
Visual Guidance for Unmanned Aerial Vehicles with Deep
Learning

Author:
Dong, Xingshuai

Publication Date:
2023

DOI:
https://doi.org/10.26190/unsworks/24996

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/101289 in https://
unsworks.unsw.edu.au on 2024-04-30

http://dx.doi.org/https://doi.org/10.26190/unsworks/24996
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/101289
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Visual Guidance for

Unmanned Aerial Vehicles

with Deep Learning

Xingshuai Dong

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

MANU E T MEN
TE

SCIENTIA

School of Engineering and Information Technology

University College

University of New South Wales

Australian Defence Force Academy

25 July 2023

Declarations

i

Inclusion of Publications

Statement

iii

Abstract

Unmanned Aerial Vehicles (UAVs) have been widely applied in the military and

civilian domains. In recent years, the operation mode of UAVs is evolving from

teleoperation to autonomous flight. In order to fulfill the goal of autonomous

flight, a reliable guidance system is essential. Since the combination of Global

Positioning System (GPS) and Inertial Navigation System (INS) systems cannot

sustain autonomous flight in some situations where GPS can be degraded or

unavailable, using computer vision as a primary method for UAV guidance has

been widely explored. Moreover, GPS does not provide any information to the

robot on the presence of obstacles.

Stereo cameras have complex architecture and need a minimum baseline

to generate disparity map. By contrast, monocular cameras are simple and

require less hardware resources. Benefiting from state-of-the-art Deep Learning

(DL) techniques, especially Convolutional Neural Networks (CNNs), a monocular

camera is sufficient to extrapolate mid-level visual representations such as depth

maps and optical flow (OF) maps from the environment. Therefore, the objective

of this thesis is to develop a real-time visual guidance method for UAVs in

cluttered environments using a monocular camera and DL.

The three major tasks performed in this thesis are investigating the devel-

opment of DL techniques and monocular depth estimation (MDE), develop-

ing real-time CNNs for MDE, and developing visual guidance methods on the

basis of the developed MDE system. A comprehensive survey is conducted,

which covers Structure from Motion (SfM)-based methods, traditional hand-

crafted feature-based methods, and state-of-the-art DL-based methods. More

importantly, it also investigates the application of MDE in robotics. Based

on the survey, two CNNs for MDE are developed. In addition to promising

accuracy performance, these two CNNs run at high frame rates (126 fps and 90

i

ii

fps respectively), on a single modest power Graphical Processing Unit (GPU).

As regards the third task, the visual guidance for UAVs is first developed

on top of the designed MDE networks. To improve the robustness of UAV

guidance, OF maps are integrated into the developed visual guidance method.

A cross-attention module is applied to fuse the features learned from the depth

maps and OF maps. The fused features are then passed through a deep rein-

forcement learning (DRL) network to generate the policy for guiding the flight of

UAV. Additionally, a simulation framework is developed which integrates AirSim,

Unreal Engine and PyTorch. The effectiveness of the developed visual guidance

method is validated through extensive experiments in the simulation framework.

Acknowledgments

First and foremost, I would like to express my great gratitude to my supervisor,

Prof. Matthew A. Garratt, for giving me the opportunity to pursue my Ph.D.

study at UNSW Canberra. I thank him for his guidance and our discussions

helped me grow as a researcher and an individual. I also thank him for his

suggestions and support both in academic and non-academic matters. I could

not have imagined having a better advisor and mentor for my Ph.D study.

I thank my co-supervisors, Dr. Sreenatha G. Anavatti and Prof. Hussein A.

Abbass, for their guidance and support throughout my Ph.D. study. My sincere

thanks also to my joint supervisor from Ocean University of China, Prof. Junyu

Dong. I thank him for his help and providing me the opportunity to join his team

as a visiting student. I thank Dr. David Paull for providing the nice photos of

using a UAV to monitor the impact of wild horse on creek bank erosion.

I sincerely thank UNSW Canberra for offering me the TFS scholarship and

HDR completion scholarship which supported my Ph.D. study.

I thank Dr. Huanneng Qiu for helping me to start my life in Canberra when I

first came here. I thank Dr. Min Wang and Dr. Jing Liu for helping me check and

reboot my computer during the time of the COVID crisis. I thank my colleagues

in the office, Dr. Praveen Kumar Muthusamy, Dr. Junpeng Zhang, Jue Zhang,

and James Qin for the wonderful times spent in the office together. I am grateful

to all the friends I met here, for all the enjoyable and memorable times. I thank

Yuan Rao for the academic discussions, and the happy lunch and dinner times

we have shared in Ocean University of China.

Finally, I would like to express my gratitude to my parents, my elder brother,

my elder sister and the rest of the family for their consistent support, encour-

agement and everything that they have been doing for me. Special thanks to my

elder brother for his encouragement and support in my life and academics.

iii

List of Publications

Journal Papers

[1] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A
Abbass. Towards real-time monocular depth estimation for robotics:
A survey. IEEE Transactions on Intelligent Transportation Systems,
23(10):16940–16961, 2022.

[2] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A
Abbass. MobileXNet: An efficient convolutional neural network for monocular
depth estimation. IEEE Transactions on Intelligent Transportation Systems,
23(11):20134–20147, 2022.

[3] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A
Abbass. Frontier guided area coverage for unmanned aerial vehicles with deep
reinforcement learning and monocular vision. Under review.

Conference Papers

[1] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, Hussein A
Abbass, and Junyu Dong. Lightweight monocular depth estimation with
an edge guided network. In 2022 17th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pages 204–210. IEEE, 2022.

v

Contents

Declarations i

Inclusion of Publications Statement iii

Abstract i

Acknowledgments iii

List of Publications v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Aim . 1
1.2 Background . 3
1.3 Motivation . 6
1.4 Contributions of Thesis . 10
1.5 Organization of Thesis . 12

2 Literature Review 13
2.1 Introduction . 13
2.2 The Development of Deep Learning 14
2.3 Monocular Depth Estimation . 18

2.3.1 Background of MDE . 20
2.3.2 Structure from Motion Based Methods 25
2.3.3 Traditional Handcrafted Feature Based Methods 28
2.3.4 Deep Learning Based Methods 32
2.3.5 Other Related Methods of MDE 59
2.3.6 Discussion and Comparison 62
2.3.7 Applications in Robotics 66

vii

viii CONTENTS

2.3.8 Conclusions and Recommendations regarding MDE 72
2.4 Optical Flow Estimation . 74
2.5 Deep Learning in Robotics . 76
2.6 Deep Reinforcement Learning . 79
2.7 Deep Reinforcement Learning in Robotics 81
2.8 Simulators . 86
2.9 Chapter Summary . 87

3 Simulation Framework 89
3.1 Introduction . 89
3.2 Unreal Engine . 90
3.3 AirSim . 91

3.3.1 Architecture . 92
3.3.2 Environments and Models 96

3.4 PyTorch . 97
3.4.1 Highlights of PyTorch . 97
3.4.2 PyTorch Basic Components 98

3.5 Chapter Summary . 99

4 MobileXNet for Real-Time Monocular Depth Estimation 101
4.1 Introduction . 101
4.2 Methodology . 104

4.2.1 CNN Architecture . 104
4.2.2 Loss Functions . 109

4.3 Experimental Setup . 110
4.3.1 Implementation Details . 111
4.3.2 Data Augmentation . 111
4.3.3 Performance Metrics . 112

4.4 Experimental Results . 112
4.4.1 NYU Depth Dataset . 113
4.4.2 KITTI Dataset . 125
4.4.3 Make 3D Dataset . 130
4.4.4 UnrealDataset . 131

4.5 Chapter Summary . 137

5 Lightweight Monocular Depth Estimation with an Edge Guided
Network 139
5.1 Introduction . 139
5.2 Methodology . 142

5.2.1 Multi-scale Feature Extractor 142
5.2.2 Edge Guidance Branch . 142
5.2.3 Transformer-Based Feature Aggregation Module 144
5.2.4 Loss Function . 146

CONTENTS ix

5.3 Experiments . 147
5.3.1 Implementation Details . 147
5.3.2 Dataset and Evaluation Metric 148
5.3.3 Comparison with State-of-the-art 149
5.3.4 Ablation Studies . 151

5.4 Chapter Summary . 154

6 Frontier Guided Area Coverage for Unmanned Aerial Vehicles
with Deep Reinforcement Learning 155
6.1 Introduction . 155
6.2 Methodology . 157

6.2.1 Frontier Guided Area Coverage 157
6.2.2 Deep Reinforcement Learning 159

6.3 Experimental Setup . 170
6.3.1 Simulated Environments 170
6.3.2 Implementation Details . 171
6.3.3 Baselines . 171
6.3.4 Performance Metrics . 172

6.4 Experimental Results . 173
6.4.1 Flying to Destinations . 173
6.4.2 Area Coverage . 175
6.4.3 Ablation Studies . 177

6.5 Chapter Summary . 180

7 Conclusions and Future Work 181
7.1 Summary of Results . 181
7.2 Future Work . 183

7.2.1 MDE Networks Run on Embedded Platform 183
7.2.2 Design of MDE Networks 183
7.2.3 Replacing GPS with SLAM to Obtain the Position of UAV 184
7.2.4 Map Construction from Predicted Depth Maps 184

7.3 Concluding Remarks . 188

References 191

List of Figures

1.1 The application of UAV for ecological environment monitoring. . . 8

2.1 The number of published articles on MDE from 2000 to June 2021. 19
2.2 Milestones of MDE. 21
2.3 An overview of the organization of Section 2.3. 22
2.4 The general architecture of DL-based MDE. 32
2.5 Taxonomy of different network architectures. 33
2.6 The interaction between agent and environment in reinforcement

learning. 79

3.1 Image produced by Unreal Engine. 90
3.2 The architecture of AirSim. 92
3.3 The vehicle model for the quadrotor UAV in AirSim. 94
3.4 A snapshot from AirSim. 95

4.1 Architecture of the proposed MDE networks. 105
4.2 Illustration of the dilated convolution. 107
4.3 Qualitative results of MobileXNet with different weight initializa-

tion and convolution type in the encoder of the second sub-network.115
4.4 Qualitative comparison on the NYU depth v2 dataset. 121
4.5 Pareto Optimality on the NYU depth v2 dataset and the KITTI

dataset. 125
4.6 Qualitative comparison on the KITTI dataset. 126
4.7 Quantitative results on the Make3D dataset. 132
4.8 Qualitative comparison on the UnrealDataset (original). 133
4.9 Pareto Optimality on the UnrealDataset. 135
4.10 Qualitative comparison on the UnrealDataset (80× 128). 136

5.1 Illustration of our proposed EGD-Net. 141
5.2 Illustration of the edge compact module and the edge head. 143
5.3 Illustration of the CAFF module. 143
5.4 Illustration of the TRFA module. 145
5.5 Qualitative results on the NYU depth v2 dataset. 151

xi

xii LIST OF FIGURES

6.1 Illustration of the 2D grid map with working area and extended
area. 158

6.2 Illustration of the AUV reference system and action space. 162
6.3 Illustration of the proposed MMIDRL framework. 165
6.4 Detailed structure of the encoder of the MobileFlow network. . . . 167
6.5 Illustration of the baseline policy architectures. 168
6.6 Illustration of the proposed multi-modal information-based policy

architecture. 169
6.7 Example images captured from front view camera of the UAV

during flight in simulated environments. 170
6.8 An example trajectory generated by the MMIDRL framework with

velocity-based action space. 178
6.9 An example trajectory generated by the MMIDRL framework with

position-based action space. 178

7.1 Screen shot of 3D point cloud produced by ORB-SLAM2. 185
7.2 Illustration of point cloud registration with small movement be-

tween two consecutive depth images. 186
7.3 Illustration of point cloud registration with large movement be-

tween two consecutive depth images. 187

List of Tables

2.1 A summary of the datasets for depth estimation. 26
2.2 A summary of supervised learning-based MDE algorithms with

open-source implementations. 34
2.3 A summary of unsupervised learning-based MDE algorithms with

open-source implementations. 35
2.4 A summary of semi-supervised learning and domain adaption-based

MDE algorithms with open-source implementations. 36
2.5 Comparison of many supervised learning-based MDE methods on

the KITTI dataset [1] using the data split in [2]. 64
2.6 Comparison of many unsupervised learning, semi-supervised learn-

ing, and domain adaption-based MDE methods on the KITTI
dataset [1] using the data split in [2]. 65

4.1 Evaluation of loss functions and dilation rates on the NYU depth
v2 dataset [3]. 113

4.2 Evaluation of the weight initialization and convolution types in
the encoder of the first sub-network and the second sub-network
on the NYU depth v2 dataset [3]. 116

4.3 Comparison of the proposed MobileXNet against different variants
and U-Net [4] on the NYU depth v2 dataset [3]. 118

4.4 Evaluation of the benefit of data augmentation. 120
4.5 Comparison of performances on the NYU depth v2 dataset [3]. . . 122
4.6 Comparison of performances on the KITTI Eigen-split [2]. 127
4.7 Comparison of performances on 93.5% of the KITTI Eigen-split

with accurate ground-truth labels released by the KITTI evalua-
tion benchmark. 129

4.8 Qualitative results on the Make3D dataset. 130
4.9 Comparison of performances on the UnrealDataset. 134

5.1 Comparison of performances on the NYU depth v2 dataset [3]. . . 150
5.2 Ablation study on contribution of different components. 152
5.3 Comparison of different backbones. 154

xiii

xiv LIST OF TABLES

6.1 Hyper parameters in our simulation experiments. 171
6.2 Comparative performance of the proposed MMIDRL framework in

flying to destinations task. 174
6.3 Comparative performance of the proposed MMIDRL framework in

area coverage task. 176
6.4 Comparative performance of the proposed MMIDRL framework

using different action spaces. 179
6.5 Comparative performance of the proposed MMIDRL framework

using different feature fusion methods. 179

List of Abbreviations

1D One dimensional

2D Two dimensional

3D Three dimensional

A3C Asynchronous Advantage Actor Critic

Abs REL Absolute Relative Difference

ANN Artificial Neural Network

API Application Programming Interface

AV Autonomous Vehicle

BCE Binary Cross Entropy

BN Batch Normalization

BP Back Propagation

BVLOS Beyond Visual Line of Sight

CAFF Channel Attention-based Feature Fusion

CARLA Car Learning to Act

CC Competitive Collaboration

cGAN conditional Generative Adversarial Network

CNN Convolutional Neural Network

ConvLSTM Convolutional Long Short-Term Memory

CR Coverage Rate

CRF Conditional Random Field

D3QN Deep Double-Q Network

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q-Network

xv

xvi LIST OF ABBREVIATIONS

DL Deep Learning

DNN Deep Neural Network

DoF Degrees of Freedom

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DRQN Deep Recurrent Q-Network

DTN Depth-To-Normal

EDDQN Extended Double Deep Q-Network

EGB Edge Guidance Branch

FC Fully Connected

FCN Fully Convolutional Network

FCRN Fully Convolutional Residual Network

FCU Feature Coupling Unit

FLOPs Floating-Point Operations Per Second

FoV Field of View

GAN Generative Adversarial Network

GASDA Geometry-Aware Symmetric Domain Adaptation Network

GCS Ground Control Station

GeoNet Geometric Neural Network

GPS Global Positioning System

GPU Graphics Processing Unit

HIL Hardware-in-the-Loop

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IRB Inverted Residual Block

KLT Kanade-Lukas-Tomashi

LPG Local Planar Guidance

LSTM Long Short-Term Memory

MAV Micro Aerial Vehicle

LIST OF ABBREVIATIONS xvii

MDE Monocular Depth Estimation

MDP Markov Decision Process

ML Machine Learning

MLP Multilayer Perceptron

MMIDRL Multi-modal Information-based Deep Reinforcement Learning

MRF Markov Random Field

MSFF Multi-Scale Feature Fusion

NLP Natural Language Processing

NTD Normal-To-Depth

OF Optical Flow

PBEP Projection Batchnorm Expansion Projection

PID Proportional Integral Derivative

PnP Plug-and-Play

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

RANSAC Random Sample Consensus

RL Reinforcement Learning

RMSE Root Mean Square Error

RMSE log The logarithm Root Mean Square Error

RNN Recurrent Neural Network

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

SAC Soft Actor-Critic

SARPN Structure-Aware Residual Pyramid Network

SENet Squeeze-and-Excitation Network

SfM Structure from Motion

SfSM Structure from Small Motion

SID Spacing Increasing Discretization

SIFT Scale-invariant Feature Transform

xviii LIST OF ABBREVIATIONS

SLAM Simultaneous Localization and Mapping

SpyNet Spatical Pyramid Network

Sq REL Squared Relative Difference

SURF Speeded Up Robust Features

SVO Semi-direct Visual Odometry

TD3 Twin-Delayed Deep Deterministic Policy Gradient

TRFA Transformer-based Feature Aggregation

UAV Unmanned Aerial Vehicle

UD Uniform Discretization

UE Unreal Engine

UGV Unmanned Ground Vehicle

US United States

UV Unmanned Vehicle

V-SLAM Visual Simultaneous Localization and Mapping

VAE Variational Autoencoder

VI-SLAM Visual-Inertial SLAM

ViT Vision Transformer

VO Visual Odometry

VR Virtual Reality

Chapter 1

Introduction

1.1 Aim

The primary aim of this thesis is to investigate and develop a real-time visual

perception and guidance method for small unmanned aerial vehicles (UAVs) flying

at low altitudes in cluttered outdoor environments. To be specific, the idea is

to develop the visual guidance algorithms necessary for a small UAV to cover

as much of the accessible areas as possible in an operating environment whilst

collecting image data and avoiding obstacles.

Both stereo and monocular vision based methods have been explored in the

research community. However, stereo cameras have complex architecture, and

need a minimum baseline to generate a disparity map. By contrast, monocular

cameras are simple and require less hardware resources. Therefore, monocular

vision-based guidance is better suited to small UAVs with limited payload and is

the target of this thesis.

Inspired by the success of deep learning (DL) in computer vision, the DL-based

method has previously been applied to solve the UAV guidance problem. A

1

2 1. INTRODUCTION

typical example is the work by Loquerico et al. [5], where the authors designed

a DL-based network named DroNet to control the flight of a UAV in urban

environments. DroNet is a convolutional neural network (CNN) which takes as

input monocular RGB images and learns policies including a steering angle and

a collision probability. The steering angle is used to keep the UAV flying while

avoiding obstacles, and the collision probability is used to modulate the forward

speed of the UAV. These policies are trained through imitating a human using a

large amount of annotated data that was collected from a real-world environment.

It is worth noting that collecting these data requires an expert to demonstrate

the desired behaviour. Furthermore, annotating this data requires lots of human

resources and is time consuming. Therefore, in this thesis we explore a different

method to avoid the abovementioned problems.

Reinforcement learning (RL) is a technique that trains an autonomous agent

the optimal actions for achieving its goals. The agent receives information about

the current state in the environment and performs actions to change it. At

each step, the agent performs an action and gets a positive or a negative reward

from the environment. RL works similar to the human decision-making process

where decisions are made through interaction with the environment and the

policy model is developed through trial and error according to the response of the

environment. Compared to DL, RL does not require a human annotated policy as

supervisory information. Deep reinforcement learning (DRL) combines artificial

neural networks (ANNs) with a framework of RL to map the high dimensional

inputs (eg., images from a camera) to the optimal action [6].

Depth estimation aims to estimate the distance of each pixel relative to the

camera. A depth map contains information relating to the distance of the surfaces

of scene objects from a view point as well as the layout of the scene. As a

1.2. BACKGROUND 3

kind of mid-level visual representation, depth maps are more generic than raw

RGB images, and they have demonstrated faster training and improved policy

performance [7]. Optical flow (OF) represents the pattern of apparent motion of

image objects between two consecutive frames resulting from the movement of

the object or camera. It is a 2D vector field where each vector is a displacement

vector representing the movement of points between two consecutive frames [8].

OF relates to both the speed of the observer and distance to objects in the

scene and also provides rich information about the environment which can be

leveraged for obstacle avoidance. This thesis adopts the combination of those

two different modalities of information, depth and OF. In particular, we propose

a multi-modal information-based DRL framework for UAV guidance in cluttered

environments. Benefiting from the CNNs for monocular depth estimation (MDE)

and OF estimation, a monocular camera is sufficient to recover depth and OF.

The proposed DRL agent takes as input depth and OF maps, producing high-level

commands for guiding the UAV to perform coverage and exploration of an area

while collecting imagery and avoiding collisions.

1.2 Background

An unmanned vehicle (UV) refers to a vehicle without a human operator onboard.

It can either be remotely controlled or it can be an autonomous vehicle (AV)

which is capable of sensing its environment and navigating on its own. The

most common types of AVs are UAVs and unmanned ground vehicles (UGVs).

Compared to UGVs, UAVs have the advantage of hovering and flying over the

working environment which generally makes them less challenged by ground

terrain and obstacles. UAVs tend to move faster than UGVs and can provide

4 1. INTRODUCTION

observations from altitude that UGVs cannot. Therefore, this thesis is focused

on application to UAV platforms. However, many of the methods developed will

apply to all kinds of UVs.

UAVs, commonly known as drones, are a kind of aircraft that can fly without

an onboard human pilot. UAVs can be classified into two main categories, fixed

wing and rotorcraft [9]. The fixed wing UAV has a rigid wing that is designed

to work like an aeroplane. This kind of UAV requires forward motion for the

wing to generate lift to support its weight. Moreover, it requires a runway to

take-off and land whilst not being able to hover, or perform vertical take-off and

landings. Rotorcraft UAVs use rotating blades instead of fixed wings to produce

the necessary aerodynamic lift force. This provides rotorcraft UAVs with distinct

maneuverability advantages over fixed wing UAV, such as hovering, vertical

take-off and landing, and low-altitude flights. Micro aerial vehicles (MAVs) are

a subset of UAVs that are much smaller in size (< 50 cm) and much lighter in

weight (< 2 kg) [10]. MAVs can also be either fixed wing or rotary wing.

The most popular rotorcraft platform is the quadcopter UAV with four rotors.

Due to their small size and simplicity, quadcopters are suited for operation in clut-

tered environments or tasks where static (slow) motion is required. Furthermore,

other features of quadcopters, such as relatively low production and technical

support costs, contribute to their growing popularity in a range of applications

such as forest fire detection and monitoring [11, 12], ecological environment and

wildlife monitoring [13,14], search and rescue [15,16], aerial surveillance [17], and

critical infrastructure protecting and monitoring [18,19].

An example of the use of small autonomous drones is the Skeyetech drone

developed by Azur Drones for enhanced security and airborne surveillance over

sensitive sites [17]. Equipped with the high definition visible camera and high

1.2. BACKGROUND 5

precision thermal camera, the drone can perform surveillance tasks day and night.

However, the Skeyetech drone requires pre-configured flight paths to execute

surveillance flights. In scenarios of forest fire detection and monitoring [11, 12],

ecological environment and wildlife monitoring [13, 14], search and rescue [15,

16], and critical infrastructure protecting and monitoring [18,19], the workspace

for UAVs has an apparent commonality: a cluttered environment with varying

illumination conditions and/or under the tree canopy where global positioning

system (GPS) is not always reliable. In these scenarios, it is difficult to define

a flight path in advance. Furthermore, the UAV is expected to be able to cover

as much of the accessible areas as possible while collecting images and avoiding

collision with obstacles within the workspace.

Traditionally, UAVs are controlled by human operators through a ground

control station (GCS), where paths and waypoints to be executed by the UAV are

planned in advance. Under this circumstance, UAVs can fly Beyond Visual Line of

Sight (BVLOS) of the operator. The onboard camera captures images within the

environment and sends it to the GCS. Based on the received images, the operator

decides and controls the movement of the UAV. However, in environments such

as a dense forest or mines, the occurrence of an overhead canopy may influence

the wireless communication connection between the UAV and GCS or prevent

GPS from working. Without implementation of sophisticated autonomy and

sensing, the UAV may quickly become out of control or collide with obstacles

such as trees. Therefore, an autonomous guidance method that enables UAVs to

explore or sweep the entire investigated area and avoid collision with obstacles

is an important enabler for future operations and a focus of the robotics and

autonomous systems research community.

Active sensing devices such as laser scanners and LiDAR are bulky, expensive

6 1. INTRODUCTION

and energy hungry, which inhibit their deployment on small sized UAVs. By

contrast, machine vision, has become relatively low cost, light weight and passive.

More importantly, it does not require energy to interrogate the environment, and

can gather richer information. Stereo cameras usually have complex architec-

ture, and need a minimum baseline to generate a disparity map, while monoc-

ular cameras are simple and require less hardware resources. Hence, monocular

vision-based guidance is better suited to UAVs [20].

In recent years, significant progress has been made in the fields of computer

vision and robotics. One important factor should be attributed to the application

of deep neural networks (DNNs), especially CNNs. These techniques can learn

both low level image features and high level abstracted concepts from large-scale

datasets. CNN-based features can cope well with different variances, such as

illumination, translation and viewpoint. Previous research mainly depends on

hand-crafted image features, which are designed beforehand by human experts

to model a given set of chosen characteristics. According to the literature review

carried out for this thesis, little work has focused on CNN-based methods to solve

the monocular sensing problem and guidance of UAVs. Motivated by the above

described context, the objective of this thesis is to exploit DL-based perception

methods to guide the movement of UAVs in cluttered environments.

1.3 Motivation

This thesis aims to explore novel and efficient visual guidance method whereby

the autonomous navigation and perception of the unstructured workspace are

performed in real-time. Unlike UGVs that are limited to 2D space, UAVs can

hover and fly fast in 3D environments. Images captured by UAVs that are flying a

1.3. MOTIVATION 7

few metres above the ground have the potential to fill the gap between expensive,

weather-dependent and low resolution images provided by satellites.

Recent years have witnessed an increasing use of UAVs in the applications of

search and rescue [15,16], infrastructure monitoring [18,19], and wildlife monitor-

ing [13,14]. For example, after hurricane Katrina struck the southeastern United

States (US) in 2005, the US government deployed UAVs to survey damage and

deliver essential goods to remote locations. It was the first reported application

of UAVs for disaster response [21, 22]. On September 5, 2022, a 6.8-magnitude

earthquake occurred in Sichuan province, China. Communication infrastructures

were damaged by the disaster, so that the trapped people were unable to make

an emergency call and lead rescue workers to the location they were trapped.

The Chinese government applied UAVs to conduct survey and emergency com-

munication support [23]. The UAVs helped set up an airborne communication

network and sent real-time images of the earthquake areas, supporting relief work

and ensuring effective rescue operations.

In recent times, circumstances where humans are both the victim and the

main transmission route of an infectious virus, have highlighted the potential of

UAVs to manage the situation. UAVs are not sensitive to the virus, and can

be used to enforce social distancing and monitor the population. During the

Covid-19 episode in 2020, UAVs were applied to detect abnormal gatherings of

people and to remotely measure temperatures [24]. The mobility and flexible

characteristics of these UAVs make the mission of law enforcement agencies

simpler, while avoiding close contact with the population.

A UAV can hover in relative close proximity to wild animals or plants to

capture images, this makes the UAV a useful tool in the domain of wildlife

monitoring. During the summer of 2019-2020, Australia experienced extreme

8 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: The application of UAV for ecological environment monitoring. UNSW
Canberra Senior Lecturer Dr David Paull is using drones to track the erosion
caused by feral horses. (a) Wild horses (copyright free [26]); (b) The drone
used by Dr. Paull’s team (image was provided by Dr. Paull); and (c) The

constructed 3D model (image was provided by Dr. Paull).

bushfires across many areas of the country. After the bushfire, UAVs equipped

with infrared and RGB cameras were applied to detect and monitor injured wild

animals [25]. Furthermore, UAVs were also applied to monitor creek bank impacts

of wild horses in the Australian Alps [26]. Researchers utilized UAVs to capture

high resolution images of creek banks. With the collected images, 3D models of

creek banks were built to monitor the stream morphology and volumes of soil

lost. In scenario shown in Figure 1.1, the majority of the terrain is too dangerous

for people to enter on the ground. While UAVs have advantages for such tasks

as they can hover and fly over inspected areas, and they are not as influenced by

undergrowth or terrain elevation changes as ground robots.

Conventionally, UAVs need to be operated by an experienced pilot or operator.

This professional should be aware of what kind of information the inspectors

need and adapt to any difficulties such as obstacles, time of day and weather

conditions. The recent development towards autonomous inspections using UAVs

equipped with image-based sensors is promising for reducing human error and

assists in safer, faster and more accurate inspections. Besides, UAVs can conduct

repeated inspections in challenging and dynamic environments, making it easier

1.3. MOTIVATION 9

to monitor infrastructural changes over time. In order to guarantee safety and

efficiency, UAVs must demonstrate the ability to sense and avoid obstacles whilst

attempting to cover all accessible area in the workspace to complete the task.

In a shared workspace, UAVs may encounter not only static objects such

as buildings and trees, but also moving objects like ground vehicles, cyclists and

pedestrians. An effective guidance system must guarantee that the UAV can cover

as much ground as possible, identify objects within the shared workspace and

avoid colliding with them. Autonomous guidance systems require UAVs to sense

the environment. The primary method for UAVs to acquire information about the

surrounding environment is through a variety of on-board sensors. In recent years,

novel sensors such as LiDARs, laser scanners and RGB-D cameras have been

applied to robotics. However, these sensors require more payload capacity and

higher power consumption than RGB cameras which are light weight, relatively

low-cost, and have low power consumption. More importantly, RGB cameras can

provide richer information about the environment, which can be processed and

applied in real-time. Therefore, vision based guidance methods have attracted

great attention from robotics and machine vision researchers.

Conventional visual guidance methods are mainly based on handcrafted fea-

tures, such as OF [27–29], scale-invariant feature transform (SIFT) [30] and

speeded up robust features (SURF) [31]. These features were designed beforehand

by human experts to extract a given set of chosen characteristics that overcome

specific issues like occlusions and variations in scale and illumination [32]. There-

fore, the accuracy of traditional approaches depends on different factors, such

as viewing angle, illumination and so on. Furthermore, the design of these

hand-crafted features is usually made under some assumption. For example,

the Lucas-Kanade algorithm [28] assumes that the displacement of the image

10 1. INTRODUCTION

contents between two nearby frames is small and approximately constant within

a neighborhood of the point p under consideration. Thus, it may fail when it is

applied to environments with illumination changes and/or long-range motions.

By contrast, DL techniques especially CNNs have the ability to create power-

ful object representations without the need to hand design features. In particular,

CNNs can learn both low level image features and high level abstracted concepts

as well as abstract input-output relations from large-scale datasets such as Ima-

geNet [33], NYU Depth v2 [3], KITTI [1] and the UnrealDataset [34]. Combined

with CNN’s translation invariance property, CNNs provide a good substitute

for conventional hand-crafted feature extractors. Considering the increasingly

challenging environment that UAVs face, this research will focus on the design of

novel and efficient CNN-based visual guidance method for UAVs.

1.4 Contributions of Thesis

In this thesis, we focus on the development of novel and real-time vision-based

guidance method for UAVs in cluttered environments where only a monocular

camera is available to perceive the environment.

The following contributions are made in this thesis:

• Contribution 1: A comprehensive survey on MDE, which includes: Struc-

ture from Motion (SfM)-based methods, traditional handcrafted feature-based

methods, and state-of-the-art DL-based methods. This survey also investi-

gates the application of MDE in robotics (Chapter 2).

• Contribution 2: A real-time CNN architecture called MobileXNet for

MDE. MobileXNet generates comparable accuracy to the state-of-the-art

methods which use either extremely deep and complex architecture or

1.4. CONTRIBUTIONS OF THESIS 11

post-processing but also runs much faster on a single Nvidia GTX 1080

GPU used for benchmarking (Chapter 4).

• Contribution 3: A novel lightweight MDE network, named EGD-Net,

which employs edge attention features to guide the task of depth esti-

mation. EGD-Net has only 2.21 million parameters and runs at about

96 frames-per-second (fps) on an Nvidia GTX 1080 GPU whilst achieving

state-of-

the-art performance in terms of accuracy (Chapter 5).

• Contribution 4: A simulation framework for autonomous UAV monoc-

ular vision-based navigation and control which integrates AirSim, Unreal

Engine, Python and PyTorch (Chapter 3).

• Contribution 5: Application of the proposed MobileXNet and EGD-Net

to visual guidance of a UAV and demonstration of its effectiveness through

extensive simulation experiments (Chapter 6).

• Contribution 6: A frontier guided area coverage algorithm for UAVs that

uses a monocular RGB camera and DRL framework. This algorithm enables

the UAV to achieve the task of area coverage while avoiding collision with

objects in the environment (Chapter 6).

• Contribution 7: A multi-modal information-based DRL framework for

UAV guidance. Unlike existing methods that use an RGB camera and a

laser rangefinder, our designed framework only depends on a single monoc-

ular RGB camera. With the developed CNNs for MDE and OF estimation,

our method enables the UAV to perceive the environment through depth

and OF information (Chapter 6).

12 1. INTRODUCTION

1.5 Organization of Thesis

This thesis includes a total of 7 chapters. The review of related literature is shown

in Chapter 2. Chapter 3 introduces the simulation framework that utilized in this

thesis. Chapter 4 introduces the designed real-time CNN for MDE. Chapter 5

presents a lightweight MDE network. Chapter 6 introduces the design and

development of visual guidance system for UAVs. The conclusion of this thesis

and a few future directions for the presented work are proposed in Chapter 7.

Chapter 2

Literature Review

The work in this chapter is partially published in the following journal article [35]:

Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A

Abbass. Towards real-time monocular depth estimation for robotics: A survey.

IEEE Transactions on Intelligent Transportation Systems, 23(10):16940-16961,

2022.

2.1 Introduction

This thesis address the issue of visual guidance of unmanned aerial vehicles

(UAVs) with deep learning (DL) based methods. The primary goal is to guide

the movement of an UAV in a simulated cluttered outdoor environment using

a monocular camera. This chapter gives an overview of related work and is

organized as follows. Section 2.2 introduces the development of DL. A compre-

hensive survey of monocular depth estimation (MDE) is conducted in Section

2.3. Section 2.4 describes literature on optical flow (OF) estimation. Section 2.5

discusses DL-based methods in robotics. Deep reinforcement learning (DRL) and

13

14 2. LITERATURE REVIEW

deep reinforcement learning-based methods in robotics are reviewed in Section

2.6 and 2.7 respectively. Software for running simulations are discussed in Section

2.8.

2.2 The Development of Deep Learning

During the past few years, deep neural networks (DNNs) have set all sorts of

records and defeated traditional approaches on many computer vision problems

such as image classification [36], depth estimation [2], and OF estimation [37].

The success of these systems comes from their ability to construct powerful object

representations without the need to hand design features. As a special branch

of DNNs, convolutional neural networks (CNNs) have enjoyed great popularity

in recent times. The concept of CNNs came from the late 1970s, and they have

been applied to different detection and classification problems proposed in the

late 1980s [38] and 1990s [39].

The pioneered CNN architecture, LeNet5, was proposed by LeCun et al. [39]

in 1998. It has 7 layers, was first applied to recognise hand-written numbers in

32 × 32 sized grayscale input images. The AlexNet developed by Krizhevsky et

al. [36] was a breakthrough of CNN in computer vision. It achieved the first

place in the ILSVRC2012 challenge, wining it with a top-5 accuracy of 84.7%

which was by far better that the 73.8% achieved by the second-best contest entry

based on traditional methods. AlexNet has a similar architecture as LeNet, but

is deeper, and with more filters per layer. It consists of 8 weight layers, the first

5 are convolutional and the following 3 are fully connected.

In 2014, Simonyan and Zisserman [40] increased the network depth by using

smaller (3 × 3) filters. They designed five CNN configurations, and found that

2.2. THE DEVELOPMENT OF DEEP LEARNING 15

the performance can be improved by pushing the depth to 16-19 weight layers.

Due to the problem of vanishing gradients, training becomes more difficult to

converge when the network becomes deeper. To tackle this issue, He et al. [41]

proposed a residual learning framework. The main idea of residual learning is

to create an identity shortcut connection that skips one or more layers. Unlike

the previous work learning unreferenced functions, He et al. cast the layers as

learning residual functions with reference to the layer input. This technique

makes training a CNN with more layers possible. Based on [41], Huang et al. [42]

and Hu et al. [43] developed DenseNet and SENet, respectively.

The previous development trend has been to design deeper (stack more layers)

and wider (include more filters in each layer) CNNs to increase accuracy. As the

architecture of CNNs becomes deeper, they require more memory which some-

times is a big inconvenience when working with graphics processing units (GPUs).

These advances neglect the need to make networks more efficient with respect to

the size and speed required for some real-time applications such as small sized

UAVs. To bridge this gap, Howard et al. [44] designed the first lightweight CNN

architecture, MobileNet, for mobile and embedded vision applications. MobileNet

is buit on top of depthwise separable convolutions [45], which factorize a standard

convolution into a depthwise convolution and a 1 × 1 pointwise convolution.

The application of depthwise separable convolution enables MobileNet to be

32× smaller and 27× less computationally intensive than VGG-16 [40], whilst

achieving comparable accuracy on the ImageNet dataset.

Later, Sandler et al. [46] extended [44] through building an inverted residual

block (IRB). This block takes as input a low dimensional feature map, which

is first widen to high dimension and convolved with a depthwise convolution.

The produced feature map is then projected back to low dimension with a linear

16 2. LITERATURE REVIEW

convolution and added with the input feature map. In particular, the IRB applies

a “narrow → wide → narrow” design with the number of channels, which is

the inverted operation of the traditional residual block [41]. ShuffleNet [47]

applied channel shuffle operators in the channel dimension of feature maps to

make cross-group information flow for group convolution layers. Tan et al. [48]

developed an EfficientNet-B0 baseline network by using neural architecture search

and scaled it up to get a set of models, named EfficientNets. In [49], Howard et al.

introduced the latest version of MobileNet, named MobileNetV3. MobileNetV3

applies the combination of linear bottleneck, inverted residual structure [46] and

Squeeze-and-Excite layers [43] as building blocks.

In 2017, Vaswani et al. [50] designed a sequence-to-sequence model, called

a Transformer. It relies on attention mechanisms to learn global dependencies

between input and output. Transformer models have an encoder and decoder

architecture. The encoder has six identical blocks, each block has a multi-head

self-attention layer and a position-wise feed-forward layer. To construct a deeper

model, residual connections [41] are employed around each block, followed by

layer normalization [51]. The decoder also consisting of six blocks, and each

block has three layers. The first two layers are similar to the encoder, while an

additional cross-attention layer is inserted between the multi-head self-attention

layer and the position-wise feed-forward layer. Compared to CNNs, transformers

more suit for capturing long-range relationships [50].

Inspired by the success of transformers in natural language processing (NLP),

Dosovitskiy et al. [52] proposed a vision-based transformer (ViT) architecture

by replacing the CNN backbone with pure transformer which takes the 1D

sequence of token embeddings as input. Given 2D images with the size of

224 × 224 × 3, they reshaped it into a sequence of flattened 2D patches with

2.2. THE DEVELOPMENT OF DEEP LEARNING 17

a fixed size of 16 × 16 × 3. The produced patches are then passed through a

sequence of transformer layers to learn global relations and extract features for

image classification. Transformer-based models take as input the 1D sequence

of patches, this is helpful in capturing the long-range dependencies between

patches. However, it ignores the 2D structure and spatial local information within

each patch. Besides, it is difficult for ViT models to extract low-resolution and

multi-scale feature maps because of the fixed patch size.

To solve the above discussed issues of ViT, Peng et al. [53] designed a dual net-

work architecture that integrates CNN-based local features and transformer-based

global features. The dual network architecture combines local convolution blocks,

self-attention modules, and Multilayer Perceptron (MLP) units. The produced

local and global features are fused with the Feature Coupling Unit (FCU) in

an interactive manner. Meanwhile, Guo et al. [54] combined a transformer-based

network with convolutional layers to design the CMT (CNNs meet transformers).

CMT applies an input block consisting of a 3× 3 convolution with a stride of 2,

and two 3 × 3 convolution with stride of 1 to extract local feature maps. The

extracted feature maps are passed through several CMT blocks to learn local and

global feature representations.

Due to the ability to model long-range dependencies within an image, vi-

sion transformers achieve remarkable performance. However, the computational

complexity of self-attention based transformers are quadratic to the resolution of

input images. Katharopoulos et al. [55] formulated the self-attention as a linear

dot-product of kernel feature maps to reduce the computational complexity of the

transformer. In addition, the associative property of matrix products are adopted

to calculate the self-attention weights. Therefore, the computation complexity is

reduced from O(N2) to O(N).

18 2. LITERATURE REVIEW

2.3 Monocular Depth Estimation

This section provides a comprehensive survey of monocular depth estimation

(MDE), which is based on the author’s journal publication [35]. Depth estimation

refers to the process of estimating a dense depth map from the corresponding

input image(s). Depth information can be utilized to infer the 3D structure,

which is an essential part in many robotics and autonomous system tasks, such

as ego-motion estimation [56], obstacle avoidance [57] and scene understanding

[58]. Active methods depend on RGB-D cameras, LiDAR, Radar or ultrasound

devices to directly get the depth information of the scene [59]. However, RGB-D

cameras suffer from a limited measurement range. Meanwhile, LiDAR and Radar

are limited to sparse coverage, and ultrasound devices are limited by inherently

imprecise measurements. In addition, the above devices are large in size and

energy-consuming, which is a deficiency when it comes to small sized robots such

as MAVs.

On the contrary, RGB cameras are cheaper and light weight. More im-

portantly, they can provide richer information about the environment. Many

methods [60–62] depend on stereo matching to estimate depth maps from stereo

images. Stereo methods are more accurate, however, collecting stereo images re-

quire complex alignment and calibration procedures. Besides, stereo vision-based

methods are limited by the baseline distance between the two cameras. To be

specific, the estimated depth values tend to be inaccurate when the considered

distance are large. With recent advancements in computer vision algorithms, it

is more convenient to infer a dense depth map from RGB images.

In this section, we restrict our literature review to MDE for dense depth

maps. We extensively review more than 150 relevant articles spanning over 50

2.3. MONOCULAR DEPTH ESTIMATION 19

The Number of Publications in Monocular Depth Estimation

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

50

100

150

200

250

300
N

um
be

r
of

 P
ub

lic
at

io
ns

Figure 2.1: The number of published articles on MDE from 2000 to June 2021. (Data
from Google Scholar advanced search.)

years (from 1970 to 2021). Our aim is to assist readers to navigate this research

field, which has attracted great attention from the computer vision and robotics

communities. Figure 2.1 shows the number of published articles on MDE from

2000 to 2021, while Figure 2.2 illustrates the milestones of MDE in recent years.

We classify the reviewed methods into three main categories: Structure from

Motion (SfM)-based methods, traditional handcrafted feature-based methods,

and state-of-the-art DL-based methods. SfM-based methods [63–66] track a set of

corresponding pixels, across a series of images taken in a given scene, and compute

depth values at the pixels where features are matched. Therefore, the obtained

depth maps are sparse. For traditional handcrafted feature-based methods [67–

74], features are first extracted from monocular images, which are then utilized to

estimate dense depth maps by optimizing a probabilistic model such as a Markov

Random Field (MRF) or a Conditional Random Field (CRF). Over the past

few years, the success of DNNs has greatly motivated the development of MDE.

20 2. LITERATURE REVIEW

A variety of models [2, 75–81] manifest their effectiveness to recover the depth

information from a single image. A possible reason is that the monocular cues

can be better modeled with the larger capacity of DNNs.

The remainder of this section is organized as follows: In Section 2.3.1, we

introduce the background of MDE. MDE with SfM and traditional handcrafted

feature-based methods will be reviewed in Section 2.3.2 and Section 2.3.3 respec-

tively. Section 2.3.4 reviews state-of-the-art DL-based methods. Section 2.3.5 will

review other related methods. Section 2.3.6 presents a discussion and comparison

on different MDE methods. The applications of MDE will be reviewed in Section

2.3.7. Conclusions are given in Section 2.3.8. We show the overall organization

of this section in Figure 2.3.

2.3.1 Background of MDE

Problem Definition

The problem definition of MDE can be viewed as follows. Let I be a single RGB

image with size w × h, D is the corresponding depth map with the same size as

I. The task of MDE is to formulate a non-linear mapping Ψ: I → D. Whilst

requiring less computational resources and avoiding the baseline issue, MDE is an

ill-posed problem as a monocular image may be captured from different distinct

3D scenes. Therefore, MDE algorithms exploit different monocular cues such as

texture, occlusion, known object size, lighting, shading, haze and defocus.

2.3. MONOCULAR DEPTH ESTIMATION 21

(E
ig

en
 e

t
a
l.

)

D
ee

p
 L

ea
rn

in
g

-b
a
se

d

M
et

h
o
d

s
S

u
p

er
v
is

ed
 L

ea
rn

in
g

U
u

S
u

p
er

v
is

ed
 a

n
d

 S
em

i-

S
u

p
er

v
is

ed
 L

ea
rn

in
g

T
ra

d
it

io
n

a
l

M
et

h
o
d

sN
Y

U
 D

ep
th

 D
a
ta

se
t

(S
il

b
er

m
a
n

 e
t

a
l.

)

(E
ig

en
 e

t
a
l.

)

F
C

R
N

(L
a
in

a
 e

t
a
l.

)

D
C

N
F

(L
iu

 e
t

a
l.

) U
n

su
p

er
v
is

ed
 D

ep
th

 E
st

im
a
ti

o
n

(G
a
rg

 e
t

a
l.

)

U
n

su
p

er
v
is

ed
 L

R
 C

N
N

(G
o
d

a
rd

 e
t

a
l.

)

F
a
st

D
ep

th

(W
o
fk

 e
t

a
l.

)

T
h

e
M

il
es

to
n

es
 o

f
M

o
n

o
cu

la
r

D
ep

th
 E

st
im

a
ti

o
n

S
fM

L
ea

rn
er

(Z
h

o
u

 e
t

a
l.

)

K
IT

T
I

D
a
ta

se
t

(G
ei

g
er

 e
t

a
l.

)

O
m

iD
ep

th

(Z
io

u
li

s
et

 a
l.

)

F
ir

st
 P

a
n

o
ra

m
a

Im
a
g
e

D
a
ta

se
t

F
ir

st
 E

n
co

d
er

-

D
ec

o
d

er
 N

et
w

o
rk

S
em

a
n

ti
c

D
ep

th

C
la

ss
if

ie
r

(L
a
d

ic
k

y
 e

t
a
l.

)

D
IM

L
/C

V
L

D
a
ta

se
t

(C
h

o
 e

t
a
l.

)

F
ir

st
 C

N
N

 f
o
r

M
D

E

(S
a
x
en

a
 e

t
a
l.

)
M

a
k

e
3
D

 D
a
ta

se
t

S
C

N

(S
a
x
en

a
 e

t
a
l.

)

F
ir

st
 S

u
p

er
v
is

ed

L
ea

rn
in

g
-b

a
se

d
 M

et
h

o
d

F
ir

st
 M

u
lt

i-
ta

sk

L
ea

rn
in

g
 M

et
h

o
d

F
ir

st
 U

n
su

p
er

v
is

ed
 N

et
w

o
rk

U
n

su
p

er
v
is

ed
 L

ea
rn

in
g

+
 L

ef
t-

R
ig

h
t

C
o
n

si
st

en
cy

U
n

su
p

er
v
is

ed
 L

ea
rn

in
g
 o

n

M
o
n

o
cu

la
r

V
id

eo

C
o
m

b
in

a
ti

o
n

 o
f

C
N

N

a
n

d
 C

o
n

ti
n

u
o
u

s
C

R
F

 R
ea

l-
T

im
e

N
et

w
o
rk

o
n

 E
m

b
ed

d
ed

P
la

tf
o
rm

s

(A
le

o
tt

i
et

 a
l.

)

F
ir

st
 G

A
N

 M
o
d

el

(K
u

zn
ie

ts
o
v
 e

t
a
l.

)
F

ir
st

 S
em

i-
S

u
p

er
v
is

ed

N
et

w
o
rk

P
y
D

-N
et

(P
o
g
g
i

et
 a

l.
)

F
ir

st
 U

n
su

p
er

v
is

ed

R
ea

l-
T

im
e

N
et

w
o
rk

A
d

B
in

(B
h

a
t

et
 a

l.
)

F
ir

st
 V

iT
-b

a
se

d

M
et

h
o
d

(C
a
o
 e

t
a
l.

)

F
ir

st
 C

la
ss

if
ic

a
ti

o
n

M
et

h
o
d

C
R

ea
M

(S
p

ek
 e

t
a
l.

)

F
ir

st
 R

ea
l-

T
im

e
N

et
w

o
rk

o
n

 E
m

b
ed

d
ed

 P
la

tf
o
rm

s

F
ig

u
re

2.
2:

M
ile

st
on

es
of

M
D

E
,

in
cl

u
d

in
g

tr
ad

it
io

n
al

h
an

d
cr

af
te

d
fe

at
u

re
-b

as
ed

m
et

h
o

d
s

[1
,3

,6
8,

71
,8

2]
an

d
st

at
e-

of
-t

h
e-

ar
t

d
ee

p
le

ar
n

in
g-

b
as

ed
m

et
h

o
d

s
[2

,7
5,

76
,8

1,
83

–9
3]

.

22 2. LITERATURE REVIEW

M
D

E
M

D
E

1

)
G

en
er

a
l

M
et

h
o

d
s

2
)

C
la

ss
if

ic
a
ti

o
n

3

)
M

u
lt

i-
ta

sk
 L

ea
rn

in
g

4

)
R

ea
l-

T
im

e
M

et
h

o
d

s

1

)
G

en
er

a
l

M
et

h
o

d
s

2
)

C
o
m

b
in

in
g
 w

it
h

 O

th
er

 T
a

sk
s

S
u

p
er

v
is

ed

L
ea

rn
in

g

U
n

su
p

er
v
is

ed

L
ea

rn
in

g

S
em

i-
su

p
er

v
is

ed

L
ea

rn
in

g

1

)
G

en
er

a
l

M
et

h
o

d
s

2

)
M

u
lt

i-
ta

sk
 L

ea
rn

in
g

3

)
A

d
v
e
rs

a
ri

a
l

L
e
a
rn

in
g

4

)
R

ea
l-

T
im

e
M

et
h

o
d

s

D
o

m
a
in

 A
d

a
p

ta
ti

o
n

1

)
F

in
e-

tu
n

in
g

2

)
D

a
ta

 T
ra

n
sf

o
rm

a
ti

o
n

D
ee

p
 L

ea
rn

in
g

(S
ec

ti
o

n
 2

.3
.4

)

D
ee

p
 L

ea
rn

in
g

(S
ec

ti
o

n
 2

.3
.4

)

S
fM

(S
ec

ti
o

n
 2

.3
.2

)

S
fM

(S
ec

ti
o

n
 2

.3
.2

)

S
fM

(S
ec

ti
o

n
 2

.3
.2

)

T
ra

d
it

io
n

a
l

M
et

h
o
d

s

(S
ec

ti
o

n
 2

.3
.3

)

T
ra

d
it

io
n

a
l

M
et

h
o
d

s

(S
ec

ti
o

n
 2

.3
.3

)

O
th

er
 R

el
a
te

d

M
et

h
o
d

s

(S
ec

ti
o

n
 2

.3
.5

)

O
th

er
 R

el
a
te

d

M
et

h
o
d

s

(S
ec

ti
o

n
 2

.3
.5

)

1

)
S

p
a

rs
e

D
e
p

th
 f

ro
m

L

ID
A

R

2

)
S

p
a
r
se

 D
e
p

th
 f

r
o
m

S

L
A

M

D
is

cu
ss

io
n

(S
ec

ti
o

n
 2

.3
.6

)

D
is

cu
ss

io
n

(S
ec

ti
o

n
 2

.3
.6

)

D
is

cu
ss

io
n

(S
ec

ti
o

n
 2

.3
.6

)

1
)

A
cc

u
ra

c
y

2
)

C
o

m
p

u
ta

ti
o
n

a
l

T
im

e

A
p

p
li

ca
ti

o
n

s

(S
ec

ti
o

n
 2

.3
.7

)

A
p

p
li

ca
ti

o
n

s

(S
ec

ti
o

n
 2

.3
.7

)

A
p

p
li

ca
ti

o
n

s

(S
ec

ti
o

n
 2

.3
.7

)

1
)

E
g
o

-m
o
ti

o
n

 E
st

im
a

ti
o

n

2
)

O
b

st
a

cl
e

A
v

o
id

a
n

ce

3
)

 S
ce

n
e
 U

n
d

e
rs

ta
n

d
in

g

F
ig

u
re

2.
3:

A
n

ov
er

vi
ew

of
th

e
or

ga
n

iz
at

io
n

of
S

ec
ti

on
2.

3.
(“

M
D

E
”:

M
on

o
cu

la
r

D
ep

th
E

st
im

at
io

n
an

d
“S

fM
”:

S
tr

u
ct

u
re

fr
om

M
ot

io
n

.)

2.3. MONOCULAR DEPTH ESTIMATION 23

MDE Performance Evaluation

Given an estimated depth map D and the corresponding ground-truth D∗, let

Di and D∗i represent the estimated and ground-truth depth values at the pixel

indexed by i, respectively, and N represent the total number of pixels for which

there exist both valid ground-truth and estimated depth pixels. As for the quan-

titative comparison of the estimated depth map and ground-truth, the commonly

used evaluation metrics in prior works are listed as follows:

• Absolute Relative Difference (Abs REL): defined as the average value

over all the image pixels of the L1 distance between the ground-truth and

the estimated depth, but scaled by the estimated depth:

AbsRel =
1

N

∑
N

|D∗i −Di|
Di

. (2.1)

• Squared Relative Difference (Sq REL): defined as the average value

over all the image pixels of the L2 distance between the ground-truth and

the estimated depth, but scaled by the estimated depth:

SqRel =
1

N

∑
N

|D∗i −Di|2

Di

. (2.2)

• The linear Root Mean Square Error (RMSE): defined as:

RMSE =

√
1

N

∑
N

|D∗i −Di|2. (2.3)

24 2. LITERATURE REVIEW

• The logarithm Root Mean Square Error (RMSE log): defined as:

RMSE log =

√
1

N

∑
N

|log D∗i − log Di|2. (2.4)

• Threshold Accuracy: is the percentage of predicted pixels where the

relative error is within a threshold. The formula is represented as:

max(
Di

D∗i
,
D∗i
Di

) < threshold, (2.5)

where the values of threshold usually set to 1.25, 1.252, 1.253.

In addition, Eigen et al. [2] design a scale-invariant error to measure the

relationships between points in the scene, irrespective of the absolute global scale.

The scale-invariant mean squared error in log space is defined in Equation (2.6):

E(D,D∗) =
1

2N

N∑
i=1

(log Di − log D∗i + α(D,D∗))2, (2.6)

where α(D,D∗) = 1
N

∑
i(log D

∗
i − log Di) is the value of α which minimizes the

difference for a given (D,D∗). For any estimation D, errα is the scale that best

aligns it to the ground-truth, and err is the difference between D and D∗ in log

space. Since all scalar multiples of D∗ have the same error, the scale is invariant.

MDE Datasets

Datasets play a critical role in developing and evaluating depth estimation algo-

rithms. In depth estimation, a number of well-known datasets have been released.

Beginning with Make3D [82], representative datasets include NYU depth v2 [3],

KITTI [1], Cityscapes [94] and Virtual KITTI [95, 96]. The features of the

2.3. MONOCULAR DEPTH ESTIMATION 25

datasets for depth estimation are summarized in Table 2.1.

2.3.2 Structure from Motion Based Methods

Structure from motion (SfM) refers to the process of predicting camera motion

and/or 3D structure of the environment from a sequence of images taken from

different viewpoints [115]. Given a sequence of input images taken from different

viewpoints, features such as Harris, SIFT, or SURF are first extracted from all

the images. Then the extracted features will be matched. Because some features

maybe incorrectly matched, RANSAC (random sample consensus) is typically

applied to remove the outliers. These matched features are tracked from image

to image to estimate the 3D coordinates of the features. This produces a point

cloud which can be transformed to a depth map.

SfM Methodologies

Wedel et al. [63] estimate the scene depth from the scaling of supervised image

regions using SfM. Define a point X(t) = (X(t), Y (t), Z(t))T in 3D space at time

t, and its corresponding projected image point x(t). The camera translation

in depth between time t and t+ τ is T(t, τ), while the point at time t+ τ is

X(t + τ) = X(t) + T(t, τ). The motion of image regions are divided into two

parts, with the correctly computed vehicle translation and displacement of image

points, the scene depth can be computed through Equation (2.7):

d ≡ Z(t) =
s(t, τ)

1− s(t, τ)
TZ(t, τ), (2.7)

where s(t, τ) is the scale, and TZ(t, τ) is the camera translation in depth.

Prakash et al. [64] present a SfM-based sparse depth estimation method. The

26 2. LITERATURE REVIEW

Table 2.1: A summary of the datasets for depth estimation.

Year Dataset Scenario Sensors Resolution Type Images Anno.

2008 Make3D [82] Outdoor Laser 2272× 1704 R 534 D

2012 NYU-v2 [3] Indoor Kinect v1 640× 480 R 1449 D

2012 RGB-D SLAM [97] Indoor Kinect v1 640× 480 R 48K D

2013 KITTI [1] Driving LiDAR 1238× 374 R 44K S

2015 SUN RGB-D [98] Indoor - - R 10335 D

2016 DIW [99] Outdoor - - R 495K SP

2016 Cityscapes [94] Driving Stereo 2048× 1024 R 5000 Dis.

2016 CoRBS [100] Indoor Kinect v2
1920× 1080,

512× 424
R - D

2016 Virtual KITTI [95] Outdoor - 1242× 375 S 21260 D

2017 2D-3D-S [101] Indoor Matterport 1080× 1080 R 71909 D

2017 ETH3D [102]
Indoor,
Outdoor

Laser 940× 490 R - D

2017 Matterport3D [103] Indoor Matterport 1280× 1024 R 194400 D

2017 ScanNet [104] Indoor Structure
1296× 968,
640× 480

R 2.5M D

2017 SceneNet RGB-D [105] Indoor - 320× 240 S 5M D

2017 SUNCG [106] Indoor - 640× 480 S 45000 D

2018 MegaDepth [107]
Indoor,
Outdoor

- - R 130K
D,
O

2018 Unreal [34] Outdoor - 256× 160 S 107K D

2018 SafeUAV [108] Outdoor - 640× 480 S 8137 D

2018 3D60 [90] Indoor - - S 35995 D

2018 NUSTMS [109] Outdoor Radar
576× 160,
144× 40

R 3600 D

2019 DIML/CVL [92]
Indoor,
Outdoor

Kinect v2,
Stereo

1920× 1080,
1280× 720

R 1M D

2019 DrivingStereo [110] Driving LiDAR 1762× 800 R 182K S

2019 DIODE [111]
Indoor,
Outdoor

Laser 1024× 768 R 25458 D

2019 Mid-Air [112] Outdoor - 1024× 1024 S 119K D

2020 Forest Environment [113] Forest Depth 640× 480 R 134K D

2020 Shanghaitech-Kujiale [114] Indoor - 1024× 512 S 3500 D

2020 Virtual KITTI 2 [96] Outdoor - 1242× 375 S 21260 D

“K”: thousand, “M”: million, “-”: not available, “R”: real, “S”: Synthetic, “D”: dense, “S”: sparse, “SP”:
single pair, and “O”: ordinal .

2.3. MONOCULAR DEPTH ESTIMATION 27

proposed approach takes a sequence of 5 to 8 images captured by a monocular

camera to estimate a depth map. With the captured images, features are detected

by a multi-scale Fast detector. After matching the detected features from a

reference frame and any other frame in the input subset, the two-view geometry

is computed between the considered frames. The sparse depth values at the

matched feature locations are calculated and reconstructed through a metric

transformation.

Ha et al. [65] propose a Structure from Small Motion (SfSM) method which

utilizes a plane sweep technique to estimate a depth map. The Harris corner

detector is applied to extract features in the reference image and the correspond-

ing features in other images are found by the Kanade-Lukas-Tomashi (KLT)

algorithm. Then, the plane sweeping technique is applied to get dense depth

maps. Although [65] generates dense depth maps, it takes about 10 minutes to

process just one image. To solve the problem of computing efficiency, Javidnia

and Corcoran [66] utilize the ORB algorithm as the feature extractor. It reduces

the run time to minutes but still cannot run in real-time. In addition, as a

corner detector, the ORB algorithm is highly sensitive to the texture present in

the scene. Therefore, the estimated depth maps are erroneous in low-textured

environments.

Summary of SfM Methods

SfM relies on feature detection and matching to get the correspondence between

the detected features and the accuracy of produced depth values depends on

the quality of feature matching. The number of detected features relies on the

environment, for example, less features are detected in textureless or low-contrast

surroundings. Therefore, most of the existing SfM methods produce the sparse

28 2. LITERATURE REVIEW

depth maps. These depth maps are adequate for the task of localization, but

are not sufficient for applications such as autonomous flight which requires a

dense depth map to enable UAVs to avoid frontal obstacles. Although using

more features and images produces better estimations, it requires more time to

generate a depth map.

2.3.3 Traditional Handcrafted Feature Based Methods

Due to the loss of 3D information in the process of capturing images with a monoc-

ular camera, it is not straightforward to infer a depth map from a single-view

image. Unlike stereo vision-based methods that can perform stereo matching

between the left and right images to estimate depth, earlier MDE algorithms

mainly use texture variations, occlusion boundaries, defocus, color/haze, surface

layout and size of known objects as cues for predicting depth maps. Although

MRF and its variants are a branch of machine learning (ML), they are often

combined with handcrafted features to incorporate more contextual information.

Therefore, we review methods with MRF in this subsection to distinguish from

the DNN-based methods.

The handcrafted feature based-methods roughly work as follows. First, the in-

put images are over-segmented into a set of small regions, called superpixels. Each

such superpixel is assumed as a coherent region in the scene that all the pixels

have similar properties. Then a number of color, location, texture, motion and

geometric context-based features are computed from the obtained superpixels.

With the computed features, depth cues will be computed to estimate the depth

for each superpixel. Finally, a MRF model is applied to combine superpixel-based

depth estimation with information between different superpixels to construct the

final depth map.

2.3. MONOCULAR DEPTH ESTIMATION 29

Traditional Methods Methodologies

According to Google Scholar, the pioneering work in depth estimation from

monocular images is [116]. In this work, the intensity or color gradients of a

monocular image are exploited to estimate the depth information of objects.

The intrinsic images correspond to physical properties of the scene such as depth,

reflectance, shadows and surface shape, provide complementary information [117].

Inspired by this point, Kong and Black [118] formulate dense depth estimation

as an intrinsic image estimation problem. They combine [73] with a method that

extracts consistent albedo and shading from monocular video. A contour detector

is trained to predict surface boundaries from albedo, shading and pixel values

and the predicted contour is applied to replace image boundaries to enhance the

qualities of depth maps.

Torralba and Oliva [67] propose the first learning-based approach, which infers

absolute depth from monocular images by incorporating the size of known objects

in the image. As the recognition of objects under unconstrained conditions is

difficult and unreliable, the absolute scene depth of the images is derived from the

global image structure represented as a set of features from Fourier and wavelet

transforms. Real-world images contain various objects, while the work in [67]

handles different objects with the same method. Hence, it is unsuitable because

it disregards the object’s own properties. Jung and Ho [69] design an MDE

algorithm using a Bayesian learning-based object classification method. With

the property of linear perspective, objects in a monocular image are categorized

into four types: sky, ground, cubic and plane. According to the type, a relative

depth value to each object and 3D model is generated.

Saxena et al. [68] introduce a supervised learning-based method to estimate

depth from monocular images. They divide the input image into small patches

30 2. LITERATURE REVIEW

and estimate a single depth value for each patch. Two kinds of features, absolute

and relative depth features are applied. The former is used to estimate the

absolute depth at a particular patch and the latter is for distinguishing the depth

magnitude between two patches. Considering the depth of a particular patch re-

lies on the features of the patch and the depths of other parts of the image, a MRF

is utilized to model the relation between the depth of a patch and the depths of its

neighbouring patches. Raza et al. [74] combine the texture features, geometric

context, motion boundary-based monocular cues with co-planarity, connectiv-

ity and spatio-temporal consistency constraints to infer depth from monocular

videos. Given a monocular video, they first decompose it into spatio-temporal

regions. For each region, depth cues that model the relationship of depth to visual

appearance, motion and geometric classes are computed and utilized to estimate

depth with random forest regression. Subsequently, the estimated depth is refined

by incorporating 3D scene properties in MRF with occlusion boundaries.

Besides image features, semantic labels are also used as a cue for inferring

depth. The semantic classes of a pixel or region usually have geometry con-

straints, for example, sky is far away and ground is horizontal. Therefore, depth

can be estimated by measuring the difference in appearance with respect to

a given semantic class. Liu et al. [70] propose a method that uses semantic

information as context to estimate depth from a single image. The proposed

method consists of two steps. In the first step, a learned multi-class image

labeling MRF is applied to infer the semantic class for each pixel in the image.

The obtained semantic information is incorporated in the depth reconstruction

model in the second step. Two different MRF models, a pixel-based and a

superpixel-based, are designed. Both MRF models define convex objectives that

are solved by using the L-BFGS algorithm to compute a depth value for each

2.3. MONOCULAR DEPTH ESTIMATION 31

pixel in the image.

Ladicky et al. [71] demonstrate how semantic labeling and depth estimation

can benefit each other under a unified framework. They propose a pixel-wise

classifier by using the property of perspective geometry. Conditioning the seman-

tic label on the depth promotes the learning of a more discriminative classifier.

Conditioning depth on semantic classes enables the classifier to overcome some

ambiguities of depth estimation. The relationship between different parts of

the image is another cue for estimating depth. Liu et al. [72] model MDE as

a discrete-continuous optimizing problem. The continuous variables encode the

depth of the superpixels in the input image, and the additional discrete variables

encode the relationship of two neighboring superpixels. With these variables, the

depth estimation can be solved by an inference problem in a discrete-continuous

CRF.

Karsch et al. [73] design a non-parametric, data-driven method for estimating

depth maps from 2D videos or single images. Given a new image, the designed al-

gorithm first searches similar images from a dataset by applying GIST matching.

Subsequently, the label transfer between the given image and the matched image

are applied to construct a set of possible depth values for the scene. Finally, the

spatio-temporal regularization in an MRF formulation is conducted to make the

generated depths spatially smooth.

Summary of Handcrafted Methods

In the abovementioned methods, handcrafted features are extracted from the

monocular images to estimate depth maps by optimizing a probabilistic model.

These features are designed beforehand by human experts to extract a given set

of chosen characteristics, while some corner cases may be missed. Therefore, it

32 2. LITERATURE REVIEW

Back Propagation

Depth

Loss

Depth

Loss

Depth

Network

Depth

Network

Input

Ground-truth

Back Propagation

Depth

Loss

Depth

Network

Input

Ground-truth Warping

Reconstruction

Loss

Left Image

Warped Image

Disparity Map

Right Image

Depth

Network

Depth

Network

Warping

Reconstruction

Loss

Left Image

Warped Image

Disparity Map

Right Image

Depth

Network

Warping

Reconstruction

Loss

Left Image

Warped Image

Disparity Map

Right Image

Depth

Network

Large amount of

unlabeled dataset

Small amount of

labeled dataset

Pseudo-labeled

dataset

Depth network trained

on labeled + pseudo-

labeled dataset

NetworkNetwork
Depth

Network

Depth

Network

RGB

Ground-truth

Large amount of

unlabeled dataset

Small amount of

labeled dataset

Pseudo-labeled

dataset

Depth network trained

on labeled + pseudo-

labeled dataset

Network
Depth

Network

RGB

Ground-truth

Synthetic Image

Ground-truth

Depth

Real Image Depth

Source Domain

Target Domain

Proxy Depth

Network

Proxy Depth

Network

Depth NetworkDepth Network

Synthetic Image

Ground-truth

Depth

Real Image Depth

Source Domain

Target Domain

Proxy Depth

Network

Depth Network

(a) (b)

(c) (d)

Figure 2.4: The general architecture of DL-based MDE. (a) Supervised learning
network, which takes an RGB image and ground-truth depth as input and
outputs the estimated depth map, (b) Unsupervised learning network takes
as input the stereo image, (c) Semi-supervised learning network, which uses a
small amount of image-depth pairs and a large amount of unlabeled images,
and (d) Domain adaptation method, where the network in the target domain
is trained on synthetic data, the arrow with dotted line represents adaptation.

(Best viewed in color).

may result in unsatisfactory performance when applied in new environments. In

addition, these methods need pre-processing or post-processing, which imposes

a computational burden and makes them unsuitable for the real-time control of

robots.

2.3.4 Deep Learning Based Methods

The success of DL in image classification also boosts the development of MDE. In

this section, we review DL-based MDE methods. According to the dependency

on ground-truth, there are three types of learning approaches: supervised, unsu-

pervised and semi-supervised. These three types of methods are trained on the

real data, but we also review methods trained on the synthetic data and then

2.3. MONOCULAR DEPTH ESTIMATION 33

Input Coarse

Refined

Coarse Scale

Network

Coarse Scale

Network

Fine Scale

Network

Fine Scale

Network

Input Coarse

Refined

Coarse Scale

Network

Fine Scale

Network

Input Output

CNNCNN CRFCRF

Input Output

CNN CRF

Input

True

or

False

Generator

Network

Generator

Network

Real

Images

Real

Images

Synthetic

Images

Synthetic

Images

Discriminator

Network

Discriminator

Network

Input

True

or

False

Generator

Network

Real

Images

Synthetic

Images

Discriminator

Network

Input Output

EncoderEncoder DecoderDecoderEncoder Decoder

Input Output

Encoder Decoder

(a) (b)

(c) (d)

Figure 2.5: Taxonomy of different network architectures. (a) Multi-scale Network [2,
75], (b) Encoder-Decoder Network (dotted lines represent skip connections)
[76, 80, 119–121], (c) CNN Combines with CRF [77, 122, 123], and (d) GANs

[88, 124]. (Best viewed in color).

transferred to the real data. The implementations and download links of the

source code of some algorithms are summarized in Tables 2.2, 2.3 and 2.4.

Depth Estimation with Supervised Learning

The pipeline of supervised learning-based MDE methods can be described as

follows (see Figure 2.4(a)). The MDE network incorporates a single image I

and the corresponding ground-truth depth map D∗ to learn the scene structure

information for estimating a dense depth map (D). Then the parameters of the

network is updated by minimizing a loss function L(D∗, D), which measures the

difference between D and D∗. The network converges when D is as close as

possible to D∗.

34 2. LITERATURE REVIEW

T
ab

le
2.

2:
A

su
m

m
ar

y
of

su
p

er
vi

se
d

le
ar

n
in

g-
b

as
ed

M
D

E
al

go
ri

th
m

s
w

it
h

op
en

-s
ou

rc
e

im
p

le
m

en
ta

ti
on

s.

Y
ea

r
A

lg
o
ri

th
m

T
y
p

e
Im

p
le

m
en

ta
ti

o
n

S
o
u

rc
e

co
d

e

2
0
1
4

E
ig

en
et

a
l.

[2
]

S
u

p
er

v
is

ed
P

y
th

o
n

h
tt

p
s:

/
/
cs

.n
y
u

.e
d

u
/

d
ei

g
en

/
d

ep
th

/

2
0
1
5

E
ig

en
et

a
l.

[7
5
]

S
u

p
er

v
is

ed
P

y
th

o
n

h
tt

p
s:

/
/
cs

.n
y
u

.e
d

u
/

d
ei

g
en

/
d

n
l/

2
0
1
6

L
a
in

a
et

a
l.

[7
6
]

S
u

p
er

v
is

ed
M

a
tC

o
n
v
N

et
,

T
en

so
rF

lo
w

h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ir

o
-c

p
/
F

C
R

N
-D

ep
th

P
re

d
ic

ti
o
n

2
0
1
7

X
u

et
a
l.

[7
8
]

S
u

p
er

v
is

ed
C

a
ff

e
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
d

a
n

x
u

h
k
/
C

o
n
ti

n
u

o
u

sC
R

F
-C

N
N

.g
it

2
0
1
8

A
lh

a
sh

im
a
n

d
W

o
n

k
a

[1
2
5
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
,

T
en

so
rF

lo
w

h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ia

lh
a
sh

im
/
D

en
se

D
ep

th

2
0
1
8

F
u

et
a
l.

[1
2
6
]

S
u

p
er

v
is

ed
C

a
ff

e
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
h
u

fu
6
3
7
1
/
D

O
R

N

2
0
1
8

G
u

o
et

a
l.

[1
2
7
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
x
y
-g

u
o
/
L

ea
rn

in
g
-M

o
n

o
cu

la
r-

D
ep

th
-b

y
-S

te
re

o

2
0
1
8

L
i

a
n

d
S

n
a
v
el

y
[1

0
7
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
zh

en
g
q
il
i/

M
eg

a
D

ep
th

2
0
1
8

M
a

a
n

d
K

a
ra

m
a
n

[1
1
9
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
fa

n
g
ch

a
n

g
m

a
/
sp

a
rs

e-
to

-d
en

se
.p

y
to

rc
h

2
0
1
8

Z
io

u
li
s

et
a
l.

[9
0
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
V

C
L

3
D

/
S

p
h

er
ic

a
lV

ie
w

S
y
n
th

es
is

2
0
1
9

B
ia

n
et

a
l.

[1
2
8
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
J
ia

w
a
n

g
B

ia
n

/
S

C
-S

fM
L

ea
rn

er
-R

el
ea

se

2
0
1
9

C
h

en
et

a
l.

[1
2
1
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
X

t-
C

h
en

/
S

A
R

P
N

2
0
1
9

H
u

et
a
l.

[8
0
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
J
u

n
jH

/
R

ev
is

it
in

g
-S

in
g
le

-D
ep

th
-E

st
im

a
ti

o
n

2
0
1
9

L
ee

et
a
l.

[1
2
9
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
,

T
en

so
rF

lo
w

h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
co

g
a
p

le
x
-b

ts
/
b

ts

2
0
1
9

L
ie

b
el

a
n

d
K

o
rn

er
[1

3
0
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
lu

k
a
sl

ie
b

el
/
M

u
lt

iD
ep

th

2
0
1
9

N
ek

ra
so

v
et

a
l.

[1
3
1
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
D

rS
le

ep
/
m

u
lt

i-
ta

sk
-r

efi
n

en
et

2
0
1
9

Q
iu

et
a
l.

[1
3
2
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
J
ia

x
io

n
g
Q

/
D

ee
p

L
iD

A
R

2
0
1
9

W
o
fk

et
a
l.

[8
1
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
d

w
o
fk

/
fa

st
-d

ep
th

2
0
1
9

Y
in

et
a
l.

[1
3
3
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
ti

n
y
u

rl
.c

o
m

/
v
ir

tu
a
ln

o
rm

a
l

2
0
2
0

F
a
n

g
et

a
l.

[1
3
4
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ze

n
it

h
fa

n
g
/
su

p
er

v
is

ed
-d

is
p

n
et

2
0
2
0

S
a
rt

ip
i

et
a
l.

[1
3
5
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
M

A
R

S
L

a
b

-U
M

N
/
v
i-

d
ep

th
-c

o
m

p
le

ti
o
n

2
0
2
0

X
ia

n
et

a
l.

[1
3
6
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
K

ex
ia

n
H

u
st

/
S

tr
u

ct
u

re
-G

u
id

ed
-R

a
n

k
in

g
-L

o
ss

2
0
2
1

B
h

a
t

et
a
l.

[9
3
]

S
u

p
er

v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
sh

a
ri

q
fa

ro
o
q
1
2
3
/
A

d
a
B

in
s

2.3. MONOCULAR DEPTH ESTIMATION 35

T
ab

le
2.

3:
A

su
m

m
ar

y
of

u
n

su
p

er
vi

se
d

le
ar

n
in

g-
b

as
ed

M
D

E
al

go
ri

th
m

s
w

it
h

op
en

-s
ou

rc
e

im
p

le
m

en
ta

ti
on

s.

Y
ea

r
A

lg
o
ri

th
m

T
y
p

e
Im

p
le

m
en

ta
ti

o
n

S
o
u

rc
e

co
d

e

2
0
1
6

G
a
rg

et
a
l.

[8
4
]

U
n

su
p

er
v
is

ed
C

a
ff

e
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
R

a
v
i-

G
a
rg

/
U

n
su

p
er

v
is

ed
-D

ep
th

-E
st

im
a
ti

o
n

2
0
1
7

G
o
d

a
rd

et
a
l.

[8
5
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
m

rh
a
ri

co
t/

m
o
n

o
d

ep
th

2
0
1
7

Z
h

o
u

et
a
l.

[8
6
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ti

n
g
h
u

iz
/
S

fM
L

ea
rn

er

2
0
1
8

P
il
ze

r
et

a
l.

[1
3
7
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
a
n

d
re

a
-p

il
ze

r/
u

n
su

p
-s

te
re

o
-d

ep
th

G
A

N

2
0
1
8

P
o
g
g
i

et
a
l.

[8
9
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
m

a
tt

p
o
g
g
i/

p
y
d

n
et

2
0
1
8

Q
i

et
a
l.

[1
3
8
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
x
jq

i/
G

eo
N

et

2
0
1
8

Z
h

a
n

et
a
l.

[1
3
9
]

U
n

su
p

er
v
is

ed
C

a
ff

e2
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
H

u
a
n

g
y
in

g
-Z

h
a
n

/
D

ep
th

-V
O

-F
ea

t

2
0
1
9

C
a
ss

er
et

a
l.

[1
4
0
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
te

n
so

rfl
o
w

/
m

o
d

el
s/

tr
ee

/
a
rc

h
iv

e/
re

se
a
rc

h
/
st

ru
ct

2
d

ep
th

2
0
1
9

E
lk

er
d

a
w

y
et

a
l.

[1
4
1
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
se

lk
er

d
a
w

y
/
jo

in
t-

p
ru

n
in

g
-m

o
n

o
d

ep
th

2
0
1
9

F
ei

et
a
l.

[1
4
2
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
fe

ix
h

/
G

eo
S

u
p

2
0
1
9

G
o
d

a
rd

et
a
l.

[1
4
3
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
n

ia
n
ti

cl
a
b

s/
m

o
n

o
d

ep
th

2

2
0
1
9

R
a
n

ja
n

[1
4
4
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
a
n
u

ra
g
ra

n
j/

cc

2
0
1
9

T
o
si

et
a
l.

[1
4
5
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
fa

b
io

to
si

9
2
/
m

o
n

o
R

es
M

a
tc

h
-T

en
so

rfl
o
w

2
0
1
9

W
a
ts

o
n

et
a
l.

[1
4
6
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
n

ia
n
ti

cl
a
b

s/
d

ep
th

-h
in

ts

2
0
1
9

Z
io

u
li
s

et
a
l.

[1
4
7
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
V

C
L

3
D

/
S

p
h

er
ic

a
lV

ie
w

S
y
n
th

es
is

2
0
2
0

G
u

iz
il
in

i
[1

4
8
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
T

R
I-

M
L

/
p

a
ck

n
et

-s
fm

2
0
2
0

K
li
n

g
n

er
[1

4
9
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
if

n
sp

a
m

l/
S

G
D

ep
th

2
0
2
0

P
en

g
et

a
l.

[1
5
0
]

U
n

su
p

er
v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
k
sp

en
g
/
lw

-e
g
-m

o
n

o
d

ep
th

2
0
2
0

S
h
u

et
a
l.

[1
5
1
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
sc

o
n

ly
sh

o
o
te

ry
/
F

ea
tD

ep
th

2
0
2
0

X
u

e
et

a
l.

[1
5
2
]

U
n

su
p

er
v
is

ed
P

y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
T

J
-I

P
L

a
b

/
D

N
et

36 2. LITERATURE REVIEW

T
ab

le
2.

4:
A

su
m

m
ar

y
of

se
m

i-
su

p
er

vi
se

d
le

ar
n

in
g

an
d

d
om

ai
n

ad
ap

ti
on

-b
as

ed
M

D
E

al
go

ri
th

m
s

w
it

h
op

en
-s

ou
rc

e
im

p
le

m
en

ta
ti

on
s.

Y
ea

r
A

lg
o
ri

th
m

T
y
p

e
Im

p
le

m
en

ta
ti

o
n

S
o
u

rc
e

co
d

e

2
0
1
7

K
u

zn
ie

ts
o
v

[8
7
]

S
em

i-
su

p
er

v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
Y

ev
k
u

zn
/
se

m
o
d

ep
th

2
0
1
8

R
a
m

ir
ez

[1
5
3
]

S
em

i-
su

p
er

v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
C

V
L

A
B

-U
n

ib
o
/
S

em
a
n
ti

c-
M

o
n

o
-D

ep
th

2
0
1
9

A
m

ir
i

[1
5
4
]

S
em

i-
su

p
er

v
is

ed
T

en
so

rF
lo

w
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ja

h
a
n

ia
m

/
se

m
iD

ep
th

2
0
1
8

A
ta

p
o
u

r
et

a
l.

[1
5
5
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

P
y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
a
ta

p
o
u

r/
m

o
n

o
cu

la
rD

ep
th

-I
n

fe
re

n
ce

2
0
1
8

G
u

o
et

a
l.

[1
2
7
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

P
y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
x
y
-g

u
o
/
L

ea
rn

in
g
-M

o
n

o
cu

la
r-

D
ep

th
-b

y
-S

te
re

o

2
0
1
8

Z
h

en
g

et
a
l.

[1
5
6
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

P
y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ly

n
d

o
n

zh
en

g
/

S
y
n
th

et
ic

2
R

ea
li

st
ic

2
0
1
9

Z
h

a
o

et
a
l.

[1
5
7
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

P
y
T

o
rc

h
h
tt

p
s:

/
/
g
it

h
u

b
.c

o
m

/
ss

h
a
n

-z
h

a
o
/
G

A
S

D
A

2.3. MONOCULAR DEPTH ESTIMATION 37

General Supervised Methods

The general supervised methods treat MDE as a regression problem. To our

knowledge, Eigen et al. [2] introduced the first DL-based MDE algorithm. To ex-

ploit global and local information, two CNNs are employed in this work (see Fig-

ure 2.5(a)). In addition to the common scale-dependent errors, a scale-invariant

error is used as the loss function to optimize the training. The real scale of depth

information is recovered without any post-processing. This work remarkably

improved the accuracy of MDE on the NYU depth v2 [3] and KITTI [1] datasets.

Considering the continuous nature of depth values, Liu et al. [83] cast depth

estimation as a deep continuous conditional random fields (CRF) learning prob-

lem. They design a network which includes three modules: unary part, pairwise

part and continuous CRF loss layer. The input images are first segmented into

superpixels. Only image patches centered around each super-pixel are passed to

the designed network to predict depth values. The work in [2, 83] depends on

fully connected (FC) layers to predict depth values. While the FC layer yields a

full receptive field, it has a huge number of trainable parameters resulting in [83]

needing over a second to estimate a single depth map from a test image.

Laina et al. [76] introduce a fully convolutional residual network (FCRN)

for depth estimation. FCRN consists of two parts, encoder and decoder (see

Figure 2.5(b)). The encoder is modified from ResNet-50 [41] by removing the FC

layers and the last pooling layer. The decoder guides the network into learning

its upscaling via a series of upsample and convolutional layers. The removal

of FC layers significantly reduces the number of learnable parameters. Their

experiments demonstrate that with the increase of network depth, the accuracy

apparently increases, because a deeper network leads to a larger receptive field

and captures more context information. Inspired by this finding, CNNs with more

38 2. LITERATURE REVIEW

than 100 layers e.g., ResNet-101/152 [41], DenseNet-169 [42] or SENet-154 [43]

have been applied to MDE.

Based on DenseNet-169 [42], Alhashim and Wonka [125] design a densely

connected encoder-decoder architecture. Unlike [76], they use a simple decoder

method which consists of a bilinear upsampling and two convolution layers.

With the deeper network architecture, elaborated augmentation and training

strategies, the designed network generates more accurate results on the NYU

depth v2 [3] and KITTI [1] datasets. To effectively guide the mapping from

the densely extracted features to the desired depth estimation, Lee et al. [129]

design a local planar guidance (LPG) layer and apply it to each decoding stage.

The output from the LPG layers has the same size as the desired depth map.

Then, the outputs are combined to get the final estimation. Yin et al. [133]

construct a geometric constraint in the 3D space for depth estimation through

designing a novel loss function. The designed loss function combines geometric

with pixel-wise depth supervisions, which enables the depth estimation network

produces accurate depth map and high quality 3D point cloud.

Hu et al. [80] combine an encoder-decoder module with a multi-scale feature

fusion (MSFF) module and a refinement module. The MSFF module upscales

feature maps from different encoder layers to the same size and then concatenate

it channel by channel. Features from the MSFF module are combined with

features from the decoder and then fed to the refinement module to generate

the final prediction. The other contribution of [80] is a hybrid loss function,

which measures errors in depth, gradients and surface normals. Inspired by [80],

Chen et al. [121] design a Structure-Aware Residual Pyramid Network (SARPN)

to exploit scene structures in multiple scales for MDE. SARPN includes three

parts, an encoder which extracts multi-scale features, an adaptive dense feature

2.3. MONOCULAR DEPTH ESTIMATION 39

fusion module for dense feature fusion and a residual pyramid decoder. The

residual pyramid decoder estimates depth maps at multiple scales to restore the

scene structure in a coarse-to-fine manner.

Fu et. al. [126] discretize the continuous depth into a series of intervals and

transfer depth estimation to an ordinal regression problem. As the uncertainty

of the estimated depth increases along with the ground-truth depth values, the

common uniform discretization (UD) strategy may result in an over-strengthened

loss for the large depth values. To solve this problem, a spacing increasing

discretization (SID) strategy is designed to discretize the depth values. With

the obtained discrete depth values, an ordinal regression loss which involves the

ordered information between discrete labels is applied to train the network.

Bhat et al. [93] divide the estimated depth range into bins where the bin widths

change per image. This enables the network to learn to adaptively focus on the

regions of different depths. The main contribution of [93] is a Mini-ViT module

consisting of four transformer layers [50]. Being designed as a variant of ViT [52],

Mini-ViT takes as input the multi-channel feature map of the input image to

compute global information at a high resolution and outputs bin-widths and

range-attention-maps showing the likelihood of each bin. Unlike Fu et al. [126]

estimate depth as the bin center of the most likely bin. The final depth of [93]

is the linear combination of bin centers weighted by the probabilities. Therefore,

this approach generates smoother depth maps.

In recent years, omnidirectional cameras have become more and more popu-

lar. Depth estimation from single 360◦ images [90, 158] also being explored by

researchers. Compared with the regular cameras, omnidirectional cameras have a

larger field of view (FoV) which enables them to record the entire surroundings.

According to Google Scholar, the first work to estimate a depth map from an

40 2. LITERATURE REVIEW

omnidirectional image is OmniDepth [90]. The main contribution of [90] is

a dataset consisting of 360◦ RGB-depth pairs. Since acquiring 360◦ datasets

with ground-truth is difficult, the authors resort to re-use recently released 3D

datasets to produce diverse 360◦ view images. Wang et al. [158] propose a

two-branch framework which combines equirectangular and cubemap projection

to infer depth from monocular 360◦ images. The two branches take equirect-

angular image and cubemap as input, respectively. The produced features are

combined by a bi-projection fusion block to exploit the shared feature represen-

tations.

In addition to CNNs, Recurrent Neural Networks (RNNs) are also applied to

MDE. RNNs are a class of neural networks that model the temporal behavior of

sequential data through hidden states with cyclic connections. Unlike CNNs that

back-propagate gradient through the network, RNNs additionally back-propagate

the gradient through time. Therefore, RNNs can learn dependencies across time.

As an extension of the regular RNN, the long short-term memory (LSTM) is able

to learn long-term dependencies within the input sequence.

Kumar et al. [159] design a convolutional LSTM (ConvLSTM) based encoder

and decoder architecture to learn depth from the spatio-temporal dependencies

between video frames. The encoder consists of a set of ConvLSTM layers and the

decoder includes a sequence of deconvolutional and convolutional layers. Each

ConvLSTM layer has N states that correspond to the number of timestamps,

thus, the network learns depth maps from N consecutive video frames. Zhang

et al. [160] exploit spatial and temporal information for depth estimation by

combining ConvLSTM and Generative Adversarial Network (GAN). In addition,

a temporal consistency loss is designed to further maintain the temporal con-

sistency among video frames. The designed temporal loss is combined with the

2.3. MONOCULAR DEPTH ESTIMATION 41

spatial loss to update the model in an end-to-end manner.

A RNN-based multi-view method for learning depth and camera pose from

monocular video sequences is introduced by [161]. The ConvLSTM units are

interleaved with convolutional layers to exploit multiple previous frames in each

estimated depth map. With the model of multi-views, the image reprojection

constraint between multi-view images can be incorporated into the loss function.

Additionally, a forward-backward flow-consistency constraint is applied to solve

the ambiguity of image reprojection by providing additional supervision.

Monocular Depth Estimation by Classification

For different pixels in a single image, the possible depth values may have different

distributions. Therefore, depth estimation can be formulated as a pixel-wise

classification task by discretizing the continuous depth values into segments [77,

79,162–164]. Cao et al. [77] design a fully convolutional deep residual network to

estimate the depth range. Li et al. [79] propose a hierarchical fusion dilated CNN

to learn the mapping between the input RGB image and corresponding depth

map. A soft-weighted-sum inference is proposed to transfer the discretized depth

scores to continuous depth values.

Following [77,79,162], Zou et al. [164] cast depth estimation as a classification

problem but take probability distribution into account in the training step. The

main contribution of [164] is a novel mean-variance loss which consists of a mean

loss and a variance loss. The mean loss is used to penalize the error between

the mean of estimated depth distribution and the ground-truth. Meanwhile,

the variance loss is complementary to the mean loss and makes the distribution

sharper. The mean-variance loss is combined with the softmax loss to supervise

the training of the depth estimation network.

42 2. LITERATURE REVIEW

In addition, depth estimation can also be solved by combining depth regression

and depth interval classification together [130, 165]. Song et al. [165] exploit

the shared features from the semantic labels, contextual relations and depth

information in a unified network. They use a FCN-based network to encode the

input RGB images into high-level semantic feature maps. The generated feature

maps are passed to a two step decoder. In the first step, the feature maps are

sampled and fed into a “semantic decoder” to up-sample semantic class labels,

and a “depth decoder” to estimate the depth map. Subsequently, the semantic

map and depth map are refined at the class and pixel levels by a CRF layer.

At last, the classification and regression tasks are integrated to model the depth

estimation process by a joint-loss layer and produce the final depth map.

Multi-Task Learning Based Methods

Depth estimation and other applications such as semantic segmentation and

surface normal estimation are correlated and mutually beneficial. For example,

semantic maps and depth maps reveal the layout and object boundaries/shapes

[166]. In order to take advantage of the complementary properties of these tasks,

multi-task learning in a unified framework has been explored [75, 131, 138, 167–

172].

Eigen and Fergus [75] design a unified three-scale network for three different

tasks, depth estimation, surface normal estimation and semantic segmentation.

The first scale block estimates a coarse global feature from the entire image.

Then the feature map is passed to the second and third scale blocks. The second

scale block produces mid-level resolution estimations, and the third scale outputs

higher resolution estimations at half size of the input image. The designed

network can be trained for three different tasks by changing the output layer

2.3. MONOCULAR DEPTH ESTIMATION 43

and the loss function.

Inspired by the global network of [2], Wang et al. [167] propose a CNN

that jointly estimates pixel-wise depth values and semantic labels. To obtain

fine-level details, the authors decompose input images into local segments and

use the global layouts to guide the estimation of region-level depth and se-

mantic labels. With the global and local estimations, the inference problem

is formulated to a two-layer hierarchical CRF to produce the refined depth

and semantic map. Jafari et al. [168] design a modular CNN to jointly solve

MDE and semantic segmentation problems. The designed network consists of

an estimation module and a refine module. The estimation module utilizes [75]

and [173] as sub-networks for different tasks respectively. During training, the

two sub-networks positively enforce each other and mutually improve each other.

The refine module incorporates the output of the estimation module and produces

refined estimations.

The abovementioned methods [75,167,168] require training images have pixel

level labels with depth and semantic class ground-truth. It is difficult to collect

such datasets, especially for outdoor scenarios. Gurram et al. [169] solve this

problem by leveraging depth and semantic information from two heterogeneous

datasets to train a depth estimation CNN. The training process is divided into

two steps. In the first step, a multi-task learning scheme is applied for pixel-level

depth and semantic classification. In the second step, the regression layers take

as input the classified depth maps in order to generate the final depth maps.

Qi et al. [138] design a Geometric Neural Network (GeoNet) that jointly

learns depth and surface normals from monocular images. Being designed as

a two-stream CNN, GeoNet consists of a depth to normal (DTN) network and

a normal to depth (NTD) network. The DTN network infers surface normal

44 2. LITERATURE REVIEW

from depth map via the least square solution and a residual module, while the

NTD network refines the depth estimation from the estimated surface normal

and initial depth map. Hesieh et al. [171] propose a multi-task learning network

through adding a depth estimation branch to YOLOv3 [174]. During the process

of training, a L1 distance depth estimation loss (
∑N

i |depthi − depth∗i |, where

N is the amount of objects in a batch, depthi and depth∗i denote the estimated

and ground-truth object depth) is added to the object detection loss function to

update the parameters of the network.

Abdulwahab et al. [172] introduce a framework for predicting the depth and

3D pose of the main objects shown in the input image. The proposed framework

stacks a GAN block and a regression CNN block in series connection. The GAN

block is trained with a loss function for feature matching which enables the

network to generate a dense depth map from an input image. The regression

block incorporates the generated depth map to predict the 3D pose. The super-

vised multi-task learning methods estimate depth maps with other tasks such as

semantic estimation and surface normal estimation can improve the accuracy of

the depth map. However, it is difficult to collect datasets with depth labels and

other labels.

Real-Time Supervised Monocular Depth Estimation

The aforementioned algorithms are based on complex DNNs which are challenging

for real-time requirements. In order to enable MDE network to run at the

real-time speed on embedded platforms, Spek et al. [91] build a lightweight depth

estimation network on top of the “non-bottleneck-1D” block [175]. The designed

network runs about 30fps on the Nvidia-TX2 GPU, but its accuracy is inferior.

Later, Wofk et al. [81] develop a lightweight encoder-decoder network for

2.3. MONOCULAR DEPTH ESTIMATION 45

MDE. Moreover, a network pruning algorithm is applied to further reduce the

amount of parameters. Experimental results on the NYU depth v2 dataset show

that the obtained depth estimation network runs at 178 fps on an Nvidia-TX2

GPU, while the RMSE and δ1 values are 0.604 and 0.771 respectively. Inspired

by the densely-connected encoder-decoder architecture [125], Wang et al. [176]

design a highly compact network named DepthNet Nano. DepthNet Nano applies

densely connected projection batchnorm expansion projection (PBEP) modules

to reduce network architecture and computation complexity while maintaining

the representative ability.

Supervised learning-based methods require vast amounts of depth images as

ground-truth for training, allowing these methods to achieve high accuracy for

MDE. However, collecting this ground-truth data from the real world requires

depth sensing devices such as LiDAR or RGB-D cameras, which increases the

expense. In addition, these sensors require accurate extrinsic and intrinsic cali-

bration, any error in calibration results in an inaccurate ground-truth. Therefore,

unsupervised learning-based methods [84–86] which do not require ground-truth

are attracting attention.

Depth Estimation with Unsupervised Learning

Unsupervised learning methods take as input stereo images or video sequences

with small changes in camera positions between frames as two continuous frames

can be treated as stereo images. These methods formulate depth estimation as

an image reconstruction problem, where depth maps are an intermediate product

that integrates into the image reconstruction loss. The pipeline of unsupervised

learning-based methods (see Figure 2.4(b)) can be described as follows: the

network incorporates two images (name it IL and IR) of the same scene but

46 2. LITERATURE REVIEW

with slightly different perspectives. Subsequently, the depth map is estimated for

IL, and the obtained depth map is represented by DL. With DL and the camera

motion between images, IR can be warped to an image which is similar to IL

through Equation (2.8):

IR(DL)→ ĨL, (2.8)

where ĨL is the warped image. The network can be trained with the reconstruc-

tion loss formulated in Equation (2.9):

loss = L(ĨL, IL). (2.9)

General Unsupervised Methods

According to our literature review, Garg et al. [84] developed the first unsuper-

vised learning method for MDE. In this work, image pairs with known camera

motion are fed to the network to learn the non-linear transformation between the

source image and depth map. The color constancy error between the input image

and the inverse-warped target image is used as the loss to optimize the update of

network weights. In addition to camera motion, the correspondence between the

left and right images is another cue for unsupervised MDE. Godard et al. [85]

train an encoder-decoder network in an unsupervised manner by designing a

left-right consistency loss. With the calibrated stereo image pairs and epipolar

geometry constraints, the designed method does not need ground-truth depth as

supervisory signal. Both [84] and [85] require calibrated stereo pairs for training.

Therefore, datasets without stereo images [3,82] cannot be applied to train these

methods.

2.3. MONOCULAR DEPTH ESTIMATION 47

Mahjourian et al. [177] alleviate the dependence on stereo images by exploiting

the consistency between depth and ego-motion from continuous frames as super-

visory signal for training. Tosi et al. [145] propose an unsupervised framework

that infers depth from a single input image by synthesizing features from a

different point of view. The designed network includes three parts: multi-scale

feature extractor, initial disparity estimator and disparity refinement module.

Given an input image, high-level features at different scales are extracted by the

multi-scale feature extractor. The extracted features are passed to the initial

disparity estimator to predict multi-scale disparity maps that aligned with the

input and synthesized right view image. The refinement module refines the initial

disparity by performing stereo matching between the real and synthesized feature

representations.

Ma et al. [178] extend [119] to an unsupervised approach. The input sparse

depth maps and the RGB images are pre-processed by initial convolutions sepa-

rately. The output features are concatenated into a single tensor, which are passed

to the encoder-decoder framework. The network is trained in an unsupervised

scheme. Besides, the authors use the Perspective-n-Pose method to estimate

pose, which assumes that the input sparse depth is noiseless and susceptible to

failure in low image texture situations. Based on [178], Zhang et al. [179] design

a framework that jointly learns depth and pose from monocular images. The

temporal constraint is applied to measure the reprojection error and provides

a training signal to depth and pose CNNs simultaneously. The reprojection

error signal works on the noisy sparse depth input, while the ground-truth depth

provides scale information and supervises the training of depth estimation.

Fei et al. [142] design an unsupervised network that uses the global orientation

and the semantics of the scene as the supervisory signal. Unlike previous work

48 2. LITERATURE REVIEW

that computes the surface normals from the depth values first and then impose

regularity, they directly regularize the depth values via the scale-invariant con-

straint. Guizilini et al. [180] utilize semantic information to guide the geometric

representation learning of MDE. The designed architecture is built within an

unsupervised scheme [148]. It consists of two networks, one responsible for depth

estimation whilst the other performs semantic segmentation. During training,

only the depth estimation network is optimized, while the weights of the semantic

segmentation network are fixed to guide the depth estimation network to learn

features via pixel-adaptive convolutions. Recently, Johnston and Carneiro [181]

introduce a discrete disparity volume to regularize the training of an unsupervised

network. The designed method enables the network to predict sharper depth map

and pixel-wise depth uncertainties.

Multi-Task Learning Based Methods

Zhou et al. [86] present a method that jointly learning depth maps and camera

motion from monocular videos. The proposed framework stacks a depth network

[182] and a pose network. The produced depth maps and relative camera pose are

applied to inverse warp the source views to reconstruct the target view. By using

view synthesis as the supervisory signal, the entire framework can be trained in

an unsupervised manner. Due to the dependence on two frame visual odometry

estimation method, this network suffers from the per frame scale ambiguity

problem.

Inspired by [86], Prasad and Bhowmich [183] use epipolar constrains to op-

timize the joint learning of depth and ego-motion. The main idea behind the

training is similar to [182]. Instead of using epipolar constrains as labels for

training, the authors apply it to weight the pixels to guide the training. Klodt

2.3. MONOCULAR DEPTH ESTIMATION 49

and Vedaldi [184] modify [86] in the following aspects. Firstly, a structural similar

loss is imported to strengthen the brightness constancy loss. Besides, an explicit

model of confidence is incorporated to the network by predicting each pixel a

distribution over possible brightnesses. Finally, a SfM algorithm [185] is applied

to the network to provide supervisory signal for the training of depth estimation

network.

Vijayanarasimhan et al. [186] design “SfM-Net,” a geometry-aware network

capable of estimating depth, camera motion and dynamic object segmentation.

The designed network includes two sub-networks, the structure network learns

to estimate depth while the motion network predicts camera and object motion.

The outputs from both sub-networks are then transformed into optical flow by

projecting the point cloud from depth estimation to the image space. Thus,

the network can be trained in an unsupervised manner through minimizing the

photometric error. Dai et al. [187] propose a self-supervised learning framework

for jointly estimating individual object motion and depth from monocular video.

Instead of modeling the motion by 2D optical flow or 3D scene flow, the object

motion is modeled and predicted in the form of full 6 degrees of freedom (DoF).

Joint learning of depth estimation and pose estimation is usually done under

the assumption that a consistent scale of CNN-based MDE and relative pose

estimation can be learned across all input samples. This hypothesis degrades the

performance in environments where the changes of relative pose across sequences

are significantly remarkable. In order to tackle the problem of scale inconsistency,

Bian et al. [128] design a geometry consistency loss as shown in Equation (2.10).

With the proposed loss function, the depth and ego-motion networks are trained

in monocular videos to predict scale-consistent results. Given any two continuous

images (Ia, Ib) from an unlabeled video, they first use a depth network to compute

50 2. LITERATURE REVIEW

the corresponding depth maps (Da, Db), and then compute the relative 6 DoF

pose Pab between them using a pose network. With the obtained depth and

relative camera pose, the warped Da
b is computed by transforming Da to 3D space

and projecting it to Ib using Pab. The inconsistency between Da
b and D

′

b are used

as geometric consistency loss LGC to supervise the training of the network. LGC

is defined in Equation (2.10).

LGC =
1

|V |
∑
p∈V

Ddiff (p), (2.10)

where V represents valid points that are successfully projected from Ia to the

image plane of Ib, |V | means the number of points in V , and Ddiff stands for the

depth inconsistency map. For each point p in V , Ddiff is defined in Equation

(2.11):

Ddiff (p) =
|Da

b (p)−D
′

b(p)|
Da
b (p) +D

′
b(p)

. (2.11)

In order to mitigate the influence of moving objects and occlusions on network

training, Bian et al. design a self-discovered mask M (M = 1 − Ddiff) which

assigns low/high weights for inconsistent/consistent pixels.

Zhao et al. [188] present a joint learning method for depth and pose. Unlike

[86] and [183] utilize PoseNet [189] to recover relative pose, the work in [188]

directly predicts relative pose by solving the fundamental matrix from dense

optical flow correspondence and apply a differentiable two-view triangulation

module to recover an up-to-scale 3D structure. The depth error is measured

after a scale adaptation from the estimated depth to the triangulated structure

and the reprojection error between depth and optical flow is computed to further

enforce the end-to-end joint training.

Zou et al. [190] present an unsupervised framework to jointly learn depth

2.3. MONOCULAR DEPTH ESTIMATION 51

and optical flow from monocular video sequences. In addition to the regular

photometric and spatial smoothness loss, a cross-task consistency loss is designed

to provide additional supervisory signals for both tasks. Yin and Shi [191] jointly

learn depth, optical flow and camera pose in a unified network. They use a rigid

structure reasoning module to infer scene architecture, and a non-rigid motion

refinement module to cope with the effect of dynamic objects. These two modules

work in different stages, and the view synthetics are used as a basic supervision

for the unsupervised learning paradigm. Furthermore, an adaptive geometric

consistency loss is designed to tackle the occlusions and texture ambiguities that

is not included in pure view synthesis objectives.

Ranjan et al. [144] learn depth along with camera motion estimation, optic

flow estimation and motion segmentation. To achieve the goal of joint learning,

they design a Competitive Collaboration (CC) learning method. It consists of two

modules, the static scene reconstructor infers the static scene pixels using depth

and camera motion, and the moving region reconstructor reasons about pixels in

the independently moving regions. Those two modules compete for a resource

whilst being regulated by a moderator, the motion segmentation network. The

CC method coordinates the training of multiple tasks and achieves performance

gains in both tasks.

Adversarial Learning Based Methods

In addition to learning depth from view-synthesis or minimizing photometric

reconstruction error, unsupervised MDE [88, 124, 137, 192, 193] has also been

solved by generative adversarial networks (GANs). GANs consist of a generator

network and a discriminator network (see Figure 2.5(d)). Those two networks

are trained by the back-propagation algorithm, thus they can work together to

52 2. LITERATURE REVIEW

construct unsupervised learning models. Since there is no ground-truth depth in

unsupervised learning, the discriminator distinguishes between the synthesized

and the real images.

Aleotti et al. [88] present the first GAN for unsupervised MDE. The generator

network is trained to infer a depth map from the input image to generate a

warped synthesized image. The discriminator network is trained to distinguish

the warped image and the input real image. Since the quality of the estimated

depth maps has an effect on the warped synthesized images, the generator is

forced to generate more accurate depth maps. Mehta et al. [124] introduce a

structural adversarial training method which predicts dense depth maps using

stereo-view synthesis. Given a monocular image, the generator network outputs

a dense disparity maps. With the produced disparity map, multi-view stereo pairs

corresponding to the input image view are generated. The discriminator network

distinguishes these reconstructed views from the real views in the training data.

Wang et al. [192] integrate adversarial learning with spatial-temporal geo-

metric constraints for the joint learning of depth and ego-motion. The generator

combines depth-pose net with direct visual odometry DVO to produce a syn-

thesized image. The combination of PoseNet and DVO generates a fine-grained

pose estimation and provides an effective back-propagation gradient to the depth

network. Meanwhile, the discriminator takes the synthesized and original images

to distinguish the reconstructed and real images. Almalioglu et al. [193] design

an adversarial and recurrent unsupervised learning framework. The designed

network consists of a depth generator and a pose regressor. With the produced

depth map, 6 DoF camera pose and color values from the source images, the view

reconstruction module synthesizes a target image. The discriminator network

distinguishes the synthesized target image from the real target image.

2.3. MONOCULAR DEPTH ESTIMATION 53

Real-Time Unsupervised Monocular Depth Estimation

Although these works achieve promising performance, however, they all have

fairly deep and complex architectures. Therefore, real-time speed can only be

achieved on high performance GPUs, which inhibits their application in au-

tonomous driving or robotics. To tackle the problem of running speed, Poggi et

al. [89] stack a simple encoder and multiple small decoders working in a pyramidal

structure. The designed network only has 1.9M parameters and requires 0.12s

to produce a depth map on a i7-6700K CPU, which is close to a real-time

speed. Liu et al. [194] introduce a lightweight model (named MiniNet) trained

on monocular video sequences for unsupervised MDE. The core part of MiniNet

is DepthNet, which iteratively utilizes the recurrent module-based encoder to

extract multi-scale feature maps. The obtained feature maps are passed to the

decoder to generate multi-scale disparity maps. MiniNet achieves real-time speed

about 54fps with 640× 192 sized images on a single Nvidia 1080Ti GPU.

Unsupervised learning methods formulate MDE as an image reconstruction

problem and use geometric constraints as supervisory signal. Those methods

take stereo images or monocular image sequences as input to learn geometry

constraints between the left and right images or continuous frames. Unsupervised

learning methods do not require ground-truth in the training process, which

avoids the expense of collecting ground-truth depth maps. However, due to

the absence of ground-truth the accuracy rate is inferior to supervised learning

methods (see Tables 2.5 and 2.6).

Depth Estimation with Semi-supervised Learning

Unsupervised learning methods eliminate the dependence on ground-truth, which

is time-consuming and expensive to obtain. However, their accuracy is limited by

54 2. LITERATURE REVIEW

stereo construction. With this motivation, semi-supervised methods [87, 92, 153,

154,195–197] use a small amount of labeled data and a large amount of unlabeled

data to improve the accuracy of depth estimation.

The general semi-supervised MDE network works as follows (see Figure 2.4(c)).

First, the model is trained with a small amount of labeled training data until it

achieves good performance. Then the trained network is used with unlabeled

training data to produce outputs known as pseudo labels which may not be quite

accurate. The labels and input images from the labeled training data are linked

with the generated pseudo labels and input images in the unlabeled training data.

Finally, the model is trained in the same way as the first step.

General Semi-supervised Methods

Kuznietsov et al. [87] design the first semi-supervised learning MDE method by

combining supervised and unsupervised loss terms together. The MDE network

is trained with the image-sparse depth pairs and unlabeled stereo images. The

unsupervised learning-based on direct image alignment between the stereo im-

ages is utilized to complement supervised training. Experiments show that the

semi-supervised results outperform the supervised and unsupervised results (see

Tables 2.5 and 2.6 for numerical indicators). Amiri et al. [154] extend [85] to

a semi-supervised network through using sparse ground-truth data as additional

labels for supervised learning. In the training stage, LiDAR data is used as the

supervisory signal, and rectified stereo images are used for unsupervised training.

Ji et al. [196] introduce a semi-supervised adversarial learning network that is

trained on a small number of image-depth pairs and a large number of unlabeled

monocular images. The proposed framework consists of a generator network

for depth estimation and two discriminator networks to measure the quality

2.3. MONOCULAR DEPTH ESTIMATION 55

of the estimated depth map. During training, unlabeled images are passed to

the generator to output depth maps. The two discriminator networks provide

feedback to the generator as a unified loss to enable the generator output depth

map that accords with the natural depth value distribution. Meanwhile, Guizilini

et al. [197] propose a novel supervised loss which optimizes the re-projected depth

in the image space. The designed loss term operates under the same conditions

as the photometric loss, by re-projecting depth errors back onto the image space.

Hence, the depth labels are incorporated into an appearance-based unsupervised

learning method and generates a semi-supervised approach.

Semi-supervised Methods with Other Tasks

Ramirez et al. [153] propose a semi-supervised network for joint learning of

semantic segmentation and MDE. The network has a shared encoder, a depth

decoder and a semantic decoder. The MDE task is trained with unsupervised

image re-projection loss, while semantic segmentation is trained in the super-

vised manner. During training time, the semantic segmentation branch provides

feedback to the encoder which enables a shared feature representation of both

tasks. In addition, a cross-domain discontinuity is proposed to improve the

accuracy of depth estimation. Yue et al. [198] present a semi-supervised MDE

framework which consists of a symmetric depth estimation network and a pose

estimation network. The RGB image and its semantic map are passed to each

sub-network of the framework to produce an initial depth map and a semantic

weight map separately. The two are integrated to generate the final depth map.

The pose estimation network outputs a 6 DoF pose for view synthesis. The

depth estimation network is trained by minimizing the difference between the

synthesized view and target view.

56 2. LITERATURE REVIEW

Tian and Li [195] introduce a confidence learning-based semi-supervised algo-

rithm by stacking a depth network and a confidence network. The depth network

can be any MDE network, e.g., [2, 76], which takes an RGB image as input and

produces a depth map, while the confidence network incorporates an RGB image

image and the produced depth map to generate a spatial confidence map. The

produced confidence map is then utilized as the supervisory signal to guide the

training of depth network on unlabeled data. Inspired by the student-teacher

strategy, Cho et al. [92] design a semi-supervised learning framework that stacks

a stereo matching network and an MDE network. The stereo matching network

[199] which trained with ground-truth is used as teacher to produce depth maps

from the stereo image pairs. Then stereo confidence maps are predicted to cope

with the estimation error from the stereo matching network. The generated

depth maps and stereo confidence maps are used as “pseudo ground-truth” to

supervise the training of a shallow MDE network. With this method, the MDE

network performs as accurately as the deeper teacher network, and yields better

performance than directly learning with ground-truth data.

Semi-supervised learning methods learn depth from a small amount of la-

beled data and a large amount of unlabeled data. The labeled data can be

some auxiliary information, e.g., sparse depth or semantic maps, which enables

the estimated depth maps more accuracy than unsupervised learning methods.

Semi-supervised learning methods alleviate the dependence on ground-truth to

some extent, however, it still requires a large amount of unlabeled data in training.

Monocular Depth Estimation with Domain Adaptation

The above subsections review DNN-based MDE methods trained on data col-

lected in real world. Recent advances in computer graphics and modern high-level

2.3. MONOCULAR DEPTH ESTIMATION 57

generic graphic platforms such as game engines make it possible to generate a

large set of synthetic 3D scenes. With the constructed scenes, researchers can

capture a large amount of synthetic images and their corresponding depth maps

to train the MDE model. While training MDE models on synthetic data mitigates

the cost of collecting real datasets consist of a large set of image-depth pairs, the

produced models normally do not generalize well to the real scenes because of the

inherent domain gap1. To tackle this problem, domain adaptation-based methods

first train MDE networks on synthetic data to mitigate the effect of domain gap,

making the synthetic data representative of real data (see Figure 2.4(d)) have

been proposed.

Domain Adaptation via Fine-tuning

Approaches reviewed in this subsection first train a network on images from a

certain domain such as synthetic data, and then fine-tune it on images from the

target domain. According to our investigation, DispNet [182] is the first work

that apply fine-tuning to overcome domain gap for depth estimation. DispNet is

first trained on a large synthetic dataset, and then fine-tuned on a smaller dataset

with ground-truth. Guo et al. [127] first apply synthetic data to train a stereo

matching network. Subsequently, the stereo matching network is fine-tuned on

real data. Finally, the produced disparity maps from the stereo network are used

as ground-truth to train the MDE network. Experimental results show that [127]

outperforms Eigen et al. Fine [2], [85,86], and Kuznietsov et al. supervised [87].

The fine-tuning based methods require a certain amount of ground-truth

depth from the target domain. However, suitable ground-truth depth is only

available for a few benchmark datasets, e.g., KITTI. Furthermore, in practical

1Due to the distinctions in the intrinsic nature of different domains, the model trained on
data from one domain is often incapable of performing well on data from another domain.

58 2. LITERATURE REVIEW

settings collecting RGB images with corresponding ground-truth depth maps

requires expensive sensors (e.g., LiDAR) and accurate calibration. Since this

procedure is complicated and costly, collecting enough real data to perform

fine-tuning in the target domain is seldom feasible [200].

Domain Adaptation via Data Transformation

Methods reviewed in this part transform data in one domain to look similar

in style to the data from another domain. Atapour-Abarghouei et al. [155]

introduce a GAN-based style transfer approach to adapt the real data to fit

into the distribution approximated by the generator in the depth estimation

model. In order to infer depth maps, a stereo matching network is applied to

compute disparity from pixel-wise matching. Compared with methods which

directly learn from synthetic data, [155] generalizes better from synthetic domain

to real domain. Zheng et al. [156] develop an end-to-end trainable framework that

consists of an image translation network (GS→R, where S means synthetic and R

means real) and a MDE network (fT). The image translation network takes as

input the synthetic and real training images. For the real images, GS→R behaves

as an autoencoder and uses a reconstruction loss to apply minimal change to the

images. For the synthetic data, GS→R uses a GAN loss to translates synthetic

images into the real domain. The translated images are fed to fT to estimate

depth maps which are compared to the synthetic ground-truth depth maps.

However, [155, 156] does not consider the geometric structure of the natural

images from the target domain. Zhao et al. [157] exploit the epipolar geome-

try between the stereo images and design a geometry-aware symmetric domain

adaptation network (GASDA) for MDE. The designed framework consists of a

style transfer network and a depth estimation network. Since the style transfer

2.3. MONOCULAR DEPTH ESTIMATION 59

network considers both real-to-synthetic and synthetic-to-real translations, two

depth estimators can be trained on the original synthetic data and the generated

realistic data in supervised manners respectively.

The data transformation-based methods achieve domain invariance in terms

of visual appearance by mitigating the cross-domain discrepancy in image layout

and structure. It suffers a drop in accuracy when dealing with environments

that are different in appearance and/or context from the source domain [200].

Moreover, sudden change of the illumination or the saturation in images may in-

fluence the quality of the transformed images, which will impair the performance

of depth estimation [201].

Domain adaptation enables MDE networks trained on the synthetic data are

adapted to real data, which reduces the cost of collecting ground-truth depth in

real-world environments. It is a promising technique for addressing the unavail-

ability of large amounts of labeled real data.

2.3.5 Other Related Methods of MDE

In this section, we review methods for constructing a dense depth map on top

of a sparse depth map from LiDAR or Simultaneous Localization and Mapping

(SLAM). These methods take as input the sparse depth maps and the aligned

RGB images to fill-in missing data in the sparse depth maps. The reviewed

methods are referred to in the literature as “depth completion.”

Sparse Depth Maps from LiDAR

To the best of our knowledge, Liao et al. [202] is the first to perform depth com-

pletion. Given a partially observed depth map, the first step is to generate a dense

reference depth map via projecting the 2D planar depth values along the gravity

60 2. LITERATURE REVIEW

direction. The reference depth map is concatenated with the corresponding image

and passed to the network which combines both classification and regression losses

for estimating the continuous depth value. Ma and Karaman [119] concatenate a

set of sparse depth points from LiDAR with an RGB image in channel dimension

to train a depth estimation network. Unlike [202], the sparse depth data is

randomly sampled from the ground-truth depth image in order to complement

the RGB data.

Since the depth data and RGB intensities represent different information,

Jaritz et al. [203] fuse sparse depth data and RGB images in a late fusion method.

Specifically, the RGB image and sparse depth are processed by two encoders

separately. The generated feature maps are concatenated along the channel axis

and then fed to the decoder network to generate a dense depth map. [119,202,203]

use depth data to update model weights in the process of training. Wang et

al. [204] design a Plug-and-Play (PnP) module to improve the accuracy of existing

MDE networks by using sparse depth data in the process of inference. For the

general training of the MDE network, the aim is to minimize the error between the

estimation f(I) and ground-truth D∗, with respect to the network f parametrized

by θ through Equation (2.12):

θ∗ = argminL(f(I; θ), D∗), (2.12)

where L(·, ·) is the loss function. Both the model parameters θ and the input I can

affect the estimated depth f(I; θ), but only the parameters are updated in the

process of training. The designed PnP module utilizes the gradient computed

from the sparse depth map to update the intermediate feature representation,

which is a function of I.

2.3. MONOCULAR DEPTH ESTIMATION 61

Chen et al. [205] design a 2D-3D fusion block for the joint learning of 2D

and 3D feature representations. The designed block consists of a multi-scale 2D

convolution branch and a 3D continuous convolution branch. These two branches

extract features from the RGB image and the sparse depth data separately, and

the generated feature maps are fused via element-wise summation. With this

design, various sized networks can be created by stacking 2D-3D fusion block

sequentially. Qiu et al. [132] infer dense depth maps from the sparse depth

maps and the RGB images while using surface normals as the intermediate

representation. The designed network consists of a color branch and a surface

normal branch. These two branches take as input the RGB image and sparse

depth respectively. The color branch directly outputs a dense depth map. The

surface normal branch first produces a surface normal image which is fused with

the sparse input and a confidence mask from the color branch to produce a dense

depth map. Depth maps from different branches are then fused by an attention

mechanism to compute the final depth.

Sparse Depth Maps from SLAM

Yang et al. [57] utilize sparse depth maps from ORB-SLAM [206] to guide the

learning of a dense depth map and a confidence map. The RGB image and sparse

depth map are separately processed by a convolutional layer and a max pooling

layer. The generated feature maps from the RGB image and the sparse depth map

are then concatenated together and processed by another convolutional layer. The

fused feature maps are passed to an encoder-decoder network to generate a dense

depth map. Sartipi et al. [135] use RGB images, learned surface normals and

sparse depth from visual-inertial SLAM (VI-SLAM) to infer dense depth maps.

Since the depth map from VI-SLAM is more sparse, a sparse-depth enrichment

62 2. LITERATURE REVIEW

step is performed to increase its density. The enriched sparse depth maps along

with the RGB images and surface normals are passed to the depth completion

network to produce dense depth maps.

Depth completion methods integrate the RGB images and sparse depth infor-

mation to generate dense depth maps. The RGB images provide color, texture,

contextual and scene structure information, while the sparse depth maps provide

a rough geometric structure of the scene. Since the two input data are com-

plementary, depth completion methods produce higher accuracy rate than MDE

methods [119,202].

2.3.6 Discussion and Comparison

In order to evaluate and compare the MDE methods, we summarize the quan-

titative results of 42 representative methods on the KITTI dataset [1]. The

performance comparison of the summarized methods is listed in Tables 2.5 and

2.6, including error metric (Abs Rel, Sq Rel, RMSE and RMSE log, lower is

better), accuracy metrics (δ1, δ2 and δ3, higher is better) and running time (tGPU).

The results listed in Tables 2.5 and 2.6 are from their respective papers.

Accuracy

According to Tables 2.5 and 2.6, all DL-based methods show much better results

than the traditional Make3D method [82]. Thus, Make3D is not applicable in

any recent application. We observe that the overall development trend of MDE

is to push the increase of accuracy. Among the four categories of methods, the

supervised learning method generates the best error and accuracy metric results,

followed by the semi-supervised, domain adaptation and unsupervised methods.

It demonstrates that supervised learning method can learn more representative

2.3. MONOCULAR DEPTH ESTIMATION 63

features from the ground-truth depth. Note that Bhat et al. [93] generate the best

performance among supervised learning methods, suggesting that explicitly uti-

lizing global information at a high resolution decisively improves the performance

of MDE.

Regarding the domain adaptation methods [127, 155, 157], Guo et al. [127]

yields the best performance. Unlike [155] and [157], [127] first pre-trained with

synthetic data and then fine-tuned on real data. It demonstrates that when the

fine-tuning dataset is similar to the test dataset, the fine-tuning method per-

forms better than the data transformation method. The best domain adaptation

method [127] has superior performance to the best unsupervised method [180].

Regarding the best semi-supervised method [180] and the best domain adaptation

method [127], [180] outperforms [127]. In particular, their accuracy metrics are

almost equal, while the error metrics especially Sq Rel, RMSE and RMSE log

are highly variable. This suggests that even small amounts of labeled data can

make a great contribution to the performance of depth networks.

Computational Time

In Tables 2.5 and 2.6, we do not show the running time of all summarized

methods because many publications do not report it. Since some authors did

not provide enough information to replicate their results, it is impractical to

test the running time on our computer. However, as the number of network

parameters affects memory footprint and running time required to infer depth,

we use this information as an additional information to compare the running

time. For example, Poggi et al. [89] has 1.9M parameters and requires 20ms to

infer a depth map on a popular Nvidia Titan-X GPU.

64 2. LITERATURE REVIEW

T
ab

le
2.

5:
C

om
p

ar
is

on
of

m
an

y
su

p
er

vi
se

d
le

ar
n

in
g-

b
as

ed
M

D
E

m
et

h
o

d
s

on
th

e
K

IT
T

I
d

at
as

et
[1

]
u

si
n

g
th

e
d

at
a

sp
lit

in
[2

].

.

Y
ea

r
M

et
h

o
d

T
y
p

e
A

b
s

R
el

S
q

R
el

R
M

S
E

R
M

S
E

lo
g

δ 1
δ 2

δ 3
t G
P
U

D
ev

ic
e

2
0
0
8

S
a
x
en

a
et

a
l.

[8
2
]

T
ra

d
it

io
n

a
l

0
.4

1
2

5
.7

1
2

9
.6

3
5

0
.4

4
4

0
.5

5
6

0
.7

5
2

0
.8

7
0

-
-

2
0
1
4

E
ig

en
et

a
l.

[2
]

S
u

p
er

v
is

ed
0
.1

9
0

1
.5

1
5

7
.1

5
6

0
.2

7
0

0
.6

9
2

0
.8

9
9

0
.9

6
7

1
3

N
V

id
ia

T
it

a
n

B
la

ck

2
0
1
7

C
a
o

et
a
l.

[7
7
]

S
u

p
er

v
is

ed
0
.1

1
5

-
4
.7

1
2

0
.1

9
8

0
.8

8
7

0
.9

6
3

0
.9

8
2

-
-

2
0
1
7

K
u

zn
ie

ts
o
v

et
a
l.

[8
7
]

S
u

p
er

v
is

ed
0
.1

2
2

0
.7

6
3

4
.8

1
5

0
.1

9
4

0
.8

4
5

0
.9

5
7

0
.9

8
7

4
8

N
v
id

ia
G

T
X

9
8
0
T

i

2
0
1
8

A
lh

a
sh

im
a
n

d
W

o
n

k
a

[1
2
5
]

S
u

p
er

v
is

ed
0
.0

9
3

0
.5

8
9

4
.1

7
0

0
.1

7
1

0
.8

8
6

0
.9

6
5

0
.9

8
6

3
3
3
.3

J
et

so
n

A
G

X
X

a
v
ie

r

2
0
1
8

F
u

et
a
l.

[1
2
6
]

S
u

p
er

v
is

ed
0
.0

7
2

0
.3

0
7

2
.7

2
7

0
.1

2
0

0
.9

3
2

0
.9

8
4

0
.9

9
4

5
0
0

-

2
0
1
8

G
u

o
et

a
l.

[1
2
7
]

S
u

p
er

v
is

ed
0
.1

0
5

0
.7

1
7

4
.4

2
2

0
.1

8
3

0
.8

7
4

0
.9

5
9

0
.9

8
3

-
-

2
0
1
8

G
u

rr
a
m

et
a
l.

[1
6
9
]

S
u

p
er

v
is

ed
0
.1

0
0

0
.6

0
1

4
.2

9
8

0
.1

7
4

0
.8

7
4

0
.9

6
6

0
.9

8
9

-
-

2
0
1
8

K
u

m
a
r

et
a
l.

[1
5
9
]

S
u

p
er

v
is

ed
0
.1

3
7

1
.0

1
9

5
.1

8
7

0
.2

1
8

0
.8

0
9

0
.9

2
8

0
.9

7
1

-
-

2
0
1
8

L
i

et
a
l.

[7
9
]

S
u

p
er

v
is

ed
0
.1

0
4

0
.6

9
7

4
.5

1
3

0
.1

6
4

0
.8

6
8

0
.9

6
7

0
.9

9
0

-
-

2
0
1
9

L
ee

et
a
l.

[1
2
9
]

S
u

p
er

v
is

ed
0
.0

5
9

0
.2

4
1

2
.7

5
6

0
.0

9
6

0
.9

5
6

0
.9

9
3

0
.9

9
8

-
-

2
0
1
9

W
a
n

g
et

a
l.

[1
6
1
]

S
u

p
er

v
is

ed
0
.0

8
8

0
.2

4
5

1
.9
4
9

0
.1

2
7

0
.9

1
5

0
.9

8
4

0
.9

9
6

-
-

2
0
1
9

Y
in

et
a
l.

[1
3
3
]

S
u

p
er

v
is

ed
0
.0

7
2

-
3
.2

5
8

0
.1

1
7

0
.9

3
8

0
.9

9
0

0
.9

9
8

-
-

2
0
2
0

P
a
ti

l
et

a
l.

[2
0
7
]

S
u

p
er

v
is

ed
0
.1

0
2

0
.6

5
5

4
.1

4
8

0
.1

7
2

0
.8

8
4

0
.9

6
6

0
.9

8
7

1
0

-

2
0
2
0

W
a
n

g
et

a
l.

[1
7
6
]

S
u

p
er

v
is

ed
0
.1

0
3

0
.5

1
1

3
.9

1
6

-
0
.8

9
4

0
.9

7
8

0
.9

9
4

7
1
.8

4
J
et

so
n

A
G

X
X

a
v
ie

r

2
0
2
1

B
h

a
t

et
a
l.

[9
3
]

S
u

p
er

v
is

ed
0
.0
5
8

0
.1
9
0

2
.3

6
0

0
.0
8
8

0
.9
6
4

0
.9
9
5

0
.9
9
9

-
-

D
ep

th
ra

n
g
e

fr
o
m

0
m

to
8
0
m

.
T

h
e

re
su

lt
s

o
f

S
a
x
en

a
et

a
l.

[8
2
]

a
re

re
p

ro
d

u
ce

d
fr

o
m

E
ig

en
et

a
l.

[2
];

th
e

ru
n

n
in

g
ti

m
e

o
f

F
u

et
a
l.

[1
2
6
]

is
re

p
o
rt

ed
in

P
a
ti

l
et

a
l.

[2
0
7
];

th
e

ru
n

n
in

g
ti

m
e

o
f

A
lh

a
sh

im
et

a
l.

[1
2
5
]

is
re

p
o
rt

ed
in

W
a
n

g
et

a
l.

[1
7
6
].
t G
P
U

:
ru

n
n

in
g

ti
m

e
(m

s)
te

st
ed

o
n

fo
r

a
si

n
g
le

fo
rw

a
rd

p
a
ss

a
n

d
“
-”

:
n

o
t

a
v
a
il
a
b

le
.

T
h

e
b

es
t

re
su

lt
s

a
re

sh
o
w

n
in

re
d

a
n

d
b
o
ld

v
a
lu

es
.

2.3. MONOCULAR DEPTH ESTIMATION 65

T
ab

le
2.

6:
C

om
p

ar
is

on
of

m
an

y
u

n
su

p
er

vi
se

d
le

ar
n

in
g,

se
m

i-
su

p
er

vi
se

d
le

ar
n

in
g,

an
d

d
om

ai
n

ad
ap

ti
on

-b
as

ed
M

D
E

m
et

h
o

d
s

on
th

e
K

IT
T

I
d

at
as

et
[1

]
u

si
n

g
th

e
d

at
a

sp
lit

in
[2

].

.

Y
ea

r
M

et
h

o
d

T
y
p

e
A

b
s

R
el

S
q

R
el

R
M

S
E

R
M

S
E

lo
g

δ 1
δ 2

δ 3
t G
P
U

D
ev

ic
e

2
0
1
7

G
o
d

a
rd

et
a
l.

[8
5
]

U
n

su
p

er
v
is

ed
0
.1

4
8

1
.3

4
4

5
.9

2
7

0
.2

4
7

0
.8

6
2

0
.9

6
0

0
.9

6
4

3
5

N
v
id

ia
T

it
a
n

-X

2
0
1
7

K
u

zn
ie

ts
o
v

et
a
l.

[8
7
]

U
n

su
p

er
v
is

ed
0
.3

0
8

9
.3

6
7

8
.7

0
0

0
.3

6
7

0
.7

5
2

0
.9

0
4

0
.9

5
2

4
8

N
v
id

ia
G

T
X

9
8
0
T

i

2
0
1
7

Z
h

o
u

et
a
l.

[8
6
]

U
n

su
p

er
v
is

ed
0
.2

0
8

1
.7

6
8

6
.8

6
5

0
.2

8
3

0
.6

7
8

0
.8

8
5

0
.9

5
7

3
0

N
v
id

ia
T

it
a
n

-X

2
0
1
8

A
le

o
tt

i
et

a
l.

[8
8
]

U
n

su
p

er
v
is

ed
0
.1

1
8

0
.9

0
8

4
.9

7
8

0
.1
5
0

0
.8

5
5

0
.9

4
8

0
.9

7
6

-
-

2
0
1
8

M
a
h

jo
u

ri
a
n

et
a
l.

[1
7
7
]

U
n

su
p

er
v
is

ed
0
.1

6
3

1
.2

4
0

6
.2

2
0

0
.2

5
0

0
.7

6
2

0
.9

1
6

0
.9

6
8

1
0
.5

N
v
id

ia
G

T
X

1
0
8
0

2
0
1
8

P
il
ze

r
et

a
l.

[1
3
7
]

U
n

su
p

er
v
is

ed
0
.1

5
2

1
.3

8
8

6
.0

1
6

0
.2

4
7

0
.7

8
9

0
.9

1
8

0
.9

6
5

1
4
0

N
v
id

ia
k
8
0

2
0
1
8

P
o
g
g
i

et
a
l.

[8
9
]

U
n

su
p

er
v
is

ed
0
.1

5
3

1
.3

6
3

6
.0

3
0

0
.2

5
2

0
.7

8
9

0
.9

1
8

0
.9

6
3

2
0

N
v
id

ia
T

iT
a
n

-X

2
0
1
8

Q
i

et
a
l.

[1
3
8
]

U
n

su
p

er
v
is

ed
0
.1

5
5

1
.2

9
6

5
.8

5
7

0
.2

3
3

0
.7

9
3

0
.9

3
1

0
.9

7
3

8
7
0

N
v
id

ia
T

iT
a
n

-X

2
0
1
8

Z
o
u

et
a
l.

[1
9
0
]

U
n

su
p

er
v
is

ed
0
.1

5
0

1
.1

2
4

5
.5

0
7

0
.2

2
3

0
.8

0
6

0
.9

3
3

0
.9

7
3

-
-

2
0
1
9

A
lm

a
li
o
g
lu

et
a
l.

[1
9
3
]

U
n

su
p

er
v
is

ed
0
.1

5
0

1
.1

4
1

5
.4

4
8

0
.2

1
6

0
.8

0
8

0
.9

3
9

0
.9

7
5

-
-

2
0
1
9

B
ia

n
et

a
l.

[1
2
8
]

U
n

su
p

er
v
is

ed
0
.1

3
7

1
.0

8
9

5
.4

3
9

0
.2

1
7

0
.8

3
0

0
.9

4
2

0
.9

7
5

-
-

2
0
1
9

G
o
d

a
rd

et
a
l.

[1
4
3
]

U
n

su
p

er
v
is

ed
0
.1

1
5

0
.8

8
2

4
.7

0
1

0
.1

9
0

0
.8

7
9

0
.9

6
1

0
.9

8
2

-
-

2
0
1
9

R
a
n

ja
n

et
a
l.

[1
4
4
]

U
n

su
p

er
v
is

ed
0
.1

4
0

1
.0

7
0

5
.3

2
6

0
.2

1
7

0
.8

2
6

0
.9

4
1

0
.9

7
5

-
-

2
0
1
9

T
o
si

et
a
l.

[1
4
5
]

U
n

su
p

er
v
is

ed
0
.1

1
1

0
.8

6
7

4
.7

1
4

0
.1

9
9

0
.8

6
4

0
.9

5
4

0
.9

7
9

1
6
0

N
v
id

ia
T

iT
a
n

-X
p

2
0
2
0

G
u

iz
il
in

i
et

a
l.

[1
8
0
]

U
n

su
p

er
v
is

ed
0
.1
0
2

0
.6
9
8

4
.3
8
1

0
.1

7
8

0
.8
9
6

0
.9
6
4

0
.9
8
4

-
-

2
0
2
0

L
iu

et
a
l.

[1
9
4
]

U
n

su
p

er
v
is

ed
0
.1

4
1

1
.0

8
0

5
.2

6
4

0
.2

1
6

0
.8

2
5

0
.9

4
1

0
.9

7
6

1
8
.5

7
N

v
id

ia
G

T
X

1
0
8
0
T

i

2
0
2
0

Z
h

a
o

et
a
l.

[1
8
8
]

U
n

su
p

er
v
is

ed
0
.1

1
3

0
.7

0
4

4
.5

8
1

0
.1

8
4

0
.8

7
1

0
.9

6
1

0
.9
8
4

-
-

2
0
1
7

C
h

o
et

a
l.

[9
2
]

S
em

i-
su

p
er

v
is

ed
0
.0

9
9

0
.7

4
8

4
.5

9
9

0
.1

8
3

0
.8

8
0

0
.9

5
9

0
.9

8
3

-
-

2
0
1
7

K
u

zn
ie

ts
o
v

et
a
l.

[8
7
]

S
em

i-
su

p
er

v
is

ed
0
.1

1
3

0
.7

4
1

4
.6

2
1

0
.1

8
9

0
.8

6
2

0
.9

6
0

0
.9

8
6

4
8

N
v
id

ia
G

T
X

9
8
0
T

i

2
0
1
9

A
m

ir
i

et
a
l.

[1
5
4
]

S
em

i-
su

p
er

v
is

ed
0
.0

9
6

0
.5

5
2

3
.9

9
5

0
.1

5
2

0
.8

9
2

0
.9
7
2

0
.9
9
2

-
-

2
0
1
9

D
o
s

et
a
l.

[2
0
8
]

S
em

i-
su

p
er

v
is

ed
0
.1

2
3

0
.6

4
1

4
.5

2
4

0
.1

9
9

0
.8

8
1

0
.9

6
6

0
.9

8
6

-
-

2
0
2
0

G
u

iz
il
in

i
et

a
l.

[1
9
7
]

S
em

i-
su

p
er

v
is

ed
0
.0
7
2

0
.3
4
0

3
.2
6
5

0
.1
1
6

0
.9
3
4

-
-

-
-

2
0
2
0

Z
h

a
o

et
a
l.

[2
0
9
]

S
em

i-
su

p
er

v
is

ed
0
.1

4
3

0
.9

2
7

4
.6

7
9

0
.2

4
6

0
.7

9
8

0
.9

2
2

0
.9

6
8

-
-

2
0
1
8

A
ta

p
o
u

re
t

a
l.

[1
5
5
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

0
.1

1
0

0
.9

2
9

4
.7

2
6

0
.1

9
4

0
.9
2
3

0
.9
6
7

0
.9

8
4

2
2
.7

N
v
id

ia
G

T
X

1
0
8
0
T

i

2
0
1
8

G
u

o
et

a
l.

[1
2
7
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

0
.0
9
6

0
.6
4
1

4
.0
9
5

0
.1
6
8

0
.8

9
2

0
.9
6
7

0
.9
8
6

-
-

2
0
1
9

Z
h

a
o

et
a
l.

[1
5
7
]

D
o
m

a
in

a
d

a
p

ta
ti

o
n

0
.1

4
9

1
.0

0
3

4
.9

9
5

0
.2

2
7

0
.8

2
4

0
.9

4
1

0
.9

7
3

-
-

D
ep

th
ra

n
g
e

fr
o
m

0
m

to
8
0
m

.
t G
P
U

:
ru

n
n

in
g

ti
m

e
(m

s)
te

st
ed

o
n

fo
r

a
si

n
g
le

fo
rw

a
rd

p
a
ss

a
n

d
“
-”

:
n

o
t

a
v
a
il
a
b

le
.

T
h

e
b

es
t

re
su

lt
s

o
f

u
n

su
p

er
v
is

ed
le

a
rn

in
g
-b

a
se

d
m

et
h

o
d

a
re

sh
o
w

n
in

b
lu

e
a
n

d
b
o
ld

v
a
lu

es
,

th
e

b
es

t
re

su
lt

s
o
f

se
m

i-
su

p
er

v
is

ed
le

a
rn

in
g
-b

a
se

d
m

et
h

o
d

a
re

sh
o
w

n
in

g
re

en
a
n

d
b
o
ld

v
a
lu

es
,

a
n

d
th

e
b

es
t

re
su

lt
s

o
f

d
o
m

a
in

a
d

a
p

ta
ti

o
n

m
et

h
o
d

a
re

sh
o
w

n
in

cy
a
n

a
n

d
b
o
ld

v
a
lu

es
..

66 2. LITERATURE REVIEW

According to [93], the proposed network has 78M parameters, which is 40×

more than Poggi et al. [89]. Therefore, [93] requires much more time to infer

a depth map. This suggests that [93] can only be applied to accuracy-first

tasks. The supervised method by Wang et al. [176] runs at about 14fps on an

Nvidia Jetson AGX Xavier embedded device, which is close to a real-time speed.

Moreover, [176] has less parameters than [89] (1.75M vs 1.9M) and yields much

better results. This suggests that [176] is suitable for real-time tasks. Among

unsupervised methods, [89,177,194] show the three fastest speeds. Although the

running time is tested on different GPUs, the order of GPU computation capacity

is “Titan-X > 1080Ti > 1080”. Regarding the error and accuracy metrics, [194]

is inferior to [177] and [89]. In addition, [194] runs faster than [89] on a less

powerful GPU. Therefore, Liu et al. [194] can be applied to real-time tasks where

large amount of labeled data is not available.

2.3.7 Applications in Robotics

Autonomous vehicles need to detect obstacles, other cars and pedestrians and

depth estimation is a fundamental component required to do this in a 3D envi-

ronment. Depth estimation is a basic component in perceiving the 3D environ-

ment. Although autonomous vehicles and robots can perceive depth information

through LiDAR, they only produce sparse depth maps. The sparsity of these

depth measurements makes it hard to meet the perception requirements needed

for safe self-driving car applications. MDE predicts dense depth maps from

single images. The resulting dense depth maps have the potential to provide

the absolute distances to surfaces of objects in real-time with a single sensor,

whilst meeting the requirements of autonomous navigation and obstacle avoid-

ance systems [210].

2.3. MONOCULAR DEPTH ESTIMATION 67

Autonomous vehicles operate in real-world environments where real-time per-

formance is crucial. Moreover, small autonomous vehicle platforms (e.g., micro

aerial vehicles or mini ground vehicles) normally have limited memory and com-

putational resource. The onboard sensor on such platforms may be limited to a

monocular RGB camera, and no additional information (e.g., sparse depth point

clouds) may be present. Motivated by this fact, lightweight CNNs [44, 46, 175]

and MDE networks [81, 89, 91, 194, 211] that run on real-time embedded devices

have been developed on top of depthwise separable convolutions, factorized con-

volutions or network architecture search techniques. It is worth noting that these

lightweight implementations [81, 89, 91, 194, 211] achieve a real-time speed on

mobile platforms (e.g., Nvidia-TX2 or Jetson AGX Xavier GPU) and produce

more accurate depth maps than their traditional counterparts (e.g., [73,82]) which

cannot run in real-time. Therefore, it enables the autonomous vehicles or robots

to perceive more accurate depth information than [73,82], whilst not limiting the

reactive speed of these vehicles.

Due to the relatively low cost, size and energy consumption, MDE has been

applied to the task of ego-motion estimation [91, 212–215], obstacle avoidance

[57,216–220] and scene understanding [58,221,222].

Ego-motion Estimation

Systems for calculating ego-motion from vision generally need an absolute range

sensor to provide scale to the visual motions. MDE can provide the range

measurements needed to provide this information. However, in some cases this

can be done using inertial sensing with an appropriate sensor fusion filter. Li et

al. [223] use feature depth and onboard Inertial Measurement Unit (IMU) data

to compute optical flow to estimate the motion of UAV. Such techniques need the

68 2. LITERATURE REVIEW

vehicle to be constantly moving and will fail if there is not motion, and are prone

to noise. Wang et al. [224] design an ego-motion estimation method for UAV

by fusing data from an RGB-D camera and an IMU. The utilized depth camera

suffers from a limited measurement range (0.5m-4m), which can be replaced by

a real-time MDE algorithm, such as [81,89,91,194,211].

DNNs can predict the absolute scale information in the process of MDE,

it is helpful in tackling the scale ambiguity and drift problem in monocular

ego-motion estimation and improving the mapping process. [212, 214,215] incor-

porate CNN-based depth estimations into monocular visual odometry (VO). The

obtained VO algorithms show robustness to scale drift and achieve comparable

performance to stereo VO methods. Tateno et al. [56] fuse CNN predicted

dense depth maps with semi-dense depth measurements from SLAM [225] to

solve the scale ambiguity and drift problem of monocular SLAM. To improve

the computing speed, dense depth maps only computed from every key-frame.

In addition, LOO et al. [226] combine the semi-direct visual odometry (SVO)

with a depth estimation network [85]. The depth estimation network provides

depth priors in the map points initialization process when a key-frame is selected.

With the prior knowledge of the scene geometry, the proposed CNN-SVO is able

to obtain a much better prediction of the mean and a smaller initial variance of

the depth-filter than the original SVO.

The fusion of depth maps and VO or V-SLAM algorithms improves the per-

formance of ego-motion estimation [56, 226], while the applied depth estimation

CNNs [76, 85] require a high-end GPU (e.g., Titan-X) to achieve a real-time

speed. This limits the application of [56,226] in small sized platforms with limited

memory and computational resource. Spek et al. [91] integrate the estimated

depth maps from a lightweight CNN with ORB-SLAM2 system [185]. The fused

2.3. MONOCULAR DEPTH ESTIMATION 69

system runs tracking and mapping on mobile platforms at a real-time speed

while effectively reducing scale-drift and improving the accuracy of a standard

monocular SLAM system.

Obstacle Avoidance

Depth maps contain information about the distance between the surface of objects

to the camera [227, 228]. With the estimated depth maps, it is possible for

autonomous vehicles or robots to perceive the environment and achieve the goal

of avoiding obstacles in stationary scenes [57, 216–219]. Michels et al. [216]

use a supervised learning algorithm to learn depth cues that can accurately

represent the distance of the nearest obstacles in the scene. The estimated depth

information is then converted to steering commands for controlling a ground

vehicle in the static outdoor environments. Chakravarty et al. [218] pass depth

maps to a behaviour arbitration-based control algorithm to guide a UAV which

flies at a particular height in indoor environment to avoid obstacles. Given a

depth map, a vertical and horizontal strip through the middle of the depth map

is selected. Then the averaged depth values within each vertical and horizontal

bin verti and horzi are used as depth values di from the angle. These depth

values di are used to compute an angular velocity for steering the UAV away

from obstacles. Zhang et al. [219] use the estimated depth maps to compute the

rotation angle to guide a UAV to avoid obstacles and fly towards a destination.

Depth maps can also be used to select collision-free waypoints in order to steer

robots in a safe path. Alvarez et al. [217] first compute a dense depth map from

a small set of consecutive images. Then the depth map is applied to generate the

next obstacle-free waypoints to proceed in a forward direction. To this end, the

most distant point in 3D space reachable by the UAV without collisions will be

70 2. LITERATURE REVIEW

computed. Yang et al. [57] design an Ego Dynamic Space (EDS)-based obstacle

avoidance method by embedding the dynamic motion constrains of the UAV and

the confidence values into the spatial depth map. With the estimated depth

and confidence maps, the distances Deff to the obstacles can be written as in

Equation (2.13):

Deff = D −Dbrake −Derror

= D − (vT − aT 2

2
)−Derror,

(2.13)

where D is the perceived distance to the obstacles (i.e., the estimated depth map),

Dbrake is the deceleration distance to stop a UAV which moves at velocity v using

deceleration a in a sampling interval T , and Derror is the depth measurement

error which is computed by Derror = −ln(C), C is the estimated confidence.

Subsequently, Deff is converted into a binary depth map, which includes obstacle

free regions that a UAV can move safely in.

It should be noted that the CNNs used in [57, 218, 219] were trained on data

recorded through cameras on moving ground vehicles, which is limited in viewing

angles in recorded images. Moreover, the ground vehicles normally move in

constrained environments such as roads or corridors. The onboard cameras only

encounter a limited subset of motion types, and do not completely explore the 3D

environment. This results in the perspective and angle of view of the captured

images being different from the UAV view. Therefore, this may raise concerns

about the generalization potential of the trained CNNs to the application of

obstacle avoidance for UAVs [112].

Depth information offers opportunities and complexities for the determination

of the collision-point and time-to-collision when a robot is navigating in a dynamic

environment. In particular, depth information could offer the robot a space

to navigate in an otherwise more constrained environment. However, error in

2.3. MONOCULAR DEPTH ESTIMATION 71

depth estimation could have a profound impact on a robots ability to estimate a

collision-point with a moving object and subsequently, the time-to-collision with

that object. While there exists an extensive literature on collision avoidance re-

search in dynamic 3D environments [229–231], including research on point-clouds

from sensors such as LiDAR, literature tackling collision avoidance in dynamic

3D environments with depth estimation is almost non-existent.

Scene Understanding

Autonomous vehicles and robots require a full understanding of the geometric

structure of environment to interact with it. The task of scene understanding is

to obtain 3D geometric information from 2D image. Depth maps encode the 3D

structure of the scene, which helps to resolve ambiguities and to avoid a physical

implausible labeling [221]. Scharwachter and Franke [221] propose an approach to

infer the coarse layout of street scenes from color, texture and depth information.

When an agent moves through the world, the apparent motion of scene

elements is usually inversely proportional to their depth. For example, as the

agent moves, faraway mountains do not move much, while nearby trees move a

lot. Inspired by this point, Jiang et al. [58] use the MDE network as the base

for city scene understanding. They first train a deep network to infer relative

scene depth from single images, and then fine-tune it for tasks such as semantic

segmentation, joint semantic reasoning of road segmentation and car detection.

Rojas-Perez et al. [222] propose a MDE-based landing zone detection method

for UAVs. The detection is divided into two stages: depth estimation from single

aerial images and classification of possible landing zones. Based on the extracted

patches from RGB images, a multi-layer CNN architecture is designed and trained

to infer depth from aerial images. The obtained depth map is then fed to another

72 2. LITERATURE REVIEW

CNN to detect possible landing zones for UAVs.

2.3.8 Conclusions and Recommendations regarding MDE

In this section, we presented the first comprehensive survey of MDE. We reviewed

the literature from the SfM-based methods, traditional handcrafted feature-based

methods to the state-of-the-art DL-based methods. We also summarized the

publically available datasets, commonly used performance evaluation metrics,

and open-source implementations of some representative methods. In addition,

we compared and analyzed the performance of 42 representative methods from

different perspectives, including error, accuracy and running time metrics. Since

MDE plays an important role in robotics, we provided a review of the application

of MDE in ego-motion estimation, obstacle avoidance and scene understanding.

Based on the reviewed literature, we concluded that the promising future research

directions of MDE may focus on but are not limited to the following aspects:

Collecting Rich Scene Datasets: DL-based models show great perfor-

mance in MDE. However, training robust models requires a dataset consists

of various scenes, in order that the models can learn various scene features.

Compared with real-world environments which include complex scenarios such as

moving objects, cluttered scenes, occlusions, illumination changes and weather

changes, the existing public datasets are not rich enough. Specifically, these

datasets focus on certain scenes such as indoor [3], driving [1], campus [82] and

forest [113]. Thus, it is essential to collect datasets that encompass richness and

high-diversity of environmental scenarios.

Real-Time MDE with Accuracy And Efficiency Balance: The overall

development trend of MDE is to push the increase of accuracy using extremely

deep CNNs or by designing a complex network architecture, which are computa-

2.3. MONOCULAR DEPTH ESTIMATION 73

tionally expensive for current mobile computational devices which have limited

memory and computational capability. Therefore, it is difficult for these networks

to be deployed in small sized robots which depend on mobile computational

devices. Under this context, researchers have begun to develop real-time MDE

methods [81, 89, 176, 194]. However, the accuracy of these methods is inferior

to state-of-the-art methods. Therefore, developing real-time MDE network is

assumed to achieve the trade-off between accuracy and efficiency.

MDE with Domain Adaptation: The training of a supervised MDE

network requires a large amount of ground-truth data. However, collecting

these ground-truth data requires LiDAR or RGB-D cameras, which increase the

cost. With computer graphic techniques, it is easier to obtain a large set of

synthetic images and its corresponding depth maps. Applying domain adaptation

techniques to training MDE models on synthetic and transferring it to real data

seems to be a popular direction in MDE.

Semi-supervised MDE: The training of supervised MDE network relies

on a large amount of labeled data. The process of collecting depth maps is

time-consuming, expensive and inefficient. Unsupervised methods do not need

the ground-truth data, but suffer from lower accuracy. Developing semi-supervised

methods that are trained on a small number of labeled images and a large number

of unlabeled images is of great importance for reducing labor costs and improving

prediction accuracy.

Depth Estimation with Information Fusion: Depth estimation with

multiple sources/modalities of data, such as sparse depth maps, optical flow and

surface normal, show the best performance. Some open questions include: how

to apply well-designed depth estimation to different modalities of data, how to

efficiently fuse different information to improve the accuracy of depth estimation

74 2. LITERATURE REVIEW

and how to use optical flow to handle independently moving objects in a dynamic

scene?

Interpretability of MDE Networks: While DL-based MDE has achieved

remarkable improvement in accuracy, there remain questions about these net-

works. For example, what exactly are MDE networks learning? What is a

minimal network architecture that can achieve a certain accuracy? Although

studies in [232, 233] explored the mechanism of MDE networks, a specific study

of the underlying behavior/dynamics of these networks was not available. Thus,

research on the interpretability of MDE networks is an important topic.

2.4 Optical Flow Estimation

Optical flow (OF) refers to the apparent motion of objects, brightness patterns

or feature points, observed from the eye or the camera. Following this definition,

OF can be computed from the pixel-wise motions between consecutive images.

Traditional methods such as [27] and [28] have been widely used by robotic com-

munities. The success of CNNs also promoted their application in OF estimation.

Early developed CNN-based OF estimation methods normally utilize CNNs as

feature extractors. The core idea is to replace the hand-crafted feature extracting

with a CNN model.

Weinzaepfel et al. [234] applied CNN techniques to OF estimation in their

milestone work, DeepFlow. DeepFlow first extracts features in non-rigid lo-

cal frames by means of sparse convolutions and max-pooling, then performs

dense matching in all image regions. This method is able to efficiently handle

large displacements occurring in realistic image sequences, and shows competitive

performance on OF benchmarks. Later, Simo-Serra et al. [235] applied CNN

2.4. OPTICAL FLOW ESTIMATION 75

to compute a 128 dimensional descriptor, which was utilized as a substitute

for SIFT [30]. It has been shown that this descriptor is efficient and can be

generalized well against scaling, rotation, perspective transformation, non-rigid

deformation and illumination changes.

Meanwhile, the end-to-end regression-based CNN architectures that can di-

rectly estimate OF from a pair of input images also being developed. Unlike

methods that combine CNN feature extractors with traditional regularizers, the

regression-based methods approximate CNN as a function, which learns the

relationship between the input image pairs and the desired OF output given the

labeled training dataset. Dosovitskiy et al. [37] developed the first end-to-end

CNN for estimating OF based on an encoder-decoder architecture. Since obtain-

ing dense ground-truth OF in real-world images is difficult, Dosovitskiy et al.

collected a synthetic dataset from CAD models of chairs, which move in front

of a static background. Pairs of RGB images with ground-truth OF map are

used to train the network. FlowNet demonstrated that a CNN-based regression

architecture is able to predict OF directly.

Later, Ilg et al. [236] presented FlowNet2 that boosts the OF estimation

accuracy over the FlowNet method. The main problem behind the FlowNet

is blurry flow maps from the decoder network. The authors stacked several

FlowNet-style networks in a unified framework to refine the output from the

previous network modules step by step. FlowNet2 demonstrated that end-to-end

regression networks can outperform traditional methods.

Ranjan and Black designed the spatial pyramid network (SpyNet) [237] which

combines the advantages of the traditional “coarse-to-fine” concept and a CNN

architecture. SpyNet is composed of 5 pyramid levels. Each pyramid level has a

shallow CNN for predicting OF map between a source image and a target image,

76 2. LITERATURE REVIEW

which is warped by the current flow prediction. Compared with Dosovitskiy

et al. [37], SpyNet reduces the number of network parameters by 96%, while

achieving comparable accuracy to [37]. In 2018, Sun et al. [238] introduced the

PWC-Net, which depends on pyramidal processing, warping, and the cost volume

principles. Compared with FlowNet2 [236], PWC-Net is 17× smaller in model

size and 2× faster in inference while achieving the higher accuracy.

2.5 Deep Learning in Robotics

Inspired by the breakthrough achieved by using CNN techniques in the field

of computer vision, much interest has been given to apply these techniques to

robotics. Considering its relatively low sample complexity (i.e., not much sample

data is required to generalize) and its implementation simplicity, supervised

learning has become the predominant tool used to learn control, guidance and

obstacle avoidance policies from images.

Chakravarty et al. [218] passed depth maps to a behaviour arbitration-based

control algorithm to guide the UAV to avoid obstacles. Given a depth map, a

vertical and horizontal strip through the middle of the depth map is selected,

and the averaged depths within each vertical and horizontal bin verti and horzi

are used as depth values di from the angle. These depth values di are then fed

to the avoid behaviour for computing an angular velocity that guide the UAV

away from obstacles. It should be noted that [218] adopts the coarse network

of [2] to produce depth maps, while the coarse global prediction limited the

accuracy of obstacle avoidance. One year later, Jung et al. [239] introduced

another CNN-based guidance system for UAV. They design a CNN to estimate

the center of the gates used for drone racing competitions. Based on obtained

2.5. DEEP LEARNING IN ROBOTICS 77

center points, a guidance system was applied to control a UAV fly through

the gates. The designed method outperforms its counterparts with traditional

methods in autonomous drone racing.

Inspired by Giusti et al. [240], Smolyanskiy et al. [241] proposed an approach

for navigating a UAV through forest trails and avoid obstacles. They combine two

different networks, one for trail detection and the other for obstacle detection.

The output of these two networks were fed to the control module to generate

desired movement commands. Although [241] demonstrated promising results,

the designed method suffers low speed due to the complex network architecture.

Mancini et al. [34] introduced an end-to-end architecture that jointly learns how

to detect obstacles and estimate their depth for UAV flight applications. The

designed network has a feature extractor and two task dependent branches,

a MDE branch and an obstacle detection branch. The MDE branch has 4

deconvolutional layers and a final convolution layer which outputs the estimated

depth map at original input resolution. The obstacle detection branch consists

of 9 convolutional layers. Given an input image, the obstacle detection branch

divides it into an 8 × 5 grid of square-shaped cells. For each cell, the detector

estimates the coordinates of the bounding box center, the bounding box width

and height, a confidence score, the average distance of the detected obstacle from

the camera and the variance of its depth distribution. Since [34] applies the fully

convolutional part of VGG-19 CNN as feature extractor, its complex architecture

increases the running time.

Giusti et al. [240] introduced a DL-based monocular vision method for rec-

ognizing forest trail directions and navigates a quadrotor UAV in the forest

environment. The authors treat trail perception problem as an image classifi-

cation task: they estimate the approximate direction of the trail with respect

78 2. LITERATURE REVIEW

to the direction of view through a CNN. Since they treat trail perception as a

classification problem, the CNN architecture relies on FC layers which induce

loads of trainable parameters. In addition, the images were captured when hiker

walks a long trail and assuming that person always looking straight along its

direction of motion. However, it is difficult to keep looking to the same direction

in the whole process. Therefore, this man-made deviation may leads to incorrect

image labels.

Loquercio et al. [5] proposed DroNet, a CNN that guides a UAV to fly through

the streets of a city. Designed as an 8-layer residual network, DroNet generates

two outputs for each single input image: a heading angle to keep the drone

flying while avoiding obstacles, and a collision probability is used to modulate

the forward speed of the UAV. To avoid the challenge of collecting data in an

unstructured outdoor environment, the authors trained DroNet from datasets

collected by cars and bicycles, which were already integrated into the city streets.

It should be noted that DroNet navigates the UAV to move in a horizontal 2D

plane, whilst the process of vertical maneuvering and landing are not considered.

One year later, Maciel-Pearson et al. [242] designed an end-to-end multi-task

learning based approach to predict the orientation quaternions and positional

waypoints in NED coordinates while exploring an unknown environment. The

predicted position and rotational quaternions are passed to the rate and atti-

tude control loops to generate the motion commands. In [5, 240, 242], data for

training the DL models was captured manually. The data collection requires an

experienced operator and the predicted behaviors tend to be influenced by the

operator [243].

2.6. DEEP REINFORCEMENT LEARNING 79

Agent

Environment

action

tA
1tR +

1tS +

state

tS
reward

tR

Figure 2.6: The interaction between agent and environment in reinforcement learning.

2.6 Deep Reinforcement Learning

Reinforcement learning (RL) is a subset of machine learning (ML) which concerns

how an agent ought to take actions in an environment whilst maximizing the cu-

mulative reward. Policy, reward, value and environment are essential components

of RL. In particular, the agent learns about the optimal policy, which is needed in

current state. The agent interacts with the environment to produce an optimal

policy. As shown in Figure 2.6, the agent environment interaction produces a

sequence of state-action-reward-next state. The whole process is modeled by the

Markov Decision Process (MDP) which is represented by < S,A, P,R, λ >. At

each time step t, the agent selects an action from the action space A and then

performs the action to reach its next state St+1 ∈ {S}. The transition from

current state St to next state St+1 is governed by transition probabilities. After

state transition, the agent receives a reward from the environment. The reward

is defined as: R : S ×A×S → R. The goal of the agent is to maximize the total

accumulated reward received at time step t.

Deep reinforcement learning (DRL) combines DL with RL to produce an

optimal solution based on experience. The key difference between RL and DRL

is the fact that RL is a computational agent learning problem for making decisions

through trail-and-error experience, while DRL allows the agent to make decisions

80 2. LITERATURE REVIEW

from unstructured input data free from manual design of the state space.

Mnih et al. [244] developed a deep Q-network (DQN) which demonstrate how

a CNN can learn control policies from sensory input. The input to the CNN

consists of a 84 × 84 × 4 tensor generated from 4 consecutive stacked frames to

capture the temporal information. The first layer consists of 32 filters of 8 × 8

with stride 4 and a rectifier nonlinearity. The second layer consists of 64 filters

of 4 × 4 with stride 2 and a rectifier nonlinearity. The second layer is followed

by a convolutional layer that has 64 filters of 3 × 3 with stride 1. The final

intermediate layer is a fully connected layer with 512 rectifier units. The output

layer is a fully connected layer with a single output corresponding to each valid

action. Through consecutive layers, the network learns how to combine features

for identifying the action most likely to generate the best result. DQN has shown

outstanding performance and has been applied to UAV path planning, navigation

and attitude control.

Hausknecht and Stone [245] designed a deep recurrent Q-network (DRQN) by

combining the Long Short Term Memory (LSTM) with the DQN. Specifically,

they replaced the first post-convolutional FC layer with a recurrent LSTM layer.

Therefore, the DRQN is capable of integrating information across frames to

capture information such as velocity of objects. To solve the over-estimate

problem in Q-learning, Van Hasselt et al. [246] proposed a double DQN (DDQN)

algorithm. Unlike DQN, DDQN employs a max operator in select action selection.

Meanwhile, Wang et al. [247] introduced a dueling network architecture which

includes two separate estimators, one for the state value function and another for

the advantage function. Then, the two estimators are combined to estimate the

action value function.

In 2016, Lillicrap et al. [248] designed a deep deterministic policy gradient

2.7. DEEP REINFORCEMENT LEARNING IN ROBOTICS 81

(DDPG) algorithm through extending DQN and deterministic policy gradient.

With an actor-critic model, DDPG avoids the optimization of action at every

time step to get a greedy policy. The policy of DDPG is deterministic, which is

infeasible in complex environments with noise as the policy is required to perform

with a certain randomness. The proximal policy optimization (PPO) algorithm

[249] is based on the Actor-Critic model, and it requires low computation time.

The actor-critic models uses two separate networks. The actor network estimates

the optimal action, while the critic network estimates the reward of the action

and uses rewards to train the actor. After each action selection, the critic network

evaluates the new state to tell whether the result of the selected action is better

or worse than expected.

2.7 Deep Reinforcement Learning in Robotics

In this section, we review literature on the application of DRL in robotics. Mobile

robots are robotic platforms that are able to move around in an environment

through remote control or using an autonomous guidance system. Mobile robots

operating in unstructured and dynamic environments have been applied to appli-

cations such as search and rescue operations and surveillance. These applications

require autonomous robots having the ability of choosing appropriate actions

from the perception and interaction with the environment. DRL is an end-to-end

learning method which takes as input raw sensor data and produces robot actions.

There is a variety of work in the literature applying DRL to robotic applications

such as navigation, obstacle avoidance and autonomous exploration.

Wang et al. [250] proposed an autonomous navigation method that enables

a UAV to fly from arbitrary start points to destinations. Without using local

82 2. LITERATURE REVIEW

or global maps and path planning, the proposed method passes sensory data

captured from the local environment and the GPS signal to the DRL module

to navigate the flight of UAV. Xiang et al. [251] applied a DRL algorithm,

i.e., Soft Actor-Critic (SAC) to navigate a simulated UAV. The SAC network

takes as input the laser scanning data and information of the destination and

outputs continuous linear and angular velocities for controlling the UAV. Barros

et al. [252] trained the SAC algorithm for controlling a simulated UAV in the

go-to-destination task. The state space consists of the relative position and ori-

entation of the UAV to the destination, the relative linear and angular velocities,

the rotation matrix, and the actions taken in the previous step for all motors.

While DRL-based methods achieve promising performance, they are prone to

local minima and lack of long term memory [253]. To solve this problem, Kastner

et al. [254] integrated a DRL-based local planner with traditional global planners.

The Asynchronous Advantage Actor Critic (A3C) algorithm takes as input the

360 degree LiDAR data and produces continuous action states which are utilized

in the local planner. The traditional global planners can be rapidly-exploring

random tree (RRT) [255], A∗ [256] or Dikstra [257] algorithms. The global and

local planners are connected by an interconnection waypoint generator. In [258],

Huang et al. combined DRL with multi-modal fusion to navigate an unmanned

aerial vehicle (UGV) in real-world scenes. Features learned from raw images and

LiDAR data, and the measurement of UGV velocities are passed through the

PPO-based policy module to output linear and angular velocities for steering the

UGV.

In terms of obstacle avoidance, Xie et al. [259] developed a dueling architecture

based deep double-Q network (D3QN). Based on the combination of dueling and

double Q mechanisms, D3QN learns policies from depth maps estimated from

2.7. DEEP REINFORCEMENT LEARNING IN ROBOTICS 83

RGB image. Singla et al. [260] designed a deep recurrent Q-network (DRQN)

with temporal attention for UAV obstacle avoidance in indoor environments.

The designed approach first applies the conditional generative adversarial net-

work (cGAN) to estimate depth maps from monocular RGB images. Then,

the produced depth maps are fed to the DRQN to learn an optimal action.

In 2021, Thomas et al. [261] proposed an obstacle avoidance algorithm for a

UAV by combining a self-attention model with duelling deep Q-network. Xue

et al. [262] combined the Variational Autoencoder (VAE) and the Twin-Delayed

Deep Deterministic Policy Gradient (TD3) algorithm to solve the problem of

obstacle avoidance for a UAV. The VAE converts the RGB image captured by

the front camera into 32 variables. The TD3 algorithm consists of actor networks

(actor network and actor target network) and critic networks (critic network and

critic target network). The actor networks incorporate 32 variables from VAE

and output velocities in the y direction (left and right directions) and z direction

(up and down directions). The critic networks estimate the Q value when a

certain action value is selected in a certain state.

LiDAR perceives accurate depth information, however, it captures less redun-

dant information than image data which is important to train a DRL model. Gao

et al. [263] applied semantic segmentation to encode the depth maps for gener-

ating the one-dimensional pseudo-laser data. Given an input image, the depth

map and semantic segmentation mask are extracted through the corresponding

CNN models. The semantic segmentation mask is subsequently used to cull out

the traversable region from the depth map. The processed depth map is passed

through a dynamic local minimum pooling operation to generate the pseudo-laser

data. Finally, the pseudo-laser data along with the relative goal position and

robot’s current velocity are fed to the DRL module to produce actions. Com-

84 2. LITERATURE REVIEW

pared with traditional LiDAR data which only includes one-dimensional distance

information, the pseudo-laser data encodes context information of objects in the

scene. Therefore, it provides more reliable information for DRL network than

the pure laser-based measurement.

Robot exploration is the operation of controlling a robot moving in an un-

known environment while constructing a map which can be applied to the subse-

quent navigation [264]. The main objective of robot exploration is to construct

the map of the working environment without depending on prior knowledge. A

classical method for robot exploration is frontier search that origins from the work

introduced by Yamauchi [264]. Yamauchi defined the frontier as regions located

at the border between explored and unexplored space in the occupancy grid map.

The robot keeps track of the frontiers and selects the best frontier as the next

desired position. DRL algorithms have also been applied to enable robots to

learn how to explore the environment through the observations/perception of

their surroundings. Zhu et al. [265] introduced a method that adopts DRL to

learn exploration knowledge over office floor maps. The Asynchronous Advantage

Actor-critic (A3C) network incorporates the current map, the agents location and

orientation to predict the next visiting direction. Niroui et al. [266] combined

DRL and frontier-based exploration to solve the robot exploration problem. The

2D occupancy grid, coordinates of possible frontiers, and the robot location are

all passed to the A3C network which then predicts coordinates of the next goal

frontier. Li et al. [267] proposed an autonomous exploration method where the

DRL-based decision module is applied to select the next goal location in the grid

map. The decision module is formulated as:

gT = Fdecision(l0:T ,mT), (2.14)

2.7. DEEP REINFORCEMENT LEARNING IN ROBOTICS 85

where gT denotes the goal point, l0:T represents robot positions from step 0 to T ,

and mT is the environment built at step T .

Area coverage or coverage path planning is a representative exploration task

which aims to enable a robot to visit as many free areas as possible in an envi-

ronment without colliding with obstacles. Tran et al. [268] introduced a frontier

search driven swarming algorithm that controls robot swarm to perform area

coverage. It is worth noting that robot swarming is beyond the scope of this thesis,

we will review literature on area coverage for a single robot. According to our

literature review, many traditional methods to solve the area coverage problem

depend on knowing the model of the environment [269]. Since an environmental

model is usually not available, DRL techniques have been applied to solve this

problem. In [270], Saha et al. combined DQN with prioritized experience replay

to solve the problem of area coverage in room sized environments.

Maciel-Pearson et al. [271] developed an Extended Double Deep Q-Network

(EDDQN) based method to solve the exploration and obstacle avoidance prob-

lems in a partially observable environment for a UAV. The main innovation of the

developed method is a double input state that combines the acquired knowledge

from the raw image and a local map containing positional information. The

positional information aids the DRL network to understand where the UAV has

been and how far it is from the target position, the feature map from the image

of current scene highlights cluttered areas that are to be avoided. Piciarelli et

al. [272] designed a DDQN-based method to find optimal patrolling strategies for

UAV visual coverage task. The network input consists of the current agent state

and the relevance map whose values represent the relevance of an observed area,

i.e., the importance of its observation or the cost for the system if that area is not

observed. The network outputs the Q values for all the possible agent actions.

86 2. LITERATURE REVIEW

In summary, the articles described in this section give a brief overview of

DRL-based navigation, obstacle avoidance and autonomous exploration methods

for robotics. Based on the literature review it is observed that a DRL-based

area coverage method that applies pure vision perception method is missing.

Motivated by this context, this thesis is mainly concerned with a method that only

uses a monocular camera to perceive the environment and guide the movement of

UAVs. Considering the trade-off between computational efficiency and accuracy,

real-time CNN models for MDE and OF estimation will be applied to this

research.

2.8 Simulators

Robot simulator is an essential tool for researchers in the field of robotics. The

comprehensive review of currently used simulators is beyond the scope of this sec-

tion, instead, we describe some notable simulators here. Gazebo [273] is one of the

most commonly used simulators in the field of autonomous systems. Benefiting

from the modular design, Gazebo allows to utilize different physic engines, sensor

models and build 3D worlds. However, it is difficult for Gazebo to construct

large scale visually realistic environments [274]. Meyer et al. [275] developed

a simulator for quadrotor UAVs through integrating Robot Operating System

(ROS) and the Gazebo simulator. Since the developed simulator tightly relies on

ROS and Gazebo softwares, it is limited by richness of simulated environments.

In [276], Furrer et al. presented a modular framework to build MAVs, and

develop control and state estimation algorithms. However, the presented frame-

work also applies Gazebo as its platform, which limits its perception related

capabilities. jMavSim [277] is a simple multirotor simulator which is designed

2.9. CHAPTER SUMMARY 87

for the purpose of testing PX4 firmware and devices. Therefore, it is tightly

integrated with PX4 Application Programming Interfaces (APIs). Additionally,

jMavSim applies simpler sensor models and depends on simple rendering engine

without any objects in the environment.

In 2017, Dosovitskiy et al. [278] developed a simulator for autonomous driv-

ing in urban environments, named Car Learning to Act (CARLA). CARLA

is built over Unreal Engine 4 (UE4) [279] and supports training, prototyping,

and validation of perception and control models for autonomous driving. Being

designed as a simulator for UGVs, CARLA does not support the simulation of

UAVs. One year later, Microsoft introduced AirSim [274], a simulator providing

physically and visually realistic scenarios for the simulation of UAVs and UGVs.

Similar to CARLA, AirSim is also built on top of Unreal Engine (UE). Due

to the powerful graphical capabilities, UE enables construction of photorealistic

environments. Thus, it benefits the development of perception algorithms and

sim-to-real transfer techniques. Since this thesis aims to develop the real-time

visual guidance method for UAVs in photorealistic environments, we choose

AirSim as the simulator.

2.9 Chapter Summary

In this chapter, the key concepts relate to visual guidance for UAVs have been

reviewed. The main contribution of this chapter is a comprehensive survey on

MDE, which covers classical and state-of-the-art DL-based methods as well as

the application of MDE in robotics. Inspired by this survey, we propose two

novel MDE networks in Chapter 4 and Chapter 5 respectively. Furthermore, we

discussed the development trend of DL techniques, state-of-the-art methods for

88 2. LITERATURE REVIEW

navigation, obstacle avoidance and autonomous exploration that harnesses the

power of various DL methods and DRL methods. Based on the literature review,

we obtained the research gaps to be filled in this thesis.

Chapter 3

Simulation Framework

3.1 Introduction

In this thesis, several critical components are adopted to achieve the task of

monocular vision-based guidance for Unmanned Aerial Vehicles (UAVs). Cur-

rently, there are two main test methods for UAVs. The direct way is to use a

real UAV. However, actual flights are inconvenient due to the following problems.

First, the UAV in testing is easy to crash which will bring about economic losses.

Furthermore, real flight tests need to consider factors such as safety, aviation

regulation compliance, maintenance, weather, battery life and so on. Those

factors will influence flight efficiency and increase the testing costs. Therefore,

in this thesis experiments relate to UAV guidance are performed in a simulation

environment. This chapter introduces the deep learning (DL) framework for

training convolutional neural networks (CNNs) in Chapters 4 and 5, and the deep

reinforcement learning (DRL) network in Chapter 6, as well as the simulator for

running simulation experiments in Chapter 6.

89

90 3. SIMULATION FRAMEWORK

Figure 3.1: Image produced by Unreal Engine [279], a screenshot from the open-source
“Rural Australia” environment [280].

3.2 Unreal Engine

The Unreal Engine (UE) [279] is an open-source and cross-platform 3D computer

graphics game engine developed by Epic Games. UE supports Windows, macOS,

and Linux, and offers solutions for constructing large-scale simulated environ-

ments. Benefiting from the open-source community, UE has a high availability of

free plugins and extensions. UE has full open-source code in C++, which can be

modified to meet user’s specific requirements. It also provides a node-based editor

called Blueprints. Blueprints allows users to implement logic without writing

C++ code, as many functions are already implemented. This can accelerate

implementation and allows for quickly executed experiments.

The UE Marketplace has dozens of pre-built extra-ordinarily detailed simu-

lated environments. Many of these environments are free and can be used after

a few build steps. Apart from the available assets in the UE Marketplace, assets

from most of the modeling software can be easily imported to UE. To sum up,

UE has the following highlights: (1) It is open-source and can be easily modified

to meet the user’s requirement; (2) It has the ability to generate photorealistic

3.3. AIRSIM 91

images (see Figure 3.1); (3) It offers tools and assets for building the simulated

environment. Assets from other modeling software integrate well with UE; (4) In

addition to game industry, UE is also a popular choice for virtual reality (VR)

and architectural visualization. Therefore, high-quality 3D contents are easily

accessible.

3.3 AirSim

AirSim [274] is a simulator for UAVs, Unmanned Ground Vehicles (UGVs) and

other objects, developed on top of the UE. It is an open-source, cross-platform

software designed by Microsoft. AirSim supplies physically and visually realistic

simulations through supporting hardware-in-the-loop (HIL) simulations with dif-

ferent controllers. In particular, AirSim has an integral controller named “simple

flight”, which is used by default. It also supports PX4 [281], an open-source

flight control solution for advanced users. The “simple flight” controller controls

the vehicle through incorporating the desired input information such as angle

rate, angle level, velocity or position. In essence, simple flight applies a sequence

of proportional integral derivative (PID) controllers to produce actuator signals.

The PID position loop output drives the PID velocity loop setpoint, which then

drives the PID attitude controller setpoint which then finally drives the PID

angular rate loop setpoint.

AirSim is designed as a plugin in UE that can be imported in any UE project.

This enables AirSim to take advantage of features of UE regarding its rendering

and physics simulation, user interface, and computational efficiency. AirSim

was developed for solving two main problems in the research community of

autonomous systems: the requirement of large-scale datasets for training and

92 3. SIMULATION FRAMEWORK

Flight

Controller

Firmware

Vehicle Model

Sensors Models

API Layer

Physics Engine

Rendering

Engine

Decision

Making Engine

Environment

Model

Perception

Data

Kinematics

Pose

Forces,

Torques

Desired

State

Desired

State

Estimated State,

Sensor and

Perception Data

Sensor

Data

Actuator

Signals

Simulator

Figure 3.2: The architecture of AirSim.

testing the developed systems, and the ability to debug in a simulator. For this

reason, AirSim provides APIs for independent platform recovery of data and

control vehicles.

3.3.1 Architecture

AirSim adopts the modular design and highlights extensible ability. The main

modules of AirSim are vehicle model, environment model, sensor models, render-

ing engine, physics engine, public API layer, and an interface layer for vehicle

firmware. The architecture of AirSim is illustrated in Figure 3.2. The details of

each individual module in AirSim are described as follows.

3.3. AIRSIM 93

Vehicle Model

AirSim allows users to define the vehicle as a rigid body that has an arbitrary

number of actuators producing forces and torques through the provided interface

[274]. The vehicle model consisting of a series of parameters, including mass,

inertia, coefficients for linear and angular drag, and coefficients of friction and

restitution. These parameters are passed through the physics engine to produce

rigid body dynamics.

The defined vehicle is normally represented by a stack of N vertices placed at

positions {r1, r2, ..., rn} and normals {n1,n2, ...,nn}. Each vertex takes as input a

unitless vehicle specific scaler control input {u1, u2, ..., un}. The produced forces

and torques from these vertices are assumed to have the same directions as their

normals. During the process of simulation, the positions and normals are allowed

to change.

Figure 3.3 illustrates how a defined UAV can be represented by four vertices.

The control input ui drives the rotational speed of the propellers, which located

at the four vertices. The produced forces (Fi) and torques (τi) from the four

propellers are calculated by Equation (3.1) and Equation (3.2) respectively.

Fi = CTρω
2
maxD

4ui, (3.1)

τi =
1

2π
Cpowρω

2
maxD

5ui, (3.2)

where CT and Cpow represent the thrust and the power coefficients respectively, ρ

means the air density, D stands for the propeller’s diameter, and ω2
max indicates

the max angular velocity in revolutions per minute.

94 3. SIMULATION FRAMEWORK

Figure 3.3: The vehicle model for the quadrotor UAV in AirSim [274]. The four
vertices (represented as blue dots) take as input the controls {u1, u2, u3, u4}
and produce four forces {F1,F2,F3,F4} and four torques {τ1, τ2, τ3, τ4}.
Reproduced with permission from Springer Nature, Field and Service Robotics,

Shah et al. [274].

Environment Model

In the real-world environment, a vehicle is exposed to diverse physical phenomena.

While AirSim is able to generate computationally expensive models of those

phenomena, it is focused on modeling accurate gravity, air density, air pressure

and magnetic field in order to enable a real-time operation with HIL.

Sensors Models

AirSim provides a variety of simulated sensors including accelerometer, gyroscope,

barometer, magnetometer, GPS, LiDAR, IMU, and cameras. The models of these

sensors are written in C++ header-only libraries, which can be independently

applied outside of AirSim. Additionally, sensor models are represented as abstract

interfaces. Therefore, it is easy to replace or add new sensors in AirSim.

3.3. AIRSIM 95

Figure 3.4: A snapshot from AirSim shows a UAV flying in a simulated soccer field
environment where it is surrounded by different objects. The sub-windows
illustrate depth, semantic segmentation and RGB images from the viewpoint

of the front view camera.

In this thesis, we only use the front center camera to perceive the environment.

AirSim provides image APIs for retrieving synchronized images from multiple

cameras along with ground-truth including depth, disparity, surface normals,

semantic segmentation and optical flow. Furthermore, image parameters (e.g.,

resolution, FoV, motion blur, etc) can be set in the settings.json file.

Rendering Engine

Due to advanced rendering and detailed environments are core requirements

for a simulator, AirSim [274] applies UE or Unity as the rendering platforms.

UE is open-source and cross-platform, which makes it an attractive choice for

the research community. Besides, UE has cutting edge graphics features such

as physically-based materials, photometric lights, planar reflections, ray traced

distance field shadows, lit translucency, etc. Therefore, it can generate a series of

96 3. SIMULATION FRAMEWORK

highly photorealistic environments including urban, mountain and forest scenar-

ios. In this thesis, we use UE as the rending engine because it supports faster ren-

dering and has superior graphics quality. Figure 3.4 illustrates a screenshot from

a simulated soccer field environment1 that demonstrate the near photo-realistic

rendering capabilities.

Physics Engine

AirSim applies six parameters to represent its kinematic state: position, orien-

tation, linear and angular velocities, and linear and angular accelerations. The

function of the physics engine is to calculate the next kinematic state for each

body given the forces and torques acting on it. In AirSim, the physics engine

can run its update loop at a high frequency up to 1000Hz which is expected to

enable real-time simulation scenarios.

3.3.2 Environments and Models

AirSim provides several simulated environments which can be directly used in

simulation experiments. Those environments are only available in release bina-

ries. Due to copyright, they cannot be edited through the UE editor. The UE

marketplace provides dozens of assets and users can setup their own environments

by creating an Unreal project [282]. In addition, environments and 3D models in

file formats like Filmbox (.fbx), Wavefront OBJ (.obj), and STL (.stl) formats,

can also be imported to the UE editor.

1https://github.com/Microsoft/AirSim/releases

3.4. PYTORCH 97

3.4 PyTorch

PyTorch [283] is an open-source machine learning (ML) framework developed on

the basis of Torch library. Many ML frameworks such as Caffe [284], CNTK

[285], TensorFlow [286] and Theano [287] have been developed before PyTorch.

Those frameworks use a static dataflow graph to model the computation and

these are applied repeatedly to batches of data. This has the advantages of

visualizing the whole computation ahead of time and being leveraged to improve

performance and scalability. However, it suffers from difficulty in use, difficulty in

debugging, and it cannot cope well with different types of computation that can

be represented. By contrast, PyTorch adopts dynamic computation graphs where

the graph structure is defined on-the-fly via the actual forward computation.

Specifically, the graph is rebuilt from scratch on every iteration. This enables

PyTorch to scale well for different dimensional inputs and makes it easy to debug.

3.4.1 Highlights of PyTorch

The highlights of PyTorch are summarized as follows:

• Deep Learning Models are Just Python Programs: In PyTorch,

layers are typically represented as Python classes. For models, they are

normally expressed as classes which consisting of individual layers. Since

PyTorch is tightly integrated with Python, many Python debugging tools

can be easily used with it.

• Interoperability and Extensibility: Easy and efficient interoperability

is one of the most apparent features of PyTorch. It allows users lever-

aging Python libraries as part of their programs. Thus, PyTorch sup-

ports bidirectional exchange of data with external libraries. For instance,

98 3. SIMULATION FRAMEWORK

the NumPy arrays and PyTorch tensors can be converted through the

torch.from numpy() function and .numpy() tensor method. Further-

more, many of the core systems in PyTorch are designed to be extensible.

• Automatic Differentiation: Back propagation (BP) is the most fre-

quently used algorithm for training neural networks. It adjusts network pa-

rameters (model weights) according to the gradient of the loss function with

respect to the given parameter. To compute these gradients, PyTorch pro-

vides a built-in automatic differentiation module called torch.autograd.

During backpropagation, torch.autograd automatically computes the gra-

dient of functions defined in torch.nn. It is worth noting that torch.autograd

supports the automatic computation of gradient for any computational

graph.

3.4.2 PyTorch Basic Components

PyTorch has five main components:

• Tensors: Tensors are the core data type in PyTorch. They are N-dimensional

arrays similar to Numpy arrays, but can run on GPUs to accelerate their

numeric computations.

• Variable: A variable is a wrapper around a tensor, and represents a node in

a computational graph. For example, if x represents a variable then x.data

is a tensor giving its value, while x.grad is another variable containing the

gradient of x with respect to some scalar value. In PyTorch, variables have

the same API as tensors. Any operation that users can do on a tensor

can also do on a variable, the difference is that autograd allows users to

automatically compute gradients.

3.5. CHAPTER SUMMARY 99

• Parameter: Parameter is a kind of tensor that is to be considered as a

module parameter. Parameters are sub-classes of Tensor, and it usually

used to create some tensors in PyTorch model.

• Functions: In PyTorch, functions perform transform operations, and they

does not require memory to store any state.

• Module: Module is the basic class for neural networks. A module can

contain other modules. For example, a neural network is a module itself

consisting of other modules (layers). In PyTorch, the torch.nn namespace

provides all blocks that users need to build their own neural network. Every

module is the subclass of nn.Module.

3.5 Chapter Summary

In this chapter, the game engine for rendering, the simulation platform, and

the deep learning framework are elaborated. The Unreal Engine is used as

the rendering engine of AirSim, which simulates a UAV flying in a complex

environment. PyTorch, a popular deep learning framework is adopted to train

CNNs for depth perception and the deep reinforcement learning network for

controlling the movement of UAV. With these software packages, simulation

experiments for UAV guidance will be performed in Chapter 6.

Chapter 4

MobileXNet for Real-Time

Monocular Depth Estimation

The work, reported in this chapter, has partially been published in the following

journal article [288]:

Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A

Abbass. MobileXNet: An efficient convolutional neural network for monocular

depth estimation. IEEE Transactions on Intelligent Transportation Systems,

23(11):20134-20147, 2022.

4.1 Introduction

This chapter aims to develop a real-time convolutional neural network (CNN) for

monocular depth estimation (MDE). State-of-the-art methods [76,77,79,80,119,

121,289,290] normally utilize CNNs to learn features in order to predict a depth

value for each pixel, and significantly outperform their classical counterparts [68,

73, 82]. However, these methods were developed based on extremely deep and

101

102 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

complex network architectures. Therefore, they suffer a heavy computational cost

and cannot be run in real-time without using high-end GPUs. It is impractical to

deploy those methods on platforms where reaction time is critical, such as small

drones.

On the other hand, Wofk et al. [81] introduced an encoder-decoder network

using the lightweight CNN [44]. Network pruning techniques [291] were used to

further reduce the size of the model. Despite their method achieving a significant

improvement in speed, the accuracy was not comparable to the state-of-the-art

results.

In general, the above-mentioned methods employ the fully convolutional part

of the CNNs [41–44] designed for image classification as the feature extrac-

tor/encoder. However, these networks downsample the resolution of the final

feature maps to 1/32 scale of the input image. Although successive downsampling

increases the receptive field and enables the generated feature maps to include

more semantic information, it results in loss of spatial information [175]. It is

difficult to accurately recover this type of information from these feature maps.

Hence, the accuracy of depth estimation will be impaired, in particular, when

small sized images are processed. Moreover, the loss functions (i.e., the L1 loss,

L2 loss and berHu loss) used by those methods are insensitive to the errors which

occur at step edges. This leads to distorted and blurry edges in the estimated

depth maps.

To address the above problems, we propose a novel CNN and a hybrid loss

function for MDE in this chapter. In particular, we aim to develop a network

which has a proper trade-off between accuracy and speed. To be specific, the

proposed network assembles two relatively shallow encoder-decoder style sub-

networks back-to-back in a unified framework. Compared with the previous

4.1. INTRODUCTION 103

studies [76, 77, 79, 80, 119, 121, 289, 290], our network has a much shallower and

simpler architecture as it is built on top of a series of simple convolutional layers

rather than Inception modules [292] or Residual blocks [41]. In addition, each

subnetwork involves less downsampling operations. This enables the intermediate

feature maps to have a larger resolution and contain more spatial information,

which is beneficial for depth estimation on small sized images. To the best of

our knowledge, this work is the first attempt that stacks shallow encoder-decoder

style CNNs in a unified framework to avoid the loss of spatial information and

enhance the network’s representative ability for depth estimation. Different from

existing works [79, 290], our method avoids the loss of spatial details but does

not incorporate a separate spatial branch or fuse the hierarchical features of the

encoder network. To preserve more edge details of objects, we design a hybrid

loss function which adds constraints on the gradient data of depth maps.

Since the proposed network is designed for autonomous driving and mobile

robots as well as is inspired by the XNet [293], we refer to it as “MobileXNet” in

this chapter. Compared with the XNet network, MobileXNet has three different

characteristics. First, it is developed for the regression application rather than

the classification task. In addition, the encoder of the first subnetwork consists

of a series of depthwise separable convolutional layers [45], which enables a faster

computational speed. Finally, a bridge module is inserted between the encoder

and decoder in each subnetwork, including a set of dilated convolutional layers

with different dilation rates, to capture the context information in multiple scales.

This configuration generates better results than those derived using a single

dilation rate. As a result, the proposed MobileXNet can be used for depth

estimation in a faster and more effective manner in contrast to the XNet method.

The contributions of this chapter are summarized as follows: (1) We introduce

104 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

a novel CNN architecture for achieving running efficient and accurate depth

estimation from a single image; (2) We design a hybrid loss function; (3) We

evaluate the proposed method on a dataset consisting of small sized synthetic

images. In particular, we show that the size of the filters used in the input layer

of CNNs has an influence on the performance of MDE when small sized images are

processed; (4) We use Pareto Optimality to compare the error and running time

over different methods, which has not been exploited in depth estimation; and

(5) We demonstrate that the proposed method not only generates comparable

accuracy to the state-of-the-art methods which use either extremely deep and

complex architecture or post-processing but also runs much faster on a single less

powerful GPU.

The rest of this chapter is organized as follows. In Section 4.2, our method-

ology is introduced. The experimental setup and results are reported in Sections

4.3 and 4.4 respectively. Finally, conclusions are presented in Section 4.5.

4.2 Methodology

In this section, we first introduce the details of the proposed CNN architecture

for MDE and then describe the loss functions used for training.

4.2.1 CNN Architecture

Targeting at addressing the problems with state-of-the-art approaches and achiev-

ing the trade-off between accuracy and speed, we design a novel network which

learns the end-to-end mapping from an RGB image to the corresponding depth

map. We fulfil the task by assembling two simple and shallow encoder-decoder

style subnetworks in a unified framework. As shown in Figure 4.1(b), each

4.2. METHODOLOGY 105

⊕

⊕

⊕

⊕

⊕

⊕

⊕

DWConv, 3x3,

stride=2,

(pre-trained)

DWConv, 3x3,

stride=1,

(pre-trained)

Bilinear

Upsampling

Conv,

1x1,

stride=1

Conv,

3x3,

stride=2

DilatedConv

3x3,

stride=1

Conv

3x3,

stride=1
⊕ Add

⊕

⊕

⊕

⊕
⊕

⊕ ⊕

⊕ ⊕

(a)

(b)

(c)

32

128

256

256

128

64 128

256

256

128

64

32 1

32

128

256

512
512

256

128 256

512 512 256

128

64

32 1

32

128

256

512 512 1024 512
256

128 256

512
1024 1024 512 256

128

64

32 1

Conv, 3x3,

stride=2,

(pre-trained)

I

E1

E2

E3
E4

E5

E6
E7B1 B2

D1

D2
D3

D4

D5

D6 O

I

E1

E2

E3
E4

E5 B1 D1
D2

D3 E6

E7
E8 E9 B2 D4

D5

D6

D7

D8 O

I

E1

E2

E3 B1

E4

E5

E6 B2

D1

D2

D3

D4

D5 O

Figure 4.1: Architecture of the proposed MDE networks (best viewed in color). (a)
MobileXNet-Small, (b) MobileXNet, and (c) MobileXNet-Large. I represents
the input layer, Ei means the ith encoder block, Bi stands for the ith bridge
module, Di indicates the ith decoder block and O denotes the output layer.

subnetwork only consist of simple convolutional layers.

The encoder of the first subnetwork takes a single RGB image as input. After

four times downsampling operation, it produces feature maps (referred to as F1)

at 1/16 scale of the input image. This avoids a greater number of successive

downsamplings which impairs the accuracy of recovering boundary level detail

and the depth estimation on the small sized images. Subsequently, F1 are passed

through two upsampling steps and the generated feature maps F2 are fed to the

second subnetwork, which consists of two downsampling and four upsampling

106 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

steps and outputs a dense depth map. In order to capture fine-grained image

details, skip connections are applied to different levels of the designed network.

Instead of concatenating, feature maps are fused via addition to avoid the increase

of feature map channels processed in the decoder. This results in a further

improvement in running speed.

To reduce network latency, we use depthwise separable convolution to design

the encoder of the first subnetwork (see Figure 4.1(b)). The depthwise separable

convolution factorizes a regular convolution into a depthwise convolution and a

pointwise convolution. Specifically, the depthwise convolution applies a single

filter at each input channel, and the pointwise convolution is used to create a

linear combination of the output of the depthwise layer.

The depthwise convolution with one filter per input channel is defined as:

Ĝk,l,m =
∑
i,j

K̂i,j,m · Fk+i−1,l+j+1,m, (4.1)

where K̂ is the depthwise convolutional kernel with size of DK ×DK ×M , and

the mth filter is operated on the mth channel in input feature map F to produce

the mth channel of the output feature map Ĝ. Hence, it has a computational

complexity of DK ·DK ·M ·DF ·DF , where DK is the spatial dimension of the

kernel, M is the number of input channels and DF is the feature map size. Since

the depthwise convolution only operates on input channels, and is followed by a

1 × 1 convolution which combines the output to generate the final feature map,

the computational cost of depthwise separable convolution is:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF , (4.2)

4.2. METHODOLOGY 107

where N indicates the number of output channels. While for the regular convo-

lution which has the same filter kernel size, the computation cost is:

DK ·DK ·M ·N ·DF ·DF . (4.3)

By using depthwise separable convolution we can reduce the number of parame-

ters in the convolutional layer to:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
k

. (4.4)

For depthwise separable convolutions with kernel size of 3, the amount of com-

putation is 8 to 9 times less than the regular convolution. Thus, it is helpful

to improve the computation speed of MobileXNet. In order to take advantage

of the pre-trained weights on the ImageNet dataset [294], we design the encoder

(boxes with dotted line in Figure 4.1(b)) of the first subnetwork with the same

configuration as the first nine layers of MobileNet [44].

(a) (b) (c)

Figure 4.2: Illustration of the dilated convolution, which expands the convolution kernel
through inserting holes between the kernel elements. (a), (b), (c) are 1-dilated,
2-dilated, 3-dilated convolution respectively. The yellow squares represent

kernel elements, and blue squares indicate inserted holes.

A larger receptive field enables the network to capture more context informa-

108 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

tion, which can be leveraged to improve depth estimation performance [76]. The

dilated convolution expands the convolution kernel by inserting holes between the

kernel elements. This increases the receptive field of the kernel elements without

increasing the number of model parameters [295]. Therefore, we insert a bridge

module between the encoder and decoder in each subnetwork. Specifically, the

bridge module consists of three dilated convolutional layers. Given a discrete

function defined by F : Z2→R, let Ωr = [−r, r]2 ∩ Z2 where r represents the

kernel radius, and k : Ωr→R be a discrete filter of size (2r + 1)2. The discrete

convolution operator ∗ can be expressed as:

(F ∗ k)(p) =
∑
s+t=p

F (s)k(t). (4.5)

Based on this filter, the dilated convolution with a dilation rate l can be formu-

lated as:

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t), (4.6)

where ∗l is an l-dilated convolution. The regular convolution ∗ is simply the

1-dilated convolution. The illustration of dilated convolution is shown in Figure

4.2. In this study, the dilation rates are set as 1, 2 and 3. By doing this, the

decoders can get the context information captured in multiple scales.

The task of the decoder is to refine and upsample the output of the en-

coder. The core part of the decoder is the upsampling layer to upsample the

spatial resolution. The commonly applied methods are unpooling, up-projection,

transpose convolution and interpolation combined with convolution. According

to [76], up-projection produces better performance than unpooling and transpose

convolution. However due to the relatively complex architecture, it significantly

increases the number of network parameters. Inspired by [296], we choose the

4.2. METHODOLOGY 109

combination of a bilinear interpolation and a 3 × 3 convolutional layer as the

upsample layer in this study. The 3× 3 convolutional layer reduces the number

of output channels to half of the number of input channels. The bilinear interpo-

lation increases the spatial resolution of intermediate feature maps to the same

size as the output of the corresponding encoder layer. The main advantage of

this design is the simple network architecture and reduced computational time.

We also design two variants that perform three and five times of downsam-

pling in the first subnetwork, and we name them as MobileXNet-Small and

MobileXNet-Large respectively. We train and test MobileXNet and the variants

on the NYU depth v2 dataset [3] to compare the performance. The network

architectures are shown in Figure 4.1.

4.2.2 Loss Functions

A loss function is applied to measure how far the predicted depth map is from the

ground-truth, and this is used to supervise the update of network weights. Thus,

it plays an important role in training CNNs. A commonly used loss function

for depth estimation is the L2 loss as it is more effective for pixels with larger

error [297]. The L2 loss is defined as:

L2(d, d∗) =
1

N

N∑
i

|di − d∗i |2, (4.7)

where N is the number of pixels being considered, d and d∗ are the predicted and

ground-truth depth respectively. In [76], Laina et al. introduce a reverse Huber

loss:

LberHu(d, d
∗) =


|d− d∗| if |d− d∗|≤c,

(d−d∗)2+c2

2c
otherwise,

(4.8)

110 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

where c is the threshold and set as c = 1
5
maxi(|d− d∗|). The berHu loss is equal

to L2 loss when the error exceeds c, whilst when the error falls in [−c, c] the

berHu loss is equal to the L1 loss:

L1(d, d∗) =
1

N

N∑
i

|di − d∗i |, (4.9)

which is more robust to outliers in the dataset [298]. However, the above described

loss function are insensitive to errors emerging at blur edges [170]. To penalize

the errors around edges, we define a hybrid loss which combines the regular L1

loss with the image gradient-based L1 loss:

Lgrad(d, d
∗) =

1

N

N∑
i

|5x(di, d
∗
i)|+ |5y(di, d

∗
i)|, (4.10)

where 5x and 5y are spatial derivative in x and y direction respectively. Finally,

the defined hybrid loss is formulated as:

Lhybrid = Ldepth + Lgrad, (4.11)

where Ldepth is the regular L1 loss, and Lgrad is the image gradient-based L1 loss.

4.3 Experimental Setup

We introduce our experimental setup in this section. It includes three parts:

implementation details, data augmentation methods and performance metrics.

4.3. EXPERIMENTAL SETUP 111

4.3.1 Implementation Details

We implement the proposed networks using PyTorch [283]. A desktop with an

i7-7700 CPU, 16GB RAM and a single Nvidia GTX 1080 GPU is used for training

and testing. In order to improve accuracy and avoid over-fitting, we initialized

the weights of the encoder of the first subnetwork of MobileXNet and its variants

with the pre-trained model on the ImageNet dataset [294]. The other layers

are initialized from He initialization [299] with a standard deviation of
√

2/N ,

where N represents the number of incoming nodes of one neuron [299]. Following

[81, 119], we set the batch size as 8 and use the SGD optimizer with an initial

learning rate of 0.01 to train our models. For the NYU depth v2 [3], KITTI [1] and

Unreal [34] datasets, we train the network for 20 epochs, and reduce the learning

rate to 20% every 5 epochs. For the Make3D dataset [82], we train MobileXNet

for 100 epochs, and reduce the learning rate to 20% every 40 epochs.

4.3.2 Data Augmentation

To increase the diversity of training samples, we utilize the following data aug-

mentation methods, which are applied to each RGB and depth image pair in an

online fashion:

(1) Random Rotation: RGB and depth image pairs are rotated by a random

angle r ∈ [−5, 5] degrees.

(2) Random Scale: RGB images are scaled by a random factor s ∈ [1, 1.5],

and the corresponding depth maps are divided by s.

(3) Color Jitter: the brightness, contrast, and saturation of the RGB images

are scaled by a random factor c ∈ [0.6, 1.4].

(4) Random Flips: RGB and depth image pairs are horizontally flipped with

112 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

the probability of 0.5.

4.3.3 Performance Metrics

In this section, we evaluate each method with four metrics. In addition to the

linear Root Mean Square Error (RMSE), Absolute Relative Difference (Abs REL)

and Threshold Accuracy (δi, i = 1, 2, 3) described in Section 2.3.1, we also use

the running time (tGPU) to measure the speed of MoboleXNet. The running time

is defined as the average execution time of testing each frame on a single GPU. In

this section, we report the running time of our method on the Nvidia GTX 1080

GPU. Due to the code and GPU model of some methods not being available to

us, we cannot do a direct comparison on the Nvidia GPU. Therefore, we instead

compare against their running time and GPU model as reported in the literature.

4.4 Experimental Results

In this section, we present the experimental results on MDE. We evaluate the

proposed method on both indoor and outdoor scenes. Four datasets, the NYU

depth v2 [3], KITTI [1], Make3D [82] and Unreal [34] are selected as benchmarks.

Specifically, the NYU depth v2 dataset was captured in indoor environments, the

KITTI [1] and Make3D dataset [82] were collected in real-world outdoor scenes,

while the UnrealDataset [34] was gathered from simulated outdoor surroundings.

We first evaluate MobileXNet with different loss functions and network configura-

tions on the NYU depth v2 dataset [3]. Then, we compare it with state-of-the-art

methods on four benchmarks.

4.4. EXPERIMENTAL RESULTS 113

4.4.1 NYU Depth Dataset

The NYU depth v2 dataset [3] consists of about 240k RGB and depth image pairs

captured from 464 different indoor scenes through a Microsoft Kinect camera. In

this section, we train the designed method on about 48k synchronized RGB and

depth images pairs, and test it on 654 images. Both training and testing data

are released by [81]. Following [2,76,81], we first downsample the original images

from 640× 480 pixels to half size, and then center crop a 304× 228 pixel region

as input to the network.

Table 4.1: Evaluation of loss functions (Rows 1-4) and dilation rates (Rows 4-8) on the
NYU depth v2 dataset [3]. [1, 2, 3]∗ means depthwise separable convolutions

with dilations. The red and bold values indicate the best results.

Row Method Loss Rate RMSE Abs REL δ1 δ2 δ3 tGPU

1 MobileXNet L1 [1,2,3] 0.558 0.158 0.784 0.945 0.984 8.1 ms

2 MobileXNet L2 [1,2,3] 0.553 0.158 0.777 0.948 0.986 7.8 ms

3 MobileXNet berHu [1,2,3] 0.550 0.160 0.779 0.947 0.987 8.9 ms

4 MobileXNet Hybrid [1,2,3] 0.537 0.146 0.799 0.951 0.988 7.9 ms

5 MobileXNet Hybrid [1,1,1] 0.552 0.156 0.785 0.946 0.985 6.8 ms

6 MobileXNet Hybrid [2,2,2] 0.545 0.156 0.794 0.947 0.987 9.0 ms

7 MobileXNet Hybrid [3,3,3] 0.533 0.148 0.797 0.951 0.987 8.9 ms

8 MobileXNet Hybrid [1, 2, 3]∗ 0.552 0.162 0.786 0.942 0.984 6.2 ms

Lower is better Higher is better δ1 : δ < 1.25, δ2 : δ < 1.252, δ3 : δ < 1.253

Evaluation of Loss Functions

In this subsection, we perform a set of experiments over different loss functions

based on the designed MobileXNet. Four loss functions described in Section 4.2.2

are tested, and the results are listed in the first 4 rows of Table 4.1. It can be

observed that both the berHu loss and the L2 loss outperform the L1 loss. In

addition, the berHu loss performs slightly better than the L2 loss. It should be

noted that the designed hybrid loss which combines the regular L1 loss with the

image gradient-based L1 loss generates the best performance. Therefore, we use

114 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

the hybrid loss function as the default loss in this chapter.

Evaluation of Dilation Rate

In this subsection, we evaluate the performance of different dilation rate config-

urations in the bridge modules. The dilation rates in the bridge modules are

set as [1, 1, 1], [2, 2, 2], [3, 3, 3] and [1, 2, 3], while [1, 1, 1] means the bridge

modules have three regular convolutional layers. The results produced from these

4 configurations are listed in Rows 4 to 7 of Table 4.1.

As can be seen, (1) the dilated convolutions improve the performance in

both accuracy and error metrics. We attribute this to the fact that it has a

larger receptive field and captures more context information. It should be noted

that we do not further increase the dilation rate, as we did not obtain empirical

improvement when dilation rate was larger than 3; (2) the configuration of [3,

3, 3] produces the best RMSE value, while the values of Abs REL, δ1, δ3 and

running time are inferior to [1, 2, 3]. It demonstrates that using multiple dilated

convolutional layers with different dilation rates to capture the multiple-scale

context information is helpful in improving accuracy. Besides, the MobileXNet

using the bridge modules with dilation rates of [1, 2, 3] runs faster than [3, 3, 3] by

1ms. This suggests that [1, 2, 3] achieves better accuracy and speed balance; (3)

we further apply depthwise separable convolutions with dilation rates of 1, 2 and

3 to the bridge modules (row 8, Table 4.1). According to the 4th and 8th rows of

Table 4.1, the depthwise separable convolution lowers the running time by 1.7ms

but the accuracy also decreased. However, the MobileXNet using the regular

convolutions with dilation rates of [1, 2, 3] generates the best performance and

adequate speed for real-time application. Therefore, we choose it as the default

configuration.

4.4. EXPERIMENTAL RESULTS 115

(a) (b) (c) (d)

Figure 4.3: Qualitative results of MobileXNet with different weight initialization and
convolution type in the encoder of the second sub-network. (a) Ground-truth,
(b) Conv-IG, (c) DWConv-IG, and (d) DWConv. Color represents depth

(yellow is far, blue is close).

Effect of Weight Initialization

To evaluate the effect of weight initialization in the backbone (the encoder of the

first subnetwork) of MobileXNet, we initialized it with the pre-trained MobileNet

model (row 1, Table 4.2) and Gaussian distribution (row 2, Table 4.2) respectively.

Furthermore, we design a variant of MobileXNet by replacing the depthwise

separable convolutional layers in the backbone with regular convolutional layers

(row 3, Table 4.2). Since the ImageNet dataset pre-trained weights of the regular

convolutional layers are not available, we initialize them from the Gaussian

distribution.

As can be observed from the 2nd and 3rd rows of Table 4.2, when initialized

from the Gaussian distribution, the variant with regular convolutional layers (row

3, Table 4.2) outperforms the Gaussian distribution initialized MobileXNet (row

2, Table 4.2) in RMSE, Abs REL, δ1, δ2 and δ3, while the running speed is

inferior. We attribute this to the fact that the regular convolution has more

parameters than the depthwise separable convolution. However, when initializing

116 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

Table 4.2: Evaluation of the weight initialization and convolution types in the encoder
of the first sub-network (Rows 1-3) and the second sub-network (Rows 4-6) on
the NYU depth v2 dataset [3]. DwConv indicates the depthwise separable
convolutional layers initialized from the pre-trained weights, DwConv-IG
represents the depthwise separable convolutional layers initialized from the
Gaussian distribution, and Conv-IG means the regular convolutional layers
initialized from the Gaussian distribution. The red and bold values indicate

the best results.

Row Method Convolution RMSE Abs REL δ1 δ2 δ3 tGPU

1 MobileXNet DwConv 0.537 0.146 0.799 0.951 0.988 7.9 ms

2 MobileXNet DwConv-IG 0.669 0.198 0.692 0.909 0.973 8.5 ms

3 MobileXNet Conv-IG 0.632 0.186 0.724 0.923 0.976 9.3 ms

4 MobileXNet DwConv 0.822 0.209 0.584 0.862 0.961 6.8 ms

5 MobileXNet DwConv-IG 0.550 0.156 0.788 0.947 0.986 7.3 ms

6 MobileXNet Conv-IG 0.537 0.146 0.799 0.951 0.988 7.9 ms

Lower is better Higher is better δ1 : δ < 1.25, δ2 : δ < 1.252, δ3 : δ < 1.253

the backbone from the pre-trained weights (row 1, Table 4.2), the performance

of MobileXNet improved significantly. Thus, we choose the depthwise separable

convolution in the backbone and initialize it from the pre-trained weights in this

study.

With the backbone initialized from the pre-trained MobileNet model, we

further design the encoder of the second subnetwork (E5-E7 blocks in Figure

4.1(b)) with depthwise separable convolutional layers and initialize it with the

pre-trained weights of the corresponding layers of MobileNet [44]. Experimental

results are shown in rows 4 to 6 of Table 4.2. Figure 4.3 also displays the

qualitative results.

It can be seen from Table 4.2 that when we initialized the encoder of the second

subnetwork with the pre-trained weights (row 4, Table 4.2), MobileXNet does not

provide good performance. Furthermore, the produced depth maps are blurry

and suffer from sharp discontinuities of shapes of objects (see Figure 4.3(d)). We

attribute the bad performance to the following facts. In essence, the MobileXNet

stacks two encoder-decoder style sub-networks. The encoder and decoder of the

4.4. EXPERIMENTAL RESULTS 117

first sub-network are trained to describe input images and generate feature maps

with 1/4 size of the input image, respectively. The produced feature maps are

passed to the second subnetwork in order to produce depth maps. The second

subnetwork works as a learned refining module which operates with downsampling

and upsampling steps. This subnetwork tends to be more dependent on the

training dataset than the backbone which is utilized to learn generic features [300].

The ImageNet dataset [294] used for pre-training the MobileNet is different from

the NYU depth v2 dataset [3]. Hence, initializing the encoder of the second

subnetwork impairs the performance of depth estimation.

To further augment our experiments, we then initialize the parameters of the

depthwise separable convolutional layers in the encoder of the second subnetwork

with a Gaussian distribution (row 5, Table 4.2). As shown in Table 4.2, initializing

the encoder of the second subnetwork from the Gaussian distribution outperforms

initialization from pre-trained weights. Compared with the original MobileXNet

(row 6, Table 4.2), the MobileXNet with the depthwise separable convolution in

the encoder of the second subnetwork has inferior performance. In addition, the

boundary of small or thin objects in the produced depth maps (see Figure 4.3(c))

are unclear. Therefore, we use regular convolutional layers in the encoder of the

second subnetwork and initialize it from the Gaussian distribution.

118 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

T
ab

le
4.

3:
C

om
p

ar
is

on
of

th
e

pr
op

os
ed

M
ob

ile
X

N
et

ag
ai

n
st

d
iff

er
en

t
va

ri
an

ts
an

d
U

-N
et

[4
]

on
th

e
N

Y
U

d
ep

th
v2

d
at

as
et

[3
].
4

re
pr

es
en

ts
th

e
fi

rs
t

9
la

ye
rs

of
M

ob
ile

N
et

,
�

d
en

ot
es

th
e

fi
rs

t
7

la
ye

rs
of

M
ob

ile
N

et
,
♦

m
ea

n
s

th
e

n
et

w
or

k
d

o
es

n
ot

u
se

a
C

N
N

d
es

ig
n

ed
fo

r
im

ag
e

cl
as

si
fi

ca
ti

on
.

M
an

d
G

in
d

ic
at

e
×

10
6

an
d
×

10
9

re
sp

ec
ti

ve
ly

.
T

h
e

re
d

an
d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

R
o
w

M
et

h
o
d

B
a
ck

b
o
n

e
P

a
ra

m
et

er
s

F
lo

p
s

M
em

o
ry

R
M

S
E

A
b

s
R

E
L

δ 1
δ 2

δ 3
t G
P
U

1
M

o
b

il
eX

N
et

4
2
4
.9

5
M

9
.7

8
G

1
1
1
.1

2
M

B
0
.5
3
7

0
.1
4
6

0
.7
9
9

0
.9

5
1

0
.9
8
8

7
.9

m
s

2
M

o
b

il
eX

N
et

-S
m

a
ll

�
6
.5

1
M

8
.3

4
G

1
0
4
.6

1
M

B
0
.6

0
6

0
.1

8
0

0
.7

3
3

0
.9

3
0

0
.9

8
1

6
.1

m
s

3
M

o
b

il
eX

N
et

-L
a
rg

e
M

o
b

il
eN

et
9
1
.0

7
M

1
1
.8

5
G

1
2
1
.1

7
M

B
0
.5

3
8

0
.1

4
8

0
.7
9
9

0
.9
5
2

0
.9

8
7

1
5
.2

m
s

4
S

h
u

ffl
eX

N
et

S
h
u

ffl
eN

et
V

2
5
.2

0
M

1
.7

3
G

4
1
.9
3

M
B

0
.5

8
0

0
.1

6
3

0
.7

6
6

0
.9

4
3

0
.9

8
5

6
.9

m
s

5
E

ffi
ci

en
tX

N
et

E
ffi

ci
en

tN
et

-B
0

1
.9
6

M
0
.3
9

G
7
4
.1

9
M

B
0
.5

7
5

0
.1

6
2

0
.7

6
6

0
.9

4
6

0
.9

8
5

8
.2

m
s

6
U

-N
et

[4
]

(B
il

in
ea

r)
♦

1
7
.2

7
M

4
2
.2

2
G

4
0
1
.0

5
M

B
0
.7

0
5

0
.2

0
6

0
.6

6
1

0
.9

0
0

0
.9

7
2

1
4
.1

m
s

7
U

-N
et

[4
]

(D
eC

o
n
v
)

♦
3
1
.0

4
M

4
8
.5

5
G

4
2
6
.3

2
M

B
0
.7

2
6

0
.2

1
2

0
.6

4
4

0
.8

9
2

0
.9

7
1

1
9
.8

m
s

L
o
w

er
is

b
et

te
r

H
ig

h
er

is
b

et
te

r
δ 1

:
δ
<

1
.2

5
,
δ 2

:
δ
<

1
.2

5
2
,
δ 3

:
δ
<

1
.2

5
3

4.4. EXPERIMENTAL RESULTS 119

Evaluation of Network Architectures

To validate the effectiveness of the MobileXNet, we compare it with different

variants. In addition to the MobileXNet-Small and MobileXNet-Large, we build

two variants based on the ShuffleNetV2 [47] and EfficientNet [48] backbones. The

corresponding variants are named as ShuffleXNet1 and EfficientXNet2 respec-

tively. The standard encoder-decoder network, U-Net, is used as the baseline.

Unlike [4], the U-Net includes batch normalization in this work. All methods

were trained with the hybrid loss. The experimental results are shown in Table

4.3.

It can be observed that: (1) among all methods, MobileXNet generates the

best error and accuracy metric results and its running time is only inferior to the

fastest method by 1.8ms; (2) regarding the RMSE, Abs REL, δ1, δ2 and δ3 metrics,

the performance of MobileXNet-Large is very close to MobileXNet. However,

due to its deep network architecture, the running time is almost doubled; (3)

MobileXNet-Small yields the fastest speed, while its error and accuracy metric

results are inferior to its counterparts except the U-Net [4]; (4) the network

parameters, flops and memory footprint of ShuffleXNet are about 4×, 5× and 2×

fewer than MobileXNet, but it is only faster than MobileXNet by 1ms. Moreover,

the performance of ShuffleXNet with respect to the error and accuracy metrics is

not comparable to MobileXNet; (5) EfficientXNet is optimal in terms of network

parameters and flops, while its running time is longer than MobileXNet. This

should be attributed to the fact that EfficientXNet is built on top of Efficient-

Net [48], which is optimized for parameter and flops efficiency. Furthermore,

EfficientNet scales the feature map resolution and depth at the same time, this

1The conv1 to stage 3 layers of ShuffleNetV2-1x [47] are used as backbone
2The stage 1 to stage 6 layers of EfficientNet-B0 [48] are used as backbone

120 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

leads to the slow GPU inference time [301]; and (6) the performance of U-Net [4]

is inferior, no matter which upsampling method is used. Besides, it is the slowest

especially when using transpose convolution (DeConv) for upsampling. It should

be noted that the weights of U-Net are initialized from a Gaussian distribution.

MobileXNet generates the best performance in terms of error and accuracy

metrics and achieves real-time speed about 126 fps on an Nvidia GTX 1080

GPU, which is adequate for autonomous driving and robotic applications. In

this context, we choose MobileXNet as the network in this chapter.

Effect of Data Augmentation

We employ data augmentation to increase the diversity of the training data to

enable the trained network to have a better depth estimation performance. We

train our MobileXNet on the original training data and the training data with

online data augmentation to analyze the benefit of data augmentation. The

standard 654 testing images are used as testing data. Experimental results are

listed in Table 4.4. It can be observed that data augmentation improves the MDE

performance, especially the RMSE, Abs REL and δ1 metrics. Therefore, we use

data augmentation in this chapter.

Table 4.4: Evaluation of the benefit of data augmentation.

Row MobileXNet RMSE Abs REL δ1 δ2 δ3

1 Original 0.555 0.158 0.782 0.946 0.985

2 Augmented 0.537 0.146 0.799 0.951 0.988

Lower is better Higher is better

4.4. EXPERIMENTAL RESULTS 121

(a)

(c)

(b)

(e)

(f)

(d)

Figure 4.4: Qualitative comparison on the NYU depth v2 dataset. (a) RGB, (b)
Ground-truth, (c) Our results, (d) Wofk et al. [81] (Final), (e) Eigen and
Fergus [75], and (f) Eigen et al. [2] (Fine). Color represents depth (yellow is

far, blue is close).

122 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

T
ab

le
4.

5:
C

om
p

ar
is

on
of

p
er

fo
rm

an
ce

s
on

th
e

N
Y

U
d

ep
th

v2
d

at
as

et
[3

].
♦

m
ea

n
s

th
e

n
et

w
or

k
d

o
es

n
ot

u
se

C
N

N
d

es
ig

n
ed

fo
r

im
ag

e
cl

as
si

fi
ca

ti
on

,
4

re
pr

es
en

ts
th

e
fi

rs
t

9
la

ye
rs

of
M

ob
ile

N
et

.
T

h
e

re
d

an
d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

R
o
w

M
et

h
o
d

B
a
ck

b
o
n

e
R

M
S

E
A

b
s

R
E

L
δ 1

δ 2
δ 3

t G
P
U

D
ev

ic
e

1
E

ig
en

et
a
l.

[2
]

♦
0
.9

0
7

0
.2

1
5

0
.6

1
1

0
.8

8
7

0
.9

7
1

N
/
A

N
/
A

2
E

ig
en

a
n

d
F

er
g
u

s
[7

5
]

V
G

G
-1

6
0
.6

4
1

0
.1

5
8

0
.7

6
9

0
.9

5
0

0
.9

8
8

N
/
A

N
/
A

3
L

iu
et

a
l.

[8
3
]

V
G

G
-1

6
0
.7

5
9

0
.2

1
3

0
.6

5
0

0
.9

0
6

0
.9

7
6

N
/
A

N
/
A

4
L

a
in

a
et

a
l.

[7
6
]

(U
p

C
o
n
v
)

R
es

N
et

-5
0

0
.6

0
4

0
.1

3
2

0
.7

8
9

0
.9

4
6

0
.9

8
6

7
8

m
s

N
v
id

ia
G

T
X

T
it

a
n

5
L

a
in

a
et

a
l.

[7
6
]

(U
p

P
ro

j)
R

es
N

et
-5

0
0
.5

7
3

0
.1

2
7

0
.8

1
1

0
.9

5
3

0
.9

8
8

5
5

m
s

N
v
id

ia
G

T
X

T
it

a
n

6
C

a
o

et
a
l.

[7
7
]

R
es

N
et

-1
5
2

0
.5

4
0

0
.1

4
1

0
.8
1
9

0
.9
6
5

0
.9
9
2

N
/
A

N
/
A

7
L

i
et

a
l.

[7
9
]

R
es

N
et

-5
0

0
.6

0
1

0
.1

4
7

0
.8

0
8

0
.9

5
7

0
.9

8
5

N
/
A

N
/
A

8
H

e
et

a
l.

[3
0
2
]

V
G

G
-1

6
0
.5

7
2

0
.1

5
1

0
.7

8
9

0
.9

4
8

0
.9

8
6

N
/
A

N
/
A

9
X

u
et

a
l.

[2
8
9
]

R
es

N
et

-5
0

0
.5

9
3

0
.1
2
5

0
.8

0
6

0
.9

5
2

0
.9

8
6

1
5
0

N
v
id

ia
T

it
a
n

-X

1
0

W
o
fk

et
a
l.

[8
1
]

(O
ri

g
in

a
l)

M
o
b

il
eN

et
0
.5

7
9

0
.1

6
4

0
.7

7
2

0
.9

3
8

0
.9

8
2

5
.0

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
1

W
o
fk

et
a
l.

[8
1
]

(F
in

a
l)

M
o
b

il
eN

et
0
.6

0
4

0
.1

6
5

0
.7

7
1

0
.9

3
7

0
.9

8
0

4
.0

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
2

Y
a
n

g
et

a
l.

[5
7
]

R
es

N
et

-1
8

0
.6

2
8

0
.1

9
9

0
.7

0
8

0
.9

1
6

0
.9

7
5

1
0

m
s

N
v
id

ia
T

it
a
n

-X

1
3

H
a
m

b
a
rd

e
a
n

d
M

u
ra

la
[3

0
3
]

♦
0
.5

4
3

0
.1

6
0

0
.7

7
3

0
.9

5
9

0
.9

8
9

N
/
A

N
/
A

1
4

S
p

ek
et

a
l.

[9
1
]

E
R

F
N

et
0
.6

8
7

0
.1

9
0

0
.7

0
4

0
.9

1
7

0
.9

7
7

3
.2

m
s

N
v
id

ia
G

T
X

1
0
8
0
T

i

1
5

M
o
b

il
eX

N
et

(O
u

rs
)

4
0
.5
3
7

0
.1

4
6

0
.7

9
9

0
.9

5
1

0
.9

8
8

7
.9

m
s

N
v
id

ia
G

T
X

1
0
8
0

L
o
w

er
is

b
et

te
r

H
ig

h
er

is
b

et
te

r
δ 1

:
δ
<

1
.2

5
,
δ 2

:
δ
<

1
.2

5
2
,
δ 3

:
δ
<

1
.2

5
3

4.4. EXPERIMENTAL RESULTS 123

Comparison with the State-of-the-Art

In this subsection, we compare MobileXNet with state-of-the-art methods [2,

57, 75–77, 79, 81, 83, 91, 289, 302, 303]. Since we focus on depth estimation from

single RGB images, methods that fuse sparse depth data are not considered in

this study. The results of [2, 57, 75–77, 79, 83, 91, 289, 302, 303] are reported in

respective literatures. While Wofk et al. [81] only report the values of RMSE and

δ1, we run their released code and models on our desktop to get the values of

Abs REL, δ2, δ3 and the running time on the Nvidia GTX 1080 GPU. Table 4.5

reports all experimental results.

As can be seen, MobileXNet performs much better than Spek et al. [91] in both

error and accuracy metrics, and it generates the best RMSE result. Regarding

Abs REL, δ1, δ2 and δ3 values, MobileXNet also outperforms [57, 75, 81, 83, 302,

303]. Moreover, the Abs REL, δ1, δ2 and δ3 values of MobileXNet are on par with

[76, 77, 79, 289]. Compared with these four methods, MobileXNet has a shallow

and simple architecture, which consists of less layers. Specifically, MobileXNet

uses the first 9 layers of MobileXNet as backbone, which is much shallower

than the ResNet-50 and ResNet-152 utilized by [76, 77, 79, 289]. Regarding the

decoder network, our upsample layer consists of a 3 × 3 convolutional layer

and bilinear interpolation, while Laina et al. [76] (UpProj) utilizes a relatively

complex Up-projection method. Additionly, [79] and [289] integrate multi-scale

side output feature maps and [77] uses CRF as post-processing operation.

It can be observed from Table 4.5 that Spek et al. [91] yields the fastest

running speed, while it performs worse than most of the counterparts in terms of

the accuracy and error metrics. Our MobileXNet runs slightly slower than Wofk

et al. [81], which is tested at 224 × 224 sized images. It should be noted that

the MobileXNet runs on images having 228 × 304 pixels. The running speed of

124 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

MobileXNet is apparently faster (7.9ms vs 150ms) than Xu et al. [289], which

was tested on a Titan-X GPU. While the running time is obtained with different

GPUs, the Titan-X GPU has 3584 CUDA cores and 12GB memory, which is much

stronger than our 1080 GPU (2580 CUDA cores and 8GB memory). With the

same sized images, the speed of MobileXNet is about 7× to 10× faster than [76].

It should be noted that [76] was evaluated on an Nvidia GTX Titan GPU which

has 3072 CUDA cores and 12GB memory.

The non-dominated algorithms over running time and RMSE are shown in

Figure 4.5(a). As can be seen, MobileXNet dominates Laina et al. [76] (Up-

Conv), Laina et al. [76] (UpProj), Xu et al. [289] and Yang et al. [57]. Besides,

MobileXNet, Wofk et al. [81] (Original), Wofk et al. [81] (Final), Spek et al. [91]

and Bhat et al. [93] lie on the Pareto Front because none of them is dominated

by another. Bhat et al. [93] generates better RMSE performance (0.364), but

it runs about 27× slower than MobileXNet (7.9ms vs 220ms) on a single Nvidia

GTX 1080 GPU. Moreover, whilst MobileXNet is slower than [81] (Original), [81]

(Final) and Spek et al. [91], its accuracy is better than them. More importantly,

MobileXNet runs about 126 fps on a less powerful GPU, which is adequate

for the real-time application of autonomous driving and robotics. Considering

the trade-off between accuracy and speed, MobileXNet is the best compromise

solution. In Figure 4.4, we provide qualitative comparison of the proposed method

with [2, 75, 81]. It is clearly observed that the results of [2, 75, 81] are blurry. By

contrast, our method recovers more details and the predicted depth maps are

much clearer than its counterparts.

4.4. EXPERIMENTAL RESULTS 125

0 30 60 90 120 150 180 210 240 270 300

Running Time

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
R

M
S

E
MobileXNet (Ours)
Xu et al.
Spek et al.
Yang et al.
Wofk et al. (Final)
Wofk et al. (Original)
Laina et al. (UpProj)
Laina et al. (UpConv)
Bhat et al.

(a)

0 20 40 60 80 100 120 140 160

Running Time

3

3.5

4

4.5

5

5.5

6

R
M

S
E

MobileXNet (Ours)
Spek et al.
Liu et al.
Poggi et al.
Zhou et al.
Godard et al.
Eom et al.
Yusiong and Naval

(b)

0 40 80 120 160 200 240 280 320 360 400

Running Time

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

R
M

S
E

MobileXNet (Ours)
Liu et al.
Poggi et al.
Zhou et al.
Casser et al.
Godard et al.
Eom et al.
Yousiong and Naval
Bhat et al.

(c)

Figure 4.5: Pareto Optimality on the NYU depth v2 dataset and the KITTI dataset.
(a) The NYU depth v2 dataset, (b) The KITTI dataset (range caps of 50m),

and (c) The KITTI dataset (range caps of 80m).

4.4.2 KITTI Dataset

The KITTI dataset [1] consists of outdoor scene images with a resolution of

375× 1241 pixels. This dataset has sparse depth images captured by a Velodyne

LiDAR. We utilize the same split as Eigen et al. [2], where only left images, which

includes 22600 training images and 697 testing images are used. To generate the

ground-truth depth maps, we projected corresponding Velodyne data points to

the left image plane. The missed depth values in the ground-truth depth maps are

ignored both in training and testing. As the LiDAR provides no measurements

in the upper part of the images, only the bottom 228× 912 pixels region is used

in this chapter.

In order to compare with state-of-the-art methods [2,77,79,83,85,86,89,91,140,

194,290,304,305], we evaluate our method with the depth ranging from 0m to 80m

and 0m to 50m. Table 4.6 shows the results of our method together with baselines.

For the depth ranging from 0m to 80m, MobileXNet achieves the best Abs REL

and δ3 results, while the value of RMSE is comparable to [77,304]. Moreover, the

δ1 and δ2 of MobileXNet are only slightly inferior to Cao et al. [77]. It should be

noted that [77] is built on top of an extremely deep CNN, ResNet-152, and uses

fully connected CRF for post-processing. In addition, Eom et al. [304] adopts

126 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

a two-stream encoder in order to learn features from RGB images and optical

flow. However, MobileXNet does not exploit any multi-stream architecture or

post-possessing operation, and has much less layers than [77]. Furthermore, our

method outperforms [2, 79, 85, 86, 89, 140, 194,290, 305]. For the depth range of 0

to 50 meters, MobileXNet produced the best performance on Abs REL, δ2, and

δ3, and the second best performance of δ1. It demonstrates that MobileXNet

works better for close-range depth.

(a) (b) (c) (d)

Figure 4.6: Qualitative comparison on the KITTI dataset. (a) RGB, (b) Ground-truth,
(c) Our results, and (d) Eigen et al. [2] (Fine). The ground-truth has been
interpolated for visualization. Color represents depth (yellow is far, blue is

close).

In terms of running speed, our MobileXNet only needs 15.4ms to process

a 228 × 912 sized image on an Nvidia GTX 1080 GPU, which is faster than

its counterparts such as [85, 86, 89, 140, 194, 304, 305]. It is worth noting that

[85, 86, 89, 140, 194,304, 305] were tested on GPUs which are much stronger than

ours. Specifically, the Titan-X GPU has 3584 CUDA cores and 12GB memory,

the GTX 1080Ti GPU has 3584 CUDA cores and 11 GB memory, while our GTX

1080 GPU only has 2560 CUDA cores and 8GB memory.

4.4. EXPERIMENTAL RESULTS 127

T
ab

le
4.

6:
C

om
p

ar
is

on
of

p
er

fo
rm

an
ce

s
on

th
e

K
IT

T
I

E
ig

en
-s

p
lit

[2
].
♦

m
ea

n
s

th
e

n
et

w
or

k
d

o
es

n
ot

u
se

C
N

N
d

es
ig

n
ed

fo
r

im
ag

e
cl

as
si

fi
ca

ti
on

,
4

re
pr

es
en

ts
th

e
fi

rs
t

9
la

ye
rs

of
M

ob
ile

N
et

.
T

h
e

re
d

an
d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

R
o
w

M
et

h
o
d

C
a
p

B
a
ck

b
o
n

e
R

M
S

E
A

b
s

R
E

L
δ 1

δ 2
δ 3

t G
P
U

D
ev

ic
e

1
E

ig
en

et
a
l.

[2
]

8
0

m
♦

7
.1

5
6

0
.1

9
0

0
.6

9
2

0
.8

9
9

0
.9

6
7

N
/
A

N
/
A

2
L

iu
et

a
l.

[8
3
]

8
0

m
V

G
G

-1
6

6
.9

8
6

0
.2

1
7

0
.6

4
7

0
.8

8
2

0
.9

6
1

N
/
A

N
/
A

3
C

a
o

et
a
l.

[7
7
]

8
0

m
R

es
N

et
-1

5
2

4
.7

1
2

0
.1

1
5

0
.8
8
7

0
.9
6
3

0
.9

8
2

N
/
A

N
/
A

4
G

o
d
a
rd

et
a
l.

[8
5
]

8
0

m
V

G
G

-1
6

5
.9

2
7

0
.1

4
8

0
.8

0
3

0
.9

2
2

0
.9

6
4

3
5

m
s

N
v
id

ia
T

it
a
n

-X

5
Z

h
o
u

et
a
l.

[8
6
]

8
0

m
♦

6
.8

5
6

0
.2

0
8

0
.6

7
8

0
.8

8
5

0
.9

5
7

3
0

m
s

N
v
id

ia
T

it
a
n

-X

6
L

i
et

a
l.

[7
9
]

8
0

m
R

es
N

et
-5

0
5
.3

2
5

0
.1

2
8

0
.8

3
3

0
.9

5
6

0
.9
8
5

N
/
A

N
/
A

7
P

o
g
g
i

et
a
l.

[8
9
]

8
0

m
♦

5
.9

0
7

0
.1

4
6

0
.8

0
1

0
.9

2
6

0
.9

6
7

2
0

m
s

N
v
id

ia
T

it
a
n

-X

8
C

a
ss

er
et

a
l.

[1
4
0
]

8
0

m
♦

5
.5

2
1

0
.1

4
2

0
.8

2
0

0
.9

4
2

0
.9

7
6

3
4

m
s

N
v
id

ia
G

T
X

1
0
8
0
T

i

9
Y

u
si

o
n

g
a
n

d
N

a
v
a
l

[3
0
5
]

8
0

m
♦

5
.9

0
9

0
.1

4
5

0
.8

2
4

0
.9

3
6

0
.9

7
0

1
6
0

m
s

N
v
id

ia
G

T
X

1
0
8
0
T

i

1
0

E
o
m

et
a
l.

[3
0
4
]

8
0

m
♦

4
.5
3
7

0
.1

1
7

0
.8

6
5

0
.9

5
8

0
.9

8
3

1
3
0

m
s

N
v
id

ia
T

it
a
n

-X

1
1

H
a
m

b
a
rd

e
a
n

d
M

u
ra

la
[3

0
3
]

8
0

m
♦

5
.2

8
5

0
.1

4
2

0
.7

9
7

0
.9

3
2

0
.9

7
5

N
/
A

N
/
A

1
2

L
iu

et
a
l.

[1
9
4
]

8
0

m
♦

5
.2

6
4

0
.1

4
1

0
.8

2
5

0
.9

4
1

0
.9

7
6

1
8
.5

7
m

s
N

v
id

ia
G

T
X

1
0
8
0
T

i

1
3

Y
e

et
a
l.

[2
9
0
]

8
0

m
R

es
N

et
-1

0
1

4
.9

7
8

0
.1

1
2

0
.8

4
2

0
.9

4
7

0
.9

7
3

N
/
A

N
/
A

1
4

M
o
b

il
eX

N
et

(O
u

rs
)

8
0

m
4

4
.9

6
5

0
.1
0
3

0
.8

7
3

0
.9

5
9

0
.9
8
5

1
5
.4

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
5

C
a
o

et
a
l.

[7
7
]

5
0

m
R

es
N

et
-1

5
2

3
.6

0
5

0
.1

0
7

0
.8
9
8

0
.9
6
6

0
.9

8
4

N
/
A

N
/
A

1
6

G
o
d
a
rd

et
a
l.

[8
5
]

5
0

m
V

G
G

-1
6

4
.4

7
1

0
.1

4
0

0
.8

1
8

0
.9

3
1

0
.9

6
9

3
5

m
s

N
v
id

ia
T

it
a
n

-X

1
7

Z
h

o
u

et
a
l.

[8
6
]

5
0

m
♦

5
.1

8
1

0
.2

0
1

0
.6

9
6

0
.9

0
0

0
.9

6
6

3
0

m
s

N
v
id

ia
T

it
a
n

-X

1
8

P
o
g
g
i

et
a
l.

[8
9
]

5
0

m
♦

4
.6

0
8

0
.1

4
5

0
.8

1
3

0
.9

3
4

0
.9

7
2

2
0

m
s

N
v
id

ia
T

it
a
n

-X

1
9

Y
u

si
o
n

g
a
n

d
N

a
v
a
l

[3
0
5
]

5
0

m
♦

4
.0

1
4

0
.1

2
2

0
.8

6
4

0
.9

5
3

0
.9

7
8

1
6
0

m
s

N
v
id

ia
G

T
X

1
0
8
0
T

i

2
0

E
o
m

et
a
l.

[3
0
4
]

5
0

m
♦

3
.4
9
3

0
.1

1
3

0
.8

7
7

0
.9

6
3

0
.9

8
5

1
3
0

m
s

N
v
id

ia
T

it
a
n

-X

2
1

L
iu

et
a
l.

[1
9
4
]

5
0

m
♦

4
.0

6
7

0
.1

3
5

0
.8

3
8

0
.9

4
7

0
.9

7
8

1
8
.5

7
m

s
N

v
id

ia
G

T
X

1
0
8
0
T

i

2
2

S
p

ek
et

a
l.

[9
1
]

5
0

m
E

R
F

N
et

4
.3

6
3

0
.1

5
6

0
.8

1
8

0
.9

4
0

0
.9

7
7

3
.2

m
s

N
v
id

ia
G

T
X

1
0
8
0
T

i

2
3

M
o
b

il
eX

N
et

(O
u

rs
)

5
0

m
4

3
.8

4
2

0
.0
9
8

0
.8

8
6

0
.9
6
6

0
.9
8
7

1
5
.4

m
s

N
v
id

ia
G

T
X

1
0
8
0

L
o
w

er
is

b
et

te
r

H
ig

h
er

is
b

et
te

r
δ 1

:
δ
<

1
.2

5
,
δ 2

:
δ
<

1
.2

5
2
,
δ 3

:
δ
<

1
.2

5
3

128 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

We use non-dominance to compare the running time and RMSE of the pro-

posed MobileXNet, [85, 86, 89, 91, 93, 140, 194, 304, 305]. Bhat et al. [56] requires

350ms to produce a depth map on a single Nvidia GTX 1080 GPU, and its RMSE

value is 2.360. It can be observed from Figure 4.5(c) that MobileXNet, Eom et

al. [304] and Bhat et al. [93] lie on the Pareto Front in the depth range between

0m and 80m. However, the MobileXNet is more than 8× faster than Eom et

al. [304], even though [304] was tested on a more powerful Titan-X GPU. While

Bhat et al. [93] produces better RMSE performance, its running speed (2 fps)

is not adequate for real-time autonomous driving and robotic applications. As

can be observed from Table 4.6, MobileXNet also outperforms Eom et al. [304]

in Abs REL, δ1, δ2, and δ3 for depth range from 0m to 80m as well as 0m to 50m.

According to the non-dominated set and Pareto front distribution, MobileXNet

is the best solution among these methods.

For the depth range of 0 to 50m, MobileXNet and Spek et al. [91] are none

dominated by each other. According to Table 4.6, the MobileXNet performs

much better than Spek et al. [91] with respect to the error and accuracy metrics.

Moreover, the MobileXNet achieves a real-time speed of 65 fps at a larger resolu-

tion (228 × 912 pixels). Therefore, MobileXNet is the best solution among these

methods. Qualitative results are shown in Figure 4.6. As can be observed, our

method generates much clearer depth maps than [2].

According to [85, 306], the depth measurements from the LiDAR may be

influenced by many factors such as rotation of the LiDAR and incorrect depth

readings resulting from the occlusion at object boundaries. To better validate the

performance of our proposed MobileXNet, we applied the same split of images

with more accurate ground-truth labels provided by the KITTI official [306]. The

annotated depth maps are generated by filtering LiDAR points with a computed

4.4. EXPERIMENTAL RESULTS 129

Table 4.7: Comparison of performances on 93.5% of the KITTI Eigen-split with
accurate ground-truth labels released by the KITTI evaluation benchmark.
K denotes the KITTI dataset, CS refers to the Cityscapes dataset, CS + K
represents training on the Cityscapes dataset then fine-tuning on the KITTI
dataset. 4 represents the first 9 layers of MobileNet. The red and bold values

indicate the best results.

Row Method Cap Backbone Dataset RMSE
Abs
REL

δ1 δ2 δ3

1 Amiri et al. [154] 80 m ResNet-50 K 3.995 0.096 0.892 0.972 0.992

2 Godard et al. [85] 80 m ResNet-50 CS+K 4.279 0.097 0.898 0.973 0.991

3 Aleotti et al. [88] 80 m VGG-16 CS+K 4.236 0.096 0.899 0.974 0.992

4 MobileXNet (Ours) 80 m 4 K 4.128 0.087 0.905 0.976 0.993

5 Godard et al. [85] 50 m ResNet-50 CS+K 4.100 0.095 0.896 0.975 0.992

6 Aleotti et al. [88] 50 m VGG-16 CS+K 4.110 0.094 0.897 0.976 0.993

7 MobileXNet (Ours) 50 m 4 K 3.081 0.083 0.916 0.981 0.994

Lower is better Higher is better δ1 : δ < 1.25, δ2 : δ < 1.252, δ3 : δ < 1.253

disparity map from the Semi-Global Matching algorithm [307] to remove outliers

from the raw measurements. It is worth noting that the annotated depth maps

are not available for 315 training and 45 testing images of the original Eigen split,

thus, the number of training and testing images are 22 285 and 652 respectively.

The missed values in the annotated depth maps are ignored during both training

and evaluation.

We compare our method with [85, 88, 154]. The results of [85] and [88] are

reported in [88]. Quantitative results are listed in Table 4.7. As shown in rows 1

to 4 of Table 4.7, for the cap of 0-80m, MobileXNet outperforms all baselines in

terms of Abs REL, δ1, δ2 and δ3, while the RMSE is slightly inferior to [154]. It

should be noted that [154] applies ResNet-50 as encoder, which is much deeper

than the network of MobileXNet. Since [154] only reports results in the range

of 0-80m, thus, we compare MobileXNet with [85] and [88] for the cap of 0-50m.

It can be seen from rows 5 to 7 of Table 4.7, with a simple and shallow network

architecture the proposed MobileXNet outperforms [85] and [88] in all metrics.

130 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

4.4.3 Make 3D Dataset

In this section, we evaluate MobileXNet on the Make3D dataset [82], consisting

of 400 training and 134 testing images. The RGB images have a resolution of

2272 × 1704 pixels, and the corresponding ground-truth depth map is 55 × 305

sized. Following [126] all images are downsampled to 568 × 426 pixels. In this

section, we train our network on the 460× 345 pixels center cropped region. To

compare with the state-of-the-art, we evaluate the trained model with C1 (depth

range from 0m to 70m) and C2 (depth range from 0m to 80m) criterions as

introduced in [72].

Table 4.8: Qualitative results on the Make3D dataset. The red and bold values indicate
the best results.

Method
C1 error C2 error

Abs REL log10 RMSE Abs REL log10 RMSE

Liu et al. [72] 0.335 0.137 9.49 0.338 0.134 12.60

Karsch et al. [73] 0.355 0.127 9.20 0.361 0.148 15.10

Li et al. [122] 0.278 0.092 7.12 0.279 0.102 10.27

Liu et al. [83] 0.287 0.109 7.36 0.287 0.122 14.09

Roy and Todorovic [308] N/A N/A N/A 0.260 0.119 12.40

Godard et al. [85] 0.443 0.143 8.860 N/A N/A N/A

Kuznietsov et al. [87] 0.421 0.190 8.24 N/A N/A N/A

Fu et al. [126] 0.236 0.082 7.02 0.238 0.087 10.01

Zhao et al. [157] 0.403 N/A 10.424 N/A N/A N/A

MobileXNet (Ours) 0.229 0.086 6.807 0.233 0.089 8.020

Lower is better

The previous methods [72,73,83,85,87,122,126,157,308] are used as baselines,

all results are shown in Table 4.8. As can be observed, MobileXNet outperforms

[72, 73, 83, 85, 87, 122, 157, 308] in all metrics. As for [126], our method generates

better Abs REL and RMSE results, while the log10 value is slightly inferior.

It is worth noting that [126] applies a deep CNN as backbone and combines a

scene understanding module. Furthermore, our MobileXNet only needs 0.012s to

compute a depth map on a single Nvidia GTX 1080 GPU. For Liu et al. [83],

4.4. EXPERIMENTAL RESULTS 131

1.1s is required to infer depth map from a test image. However, the time for

computing superpixels is not included. Qualitative results from this dataset are

shown in Figure 4.7.

4.4.4 UnrealDataset

To demonstrate the ability of predicting depth maps from small sized images,

we evaluate the proposed MobileXNet on the UnrealDataset [34]. This dataset

contains over 100K images collected in a series of simulated urban and forest

scenarios, and the ground-truth depth up to 40 meters. Compared with the

aforementioned datasets [1, 3, 82], the RGB and depth images in the Unreal-

Dataset have a much smaller size, 160 × 256 pixels. The Unreal Engine and

AirSim softwares simulate an MAV flying in the simulated environments. The

RGB and depth image pairs are collected from the MAV’s frontal camera using a

plugin. We first evaluate the proposed method on original images, and compare

it with [4, 34, 81, 119]. Considering the limitation of GPU memory, we choose

the ResNet50-DeConv33 combination of [119]. We train [81,119] with the official

released source code and default parameters. As in section 4.4.1, we train the

PyTorch implemented U-Net (Bilinear) with the hybrid loss function.

From rows 1 to 5 of Table 4.9, we show the quantitative comparison be-

tween MobileXNet and baselines on the original images. Following [34], we

only report the RMSE and running time of J-MOD2. As can be observed,

MobileXNet outperforms [81,119] in all metrics. It performs best in Abs REL, δ3

and speed, while the RMSE value of MobileXNet is slightly inferior to J-MOD2.

J-MOD2 is a multi-task learning method, which jointly learns object detection

3The fully convolutional part of ResNet-50 is used as the encoder and the deconvolution
with 3× 3 kernel is applied for upsampling.

132 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

(a) (b) (c)

Figure 4.7: Quantitative results on the Make3D dataset. (a) RGB, (b) Ground-truth,
and (c) Our results. Color represents depth (yellow is far, blue is close).

4.4. EXPERIMENTAL RESULTS 133

and depth estimation. The object detection branch informs the depth estimation

branch with object structures, which improves the accuracy of depth estimation.

However, our method only works out MDE. According to Figure 4.9(a), both

MobileXNet and J-MOD2 are non-dominated solutions. The running time of

J-MOD2 is longer than MobileXNet, even though J-MOD2 was evaluated on a

more powerful GPU. The threshold metric of MobileXNet is on par with U-Net [4].

It is worth noting that images from the UnrealDataset are much smaller than

the NYU depth v2 dataset [3]. As both U-Net and MobileXNet downsample

the feature maps to 1/16 scale of the input images, the produced feature maps

include more spatial information than [81,119]. In addition, U-Net [4] is twice as

wide as our MobileXNet, which enables U-Net to learn more information. Some

qualitative results of our method and baselines are shown in Figure 4.8, which

further demonstrates the superior performance of MobileXNet.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.8: Qualitative comparison on the UnrealDataset (original). (a) RGB, (b)
Ground-truth, (c) Our results, (d) U-Net [4], (e) Ma and Karaman [119], and
(f) Wofk et al. [81] (Original). Color represents depth (yellow is far, blue is

close).

134 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

T
ab

le
4.

9:
C

om
p

ar
is

on
of

p
er

fo
rm

an
ce

s
on

th
e

U
n

re
al

D
at

as
et

.
♦

m
ea

n
s

th
e

n
et

w
or

k
d

o
es

n
ot

u
se

C
N

N
d

es
ig

n
ed

fo
r

im
ag

e
cl

as
si

fi
ca

ti
on

,
4

re
pr

es
en

ts
th

e
fi

rs
t

9
la

ye
rs

of
M

ob
ile

N
et

.
M

a
an

d
K

ar
am

an
(3
×

3)
an

d
M

a
an

d
K

ar
am

an
(5
×

5
)

d
en

ot
e

th
e

u
se

of
3
×

3
an

d
5
×

5
si

ze
d

fi
lt

er
s

in
th

e
in

p
u

t
la

ye
r

re
sp

ec
ti

ve
ly

.
T

h
e

re
d

an
d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

R
o
w

M
et

h
o
d

B
a
ck

b
o
n

e
In

p
u

t
S

iz
e

R
M

S
E

A
b

s
R

E
L

δ 1
δ 2

δ
3

t G
P
U

D
ev

ic
e

1
J
-M

O
D

2
[3

4
]

V
G

G
-1

9
1
6
0
×

2
5
6

3
.4
7
3

N
/
A

N
/
A

N
/
A

N
/
A

1
0

m
s

N
v
id

ia
T

it
a
n

-X

2
U

-N
et

[4
]

♦
1
6
0
×

2
5
6

3
.8

3
4

0
.1

3
0

0
.8
8
4

0
.9
5
7

0
.9
7
7

8
.8

m
s

N
v
id

ia
G

T
X

1
0
8
0

3
M

a
a
n

d
K

a
ra

m
a
n

[1
1
9
]

R
es

N
et

-5
0

1
6
0
×

2
5
6

4
.0

2
3

0
.1

2
6

0
.8

7
0

0
.9

5
1

0
.9

7
4

6
.9

m
s

N
v
id

ia
G

T
X

1
0
8
0

4
W

o
fk

et
a
l.

[8
1
]

M
o
b

il
eN

et
1
6
0
×

2
5
6

4
.2

0
8

0
.1

5
5

0
.8

6
0

0
.9

4
5

0
.9

7
2

6
.7

m
s

N
v
id

ia
G

T
X

1
0
8
0

5
M

o
b

il
eX

N
et

(O
u

rs
)

4
1
6
0
×

2
5
6

3
.6

1
2

0
.1
2
4

0
.8

7
8

0
.9

5
4

0
.9
7
7

6
.6

m
s

N
v
id

ia
G

T
X

1
0
8
0

6
U

-N
et

[4
]

♦
1
2
8
×

2
0
4

3
.9

1
7

0
.1

3
4

0
.8
7
9

0
.9
5
6

0
.9

6
9

6
.9

m
s

N
v
id

ia
G

T
X

1
0
8
0

7
M

a
a
n

d
K

a
ra

m
a
n

[1
1
9
]

R
es

N
et

-5
0

1
2
8
×

2
0
4

4
.1

8
8

0
.1

3
8

0
.8

5
6

0
.9

4
6

0
.9

7
3

6
.6

m
s

N
v
id

ia
G

T
X

1
0
8
0

8
W

o
fk

et
a
l.

[8
1
]

M
o
b

il
eN

et
1
2
8
×

2
0
4

4
.3

9
3

0
.1

5
7

0
.8

5
2

0
.9

4
0

0
.9

7
6

6
.4

m
s

N
v
id

ia
G

T
X

1
0
8
0

9
M

o
b

il
eX

N
et

(O
u

rs
)

4
1
2
8
×

2
0
4

3
.7
3
3

0
.1
3
3

0
.8

7
1

0
.9

5
4

0
.9
7
7

6
.3

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
0

U
-N

et
[4

]
♦

8
0
×

1
2
8

3
.9

1
2

0
.1
3
5

0
.8
7
3

0
.9
5
6

0
.9
7
7

4
.8

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
1

M
a

a
n

d
K

a
ra

m
a
n

[1
1
9
]

R
es

N
et

-5
0

8
0
×

1
2
8

8
.3

9
9

0
.4

4
4

0
.5

1
1

0
.6

8
1

0
.8

6
8

5
.8

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
2

M
a

a
n

d
K

a
ra

m
a
n

(5
×

5
)

[1
1
9
]

R
es

N
et

-5
0

8
0
×

1
2
8

4
.9

8
8

0
.1

7
8

0
.7

9
8

0
.9

2
3

0
.9

6
2

6
.7

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
3

M
a

a
n

d
K

a
ra

m
a
n

(3
×

3
)

[1
1
9
]

R
es

N
et

-5
0

8
0
×

1
2
8

4
.7

4
4

0
.1

7
4

0
.8

0
4

0
.9

3
0

0
.9

6
7

6
.7

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
4

W
o
fk

et
a
l.

[8
1
]

M
o
b

il
eN

et
8
0
×

1
2
8

4
.8

7
4

0
.1

6
6

0
.8

1
4

0
.9

2
8

0
.9

6
7

7
.3

m
s

N
v
id

ia
G

T
X

1
0
8
0

1
5

M
o
b

il
eX

N
et

(O
u

rs
)

4
8
0
×

1
2
8

3
.9
0
4

0
.1

4
0

0
.8

5
3

0
.9

4
8

0
.9

7
5

5
.8

m
s

N
v
id

ia
G

T
X

1
0
8
0

L
o
w

er
is

b
et

te
r

H
ig

h
er

is
b

et
te

r
δ 1

:
δ
<

1
.2

5
,
δ 2

:
δ
<

1
.2

5
2
,
δ 3

:
δ
<

1
.2

5
3

4.4. EXPERIMENTAL RESULTS 135

6.5 7 7.5 8 8.5 9 9.5 10

Running Time

3.6

3.8

4

4.2

4.4

4.6

4.8

5
R

M
S

E
MobileXNet (Ours)
J-MOD2
U-Net
Ma and Karaman
Wofk et al.

(a)

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Running Time

3.6

3.8

4

4.2

4.4

4.6

4.8

5

R
M

S
E

MobileXNet (Ours)
U-Net (Bilinear)
Ma and Karaman
Wofk et al.

(b)

4.5 5 5.5 6 6.5 7 7.5 8

Running Time

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

R
M

S
E

MobileXNet (Ours)
U-Net
Ma and Karaman
Ma and Karaman (3x3)
Ma and Karaman (5x5)
Wofk et al.

(c)

Figure 4.9: Pareto Optimality on the UnrealDataset. (a) The original images (160 ×
256), (b) The resized images (128× 204), and (c) The resized images (80×

128).

To further validate the ability of MobileXNet to process small sized images,

we downsample the original images to 128×204 and 80×128 pixels. We compare

our method with [4,81,119]. The rows 6 to 9 and rows 10 to 15 of Table 4.9 show

results on 128×204 and 80×128 sized images respectively. It can be observed that

reducing the image size decreases the accuracy of depth estimation. It should be

noted that when images are downsampled to 80× 128 pixels, the performance of

Ma and Karaman [119] dropped significantly. Ma and Karaman [119] use the fully

convolutional part of ResNet-50 as encoder. Besides the inherent characteristic of

the encoder network, the 7×7 sized filters in the input layer may have influence on

the performance of depth estimation. For small sized images, large filters could

capture global information, while the detailed information is missed. Unlike

image classification, depth estimation is a pixel-wise application, both global

and detailed information are important. Our hypothesis is that using smaller

sized filters in the input layer will help to improve the performance of Ma and

Karaman [119]. As a result, we modified [119] by reducing the filter kernel size

in the input layer from 7 to 5 and 3 respectively.

It can be observed from rows 11 to 13 of Table 4.9, both 5 × 5 and 3 ×

3 sized filter-based input layers improve the performance of Ma and Karaman

136 4. MOBILEXNET FOR REAL-TIME MONOCULAR DEPTH ESTIMATION

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(g)

Figure 4.10: Qualitative comparison on the UnrealDataset (80 × 128). (a) RGB, (b)
Ground-truth, (c) Our results, (d) U-Net [4], (e) Wofk et al. [81] (Original),
(f) Ma and Karaman [119], (g) Ma and Karaman [119] with 5×5 sized filters
in the input layer, and (h) Ma and Karaman [119] with 3× 3 sized filters in

the input layer. Color represents depth (yellow is far, blue is close).

[119]. We present a qualitative comparison between our method and baselines in

Figure 4.10. It is clear that the modified Ma and Karaman [119] with small sized

filter-based input layers performs better than the original. Thus, we can conclude

that the input layer with small sized filters is helpful in predicting depth from

small sized images. It is worth noting that MobileXNet outperforms the modified

Ma and Karaman [119] in all metrics and generates much clearer depth maps,

although the latter has a very deep encoder network. Moreover, according to

4.5. CHAPTER SUMMARY 137

Figure 4.9(b) and Figure 4.9(c), the proposed MobileXNet is the non-dominated

solution in 128× 204 and 80× 128 sized images. This demonstrates the superior

performance of MobileXNet on small sized images.

4.5 Chapter Summary

In this chapter, we paid attention to the trade-off between the accuracy and

speed of MDE. To this end, we introduced a novel and real-time CNN architec-

ture, namely, MobileXNet. Specifically, we assembled two shallow and simple

encoder-decoder subnetworks back-to-back in a unified framework, which avoids

a greater number of successive downsamplings. We also designed a hybrid loss

function by employing an additional spatial derivative-based L1 loss function

together with the regular L1 function.

Extensive experiments on four datasets demonstrated that the proposed method

achieved promising performance and run much faster than state-of-the-art meth-

ods, which is critical for real-time autonomous driving and robotic applications.

Chapter 5

Lightweight Monocular Depth

Estimation with an Edge Guided

Network

The work, reported in this chapter, has partially been published in the following

conference paper [309]:

Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, Hussein A

Abbass, and Junyu Dong. Lightweight monocular depth estimation with an edge

guided network. In 2022 17th International Conference on Control, Automation,

Robotics and Vision (ICARCV), pages 204-210, 2022.

5.1 Introduction

This chapter introduces a novel lightweight monocular depth estimation (MDE)

network. Recently developed methods [76, 80, 121, 125, 310] learn deeper (stack

more layers) and wider (include more filters in each layer) models that produce

139

140
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

better depth estimation performance. However, these methods focused more on

improving depth estimation accuracy than achieving real-time running speed.

This makes them difficult to run in edge platforms where reaction time is crucial

for operating safety such as for obstacle avoidance in small sized autonomous

robots.

In order to solve the problem of achieving real-time speed on embedded

platforms, lightweight convolutional neural networks (CNNs) such as ERFNet

[175] and MobileNets [44,46] have been employed to design lightweight MDE net-

works [81, 91]. These methods achieved real-time speed on embedded platforms,

but their accuracies were inferior to the state-of-the-art methods. Additionally,

both [91] and [81] applied encoder-decoder style network architectures. The

successive downsampling operations in the encoder network distort fine details

in lower resolution layers, which can result in blurry boundaries or neglect small

objects in the produced depth maps. To avoid the loss of spatial information, Mo-

bileXNet [288] stacked two relatively shallow encoder-decoder style subnetworks

back-to-back in a unified framework.

It should be noted that all above discussed approaches did not utilize the

low-level features in input images, such as edge features which define the bound-

aries of object or regions within an image. Recent interpretability studies on

MDE [232, 233] demonstrated that the edges in input images are an important

cue for CNNs to predict depth. However, to the best of our knowledge, existing

MDE methods normally do not exploit edge features in their network.

This chapter aims to address the above described problems. To be specific,

this chapter introduces a novel lightweight MDE network which adopts edge

attention features to guide the task of depth estimation. We integrate the depth

estimation branch with an edge guidance branch in a unified network, named

5.1. INTRODUCTION 141

Extension

Edge Guidance Branch

Edge

Head

ECM

Edge Loss

Laplacian

Kernel

Depth Loss

2x

4x

8x

2xC

C

Sobel

E
-B

lo
ck

-2
E

-B
lo

ck
-2

E
-B

lo
ck

-1
E

-B
lo

ck
-1

E
-B

lo
ck

-3
E

-B
lo

ck
-3

E
-B

lo
ck

-4
E

-B
lo

ck
-4

TRFA

CC

D
-B

lo
ck

-2
D

-B
lo

ck
-2

D
-B

lo
ck

-1
D

-B
lo

ck
-1

3
x
3
 C

o
n

v
3
x
3
 C

o
n

v

D
-B

lo
ck

-3
D

-B
lo

ck
-3

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

Decoder

Multi-scale Feature Extractor

2x

4x

8x

C E-BlockE-Block

D-BlockD-Block

TRFA

Edge Head

Transformer-Based Feature

Aggregation Module

Edge Head

Encoder

Block

Decoder

Block

Concatenate

2x Upsample

4x Upsample

8x Upsample

Extension
Extension

Module

Channel Attention-

Based Feature Fusion

Module

3
x
3
 C

o
n

v
3
x
3
 C

o
n

v

3x3 Conv3x3 Conv
3x3 Conv

+BN+ReLU

Supervision

Max Pooling

ECM
Edge Compact

Module

3
x
3
 C

o
n

v
3
x
3
 C

o
n

v

3
x
3
 C

o
n

v
3
x
3
 C

o
n

v

C
o
n

ca
te

n
a
te

C
o
n

ca
te

n
a
te

Feature

Aggregation

32 24 32 96

32 32 24 24 32 32 96 96

128

128

24 32 96

32 32 1

64 1

248

128

128160961206496

32

96

96

2D1D 3D 4D 5D

1E 2E 3E 4E 5E 6E

cF

aF

edgeL

depthL

1 1 1

1 8 1

1 1 1

− − − 
 − −
 
− − −  

Figure 5.1: Illustration of our proposed EGD-Net.

Edge Guided Depth Estimation Network (EGD-Net). EGD-Net is built on top

of a shallow (stacks less layers) and narrow (includes less filters in each layer)

encoder-decoder network and applies edge attention features to guide the depth

estimation task. The contributions of this chapter are summarized as follows: (1)

We propose a novel lightweight MDE network, named EGD-Net, which employs

edge attention features to guide the depth estimation task; (2) We design a

channel attention-based feature fusion module; (3) We design a transformer-based

feature aggregation module, which captures the long-range dependencies between

the edge attention features and the context information; (4) We demonstrate the

effectiveness of our designed method through extensive experiments.

142
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

5.2 Methodology

This section introduces our proposed lightweight MDE network, EGD-Net. Fig-

ure 5.1 illustrates the architecture of EGD-Net, which is composed of four parts:

multi-scale feature extractor, edge guidance branch, feature aggregation module

and decoder.

5.2.1 Multi-scale Feature Extractor

The multi-scale feature extractor (MSFE) consists of a backbone (E-Block-1, 2,

3, 4) and an extension module. We adopt a lightweight CNN, MobileNetV2 [46]

as the backbone. To adapt MobileNetV2 to the MDE task, we remove the layers

after the fourth convolutional stage. Thus, the final features from the backbone

are 1/16 size of the input image. To further enhance the representation ability of

produced features, we add an extension module after the backbone. The extension

module is comprised of six dilated Inverted Residual Blocks (IRBs) and each IRB

has different dilation rate to capture multiple scales context information. In par-

ticular, the dilation rates are set as 1, 2, 3, 1, 2 and 3. Furthermore, the expansion

factor and stride values in IRB are set as 4 and 1 respectively. For convenience,

we define the output feature maps from the MSFE as D1, D2, D3, D4, D5, with

strides of 21, 22, 23, 24, 24, respectively.

5.2.2 Edge Guidance Branch

Edge information is an important cue for CNNs to predict depth [232, 233]. To

model the edge attention features for guiding the depth estimation task, we design

an edge guidance branch (EGB) which is composed of a stack of convolutional

layers interleaved with channel attention-based feature fusion (CAFF) modules.

5.2. METHODOLOGY 143

3x3 Conv

Sigmoid

Upsample 4x

3x3 Conv

Sigmoid

Upsample 4x

3x3 Conv, S=2

3x3 Conv, S=1

3x3 Conv, S=1

3x3 Conv, S=2

3x3 Conv, S=1

3x3 Conv, S=1

(b)(a)

Figure 5.2: Illustration of the edge compact module (a) and the edge head (b). S
denotes stride, and “3× 3 Conv” represents 3× 3 convolutional layer has no

batch normalization and ReLU.

C
o

n
ca

te
n

a
te

R
eL

U

A
v

g
P

o
o

li
n

g

1
x
1

 C
o
n

v

R
eL

U

S
ig

m
o

id

×

×

B
N

+

F
u

se
d

1
x
1

 C
o
n

v
1

x
1

 C
o
n

v

1
x
1

 C
o
n

v
1

x
1

 C
o
n

v

i
E

i
D

Figure 5.3: Illustration of the CAFF module, where “1 × 1 Conv” has no batch
normalization (BN) and ReLU, “×” and “+” represent multiply and add

operations respectively.

EGB takes image gradients as well as the intermediate features from the MSFE

as input and outputs edge images and high resolution feature maps. We first

extract image gradients in x and y directions from the input image with the

Sobel operator. Image gradients are processed by an edge compact module (see

Figure 5.2(a)) to get features (E1) at 1/2 size of the input image. The produced

features (E1) are fused with D1 through the CAFF module.

As shown in Figure 5.3, intermediate feature maps generated by the MSFE

(Di) and EGB (Ei) are concatenated along the channel dimension. The concate-

nated features are passed through a “1 × 1 Conv+BN+ReLU” layer to reduce

144
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

the channel dimension to half size. Next, we pool the reduced features to a

feature vector, which is then processed by 1× 1 convolutions, ReLU and Sigmoid

operators to get an attention map. The attention map is multiplied with Di and

Ei respectively. These multiplied features are added element-wise to build a fused

feature. The fused feature is then convolved with a “3×3 Conv-BN-ReLU” layer.

We denote the feature maps generated by the EGB as E1, E2, E3, E4, E5, E6, with

strides of 21, 21, 22, 23, 24, 24, respectively.

Feature maps from EGB (E3, E4, E5) are resized to 1/2 size of the input image

and concatenated with E2 and then pass through a “3×3 Conv-BN-ReLU” layer.

As shown in Figure 5.1, the output feature (Fc) from the “3×3 Conv-BN-ReLU”

layer is used as the input of two directions. The first direction is the edge head,

which produces edge maps for supervision. The second direction is passed to

the decoder to act as the edge guidance feature. In addition, E5 is convolved

with a “3× 3 Conv-BN-ReLU” layer and generates E6, which is fed to the TRFA

module to aggregate with the context rich feature from the MSFE. In this chapter,

the edge detection is modeled as a binary segmentation task. To obtain the

ground-truth binary edge images, we adopt the Laplacian operator to extract

edge maps from the ground-truth depth maps. The edge guidance branch is

directly supervised by the binary edge labels. Therefore, it learns edge attention

features.

5.2.3 Transformer-Based Feature Aggregation Module

In order to combine the edge attention features from the EGB and context rich

features from the MSFE to produce high resolution depth maps, we design a

transformer-based feature aggregation (TRFA) module. TRFA consists of two

linear transformer encoder layers [55] and a “1 × 1 Conv-BN-ReLU” layer. The

5.2. METHODOLOGY 145

Q K V

LinearAttention Layer

Cat&Linear&Norm

AddAdd

ConcatConcat

h

(b) (c)

(a)

MatMulMatMul

elu(∙) + 1 elu(∙) + 1

MatMul

Q K V

k vD D

MatMul

elu(∙) + 1 elu(∙) + 1

MatMul

Q K V

k vD D

MLP&Norm MLP&Norm

LTR Encoder

LTR Encoder

B
N

B
N

R
eL

U
R

eL
U

1
x
1
 C

o
n

v
1
x
1
 C

o
n

v

aF

5D

5D

6E

6E

LTR Encoder

LTR Encoder

B
N

R
eL

U

1
x
1
 C

o
n

v

aF

5D

5D

6E

6E

if jf

if

Figure 5.4: Illustration of the TRFA module. (a) The transformer-based feature
aggregation (TRFA) module, where LTR represents linear transformer. (b)
Transformer encoder layer, h means the multiple heads of attention, which is

set as 4 in this study. (c) Linear attention layer.

core element of the linear transformer encoder layer is that the linear attention

layer computes the attention between a set of query vectors (Q) and key vectors

(K) using dot-product similarity, which is then used to weigh a set of value vectors

(V). Thus, the attention computation selects the relevant information through

measuring the similarity between the query vector and each key vector.

Inspired by [311], we adopt the linear transformer encoder layer to capture

the long-range dependencies (or global context) between the edge and context

features through cross-attention in two directions. As shown in Figure 5.4(a), the

input features to linear transformer encoders are (D5, E6) and (E6, D5) respec-

146
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

tively. Then, features from the linear transformer encoder layers are concatenated

and passed through the “1×1 Conv-BN-ReLU” layer to aggregate them together.

The output features from the TRFA module are first upsampled to two times

in size and then fed to the decoder. The decoder is composed of a “3 × 3

Conv-BN-ReLU” layer and three decoder blocks (D-Block-1, 2, 3), each decoder

block includes a “3×3 Conv-BN-ReLU” layer and a bilinear interpolation with a

scale factor of 2. The decoder incorporates features (Fa) from the TRFA module,

low-level features (D1, D2, D3) from the MSFE, and the high resolution features

(Fc) from the EGB to produce depth maps with the same size as input images.

5.2.4 Loss Function

The designed network includes two branches that output depth maps and edge

maps respectively. For the task of MDE, we adopt the loss function proposed

in [288]. This loss stacks the regular L1 loss:

L1(d, d∗) =
1

N

N∑
i

|di − d∗i |, (5.1)

and the image gradient based L1 loss:

Lgrad(d, d
∗) =

1

N

N∑
i

|5x(di, d
∗
i)|+ |5y(di, d

∗
i)|, (5.2)

where N is the total number of pixels being considered, d and d∗ are the predicted

and ground-truth depth, 5x and 5y are the spatial derivatives in x and y

directions. The depth estimation loss can be written as:

Ldepth = L1 + Lgrad. (5.3)

5.3. EXPERIMENTS 147

For edge detection, we employ the standard Binary Cross Entropy (BCE) loss

Ledge, which is defined as:

Ledge = −
∑
i

(e∗i logei + (1− e∗i)log(1− ei)), (5.4)

where ei and e∗i are the detected and ground-truth edges respectively. Finally,

the whole loss function is formulated as:

L = λ1Ldepth + λ2Ledge, (5.5)

where λ1 and λ2 are the hyper-parameters, we empirically set λ1 = 1 and λ2 =

20.

5.3 Experiments

To demonstrate the effectiveness of our proposed EGD-Net, we evaluate it on the

NYU depth v2 dataset [3].

5.3.1 Implementation Details

The designed network is implemented in PyTorch [283]. A workstation with a

single Nvidia RTX 3090 GPU is used for training and testing. The weights of the

backbone of the MSFE are initialized with the weights pre-trained on ImageNet.

The other layers are randomly initialized. The training is optimized by using

the SGD optimizer, and the batch size is set as 8. We train the network for 25

epochs. The poly learning rate policy is adopted, the learning rate for the nth

epoch is init lr× (1− n
max epoch

)power, where the init lr and power are set as 0.01

and 0.9 respectively.

148
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

During training, we employ data augmentation approaches to increase the

diversity of training samples. Data augmentations are applied to each RGB and

ground-truth depth image pair in an online fashion:

• Random Flips: RGB and ground-truth depth image pairs are horizontally

flipped at a probability of 0.5.

• Random Rotation: RGB and ground-truth depth image pairs are randomly

rotated by a degree of r ∈ [−5, 5].

• Color Jitter: the brightness, contrast and saturation values of the RGB

images are randomly scaled by a factor of c ∈ [0.6, 1.4].

5.3.2 Dataset and Evaluation Metric

We evaluate the proposed method on the commonly used NYU depth v2 dataset

[3], which was collected in real-world indoor surroundings with a Microsoft Kinect

camera. The original images have a resolution of 640×480 pixels. In this chapter,

we train our method on the training set proposed by Hu et al. [80] and evaluate

it on the offical testing set including 654 RGB and depth image pairs. Each

image pair is downsampled to 342 × 256 and then center cropped to 320 × 240.

We first compare our proposed method with state-of-the-art methods and then

perform ablation experiments to validate the contribution of each component of

the proposed network.

We adopt three widely used metrics, linear Root Mean Square Error (RMSE),

Absolute Relative Difference (Abs REL) and Threshold Accuracy (δi, i = 1, 2, 3)

to evaluate the proposed method. These metrics are defined in Section 2.3.1.

Since our aim is to predict depth maps from RGB images, only the error and

accuracy metrics of depth estimation are compared.

5.3. EXPERIMENTS 149

5.3.3 Comparison with State-of-the-art

In this section, we compare the performance of our EGD-Net with state-of-the-art

methods [80,81,121,288,312,313] in terms of the number of network parameters

(Parameters, million), error (RMSE and Abs REL) and accuracy (δ1, δ2 and δ3)

metrics. Quantitative results of our EGD-Net and state-of-the-art methods are

listed in Table 5.1. For [80, 121] we report the corresponding results from their

papers. The results of [312, 313] are reported in [313]. We retrained [81, 288]

with the same training and testing procedure as described in Section 5.3.1. To

compare fairly, [81, 288] are supervised by the depth loss described in Section

5.2.4.

It can be observed that: (1) among all methods, EGD-Net has the lowest

number of parameters. In particular, EGD-Net has >2.5× fewer parameters

than [312, 313], >11× fewer parameters than MobileXNet [288], >71× fewer

parameters than Hu et al. [80], and >95× fewer than Chen et al. [121]; (2) with

much fewer network parameters, EGD-Net generates the best RMSE performance

while its δ2 and δ3 metrics are very close to Hu et al. [80] and Chen et al. [121];

(3) EGD-Net outperforms [81, 288, 312, 313] in terms of all error and accuracy

metrics.

As regards the running speed, EGD-Net runs at about 96 fps (GPU refer-

ence time is 10.4 ms) on an Nvidia GTX 1080 GPU (2580 CUDA cores and

8GB memory), which is adequate for real-time robotic and autonomous driving

applications. We present the qualitative comparison of our results with Wofk

et al. [81] and MobileXNet [288] in Figure 5.5. It can be observed that our

proposed method can detect small objects (e.g., lamp) in the image and predict

finely detailed object boundaries while [81,288] cannot predict clearly.

150
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

T
ab

le
5.

1:
C

om
p

ar
is

on
of

p
er

fo
rm

an
ce

s
on

th
e

N
Y

U
d

ep
th

v2
d

at
as

et
[3

].
↑

m
ea

n
s

h
ig

h
er

is
b

et
te

r,
↓

m
ea

n
s

lo
w

er
is

b
et

te
r.

T
h

e
re

d
an

d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

M
et

h
o
d

B
a
ck

b
o
n

e
P

a
ra

m
et

er
s
↓

R
M

S
E
↓

A
b

s
R

E
L
↓

δ 1
↑

δ 2
↑

δ 3
↑

H
u

et
a
l.

[8
0
]

S
E

N
et

-1
5
4

1
5
7
.0

M
0
.5

3
0

0
.1

1
5

0
.8

6
6

0
.9

7
5

0
.9

9
3

C
h

en
et

a
l.

[1
2
1
]

S
E

N
et

-1
5
4

2
1
0
.3

M
0
.5

1
4

0
.1
1
1

0
.8
7
8

0
.9
7
7

0
.9
9
4

W
o
fk

et
a
l.

[8
1
]

M
o
b

il
eN

et
2
0
.6

7
M

0
.5

2
9

0
.1

5
5

0
.7

8
9

0
.9

5
0

0
.9

8
7

T
u

et
a
l.

[3
1
2
]

M
o
b

il
eN

et
V

2
5
.7

M
0
.5

3
1

0
.1

4
7

0
.8

0
1

0
.9

5
6

0
.9

8
9

R
u

d
o
lp

h
et

a
l.

[3
1
3
]

D
D

R
N

et
-2

3
-s

li
m

5
.8

M
0
.5

0
1

0
.1

3
8

0
.8

2
3

0
.9

6
1

0
.9

9
0

M
o
b

il
eX

N
et

[2
8
8
]

M
o
b

il
eN

et
2
4
.9

5
M

0
.5

0
7

0
.1

4
9

0
.8

0
7

0
.9

5
3

0
.9

8
9

O
u

rs
M

o
b

il
eN

et
V

2
2
.2
1

M
0
.4
8
6

0
.1

3
6

0
.8

2
5

0
.9

6
0

0
.9

9
0

5.3. EXPERIMENTS 151

(a) (b) (c) (d) (e)

Figure 5.5: Qualitative results from the NYU depth v2 dataset. (a) RGB image, (b)
Ground-truth depth, (c) Wofk et al. [81], (d) MobileXNet [288] and (e) Our

results. Color represents depth (yellow is far, blue is close).

5.3.4 Ablation Studies

To analyze the contribution of each component of the designed network, we

perform experiments with different deployments on the NYU Depth v2 dataset [3].

The training and testing strategies are kept the same as Section 5.3.1.

Contribution of Different Components

We setup a baseline network that consists of the multi-scale feature extractor and

the decoder shown in Figure 5.1. The baseline method is trained with the depth

loss described in Section 5.2.4. The EGB and TRFA module are added to the

baseline step by step.

152
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

T
ab

le
5.

2:
A

b
la

ti
on

st
u

d
y

on
co

n
tr

ib
u

ti
on

of
d

iff
er

en
t

co
m

p
on

en
ts

.
“w

C
A

F
F

”
m

ea
n

s
th

e
E

G
B

in
cl

u
d

es
th

e
C

A
F

F
m

o
d

u
le

.
“w

/o
C

A
F

F
”

in
d

ic
at

es
th

e
E

G
B

d
o

es
n

ot
in

cl
u

d
e

th
e

C
A

F
F

m
o

d
u

le
.
↑

m
ea

n
s

h
ig

h
er

is
b

et
te

r,
↓

m
ea

n
s

lo
w

er
is

b
et

te
r.

T
h

e
re

d
an

d
b
o
ld

va
lu

es
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s.

M
et

h
o
d

P
a
ra

m
et

er
s
↓

R
M

S
E
↓

A
b

s
R

E
L
↓

δ 1
↑

δ 2
↑

δ 3
↑

B
a
se

li
n

e
1
.5

6
M

0
.5

2
0

0
.1

4
9

0
.7

9
6

0
.9

5
5

0
.9

8
8

B
a
se

li
n

e
+

E
G

B
2
.0

1
M

0
.5

1
4

0
.1

4
9

0
.8

0
8

0
.9

5
9

0
.9

9
0

B
a
se

li
n

e
+

T
R

F
A

2
.1

9
M

0
.5

0
6

0
.1

4
4

0
.8

1
0

0
.9

5
5

0
.9

8
6

B
a
se

li
n

e
+

E
G

B
(w

C
A

F
F

)
+

T
R

F
A

2
.2

1
M

0
.4
8
6

0
.1
3
6

0
.8
2
5

0
.9
6
0

0
.9
9
0

B
a
se

li
n

e
+

E
G

B
(w

/
o

C
A

F
F

)
+

T
R

F
A

2
.1

6
M

0
.4

8
9

0
.1

4
4

0
.8

1
7

0
.9

6
0

0
.9

8
9

5.3. EXPERIMENTS 153

As shown in Table 5.2, the baseline has the lowest number of parameters,

while it yields the worst results. When we combine the proposed EGB with

the baseline, it outperforms the baseline in terms of RMSE, δ1, δ2 and δ3. To

explore the influence of the proposed TRFA module, we append it to the baseline

network and train it with the depth loss. With the same training procedure,

it outperforms the baseline and the combination of “Baseline + EGB”. Finally,

our whole EGD-Net (line 4, Table 5.2), with both EGB and TRFA module and

trained with the whole loss function, yields the best performance in terms of

all metrics. To evaluate the contribution of the proposed CAFF module, we

design a variant by replacing CAFF with pixel-wise addition (Baseline + EGB

(w/o CAFF) + TRFA). According to the last two lines, the CAFF improves the

performance of EGD-Net in term of all error and accuracy metrics.

Comparison of Different Backbones

In this subsection, we investigate the influence of adopting different backbones in

the MSFE. We compare MobileNetV2 [46] with three CNNs, ResNet-18 [41],

EfficientNet-B0 [48] and ShuffleNetV2 [47]. Specifically, ResNet-18 [41] is a

general CNN, ShuffleNetV2 [47] and EfficientNet-B0 [48] are lightweight CNNs.

The weights of all backbones are initialized from the pre-trained models on

ImageNet. To make the backbones compatible with the fixed feature aggregation

module, we fixed the channel dimension of the final feature maps from the MSFE

(D5) and EGB (E6) to 128. We report the results of four backbones in Table

5.3. As can be observed, when using MobileNetV2 [46] as the backbone the

proposed method achieves the best trade-off between accuracy and computation

complexity. In particular, it has the lowest number of parameters and yields the

best performance in terms of both error and accuracy metrics.

154
5. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION WITH AN EDGE GUIDED

NETWORK

Table 5.3: Comparison of different backbones. ↑ means higher is better, ↓ means lower
is better. The red and bold values indicate the best results.

Encoder Parameters ↓ RMSE ↓ Abs REL ↓ δ1 ↑ δ2 ↑ δ3 ↑

ResNet-18 [41] 6.43 M 0.489 0.144 0.818 0.960 0.990

EffcientNet-B0 [48] 2.63 M 0.555 0.161 0.771 0947 0.988

ShuffleNetV2 [47] 3.37 M 0.514 0.155 0.798 0.949 0.986

MobileNetV2 [46] 2.21 M 0.486 0.136 0.825 0.960 0.990

5.4 Chapter Summary

In this chapter, we introduced a novel lightweight MDE network, named EGD-Net.

Specifically, we designed an Edge Guidance Branch to detect edges and produce

edge attention features that contain edge information. Moreover, a transformer-based

feature aggregation module has been designed to learn the long-range dependen-

cies between the edge and context features and aggregate them together. Exten-

sive experiments on the NYU depth v2 dataset demonstrated the effectiveness of

our proposed network.

Chapter 6

Frontier Guided Area Coverage

for Unmanned Aerial Vehicles

with Deep Reinforcement

Learning

The work, reported in this chapter, has partially been included in the following

journal manuscript:

Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A

Abbass. Frontier guided area coverage for unmanned aerial vehicles with deep

reinforcement learning and monocular vision. Under review.

6.1 Introduction

The objective of this chapter is to address the area coverage problem for un-

manned aerial vehicles (UAVs). The area coverage problem has been widely

155

156
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

explored in the literature. It is observed that a deep reinforcement learning

(DRL) based area coverage method based on pure visual perception for obstacle

avoidance is missing.

Motivated by this context, we propose a frontier guided area coverage method

that uses a monocular RGB camera and DRL framework. In particular, we

design a multi-modal information-based DRL (MMIDRL) framework for the UAV

area coverage problem. The proposed framework depends on a minimal vision

sensor setup consisting of a monocular RGB camera and applies two convolutional

neural networks (CNNs) to predict depth maps and optical flow (OF) maps from

monocular RGB images. Then, the predicted depth maps and OF maps are

passed to the DRL network to learn policies for guiding the flight of a UAV. Due

to the fact that RL requires repeated trial and error learning through interaction

with the environment, training the agent in real-world environment may result

in unexpected behaviours such as collision. Therefore, we train the DRL agent

in a simulated environment.

The core contribution of this chapter is the proposed MMIDRL framework

for the UAV area coverage problem. Unlike prior methods that use an RGB-D

camera or a LiDAR, our proposed MMIDRL framework only depends on a

monocular RGB camera for obstacle avoidance. Furthermore, the proposed

MMIDRL framework uses CNNs for MDE and OF estimation to extract depth

maps and OF maps from RGB images, and then takes advantage of the features

learned from depth maps and OF maps to learn policies for guiding the flight

of the UAV. We design a frontier guided area coverage method for the UAV,

apply two real-time MDE networks to the designed area coverage method and

perform a series of simulation experiments, and demonstrate the effectiveness of

the proposed area coverage method through simulation experiments.

6.2. METHODOLOGY 157

The rest of this chapter is organized as follows. Section 6.2 describes our

methodology. Section 6.3 depicts the experimental setup. The experimental

results are introduced in Section 6.4. Finally, conclusions and future work are

presented in Section 6.5.

6.2 Methodology

Our primary objective is to enable a UAV to cover as much of the accessible

area in an environment as possible while avoiding obstacles. We formulate this

objective as an RL problem, and propose a MMIDRL framework to map the

input data to command actions. In this section, we first introduce the proposed

frontier guided area coverage method and then we present the proposed MMIDR

framework.

6.2.1 Frontier Guided Area Coverage

In this chapter, we assume that the UAV has access to accurate position and

velocity information and we obtain these from AirSim [274] 1. We define a working

area we wish to cover within the 3D simulated environment in AirSim [274]. For

the purpose of simplicity, we let the UAV fly across a 2D plane, i.e., the UAV

flies across the X and Y axes of the 3D space while maintaining nearly constant

altitude. This enables us to approximate the working area into a 2D grid map,

where each grid cell will be set as an occupancy value of 1 if the cell is explored

(covered), or 0 if the cell is unexplored (uncovered). Additionally, we define an

extended area (see Figure 6.1) which is still legal for the UAV to fly within but

not part of the area needing to be covered. This avoids needlessly terminating

1In AirSim, the default flight controller “simple flight” does not simulate a state estimator,
so we only have access to the ground-truth state values.

158
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Obstacles
Working Area
Extended Area

Figure 6.1: Illustration of the 2D grid map with working area and extended area.

the simulation when the UAV moves outside the desired coverage area but is still

in a safe space.

Frontiers are regions located at the border between the explored and unex-

plored space in the environment. Any grid cell between an explored and unex-

plored cell is considered as a frontier cell. Clusters of connected frontier cells are

named as frontier regions. The main idea behind the frontier search-based area

coverage method is to discover frontiers and use them as the desired destinations

for the UAV. By moving to successive frontiers, a UAV can incrementally visit

all accessible areas in an environment.

The frontier search method [264] is described as follows. Given a timestep t,

the ith frontier cell is represented as f it . First of all, all valid frontier cells are

grouped together to form a list of frontier cells Πt = [f 0
t , f

1
t , ..., f

I
t]. Subsequently,

the breadth-first search algorithm is applied to each frontier cell in Πt to convert

6.2. METHODOLOGY 159

the frontier cells and corresponding unexplored cells to a frontier region. The

obtained frontier regions are added to a set Ft = {η0
t , η

1
t , ..., η

J
t } (J ≤ I) and

then ranked to determine the desired frontier region by minimizing the following

utility function:

O(ηjt) = λD∗D
ηjt
t + λS∗S

ηjt
t , (6.1)

η∗t = arg min
ηjt∈Ft

(
O(ηjt)

)
, (6.2)

where D
ηjt
t is the Euclidean distance between the UAV and the closest frontier

cell of that frontier region, S
ηjt
t is the grid size of that frontier region, and λD and

λS are weighting parameters associated with D
ηjt
t and S

ηjt
t respectively. It can be

observed that Equation (6.1) is minimized when the Euclidean distance is small

and the frontier size is large. The determined frontier region is selected as the

desired destination. After the desired destination is selected, the relative position

between the UAV’s current position and the centroid of the desired destination

is used as a direction vector for guiding the flight of the UAV.

6.2.2 Deep Reinforcement Learning

Problem Definition

The objective of an area coverage algorithm is to control the robot’s trajectory to

visit as much of the accessible areas in the environment as possible. This enables

a thorough map of the environment to be generated or an exhaustive search to

be carried out such that no area is missed out. This task can be formulated as

an RL problem, where the agent repeatedly interacts with an environment by

performing actions, to collect observations and rewards. The main objective of

the trained agent is to explore and cover an unknown environment depending

160
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

only on a monocular RGB camera to perceive the environment. Benefiting from

our previously developed CNN for MDE [288, 309] and using the MobileFlow

adapted from FlowNet [37] CNN for OF estimation, depth maps and OF maps

can be predicted directly from the monocular RGB images. The predicted depth

maps and OF maps are then passed to the RL agent to learn policies for guiding

the flight of the UAV.

Reinforcement Learning Setup

We define a Partially Observable Markov Decision Process (POMDP) for the UAV

area coverage problem. The POMDP is represented by a tuple< O,A,R,S,P , γ >,

where O = {o} represents the set of observations and referred to as “observation

space”, A = {a} means the set of actions and referred to as “action space”,

R : s × a → r is the reward function that provides feedback to the agent for

action selection, S = {s} is the set of states and referred to as “state space”,

P : s × a → s is the transition function that models the transitions of states

based on selected actions, and γ ∈ (0, 1) indicates the discount factor. At each

timestep t, the agent receives the observation (ot) of the current state (st) and

selects an action at from A. Then, the agent receives a reward r(st, at) and

transitions to a new state st+1 and gets a new observation ot+1. The objective of

the agent is to find an optimal policy π(at|ot; θπ) which maximizes the expected

sum of discounted rewards:

π∗ = arg min
θπ

E

[
∞∑
t=0

γtR(st, at)

]
, (6.3)

where π∗ represents the optimal action, θπ means the model parameters, t denotes

the timestep, and γ represents the discount factor.

6.2. METHODOLOGY 161

The agent is defined as a quadcopter UAV that is free to move across the X

and Y axes of a 3D space. In particular, the learned policy (π) consists of eight

discrete actions. At the beginning of each episode, a start point is randomly

selected from the working environment. The agent starts to fly and visits the

reachable areas in the working environment. The episode ends when the agent

fulfills the area coverage task, collides with any objects in the environment, flies

outside of the defined extended area, or the simulation reaches the maximum

number of steps.

A commonly applied model-free policy gradient method is the deep deter-

ministic policy gradient (DDPG) [248], which has been shown to improve the

accuracy of position control and tracking. Additionally, the proximal policy op-

timisation (PPO) [249] algorithm has demonstrated promising performance with

control tasks in continuous state-action domains. However, we apply the double

deep Q-network (DDQN) [246] to train the agent, as a stochastic policy-based

model offers the flexibility of adaptive learning in partially or totally unknown

environments [271].

Observation Space and Action Space In this chapter, the observation ot

consists of three parts: RGB images from the onboard front view camera, the

relative position, and the agent’s current linear velocity. The RGB images are

passed through the perception module to predict depth maps and OF maps for

training the DRL model. The relative position between the desired destination

and the agent’s current position serves as a desired direction vector to let the

agent learn where it should go to reach the next frontier.

We consider a 2D action space and define eight discrete actions. As illustrated

in Figure 6.2, the defined action space consists of linear velocities in eight direc-

162
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

(+Vx, 0)

(0, +Vy)

(-Vx, 0)

(0, -Vy)

(+Vx, +Vy)(-Vx, +Vy)

(-Vx, -Vy) (-Vx, +Vy)

y

x

Figure 6.2: Illustration of the AUV reference system and action space.

tions. The values of velocities are set as 1m/s. At each timestep, the agent selects

an action based on observations from the environment. To maintain guidance

using the front view camera, we condition the UAV’s nose to always align with

the direction of travel.

Reward Function A reward function enables the RL agent to learn the prefer-

able actions within the defined working environment. A straightforward formula-

tion of the reward is to give the agent a reward value only if it completes the area

coverage task. However, this reward makes initial training difficult as it is hard

to get any positive reward at the beginning of training. Therefore, optimization

algorithms would take an extremely long time or even fail to converge [314]. To

solve this problem, we design a non-sparse reward function for the UAV area

coverage problem. The designed reward function is described as follows.

6.2. METHODOLOGY 163

First, we assign a time reward at each timestep until the episode ends:

rtime =


0 on episode termination,

−0.01 otherwise,

(6.4)

where the smaller negative contribution to the total reward encourages the agent

to complete the task faster.

Second, if the agent flies outside of the working area but within the extended

area, we apply a smaller negative reward rvalid:

rvalid =


−0.05 if agent flies outside of working area,

0 otherwise.

(6.5)

Then, when the agent arrives at an uncovered cell, we apply a smaller positive

reward rvisit:

rvisit =


0.1 if agent arrives an uncovered cell,

−0.2 if agent arrives an occupied cell,

0 otherwise.

(6.6)

Besides, in order to encourage the agent to fly to the desired destination, we

apply a reward (rdestination) which relates to the distance between the agent and

the desired destination:

rdestination =


R if agent flies close to the desired destination,

−R if agent flies away from the desired destination,

(6.7)

where R is based on the distance between the agent and the desired destination

164
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

in two consecutive timesteps. R = C × Di, C is a positive constant value (set

as 6) and Di is the difference of the distance between the agent and the desired

destination at two consecutive timesteps.

Finally, we assign the terminal reward at the end of each episode. For a

successful episode, for example when the agent completes the area coverage task,

we assign a positive terminal reward, while in case of collisions or flight outside

of the extended area, the agent receives a penalty as follows:

rterminal =



10 if agent completes the task,

−10 if agent collides with an object,

−10 if agent flies outside of the extended area,

0 otherwise.

(6.8)

Therefore, the overall reward function is defined as the sum of the above five

terms:

r = rtime + rvalid + rvisit + rdestination + rterminal. (6.9)

In addition to the case of completing the defined task, we define three termination

cases: 1) the agent collides with any object in the environment; 2) the agent flies

outside of the extended area; 3) the current episode timestep Tstep reaches 1000.

Network Structure

The overview of the proposed MMIDRL framework is shown in Figure 6.3. It

consists of three components: simulator module, perception module and policy

module. In the simulator module, we use AirSim [274] as the simulator and the

Unreal Engine as the render engine. AirSim provides a Python API that can

be used to obtain sensor readings such as RGB images, position and velocity of

6.2. METHODOLOGY 165

Linear Velocity

Relative Position

DepthCNN

FlowCNN

DRL

Perception Module

Policy Module

Simulator
(AirSim & Unreal Engine)

Depth

Maps

Optical Flow

Maps

Monocular RGB Images

Action

Figure 6.3: Illustration of the proposed MMIDRL framework.

the agent (UAV). The MMIDRL framework takes as input the RGB image from

AirSim, the relative position of the UAV with respect to the desired destination2,

and the UAV’s current velocity to learn the policy for guiding the flight of the

UAV. Details of Unreal Engine and AirSim have been introduced in Sections 3.2

and 3.3 respectively.

The designed MMIDRL framework depends on a minimal vision sensor setup

composed of a monocular RGB camera (the onboard front view camera) to

capture RGB images from the environment. The captured images are passed to

the perception module to predict depth maps and OF maps through two CNNs.

The depth map contains the distance between the camera to the surface of objects

and the structure of the environment. OF carries rich information about range

in monocular images and this is believed to have a lot of additional information

as inspired from insects, which use OF for ranging given their visual system

is effectively monocular. CNNs use texture and color cues to find depth from

monocular images, this can sometimes fail in cases where images are blurry [233].

2In this work, the desired destination has two definitions. For the flying to destinations
task, the desired destination is the destination point defined at the beginning of each episode.
For the area coverage task, the desired destination is the centroid of the selected frontier cell
at each timestep.

166
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Meanwhile, OF estimation exploits temporal information (e.g., change between

two consecutive frames) and may work in those cases [315]. Therefore, depth

maps and OF maps are two complementary visual representations of the envi-

ronment. In essence, the perception module perceives the environment through

MDE and OF estimation. The combination of depth and OF modalities enables

a complete and detailed interpretation of the environment [316].

To predict depth maps from monocular RGB images, we apply MobileXNet [288]

or EGD-Net [309] as the DepthCNN in the perception module. The details of

MobileXNet [288] and EGD-Net [288] have been described in Sections 4 and 5,

respectively. In FlowCNN, a deep CNN such as FlowNet [37] is expected to be

used. However, FlowNet produces OF maps at 1/4 size of the input images. Since

the simulator generates RGB images with the resolution of 128 × 128, FlowNet

produces OF maps with the resolution of 32× 32, which are not compatible with

the DRL network architecture. Therefore, we design a variant of FlowNet, which

has a lightweight encoder-decoder architecture. The designed variant is built on

top of MobileNet [44], and we name it MobileFlow.

The configuration of the encoder of MobileFlow is illustrated in Figure 6.4.

It consists of four convolutional stages. Considering the size of the input images

(128× 128), in the first stage we use 3×3 sized filters to capture more detailed

information [288]. To increase the receptive field of the first stage, we stack three

3 × 3 convolutional layers. This design has the same receptive field as a 7 ×

7 convolutional layer but the number of parameters is less. Stages 2, 3 and 4

are based on depthwise separable convolutions [45] for the purpose of reducing

network latency. In particular, these three stages have the same configuration as

the corresponding layers in MobileNet [44]. Therefore, we can use the pre-trained

weights on the ImageNet dataset [294] to initialize these layers in training. The

6.2. METHODOLOGY 167

Stage

Layer

Kernel

Padding

Stride

Output

Channels

Encoder

Stage 1

Conv1_1 3 × 3 1 2 32

Conv1_2 3 × 3 1 1 32

Conv1_3 3 × 3 1 1 32

Satge2

DWConv2_1 3 × 3 1 1 32

Conv2_1 1 × 1 0 1 64

DWConv2_2 3 × 3 1 2 64

Conv2_2 1 × 1 0 1 128

Stage 3

DWConv3_1 3 × 3 1 1 128

Conv3_1 1 × 1 0 1 128

DWConv3_2 3 × 3 1 2 128

Conv3_2 1 × 1 0 1 256

Stage 4

DWConv4_1 3 × 3 1 1 256

Conv4_1 1 × 1 0 1 256

DWConv4_2 3 × 3 1 2 256

Conv4_2 1 × 1 0 1 512

Figure 6.4: Detailed structure of the encoder of the MobileFlow network. “Conv”
represents the regular convolutional layer and “DWConv” means depthwise

convolution layer.

encoder incorporates a tensor generated through concatenating two consecutive

RGB images and produces intermediate feature maps with 1/16 size of the input

images. The decoder of MobileFlow has the same architecture as the refine

module of FlowNet [37], which has four 2D transposed convolution layers. Each

transposed convolution layer has an up-sampling factor of 2. The decoder takes

as input feature maps from the encoder and produces OF maps with the same

resolution as the input images. The designed MobileFlow network has 3.73 million

parameters and runs about 480 fps on an Nvidia RTX 3090 GPU.

The objective of the policy module is to learn the guidance policy through

RL. As shown in Figure 6.5, the policy module has three convolutional layers and

two FC layers. Each convolutional layer uses ReLU as the activation function.

The convolutional layers downsample the depth map or OF map to 2D feature

maps, which are then flattened to a 1D feature vector. Subsequently, the flattened

feature vector is concatenated with the relative position and agent’s current linear

velocity. The FC layers incorporate the concatenated feature vector and output

the Q values of eight discrete actions.

168
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

DepthCNN

8x8 Conv

Stride = 4, 32

4x4 Conv

Stride = 2, 64

4x4 Conv

Stride = 2, 64

128

8

Linear Velocity,

Relative Position

C

Depth Map

128x128

RGB Image

128x128

Perception Module

Policy Module

Flatten

FC

FC

(a)

8x8 Conv

Stride = 4, 32

4x4 Conv

Stride = 2, 64

4x4 Conv

Stride = 2, 64

128

8

Linear Velocity,

Relative Position

C

Optical Flow Map

128x128

RGB Images

128x128

FlowCNN

Perception Module

Policy Module

Flatten

FC

FC

(b)

Action

Action

Figure 6.5: Illustration of the baseline policy architectures using the MDE network (a)
and the OF estimation network (b).

6.2. METHODOLOGY 169

Depth Map

128x128

8x8 Conv

Stride = 4, 32

4x4 Conv

Stride = 2, 64

4x4 Conv

Stride = 2, 64

Linear Velocity,

Relative Position

8x8 Conv

Stride = 4, 32

4x4 Conv

Stride = 2, 64

4x4 Conv

Stride = 2, 64

Optical Flow Map

128x128

C

Cross

Attention

Module

Flatten

8

128

FC

FC

128

FC

Action

1F

2F

Figure 6.6: Illustration of the proposed multi-modal information-based policy
architecture.

In the multi-modal information-based policy module (see Figure 6.6), both

the depth and OF maps are passed to convolutional layers to extract feature

maps (referred to as F1 and F2), respectively. Instead of concatenating F1 and

F2 in channel dimension, we apply a cross-attention module to fuse them. As

shown in Figure 5.4, the cross-attention module consists of two linear transformer

encoder layers, and a “1× 1 Conv-BN-ReLU” layer. It fuses F1 and F2 through

the cross-attention mechanism in two directions ((F1, F2) and (F2, F1)). The

fused feature is flattened and concatenated with the relative position and agent’s

linear velocity and passed to two FC layers to learn policy π. This process is

formulated as:

π = fpolicy(concatenate(fusion(F1, F2), V el, RelPos), θpolicy)) (6.10)

where F1 and F2 represent features extracted from depth maps and OF maps re-

spectively, V el is the agent’s linear velocity, RelPos denotes the relative position,

and fpolicy stands for the policy module with learnable parameters θpolicy.

170
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Figure 6.7: Example images captured from front view camera of the UAV during flight
in simulated environments. From left to right: Outdoor Forest Environment,

Rural Australia Environment, and the Outdoor Soccer Field Environment.

6.3 Experimental Setup

6.3.1 Simulated Environments

We adopt three 3D highly realistic environments, two environments are forest

surroundings and the other one is an outdoor soccer field. For the forest environ-

ments, one is called “Outdoor Forest” and the other is called “Rural Australia”.

The “Outdoor Forest” environment was taken from [317]. We downloaded the

source file of the “Rural Australia” environment [280] from the Unreal Engine

Marketplace and set it up according to the tutorial of AirSim3. For the outdoor

soccer field environment, we used the binary model released by AirSim4. The

binary model was built through the Unreal Engine [279] and can be directly

applied to simulation experiments. These simulated environments contain a large

variety of lighting conditions and objects (e.g., trees and benches). Figure 6.7

shows the example images captured from the front view camera of the UAV.

3https://microsoft.github.io/AirSim/unreal custenv/
4https://github.com/Microsoft/AirSim/releases

6.3. EXPERIMENTAL SETUP 171

6.3.2 Implementation Details

We adopt AirSim [274] as the simulator and implement the designed MMIDRL

framework in Pytorch [283]. The simulation agent is a quadrotor UAV equipped

with onboard sensors including an RGB camera and IMU. It is noteworthy that

only the front view camera is utilized to capture images from the environment.

For the weighting parameters in frontier search, we set λD = 0.001 and λS = 1.

We train the DDQN-based agent with hyper-parameters illustrated in Table 6.1.

Both training and testing are conducted on a workstation with Windows 10 OS

and a single Nvidia GeForce RTX 3090 GPU. As regards CNN models in the

perception module, we use the MobileXNet [288] or EGD-Net [309] for MDE, and

MobileFlow for OF estimation. Both MobileXNet [288] and EGD-Net [309] are

trained on the UnrealDataset [34], which was collected from a series of simulated

urban and forest scenarios in AirSim [274]. All data for training DepthCNNs

are resized to 128 × 128 × 3 pixels, and the hyper-parameters for training are

kept same as [288,309]. We train MobileFlow on the Sintel dataset [318] and the

hyper-parameters for training are the same as [37].

Table 6.1: Hyper parameters in our simulation experiments.

Item Value

Discount factor (γ) 0.99

Mini-batch size 32

Learning rate 0.001

Optimization algorithm Adam

Loss function Smooth L1 Loss

Update frequency 50

6.3.3 Baselines

In this chapter, we compare our proposed MMIDRL framework with three base-

line methods:

172
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

• Random: The random policy uniformly, with equal probability at each

timestep, selects an action from the action space. For consistency of com-

parisons, the action space and maximum timesteps of this method are the

same as the DRL-based methods.

• Monocular Depth Perception-Based Method (MDP): This method

only uses an MDE network ((i.e., MobileXNet [288] or EGD-Net [309])) in

the perception module, and maps the predicted depth maps to policies for

UAV guidance.

• Optical Flow Perception-Based Method (OFP): This method only

uses an OF estimation network, MobileFlow, in the perception module.

The predicted OF maps are used to learn policies for UAV guidance.

6.3.4 Performance Metrics

The adopted performance metrics are described as follows:

• Success Rate: The percentage of times the agent completes the defined

task. Ideally, this number will be close to 100% as it reflects the algorithms’

functionality.

• Average Time: The average time that the agent spends completing a task

within the simulated environment.

• Average Distance: The average travel distance while completing the area

coverage task or flying to destination point.

In the stage of evaluation, 50 episodes are run for each method. At the start of

each evaluation episode, the agent starts at a random position.

6.4. EXPERIMENTAL RESULTS 173

6.4 Experimental Results

In this section, we evaluate the performance of our proposed MMIDRL framework

in visual guidance of the UAV. First, we apply the MMIDRL framework to the

scenario of controlling the UAV flying to a fixed destination. In this scenario, the

objective of the UAV is to reach the pre-defined destination point from a random

start point and avoiding collision with objects in the environment. Then, we

apply the MMIDRL framework to the scenario of UAV area coverage.

6.4.1 Flying to Destinations

We first evaluate the performance of the MMIDRL framework to control a sim-

ulated UAV autonomously flying from start points to destinations in cluttered

forest environments. We compare our MMIDRL framework against four base-

lines. The MMIDRL framework and the DRL-based baselines are trained in the

“Outdoor Forest” environment, and evaluated in an unseen forest environment,

“Rural Australia”. We train each DRL agent for 1000 episodes. At the beginning

of each episode, the start point and destination point are randomly selected from

an area of size 100m × 100m. The reward function in this experiment includes

three terms: r = rtime + rdestination + rterminal. In terms of the rterminal, the

termination cases are: (1) the UAV collides with any object in the environment;

(2) the UAV flies outside of the pre-defined area; and (3) the current episode

timesteps Tstep reach 500.

We consider an episode to be completed if the UAV reaches the destination

point (i.e., the distance between the UAV and destination point less a threshold

value, Tdestination) without colliding with objects in the environment and the

simulation does not exceed the allowed maximum time steps. The value of

174
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Table 6.2: Comparative performance of the proposed MMIDRL framework in flying to
destinations task. Random means the random policy, MDP-E and MDP-M
represent monocular depth perception-based method using EGD-Net and
MobileXNet respectively, OFP denotes optical flow perception-based method,
MMIDRL (E) and MMIDRL (M) indicate MMIDRL framework using EGD-Net
and MobileXNet respectively. The red and bold values indicate the best results.

Method
Completed
Episodes

Failed
Episodes

Success
Rate

Random 4 46 8%

MDP-E 45 5 90%

MDP-M 42 8 84%

OFP 38 12 76%

MMIDRL (E) 49 1 98%

MMIDRL (M) 50 0 100%

Tdestination is set as 3m. Since the start point and destination point are randomly

generated, the distance between these two points are different in each episode.

Therefore, we only use the success rate as the performance metric. The summary

of the results are listed in Table 6.2.

As can be seen, among all methods, the random policy yields the worst perfor-

mance, and only completes four episodes. The monocular depth perception-based

methods (MDP-E and MDP-M) outperform the optical flow perception-based

method (OFP). Among the two monocular depth perception-based methods,

MDP-E (EGD-Net) performs better than MDP-M (MobileXNet). Combining the

two complementary inputs of MDE and OF estimation improves the performance

of the DRL agent. The multi-modal information based methods (MMIDRL (E)

and MMIDRL (M)) outperforms both monocular depth perception-based meth-

ods (MDP-E and MDP-M) and optical flow perception-based method (OFP). In

the next section, we will evaluate the performance of our proposed MMIDRL

framework in the scenario of UAV area coverage.

6.4. EXPERIMENTAL RESULTS 175

6.4.2 Area Coverage

The main objective of the experiments in this section is to evaluate the perfor-

mance of the MMIDRL framework in the scenario of UAV area coverage. For

this purpose, we train the MMIDRL framework and the DRL-based baselines

in the “Rural Australia” environment and evaluate the trained models in the

“Soccer Field” environment. Both the MMIDRL framework and the DRL-based

baselines are trained for 500 episodes. We define a working area and an extended

area within the simulated environment, and then approximate it into a grid map

through discretization. In particular, the working area and extended area are

constrained to 40m×40m and 60m×60m respectively. The size of each grid cell

is set as 5m× 5m, as we found that a smaller size leads to an apparent increase

of training and testing time for each episode. This results in a working area with

8× 8 grid cells.

At the beginning of each episode, a start point is randomly selected from the

boundary of the working area. Since the UAV is expected to simply visit as many

free grid cells as possible, no destination point is defined. In order to measure

the performance of area coverage in a separate episode, we define a coverage rate

(CR) metric:

CR =
Ncovered

Nfree

×100% (6.11)

where Ncovered and Nfree represent the number of covered free cells and the total

number of free cells in the grid map respectively. If the value of CR in each episode

achieves a threshold value (Tcoverage), this episode will be considered as complete.

In general, a larger CR value results in a longer path and requires longer time

in training and evaluation [267]. In this section, the value of Tcoverage is set as

95%. The proposed MMIDRL framework is compared with four baselines, and

176
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Table 6.3: Comparative performance of the proposed MMIDRL framework in area
coverage task. Random means the random policy, MDP-E and MDP-M
represent the monocular depth perception-based method using EGD-Net and
MobileXNet respectively, OFP denotes optical flow perception-based method,
MMIDRL (E) and MMIDRL (M) indicate MMIDRL framework using EGD-Net
and MobileXNet respectively. The red and bold values indicate the best results.

Method
Completed
Episodes

Failed
Episodes

Success
Rate

Average
Distance (m)

Average
Time (s)

Random 0 50 0 fail fail

MDP-E 50 0 100% 385.7 516.9

MDP-M 48 2 96% 342.7 432.3

OFP 44 6 88% 376.3 499.4

MMIDRL (E) 50 0 100% 366.9 484.4

MMIDRL (M) 50 0 100% 305.3 384.0

the comparison is conducted using the three performance metrics described in

Section 6.3.2. Table 6.3 illustrates the quantitative results of all methods.

As shown in Table 6.3, the random policy fails in all episodes. Specifically,

44 episodes fly out of the expanded area, four episodes fail to complete the

coverage mission and reach the maximum timesteps, and two episodes result

in collisions with objects in the environment. These results offer objective evi-

dence that a sophisticated designed algorithm is essential. The monocular depth

perception-based methods (MDP-E and MDP-M) outperform the optical flow

perception-based method (OFP) in terms of success rate. According to the 2nd

and 3rd rows in the Table, the EGD-Net based method (MDP-E) achieves higher

success rate than MobileXNet-based method (MDP-E), but its average distance

and average time metrics are inferior. When combining MobileXNet with OF

estimation, the produced multi-modal information-based method (MMIDRL(M))

generates the best performance in all the three metrics. These results suggest that

combining OF estimation and MDE improves the performance of area coverage.

The promising results should be attributed to the fact that the DRL model was

trained in small sized images (128 × 128 pixels) and the design of MobileXNet

6.4. EXPERIMENTAL RESULTS 177

considered the situation of MDE from small sized images.

6.4.3 Ablation Studies

In order to further analyze the performance of our proposed method, we perform

ablation studies to compare its performance when using different action spaces

and feature fusion methods. We use the multi-modal information-based method

with MobileXNet (MMIDRL (M)) as the benchmark in this section due to its

superior performance in Section 6.4.2. The training and testing protocols are

kept the same as those adopted in Section 6.4.2.

Comparison of Different Action Spaces

In this section, we compare the effect of using different action spaces in the

performance of the proposed area coverage method. To this end, we train the

proposed MMIDRL framework with the action space consisting of discrete po-

sitions. Instead of controlling the simulated UAV through linear velocities, we

control it with positions. Specifically, at each time step, the agent selects an

action and changes the position of the UAV in the simulation environment. The

quantitative results are shown in Table 6.4.

It can be seen from Table 6.4 that the average distance and average time

results produced by position-based action space (MMIDRL (M-P)) are apparently

inferior to the velocity-based action space (MMIDRL (M-V)). We visualize ex-

ample trajectories generated by these two methods and illustrate it in Figure 6.8

and Figure 6.9, respectively. Compared with the velocity-based action space

(MMIDRL (M-V)), the position-based action space (MMIDRL (M-P)) suffers

from a jerky motion.

178
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

Figure 6.8: An example trajectory generated by the MMIDRL framework with
velocity-based action space (MMIDRL (M-V)).

Figure 6.9: An example trajectory generated by the MMIDRL framework with
position-based action space (MMIDRL (M-P)).

6.4. EXPERIMENTAL RESULTS 179

Table 6.4: Comparative performance of the proposed MMIDRL framework with
different action spaces. MMIDRL (M-P) means multi-modal information-based
method using MobileXNet and discrete position actions, MMIDRL (M-V)
means multi-modal information-based method using MobileXNet and discrete

velocity actions. The red and bold values indicate the best results.

Method
Completed
Episodes

Failed
Episodes

Success
Rate

Average
Distance (m)

Average
Time (s)

MMIDRL (M-V) 50 0 100% 305.3 384.0

MMIDRL (M-P) 50 0 100% 663.7 1336.6

Comparison of Different Feature Fusion Methods

We evaluate the contribution of the cross-attention module by comparing its per-

formance against a baseline constructed by replacing the cross-attention module

with a concatenation operation. The baseline method is named as “MMMIDRL

(Concat)”. We train and evaluate the baseline method and proposed method

(referred to as “MMIDRL (Att)”) with the same parameters. The quantitative

results are reported in Table 6.5.

Table 6.5: Comparative performance of the proposed MMIDRL framework with
different feature fusion methods. MMIDRL (Concat) means MMIDRL method
fuses features through concatenation. MMIDRL (Att) represents MMIDRL
fuses features through cross-attention module. The red and bold values

indicate the best results.

Method
Completed
Episodes

Failed
Episodes

Success
Rate

Average
Distance (m)

Average
Time (s)

MMIDRL (Concat) 50 0 100% 307.6 439.7

MMIDRL (Att) 50 0 100% 305.3 384.0

The cross-attention module-based MMIDRL framework (MMIDRL (Att))

outperforms the baseline method (MMIDRL (Concat)) in terms of the average

distance and average time metrics. We attribute the promising results to the fact

that the cross-attention module captures the long-range dependencies between

the features learned from depth maps and OF maps. The fused feature maps

further facilitates the performance of UAV area coverage.

180
6. FRONTIER GUIDED AREA COVERAGE FOR UNMANNED AERIAL VEHICLES

WITH DEEP REINFORCEMENT LEARNING

6.5 Chapter Summary

In this chapter, we proposed a multi-modal information-based deep reinforcement

learning (MMIDRL) framework to solve the area coverage problem for UAVs. The

designed MMIDRL framework applies a monocular RGB camera as perception

sensor and takes advantages of two CNNs for MDE and OF estimation to learn

policies for UAV area coverage. Furthermore, we designed a frontier guided

area coverage method which searches the next desired destinations for the UAV

based on frontiers. Extensive experiments have been conducted in simulated

environments to demonstrate the effectiveness of the proposed method. However,

our proposed method did not record the positions of obstacles during the coverage

task. In future work, a more rigorous implementation would be to construct an

obstacle map in real-time from the predicted depth maps. This map could then

be used to mark cells as unavailable, which are blocked by obstacles to prevent

the frontier vector from directing the UAV back to areas which could not be

visited.

Chapter 7

Conclusions and Future Work

7.1 Summary of Results

In this thesis, a vision guidance method for unmanned aerial vehicles (UAVs) in

cluttered outdoor environment using monocular camera and deep learning (DL)

has been designed. In particular, the designed method enables a UAV depending

on a monocular camera to perceive the environment through depth and optical

flow (OF) information to perform area coverage and avoid collisions with obstacles

in the simulation environment. Motivated by the literature review in Chapter 2,

a campaign of research work has been conducted step by step throughout the

thesis.

In Chapter 2, we conducted the literature review. Especially, we performed

a comprehensive survey on monocular depth estimation (MDE). We reviewed

Structure from Motion (SfM)-based methods, traditional handcrafted feature-based

methods, state-of-the-art DL-based methods, and the application of MDE in

robotics. It was concluded that developing real-time MDE network with accuracy

and efficiency balance is a promising direction.

181

182 7. CONCLUSIONS AND FUTURE WORK

In Chapter 4, we proposed a real-time MDE network, named MobileXNet.

MobileXNet stacks two simple and shallow encoder-decoder style subnetworks in

a unified framework, which enables MobileXNet to have a shallow and simple

architecture. In particular, the first subnetwork of MobileXNet produces feature

maps having a larger resolution (1/4 size of input images) and include more

spatial information. These feature maps are passed to the second subnetwork

to produce depth maps, which is beneficial for depth estimation on small sized

images. Extensive experiments on four datasets demonstrated that MobileXNet

achieves accuracy and efficiency balance.

The proposed MobileXNet achieved promising results, however, it did not

utilize edge features in input images. In chapter 5, we proposed a lightweight

MDE network, named Edge Guided Depth Estimation Network (EGD-Net).

EGD-Net integrates a depth estimation branch and an edge guidance branch in

a unified network. Moreover, it builds on top of a shallow (stacks less layers) and

narrow (includes less filters in each layer) encoder-decoder network and applies

edge attention features to guide the depth estimation task. Experimental results

showed that EGD-Net runs at about 96 fps on an Nvidia GTX 1080 GPU whilst

achieving state-of-the-art performance in terms of accuracy.

To achieve the aim of UAV guidance, we designed a frontier guided area cover-

age method in Chapter 6. The designed method uses a frontier search algorithm

to detect frontiers from the environment. The detected frontiers are then used as

desired destinations for the UAV. In addition, a multi-modal information-based

deep reinforcement learning (MMIDRL) framework was designed. The designed

MMIDRL framework only uses a single monocular RGB camera for perception.

Benefiting from CNNs for MDE and OF estimation, the proposed method en-

ables the UAV to perceive the environment through depth information and OF

7.2. FUTURE WORK 183

information. Extensive experiments in simulation environments demonstrated

the effectiveness of the proposed method.

7.2 Future Work

7.2.1 MDE Networks Run on Embedded Platform

In Chapters 4 and 5, we proposed two CNNs for MDE. Those two CNNs were

named MobileXNet and EGD-Net respectively. In addition to the promising

accuracy performance, MobileXNet and EGD-Net run at high frame rates (126

fps and 90 fps respectively), on a single modest power GPU. We applied these two

CNNs to visual guidance of UAVs in simulation environments. As the simulation

experiments were performed in a workstation with a GPU, future work, should

investigate the running speed on an embedded platform such as an Nvidia Jetson

TX2 or Jetson AGX Xavier. This could validate the potential of deploying these

networks on a small UAV equipped with an embedded computation module.

7.2.2 Design of MDE Networks

In Chapter 5, we proposed the EGD-Net, which integrates a depth estimation

branch and an edge guidance branch (EGB) in a unified network. To fuse features

from these two branches, we designed a transformer-based feature aggregation

(TRFA) module. The TRFA module applies two linear transformer encoder

layers to model long-range dependencies between those features. It is important

to note that EGD-Net has 2.21 millions of parameters but its running speed

is lower than MobileXNet (has 24.95 millions of parameters). This should be

attributed to the characteristic of the linear transformer encoder layers, which

184 7. CONCLUSIONS AND FUTURE WORK

depend on dot product computation between feature maps. Since these features

have a larger resolution, the huge number of FLOPs (floating-point operations

per second) slows the running speed. One possible approach will be to apply

an efficient algorithm (e.g., separable vision transformer [319]) to reduce the

computation complexity of the linear transformer layer. Moreover, the EGB

could be discarded in the inference stage. Therefore, the edge attention features

can improve the accuracy of depth estimation without any cost in inference.

7.2.3 Replacing GPS with SLAM to Obtain the Position

of UAV

In Chapter 6, the position of the UAV was obtained from AirSim [274]. In

AirSim, the default controller designated the “simple flight” controller does not

include a sensor model or a state estimator. Instead, it uses the ground-truth

from the simulator to provide the state information. Therefore, the proposed

area coverage method proceeds under the assumption that the position of the

UAV is known from a sensor such as GPS. The frontier search algorithm requires

the position of the UAV. To make the proposed method work in a GPS-denied

environment, a Simultaneous Localization and Mapping (SLAM) algorithm (e.g.,

ORB-SLAM [185,320]) could be applied to predict the position of the UAV.

7.2.4 Map Construction from Predicted Depth Maps

In Chapter 6, we presented a frontier guided area coverage method for UAVs.

The proposed method applied a frontier search algorithm to detect frontiers from

the environment. The detected frontiers are used as the desired destinations for

UAV. Experiments in simulation environments demonstrated that the proposed

7.2. FUTURE WORK 185

Figure 7.1: Screen shot of 3D point cloud produced by ORB-SLAM2. The green block
represents the position of the UAV in the environment.

method can enable a UAV to cover as much of the accessible areas as possible

in the environment and avoid obstacles. However, the proposed methods have

limitations because the positions of obstacles are not recorded during the coverage

task. In this case, the UAV may suffer the problem of trying to revisit the same

cells which are blocked by obstacles and cannot be reached. To solve this problem,

a real-time grid map of occupied cells should be constructed from the predicted

depth maps. The constructed map could be used to mark grid cells as unreachable

which are occupied by obstacles to prevent the frontier vector from directing the

UAV back to areas that could not be visited.

To build the grid map of occupied cells, real-time SLAM methods such as

ORB-SLAM2 [185] could be applied in our future work. As a state-of-the-art

visual SLAM algorithm, ORB-SLAM2 is capable of producing a point cloud based

3D map. Figure 7.1 shows the point cloud based 3D map produced by the

ORB-SLAM2 algorithm [185]. It is worth noting that the produced 3D map is

sparse, it may be difficult to construct an occupancy map that contains most of

the obstacles. Therefore, a more denser map should be considered.

186 7. CONCLUSIONS AND FUTURE WORK

(a)

(b)

(c)

Figure 7.2: Illustration of point cloud registration with small movement between two
consecutive depth images. (a) Point cloud converted from the first frame
ground-truth depth image, (b) Point cloud converted from the second frame

ground-truth depth image, and (c) The registered point cloud.

7.2. FUTURE WORK 187

(a)

(b)

(c)

Figure 7.3: Illustration of point cloud registration with large movement between two
consecutive depth images. (a) Point cloud converted from the first frame
ground-truth depth image, (b) Point cloud converted from the second frame

ground-truth depth image, and (c) The registered point cloud.

188 7. CONCLUSIONS AND FUTURE WORK

In this thesis, we assumed that the UAV only depends on a monocular camera

to perceive the environment. Under this situation, any 3D sensors for capturing

point cloud from the environment are not available. One possible method will be

to convert the depth pixel from the 2D coordinate system of depth map to 3D

space. With the obtained point cloud, a 3D map can be constructed through cloud

registration algorithm [321]. The accuracy of the cloud registration algorithm

determines the quality of the constructed map [322]. Therefore, high registration

accuracy is a core requirement for the cloud registration algorithm. Figure 7.2

and Figure 7.3 show examples of point cloud registration through iterative closest

point (ICP) algorithm [323,324]. It can be observed that the ICP algorithm does

not produce good performance when there is large movement between consecutive

frames.

Moreover, point cloud registration encounters two main challenges: noise and

outliers, and partial overlap [322]. The sensor noise may result in point clouds

including noise and outliers around the same position. Besides, the transforma-

tion between depth map and point cloud may bring about noise and outliers

because of the error of camera calibration or noise in the depth map. Since the

source data of point clouds are collected from different views, especially under

the case of abrupt turn, the generated point clouds are partial overlapped. Both

SLAM-based and point cloud registration-based methods should be considered

in future work.

7.3 Concluding Remarks

Compared with active sensors such as LiDAR, vision sensors, especially monoc-

ular cameras are low cost, light weight and require less hardware resources.

7.3. CONCLUDING REMARKS 189

Therefore, monocular vision-based visual guidance is promising for small UAVs.

Taking advantage of CNNs developed for MDE and OF estimation, a UAV

equipped with a monocular camera can perceive the environment through depth

and OF information and achieve the aim of visual guidance. There are still issues

that need to be tackled to improve the performance of monocular vision-based

guidance method in cluttered outdoor environment. Due to limitations of time,

we recommend the work of replacing GPS with SLAM and map construction from

predicted depth maps as future work. This body of work will be a solution to

prevent the frontier vector from directing the UAV back to areas that could not

be visited, and a chance to make UAV area coverage in GPS-denied environment

a reality.

REFERENCES 191

References

[1] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The KITTI dataset. The International Journal of Robotics Research,
32(11):1231–1237, 2013.

[2] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a
single image using a multi-scale deep network. In Advances in Neural Information
Processing Systems, pages 2366–2374, 2014.

[3] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor
segmentation and support inference from RGBD images. In European Conference
on Computer Vision, pages 746–760. Springer, 2012.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 234–241.
Springer, 2015.

[5] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and Davide
Scaramuzza. DroNet: Learning to fly by driving. IEEE Robotics and Automation
Letters, 3(2):1088–1095, 2018.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[7] Bryan Chen, Alexander Sax, Gene Lewis, Iro Armeni, Silvio Savarese, Amir
Zamir, Jitendra Malik, and Lerrel Pinto. Robust policies via mid-level visual
representations: An experimental study in manipulation and navigation. arXiv
preprint arXiv:2011.06698, 2020.

[8] Simon Zingg, Davide Scaramuzza, Stephan Weiss, and Roland Siegwart.
MAV navigation through indoor corridors using optical flow. In 2010 IEEE
International Conference on Robotics and Automation, pages 3361–3368. IEEE,
2010.

[9] Jessica Alvarenga, Nikolaos I Vitzilaios, Kimon P Valavanis, and Matthew J
Rutherford. Survey of unmanned helicopter model-based navigation and control
techniques. Journal of Intelligent & Robotic Systems, 80(1):87–138, 2015.

[10] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra
Faust, and Vijay Reddi. MAVBench: Micro aerial vehicle benchmarking. In
2018 51st annual IEEE/ACM international symposium on microarchitecture
(MICRO), pages 894–907. IEEE, 2018.

[11] E Wardihani, Magfur Ramdhani, Amin Suharjono, Thomas Agung Setyawan,
Sidiq Syamsul Hidayat, SARONO WIDODO Helmy, EDDY Triyono, and
FIRDANIS Saifullah. Real-time forest fire monitoring system using unmanned

192 REFERENCES

aerial vehicle. Journal of Engineering Science and Technology, 13(6):1587–1594,
2018.

[12] Diyana Kinaneva, Georgi Hristov, Jordan Raychev, and Plamen Zahariev.
Early forest fire detection using drones and artificial intelligence. In 2019
42nd International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1060–1065. IEEE, 2019.

[13] Salvatore Manfreda, Matthew F McCabe, Pauline E Miller, Richard Lucas,
Victor Pajuelo Madrigal, Giorgos Mallinis, Eyal Ben Dor, David Helman, Lyndon
Estes, Giuseppe Ciraolo, et al. On the use of unmanned aerial systems for
environmental monitoring. Remote Sensing, 10(4):641, 2018.

[14] Jarrod C Hodgson, Shane M Baylis, Rowan Mott, Ashley Herrod, and Rohan H
Clarke. Precision wildlife monitoring using unmanned aerial vehicles. Scientific
Reports, 6(1):1–7, 2016.

[15] Dario Floreano and Robert J Wood. Science, technology and the future of small
autonomous drones. Nature, 521(7553):460, 2015.

[16] Yulun Tian, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen, Nicholas Roy,
and Jonathan P How. Search and rescue under the forest canopy using multiple
UAVs. The International Journal of Robotics Research, 39(10-11):1201–1221,
2020.

[17] Azur Drones. Skeyetech: fully autonomous drone for safety and security. https:
//www.azurdrones.com/product/skeyetech/.

[18] Evangelos Maltezos, Michael Skitsas, Elisavet Charalambous, Nikolaos Koutras,
Dimitris Bliziotis, and Kyriacos Themistocleous. Critical infrastructure
monitoring using UAV imagery. In Fourth International Conference on Remote
Sensing and Geoinformation of the Environment (RSCy2016), volume 9688, page
96880P. International Society for Optics and Photonics, 2016.

[19] Ezedin Barka, Chaker Abdelaziz Kerrache, Hadjer Benkraouda, Khaled Shuaib,
Farhan Ahmad, and Fatih Kurugollu. Towards a trusted unmanned aerial system
using blockchain for the protection of critical infrastructure. Transactions on
Emerging Telecommunications Technologies, page e3706, 2019.

[20] Christoforos Kanellakis and George Nikolakopoulos. Survey on computer vision
for UAVs: Current developments and trends. Journal of Intelligent & Robotic
Systems, 87(1):141–168, 2017.

[21] Robin Murphy. Drones save lives in disasters, when they’re
allowed to fly (Op-Ed). https://https://www.space.com/

30555-beginning-with-katrina-drones-save-lives-in-disasters.html,
2015.

https://www.azurdrones.com/product/skeyetech/
https://www.azurdrones.com/product/skeyetech/
https://https://www.space.com/30555-beginning-with-katrina-drones-save-lives-in-disasters.html
https://https://www.space.com/30555-beginning-with-katrina-drones-save-lives-in-disasters.html

REFERENCES 193

[22] University Of South Florida. USF deploys unmanned aerial vehicles to
katrina rescue operation. https://www.sciencedaily.com/releases/2005/

09/050908081119.htm, 2005.

[23] Yukai Peng and Jun Liang. China deploys large UAV to support emergency
communications in quake-hit Sichuan. http://en.people.cn/n3/2022/0907/

c90000-10144282.html.

[24] Stphane Morelli. Robots and UAVs: how machines help humans against coron-
avirus. https://www.azurdrones.com/robots-uavs-against-coronavirus/.

[25] Douglas Gimesy. Drones and thermal imaging: saving koalas injured in the
bushfires. https://www.theguardian.com/australia-news/gallery/2020/

feb/11/drones-thermal-imaging-australia-koalas-bushfire-crisis.

[26] Christine Mendoza. Wile horses in snowy mountains, kosciuszko national park,
australia. https://unsplash.com/photos/HDDZOfX8pLA, 2018.

[27] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial
Intelligence, 17(1-3):185–203, 1981.

[28] Bruce D Lucas and Takeo Kanade. An iterative image registration technique
with an application in stereo vision. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 674–679. International Joint
Conferences on Artificial Intelligence Organization, 1981.

[29] Gunnar Farnebäck. Two-frame motion estimation based on polynomial
expansion. In Scandinavian Conference on Image Analysis, pages 363–370.
Springer, 2003.

[30] David G Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[31] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (SURF). Computer Vision and Image Understanding,
110(3):346–359, 2008.

[32] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. Handcrafted vs.
non-handcrafted features for computer vision classification. Pattern Recognition,
71:158–172, 2017.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[34] Michele Mancini, Gabriele Costante, Paolo Valigi, and Thomas A Ciarfuglia.
J-MOD 2: joint monocular obstacle detection and depth estimation. IEEE
Robotics and Automation Letters, 3(3):1490–1497, 2018.

https://www.sciencedaily.com/releases/2005/09/050908081119.htm
https://www.sciencedaily.com/releases/2005/09/050908081119.htm
http://en.people.cn/n3/2022/0907/c90000-10144282.html
http://en.people.cn/n3/2022/0907/c90000-10144282.html
https://www.azurdrones.com/robots-uavs-against-coronavirus/
https://www.theguardian.com/australia-news/gallery/2020/feb/11/drones-thermal-imaging-australia-koalas-bushfire-crisis
https://www.theguardian.com/australia-news/gallery/2020/feb/11/drones-thermal-imaging-australia-koalas-bushfire-crisis
https://unsplash.com/photos/HDDZOfX8pLA

194 REFERENCES

[35] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A
Abbass. Towards real-time monocular depth estimation for robotics: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(10):16940–16961,
2022.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[37] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
FlowNet: Learning optical flow with convolutional networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2758–2766,
2015.

[38] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[42] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4700–4708, 2017.

[43] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
7132–7141, 2018.

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[45] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1251–1258, 2017.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks.

REFERENCES 195

In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[47] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2:
Practical guidelines for efficient CNN architecture design. In Proceedings of the
European conference on computer vision (ECCV), pages 116–131, 2018.

[48] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine Learning,
pages 6105–6114. PMLR, 2019.

[49] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
et al. Searching for MobileNetV3. arXiv preprint arXiv:1905.02244, 2019.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
arXiv preprint arXiv:1706.03762, 2017.

[51] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[52] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[53] Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie, Yaowei Wang, Jianbin Jiao,
and Qixiang Ye. ConFormer: Local features coupling global representations for
visual recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 367–376, 2021.

[54] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and
Yunhe Wang. CMT: Convolutional neural networks meet vision transformers.
arXiv preprint arXiv:2107.06263, 2021.

[55] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are RNNs: Fast autoregressive transformers with linear attention.
In International Conference on Machine Learning, pages 5156–5165, 2020.

[56] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM:
Real-time dense monocular SLAM with learned depth prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6243–6252, 2017.

[57] Xin Yang, Jingyu Chen, Yuanjie Dang, Hongcheng Luo, Yuesheng Tang,
Chunyuan Liao, Peng Chen, and Kwang-Ting Cheng. Fast depth prediction
and obstacle avoidance on a monocular drone using probabilistic convolutional
neural network. IEEE Transactions on Intelligent Transportation Systems, 2019.

196 REFERENCES

[58] Huaizu Jiang, Gustav Larsson, Michael Maire Greg Shakhnarovich, and
Erik Learned-Miller. Self-supervised relative depth learning for urban scene
understanding. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 19–35, 2018.

[59] Dariush Forouher, Marvin Große Besselmann, and Erik Maehle. Sensor fusion of
depth camera and ultrasound data for obstacle detection and robot navigation.
In 2016 14th International Conference on Control, Automation, Robotics and
Vision (ICARCV), pages 1–6, 2016.

[60] Liang Wang and Ruigang Yang. Global stereo matching leveraged by sparse
ground control points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3033–3040, 2011.

[61] Mircea Paul Muresan, Mihai Negru, and Sergiu Nedevschi. Improving local stereo
algorithms using binary shifted windows, fusion and smoothness constraint. In
2015 IEEE International Conference on Intelligent Computer Communication
and Processing (ICCP), pages 179–185. IEEE, 2015.

[62] Robert Spangenberg, Tobias Langner, Sven Adfeldt, and Raúl Rojas. Large scale
semi-global matching on the CPU. In 2014 IEEE Intelligent Vehicles Symposium
Proceedings, pages 195–201. IEEE, 2014.

[63] Andreas Wedel, Uwe Franke, Jens Klappstein, Thomas Brox, and Daniel
Cremers. Realtime depth estimation and obstacle detection from monocular
video. In Joint Pattern Recognition Symposium, pages 475–484. Springer, 2006.

[64] Charan D Prakash, Jinjin Li, Farshad Akhbari, and Lina J Karam. Sparse
depth calculation using real-time key-point detection and structure from motion
for advanced driver assist systems. In International Symposium on Visual
Computing, pages 740–751. Springer, 2014.

[65] Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon, and In So Kweon.
High-quality depth from uncalibrated small motion clip. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5413–5421,
2016.

[66] Hossein Javidnia and Peter Corcoran. Accurate depth map estimation from small
motions. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 2453–2461, 2017.

[67] Antonio Torralba and Aude Oliva. Depth estimation from image structure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(9):1226–1238,
2002.

[68] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth from single
monocular images. In Advances in Neural Information Processing Systems, pages
1161–1168, 2006.

REFERENCES 197

[69] Jae-Il Jung and Yo-Sung Ho. Depth map estimation from single-view image using
object classification based on bayesian learning. In 2010 3DTV-Conference: The
True Vision-Capture, Transmission and Display of 3D Video, pages 1–4, 2010.

[70] Beyang Liu, Stephen Gould, and Daphne Koller. Single image depth estimation
from predicted semantic labels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1253–1260, 2010.

[71] Lubor Ladicky, Jianbo Shi, and Marc Pollefeys. Pulling things out of perspective.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 89–96, 2014.

[72] Miaomiao Liu, Mathieu Salzmann, and Xuming He. Discrete-continuous depth
estimation from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 716–723, 2014.

[73] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer: Depth extraction
from video using non-parametric sampling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(11):2144–2158, 2014.

[74] S Hussain Raza, Omar Javed, Aveek Das, Harpreet Sawhney, Hui Cheng, and
Irfan Essa. Depth extraction from videos using geometric context and occlusion
boundaries. arXiv preprint arXiv:1510.07317, 2015.

[75] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2650–2658,
2015.

[76] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and
Nassir Navab. Deeper depth prediction with fully convolutional residual networks.
In 2016 Fourth international conference on 3D vision (3DV), pages 239–248.
IEEE, 2016.

[77] Yuanzhouhan Cao, Zifeng Wu, and Chunhua Shen. Estimating depth from
monocular images as classification using deep fully convolutional residual
networks. IEEE Transactions on Circuits and Systems for Video Technology,
28(11):3174–3182, 2017.

[78] Dan Xu, Elisa Ricci, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Multi-scale
continuous CRFs as sequential deep networks for monocular depth estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5354–5362, 2017.

[79] Bo Li, Yuchao Dai, and Mingyi He. Monocular depth estimation with hierarchical
fusion of dilated CNNs and soft-weighted-sum inference. Pattern Recognition,
83:328–339, 2018.

198 REFERENCES

[80] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani. Revisiting single
image depth estimation: Toward higher resolution maps with accurate object
boundaries. In 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1043–1051. IEEE, 2019.

[81] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze.
FastDepth: Fast monocular depth estimation on embedded systems. arXiv
preprint arXiv:1903.03273, 2019.

[82] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3D: Learning 3D scene
structure from a single still image. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(5):824–840, 2008.

[83] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. Learning depth
from single monocular images using deep convolutional neural fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(10):2024–2039,
2015.

[84] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised
CNN for single view depth estimation: Geometry to the rescue. In European
Conference on Computer Vision, pages 740–756. Springer, 2016.

[85] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 270–279,
2017.

[86] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised
learning of depth and ego-motion from video. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1851–1858, 2017.

[87] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. Semi-supervised deep
learning for monocular depth map prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6647–6655, 2017.

[88] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mattoccia. Generative
adversarial networks for unsupervised monocular depth prediction. In
Proceedings of the European Conference on Computer Vision Workshops, pages
337–354, 2018.

[89] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. Towards
real-time unsupervised monocular depth estimation on CPU. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
5848–5854, 2018.

[90] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, and Petros Daras.
OmniDepth: Dense depth estimation for indoors spherical panoramas. In
Proceedings of the European Conference on Computer Vision (ECCV), pages
448–465, 2018.

REFERENCES 199

[91] Andrew Spek, Thanuja Dharmasiri, and Tom Drummond. CReaM: Condensed
real-time models for depth prediction using convolutional neural networks. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 540–547, 2018.

[92] Jaehoon Cho, Dongbo Min, Youngjung Kim, and Kwanghoon Sohn. A large
RGB-D dataset for semi-supervised monocular depth estimation. arXiv preprint
arXiv:1904.10230, 2019.

[93] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. AdaBins: Depth
estimation using adaptive bins. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4009–4018, 2021.

[94] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
Cityscapes dataset for semantic urban scene understanding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3213–3223,
2016.

[95] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as
proxy for multi-object tracking analysis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4340–4349, 2016.

[96] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual KITTI 2. arXiv
preprint arXiv:2001.10773, 2020.

[97] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of RGB-D SLAM systems. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
573–580. IEEE, 2012.

[98] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. SUN RGB-D: A
RGB-D scene understanding benchmark suite. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 567–576, 2015.

[99] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth
perception in the wild. In Advances in Neural Information Processing Systems,
pages 730–738, 2016.

[100] Oliver Wasenmüller, Marcel Meyer, and Didier Stricker. CoRBS: Comprehensive
RGB-D benchmark for SLAM using Kinect v2. In 2016 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 1–7. IEEE, 2016.

[101] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2D-3D-semantic
data for indoor scene understanding. arXiv preprint arXiv:1702.01105, 2017.

[102] Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler,
Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo
benchmark with high-resolution images and multi-camera videos. In Proceedings

200 REFERENCES

of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3260–3269, 2017.

[103] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3D: Learning from RGB-D data in indoor environments. arXiv
preprint arXiv:1709.06158, 2017.

[104] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. ScanNet: Richly-annotated 3D reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5828–5839, 2017.

[105] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J Davison.
SceneNet RGB-D: Can 5M synthetic images beat generic ImageNet pre-training
on indoor segmentation? In Proceedings of the IEEE International Conference
on Computer Vision, pages 2678–2687, 2017.

[106] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1746–1754, 2017.

[107] Zhengqi Li and Noah Snavely. MegaDepth: Learning single-view depth prediction
from internet photos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2041–2050, 2018.

[108] Alina Marcu, Dragos Costea, Vlad Licaret, Mihai P̂ırvu, Emil Slusanschi, and
Marius Leordeanu. SafeUAV: Learning to estimate depth and safe landing areas
for UAVs from synthetic data. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pages 43–58, 2018.

[109] Shouchuan Wu, Haitao Zhao, and Shaoyuan Sun. Depth estimation from infrared
video using local-feature-flow neural network. International Journal of Machine
Learning and Cybernetics, 10(9):2563–2572, 2019.

[110] Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei
Zhou. DrivingStereo: A large-scale dataset for stereo matching in autonomous
driving scenarios. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 899–908, 2019.

[111] Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo, Haochen Wang,
Falcon Z Dai, Andrea F Daniele, Mohammadreza Mostajabi, Steven Basart,
Matthew R Walter, et al. DIODE: A dense indoor and outdoor depth dataset.
arXiv preprint arXiv:1908.00463, 2019.

[112] Michael Fonder and Marc Van Droogenbroeck. Mid-Air: A multi-modal dataset
for extremely low altitude drone flights. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0,
2019.

REFERENCES 201

[113] Chaoyue Niu, Danesh Tarapore, and Klaus-Peter Zauner. Low-viewpoint forest
depth dataset for sparse rover swarms. arXiv preprint arXiv:2003.04359, 2020.

[114] Lei Jin, Yanyu Xu, Jia Zheng, Junfei Zhang, Rui Tang, Shugong Xu, Jingyi Yu,
and Shenghua Gao. Geometric structure based and regularized depth estimation
from 360 indoor imagery. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 889–898, 2020.

[115] Shimon Ullman. The interpretation of structure from motion. Proceedings of the
Royal Society of London. Series B. Biological Sciences, 203(1153):405–426, 1979.

[116] Berthold KP Horn. Shape from shading: A method for obtaining the shape of a
smooth opaque object from one view. Technical Report, 1970.

[117] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Recovering intrinsic
scene characteristics. Computer Vision Systems, 2(3-26):2, 1978.

[118] Naejin Kong and Michael J Black. Intrinsic depth: Improving depth transfer
with intrinsic images. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3514–3522, 2015.

[119] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction from
sparse depth samples and a single image. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 4796–4803, 2018.

[120] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth estimation via affinity
learned with convolutional spatial propagation network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 103–119, 2018.

[121] Xiaotian Chen, Xuejin Chen, and Zheng-Jun Zha. Structure-aware
residual pyramid network for monocular depth estimation. arXiv preprint
arXiv:1907.06023, 2019.

[122] Bo Li, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel, and Mingyi He.
Depth and surface normal estimation from monocular images using regression on
deep features and hierarchical CRFs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1119–1127, 2015.

[123] Minhyeok Heo, Jaehan Lee, Kyung-Rae Kim, Han-Ul Kim, and Chang-Su Kim.
Monocular depth estimation using whole strip masking and reliability-based
refinement. In European Conference on Computer Vision, pages 36–51, 2018.

[124] Ishit Mehta, Parikshit Sakurikar, and PJ Narayanan. Structured adversarial
training for unsupervised monocular depth estimation. In 2018 International
Conference on 3D Vision (3DV), pages 314–323. IEEE, 2018.

[125] Ibraheem Alhashim and Peter Wonka. High quality monocular depth estimation
via transfer learning. arXiv preprint arXiv:1812.11941, 2018.

202 REFERENCES

[126] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and
Dacheng Tao. Deep ordinal regression network for monocular depth estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2002–2011, 2018.

[127] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and Xiaogang Wang.
Learning monocular depth by distilling cross-domain stereo networks. In
European Conference on Computer Vision, pages 484–500, 2018.

[128] Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen,
Ming-Ming Cheng, and Ian Reid. Unsupervised scale-consistent depth and
ego-motion learning from monocular video. arXiv preprint arXiv:1908.10553,
2019.

[129] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong Suh. From big to
small: Multi-scale local planar guidance for monocular depth estimation. arXiv
preprint arXiv:1907.10326, 2019.

[130] Lukas Liebel and Marco Körner. MultiDepth: Single-image depth estimation via
multi-task regression and classification. arXiv preprint arXiv:1907.11111, 2019.

[131] Vladimir Nekrasov, Thanuja Dharmasiri, Andrew Spek, Tom Drummond,
Chunhua Shen, and Ian Reid. Real-time joint semantic segmentation and depth
estimation using asymmetric annotations. In 2019 International Conference on
Robotics and Automation (ICRA), pages 7101–7107. IEEE, 2019.

[132] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang, Shuaicheng Liu,
Bing Zeng, and Marc Pollefeys. DeepLiDAR: Deep surface normal guided
depth prediction for outdoor scene from sparse LiDAR data and single color
image. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3313–3322, 2019.

[133] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. Enforcing geometric
constraints of virtual normal for depth prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5684–5693, 2019.

[134] Zhicheng Fang, Xiaoran Chen, Yuhua Chen, and Luc Van Gool. Towards
good practice for CNN-based monocular depth estimation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
1091–1100, 2020.

[135] Kourosh Sartipi, Tien Do, Tong Ke, Khiem Vuong, and Stergios I
Roumeliotis. Deep depth estimation from visual-inertial SLAM. arXiv preprint
arXiv:2008.00092, 2020.

[136] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin, and Zhiguo Cao.
Structure-guided ranking loss for single image depth prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
611–620, 2020.

REFERENCES 203

[137] Andrea Pilzer, Dan Xu, Mihai Puscas, Elisa Ricci, and Nicu Sebe. Unsupervised
adversarial depth estimation using cycled generative networks. In 2018
International Conference on 3D Vision (3DV), pages 587–595. IEEE, 2018.

[138] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and Jiaya Jia.
GeoNet: Geometric neural network for joint depth and surface normal estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 283–291, 2018.

[139] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh
Agarwal, and Ian Reid. Unsupervised learning of monocular depth estimation
and visual odometry with deep feature reconstruction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 340–349,
2018.

[140] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia Angelova. Depth
prediction without the sensors: Leveraging structure for unsupervised learning
from monocular videos. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 33, pages 8001–8008, 2019.

[141] Sara Elkerdawy, Hong Zhang, and Nilanjan Ray. Lightweight monocular
depth estimation model by joint end-to-end filter pruning. arXiv preprint
arXiv:1905.05212, 2019.

[142] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-supervised visual depth
prediction. IEEE Robotics and Automation Letters, 4(2):1661–1668, 2019.

[143] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow.
Digging into self-supervised monocular depth estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 3828–3838,
2019.

[144] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing Sun, Jonas
Wulff, and Michael J Black. Competitive collaboration: Joint unsupervised
learning of depth, camera motion, optical flow and motion segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12240–12249, 2019.

[145] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mattoccia. Learning
monocular depth estimation infusing traditional stereo knowledge. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9799–9809, 2019.

[146] Jamie Watson, Michael Firman, Gabriel J Brostow, and Daniyar Turmukham-
betov. Self-supervised monocular depth hints. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2162–2171, 2019.

[147] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, Federico Alvarez, and
Petros Daras. Spherical view synthesis for self-supervised 360 depth estimation.

204 REFERENCES

In 2019 International Conference on 3D Vision (3DV), pages 690–699. IEEE,
2019.

[148] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien
Gaidon. 3D packing for self-supervised monocular depth estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2485–2494, 2020.

[149] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk, and Tim Fingscheidt.
Self-supervised monocular depth estimation: Solving the dynamic object problem
by semantic guidance. arXiv preprint arXiv:2007.06936, 2020.

[150] Kuo-Shiuan Peng, Gregory Ditzler, and Jerzy Rozenblit. Edge-guided occlusion
fading reduction for a light-weighted self-supervised monocular depth estimation.
arXiv preprint arXiv:1911.11705, 2019.

[151] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang. Feature-metric
loss for self-supervised learning of depth and egomotion. arXiv preprint
arXiv:2007.10603, 2020.

[152] Feng Xue, Guirong Zhuo, Ziyuan Huang, Wufei Fu, Zhuoyue Wu, and Marcelo H
Ang Jr. Toward hierarchical self-supervised monocular absolute depth estimation
for autonomous driving applications. arXiv preprint arXiv:2004.05560, 2020.

[153] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi
Di Stefano. Geometry meets semantics for semi-supervised monocular depth
estimation. In Asian Conference on Computer Vision, pages 298–313, 2018.

[154] Ali Jahani Amiri, Shing Yan Loo, and Hong Zhang. Semi-supervised monocular
depth estimation with left-right consistency using deep neural network. In 2019
IEEE International Conference on Robotics and Biomimetics (ROBIO), pages
602–607, 2019.

[155] Amir Atapour-Abarghouei and Toby P Breckon. Real-time monocular depth
estimation using synthetic data with domain adaptation via image style transfer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2800–2810, 2018.

[156] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. T2Net: Synthetic-to-realistic
translation for solving single-image depth estimation tasks. In Proceedings of the
European conference on computer vision (ECCV), pages 767–783, 2018.

[157] Shanshan Zhao, Huan Fu, Mingming Gong, and Dacheng Tao. Geometry-aware
symmetric domain adaptation for monocular depth estimation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9788–9798, 2019.

[158] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and Yi-Hsuan Tsai.
BiFuse: Monocular 360 depth estimation via bi-projection fusion. In Proceedings

REFERENCES 205

of the IEEE Conference on Computer Vision and Pattern Recognition, pages
462–471, 2020.

[159] Arun CS Kumar, Suchendra M Bhandarkar, and Mukta Prasad. DepthNet:
A recurrent neural network architecture for monocular depth prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 283–291, 2018.

[160] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu, and Youliang
Yan. Exploiting temporal consistency for real-time video depth estimation. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1725–1734, 2019.

[161] Rui Wang, Stephen M Pizer, and Jan-Michael Frahm. Recurrent neural network
for (Un-) supervised learning of monocular video visual odometry and depth.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5555–5564, 2019.

[162] Ruibo Li, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, and Lingxiao Hang.
Deep attention-based classification network for robust depth prediction. In Asian
Conference on Computer Vision, pages 663–678. Springer, 2018.

[163] Yuru Chen, Haitao Zhao, and Zhengwei Hu. Attention-based context aggregation
network for monocular depth estimation. arXiv preprint arXiv:1901.10137, 2019.

[164] Hongwei Zou, Ke Xian, Jiaqi Yang, and Zhiguo Cao. Mean-variance loss for
monocular depth estimation. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 1760–1764. IEEE, 2019.

[165] Wenfeng Song, Shuai Li, Ji Liu, Aimin Hao, Qinping Zhao, and Hong Qin.
Contextualized CNN for scene-aware depth estimation from single RGB image.
IEEE Transactions on Multimedia, 22(5):1220–1233, 2019.

[166] Dalila Sanchez-Escobedo, Xiao Lin, Josep R Casas, and Montse Pardas.
HybridNet for depth estimation and semantic segmentation. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1563–1567. IEEE, 2018.

[167] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, and Alan L
Yuille. Towards unified depth and semantic prediction from a single image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2800–2809, 2015.

[168] Omid Hosseini Jafari, Oliver Groth, Alexander Kirillov, Michael Ying Yang, and
Carsten Rother. Analyzing modular CNN architectures for joint depth prediction
and semantic segmentation. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 4620–4627, 2017.

206 REFERENCES

[169] Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd Bouzaraa, and
Antonio M López. Monocular depth estimation by learning from heterogeneous
datasets. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 2176–2181.
IEEE, 2018.

[170] Jianbo Jiao, Ying Cao, Yibing Song, and Rynson Lau. Look deeper into depth:
Monocular depth estimation with semantic booster and attention-driven loss. In
Proceedings of the European Conference on Computer Vision (ECCV), pages
53–69, 2018.

[171] Yi-Yu Hsieh, Wei-Yu Lin, Dong-Lin Li, and Jen-Hui Chuang. Deep
learning-based obstacle detection and depth estimation. In 2019 IEEE
International Conference on Image Processing (ICIP), pages 1635–1639. IEEE,
2019.

[172] Saddam Abdulwahab, Hatem A Rashwan, Miguel Angel Garcia, Mohammed
Jabreel, Sylvie Chambon, and Domenec Puig. Adversarial learning for depth
and viewpoint estimation from a single image. IEEE Transactions on Circuits
and Systems for Video Technology, 30(9):2947–2958, 2020.

[173] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[174] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[175] Eduardo Romera, José M Alvarez, Luis M Bergasa, and Roberto Arroyo.
ERFNet: Efficient residual factorized ConvNet for real-time semantic
segmentation. IEEE Transactions on Intelligent Transportation Systems,
19(1):263–272, 2017.

[176] Linda Wang, Mahmoud Famouri, and Alexander Wong. DepthNet Nano: A
highly compact self-normalizing neural network for monocular depth estimation.
arXiv preprint arXiv:2004.08008, 2020.

[177] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised learning of
depth and ego-motion from monocular video using 3D geometric constraints.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5667–5675, 2018.

[178] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman.
Self-supervised sparse-to-dense: Self-supervised depth completion from LiDAR
and monocular camera. In 2019 IEEE International Conference on Robotics and
Automation (ICRA), pages 3288–3295, 2019.

[179] Yilun Zhang, Ty Nguyen, Ian D Miller, Steven Chen, Camillo J Taylor, Vijay
Kumar, et al. DFineNet: Ego-motion estimation and depth refinement from
sparse, noisy depth input with RGB guidance. arXiv preprint arXiv:1903.06397,
2019.

REFERENCES 207

[180] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien Gaidon.
Semantically-guided representation learning for self-supervised monocular depth.
arXiv preprint arXiv:2002.12319, 2020.

[181] Adrian Johnston and Gustavo Carneiro. Self-supervised monocular trained depth
estimation using self-attention and discrete disparity volume. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4756–4765, 2020.

[182] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4040–4048, 2016.

[183] Vignesh Prasad and Brojeshwar Bhowmick. SfMLearner++: Learning monocular
depth & ego-motion using meaningful geometric constraints. In 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages
2087–2096. IEEE, 2019.

[184] Maria Klodt and Andrea Vedaldi. Supervising the new with the old: learning
SfM from SfM. In Proceedings of the European Conference on Computer Vision,
pages 698–713, 2018.

[185] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, 2017.

[186] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul
Sukthankar, and Katerina Fragkiadaki. SfM-Net: Learning of structure and
motion from video. arXiv preprint arXiv:1704.07804, 2017.

[187] Qi Dai, Vaishakh Patil, Simon Hecker, Dengxin Dai, Luc Van Gool, and Konrad
Schindler. Self-supervised object motion and depth estimation from video. arXiv
preprint arXiv:1912.04250, 2019.

[188] Wang Zhao, Shaohui Liu, Yezhi Shu, and Yong-Jin Liu. Towards better
generalization: joint depth-pose learning without posenet. arXiv preprint
arXiv:2004.01314, 2020.

[189] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A convolutional
network for real-time 6-DoF camera relocalization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2938–2946, 2015.

[190] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Unsupervised joint
learning of depth and flow using cross-task consistency. In Proceedings of the
European conference on computer vision (ECCV), pages 36–53, 2018.

208 REFERENCES

[191] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learning of dense depth,
optical flow and camera pose. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1983–1992, 2018.

[192] Anjie Wang, Zhijun Fang, Yongbin Gao, Songchao Tan, Shanshe Wang, Siwei
Ma, and Jenq-Neng Hwang. Adversarial learning for joint optimization of depth
and ego-motion. IEEE Transactions on Image Processing, 29:4130–4142, 2020.

[193] Yasin Almalioglu, Muhamad Risqi U Saputra, Pedro PB de Gusmao, Andrew
Markham, and Niki Trigoni. GANVO: Unsupervised deep monocular visual
odometry and depth estimation with generative adversarial networks. In 2019
International conference on robotics and automation (ICRA), pages 5474–5480,
2019.

[194] Jun Liu, Qing Li, Rui Cao, Wenming Tang, and Guoping Qiu. MiniNet: An
extremely lightweight convolutional neural network for real-time unsupervised
monocular depth estimation. ISPRS Journal of Photogrammetry and Remote
Sensing, 166:255–267, 2020.

[195] Hu Tian and Fei Li. Semi-supervised depth estimation from a single image based
on confidence learning. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 8573–8577. IEEE,
2019.

[196] Rongrong Ji, Ke Li, Yan Wang, Xiaoshuai Sun, Feng Guo, Xiaowei Guo, Yongjian
Wu, Feiyue Huang, and Jiebo Luo. Semi-supervised adversarial monocular depth
estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(10):2410–2422, 2019.

[197] Vitor Guizilini, Jie Li, Rares Ambrus, Sudeep Pillai, and Adrien Gaidon. Robust
semi-supervised monocular depth estimation with reprojected distances. In
Conference on Robot Learning, pages 503–512. PMLR, 2020.

[198] Min Yue, Guangyuan Fu, Ming Wu, and Hongqiao Wang. Semi-supervised
monocular depth estimation based on semantic supervision. Journal of Intelligent
and Robotic Systems, 100(2):455–463, 2020.

[199] Jiahao Pang, Wenxiu Sun, Jimmy SJ Ren, Chengxi Yang, and Qiong Yan.
Cascade residual learning: A two-stage convolutional neural network for stereo
matching. In Proceedings of the IEEE International Conference on Computer
Vision, pages 887–895, 2017.

[200] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano.
Unsupervised domain adaptation for depth prediction from images. IEEE
transactions on pattern analysis and machine intelligence, 42(10):2396–2409,
2019.

[201] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli
Song. Neural style transfer: A review. IEEE Transactions on Visualization and
Computer Graphics, 26(11):3365–3385, 2019.

REFERENCES 209

[202] Yiyi Liao, Lichao Huang, Yue Wang, Sarath Kodagoda, Yinan Yu, and Yong
Liu. Parse geometry from a line: Monocular depth estimation with partial laser
observation. In 2017 IEEE international conference on robotics and automation
(ICRA), pages 5059–5066. IEEE, 2017.

[203] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier Perrotton, and
Fawzi Nashashibi. Sparse and dense data with CNNs: Depth completion and
semantic segmentation. In 2018 International Conference on 3D Vision (3DV),
pages 52–60. IEEE, 2018.

[204] Tsun-Hsuan Wang, Fu-En Wang, Juan-Ting Lin, Yi-Hsuan Tsai, Wei-Chen
Chiu, and Min Sun. Plug-and-play: Improve depth prediction via sparse data
propagation. In 2019 International Conference on Robotics and Automation
(ICRA), pages 5880–5886. IEEE, 2019.

[205] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learning joint
2D-3D representations for depth completion. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10023–10032, 2019.

[206] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM:
a versatile and accurate monocular SLAM system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[207] Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and Luc Van Gool. Dont
forget the past: Recurrent depth estimation from monocular video. IEEE
Robotics and Automation Letters, 5(4):6813–6820, 2020.

[208] Nı́colas dos Santos Rosa, Vitor Guizilini, and Valdir Grassi. Sparse-to-continuous:
Enhancing monocular depth estimation using occupancy maps. In 2019 19th
International Conference on Advanced Robotics (ICAR), pages 793–800, 2019.

[209] Yunhan Zhao, Shu Kong, Daeyun Shin, and Charless Fowlkes. Domain
decluttering: simplifying images to mitigate synthetic-real domain shift and
improve depth estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3330–3340, 2020.

[210] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE Access, 8:58443–58469, 2020.

[211] Sangyun Oh, Hye-Jin S Kim, Jongeun Lee, and Junmo Kim. RRNet:
Repetition-reduction network for energy efficient depth estimation. IEEE Access,
8:106097–106108, 2020.

[212] Xiaochuan Yin, Xiangwei Wang, Xiaoguo Du, and Qijun Chen. Scale recovery
for monocular visual odometry using depth estimated with deep convolutional
neural fields. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5870–5878, 2017.

210 REFERENCES

[213] Hongcheng Luo, Yang Gao, Yuhao Wu, Chunyuan Liao, Xin Yang, and
Kwang-Ting Cheng. Real-time dense monocular SLAM with online adapted
depth prediction network. IEEE Transactions on Multimedia, 21(2):470–483,
2018.

[214] Nan Yang, Rui Wang, Jorg Stuckler, and Daniel Cremers. Deep virtual
stereo odometry: Leveraging deep depth prediction for monocular direct sparse
odometry. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 817–833, 2018.

[215] Raul de Queiroz Mendes, Eduardo Godinho Ribeiro, Nicolas dos Santos Rosa,
and Valdir Grassi Jr. On deep learning techniques to boost monocular depth
estimation for autonomous navigation. arXiv preprint arXiv:2010.06626, 2020.

[216] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In International Conference
on Machine Learning, pages 593–600, 2005.

[217] H Alvarez, Lina Maŕıa Paz, Jürgen Sturm, and Daniel Cremers. Collision
avoidance for quadrotors with a monocular camera. In Experimental Robotics,
pages 195–209. Springer, 2016.

[218] Punarjay Chakravarty, Klaas Kelchtermans, Tom Roussel, Stijn Wellens, Tinne
Tuytelaars, and Luc Van Eycken. CNN-based single image obstacle avoidance on
a quadrotor. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 6369–6374. IEEE, 2017.

[219] Zhenghong Zhang, Mingkang Xiong, and Huilin Xiong. Monocular depth
estimation for UAV obstacle avoidance. In 2019 4th International Conference
on Cloud Computing and Internet of Things (CCIOT), pages 43–47. IEEE, 2019.

[220] Jiahao Lin, Hai Zhu, and Javier Alonso-Mora. Robust vision-based obstacle
avoidance for micro aerial vehicles in dynamic environments. arXiv preprint
arXiv:2002.04920, 2020.

[221] Timo Scharwächter and Uwe Franke. Low-level fusion of color, texture and
depth for robust road scene understanding. In 2015 IEEE Intelligent Vehicles
Symposium (IV), pages 599–604. IEEE, 2015.

[222] L.Oyuki RoJas-Perez, Roberto Munguia-Silva, and Jose Martinez-Carranza.
Real-time landing zone detection for UAVs using single aerial images. In
Proceedings of the International Micro-Air Vehicles Conference, 2018.

[223] Ping Li, Matthew Garratt, Andrew Lambert, and Shanggang Lin. Metric sensing
and control of a quadrotor using a homography-based visual inertial fusion
method. Robotics and Autonomous Systems, 76:1–14, 2016.

[224] Jiefei Wang, Matthew Garratt, Sreenatha Anavatti, and Shanggang Lin.
Real-time visual odometry for autonomous MAV navigation using RGB-D

REFERENCES 211

camera. In 2015 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 1353–1358. IEEE, 2015.

[225] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale
direct monocular SLAM. In European Conference on Computer Vision, pages
834–849. Springer, 2014.

[226] Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai Hong Tang, and Hong
Zhang. CNN-SVO: Improving the mapping in semi-direct visual odometry using
single-image depth prediction. In 2019 International Conference on Robotics and
Automation (ICRA), pages 5218–5223. IEEE, 2019.

[227] Larry Matthies, Roland Brockers, Yoshiaki Kuwata, and Stephan Weiss. Stereo
vision-based obstacle avoidance for micro air vehicles using disparity space. In
In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 3242–3249, 2014.

[228] Roland Brockers, Anthony Fragoso, Brandon Rothrock, Connor Lee, and
Larry Matthies. Vision-based obstacle avoidance for micro air vehicles using
an egocylindrical depth map. In International Symposium on Experimental
Robotics, pages 505–514, 2016.

[229] Nicolai Wojke and Marcel Häselich. Moving vehicle detection and tracking in
unstructured environments. In 2012 IEEE International Conference on Robotics
and Automation, pages 3082–3087. IEEE, 2012.

[230] Dominic Zeng Wang, Ingmar Posner, and Paul Newman. What could move?
finding cars, pedestrians and bicyclists in 3D laser data. In 2012 IEEE
International Conference on Robotics and Automation, pages 4038–4044, 2012.

[231] Andrea Cherubini, Fabien Spindler, and Francois Chaumette. Autonomous visual
navigation and laser-based moving obstacle avoidance. IEEE Transactions on
Intelligent Transportation Systems, 15(5):2101–2110, 2014.

[232] Junjie Hu, Yan Zhang, and Takayuki Okatani. Visualization of convolutional
neural networks for monocular depth estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3869–3878,
2019.

[233] Tom van Dijk and Guido de Croon. How do neural networks see depth in single
images? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2183–2191, 2019.

[234] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid.
DeepFlow: Large displacement optical flow with deep matching. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1385–1392,
2013.

212 REFERENCES

[235] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua,
and Francesc Moreno-Noguer. Discriminative learning of deep convolutional
feature point descriptors. In Proceedings of the IEEE International Conference
on Computer Vision, pages 118–126, 2015.

[236] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. FlowNet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2462–2470, 2017.

[237] Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial
pyramid network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4161–4170, 2017.

[238] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs
for optical flow using pyramid, warping, and cost volume. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8934–8943,
2018.

[239] Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim.
Perception, guidance, and navigation for indoor autonomous drone racing using
deep learning. IEEE Robotics and Automation Letters, 3(3):2539–2544, 2018.

[240] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P
Rodŕıguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen
Schmidhuber, Gianni Di Caro, et al. A machine learning approach to visual
perception of forest trails for mobile robots. IEEE Robotics and Automation
Letters, 1(2):661–667, 2015.

[241] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield.
Toward low-flying autonomous MAV trail navigation using deep neural networks
for environmental awareness. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4241–4247. IEEE, 2017.

[242] Bruna G Maciel-Pearson, Samet Akçay, Amir Atapour-Abarghouei, Christopher
Holder, and Toby P Breckon. Multi-task regression-based learning for
autonomous unmanned aerial vehicle flight control within unstructured outdoor
environments. IEEE Robotics and Automation Letters, 4(4):4116–4123, 2019.

[243] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation learning: A survey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35, 2017.

[244] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[245] Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially
observable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

REFERENCES 213

[246] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double Q-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016.

[247] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and
Nando Freitas. Dueling network architectures for deep reinforcement learning. In
International Conference on Machine Learning, pages 1995–2003. PMLR, 2016.

[248] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[249] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[250] Chao Wang, Jian Wang, Xudong Zhang, and Xiao Zhang. Autonomous
navigation of UAV in large-scale unknown complex environment with deep
reinforcement learning. In 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 858–862. Ieee, 2017.

[251] Jiaqi Xiang, Qingdong Li, Xiwang Dong, and Zhang Ren. Continuous control
with deep reinforcement learning for mobile robot navigation. In 2019 Chinese
Automation Congress (CAC), pages 1501–1506. IEEE, 2019.

[252] Gabriel Moraes Barros and Esther Luna Colombini. Using soft actor-critic for
low-level UAV control. arXiv preprint arXiv:2010.02293, 2020.

[253] Daniel Dugas, Juan Nieto, Roland Siegwart, and Jen Jen Chung. NavRep:
Unsupervised representations for reinforcement learning of robot navigation
in dynamic human environments. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 7829–7835. IEEE, 2021.

[254] Linh Kästner, Teham Buiyan, Xinlin Zhao, Lei Jiao, Zhengcheng Shen, and Jens
Lambrecht. Towards deployment of deep-reinforcement-learning-based obstacle
avoidance into conventional autonomous navigation systems. arXiv preprint
arXiv:2104.03616, 2021.

[255] Steven M LaValle et al. Rapidly-exploring random trees: A new tool for path
planning. Technical Report, 1998.

[256] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[257] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[258] Xueqin Huang, Han Deng, Wei Zhang, Ran Song, and Yibin Li. Towards
multi-modal perception-based navigation: A deep reinforcement learning
method. IEEE Robotics and Automation Letters, 6(3):4986–4993, 2021.

214 REFERENCES

[259] Linhai Xie, Sen Wang, Andrew Markham, and Niki Trigoni. Towards monocular
vision based obstacle avoidance through deep reinforcement learning. arXiv
preprint arXiv:1706.09829, 2017.

[260] Abhik Singla, Sindhu Padakandla, and Shalabh Bhatnagar. Memory-based
deep reinforcement learning for obstacle avoidance in UAV with limited
environment knowledge. IEEE Transactions on Intelligent Transportation
Systems, 22(1):107–118, 2019.

[261] Deepak-George Thomas, Daniil Olshanskyi, Karter Krueger, Tichakorn
Wongpiromsarn, and Ali Jannesari. Interpretable UAV collision avoidance using
deep reinforcement learning. arXiv preprint arXiv:2105.12254, 2021.

[262] Zhihan Xue and Tad Gonsalves. Monocular vision obstacle avoidance UAV: A
deep reinforcement learning method. In 2021 2nd International Conference on
Innovative and Creative Information Technology (ICITech), pages 1–6. IEEE,
2021.

[263] Lingping Gao, Jianchuan Ding, Wenxi Liu, Haiyin Piao, Yuxin Wang, Xin Yang,
and Baocai Yin. A vision-based irregular obstacle avoidance framework via
deep reinforcement learning. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9262–9269. IEEE, 2021.

[264] Brian Yamauchi. A frontier-based approach for autonomous exploration. In
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA’97.’Towards New Computational Principles
for Robotics and Automation’, pages 146–151. IEEE, 1997.

[265] Delong Zhu, Tingguang Li, Danny Ho, Chaoqun Wang, and Max Q-H
Meng. Deep reinforcement learning supervised autonomous exploration in
office environments. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7548–7555. IEEE, 2018.

[266] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep
reinforcement learning robot for search and rescue applications: Exploration
in unknown cluttered environments. IEEE Robotics and Automation Letters,
4(2):610–617, 2019.

[267] Haoran Li, Qichao Zhang, and Dongbin Zhao. Deep reinforcement learning-based
automatic exploration for navigation in unknown environment. IEEE
Transactions on Neural Networks and Learning Systems, 31(6):2064–2076, 2019.

[268] Vu Phi Tran, Matthew A Garratt, Kathryn Kasmarik, Sreenatha G Anavatti, and
Shadi Abpeikar. Frontier-led swarming: Robust multi-robot coverage of unknown
environments. Swarm and Evolutionary Computation, 75:101171, 2022.

[269] Tauã M Cabreira, Lisane B Brisolara, and Ferreira Jr Paulo R. Survey on coverage
path planning with unmanned aerial vehicles. Drones, 3(1):4, 2019.

REFERENCES 215

[270] Olimpiya Saha, Guohua Ren, Javad Heydari, Viswanath Ganapathy, and Mohak
Shah. Deep reinforcement learning based online area covering autonomous robot.
In 2021 7th International Conference on Automation, Robotics and Applications
(ICARA), pages 21–25. IEEE, 2021.

[271] Bruna G Maciel-Pearson, Letizia Marchegiani, Samet Akcay, Amir
Atapour-Abarghouei, James Garforth, and Toby P Breckon. Online deep
reinforcement learning for autonomous UAV navigation and exploration of
outdoor environments. arXiv preprint arXiv:1912.05684, 2019.

[272] Claudio Piciarelli and Gian Luca Foresti. Drone patrolling with reinforcement
learning. In Proceedings of the 13th International Conference on Distributed
Smart Cameras, pages 1–6, 2019.

[273] Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), volume 3, pages 2149–2154. IEEE,
2004.

[274] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim:
High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics, pages 621–635. Springer, 2018.

[275] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and
Oskar von Stryk. Comprehensive simulation of quadrotor UAVs using ROS and
Gazebo. In International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, pages 400–411. Springer, 2012.

[276] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. RotorSa
modular Gazebo MAV simulator framework. In Robot Operating System (ROS),
pages 595–625. Springer, 2016.

[277] pixhawk.org. jMAVSim. https://pixhawk.org/dev/hil/jmavsim.

[278] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Conference on Robot
Learning, pages 1–16. PMLR, 2017.

[279] Epic Games. Unreal Engine 4. https://www.unrealengine.com, 2019.

[280] Andrew Svanberg Hamilton. Rural Australia. https://www.unrealengine.com/
marketplace/en-US/product/rural-australia?lang=en-US, 2021.

[281] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A node-based
multithreaded open source robotics framework for deeply embedded platforms. In
2015 IEEE international conference on robotics and automation (ICRA), pages
6235–6240. IEEE, 2015.

[282] AirSim. Creating and Setting Up Unreal Environment.
https://microsoft.github.io/AirSim/unreal_custenv/

#creating-and-setting-up-unreal-environment.

https://pixhawk.org/dev/hil/jmavsim
https://www.unrealengine.com
https://www.unrealengine.com/marketplace/en-US/product/rural-australia?lang=en-US
https://www.unrealengine.com/marketplace/en-US/product/rural-australia?lang=en-US
https://microsoft.github.io/AirSim/unreal_custenv/#creating-and-setting-up-unreal-environment
https://microsoft.github.io/AirSim/unreal_custenv/#creating-and-setting-up-unreal-environment

216 REFERENCES

[283] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. PyTorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32, 2019.

[284] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia, pages 675–678, 2014.

[285] Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-source deep-learning
toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2135–2135, 2016.

[286] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
TensorFlow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[287] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly
Belikov, Alexander Belopolsky, et al. Theano: A python framework for fast
computation of mathematical expressions. arXiv e-prints, pages arXiv–1605,
2016.

[288] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, and Hussein A
Abbass. MobileXNet: An efficient convolutional neural network for monocular
depth estimation. IEEE Transactions on Intelligent Transportation Systems,
23(11):20134–20147, 2022.

[289] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe, and Elisa Ricci. Structured
attention guided convolutional neural fields for monocular depth estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3917–3925, 2018.

[290] Xinchen Ye, Shude Chen, and Rui Xu. DPNet: Detail-preserving network for
high quality monocular depth estimation. Pattern Recognition, page 107578,
2020.

[291] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. NetAdapt: Platform-aware neural network
adaptation for mobile applications. In European Conference on Computer Vision,
pages 285–300, 2018.

[292] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

REFERENCES 217

[293] Joseph Bullock, Carolina Cuesta-Lázaro, and Arnau Quera-Bofarull. XNet: A
convolutional neural network (CNN) implementation for medical X-Ray image
segmentation suitable for small datasets. In Medical Imaging 2019: Biomedical
Applications in Molecular, Structural, and Functional Imaging, volume 10953,
page 109531Z, 2019.

[294] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. ImageNet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

[295] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

[296] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman,
Liang-Chieh Chen, Alireza Fathi, and Jasper Uijlings. The devil is in the decoder:
Classification, regression and GANs. International Journal of Computer Vision,
pages 1–13, 2019.

[297] Go Irie, Takahito Kawanishi, and Kunio Kashino. Robust learning for deep
monocular depth estimation. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 964–968, 2019.

[298] Seema Kumari, Ranjeet Ranjhan Jha, Arnav Bhavsar, and Aditya Nigam. Au-
toDepth: Single image depth map estimation via residual CNN encoder-decoder
and stacked hourglass. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 340–344. IEEE, 2019.

[299] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on ImageNet classification. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1026–1034, 2015.

[300] Xinghui Dong, Christopher J Taylor, and Tim F Cootes. Defect detection and
classification by training a generic convolutional neural network encoder. IEEE
Transactions on Signal Processing, 68:6055–6069, 2020.

[301] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. Designing network design spaces. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10428–10436, 2020.

[302] Lei He, Guanghui Wang, and Zhanyi Hu. Learning depth from single images
with deep neural network embedding focal length. IEEE Transactions on Image
Processing, 27(9):4676–4689, 2018.

[303] Praful Hambarde and Subrahmanyam Murala. S2DNet: Depth estimation from
single image and sparse samples. IEEE Transactions on Computational Imaging,
6:806–817, 2020.

218 REFERENCES

[304] Chanho Eom, Hyunjong Park, and Bumsub Ham. Temporally consistent depth
prediction with flow-guided memory units. IEEE Transactions on Intelligent
Transportation Systems, 21(11):4626–4636, 2019.

[305] John Paul T Yusiong and Prospero C Naval. AsiANet: Autoencoders in
autoencoder for unsupervised monocular depth estimation. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 443–451. IEEE,
2019.

[306] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and
Andreas Geiger. Sparsity invariant CNNs. In 2017 international conference on
3D Vision (3DV), pages 11–20. IEEE, 2017.

[307] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual
information. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(2):328–341, 2007.

[308] Anirban Roy and Sinisa Todorovic. Monocular depth estimation using neural
regression forest. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5506–5514, 2016.

[309] Xingshuai Dong, Matthew A Garratt, Sreenatha G Anavatti, Hussein A Abbass,
and Junyu Dong. Lightweight monocular depth estimation with an edge guided
network. In 2022 17th International Conference on Control, Automation,
Robotics and Vision (ICARCV), pages 204–210. IEEE, 2022.

[310] Xinchen Ye, Shude Chen, and Rui Xu. DPNet: Detail-preserving network for
high quality monocular depth estimation. Pattern Recognition, 109:107578, 2021.

[311] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR:
Detector-free local feature matching with transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8922–8931. IEEE, 2021.

[312] Xiaohan Tu, Cheng Xu, Siping Liu, Renfa Li, Guoqi Xie, Jing Huang, and
Laurence Tianruo Yang. Efficient monocular depth estimation for edge devices in
internet of things. IEEE Transactions on Industrial Informatics, 17(4):2821–2832,
2020.

[313] Michael Rudolph, Youssef Dawoud, Ronja Güldenring, Lazaros Nalpantidis, and
Vasileios Belagiannis. Lightweight monocular depth estimation through guided
decoding. arXiv preprint arXiv:2203.04206, 2022.

[314] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3357–3364. IEEE, 2017.

REFERENCES 219

[315] Hongge Xu, Jing Samantha Pan, Xiaoye Michael Wang, and Geoffrey P Bingham.
Information for perceiving blurry events: Optic flow and color are additive.
Attention, Perception, & Psychophysics, 83:389–398, 2021.

[316] Simon Bultmann, Jan Quenzel, and Sven Behnke. Real-time multi-modal
semantic fusion on unmanned aerial vehicles with label propagation for
cross-domain adaptation. Robotics and Autonomous Systems, page 104286, 2022.

[317] Aqeel Anwar and Arijit Raychowdhury. Autonomous navigation via deep
reinforcement learning for resource constraint edge nodes using transfer learning.
IEEE Access, 8:26549–26560, 2020.

[318] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A
naturalistic open source movie for optical flow evaluation. In European
Conference on Computer Vision, pages 611–625. Springer, 2012.

[319] Wei Li, Xing Wang, Xin Xia, Jie Wu, Xuefeng Xiao, Min Zheng, and Shiping
Wen. SepViT: Separable vision transformer. arXiv preprint arXiv:2203.15380,
2022.

[320] Carlos Campos, Richard Elvira, Juan J Gómez Rodŕıguez, José MM Montiel,
and Juan D Tardós. ORB-SLAM3: An accurate open-source library for
visual, visual–inertial, and multimap SLAM. IEEE Transactions on Robotics,
37(6):1874–1890, 2021.

[321] Vivien Potó, József Árpád Somogyi, Tamás Lovas, and Árpád Barsi. Laser
scanned point clouds to support autonomous vehicles. Transportation Research
Procedia, 27:531–537, 2017.

[322] Xiaoshui Huang, Guofeng Mei, Jian Zhang, and Rana Abbas. A comprehensive
survey on point cloud registration. arXiv preprint arXiv:2103.02690, 2021.

[323] Paul J Besl and Neil D McKay. Method for registration of 3-D shapes. In Sensor
fusion IV: control paradigms and data structures, volume 1611, pages 586–606.
Spie, 1992.

[324] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for
3D data processing. arXiv preprint arXiv:1801.09847, 2018.

	 Declarations
	 Inclusion of Publications Statement
	 Abstract
	 Acknowledgments
	 List of Publications
	 List of Figures
	 List of Tables
	 List of Abbreviations
	1 Introduction
	1.1 Aim
	1.2 Background
	1.3 Motivation
	1.4 Contributions of Thesis
	1.5 Organization of Thesis

	2 Literature Review
	2.1 Introduction
	2.2 The Development of Deep Learning
	2.3 Monocular Depth Estimation
	2.3.1 Background of MDE
	2.3.2 Structure from Motion Based Methods
	2.3.3 Traditional Handcrafted Feature Based Methods
	2.3.4 Deep Learning Based Methods
	2.3.5 Other Related Methods of MDE
	2.3.6 Discussion and Comparison
	2.3.7 Applications in Robotics
	2.3.8 Conclusions and Recommendations regarding MDE

	2.4 Optical Flow Estimation
	2.5 Deep Learning in Robotics
	2.6 Deep Reinforcement Learning
	2.7 Deep Reinforcement Learning in Robotics
	2.8 Simulators
	2.9 Chapter Summary

	3 Simulation Framework
	3.1 Introduction
	3.2 Unreal Engine
	3.3 AirSim
	3.3.1 Architecture
	3.3.2 Environments and Models

	3.4 PyTorch
	3.4.1 Highlights of PyTorch
	3.4.2 PyTorch Basic Components

	3.5 Chapter Summary

	4 MobileXNet for Real-Time Monocular Depth Estimation
	4.1 Introduction
	4.2 Methodology
	4.2.1 CNN Architecture
	4.2.2 Loss Functions

	4.3 Experimental Setup
	4.3.1 Implementation Details
	4.3.2 Data Augmentation
	4.3.3 Performance Metrics

	4.4 Experimental Results
	4.4.1 NYU Depth Dataset
	4.4.2 KITTI Dataset
	4.4.3 Make 3D Dataset
	4.4.4 UnrealDataset

	4.5 Chapter Summary

	5 Lightweight Monocular Depth Estimation with an Edge Guided Network
	5.1 Introduction
	5.2 Methodology
	5.2.1 Multi-scale Feature Extractor
	5.2.2 Edge Guidance Branch
	5.2.3 Transformer-Based Feature Aggregation Module
	5.2.4 Loss Function

	5.3 Experiments
	5.3.1 Implementation Details
	5.3.2 Dataset and Evaluation Metric
	5.3.3 Comparison with State-of-the-art
	5.3.4 Ablation Studies

	5.4 Chapter Summary

	6 Frontier Guided Area Coverage for Unmanned Aerial Vehicles with Deep Reinforcement Learning
	6.1 Introduction
	6.2 Methodology
	6.2.1 Frontier Guided Area Coverage
	6.2.2 Deep Reinforcement Learning

	6.3 Experimental Setup
	6.3.1 Simulated Environments
	6.3.2 Implementation Details
	6.3.3 Baselines
	6.3.4 Performance Metrics

	6.4 Experimental Results
	6.4.1 Flying to Destinations
	6.4.2 Area Coverage
	6.4.3 Ablation Studies

	6.5 Chapter Summary

	7 Conclusions and Future Work
	7.1 Summary of Results
	7.2 Future Work
	7.2.1 MDE Networks Run on Embedded Platform
	7.2.2 Design of MDE Networks
	7.2.3 Replacing GPS with SLAM to Obtain the Position of UAV
	7.2.4 Map Construction from Predicted Depth Maps

	7.3 Concluding Remarks

	 References

