2 - - i ) so that = 2(1 - - L ) 

/ L̂AJL/ V u 

At the boundary the velocity gradient i s given by : ^ ^ ^ ^ = 2IJL 

and the shear i s given by 

Hence = (52) 
y 

The l o s s in f o r c e flow can be determined by integrating the above 

shear s t ress along the boundary, in the direction of flow. The f o r c e f low 

equation for a neutrally buoyant jet i s given b y : -
2 

Sm/gp Ci -h I U ' ct?C (53) 
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where M^ is a reference force flow at x = x^. 

Self preservation implies that the spread of the jet is linear with 

distance from some virtual origin then y' = x where is an ex -

perimentally determined constant. 

The above equation when differentiated with respect to x y ie lds : -

= =< (54) dx 

and a relationship between Q and x can be determined by eliminating y' 

from the force flow equation expressed in differential form. 

If equation (53) is differentiated with respect to x one finds:-
oLM, - ^ da ^ Srr^Po Q^ JiJ v- 2, /J^ B^Ql = Q 

oL^ 7T ^^ ^ 
dy' 

Substituting for and y' in the above, and after some algebra one 

obtains : -
do. = ( GL - o^p^/S. ) (55) 

It is convenient to non-dimensionalise the foregoing relationships. 

Hence reference values are defined as 

Q = Ql when x = xi 

and when equation (55) is divided by ^ one has 

cLK = ( K - /a, R, ) 
cLx ^ X 

Q 

(56) 

where K = 
Qi 
X 

and Ri = ^ 
A» 

X 
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The differential equation (56) has a general solution given by 
( K - ^ /g^ ) 
\ ^ a o I 

where A is a constant which can be determined from the boundary con-

ditions a t x = x^. x ^ i s the distance between the virtual origin and the 

point at which the velocity distribution first becomes self-preserving, 
of 

This is sufficiently close to the upstream ej;̂ d/the jump to be taken as 

that point. At this section, by definition, X = 1 and K = 1 so that the 

(57) 

complete solution to the differential equation is therefore 

/ < = / / - ^ /g^. X ^̂  + £ / 3 a 5 , : ' 
I c< /S, /?,/ d R, 

The force flow equation may be non-dimensionalised by dividing by 
2 

~ ¡>0 Q î so that equation (53) reduces to: -

/ - ^ ^ - / x 
y^ M, 

(58) 

where 

The non-dimensional force flow ratio (0) is given by 
/ r ' \ y 

a = / " f / ^ ^ / ' ^ i 
J 

Employing equation (58) this can be written:-
o^ K K 

K can be eliminated using equation (57) to give 

a = R, J 
7o 3 Discussion 

R X y^ (59) 

Equation (59) expresses the fall in force flow of a neutral wall jet, 



/ 

as a function of the distance in th-e direction of f low and a re f e rence 

Reynolds number. As the results of this analysis are to be applied to a 

density jump the parameters , fB2 , ^ ^^^ ^m were obtained f r o m 

measured velocity distributions and angles of spread at the upstream end 

of a density jump. Their values were found to be O.tX, 1. 60, 0 . 1 5 and 

1, 30 respect ively . The ratio of f o r c e f lows at an upstream section and 

at a section downstream are plotted against distance between the sections, 

f o r a range of upstream Reynolds numbers in Figure 48. 

It can be seen that the initial fall in f o r c e flow i s sharp but l e s sens 

further downstream as the boundary shear decreases . It i s i l lustrative 
/ 

to examine a particular jump, say with an upstream Froude number of f ive 

and a Reynolds-number of -one thousand. The conjugate depth ratio f o r 

this jump is approximately seven and experiments showed the region of 

l inear spread extends some three t imes this f igure downstream f rom the 

toe of the jump. Hence 7 is approximately twenty. It can be seeji 

f rom Figure 48 that no matter what the spread downstream of —7 = 20 y 1 

further l o s s in f o r c e flow is small -compared with that which has already 

taken place. It i s to be expected then, that the foregoing theory f or fal l 

in f o r c e flow in a neutral jet applies reasonably well to density jump 

provided the upstream Froude number is large. Jumps with a Froude 

number l e s s than three cannot be satisfactori ly approximated by a neutral 

jet and so the foregoing theory will not give a good estimate of the fall in 

f o r ce flow. 
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Some exper imenta l ly determined f o r c e flow r a t i o s a r e shown in 

F i g u r e 48 and it can be seen that shear f o r c e s act ing on density j u m p s 

a r e g r e a t e r than those on a neutra l j e t of the s a m e u p s t r e a m Reynolds 

number . T h i s i s not a l together surprising^ s ince the density jump 

c e a s e s to entrain at some point downstream and the flow b e c o m e s uniform, 

The r a t e of fa l l in f o r c e flow would r e m a i n constant in th is region leading 

to a h igher o v e r a l l l o s s in f o r c e flow, a s compared with a neutra l j e t . 

The two points plotted for 400 ^ ^ w e r e for j u m p s with up-

s t r e a m F r o u d e numb-ers l e s s than three , and it -can be seen they do not 

conform to the foregoing ana lys i s . A g r e e m e n t was s a t i s f a c t o r y for 

j u m p s with u p s t r e a m Froude n u m b e r s g r e a t e r than three . 

The f o r c e flow r a t i o s w e r e ca lcu la ted from m e a s u r e d ent r a i nments 

and depth r a t i o s for a number of density jumps. A c c u r a c y in ca lcula t ing 

+ 

the f o r c e flow downstream of the jump was - 5 pc. so that the actual 

l o s s in f o r c e flow could only be es t imated with a c c u r a c y of approximate ly 
t 25 pc. 
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8, E x p e r i m e n t a l E q u i p m e n t 

8. 1 Steady State T e s t s 
All s t eady s t a t e e x p e r i m e n t s d e s c r i b e d in t h i s r e p o r t w e r e m a d e 

in the t e s t tank shown s c h e m a t i c a l l y in F i g u r e 49, The tank c o n s i s t e d of 
a plywood box 14 f e e t s q u a r e by 4 f e e t deep . The f r o n t of the tank w a s 
m a d e f r o m 3/ 4 inch p e r s p e x shee t ing . A f a l s e s ide w a s p l a c e d a p p r o x -
i m a t e l y 6 i n c h e s beh ind the p e r s p e x , and f a l s e bo t tom c o m p a r t m e n t s a s 
shown in F i g u r e 49 w e r e p l aced in pos i t i on . W e d g e s w e r e u s e d to f o r c e 
the f a l s e s ide h a r d a g a i n s t the f a l s e bo t tom c o m p a r t m e n t s wh ich i n ' t u r n 
p r e s s e d a g a i n s t the p e r s p e x v i ewing f a c e of t h e tank . The f a l s e bo t tom 
c o m p a r t m e n t s w e r e v e r y s a t i s f a c t o r y a s they p e r m i t t e d e a s y i n s e r t i o n 
of v e l o c i t y and t e m p e r a t u r e p r o b e s t h rough the bo t tom of the c o m p a r t m e n t 
in to the d e n s i t y c u r r e n t . Ho les of j inch d i a m e t e r w e r e d r i l l e d at 3 inch 
and 6 inch s p a c i n g s in the two c o m p a r t m e n t s . The h o l e s w e r e p lugged 
wi th r u b b e r b u n g s which w e r e i n s e r t e d un t i l f l u s h wi th the f a l s e b o t t o m . 
The p r o b e s w e r e l o w e r e d th rough h o l e s d r i l l e d t h rough the b u n g s . T h i s 
p r e v e n t e d the c o m p a r t m e n t s f i l l i ng wi th w a t e r . 

The c o m p a r t m e n t s could be t i l t ed f o r e x p e r i m e n t s on f r i c t i o n c o n -
t r o l l e d d e n s i t y j u m p s , a l though t h i s r e q i i i r e d unwedg ing of the f a l s e 
s ide and r e w e d g i n g a f t e r the a d j u s t m e n t had b e e n m a d e . S i m i l a r l y , t he 
depth of the in l e t s lo t could b e a d j u s t e d by r a i s i n g o r l o w e r i n g the inf low 
c o m p a r t m e n t shown in F i g u r e 49. 
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The inflowing water was heated by an instantaneous three phase 

heater (415V) having a maxinaum capacity of approximately 2„ 5 kilo-

watts« The flow was then metered through a rotameter of capacity 

0 -3 gallons/ minute. The rotameter was calibrated for a range of 

water temperatures and accuracy of measurement of the metered 

flow was always better than 2 pc. 

It was necessary to wait at least ten minutes to one quarter of an 

hour before taking any readings^ after adjusting the flow state in any 

experiment. This ensured a steady state had been established. 

Heat transfer through the boundaries of the tank was found to be 

quite negligible compared with the total heat flux. Heat loss was not 

a source of error in experiments. The temperature of the inflowing 

water was measured by a thermocouple in the inlets and downstream 

temperatures were measured relative to this reference. 

The outflow from the tank drained into a 4 inch diameter overflow. 

It was necessary to have a continuous supply of cold water to the tank to 

make up for ambient fluid entrained into the density jump. Large 

holes were cut into the false side below the level of the density current 

as shown in Figure 49. 

These holes permitted makeup flow to travel vertically into the 

density jump and minimised horizontal flows in the ambient fluid. 

8. 2 Unsteady Flow Experiments 

The unsteady flow experiments described in Chapter 5 were made 
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in a tilting f lume 120 feet long,, 2 3 inches internal width and 24 inches 

deep. The f lume was made of marine plywood with one side made of 

i inch perspex. It was supported in a suspended steel f rame which was 

attached via adjustable tie rods to an overhead arch. This permitted 

the flume to be adjusted to any slope up to a maximum of nearly 3 pc. 

over its length. However, the maximum slope used in the experiments 

was 0, 54 pc. 

A s the tests were of limited duration, salt water was used f o r the 

density current and the flume was filled with f resh water. The salt 

water was pumped via an or i f i ce flow meter f rom a 300 gallon storage 

tank into the inlet manifold of the flume. The depth of f resh water at 

the inlet was never l e s s than 12 inches so that c irculations induced in 

the f resh water by the density current were small. The thickness of the 

density current was never greater than 2 inches. 

The accuracy of the o r i f i c e meter was approximately 5 pc . over the 

range of experimental f lows. The nose velocity was measured by timing 

its travel between m a r k e r s three feet apart along the length of the f lume. 

The spec i f i c gravity of the salt water was measured using a calibrated 

hydrometer . 
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^" ^ e loc l ty D i s t r i b u t i o n s 

9. 1 I n t r o d u c t i o n 

It h a s b e e n shown t h a t t h e v a l u e s of f low p a r a m e t e r s d o w n s t r e a m 
of a d e n s i t y j u m p a r e m a r k e d l y d e p e n d e n t on t h e v e l o c i t y d i s t r i b u t i o n of 
t h e f l ow . 

G e n e r a l l y J, t he v e l o c i t y d i s t r i b u t i o n i s n o n - u n i f o r m and i s c o n t r o l l e d 
by two f a c t o r s ; 

(i) t he R e y n o l d s n u m b e r of t h e flow,, and 
(ii) t he f o r m of t he j u m p . 
The R e y n o l d s n u m b e r i n f l u e n c e i s t he l e s s i m p o r t a n t of t he two e v e n 

f o r t he low R e y n o l d ' s n u m b e r s a s s o c i a t e d w i t h t he e x p e r i m e n t a l f lows« 
D e n s i t y j u m p s r e p r e s e n t d i s c o n t i n u i t y of f low e n e r g y . E n e r g y i s 

d i s s i p a t e d b y t u r b u l e n t s h e a r f o r c e s a t t he j u m p and i t i s t h e s e t u r b u l e n t 
e d d i e s w h i c h d e t e r m i n e the f o r m of t h e d o w n s t r e a m v e l o c i t y d i s t r i b u t i o n o 
T h e b o t t o m b o u n d a r y l a y e r w i t h i n t h i s f low t r a n s i t i o n h a s l i t t l e e f f e c t on 
the f i n a l v e l o c i t y d i s t r i b u t i o n o 

If t he j u m p i s f r i c t i o n c o n t r o l l e d the d o w n s t r e a m v e l o c i t y d i s t r i b u t i o n 
m u s t b e a f f e c t e d by b o u n d a r y f r i c t i o n . H o w e v e r , in e x p e r i m e n t s , , the 
v e l o c i t y d i s t r i b u t i o n d o w n s t r e a m of a f r i c t i o n c o n t r o l l e d d e n s i t y j u m p 
d id not u n d e r g o any s i g n i f i c a n t c h a n g e f o r l a r g e d i s t a n c e s d o w n s t r e a m of 
t he j u m p . T h e e x p e r i m e n t a l f l o w s o b s e r v e d d o w n s t r e a m of the d e n s i t y 
j u m p s c o n s i s t e d of a t u r b u l e n t r e g i o n s a n d w i c h e d b e t w e e n two l a m i n a r 
b o u n d a r y l a y e r s . One b o u n d a r y l a y e r o r i g i n a t e d f r o m t h e b o t t o m of t h e 



94. 

c h a n n e l and the o t h e r f r o m t h e i n t e r f a c e . 

T h e c a s e w h e r e the l a m i n a r b o u n d a r y l a y e r s s p r e a d r i g h t a c r o s s 
the m o v i n g l a y e r h a s b e e n a n a l y s e d t h e o r e t i c a l l y b y K e u l e g a n (1944). 
T h i s a n a l y t i c so lu t i on h a s s i n c e b e e n v e r i f i e d e x p e r i m e n t a l l y by Ippen 
and H a r l e m a n (1952) B a t a and Bog ich (1953) and o t h e r s , who h a v e shown 
K e u l e g a n ' s e q u a t i o n s ho ld up to R e y n o l d s n u m b e r s of a p p r o x i m a t e l y 1000. 
A l though in s o m e e x p e r i m e n t S y R e y n o l d s n u m b e r s d o w n s t r e a m of t h e 
d e n s i t y j u m p w e r e a s low a s 800, the t u r b u l e n c e g e n e r a t e d a t the j u m p 
did not d i s s i p a t e in t he t e s t l e n g t h of the c h a n n e l , 

9. 2 C l a s s i f i c a t i o n -of V e l o c i t y D i s t r i b u t i o n s 

T y p i c a l v e l o c i t y d i s t r i b u t i o n s f o r a r a n g e of d o w n s t r e a m F r o u d e 
n u m b e r s a r e shown in F i g . 50. It c a n b e s e e n t h a t t h e d i s t r i b u t i o n b e -
c o m e s m o r e u n i f o r m a s t h e d o w n s t r e a m F r o u d e n u m b e r d e c r e a s e s in 
v a l u e . 

T h e v e l o c i t y d i s t r i b u t i o n shown in t he top l e f t of F i g . 5f) had an u p -
s t r e a m F r o u d e n u m b e r of 4. 1 and a d o w n s t r e a m F r o u d e n u m b e r of 0 . 80. 
T h i s s a m e v e l o c i t y d i s t r i b u t i o n f o r t he s a m e d e n s i t y j u m p i s p l o t t e d in 
F i g u r e 23. In F i g u r e 24 the d e n s i t y d i s t r i b u t i o n f o r t h i s s a m e j u m p i s 
p l o t t e d . It c a n b e s e e n t h e d e n s i t y d i s t r i b u t i o n i s q u i t e n o n - u n i f o r m , and 
t h i s i n d i c a t e s t ha t t h e e n t r a i n m e n t z o n e e x t e n d s t h e l e n g t h of t h e d e n s i t y 
j u m p . C o m p a r e the v e l o c i t y d i s t r i b u t i o n f o r F 2 = 0 . 80 and F 2 = 0 . 33. 
In t h e l a t t e r c a s e t he u p s t r e a m F r o u d e n u m b e r w a s 5. 2 and the d e n s i t y 
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jump w a s near ly non-entraining. The densi ty dis tr ibut ion w a s t h e r e -

f o r e near ly uni form and the entrainment zone occupied only a short 

sect ion of the jump« The veloci ty dis tr ibution, too, i s m o r e uni form 

than prev ious ly . 

It followSs there fore , that the form of the jump i s a dominant p a r a -

m e t e r in determining the downstream veloc i ty distr ibution. The fo rm 

of the jump is dep€n<J-ent on two v a r i a b l e s , the u p s t r e a m and downstream 

F r o u d e n u m b e r s . 

Densi ty jump form s can be divided into approx imate ly three c l a s s e s 

(i) Those with low u p s t r e a m F r o u d e n u m b e r s { l e s s than two) 

(ii) Those with u p s t r e a m F r o u d e n u m b e r s g r e a t e r than two and down-

s t r e a m F r o u d e n u m b e r s a m a x i m u m . 

(iii) Those with downstream F r o u d e n u m b e r s l e s s than the m a x i m u m . 

ii) The f i r s t type of jump h a s a high downstream F r o u d e number but 

t h e r e i s l i t t le entrainment at the jump. The fo rm of the jump i s shown in 

F i g . 51. The ve loc i ty dis tr ibut ion tends to be s i m i l a r to the u p s t r e a m 

ve loc i ty distr ibution. 

The inlet Reynolds number v a r i e d f rom about 700 to 1200 in ex-

p e r i m e n t s and the veloc i ty distr ibution in the slot would have approached 

pa rabo l i c f o r m with a ve loc i ty cor rec t ion f ac tor of 1. 20. However^ ttie 

toe of the jump w a s genera l ly three or four t i m e s the u p s t r e a m depth, 

d o w n s t r e a m of the inlet slot and veloci ty dis tr ibution m e a s u r e d in th i s 
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short region of uniform flow gave a constant value of 5m of 1. 14 ^ 0 . 0 4 . 

(ii) The second type of jump with upstream Froude number greater than 

two and a maximum downstream Froude number was found to have a 

velocity distribution correction factor which was independent of the up-

stream Froude number. This result i s not surprising as the conjugate 

state for this type of jump is ve ry nearly the same fo r all upstream 

Froude numbers. When the upstream Froude number is greater than 2 

the downstream end of the jump is sufficiently far f rom the upstream 

end, so as not to be influenced by upstream conditions. The velocity 

correction factor for this type of jump, where the entrainment zone ex-

tends the whole length of the jump, was found to be 1. 32 ^ 6. 0 5. 

This type of jump was examined in detail in Section 4 . 4 . A typical 

maximum entraining jump profi le is shown in Fig, 43. 

(iii) When the downstream Froude number is small the velocity dis-

tribution downstream is influenced by the non-entraining ro l le r region 

of the jump. 

At the transition from the entraining zone to the ro l le r region, the 

velocity distribution in the jump was the same as that for a maximum 

entraining jump. This is to be expected. The change in form of the ve l -

ocity distribution is dependent on the ro l le r region. Since there i s 

v ir tual ly no entrainment in the ro l ler region it may be regraded math-

ematically; as a normal hydraulic jump. Therefore the character ist ics 

of the ro l le r region are fully defined by either i ts upstream or downstream 
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F r o u d e n u m b e r „ T h e v e l o c i t y d i s t r i b u t i o n of a p a r t i a l l y e n t r a i n i n g j u m p 
would b e e x p e c t e d to b e a f u n c t i o n of the d o w n s t r e a m F r o u d e n u m b e r only^ 
a s a r e s u l t of t he m e c h a n i s m d e s c r i b e d above , A t y p i c a l p a r t i a l l y e n t r a i n 
m g d e n s i t y j u m p i s shown in F i g u r e 15, 

9o 3 F o r c e F l o w C o r r e c t i o n F a c t o r s 
F o r c e f low c o r r e c t i o n f a c t o r s c a l c u l a t e d f r o m t h e s e v e l o c i t y d i s t r i b -

u t i o n s a r e p l o t t e d a g a i n s t d o w n s t r e a m F r o u d e n u m b e r in F i g , 52, 

An i m m e n s e a m o u n t of r e d u c t i o n w a s r e q u i r e d to ob ta in t h i s d i a g r a m . 
D e t a i l s of e x p e r i m e n t a l t e c h n i q u e s and t a b u l a t i o n of e x p e r i m e n t a l r e s u l t s 
a r e g iven in Append ix D, 

V e l o c i t y d i s t r i b u t i o n s w e r e t a k e n t h r e e o r f o u r t i m e s the d o w n s t r e a m 
dep th f r o m the end of the j u m p . T h i s p o s i t i o n w a s a r b i t r a r i l y c h o s e n b u t 
it w a s found the v e l o c i t y d i s t r i b u t i o n w a s f u l l y e s t a b l i s h e d a t t he end of 
t h e j u m p . F u r t h e r c h a n g e s d o w n s t r e a m w e r e c a u s e d by e i t h e r b o u n d a r y 
f r i c t i o n (whose e f f e c t on the v e l o c i t y d i s t r i b u t i o n w a s found to b e s m a l l ) 
o r a c o n t r o l . 

It c a n b e s e e n tha t t he v a l u e s of Sj^ g iven in F i g , 52 do not c o m p l e t e l y 
a g r e e w i th t he v a l u e s p u b l i s h e d by the w r i t e r in a p a p e r d e s c r i b i n g t h e 
e a r l i e r p a r t of the p r o g r a m (Wilk inson and Wood 1968), A copy of t h i s 
p a p e r i s i n c l u d e d a t the end of the a p p e n d i c e s . When t h i s p a p e r w a s 
w r i t t e n the c o n t r o l m e c h a n i s m of a d e n s i t y j u m p w a s not u n d e r s t o o d and 
f o r t he p a r t i c u l a r e x p e r i m e n t a l set-up., d o w n s t r e a m F r o u d e n u m b e r s 
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of one half w e r e constantly obtained. The control in this c a s e w a s 

di f f icul t to define a s the d i s c h a r g e w a s control led outs ide the t e s t tank, 

so that a n a l y s i s of the coupling between the control and the jump w a s not 

p o s s i b l e . The tes t tank w a s horizontal so that the jump w a s a l s o 

par t i a l ly f r ic t ion control led . 

The fac t that the downstream F r o u d e number w a s a lways found to be 

equal to one half w a s an in te re s t ing coincidence^ a s m a x i m u m depth a l s o 

o c c u r s at th i s va lue of F r o u d e number . It w a s thought at the t ime of 

wr i t ing the paper that the m a x i m u m downst ream depth concept might 

have been s ignif icant . Subsequent a n a l y s i s , both theore t i ca l and ex-

p e r i m e n t a l showed this w a s not so . 

R e f e r e n c e to the plot S^^ aga ins t F j shown a s F i g u r e 8 in the above 

paper , for which F ^ ^ shows a s ignif icant trend. Although the m e a n 

va lue of Sj^ (1, 14) a g r e e s well with the r e s u l t s p r e s e n t e d here , Sj^ 

a p p e a r s to i n c r e a s e for higher v a l u e s of F̂ ^ and d e c r e a s e for lower 

v a l u e s . Th i s behaviour i s cont ra ry to that found in l a t e r e x p e r i m e n t s 

in a newly de s igned test tank. The trend i s be l ieved to be c a u s e d by 

(i) Reynolds number ef fect , (ii) pos i t ioning of the ve loc i ty probe . The 

Reynolds n u m b e r s of the f lows in the ea r ly t e s t s w e r e v e r y low (250-

500), due to the s m a l l s i z e of the exper imenta l a p p a r a t u s . Pos i t ion ing 

of the probe w a s not a s f l ex ib le a s in l a t e r a p p a r a t u s . I n c r e a s e in the 

ve loc i ty of flow at the inlet, to achieve higher u p s t r e a m F r o u d e n u m b e r s 
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resulted in an increase in non-uniformity of the velocity distribution 

at the probe. It i s worth noting alsoj that only the extreme values of 

Froude number were significantly affected. 
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10. Density Distr ibut ions 

10. 1 Introduction 

The density distribution in a density current^ downstream of a 

density jump, i s se ldom uni form. This non-uni formity resu l t s f r o m 

incomplete mix ing of the density f low and the ambient fluid. Uni formity 

i s dependent on the extent of turbulent mix ing in the jump after entrain-

ment has o c c u r r e d . If the r o l l e r reg ion o c c u p i e s m o s t of the density 

jump, entrained ambient fluid i s thoroughly mixed with the inf lowing 

fluid in the r o l l e r reg ion of the jump. The result ing density distribution 

approaches uni formity . 

It f o l l ows , there fore , that density jumps with high upstream Froude 

n u m b e r s and downstream Froude n u m b e r s c l o s e to the non-entraining 

min imum, wi l l have uni form downstream densit ies . 

The other ex treme o c c u r s when the jump i s of the max imum entrain-

ing type. Ambient fluid i s entrained along the length of the jump. There 

i s no r o l l e r reg ion to m i x the f luids and the resul t ing density distribution 

downstream i s marked ly non-uni form. The density distribution i s d e -

pendent on both the upstream and downstream Froude numbers . 

10. 2 The Charac ter i s t i c Density D i f f e r e n c e 

It was n e c e s s a r y in all exper iments to determine the c h a r a c t e r i s t i c 

density d i f f e rence ( A ) a s defined in Equation (7) 

A = - 2 
u 'y ' 

r where (f = / ^ ë dy 
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It was shown that the flux of density di f ference ) i s conserved. 

It followS5 therefore^ that is generally a function of both the density 

and the velocity distributions. However, as either the density o r the 

veloc i ty distributions approaches uniformity, the character ist ic density 

in value. di f ference ( A ) approaches the mean density d i f f e r e n c e q 

Since higher ve loc i t ies are generally associated with regions of higher 

density di f ference, the characterist ic density i s found to be greater than 

the mean density over the depth of flow. F o r the limiting case of a max -

imum entraining jump of high upstream Froude number, it was found 

A = 1, 32 /T^ g, 

10o3, The Hydrostatic P r e s s u r e Correction Factor 

The second parameter which was measured was the hydrostatic 

pressure correct ion factor Sjj where Sh = — ^ — « / / ^ f ^^^ ^^^ 
A ^ Ja J^ P" 

Dimensional analysis shows that a density jump is fully defined by 

two parameters F i and F20 It fo l lows that Sjj can be expressed as a 

function of these two variables. A plot of experimentally determined 

Sfj values i s shown in Figure 53. Several features of this diagram are 

worthy of comment. First ly Sfj i s highly dependent on the upstream 

Froude number for maximum entraining jumps, if F;¡̂  i s l e s s than six. 

When F i i s greater than six^Sm appears to remain constant in value at 

approximately 0 .6 . S^ is highly dependent on the downstream velocity 

distribution but approaches unity as entrainment reduces to zero . It 
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w a s f o u n d t h a t t h e h y d r o s t a t i c p r e s s u r e c o r r e c t i o n f a c t o r c o u l d b e e x -

p r e s s e d a s a f u n c t i o n of a s i n g l e v a r i a b l e . T h i s v a r i a b l e i s e q u a l t o t h e 

r a t i o of f l u i d e n t r a i n e d t o m a x i m u m p o s s i b l e e n t r a i n m e n t a s s u m i n g u n i -

f o r m v e l o c i t y a n d d e n s i t y d i s t r i b u t i o n s . S h i s p l o t t e d a g a i n s t t h i s 

K - 1 v a r i a b l e ^ — ^ — — a s t h e d e p e n d e n t p a r a m e t e r of Sf^ i s n o w e x p l a i n e d , 
m a x 

I t w a s s t a t e d e a r l i e r t h a t t h e f o r m of t h e d o w n s t r e a m d e n s i t y d i s t r i b u t i o n 

w a s d e t e r m i n e d b y t h e r e l a t i v e l e n g t h s of t h e e n t r a i n i n g z o n e a n d t h e 

r o l l e r r e g i o n of a d e n s i t y j u m p . T h e v a l u e of K - 1 i s a m e a s u r e of t h e 

e n t r a i n e d f l o w a t t h e j u m p , a n d t h e r e f o r e i s a f u n c t i o n of t h e u p s t r e a m 

F r o u d e n u m b e r a n d t h e l e n g t h of t h e e n t r a i n i n g z o n e . T h e v a l u e o f 

^ ^ m a x " ^s a. m e a s u r e o f t h e e n t r a i n i n g p o t e n t i a l of t h e j u m p , a n d i s 

t h e r e f o r e a m e a s u r e of t h e p o t e n t i a l m a x i m u m l e n g t h of t h e e n t r a i n i n g 

z o n e . T h e r a t i o of t h e s e t w o q u a n t i t i e s i s a m e a s u r e of t h e r e l a t i v e 

l e n g t h s of t h e e n t r a i n i n g a n d r o l l e r z o n e s of a d e n s i t y j u m p , a n d i s t h e r e -

f o r e a n i n d i c a t o r of u n i f o r m i t y of t h e d o w n s t r e a m d e n s i t y d i s t r i b u t i o n . 

T h e n u m e r i c a l v a l u e of t h e f l o w r a t i o K^ i s n o t h i g h l y d e p e n d e n t o n 

s i n c e K v a r i e s a s S f j t o t h e p o w e r o n e t h i r d . T h e d e p t h r a t i o v a r i e s 

a s t h e t w O ' t h i r d s p o w e r of Sj^ a n d i s t h e r e f o r e m o r e s e n s i t i v e t o i t . 

L o w v a l u e s of S h l e a d t o a g r e a t e r d e p t h r a t i o t h a n w o u l d e x i s t if t h e 

d e n s i t y d i s t r i b u t i o n w e r e u n i f o r m . 

T h e n o n - u n i f o r m i t y i n d e n s i t y i s l a r g e l y c o u n t e r a c t e d b y t h e n o n -

u n i f o r m i t y of v e l o c i t y . B o t h S ^ a n d S ^ t e n d t o v a r y i n i n v e r s e 
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proportions so that estimations of depth and entrainment downstream of 

a density jump can be calculated with reasonable accuracy ( - 10 pc . ) by 

assuming that the densities and velocities are uniform. 

The force flow ratio is potentially a greater source of error than 

non-uniform density and velocity distribution. This results from the 

compensatory nature of the latter variables. 
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A p p e n d i x A . 

^ ^ ^ Z i l ^ F j o o d e d D e n s i t y J u m p 

T h e f l o o d e d d e n s i t y j u m p c o n t r o l l e d b y a b r o a d - c r e s t e d w e i r 

( F i g u r e 16) m a y b e a n a l y s e d u s i n g E q u a t i o n 25, T h i s e q u a t i o n r e l a t e s 

c o n d i t i o n s d o w n s t r e a m of t h e j u m p and c o n d i t i o n s a t t h e p o i n t of c o n t r o l . 

It i s i n d e p e n d e n t of t h e s t a t e of t h e j u m p . 

f - - ^ ^ ^ ^ 
J2iO ¥ 2 + ^ 

A s t h e r e i s n e g l i g i b l e e n t r a i n m e n t a t a f l o o d e d j u m p i t f o l l o w s t h a t 

and f r o m c o n t i n u i t y 

1 

H e n c e e q u a t i o n (25) c a n b e r e d u c e d to t h e f o l l o w i n g : -

h 
y i c ^ ' 2 I -ri' P./.q - 3 y -f 

The a b o v e e q u a t i o n i s p l o t t e d in F i g u r e 19 a s t h e l i n e P C D f o r t h e 

c a s e w h e r e F̂  - 50 ^ n d h e n c e f r o m e q u a t i o n (19), f = 0 . 0 7 3 . 

The l o w e r l i m i t of v a l i d i t y of e q u a t i o n (61) o c c u r s a t t h e i n t e r s e c t i o n 

of t h e a b o v e c u r v e w i t h e q u a t i o n (2 8) a t t h e p o i n t D„ At D t h e f l o o d e d 

j u m p b e c o m e s a n o n - e n t r a i n i n g d e n s i t y j u m p . 
T h e p a r a m e t e r f w a s i n t r o d u c e d i n t o e q u a t i o n (61) s o t h a t t h i s e q u a t i o n 

c o u l d b e p l o t t e d s i m u l t a n e o u s l y w i t h e q u a t i o n (28). 



105 . 

A p p e n d i x B. 

Brink Depth at a Free Overflow in a Density Stratified Flow 

The apparently simple physical features of the f ree overf low have 

long attracted the attentions of applied mathematicians, striving for an 

anitlytical solution to this f ree streamline problem. Several approximate 

analyses have yielded results in close agreement with experimental 

profi les i'Rouse 1936). In fact, simple one dimensional energy and 

momentum analyses, which assume zero pressure at the brink section, 

'•h 

give - 0. 66 and 0. 67 respectively, surprisingly close to the ex-

perimental value of 0, 715= More elaborate iterative, analogue and 

transformation methods employed by Jaeger^ Roy and Southwell and 

Vaisey are reviewed by Hender son (1966). All give depth prof i les which 

agree closely with those observed in experiments. 

It is not intended here to attempt an additional solution, but rather 

to look at ^he effect of non-uniform velocity and density distributions 

on the brink flow. The force flow equation is applied to the upstream 

flow, and again at the brink, where a zero pressure prof i le is assumed 

to exist, Curvelinear effects at the brink are ignored. If the velocity 

distribution is assumed to be self preserving between the upstream 

section and the brink (not an altogether justifiable assumption but one 

that is often made in open channel hydraulics), then from equation 19 

one can write:-
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V ^ + % Yu S o Fu "̂ 2 — 2/3 Fb 
4 /3 

w here F̂ ^ is ihe Froude number of the brink flow. 

The Froude number of the flow upstream of the overfall is given by: 

and from continuity one has 

b ^ Yb 

3/2 

If the above equalities are substituted into the force flow equation one 

find; 

3Y. 1/3 
= Y 

b Sh 

2/3 Y« 
Y b 

which reduces to the interesting results 

Y. 
= (62) 

This result indicates the brink depth is independent of upstream 

velocity and density distributions^ provided the above assumpsions are 

valid. 

Experiments by Rouse and others on open channel flows over a free 

overfdll give 

y2 
0. 712 

wnich agrees surprisingly well with the approximate one dimensional 
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theory above. 

Density current experiments enable a check to be made on the effect 

of non-uniform density and velocity distributions on the brink depth. 

Eight measurements of th-e brink depth ratio, with Frouide numbers 

upstream of the jump varying from 1, 8 to 10, 7 gave 
/ 

= 0. 685 "t 0,039 

The brink depth ratio showed no dependence on the jump Froude 

number. Hence it follows it will also be independent of the velocity and 

density distributions, 

A plot of brink depth ratio against jump Froude number is shown 

in Figure 55, 
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A p p e n d i x C . 

1 ^ . O t 1Jer C u n t r o l ^ M e c h a n i s m s o f a D e n s i t y Jump 

] J , 1 T n e S h a r p C r e s t e d W e i r 

The ch:irc-cteristies of a density jump controlled by a sharp crested 

w e n c t r e \ e r y s i m i l a r to those when the control is a broad crested weir. 

B o t h e x h i b i t The same hysteresis effect during a cycle of weir raising and 

l o w e r i n g . Numerous attempts have been made to solve the f ree stream-

line problem of flow over a sharp crested weir. Generally., however, a 

s i m p l e r s e m i - e m p i r i c equation is used to determine the discharge 

c h a r a c t e r i s t i c s , as given below 

I ' f ^J^f i f , - (63) 

w lie re q is the flow per unit widths 

C^ is the discharge coefficient 

and h is the weir height. 

An experimental equation is available (Rouse 1945) giving C as a 
f d • ̂ ^ 

i u n c t i o n o i b o u n d a r y geometry and is applicable for ~ D < 0 .8 

C . - 0. 611 + 0.075 ' 1) (64) 
a 

Equction \6c5) may be rearranged into the form 

- Clf (i - ^ ) 
9 ''i, 

s 
(65) 

or 

(66) 
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The downstream depth can be eliminated in the above, by means of 

equation (19). Using the same technique as previously^ one finds 

IC 
C^iF, 

2 

"5 
'/3 

Cj I - 2 F. -h I 
(67) T2 

The above equation is of pr ime importance since it re lates weir 

height to the downstream Froude number. C^ may be expressed an i m -

plicit function of the downstream Froude number by substituting equation 

(66) for ^ in Equation (64). Solutions may be obtained for the down-

stream Froude number and weir height, by selecting values of ^ 

and calculating F^, C and J ^ f using equations 65, 64 and 67 

respectively. 

Equation (67) is plotted in Figure 56 and it can be seen a limit of 

stability o c c u r s when F^ = 0 . 1 9 . This is therefore the minimum Froude 

number attainable downstream of a jump controlled by a sharp crested 

weir . The non-entraining Froude No. conjugate to this value, is 10. 6, 

which is the maximum upstream Froude No. for which the minimum down-

stream Froude number is attainable by a non-entraining jump. 

The dashed curve in Figure 56 is for a broadcrested weir and it 

can be seen it l ies below the curve for the sharp crested weir . This r e -

sult was expected, since the vena contracta associated with a sharp 

crested weir effectively " in c reases " the weir height relative to a broad 

crested 

weir of the same height. Experimental data are again in c lose agree-
ment with the predicted curve. A photograph of density flow over a sharp 
crested weir i s given in Figure 57. 
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Experimentdl data are again in c l ose agreement with the predicted 

cur\ e. A photograph of density flow over a sharp crested weir i s given 

in Figure 57. 

13.2 Undershot Gates and Contractions as Controls 

Undershot gates and contractions are examined together as contro ls 

for a density jump« The control character is t i cs are similar in either 

case and the full range of downstream Froude numbers are attainable for 

all values of upstream Froude number. There are no unstable regions, 

so that the minimum Froude number attainable downstream is always the 

non-entraining value, and the maximum is unity for the ideal case . 

The undershot gate will be examined f irst , and a definition sketch 

is given in Figure 58. 

13. 21 The Undershot Gate 

Analysis 

If the energy equation is applied upstream and downstream of the 

gctte- cind as there i s no entrainment between these sections, one has: 

2 2. 

, (Cc 
where C ^ A i s the depth of flow immediately downstream of the gate. The 

contraction coeff ic ient (C ) remains constant to within 5 pc. of 0, 61 o 

for Vdlues of ^r- l e s s than 0. 70; in open channel f lows. Unfortunately 

this ir> not true of density currents. The change in C^ is believed to be 

caused by boundary layer e f fects at the interface of the density current 
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Fig. 57: Flow over a sharp crested weir, 
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and t h e a m b i e n t f l u id . T h e r e f o r e , in the p r e s e n t a n a l y s i s , C s h a l l 

h b e t r e a t e d a s a v a r i a b l e , and i t s d e p e n d e n c e of r 
l a t e r . 

w i l l b e d i s c u s s e d 

E q u a t i o n (68) m a y b e r e a r r a n g e d in to the f o r m 
( s . - ^ f I + 2 ) = c . ^ 

so t h a t 

Z (\ - C c A. 
(69) 

- S f i - 2 
[ccAJ 

E q u a t i o n (69) r e l a t e s t he d o w n s t r e a m F r o u d e n u m b e r to t he r a t i o 
of g a t e h e i g h t to u p s t r e a m dep th and i s g r a p h e d in F i g u r e 59. T h e 
f o r c e f low equa t ion a s w r i t t e n in E q u a t i o n (31) m a y now b e e m p l o y e d to 
e x p r e s s F g a s a f u n c t i o n of ga t e h e i g h t on ly . 

An e x p l i c i t so lu t ion c a n n o t b e ob t a ined f o r e i t h e r v a r i a b l e so a 
g r a p h i c a l so lu t ion i s p lo t t ed in F i g u r e 60. 
E x p e r i m e n t a l i l e - su l t s 

A g r e e m e n t b e t w e e n e x p e r i m e n t and t h e o r y w a s s a t i s f a c t o r y f o r 
d o w n s t r e a m F r o u d e n u m b e r s l e s s than a p p r o x i m a t e l y 0 65. Wi th in 
t h i s r a n g e m o m e n t u m f a l l w i th in the j u m p a g a i n c o m p e n s a t e d f o r t he 
n o n - u n i f o r m i t y of v e l o c i t y and d e n s i t y d i s t r i b u t i o n s d o w n s t r e a m of the 
j u m p , to g ive e x p e r i m e n t a l r e s u l t s in c l o s e a g r e e m e n t w i th t h e i d e a l i s e d 
t h e o r y . 



1 1 2 . 

More exact solutions fo r par t icu lar c a s e s may be calculated by sub-

stituting appropriate ve loci ty and density distribution fac to rs into equations 

(20) and (69), However, in pract ice, it i s doubtful if the accuracy would 

be fur ther increased. 

Depression of the Interface by an Undershot Wei r 

At downstream Froude numbers greater than 0 . 65, agreement be-

tu'een the above theory and experiment i s poor. This i s caused by a 

change in the flow geometry such that the picture in Figure 58 no longer 

r e p r e s e n t s the actual f low. 

A s the gate i s lowered ("lowered" as defined prev ious ly i s "up" in 

the picture) = The inter face i s seen to be depressed as in Figure 61b and 

c. Experiments indicate the inter face can be depressed by as much as 

one quarter of i ts initial depth be fore the gate b reaks the inter face as 

shown in Figure 61c. The degree of depression at the inter face depends 

on the Froude number and Reynolds number of the flow, and the boundary 

l aye r development length between the jump and the gate. The curve shown 

in Figure 62 i s there fore only a typical example of depression, and i s 

not to be interpreted a s a general resul t . The dominant controll ing 

paramete r i s bel ieved to be the boundary l aye r thickness in the ambient 

layer„ This, of course, i s dependent on the development length only, 

provided the boundary l aye r i s laminar . 

Boundary l aye r development in strat i f ied f lows has been investigated 
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b y Ippen and H a r l e m a n (1952), Keu legan (1944) and B a t a (1959). How-

e v e r , in t h i s c a s e , no quan t i t a t i ve t h e o r y w a s d e r i v e d f o r the d e p r e s s i o n 

p h e n o m e n o n . V a r i o u s s t a g e s of d e p r e s s i o n a r e shown in F i g u r e s 61a, b 

and c . 

The C o n t r a c t i o n a s a C o n t r o l 

A c o n t r a c t i o n a s a f o r m of c o n t r o l of a d e n s i t y j u m p i s shown in 

F i g u r e 63. The e n e r g y equat ion m a y b e appl ied u p s t r e a m and a t the c o n -

t r a c t i o n to give 

w h e r e B and b a r e the channe l w i d t h s u p s t r e a m and at the c o n t r a c t i o n 

r e s p e c t i v e l y . 

At the c o n t r o l the depth of flow i s c r i t i c a l dep th . T h e r e f o r e 

(70) 

and subs t i t u t i ng the above into the e n e r g y equat ion 

U = (71) 

F r o m Equa t ion (70) and cont inui ty one can w r i t e 

F i / u i ? ^ I - I 
V ¿ ^ z / 

So e l i m i n a t i n g y^ in Equa t ion (71) one f i n d s 

^^ = 3 Ses Fe, (72) 



114. 

A graph of the above equation is given in Figure 64 for the case 

where the velocity distributions upstream and downstream of the jump 

are uniform. No experiments were performed to verify the contraction 

equation (72), but in the light of previous experimental results there i s 

no reason to suspect its validity. 

It can be seen no instabilities occur over the full range of the con-

traction ratio, from zero to one. Therefore all downstream Froude 

numbers between the usual limits are attainable by any density jump, 

depending on the contraction ratio. 
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A p p e n d i x D . 

14, Velocity Measurement 

Introduction 

Velocity measurement in density current s i s a lways a problem; 

f i r s t ly because of the very low veloc i t ies involved and secondly because 

of the general smal l sca le a s soc ia ted with laboratory density currents . 

Typical density currents examined by the writer ranged in depth f rom 

one to four inches, and in velocity f rom 0 . 0 2 ft / sec . to 0, 15 ft. / sec . 

Severa l methods of velocity measurement were examined. An ex-

cellent review of techniques of velocity measurement in density current s 

i s given by T, R, F ie tz (1966). 

The b a s i c requirements of the velocity meter for the present study 

were a s fol lows:-

(i) S ize : It must conform to certain dimensional r e s t r i c t ions so a s not 

to inter fere with the flow pattern, part icular ly in the region of the inter-

face , 

(ii) Shape: It must b-e of such a shape that velocity p ro f i l e s may readi ly 

be taken, and a l so that it may be removed from the test tank without 

damage . 

(iii) Availability and/or Simplicity 

The meter must be either readi ly commerc ia l ly avai lable or be of 

ve ry s imple design and construction. 
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(iv) Calibration 

It i s desirable that the meter maintain a constant calibration and 

i s unaffected by temperature variation or salt water. 

Review of some velocity measuring dev ices 

Pitot tube dev ices do not have a good low veloc i ty response and are 

therefore unsuitable. Although the sensitivity of U tube manometers 

can be increased by using two immisc ib le f luids of s imilar densities, ex -

per ience showed this technique was fraught with experimental di f f icult ies. 

Drag type Meters re ly on the dynamic drag on an i m m e r s e d body. 

The drag i s measured via a strain gauge or some other e lectronic device. 

Drag m e t e r s are particularly suceptible to calibration drift and the dev ices 

suitable f o r us-e at the ve loc i t ies to be measured, are necessar i ly delicate 

and easily damaged. 

Current Meters rely on an impel ler whose speed of rotation i s 

measured e lectronical ly and is proportional to the fluid veloc i ty . They 

were unsuitable for the present work due to their size and high threshold 

velocity. 

Dynamically Balanced Meters 

The stagnation pressure of a fluid flow can be balanced by an opposing 

fluid jet in a suitably designed nozzle . This principle was f i rs t d iscussed 

by Bagnold (1951) and subsequently a modif ied meter was constructed by 

Fietz (1966). This instrument is shown schematically in Figure 65. 

The meter is designed to operate in salt water although with slight 
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m o d i f i c a t i o n it could be used in either f r e s h o r salt water . 

The m e t e r g m e r a t e s a phys i ca l ba lance between the stagnated salt 

water f low and an oppos ing m e t e r e d f low of f r e s h water . The o p p o s i n g 

f l ow i s fed through a f ine b o r e h e a d - l o s s tube which m a g n i f i e s the s tag-

nation p r e s s u r e . The balancing f low i s adjusted until the in ter face b e -

tween the f r e s h and salt water i s stationary at a conduct ivity detect ing 

point in the nozz l e . 

The m e t e r w a s found to m e a s u r e v e l o c i t i e s in the range of 0, 0 3 to 

0 . 5 f t / sec , with an a c c u r a c y of f ive per cent. The r e s p o n s e of the 

m e t e r i s l inear . 

The m e t e r d o e s have severa l d isadvantages . These a r e : -

(1) Sensitivity to the temperature of oppos ing f r e s h water f low. This 

e f f e c t can be accounted f o r by ca l ibrat ing o v e r a range of t e m p e r a t u r e s . 

It w a s found the change in r e s p o n s e could be pred i c ted by the known 

change in v i s c o s i t y of the f r e s h water with temperature . 

(2) The slow r e s p o n s e after adjusting the f r e s h water f l ow. The t ime 

r e q u i r e d to take a v e l o c i t y m e a s u r e m e n t w a s at l east ten minutes . F i e t z 

suggests severa l m o d i f i c a t i o n s to the m e t e r to i m p r o v e i ts a c c u r a c y and 

ease of use . 

It w a s dec ided the Bagnold m e t e r w a s unsuitable f o r use with this 

p r o j e c t f o r the fo l l owing r e a s o n s : -

(1) The m e t e r avai lable would r e q u i r e extensive m o d i f i c a t i o n s if it w e r e 

to be used in the tes t tank. 
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(2) The time required for each reading and the nunaber of measureniients 

required would make steady state difficult to maintain f o r the duration 

of a test, 

A further modif ied Bagnold meter in which the balance point was 

detected visually rather than electronically., was constructed by the writer . 

Balancing of the stagnation pressure was far m o r e rapid with this meter 

and also the physical size was considerably reduced. The small size of 

the meter can be gauged f rom the photograph of one of the m e t e r s in 

Figure 66. The accuracy of this meter was 7 pc. slightly l e s s than that 

of FietZo The meter was calibrated over the range 0 ,0 3 ft. / sec . to 0, 5ft/ 

sec. 

Details of the meter are given in a technical note published in the 

"Bri t ish Journal of Scientific Instruments". A copy of the note i s included 

at the end of the appendices. 

The meter was found suitable for use in either salt or f r esh water 

density currents. Soon after the meter had been developed new larger , 

experimental tanks became available and it was necessary to change to 

thermal density currents, as salt water was not available in sufficient 

quantities. It was found with thermal density currents , that insertion of 

the probe through a thermal gradient caused air to c ome out of solution 

and form tiny bubbles in the glass nozzle of the probe. These bubbles 

altered the probe geometry and therefore changed its calibration. No way 

of preventing this ef fect could be found so that use of the probe was 
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Fig. 66: Modified low velocity meter. 
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abandoned in t h e r m a l l y induced density c u r r e n t s . 

Hydrogen Bubble Technique 

The hydrogen bubble technique of flow v isua l i sa t ion m a k e s u s e of 

tiny hydrogen bubbles a s flow t r a c e r s . 

The bubbles a r e generated by e l e c t r o l y s i s at a f ine n o n - r e a c t i v e w i r e 

(usually platinum) s t re tched a c r o s s the flow. A d i r e c t c u r r e n t i s pulsed 

onto the w i r e cathode and a sheath of hydrogen f o r m s around the w i r e . 

Surface tension c a u s e s immedia te co l lapse of the sheath into tiny hydrogen 

bubbles which a r e swept away by the moving fluid. If the bubbles a r e suit -

ably i l luminated, and the period of pulsing i s known, then the ve loc i ty p r o -

f i l e s m a y be ca lcula ted f rom st i l l photographs of the l i n e s of bubbles^ a f t e r 

they have le f t the w i r e . Hydrogen bubble technique i s v e r y good for obtain-

ing qual i tat ive ve loc i ty dis tr ibut ions b e c a u s e these can be observed d i r e c t l y 

( see F i g u r e 67). Quantitative measurements . , however , a r e another m a t t e r . 

The t ime requi red to obtain meaningful data f rom hydrogen bubble photo-

graphs i s the m a j o r disadvantage of the technique. Also the method i s not 

sui table for unsteady f lows. The bubbles follow pathl ines and u n l e s s the 

flow i s steady s ignif icant e r r o r s can be introduced if the pathl ines a r e in -

t e r p r e t e d a s s t r e a m l i n e s (Hama 1962). 

The equipment used by the w r i t e r was de l ibera te ly kept a s s imple a s 

p o s s i b l e . A s c h e m a t i c diagram of the set -up i s given in F i g u r e 68„ 

A D. C. vol tage f rom a b a t t e r y supply was bridged via a c o m m u t a t o r . 
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a c r o s s a IK ohm potentiometer. The commutator consisted of a 10 

inch diameter perspex disc with six aluminium foil , segmented contacts 

glued to its surface (see Fig, 69), A switching arm with two wire brushes 

attached to its end lay on the disc in a similar fashion to a turntable arm. 

As the commutator disc rotated the c ircuit was made and broken as the 

conductive aluminium sectors passed beneath the brushes. The switching 

of this apparatus was very clean and no transients could be observed when 
the 

an osc i l l o s cope was placed in the c ircuit . The speed of^urntable was 

measured to be constant to within 0. 5 pc. over several revolutions and 

wow and flutter were negligible for the heavy weight turntable used. 

The duration of, and the interval between pulses, could be varied by 

simply changing the width and spacing of the conductive sec tors of the 

commutator. 

The positive terminal was attached to a matt black strip of galvanised 

steel which was placed behind the generating wire against the back of test 

tank as shown in Figure 70. The steel strip served two functions; f i rst ly 

it provided a non-re f lect ive high contrast background for the hydrogen 

bubbles and secondly, it made a convenient anode as it was only three 

inches away f rom the cathode. 

The negative tapping of the potentiometer was connected to the gen-

erating wire . The potentiometer was adjusted until the bubbles were of 

optimum size. The generating wire was platinum and 0 .002 inch diameter, 

A diagram showing the wire suspension apparatus is shown in Figure 70. 



Fig. 67: A typical photograph of hydrogen 
bubble traces. 
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The platinum wire was attached to an insulated copper wire , which was 

supported by fr ict ion inside a 3 /8 " glass tube. This enabled the platinum 

wire to be manipulated or removed without upsetting the density current 

belowo The glass tube fed through a rubber bung, which fitted into i inch 

diameter holes that had to be drilled at convenient spacings, along the 

length of the test tank. 

A lead sinker of 1 /4 inch diameter was attached to the end of the platin-

um wire . The sinker could be withdrawn^ with the wire , through the glass 

tube. It served to keep the wire taut during experiments. The sinker was 
that 

insulated by painting with cel lulose acetate (nail polish) so/bubbles were 

generated only on the exposed wire . 

The bubble l ines were illuminated by electronic flash synchronised 

with the <iamera shutter. The flash unit was positioned in the bottom of the 

false "bottom" compartment» so that bubbles were illuminated f rom above. 

This avoided ref lect ions which might have caused glare spots in the photo-

graphs. Illumination was found to be adequate using a small portable 

e lectronic flash unit (Canon). A typical aperture was f8 with 125 ASA 

black and white f i lm. A tele-extension was fitted to the single lens^eflex 

cameras so that it could be positioned some distance back f r o m the side 

of the tank (approximately two to four feet) and the area of interest (three 

to four inches square) still occupi-ed the whole of the photograph. 

The spacing of the subject and the camera minimised parallax e r r o r s 

which otherwise would have had to have been correc ted . 
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Sources of Error in using Hydrogen Bubbles for Velocity Measurement 

An obvious source of e r ror in velocity measurement using hydrogen 

bubble technique is caused by the rising of the bubbles. It is desirable^ 

therefore, to have bubbles of the minimum possible size. The bubble 

diameter was found to be dependent on two fa-ctors: 
2 (i) The surface current density (amps/ cm ). 

(ii) The ag€ of the wir-e. 

(i) The optimum surface current density was found to be approximately 

0, 1 amperes / sq, cm, but this varied by as much as - 50 pc, depending on 

the temperature, conductivity of the water and "age" of the wire. There -

fore it was always necessary to adjust the potentiometer until satisfactory 

bubbles were obtained. Fortunately the smaller bubbles left the wire very 

evenly, so that bubble traces were uniform. 

The change in conductivity of water over the temperature di f ferences 

used in experiments (lO^C) was slight. The warmer water was m o r e con -

ductive than the coo ler water so that bubble density was greater in the 

f o rmer . Since the hot water generally had higher veloc it ies than the coo l 

water this effect was advantageous. 

Hydrogen bubble technique is not suitable for use near an interface of 

salt and fresh water if the fresh water f o rms the density current. 

This was the case in some of the experiments described in a paper by 

Wilkinson and Wood (1968), The hydrogen bubble probe could only be placed 



F i g . No. 69: T h e hyd rogen bubble c o m m u t a t o r . 
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to within several mi l l imetres of the interface if one was to obtain uniform 

bubbles. Although this did not affect calculation of velocity distribution 

correct ion factors to any extent, interfacial veloc i t ies and shears could 

not be measured. The technique is therefore unsuitable if high conductivity 

gradients exist a c r o s s the area in which velocity measurements are r e -

quired. 

(ii) "Ageing" of a wire is a surface chemistry effect and causes a de -

terioration of bubble uniformity and size with time. Some' days the effect 

was worse than others but the usual "ageing" time was two to three minutes. 

The wi res had to be removed for several seconds to restore them to their 

f o r m e r state. The phenomenon is thought to be caused by deposition of 

impurities on the wire. These are washed away when the wire is removed. 

Sometimes agitation of the wire would counteract the ageing effect. 

An excellent uncertainty analysis is given in a paper on the use of 

hydrogen bubbles for quantitative measurement by Schraub et al (1964). 

Six sources of e r r o r are listed and discussed in this paper. It is now p r o -

posed to look at the relevance of these e r r o r s to the present work, 

(1) Measurement Uncertainty - E r r o r s caused by optical distortion., film 

resolution etc. are of second order and may be neglected, 

(2) Averaging Uncertainty. These e r r o r s arise in attempting to predict 

Eulerian veloc i t ies f rom Lagrargian time average veloc i t ies of marker 

bubbles. E r r o r s of this type arise if the flow is (i) unsteady (not appl ic -

able); (ii) turbulent. Turbulence causes variation f rom one bubble line 
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to the next and this i s the major source of e r r o r in the present ser i es of 

tests. The turbulence caused a scatter about a mean velocity . It i s n e c -

essary , therefore , to give an e r r o r estimate, the standard deviation, 

with any veloc i ty measurements presented. Accuracy can only be increased 

by increasing the number of readings. Six or seven photographs were 

generally required,to obtain a veloc i ty with the desired accuracy , - 5 pc. 

with 95 pc, confidence, 

(3) Displacement uncertainty can arise when bubbles move out of the x, y 

generation plane. E r r o r s of this type will only occur if there are severe 

velocity gradients in the direction normal to this plane. Lateral gradients 

near the centre of the test tank were negligible so that e r r o r s of this type 

did not present a problem. 

(4) Response uncertainties caused by the virtual inertia of the bubble are 

negligible. This point was discussed in detail by Schraub et al (1964). 

(5) Resolution uncertainties are caused by (a) the finite size of a bubble 

making it unable to respond to turbulence of a scale of the same order as 

the bubble diameter, (b) the time interval between bubble pulses p laces 

an upper l imit on the frequency of turbulent fluctuations which can be 

measured. This latter restrict ion outweighs the f o r m e r completely and 

the maximum turbulent frequency that could be measured with a bubble 

pulse rate of approximately 5/ sec , was 2 hertz. 

Turbulence spectra were not required in these ser ies of experiments. 
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(5) Bubble Rise rate uncertainty. Errors due to bubbles rising will be 

greatest when a velocity gradient exists in the direction of rise. The 

error caused by bubble rise will be calculated for a particular example 

in order to estimate the probable magnitude of this error source. 

Consider a bubble rising in a fluid of constant shear in the direction 

of rise. Let the velocity at some point (x^, y^) be U Q (see Fig. 71). The 

equation of the velocity field is given by 

u = y = ey 
Yo 

where e = constant 

Let the rise velocity of the bubble be constant and equal to v. The x 

coordinate of a bubble at any time t after leaving X q, yQ at t = 0 is given 

by 

St 

X = / u dt + XQ 
J o 

and the y co-ordinate is given by 

y = Yo - V t 

The component of velocity is given by 

The distance the bubble will move in the x direction is given by 

= ^ ( y o S t -

in a time Gt. 
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The distance ( Sx ' ) a bubble with no r i s e velocity would have moved 

if r e l e a s e d at t ime t^ f rom x = x^ 

y = YQ - V S t i s given by 

x- = (y^ - v 8 t ) ^ t yo ° 

The e r r o r in length (e) of the bubble t r ace i s therefore 

r c ' V S t^ 

The relat ive e r r o r in velocity ev i s given by 

= Uo V ^-t / - V 

= e ^ ^ t / ¿ ( / - e v X 100 Uo Uo / 

^^ \0 0 Vo 
a Uo 

Typical va lues of the va r i ab le s in the above e r r o r equations a r e 

e = 4 ft. / sec, / ft, maximum shear encountered near the f a l s e "bot tom" . 

^ = 0 , 0 3 the maximum r i s e ra te was approximately 0 .003 
ft/ sec . Generally the r i s e rate was l e s s than this 
f igure . 

^ t = 0. 219 sec . interval between pu l se s . 

It follows the maximum probable e r ro r due to bubble r i s e i s 

^v = 3 pc. 

and hence e r r o r s a r i s ing from this source a r e smal l . 

(6) Velocity defect caused by wire wake. 

Hydrogen bubbles always l ie in the wake of the generating wire and 

therefore do not move with the velocity of the mean flow. Although the 

Reynold's numbers of the flow pas t the wire, based on the wire diameter^ 
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are generally l e s s than fours v iscous flow theory over estimates the 

velocity defect in the wire wake. The sheathof hydrogen bubbles around 

the wire causes a marked reduction in the local shear and so reduces the 

drag on the wire . Schraub et al (1964) state the bubbles reach mean flow 

veloc i t ies at l e s s than seventy wire diameters downstream. This f igure 

was obtained by analysis of high speed motion picture f i lm of bubbles 

leaving a generating wire . 

Hence for a wire of 0. 00 2 inches diameter the bubbles reach mean 

flow veloc i t ies 0. 14 inches from the wire. Bubble lines c l oser than 

this to the wire were not used in reductions. 

Conclu sions 

Experiments have indicated the major source of e r ror in deducing 

ve loc i t ies and momentum correct ion factors was caused by turbulent 

fluctuations in the velocity. Reduction of velocity data was very time 

consuming and it was found six or seven instantaneous velocity pro f i les 

was about the limit which could be profitably analysed. Accuracy of the 

final velocity data was of the order 6 to 8 pc. 

Reduction of Velocity Data 

The photographs of bubble traces were processed and the negative 

was projected onto a paper screen. The projection distance was adjusted 

until the interfacial depth was five inches. The depth of the interface ' 

was measured during the experiment and the photograph always had a 
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length scale (the distance of the interface f r om the bottom)associated 

with i t . 

The bubble l ines were traced onto the projected image and the distance 

between suitable consecutive t races was measured. The momentum 

correc t ion factors were then calculated by numerical integration of 

these velocity distances, f or each instantaneous prof i le . The mean value 

of Sm was taken for all pro f i l es for those particular flow conditions and 

finally a plot was obtained of Sj^ versus F2 as shown in Figure 52. 
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A p p e n d i x E . 

Experimental Determination of Densities 

The results presented in this report were obtained f rom thermally 

induced density currents . Density currents driven by salinity gradients 

were used in ear l ier experiments as reported by Wilkinson and Wood 

(1968) but it i s not proposed to d iscuss these again. 

The theory presented in this report i s only strictly valid for density 

currents in which the density di f ference i s caused by a d i f ference in 

dissolved salt concentrations. For density currents of this type^ the 

equation of continuity of density excess i s exactly true. However, this 

equation i s not exactly true for thermal density currents, because of the 

non-l inearity of temperature and density for water. A plot of this relation 

ship, obtained f rom standard tables (The Handbook ofFfeysics and 

Chemistry, 1961), is given in Figure 72, Experimentally determined 

checked points are also plotted in this f igure. The reason for checking 

the standard curve was to test for possible d iscrepanc ies caused by 

dissolved gases in the water. The e r r o r s introduced by assuming a 

linear temperature-density relationship for water can be estimated f r o m 

the above f igure. Maximum e r r o r in density for a range of poss ib le 

temperatures i s tabulated below. 
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Temperature of 
Ambient Fluid 

' r o c "o ^ 

I'emperature of 
Density current at 

inlet T^^C 

Maximum error 
in Density 

10 20 7 pc. 
15 25 6 pc. 

1 20 30 4 pc. 
25 35 1, 5 pc. 

Most density current experiments lay in the temperature range 15°C 
o 

to 25 C and the maximum error in density was 6 pc. The error in ca l -

culating the mean density of a layer with this variation in temperature 

from top to bottom is only 2 pc. The error introduced by the linearity 

assumption for thermal density currents, over the temperature range 

used in experiments, was negligible. 

Temperatures were measured with a copper-constantan thermocouple 

which was calibrated over the range of temperatures required. The 

reference junction was placed in the inlet slot and the temperature, of 

the density current downstream was measured relative to the inlet 

temperature, using the active junctions. The experimental layout is 

shown schematically in Figure 73. 

The measuring probe consisted of a length of 0, 10 diameter inch 

stainless steel tubing which acted as a junction support and an immersion 

depth indicator. 

The copper and constantan wires were lead through the tube and the 

ends were joined and lightly soldered. About 0. 2 inch of the junction 
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p r o t r u d e d f r o m the end of the s t a i n l e s s s t e e l tube. Epoxy r e s i n w a s 

painted o v e r the junc t ion and tube end. T h i s i n s u l a t e d the j u n c t i o n 

e l e c t r i c a l l y f r o m the s u r r o u n d i n g w a t e r without u p s e t t i n g i t s t h e r m a l 

s e n s i t i v i t y . T h e t r a n s i e n t r e s p o n s e of the t h e r m o c o u p l e w a s a d e q u a t e 

f o r the type of m e a s u r e m e n t r e q u i r e d . T h e t h e r m o c o u p l e took 1. 8 

s e c o n d s to r e a c h 95 pc . of i t s f ina l r e a d i n g f o r an i n s t a n t a n e o u s c h a n g e 

in t e m p e r a t u r e of 10*^C. T h e r e s p o n s e would not have b e e n s u f f i c i e n t l y 

r a p i d to m e a s u r e t h e r m a l t u r b u l e n c e s p e c t r a without s o p h i s t i c a t e d 

e l e c t r o n i c c o m p e n s a t i o n . M o r e d e l i c a t e t h e r m o c o u p l e s ^ with i m p r o v e d 

t r a n s i e n t r e s p o n s e could e a s i l y b e c o n s t r u c t e d if t u r b u l e n c e s p e c t r a 

w e r e r e q u i r e d . 

T h e s e n s i t i v i t y of the t h e r m o c o u p l e w a s found to b e 0 . 0 4 ^ m i l l i -

v o l t s p e r d e g r e e c e n t i g r a d e t e m p e r a t u r e d i f f e r e n c e . The r e s p o n s e w a s 

l i n e a r o v e r the r a n g e of i n t e r e s t and the c a l i b r a t i o n w a s not s e n s i t i v e to 

c h a n g e in the r e f e r e n c e t e m p e r a t u r e . 

T h e r m o m e t e r s w e r e u s e d to c h e c k w a t e r t e m p e r a t u r e s at the in le t 

and in the c o o l e r a m b i e n t f luid. T h i s w a s n e c e s s a r y f o r two r e a s o n s ; 

f i r s t l y to e s t a b l i s h an a b s o l u t e t e m p e r a t u r e s c a l e f r o m which the d e n -

s i t i e s could b e c a l c u l a t e d . Secondly the d i f f e r e n c e in t e m p e r a t u r e of 

the two t h e r m o m e t e r s gave a c h e c k f o r g r o s s e r r o r s in the t h e r m o -

c o u p l e r e a d i n g s . 

T h e r m o c o u p l e s w e r e u s e d in e x p e r i m e n t s b e c a u s e of t h e i r s m a l l e r 

s i z e and h i g h e r s e n s i t i v i t y c o m p a r e d with a t h e r m o m e t e r . 



132, 

A p p e n d i x 

Des ign Example - A p o w e r station coo l ing pond outfall . 

In this des ign data typical of the p r a c t i c e of the E le c t r i c i t y 

C o m m i s s i o n of S, W. i s used. The design itsel f i s hypothetical . 

Des ign Data 

Coo l ing water i s d i s charged f r o m a power station into a c o o l i n g pond 

via a c o n c r e t e l ined channel, as shown in F i g u r e 74. The d i s c h a r g e i s 

2, 200 c u s e c s and i ts temperature is 80*^F. The temperature of the pond 

water be low the thermoc l ine is 63 °F . The c o n c r e t e l ined channel (AB) 

has a s lope of 1/ 20 up to the abrupt transition at B w h e r e the depth i n -

c r e a s e s abruptly to 80 ft. The purpose of the design i s to establ ish -

(1) the d e g r e e of mix ing at the outfall (B), between the hot inf low and 

the c o o l e r ambient pond water j and 

(2) to determine whether this mix ing can be reduced . 

Design C o m m e n t s 

When w a r m water i s d i scharged into a coo l ing pond it f o r m s a s u r -

face l a y e r . Stratif ication of this type i s des i rab l e s ince it p e r m i t s m a x -

imum heat t rans fer f r o m the heated water by the p r o c e s s e s of radiat ion 

and evaporation. A s the coo l ing water i s eventually r e - u s e d , the greater 

the heat l o s s f r o m the coo l ing pond, the m o r e e f f i c ient wi l l be the c o o l i n g 

c y c l e within the power station. It follows^ there f o re , that mix ing of the 

pond water and the inflowing water at the outfall should be minimised« 

so that the temperature of the sur face layer i s as high as p o s s i b l e . 
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A density jump will form at a cooling pond outfall as shown in Figure 7 5. 

It has been shown the amount of fluid which can be entrained into a density 

jump increases with the upstream Froude number of the flow (F), defined 

previously as / 
F = 

The f i r s t requirement^, therefore^, is to have the densimetric Froude 

number as low as possible (i. e, the flow depth as great as possible) at 

the outfall. This may be accomplished in two ways : -

(1) By art i f ic ial roughening in the outfall channel, 

(2) By utilising a hydraulic jump as an energy dissipator. 

The densimetric Froude number (F) is related to the open channel 

u 
Froude number (FQC) (where Fqc - by the equation 

F - / ^ f F o c -
I A p / 

It can be seen that although the channel flow may be subcritical, the 

same flow when considered as a density current at the outfall, wil l al-

most always be supercritical. It is desirable, therefore, that the Froude 

number of the channel flow^ at the outfall be as low as possible. For 

the channel in question^Froude numbers l ess than 0, 8 could not be 

achieved^ even with art i f icial roughening. This simplest means of 

obtaining low Froude numbers at the outfall i s to make use of a hydraulic 

jump. This is shown in Figure 7 5, 

The density jump which fo rms at the outfall i s controlled by the 

expansion at C. The interfacial depth at this section wil l be cr i t ical 
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depth provided the interfacial depth in the r e s e r v o i r i s l e s s than the 

cr i t i ca l depth at C, The layer depth in the cool ing pond depends on many 

factors , the heat balance between the layer and the atmosphere, wind 

stress and mixing due to wave action. However, field measurements 

have indicated the thermocline is generally 5 to 10 feet below the surface 

and it wil l be shown this i s significantly l e s s than cr i t i ca l depth at the 

point of controlo 

The density current, being a surface current, i s subject to only r e l -

atively small fr ictional f o r c e s between the outfall and the expansion at 

C, so that the interfacial depth downstream of the density jump will be 

cr i t ical depth. The density jump would therefore be of the maximum en-

training type. 

It has been shown that entrainment at a density jump can be reduced 

by means of a downstream control . It is proposed, therefore to anchor 

a floating barr ier downstream of the outfall, and so control entrainment 

into the jump. The barr ier depth necessary to cause the density jump 

to be non-entraining is calculated. This is compared with the earl ier 

case where the density jump is expansion controlled and maximum en-

' raining. 

In the following design, subscripts denote the section in Figure 75 

to which the variable applies. 

Conditions in the Outfall Channel 

The Froude number of the flow in the concrete lined channel can be 
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determined from the Manning equation 

o - 1. 5 y w R^/^ S^ 

where Q = the total discharge 
y = depth of flow 

w = channel width (rectangular channel =150 ft. ) 
R = hydraulic radius = " j ^ w 
n = Manning's n = 0.015 (ft) for concrete. 

The Froude number of the channel flow is given by : -

Q S^ 
F o c i - l y r - x = 

^ l Y l ' ^ g ng 

Solving the above we get y^ = 0, 8 ft, , and 

F i - 3. 8 

The flow in the channel is supercritical and a hydraulic jump will 

occur when the channel flow meets the reservoir . The depth of flow yi , r a downstream of the hydraulic jump is given by y2 = ^ ^ ^ ^^ocii 
— —1 

= 4. 3 ft. 

The densimetric Froude number of the flow, downstream of the hydraulic 

jump (Section 2-2 in Figure 7 5) is given by : -
Q 

^2 = 3/2/A/> wy {—j- g \ Po y 
.o. There is a 17 F difference in temperature between the pond water and 

the heated inflow^ which gives r ise to density difference of 0. 22 pc. b e -

tween the twOo Substituting into the above expression for F2 we find 

F2 = 6.2 



13 6. 

(2) Conditions at tne Outfall 
The Density Jump - Uncontrolled 

A density jump will f o rm between sections 2 -2 and 3 -3 in Figure 7 5, 

It has been shown density jumps with this f o rm of flow geometry down-

stream p are of the maximum entraining type. The entrainment into 

such a jump is given by equation 35. 

If it i s assumed the inflowing veloc i ty distribution is uniform then 

S^. , The downstream f o r c e flow correct ion factor can be obtained 

f rom Figure 27 so that Ŝ ^̂  - 1, 30. 

The hydrostatic pressure correct ion factor i s given in Figure 30 so 

that 

Boundary fr ict ion at the jump for this case is small (a ir -water 

interface) and will be neglected so that 6 = 1,0 

Equation (35) can now be solved to give K - 2, 7, The temperature 

of the layer downstream is given by 

T., -- T^ + ^o . 63 + 
^ o K 2 ,7 

T3 =.- 69°F 

The thickness of this layer can be calculated f rom Equation (32) 

fe T a + 1) a 
V3 c ' 

^ 3 5 H ^ F, z 
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When the above equation i s solved f or the particular case under 

examination 

r = 9. 7 

hence y^ = ryg' = 42 ft. 

The eleven degree fall in temperature of the surface layer , caused 

by mixing at the outfall, would result in a marked drop in the thermal 

e f f i c iency of the cool ing pond. This l o s s can be avoided if mixing at the 

outfall i s prevented by means of a suitably designed control downstream 

of the transition region. 

Prevention of Mixing at the Outfall 

Mixing at a cool ing pond outfall can be prevented in two ways» 

(1) The tailwater can be controlled so as to f o r c e the density jump into 

a non-entraining or flooded reg ime. 

(2) Experiments by the writer (Foster and Wilkinsons 1969) have shown 

if the bottom slope at the outfall i s l e s s than approximately entrain-

ment at the density jump is negligible. This results f rom a blanketing 

ef fect of the bottom and ambient fluid is prevented a c c e s s to the entrain-

ing region of the jump. 

A sloping cool ing pond outfall of this type has been used at Liddell 

power station in New South Wales. In the case being examined bottom 
o 

s lopes of l e s s than 15 could not be practical ly achieved^ so that the 

f i r s t method must be used. A tailwater control in the f orm of a f loating 
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b a r r i e r , can be used downstream of the density jump, to contro l en-

iramment„ The b a r r i e r acts as an overshot we ir . 

If the density jump i s to be non-entraining, the depth downstream of 

the jump can be calculated by equating f o r c e f l ows upstream and down-

stream of the jump» So that ^ 

» L 2 ' £ , 
and if we divide throughout by p ^ and put 3 -

~ £ 

T 
Note: if - 1,0 the above equation reduces to the fami l iar f o r m 

r - i ( f i + 8f2| - 1 ) o r 1 

F o r the example cons idered , 8 ^ 3 can be obtained f r o m Figure 52 

by estimating F3 to l ie between 0. 2 and Hence = 1 .06 and 

trial and e r r o r solution of the f o r c e f low equations giv^s 

r - 8. 3 so that y^ - 36 ft. 

The downstream dens imetr ic Froude number i s given by 

F3 - r F . 

= 0, 26 

The estimate f o r Sj^s was satisfactory. 

^- Design of the Control 

The barr i e r depth n e c e s s a r y to obtain this non-entraining condition 

may be calculated by equating f low energ ies at sect ions immediate ly 

downstre'-i.rn of the density jump, and at the b a r r i e r . Hence 
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b u t a t t h e b a r r i e r w h i c h i s now t h e po in t of c o n t r o l 

T h e r e i s n e g l i g i b l e e n t r a i n m e n t b e t w e e n S e c t i o n s (3) and (4) and 

a s t he d e n s i t y j u m p i s n o n - e n t r a i n i n g 

E x p e r i n a e n t s h a v e shown t h a t if t he b a r r i e r i s p l a c e d s ix t i m e s t h e 
d o w n s t r e a m dep th 250 f t , ) d o w n s t r e a m of t he o u t f a l l , i t w i l l b e c l e a r 
of t he d e n s i t y j u m p . The c h a n n e l w id th a t t h i s po in t (W4) i s 180 f t . T h e 
t h r e e p r e v i o u s e q u a t i o n s c a n b e so lved to g ive 

y ' = 12 .0 f t 
and h = 1 6 f t . 

The l a y e r d e p t h i m m e d i a t e l y d o w n s t r e a m of the c o n t r o l w i l l b e c l o s e 
to c r i t i c a l a s t h i s r e g i o n i s s t i l l c o n t r o l l e d by the e x p a n s i o n , so t h a t 
Yg' ^ 12. 0 f t . T h e r e w i l l be s o m e m i x i n g in t h i s r e g i o n bu t e x -
p e r i m e n t s h a v e shown t h i s i s s m a l l and c e r t a i n l y f a r l e s s than t h a t 
w h i c h wou ld h a v e o c c u r r e d a t the o u t f a l l if the b a r r i e r w e r e no t p r e s e n t . 

T h u s the s u r f a c e t e m p e r a t u r e of the c o o l i n g in the v i c i n i t y of t h e out = 
f a l l wou ld b e 8 0 ° F . 
C o n c l u s i o n s 

It h a s b e e n shown t h a t u n l e s s prevented^, m i x i n g a t t h e o u t f a l l w i l l 
c a u s e a r e d u c t i o n in t he t e m p e r a t u r e d i f f e r e n c e b e t w e e n t h e i n f l o w i n g 
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cooling water and the ambient pond water. In the design example 

considered, which is typical of Electricity Commission of New South 

Wales practice, the initial temperature difference of would be 

reduced by 65 per cent by mixing immediately downstream of the out-

fall. Such mixing would significantly lower the thermal efficiency of 

the cooling pond by lowering the surface temperature of the pond and 

so reducing the heat exchange to the atmosphere. The depth of the 

thermocline would also be increased. 

The floating barrier^ if lowered to the calculated depth of 16 ft. , 

some 250 ft. downstream of the outfall^ will effectively prevent 

mixing in the transition region. 

It has been noted that mixing is also inhibited when the bottom 

slope in the transition region is less than approximately 15^. 
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A p p e n d i x G 

A S u m m a r y o f E x p e r i m e n t a l 
D a t a „ 

(i) Typical reduction of test data for a single experiment. 

(ii) Test data f o r max imum entraining density jumps. 

(iii) Density jump contro l led by a broad c res ted w e i r , 

(iv) Density jump contro l led by sharp c res ted w e i r s . 

(v) Density jumps contro l led by an undershot gate. 

(vi) Density jumps control led by f r i c t ion . 

(vii) Unsteady f low exper iments , 

(v i i i )Fal l in f o r c e f low, 

(ix) F o r c e f low c o r r e c t i o n fac tors , 

(x) Some typical mean ve loc i ty distr ibutions. 

(xi) Hydrostatic p r e s s u r e f o r c e c o r r e c t i o n f a c t o r s , 

(xii) Some typical mean density distributions. 
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' t yp i ca l Reduct ion of T e s t Data f o r a Single E x p e r i m e n t 

It i s i m p r a c t i c a l to inc lude all the e x p e r i m e n t a l data in ful l deta i l 

in this r e p o r t T h e r e f o r e only the b a s i c p a r a m e t e r s a r e tabulated f o r 

e a c h e x p e r i m e n t . However. , one c o m p l e t e r e d u c t i o n i s g iven in the 

f o l l o w i n g p a g e s . 

T e s t No . P3 
U p s t r e a m Condi t i ons 

Q j = 2o 35 g a l / m i n , Fiow u p s t r e a m of dens i ty j u m p . 

y^ = 0, 40 m c h e s Depth of f l o w u p s t r e a m (de te rmined by height of the 
inlet s lot ) , 

w " 6, 1 i n c h e s Channel w i d t h . 

T^ " 3 1 , 4 ° C U p s t r e a m t e m p e r a t u r e of dens i ty flowo 

Tq = 2 2 . 0 ^ C T e m p e r a t u r e of the ambient f luid . 

=0. 25 pc . The c h a r a c t e r i s t i c dens i ty d e f i c i t of the u p s t r e a m 

f low i s equal to the m e a n density s ince the dens i ty 

d is tr ibut ion i s u n i f o r m . 

= 7 . 2 The u p s t r e a m F r o u d e n u m b e r = ^ 
X yi ^ 

3 / 2 

Rĵ  = 1^320 Ups t ream R e y n o l d ' s n u m b e r 

Qi 
W if ̂  

w h e r e r^ i s the k inemat i c v i s c o s i t y of the 

u p s t r e a m f l ow. 

D o w n s t r e a m C o n d i y o n ^ 

The c o n t r o l - A f r e e o v e r f a l l situated 36 i n c h e s f r o m the up 

s t r e a m end of the densi ty jump. 



72 = 4„ 25 i n c h e s 
r = 1 0 , 6 = y . 
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I n t e r f a c i a l depth 
C o n j u g a t e depth r a t i o 

y . 

C a l c u l a t i o n of the c h a r a c t e r i s t i c d e n s i t y d i f f e r e n c e ( A ^ ) 

u 
ULA 

P' 

obta ined by n u m e r i c a l i n t e g r a t i o n of m e a s u r e d 
v e l o c i t y and d e n s i t y d i s t r i b u t i o n s . 

The m e a n v e l o c i t y d i s t r i b u t i o n w a s obta ined f r o m 6 s e p a r a t e s e t s of 
h y d r o g e n bubb le t r a c e s . 

y / y ¿ u / u ^ 

0, 1 1, 40 
0, 3 1, 60 
0, 5 1 ,40 
0 , 7 0, 65 
0, 9 0 , 0 7 

The f o r c e flow c o r r e c t i o n f a c t o r - d e t e r m i n e d 
f r o m t h e s e da ta w a s found to be 

= I 
"•a % Jo 

UL cU^ - 1» 32 

The m e a n d e n s i t y d i s t r i b u t i o n w a s obta ined f r o m the t e m p e r a t u r e 
d i s t r i b u t i o n t abu la t ed b e l o w : -

y ( in ) 
T y / y 2 pc. 

0. 5 27, 9 0, 11 0, 159 
1, 0 27, 1 0. 23 0, 136 
1, 5 26, 2 0, 36 0, 107 
1, 95 25, 8 0, 46 0 , 0 9 9 
2, 55 25, 2 0, 60 0, 084 
3 , 0 24, 6 0, 71 0 , 0 6 5 
3, 4 23, 8 0„ 80 0 . 0 4 8 
3, 9 23, 5 0, 91 0 , 0 4 0 

T e m p e r a t u r e D i s t r i b u t i o n D i s t r i b u t i o n of D e n s i t y D i f f e r e n c e 
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= 0 .92 pc. 

= 0. 109 pc. 

Numerical integration gave 

ra 

The hydrostatic pressure correc t ion factor was obtained by 

numerical integration 

2 

^ 2 Yo" 
'H2 ^ ^ ^ dy dy 

= 0, 58 

The flow ratio K was found to equal 

A, 
K A - 2. 28 

and the downstream Froude number was obtained f rom continuity 

^2 = 
/ K 
V r 

3 /2 
0. 72 
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-Mii^HH^^ Eiitraining Jump Test Data 

C o m m €nis 

T h e d e n s i t y j u m p s in t h e fo l lowing s e r i e s of t e s t s w e r e con i ro i l ed b:v a 

f r e e over fa l l in c l o s e p r o x i m i t y to t h e end of the jump„ General ly the 

over fa l l was at a distance equal lo the jump length f r o m the end of the 

density jump. Fr i c t iona l e f f e c t s downstream of the density jump were 

negl ig ible o v e r this distance. The fo l lowing data are plotted in F i g u r e s 

26 and 21. 

Test Q. To T. pi F. r 

ih NS >r>. in X "C % - - — - % ih 

PI O'^O ¿•'i-0 30 0 25 6-0 / • i .5 0 7 2 0 l^fg 17 

PZ / 93 O-lhO 3/ ZZO 31 Z 5 9 7 7 / • 8 7 0 7 0 0 / 3 ^ Z^O 

P 3 2 3 5 0 to ^ 2 5 ZZO V'^ 7 2 /0-6 2 2 g 0 7 2 0 ' / 0 9 

plf. / 4-5 o w £ 1 8 309 0«25 ti-it O'M 0^/75 

P5 I-Z3 Q.L^O Zi^ 3hO 0 2 5 3 - 8 3-6 O'lqz I05 

P6 0 87 O^itO 0-65 2 / ? 3hl 0^25 1-80 / • 6 1 03 0 9 6 o^zh-S 

ZZ 3,-90 0 if-3 6-6 1 3 ^ 0 30 9 7 2 7 3 0 7/ OHO j 

ZG 3-77 lf5 IZ^Q 30'0 0-57 6 0 d -3 2-03 0 72| 

Z7 3.96 0 5k / 2 8 2S0 O-Sh- <?•/ 2- /0 ij 

SI / 0-Z5 20 i Z7:S 0 / 8 9 10-7 2-80 0 7 3 ooir 
2 

Fl 2-7V O'^o 5 6 Z2Z 3 / -2 O'ZS Z-Z /ii-'O 2-55 O^iO 
If 
i 

F3 lOS 0^0 ! 05 Z2 3 Zl'5 0-25 2 6 j / / 3 0 82 0 zz 1 
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(iii) Summary of results for density jumps controlled by a broad 
crested weir„ 

F K r 
A A f 

^IC 
A 

10 „ 5 2„ 60 14„0 0, 83 0,0 0.0 0, 00 

10. 7 2. 44 14. 4 0. 73 1.. 58 0.063 0.. 11 

m 9, nq 14 7 0 Rft 2.38 0„ 105 0. 16 

9„ 7 2„00 14, 8 0„48 3. 70 0,175 i 0„ 25 

7 70 15„ 1 0„ 37 4, 40 Oo 220 0, 29 

9„ 7 L 5 9 1 0„ 32 5. 60 0„ 265 0„ 37 

P 7 IR 14. 5 0. 23 6. 40 0„ 290 0„ 44 
16.. 5 3o05 24„ 5 0. 73 0,0 0, 000 i 0,00 

16„ 5 2. 90 25„4 0,. 65 2„ 7 0„065 1 0.105 

50 26„ 2 0„ 48 6,0 0,145 1 0„23 

00 4 0 8. 8 0.210 i 0 35 

16„ 3 1„ 50 ,26.0 0,. 26 10. 8 0„260 0 .42 

Ifi 3 1 10 0. 19 3.2. B; 
i 

0 r̂ nn 0 49 

16„ 2 1„ 15 25„ 5 0„ 20 12„ 5 0„ 300 0, 49 

16„4 In 55 26.0 0„ 27 10. 8 0„ 260 0 .41 
16„ 5 2„05 26„ 2 0„ 36 8„ 8 0., 210 0. 35 
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Uv) Summary of results for density jumps controlled by a sharp 
crested weir„ 

Test N9 F, K r A f 

T 7 7 „ 4 5 8 8 9„ 7 0 „ 6 5 0 „ 1 2 0 

5„ 5 L 6 6 7 . 9 0 , 5 3 0 „ 1 8 0 

TA .S R 1 4 4 7 . fi 0 . 4 f i n , 2 4 B 

6 „ 9 1 . 3 9 9 . 3 0 , 4 0 0 . 2 9 0 

T 8 7 . 4 5 L 0 6 9 . 3 0 . 2 6 0 „ 3 4 0 

1 1 . 10 3 . 6 0 . 5 3 0 „ 1 7 0 

T g 7„ 4 5 L 6 7 1 0 . 3 0 . 4 9 0 . 2 1 0 

T 5 5„ 5 1 . 2 8 7 . fi 0 . 4 1 0 „ 2 6 0 

r i o 7„ 4 5 1 „ 2 5 9„ 5 0 „ 3 6 0 „ 3 1 0 
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(v) S u m m a r y of r e s u l t s f o r d e n s i t y j u m p c o n t r o l l e d by an u n d e r s h o t ga te . 

Tesi Ns K y 
CcK r 

Y9 6 . 4 5 1. 16 9. 7 0„ 26 0. 19 ' 0. 15 

Y8 5 37 9 / 7 0. 31 : 0. 22 0 . 18 

Y7 FI F; 1. 4^ 9. 8 0. 36 0. 26 0„ 24 

z e 6 . 4 1. 46 9. 5 0 , 4 1 • 0 . 3 4 0, 32 

Y6 6. 5 70 10„0 0 . 4 5 0 , 3 1 0. 25 

Z10 6. 6 1. 80 10 .0 0. 50 0. 33 0„ 31 

Y2 6„ 35 1. 90 9. 9 t). 53 0. 42 0. 38 

Y1 6. 35 2. 15 
/ 

9 . 8 0. 67 0..66 . 0 / 5 4 
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ivi) A summary of test data for density jumps controlled by frictioD 

Te^t 
Q. To To A ur^ smO r K 

units inc % % X 
VI 2 00 0 - 2 8 Ô  f 0 O ^ o 0 ^ 3 7'0 
V 2 Z 10 0 57 iZ 3 Z6 S 0 / 5 5 O'bZ 0 ^ 3 

V 3 O'SS (Oh- 0 5 5 0 2 7 5 Q (^Z O 63 

2 - 3 0 0-55 3 6 10-6 O'Zi 0 1ZO O-QB G 
V5, 0 3 7 3 8 oaq 0'U5 0-^5 O-fS '0 3 e 5 2 

T 5 1 - 7 7 0-37 3 - 5 ¡6 1 2 3 - 7 0 17 0 074 7 5 5 

i 
Bas/c J^ar^ameters 

Rp sm Q UT^ 

Pi 5lKi G 

r^si I--2 F- R, 5m B I 
VI 7 0 77 lOiO 3000 7 5 
V2 3 ̂  0 10 GO ! Goo 63 0 63 

V3 ! Zoo 
\ i 0 5(1 

V It- 0 %2 ) i 30 2^00 
i 

0^8 '0 7 i^OF 
\ \/5 6 ? 0 / 000 00 OQ^ / / / f-Su 1 1 
1 r 5 7 5 0-73 SdO ¡750 O'^S -s • 0 i n • ' 
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D e n s i t y d i s t r i b u t i o n s f o r the f r i c t i o n c o n t r o l l e d d e n s i t y j u m p . 

Tesf No r v 

V I 0 . 0 7 22. 1 0. 17 

0 . 20 22. 1 0 . 17 

0 . 39 18. 9 0. 12 

0 . 33 19. 6 0. 14 

0„ 50 17. 9 0 . 10 

0 . 63 16. 6 0 . 0 7 5 

0„ 78 14. 9 0 . 0 4 5 

0. 87 14 .0 0 . 0 3 0 

0. 96 13. 5 0 . 0 2 0 

L 22 12. 4 0 . 0 0 0 

V2 0, 10 24. 3 0 . 25 

0. 30 23. 8 0 . 23 

0 . 4 5 22, 6 0. 21 

0. 69 20 .0 0. 15 

0. 59 21. 6 0. 18 

0. 79 19. 8 0 . 14 

0, 93 18 .0 0. 10 

0. 97 15. 8 0 . 0 6 

V3 0. 11 26. 7 0. 33 

0, 31 27. 2 0. 35 

0„47 26. 2 0 . 32 

0. 70 23. 3 0 . 25 

0, 83 21. 7 0. 20 

0. 95 19. 7 0. 16 

Tea! N^ -7- " T c % 
V4 0 . 0 7 21. 9 0 . 205 

0. 28 21. 2 0 . 19 

0. 47 18. 4 0 . 12 

0. 61 17, 2 0 , 10 

0. 72 16. 4 0 , 0 4 5 

0. 89 12. 9 0 , 0 2 0 

1 .00 12. 2 0 , 0 1 5 

1. 17 11. 2 0 . 0 0 5 

V5 0 . 0 6 22. 1 0 . 190 

0. 16 21. 8 0 . 185 

0 . 24 2 1 . 0 0, 170 

0. 34 19. 8 0 . 140 

0 . 4 5 18. 8 0 . 120 

0. 58 18 .0 0 . 100 

0 . 66 17 .0 0 . 0 8 0 

0. 76 16, 8 0 . 0 7 5 

0. 87 15, 8 0 , 0 6 0 

0. 92 15. 3 0 , 0 5 0 

0. 97 14. 8 0 . 0 4 5 

T5 0. 11 2 1 , 0 0, 101 

0 . 23 20. 9 0 , 0 9 9 

0. 34 20, 5 0 . 0 9 0 

0 . 4 8 19. 9 0 . 0 7 5 

0. 63 19. 5 0 , 0 6 9 

0. 77 19 .0 0 . 0 5 7 

0. 86 18. 9 0 . 0 5 3 

0. 94 18. 5 0 . 0 4 6 
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(vii) U n s t e a d y F low E x p e r i m e n t s 

R e f e r e n c e F i g u r e 32. 
All u n s t e a d y f low e x p e r i m e n t s w e r e m a d e in a t i l t i n g f l u m e 

120 f t , long, 2 3 i n c h e s i n t e r n a l wid th and 2 f t , deep . 

S t a r t i n g C h a r a c t e r i s t i c s 

7 e 3 / N9 P f -- SI ^ 

cfsx lO^ f i /^ec ^ ^ 1 
2 2. 28 H 0. 45 3. 3 0. 125 1. 04 0 , 0 
3 2 . 3 4 0. 56 2, 3 0. 140 L 0 6 0 . 0 i 
4 1, 84 0. 23 0, 81 0 . 0 9 5 1 .0 6 0 . 0 
5 1„ 92 0 . 30 0. 91 0„099 L O l 0 . 0 1 
6 2, 18 0„ 61 2. 2 0. 142 1 . 0 9 0 . 0 j i 
7 2, 28 0. 50 2, 7 0, 134 0. 97 0. 54 1 
8 1, 53 0„ 58 L 5 0. 115 1 . 0 1 0. 54 
9 2, 36 1, 20 4. 8 0„ 177 1 . 0 4 0. 54 

10 2. 22 0= 26 1, 85 0, 136 1. 10 0. 26 
11 L 62 

1 
1 

0„ 31 1. 6 0„ 125 

! 

1 . 0 7 0. 26 
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Unsteady density flows on a slope 

where V^ is the uniform velocity of the nose 

attained after travelling distance 

F^ is the Froude number of the layer behind the nose, calculated 

from the equality discussed i n Chapter 4, F^ = "^o 3/2 

Teaf No smB 

1 0. 78 0. 69 1350 0.54 pc. 62 

8 0. 75 0. 65 1180 0 .54 pc. 30 

9 0. 83 0. 76 1450 0. 54 pc. 54 

10 0. 65 0. 53 1900 0. 26 pc. 60 

11 0. 76 0. 66 2700 0.26 pc. 39 
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2/3 

Comparison of for nose and F2 at the instant 

of flooding of the jump. Equality of these two variables indicates 

the nose is travelling at the same speed as the flow immediately 

downstream of the jump. At the instant of flooding F i s ca l -

culated from the known value of F^ assuming a non-entraining 

density jump. 

r e s / A / ^ F, 
2 0 .48 0, 54 54 3. 15 
4 0.. 54 0 ,45 77 5. 9 
5 0, 59 0, 64 39 2. 1 
6 58 0, 54 50 3, 2 
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C o m p l e t e R e d u c t i o n of U n s t e a d y F l o w E x p e r i m e n t 

T e s t NOo 6 - D e n s i t y d i f f e r e n c e due to d i s s o l v e d s a l t (N^Cl ) 

_ 2 

= 2. 18 X 10 c u s e c s 

= 0 , 6 1 pc . 
o 21. S'^C 

23. 8 ° C 

y^ = 0 . 48 in. 
w - 23 in . 

m) 
m 1 n 

t f s e c 
3 0. 20 
6 0 . 38 
9 1. 03 

15 2 . 0 1 
18 2. 31 
21 3 . 0 0 
24 3. 32 
27 4 , 0 4 
30 4, 37 
33 5. 15 
36 5. 49 
39 6. 24 
42 6. 59 

C o m m e n t s . 

R o l l e r r e g i o n s t a r t i n g to d e v e l o p a t 
j u m p , y^ ^ 1 . 2 in . 
Low a m p l i t u d e w a v e d o w n s t r e a m of j u m p 
R o l l e r r e g i o n e x t e n d s hal f l e n g t h of 
j u m p y2 = 1. 3 in . 

R o l l e r r e g i o n e x t e n d e d e a r l y t he l e n g t h 
of t he j u m p i n t e r m i t t e n t f l o o d i n g 
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0 

F 

m ) f ^ ^ sec 

45 7, 34 

48 8. 13 

54 9. 29 

57 10 .09 

60 10. 49 

63 11. 28 

63 12. 12 

69 12. 56 

75 14. 29 

78 15. 17 

81 16.09 

84 17.06 

87 18. 03 

90 19. 00 

Q, ^P 

L^y po 

3. 2 

Comments 

I ,, 
Density jump flooded y^ = 1 .4 

entrainment ceased 

Inlet flooded to a depth of 1" 

y< = 1 .5 " . 

-- 2. 2 X lO"^ (ft/ sec)^ 

Initially t < 1 minute 

At flooding t = 9 min - 11 min. 

= 1 .09 

= 0, 58 

= 0 . 4 0 

f 2 / 3 . 
a 

0. 54 
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Fall in F o r c e Flow 

F o r c e flow rat ios downstream of density jumps are calculated f r o m 

both equations 32 and 35 for maximum entraining density jumps. The 

mean value of the f o r c e flow ratio i s plotted against upstream Reynolds 

number in Figure 48. The dimensionless jump length i s taken as 4r . 

Test m e 35) R, .X 
V. 

PI 0, 87 0. 76 0. 82 880 26 

P2 0. 73 0. 73 0. 73 990 28 

P3 0. 72 0. 76 0. 74 1320 35 

P4 0, 83 0, 75 0. 79 820 18 

P5 0. 81 0, 81 0. 81 660 14 

P6 0, 97 0« 97 0, 93 480 6 

22 0. 70 0. 74 0. 72 2100 50 

26 0, 85 0, 77 0. 81 1900 34 

27 0. 83 0. 75 0. 79 2300 36 

V5 0, 73 0. 76 0, 79 1150 43 

T5 0. 75 0. 67 0, 74 960 38 

SI 0. 78 1 71 0. 71 850 52 

FX 0. 76 0. 74 0. 75 1450 58 

F3 0, 95 0. 92 0, 93 

i 

540 16 
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(ix) F o r c e F l o w C o r r e c t i o n F a c t o r s 

Tabulated b e l o w a r e f o r c e f l ow c o r r e c t i o n f a c t o r s deduced 

f r o m hydrogen bubble v e l o c i t y d i s t r ibut ions m e a s u r e d d o w n -

s t r e a m of the dens i ty jump. The f a c t o r s quoted a r e the m e a n 

of n v a l u e s of Sni2 ca lcu lated f r o m n photographs , 

rD 
w h e r e ~ 

/ 2 / J 
^ 

2 ^ 
^2 ^^ 

f o r each bubble t r a c e . 

Sigma ( <r ) i s the standard deviat ion (adjusted f o r smal l s a m p l e 

range) of S^^g ^^^ ^^^ ^ read ings . 
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t ' Tes"- A / - ^ R 

A 1. 10 . 0 3 5 3. 6 0. 37 
B L 14 . 0 5 5 4 , 4 0. 62 

c 1. 13 . 0 2 4 4. 8 0 . 4 6 
D 1, 13 . 0 5 9 8. 8 , 0, 47 
E 1. 20 . 11 6 6 . 0 0. 67 
F 1, 30 , 0 6 2 6. 5 0 . 79 
G 1 . 0 9 . 0 4 1 8 11. 8 j 0 . 3 8 
H 1 , 0 8 . 0 3 7 i 7. 1 1 j 0 . 39 
I 1 . 0 9 . 0 3 ! 6 16, 5 0. 23 
J Í , 14 . 02 6 3, 5 i 0 . 50 
K 1 .07 . 0 2 10 4. 4 0. 40 
L 1 ,09 . 0 5 6 3. 6 0. 37 
M i 1 1 . 1 5 . 0 3 7 6 . 0 0. 47 
N 1. 31 t . 0 5 11 4 . 1 i ¡ 0, 82 
01 1. 26 . 0 4 11 4 . 1 i 0 , 8 6 
02 1 .14 , 0 5 10 2, 6 0. 50 
0 3 3 . 3 1 , 0 5 10 4 . 4 0. 81 
04 1. 15 , 0 3 8 7. 1 0 . 52 
05 1. 14 . 0 3 7 7. 1 0 . 53 
R 1, 33 . 16 2 12. 5 0 . 71 
S 1. 11 . 0 3 6 1 , 0 5 0 . 98 
T 1. 19 i . 0 5 7 1. 9 0. 92 
U 1 . 2 3 J , 0 7 ^ 5 2. 1 
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(x) Typical Mean Veloc i ty Distributions 

The fol lowing ve loc i ty distributions are the .mean of n ve loc i ty 

distributions obtained f rom n photographs. Values of n are tab = 

ulated on the prev ious page. 

Velocity 

Tesf N^ O! f 0 5 Gr P oz I 

0, 82 0, 79 0, 53 0. 38 0. 47 0, 50 0, 23 

0 , 0 5 L 19 L 0 9 1. 19 1, 14 0, 92 0, 82 1,0 8 

0, 15 1, 53 1. 6 L 4 2 1, 37 1, 23 1 ,05 1, 35 

0, 25 1 .43 1, 54 1. 40 1, 30 1, 32 1, 27 1, 35 

0, 35 L 31 1 .43 1, 23 L 19 1, 29 1, 28 1, 21 

0, 45 1, 28 1, 33 1, 18 1. 14 L 27 1, 20 1, 15 

0, 55 L 26 L 64 1, 10 0, 98 1,20 1, 10 0, 98 

0, 65 L 0 3 0. 85 0, 92 0, 90 1„09 1,07 0, 91 

0, 75 0, 78 0, 67 0. 82 0, 79 0. 85 0 , 9 2 0, 82 

0, 85 0. 19 0 , 4 6 0, 59 0, 73 0, 62 0, 74 0, 75 

0. 95 0 , 0 2 0 , 0 3 0, 25 0, 45 0, 25 0, 62 0, 29 

3.»TO 2 L 26 1, 30 1, 14 1,09 1, 13 1, 14 1, 09 
1 
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(xi) Hydrostat ic P r e s s u r e Fo r ce Correc t ion F a c t o r s 

Tesf ! V- 3 w f K-y 

s 1.00 1. 1 0. 98 0 . 0 1 

06 0. 93 1. 8 0. 96 0. 20 

F3 0. 89 2. 8 0. 92 0 .40 

05 0. 83 9 0. 85 0. 45 

04 0. 63 4. 8 0. 73 0. 68 

26 0. 59 6 ,0 0. 70 0. 72 

P3 0. 58 7. 1 0. 72 0. 83 

F1 0. 59 8. 8 0. 68 j 
P2 0, 99 2. 6 0. 99 0. 13 

P4 0. 78 7. 1 0. 78 0. 55 

P5 0, 73 7. 1 0. 73 0. 52 
1 

D 0. 72 8. 8 0. 72 0. 50 

06 1.00 4, 8 1.00 0 . 0 3 

S 1.00 1 .05 0, 98 0 . 04 

— _ _ _ 

1 
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(xii) Typical Mean Density Distributions 

Tesi Ns 5 F3 03 P5 P3 
0 01 0. 20 0„ 40 0„ 45 0. 52 0, 68 0. 8 j 

c O H 2- LOO 0„ 93 0, 89 0. 83 0, 73 0, 63 0, 58 

0 . 0 5 LOO 1,03 1. 36 L 40 L 57 L 65 L 76 i 
0„ 15 LOO io03 L 32 L 33 1 ,48 L 52 L 74 
0. 25 1„00 L 0 3 L 28 L 27 L 35 L 30 L 55 
0„ 35 LOO LOS L 23 L 21 L 22 L 08 L 32 
0„45 LOO L 0 2 L 10 L 16 L 0 7 0„ 98 L 10 
0„ 55 LOO L 0 2 L 12 LOO 0. 96 0, 87 0. 90 
0„ 65 LOO 0„ 98 0, 92 0. 97 0, 85 0. 75 0, 74 
0. 75 LOO 0. 94 0„ 82 0 , 80 0, 74 0. 62 0. 55 
0, 85 LOO 0, 84 0„ 72 0, 69 0, 60 0, 46 0. 34 
0. 95 0, 96 0. 84 0, 47 0, 17 0, 37 0, 25 

! 

0. 1 i 1 
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A p p e n d i x H 

L i s t o f M a i n S y m b o l s . 

^ = w i d t h of c h a n n e l c o n t r a c t i o n 

3 - c h a n n e l w i d t h 

^ c = c o n t r a c t i o n c o e f f i c i e n t 

C(ji = d i s c h a r g e c o e f f i c i e n t 

D = d i s t a n c e b e t w e e n c h a n n e l b o t t o m and f r e e s u r f a c e 

E = e n t r a i n m e n t p a r a m e t e r 
2 F ^ ' ^ 

2 + I 
f - f r i c t i o n f a c t o r 

F = F r o u d e n u m b e r 

^ = 32„ 2 f t / s e c ( g r a v i t a t i o n a l a c c e l e r a t i o n ) 

= w e i r h e i g h t ( o v e r s h o t w e i r ) 

^ = w e i r o p e n i n g ( u n d e r s h o t w e i r ) 

= ^ ^ f low r a t i o 
M = s u m of f l u i d m o m e n t u m and h y d r o s t a t i c p r e s s u r e p e r u n i t s p a n 

j x = p r e s s u r e 

= f low p e r u n i t w i d t h 

Q = f l ow p e r u n i t w i d t h 

T" = c o n j u g a t e d e p t h r a t i o 

= Reynold^ s n u m b e r 

/?¿ = R i c h a r d s o n n u m b e r 
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= Kinetic energy correction factor 

5H ~ hydrostatic pressure correction factor 

^m = monaentum correction factor 

^ = local X component of velocity 
/ 

^ = characteristic x component of velocity 

= local y component of velocity 
/ 

= characteristic y component of velocity 

Vn - nose velocity 

^ = channel width 

^ r = w/ (2 ŷ  + w) 

^ = length scale along the boundary parallel to the direction of 

mean flow 

X = '^/y2c " dimensionless x scale 
^ = length scale perpendicular to the x direction 

/ 

^ = characteristic depth defined as the distance between the visual 

interface and the channel bottom 

= brink depth at a free overfall 

= critical depth at Section c ) 

V - y^/ YIQ " dimensionless y scale 

= angle of spread of a jet 

= ratio of boundary layer thickness to the depth of flow 

= ratio of velocity at the defined edge of the boundary layer to 

mean velocity of the flowing layer 
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S - y scale in the boundary layer 
- / 

S - boundary layer thickness 

A = characteristic density difference 

= local density difference 

f = total energy flux 

^ - inclination of bottom boundary to the horizontal 

0 = ratio of force flow at two different sections 

JA. - dynamic viscosity 

y = kinematic viscosity 

p = local density 

- density of the ambient fluid 

<p - flux of density difference / unit width 

H - local shear stress 

T^ = interfacial shear stress 

^o j - boundary shear stress 

5 = V „ / 
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