o

UNSW

SYDNEY

Studies in density stratified flows. April 1970.

Author:
Wilkinson, D. L.

Publication details:
Report No. UNSW Water Research Laboratory Report No. 118

Publication Date:
1970

DOI:
https://doi.org/10.4225/53/579eb0326c4ea

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/36340 in https://
unsworks.unsw.edu.au on 2024-04-17


http://dx.doi.org/https://doi.org/10.4225/53/579eb0326c4ea
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/36340
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

The quality of this digital copy is an accurate reproduction of the original print copy



research
laboratory _—

N.S. W., Australia

.

Report No.118

STUDIES IN
DENSITY STRATIFIEG FLOWS

by
D.L. Wilkinson

April, 1970



University of New South Wales

School of Civil Ensineering.

Studies in Density Stratified

by

D. L. Wilkinson.

https://doi.org/10.4225/53/579eb0326c4ea

Report No. 118
April, 1970,

- = - e = = o - m -

Flows.



Preface.

The work reported herein was part of the program of
research carried out at the Water Research Laboratory, funds
for which were provided by the School of Civil Engineering as
distinct from external sponsorship. Printing and publication is
by permission of the author through service facilities provided

by the Water Research Laboratory.

R. T. Hattersley,
Assoc. Professor of Civil Engineering,

Officer-in-Charge.




This thesis examines the rapidly varied flow phenomenon in a
two layer density stratified system. Only one layer flows, the other
being stationary, The flow regime changes from supercrifical to sub-
critical across the region of rapidly varied flow. The analagous
phenomenon in open channel hydraulics is the hydraulic jump. In
stratified flows it will be referred to as a density jump because it is
generally accompanied by a change in the density of the flowing layer.

It is shown there is a fundamental difference belween the hydraulic
and the density jump in that the conjugate conditions on either side of
a density jump are not uniquely related as they are with the hydraulic
jump. There are a range of possible states which may be a'tained
downstream of a density jump for a given upstream state. It is shown
that the rate of entrainment of ambient fluid into a densily jump and
therefore the conditions downstream of the jump are a function of the
downstream control. The limiting cases of maximum and minimum
entrainment and the control mechanism within the jump are examined.
Several forms of control are investigated among these being the broad-
crested weir, a free overfall and channel friction.

An entrainment function is derived, relating a local entrainment
parameter to a local Froude number within the entraining zone of a

density jump.



Some features of unsteady density flows are examined and it is
shown that all the properties of starting flow or nose are controlled
by the following layer, which in turn, is generally controlled by
boundary friction.

An approximate expression is derived for the fall in momentum
flux across a density jump and this is compared with experimental
data.

Finally, experimental velocity and density distributions down-
stream of density jumps are presented, and are shown to be functions
of the Froude number of the flow upstream of the density jump, and
the rate of entrainment within the jump.

The significan® result arising from this work is that conditions
downstream of density jump, which will occur, for example, at power
station cooling pond outfalls and some ocean sewage outfalls, can be
predicted. A design example, showing how power station cooling pond
efficiencies can be optimised, by the control of mixing at the outfall,

is included in the appendices.
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Chapter 1 - General Introduction

The term 'density current' is used to describe the motion of a
fluid within another fluid of slightly differing density. The difference
in specific weight of the two fluids provides the driving force for the
motion. The density difference may be due to dissolved salts or temp-
erature variation. The name gravity current is probably a more exact
description of the motion; nevertheless the term 'density current’ is
firmly entrenched in the literature and will be used. The term
"turbidity c¢urrent' is used when a suspension of solids cause the density
difference,

Many density flows occur in nature, These are generally large
scale phenomena such as atmospheric cold fronts or geostropic ocean
currents, All these density flows are of concern to man; they affect
either his environment, his comfort, or his pocket, and he therefore
wishes to gain some understanding of their behaviour,

Interest in density flows,at this laboratory, originated when advice
was sought by the Electricity Commission of New South Wales, on out-
fall design for power station cooling ponds.

Power stations require huge volumes of cooling water to condense
steam which has passed through the turbines, used to drive the gen-
erators. The efficiency of the generation cycles is in part dependent

on the temperature of the cooling water; the lower the temperature, the
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greater the efficiency. The cocling water is sometimes drawn from a
rearby reserveir constructed for that purpose. Hence, the cooling—__
water, like the steam, recirculates. When the cooling water is dis-
charged back into the reservoir it is warmer than the surrounding pond
water, The difference in density of the inflowing and ambient fluids
causes the hot water 1o spread and form a layer at the surface of the
reservoir. Density stratification of this type is desirable in cooling
ponds, since it promotes maximum heat transfer from the heated water

to the atmosphere before the cooling water is re-used.

Evaporation and radiation are the dominant mechanisms of heat ex-
change 1n the pond, and these are optimised when the surface layer is
as hot and as thin as possible. This is achieved by minimising mixing

of the inflowing and ambient fluids at the outfall.

The laboratory was asked to investigate the outfall requiremenis
recessary to achieve these optimal conditions. The investigation des-
cribed in this repeort arose out of earlier studies into the outfall problem
(Wood, 1967).

The problem of outfall design is not specifically geographic in
nature but is more a question of basic fluid mechanics. It is necessary
to gain an understanding of the physical mechanisms operating at a
cooling pond outfall. Only then, can an attempt be made at predicting

the extent of mixing, and layer thickness at an outfall.
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Before proceeding with this problem, some basic general features
of density flow are reviewed.

The same laws govern the motion of density currents as govern free
surface flow, and in the appropriate places many of the approximations
made in deriving the open channel flow equations may be applied to den-
sity current flow.

For a density current consisting of a single flowing layer and pro-
vided the streamline curvature is small, the gradually varied flow
assumption leads to subcritical and supercritical flow regimes,.

Two major differences exist between the flow described above and
free surface flows.

(i) Firstly, since differences in density of the fluids are generally
small the resulting forces, causing the motions, will also be small.
However, the fluid inerti.a remains unchanged, so that accelerations in
the density current will be orders less than in analagous free surface
flow. Hence, density currents move with a characteristic slow motion,
It is this slowness of movement which makes density currents so in-
teresting to observe., especially if the flow is unsteady. Starting flows
such as occur in the '"dam-break'' problem are quite beautiful to watch
in the exaggerated time scale associated with density flows.

(ii) The second major difference between density and free surface flows

arise from the fact that density flows are generally miscible with the
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surrounding fluid. If there is sufficient turbulence at the interface of
the density current and the ambient fluid, the two will mix.

Density gradients in a fluid tend to suppress turbulence normal to
that gradient, so that in certain cases, density currents can flow for
appreciable distances and only mix very slightly with the surrounding
fluid (Lofquist 1960). It is this feature of density flows that is desirable
to promote in power station cooling ponds.

It was stated previously that density flows, like open channel flows,
have supercritical and subcritical regimes. An hydraulic jump is the
mechanism by which an open channel flow changes from the former to
the latter regime. Such a transition can occur in density flows, and
will almost always form at a power station cooling pond outfall. Although
the Froude number of the flow in the outfall channel may be subcritical,
the flow,when considered as a density current, will almost always be
supercritical,

it is shown later that supercritical density flows are unstable at an
outfall, and a transition to subcritical flow will occur. Such a transition
is analagous to the open channel hydraulic jump and is similar to it in
many ways. There is, however, a significant difference between the
two phenomena, The density of a density current generally changes at
a transition from supercritical to subcritical flow. For this reason, the

transition will be referred 1o as a density jump. The reason for this



5.
change in density at a density jump, is that part of the upstream energy
is dissipated entraining ambient fluid. If the two fluids are miscible,
the fluid entrained at the jump will change the density of the downstream
flow. Some interesting cases of naturally occurring density jump have
been reported in the literature. Density jumps have been observed in
Fohn winds and the katabatic flows in Antarctica (Schweitzer, 1953, and
Ball, 1956, 57,59). Lied (1961) gives a particularly vivid account of
meteorological measurements taken thr ough a jump in katabatic flow.
The depth of flow on the supercritical side of the jump was typically 60
to 100 feet and on the subcritical side 100 to 300 feet, ‘varying with
different jumps. Pressure drops of up to 20 m.b. were measured across
the jump, in one instance, over a distance of only 60 yards. Lied’'s account
of his walking through a jump is worth recounting.

"The experience of actually walking through a standing katabatic
jump is somewhat unusual. Invariably the following sequence of events
took place:-

(i) The observer walked upslope in calm conditions, or with light and
variable winds.

(i1) Taking measurements of pressure, temperature, and wind-speed
and direction downhill from the jump while still in the calm air, the ob-
server had the odd sensation of approaching a strongly roaring wall of
drift snow, which was neither retreating nor advancing, and towering up

to 300 feet above him.
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(1i1i)) Series of measurements were taken immediately outside the edge

of the jump, whereafter the observer stepped into a totally different
world, like walking through a door opening out into a full blizzard. At

the very edge of the jump violently rotating swirls of wind and snow, with
strong updrafts and downdrafts alternately forced snow up into his nostrils
and eyes and at the next moment blew it down his neck. A severe buffeting
was experienced.

{iv) At this point further measurements were taken. These showed a
sudden drop in pressure, an immediate rise in temperature, and just in-
side the very turbulent edge of the jump, a violent increase in wind speed,
blowing downslope with strong gusts, and accompanied by moderate to
dense drift snow.

(v) To make sure of his measurements the observer passed in and out

of the jump a number of times repeating his observations on either side

of it. He then walked upslope into the wind to obtain measurementis well
behind the turbulent edge of the jump.

{vi) Upslope the wind was usually stronger than near the edge, with
denser drift, and the differences in pressure and temperature from the
values obtained in the calm air also increased upslope.

(vii) Walking downslope with the wind behind him the observer could de-
termine the standing edge of the jump by the sudden increase in turbulence.

On leaving the jump, the transition from highly turbulent to calm, or light
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and variable conditions usually occurred over a distance of only about
5 yardsj'

It has been shown experimentally, and was anticipated from analysis,
that a density jump with upstream conditions fixed, can entrain varying
amounts of ambient fluid, depending upon the tailwater control. The mech-
anism by which a jump varies its entrained flow is worth examining in
some detail, Figure (1) shows a typical density jump. A jet of dense
fluid, say salt water, issues from the inlet slot which extends the full
width of the test tank. The tank is filled with less dense fluid, say
fresh water. When the flow is started,a vortex forms which moves away
from the slot, followed by a layer of diluted, salt water. The starting
vortex is subsequently called a nose and movesinitially with a velocity
which is solely a function of the flux of density difference.

Figure (1) shows the form of the density current a short time after
commencement of flow. At this stage, the jump closely resembles a
neutral jet except for the downstream region where the density difference
acts to suppress turbulence, and mixing finally decreases to a negligible
amount. The interfacial slope of this type of density jump is noticeably
less than the slope of an open channel jump. The surface roller observed
in open channel jumps is absent in this density jump.

The mean velocity in the layer behind the nose is very nearly equal
to the velocity of the nose. This will be shown in Cahpter 5 which deals

with unsteady density currents, The starting vortex or nose acts as the
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tailwater control and it will be shown that this is a possible conjugate
state for the jump.

Unlike the open channel jump the conjugate conditions for a density
jump are not unique. The reason for this is that a density jump can en-
train, within limits, varying amounts of ambient fluid, to satisfy a range
of conjugate depths. The mechanism by which this happens is now ex-
amined.

Consider an open channel jump controlled downstream by an over-
shot gate, which has been adjusted so that the jump forms next to the
slot as shown in Figure 2, If the gate is raised abruptly by a small
amount, a wave will travel upstream causing the jump to partially flood
so that the outlet becomes submerged (Figure 2b). The unique conjugzaie
conditions which enable a jump to form are no longer satisfied. If the
same experiment is performed on a density jump, again a wave moves
upsiream, but instead of submerging the inlet as happened above, a roller
will be observed to form on the downstream end of the existing jump as
shown in Figure 3, The interfacial slope of this roller is noticeably
steeper than the original jump, which itself remains unchanged. Thg
roller which forms at the interface in this type of density jump, is sim-
ilar in form to the roller observed in open channel hydraulic jumps. This
roller, when present in a density jump, causes a marked reduction in in-

terfacial shear, resulting in reduced entrainment. The steeper slope of
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the roller region resulis in a shortening of the transition zone. The
mixing remains unchanged in the initial section of the jump, which wiil

be referred to as the enirainment zone. If the gate controlling the tail-
water depth is raised further, the roller advances further upsiream, re-
ducing the enirained flow until the limit is reached where the entrainment
zone is entirely replaced by the roller region. This density jump is non-
entraining and is exactly similar in appearance to the free surface hydraulic
jump. If the tailwater level is increased further, the outlet and the up-
stream end of both the hydraulic and density jumps becom es submerged

as shown in Figure 2b. Jumps in this state will in future be referred to as
flooded jumps. The non-entraining jump represents one limiting case of
the density jump.

Summary - The Characteristics of a Density Jump

Briefily, the distinguishing features of a density jump are as follows:-
i1) The density jump generally consists of two zones although at the limits
either zone could only be present. There is an entrainment zone followed
by a reoller regicn over which there is very little entrainment. The roller
region is similar in appearance to the open channel hydraulic jump.

(2) The relative length of these zones is controlled by the tailwater
conditions.
(3) Non-entraining and flooded jumps are exactly analagous in appearance

and behaviour to the free surface hydraulic jump.
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The following chapters examine the various conjugate states attain-
able by a density jump, and compare these with experimental data. Sev~
eral forms of tailwater control are then analysed, and the feed back
phencmencn between control and jump is examined in the light of ex-
perimental results.

Finally the form of the entrainment function is examined, together

with the unsteady density current or nose.



11.

Chapter 2 - The Force Flow Equation

2.1 Introduction

In this chapter it is proposed to examine the conditions under which
a density jump can form. The conjugate states either side of a density
jump are not necessarily unique. Ambient fluid may be entrained into
the density jump, thereby increasing discharge and lowering the density
difference downstream. The flow is approximately uniform on either
side of the jump. A density current issuing from a slot does not become
unstable immediately, as can be seen from the photograph in Fig. 4.
There is a short region over which the flow is uniform and hence the
pressure is hydrostatic, Downsiream of the density jump, the turbulerce
has been suppressed and the flow is again nearly uniform.

2.2 Analysis - The Continuity Equation

The eguation of conservation of mass, for a steady incompressible

iwo dimensional flow, is given by:-

> (pu) + —%—(ﬁ") = O (1)

>

where /C) is the fluid density and u and v are the velocity components in
the x and y direciions respectively as shown in Figure 5. Molecular
diffusion, in the flows considered here, is of a lower order than the
terms in equation 1 and has therefore been neglected (Koh, 1964)

The density of the ambient fluid ( Lo ) is uniform throughout. Let

the density of the flowing layer be /OO—I"A/O where A/o is a function of
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depth (y). It is assumed the section under examination is sufficiently far
upstream or downstream of the jump for conditions to be uniform in the
x direction.
When equation (1) is integrated across a section normal to the velocity

vectior, as in Figure 5, one has

,/D .

J é +&,,.) ‘1’/7; Cy = a constant, where D is the distance to the

e :

upper fluid boundary (the free surface in this case). However, since the

flow is incompressible and steady/btd/% Cy = a constant, hence

C
}(Aw w A Y = _01 - Cy = ¢ where ¢ is also a constant. The
[ (\/ ( o
equation o
s
1.5

will be referred to as the equation of continuity of density difference.
¢ is termed the flux of density difference.

2.2 The Boussinesq Assumption

The following analysis is much simplified if the Boussinesq assumption
is made (Batchelor 1953), (Rouse, Yih and Humphries 1952). Differences
in density of the moving and ambient fluids are assumed small, so that
variation in inertial forces can be ignored. Mathematically this may be

expressed as

S omn T = D, A DD
i -~ / ?'{ “ !

The change in density is only considered important when associated with
gravity and acts as a buoyancy force, The error introduced by making

this assumption was less than 0. 5 per cent for the thermal density



Fig.4: The uniform flow region upstream of a
density jump.
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currents used in experiments,

2.3 The Eguation of Motion

The equaticn of motion for the steady flow shown in Figure 5 is given

by
/ kY
oof LD 4 B} o A 4 BT
This may be rearranged to give:-
oo il Al o A 5 3
f y‘ ol 2 d’\é, /' D 2 % (4)

If equation (4) is integrated across a section of the tank with the
limits y = 0 at the lower boundary, and y = D at the free surface, the con-
vective terms reduce to

/oo(.if W oy +(u.v'] )

oo

==
&5
f
o

where ju

The streamlines are not curved. Therefore pressures are hydrostatic.

Hence , P D d
] i = ) g
A ", Faty JQ//’”A/’)?* 7
and on integrating across the section one obtains

-JCD_;T{;. a[g;, = s [D 4—&ﬁ)} 0%,0(9,

/. ox
o g
However, upstresm, and far downqtream of the jump, A/o is independent

of x, so that the pariial differential with respect to x may be taken outside

the integral. The right hand side of the above equation reduces to:-

D D

[ epe %y dy

<.
ax 7o v’g,
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S A
Integration of the shear force across the section yileds:- ! cfo= b

where {  is the bottom shear stress, since shear at the free surface
is negligible. The equation of motion, for the case under examination can

be written as:-

. o \
D Y —
B // po | Ay o+ [ 2 0(1} dy) = - T
- f N ¢ <
?))('\\ { /e »"/O 13 ,/ (5)

It is convenient to define new parameters dealing with the mean flow.
Equation 5 may then be expressed in terms of mean flow parameters.

A characteristic depth of the density current (y') is defined as the dis-
tance between the fixed boundary, against which the density current flows,
and the mean position of the visual interféce, It was found that the
characteristic depth generally coincided with the depth to maximum vel-
ocity and density gradients. This was fortunate since the latter depth
has been used as the characteristic depth by other investigators (Ellison
and Turner 1959). The writer defined the characteristic depth to the
visual interface because the latter could be rapidly and simply detected
by dyeing the moving layer. The position of the visual interface was
found to be independent of the concentration of dye in the layer, and co-
incided with the region of steepest density gradient. This was verified
experimentally, for numerous layers, with varying dye concentrations
and density gradients. The interface in most laboratory experiments was

laminar, so the interfacial depth could be measured accurately., Hence-
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forth the characteristic depth shall be simply referred to as the depth
of a density current,
The velocity and density distributions downstream of a jump are gen-

erally non-uniform across the section. Hence a characteristic velocity

(u') is defined as: 5
/
w = v
Y /; UL‘V’L (©

Similarly a characteristi¢ density difference (A) is defined by.
: E D
A = —, = { f ULpLg O[/? (7)
iL é/ w % . 0 .’Qo

If the density distribution is uniform across the section and the density

discontinuity coincides with the visuél interface, the characteristic den-
sity is given by .
& = 2L g
o

The latter is independent of the velocity distribution, However, if as
is generally the case, the density is non-uniform across the section, .the
characteristic density is dependent on the velocity distribution.

It is convenient to define a momentum distribution correction factor

as. Lo,
2 4

L y o (8)

i

S is unity if the velocity is uniform from y =0 to y = y' and zero
_elsewhere. Experimental values of Sy, were found to lie in the range
1.05 to 1. 32.

Secondly a hydrostatic force correction factor is defined as:

Su = 212/”/"%22 0(90(2 (9)

sy oy




Sgp 1s unity if the density is uniform from y =0 toy = y* and

is zero thereafter. S was found to be less than one and lay in the range

0.59 to 1.0.
Equation (5) may be written in terms of the new parameters as:-
-~ ’ N2 ;2 o
o (Smleyl . Swayt) o - Te
oK\ :#’ 2 /DO
the density flow Q, is defined as
D
Q = [ udy = u'y'
and from equation (7)
A= 2 (10)
Q
On substituting for u'y' and £ , the equation of motion reduces to
s c 2 ~ , € ;d .
o I G 5 Om L = — T ,
2 2 O 2 Y ) Biad (1)
Ny 20 ‘ o
Integration of the above with respect to x gives
S G5+ .SH#";/;‘ = M
gy’ 20 tz ‘
y ardd AT = f’\/i/ - :’r Oy ol s (12)
‘—/‘J__, "“)o

The variable M is equal to the sum of the horizontal mom entum flux
and pressure force per unit span, at a cross section of the flow.

Mj is.the magnitude of M at some reference section (1 in Figure 5).
The integral term, in equation 12, is the total boundary shear force
acting on the flow between the reference section and the section of interest.

Boundary shear forces are usually neglected in the hydraulic jump
analysis because of their small magnitude. However, since the Reynolds

numbers associated with density flows are generally low, the shear forces
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are proportionately larger. The ratio of upstream force flow to the
boundary shear between Sections 1 and 2 was found to be fifteen to
thirty per cent. It was therefore necessary to account for boundary
shear in the analysis of the density jump.

It is convenient to non-dimensionalise Equation 12. This may be

2
accomplished by dividing equation 12 by Y 1c . The variable Yic i
Qq '
the critical depth of the upstream density flow; defined by
Q 2\ 1/3
Yic = ——l—-> (13)
v O

The subscripts 1 and 2 refer to sections upstream and downstiream of

the jump respectively.

3
Equations (10) and (13) can be combined to give § = (%)
lc
Hence
Yic = Qq

1t is convenient to define two dimensionless parameters K bandY
K is defined as the ratio of flows upstream and downstream of the density

jump, so that

Q 4,

KQ1=7§Z

(14)

The flow upstream of the jump will have a K value of one. That
downstream of the jump must be equal to, or greater than one, depending
on the quantity of ambient fluid entrained.

The second dimensionless parameter Y is defined as the ratio of
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the charzcierisiic depih of flow, al the section of interest, to the critica;
upstiream depth yj., hence

v- I (15)
Yic

Upstream of a jump Y must be less than one, as the flow is super-
critical. 1t will be shown, that if the upstream depth is equal to, or
greater than critical depth, no jump will occur. This result might be ex-
pected from knowledge of hydraulic jump behaviour. Downstream of the
jump Y is greater than one.

The non-dimensicnal equation of motion is given below.

. c 2 R
PMuyie = S KT Sk Y (16)

e v Z K

Equation {16) will be referred to as the force flow equation where the

I\KIJ-LE« is termed the force flow (Benjamin 1962).
f")quz
2.4 The Force Flow Diagram

guantity

The force flow equation is plotied in Figure 6 with the force flow and Y
as the abscisss and ordinate axes respectively. The flow ratio (K) is used
az the plotiing parameter, and it can be seen that a family of curves existis
bounded by an envelope(DF in Figure 6) and the force flow axis. Only force
flow curves with K values of one or greater are of practical inierest.
Values of K less than one are physically unattainable.

The momentum and hydrostatic force correction factors (S, and Sy
have been taken as unity when plotting the diagram. Since its purpose is

illustrative, and is not intended to be quantitative, the selection of S, and
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Sy values is not important.

Any supercritical upstream flow may be represented by a point on
the lower arm of the K = 1,0 curve (AB in Figure 6). If a density jump
occurs without entrainment, the conjugate state is found directly above
on the upper arm of the K = 1,0 curve. The conjugate ratios of the non-
entraining density jump, are identical to those of the open channel, hyd-
raulic jump, for which K is always unity.

An an example, consider the depth Y; in Figure 6. The conjugate
state for a non-entraining jump with zero boundary friction, is given by

moving vertically up to the point Y9, on the K = 1.0 curve. The ratio

%{(_2 is the conjugate depth ratio.
1
The K = 1,0 curve has a minimum value of force flow at the point A
(Y =1.0 and PM%LL% = 1.5). The depth at this point is critical and the
oY1

Froude number defined as .

o)

is equal to unity. As one moves away from the minima on the lower arm of

[N

the K = 1.0 curve, the upsiream Froude number increases in value, while
on the upper arm the downstream Froude number decreases.

Equation (16) is a cubic in K. Hence there are three values of K,
which will satisfy the force flow equation, at any point below the

envelope (DF) of the force flow diagram (Figure 6). One K value is
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alway s negaiive and is of no interest; the other two solutions are real

znd positive. Both values of K are physically possible in certain regiors
of the force flow diagram; in others, only one or no solution has meaning.
At any point in the zone between the envelope and the abscissa axis, the
upper value of K shall be denoted by K|, and the lower value by Ky .

All possible states upstream of a density jump lie on the line AB in
Figure 6.

It is evident from the above, that only certain regions of the force
ilow diagram represent physically attainable, downstream states, for a
density jump.

Dimensional analysis shows if frictional forces are neglected, a
density current flowing as shown in Figure 5 is fully defined by its

Q? \*

2
Froude number (F) where F = ————?) provided D is much larger than
L y 7/

y'.

i

t is shown in Chapter 6, that for the flow geometry being examined,

flow s with Froude numbers greater than unity are unstable and can en-

train ambient fluid until the Froude reduces to unity. The unity limit

on the Froude number applies only if the velocity and density distributions

are uniform. It will be shown the general limit is given when F =(S!H/Sm)%o
Meaningful solutions for the force flow equation musi have sub-

critical flow downstream of a density jump. Therefore, the Froude

number in this region must be unity or less.
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Before proceeding further with examination of the zonesof the force
flow diagram it is advisable to familiarise oneself as to how the Froude
number plots on the force flow diagram.

It will now be shown that a curve of constant Froude number is a
straight line passing through the origin of the force flow diagram and lies

on, or below the envelope. The Froude number is defined by
1

2 2
()
Ay 3

but when ,yll = ¥1o» then

(NI

2
F],C :(-&1..3-.) = 1.0
A’ le

Equations (14) and (15) may be combined with the above to show

3/2
- (K
F = (Y ) (18)

The force flow equation can be rearranged into

My, = Su Y(z Sm K 4 c) Y

po Q3 2 K\ Sa Y3
= SH 2 %: Fa"‘ ' Y
2 F2/3 (19)

Hence for a conlstan'f Froude Number

Mge = Y
o

where Sm _2
2 F 2/3
Sp, and Sy are both taken as unity on the force flow diagram. Therefore

the plot of equation (19) is a straight line passing through the origin. Its

slope ( ¥ ) is a function of the Froude number.



2

[N

>

F is double valued for any © except at the maxima, where
o« PR

R S i 1 = 0

NF 3F3

and F = 3, A plot of & versus F is shown in Figure 7, where it can

It follows from equation (18)

N[~
o

be seen © is a maximum when F =

that is positive, hence for a given value of Y, K, will be assoc-

oF
» K
izted with the larger value of Froude number and Kj, with a lower value.
F is only single valued at the stationary point. Hence K also is single
valued at this point. Therefore the line F = % is the envelope of the force

flow diagram.

2.41 Zones of the Force Flow Diagram

The force flow diagram can be divided into zones as shown in Figure 9.

No solutions exist in the region above the envelope ODF. All poinis
below this envelope represent mathematical solutions to the force flow
equations. For these solutions to represent a physical state downstream
of a density jump two further conditions must be satisfied:-

(i) K must be equal to or greater than one and

(ii) F must be equal to or less than one.
K curves having force flow minima to the left of the K = 1.0 curve minimas
{A), in Figures 6 and 8, have K values of less than one and therefore do
not represent physically attainable solutions. Hence it can be shown that
211 K7, points lying below the K = 1.0 curve (ADEC) do not represent

physical solutions. Curves of constant Froude number lying below the
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F = 1.0 curve (AEG) and associated with a Ky value have Froude
numbers greater than one. These also do not represent physically attain-
able downstream states.

The three zones where downstream solutions do exist are:-

Zone 1 ADEA is bounded by the K = 1.0 (ADE) curve and the F = 1.0
line (AE) only the upper K value has meaning since the lower value is less
than one.

Zone 2GEDF is bounded by the F = 3 line (DF), the F = 1,0 line (EG)
and the K = 1.0 (DE) curve. Both K values can be atiained in this zone.

Zone 3 (CEG) is bounded by the F = 1.0 line (EG) and the K = 1.0
curve (EC). The K, values yield Froude numbers greater than one in this
zone; therefore only the K, values can represent a tailwater condition.

It is apparent from the above that, unlike an open channel hydraulic
jump, depths and densities downstream of a density jump cannot be pre-
dicted from upstream conditions alone. Limits to the conjugate state can
be established, but within those limits, -entrainment and depths down-
stream are dependent on the tailwater control.

2.5 Further Deductions from the Force Flow Diagram

Minimum depth is given by conjugate states lying along the curve
AEC. Along the AE of this curve entrainment is a maximum and along
EC there is no entrainment. The point E is the transition point for these

two minimum depth regimes. The point E has a force flow of 4, 15 and
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the upstream Froude number associated with this value of force flow
is 7.3, as shown in Figure 6.

Maximum depth is given by conjugate states lying along the curve
ADF. It can be seen in Figure 6 that conjugate states having force flows
less than 1. 88, and therefore upstream Froude numbers less than 1"FI=2° 25
lie to the left of D. In this case conjugate depth is a maximum when there
is no entrainment at the density jump. Conjugate states of density jumps
with force flows greater than 1. 88 lie to the right of D, and have maximum
conjugate depths when the conjugate state lies on the envelope DF. It has
been shown previously that along the envelope the Froude number is single
valued amd equal to one-half.

The conjugate depth ratio (r) is defined as the ratio of depths upstream

and downstream of a density jump. Hence

Z72(
Yl'

r:

The equations of the limits to the conjugate depth ratio as stated above
are tabulated below. These limiting equations are plotted in Figure 8.

Maximum Entrainment

It can be seen from the force flow diagram that maximum entrainment

occurs when the conjugate state lies on the minima of a K curve, the point

\ /Iv1 vc“ - 5 . 5 FZ '
J in Fig. 6. At this point “’"Y Jd;} H :22 o= O

]
/.
so the Froude number is equal to (§H\; .

\

é”
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As Sy and Sy, are taken as unity on the force flow diagram, the
downsiream Froude number is equal io one when entirainment is a max-
imum,

The F = 1.0 line (AEG) in Figure 6 is therefore one limit to the en-
trainment (a maximum). No entrainment (ADEC) in Figure 6 is the
second limiting condition.

3. Limits on the Downstream Depths

Maximum Depth Ratios

. -
| ;
j Range Conjugate Section in No, -
% depth Fig. 9 _‘.
4 Force Flow Froude No. 1'2%0, Le: 7“
} min, | max. min, | max,

. Mo - :
1.50 1.88 | 1.00 | 2.25 & |{1+8F] )] AD AT
| - 9 . :
i ! 2(2F1 +1) ; o
¢ 1.88] oo 2.25 oG e DF @ 11
i | 3(2F ()3 i
A | _

Minimum Depth Ratios

11.50 | 4.10 1.0 7.3 2F2 + 1 AE ! iin .
| 273 | ?
! i 3 Fy

| Ll Mg o |

' 4.10] o0 7.3 e, 52%5“ 8F ) -3} EC ‘ i
! ! . = ! j

Unlike the open channel hydraulic jump, the density jump problems
cannot be solved using the fofce flow equation alone., Characteristics of
the control downstream of the density jump must also be known. The
gownstream control determines the degree of entrainment into a density
jump and hence its form, Before proceeding further with the mathemaics:
analysis of the density jump, the physical aspects of the phenomena are

examined, This is done in the following chapter.
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Chapter 3 - The Mechanics of the
Density Jump.

It is necessary to examine the mechanism of a density jump in some
further detail, before the interaction between a density jump and its con-
trol can be fully appreciated. Therefore, the characteristics of the
density jump itself are now discussed.

3.1 The Zones of a Density Jump

The density jump, in general, can be divided into two distinct zones,
an entrainment zone followed by a roller region. Nearly all the entrain-
ment which occurs at the jump takes place in the entrainment zone,

The roller region is characterised by a flow in the reverse direction
to the main flow, close to the interface. This roller is similar in appear-
ance to the roller observed in open channel jumps. The roller region may
be regarded as surge, which under steady flow conditions remains
stationary, and covers the downstream end of the entrainment zone. The
presence of the roller causes the interfacial shear to fall to a low level
as shown in Figure 10. The change in profile of the jump, before and
after raising a controlling weir, is also shown. The roller region is
quite distinct in the exaggerated scale used for plotting. The change of
profile is 1 ess easily detected in experiments. Dye probes were used to
find the region of reverse flow and so determine the boundary of the
roller region and the entrainment zone. The roller region can be forced

upsiream by a conirol, so as to cover the entire entrainment zone. The
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roller region then exterds ths full lengin cf the jump which becomes rcn-

o as to cause the roller

U

entraining. The con®rol can also be adjusted
region to reireat so that in the limit the jump is of the maximum erirain-

ing type with no roller region.

3.2 The Control Mechanism

The control downstream of a density jump acts direcily on the rolier
region of that jump. Adjustment of the docwnsiream control will cause the
rolier region to migrate. The migration will be upstream if the adjustment
has caused a temporary increase in the downsiream fcrce flow. Converzely
the migraiicn wiil be dcwnsireamn if the adjustment results in a tempcra
fall in the downsiream force flow.

The directicn cf migraticn is imperiant as it will affect the equilibrium

2

of the jump. Ccnsider as 57 example a der:sity jump contrciled by a weir

N

dewnsztrzam {(Figure 11). If ke weir height is raised by a smsll amount,

the fcrce fiow at the weir will be temperarily incressed. A positive surge
will move upsiream causing the roller region ic migrate further upsiream

a nd entrainment at the jump will be reduced., Now provided the reduction
ir. entrainment causes a drop in the downstream force flow, which can
compensate for the initial increment, a new eguilibrium wiil be obtzired.
The new equilibrium will result in new values of depth and discharge
downstream of the jump.

However, if the reduciion in entrzinment had lead ic an increase in the
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downstream force flow, then a new equilibrium could not be obtained
and the jump would become unstable. The imbalance of force flow up-
stream and downstream of the jump would cause the roller region to
move further into the entraining zone so that eventually the jump would
flood.

Under certain conditions density jumps do become unstable as will
be seen in the following chapter.

3.3 Effect of Roller Region Migration on the Downstream State of a
Density Jump

The downstream state of a density jump can be expressed in terms
of two factors; firstly the upstream flow state, as defined by the upstream
Froude number and secondly, by the amount of entrainment at the jump.
The downstream control only affects entrainment by determining the
length of the entraining zone. The entrainment mechanism is entirely
independent of the downstream control.

Therefore in order to understand how roller region migration affects
the downstream state of a jump it is necessary to examine how the roller
region affects entrainmrent.

If one considers a highly supercritical density current, the fluid
momentum is the dominant component of the force flow, and the hydro-
static pressure force is small. In the limiting case, where the momentum
component completely dominates, it could be expected that the density

current would behave in a similar manner to a neutrally buoyant jet,
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When a neutral jet issues from a slot as shown in Figure 12, the
severe velocity gradient between the moving fluid and the ambient fluid
gives rise to high local shear. Eddies are generated in this zone of max-
imum instability and the ambient fluid is entrained into the jet.

A supercritical density current is unstable in the same way under sim-
ilar boundary conditions,

It can be seen from the force flow equation (19), that as the density
current spreads the local Froude F number reduces in value. A continuous
range of local Froude numbers will exist along the length (')f the entrainment
zone, ranging from F = Fj to a possible minimum of (—Sl% /c?r unity in the
idealised case.

As there is negligible entrainment in the roller region of a density
jump, the roller region can be modelled mathematically, as a non-
entraining hydraulic jump, and represents a discontinuity in depth but not
in discharge nor density. The local Froude number at the end of the en-
trainment zone or the commencement of the roller region, is therefore
related to the Froude number downstream of the jump by the same equation
used to relate conjugate Froude Numbers in hydraulic jumps.

3.4 Summary
A density jump can generally be divided into two zones; an entrain-

ment zone and a roller region. The entrainment zone, which is perhaps

more exactly described as a negatively buoyant jet, occupies the upstream
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end of the jump. The roller region, characterised by an interfacial
roller, occupies the downstream end of the jump. Nearly all entrain-
ment into the density jump occurs in the entrainment zone.

The limits of form of a density jump occur when only one of either of
the zones is present. A continuous range of forms between these limits
is available. The roller region can be regarded as a non-entraining jump
whose position is determined by the downstream control. If the roller
region is forced further into the entrainment zone, the Froude number at
the upstream end of the roller region is increased and the Froude number

downstream of the jump is correspondingly reduced.



Fig., 12:

A jet of neutral density.

Note the region of uniform flow near the

inlet.
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Chapter 4. Control of a Density Jump

4.1 Introduction

The downstream state of a density jump is not necessarily a direc:
function of the upstream conditions. TUnlike the hydraulic jump, the
Froude numbers of the flows upstream and downstream of a densityv jump
are not uniquely related.

It is now proposed to examine the various types of tailwater control
and their interaction with a density jump.

The method of analysis is similar for all types of control. Firstly
the force flow equation (16) is used to relate the flow either side of the
density jump (sections 1 and 2 in Figure 13). The section downstream of
the jump and upsiream of the control is equated 1o the section at the conirol
by means of the energy equation. This latter section will be denoted by the
subscript 3.

The flow changes from subcritical to supercritical at the control, and
energy is generally conserved between sections 2-3 except for minor
losses caused by boundary friction. There is no further entrzinment be-
tween sections 2-3 so that the upstream and downsiream discharges zare
the same.

The density jump analyvsis is similar for zll forms of control; there-
fore general equations relating between sections (1) and (2) will be

derived first. The later analysis will examine individual controls in
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some detail., The theoretical derivations will be compared w ith the
experimental resulis.

4.2 Analysis - Conjugate Equations at the Jump

The critical depth of the flow downstream of the jump, y, ., 1s a use-
ful reference parameter by which to relate sections 2 and 3. As there is
no entrainment between these sections, critical depth at either will be

the same, hence

Y2¢ © V3¢
The force flows, upstream and downstream of the jump, may be

equated using equation (19), so that

M 1 - ' { dx
= M2 - .
M
1
‘ ’ / 2/3
But ylc =¥y F12/3 and y2<: = y2F2 / and on substitution into the

above equation one finds

el o . - ;=
< I : - a .
A S S | - s

S DR (20)
The energy equations between sections 2 and 3 may be used to ex-
press the variable Y9 In terms of a control parameter, say a weir

height, or a channel contraction ratio, depending on the individual control.

To avoid confusion, the density difference will be assumed to be an
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excess; so that density currents will flow along the bottom of a channel.
Up and down have their usual directions. Later when density currents with
density deficits are discussed, it will be convenient to have the directions
of up and down reversed. By definition then, down is understood to be in
the direction of the body, or apparent gravity force.

Boundary friction except where it itself acts as a control, has been ig-
nored in the following analysis. It was convenient to do this so that ex-
plicit solutions could be obtained. Numerical solutions or backwater
calculations which included boundary friction could have been determined,
but this was not the writer's aim. It was desired that the effect of in-
dividual controls could be examined independently. The inclusion of
friction in the analysis would have masked individual behaviour. Friction
as a control of a density jump was examined separately.

4,3 The Broad Crested Weir

4. 31 Introduction

The mechanism by which a density jump can vary its entrainment to
comply With a downsiream control has already been described, so that
only a brief review will be repeated.

A free overfall is a limiting state of a broad-crested weir where the
weir height (h) is zero.

In this limiting case, as will be shown in Section 4.4, the density
jump will be of the maximum entraining type. A control which could

establish a back water and roller region in the jump does not exist.



As a result, the density jump entrains along the length of the establish-
ment zone,

Under these conditions the Froude number of the flow downstream
of the jump is given by Foy = -S—I:I)E and the ratio ——b—.— is zero. When

Sm Y2
the weir is raised a surge moves upsiream to form a roller region or
standing surge at the downstream end of the density jump.

Further raising of the weir causes the length of the roller region to
increase and the entrained flow is reduced. It would appear *that if this
process is continued, the roller region would eventually cover the entire
entrainment zone and entrainment at the jump would cease. Further
raising of the gate would cause the jump to flood.

Although the above picture satisfactorily describes the phenomena at
upstream Froude numbers less than 13. 2, it will be shown in the following
analysis, that at Froude numbers greater than 13.2, the jump floods be-
fore the stage of zero entrainment is reached. The reason for this lies
in the form of the energy equation, which relates the downstream Froude
number to the weir height. Two values of downstream Froude number
satisfy the energy equations for any weir height below a critical maximum
height.

When the Froude number upstream of the jump is greater than 13. 2,
it will be shown both downstream Froude numbers are possible solutions,

but that only the upper value is a stable solution. Therefore, the minimum
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stable Froude number downstream of a jump controlled by a broad
crested weir is 0.17, the Froude number at which the critical weir height
is reached. The minimum conjugate Froude number to this value is that
for a non-entraining density jump and is equal to 13. 2.
4.32 Analysis

The energy equation is used to equate flows upstream and at the control

point of a broad-crested weir (see Figure 3). If one makes the Boussinesq

assumption the total energy flow in a steady density current is given by:-
¥ 5 4’ ¢ g’
E = Qofu C(y, +fuj A()gd\jd% +f uyﬂ/’g.o(y
2 Yo (o] b g o (21)

where &  is the energy flow. The first term is the kinetic energy,
the second is the pressure energy and the third is the potential energy of
the density current.

If correction factors Sk and Sp are defined as

/

Sk = __Q_}_ %usd%
4% Jo
-y ey [3/
= Q doy ol wy spad
e & [t [aspa]

then the energy equation can be written in the form

2 ’
E = Gl( Sk @ + Sp o Y )
2312
. . . Sk
If Sg is defined as Sg = =
Sp
the above equation reduces to
2 ’
E = @5,7(55@ + Ay) (22)
, 2
2
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Further discussion on the above equation is included in section 4. 44

of this chapter.

If equation 22 is differentiated with respect to x and it is assumed
that

(a) energy is conserved

(b) the velocity distribution is self preserving

(c) there is no entrainment between Sections 2 and 3, then

R (23)

o ———
o
™

e ?:}
+
1
e

~
Al

At critical depth there is a transition from subcritical to supercritical

d' . .
flow hence EL is negative and non-zero.
X

It follows then at the point of control

o0 = (24)

Since there is no further entrainment downstream of the density jump

<
o=
I

Y2¢

KS = K
and __A3 = _}.2

Equating energy flows at the control and upstream one finds

2
/j.\ -

e L - ! - g _//':-.\ TG} + !
LG - AZ(?ZC 2 .‘\ﬂ) = £ : - i AZ 3,2

Fad

-

and on substituting equation 24 into the above one obtains
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A

/
F2 = 3+ 2 G, (25)
2
dac Sez2F, + 2
Equation (24) and continuity may be combined to give
/ ~ 3
Y, o Ses3
_Z‘i ~Fin (26)
Substituting for 3‘2 in equation 25 and rearranging one obtains
F2c 2,
<} -
/3 - 3
4 = Ses (552 F2r 2) - 3F, (27
%Zc 2 F24/3

Equation 27 gives the weir height in terms of the downstream ref-
erence depth, as a function of the downstream Froude number. Equation
27 is not in a useful form because Y90 is also a function of downstream
conditions. yo, may be eliminated by use of the force flow equation 20
derived earlier. This equation relates the conjugate states either side

of the density jump in terms of the reference depth y5.. Hence one can

show
-;/3 ) 2 ‘-‘/3.? 2/3
y"c Z.Smg FZZ-F SHZ
where
/3
£ o= ZF. (29)
Z Semi FE+

Equation (28) relates the weir height to the downstream Froude
number and plotted in Figure 14.
Several significant points arise from examination of this figure.

(a) Firs’tly when the weir height is zero, and in the absence of friction



3%
or any oilher dewnsiream conirol, the density jump will be of the max-

imurn entraining type and the downstream Froude number will be equal

to ( SE“ )2 . This limiting case is examined in more detail in Section
“m
4.4 later in this chapter,
(b1 Secondly it can ke seen the density jump is initially very sensitive to
welr height. Raising of the weir to only 5-6 pc. of its potential height
for flooding, at Froude numbers greater than 13.2 causes the downstream
Froude number fo drop from 1.0 t0 0. 8.
ic) There is a maximum value of ;1:1“ f for which a solution is possible.
lc
if 3 weir is raised above this maximum the jump must flood, since the
force flow downstream has been increased above that attainable upstream.
Consider a density jump having a high upstream Froude number. As
the weir is raised, the downstream state moves up the curve from the
gtartng point at '}Thcm f=0and Fy = 1.0 in Figure 14.
The Froude number downstream of the jump will continually decrease
in value as the weir height increases, and the roller region lengthens,

covering more and more of the entrainment zone. The process continues

untii the maximum weir height for which a solution is possible is reached

atFo9 =0.17 and f=0.322. At this stage the density jump wouild

Ylc
appear as shown in Figure 15, The jump is still entraining ambient fluid,

Further increase in the weir height results in an increase in the

force flow downstream, which can no longer be balanced by any change.
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in entrainment at the jump. The roller region is seen to move up-
stream as a surge which rapidly covers the entire entrainment zone.
Flooding of the density jump continues until the hydrostatic pressure

at the flooded upstream end of the jump balances the downstream force
flow. When equilibrium of force flows upstream and downstream of the
flooded jump is attained, the jump appears as shown in Figure 16,
Figures 17 and 18 show photographs of the jump just before and after
flooding has taken place.

From Figu_re 14 it can be seen two values of Fo satisfy equation 28
for any weir height less than the maximum at Fgy = 0.17.

It should be noted that downstream Froude numbers less than 0. 17
are only potentially accessible to density jumps with upstream Froude
numbers greater than 13. 2 since this is the minimum value of F; con-
jugate to Fg = 0.17. Density jumps with F{ less than 13. 2 will flood
before F2 reaches 0.17. Once a jump has flooded entrainment‘ ceases,
and its equilibrium conditions are no longer given by Equation 28.
Analysis of the flooded density jump is given in Appendix A.

It will now be shown that downstream Froude numbers of less than
0. 17 are unattainable bAy all entraining density jumps, irrespective of
their upstream Froude number.

The reasons for this can be best understood by tracing a cycle of

weir raising and lowering on a plot of fvs Fo.

Yie



The locus of a weir raising-lowering cycle is shown in Figure 19
for a density jump with an upstream Froude number of 50. Commencing
at point A with a weir of zero height and a maximum entraining density
jump, as the weilr height is increased the downstream Froude number
decreases. This mechanism has been described in the previous chapter.
The process continues until the point B is reached. At this stage the den-
sity jump is still entraining ambient fluid. An increase in weir height
will cause the jump to flood to point C. The downstream flow rate
abruptly decreases as entrainment ceases and it can be shown that the
flooded state of the jump can be represented by the line PCD (Appendix A).

Lowering of the weir will not cause the jump to revert to its entraining
state. The small positive perburbation in h at the point B caused a dramatic
irreversible change in the jump form. Therefore as the weir is lowered
the jump remains flooded and followsthe curve for a flooded density jump
PCD. This curve is derived in Appendix A. As the weir is lowered the
depth of dense fluid lying above the inlet decreases finally reducing to
zero at D. The density jump becomes a non-entraining jump and the
roller region extends the length of the establishment zone.

It was shown in Section 3.4 that the non-entraining roller region of
a density jump is analgous to the open channel hydraulic jump. Hence
lowering of a weir downstream of a density jump results in a downstream

migration of the roller region, until a new equilibrium is established.
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Fig. No.17: A density jump immediately before flooding - a non-entraining density jump.



Fig. No. 18: A flooded density jump.
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When the roller region moves downstream, a greater length of entrain-
ment zone is exposed, so that total entrainment at the jump increases.
The flow downstream of the density jump therefore increases until

the interfacial slope is equal to the bottom slope and equilibrium is
restored.

If the weir is raised, then by the same mechanism, the roller region
migrates upstream and entrainment is reduced.

It is now shown that downstream migration of the roller region will
result in arrincrease in the Froude number (Fz) downstream of a density
jump. If F; denotes the local Froude number at the transition of the
roller region and the entrainment zone, a whole range of values for F;

sy \’2
are available between the limits F{ = F; and Fy = (§i> If the roller
region moves dlownstreamg Fi must decrease in value. Now the down-
stream Froude number (Fg) is related to Ft by the same equation that re-

lates conjugate Froude numbers in hydraulic jumps (Bakmettef 1932 )

Fo = Fy
2 - - 2 ~Y2 7 3/2
{%(LsFt+U-l)j /

It can be seen from the above equation that as Ft decreases in value
Fz-mu st increase in value. Hence one can conclude that if a control
downstream of a density jumé is perturbed as to cause a fall in the inter-
facial slope, the downstiream Froude number will increase in value.

Consider now a density jump whose state is described by the point D
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in Figure 20a. It has been shown this state can be reached by lower-
ing a weir downstream of a flooded density jump having a sufficiently high
upstream Froude number. At D the density jump is at the limit of flood-
ing and is therefore non-entraining. If the weir height is now dropped by
a small amount ( © h), the interfacial slope will become negative, the
roller region will move downstream and the jump will commence to en-
train. Its downstiream Froude number will increase in value. It can be
seen in Figure 20a that if the Froude number is to increase in value,
equilibrium cannot be attained until the point E is reached. A density
jump whose state is given by points to the left of B in Figure 20a are
unstable for negative perturbations in h, the weir height. The perturb-
ation will cause a dramatic change in the flow rate and depth downstream
of the jump, as the form of the density jump itself is changed.

It is also necessary to examine the effects of a positive perturbation
in weir height for a density jump at D (Figure 20b). This time a positive
surge will travel upstream from the weir., The roller region will be forced
further upstream and flooding of the jump will ensue. Further raising of
the weir would cause the jump to move back along the curve for a flooded
jump DCP,

It can be seen that density jumps given by points to the left of B in
Figure 19 are unstable for negative perburbations in h. Perburbations
in the controlling weir will cause the jump to either flood if the perturb-

ation is positive, or the roller region shorten and the downstiream Froude
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number to increase rapidly, if the perturbation is negative.
Mathematically the stability of a density jump to negative perturb-

ations in a controlling weir downstream are given by -

Dh

—_ - ve stable

v F,

R

“OFLQ. +  ve unstable
o h .. e

= 0 limit of stabilit

v Fo Y

It can be seen in Figure 20 that the limit of stability is given by the
point B where F2 =0.17. Regions of the curve to the right of B are
stable (AEB) and regions to the left are unstable (BDO).

4, 33 Experimental Results

Equation 28 has been plotted in Figure 14 together with experimental
data. It can be seen agreement between theory and experiment is close.
[t should be noted, however, that the theoretical curve was plotted for
SEs Sm, SH and 6 values of one. The closeness of the curve and the data
indicates that the various correction factors are self compensatory. This
is indeed fortunate since the correction parameters are not simple
functions of Fg so that no general curve could have been plotted relating
weir height and downstream Froude number.

In Figure 14 the flooding points of experimental density jumps have

been indicated for jumps with upstream Froude numbers of 10.5 and

16. 5.
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Unfortunately, with the experimental apparatus available, Froude
numbers greater than 16. 5 could not be attained. It was not possible
therefore to experimentally verify with any certainty, the stability
arguments.

Flooding of the density jump with F, = 16.5 at a downstream Froude

1
number of 0,19 was earlier than its non-entraining value. However,
experimental accuracy was not sufficient to observe any hysteris effect
which itself would have been small for this value of upstream Froude
number,

A further intriguing relationship exists between weir height and
depih downstream of the jump.

It has already been shown that the depth downstream of a jump can be

expressed as a function of the upstream and downstream Froude numbers.

From the force flow equation (19) one has
2/3
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It follows from continuity that
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g, -2/3
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and f has already been defined in equation 29

4/3
f=ZF1/

oF 2

1+1

so that
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2 -
loc Q.L = ’.' )
‘,\"71 iz (30)
Hence -
’ 2/,
. Is .
at = Z,.E
s L= zE 6 )

The above equation is plotted in Figure 21.

The downstream Froude number-depth equation (31) can be solved
with the weir height-Froude number equation (28) to obtain downstream
depth in terms of the weir heigh’c° Unfortunately, this is not an explicit
relationship and so a graphical solution is given in Figure 22,

The feature of interest, illustrated in this plot is a decrease in
depth downstream of the jump, with increase in the weir height for
downstream Froude numbers less than one half.

Although this result could be anticipated from the downstream Froude
number-deptih relationship the result is quite novel; an increase in weir
height causing a drop in level, upstream of the weirfo

4, 35 Note on the Validity of the Energy Equation Used

The energy equation (22) used in deriving the rating relationships is
not strictly valid unless the density distribution in the moving layer is
uniform.

However, use of the energy equation in the present form is justified.
provided the differences in density within the moving layer are small

compared with the density difference between the layer and the ambient
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fluid. When this is not the case, density stratification within the layer
can lead to blockage effects and selective withdrawal of only part of the
layer (Wood 1968). However, for selective withdrawal to occur it is
necessary that (a) the density gradient within the layer be steep and (b)
the Froude number of the layer be low.

These conditions are never satisfied simultaneously downstream of a
density jump.

Density jumps having low downstream Froude numbers will always
‘have fairly uniform downstream densities. Firstly, because there is
little entrainment at the jump. Secondly, the fluid which is entrained,
1s thoroughly mixed with incoming flow in the roller region. It would
appear then, that blocking is most unlikely to occur, and hence there
is reasonable justification in using the energy equation in the present
form. Experimental results tend to confirm this.

4.4 The Maximum Entraining Density Jump

Maximum entrainment represents one limit on the form a density
jump may take. A maximum entraining density jump forms when
(a) there is a weir of zero height downstream, i.e. effectively a free
overfall, or (b) the jump is friction controlled and the slope is such
that the uniform flow depth is critical depth. In the ideal case, where
the downstream density and velocity distributions are uniform, the

Froude number downstream of a maximum entraining density jump will
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will be one. However, this is generally not so; the velocity and
density distributions are non-uniform as can be seen in Figures 23
and 24. As a result of this the downstream Froude number at which
entrainment ceases and uniform downstream conditions are attained,
is less than one. It will be shown in Chapter 6 where the mechanism
of entrainment is examined in some detail, that the maximum Froude
. 1
number attainable downstream of a density jump is equal to g_gi—) °
This is found to be less than one as shown in Figure 25.

Ambient fluid is entrained along the lengih of the establishment
zone in this type of jump (Figure 26). There is no downstream control
in the accepted sense. A control is not necessary for the formation of
the entraining zone of a density jump. The entrainment zone results
from an instability of the supercritical density flow under the boundary
conditions of the experiment. A neutral wall jet is unstable in an ex-
actly similar way.

When a control is present it must act such that its upstream flow
is at critical depth if the density jump is to be of the maximum entrain-
ing type. Two forms of control where this is possible are (a) a free
overfall and (b) friction on a sloping channel.

The cése of a density jump with a free overfall as control or equiv-
alently a weir of zero height will be examined in more detail. The

latter case (b) of a friction controlled jump is discussed in Section 4. 5.
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4.41 The Density Jump with a Free Overfall Downstream

4.411 Introduction

In open channel flows, a free overfall will only act as a control if
the upstream flow is already subcritical. The subcritical flow is gen-
erally friction controlled and the free overfall will only control depths
in its immediate vicinity. It is not correct, therefore, to regard a free
overfall as a control in the same way a weir is a control. Admittedly
there is a change in flow regime from subcritical upstream to super-
critical downstream of a free overfall, but unless there is some other
controlling influence, such as friction acting on the upstream flow, the
free overfall cannot generate a subcritical backwater, All that can be
said of a free overfall in open channel flows is that it provides a useful
metering or reference point. Simple one dimensional analysis indicates
the depth of flow at the brink if a free overfall is critical. However,
flow in the vicinity of the brink is highly curvilinear, and far removed
from the approximations of one dimensional theory. As a result, crit-
ical depth occurs a distance approximately five times the brink depth,
upstream of the overfall. Experiments performed by Rouse (1936) and
others have shown the depth at the brink (yb) is 0. 712 times critical
depth. Depths of density flows in the vicinity of a brink are examined
in Appendix B.

The free overfall by itself cannot act as a control of an open channel
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hydraulic jump. However, a density jump will form upstream of a
free overfall, not because the density jump is controlled by the free
overfall, but because the density jump is self forming and is due to the
instability of the supercritical upstream flow. The free overfall creates
no backwater, so that no roller region forms. The density jump is there-
fore of the maximum entraining type.

4.412 Analysis

[t was stated earlier and is shown in Chapter 6 that entrainment
into a density jump is a maximum when the downstream Froude number

1

is equal to( —-SS;H ) 29 or unity in the idealised case. Knowing the value of
the Froude number downsiream of a density jump, ohe can obtain the
conjugate depth ratio and the flow ratio in terms of the Froude number
of the flow upstream of the density jump. The conjugate depth ratio of
a maximum entraining jump is obtained by equating force flows, upstream
and downstream of the jump and substituting (Sgo/ Smg)% for F9. From

Equation (19) one finds
V. 2/ 2
. 73 > — /
bmz SHZ YT = 2 5”"/ - 9 (32)
2 52/3

~

where 8 1is the force flow ratio, The entrainment ratio K can be de-

termined from equation(32)by means of equation (18)

e 8)f

{33)
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4.413 Experimental Results

The conjugate depth ratio and the entrainment ratio are plotted as
functions of the upstream Froude number, in Figures 28 and 29
respectively. It can be seen the experimental data, in both cases, lies
below the theoretical curves for which the force flow ratio is assumed to
be unity and the upstream velocity distribution is assumed uniform.,

The effect of friction on the experimental density jump is far greater
than that experienced in tests on open channel hydraulic jumps.
Measured velocity distributions indicated that the boundary layer in the
density jumps was laminar, so that relatively high boundary shears are
to be expected. Reynolds numbers based on u' and y' of the density flows
investigated were in the range 500 to 3000.

Force flow losses calculated using boundary layer theory in Chapter

7 agree with measured falls in force flow.
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When the theoretical depth and entrainment functions are corrected
for the loss in force flow agreement between experiment and theory is
satisfactory, as may be seen in Figures 28 and 29.

4.414 Effect of Non-Uniform Density and Velocity Distributions

The entrainment and depth downstream of a density jump are insep-
arably tied in with the downstream density and velocity distributions.
Dimensional analysis gives two parameters, the upstream and downsiream
Froude numbers, which fully describe any density jump. However. in the
case under analysis where the downstream Froude number is always a
maximum, it itself is a function of the upstream Froude number. There-
fore a maximum entraining density jump can be fully defined in terms of
one variable, the upstream Froude number. The velocity and density
distributions determine the force flow and hydrostatic force correction
terms which are now examined.

(a) The force flow correction factor was found to remain constant in
value, for upstream Froude numbers greater than three (Figure 27).
Experiments indicated that velocity distributions in the entraining zone
of a density jump are self preserving. It follows, therefore. that max-
imum entraining density jumps with upstream Froude numbers greater
than three will have similar downstream velocity distributions. This
similarity of the downstream velocity distribution can be seen in Figure

23 where a number of velocity distributions downstream of maximum
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entraining density jumps are plotted for a range of upstream Froude
numbers.
(b) The density distribution is far more dependent on the upstream
Froude number than is the velocity distribution. Relatively more
fluid will be entrained into a maximum entraining jump with a high up-
stream Froude number than would be entrained into a maximum entrain-
ing jump of low upstream Froude number. It is to be expected then,
that the downstream density distributions of the above jumps will differ.
Typical density distributions for maximum entraining density jumps,
at high and low upstream Froude numbers, are shown in Figure 24.
The difference in form is notable. For the limiting case under examin-
ation, the hydrostatic pressure correction factor is fully defined by the
upstream Froude number and a graph of the relationship is shown in
Figure 30,

4.5 Friction as a Control of a Density Jump

4. 51 Introduction

So far, the effects of boundary friction as a controlling influence
downstream of a density jump, has been ignored. Bed slopes and friction
slopes have been taken as zero and, in experiments, the various controls
were situated close to the downstream end of the jump so as to minimise
frictional influence., The bed slope was horizontal in these experiments.

The effect of friction was examined experimentally using a long

sloping channel downstream of the jump, and adjusting an overshot weir
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at the end of the channel, until uniform conditions were obtained in
in the x direction. The friction slopes were very high by open channel
standards and subcritical flow was maintained at a slope of 1 pc. The
low Reynold numbers associated with the density flows are the cause of
the relatively high frictional forces. Reynolds numbers of the boundary
layer. based on boundary layer thickness and mean layer velocity, were
in the range 100-600. Measured velocity distributions showed that the
main flow was turbulent with laminar boundary layers at the interface
and the solid boundary.

In the following analysis the shear forces acting on the moving layer
are calculated in terms of the velocity and velocity distribution of the flow.
It is shown that the interfacial shear of flows downstream of a density
jump is small compared with the boundary shear. The equation of motion
for uniform flow of a density layer down an incline is expressed in terms
of the Froude number and Reynolds number of the flow. The uniform flow
equation is then related to the force flow equation at the density jump.
Finally, the Froude number downstream of the density jump is expressed
as a function of the known Froude and Reynolds numbers of the upstream
flow and the slope of the channel.

4,52 Boundary Layer Analysis

The boundary layer at the channel bottom and sides remained laminar,

even in the entraining zone, so that the functional dependence of the
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boundary shear stress could be calculated. It will be shown in Chapter 7

(Fall in force flow at a density jump) that the wall stress (' ) is given by
To = 2 Bz o
B, ¢

ﬁl is the ratio of boundary layer thickness to the depth of

where

flow

ﬁz relates the mean velocity to the velocity at the edge of the

laminar boundary layer, and
/bc is the dynamic viscosity of the fluid

The boundary layer thickness is defined as the distance between the

boundary and the velocity maxima (see Section 7.2 for details).

P-
It was found in experiments, that the ratio /3—- remained fairly
!

constant in value, and so it is convenient to write

ﬁ = 2/ = a constant
A
Hence To = /j/u, ‘;'/ (36)

The experimentally determined value of. /8 was found to be 14, 3.

Consider a uniform flow down an inclined plane, as shown in Figure 31
and examine the equilibrium of a section of length & x.

Equating forces
in the x direction one obtains

g’I
(2%'24,(,0)’2.,0 Sx = w Sx foA/o?.sinealg,

(S
= p/ﬂ?uJ"Sx

where w is the width of a rectangular channel.
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In writing the above equation it has been assumed the shear stress
at the sides of the channel and at the bottom are equal, and the shear
stress at theé interface is zero.

It will be shown in the discussion that follows this analysis, that the
above approximations are justifiable for flows downstream of a density
jump.

The above expression which equates the forces acting on elemental

section of the flow, can be reduced to
2
/SFa = Rz2.s5n6, top (37)

by dividing the previous equation by Ioou'zz. Ry is the Reynolds number

of the flow defined by

Rz

n

/ /
o Y2 Y (38)
AL

w (39)
of i

"

and W

Equation (37) can be rearranged into the form
2

Fz = K R; Slne (/-J‘Y”
3

B Fa (40)
R, sin@ Wr

K

i

or

Equation (40) can be related to known conditions upstream of the

jump by means of the force flow equation (20) in idealised form

2 7z
%zc - 2F + | . Fe
e F*/3 ZF; +/
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The equations of continuity and the defined Froude number give

2 2
Q, . (ka) _
3 S
A/o’ H’fc -e.& 32(_
K
so that 22¢ = K (41)
Ylc .

\

The friction equation (40), the force flow equation (20) and the

above equality (41) may be solved to give

R sm®&__ = (ZF: 1) F:/3

S >

where f is as defined in Equation (29).

(42)

The left hand side of the above equation will be referred to as the _
friction function. In equation (42) the downstream Froude numb er is
given as a function of the bed slope and upstream conditions which are
assumed predetermined.

4. 53 Experimental Results

The friction function is graphed against downstream Froude number
in Fig. 32. Experimental data are also plotted in thé figure and agree-
ment between the theory and experiment is reasonable, Some scatter
exists but this is believed to be largely caused by difficulty in establish-
ing’a truly uniform flow. A short crested weir at the downstream end
of the channel was adjusted until uniform depths were established along
the length of the channel. The jump is then effectively friction controlled.

This may be verified by making appreciable adjustment to the weir height
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and observing only slight changes immediately downstream of the jump.
4. 54 Discussion
In this section the assumptions made in the previous analysis are
investigated.
Firstly in deriving equation (37), it was assumed that -
(a) shear at the interface was negligible and
(b) the shear at the sides of the channel was equal to that at the bottom.
Inspection of a typical velocity distribution, taken at the centre line
of the channel (Fig. 33) indicates that the shear at the interface (7)) is

small compared with that at the channel bed. In the example given
TL
Tur

so that as a first approximation the interfacial shear will be neglected.

=D.08

The ratio of interfacial fo bottom shear is considerably less than
that quoted in the literature. The ratio is given ranging from 0. 43 for
turbulent density flows (Bata 1959) to 0. 64 for wholely laminar flows
(Keulegan 1944).

The density currents observed in experiments, were turbulent with
laminar boundary layers and therefore the value of shear ratio obtained
might have been expected to lie somewhere between the two extremes
quoted.

However, the velocity distribution downstream of the jump is determined

by the jump itself, and is markedly non-uniform.
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Once established, the velocity distribution showed no noticeable
change over the channel length, which was generally about forty times
thie depin of flow. The density gradient within the moving layer inhibited
turbulent diffusion in the y direction. Therefore, velocity distributions,
onte esiablished at the jump, tended o be self preserving or to change
only very slowly.

The reason then for the low interfacial shear observed in flow down-
stream of a density jump, was the low velocity gradient which exists
near the interface, under these conditions. The interfacial shear
measured by other experimenters had been determined from density
flows in which the initial velocity distribution was nearly uniform in the
case of turbulent flows or had well developed boundary layers in the case
o laminar fiows.

Figure 33 also indicates that the second approximation (b) is probably
notl strictly correct either. - Velocities near the bottom of the channel
zre greaier than those near the interface, so it might be expected that
zide shear forces will be less than those at the channel bottom. How-
¢er, assumptions (a) and (b) do compensate one another to some extent.

2

Equation (37) BF, = K> sin@ w,
1= s:mply the equation of motion for the downstream flow. It was stated
that ;= . a function of the dimensionless velocity distribution, refrrained
fzrriv conziant in value. This can be checkéd by plotting the right hand

side ¢f Equation (37) against F2. This has been done in Figure 34 and
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it can be seen a straight line passing through the origin fits the ex-
perimental data satisfactorily. Although some scatier is apparent, the
data tends to justify the assumptions made in deriving equation (37).
The value of [3 obtained from the slope of the line of best fit is 14. 3.
ﬁ can also be determined from the typical velocity distribution shown

in Figure 33.

ﬁ is defined as equal to 2Bz
!
ﬁ, is equal to the ratio of laminar boundary layer thickness to the
depth of flow y'. For the example shown ,3, = 0.20.
ﬁz is equal to the ratio of velocity at the edge of the boundary layer to
the mean flow velocity and for Figure 33, /32 = 1.50.
The value of ﬁ calculated from these values is 15, very close to

that calculated from the mean data in Figure 34.

4.55 Rough Turbulent Flow

Analysis and Discussion

The case just examined was for a smooth turbulent flow and it was
shown the Froude number of a density current flowing down a slope, was
related to the Reynolds number of that flow. When the flow is rough
turbulent, the downstream Froude number is dependent on the boundary
properties, roughness and slope and to a far lesser extent on the viscosity
of the fluids.

The boundary shear stress is given by

Tw = _E*P (/(./2
4 2
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where f*is a friction factor (Streeter, 1961) which for the case in
question is a function of the boundary roughness only, since interfacial
shear, downstream of a density jump, is small by comparison.
Consider the equilibrium of a section of the flow. One has for a

two dimensional flow

f*ﬁ LA': = A, 52/ sn &
4 2

and on dividing both sides by A.y;z the above reduces to

* 2
F Fr = sime
g
or F‘; = 8 sinB

7[*

The above equation is particularly interesting. The Froude number
downstream of a density jump is determined by the boundary properties
only. It is quite independent of the density jump itself.

This Froude number, unlike the previous case, is analagous to the
normal depth of open channel flow. Normal depth is not a useful concept
when dealing with density flows since entrainment can cause variation in
the flow rate,

This result is particularly interesting since most naturally occurring
density currents are rough turbulent flows. It has been shown above that
the Froude number at which any subcritical rough turbulent flow will
move down an incline is a function of only the roughness and slope of

that incline. Downstream conditions are quite independent of upstream
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parameters.

4.56 The Effect of Bed Slope on the Density Jump

Bed slopes of up to two or three per cent have negligible effect on a
density jump. This can be shown by examining orders of magnitude of the
respective force components acting on such a jump. The body weight

component of the force flow is approximately
/ - 2
Al_gds/hQ/z =~ 5Ag‘/2 S/I’?Q/r-?

where L is the length of the density jump and is of the order of 5 2/
12
. A Yy
The downstream force flow is of the order —5 SO that the

body force component on slight slopes is negligible by comparison.

4.6 Steady Density Flows - Concluding Remarks

So far, only steady density flows have been considered; these being
the density jump controlled by a broadcrested weir and the density jump
controlled by downstream friction. In Appendix C density jumps controlled
by sharp crested and undershot weirsare examined both theoretically and
experimentally. Theory for a density jump controlled by a channel con-
traction is also presented. The examples given in Appendix C are not
included in the present text, as the line of analysis is similar to that
used earlier in this chapter.

It has been shown that, at a transition from supercritical to sub-
critical flow in a density current, a change in the density and rate of
flow can occur downstream of the transition. This change results

from entrainment in the transition region. This region has been called
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a density jump. It has been shown that the form of the jump and the
degree of entrainment which can occur are determined by a control
downstream of the jump. It was found definite limits exist to the

entrainment and conjugate states of the density jump.
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Chapter 5 - Unsteady Density Flows

5. 1 Introduction

In this chapter the unsteady nose or front of a density flow is
examined. The control of a density jump by an unsteady layer down-
stream 1s also investigated.

It is interesting to examine the development of a starting density
flow. The formation of the starting vortex and its subsequent motion
is shown in the sequence of photographs in Figure 35.

Immediately the density current begins flowing from the slot, a
characterising starting vortex forms (Fig. 35a). This grows to a
stable size and moves away from the slot (Figs. 35b and 35c). Behind
the starting vortex, or nose, is a layer of depth approximately half
that of the nose. This layer moves with a velocity equal to that of the
nose (Wood, 1965) so that the depth of this layer is uniform. A density
jump is found at the upstream end of the layer as can be seen in
Figure 35c,

5. 2 Behaviour of the Nose

The motion of the nose is now examined in some detail. Consider

the diagrammatic sketch of an unsteady density flow shown in Figure 36,
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If one makes the Boussinesq assumption, dimensional analysis yields

Vp = function( & €
n = func 1on(_§§9’ i y A 3 fo, 9)
, I g° ____{ V.
v o 4 o g N e
or n (f 73@ 9) LLVL ,:4,& Vi e 7 ’ ]

where V, is the nose Velocit_y,
£ is distance travelled by the nose and
O is bottom slope.

Viv
It will be shown the first term is a form of Froude
(7 ﬁﬁg) V3

number. The second term is a Reynolds number and the third term is
the interfacial slope of the layer behind the nose.

Just after flow commences and provided the bottom slope is slight
(< 1 pc.). the last three parameters have little influence on the initial
motion of the density flow. Frictional forces are small compared with
inertial and pressure forces (the Reynolds number is large) and the
interfacial slope has no effect on the motion. Therefore it follows that

initially, the term

(2 ﬁ\gv ) 3 - f equals a constant.
P g

This has been verified experimentally by the writer who from the
results of ten experiments found f =1,04510.047. This figure
agrees closely with values of j’" obtained by other experimenters;
Wood (1965 « = 1.06 t0.10, Keulegan (1957) f = 1.05, Ellison and
Turner (1959) and Middleton (19686).

The initial nose velocity is plotted against the flux of density



T A Lot
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The starting phenomena.
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difference to the power one third, for the writer's experiments, in
Figure 37.

The nose velocity does not generally remain constant, as can be
seen in Figure 38. As the nose moves downstream, frictional forces
begin to retard its motion. The nose whose velocity is plotted in Figure
38 moved along a bed of zero slope and the nose velocity is seen to con-
tinually decrease. In Figures 39a and 38b nose velocity is plotted against
distance travelled for an unsteady density current flowing down a slope.
After iravelling some distance the flow approaches an equilibrium and the
velocity asymptotically approaches a constant value. Raw data for a
single experiment are plotted in Figure 40. Figures 37 and 38 were re-
duced from diagrams such as this.

5.3 The Unsteady Layer

It can be seen in Figure 35 (b and ¢) that a layer of fluid is left be-
hing a moving nose, Experiments show that this layer moves with a
velocity equal to that of the nose. This is not altogether surprising since
it is the layer behind the nose which provides the driving force, If the
nose were to move faster than the layer its depth would decrease. The
nose would lose its driving force and slow down, allowing the layer to
catch up. Therefore, the nose is attached to the flowing layer and the
nose and the layer cannot move independently of each other., As the

layer velocity is friction controlled then so is the nose. The asymptotic
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nose velocity will therefore be equal to the uniform flow velocity of the
density current., The conditions for uniform flow of a density current
were examined in the previous chapter (4. 5).
A density jump forms at the upstream end of the moving layer
(Fig. 35c¢). Initially this density jump is of the maximum entraining
type. This can be shown from the relationship which exists between

and the Froude number of the moving layer,

N[

Q2
A y13

The Froude number has already been defined as F =

The above can be written in terms of the characteristic velocity as

Fg - Uz
(22 92)

_ 3
- w’ /2

(Aa ? ,:»:) /s

where A _q, is the flux of density difference. However, the mean or
272

characteristic velocity (u’) equals the nose velocity. Therefore

Therefore if the ratio of nose velocity to the third power of the flux
of density difference is unity, then the Froude number of the layer is
also unity. The density jump upstream of this layer must be of the
maximum entraining type.

The velocity of the nose decrease as friction slows the following
layer. The Froude number of the layer falls and a roller region forms

at the density jump. The roller region continues to migrate upstream
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- until an equilibrium is attained in the downstream flow. If the

bottom slope is zero, as in Figure 38, no equilibrium condition exists
and the velocity of the flow will continue to fall, eventually causing the
density jump to flood as in experiment 6, (Figure 40).

Preliminary experiments indicated that any instant, the velocity
of flow is constant along the length of an unsteady density flow. This
was deduced by observing the nose velocity at the instant of flooding
of the density jump for density currents moving on a horizontal bottom.
This nose velocity was found to be very nearly equal to the calculated
layer velocity immediately downstream of the jump at the instant of
flooding. It was also noted that the layer depth was constant along the
length of the layer. Hence it follows the layer velocity must also be
constant over the same length.

It should be noted these conclusions result from only five ex-
periments and are therefore based on limited data.

It was shown in the previous chapter that the Froude number for
uniform flow of a density layer is related to the downstream Froude

number by the equation

2
BF = R> S/in6 w,
where [3 was found to equal 14. 3.
3
It has been shown that F2 = 3” . Hence the above equation re-

duces to 3

= L R, sm6 w
= , E v~
7z
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The parameter ﬁ is dependent on the velocity distritution
in the moving layer. The value of /& obtained for the present series
of experiments was 15.3. It can be seen in Figure 41 that ﬁ is
fairly constant in value and shows no dependence on the Reynolds
number of the flow.

There is, however, one important difference between the friction
controlled flow examined in the previous chapter and that examined
here. In the earlier experiments downstream density and velocity dis-
tributions were measured only a relatively short distance (2-3 feet)
downstream of the density jump. It was noted previously, in these
experiments the interfacial shear, as obtained from measured velocity
profiles, was low. It was put forward that the form of velocity distrib-
ution was determined by the density jump and not solely by friction as
in the case with uniform open channel flows. The length of the channel
in these earlier tests was seven feet.

It can be seen that in the present series of tests, which were con-
ducted in a tilting flume, 120 feet long and 2 feet wide, that uniform
velocities were not attained until the nose had travelled 40 feet or so
(Figs. 39a and 39b).

The tilting flume was only available for a limited period. There-
fore, detailed analyses of the unsteady density flows were not made.

Density and velocity distributions in the layer behind the nose were not
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obtained. However, the similarity in the values obtained for ﬁ
(14.3 and 15. 3) suggests the velocity distribution formed immediately
downstream of the jump remains stable further downstream. It was
noted in the previous chapter, that the frictional forces acting on the
density flows downstream of a density jump are less than those ob-
tained by other experimenters working with density currents of uniform
density. This difference appears to result from the velocity distrib-
ution within the flowing layer being controlled by the non-uniform
density distribution rather than boundary friction. Interfacial shear
is considerably less than that measured for uniform density flows.

It is important to note that the bottom and interfacial boundary

layers were laminar for all experiments involving unsteady flows.
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6. The Entrainment Function

6.1 Introduction

In this chapter it is proposed to analyse the entrainment region of a
density jump, particularly the effect of gravity on entrainment.

The entraining zone of a density jump has been compared to the
spread of a neutral jet. The neutral jet can be considered as the limiting
case of a density jump, as the upstream Froude number approaches in-
finity. This can be seen from the definition of the Froude number as the
ratio of fluid momentum to hydrostatic pressure force at a section across
the flow. The hydrostatic pressure force of a neutral jet is zero. There-
fore the Froude number of such a jet would approach infinity. Arithmetic-
ally, the above may be expressed by:-

Ay3
Therefore as4 ., the density excess approaches zero, the Froude number
must approach infinity.

It is important to note also, for a given density current, with a spec-
ified density excess, the Froude number will approach infinity as the
depth of flow is reduced to zero.

It follows, therefore, that the characteristics of the upstream end of
a density jump, for large values of the upstream Froude number, will

approach those of a neutral jet.
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6.2 Analzsi s

Consider the force flow equation (12) X 5
z 2 ~
Sm@ + Sudlp = M = M,—/ T e
7 2a" xl £>)

The assumption is now made that the velocity and density distributions
are self preserving in the entraining zone. Experiments showed this to be
a good assumption for the range of F; and Ry used as can be seen in
Figure 42.

Equation 12 assumes that the pressure distribution is hydrostatic.

The angle of spread of the entraining zone was less than tan~1 0,16 so

that accelerations in the y direction are of an order less than those in the
x direction and their effec‘?r}che pressure distribution is negligible. Meas-
urements along the bottom boundary of submerged hydraulic jump have
shown the pressure distribution to be very nearly hydrostatic (Rajaratnam,
1964). The flow geometry in Rajaratnam's experiments is very similar to
that for density jumps and they therefore provide supporting evidence for
the hydrostatic assumption. Boundary friction is ignored in the following
analysis. The effect of this assumption as regards entrainment is dis-
cussed later in this chapter.

An interesting point arises when equation (12) is differentiated with

respect to y'. One finds

, da Lzhsma Sk Qg'7+ [—SMQ . 5,4%’4 .0
2 dg/ y_’ 5 @2 gIZ a

and substituting for _Q__z_ using
/

by
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the above expression reduces to

de - 2a. SwF -5 (43)
d g’ 4" 45.,F - Su
The significant feature of the above equation is that as the Froude
1
number approaches the value F = (—z—li )E , entrainment ceases. Hence
m
Q approaches a constant value. Simultaneously the depth of flow y' must

approach a constant value. This results from Equation 12 where Q and y'

are the only variables. If F were to go below the value F = §-H— )2 then
g—)—?— , would be negative.

This is clearly impossible since it would involve a negative diffusion
process: salt water becoming fresh or heat concentration and temperature
rise without additional energy. Both violate the second law of thermo-

dynamics and will not occur. The minimum Froude number attainable

in the entraining zone of a density jump is therefore equal to Sg/ S, to

1
the power one half. (Sy/ Sp,)? is equal to one if the velocities and den-
1 1
sities are uniform. Generally (Sg/ Sy)? will be less than one. ( gﬂ )
m

values together with values of F, are plotted against 'y in Figure 25
for maximum entraining density jumps.

The Entrainment Parameter

The entrainment parameter is a useful concept in that it expresses
local entrainment at a section, in terms of local flow characteristics.

Ellison and Turner (1959) defined an entrainment parameter (E) as the
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ratio of an entraining velocity, normal to the direction of flow of the
density current, to the mean velocity at the section of interest. In
mathematical terms the entrainment parameter is defined as -

E = —ul—,— % (y'u") (44)
Ellison and Turner defined the depth of their density currents as
the mean of the depth to the greatest velocity gradient and the depth of
maximum density gradient. Since the velocity and density distributions
are self preserving, the depth as defined by Ellison and Turner can be
directly related to the interfacial depth. The writer's experiments

showed the two depths were equal.

Equation (44) can also be written as

_ oy de
B 592 (45)

From Equation (43) one has

dx y' 4 Sp, F2__ Su dx

and from equation (45)

2
4aQ . 2 SmF — Sk dy

dQ EQ

ol
b
<

so that equating the above two expressions one has

_ 2(smF°- Su) oy
e L Spm FZ = SH ;LZ_ 46

The above expression is a function which relates the entrainment

parameter to the local Froude number and the interfacial slope, The
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latter factor, however, is an unknown quantity. Although a theoretical
expression could not be derived for the interfacial slope as a function of
X, an expression which satisfied the four necessary boundary conditions

was found. The boundary conditions will now be examined.

(i) At the Origin

If one considers a density jump originating with a finite Q and A
from a virtual origin, the Froude number at the origin will be infinite.
This fact has been discussed previously where it was shown that as the
Froude number approaches infinity, the behaviour of the entraining den-
sity current approaches that of a neutral jet. It can be shown that the
spread of a self-preserving neutral jet is linear with distance (Streeter,
1961).

Considerable experimental data are available on the entraining
chafacteristics of a neutral jet. Townsend (1956) measured the spread
of a neutral two dimensional jet and found %‘ =0.15,

Measurements of a two dimensional wall jet by Bakke (1957) gave
—3%' =0.144. The measured velocity distributions resemble those of a
semi - two dimensional jet, except for a thin boundary layer next to the
wall. The boundary stress acted to reduce entrainment but by only a

small amount. Conditions at the virtual origin are listed below.

(a) y'=0
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(ii) Conditions far downstream

It has been shown that uniform conditions are attained when

[N

F = (Sy/ S, * provided 3—;‘% is to be a continuous function. The case

where %Q, is not continuous will be discussed at the end of this chapter.

If a critical depth y,, is defined as the uniform flow depth when

F = (SH)? then from equations (17) and (10)

Sm

3_ (Sm >
Yoo Uma)

Q2
7

Then at the far downstream end of the entraining zone, the following

o

conditions apply.

(@ y'= ye
Sk Vi
F o= (=
(b) ( Sm)
dy' _
(c) I 0

A depth profile which satisfies all the boundary conditions and is in

fair agreement with measured depth profiles is given by

X
- K =
AT Ye (47)

Ye

This assumed profile is plotted together with measured profiles in
Fig. 43. It will be seen that the above expression is a convenient

1
function as it enables g% to be expressed in terms of a local Froude

number. Therefore, the entrainment function can be expressed solely

1
as a function of the local Froude number, by substituting for ———22’{ in

Equation (46).
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If equation (47) is differentiated with respect to x, one finds -

/

A L - X (48)
dx Yec
/
yl can be eliminated from the above equation by means of the force
c

flow equation.

The force flow as expressed in Equation 19 may be used to calculate

Sm 2
Y *  Hence —/—Vl—g’—’ﬁ = 514_(2374_':— ""'/) Y (19)

§g PO le 2 F 2/3
I
and when y' =y,, F = (SM 72
SH
so that My.. - S 3 L Ye (49)
- ‘ 7
PO Q:Z 2’ (SH/SM)/3 glc
If one equates Equation (19) and (49) one obtains
/
S 2\73
g_/ = 3 ( /\SH F ) (50)
Y i (2 Sr/Sn F 2+ /)
The depth ratio yl- can be eliminated from the interfacial slope
Cc

equations to give Ye
2 -
dy’ _ o(,:/— 3 (Sm/s, F2) J
Ax (2°7/50 FZ + 1)

The expression for the entrainment function can now be written in

terms of the local Froude number

Sm - /3
E=255F ) |, _ 387
(4 3=F%-) 2 EF24y

The above equation is graphed in Figure 44.

6. 3 Experimental Verification

Experimental data taken directly from Ellison and Turner's 1959

paper is also plotted in Figure 44 and shows close agreement with the
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theoretical curve. The data were obtained from Figure 2 of the above
paper where the entrainment parameter is plotted against the
Richardson number of the flow. The Richardson number is equivalent
to inverse square of the Froude number.

Ellison and Turner’s experimental results were for a surface,
fresh water current flowing over an ambient layer of salt water. There-
fore the zero boundary shear assumption made in the analysis is a
reasonable approximation for this case. Ellison and Turner's flow
parameters were defined slightly differently to those of the author so
that it was necessary to convert the former's data before it could be
compared with the derived expression for entrainment. It might be
mentioned that Ellison and Turner's data fits the theoretical curve
more closely if it is not adjusted. A small discrepancy in theory and
experiment does exist, however, and is caused by the choice of depth
profile.

6.4 Velocity and Density Distributions in the Enirainment Zone

The velocity used in calculating the Richardson number was the
surface velocity since it could be easily measured, It is reasonable to
suppose the velocity distribution of Ellison and Turner’s density currents
was similar to that obtained by the writer because of the similarity of
experimental set up. The only significant difference would be the

absence of the boundary layer caused by the false bottom in the writer's
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experiments. If one exirapolaies a surface velocity from the velocity
distribution in Figure 42 one finds U, = 1. 85 u’,

Ellison and Turner's characteristic depth, taken as the mean depth
to maximum velocity and density gradients, was found to occur at the
interface so that depth measurements required no correction.

The density gradient near the interface steepens slightly as the
Froude number decreases. This results from the fall in the rate of
energy dissipation and therefore the turbulences level as uniform con-
ditions are approached.

Turbulent exchange across the interface is reduced and the interface
becomes more distinct at the downstream end of the entraining zone,

A further point arising from the forms of the velocity and density
distributions (Figs. 42,45) is that there appears to be a layer containing
stagnant fluid of different density to the ambient fluid from }X,, = 1.0 to 1. 3.
This layer does not really exist but results from intermittency of the
fluctuating interface affecting mean density readings in this range. The
densily measuring device takes a temporal mean reading at a given
depth and therefore readings close to a turbulent interface,such as
exists in the eniraining zone, can easily lead to an erroneous impression
of the actual density distribution. The writer believes the true density
gradient close to the interface at any instant is far steeper than that

indicated in Figure 45,
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Self preservation of velocity and density distributions was assumed
when deriving the entrainment function. This approximation was quite
reasonable as can be seen from Figures 42 and 45. The velocity dis-
tribution showed no detectable change along the length of the entrainment
zone., Values of 1. 36 and 0. 60 were reduced from the above figures for
Sy, and Sg respectively for the surface jet.

Conver"/sion of Ellison and Turner's data was effected as given below
2 /
(SM)iF = /1-36\72 , = o-82

Sn 0-60/ -85 Ri#? T R.72

¢
and was plotted against the entrainment parameter.

6.5 Sources of Error

Experimental data lies slightly above the derived curve. It is be-
lieved this error is largely attributable to the selected depth profile
which lies below the experimental profile. Under estimation of y’
causes %XL' to be underestimated in the form of equations selected,
The entrainment parameter is directly proportional to the interfacial
slope. Therefore, values of E calculated from Equation 51 will be
less than experimental values. This error is only apparent at lower
Froude numbers in the range one point four to three.

As already discussed, Sy also changes slightly at lower Froude

numbers due to the reduction in interfacial turbulence. This is another

source of error.
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6.6 Effect of Boundary Friction on Entrainment

The presence of boundary friction at a density jump results in a
decrease in entrainment,

Boundary friction was not included in the earlier analysis for two
reasons; firstly its neglect is a good approximation for density jumps
at a free surface, for which experimental data were available, and
secondly the differential entrainment equation could not be solved ex-
actly if friction was included.

The entrainment equation containing a friction term can be solved
numerically., However, this was not attempted, as the writer's interest
was centred more on the analysis of the entrainment function rather than
the secondary effects of friction.

The influence of friction on entrainment can be seen from the force
flow diagram shown in Figure 46. Consider a density jump with its
upsiream state given by the point A. If there is no boundary shear, the
force flow Mg_-/c will remain constant along the length of the enirain-

Po Q7
ment zone. Therefore the value of the flow ratio (K) at any depth Y is
given by a point lying on the line of constant —P/VL%% passing through A
°
i.e. AB, The point B represents the downstream' condition of the en-
trainment region where, in the ideal case, the Froude number is unity.

If boundary shear is present, it can be seen from Equation (12) that am

is negative, Since c-a—% is everywhere positive it follows

M
gy’ will
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always be negative. Therefore a plot of flow ratio against depth, for
an entraining zone subject to boundary friction, is given by a line sim-
ilar to AC in Figure 46. It can be seen entrainment in this case is less
than it was when there was no friction along AB. Values of K are less
at corresponding depths along AC, than along AB.

The downstream state of the jump is friction controlled provided no
other control acts. Therefore, unless the slope is critical, the point C
is not reached and a discontinuity in g—?; occurs, in the form of a
roller region. This possibility is examined in the section following.

6.7 Discontinuities in dQ/ dy*

It has been shown that the minimum Froude number attainable in the

V2
S
entraining zone of a density jump is (—H—) Furthermore uniform flow

Sm

conditions are not reached until this value of Froude number is attained,
It follows, therefore, the maximum Froude number possible downstream
of a density jump, occurs when the entrainment zone extends the whole
length of the jump. Under these conditions entrainment is a 1rnaxil/rnurn°

Experiments have shown that Froude numbers less than (S—H) ire
possible. The mechanism of the roller region associated with these
jumps has been discussed previously. Mathematically, the roller region
represents a discontinuity in Zidyg' . As there is very little entrainment

in the roller region, g—}c?, , ceases to be continuous once the local Froude

number is conjugate to the non-entraining Froude number of the down-
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stream flow. The roller region is directly analagous to the open
channel hydraulic jump and responds to a downstream control in a sim-
ilar fashion. The entrainment zone presents a continuous range of poss-
ible states to which a similar range of downstream flows can be coupled.
The limits of this range occur when,
(a) the entraining region occupies entire length of the jump and the down-

S\ /2
stream Froude number is equal to (gg ,
(b) *he roller region is forced back so as to cover the entrainment zone,
The jump is then of the non-entraining type. Under certain conditions,

for example. when a weir controls the downstream flow, the jump will

reach an instability before the non-entraining state can be established.
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7. The Fall in Force Flow at a Density Jump

7.1 Introduction

Experiments indicated that the loss in force flow across a density
Jump was as much as 30 per cent.significantly greater than that ex-
perienced in open channel jumps.In this chapter an attempt is made at
estimating the probable loss in force flow across a density jump.

It will be shown that for density jumps with high upsiream Froude
numbers, the major proportion of force flow is lost in overcoming
boundary shear at the upstream end of the jump. Most force flow is
lost in the upstream half of the density jump, the region where velocities
and shears are highest. Two other important observations concerning
the upstream end of a density jump were made. These were as follows:-
(i) The velocity distribution was found to be self preserving and con-
sisted of a laminar region between the solid boundary and the velocity
maximum, and a turbulent region extending from the velocity maximum
to the interface.

(ii) Therefore if the boundary layer is defined as being the region between
the solid boundary and the velocity maximum, then the boundary layer

is laminar,

(iii) The spread of the density jump in the upstream region was found to

be linear and it follows from observation (i) that the spread of the boundary

layer in this region of jump is also linear.
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A simplifying assumption is made in the following analysis, this
being that the pressure gradient in the x direction is neglected. The
problem is treated as a neutrally buoyant wall jet. The previous analysis
shows that gravitational influence in the entrainment zone of a density
jump is small for local Froude numbers greater than four or five.
Therefore, it is a reasonably good approximation to treat the upstream
end of the density jump as a wall jet.

7.2 Analysis

The analysis takes the following form:-

(a) The boundary shear is expressed as a function of the known self-
preserving velocity distribution.

(b) The expression for boundary shear is substituted into a differential
form of the force flow equation for a neutral jet.

(c) A solution is found for the differential equation giving the fall in
force flow at a section as a function of its distance from the origin and
the upstream Reynolds number.

The Boundary Shear

The boundary shear can be determined from the velocity distribution
at any section. The total shear force exerted by the boundary on the flow
will equal the change in force flow of the density current. The total
shear force is found by integrating the boundary shear between sections

of interest,
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Consider the velocity distribution shown in Figure 47 where &
denptes a distance in the y direction within the laminar boundary layer.
The boundary layer thickness ( %l), is defined as the distance from the
boundary to the velocity maxima. Since the velocity distribution for a
wall jet is self-preserving (Swartz and Cosart, 1961) the two constants

ﬂ' andls‘2 can be defined by:-

5o %

= umaX
and/ﬁz —mmax
u
where y' and u' are as previously defined. As the boundary layer is

laminar the velocity distribution within the boundary layer is parabolic

so that a dimensionless equation relating velocities and depths can be

written:

u S S duw S 4 o x
= = - (2 - —=) so that =21 - 2 ) 7
Upax & & s &8

At the boundary the velocity gradient is given by: (TGL;" = oy Ymax

. 5
and the shear is given by §=0

?:w:l" (%)S=O

’
Hence /(:w = -2%7&% (52)
0 o

The loss in force flow can be determined by integrating the above
shear stress along the boundary, in the direction of flow. The force flow
equation for a neutrally buoyant jet is given by:-

Xz
2 /
M, = Smp.Q + / 2m Ba U Ao (53)

/7 I

4 X, 2 d
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where M, is a reference force flow at x = x,.

Self preservation implies that the spread of the jet is linear with

distance from some virtual origin then y' = X x where o{ is an ex-

perimentally determined constant.

The above equation when differentiated with respect to x yields:-

a4yt L
dx

(54)
and a relationship between Q and x can be determined by eliminating y'

from the force flow equation expressed in differential form.

If equation (53) is differentiated with respect to x one finds:-
2
d,M) - 2 \SMPO O(a - SmpoQ d% + 2//‘»‘32& = O
i 3 TR 1,2
oo e Y Ax B,y
§
Substituting for dy

—*- and y' in the above, and after some algebra one

dx
obtains:-

Bz Sm
da = (a - Z:L,o:,& )
A x

(55)
2 x
It is convenient to non-dimensionalise the foregoing relationships.

Hence reference values are defined as

Q = Q1 when x = x4

and when equation (55) is divided by 3| one has

1
2B, S5
Ak - (kK -5 (56)

where K =

X =

Q.
Q
X
X
and Ry = AU
u
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The differential equation (56) has a general solution given by
I} ~1
( K - 2 52 \Sm ) = A . x ’/2‘
D< ﬁl R'

where A is a constant which can be determined from the boundary con-

ditions at x = X)- Xy is the distance between the virtual origin and the

point at which the velocity distribution first becomes self-preserving.

of
This is sufficiently close to the upstream eRd/the jump to be taken as

that point. At this section, by definition, X = 1 and K = 1 so that the

complete solution to the differential equation is therefore

/
K = (/—215>x2 + 2 Ba Sk -
D<BI 9</>>/ RI

The force flow equation may be non-dimensionalised by dividing by

2
M, = Sm Po G., so that equation (53) reduces to:-

4 ’
[} 2 f —
— Tw o
| - XK x Cw X (58)
Y= M,
4
where Yx. ‘_, - 9;,#
The non-dimensional force flow ratio (8) is given by
/
o = /—(/ ’C’wa()()/M,
X
Employing equation (58) this can be written:-
o . XKP K
Ye X
K can be eliminated using equation (57) to give
or ~1 -1 2
6 = (}_._2_2_2__52>+ 2p2 Sm / (59)
< B, R < /3‘ R, X 72 .

7.3 Discussion

Equation (59) expresses the fall in force flow of a neutral wall jet,
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as a function of the distance in the direction of flow and a reference
Reynolds number. As the results of thisA analysis are to be applied to a
density jurhp the parameters B,, B, , @A and S, were obtained from
measured velocitj} distributions and angles of spread at the upstream end
of a density jur;r;p. >I‘heir values were found to be 0.12., 1.60, 0.15 and
1. 30 respectively. The ratio of force flows at an upstream section and
at a section downstream are plotted against distance between the sections,
for a range of upstream Reynolds numbers in Figure 48.

It can be seen that the initial fallAin force flow is sharp but lessens
further downstream as the boundary shear decreases. It is illustrative
to examine a particular jump, say with an upstream Froude number of five
and a Reynolds number of one thousand. The conjugate depth ratio for
this jump is approximately seven and experiments showed the region.of
linear spread extends some three times this figure downstream from the
toe of the jump. Hence —§7i is approximately twenty. It can be seen

from Figure 48 that no matter what the spread downstream of =20

=
v
further loss in force flow is small compared with that which has already
taken place. It is to be expected then, that the foregoing theory for fall
in force flow in a neutral jet applies reasonably well to density jump
provided the upstream Froude number is large. Jumps with a Froude
number less than three cannot be satisfactorily approximated by a neutral

jet and so the foregoing theory will not give a good estimate of the fall in

force flow.
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Some experimentally determined force flow ratios are shown in
Figure 4_8 and it can be seen that shear forces acting on density jumps
are greater than thos‘e on a neutral jet of the same upstream Reynolds
number. This is not altogether surprising, since the density jump
ceases to entrain at some point downstream and the flow becomes uniform.
The rate of fall in force flow would remain constant in this region leading
to a higher overall loss in force flow, as compared with a neutral jet.

The two points plotted for 400 <_ R, £ 600 were for jumps with up-
stream Froude numbers less than three, and it can be seen they do not
conform to the foregoing analysis. Agreement was satisfactory for
jumps with upstream Froude numbers greater than three.

The force flow ratios were calculated from measured entrainments
and depth ratios for a number ot density jumps. Accuracy in calculating
the force flow downstream of the jump was s 5 pc. so that the actual

loss in force flow could only be estimated with accuracy of approximately

+ 25 pc.
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8. Experimental Equipment

8. 1 Steady State Tests

All steady state experiments described in this report were made
in the test tank shown schematically in Figure 49. The tank consisted of
a plywood box 14 feet square by 4 feet deep. The front of the tank was
made from 3/ 4 inch perspex sheeting. A false side was placed approx-
imately 6 inches behind the perspex, and false bottom compartments as
shown in Figure 49 were placed in position. Wedges were used to force
the false side hard against the false bottom compartments which in turn
pressed against the perspex viewing face of the tank. The false bottom
compartments were very satisfactory as they permitted easy insertion
of velocity and temperature probes through the bottom of the compartment
into the density current. Holes of 3 inch diameter were drilled at 3 inch
and 6 inch spacings in the two compartments. The holes were plugged
with rubber bungs which were inserted until flush with the false bottom.
The probes were lowered through holes drilled through the bungs. This
prevented the compartments filling with water,

The compartments could be tilted for experiments on friction con-
trolled density jumps, although this required unwedging of the false
side and rewedging after the adjustment had ;been made. Similarly, the
depth of the inlet slot could be adjusted by raising or lowering the inflow

compartment shown in Figure 49.
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The inflowing water was heated by an instantaneous three phase
heater (415V) having a maximum capacity of approximately 2.5 kilo-
watts. The flow was then metered through a rotameter of capacity
0-3 gallons/ minute. The rotameter was calibrated for a range of
water temperatures and accuracy of measurement of the metered
flow was always better than 2 pc.

It was necessary to wait at least ten minutes to one quarter of an
hour before taking any readings, after adjusting the flow state in any
experiment. This ensured a steady state had been established.

Heat transfer through the boundaries of the tank was found to be
quite negligible compared with the total heat flux. Heat loss was not
a source of error in experiments. The temperature of the inflowing
water was measured by a thermocouple in the inlet, and downstream
temperatures were measured relative to this reference.

The outflow from the tank drained into a 4 inch diameter overflow.
It was necessary to have a continuous supply of cold water to the tank to
make up for ambient fluid entrained into the density jump. Large
holes were cut into the false side below the level of the density current
as shown in Figure 49.

These holes permitted makeup flow to travel vertically into the
density jump and minimised horizontal flows in the ambient fluid.

8.2 Unsteady Flow Experiments

The unsteady flow experiments described in Chapter 5 were made
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in a tilting flume 120 feet long, 23 inches internal width and 24 inches
deep. The flume was made of marine plywood with one side made of

3 inch perspex. It was supported in a suspended steel frame which was
attached via adjustable tie rods to an overhead arch. This permitted
the flume to be adjusted to any slope up to a maximum of nearly 3 pc.
over its length. However, the maximum slope used in the experiments
was 0. 54 pc.

As the tests were of limited duration, salt water was used for the
density current and the flume was filled with fresh water. The salt
water was pumped via an orifice flow meter from a 300 gallon storage
tank into the inlet manifold of the flume. The depth of fresh water at
the inlet was never less than 12 inches so that circulations induced in
the fresh water by the density current were small. The thickness of the
density current was never greater than 2 inches.

The accuracy of the orifice meter was approximately 5 pc. over the
range of experimental flows. The nose velocity was measured by timing
its travel between markers three feet apart along the length of the flume.

The specific gravity of the salt water was measured using a calibrated

hydrometer.
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9. Velocity Distributions

9. 1 Introduction

It has been shown that the values of flow parameters downstream
of a density jump are markedly dependent on the velocity distribution of
the flow.

Generally, the velocity distribution is non-uniform and is controlled
by two factors;

(i) the Reynolds number of the flow, and

(11) the form of the jump.

The Reynolds number influence is the less important of the two even
for the low Reynold's numbers associated with the experimental flows.

Density jumps represent diseontinuity of flow energy. Energy is
dissipated by turbulent shear forces at the jump and it is these turbulent
eddies which determine the form of the downstream velocity distribution.
The bottom boundary layer within this flow transition has little effect on
the final velocity distributiqn,

If the jump is friction controlled the downstream velocity distribution
must be affected by boundary friction. However, in experiments, the
velocity distribution downstream of a friction controlled density jump
did not undergo any significant change for large distances downstream of
the jump. The experimental flows observed downstream of the density
jumps consisted of a turbulent region sandwiched between two laminar

boundary layers. One boundary layer originaied from the bottom of the
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channel and the other from the interface.

The case where the laminar boundary layers spread right across
the moving layer has been analysed theoretically by Keulegan (1944).
This analytic solution has since been verified experimentally by Ippen
and Harleman (1952) Bata and Bogich (1953) and others, who have shown
Keulegan's equations hold up to Reynolds numbers of approximately 1000.
Although in some experimne nts,Reynolds numbers downstream of the
density jump were as low as 800, the turbulence generated at the jump
did not dissipate in the test length of the channel.

9. 2 Classification of Velocity Distributions

Typical velocity distributions for a range of downstream Froude
numbers are shown in Fig. 50. It can be seen that the distribution be-
comes more uniform as the downstream Froude number decreases in
value.

The velocity distribution shown in the top left of Fig. 50 had an up-
stream Froude number of 4.1 and a downstream Froude number of 0. 80,
This same velocity distribution for the same density jump is plotted in
Figure 23. In Figure 24 the density distribution for this same jump is
plotted. It can be seen the density distribution is quite non-uniform, and
this indicates that the entrainment zone extends the length of the density
jump. Compare the velocity distribution for Fg = 0.80 and Fg = 0. 33.

In the latter case the upstream Froude number was 5.2 and the density
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jump was nearly non-entraining. The density distribution was there-
fore nearly uniform and the entrainment zone occupied only a short
section of the jump. The velocity distribution, too, is more uniform
than previously.

It follows, therefore, that the form of the jump is a dominant para-
meter in determining the downstream velocity distribution. The form
of the jump is dependent on two variables, the upstream and downstream
Froude numbers.

Density jump forms can be divided into approximately three classes:-
(i) Those with low upstream Froude numbers (less than two)

(i1) Those with upstream Froude numbers greater than two and down-
stream Froude numbers a maximum.

(ii1) Those with downstream Froude numb ers less than the maximum.

(i) The first type of jump has a high downstream Froude number but
there is little entrainment at the jump. The form of the jump is shown in
Fig. 51. The velocity disiribution tends to be similar to the upstream
velocity distribution,

The inlet Reynolds number varied from about 700 to 1200 in ex-
periments and the velocity distribution in the slot would have approached
parabolic form with a velocity correction factor of 1,20. However, the
toe of the jump was generally three or four times the upsiream depih,

downstream of the inlet slot and velocity distribution measured in this
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short region of uniform flow gave a constant value of Sm of 1. 14 t0.04.
(i1) The second type of jump with upstream Froude number greater than
two and a maximum downstream Froude number was found to have a
velocity distribution correction factor which was independent of the up-
stream Froude number, This result is not surprising as the conjugate
state for this type of jump is very nearly the same for all upstream
Froude numbers. When the upstream Froude number is greater than 2
the downstream end of the jump is sufficiently far from the upstream
end, so as not to be influenced by upstream conditions. The velocity
correction factor for this type of jump, where the entrainment zone ex-
tends the whole length of the jump, was found to be 1,32 6,05,

This type of jump was examined in detail in Section 4.4. A typical
maximum entraining jump profile is shown in Fig, 43.

(iii) When the downstream Froude number is small the velocity dis-
tribution downstream is influenced by the non-entraining roller region
of the jump.

At the transition from the entraining zone to the roller region, the
velocity distribution in the jump was the same as that for a maximum
entraining jump. This is to be expected. The change in form of the vel-
ocity distribution is depepdent on the roller region. Since there is
virtually no entrainment in the roller region it may be regraded math-
ematically, as a normal hydraulic jump. Therefore the characteristics

of the roller region are fully defined by either its upstream or downstream
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Froude number, The velocity distribution of a partially entraining jump
would be expected to be a function of the downstream Froude number only,
as a result of the mechanism described above. A typical partially entrain-
ing density jump is shown in Figure 15,

9.3 Force Flow Correction Factors

Force flow correction factors calculated from these velocity distrib-
utions are ploited against downstream Froude number in Fig. 52,

An immense amount of reduction was required to obtain this diagram.
Details of experimental techniques and tabulation of experimental results
are given in Appendix D.

Velocity distributions were taken three or four times the downstream
depth from the end of the jump. This position was arbitrarily chosen but
it was found the velocity distribution was fully established at the end of
the jump. Further changes downstream were caused by either boundary
friction (whose effect on the velocity distribution was found to be small)
or a control,

It can be seen that the values of Sy, given in Fig, 52 do not completely
agree with the values published by the writer in a paper describing the
earlier part of the program (Wilkinson and Wood 1968). A copy of this
paper is included at the end of the appendices. When this paper was
written the control mechanism of a density jump was not understood and

for the particular experimental set-up, downstream Froude numbers
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of one half were constantly obtained. The control in this case was
difficult to define as the discharge was controlled outside the test tank,
so that analysis of the coupling between the control and the jump was not
possible. The test tank was horizontal so that the jump was also
partially friction controlled.

The fact that the downstream Froude number was always found to be
equal to one half was an interesting coincidence, as maximum depth also
occurs at this value of Froude number. It was thought at the time of
writing the paper that the maximum downstream depth concept might
have been significant. Subsequent analysis, both theoretical and ex-
perimental showed this was not so.

Reference to the plot S, against 1 shown as Figure 8 in the above
paper, for which Fzz% shows a significant trend. Although the mean
value of Sy (1.14) agrees well with the results presented here, Sy,
appears to increase for higher values of ¥ and decrease for lower
values. This behaviour is contrary to that found in later experiments
in a newly designed test tank. The trend is believed to be caused by
(i) Reynolds number effect, (ii) positioning of the velocity probe. The
Reynolds numbers of the flows in the early tests were very low (250 -
500), due to the small size of the experimental apparatus. Positioning
of the probe was not as flexible as in later apparatus. Increase in the

velocity of flow at the inlet, to achieve higher upstream Froude numbers
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resulted in an increase in non-uniformity of the velocity distribution
at the probe. It is worth noting also, that only the exireme values of

Froude number were significantly affected.



[l
(@)
(]

10. Density Distributions

10. 1 Introduction

The density distribution in a density current, downstream of a
density jump. is seldom uniform. This non-uniformity results from
incomplete mixing of the density flow and the ambient fluid. Uniformity
is dependent on the extent of turbulent mixing in the jump after entrain-
ment has occurred. If the roller region occupies most of the density
jump, entrained ambient fluid is thoroughly mixed with the inflowing
fluid in the roller region of the jump. The resulting density distribution
approaches uniformity.

It follows, therefore, that density jumps with high upstream Froude
numbers and downstream Froude numbers close to the non-entraining
minimum; will have uniform downstream densities.

The other extreme occurs when the jump is of the maximum entrain-
ing type. Ambient fluid is entrained along the length of the jump. There
is no roller region to mix the fluids and the resulting density distribution
downstream is markedly non-uniform. The density distribution is de-
pendent on both the upstream and downstream Froude numbers.

10.2 The Characteristic Pensity Difference

It was necessary in all experiments to determine the characteristic

density difference ( A ) as defined in Equation (7)

A= 9
uiyl
D
where = /u AP gdy
o F°
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It was shown that the flux of density difference () is conserved.
It follows, therefore, that A is generally a function of both the density
and the velocity distributions. However, as either the density or the
velocity distributions approaches uniformity, the characteristic density
difference ( A ) approaches the mean density difference(_A:Z{ ?) in value,
Since higher velocities are generally associated with regio;s of higher
density difference, the characteristic density is founci to be greater than
the mean density over the depth of flow. For the limiting case of a max-
imum entraining jump of high upstream Froude number, it was found

A =1.32 5p g

10.3. The Hydrostatic Pressure Correction Factor

The second parameter which was measured was the hydrostatic
D D
. . 2 2 '
pressure correction factor Sy where Sg 2 LLY
&Y Jolg e

Dimensional analysis shows that a density jump is fully defined by

two parameters F{ and Fg. Ii follows that SH can be expressed as a
function of these two variables. A plot of experimentally determined
Sy values is shown in Figure 53. Several features of this diagram are
worthy of comment. Firstly Sg is highly dependent on the upstream
Froude number for maximum entraining jumps, if ¥1 is less than six.
When Fj is greater than six,Sm appears to remain constant in value at
approximately 0. 6. SH is highly dependent on the downsiream velocity

distribution but approaches unity as entrainment reduces to zero. It
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was found that the hydrostatic pressure correction factor could be ex-
pressed as a function of a single variable. This variable is equal to the
ratio of fluid entrained to maximum possible entrainment assuming uni-
form velocity and density distributions. Spg is plotted against this
) K-1 : . .
variable ————— as the dependent parameter of Sy is now explained.

K -1
max

[t was stated earlier that the form of the downstream density distribution
was determined by the relative lengths of the entraining zone and the
roller region of a density jump. The value of K-1 is a measure of the
entrained flow at the jump. and therefore is a function of the upstream
Froude number and the length of the eniraining zone. The value of
(Kmax - 1) is a measure of the entraining potential of the jump, and is
therefore a measure of the potential maximum length of the entraining
zone. The ratio of these two quantities is a measure of the relative
lengths of the entraining and roller zones of a density jump, and is there-
fore an indicator of uniformity of the downstream density distribution.

The nume rical value of the flow ratio K, is not highly dependent on
Sy since K varies as Sy to the power one third. The depth ratio varies
as the two-thirds power of Sy and is therefore more sensitive to it.
Low values of SH lead to a greater depth ratio than would exist if the
density distribution were uniform.

The non-uniformity in density is largely counteracted by the non-

uniformity of velocity. Both Sg and Srn tend to vary in inverse
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proportions so that estimations of depth and entrainment downstream of
a density jump can be calculatéd with reasonable accuracy (¥ 10 pe.) by
assuming that the densities and velocities are uniform,
The force flow ratio is potentially a greater source of error than
non-uniform density and velocity distribution. This results from the

compensatory nature of the latter variables,
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Appendix A

11. The Flooded Density Jump

The flooded density jump controlled by a broad-crested weir
(Figure 16) may be analysed using Equation 25. This equation relates
conditions downstream of the jump and conditions at the point of control.

It is independent of the state of the jump.

4 ——
o . 372 dac (60)
Foc F22 + 2

As there is negligible entrainment at a flooded jump it follows that

d2c T e
and from continuity
/
25_, - —1—27—3—
Jec Fy

Hence equation (25) can be reduced to the following:-

?i&f -3 KE;FZQ%'/% - 3) { (61)
The above equation is plotted in Figure 19 as the line PCD for the
case where E = 50 . and hence from equation (19), f = 0.073.
I'he lower limi® of validity of equation (61) occurs at the intersection
of the above curve with equation (28) at the point D. At D the flooded

jump becomes a non-entraining density jump.
The parameter f was introduced into equation (61) so thatthis equation

could be plotted simultaneously with equation (28).
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Appendix B.

12. Brink Depth at a Free Overflow in a Density Stratified Flow

The apparently simple physical features of the free overflow have
long atlracted the attentions of applied mathematicians, striving for an
analytical solution to this free streamline problem. Several approximatg
analyses have yielded results in close agreement with experimental
profiles (Rouse 1936). In fact, simple one dimensional energy and
momenmm analyses, which assume zero pressure at the brink section,

o f

give éﬁ =0.66 and 0. 67 respectively, surprisingly close to the ex-

4 -
-

perimental value of 0. 715. More elaborate iterative, analogue and
transformation methods employed by Jaeger, Roy and Southwell and
Vaisey are reviewed by Henderson (1966). All give depth profiles which
agree closely with those observed in experiments.

It is not intended here fto attempt an additional solution, but rather
to look at rhe effect of non-uniform velocity and density distributions
on the brink flow. The force flow equation is applied to the upstream
flow, and again at the brink, where a zero pressure profile is assumed
to exist. Curvelinear effects at the brink are ignored. If the velocity
distribution is assumed to be self preserving between the upstream
section and the brink (not an altogether justifiable assumption but one
that is often made in open channel hydraulics), then from equation 19

one can wriie:-
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2
2 Sy Fo+ Sy 4/3
Y, 2 22/3 = Yp Spg Fp
2F

where Fy is the Froude number of the brink flow.

The Froude number of the flow upstream of the overfall is given by:

=

and from continuity one has
3/2

| Ye
b c Yb
If the above equalities are substituted into the force flow equation one
finds
» 1/3 2/3
3Yp <§m)/ v, S (%) Py
2 SH b sy \Sm Yy

which reduces to the interesting resulis

Yy - Z‘bh .2 (62)
Yy 42 3

This result indicates the brink depth is independent of upstream
velocity and density distributions, provided the above assumpsions are
valid.

Experiments by Rouse and others on open channel flows over a free

overfall give

b = 0,712
y2

which agrees surprisingly well with the approximate one dimensional
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theory above.
Density current experiments enable a check to be made on the effect
of non-uniform density and velocity distributions on the brink depth.
Eight measurements of the brink depth ratio, with Froude numbers

upstream of the jump varying from 1.8 to 10,7 gave

]

ﬁb - +
= 0,685 *0.039
ta

The brink depth ratio showed no dependence on the jump Froude
number. Hence it follows it will also be independent of the velocity and
density distributions.

A plot of brink depth ratio against jump Froude number is shown

in Figure 55,
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Appendix C.

13, Other Control Mechanisms of & Density Jump

15.1 The Sharp Crested Weir

The charzcteristics of a density jump conirolled by a sharp crested
well' are very similar to those when the control is a broad crested weir,
Both exhibit the same hysteresis effect during a cycle of weir raising and
lowering. Numerous atitempts have been made to solve the free stream-
line problem of flow over a sharp crested weir. Generally, however, a
simpler semi-empiric equation is used to determine the discharge
charzacteristics. as given below

R - , 3
7 - 2 Cs/29 (Y. - +#.) (63)
whiere g 13 the flow per unit width,
Cd 1s the discharge coefficient
and h 1s the welr height,
An experimental equation is available (Rouse 1945) fgiving Cd as a

function of boundary geometry and is applicable for (£2 - 1)< 0.8

4

i

v
e
= 511 + -
Cd 0.611 0.075 (2/— 1) (64)

Equailon 163) may be rearranged into the form

£ - 8 Cu (// - A) (65)

F2’

N
!

9

or

-2\ 73
Ao - _ﬁ_/;i) (66)
4. 3 Cy
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The downstream depth can be eliminated in the above, by means of

equation (19). Using the same technique as previously, one finds

2 vy, 2/3
2L - 2]l - (45 [ (67
g'nc - 8C0( - 2’:2 + |

The above equation is of prime importance since it relates weir

height to the downstream Froude number. Cd may be expressed an im-

plicit function of the downstream Froude number by substituting equation

(66) for —= in Equation (64). Solutions may be obtained for the down-
2

stream Froude number and weir height, by selecting values of ———

%
C.,and - ‘A’

o Cg f using equations 65, 64 and 67

and calculating F
Ic
respectively.
Equation (67) is plotted in Figure 56 and it can be seen a limit of

stability occurs when F_ =0.19, This is therefore the minimum Froude

2
number attainable downstream of a jump controlled by a sharp crested
weir. The non-entraining Froude No. conjugate to this value, is 10, 6,
which is the maximum upstream Froude No. for which the minimum down-
stream Froude number is attainable by a non-entraining jump.

The dashed curve in Figure 56 is for a broadcrested weir and it
can be seen it lies below the curve for the sharp crested weir. This re-
sult was expected, since the vena contracta associated with a sharp

crested weir effectively "increases' the weir height relative to a broad

crested weir of the same height. Experimental data are again in close agree-
ment with the predicted curve. A photograph of density flow over a sharp

crested weir is given in Figure 57.
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Experimental data are again in close agreement with the predicted
curve. A photograph of density flow over a sharp crested weir is given
in Figure 57,

13.2 Undershoti Gaites and Contractions as Controls

Undershot gates and contractions are examined together as controls
for a density jump. The control characteristics are similar in either
case and the full range of downstream Froude numbers are attainable for
all values of upsiream Froude number. There are no unstable regions,
so that the minimum Froude number attainable downsiream is always the
non-eniraining value. and the maximum is unity for the ideal case,

The undersho! gate will be examined first, and a definition sketch
1s given in Figure 58,

13. 21 The Undershot Gate

Analysis
If the energy equation is applied upstream and downstream of the

gale. and as there is no entrainment between these sections, one has:

Sea ‘QZ - 2; : S5e3Q° S+ Cc A (68)
S Rg (Cc R)

where CC“KIS the depth of flow immediately downstream of the gate. The

corifraction coefficient <CC) remains constant to within - 5 pc, of 0. 61
: . h : . .
for values of = less than 0. 70, in open channel flows. Unfortunately
2

this is not true of densiiy currents. The change in CC is believed to be

caused by boundary layer effects at the interface of the density current
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Fig. 57: Flow over a sharp crested weir.
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and the ambient fluid. Therefore, in the present analysis, C_ shall
h . .
be treated as a variable, and its dependence of ?1— will be discussed
2

later.

Equation (68) may be rearranged into the form

2, ,\?
%; (552. F?_z-l— 2> = C. A[SEB Fa &__) + 2]

2.
C. R
so that
2 2 <1 — Cc< A
Fa = Iz (69)

PEB(}_;)Z - 552]
L Ce & -

Equation (69) relates the downstream Froude number to the ratio
of gate height to upstream depth and is graphed in Figure 59. The
force flow equation as written in Equation (31) may now be employed to
express Fgy as a function of gate height only.

An explicit solution cannot be obtained for either variable so a
graphical solution is plotted in Figure 60,

Experimental Results

Agreement between ‘experiment and theory was satisfactory for
downstream Froude numbers less than approximately 0 65. Within
this range momentum fall within the jump again compensated for the
non-uniformity of velocity and density distributions downstream of the
jump, to give experimental results in close agreement with the idealised

theory.
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More exact solutions for particular cases may be calculated by sub-
stituting appropriate velocity and density distribution factors into equations
(20) and (69). However, in practice, it is doubtful if the accuracy would
be further increased.

Depression of the Interface by an Undershot Weir

At downstream Froude numbers greater than 0. 65, agreement be-
tween the above theory and experiment is poor. This is caused by a
change in the flow geometry such that the picture in Figure 58 no longer
represents the actual flow.

As the gate is lowered (''lowered" as defined previously is "up" in
the picture). The interface is seen to be depressed as in Figure 61b and
c. Experiments indicate the interface can be depressed by as much as
one quarter of its initial depth before the gate breaks the interface as
shown in Figure 6Ic. The degree of depression at the interface depends
on the Froude number and Reynolds number of the flow, and the boundary
layer development length between the jump and the gate. The curve shown
in Figure 62 is therefore only a typical example of depression, and is
not to be interpreted as a general result. The dominant controlling
parameter is believed to be the boundary layer thickness in the ambient
layer. This, of course, is dependent on the development length only,
provided the boundary layer is laminar.

Boundary layer development in stratified flows has been investigated
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Fig. 61: Interfacial depression at an undershot gate.
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by Ippen and Harleman (1952), Keulegan (1944) and Bata (1959). How-
ever, in this case, no quantitative theory was derived for the depression
phenomenon, Various stages of depression are shown in Figures 6la,b
and c.

The Contraction as a Control

A contraction as a form of control of a density jump is shown in
Figure 63. The energy equation may be applied upstream and at the con-

traction to give
/

3

2 / 2
294, B® i 24 y?Zb?
I Sa g &3
where B and b are the channel widths upstream and at the contraction

respectively.
At the control the depth of flow is critical depth. Therefore
2
Sgz &
3,2
!
g4 b
and substituting the above into the energy equation
/ 2 _ /
Ye (552 F + 2) = 3g3 (71)
From Equation (70) and continuity one can write
2 3 2
)
Se3 F‘a ( & 3 ) (_‘6‘_) = |
!
2 B
So eliminating y] in Equation (71) one finds

3, /3
& . 3 Se3 Fo (72)

= 1 (70)

B (552 F_zz + 2)2/3
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A graph of the above equation is given in Figure 64 for the case
where the velocity distributions upstream and downstream of the jump
are uniform. No experiments were performed to verify the contraction
equation (72), but in the light of previous experimental results there is
no reason to suspect its validity.

It can be seen no instabilities occur over the full range of the con-
traction ratio, from zero to one. Therefore all downstream Froude

numbers between the usual limits are attainable by any density jump,

depending on the contraction ratio.
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Appendix D.

14, Velocity Measurement

Introduction

Velocity measurement in density currents is always a problem;
fir stly because of the very low velocities involved and secondly because
of the general small scale associated with laboratory density currents,
Typical density currents examined by the writer ranged in depth from
one to four inches, and in velocity from 0.02 ft/ sec. to 0. 15 ft. / sec,

Several methods of velocity measurement were examined. An ex-
cellent review of techniques of velocity measurement in density currents
is given by T, R. Fietz (1966).

The basic requirements of the velocity meter for the present study
were as follows:-
(1) Size: It must conform to certain dimensional restrictions so as not
to interfere with the flow pattern, particularly in the region of the inter-
face.
(ii)' Shape: It must be of such a shape that velocity profiles may readily
be taken, and also that it may be removed from the test tank without
damage.

(iii) Availability and/or Simplicity

The meter must be either readily commercially available or be of

very simple design and construction.



116.

(iv) Calibration

It is desirable that the meter maintain a constant calibration and

is unaffected by temperature variation or salt water.

Review of some velocity measuring devices

Pitot tube devices do not have a good low velocity response and are

therefore unsuitable. Although the sensitivity of U tube manometers
can be increased by using two immiscible fluids of similar densities, ex-
perience showed this technique was fraught with experimental difficulties.

Drag type Meters rely on the dynamic drag on an immersed body.

The drag is measured via a strain gauge or some other electronic device.
Drag meters are particularly suceptible to calibration drift and the devices
suitable for use at the velocities to be measured, are necessarily delicate
and easily damaged.

Current Meters rely on an impeller whose speed of rotation is

measured electronically, and is proportional to the fluid velocity. They
were unsuitable for the present work due to their size and high threshold
velocity,

Dynamically Balanced Meters

The stagnation pressure of a fluid flow can be balanced by an opposing
fluid jet in a suitably designed nozzle. This principle wés first discussed
by Bagnold (1951) and subsequently a modified meter was constructed by
Fietz (1966). This instrument is shown schematically in Figure 65.

The meter is designed to operate in salt water although with slight
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modification it could be used in either fresh or salt water.

The meter generates a physical balance between the stagnated salt
water flow and an opposing metered flow of fresh water. The opposing
flow is fed through a fine bore head-loss tube which magnifies the stag-
nation pressure. The balancing flow is adjusted until the interface be-
tween the fresh and salt water is stationary at a conductivity detecting
point in the nozzle.

The meter was found to measure velocities in the range of 0.03 to
0.5 ft/ sec. with an accuracy of five per cent. The response of the
meter is linear.

The meter does have several disadvantages. These are:-

(1) Sensitivity to the temperature of opposing fresh water flow. This
effect can be accounted for by calibrating over a range of temperatures.

It was found the change in response could be predicted by the known
change in viscosity of the fresh water with temperature.

(2) The slow response after adjusting the fresh water flow. The time
required to take a velocity measurement was at least ten minutes. Fietz
suggests several modifications to the meter to improve its accuracy and
ease of use.

It was decided the Bagnold meter was unsuitable for use with this
project for the following reasons:-
(1) The meter available would require extensive modifications if it were

to be used in the test tank.
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(2) The time required for each reading and the number of measurements
required would make steady state difficult to maintain for the duration
of a test,

A further modified Bagnold meter in which the balance point was
detected visually rather than electronically, was constructed by the writer,
Balancing of the stagnation pressure was far more rapid with this meter
and also the physical size was considerably reduced. The small size of
the meter can be gauged from the photograph of one of the meters in
Figure 66. The accuracy of this meter was 7 pc. slightly less than that
of Fietz., The meter was calibrated over the range 0.03 ft. / sec. to 0. 5ft/
sec,

Détails of the meter are given in a technical note published in the
"British Journal of Scientific Instruments''. A copy of the note is included
at the end of the appendices.

The meter was found suitable for use in either salt or fresh water
density currents. Soon after the meter had been developed new larger,
experimental tanks became available and it was necessary to change to
thermal density currents, as salt water was not available in sufficient
quantities, It was found with thermal density currents, that insertion of
the probe through a thermal gradient caused air to come out of solution
and form tiny bubbles in the glass nozzle of the probe. These bubbles
altered the probe geometry and therefore changed its calibration. No way

of preventing this effect could be found so that use of the probe was
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abandoned in thermally induced density currents.

Hydrogen Bubble Technique

The hydrogen bubble technique of flow visualisation makes use of
tiny hydrogen bubbles as flow tracers.

The bubbles are generated by electrolysis at a fine non-reactive wire
(usually platinum) stretched across the flow. A direct current is pulsed
onto the wire cathode and a sheath of hydrogen forms around the wire.
Surface tension causes immediate collapse of the sheath into tiny hydrogen
bubbles which are swept away by the moving fluid. If the bubbles are suit-
ably illuminated, and the period of pulsing is known, then the velocity pro-
files may be calculated from still photographs of the lines of bubbles, after
they have left the wire. Hydrogen bubble technique is very good for obtain-
ing qualitative velocity distributions because these can be observed directly
{see Figure 67). Quantitative measurements, however, are another matter,
The time required to obtain meaningful data from hydrogen bubble photo-
graphs is the major disadvantage of the technique. Also the method is not
suitable for unsteady flows. The bubbles follow pathlines and unless the
flow is steady significant errors can be introduced if the pathlines are in-
terpreted as streamlines (Hama 1962).

The equipment used by the writer was deliberately kept as simple as
possible. A schematic diagram of the set-up is given in Figure 68.

A D. C. voltage from a battery supply was bridged via a commutator,
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across a 1K ohm potentiometer. The commutator consisted of a 10
inch diameter perspex disc with six aluminium foil, segmented contacts
glued to its surface (see Fig. 69). A switching arm with two wire brushes
attached to its end lay on the disc in a similar fashion to a turntable arm.
As the commutator disc rotated the circuit was made and broken as the
conductive aluminium sectors passed beneath the brushes. The switching
of this apparatus was very clean and no transients could be observed when
an oscilloscope was placed in the circuit. The speed of;}tluerntable was
measured to be constant to within 0.5 pc. over several revolutions and
wow and flutter were negligible for the heavy weight turntable used.

The duration of, and the interval between pulses, could be varied by
simply changing the width and spacing of the conductive sectors of the
commutator,

The positive terminal was attached to a matt black strip of galvanised
steel which was placed behind the generating wire against the back of test
tank as shown in Figure 70. The steel strip served two functions; firstly
1t provided a non-reflective high contrast background for the hydrogen
bubbles and secondly, it made a convenient anode as it was only three
inches away from the cathode,

The negative tapping of the potentiometer was connected to the gen-
erating wire. The potentiometer was adjusted until the bubbles were of
opuumum size, The generating wire was platinum and 0,002 inch diameter,

A diagram showing the wire suspension apparatus is shown in Figure 70,
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The platinum wire was attached to an insulated copper wire, which was
supported by friction inside a 3/8'" glass tube, This enabled the platinum
wire to be manipulated or removed without upsetting the density current
below. The glass tube fed through a rubber bung, which fitted into 3 inch
diameter holes that had to be drilled at convenient spacings, along the
length of the test tank.

A lead sinker of 1/4 inch diameter was attached to the end of the platin-
um wire. The sinker could be withdrawn, with the wire, through the glass
tube. It served to keep the wire taut during experiments., The sinker was

' that
insulated by painting with cellulose acetate (nail polish) so/}:lllbbles were
generated only on the exposed wire.

The bubble lines were illuminated by electronic flash synchronised
with the camera shutter. The flash unit was positioned in the bottom of the
false "bottom' compartment, so that bubbles were illuminated from above.
This avoided reflections which might have caused glare spots in the photo-
graphs, Illumination was found to be adequate using a small portable
electronic flash unit (Canen). A typical aperture was f8 with 125 ASA
black and white film. A tele-extension was fitted to the single lensreflex
camera, so that it could be positioned some distance back from the side
of the tank (approximately two to four feet) and the area of interest (three
to four inches square) still occupied the whole of the photograph.

The spacing of the subject and the camera minimised parallax errors

which otherwise would have had to have been corrected,
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Sources of Error in using Hydrogen Bubbles for Velocity Measurement

An obvious source of error in velocity measurement using hydrogen
bubble technique is caused by the rising of the bubbles. It is desirable,
therefore, to have bubbles of the minimum possible size. The bubble
diameter was found to be dependent on two factors:

(i) The surface current density (amps/ cmz).

(ii) The age of the wire.

(i) The optimum surface current density was found to be approximately
0.1 amperes/ sq. cm. but this varied by as much as t 50 pc. depending on
the temperature, conductivity of the water and "age' of the wire. There-
fore it was always necessary to adjust the potentiofneter until satisfactory
bubbles were obtained, Fortunately the smaller bubbles left the wire very
evenly, so that bubble traces were uniform.

The change in conductivity of water over the temperature differences
used in experiments (10°C) was slight, The warmer water was more con-
ductive than the cooler water so that bubble density was greater in the
former. Since the hot water generally had higher velocities than the cool
water this effect was advantageous.

Hydrogen bubble technique is not suitable for use near an interface of
salt and fresh water if the fresh water forms the density current.

This was the case in some of the experiments described in a paper by

Wilkinson and Wood (1968). The hydrogen bubble probe could only be placed
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to within several millimetres of the interface if one was to obtain uniform
bubbles. Although this did not affect calculation of velocity distribution
correction factors to any extent, interfacial velocities and shears could
not be measured. The technique is therefore unsuitable if high conductivity
gradients exist across the area in which velocity measurements are re-
quired.
i) ""Ageing" of a wire is a surface chemistry effect and causes a de-
terioration of bubble uniformity and size with time. Some’' days the effect
was worse than others but the usual "ageing' time was two to three minutes.
The wires had to be removed for several seconds to restore them to their
former state. The phenomenon is thought to be caused by deposition of
impurities on the wire. These are washed away when the wire is removed.
Sometimes agitation of the wire would counteract the ageing effect.

An excellent uncertainty analysis is given in a paper on the use of
hydrogen bubbles for quantitative measurement by Schraub et al (1964).
Six sources of error are listed and discussed in this paper. It is now pro-
posed to look at the relevance of these errors to the present work.
(1) Measurement Uncertainty - Errors caused by optical distortion, film
resolution etc. are of second order and may be neglected.
(2) Averaging Uncertainty. These errors arise in attempting to predict
Eulerian velocities from Lagrargian time average velocities of marker
bubbles. Errors of this type arise if the flow is (i) unsteady (not applic-

able); (ii) turbulent. Turbulence causes variation from one bubble line
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to the next and this is the major source of error in the present series of
tests. The turbulence caused a scatter about a mean velocity. It is nec-
essary, therefore, to give an error estimate, the standard deviation,
with any velocity measurements presented. Accuracy can only be increased
by increasing the number of readings. Six or seven photographs were
generally required,to obtain a velocity with the desired accuracy, t 5 pe.
with 95 pc. confidence.
(3) Displacement uncertainty can arise when bubbles move out of the x, y
generation plane. Errors of this type will only occur if there are severe
velocity gradients in the direction normal to this plane. Lateral gradients
near the centre of the test tank were negligible so that errors of this type
did not present a problem.
(4) Response uncertainties caused by the virtual inertia of the bubble are
negligible. This point was discussed in detail by Schraub et al (1964).
(5) Resolution uncertainties are caused by (a) the finite size of a bubble
making it unable to respond to turbulence of a scale of the same order as
the bubble diameter, (b) the time interval between bubble pulses places
an upper limit on the frequency of turbulent fluctuations which can be
measured, This latter restriction outweighs the former completely and
the maximum turbulent frequency that could be measured with a bubble
pulse rate of approximately 5/ sec. was 2 hertz.

Turbulence spectra were not required in these series of experiments,
P q
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(5) Bubble Rise rate uncertainty. Errors due to bubbles rising will be
greatest when a velocity gradient exists in the direction of rise. The
error caused by bubble rise will be calculated for a particular example
in order to estimate the probable magnitude of this error source.
Consider a bubble rising in a fluid of constant shear in the direction
of rise. Let the velocity at some point (x_, y,) be u, (see Fig. 71). The

equation of the velocity field is given by

where e = constant
Let the rise velocity of the bubble be constant and equal to v. The x

coordinate of a bubble at any time t after leaving x,, y, att =0 is given

by
st
X = u dt + xq
o}
and the y co-ordinate is given by
y=Y¥o -Vt

The component of velocity is given by

Uo
u= — (y, -vt)
Yo Yo

The distance the bubble will move in the x direction is given by

_ R YR
4x o (yost 5 )

in a time §t.
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$ x') a bubble with no rise velocity would have moved

if released at time to from x = Xo

y =y, - v &t isgivenby

x! = 29 (y, - v&D Bt

Yo
The error in length (€) of the bubble trace is therefore
2
’ St
€=%x-6x"= o Y
X Yo D)

The relative error in velocity €v is given by

&,

0 S o (Wo — t
;o‘vat/ ;o(% v +%)

e ¥ st / 2(1-€ey st) xi00%

<v st x 1007
2 Wo

Typical values of the variables in the above error equations are

€ = 4 ft, / sec. / ft. maximum shear encountered near the false "bottom".

—~_ = 0.03 the maximum rise rate was approximately 0.003

o ft/ sec. Generally the rise rate was less than this
figure.

&t =0.219 sec. interval between pulses.

It follows the maximum probable error due to bubble rise is

€y = 3pC.

and hence errors arising from this source are small,

(6) Velocity defect caused by wire wake.

Hydrogen bubbles always lie in the wake of the generating wire and

therefore do not move with the velocity of the mean flow. Although the

Reynold's numbers of the flow past the wire, based on the wire diameter,



Line of Bubble Generation

Position of
Ex _lbubble at

t=5t

-9

7~

Path of bubble
- </re|ecsed from A
at t=0

\

- L

ERROR OUE TO BUBBLE RISE

FIGURE 7I.



127,

are generally less than four, viscous flow theory over estimates the
velocity defect in the wire wake. The sheathof hydrogen bubbles around
the wire causes a marked reduction in the local shear and so reduces the
drag on the wire. Schraub et al (1964) state the bubbles reach mean flow
velocities at less than seventy wire diameters downstream. This figure
was obtained by analysis of high speed motion picture film of bubbles
leaving a generating wire.

Hence for a wire of 0,002 inches diameter the bubbles reach mean
flow velocities 0. 14 inches from the wire. Bubble lines closer than
this to the wire were not used in reductions.

Conclusions

Experiments have indicated the major source of error in deducing
velocities and momentum correction factors was caused by turbulent
fluctuations in the velocity. Reduction of velocity data was very time
consuming and it was found six or seven instantaneous velocity profiles
was about the limit which could be profitably analysed. Accuracy of the
final velocity data was of the order * 6 to 8 pc.

Reduction of Velocity Data

The photographs of bubble traces were processed and the negative
was projected onto a paper screen. The projection distance was adjusted
until the interfacial depth was five inches. The depth of the interface -

was measured during the experiment and the photograph always had a
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length scale (the distance of the interface from the bottom)associated
with it.

The bubble lines were traced onto the projected image and the distance
between suitable consecutive traces was measured., The momentum
correction factors were then calculated by numerical integration of
these velocity distances, for each instantaneous profile. The mean value
of Sm was faken for all profiles for those particular flow conditions and

finally a plot was obtained of S, versus Fg as shown in Figure 52,
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Appendix E.

Experimental Determination of Densities

The results presented in this report were obtained from thermally
induced density currents, Density currents driven by salinity gradients
were used in earlier experiments as reported by Wilkinson and Wood
(1968) but it is not proposed to discuss these again.

The theory presented in this report is only strictly valid for density
currents in which the density difference is caused by a difference in
dissolved salt concentrations. For density currents of this type, the
equation of continuity of density excess is exactly true. However, this
equation is not exactly true for thermal density currents, because of the
non-linearity of temperature and density for water. A plot of this relation-
ship, obtained from standard tables (The Handbook of Pgysics and
Chemistry, 1961), is given in Figure 72. Experimentally determined
checked points are also plotted in this figure. The reason for checking
the standard curve was to test for possible discrepancies caused by
dissolved gases in the water. The errors introduced by assuming a
linear temperature-density relationship for water can be estimated from
the above figure. Maximum error in density for a range of possible

temperatures is tabulated below.
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Temperature of Lemperature of Maximufn error
Ambient Fluid Density current at in Density
rec inlet T;°C
10 20 7 pe.
15 25 6 pc.
20 30 4 pc.
25 35 1.5 pc.

Most density current experiments lay in the temperature range 15°C
to 250C and the maximum error in density was 6 pc. The error in cal-
culaling the mean density of a layer with this variation in temperature
from top to bottom is only 2 pc. The error introduced by the linearity
assumption for thermal density currents, over the temperature range
used in experiments, was negligible.

Temperatures were measured with a copper-constantan thermocouple
which was calibrated over the range of temperatures required. The
reference junction was placed in the inlet slot and the temperature of
the density current downstream was measured relative to the inlet
temperature, using the active junctions. The experimental layout is
shown schematically in Figure 73.

The measuring probe consisted of a length of 0. 10 diameter inch
stainless steel tubing which acted as a junction support and an immersion
depth indicator.

The copper and constantan wires were lead through the tube and the

ends were joined and lightly soldered. About 0.2 inch of the junction
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protruded from the end of the stainless steel tube. Epoxy resin was
painted over the junction and tube end. This insulated the junction
electrically from the surrounding water without upsetting its thermal
sensitivity. The transient response of the thermocouple was adequate
for the type of measurement required. The thermocouple took 1.8
seconds to reach 95 pc. of its final reading for an instantaneous change
in temperature of 10°C. The response would not have been sufficiently
rapid to measure thermal turbulence spectra without sophisticated
electronic compensation. More delicate thermocouples, with .impr’oved
transient response could easily be constructed if turbulence spectra
were required.

The sensitivity of the thermocouple was found to be 0.04, milli-
volis per degree centigrade temperature difference. The response was
linear over the range of interest and the calibration was not sensitive to
change in the reference temperature,

Thermometers were used to check water temperatures at the inlet
and in the cooler ambient fluid. This was necessary for two reasons:
firstly to establish an absolute temperature scale from which the den-
sities could be calculated. Secondly the difference in temperature of
the two thermometers gave a check for gross errors in the thermo-
couple readings.

Thermocouples were used in experiments because of their smaller

size and higher sensitivity compared with a thermometer.
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Appendix F.

Design Example - A power station cooling pond outfall.

In this design data typical of the practice of the Electricity
Cormmission of N, S, W, is used. The design itself is hypothetical.

Design Data

Cooling water is discharged from a power station into a cooling pond
via a concrete lined channel, as shown in Figure 74. The discharge is
2.200 cusecs and its temperature is 80°F. The temperature of the pond
water below the thermocline is 63°F. The concrete lined channel (AB)
has a slope of 1/ 20 up to the abrupt transition at B where the depth in-
creases abruptly to 80 ft. The purpose of the design is to establish -

(1) the degree of mixing at the outfall (B), between the hot inflow and
the cooler ambient pond water, and
(2) 1o determine whether this mixing can be reduced,

Design Comments

When warm water 1s discharged into a cooling pond it forms a sur-
face layer. Stratification of this type is desirable since it permits max-
imum heat transfer from the heated water by the processes of radiation
and evaporaiion. As the cooling water is eventually re-used, the greater
the heat loss from the cooling pond, the more efficient will be the cooling
cycle within the power station. It follows. therefore, that mixing of the
pond water and the inflowing water at the outfall should be minimised.

so that the temperature of the surface layer is as high as possible.
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A density jump will form at a cooling pond outfall as shown in Figure 75.
It has been shown the amount of fluid which can be entrained into a density
Jjump increases with the upstream Froude number of the flow (F), defined

previously as ’
(V3

(589 4)%

The first requirement, therefore, is to have the densimetric Froude
number as low as possible (i. e. the flow depth as great as possible) at
the outfall. This may be accomplished in two ways:-

(1) By artificial roughening in the outfall channel.

(2) By utilising a hydraulic jump as an energy dissipator.

The densimetric Froude number (F) is related to the open channel

Froude number (Fgye) (where Fge = __u__'/z by the equation
(&)
Y2
Foc.

(&)
ap

[t can be seen that although the channel flow may be subcritical, the
same flow when considered as a density current at the outfall, will al-
most always be supercritical. It is desirable, therefore, that the Froude
number of the channel flow, at the outfall be as low as possible. For
the channel in ques‘tion)Froude numbers less than 0. 8 could not be
achieved, even with artificial roughening. This simplest means of
obtaining low Froude numbers at the outfall is to make use of a hydraulic
jump. This is shown in Figure 75.

The density jump which forms at the outfall is controlled by the

expansion at C. The interfacial depth at this section will be critical
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depth provided the interfacial depth in the reservoir is less than the
critical depth at C. The layer depth in the cooling pond depends on many
factors, tne heat balance beiween the layer and the atmosphere, wind
siress and mixing due to wave action, However, field measurements
ave irndicated the thermocline is generally 5 to 10 feet below the surface
and it will be shown this is significantly less than critical depth at the
point of control,

The densitly current, being a surface current, is subject to only rel-
atively small frictional forces between the outfall and the expansion at
C, so that the interfacial depth downsiream of the density jump will be
critical depth, The density jump would therefore be of the maximum en-
training type.

It has been shown that entrainment at a density jump can be reduced
by means of a downstream control. It is proposed, therefore to anchor
a floatling barrier downstream of the outfall, and so control entrainm ent
into the jump. The barrier depth necessary to cause the density jump
1o be non-entraining is calculated. This is compared with the earlier
case where the density jump is expansion controlled and maximum en-
Training.

In the following design, subscripts denote the section in Figure 75
o which the variable applies.

1) Conditions in the Outfall Channel

The Froude number of the flow in the concrete lined channel can be
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determined from the Manning equation

1
1.5y w R2/3 g2

Q= o
where Q = the total discharge
y = depth of flow
w = channel width (rectangular channel = 150 ft.)
- . . - W
R = hydraulic radius E%'W
n = Manning'sn =0.015 (£ 1/6 for concrete.

The Froude number of the channel flow is given by:-

1 1
- _ 1.5yq /6 g2
Foci = i =

; :
W1y13/2 g’ ng

Solving the above we get yq = 0.8 ft,, and
Fi1-=3.8

The flow in the channel is supercritical and a hydraulic jump will

occur when the channel flow meets the reservoir. The depth of flow y
2

ES

2
%1( _1 * 8Focu_$ ’1)

downstream of the hydraulic jump is given by yo

1

4.3 ft.
The densimetric Froude number of the flow, downstream of the hydraulic
jump (Section 2-2 in Figure 75) is given by:-
F _Q
3 J
2 wy /Z(Aﬁ g)/z

(e
There is a 17°F difference in temperature between the pond water and
the heated inflow, which gives rise to density difference of 0. 22 pc. be-

tween the two. Substituting into the above expression for Fy we find

Fo = 6.2



[
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(2) Conditions at the Outfall
The Density Jump - Uncontrolled

A density jump will form between sections 2-2 and 3-3 in Figure 75.
it has been shown density jumps with this form of flow geometry down-
stream, are of the maximum entiraining type. The entrainment into
such a jump is given by equation 35.

(2 S,9F2+ 1) 0
273 173
3 Sm3”/ Psys Fo'/

If it is assumed the inflowing velocity distribution is uniform then

K =

Sy, = 1.0, The downstream force flow correction factor can be obtained
from Figure 27 so that Sp4 = 1.30.

The hydrostatic pressure correction factor is given in Figure 36 S0
that

SH” = 0,62

Boundary friction at the jump for this case is small (air-water
interface) and will be negiected so that® = 1,0

Equation (35) can now be solved to give K = 2, 7. The temperature

of the layer downstiream is given by

T

. N 7 - T - 17
T3-TO+ —___QK = 63+ ____2'7
o)
ng 69 F

The thickness of this layer can be calculated from Equation (32)

2
< = Qa Sz Fa + 1) =
/2 2/3 23
3 5?/‘-3 3H3 /

2
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When the above equation is solved for the particular case under

examination

r=9,17

hence Y3 ryy' = 42 ft.

The eleven degree fall in temperature of the surface layer, caused
by mixing at the outfall, would result in a marked drop in the thermal
efficiency of the cooling pond. This loss can be avoided if mixing at the
outfall is prevented by means of a suitably designed control downsiream

of the transition region.

Prevention of Mixing at the Outfall

Mixing at a cooling pond outfall can be prevented in two ways.
(1) The tailwater can be controlled so as to force the density jump into
a non-entraining or flooded regime.
(2) Experiments by the writer (Foster and Wilkinson, 1969) have shown
if the bottom slope at the outfall is less than approximately 15°, entrain-
ment at the density jump is negligible. This results from a blanketing
effect of the bottom and ambient fluid is prevented access to the entrain-
ing region of the jump.

A sloping cooling pond outfall of this type has been used at Liddell
pbwe:r station in New South Wales. In the case being examined bottom
slopes of less than 15" could not be préctica].ly achieved, so that the

first method must be used. A tailwater control in the form of a floating



138,
barrier, can be used downstream of the density jump, to control en-
trainment. The barrier acts as an overshol weir,
If the density jump is to be non-entraining, the depth downstream of

the jump can be calculsted by equating force flows upstream and down-

stream of the jump. So that

&%, 2 /
(» + AP _g = Sm3 z;a & s LPG Y43
“’ﬁ &3 .
and if we divide throughout by AE %: %' and put Y3 = Y’
2 2 | g2
we get - . z 2
2Fa = 2 Sma Fz = T
uf’
Note: 1If S5 = 1.0 the above equation reduces to the familiar form

.i°/‘2
r=%([ 1+ 8F% -1) ori

For the example considered, Sy,3 can be obtained from Figure 52
by estimaling F3 to lie between 0.2 and 0. 3. Hence Sy3 = 1.06 and
trial and error solution of the force flow equations gives

= 8. 3 so that yé = 36 ft.
The downstream densimetric Froude number is given by

F3zr"3/2 F,

1

0.26
The estimate for Sy 3 was satisfactory.

4. Design of the Control

The barrier depth necessary to obtain this non-entraining condition

may be calculated by equating flow energies at sections immediately

downstream of the densily jump,

- f;ozﬁgia - A{() (jla — Lo Clq— -+ AF(%“ + ‘g.)
“g 2y 2gnde

and at the barrier, Hence
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but at the barrier which is now the point of control
é.
Lo Gy = |
T Z 73
AP Py Yy

There is negligible entrainment between Sections (3) and (4) and

as the density jump is non-entraining

Q1 = Qz = Q3 = Q4
Experiments have shown that if the barrier is placed six times the
downstream depth (~~ 250 ft.) downstream of the outfall, it will be clear
of the density jump. The channel width at this point (wy4) is 180 ft. The
three previous equations can be solved to give

M)

12,0 ft,

and h

16 ft.
The layer depth immediately downstream of the control will be close
to critical as this region is still controlled by the expansion, so that
y5’ zy4' 7 12,0 ft. There will be some mixing in this region but ex-
periments have shown this is small and certainly far less than that
which would have occurred at the outfall if the barrier were not present,
Thus the surface temperafure of the cooling in the vicinity of the out-

fall would be 80°F,

Conclusions

It has been shown that unless prevented, mixing at the outfall will

cause a reduction in the temperature difference between the inflowing
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cooling water and the ambient pond water. In the design example
considered, which is typical of Electricity Commission of New South
Wales practice, the initial temperature difference of 17°F, would be
reduced by 65 per cent by mixing immediately downstream of the out-
fall. Such mixing would significantly lower the thermal efficiency of
the cooling pond by lowering the surface temperature of the pond and
so reducing the heat exchange to the atmosphere. The depth of the
thermocline would also be increased.

The floating barrier, if lowered to the calculated depth of 16 ft.,
some 250 ft, downstream of the outfall, will effectively prevent
mixing in the transition region.

It has been noted that mixing is also inhibited when the bottom

slope in the transition region is less than approximately 15°,
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Appendix G

A Summary of Experimental
Data.

(i) Typical reduction of test data for a single experiment.
(ii) Test data for maximum entraining density jumps.
(iii) Density jump controlled by a broad crested weir.
(iv) Density jump controlled by sharp crested weirs.
(v) Density jumps controlled by an undershot gate.
(vi) Density jumps controlled by friction.

(vii) Unsteady flow experiments,

(viii)Fall in force flow.,

(ix) Force flow correction factors.

(x) Some typical mean velocity distributions.

(xi) Hydrostatic pressure force correction factors.

(xii) Some typical mean density distributions.



(i) Typical Reduction of Tes! Data for a Single Experiment

It is impractical 1o include all the experimental data in full detail
in this report. Therefore only the basic parameters are tabulated for
each experiment, However, one compleie reduction is given in the
following pages.

Test No. P3
- Upstream Conditions

Qy

4

yi

2. 35 gal/ min. Fiow upstream of density jump.

i

0.40 inches  Depth of flow upstream (determined by height of the
inlet slot).

w = 6.1 inches Channel width.

Ty = 31. 4°c Upstream temperature of density flow.
T, = 22, 0°c Temperature of the ambient fluid.
Ay =0. 25 pc. The characteristic density deficit of the upstream

flow is equal to the mean density since the density

distribution is uniform.

Fq=17.2 The upsfream Froude number = - Q.
R, = 1,320 Upstream Reynold's number
| T
W\v"l

where r, is the kinematic viscosity of the

upstream flow.

Downstream Conditiong

The control  —- A free overfall situated 36 inches from the up-

stream end of the density jump.
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|

y9 = 4.25 inches Interfacial depth
i
r =10.6 = _.};2_ Conjugate depth ratio
y
1

Calculation of the characteristic density difference ( A 2 )

D

f,- b (s

obtained by numerical integration of measured
" g%
232 7o Pe velocity and density distributions.

The mean velocity distribution was obtained from 6 separate sets of

hydrogen bubble traces.

y/ }’2g u/u'z The force flow correction factor - determined
0.1 1.40 from these data was found to be

0.3 1.60

Sme = dy, =1.32
0.5 1.40
®, 2’2
0.7 0.65
0.9 0.07

The mean density distribution was obtained from the temperature

distribution tabulated below:-

B T i A

(in) (°c) Y/ % ?;ﬁ pe.

0.5 27. 9 0.11 0.159
1.0 27. 1 0.23 0.136
1.5 26. 2 0.36 0.107
1. 95 25. 8 0. 46 0.099
2.55 25,2 0. 60 0.084
3.0 24. 6 0.71 0.065
3.4 23.8 0. 80 0.048
3.9 23.5 0.91 0.040

‘Femperature Distribution Distribution of Density Difference
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(=4
Lp, = L Apd =0.92 pc.
Pr= g7 or
Numerical integration gave

Az =1.18 Ap, = 0.109 pc.
Po

The hydrostatic pressure correction factor was obtained by

numerical integration

LI

A
2 y2
= 0,58

The flow ratio K was found to equal

D
K = —_Az = 2,28

and the downstream Froude number was obtained from continuity

_ 3/2
F, = (5> . F = 0,72
r 1
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(i) Maximum Entrzining Jump Test Data

Lommerts

The density jumpe ir the following series of Tes's were conirolied b 5
free overfall in close proximity to the end of the jump. Generally the
overfall was al a distance equal to the jump length from the end of the
density jump. Frictional effects downstream of the densily jump were

negligible over this distance. The following dats are plotted in Figures

26 and 27,

estl@ | w |y | o [T B2 Flr | K| Rl ea] %

Ne ga'/,“m in. in °c °C % - - o - o/° "

| Pl {1:5%]|0-40|2:40|2i-9|30-8|0-25|4-85] ¢-0 |1-65(072|0 148| |7

P2 1/193|0#0| 31 |220|31-2{025|5 9|77 [1-87{0:7010°13%4| 2.0

P3|235|040|425|220|31'4|0:25|7-2[10°612.28|072|0:109| 2:9

Ph-|1-45]0-40[1:95[21-8{30-9|0:25| 44|+ 9 {143064[{0175] I"4

P5 lI-23|o-%0| 145|219 1310025 3-8 3-6|1'30{085|0192| I- 05

P6 o 871040065 |21-9 31" {0:25]1:80] 16 {1031096(0243| 0-4-5

Z2 1390|o w3l &6 |13-4]1269]030| 97 |15-6|273i¢c 7/] ollO} -

Z6 [377(0-54| & 5(12:9 30:0[0-37| 6:0 | 83|203]072{0/8 | 023

Z7 |366[0-54| 4911282801034 66 |G1 |210|0-75 oIl -

st lrws|o25l4-2|202|27-3(0-189]10:7 |16 8| 280]0 73|0 067 -

Fl |274|0%0|56 22.2|31-2|025| 8.8/4-0|255|0:6€6{010 | -

F3 |1o5|0woll 0522 3|121'3|0-25| 2-8| 2. 6[1-13]|082|022| -
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Summary of results for density jumps controlled by a broad-

crested weir,

A B
F K 7 Fo | 3 |5 Y.
10. 2. 60 4, 0.83 0.0 0.0 0.00
10 2. 44 14 0,173 1,58 0,063 0,11
10 2.09 14 0.58 2.38 0.305 0,16
9, 2.00 14, 0.48 3. 70 0.175 0.25
9 1,170 15, 0,37 4, 40 0. 220 0.29
9, 1.59 15, 0,32 5, 60 0,265 0. 37
9 119 i4 0.25 6.40 | 0,290 0,44
i6, 3.05 24, 0.73 0.0 0.000 0.00
16, 2. 90 25, 0,65 2.7 0,065 0.105
16 2. 50 26, 0.48 6.0 0,145 0.23
148 2.00 26 0.35 8.8 0,210 0.35
16 1,50 26, 0,26 10.8 | 0,260 0,42
16 110 25, 0.19 12.5 1 0,300 0.49
16, 1,15 25, 0.20 12,5 § 0,300 0,49
i6, 1. 55 26, 0,27 10,8 | 0,260 0.4]
16, 2,05 26, 0,36 8.8 1 0.210 0.35
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(iv)  Summary of results for density jumps controlled by a sharp

crested weir.

estNe| F | K r | R |5 f
| _T7 7.45 , 88 9.7 0.65 0,120
T3 5.5 . 66 7.9 0.53 0.180
_ra_ 5.5 44 7.6 0.46 0.245
L6 6.9 .39 9,3 0,40 0.290
T8 7.45 06 9, 3 0,26 0. 340
2. 3.1 10 3.6 0,53 0,170

T9 7.45 L 67 i0, 3 0.49 0,210

Ts 5.5 i.28 7.6 0.41 0.260
7,45 .25 9.5 0,36 0. 310

10
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(v) Summary of results for density jump controlled by an undershot gate.

Test Ne| F K | RO|SE SRS
‘ 2 g'nc

Y9 6.45 1.16 9.7 0.26 0.19 ]} 0.15
Y8 6.5 1, 37 9.7 0.31 ! o0.22 | o0.18
vi_| &5 142 9.8 | 0.36 0.26 | 0.24
78 6.4 1.46 9.5 | o0.41 | 0.3 | 0.32
Y6 6.5 1,70 10,0 | 0.45 0.31 | 0.25
Z10 6.6 1. 80 10 0 0. 50 0,33 0,31
Y2 6.35 | 1,00 | 9.9 053 0,42 0,38
Y1 6.35 i 0.67 0.66 _ | 0.54
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(v1) A summary of test data for density jumps controlled by friction,
T/e\/sgf Q. | 4 g'la T, To ‘Alo/po A w, | sme| F | r K
uﬁ:fs 7 W, on. | °C °C % YA »

V1 |200[0:37] 6124267 028|0-10|0-0r0| 063| 70 | 1224 | 2- 8

V21210 (05712912 3|26 8|0:28|0-185[0:52|0:€6€3|3:6|S-§ |/-5/

V3|1:65|0:55| I-8 |10-4|29-010-35|0.275|0-62|06312 6| 23|/ 27

Vi) 2-30(0-55 3 6 10-6 |24 9026|0120 046|098 | 43| £ 61276
V5| 2-18(037|3-8|122(26-2|0-29|0:115 |045]0-98 6710312 572
T5|1-77/0:37| 35161 {23-7[0-17 |0 o74|0-47|0-98| 75| G 5|2 /O

. ) \g' Rz sirnf) L.
Bosie Paramsters (R, sno o :
s '
st el F LR | R R el g | 4.
Vo 75_ 077 {1060 | 3000 O 63| 75 o7z
V2 246 | 05811060 1600|063 = 063
V3 2.6 062 940 [ i200| 063 47 9'557‘
v | 43| 082|130 | 2u00l 098] 07 | 1oz
\/3 6 9 1 0 syllooo (2500 0q% |11/ /£’u
; T5 75 073 860 |1732| 098 %0 !/ ;f
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Density disiributions for the friction controlled density jump.

Test Ne| /4. | Toc | “Fp | | Test Ne| %7yl | T |“%p. %
Vi 0.07 | 22.1 0.17 V4 0.07 21.9 | 0.205
0.20 | 22.1 | 0.17 0.28 | 21.2| 0.19

0.39 | 18.9 | 0.12 0.47 | 18.4 | 0.12

0.33 | 19.6 | 0.14 0.61 17.2| 0.10
0.50 | 17.9 | 0.10 0.72 | 16.4 | 0.045

0.63 | 16.6 | 0.075 0.89 | 12.9| 0.020

0.78 | 14.9 | 0.045 1,00 | 12.2| 0.015

0.87 | 14.0 | 0.030 1.17 | 11.2| 0.005

0.96 | 13.5 0.020

Loo | 12.4 | 0 000 V5 0.06 | 22.1| 0.190

0.16 | 21.8] 0.185

V2 0.10 | 24.3 | 0.25 0.24 | 21.0| 0.170
0.30 | 23.8 | 0.23 0.34 | 19.8| 0.140

0.45 | 22.6 | 0.21 0.45 | 18.8| 0.120

0.69 | 20.0 | 0.15 0.58 | 18.0| 0.100

0.59 | 21.6 | 0.18 0.66 | 17.0| 0.080

0.79 | 19.8 | 0.14 0.76 | 16.8| 0.075

0.93| 18.0 | 0.10 0.87 | 15.8| 0.060

0.97 | 15.8 | 0.06 0.92 | 15.3| 0.050

0.97 | 14.8| 0.045

V3 0.i1 | 26.7 | 0.33

031 ] 272 | o 35 Ts5 0.11 | =21.0| o0.101

0.47| 262 | 0. 32 0.23 | 20.9| 0.099

0.70 | 23.3 | 0.25 0.34 1 20.5) 0.090

0.83 | 21.7 | 0.20 0.48 | 19.9) 0.075

0.95| 19.7 | o0 18 0.63| 19.5 0.069

0.77 | 19.0| 0.057

0.86| 18.9| 0.053
0.94 | 18.5| 0.046




(vii)

Reference Figure 32.
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Unsteady Flow Experiments

All unsteady flow experiments were made in a tilting flume

120 ft. long, 23 inches internal width and 2 ft. deep.

Starting Characileristics

{

|

‘ Test /\/; A, A/)/,Oo ;ﬁ Vit (iritial) g = \/N/% Sin &
Units |cfsxi0? "Z“ T;‘-f/sec)Bn@ H/sé;w 2>/
2 228 | 0.45 | 3.3 0.125 1.04 | 0.0
3 2. 34 0.56 2.3 | 0.140 1,06 | 0.0
4 1.84 | 0.23 | 0.81 | 0.095 1.06 | 0.0
5 1.92 0. 30 0.91 | 0.099 1,01 | 0.0
6 2.18 | 0.61 2.2 0.142 1.09 | 0.0
7 2.28 | 0.50 2.7 |o0.134 | 0.97 | 0. 54
8 .53 | 0.58 1.5 | 0.115 1.01 | 0.54
9 2. 36 1.20 4.8 | 0.177 1.04 | 0 54
10 2. 22 0.26 1.85 | 0.136 1,10 | 0.26
11 1.62 0.31 1.6 |o0.125 1.07 | 0.26

IS S
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Unsteady density flows on a slope

§0= Vo where VO is the uniform velocity of the nose

¢’/3

attained after travelling distance €.

F, is the Froude number of the layer behind the nose, calculated

2
L . 3/2
from the equality discussed in Chapter 4. F, = Lo

Test Ne Lo Fz R sine | €4)
7 0.78 0.69 1350 0.54 pc.| 62
8 0.75 0.65 | 1180 0.54 pc.| 30
9 0,83 0.76 | 1450 0.54 pc.| 54
10 0.65 0.53 | 1900 0.26 pc.| 60
11 0.76 0.66 | 2700 0.26 pc.| 39




Comparison of ,5 for nose and F22/3 at the instant
of flooding of the jump. Equality of these two variables indicates
the nose is travelling at the same speed as the flow immediately
downstream of the jump. At the instant of flooding F2 is cal-
culated from the known value of F_ assuming a non-entraining

1

density jump.

Test N2 |3 R | et | F
2 0.48 0.54 54 3.15
4 0. 54 0.45 77 5.9
) 0.59 0.64 39 2.1
6 0.58 0.54 50 3.2
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Complete Reduction of Unsteady Flow Experiment

Test No. 6 - Density difference due to dissolved salt (N;C1)

Q; =2.18x 10‘2 cusecs

= 0,61 pc. Y1 =0.48 in.
w = 23 1in.
T, = 21.5°C
Ty = 23,8°C
Mt N
g([*) t sgc Comments.
3 0.20
6 0.38
9 1.03 Roller region starting to develop at
15 2.01 jump. yé = 1,2 in.
18 2.31 Low amplitude wave downstream of jump
21 3.00 Roller region extends half length of
24 3. 32 jump yo = 1.3 in.
27 4,04
30 4. 317
33 5. 15
36 5.49
39 6.24 Roller region extended early the length
42 6.59 of the jump intermittent flooding
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oyl t 3. Comments
45 7.34
48 8.13 Density jump flooded yl2 = 1.4"
54 9.29 entrainment ceased
97 10.09
60 10. 49
63 11.28 Inlet flooded to a depth of 1"
63 | 12.12 y; = 1.5".
69 12. 56
75 14. 29
78 15. 17
81 16.09
84 | 17.06
87 18.03
90 19.00
g = QXL.2P = 2.2x 1073 (£t/ sec)”
w P
F1 = 3.2
Initially t < 1 minute 5 =1.09
At flooding t = 9 min - 11min. 4 = 0.58
F2 = 0.40
F2/3 - 0. 54

2
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(viii) Fall in Force Flow

Force flow ratios downstream of density jumps are calculated from
both equations 32 and 35 for maximum entraining density jumps. The
mean value of the force flow ratio is plotted against upstream Reynolds

number in Figure 48. The dimensionless jump length is taken as 4r .

Test N |0 (£4n39)6(c9735)| & R | &
Pi 0. 87 0.76 0. 82 880 26
P2 0.73 0.73 0.73 990 28
P3 0.72 0.76 0.74 1320 35
P4 0. 83 0.75 0.79 820 18
P5 0. 81 0. 81 0.81 660 14
P6 0.97 0.97 0.93 480 6
22 0.70 0.74 0.72 2100 50
26 0. 85 0.77 0. 81 1900 34
27 0.83 0.75 0.79 2300 36
V5 0.73 | 0.76 | 0.79 | 1150 | 43
I's 0.75 0.67 0.74 960 38
S1 0.78 0.71 0.71 850 52
F1 0.76 0.74 0.75 1450 58
B3 0.95 0.92 0.93 540 16
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(ix) Force Flow Correction Factors

Tabulated below are force flow correction factors deduced
from hydrogen bubble velocity distributions measured down-
stream of the density jump. The factors quoted are the mean

of n values of Sy calculated from n photographs,

D
where Smo = S . f u; dy
2 5

for each bubble trace.
Sigma ( &) is the standard deviation (adjusted for small sample

range) of S_ o for the n readings.



158,

Tess N2 | Spz 23 ot £ F.
A 1.10 03 5 3.6 0. 37
B 1,14 .05 5 4.4 0.62
C 1.13 | .02 4 4.8 0.46
D 1,13 .05 9 8.8 | 0.47
E 1.20 i1 loe 6.0 | 0.67
F 1. 30 .06 2 6.5 0.79
G 1,09 .04 8 11.8 | 0.38
H i.08 03 7 7.0 | 0.39
I 1.09 .03 6 16. 5 0.23
J i, 14 .02 6 5.5 | 0.50
K 1.07 .02 10 4.4 0.40
L 1,09 .05 6 3.6 0. 37
M .15 | .03 7 6.0 ,E 0.47
N 1. 3] .05 11 4,1 | 0,82
01 1.26 | .04 11 4.1 0.86
02 .14 | .05 10 2.6 0. 50
03 1.351 | .05 10 4.4 0. 81
04 1.15 | .03 8 7.1 0.52
05 1.14 | .03 7 7.1 0.53
R 1.33 | .16 2 12,5 0.71
S 1,11 .03 6 1.05 | o0.98
T 1.19 | .05 7 1.9 0.92
U 1,23 .07 5 2.1 0.76
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(%) Typical Mean Velocity Distributions

The following velocity distributions are the mean of n velocity
distributions obtained from n photographs. Values Jf n are tab-

ulated on the previous page.

$y, Velocity W
Test N2 o/ F 05 G D o2 I
Fa 0. 82 0.79 0.53 0,38 0,47 0. 50 0.23
0.05 1,19 1,09 1,19 1.14 0.92 0. 82 1.08
0.15 1.53 1.6 1,42 1, 37 1,23 1.05 1,35
0.25 1,43 1.54 1,40 1,30 1.32 1,27 1,35
0. 35 i, 31 1,43 1.23 1,19 1.29 1.28 1,21
0.45 1.28 1,33 1,18 1,14 1,27 1.20 1,15
0,55 1',‘26 i, 64 1,10 0,98 1.20 i.10 0.98
0.65 1.03 0. 85 0.92 0.90 1.09 1.07 0.91
0,75 0,78 0.67 0. 82 0.79 0.85 0,92 0. 82
0. 85 0.19 0.46 0.59 0.73 0.62 0.74 0.75
0.95 0.02 0.03 0.25 0.45 0.25 0.62 0.29
Sma 1, 26 1. 30 1,14 1.09 1.13 1,14 1.09
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(xi) Hydrostatic Pressure Force Correcilion Factors

Test No | Swr | F | R T
S 1.00 i.1 0.98 0.01
06 0.93 1.8 0.96 0.20
¥3 0.89 2,8 0.92 0.40
05 0.83 3.9 0.85 0.45
04 0.63 4,8 0.73 0.68
26 0.59 6.0 0.70 0.72
P3 0.58 7.1 0.72 0.83
F1 0.59 8.8 0.68
P2 0.99 2.6 0.99 0.13
P4 0.78 7.1 0.78 0.55
P5 0.73 7.1 0.73 0.52
D 0.72 8.8 0.72 0. 50
06 1.00 4.8 1.00 0.03
S 1.00 1.05 0.98 0.04
i
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(xii) Typical Mean Density Distributions

Test Ne S 06 F3 05 PS5 044 3

Y | ool 0.20 | 0.40 0.45 | 0.52 | 0.68 0.853
Sual 1.00 | 0.93 ! 0.89 0.83 | 0.73 | 0.863 0.58

A e/ 5.
0.05 | 1.00 1,05 [ 1.36 1. 40 1,57 1,65 1,76
0.15 | 1,00 1,03 | 1,32 1,33 1.48 | 1.52 1,74
0.25 | 1,00 1,03 | 1,28 1.27 | 1,35 1,30 1,55
0.35 | 1.00 1,03 | 1,23 1,21 1,22 1,08 1,32
0.45 | 1,00 1,02 | 1.10 1,16 1.07 | 0.98 1,10
0.55 | 1,00 1,02 | 1,12 1,00 | 0.96 | 0.87 0. 90
0.65 | 1.00 0.98 | 0.92 0.97 | 0.85 | 0.75 0.74
0.75 | 1.00 0.94 | 0.82 0.8 | 0.74 | 0.62 0.55
0.85 | 1.00 0.84 | 0.72 0.69 | 0.60 | 0.46 | 0,34
0.95 | 0.96 0.84 | 0.47 0.17 | 0.37 | 0.25 0.ii
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Appendix H

List of Main Symbols.

= width of channel contraction
= channel width

= contraction coefficient

discharge coefficient

= distance between channel bottom and free surface

i

entrainment parameter

2 F"‘"/s
2 Sm F2+ 1

= friction factor

= Froude number

= 32,2 ft/ sec (gravitational acceleration)
= weir height (overshot weir)

= weir opening (undershot weir)

- 22 0w ratio
1
= sum of fluid momentum and hydrostatic pressure per unit span
= pressure
= flow per unit width
= flow per unit width

= conjugale depth ratio

uivi ;
= —;l: Reynold's number

= Richardson number
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Kinetic energy correction factor
hydrostatic pressure correction factor
momentum correction factor
local x component of velocity
characteristic x component of velocity
local y component of velocity
characteristic y component of velocity
nose velocity
channel width
w/ (2 y2' + w)
length scale along the boundary parallel to the direction of

mean flow

=X/ y9, = dimensionless x scale

i

1]

ii

it

length scale perpendicular to the x direction

characteristic depth defined as the distance between the visual
interface and the channel bottom

brink depth at a free overfall

critical depth at Section ()

¥'/ ¥1o = dimensionless y scale

angle of spread of a jet

ratio of boundary layer thickness to the depth of flow

ratio of velocity at the defined edge of the boundary layer to

mean velocity of the flowing layer



~
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RED
A

y scale in the boundary layer
boundary layer ithickness

characteristic density difference

local density difference

iotal energy flux

inclinaiion of bottom boundary to the horizontal
ratio of force flow at two different sections
dynamic viscosity

kinematic viscosity

local density

density of the ambient fluid

flux of density difference/ unit width

local shear siress

interfacial shear siress

boundary shear siress
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