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Abstract

This thesis studies task allocation in multi-robot teams operating in dynamic environ-
ments. The multi-robot task allocation problem is a complex NP-Complete optimisation
problem with globally optimal solutions often difficult to find. Because of this, the rapid
generation of near optimal solutions to the problem that minimise task execution time
and/or energy used by robots is highly desired. Our approach seeks to cluster together
closely related tasks and then builds on existing distributed market-based auction archi-
tectures for distributing these sets of tasks among several autonomous robots.

Dynamic environments introduce many challenges that are not found in closed sys-
tems. For instance, it is common for additional tasks to be inserted into a system after
an initial solution to the task allocation problem is determined. Additionally, it is highly
likely in long-term autonomous systems that individual robots may suffer some form of
failure. The ability to alter plans to react to these types of challenges in a dynamic envi-
ronment is required for the completion of all tasks. In our approach we allow the repeated
formation and auctioning of task clusters with varying tasks. This allows us to react to
and change the task allocation among robots during execution.

Throughout this thesis we use empirical evaluation to study different approaches for
forming clusters of tasks and the application of task clustering to distributed auctions for
multi-robot task allocation problems. Our results show that allocating clusters of tasks to
robots in solving these types of problems is a fast and effective method and produces near
optimal solutions.
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Chapter 1

Introduction

Efficient and effective teamwork among autonomous robots operating in dynamic envi-
ronments is a complex and open problem in the field of artificial intelligence. Rapid
technological developments are leading to autonomous robotic systems becoming more
integrated into our everyday lives, performing important roles in domestic services [38,
65, 82], healthcare [77, 12] and transportation [36]. In a broader context autonomous
robots are now actively being developed for use in harsh and complex environments,
such as, underwater exploration [101], space exploration [15, 85] and disaster response
[74, 108, 79, 88]. Many existing robotic systems are only effective at completing lim-
ited sets of pre-defined static tasks in isolation or working together on explicitly specific
tasks in closed world systems. There are few robotic systems that are able to work in
environments in which both the operating environment and tasks to be completed change
frequently.

Dynamic environments introduce many challenges that are not found in closed sys-
tems. These challenges include: updating beliefs and knowledge about operating environ-
ments; incorporating current sensor information with existing prior knowledge to reason
about actions; and the ability to alter plans to react to changes in the environment. Ad-
dressing this required functionality is computationally complex and incorporating these
requirements into robots operating in dynamic real world environments is difficult.

Where single robots may struggle to effectively operate and complete tasks in highly
dynamic environments, teams of robots operating in these environments may be able to
distribute the computational load and improve the overall performance of the system.
Teams of robots are also able to amalgamate knowledge and beliefs about the world
from individual robots spread throughout the operating environment [39]. This combined
knowledge allows erroneous data from noisy or malfunctioning sensors influencing plans
and actions to be addressed [108]. Additionally, teams of robots can complete tasks in
parallel and reduce the overall time required to complete a set of tasks.
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Allocating tasks to robots to exploit these advantages in multi-robot systems (MRS) is
in itself a difficult problem. The multi-robot task allocation (MRTA) problem is a complex
NP-Hard optimisation problem and, in many instances, globally optimal solutions are
difficult to find [102]. Because of this, the rapid generation of near optimal solutions to
the problem that minimise task execution time and/or energy used by robots are highly
desired [63]. This thesis is concerned with task allocation in multi-robot teams operating
in dynamic environments. Our approach seeks to cluster together closely related tasks
and then builds on existing distributed market-based auction architectures for distributing
these sets of tasks among autonomous robots.

1.1 Contributions

The key contributions of this thesis are:

• Development of sequential single-cluster auctions (SSC) auctions. Many existing
approaches for solving MRTA problems either allocate tasks sequentially one at a
time or alternatively, attempt to allocate all tasks at the same time. Allocating tasks
one at a time often fails to consider synergies between tasks,1 while approaches
that allocate all tasks at once are computationally complex. Our approach provides
a middle ground that sequentially allocates clusters of tasks with good synergies, is
relatively computationally simple and therefore runs quickly.

• Development of repeated SSC auctions with dynamic task clusters. Many sub-
optimal auction-like approaches for MRTA problems have non-reversible assign-
ments of tasks to robots which can generate poor solutions. In our approach we
allow the repeated formation of task clusters containing different tasks. This allows
us to explore additional synergies between tasks and, through the reallocation of
tasks in this process, the solution costs can be gradually improved.

• Analysis of algorithms for task cluster formation. There are a number of tech-
niques for task cluster formation. Each of these techniques seeks to balance syner-
gies between tasks and the time required to calculate and form clusters. As a result,
when these clusters are used for task allocation, the cost of the MRTA solution is
also affected. This thesis provides an analysis of these techniques and addition-
ally explores the influence of using different inter-task distance metrics in cluster
formation.

1Inter-task synergies arise in a situation where the cost for one robot to complete two or more
tasks is cheaper than the combined cost of separate robots completing each task individually.
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• Approaches for handling online dynamic task insertion. In dynamic environ-
ments, it is common for additional tasks to be inserted into a system after an initial
solution to the MRTA problem is determined. Allocating these additional tasks to
robots and reallocating tasks, if necessary, is important for maintaining low cost
solutions. In this work we study the trade-off in solution quality between an indi-
vidual robot replanning its task execution and a global reallocation of all tasks in
the system.

• Approaches for reallocation of tasks upon robot failure. In dynamic environ-
ments, it is highly likely that over time robots will suffer some form of failure.
Responding to and reallocating tasks upon robot failure is important in completing
MRTA problems. In a similar vein to task insertion, determining how much of the
tasks in a system to reallocate is an important trade-off for consideration in reacting
to robot failure. In this thesis we compare partial reallocation of a failed robot’s
tasks to a global reallocation of all tasks in the system.

1.2 Example Applications

MRTA problems can arise in a variety of different domains and scenarios. Our approach
for solving MRTA problems is designed to be adaptable to a wide variety of domains. In
this section, we describe five active areas of robotic research and the application of MRTA
in these domains.

1) Service Oriented Robots. Consider a team of autonomous mobile robots operat-
ing in an office-like environment. These robots may be required to make deliveries,
clean up spillages, or act as tour guides to visitors. In this scenario there may be
many tasks to complete and some of these tasks may have high inter-task syner-
gies, e.g. multiple delivery tasks. As such, it may be desirable for one robot to be
allocated the delivery tasks and another robot to be allocated the clean up tasks.

This scenario can also be highly dynamic. For instance, it is highly unlikely that
the tasks requiring clean up are all known prior to allocation and as a result during
execution new clean up tasks may need to be assigned [82]. Additionally, some
tasks may have higher priority than others. For example, tour guide tasks may have
higher priorities than delivery tasks. However, visitors may arrive early or late and,
in order to maintain efficient usage of the robots, task allocations and execution
orders may need to be continually re-evaluated to ensure efficient resource usage
across the robot team.
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Figure 1.1: Robot Soccer. / Photo: Sean Harris.

2) Role Allocation in Multi-Robot Teams. In team based activities there are often
a number of individual tasks that need to be completed to achieve an overall goal.
Additionally, during execution the roles assigned to individual robots may need to
be revised to address changes in the environment [35]. For instance, consider a team
of robots playing soccer (Figure 1.1). There is one global shared goal among the
team and additionally the tasks that each robot performs in their individual roles—
attacker, defender, goal keeper—contributes to the achievement of the global goal
[40]. Depending on the location of the ball and other robots, each individual robot’s
current task and role may change regularly during play. For example, when the
opposing team has the ball more robots may be assigned to the defending role and
subsequently move into positions to prevent the opposing team from scoring.

3) Search and Rescue. Consider a team of robots that can be deployed into a col-
lapsed building. In situations where it may be too dangerous to send in human
rescue workers, robots can search through the debris to locate victims who require
rescue. This information can then be used by human first responders to prioritise
their rescue efforts. In this scenario the team of robots can rapidly distribute them-
selves throughout an area and additionally communicate with each other to share
what areas of the building have been explored. Further extensions of this problem
include systems with heterogeneous robots, in which, certain robots may have spe-
cial abilities, such as, being able to fit through small and narrow voids or operate
specialist cutting equipment.
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Figure 1.2: NASA’s Prototype K10 Planetary Exploration Rovers. / Photo: NASA.

4) Space Exploration. Cooperation between robotic teams is highly desired in ex-
ploration of remote worlds, such as, the Moon and Mars with harsh environments.
For instance, consider the exploration of an unknown area in a remote world with a
team of robots (Figure 1.2). Because of the delay and difficulties in communication
between earth and remote planets, it is not feasible for the robots to be continuously
controlled from Earth [85].

As an example, assume a satellite map has been provided to each of the robots and
the robots are able to localise themselves within the map. Within the map a number
of points of interest have been determined, however, they are far apart and the time
required for a single robot to travel between all these points is high. A team of
robots can allocate these points of interest and travel to these locations in parallel
with other robots reducing the time required to explore the area [122]. Additionally,
this distributed exploration task allows additional features of the remote world, such
as hostile weather, to be experienced by the robots in unison allowing additional
scientific data to be collected.

5) Transport Logistics. MRS are well situated to solving problems in transport lo-
gistics [18]. Consider a set of trucks transporting goods from warehouses to cus-
tomers. Each truck is able to hold a certain capacity of goods and is able to collect
from warehouses and deliver goods to customers in any order. Minimising the
transportation time and fuel consumed maximises the profit. During execution, ad-
ditional jobs may be inserted into the environment and trucks may face delays from
traffic congestion [36]. This problem is very difficult to solve optimally as handling
the dynamic tasks and adhering to each truck’s capacity constraint is complex.
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1.3 Thesis Outline

The remainder of this thesis is structured as follows. In the next chapter, we formally
outline the task allocation problem and discuss related work in relation to interaction
between robots, approaches to task allocation in multi-robot systems, and handling task
reallocation in dynamic environments.

In Chapter 3 we describe SSC auctions and show how bidding for and awarding clus-
ters of tasks can lead to lower cost task allocations than single item auctions. We then
implement repeated SSC auctions with dynamic task clusters, in which on the comple-
tion of each individual task, robots create new clusters of uncompleted tasks that are then
auctioned to reallocate tasks to incrementally revise and improve the MRTA solution.

We analyse four different cluster formation algorithms and their influence on the solu-
tion cost in SSC auctions in Chapter 4. Additionally, we compare metrics for measuring
the distance between tasks during cluster formation and the impact of this on cluster for-
mation time and the MRTA solution cost. Finally, we consider the priority allocation
of clusters with many tasks before smaller clusters in the trade-off between minimising
individual robot costs and minimising the global team cost.

Chapter 5 explores extensions to the standard MRTA problem. In particular, we con-
sider tasks that require collection and delivery in dynamic environments. In these dynamic
environments, reallocation of tasks during execution is required as additional tasks may
arrive after the initial task allocation and robots may also fail while executing tasks.

Finally, Chapter 6 summaries the key contributions of this thesis and suggests areas
of future research.
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Chapter 2

Related Work

In this chapter we present an overview of related literature on task allocation techniques
in systems with distributed artificial intelligence (DAI). We begin with high-level de-
scriptions of the classifications of different systems with DAI and describe the variety of
inter-agent interaction approaches in these systems (Section 2.1). We then formally de-
scribe the MRTA problem and some common extensions (Section 2.2). In Section 2.3 we
discuss market-based approaches, such as bargaining markets and auctions, for solving
MRTA problems. This section includes a discussion of approaches for reducing the total
team costs through the reallocation of tasks in a running system and clustering sets of
related tasks. Our final consideration is task allocation approaches in dynamic environ-
ments where tasks may be added to a running system or robots breakdown (Section 2.5)
and tasks with collection and delivery locations (Section 2.6).

2.1 Distributed Artificial Intelligence

Distributed intelligence is defined by Parker as groups of agents “working together to rea-

son, plan, solve problems, think abstractly, comprehend ideas and language, and learn”

[83]. An agent is defined by Russell and Norvig as “anything that can be viewed as

perceiving its environment through sensors and acting upon that environment through ac-

tuators” [92]. In this definition an agent may be any form of intelligent being, including
humans, complex computer systems, and autonomous robots. In this thesis we are inter-
ested in the study of autonomous artificial agents and robots. In particular, systems devoid
of any human control, where the agents in the system may interact with humans, however,
their choice of actions to take is entirely self-controlled and independent.

In its simplest form a Multi-Agent System (MAS) is a collection of many agents.
Within this system these agents can interact with each other either to cooperate or com-
pete to achieve individual or collective tasks [26]. Interaction is typically facilitated by
communication through the exchanging of messages across a network [127] but other
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methods such as passive observation and reaction to the behaviour of other agents allows
interaction without explicit communication.

A MRS is built on the ideas incorporated in MAS. Farinelli, Iocchi, and Nardi define
a MRS as “a set of robots operating in the same environment” [34]. They argue that
a MRS is a lot more complex than a MAS as the use of robots introduces issues not
found in MAS, such as, uncertainty and incompleteness of information acquired from the
environment, errors in communication between robots, and hardware failures. One can
consider each robot in a MRS having its own internal MAS (e.g. an agent for navigation,
an agent for communication, etc.) which acts as a single combined entity interacting with
the environment.

For example, consider a team of robots delivering mail in an office-like environment.
The robots in this system will interact with each other to negotiate who delivers which
piece of mail, but there may be no centralised controlling person or computer dictating
the decisions and controls of the robots. To facilitate negotiation among robots each
robot may value the cost of delivering each piece of mail differently from other robots.
This difference in valuations allows robots to negotiate to complete mail deliveries that
maximises individual values and/or swap deliveries of lesser value with those of greater
value among other robots.

2.1.1 Classifications

Doran et al. presents Franklin’s typology of cooperation in MAS (Figure 2.1) [26]. At
the root level a MAS is classified into two branches:

• Independent “if each agent pursues its own agenda independently of others”; and

• Cooperative if the agenda of agents include “cooperating with other agents in

some way”.

On the independent branch two leaves are specified:

• Discrete “if the agendas of the agents bear no relation to one another”; and

• Emergent cooperation where “from an observer’s viewpoint, the agents appear to

be working together, but from the agent’s viewpoint they are not”.

For instance, emergent cooperation is seen in Dagaeff, Chantemargue, and Hirsbrunner
where agents are programmed to be deliberately antagonistic towards other agents how-
ever cooperation emerges [17] and in Iba emergent cooperation appears in the evolution
of agent behaviour using genetic algorithms in a MAS [49].
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Multi-Agent Systems

Cooperative

Non-CommunicativeCommunicative

NegotiatingDeliberative

Independent

Emergent CooperationDiscrete

Figure 2.1: Franklin’s Cooperation Typology [26].

Within the cooperative systems branch, MAS are divided into two further subclassifi-
cations. In communicative systems, agents cooperate via intentional messages being sent
and received. This communication can take one of two forms, deliberative or negotiating.
Deliberative systems see agents jointly plan any actions they take, which may or may
not entail cooperative joint actions. Negotiating systems also involve communication in
planning but agents can bid or compete against each other to achieve the best outcomes
for themselves.

In non-communicative cooperative systems, agents cooperate through observing and
reacting to the behaviour of others. This behaviour differs from that of independent emer-
gent cooperation as agents have the ability to anticipate and assess the actions of other
agents. Typically, this ability to anticipate and assess operates on the principle of stig-

mergy where changes in the environment provides information indirectly to other agents.
An algorithm commonly used in these systems is Ant Colony Optimisation (ACO) [27].

Farinelli, Iocchi, and Nardi present a taxonomy of MRS (Figure 2.2) [34]. Their
taxonomy follows a similar pattern of thought to that of Franklin’s cooperative branch in
classifying MAS. However, unlike Franklin’s focus on communication, Farinelli, Iocchi,
and Nardi’s primary focus is on different forms of coordination among MRS. The authors
present two different types of coordination: strong coordination represents MRS that
rely on a coordination or communication protocol, whereas weak coordination represents
those systems that do not operate via a protocol (e.g. ACO).

At the organisation level a distinction is made between the autonomy each agent has in
the system’s decision process. A centralised system has a leader who is solely responsible
for organising the entire team of robots. This centralised decision process can be classified
as strong where one leader has complete command during the entire mission or weak

where a number of different leaders may have command during different periods of the
mission. In a distributed system agents are completely autonomous in their decision
making and no sole team leader exists.
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Figure 2.2: Farinelli, Iocchi, and Nardi’s MRS Taxonomy [34].

When considering MAS and MRS the classification of the complete system is impor-
tant in determining the behaviour of individual agents. The classification of the system
typically determines the form of interaction individual agents have in their communica-
tion and cooperation with other agents. This is explored in detail in the following section.

2.1.2 Agent Interaction

Positive interaction between agents in both MAS and MRS plays an important role in
determining the overall success of a system. Parker defines four common forms of in-
teraction: collective, cooperative, collaborative, and coordinative (Table 2.1) [83]. The
choice of the best type of interaction depends on the particular problem being solved.
Most problems consist of a set of tasks to be completed. Tasks can be of two forms: in-

dividual and shared. Individual tasks can be homogeneous in that all agents perform the
same actions, or heterogeneous in which each agent has a different criteria to satisfy.

When discussing interaction it is best to consider why interaction is required in the
first place. It is possible to operate a MAS/MRS without any interaction between agents,
however, as the system becomes more complex, the lack of interaction between agents
can lead to bottlenecks, collisions and other problems as agents fail to account for each
other. For example, consider a group of people scattered throughout a park, suddenly
it begins to rain and everyone individually decides to seek shelter in the same location
[107]. In this scenario the agents all have the same task, but there is no communication
between the agents in deciding the actions to take. Now, let’s consider that the shelter
doesn’t have enough space to keep everyone dry, however, there is a second shelter that
is empty. Those agents that are unable to fit under the first shelter now have to go to the
second shelter. In this example, if at the beginning the agents had communicated with
each other, the group could have collectively divided into two with half going to each
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Table 2.1: Parker’s Interaction Categorisation [83].

Interaction Awareness Goal Type Mutually Beneficial Actions
Collective not aware shared yes

Cooperative aware shared yes
Collaborative aware individual yes
Coordinative aware individual no

shelter. Jennings uses this example in the discussion of models of individual behaviour
that include communication and coordination among other individuals [51].

Collective Interaction

Returning to Parker’s forms of interaction, collective interaction is defined as where
agents are not aware of other agents on the team, although they share tasks, and their
actions are beneficial to their teammates. An example of this would be a team of robotic
excavators digging a hole. The action of one agent removing dirt from the hole would be
beneficial to all the other agents in the team. Systems using collective interactions often
follow models that are biologically inspired, such as, flocking and herding. The most
widely studied form of collective interaction is swarming.

Swarming is a type of MAS that shows emergent cooperation. In a swarm, all agents
share the same task and act independently of each other. Despite this they often appear
to be working cooperatively together. Trianni et al. bridge individual and collective
interaction in their research which focuses on autonomous robots deciding if they should
act as an individual or use the information that they have gathered from the environment
to act with other robots as a robotic swarm [123]. In their research three robots are placed
in a circle with two tasks, only one of which can be achieved: 1) individually leave the
boundaries of the circle through a defined exit, or 2) group together as a swarm in the
middle of the circle. The completion of either task is considered a successful achievement
of the team objective and the best agents are those that complete either task in the shortest
period of time. To improve the agents, the authors use genetic algorithms to evolve new
individual agent controllers which seek to predict the actions of other agents.

Cooperative Interaction

Parker’s second type of interaction is called cooperative interaction where agents are
aware of other agents, they share tasks, and their actions are beneficial to their teammates.
This type of interaction can take two forms: joint task coordination or shared information

coordination1 [110]. In joint task coordination agents work together to achieve a task that

1Smith and Davis [110] call this task-sharing and result-sharing respectively.
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an individual agent could not achieve by itself, such as, box pushing [43] or coordinated
robotic construction [117].

Shared information coordination involves agents acting independently but sharing in-
formation. One of the major challenges in shared information coordination is determining
the correct amount of information to share. If too little information is shared between
agents the system may fail or cease to perform adequately, conversely, if too much infor-
mation is shared the system may be swamped in the communication process and the task
is not achieved. In the domain of robotic search and rescue, Settembre et al. outline co-
operative situation assessment “that balances the use of communication bandwidth with

the need for good situation assessment” [108]. The basis of their approach is for each
robot to form a plan of action, once they have formed a plan they randomly send this plan
to another robot in the system. If this robot agrees with the plan they then randomly for-
ward it on to another robot. This process continues until a fixed number of robots agree
to the same plan and subsequently the plan is executed. If the receiving robot does not
agree with the plan proposed, it will send back additional data supporting its reasons why
it does not agree to the proposed plan. The original robot then decides to revise its plan
based on this new data or find a different robot that will support the original plan.

There are two primary benefits of this approach to distributed planning. The first is low
levels of communication overhead as there is only one-on-one communication between
agents. The second is that by reasoning across multiple robots any errors in a single
robot’s sensors are filtered out. The authors point out that one limitation in their approach
is when the environment in which the robots are operating is sparse, the state information
and plans of each robot can be quite contradictory which degrades the performance of the
algorithm.

Collaborative interaction

Collaborative interaction (also called coalition formation) is defined by Parker as “agents

have individual tasks, they are aware of their teammates, and their actions do help ad-

vance the tasks of others”. An example of this sort of interaction in a MRS is within the
domain of robot soccer (Figure 1.1). The overall objective of a team will be to win the
game and within the team each robot will have individual tasks: the attacker to score, the
defender to take the ball off the opposing team’s attacker, and the goalkeeper to block any
shots on goal. When each agent achieves their individual task it helps to contribute to the
achievement of the overall team objective.

Vig and Adams explore coalition formation in a MRS with three scenarios in which
teams of robots need to work together to achieve a task: coordinated box-pushing, clean-

up, and sentry duty [125]. They argue that a discrepancy exists between coalition forma-
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tion in MAS and its application to the MRS domain. Coalition formation in MAS assumes
that all agents are available and communication is always possible. However, in a MRS it
is possible that robots will be far enough apart that communication can not occur across
the entire team but instead only subsets.

For the box-pushing task, two robots are required to push each large box. From a
team of 12 robots, two boxes needed to be moved and two sets of two robots succeeded
in working together to move both boxes. The clean-up task requires a group of robots
clearing an area of small boxes in which a single robot would individually move one
box at a time. The robots were able to successfully work together to clear the area of
boxes. For the third task, sentry-duty, robots are required to navigate to a position and
collaborate information to perform motion detection. Like the previous two tasks this
was performed successfully. For a final task a team of robots was given all three tasks
to perform simultaneously, this required sub-teams of robots within the MRS to form
coalitions to achieve one of the tasks, and in this scenario, three sub-teams completed
all three tasks. The authors highlight that as more tasks are allocated and fewer robots
remain, the number of messages exchanged to form a coalition decreases. This suggests
that the algorithm used in the experiment should scale well to larger systems.

Coordinative Interaction

Parker’s final type of interaction is coordinative. In this interaction agents are aware of
each other, but they do not share a common objective, and their actions are not helpful
to other team members. For instance, this form of interaction is seen in systems where
agents operate in an enclosed environment and need to move from one area to another in
the shortest distance and shortest time. In this scenario it is in an agent’s best interests
to communicate with other agents to avoid a collision, but it would not be in its interest
to give-way to many agents. This form of interaction typically sees agents acting against
each other, which is in contrast to the previous three types of interaction.

2.2 Multi-Robot Task Allocation

We now consider the allocation of tasks to robots in cooperative and coordinated multi-
robot systems. MRTA in its simplest form is the process of assigning individual tasks
to a set of robots [14]. It is important to have well defined and efficient processes for
distributing these tasks that aids in the achievement of individual and shared goals.

Within a large MRS the achievement of the global objective of the system may be
dependent on the successful completion of a number of sub-tasks. The requirements and
dependencies of these tasks can vary widely. The simplest tasks are independent, meaning
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that they can be completed by one or more robots without any prior task needing to be
achieved first. In other situations tasks are dependent, meaning prerequisite tasks must be
successfully completed before the current task can begin. For example, a robot cooking
a microwave meal must first complete the task of removing outside packaging from the
meal before placing it in the microwave. In some situations a group of tasks need to be
sequentially achieved together. Take, for example, a robot cooking pancakes. The robot
must pour the batter into a pan, place the pan over heat, flip the pancake, place over heat
again, and finally, remove the pancake from the pan. The robot cannot break this sequence
and complete other tasks in the interim, if it did, the pancakes may burn.

2.2.1 Problem Formalisation

We formalise the definition of the standard MRTA problem with independent tasks in a
manner that is similar to Sandholm [95] and Koenig et al. [57]. Given a set of robots
R = {r1, . . . , rm} and a set of tasks T = {t1, . . . , tn}. A partial solution to the MRTA
problem is given by any tuple 〈Tr1 , . . . , Trm〉 of pairwise disjoint bundles of tasks:

Tri ⊆ T with Tri ∩ Tri′ = ∅, i 6= i′, ∀i = 1, . . . ,m

This means that robot ri ∈ R performs the tasks Tri and no task is assigned to more than
one robot. To determine a complete solution we need to find a partial solution where
every task is assigned to exactly one robot:

〈Tr1 . . . Trm〉 with ∪ri∈R Tri = T

The standard testbed of the MRTA problem is multi-robot routing [24]. The tasks
represent locations to visit. We assume robots have perfect localisation and can calculate
the cost λ to travel between locations. The travel cost between any two locations are
symmetric:

λ(t, t′) = λ(t′, t)

and equal across all robots. The robot cost λri(Tri) is the minimum cost for an individual
robot ri to visit all locations Tri assigned to it. The specific ordering of tasks resulting in
the minimum cost for each robot is called its task execution plan. There can be synergies
between sets of tasks, such that:

λri(Tri) + λri(Tr′i) 6= λri(Tri ∪ Tr′i)

14



2.2. Multi-Robot Task Allocation

A positive synergy is when the combined cost for a robot to complete two tasks is lower
than the individual costs for the robot to complete each task:

λri(Tri ∪ Tr′i) < λri(Tri) + λri(Tr′i)

Approximation Methods and Heuristics

Calculating the optimal minimum individual robot cost and path to visit all assigned tasks
is NP-hard [63, 122]. In many situations this is infeasible, as an alternative, approxima-
tion methods and heuristics are commonly used to calculate near optimal costs. Some
heuristics take advantage of inter-task synergies allowing robots to factor in the cost of
completing any current allocations when determining the assignments of additional tasks.
Commonly used heuristics for solving MRTA problems in related literature include:

• Cheapest-insertion heuristic which inserts an additional task to be completed into
an existing task execution plan, at the point in the plan where, the cost to complete
the task plan increases by the smallest amount and no other reordering of tasks in
the plan occurs. This approach is simple and is widely used [62, 63, 122, 56, 57,
58, 120].

• 2-opt improvement rule which iteratively reverses the execution order between two
tasks if this reduces the cost to complete the overall task execution plan. This
approach is often combined with the cheapest insertion heuristic as a means of
reducing costs after the insertion of a new task [139, 122, 57, 58, 120].

• Rapidly-exploring random trees which find the shortest paths between key points in
a map allowing for quick cost calculations when path planning [80, 81].

• Minimum spanning trees which connect all robots and tasks and when converted
from a tree to a path provides bounds on the path distance [62].

• D* lite which attempts to find the minimum cost to travel between locations. As
full knowledge of an environment or costs between locations may not be known
additional replanning occurs as more data becomes available [8].

Extensions

There are many extensions to the standard MRTA problem. Common extensions include:

• Variable task costs where the cost to travel to or execute a task changes during task
execution [122, 56, 30].
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• Capacity constraints where robots are load balanced and are allocated at most a
fixed number of tasks [57, 58, 136].

• Task dependence and precedences where robots can only complete certain tasks
after some other tasks are completed [45, 10, 43, 80].

• Time limited tasks where robots must complete tasks within fixed time windows
[46, 88].

• Task preferences where robots have a preferences for certain tasks.

• Task/Resource requirements where robots need to have particular abilities or re-
sources to complete tasks [43, 120].

• Complex tasks where tasks can be decomposed into simpler tasks that all need to
be achieved, however, task decomposition may differ according to the capabilities
of the robot that the complex task is assigned to [139] or tasks in which multiple
robots are required to form coalitions to complete the task [88, 137].

2.2.2 Team Objectives

Generating a valid solution to the standard MRTA problem is not difficult. For instance, a
simple approach is to assign each task in turn to a randomly selected robot. However, this
approach gives no guarantees on the execution time, energy or resources used in complet-
ing the assigned tasks. Subsequently, the application of team objectives arises to provide
additional guidance in the search for solutions to the task allocation that meet certain cri-
teria. For instance, some common desires of a multi-robot system are minimising time
spent in execution of tasks, minimising energy or fuel consumed, and/or even distribution
of tasks across all robots.

Lagoudakis et al. discusses team objectives in detail and their application to MRTA
[63]. In this work they express the generic team objective function as:

minf(bλ(r1, Tr1), . . . , bλ(rm, Trm))

where bλ is the cost or bid calculation function for each individual robot to complete all
allocated tasks and f is the cost function of the set of all robots. In this thesis we use two
commonly used team objectives [20, 21, 8, 62, 63, 122, 102, 56, 138, 57, 75, 58, 120, 81,
137, 106]:

MiniMax min maxri∈Rλri(Tri) that is to minimise the maximum distance any individual
robot travels.
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MiniSum min
∑

ri∈R λri(Tri) that is to minimise the sum of the paths of all robots in
visiting all their assigned locations.

The application of these two team objectives to solving the MRTA problem can gen-
erate vastly different allocations of tasks to robots. The MiniMax team objective can be
considered as the Min-Max Vehicle Routing Problem or the Makespan problem [122] and
the MiniSum team objective can be considered as a multi-robot version of the Travelling
Salesperson Problem [64, 62, 122].

2.2.3 Properties

We now consider some properties of the number of tasks and robots in MRTA problems:

Theorem 2.1. As the number of robots |R| increases, the new optimal solution cost

λ(T )new will not be greater than the previous optimal solution cost λ(T )prev.

Proof. The optimal solution cost will not increase because the previous allocation and
solution cost will remain valid as we can assign no tasks to the new robot rnew ← ∅.

The optimal solution cost may decrease, and we show this using the example given
in Figure 2.3. In this example we assume that the first allocation is done with only one
robot R = {r1}. Using the MiniSum team objective the minimal cost to complete all
tasks T = {t1, . . . , t4} is λ(T )prev = 14. If we now increase the number of robots so that
R = {r1, r2}, the optimal allocation is r1 ← {t2, t4} and r2 ← {t1, t3} and the minimal
combined cost is λ(T )new = 11.

Contrary, as the number of robots decreases the optimal solution cost will not de-
crease. The optimal solution cost will not increase if the robot removed has no tasks
assigned rremoved = ∅. However, if the removed robot had tasks assigned rremoved 6= ∅
these tasks will need to be assigned to other robots to ensure a new valid solution to the
MRTA problem. The reassignment of these tasks may cause the optimal solution costs to
increase, as fewer robots are required to do more tasks. Decreasing the number of robots
is therefore equivalent to increasing the number of tasks to complete.

The following is a straightforward consequence of the assumption that path costs are
non-negative and robot costs are monotonic. Any additional task allocations require the
modification of at least one robot’s task execution plan. Given we are minimising costs
across all robots the optimal cost of the previous allocation plus any additional tasks
cannot be less than the cost of the previous allocation:
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t1 t2

t3 t4

r1

r2

Figure 2.3: Exploration Task 3 from Koenig et al. [56] (distance between cells is 1 unit,
robots move horizontally and vertically).

Theorem 2.2. Let Tprev, Tnew be two sets of tasks and λ(Tprev), λ(Tnew) their respective

optimal solution costs. If Tprev ⊆ Tnew, then λ(Tprev) ≤ λ(Tnew).

Proof. Suppose for contradiction that λ(Tnew) < λ(Tprev). Since path costs are non-
negative, the solution represented by λ(Tnew) would be a valid solution for Tprev. Hence
λ(Tprev) is not an optimal solution cost for Tprev. Contradiction.

2.2.4 Distributed Approaches to Multi-Robot Task Allocation

Lagoudakis et al. show that finding an optimal solution to the MRTA problem for the
MiniMax and MiniSum team objectives is NP-hard [63]. Therefore, much research fo-
cus considers efficient approximation algorithms for solving MRTA problems with large
numbers of tasks and robots. Solutions to MRTA problems can be found using centralised
methods, such as, mixed integer programming [62, 57, 30] or graph partitioning [111, 67].
However, in all but the simplest problems, centralised methods are not efficient for MRTA
[20, 15]. In particular, they introduce a single point of failure into the system, where “if

the central controller fails, so does the entire robot team” [122]. In addition, the infor-
mation required by the centralised controller in decision making introduces large, and
generally impractical, communication overheads into the system. This problem is partic-
ularly important in dynamic environments, where delays in decision making can lead to
robots in dangerous situations being unable to react swiftly [22]. On the contrary, fully
distributed systems with no communication between robots are generally fault tolerant
and highly reactive to changes in the environment. However, relying solely on local in-
formation and planning without any coordination among robots leads to highly inefficient
solutions to MRTA problems [21].

In between fully centralised and fully non-communicative individual approaches for
MRTA are approaches such as token-passing [105] and markets [24, 131]. Dias and Stentz
provide a comparative study of centralised and distributed approaches to solving MRTA
problems [22]. In this work a centralised system with a depth-first search (e.g. Figure 2.4)
is used to produce an optimal task allocation for all robots is compared to a distributed
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r1 ← ∅
r2 ← ∅

r1 ← ∅
r2 ← {t1}

r1 ← ∅
r2 ← {t1, t2}

r1 ← ∅
r2 ← {t1, t2, t3}

r1 ← {t3}
r2 ← {t1, t2}

r1 ← {t2}
r2 ← {t1}

r1 ← {t2}
r2 ← {t1, t3}

r1 ← {t2, t3}
r2 ← {t1}

r1 ← {t1}
r2 ← ∅

r1 ← {t1}
r2 ← {t2}

r1 ← {t1}
r2 ← {t2, t3}

r1 ← {t1, t3}
r2 ← {t2}

r1 ← {t1, t2}
r2 ← ∅

r1 ← {t1, t2}
r2 ← {t3}

r1 ← {t1, t2, t3}
r2 ← ∅

Figure 2.4: Centralised Search Tree for MRTA solutions with two robots and three tasks.

∅

〈t3〉

〈t3, t2〉

〈t3, t2, t1〉

〈t3, t1〉

〈t3, t1, t2〉

〈t2〉

〈t2, t3〉

〈t2, t3, t1〉

〈t2, t1〉

〈t2, t1, t3〉

〈t1〉

〈t1, t3〉

〈t1, t3, t2〉

〈t1, t2〉

〈t1, t2, t3〉

Figure 2.5: Search Tree for Task Execution Paths with three tasks.

system where each individual robot also performs a depth-first search (e.g. Figure 2.5)
to find an optimal solution path to individually complete all tasks. In the distributed
system when any robot completes any task, they communicate this to all other robots, and
on notification of this task completion, all individual robots replan paths to complete all
remaining tasks.

In addition to this, Dias and Stentz describe a market-based approach to MRTA prob-
lems. In the market-based approach robots initially negotiate for tasks they wish to exe-
cute and, during execution, robots are able to trade tasks one-for-one with other robots.
This approach allows robots to complete the tasks they desire and offload the tasks they
do not wish to complete. In their experiments they compare the solution quality and time
required for each of the task allocation approaches with the fully distributed solution per-
forming the worst. The market-based solution was shown to generate solutions that were
close to the optimal in the smallest time of the three approaches.

2.3 Markets

A common distributed approach for the allocation of tasks in multi-robot systems is
through the use of a market. Dias et al. [24] lists the standard features of a market
environment as:

• A global problem with tasks that are achievable by individual robots or robot sub-
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teams (e.g. MRTA).

• A team objective function which gives preference to a particular solution to the
global problem.

• Robots have a cost function which ranks and selects individual tasks relative to the
team objective.

• A mapping between the team objective and individual tasks such that the comple-
tion of tasks aids the advancement of the overall problem.

• A mechanism for the distribution and redistribution of tasks among robots. This
mechanism accepts offers from agents for tasks and subsequently allocates the tasks
in a manner that achieves the team objective.

2.3.1 Contract Net Protocol

The Contract Net Protocol (CNP) forms the foundation of many distributed market sys-
tems. Originally designed for distributed computing, this protocol is based on the concept
of a distributed system in which there is no central control or data storage. Agents are in-
dependent and loosely coupled, meaning, they “spend most of their time in computation

rather than communication” [109, p. 1104].
The basic workflow of the CNP is as follows: an agent has a task that needs to be

completed. The agent sends a task announcement message to other (one, a subset, or all)
agents describing the task and requesting bids for the completion of the task. Other agents
respond to the request by calculating bids for the task and submitting this to the original
agent. The original contracting agent then evaluates these bids and assigns the task to the
agent it determines to be the winner.

There are a number of direct implementations of the CNP. For instance, Sandholm
provides an implementation of the CNP for vehicle routing that is based on marginal cost
calculations [94]. In this work CNP is extended to allow clusters of tasks to be bid on
and assigned. Botelho and Alami apply the CNP to a simulated MRS domain [10], robots
are assigned tasks one at a time, they are able to indicate tasks they wish to complete in
the future and other robots are able to offer counter offers for these tasks. Gerkey and
Matarić apply CNP to a physical MRS [43]. In this work robots subscribe to receive task
allocation messages according to their abilities and resources available to complete tasks.
When a new task is inserted into the system it is announced to robots who have subscribed
to the resource channels required for the task. Robots then calculate and submit a bid for
the task and the auctioneer announces the winner. Furthermore, if the winner fails to
complete the task in an agreed time-frame the auctioneer can reassign the task. Finally,

20



2.3. Markets

Fischer et al. [37] develop the extended contract net protocol (ECNP) for situations where
the tasks in a contract may exceed the capacity of a single bidder. The ECNP has been
tested in a transportation domain with time windows and is further discussed in Section
2.6.

2.3.2 Bargaining Markets

In bargaining markets robots exchange tasks through direct negotiation. Each robot may
consider the value of certain sets of tasks higher than other robots. In situations where
robots have existing allocations of tasks this discrepancy in the valuation of tasks allows
for the trading of the tasks between robots. To successfully trade, robots negotiate to form
agreements on the exchange of tasks. Wooldridge [127] outlines three different forms of
negotiation:

• One-to-one negotiation. One robot negotiates over the exchange of tasks with only
one other robot.

• Many-to-one negotiation. One robot offers a task and negotiates with many other
robots to determine the best deal.

• Many-to-many negotiation. Robots negotiate with many other robots in parallel.
This approach to trading allows robots to be negotiating on a number of different
deals at the same time.

Golfarelli, Maio and Rizzi adapt the CNP for task swapping with many-to-one nego-
tiation [45, 44]. In this approach a robot’s bid becomes a task tout which the robot ri is
willing to exchange for the task tin that the auctioneer is offering. A task swap is only
agreed to if both the auctioneer’s and the bidder’s cost is improved. They highlight that
when robots calculate individual bid with marginal costs, that is, the difference in cost
between completing their current task allocation and committing to an additional task:

bλmarginal = λri(Tri ∪ {tin})− λri(Tri)

May result in different robot costs and task allocations than bidding with task exchanges,
that is the difference in cost between completing their current task allocation and commit-
ting to an additional task in lieu of a currently allocated task:

bλexchange = λri({Tri\{tout}} ∪ {tin})− λri(Tri)

Task exchanges can overcome some local minima that marginal cost bidding is prone
to becoming stuck in. However, single task exchanges can still become stuck in local
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t1 r1 r2 r3t2 t3

Figure 2.6: Simple task allocation problem with three robots and three tasks (distance
between cells is 1 unit).

Table 2.2: Task allocations for MRTA problem given in Figure 2.6.

Robot Initial Task Initial Optimal Task Optimal
Assignment Cost Assignment Cost

r1 t3 7 t1 2
r2 t1 4 t2 2
r3 t2 1 t3 2

minima [95]. In further work, Goldarelli and Rizzi [46] extend task swaps to clusters of
tasks C ⊂ T and Cout ⊆ Tri , such that:

bλcluster = λri({Tri\Cout} ∪ Cin)− λri(Tri)

where the number of tasks in the clusters exchanged may not be equal:

|Cout| 6= |Cin|

Sandholm explores one-to-one negotiation with S-contracts and many-to-many nego-
tiation with M-contracts [95]. An S-contract involves two robots agreeing to swap equal
numbers of tasks so that their individual task completion costs decrease. An M-contract
involves three or more robots negotiating a set of task exchanges. Any contract is only
valid if all parties agree to the task exchanges. However, when robots act with self-interest
to minimise their individual cost a globally optimal solution to the MRTA problem may
not be achieved (Sandholm’s propositions 5 and 7 [95]).

To demonstrate this consider the grid world environment of Figure 2.6. An initial
allocation of tasks to robots is given in Table 2.2. Task exchanges with S-contracts will
never achieve the optimal solution to this problem. This is because robot r3 will never
agree to any task exchange as its local cost will always increase. An M-contract to achieve
the optimal solution in this example is robot r1 gives task t3 to robot r3, robot r2 gives
task t1 to robot r1, and robot r3 gives task t2 to robot r2. However, robot r3 will also never
agree to this task exchange as its costs will increase.

In recent work on task exchanges, Sung, Ayanian and Rus consider robots completing
assigned tasks without knowledge of other robots or tasks [119]. When a robot comes into
the communication range of another robot, the robots negotiate to swap their assigned
tasks if this reduces the local task completion costs of each robot. In this approach,
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robots are able to reach a steady state in the cost to complete each task. The authors
then demonstrate the suitability of this approach for ensuring task completion in systems
with robot failure. While this approach does not guarantee optimal solutions to MRTA
problems, it seeks to ensure that all tasks are completed in dynamic environments.

2.4 Auctions

Auction-based methods are a popular approach for solving MRTA problems [24]. An
auction is composed of three separate phases: the initial phase in which an auctioneer
sends a request to the robots indicating the tasks up for auction; a bidding phase in which
each robot evaluates the tasks up for auction and responds with a bid for those in which
it is interested; and, a winner determination phase in which the auctioneer determines the
winner for each task. Auctions offer a good middle ground between centralised and fully
distributed approaches to task allocation. In particular, auctions allow individual robots
to maintain private information (e.g. their state, current commitments, etc.) while sharing
information that aids the team (e.g. estimated task completion costs).

In a MRTA auction every robot bids on the set of tasks available and is awarded tasks
according to their bids. Bids are calculated using bidding rules which enable individual
robots to measure the costs of tasks relative to the team objective. Additionally, some
auction algorithms allow inter-task synergies to be considered during bid calculations.
Generally, robots bid using first-price sealed-bids, that is, each robot bids once for each
task or bundle of tasks and robots are not aware of the bids made by other robots [11].
Furthermore, auctions can be run without any centralised auctioneer if all robots send all
bids to each other and in parallel perform the same winner determination routine [62, 63,
122]. Common auction types include parallel, sequential, combinatorial, and sequential

single-item (SSI) auctions. Table 2.3 provides a comparison of some popular types of
auctions and their properties.

Table 2.3: Auction Type Comparison (worst-case costs).

Auction Type Inter-task Bids per Bid Calculations Winner Determination
Synergies Auction per Robot Calculations per Auction

Parallel no |T ||R| |T | |T ||R|
Sequential some |T ||R| |T | |T ||R|

Combinatorial all 2|T ||R| 2|T | |R||T |

SSI some |T ||R| |T |( |T |+1
2

) |T ||R|
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2.4.1 Parallel Auctions

Parallel auctions are very simple with bid and winner determination calculations requir-
ing minimal computation. Each robot calculates bids for each task individually and no
inter-task synergies are considered. Every robot then submits the bids for each task to the
auctioneer who, in turn, determines a winner for each task according to the lowest bid
submitted for it. In the event of a tie, the winner is determined in a systematic manner
applied uniformly across all robots (n.b., this applies to all the following auction mecha-
nisms described).

Returning to the example MRTA problem with two robots and four tasks in a grid-
world environment (Figure 2.3), the bids submitted — if we use a parallel auction with
the MiniSum team objective — are presented in Table 2.4. After bidding, the robot r1 is
awarded tasks t1 and t2, and the robot r2 is awarded tasks t3 and t4 with a minimum total
path cost

∑
ri∈R λri(Tri) = 20 with this allocation.

Because parallel auctions consider no inter-task synergies when bidding, their solu-
tions costs are often highly sub-optimal and unbounded in the worse case [56]. This is
clearly seen in the above example, for instance, robot r1 was allocated tasks t1 and t2
after bidding costs 4 and 3 respectively. However, robot r1’s overall cost λri(Tri) for
completing these two tasks is 10.

2.4.2 Sequential Auctions

Sequential auctions are also very simple with winner determination requiring minimum
computation. One task per auction round is offered, bid on, and awarded. Robots take
into consideration the inter-task synergies of tasks they have been allocated in previous
rounds [11]. As such, the order in which tasks are offered for auction heavily influences
the final allocations and costs to the robots. The number of bids submitted per auction
and the winner determination calculations required to allocate each task are the same as
parallel auctions. This means that, while bid calculations are marginally slower due to the
consideration of inter-task synergies, the overall auction process runs very quickly.

We now present a sequential auction for Koenig’s example MRTA problem (Figure
2.3). To achieve the MiniSum team objective, robots bid with marginal costs on each
task offered for auction, this also allows some inter-task synergies to be considered. The
bids submitted each round are shown in Table 2.5. Subsequently, robot r1 is awarded task
t1 in the first round, and the cost of doing this task is considered in the bid calculation
for additional tasks. As a result, in round two, task t2 is awarded to robot r2, which
immediately results in a different task allocation than parallel auctions for this example.
In round three, task t3 is awarded to robot r1, and in the final round, task t4 is awarded to
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Table 2.4: Parallel Auction Example
(winning bids and assignments in bold).

Task r1 Bid r2 Bid
t1 4 6
t2 3 5
t3 6 4
t4 5 3

λri(Tri) 10 10

Table 2.5: Sequential Auction Example
(winning bids and assignments in bold).

Round Task Offered r1 Bid r2 Bid
1 t1 4 6
2 t2 6 5
3 t3 2 8
4 t4 7 0

λri(Tri) 6 5

t1 t2

t3 t4

r1

r2

Figure 2.7: Exploration Task 4 (Koenig et al. [56]).

robot r2. The minimum total path cost
∑

ri∈R λri(Tri) of this allocation is 11 which is the
optimal solution for this particular problem.

It is important to stress that optimality is not guaranteed. Take for example, Koenig’s
exploration task 4 (Figure 2.7). This example is very similar to our previous example,
however, now both parallel (Table 2.6) and sequential auctions (Table 2.7) generate the
same sub-optimal result. There are some extensions to sequential auctions that can avoid
some local minima, for instance, Mosteo and Montano consider the reallocation of exist-
ing task allocations by modifying the auction rules so that after each task assignment an
individual robot can choose an allocated task they no longer want and offer this for auc-
tion to other robots before the next new task is offered [75]. Alternatively, Viguria, Maxa
and Ollero allow robots to offer subsets of tasks for reallocation after each task allocation
until the task allocation becomes stable [126]. However, despite the increase in inter-task
synergies considered in these approaches, the solutions to the MRTA problem can remain
highly suboptimal.
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Table 2.6: Parallel Auction Example for
Exploration Task 4.

Task r1 Bid r2 Bid
t1 4 8
t2 3 7
t3 8 4
t4 7 3

λri(Tri) 10 10

Table 2.7: Sequential Auction Example for
Exploration Task 4.

Round Task Offered r1 Bid r2 Bid
1 t1 4 8
2 t2 6 7
3 t3 14 4
4 t4 15 6

λri(Tri) 10 10

2.4.3 Combinatorial Auctions

In combinatorial auctions robots calculate bids for subsets of the tasks on offer with inter-
task synergies considered. Optimal solutions to the MRTA problem can be found using
a single-round combinatorial auction where each robot is allocated at most one disjoint
subset of tasks. However, this method is NP-complete and the computation tends to be
intractable. It is therefore, not feasible for anything but the smallest scenarios [8, 96].

During the bidding phase, robots calculate the costs for all task subsets. For an optimal
task allocation, robots must calculate bids for every subset of tasks S = {C ⊆ T} and
|S| = 2|T |. The solution to the MRTA problem is then a tuple of |R| pairwise disjoint
subsets that ensures that one and only one subset is assigned to each robot Tri ∈ S

and ∪ri∈RTri = T . For optimal winner determination with a team objective, we must
find a tuple of allocations that globally minimises (or maximises) the cost function f

over the set of all robots. A simple, but highly inefficient, approach to achieve this is to
exhaustively search every tuple of pairwise disjoint combinations that are solutions to the
MRTA problem — this requires |R||T | tuples to be checked.

We demonstrate an optimal MRTA combinatorial auction using Koenig’s exploration
task 3 (Figure 2.3). The bids each robot calculates for every subset of tasks is presented
in Table 2.8. For winner determination the union of every pairwise disjoint subset that
forms the complete set is calculated (Table 2.9). The optimal task allocations are the rows
of this table with the minimum total cost.

An exhaustive search of all tuples is impractical in computational time for most situa-
tions. As a result robotics researchers have developed strategies to bid on limited subsets
of tasks, such as, bidding on bundles of n or fewer targets [8, 76, 96], or forming greedy
bids on bundles of short paths [8]. However, even if the number of bids is reduced and a
near optimal solution is accepted, winner determination still remains NP-complete [96].
To improve the feasibility of winner determination researchers have considered methods
of searching the bid set using branching [99, 98, 100], heuristics (e.g. stochastic local
search [48]), and anytime algorithms [97, 96].
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Table 2.8: Combinatorial Auction Bidding Example.

Task Subset r1 Bid r2 Bid
{t1} 4 6
{t2} 3 5
{t3} 6 4
{t4} 5 3
{t1, t2} 10 12
{t1, t3} 6 6
{t1, t4} 13 12

Task Subset r1 Bid r2 Bid
{t2, t3} 12 13
{t2, t4} 5 5
{t3, t4} 12 12
{t1, t2, t3} 12 13
{t1, t2, t4} 13 12
{t1, t3, t4} 13 12
{t2, t3, t4} 12 13
{t1, t2, t3, t4} 14 14

Table 2.9: Combinatorial Auction Winner Determination Example (winning bids and as-
signments in bold).

r1 Task r2 Task Total Cost
Subset Subset
∅ {t1, t2, t3, t4} 14
{t1} {t2, t3, t4} 17
{t2} {t1, t3, t4} 15
{t3} {t1, t2, t4} 18
{t4} {t1, t2, t3} 18
{t1, t2} {t3, t4} 22
{t1, t3} {t2, t4} 11
{t1, t4} {t2, t3} 26

r1 Task r2 Task Total Cost
Subset Subset
{t2, t3} {t1, t4} 24
{t2, t4} {t1, t3} 11
{t3, t4} {t1, t2} 22
{t1, t2, t3} {t4} 15
{t1, t2, t4} {t3} 17
{t1, t3, t4} {t2} 18
{t2, t3, t4} {t1} 18
{t1, t2, t3, t4} ∅ 14

2.4.4 Sequential Single-Item Auctions

SSI auctions generate MRTA solutions over multiple bidding rounds. In each auction
round each robot calculates bids for all unallocated tasks and submits a single bid, gener-
ally the smallest, for an unallocated task of its choosing. At the conclusion of each bidding
round, the robot that bid the least is awarded the task it chose, such that, the overall team
cost increases the least according to the team objective.

SSI auctions are not guaranteed to generate optimal solutions even if the robot costs
are calculated optimally [122]. However, solutions generated relative to a variety of team
objectives are bounded [62, 63, 56], they run in polynomial time [56], and have been
shown experimentally to perform very well [62, 122]. SSI auctions require more bid
calculations than standard parallel and sequential auctions (|T |( |T |+1

2
) > |T |), however,

the winner determination time is the same (|T ||R|). Furthermore, the true number of bid
calculations per auction is generally lower than |T |( |T |+1

2
). This reduction is achieved

through caching bid calculations. As only one task is allocated in each auction round,
only the robot who had a task awarded in the immediate previous auction round needs to
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function SSI-Auction (T̄ ,Tri , ri, R)
Input: T̄ : the set of tasks to be assigned

Tri : the set of tasks presently assigned to robot ri
ri: the robot
R: the set of robots

Output: Tri : the set of tasks assigned to the robot ri

1: while (T̄ 6= ∅)
2: /* Bidding Stage */
3: βmin ←∞
4: for each task t ∈ T̄
5: βtri ←CalcBid(Tri ,t);
6: βmin ←min(βmin, βtri);
7: Send(βmin, R) | B ←

⋃
i

Receive(βmini , R);

8: /* Winner Determination Stage */
9: (r′, t)← arg min(r′∈R,t∈T̄ ) bid(r′, t);

10: if ri = r′ then
11: Tri ← Tri ∪ {t};
12: T̄ ← T̄\{t};

Figure 2.8: Algorithm for Sequential Single-Item Auctions.

calculate new bids. Any other robots that bid on the task awarded in the previous auction
round simply select their next best bid for a different task and all other robots resubmit
their bid from the previous round.

We give a distributed algorithm for SSI auctions that each robot runs locally in Figure
2.8. This algorithm assumes a set of robots which are supplied with a map of the environ-
ment, have perfect localisation, have error free communication with other robots, and do
not break down. These constraints are applied to enable us to focus simply on the auction
process. As an aside, to handle more complex dynamic environments, modifications can
be made to the auction algorithm to consider noisy data and problems in communication.

The SSI auction begins and continues while there are unassigned tasks (Line 1). Dur-
ing the bidding stage (Lines 2-7) the robot calculates bids for every unassigned task and
submits its single lowest bid for any one task to all other robots. The function CalcBid
takes the set of previously assigned tasks Tri to robot ri and the task t being bid on and
uses a bidding rule to calculate a bid cost (Line 5). Each bid is a triple β = 〈ri, t, bλ〉 of
a robot ri ∈ R, a task t ∈ T and a bid cost bλ. The robots send their bids and receive all
bids from other robots in parallel (Line 7). The winner determination stage (Lines 8-12)
consists of each robot choosing the task with the lowest bid from the set of submitted
bids. Ties are broken in an arbitrary manner. In line 9 we introduce a auxiliary function
bid(r′, t) defined as bid(r′, t) = bλ such that (r′, t, bλ) ∈ B. The robot with the winning
bid has the winning task assigned to it. All robots then remove the winning task from the
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Table 2.10: SSI Auction Example for Exploration Task 3 (winning bids and assignments
in bold).

Round r1 Bids r1 Bid r2 Bids r2 Bid
Calculated Submitted Calculated Submitted

1 βt1r1 ← 〈r1, t1, 4〉 βt2
r1

βt1r2 ← 〈r2, t1, 6〉 βt4r2
βt2r1 ← 〈r1, t2, 3〉 βt2r2 ← 〈r2, t2, 5〉
βt3r1 ← 〈r1, t3, 6〉 βt3r2 ← 〈r2, t3, 4〉
βt4r1 ← 〈r1, t4, 5〉 βt4r2 ← 〈r2, t4, 3〉

2 βt1r1 ← 〈r1, t1, 7〉 βt4
r1

βt4r2
βt3r1 ← 〈r1, t3, 9〉
βt4r1 ← 〈r1, t4, 2〉

3 βt1r1 ← 〈r1, t1, 9〉 βt3r1 βt3
r2

βt3r1 ← 〈r1, t3, 7〉
4 βt1r1 βt1r2 ← 〈r2, t1, 2〉 βt1

r2

λri(Tri) 5 6

set of unassigned tasks and the next bidding round begins.

Lagoudakis et al. develop and analyse bidding rules for the MiniMax and MiniSum
team objectives in SSI auctions [63]. For the MiniMax team objective each robot bids the
cost of completing an additional task t in addition to completing its current allocation:

bλ = λri(Tri ∪ {t})

In considering the bounds for this bidding rule, the worst-case upper bound of the perfor-
mance ratio is 2 ∗ |R| away from the optimal. For the MiniSum team objective each robot
bids for an additional task using marginal costs:

bλ = λri(Tri ∪ {t})− λri(Tri)

The worst-case upper bound of the performance ratio for the MiniSum team objective is
a constant factor 2 away from the optimal.

We now demonstrate an SSI auction with the MiniSum team objective on Koenig et

al. exploration task 3 (Figure 2.3). The bids calculated and submitted in each round
are shown in Table 2.10. In the first round each robot has to calculate bids for all tasks.
Subsequently the smallest bid submitted by each robot is equal, so via simple tie breaking
robot r1 is awarded its first task t2. In the second round, robot r1 needs to recalculate its
bids for the remaining tasks taking into account the inter-task synergy of the task it was
awarded in the first round. Meanwhile, robot r2 resubmits its bid for task t4, and now both
robots bid for the same task, with robot r1 awarded its second task. In the third round,
robot r1 recalculates bids for the remaining tasks taking into consideration the two tasks
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Table 2.11: SSI Auction Example for Exploration Task 4.

Round r1 Bids r1 Bid r2 Bids r2 Bid
Calculated Submitted Calculated Submitted

1 βt1r1 ← 〈r1, t1, 4〉 βt2
r1

βt1r2 ← 〈r2, t1, 8〉 βt4r2
βt2r1 ← 〈r1, t2, 3〉 βt2r2 ← 〈r2, t2, 7〉
βt3r1 ← 〈r1, t3, 8〉 βt3r2 ← 〈r2, t3, 4〉
βt4r1 ← 〈r1, t4, 7〉 βt4r2 ← 〈r2, t4, 3〉

2 βt1r1 ← 〈r1, t1, 7〉 βt4r1 βt4
r2

βt3r1 ← 〈r1, t3, 11〉
βt4r1 ← 〈r1, t4, 4〉

3 βt1
r1

βt1r2 ← 〈r2, t1, 11〉 βt3r2
βt3r2 ← 〈r2, t3, 7〉

4 βt3r1 ← 〈r1, t1, 4〉 βt3
r1

βt3r2
λri(Tri) 14 3

it already has allocated. Because the task that Robot r2 was bidding for was allocated in
the previous round it now selects one of its cached alternative bids and is subsequently
awarded task t3 during winner determination. Finally, only one task remains, robot r2

recalculate its bid and is subsequently awarded the final task t1. The final total cost across
both the robots

∑
ri∈R λri(Tri) = 11 which is the optimal solution to this problem.

Extensions

A key strength of SSI auctions is their ability to build on inter-task synergies during each
task bidding round. However, this strength is also a drawback during early rounds of
bidding when few tasks are allocated [138, 58]. A result of this is that robots have a
greedy bias towards tasks that are close to their initial locations. This can see two tasks,
that in an optimal solution would be allocated to one robot, be split and allocated to two
different robots. Take, for example, Koenig et al. exploration task 4 (Figure 2.7). In
this example SSI auctions generate a sub-optimal solution (Table 2.11), however, we note
that the solution costs are still lower than the previous results from parallel and sequential
auctions. To try and avoid this and further lower the team cost in SSI auctions a number
of improvements and extensions to the bidding and winner determination phases of SSI
auctions have been considered, such as, rough route generation, lookaheads, rollouts,
bundle-bids, and regret clearing.

Rough route generation modifies the bidding phase of SSI auctions so that alloca-
tions of many additional tasks are considered. Individual robot paths are planned on the
assumption of the allocation of these additional tasks. Robots then bid for any single
task that they consider to be the most suitable, which is facilitated by bidding for either
the closest task or the furthest task in the task set of assumed allocations. Empirical
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experiments on the MiniSum team objective have shown this technique to work well in
comparison to standard SSI auctions [102].

Lookaheads also modify the bidding phase of SSI auctions and consider the alloca-
tion of more than one task at a time to robots. The bidding phase is modified so that each
robot calculates bids for up to l tasks. In the case of a two task lookahead, three bids are
calculated, a bid each for the two individual cheapest additional tasks, and a bid for the
cheapest pair of two additional tasks. During the winner determination stage combina-
tions of bids for a total of l tasks are considered, and the robot that bid for any one task
that gives the overall minimal increase in team costs is awarded the additional task. While
this approach has been designed to avoid local minima, experimentally it has been shown,
on average, to perform worse than standard SSI auctions [138].

In rollouts each bid is calculated with the assumption of robot ri winning the task t and
then all robots complete the remaining SSI auctions for the remaining tasks to determine
the total team cost based on this allocation. This process is repeated for each robot’s bid
on every task and therefore is very time consuming. However, unlike lookaheads, rollouts
are guaranteed to perform no worse than standard SSI auctions, this is because bids use
the full team costs rather than partial costs. Furthermore, a mix of rollouts in early bidding
rounds and standard SSI auctions in later rounds can overcome the problem of few inter-
task synergies during early bidding rounds, and has substantially smaller computation
requirements than full rollouts in all bidding rounds [138].

SSI auctions with bundles are a hybrid of standard SSI auctions and combinatorial
auctions in which each robot bids on combinations of up to l tasks. During the winner
determination phase, a total of l tasks are allocated, with each robot allocated 0− l tasks.
The performance and computational load on the robots for SSI auctions with bundles
depends on the number of tasks l allocated each round. When l = 1 SSI auctions with
bundles are equivalent to standard SSI auctions and, on the contrary, when l = |T | they
are equivalent to combinatorial auctions. As such there is a trade-off required between the
number of tasks allocated and the quality of the solution generated. For MRTA problems
with capacity constraints, this approach has been shown experimentally on average to
produce lower team costs due to each bundle bid taking into account additional synergies
between tasks. However, in some scenarios larger team costs than standard SSI auctions
are generated as a consequence of the bidding process still only calculating bids based on
partial task allocations [57].

Unlike, the previous four SSI auction extensions that make changes to the bidding
phase of the auction process, regret clearing only modifies the winner determination
phase. In standard SSI auctions the winner of any auction round is the robot who submits
the lowest bid for any task, for SSI auctions with regret clearing this is modified such

31



Chapter 2. Related Work

that the difference between the lowest and second lowest bids for any task is maximised.
This requires robots, in every round, to submit bids for all unallocated tasks therefore
increasing the communication overhead compared to standard SSI auctions. However,
there is no increase in computation costs compared to standard SSI auctions as both al-
gorithms require bids for all tasks to be calculated. Furthermore, the bounds for standard
SSI auctions do not apply under winner determination with regret clearing, for the Min-
iSum team objective the worst-case upper bound has been given as a factor 2 ∗ |T | larger
than minimal. Empirical evaluation shows that SSI auctions with regret clearing works
well for MRTA problems with capacity constraints and for the MiniMax team objective
for problems without capacity constraints [58].

Finally, SSI auctions have been extended to more complex MRTA problems. Thomas
and Williams consider SSI auctions with heterogeneous tasks [120]. In this work robots
can only complete tasks they are qualified for, the bidding and winner determination
phases are also altered so that robots bid on tasks their abilities closest match. Ekici,
Keskinocak and Koenig adapt SSI auctions for MRTA problems where the reward for
completing individual tasks decreases over time [30]. This work also considers a number
of different bidding rules adapted for the changed problem. Zheng and Koenig adapt SSI
auctions for task coalitions where several robots need to work together at the same time
to achieve a task [137]. In this approach the winner determination phase requires knowl-
edge of all robots allocations and costs so that coalitions can be determined. Each of
these extensions demonstrate the strength of SSI-like auctions in generating near optimal
solutions in minimal time compared to traditional centralised approaches.

2.4.5 Task Clustering and Partitioning

A major computational challenge in the performance of auction mechanisms that consider
inter-task synergies is their ability to handle large numbers of robots and tasks. In many
auction algorithms increasing the number of tasks causes a combinatorial explosion in
the number of calculations required to form task bids. Further compounding this, as
the number of robots increases, the communication and computational requirements for
winner determination also increase. As a result the suitability of these techniques in large
real-world scenarios is limited.

Forming clusters of tasks has been explored by a number of researchers as a method
to reduce the combinatorial explosion of increasing task counts. In early work on market-
based task allocation Sandholm expanded the CNP by introducing C-contracts which
replace the CNP’s standard one item contract with a contract for a cluster of tasks all
of which the contracted robot must complete. Sandholm shows that allocating clusters
of tasks to robots can avoid some local minima that single item contracts become stuck
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in; although, C-contracts can get stuck in different local minima [95]. In early work
on multi-robot auctions, Dias and Stentz develop a clustering algorithm that connects
geographically close tasks under the assumption that two tasks that are close have high
inter-task synergies, robots then exchange clusters of tasks through an auction method
which experimentally is shown to perform better than single task auctions [21].

Many subsequent clustering approaches for MRTA problems use the distance between
tasks as a metric for cluster formation. Sariel and Balch discuss the allocation of clusters
of tasks to robots where in some situations optimal MRTA solutions can be generated that
are unable to be formed using single item auctions, however, in other situations clustering
performs worse [102]. Zlot and Stentz use K-means clustering to form clusters of geo-
graphically close tasks. To determine an ideal cluster, the value of k is incremented from
2 to the total number of tasks with the value of k that generates clusters with the largest
relative improvement over the previous value being used [139]. Elango, Nachiappan and
Tiwari form clusters of tasks with K-means clustering which are then auctioned to robots
with a goal of balancing the number of tasks across all robots such that the combined
travel and idle costs are minimised [31].

Outside of the domain of multi-robot auctions for MRTA problems, clustering tech-
niques have been applied to task set segmentation. K-means clustering [113, 129, 87]
and Voronoi Diagrams [128, 130] have been used to form disjoint regions of unexplored
terrain which are then assigned to individual robots for exploration. This technique is
designed to disperse robots throughout an area with minimum need for close coordina-
tion between robots. K-means clustering has also been used for map segmentation in the
RoboCup Rescue Simulation domain [74, 79]. Voronoi Diagrams have also been used by
individual robots to achieve optimal task assignment in systems with no communication
between robots, however, this approach is limited to scenarios in which there is only one
task assignment per robot [53]. Finally, clustering has been used in a mix of centralised
and distributed problem solving, e.g. a centralised graph partitioning algorithm can be
used to split a MRTA problem into subproblems which are then solved by the robots
contained in each subpartition [111, 67, 68, 55].

2.4.6 Post-Initial Allocation Task Reallocation

A major weakness in non-optimal auction algorithms with one-shot task assignments is
their inability to avoid local minima. For instance, consider the bidding rules for the Min-
iMax and MiniSum team objectives in standard SSI auctions, when no tasks are assigned
to an individual robot, the robot will always bid for the task closest to it which in many
situations will not be an optimal task assignment (e.g. Figure 2.7). Once they have been
assigned this task, all subsequent bids will factor in the inter-task synergies of this task
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and as a result solutions that are far from optimal are developed [102].

Although the bidding rules can be modified to avoid this particular nearest-neighbour
problem, any auction algorithm with one-shot task assignments and incomplete inter-task
synergy information is prone to problems of local minima. Two common approaches for
refining task allocations post-initial allocation are task swapping (Section 2.3.2) and re-
peated auctions which allow robots to reallocate tasks among themselves before or during
the execution of tasks. For instance, in Dias et al. at fixed time intervals all robots re-
auction all uncompleted tasks [25], in Zlot and Stentz robots randomly select complex
task sets to repeatedly auction until a stable solution is found [139], in Zlot et al. when
any individual robot completes a task the robot sequentially offers each of its remaining
tasks for auction [140], and finally in Nanjanath and Gini upon each individual task com-
pletion robots re-auction all uncompleted tasks [80]. However, when applied to standard
SSI auctions, and despite the consideration of few inter-task synergies in early bidding
rounds, none of these reallocation approaches will change the task allocation, due to the
greedy like bidding approach.

To refine a task allocation solution post-initial allocation in SSI auctions Nanjanath
and Gini switch the bidding rule from the MiniSum team objective to a MiniMax-like ap-
proach [81]. Adapting their previous repeated auction approach [80] an initial allocation
of tasks is made using a standard SSI auction. Then on each task completion, all uncom-
pleted tasks are auctioned under the requirement of minimising execution time. Robots
only exchange tasks if it improves the overall team objective and once a task has been
exchanged, the robots involved in the exchange replan their paths to travel.

An alternative approach to improving the solution to SSI auction solution with ca-
pacity constraints is with K-swaps [136]. K-swaps generalise Sandholm’s previous work
on contracts for task exchanges [95] and allow two or more robots to exchange differing
numbers of tasks to reduce the overall team cost. K-Swaps has been experimentally shown
to make significant improvements to task allocations, however, the algorithm trades off
larger improvements with pronouncedly increased computational time. Furthermore, task
swaps and transfers can also be considered with auctions that incorporate simulated an-
nealing to avoid local minima [133, 135, 134]. Such approach randomly selects tasks and
robots for task exchanges and calculates probabilities of the task exchange being accepted
and over time can generate an optimal solution.

Reallocating tasks and replanning paths may require much computational power and
time. While arbitrary reallocation and replanning may not be the most efficient approach,
knowing when to reallocate and how much of the system should be reallocated is a chal-
lenging problem. Finally, during task execution it is possible that task costs may change
as new information about the environment is discovered [122], robots fail, or tasks added
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[106]. In these situations even previously optimal solutions may no longer hold and new
allocations of all uncompleted tasks should be determined. We discuss these dynamic
environments in the following section.

2.5 Dynamic Environments

In the previous sections we have discussed MRTA problems in which all robots and tasks
are known a priori and robots do not fail. In this section we discuss extensions to the
MRTA problem where, during plan execution, additional tasks are inserted or robots fail
requiring reallocation of uncompleted tasks. A key challenge in the reallocation of tasks is
ensuring that tasks are completed, for instance, in some situations it is possible for robots
to change their currently executing task so often that no task is ever completed [13].

2.5.1 Task Insertion

Despite a large body of work on auction-based algorithms for MRTA problems, few have
considered the effects of dynamically appearing (online) tasks in the problem domain.
While it can be argued that algorithms that continually change task allocations could

handle dynamically inserted tasks, this has little experimental grounding. An important
consideration in the handling of online tasks is deciding how much of the existing task
allocation to modify. This can range from local replanning, where an individual robot is
assigned an additional task and replans its path for the completion of all tasks, to a global
reallocation of all uncompleted tasks. Global reallocation can be described as repeated
static allocation, that is, each time the world changes and a task reallocation occurs the
algorithm used considers the world as static at that point in time. In highly dynamic
environments this is likely to be very time consuming and generally not feasible for real-
time settings [7]. In contrast, local replanning is very sensitive to the quality of the initial
solution and is limited in the range of improvement possible [5].

Previous work by Schoenig and Pagnucco has considered SSI auctions with dynami-
cally inserted tasks and compared the costs of robots bidding only for the new task versus
a full new auction of all uncompleted tasks [106]. Their results show, despite a large trade-
off in computational time, a global reallocation of tasks produces lower team costs than
local replanning. Zlot et al. consider MRTA problems in an exploration domain in which
a robot generates additional tasks for allocation after each task completion. These tasks
are sequentially offered for auction to other robots, however, if no buyer is found the gen-
erating robot retains the task [140]. Viguria, Maxa and Ollero’s approach of repeatedly
auctioning subsets of uncompleted tasks (detailed in Section 2.4.2) allows it to handle
dynamically inserted tasks [126]. This approach sits between local replanning and global
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reallocation in that robots only offer for auction tasks that they specifically consider to be
of high cost. Additionally, these approaches avoid the problem of never completing any
tasks through ensuring that the currently executing task is never offered for reallocation.

For MRTA problems without inter-task synergies, Jones et al. consider the formation
of robot teams to complete tightly-coordinated online tasks [52]. Outside of the domain
of market-based systems, popular approaches for handling online tasks include anytime
algorithms [70], coalition formations [88], incremental task selection [104], and emergent
cooperation [66].

2.5.2 Robot Failure

During task execution individual robots may suffer from a variety of malfunctions and
failures, such as, communication drop-outs, partial robot malfunction, and robot death
[23]. While detecting and responding to many of these forms of failure is complex and
outside the scope of this thesis, we take interest in approaches to the reallocation of tasks
upon full robot failure.

Botelho and Alami [10] consider the problem of robot failure in the CNP. In this
work, when a robot is about to fail it sends out an emergency distress message to all other
robots and one robot will come to its aid and complete the failed robot’s task. However,
in this work no inter-task synergies are explored as each additional task is allocated only
after the completion of a previous task. In considering teams with inter-task synergies,
Farinelli, Scerri, and Tambe’s approach is for each robot to periodically re-evaluate its
ability to complete all assigned tasks and if a robot can no longer complete all of its tasks
it attempts to offload these to other robots [35].

An alternative to self awareness of imminent failure is external status monitoring.
In this approach robots are required to listen for each other’s robotic heartbeats or for
broadcast messages on the status of tasks. The robot is assumed to be dead if no heartbeat
is detected or status message is received after a set period of time. In Sariel, Balch and
Stack when a robot failure is detected all uncompleted tasks in the complete systems are
reauctioned across all operating robots [101]. Gerkey and Matarić handle robot failures
through repeated auctioning all uncompleted tasks at fixed time intervals [43]. A less
computational expensive approach is taken by Dias et al., where only the tasks allocated
to a failed robot are offered for auction [23]. Although, at a later moment in time a global
reallocation of all tasks occurs.

Sariel, Balch and Erdogan also follow this broadcast status message or assume death
approach in the formation of coalitions [103]. In this approach a coalition of one or more
robots is required to complete a task and during execution it is possible for a robot to fail.
To facilitate this each robot individually keeps track of the assumed state of all tasks and
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robots in the environment. If the number of robots remaining in a coalition after failure is
below the number of robots required to complete the task the coalition is disbanded and a
new coalition formed.

2.6 Tasks with Collection and Delivery

A further extension of the MRTA problem is tasks that require collection and delivery.
This increased complexity in the problem applies additional forced constraints on the
robots and the paths they travel. These constraints include capacity constraints in the
number of items robots can carry at any moment in time, which in turn, heavily influence
the minimisation of time or energy used in completing all tasks. Little work has focused
on distributed auctions for MRTA problems with collection and delivery. Again while it
can be argued that many existing techniques for single point locations should continue to
work for tasks with collection and delivery this has almost no experimental grounding.
Despite this, a large body of work exists in the field of transport logistics.

2.6.1 Auctions for Transport Scheduling

Fischer, Müller and Pischel apply the CNP to transportation scheduling with fixed time
windows [36]. In this work trucks bid for tasks from a central controller and can also make
one-for-one swaps with other trucks before they begin to execute their plans. During the
execution of plans, the trucks may face traffic delays and as such they can locally replan
their routes or auction their uncompleted tasks. Their results show that global reallocation
of uncompleted tasks provides a large reduction in distance travelled.

Kohout and Erol argue that Fischer, Müller and Pischel’s generation of an initial al-
location is poor and therefore global reallocation will produce much better results than
local replanning [59]. In their analysis they study problems where multiple items can be
transported together and additional jobs are announced sequentially. When a new job is
announced each vehicle bids for the job according to the cost of completing the additional
job relative to their existing commitments. To avoid problems where inserting additional
tasks has large impacts on the completion time of other tasks, upon each task insertion, al-
ready scheduled tasks are permitted to be reallocated to other vehicles. In their empirical
analysis they compare this approach to Solomon’s insertion heuristic which is a popu-
lar operations research based approach [114]. Overall they show that their distributed
approach is statistically equivalent to the centralised operations research approach.

In a similar vein, Mes, van der Heijden and van Harten compare distributed auctions
in MAS to hierarchical operations research approaches in dynamic environments [72]. In
this work tasks arrive sequentially and trucks can only carry one task at a time. Each
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truck bid calculation for a task considers the time required to do the job and any waiting
time between jobs before and after. During execution trucks can also swap future task
commitments between each other to improve the overall solution. In the comparison to the
operations research approaches the distributed auction approach performs substantially
better in highly dynamic environments.

2.6.2 Task Decomposition

In large scale distribution environments, such as troop transportation, a single transporta-
tion task may be too large to be completed by one agent in one trip. In these situations,
tasks may be able to be broken down into multiple smaller tasks which either require
repeated trips by the same agent or individual trips being allocated to multiple agents.
Allard and Shekh apply an hierarchical approach that groups agents with related capabil-
ities to solve this particular problem [1]. In their approach a single agent bids for tasks on
behalf of each set of grouped agents. At a later point, the individual agents from within
each group to complete each task is determined. This approach allows for a reduction
in the number of bid calculations and messages exchanged between agents and is experi-
mentally shown to lead to a substantial reduction in computational time required to find a
solution to this problem.

2.6.3 Clustering

Song and Regan consider the construction of bids for freight transportation in combina-
torial auctions where only one shipment can be carried per truck at any moment in time
[115]. This work is solely focused on the actions of a single agent in its private calcula-
tions of bids and the effects of combining various individual tasks into bundles for bids
including situations where the agent has prior commitments. Despite the different auction
mechanism considered, this work is highly relevant to our work as one can consider bun-
dles to be synonymous with clusters and our robots also face situations where they also
have prior commitments.

Outside the domain of distributed auctions, vehicle routing with collection and de-
livery has been studied in a variety of MAS architectures [18]. Additionally, in the area
of discrete optimisation vehicle routing is a common problem. Surveys of different ap-
proaches to solving this problem class are presented in static [6, 84] and dynamic en-
vironments [7, 86]. Specifically related to our ideas, both Ganesh and Narendran [41]
and Sáez, Cortés, and Núñez [93] suggest approaches that use task clustering and genetic
algorithms to distribute tasks.
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2.7 Summary

In this chapter we have explored existing work that contributes to the development of our
auction approach for solving MRTA problems. In the following chapter the strengths and
weakness of the variety of auction techniques examined in Section 2.4 influence the de-
velopment of SSC auctions. The brief discussion of existing task clustering approaches in
Section 2.4.5 is further expanded in the discussion section of Chapter 4. Finally, the SSC
auction algorithm developed in the following chapter is applied to dynamic environments
and tasks with collection and delivery (Sections 2.5 and 2.6) in Chapter 5.
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Chapter 3

Sequential Single-Cluster Auctions

In this chapter we build on existing approaches of robots sequentially bidding on single
tasks in a task set through the construction of and bidding for clusters of tasks. In our
approach, one robot is allocated all tasks in a cluster and the rest none. We show empiri-
cally that this method, on average, results in lower team costs than standard SSI auctions
with capacity constraints and performs much faster than SSI auctions with bundles. After
we have established the foundations of this new auction method we extend it to include
repeated auctioning of uncompleted tasks. Previous work on repeated auctioning of un-
completed single tasks by Nanjanath and Gini [81] has shown the robustness of robotic
teams in reallocating tasks when unexpected delays occur while completing tasks. Our
idea is, that upon completion of a single task, all robots create clusters of their uncom-
pleted tasks and auction these task clusters with the goal of improving the minimisation
of the overall team objective. This approach allows inter-task synergies to be considered
which in auction methods that only allocate tasks once may not be explored. We begin
the chapter by describing our algorithm for auctioning clusters of tasks (Section 3.1), we
expand this algorithm for repeated auctions (Section 3.2), and finally we summarise the
key results of this research (Section 3.3).

3.1 Sequential Auctions with Clusters

We now develop an extension to SSI auctions in which individual tasks are organised into
clusters taking into account positive synergies between tasks. Robots bid on these clusters
to solve the task allocation problem. We call this sequential single-cluster auctions (SSC
auctions). SSC auctions assign fixed clusters of tasks to robots over multiple bidding
rounds. At the conclusion of each bidding round one previously unassigned task cluster

Portions of the research in this chapter have been published in Sequential Single-Cluster Auc-
tions for Robot Task Allocation (AI-11) and Repeated Sequential Auctions with Dynamic Task
Clusters (AAAI-12).
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C = {t1, . . . , to} is assigned to the robot that bids the least for it so that the overall team
cost increases the least.

An SSC auction consists of three phases: clustering phase, bidding phase, and winner
determination phase. We begin with a set of unassigned tasks for completion. Before the
auction, a clustering algorithm is used to allocate all individual tasks into clusters (clus-
tering phase). Each cluster is formed with the goal of maximising the positive synergy
between tasks in each cluster. Each task is assigned to one, and only one cluster. Clus-
ters can be of varying sizes. During each auction round, all robots bid on all unassigned
task clusters (bidding phase), the auctioneer then determines a winning bid and awards
this cluster to the successful robot (winner determination phase). The winning robot then
commits to completing all tasks contained in that cluster. Robots do not have to do all
tasks in a cluster sequentially. When a robot is awarded a new cluster, the robot adds the
tasks in this new cluster to its existing task assignment and replans its path to travel. Once
all tasks are allocated, each robot executes its planned path to complete all assigned tasks.

We now describe in detail the specifics of each phase and the algorithm as a whole.

3.1.1 Clustering Phase

Expanding the definition of the MRTA problem (Section 2.2.1) we introduce a set of k
clustersK = {C1, . . . , Ck}. We now need to allocate all tasks to one and only one cluster.
This is achieved by taking any tuple 〈TC1 , . . . , TCk

〉 of pairwise disjoint bundles of tasks,
such that:

TCj
⊆ T with TCj

∩ TCj′
= ∅, j 6= j′, ∀j, j′ = 1, . . . , k

which satisfies:
∪Cj∈KTCj

= T

Once we have organised all tasks into clusters, we must ensure that each cluster is
allocated to one and only one robot. We do this by taking any tuple 〈Kr1 , . . . , Krm〉 of
pairwise disjoint bundles of task clusters, such that:

Kri ⊆ K with Kri ∩Kri′
= ∅, i 6= i′, ∀i, i′ = 1, . . . ,m

which satisfies:
∪ri∈RKri = K

As a result of this we have now allocated all tasks into clusters, and assigned all clusters
to robots and therefore it holds that we still have a valid solution to the task allocation
problem of all tasks being allocated such that each task is allocated to one and only one
robot.
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3.1.2 Bidding Phase

Now we consider a single round of an SSC auction. We assume that robot ri has al-
ready been assigned the set of task clusters Kri ⊆ K in previous rounds for all ri ∈ R.
Therefore, the set of unassigned task clusters U is defined by:

U ← K\ ∪ri∈R Kri

Each bid is a triple β = 〈ri, Cj, bλ〉 consisting of a robot ri, a task cluster Cj and a bid
cost bλ. The bid cost calculation for each cluster depends on the team objective. For the
MiniMax team objective:

bλ = λri(Kri ∪ Cj)

That is, the robot bids the costs to do all tasks assigned to it plus the tasks in the cluster it
is bidding on. For the MiniSum team objective:

bλ = λri(Kri ∪ {Cj})− λri(Kri)

That is, the robot bids the increase in its costs for doing all of its currently allocated tasks
plus the tasks in the cluster it is bidding on.

Every robot has to calculate individual bids for all unassigned task clusters C ′ ∈ U .
Each set of individual robot bids Iri = {β1, . . . , β|U |} satisfies that ∀C ′ ∈ U there exists
exactly one bid β ∈ I with Cj = C ′.

Each robot submits its smallest bid for any single unassigned task cluster minβ∈Iri bλ

to all other robots. The set of submitted bids B = {β1, . . . , βm} satisfies:

1. ∀βi ∈ B, it holds that ri ∈ R and Cj ∈ U ; and

2. ∀r′ ∈ R there exists exactly one bid βi ∈ B with ri = r′.

3.1.3 Winner Determination Phase

Once all bids have been received, the auctioneer evaluates a potentially winning bid βi ∈
B according to the value bλ. The winning bid for both the MiniMax and MiniSum team
objective is the bid βi with the smallest bλ. The auctioneer then assigns all tasks in the
cluster Cj to the robot ri.
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3.1.4 SSC Auction Algorithm

The algorithm for SSC auctions is nearly identical to the algorithm previously given for
SSI auctions (Section 2.4.4) and runs under the same assumptions of error-free commu-
nication and accurate localisation. The key difference between the algorithms is the bid
calculation for and allocation of clusters of tasks rather than individual tasks. The algo-
rithm that each robot runs independently is given in Figure 3.1. The SSC auction begins
and continues while there are unassigned task clusters (Line 1). During the bidding stage
(Lines 2-7) the robot calculates bids for every unassigned task cluster and submits its sin-
gle lowest bid for any one cluster to all other robots. The function CalcBid takes the set
of previously assigned clusters Kri to robot ri and the cluster C being bid on and uses a
bidding rule to calculate a bid cost (Line 5). The robots send their bids and receive all
bids from other robots in parallel (Line 7). The winner-determination stage (Lines 8-12)
consists of each robot choosing the task cluster with the lowest bid from the set of sub-
mitted bids. Ties are broken in an arbitrary manner. The robot with the winning bid has
the winning task cluster assigned to it. All robots then remove the winning task cluster
from the set of unassigned clusters and the next bidding round begins.

function SSC-Auction (U ,Kri , ri, R)
Input: U : the set of clusters to be assigned

Kri : the set of clusters presently assigned to robot ri
ri: the robot
R: the set of robots

Output: Kri : the set of clusters assigned to the robot

1: while (U 6= ∅)
2: /* Bidding Stage */
3: βmin ←∞
4: for each cluster C ∈ U
5: βCri ←CalcBid(Kri ,C);
6: βmin ←min(βmin, βCri );
7: Send(βmin, R) | B ←

⋃
i

Receive(βCri , R);

8: /* Winner-Determination Stage */
9: (r′, C)← arg min(r′∈R,C∈U) B;

10: if ri = r′ then
11: Kri ← Kri ∪ C;
12: U ← U\C;

Figure 3.1: Algorithm for Sequential Single-Cluster Auctions.
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3.1. Sequential Auctions with Clusters

3.1.5 Performance Comparison

We now compare the relative computation, communication, and solutions of SSC auctions
to standard SSI auctions. These unique performance differences allow SSC auctions to
operate in an efficient manner and generally result in a small team cost.

Theorem 3.1. The number of rounds in an SSC auction is not greater than the number of

rounds in an SSI auction.

Proof. We define an SSI auction as the tuple Assi = 〈R, T 〉. The number of rounds Nssi in
the auction Assi is equal to the number of tasks Nssi = |T | as only one task is allocated per
round. We define an SSC auction as the tuple Assc = 〈R, T, C〉. The number of rounds
Nssi in the auction Assc is equal to the number of clusters Nssc = |C| as one cluster is
allocated per round. Each cluster can have one or more tasks, therefore:

|C| ≤ |T |

and consequently:
Nssc ≤ Nssi

Theorem 3.2. The communication cost in an SSC auction is at worst equal to an SSI

auction.

Proof. For a distributed SSI auction all robots are aware of all tasks before the auction.
In each round of the auction every robot has to communicate its bid to every other robot
so there are |R|(|R| − 1) ≈ |R|2 messages per round. From above there are Nssi rounds
in an SSI auction. Therefore in total there are in the order of Nssi|R|2 messages sent in a
complete auction.
SSC auctions follow the same bidding and communication rules as SSI auctions except
that robots bid on clusters rather than tasks. All robots are aware of all tasks and clusters
before the auction. From Theorem 3.1 there are Nssc rounds in an SSC auction. Therefore
it holds that in total there are in the order of Nssc|R|2 messages sent in a complete auction.
We again note that:

Nssc ≤ Nssi

and therefore:
Nssc|R|2 ≤ Nssi|R|2
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t1 t2

t3 t4

r1

r2

C1 C2

Figure 3.2: Exploration Task 4 with two clusters.

Table 3.1: SSC Auction Example for Exploration Task 4 (winning bids and assignments
in bold).

Round r1 Bids r1 Bid r2 Bids r2 Bid
Calculated Submitted Calculated Submitted

1 βC1
r1
← 〈r1, C1, 8〉 βC2

r1
βC1
r2
← 〈r2, C1, 8〉 βC2

r2

βC2
r1
← 〈r1, C2, 7〉 βC2

r2
← 〈r2, C2, 7〉

2 βC1
r1
← 〈r1, C1, 11〉 βC1

r1
βC1

r2

λri(Tri) 7 8

Theorem 3.3. Winner determination time in an SSC auction is equal to winner determi-

nation time in an SSI auction.

Proof. In an SSI auction each bid βssi consists of a robot ri, a task t, and a cost bλ. In an
SSC auction the structure of a bid remains the same, with the exception that t is replaced
by Cj (as defined in Section 3.1.2). For winner determination, we have a set of bids B
and the value of each bλ is compared in the same manner in both auction frameworks and
the number of bids |B| does not change. Therefore the winner determination time does
not change.

Additionally, SSC winner determination time is much faster than SSI with bundles.
This is because in SSI with bundles each bid must include bλ for each combination of the
l tasks that is being bid on. To determine the winner in SSI with bundles each bλ for each
combination needs to be compared to all other bids and combinations.

Finally, when clusters enforce positive synergies between tasks the resultant team cost
in an SSC auction is less than in an SSI auction. In the previous chapter, we analysed
Exploration Task 4 (Koenig et al. [56]), a simple example MRTA problem in which SSI
auctions fail to generate an optimal solution (Section 2.4.4). Now let’s consider the same
problem with an SSC auction with two clusters (Figure 3.2). First, we define two clusters:
C1 = {t1, t3} and C2 = {t2, t4}. Table 3.1 shows the bids for each cluster in each auction
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3.1. Sequential Auctions with Clusters

round of an SSC auction for this example. During the first round of bidding both robots
submits bids for cluster C2 and by simple tie breaking this is awarded to robot r1. During
the second round of bidding robot r1 must calculate new bids for the remaining cluster C1

taking into consideration the tasks t2 and t4 that it won during the first round. Meanwhile,
robot r2 submits its previous cached alternative bid for cluster C1, and subsequently wins
the auction with the lowest bid. The overall total distance sum is

∑
ri∈R λri(Tri) = 15

which is the optimal solution to this problem. However, we should note that if a cluster
fails to employ synergies correctly, e.g. if C1 = {t1, t4} and C2 = {t2, t3}, SSC auctions
may result in team costs that are worse than SSI auctions.

3.1.6 Solution Bounds

We now consider the worst-case solution bounds for SSC auctions. As demonstrated in
the two theorems below the worst-case solution bounds for SSC auctions depends heavily
on the number of clusters k.

Theorem 3.4. When the number of clusters k is equal to the number of tasks |T | the

solution bounds are identical to SSI auctions.

Proof. In the situation of k = |T | each cluster will contain exactly one task. The SSC
auction therefore becomes identical to an SSI auction. Therefore, the solution bounds for
SSI auctions hold.

Theorem 3.5. When the number of clusters k = 1 the worst-case solution may be arbi-

trarily large.

Proof. When k = 1 all tasks will be in only one cluster, there will only be one auction
round and only one robot will be assigned all tasks. If the distance between any two tasks
is arbitrarily large (e.g. λ(t1, t2) in Fig 3.3), the overall solution cost will be arbitrarily
large.

r1 t1

λ(t1, t2) =∞

t2 t3 r2. . .

Figure 3.3: Example of cluster formation with high inter-task costs.
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Chapter 3. Sequential Single-Cluster Auctions

Furthermore for any value of k < |T | the worst-case solution may be arbitrarily bad
if the clustering algorithm fails to correctly consider positive inter-task synergies [102].
Consider the formation of two clusters for the three tasks in the example in Fig 3.3. A
good set of clusters would be C1 = {t1} and C2 = {t2, t3} as this leads to the optimal
solution. However, if the clustering algorithm formed the clusters C1 = {t1, t2} and
C2 = {t3}, the solution would be arbitrarily bad. Additionally, it is important to stress
that actual bounds on the distances between tasks during cluster formation is dependent
on the specifics of the algorithm used for clustering. This is explored in some further
detail in the following chapter.

In these two theorems we have considered the bounds at the two extreme values of k at
which either the benefits of clustering previously unexplored inter-task synergies (large k)
or robot-task synergies through auctions (small k) are neglected. Although these bounds
suggest that any value of k smaller than the number of tasks may result in worse solutions
to MRTA problems than SSI auctions, we stress that these are worst-case bounds and other
SSI-like auction extensions also have bounds that are worse than standard SSI auctions
but experimentally perform better [138, 57, 58].

3.1.7 Experiment Setup

To experimentally evaluate SSC auctions we use the Java Agent Development Framework
(JADE) [4] to model autonomous robots and interface with the Player/Stage Project [42]
to simulate a near realistic robotic environment. Using this setup we model an office-
like environment with 16 rooms each containing four interconnecting doors that can be
independently opened or closed to allow or restrict travel between rooms (Figure 3.4).
This environment has become the standard testbed in recent literature [122, 138, 57, 58,
136, 81, 137]. Each robot is supplied with a map of the environment at a resolution of
510x510 grid units. Each grid unit is representative of a 5cm by 5cm area of space and
gives an overall simulated space of 25.5m by 25.5m.

In each experiment, the doors between different rooms and the hallway are either open
or closed. We test on 25 randomly generated configurations of opened and closed doors
with each robot starting in a different random location. Robots can only travel between
rooms through open doors and they cannot open or close doors. However, it is guaranteed
there is at least one path between each room and every other room. These constraints
reduce the number of possible configurations from 240 to a maximum of 226 permutations,
which additionally allow us to focus on the quality of the bidding algorithm in a consistent
environment. Without the constraints it is possible for configurations to be produced
with areas that robots are unable to traverse, for instance, tasks inside completely closed
rooms. Furthermore, if robots were able to open and close doors without penalty this
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3.1. Sequential Auctions with Clusters

Figure 3.4: A simulation of robots operating in an office-like environment (cf. [122]).

would simplify the world to only one configuration, and with penalties could produce
additional unnecessary complexities in solving the problem.

For bidding and path planning, robots use the cheapest-insertion and two-opt [16]
heuristics to quickly calculate costs between tasks. Furthermore, in each experiment
robots are set a fixed task capacity constraint of the ratio of the number of tasks to the
number of robots (|Tri | ≤

|T |
|R| ). The purpose of this capacity constraint is to ensure robots

are allocated a fair balance of tasks. Robots stop being allocated additional tasks once
these capacities are met. For each configuration we test with |R| ∈ {2, 4, 6, 8, 10} and
|T | ∈ {6, . . . , 60}.

We use standard K-means clustering [69] to quickly create clusters of geographically
close tasks, which generally have high inter-task synergies, to be auctioned. It is important
to note that K-means clustering does not take into account walls and closed doors. This
means that it is possible for tasks to be clustered together that may have a large naviga-
tional distance between them (low inter-task synergy). However, this approach provides
a good representation of a real-world environment where it would be extremely complex
to always create an optimal or ideal grouping of tasks (this is explored more in the fol-
lowing chapter). For our experiments we test two different total numbers of task clusters.
Our first experiment uses a cluster count of half the number of tasks k = 1

2
|T |, giving an

average of two tasks per cluster. Our second experiment uses a cluster count of two-thirds
the number of tasks k = 2

3
|T |. This gives an average of 1.5 tasks per cluster providing a

balance between isolated single tasks and groups of close tasks.

To compare the effectiveness of SSC auctions we also run parallel, SSI, and SSI with
bundles auctions on the same 25 configurations. For SSI with bundles we test lbundles = 2

and lbundles = 3 with a non-cautious auctioneer, that is, all lbundles tasks are allocated in
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each round. Furthermore, we test hard and soft capacity constraints for SSI with bundles.
Hard capacity constraints ensure that all robots are allocated exactly their capacity of
tasks. Soft capacity constraints allow robots to go slightly over their capacity, provided
they are under their capacity before the round winner determination and allocation. This
comparison of capacity constraints is necessary because SSC auctions can only operate
with soft capacity constraints as all tasks in a cluster must be allocated to a single robot
and there is no guarantee that the number of tasks in each cluster will be evenly balanced.

3.1.8 Results

MiniMax

We begin our analysis of the MiniMax team objective by considering the mean results pre-
sented in Table 3.2. We observe that SSC auctions produce a lower mean MiniMax result
than SSI auctions in all robot/task combinations when the number of robots is greater than
two. Overall there is a mean maximum distance reduction of 12.3% when the number of
clusters k = 1

2
|T | and a reduction of 11.4% when the number of clusters k = 2

3
|T |. If we

exclude the experiments with only two robots, the mean improvement increases to 15.0%
for k = 1

2
|T | and 13.6% for k = 2

3
|T |. Despite k = 1

2
|T | having an overall larger mean

improvement, we note that, k = 1
2
|T | does not result in lower mean MiniMax distances

than k = 2
3
|T | in all robot/task combinations.

In considering the results for SSI auctions with bundles we observe an overall mean
improvement against standard SSI auctions for both bundle sizes and capacity constraints
tested. For bundles with hard capacity constraints there was 1.4% improvement for
lbundles = 2 and 0.6% for lbundles = 3. When we exclude the experiments with only two
robots lbundles = 2 improves further to 2.1%, however, lbundles = 3 marginally decreases
to 0.5%. If we relax the capacity constraints to soft limits the improvement for k = 2

increases to 7.7% and 10.5% for lbundles = 3. Again excluding the two robot experiments
lbundles = 2 further increases to 9.2% and again lbundles = 3 decreases to 9.9%. Interestingly
auctions where lbundles = 3 which consider more robot/task combinations do not always
result in lower results than auctions where lbundles = 2. This result, however, is consis-
tent with Koenig et al. prior results for SSI auctions with bundles where a non-cautious
auctioneer has been used [57].

We now compare the relative improvements made by both SSC and SSI with bundle
auctions over standard SSI auctions. In considering overall means, one can conclude that
SSC has a small advantage over SSI with bundles and soft capacities. Meanwhile, SSC
with bundles and hard capacities does not offer much improvement at all over standard
SSI auctions. This result is not entirely surprising as the tighter capacity constraints mean
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3.1. Sequential Auctions with Clusters

less inter-task synergy is permitted.
To further compare the differences in the behaviour of SSC and SSI with bundles we

plot the relative improvement against standard SSI auctions for each controlled dimension
(Figures 3.5, 3.6, and 3.7). In considering the effect of the number of robots on the
relative improvement (Figure 3.5) SSC auctions show an increasing improvement as the
number of robots increases, whereas, SSI with bundles do not show any trend regardless
of capacity constraint type. SSC auctions also show an increasing improvement when
compared to the number of tasks (Figure 3.6), again SSI with bundles show no clear
trend. Finally, we plot each auction type against the size of each robot’s capacity (Figure
3.7). In these plots none of the auction types show any trend or effect caused by the
capacity constraint on their relative results.
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MiniSum

The mean results of the MiniSum team objective is shown in Table 3.3. Overall SSC
outperforms SSI auctions in every robot task combination except in the combination
|R| = 2, |T | = 10. For k = 1

2
|T | the mean improvement over SSI auctions is 12.4%

and, excluding the results for only two robots, the improvement increases to 13.4%. For
k = 2

3
|T | the mean improvement over SSI auctions is 8.2% and again, excluding the re-

sults for only two robots, the improvement also increases to 8.8%. It is interesting to note
that, unlike the results for the MiniMax team objective, in every robot/task combination
where there is more than two robots k = 1

2
|T | has a larger improvement than k = 2

3
|T |.

The results for SSI with bundles also differ substantially from the corresponding Min-
iMax team objective results. Considering SSI with bundles where lbundles = 2 both the
hard and soft capacity constraints result in overall means that are worse than standard SSI
auctions. For SSI with bundles where lbundles = 3 the overall percentage improvement
compared to standard SSI exceeded that of the MiniMax team objective results. Further-
more, the mean results for lbundles = 3 with soft capacities sit between the results of the
two sets of SSC results.

Figures 3.8, 3.9, and 3.10 plot the comparison between standard SSI, SSC, and SSI
with bundles for the three controlled dimensions. Considering the effect the number of
robots has on the improvement compared to standard SSI (Figure 3.8), SSC appears to
have a small increasing improvement as the number of robots increases, however, this is
much less than the results for the MiniMax team objective. Meanwhile, SSI with bundles
do not appear to be influenced by the number of robots. The comparison against the num-
ber of tasks (Figure 3.9) does not show any clear trend for SSC auctions. SSI with bundles
produces results with high variance, however. Despite this it appears that when the hard
capacity constraint is applied, the improvement against standard SSI auctions decreases
as the number of tasks increases. Finally the comparison against capacity (Figure 3.10)
appears to show no trend for SSC auctions and a decreasing trend for SSI auctions with
bundles.
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3.1. Sequential Auctions with Clusters

Computational Time

Table 3.4 shows the mean time to run auctions and allocate all tasks for each robot/task
combination. These results are from a system with a 2.8GHz Intel Core i7 CPU, 8GB
RAM, running Ubuntu 11.04 x64. For all auctions except SSC we begin timing when
the robots are informed of the tasks to bid on and stop timing when all tasks have been
allocated. For the SSC auctions we begin timing when the clustering algorithm begins
and stop when all tasks have been allocated.

Parallel auctions are always the quickest auction to finish, however, they produce the
most sub-optimal distance results. Standard SSI auctions are on average around five times
slower than parallel auctions. SSC auctions run in near identical time to SSI auctions. This
is an important point because SSC auctions need to generate the task clusters before auc-
tions can begin which can take considerable time. However, once the auctioning phases
begin they are quicker than SSI auctions because they have fewer auction rounds. This
result validates our properties from Section 3.1.5 and analysing both the mean distance
results and the timing results empirically demonstrates that SSC auctions can result in
a lower team objective distance in a similar time to SSI auctions. Finally, SSI auctions
with bundles perform nearly twice as slow as SSI and SSC auctions and almost ten times
slower than parallel auctions.
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3.2. Repeated SSC auctions with Dynamic Task Clusters

3.2 Repeated SSC auctions with Dynamic Task Clusters

The auction algorithm we have described so far is a non-optimal one-shot task allocation
auction algorithm and suffers from the problems of greedy initial bias and local minima as
previously described in Section 2.4.6. Previously studied approaches for improving this
is to repeatedly auction and redistribute tasks that are not completed either at certain time
intervals or upon each single task completion [25, 81] . The benefits of this are two-fold:

1) it is hoped that robots will gradually improve the quality of their solution; and
2) any unexpected failures or delay in the execution of the current allocation can be

addressed through reallocation.

In this section we apply the ideas of repeated auctions of uncompleted tasks to SSC
auctions. Our approach is, upon completion of a single task, all robots create new clusters
of their uncompleted tasks and auction these task clusters. This allows inter-task syner-
gies that were not previously explored to be considered and as a result the new allocation
may alter the team cost. During the repeated auction process any robot which is actively
travelling towards a task continue to do so. This enables the reallocation of uncompleted
tasks to occur in parallel with active task completion. This approach differs from previous
work on repeated auctions in that the dynamic generation of differing task cluster mem-
berships explores different synergies where previous work has, due to static task costs,
modified the team objective.

3.2.1 Algorithm Description

We now describe our procedure for repeated auctions of task clusters upon individual task
completion. We make the same assumptions as our previous algorithm (Section 3.1.4)
with the additional rule that auctions are run sequentially, that is, if an auction is running
after the completion of a task and a second robot completes a task, the auction generated
by the second task completion does not begin until after the first auction is complete. We
also make the assumption that auctions complete as quickly as possible and the time to
complete tasks is much greater than the time to run an auction to reallocate tasks.

Our algorithm operates as follows: when a robot completes a task it signals to all other
robots that an auction for the redistribution of tasks is to begin. All robots then create
clusters of the uncompleted tasks they are currently allocated, and inform all other robots
of these clusters, excluding the cluster containing the task they are currently completing.
The robots then all run an SSC auction on these clusters. After all clusters have been
distributed via the auction each robot replans its path based on its new allocation of tasks.
While the auction runs each robot continues to complete its current task.
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Chapter 3. Sequential Single-Cluster Auctions

The algorithm that each robot executes is presented in Figure 3.11. All robots are
assigned an initial allocation of tasks and a clustering factor which is used to calculate
the number of task clusters required. The algorithm runs on all robots until all tasks are
completed. Initially each robot plans a path to complete all allocated tasks (Line 1). Each
robot then drives to the first task in its path and in parallel listens for a signal to begin
an auction (Line 4). However, if a robot has no tasks currently allocated to it then it just
listens for the signal to begin an auction (Line 7).

The function DriveToTask (Lines 8-13) controls the movement of the robot towards
its current task and signals the start of an auction on arrival at the task. The robot will
continue travelling towards its current task until it reaches it (Lines 8-9). Once the robot
arrives at its current task it will signal all robots to begin an auction and wait until the
auction is complete (Lines 10-11). Upon completion of the auction the robot will remove
its current task from its set of tasks to complete (Lines 12-13). The function then returns,

function RepeatedSSCAuctions (T , ri, R, Fri , CF)
Input: T : the set of Tasks to be completed

ri: the robot
R: the set of robots
Fri : the set of completed tasks
CF: the factor of clusters to tasks

Output: T = ∅: All tasks completed
1: PTri ←MinimisePath(Tri)
2: while (T 6= ∅)
3: if (Tri 6= ∅)
4: DriveToTask(t0 ∈ PTri , ri, R, Fri) |

Tri ←ListenForAuction(t0 ∈ PTri , Tri , R, CF)
5: PTri ←MinimisePath(Tri)
6: else
7: Tri ←ListenForAuction(t0 ∈ PTri , Tri , R, CF)

function DriveToTask (t, ri, R, Fri)
Input: t: the task to be completed

ri: the robot
R: the set of robots
Fri : the set of completed tasks

Output: ril = tl: The robot ri located at task t
8: while (ril 6= tl)
9: Robot ri moves towards task t

10: Signal all robots rj ∈ R to begin auction
11: Wait for auction to finish
12: Fri ← Fri ∪ {t}
13: Tri ← Tri\{t}

Figure 3.11: Algorithm for Repeated Auctions with Dynamic Clustering.
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3.2. Repeated SSC auctions with Dynamic Task Clusters

function ListenForAuction (t, Tri , ri, R, CF)
Input: t: the currently initialised task

Tri : the set of Tasks allocated to the robot
ri: the robot
R: the set of robots
CF: the factor of clusters to tasks

Output: Tri : the set of Tasks allocated to the robot
14: Wait for signal to begin auction
15: Kri ← Clustering(k ← CF ∗ |Tri |, Tri)
16: Uri ← Kri\{Ct ∈ Kri}
17: Send(Uri , R) | U ←

⋃
1≤j≤|R|

Receive(Urj , R)

18: if (U 6= ∅)
19: Kri ← SSC-Auction(U , Kri , ri, R)
20: Tri ← {t ∈ C|C ∈ Kri}
21: if (ril = tl)
22: Signal Auction Finished
23: else if (Tri 6= ∅)
24: ListenForAuction(t, Tri , ri, R, CF)

Figure 3.12: Algorithm for Repeated Auctions with Dynamic Clustering (cont.).

the robot replans its path to travel to complete its remaining tasks (Line 5), and if the robot
still has tasks to complete it will begin travelling to the next task.

The function ListenForAuction (Lines 14-24) sets up and controls the SSC auction
for reallocating the assigned tasks. Upon the signalling of an auction each robot forms
clusters of tasks (Line 14). To determine k in each auction we multiply the constant
cluster factor CF by the number of currently allocated tasks. The constant cluster factor
is a value between 0 and 1 and describes the ratio of tasks to clusters. In our experiments
we typically use values of 1

2
and 2

3
for CF. This gives us an average of 2 tasks/cluster and

1.5 tasks/cluster respectively. After the formation of the task clusters the robot removes
the cluster containing its currently initialised task (Line 16). Here Ct refers to the cluster
that contains task t. This subset forms the robot’s contribution to the set of clusters for
auction which is sent to all robots. In parallel the robot receives a set of clusters from all
other robots. These sets are merged to form the complete set of all clusters for auction
(Line 17). If there are clusters for auction, all robots run the SSC auction algorithm
simultaneously (Line 19). The robot then resets its allocated tasks with all tasks in the
post-auction cluster set (Line 20). Finally, the robot that signalled the start of the auction
signals the end of the auction (Line 22) and other robots with tasks to complete listen for
the next auction (Line 24).
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Chapter 3. Sequential Single-Cluster Auctions

3.2.2 A Simple Example

Figure 3.13 provides an example of an auction using our algorithm with the MiniMax
team objective. We have four robots and 24 tasks. Each robot has an initial allocation
of tasks such that: Tr1 = {t1, . . . , t6}, Tr2 = {t7, . . . , t12}, Tr3 = {t13, . . . , t18} and
Tr4 = {t19, . . . , t24} (Figure 3.12a). All robots then move towards their first task. Robot
r1 signals the start of an auction after arriving at task t1. At this point r2 is approaching
t10, r3 is approaching t15, and r4 is approaching t24. Each robot with CF = 1

2
then

uses a clustering algorithm to allocate its tasks into three task clusters (Figure 3.12b).
All robots then remove the cluster containing their currently initialised task and exchange
their remaining clusters with all robots to form the clusters for auction U = {C1, . . . , C8}.
The SSC auction then begins (Figure 3.12c). During the first four bidding rounds C2 is
allocated to r1, C3 is allocated to r2, C6 is allocated to r3, and C7 is allocated to r4.
The next four bidding rounds allocate the remaining clusters. C5 is allocated to r1, C1

is allocated to r2, C8 is allocated to r3, and C4 is allocated to r4. The complete new
allocation is shown in Figure 3.12d.

3.2.3 Communication Costs

For repeated SSC auctions with dynamic clusters the number of messages exchanged in
each auction round is |R|2 as previously defined in Section 3.1.5. At the beginning of
each auction all robots have to exchange their clusters to be auctioned. As such, there is
an additional |R|2 number of messages exchanged. There are then |U | rounds per auction.
Therefore in total there are (1+ |U |)∗ |R|2 messages per auction and there are at most |T |
auctions one for each task completion. We can conclude that for repeated SSC auctions
with dynamic clusters there are much greater communication requirements than auctions
that only assign tasks once.

3.2.4 Experimental Setup

We test our algorithm on the same scenario as our previous experiments. For each config-
uration we test with |R| ∈ {4, 6, 8, 10}, |T | ∈ {16, . . . , 60}, and provide results for both
the MiniMax and MiniSum team objectives. Each experiment configuration is tested with
two different initial task allocations: SSC auctions with k = 1

2
|T | and k = 2

3
|T |. Each

of these initial allocations produces a differing task to robot assignment and therefore dif-
ferent initial paths and costs. These initial path costs are included in our results (Tables
3.5 and 3.6) and provide reference for how much repeated auctions improve the overall
team objective. We also test each experimental configuration with two different clustering
factors for calculating the number of clusters required, CF = 1

2
and CF = 2

3
.
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r1 r2

r3 r4
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a: Initial Allocations.
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b: Cluster Formation.
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c: Cluster Auction.
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d: New Allocation.

Figure 3.13: Example of a repeated SSC auction lowering the team costs (dashed lines
show approximate task allocation boundaries, solid ellipses show clusters).

Capacity Constraints

In each experiment, robots are set a fixed maximum total task fulfilment capacity con-
straint of double the number of tasks divided by the number of robots:

|Tri ∪ Fri | ≤ 2 ∗ |T |
|R|

These capacity constraints are twice the size of the capacity constraints in our earlier ex-
periments. However, this is necessary due to the design and application of the constraint
in the algorithm. Previously, hard and soft capacities dictated how strictly the capacity
constraint was applied. Furthermore, due to clusters having varying numbers of tasks,
SSC auctions could only operate with soft capacity constraints. With repeated auctions of
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Chapter 3. Sequential Single-Cluster Auctions

dynamically formed clusters we can, over time, increase the strictness of the application
of the capacity constraint. This is due to the number of items in each cluster decreasing to
1 as the number of uncompleted tasks decreases. As a result of this, when the number of
tasks is high, robots will be allocated tasks that may cause them to exceed their capacity
constraints. Then, throughout task completion, as task clusters are reformed and uncom-
pleted tasks redistributed, the number of tasks completed by each robot can be limited to
exactly its capacity constraint.

3.2.5 Results

MiniMax

Table 3.5 shows the mean results for the MiniMax team objective. Repeated auctions
improved on the initial task allocations in all robot/task combinations. Generally, the
largest improvements occurred when the initial task allocation had been generated by
k = 1

2
|T |. However, the initial set of allocations generated by k = 1

2
|T | also had higher

initial costs than those generated by k = 2
3
|T |. Repeated auctions with clusters generated

by a clustering factor of CF = 2
3

also generally produced improvements greater than
those generated by CF = 1

2
. This is particularly apparent in comparing the results where

the initial allocation was generated by k = 1
2
|T | and improved by CF = 2

3
to those

initially generated by k = 2
3
|T | and improved by CF = 1

2
. Despite the higher initial costs

generated by k = 1
2
|T | after the repeated auctions with CF = 2

3
, the average final cost

was lower than those that had begun with a lower initial cost and improved by CF = 1
2
.

Finally, unlike the original experimental results for SSC auctions there does not appear to
be any trends that the size of the improvement is proportional to the number of tasks or
robots.

MiniSum

The mean results for the MiniSum team objective are presented in Table 3.6. In these
results, repeated auctions also improved on the initial task allocations in all robot/task
combinations. However, the size of the improvement is much smaller than those of the
MiniMax team objective. Again, the initial cost generated by k = 1

2
|T | is larger than

that generated by k = 2
3
|T |. This result is a direct reversal of the earlier MiniSum team

objective results in which k = 2
3
|T | generated higher costs than k = 1

2
|T |. We suspect that

the reversal of this pattern is due to the larger capacity constraint in this set of experiments.
In the earlier experiments, robots gained a greater benefit by slightly exceeding the soft
capacity constraint, whereas with a larger capacity constraint not all robots will exceed it
and therefore the corresponding benefit is less. As a result, the size of the improvement in
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3.3. Summary

final cost compared to initial cost for k = 1
2
|T | is double the improvement where initial

costs are generated by k = 2
3
|T |. Unlike the MiniMax team objective results there is

no clear advantage of either clustering factor outperforming the other. There is also no
indication that the size of the improvement is dependent on the number of tasks or robots.

3.3 Summary

In this chapter we have shown the benefits of SSC auctions as an alternative to SSI auc-
tions for the allocation of tasks to robots. We developed the theoretical foundations of
SSC auctions and outlined their unique behavioural properties. Using the standard multi-
robot routing testbed we demonstrated empirically that SSC auctions can produce smaller
team objective results than SSI auctions. We also compared these results to another ex-
tension of SSI-like auctions, SSI auctions with bundles, and showed that SSC auctions
perform much quicker.

Our second set of experiments focused on improving the solution to the task alloca-
tion problem as robots completed their tasks. This algorithm uses repeated auctions to
reallocate uncompleted tasks among robots as individual tasks are completed. The results
of our empirical experiments demonstrate this algorithm ensures a better final allocation
of tasks to robots than algorithms that only allocate tasks once.

These results give us scope for further investigation into the use of task clustering in
auctions for robot task allocation. In the next chapter we investigate the properties and
techniques of cluster formation and the impact of differing cluster formation techniques
on multi-robot task allocation. In the following chapter we extend SSC auctions to operate
in dynamic environments where tasks are dynamically inserted into the running system.
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Chapter 4

Cluster Formation Techniques for SSC Auctions

In the previous chapter we developed SSC auctions for solving MRTA problems and
demonstrated their benefits using K-means clustering. In this chapter we use SSC auc-
tions to compare centroid-based clustering (e.g. K-means) with agglomerative clustering.
We also consider the differences between straight line distance (SLD) and true path dis-

tance (TPD) (which takes into consideration obstacles between tasks) as cost metrics in
cluster formation. Overall, our empirical results show agglomerative clustering with a
TPD metric when used in SSC auctions produces low cost solutions to MRTA problems.
Additionally, our analysis of the time required to form clusters shows that using a TPD
metric is around 100 times slower than using straight line distances.

This chapter is structured as follows. First, we provide an algorithm for, and an exam-
ple of, each clustering technique (Section 4.1). Next, we consider the time required for
each clustering algorithm to complete (Section 4.2). We then report our empirical results
for each clustering technique when used in SSC auctions for task allocation (Section 4.3),
and also consider the effects of a priority allocation of clusters based upon the number
of items in individual clusters (Section 4.4). We conclude with a discussion of additional
questions raised in the experimental results (Section 4.5).

4.1 Clustering Techniques

We now consider two different models of cluster formation. In centroid-based clustering
each task is assigned to a single cluster based on the task’s proximity to the central vector
of the cluster. During the formation of clusters, tasks transfer between clusters which in
turn, may cause the central vector of each cluster to change, and this process continues
until an equilibrium is found where no tasks move. For instance, in K-means clustering, a
cluster’s centre of mass is its central vector and in K-medoids clustering individual tasks

Portions of the research in this chapter have been published in Analysis of Cluster Formation
Techniques for Multi-Robot Task Allocation using Sequential Single-Cluster Auctions (AI-12).
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function Centroid (T ,k)
Input: T : the set of tasks to be clustered

k: the number of clusters to form
Output: K: the set of clusters

1: V ← InitialiseCentralVectors(T ,k);
2: while cluster memberships have changed
3: /* Task Cluster Assignment Stage */
4: for each task t ∈ T
5: λtvj ←∞;
6: for each central vector vi ∈ V
7: λtvi ←CalcDistance(t,vi);
8: λtvj ← min (λtvj , λ

t
vi);

9: Cvj ← Cvj ∪ {t};
10: /* Update Central Vectors Stage */
11: for each cluster C ∈ K
12: VC ←CalcCentralVector(C);

Figure 4.1: Algorithm for Centroid-based Clustering.

are the central vectors. In agglomerative clustering pairs of clusters are recursively merged
according to certain linkage criteria, of which single linkage and complete linkage are two
common linkage criteria. Single linkage clustering combines two clusters according to the
minimum cost between any one task and any other task in a different cluster. Complete
linkage clustering merges clusters by minimising the maximum cost between any one task
and any other task in a different cluster.

Each clustering technique uses a cost metric to calculate the distance between tasks
and clusters. In this analysis we consider the differences between two common metrics.
The first metric, SLD, uses simple straight line Euclidean distances between two points.
Although this metric requires few computations it fails to consider obstacles between
these points (e.g. closed doors and walls). As an alternative, the TPD metric measures
the actual cost required for a robot to travel between two points taking into consideration
walls and other known obstacles. To calculate the TPD metric we require an occupancy
grid map or similar data structure describing the operating environment and an algorithm
to find a path from one point in this environment to another. As a result, the calculation
of the TPD metric is much slower in comparison to the SLD metric.

4.1.1 Centroid-based Clustering

We present a metric-independent centroid-based clustering algorithm in Figure 4.1. Be-
fore the main loop of the algorithm begins, the initial central vectors of all clusters must be
selected (Line 1). A common approach for this is to randomly select k tasks from the set
of data to be clustered and then use each of these as initial central vectors. The algorithm
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4.1. Clustering Techniques

function CalcCentralVector(C)
Input: C: the cluster
Output: Vc: the central vector of this cluster

1: x← 0
2: y ← 0
3: for each task t ∈ C
4: x← x+ tx
5: y ← y + ty
6: Vcx ← x

|C|
7: Vcy ← y

|C|

Figure 4.2: Algorithm for K-means
clustering.

t1 t2 t3

t4

a: Initial Cluster Centres.

t1 t2 t3

t4

b: Stable Cluster Centres.

Figure 4.3: Formation of three clusters of
four tasks using K-means clustering with a
straight line distance metric.

then alternates between two stages until the membership of all clusters is stable. During
the task cluster assignment stage (Lines 3 - 9) every task is considered independently.
The distance between the task and every cluster’s central vector is calculated and the task
is reassigned from its current cluster to the cluster with the minimum distance to itself.
During the update central vectors stage (Lines 10 - 12) the central vector of each cluster
is recalculated to reflect the changes in the membership of each cluster. The algorithm
then repeats until no task moves between clusters.

K-means Clustering

K-means clustering is a very common form of centroid-based clustering where the central
vector of each cluster is the centre of mass of the locations of each individual item in
the cluster [69]. We give an algorithm for calculating the central vector of each cluster in
Figure 4.2 and give a simple example of clustering using the K-means algorithm in Figure
4.3. In this example we use a SLD metric to calculate the cost from each individual task to
the central vectors of each cluster. Using Pythagoras’ theorem each distance calculation is
computationally small even if there are many changes in the central vectors of clusters. In
contrast, if we apply a TPD metric in the cost calculation, that considers obstacles such as
walls and doors in a map, the cost calculations require much more computation which we
explore in further detail in Section 4.2. Overall, K-means clustering effectively partitions
a set of tasks into a Voronoi diagram with non-overlapping partitions.
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K-medoids Clustering

K-medoids clustering is a modification of K-means clustering such that the central vec-
tor of the cluster must be a member item of the cluster [90]. This approach works on
minimising the pairwise distances between items in each cluster as opposed to forming
clusters around arbitrary points in free space. We present an algorithm for calculating the
central vector of a cluster as a K-medoid in Figure 4.4. In this algorithm we first calculate
the cost of items in the cluster relative to the current medoid (Lines 1-5). We then calcu-
late the costs using every other item in the cluster as a possible medoid (Lines 5-14). If
an alternative item in the cluster has a lower total cost to all other items in the cluster than
the current medoid, then it becomes the new medoid for the cluster (Lines 15-16). We
note that each iteration of the K-medoids algorithm requires calculations of the distances
between each task and every other task in a cluster for updating each cluster’s medoid.
As such, in problems where an equilibrium is found in few iterations, standard K-means
clustering is likely to be much faster than K-medoids. However, if we cache the inter-
task distance calculations, in problems that take many iterations to find an equilibrium,
K-medoids can be faster than K-means.

function CalcCentralVector(C, Vc)
Input: C: the cluster

Vc: the current central vector of this cluster
Output: Vc: the central vector of this cluster

1: /* Current Medoid Cost Calculation */
2: λVc ← 0
3: for each task t ∈ C
4: λVc ← λVc+calcDistance(Vc, t)
5: /* Replacement Medoid Cost Calculation */
6: λnew ←∞
7: Vnew ← ∅
8: for each task ti ∈ C
9: λti ← 0

10: for each task tj ∈ C
11: λti ← λti+calcDistance(ti, tj)
12: if (λti < λnew)
13: λnew ← λti
14: Vnew ← ti
15: if (λnew < λVc)
16: Vc ← Vnew

Figure 4.4: Algorithm for K-medoids Clustering.
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function Agglomerative (T ,k)
Input: T : the set of tasks to be clustered

k: the number of clusters to form
Output: K: the set of clusters

1: K ← ∅;
2: for each task ti ∈ T
3: Ci ← {ti};
4: K ← K ∪ Ci;
5: while |K| > k
6: λCa

Cb
←∞;

7: for each cluster Ci ∈ K
8: for each cluster Cj ∈ K\Ci
9: λCi

Cj
←CalcLinkage(Ci,Cj);

10: λCa
Cb
← min(λCa

Cb
, λCi

Cj
)

11: Cmerged ← Ca ∪ Cb;
12: K ← K ∪ {Cmerged};
13: K ← K\{Ca,Cb};

Figure 4.5: Algorithm for
Agglomerative Clustering.

t1 t2 t3

t4

a: Initial Clusters.

t1 t2 t3

t4

b: Final Merged Clusters.

Figure 4.6: Formation of three clusters of
four tasks using agglomerative clustering
with a true path distance metric.

4.1.2 Agglomerative Clustering

We now consider agglomerative clustering which runs in exactly k iterations and, unlike
centroid-based clustering, once any two tasks are paired together they are never unpaired.
In Figure 4.5 we present an algorithm to perform agglomerative clustering and give an
example cluster formation with a TPD metric in Figure 4.6. The algorithm begins with
each task being assigned to a cluster containing only itself (Lines 1 - 4) (Figure 4.6a).
Clusters are then repeatedly merged until the number of clusters is equal to k (Lines 5 -
13) (Figure 4.6b). To merge clusters we calculate the distance between every individual
task in each cluster and every task in every other cluster (Lines 7 - 10). The linkage cost
calculation (Line 9) is a key component of agglomerative clustering as it determines the
relative cost of merging two existing clusters together. The two clusters containing the
two tasks with the minimum linkage distance between them are merged (Lines 11 - 13).
The algorithm then repeats until there are k clusters.

We now detail two common linkage criteria:

Single Linkage Clustering

Single linkage clustering merges clusters according to the minimum cost between any one
task and any other task in a different cluster [112]. The linkage cost calculation function
for this type of clustering is given in Figure 4.7. In this function the distance between
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function CalcLinkage(Ci,Cj)
Input: Ci: a cluster of tasks

Cj : a second cluster of tasks
Output: λCi

Cj
: the linkage cost

1: λCi
Cj
←∞;

2: for each task ti ∈ Ci
3: for each task tj ∈ Cj
4: λtitj ←CalcDistance(ti,tj);

5: if λtitj < λCi
Cj

then
6: λCi

Cj
← λtitj ;

Figure 4.7: Algorithm for Single
Linkage Criteria.

t1 t2 t3

t4

Figure 4.8: Formation of two clusters of four
tasks using single linkage clustering with a
true path distance metric.

every task in one cluster is calculated to every task in another cluster. The minimum
distance between any two tasks in different clusters becomes the linkage cost.

We now extend the previous example given in Figure 4.6 and lower the number of
clusters required to two. Using single linkage clustering as the linkage criteria, the first
merge from four clusters (Figure 4.6a) to three clusters (Figure 4.6b) remains the same.
To now merge from three clusters to two, we calculate the linkage cost from each cluster
to every other cluster. Using a TPD metric, in this example, the costs for each merge are:

λ
{t1,t2}
{t3} = CalcDistance(t2,t3) = 4

λ
{t1,t2}
{t4} = CalcDistance(t2,t4) = 7

λ
{t3}
{t4} = CalcDistance(t3,t4) = 5

The lowest cost is to merge the clusters {t1, t2} and {t3} and the final two clusters are
shown in Figure 4.8.

This approach to cluster formation generates cluster shapes that are very different to
that of centroid-based clustering. Clusters generated by K-means and K-medoids clus-
tering never overlap and the tasks inside each cluster are all geographically near to each
other. However, in single linkage clustering, because the merging of two clusters depends
on the distance between any two closest tasks, the shapes formed are generally long nar-
row chains [78]. As a result, in our experiments, due to the differences in the approach
of these two algorithms, we expect vastly different task allocations to robots. In centroid-
based clustering we expect that each robot will be generally constrained to completing
tasks within an isolated area. In comparison, task clusters formed using single linkage
clustering are more likely to see robot paths crossing over each other.
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Complete Linkage Clustering

Complete linkage clustering connects clusters of tasks according to the highest cost from
any one task to any other task in a different cluster. Across the set of clusters the two clus-
ters with minimal high inter-task costs are merged. As a result, this approach generates
dense clusters of geographically close tasks which are similar in shape to that of K-means
clustering.

Figure 4.9 presents the linkage cost calculation function for complete linkage cluster-
ing. This function is nearly identical to the previous function for single linkage cluster-
ing, with the exception that the inequality to determine the cost between tasks (Line 5)
has been reversed so that the largest distance between any two tasks becomes the linkage
cost.

We again extend the previous example given in Figure 4.6 and lower the number of
clusters required to two. The first merge from four clusters (Figure 4.6a) to three clusters
(Figure 4.6b) remains the same and, using a TPD metric, the costs for the next merge are:

λ
{t1,t2}
{t3} = CalcDistance(t1,t3) = 7

λ
{t1,t2}
{t4} = CalcDistance(t1,t4) = 10

λ
{t3}
{t4} = CalcDistance(t3,t4) = 5

The lowest cost is to merge the clusters {t3} and {t4} and the final two clusters are shown
in Figure 4.10.

function CalcLinkage(Ci,Cj)
Input: Ci: a cluster of tasks

Cj : a second cluster of tasks
Output: λCi

Cj
: the linkage cost

1: λCi
Cj
← 0;

2: for each task ti ∈ Ci
3: for each task tj ∈ Cj
4: λtitj ←CalcDistance(ti,tj);

5: if λtitj > λCi
Cj

then
6: λCi

Cj
← λtitj ;

Figure 4.9: Algorithm for Complete
Linkage Criteria (difference between
Figure 4.7 highlighted in yellow).

t1 t2 t3

t4

Figure 4.10: Formation of two clusters of
four tasks using complete linkage clustering
with a true path distance metric.

79



Chapter 4. Cluster Formation Techniques for SSC Auctions

4.2 Cluster Formation Time Analysis

Minimising the time required to formulate clusters is crucial to efficiently finding good
solutions to MRTA problems. In centroid-based clustering, the time complexity for each
iteration isO(k|T |) and the calculation of each central vector isO(|C|) for K-means clus-
tering and O(|C|2) for K-medoids clustering. Additionally, the total number of possible
different cluster formations can be approximated by k|T |/k! [54] and, as such, the number
of iterations until a solution converges may be extremely large, unless a constraint on the
maximum number of iterations is applied. Further compounding this for K-means clus-
tering is that few distance calculations can be cached. In contrast, the time complexity for
agglomerative clustering is O(|T |2 log k) as the distance between every item and every
other item is calculated only once and only one possible cluster formation is generated
for any given number of clusters k [61].

The time to calculate the distance metric also needs to be accounted for. As previously
discussed in Section 4.1, the time required for calculation of the straight line Euclidean
distance between tasks is minimal compared to the time required to calculate the true
path distance between tasks taking into account obstacles. Furthermore, the total number
of path calculations required for agglomerative clustering and K-medoids clustering is
constrained by the number of tasks. Overall, generally speaking, agglomerative clustering
is quicker than centroid-based clustering, especially K-means clustering.

To empirically evaluate the real time requirements of each clustering algorithm we
simulate 25 office-like environments as previously described in Section 3.1.7. For each
configuration we test a wide range of total tasks to be clustered |T | ∈ {16, . . . , 60}. For
each task set we repeat the clustering process for two different values of k, k = 1

2
|T |

and k = 2
3
|T |. We use K-means clustering as our centroid-based clustering algorithm

with a maximum of 1,000 iterations for the SLD metric and 50 iterations for the TPD
metric. In most configurations tested K-means clustering achieves equilibrium before
these limits are reached. However, in a few configurations these limits were applied
and the much lower number of iterations for the TPD metric was required as the time
otherwise required for repeated cost calculations would heavily skew the results. For
agglomerative clustering we use single-linkage clustering as our linkage criteria. For the
calculation of the true path cost between tasks we perform an A* search on an occupancy
grid map of each office environment with the Euclidean line distance between the two
tasks used as an heuristic.
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4.2. Cluster Formation Time Analysis

Figure 4.11: Cluster Formation Time using a SLD Metric.

Figure 4.12: Cluster Formation Times using a TPD Metric.

The results of clustering using a SLD metric are plotted in Figure 4.11 and the results
of clustering using a TPD metric are plotted in Figure 4.12. These plots show that gen-
erally, as expected, agglomerative clustering completes quicker than K-means clustering.
However, when there are a large number of tasks and k = 1

2
|T | agglomerative clustering

takes a long period of time to complete. This is due to the large number of cluster merges
required when k is small. We note that K-means clustering does not suffer this problem
as the stabilisation of clusters is independent of the value of k. Finally, we also observe
that the use of a TPD metric causes both clustering algorithms to perform about 100 times
slower compared to the SLD metric.
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4.3 Empirical Analysis using SSC Auctions

We now test each clustering technique with SSC auctions to solve the multi-robot task
allocation problem for both the MiniMax and the MiniSum team objectives with a homo-
geneous mobile robot team of varying size |R| ∈ {4, 6, 8, 10}. In each of the 25 office
configurations robots are initially positioned in different random locations. Unlike our
experiments in the previous chapter robots are not limited by capacity constraints. The
removal of capacity constraints allows us to consider the full influence of each clustering
technique on the task allocation without the results being artificially restricted. We also
include standard SSI auctions without capacity constraints as a control variable. Finally,
we note that robots always bid with the true path cost for tasks. The SLD metric is only
used for cluster formation. We present the mean results of the maximum distance and the
summation of all distances travelled for the two team objectives in Tables 4.1, 4.2, 4.3 and
4.4.

4.3.1 MiniMax

The results for SSC auctions with robots bidding according to the MiniMax team objec-
tive are shown for clusters formed with k = 1

2
|T | in Table 4.1 and for clusters formed

with k = 2
3
|T | in Table 4.2. Both of these result tables show that, unsurprisingly, the use

of a TPD metric results in task allocations that have lower mean maximum robot travel
distances. For the SLD metric complete linkage clustering produces the best solutions and
K-medoids clustering performs the worst. When the TPD metric is applied the costs for
each clustering algorithm substantially improves. In particular, complete linkage cluster-
ing with k = 2

3
|T | on average produces lower costs than standard SSI auctions. We also

note, that as the number of robots increases the maximum distance travelled decreases
regardless of the cluster formation technique used. The results also show that when there
are more clusters (k = 2

3
|T |) the maximum distance travelled by the robots is the smallest.

These two observations contradict our results in the previous chapter (Table 3.2), in par-
ticular, previously the number of clusters was inconsequential to the results. We suspect
that this change in result is due to the removal of the capacity constraint.

Statistical Validity

To confirm the statistical validity of these results we perform non-parametric one-sided

Wilcoxon signed-rank tests for each robot/task/cluster combination. We choose this sta-
tistical test as we cannot make distribution assumptions due to the differences in robot
initial locations and the map configurations of opened and closed doors for each exper-
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4.3. Empirical Analysis using SSC Auctions

iment. We seek to confirm that the use of a TPD metric in cluster formation results in
lower final travel distances than clusters formed using a SLD metric. Our null hypothesis
is defined as:

H0 : µλTPD ≥ µλSLD

and our alternative hypothesis as:

H1 : µλTPD < µλSLD

As an aside, it is important to note that a sample size of 25 configurations is generally
considered small for significance testing. However, to draw conclusions across the full
set of experimental data we perform tests of significance independently for each of our 12
robot/task/cluster permutations and 4 clustering algorithms. We then discuss our results
for each clustering algorithm in the context of the results of these 12 significance tests.
This approach to significance testing has been used previously for comparisons of SSI-
like auction algorithms [120].

For K-means clustering with k = 1
2
|T | we get a significant result with confidence

greater than 0.95 that the costs generated with the TPD metric are lower than the SLD
metric for all robot/task/cluster combinations tested, except for configurations with 10
robots and 50 or 60 tasks. For K-means clustering with k = 2

3
|T | only half of our results

are significant. The most extreme situation of non-significance is our mean results for the
configuration of 4 robots, 24 tasks, and 16 clusters which has true path distances resulting
in a higher maximum distance travelled than the use of a SLD metric.

Using K-medoids clustering we get significant results for all but one robot/task/cluster
combination (6 robots, 24 tasks, 12 clusters), although, in both metrics K-medoids clus-
tering generated the most costly robot task allocations. We speculate that the cause of this
non-significant result is due to centroid-based clustering seeking to form non-overlapping
clusters of geographically close tasks, whereas robots, in seeking to minimise their path
travelled, may not confine themselves to local geographic areas.

Our results for agglomerative clustering have much stronger statistical significance.
Using single linkage criteria, all robot/task/cluster combinations (except 4 robots, 16
tasks, 11 clusters, k = 2

3
|T |) obtain confidence 0.97 and greater for both k = 1

2
|T |

and k = 2
3
|T |. Using complete linkage criteria we obtain confidence levels of at least

0.99 for k = 1
2
|T |. We obtain slightly weaker confidence levels of at least 0.95 for most

robot/task/cluster combinations with k = 2
3
|T |, and in two combinations (4 robots, 16

tasks, 11 clusters and 10 robots, 60 tasks, 40 clusters) our results are not significant.
Overall, we can conclude that using TPD metrics for cluster formation in SSC auctions
produces much better solutions to the multi-robot task allocation problem than straight
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Chapter 4. Cluster Formation Techniques for SSC Auctions

line distances for the MiniMax team objective.

SSI Control Comparison

A surprise in the result data for agglomerative clustering using the TPD metric was in
certain robot/task/cluster combinations and overall for k = 2

3
|T | the mean results were

lower than the SSI auction control results. These results are of interest as few SSI auc-
tion extensions have outperformed standard SSI auctions without capacity constraints (cf.
Section 2.4.4). Although, as not all mean results are lower than the SSI control results,
we cannot conclude that our technique produces better task allocation solutions than SSI.
However, we can use a non-parametric two-sided Wilcoxon signed-rank tests for each
robot/task/cluster combination to see if our results are statistically equivalent. For this
test, we define our null hypothesis as:

H0 : µλagglomerative 6= µλSSI

and our alternative hypothesis as:

H1 : µλagglomerative = µλSSI

In all combinations (except single linkage, 4 robots, 16 tasks, 8 clusters, k = 1
2
|T |),

for both single linkage and complete linkage criteria and for k = 1
2
|T | and k = 2

3
|T |,

we obtain confidence levels that support our alternative hypothesis. We then tested the
hypothesis that SSC auctions with agglomerative clustering produces lower mean results
than standard SSI auctions:

H2 : µλagglomerative < µλSSI

however, no support for this was found in our results. Finally, we tested the opposite
hypothesis that standard SSI auctions produce smaller results than SSC auctions with
agglomerative clustering:

H3 : µλagglomerative > µλSSI

In this test, three robot/task/cluster combinations (single linkage with k = 1
2
|T |, 4 robots,

16 tasks, 8 clusters, and 8 robots, 48 tasks, 24 clusters and complete linkage with k =
2
3
|T |, 10 robots, 60 tasks, 40 clusters) showed significant outcomes. From this we can

strongly conclude that when using agglomerative clustering with a TPD metric in SSC
auctions for the MiniMax team objective the results are statistically equivalent to SSI
auctions.
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4.3. Empirical Analysis using SSC Auctions

4.3.2 MiniSum

Our results for robots bidding according to the MiniSum team objective are shown for
k = 1

2
|T | in Table 4.3 and for k = 2

3
|T | in Table 4.4. This data also shows clusters formed

using a TPD metric produce the best results. In particular, agglomerative clustering with
a TPD metric on average produces lower costs than standard SSI auctions in the majority
of robot/task/cluster combinations tested. The SLD metric data also continues the trend
shown previously in the MiniMax team objective data that the greater the number of
clusters (k = 2

3
|T |) the lower the overall cost. However, this observation isn’t supported

in the TPD metric data. This instead, shows no advantage between either cluster size
tested.

In considering the trade-off between the two metrics, single linkage clustering pro-
duces the lowest average costs, independent of the metric used. It also has the smallest
improvement between the two metrics. This is also a reversal of the previous MiniMax
team objective results. Furthermore, the percentage improvement of all the clustering
algorithms using TPD metrics compared to SLD metrics is also much smaller in these re-
sults. Overall, K-medoids shows the largest improvement in the use of the TPD metric in
comparison to the SLD metric, despite this, for both metrics it generates the most costly
allocations.

Statistical Validity

Again we perform one-sided Wilcoxon signed-rank tests to compare the advantage of the
TPD metric over the SLD metric. We define our null hypothesis again as:

H0 : µλTPD ≥ µλSLD

and alternative hypothesis as:

H1 : µλTPD < µλSLD

For K-means clustering with k = 1
2
|T | we confirm a very significant result that the

total team cost using the TPD metric is lower than the cost using the SLD metric with con-
fidence 0.99. When tested with clusters of k = 2

3
|T | we generally get significant results

greater than 0.95, however, in three combinations tested this doesn’t hold (10 robots, 40
tasks, 27 clusters, and 8 robots, 40 tasks, 27 clusters, and 4 robots, 24 tasks, 16 clusters).
While this is an improvement over the results for the MiniMax team objective (where
half the results were non-significant), a quarter of robot/task/clusters combinations gen-
erating non-significant results is high, and this is despite our overall means showing the
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use of a TPD metric outperforming a SLD metric in all robot/task/cluster combinations.
For K-medoids clustering we get significance results at 0.95 confidence for all but one
robot/task/cluster combination tested (6 robots, 36 tasks, 24 clusters).

Using agglomerative clusters we again get strong statistically significant results. For
single linkage clustering, clusters formed with k = 1

2
|T | measure a confidence result of

0.98 and for k = 2
3
|T | generally a confidence of at least 0.95. With k = 2

3
|T | we did have

two non-significant results for 4 robots, 16 tasks, 11 clusters and 10 robots, 60 tasks, 40
clusters, however, in these combinations the results with the SLD metric are already of
good cost. For complete linkage clustering with k = 1

2
|T | the confidence is at least 0.999

and with k = 2
3
|T | 0.95 across all robot/task/cluster combinations with no exceptions.

SSI Control Comparison

Over half our mean results for agglomerative clustering with the TPD distance metric
show lower costs than SSI control auctions. We again use a non-parametric two-sided
Wilcoxon signed-rank tests for each robot/task/cluster combination to see if our results
are statistically equivalent. The null hypothesis is defined as:

H0 : µλagglomerative 6= µλSSI

and alternative hypothesis as:

H1 : µλagglomerative = µλSSI

In all but one combination, for both single linkage and complete linkage criteria, we
obtain confidence levels that demonstrate that our results are statistically equivalent. Fur-
thermore, the non-significant result was for complete linkage clustering with k = 2

3
|T |,

4 robots, 20 tasks, 13 clusters. In this result, the mean cost for agglomerative clustering
was µλagglomerative = 2462 and for the SSI auction µλSSI = 2516, i.e. our non-significant
result was a consequence of our results being much lower than SSI auctions.

Additionally, testing the hypothesis that SSC auctions with agglomerative clustering
produces lower mean results than standard SSI auctions:

H2 : µλagglomerative < µλSSI

gives us significant results in five robot/task/combinations, two using single linkage clus-
tering and three using complete linkage clustering. The reverse one-sided test:

H3 : µλagglomerative > µλSSI
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does not give us any significant results. From this we can comprehensively conclude that
for the MiniSum team objective when using agglomerative clustering with a TPD metric
in SSC auctions the results are at least statistically equivalent to SSI auctions.

4.4 Priority Allocation Based on Cluster Size

In previous sections, four straightforward algorithms for generating k clusters of tasks
have been analysed with respect to their usefulness in SSC auctions. In each of these
algorithms we have crude control over the total number of clusters k and by increasing
or decreasing its value with respect to the number of tasks |T | we can control the average
number of tasks in each cluster. This, however, does not give us control over the maximum
or minimum number of tasks in each cluster. Consequently, this lack of fine control
over the number of tasks in each cluster can see a large variance in the number of tasks
contained in large and small clusters. For instance, in a naı̈ve extreme case, one cluster
may have |T | − k tasks and every other cluster will have exactly one task. Without
additional information about the tasks or robots in the problem a general assumption can
be made that the smaller clusters will have lower costs than larger clusters and therefore
will often be allocated before larger clusters [11].

A primary purpose of allocating clusters of tasks is to exploit positive inter-task syn-
ergies that may otherwise not be considered in single task allocation routines. However,
in situations where many small clusters are allocated first there may be large negative
synergies between existing task allocations and a large unallocated task cluster. As such,
instead of reducing the overall team costs one robot may be forced to complete many
tasks while other robots are idle.

Consider, for example, a simple two robot, four task allocation problem given in Fig-
ure 4.13. We first generate three clusters: C1 = {t1, t2}, C2 = {t3} and C3 = {t4} and
a subsequent standard SSC auction using the MiniMax team objective is given in Table
4.5. The overall maximum cost to any one robot in this example is λr2(Tr2) = 6 which is
twice the cost of the single task allocated to the other robot λr1(Tr1) = 3.

Let us now modify the bidding rules for SSC auctions such that robots may only sub-
mit bids for unallocated clusters containing the most tasks. Table 4.6 shows the results of
running an SSC auction with this modified bidding rule. In the first round of bidding both
robots now bid for cluster C1 which contains two tasks and it is subsequently allocated to
robot r1 which immediately changes the task allocation compared to the previous exam-
ple. In the two following auction rounds clusters C2 and C3 are allocated to robot r2. The
post-allocation overall maximum cost to any one robot in this example is λr1(Tr1) = 5

which is the optimal solution for this simple problem.
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r1 r2

t1

t2

t3

t4

Figure 4.13: Priority Cluster Allocation Example.

Table 4.5: Standard SSC auction for example problem given in Figure 4.13 (winning bids
and assignments in bold).

Round r1 Bids r1 Bid r2 Bids r2 Bid
Calculated Submitted Calculated Submitted

1 βC1
r1
← 〈r1, C1, 5〉 βC2

r1
βC1
r2
← 〈r2, C1, 6〉 βC3

r2

βC2
r1
← 〈r1, C2, 3〉 βC2

r2
← 〈r2, C2, 4〉

βC3
r1
← 〈r1, C3, 4〉 βC3

r2
← 〈r2, C3, 1〉

2 βC2
r1

βC1
r2
← 〈r2, C1, 6〉 βC2

r2

βC2
r2
← 〈r2, C2, 4〉

3 βC1
r1
← 〈r1, C1, 7〉 βC1

r1
βC1

r2

λri(Tri) 3 6

4.4.1 Empirical Experiments

To further explore the impact of large cluster priority bidding we ran empirical experi-
ments with this modified bidding rule under the same set of conditions as the experiments
in Section 4.3. In these experiments we use agglomerative clustering with a TPD metric
as this was the previous best performing clustering approach and forms a baseline for fur-
ther improvements. Additionally, we retain standard SSI auctions as a control variable.
The results of these experiments for the MiniMax team objective are presented in Table
4.7 and for the MiniSum team objective in Table 4.8. Overall, these results show that
priority bidding with the MiniMax team objective lowers the overall maximum team cost
in the majority of robot/task/cluster combinations, and conversely, for the MiniSum team
objective the costs increase.
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Table 4.6: Modified bidding rule SSC auction for example problem given in Figure 4.13.

Round r1 Bids r1 Bid r2 Bids r2 Bid
Calculated Submitted Calculated Submitted

1 βC1
r1
← 〈r1, C1, 5〉 βC1

r1
βC1
r2
← 〈r2, C1, 6〉 βC1

r2

βC2
r1
← 〈r1, C2, 3〉 βC2

r2
← 〈r2, C2, 4〉

βC3
r1
← 〈r1, C3, 4〉 βC3

r2
← 〈r2, C3, 1〉

2 βC2
r1
← 〈r1, C2, 7〉 βC2

r1
βC3

r2

βC3
r1
← 〈r1, C3, 9〉

3 βC2
r1

βC2
r2
← 〈r2, C2, 4〉 βC2

r2

λri(Tri) 5 4

Table 4.7: Empirical Results for Priority Bidding for the MiniMax Team Objective (per-
centage improvement compared to previous results in brackets).

Single Linkage Clustering Complete Linkage Clustering
Robots Tasks SSI k = 1

2 |T | k = 2
3 |T | k = 1

2 |T | k = 2
3 |T |

4 16 826 814 ( 8.2%) 834 ( 5.1%) 854 ( 1.9%) 832 ( 1.9%)
6 24 743 688 (12.3%) 706 ( 2.9%) 712 ( 4.6%) 695 ( 6.3%)
8 32 705 679 ( 2.7%) 675 ( 0.8%) 662 ( 3.8%) 665 ( 2.7%)
10 40 616 589 ( 8.2%) 586 ( 5.2%) 584 ( 6.4%) 586 ( 5.9%)
4 20 918 921 ( 2.6%) 924 (-0.3%) 930 (-0.1%) 947 (-4.4%)
6 30 840 794 ( 6.6%) 830 (-0.4%) 795 ( 3.4%) 798 ( 2.5%)
8 40 766 686 (13.0%) 698 ( 5.3%) 672 (11.0%) 689 ( 7.1%)
10 50 665 615 (10.1%) 608 ( 7.6%) 643 ( 5.0%) 611 ( 8.2%)
4 24 1026 991 ( 4.9%) 984 (-0.3%) 953 ( 5.7%) 1010 (-0.3%)
6 36 886 878 ( 4.4%) 881 ( 0.7%) 864 ( 0.9%) 885 (-1.2%)
8 48 776 743 ( 9.1%) 760 ( 3.0%) 727 ( 8.2%) 741 ( 4.7%)
10 60 707 673 ( 3.3%) 671 ( 5.4%) 662 ( 8.6%) 676 ( 6.1%)

Combined Mean: 789 756 ( 7.0%) 763 ( 2.7%) 755 ( 4.8%) 761 ( 2.9%)

Statistical Validity

We now consider the statistical significance of the MiniMax team objective results rel-
ative to the SSI control auction results. The results earlier in this chapter showed that
agglomerative clustering with a TPD metric was statistically equivalent to standard SSI
auctions (Sections 4.3.1 and 4.3.2). In these latest results the MiniMax team objective
costs have further decreased relative to the SSI control auction results. In particular, all
results for six or more robots have lower mean costs than standard SSI auctions.

We again seek to validate the hypothesis that SSC auctions with agglomerative clus-
tering produces lower mean results than standard SSI auctions. For this test we set up a
one-sided Wilcoxon signed-rank test for each robot/task/cluster combination as follows.
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Table 4.8: Empirical Results for Priority Bidding for the MiniSum Team Objective.

Single Linkage Clustering Complete Linkage Clustering
Robots Tasks SSI k = 1

2 |T | k = 2
3 |T | k = 1

2 |T | k = 2
3 |T |

4 16 2189 2191 (-1.7%) 2209 (-3.5%) 2170 (-0.8%) 2219 (-4.3%)
6 24 2516 2543 (-1.5%) 2542 (-1.1%) 2522 ( 0.1%) 2541 (-1.4%)
8 32 2821 2875 (-2.0%) 2867 (-2.0%) 2845 (-1.1%) 2832 (-0.5%)
10 40 3015 3063 (-1.7%) 3009 ( 0.0%) 2994 ( 0.1%) 3018 (-0.5%)
4 20 2532 2545 (-2.9%) 2528 (-2.2%) 2539 (-4.0%) 2542 (-3.2%)
6 30 2887 2932 (-2.3%) 2930 (-1.5%) 2930 (-2.2%) 2928 (-1.4%)
8 40 3200 3251 (-1.0%) 3271 (-1.1%) 3202 ( 0.2%) 3251 (-0.8%)
10 50 3435 3470 (-1.4%) 3447 (-1.8%) 3446 (-0.8%) 3465 (-1.9%)
4 24 2800 2797 (-2.3%) 2809 (-1.4%) 2798 (-2.4%) 2800 (-0.3%)
6 36 3216 3290 (-0.8%) 3278 (-1.3%) 3285 (-1.8%) 3295 (-2.2%)
8 48 3536 3661 (-3.3%) 3603 (-1.4%) 3574 (-2.1%) 3641 (-2.9%)
10 60 3826 3874 (-2.0%) 3922 (-2.7%) 3907 (-3.6%) 3888 (-3.3%)

Combined Mean: 2998 3041 (-1.9%) 3035 (-1.7%) 3018 (-1.6%) 3035 (-1.9%)

The null hypothesis is defined as:

H0 : µλagglomerative ≥ µλSSI

and alternative hypothesis as:

H1 : µλagglomerative < µλSSI

In all but two1 significance test results for combinations with 8 robots and for all com-
binations with 10 robots we get confidence levels greater than 0.90. This result demon-
strates that allocating large clusters of tasks before smaller clusters for the MiniMax team
objective with a large number of robots produces lower mean maximum robot costs than
standard SSI auctions. Furthermore, these results and conclusion are a reflection of and
further confirmation of our initial results in Chapter 3. In particular, earlier plots (Figures
3.5, 3.6, and 3.7) compared the effect of number of tasks, robots, and capacity constraints
and clearly showed that the number of robots is proportional to the relative improvement
of SSC auctions over standard SSI auctions.

1Single-linkage k = 1
2 |T |, 8 robots, 32 tasks and single-linkage k = 2

3 |T |, 8 robots, 48 tasks.
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4.5 Discussion

A major observation throughout this chapter’s experiments is that agglomerative clus-
tering consistently produces lower MRTA solution costs than centroid-based clustering.
This holds true even for complete linkage clustering which produces dense clusters of
tasks similar to K-means clustering. To provide a possible explanation of the advantages
of using agglomerative clustering in solving MRTA problems with SSC auctions we need
to consider the structure of the clusters that are formed by each algorithm.

4.5.1 Overlapping Clusters

A key difference between centroid-based clustering and agglomerative clustering is the
pairing of tasks. In centroid-based clustering each task cluster is an exclusive non-
overlapping geographic area of tasks. While in some situations this is a good approach,
e.g. forming a single cluster of a set of tasks in a far corner of the environment. In other
situations it can prove problematic. For instance, consider a cluster of evenly spaced tasks.
In this situation a robot may need to travel to one far edge of the cluster and then work
inwards around the perimeter of the cluster to complete all tasks in the shortest path. In
comparison agglomerative clustering allows task clusters to overlap and is more likely to
reflect paths that robots are likely to travel along.

An example problem that generates overlapping clusters with complete linkage clus-
tering is given in Figure 4.14. Beginning with six single-item clusters:

C1 = {t1}

C2 = {t2}

C3 = {t3}

C4 = {t4}

C5 = {t5}

C6 = {t6}

The subsequent merge sequence to form two clusters is:

C7 ← C4 ∪ C5 = {t4, t5}

C8 ← C7 ∪ C3 = {t4, t5, t3}

C9 ← C8 ∪ C2 = {t4, t5, t3, t2}

C10 ← C1 ∪ C6 = {t1, t6}
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t1

t2

t3

t4

t5

t6

Figure 4.14: Overlapping Clusters Example - Complete Linkage Clustering.

t1

t2

t3

t4

t5

t6

Figure 4.15: Overlapping Clusters Example - K-means Clustering.
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The final two clusters generated by complete linkage clustering are C9 and C10. If we
consider the shape of these clusters, C9 travels exclusively in the vertical direction andC10

in the horizontal, and the clusters cross over in between tasks t4 and t5. In comparison,
if we generate two clusters with K-means clustering, for this example, the stable clusters
formed are C1 = {t1, t4, t5, t6} and C2 = {t2, t3} (Figure 4.15). The differences in the
shape of these clusters can clearly be seen through this simple example and the effects of
this on task allocation and completion using SSC auctions are large.

4.5.2 Determining k

An additional component influencing cluster formation in centroid-based clustering is the
choice of the initial k central vectors. Our approach is to randomly select k tasks to use
as initial cluster central vectors, while other approaches include selecting initial central
vectors that are representative of the distribution and density of the data [33], placing cen-
tral vectors at the far edges of the environment [116], or using agglomerative clustering
to form initial clusters [73]. The efficiency of centroid-based clustering algorithms can
be heavily influenced by the selection of initial central vectors. Bad initial central vectors
may require many iterations to find stable clusters or they may also become constrained by
local minima [71, 47, 50]. However, avoiding these problems through naı̈ve approaches,
such as, repeated cluster formations with different initial central vectors [116], or includ-
ing additional knowledge of the usage of the data set to be clustered [19] introduces a
trade-off between performance and efficiency.

Determining the ideal number of clusters k to generate is a problem in both centroid-
based and agglomerative clustering. A large k value results in clusters that contain few
tasks and, as such, little inter-task synergy is considered. On the other hand, small k value
results in clusters containing many tasks and can lead to robots being allocated tasks
and resultant paths that would be better suited to other robots. A clustering approach
that sought a balance between these two challenges would be ideal, however, the time
complexity may be much greater than our existing approaches.

Common approaches in related literature for determining good k values include using
statistical variances to compare clusters generated by different k values [60, 89, 121,
28], minimising cluster silhouettes [91], minimising intra-cluster distortion [118], and
splitting large and removing small clusters [3]. There are also clustering algorithms that
don’t require an initial value for k (e.g. DBSCAN [32] and OPTICS [2]), however, these
algorithms require other configuration parameters, such as, maximum inter-task distances.
Furthermore, determining an ideal number of clusters may not avoid the problems of local
minima [116]. Throughout our experiments we have used values of k that seek to generate
an average cluster size of 1.5 - 2 tasks per cluster. The reasoning behind our approach is to
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generate many small clusters that have high internal inter-task synergies, but, also retain
enough clusters that the auction process considers additional inter-task synergies that the
clustering process misses.

An alternative clustering approach, fuzzy clustering [132] (e.g. Fuzzy c-means [29])
in which tasks may belong to multiple clusters may be of interest for future work. For
instance, any one single cluster is assigned to a robot, all tasks in this cluster with cluster
membership scores above a certain threshold are allocated to the robot and removed from
the remaining unallocated clusters. This approach is similar to SSI auctions with bundle
bids in that individual robots may be bidding on different clusters that both contain the
same task t and 1 ≤ i ≤ |C| tasks are allocated to a robot in any given round. However,
unlike SSI auctions with bundle bids, during each auction round only one robot is awarded
tasks instead of multiple robots.

4.5.3 Cluster Size

Closely related to determining the number of clusters is limiting the total number of tasks
in each cluster. The purpose for such a limit is to enforce domain constraints [19], for
instance, if we use capacity constraints it makes no sense for the number of tasks in a
cluster to exceed a single robot’s capacity constraint. This restriction is easy to apply
to agglomerative clustering. However, these restrictions do not guarantee good cluster
solutions. For instance, it is possible that two clusters at extreme opposite ends of an
environment will be merged, if all intermediate task clusters are at capacity. In centroid-
based clustering task size limits can be applied by splitting large clusters, or assigning
tasks that are far from the central vector to alternative clusters. Finally, domain constraints
can be enforced through the use of semi-supervised clustering. For instance, Bilenko,
Basu, and Mooney take this approach in the development of MPCK-Means clustering

which incorporates constraints and learning into K-means clustering [9].

Of particular interest in the application of SSC auctions for solving MRTA problems is
understanding why priority allocation of large task clusters lowers the overall team costs
for the MiniMax team objective but not for the MiniSum team objective. A possible con-
tributing factor is the range for improvement relative to the optimal solution. Previously,
standard SSI auctions with the MiniSum team objective have been shown to generate solu-
tions within a factor of 1.10 of optimal and therefore there is little room for improvement.
In comparison, the MiniMax team objective has been shown to be a factor of 1.44 away
from the optimal and therefore has a much greater range of potential improvement [122].
Given our statistical results show that SSC auctions using agglomerative clustering are
equivalent to SSI auctions we assume that these factors are comparable for SSC auctions.
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Furthermore, in previous work on SSI auctions the allocation of tasks with high costs
to all robots first has been considered for the MiniMax team objective. It is argued that
this approach performs better than iteratively assigning tasks with the smallest cost as
the remaining lower cost tasks can be used to balance the allocation and execution time
across the robots [58]. Large cluster priority bidding can be compared to this high cost
bidding as both approaches are similar. Clusters that generally would be assigned in later
auction rounds are assigned first and our results show this improves the overall team cost.
This approach, however, does not hold for the MiniSum team objective as, unlike the
MiniMax team objective, balancing task allocations and running times evenly across the
robots will not minimise the total distance travelled. Instead, the MiniSum team objective
works by iteratively adding the tasks with the smallest costs which in some instances can
see large imbalances in the task loads between individual robots. This imbalance can be
best addressed through the application of capacity constraints.

4.6 Summary

In this chapter, we have presented an analysis of clustering techniques to solve the multi-
robot task allocation problem using SSC auctions. We have considered the time required
using two different clustering approaches and the effect of calculating true path distances
instead of straight line distances in the formation of clusters. In summary, for both Min-
iMax and MiniSum team objectives tested, we have shown the power of using a TPD
metric in the formation of clusters to solve the multi-robot task allocation problem. De-
spite our cluster formation time measurements showing that the use of TPD metrics are
around 100 times slower than straight line calculations, we believe that the overall travel
distance saved as a result of better clusters far outweighs the extra initial time spent on
cluster formation. Furthermore, it can be argued that the cluster formation time with a
TPD metric will be much smaller than the expected execution time of the robots complet-
ing all allocated tasks.

Our empirical results show the benefit of using agglomerative clustering with a TPD
metric over other cluster formation techniques. We applied statistical significance testing
to our results and showed that for SSC auctions with agglomerative clustering produce on
average statistically equivalent solutions to MRTA problems without capacity constraints.
Additionally, we considered the priority allocation of large clusters to robots, which for
the MiniMax team objective resulted in statistical significant lower costs than standard
SSI auctions.
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In the next chapter we apply single linkage clustering to an extended MRTA problem
with tasks requiring collection and delivery. Auctioning clusters of tasks in this problem
domain is much more difficult as we are required to consider both the collection and de-
livery locations of objects when forming clusters. Furthermore, we consider the insertion
of additional tasks into a running system, and the failure of robots during task execution.
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Chapter 5

Task Allocation with Collection and Delivery in
Dynamic Environments

Consider a team of autonomous mobile robots operating as courier delivery vehicles in a
large office-like environment. Each robot is required to collect from and deliver parcels
to a variety of locations around the office building. Robots may be constrained to a fixed
capacity in the number of parcels they may carry at any one time and, after a parcel is
picked up, it can only be delivered to its intended destination. Our goal is for the robots
to be allocated and deliver all parcels as effectively and efficiently as possible.

This problem is an extension of the standard MRTA problem and, as discussed in
Chapter 2, there are many existing approaches for solving this class of problem. However,
most existing techniques require that all tasks are static and known before allocation. In
many real-world situations, additional tasks are dynamically discovered during execution.
Furthermore, in real-world scenarios it is likely that, over time, robots will fail requiring
their tasks to be reassigned to other operating robots.

In this chapter we consider this extension of the MRTA problem in a dynamic do-
main. First, we consider the application of clustering to tasks with collection and delivery
(Section 5.1). Second, we describe two dynamic scenarios requiring task reallocation:
dynamic task insertion (Section 5.2) and handling robot failure (Section 5.3). In both
scenarios, we evaluate the performance and execution trade-off between reallocating a
subset of the total tasks and all uncompleted tasks. As both scenarios require individual
robots to commit to additional tasks, the problems of inserting tasks and removing robots
appear to be equivalent problems (see Theorem 2.1). However, our empirical results for
these two problems differ substantially.

Portions of the research in this chapter have been published in Repeated Sequential Single-
Cluster Auctions with Dynamic Tasks for Multi-Robot Task Allocation with Pickup and Delivery
(MATES-13) and Repeated Auctions for Reallocation of Tasks with Pickup and Delivery Upon
Robot Failure (PRIMA-13).
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5.1 MRTA Problems with Collection and Delivery

MRTA problems with tasks requiring collection and delivery are an extension to the stan-
dard MRTA problem. In the standard MRTA definition, each task is a single point in the
environment (cf. Section 2.2.1). For tasks with collection and delivery, we define each
task t as a tuple t = 〈pc, pd〉 of a collection location pc and a delivery location pd. A robot
is considered to be executing a task once it has visited its collection location and until the
point it has reached its delivery location. Robots may also have capacity constraints in
the number of tasks they are able to execute at any moment in time. However, unlike the
capacity constraints used in previous chapters, each robot may complete any number of
tasks. Once all initial tasks are allocated to robots, each robot begins executing the tasks
that have been assigned to it. As robots complete each individual task tcomplete ∈ T , by
arriving at the delivery location pd, the completed task is removed from the set of tasks:

T ← T\{tcomplete}

5.1.1 Clustering Tasks with Collection and Delivery

The formation of clusters of tasks that have both collection and delivery locations is much
more difficult than cluster formation with tasks that are simply single point locations. In
developing our clustering approach, we considered three different approaches for generat-
ing a metric that describes each task. First, we attempted to cluster based on the midpoint
of the line segment between the collection and delivery location. However, this metric
lacks any information about where either end point is located and could result in clusters
that may have geographically close mid points but large distances between end points.

Second, we attempted to cluster by forming vectors of collection and delivery lo-
cations and chaining together tasks that have a delivery location close to the collection
location of another task. This approach to clustering closely matches the bidding pattern
of robots in auctions, and as a result, clustering would provide no benefit.

Our third, and successful, approach was to cluster the collection and delivery locations
of tasks separately. First, we form clusters of tasks based on collection locations (Figure
5.1). Second, within each collection location cluster we cluster again into smaller clusters
based on delivery locations (Figure 5.2). The complete set of all small clusters is then
used by robots in bidding.

We formulate this algorithm in Figure 5.3. We begin with no final clusters set (Line
1). We initially cluster all tasks based on collection location (Line 3). We then iterate
over each of these collection location clusters (Line 5). Within each collection location
cluster we cluster again based on delivery location (Line 6). Finally, we merge each set
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Figure 5.1: Four tasks clustered into two collection task clusters.
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Figure 5.2: Formation of three final task clusters based on delivery locations.

function TwoStepClustering (T , kc, kd)
Input: T : the set of tasks to be clustered

kc: the number of collection clusters to be formed
kd: the number of delivery clusters to be formed

per collection cluster
Output: K: the set of clusters for auction

1: K = ∅;
2: /* Collection location clustering */
3: CollectionClusters← CalcCollectionClusters(T ,kc);
4: /* Delivery location clustering */
5: for each collection cluster Cc ∈ CollectionClusters
6: DeliveryClusters← CalcDeliveryClusters(Cc,kd);
7: K ← K ∪ {DeliveryClusters};

Figure 5.3: Algorithm for clustering of tasks with collection and delivery.
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of delivery location clusters into the final set of clusters for auction (Line 7). As both
clustering functions CalcCollectionClusters and CalcDeliveryClusters consider only one
side of a task’s location this allows us to use any existing clustering algorithm that clusters
based on point locations, e.g. K-means clustering or single-linkage clustering.

In our algorithm we need two k values kc and kd; one for each clustering function. For
our experiments we seek to find k overall clusters for auction such that:

k = kc ∗ kd

This ensures that each collection cluster is split into equal numbers of delivery clusters.
However a problem can arise, due to each cluster containing a varying number of tasks,
when considering the clustering of delivery locations inside a collection cluster. If the
number of tasks in the cluster |p| is less than kd we can only form |p| clusters, and as
a result, in total we will have less than k clusters. Without modifying the behaviour of
the algorithm used to form the collection clusters we cannot prevent this occurring. As a
result, in these situations we end up with fewer clusters than we initially sought.

To mitigate the effect of this during the formation of a large number of clusters we
suggest a novel solution to gradually increase the value of kd used in remaining cluster
formations:

kd = kd +
kd − |p|

|remaining collection clusters|
First, we calculate the difference between the requested number of clusters kd and the
number of tasks in the cluster |p|. We then divide this by the number of remaining collec-
tion clusters that have yet to have delivery clusters formed inside them. We add this value
to kd and continue to the next collection cluster for clustering.

5.2 Dynamic Task Insertion

In a dynamic environment, during the execution of a set of tasks, new tasks to complete
may be inserted into the system. To guarantee the completion of this new task tn we
must ensure that the valid complete solution to the task allocation problem ∪ri∈RTri = T

continues to hold when an additional task is inserted into the system:

∪ri∈RT ∪ {tn}ri∈R = T ∪ {tn}
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The simplest way to meet this requirement is, on the dynamic insertion of a new task,
instantaneously assigning it to a robot ri’s set of assigned tasks:

Tri ← Tri ∪ {tn}

After the assignment the robot can either locally replan its path or it can signal a repeated
auction to globally reallocate and replan tasks across all robots.

A global reallocation of tasks considers all uninitialised tasks across all robots:

T̄ ←
⋃
i

Tri\Trinit

Uninitialised tasks are tasks where a robot has not visited the collection location of an
assigned task. Each robot retains the tasks that it has initialised:

Tri ← Trinit

When calculating bids for additional tasks, the completion of these retained tasks is taken
into consideration.

Generally speaking, it can be expected that global reallocation of tasks will generate
lower cost solutions than local replanning. This is due to the additional consideration of
inter-task synergies between tasks that have previously been allocated and any new tasks
inserted into the system. Enabling robots to give up tasks that they have previously been
allocated allows them to regenerate their task execution plans taking advantage of these
additional inter-task synergies.

5.2.1 Empirical Experiments

To empirically contrast local replanning and global reallocation we again simulate 25
office-like environments. For each configuration we test with 10 robots and 60 tasks. We
use single-linkage clustering with a TPD metric for our clustering algorithm. For each
team objective, we compare three different ratios of dynamic to static tasks, with 25%,
50%, and 75% of tasks unknown at the start. We also compare our results to a baseline
one-off task allocation with all tasks known. For simplicity, in our experiments, a new
task may only be inserted immediately after a task delivery and is initially allocated to the
robot that completed the delivery. Additionally, we compare the effects of different task
execution capacities of 1, 3, and 5. We note that when the task execution capacity is 1 this
problem is equivalent to operations research’s dynamic stacker crane problem [7].
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To begin, we allocate all initially known tasks Tknown ⊆ T . For this initial allocation,
the number of clusters formed is:

k =
1

2
|Tknown|

For any repeated auctions, the number of clusters formed individually by each robot is:

k =
1

2
|Tr|

The mean results for the MiniMax team objective are presented in Table 5.1 and for
the MiniSum team objective in Table 5.2. In considering capacity constraints, unsurpris-
ingly, the absence of constraints produces the lowest team costs and, the more restrictive
the constraints, the higher the cost. This directly leads to the largest reduction in team
costs occurring in scenarios with highly restrictive constraints. In both team objectives,
when robots are restricted to a capacity of only executing one task at a time, a global re-
allocation of tasks produces better results than the baseline of all tasks known. This result
reinforces our previous results for repeated auctions with standard MRTA problems (Sec-
tion 3.2) and Schoenig and Pagnucco’s results for SSI auctions with dynamic tasks [106].
Again, the explanation for this is that during a one-off task allocation, due to the greedy
nature of SSI and SSC auctions, each robot can reach a local minimum in its bidding pref-
erences. However, in dynamic environments, due to the introduction of new tasks and the
subsequent changes in inter-task synergies this minimum no longer hold and as a result
a new local minimum is found during the repeated auction. Overall, global reallocation
generally produces lower overall results than local replanning.

MiniMax

Examining the MiniMax team objective results in further detail, the average advantage
of global reallocation over local replanning ranges from 11.8% to 36.5%. For local re-
planning the lowest cost plans are generated when 50% of tasks are unknown. This is
unexpected as a naı̈ve assumption can be made that situations with 25% unknown tasks
should generate lower cost plans as robots are aware of more tasks during the initial allo-
cation. We speculate that the cause of this result stems from robots discovering additional
tasks during the later stages of plan execution and, with no ability to redistribute tasks,
they are forced to travel greater distances. This hypothesis is supported by the results
for global reallocation failing to show this trend and the large relative improvement gains
over local replanning in scenarios with 25% unknown tasks. On the contrary, across the
global replanning results, the lowest cost plans are generated when only 25% of tasks are
unknown. We speculate that in these instances the knowledge of many tasks helps with
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Table 5.1: Dynamic Task Insertion Results with the MiniMax Team Objective (percentage
improvement of reallocation compared to replanning in brackets).

Local Replanning
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 7857 8228 7276 7275
3 3985 5430 4976 6256
5 3070 4620 4471 6250
∞ 2602 4438 4418 6250

Global Reallocation
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 7857 5228 (36.5%) 5593 (23.1%) 5911 (18.7%)
3 3985 3800 (30.0%) 4389 (11.8%) 4877 (22.0%)
5 3070 3469 (24.9%) 3800 (15.0%) 5000 (20.0%)
∞ 2602 3415 (23.1%) 3810 (13.8%) 5165 (17.4%)

Table 5.2: Dynamic Task Insertion Results with the MiniSum Team Objective.

Local Replanning
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 41539 41527 42025 45305
3 21245 26922 28316 33238
5 16519 22554 25720 30096
∞ 10150 16613 19675 27985

Global Reallocation
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 41539 37449 ( 9.8%) 40278 (4.2%) 36907 (18.5%)
3 21245 25775 ( 4.3%) 28303 (0.0%) 26594 (20.0%)
5 16519 22639 (-0.4%) 24692 (4.0%) 22238 (26.1%)
∞ 10150 17813 (-7.2%) 22207 (-13%) 20332 (27.3%)

the formation of new clusters and repeated auctions of tasks. Overall, in the worst case of
75% tasks unknown, on average, a robot travels a maximum of twice the distance of the
baseline result.

The plots in Figure 5.4 show the distribution of these results for each capacity con-
straint. Some further insights can be gained by examining these plots. First, all plots show,
regardless of capacity constraints, that in highly dynamic environments (75% unknown
tasks) all maximum distance scores are within similar ranges. A possible explanation of
this is due to few tasks being initially known, robots are naturally constrained to execut-
ing few tasks at any moment in time and therefore are not able to fully take advantage of
inter-task synergies. Second, the plots clearly show in all cases the advantage of global
reallocation over local replanning. Finally, the effects of the extreme restriction of an
executing capacity constraint of 1 is clear as this plot shows an opposite trend to the max-
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Figure 5.4: Distribution of Results for Task Insertion with the MiniMax Team Objective.
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imum distance cost compared to all other plots. This reinforces the previous conclusions
that post-initial reallocation of tasks is of key benefit in minimising overall team costs.

MiniSum

The MiniSum team objective results (Table 5.2) show a much smaller benefit in global
reallocation over local replanning. These differences range from a 13% increase to a 27%
decrease in total distance travelled. Local replanning produces the lowest cost solutions
when only 25% of tasks are unknown at the start. Contrarily in global reallocation, the
lowest cost plans and largest relative improvements over local replanning are generated in
the highly dynamic environment of 75% of tasks initially unknown. We speculate that this
is due to the high numbers of repeated cluster formations exposing many different inter-
task synergies during each repeated auction. Additionally, in scenarios with no capacity
constraints, local replanning surprisingly outperforms global reallocation. A possible ex-
planation of this is that if a few robots commit to executing large numbers of tasks in
parallel they, as a consequence of our experiment design, are more likely to discover ad-
ditional tasks than robots with few tasks. Furthermore, it can then be assumed that there
will be few uninitialised tasks for auction during a global reallocation, and this leaves
little room for cost reductions. Again, in the worst-case scenario the maximum distance
result is twice as large as the corresponding baseline result.

We again plot the distribution of these results for each capacity constraint (Figure
5.5). These plots again provide an interesting insight into the data and the behaviour of
the algorithm. First, the extreme influence of a task execution capacity constraint of 1 is
demonstrated with the costs for both local replanning and global reallocation erratic with
regards to the number of unknown tasks. Second, for all other capacity constraints, in-
cluding no capacity constraint, local replanning has near identical, and in some instances
smaller, result distributions for 25% and 50% unknown tasks. However, in highly dy-
namic scenarios, global reallocation has a very clear benefit over local replanning. Over-
all, these results are in stark contrast to the results for the MiniMax team objective. In
those prior results the benefits of global reallocation were clear, whereas, in these results,
except in highly dynamic scenarios, global reallocation offers no clear advantage.

5.2.2 Computational Time Analysis

To fully contrast local replanning and global reallocation we also consider the amount of
computational real-time robots require to generate an initial allocation of tasks, and then
the accumulated time required to repeatedly replan or reallocate tasks. These experimen-
tal timing results are from a system with a 2.8GHz Intel Core i7 CPU, 8GB RAM, running
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Figure 5.5: Distribution of Results for Task Insertion with the MiniSum Team Objective.
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Table 5.3: Mean Initial Task Allocation Computation Time (s) for the MiniMax Team
Objective.

Capacity All Known 25% Unknown 50% Unknown 75% Unknown
1 268 145 62 16
3 265 145 61 16
5 264 144 61 16
∞ 242 137 60 16

Table 5.4: Mean Overall Cumulative Task Allocation Computation Time (s) for the Min-
iMax Team Objective.

Local Replanning
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 268 173 90 41
3 265 172 89 42
5 264 171 88 42
∞ 242 157 85 41

Global Reallocation
Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 268 347 276 119
3 265 245 175 106
5 264 226 176 105
∞ 242 206 174 105

Ubuntu 11.04 x64.

Table 5.3 shows the mean time required to cluster and auction an initial allocation of
tasks for the MiniMax team objective. The results for the MiniSum team objective are not
shown, however, they are near identical. Unsurprisingly, the fewer the number of tasks
initially known, the faster the initial allocation of tasks. In the most dynamic situation
the generation of an initial allocation is 15 times quicker than the baseline. This is an
important result because, the quicker an initial allocation is generated, the sooner robots
can begin executing tasks. We also note that the task capacity constraint has minimal
influence on the time required to generate the initial allocations.

The overall cumulative time required for robots to replan or reallocate upon the inser-
tion of all dynamic tasks into the system is given in Table 5.4. In the worst-case global
reallocation of tasks is three times slower than local replanning. Of particular interest is
that in all dynamic situations, local replanning was substantially quicker in computational
time than the baseline. Also in highly dynamic situations, global reallocation completed
all repeated auctions quicker than the single baseline auction.

Overall, taking into consideration mean distance and computational time results we
can conclude that when robots seek to achieve the MiniMax team objective it is best
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for robots to work together and globally reallocate tasks. However, when robots seek
to achieve a MiniSum team objective, except in highly dynamic environments, global
reallocation shows no clear improvements over local replanning. Additionally, as a result
of its high computational times, in many situations global reallocation would offer few
benefits.

5.3 Task Reallocation upon Robot Failure

In this section we consider the reallocation of a failed robot’s assigned tasks to the re-
maining operating robots using SSI auctions. The problem of robot failure is an impor-
tant consideration in the successful completion of a set of tasks in a distributed robotic
system. For example, during task execution individual robots may fail due to malfunc-
tioning equipment or running low on battery power [35]. As task reallocation upon robot
failure has not previously been explored with SSI auctions we perform experiments using
this more common auction routine and note that this is equivalent to SSC auctions with
k = |T |.

In this scenario, we consider two different approaches for the reallocation of tasks
among the remaining operating robots:

(a) Partial reallocation in which only the failed robot’s uncompleted tasks are auc-
tioned. This results in the remaining operating robots modifying their existing task
execution plans to incorporate additional tasks.

(b) Global reallocation of the failed robot’s uncompleted tasks and all uninitialised
tasks across all operating robots. This an extension of the approach used in the
preceding section.

While a global reallocation has greater computation and communication needs, more
robot/task and inter-task synergies are considered and therefore it can be expected that
this approach would produce lower team costs. However, surprisingly our empirical re-
sults (presented below) show that partial allocations produce final results that on average
are equivalent to the results for global reallocation.

5.3.1 MRTA Problem Extension for Robot Failure

We now further extend the MRTA problem with collection and delivery (Section 5.1) to
continue to provide valid solutions upon robot failure. When a robot fails we remove it
from the set of operating robots: R ← R\{rfail}. As a consequence of this, if Trfail 6= ∅,
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the previous complete solution to the problem no longer holds:

∪ri∈RTri 6= T

A new complete solution can be found by reassigning the set of tasks assigned to the
failed robot Trfail to the remaining operating robots. We wish to investigate if it is better
for these remaining operating robots to keep their existing commitments or to additionally
reallocate all uninitialised tasks in the system.

When a robot detects a malfunction or if it is running low on power it should inform
other robots and then safely shutdown. To facilitate this, a failing robot broadcasts a
message to all other operating robots containing its present location and the list of all
uncompleted tasks assigned to it. Any uninitialised tasks are able to be immediately
auctioned. However, tasks that are under execution when the robot fails must be modified.
Because the robot has already visited the collection location of these tasks other robots
must travel to the location of the failed robot and collect the task from it. To do this the
collection location pc of all initialised tasks Trinit ⊆ Trfail must be updated to the present
location of the failed robot:

pc ← prfail

During reallocation robots continue executing their existing current task.

Partial Reallocation

A partial reallocation only auctions the task set assigned to the failed robot:

T̄ ← Trfail

The remaining operating robots calculate the bids for these tasks taking into consideration
their existing task commitments. Using the cheapest insertion heuristic each robot’s ex-
isting task execution plan is modified to include any additional task assignments. This ap-
proach allows robots to consider inter-task synergies between their existing commitments
and tasks they are bidding for that may not have been considered during the previous
allocation.

For instance, if in a previous allocation the task t ∈ Trfail was assigned during the very
first round of bidding no other robot would have been able to consider its synergy with
other tasks. Partial reallocation also, generally, has a smaller communication overhead
than a global reallocation of all tasks. In a distributed SSI auction the total number of
messages sent between all robots is |T̄ |∗ |R|2. The number of tasks for auction in a partial
reallocation will always be |Trfail | ≤ |T |.
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Global Reallocation

A global reallocation considers all of the tasks from the failed robot and all uninitialised
tasks across all remaining operating robots:

T̄ ← Trfail ∪
⋃
i

Tri\Trinit

As before, each robot retains the tasks they have already picked up but are yet to deliver
and incorporates the costs for the completion of these tasks when calculating bids for
additional tasks. It can be expected that robots should be able to minimise costs the most
using global reallocation as the change in the number of available robots and subsequent
inter-task synergies can be better dealt with than under local replanning.

For example, consider a robot that fails with two initialised tasks and a capacity con-
straint of three tasks for all robots in the system. Another robot in the system has an
existing plan that passes near the failed robot, however, at any one point in its existing
plan it only has spare capacity for one additional task. In a partial allocation, this robot
could modify its plan and pick up one of the failed robots tasks. The failed robot’s second
initialised task would then need to be allocated to a different robot, or the robot with the
existing plan would need to find another location in its existing plan to return a second
time to the failed robot to collect the second task. In a global reallocation, the remain-
ing working robots can give up almost all of their existing tasks. This can result in the
robot with limited spare capacity in its current plan giving up some of its existing task
commitments allowing it to visit the failed robot once to collect both initialised tasks.

As another example, consider three robots travelling along a horizontal line. The first
robot is travelling to the left, the middle robot to the right, and a third robot also travelling
to the right (Figure 5.6). The first robot r1 then fails. In a partial reallocation the middle
robot r2 would need to continue doing tasks to its right and then complete the tasks on its
left. However, in a global reallocation the middle robot could give up its tasks to the right
and travel to the left and complete the failed robot’s tasks. In this situation you would
expect that the global reallocation would result in a smaller task cost than the partial
allocation.

5.3.2 Experiments

To contrast the differences between partial and global reallocations we simulate 25 con-
figurations of our standard office-like environment. For each configuration we test with
10 identical robots, 60 tasks, and from two to eight robot failures. We compare these
results to a baseline cost which is the cost to complete all tasks without any robot fail-
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t1c t1d r1←−
r2−→

t2c t2d r3−→
t3c t3d

a: Initial Allocation (max λ = 2).

t1c t1d r2−→
t2c t2d r3−→

t3c t3d

b: Partial Reallocation (max λ = 7).

t1c t1d r2←−
t2c t2d r3−→

t3c t3d

c: Global Reallocation (max λ = 6).

Figure 5.6: Reallocation example with three robots and six tasks. r1 is initially travelling
to the left, r2 and r3 to the right. Tasks assigned to r1 are in red, to r2 in blue, and to r3 in
violet.

ures or reallocations of tasks. Robots fail at random intervals after arriving at a collection
or delivery location. We test with the MiniMax and MiniSum team objectives and with
capacity constraints of 1, 3, and 5.

MiniMax

We present the results for the MiniMax team objective in Table 5.5. The results table also
includes the percentage increase in the distance travelled as the result of robot failure and
reallocation of tasks compared to the baseline cost. These results are unexpected and show
no clear advantage of global reallocations over partial reallocations. Our expectations
were that global reallocation would outperform partial reallocation.

Of further note, in both reallocation approaches the total distance travelled decreases
as the capacity constraint is increased. This is unsurprising as the larger the capacity
constraint the more flexibility robots have in executing multiple tasks in unison. We also
note, as the number of robots failing increases, the distance required for the remaining
robots to travel increases.

To further analyse these results we looked at the distribution of the final costs for
both reallocation techniques. Figure 5.7 shows one standard deviation around the mean
for each of the capacities tested. Our first observation is that the results for both partial
and global reallocations almost completely overlap. At no point does one technique offer
a clear advantage over the other. Our second observation is that the standard deviation
remains small in all but the extreme case of eight failed robots. We speculate this is due to
robots with lower costs than the robot with the maximum cost taking on additional tasks
from failed robots without impacting the overall maximum cost.
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Figure 5.7: Distribution of Results for Robot Failures with the MiniMax Team Objective.
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Table 5.5: Dynamic Robot Failure with the MiniMax Team Objective Results (percentage
increase in cost after reallocation compared to initial cost in brackets).

Capacity Failures Initial λ Partial Realloc λ Global Realloc λ
1 2 4005 4424 ( 10.5%) 4545 ( 13.5%)
1 4 4005 5383 ( 34.4%) 5309 ( 32.6%)
1 6 4005 6596 ( 64.7%) 6435 ( 60.7%)
1 8 4005 9370 (134.0%) 8624 (115.4%)
3 2 2591 2897 ( 11.8%) 3004 ( 15.9%)
3 4 2591 3527 ( 36.1%) 3541 ( 36.6%)
3 6 2591 4539 ( 75.1%) 4437 ( 71.2%)
3 8 2591 6691 (158.2%) 6290 (142.7%)
5 2 2249 2619 ( 16.4%) 2725 ( 21.1%)
5 4 2249 3196 ( 42.1%) 3201 ( 42.3%)
5 6 2249 4016 ( 78.5%) 4134 ( 83.8%)
5 8 2249 5738 (155.1%) 5831 (159.2%)
∞ 2 2001 2438 ( 21.8%) 2482 ( 24.0%)
∞ 4 2001 2923 ( 46.1%) 2949 ( 47.4%)
∞ 6 2001 3611 ( 80.5%) 3682 ( 84.0%)
∞ 8 2001 5137 (156.7%) 5159 (157.4%)

MiniSum

The results for the MiniSum team objective are presented in Table 5.6. The total sum-
mated cost for the partial and global reallocations includes the distanced travelled for all
robots including the distance travelled until failure for failed robots. These results are
also unexpected. In all but one set of parameters tested, partial reallocations resulted in
lower overall distance sums than for global reallocations. Again there are trends that, as
the capacity constraint is increased, the cost decreases and, as the number of failed robots
increases, the cost increases.

We again plot the distributions of the two reallocation techniques. Figure 5.8 is a plot
of the distribution of one standard deviation around the mean for the capacity constraint of
one. This plot shows a different distribution to that of the MiniMax team objective results.
One can observe in this plot that, as the number of failed robots increases, the standard
deviation becomes much larger. This indicates that in some of the office/task/robot con-
figurations tested, the final costs remained low despite the large number of robot failures,
however, in other configurations the final costs became extremely large. When the num-
ber of robot failures remains less than four there is very little difference in means and
distributions between partial and global reallocations. However, when the capacity is
one, as the number of robot failures becomes large there is a clear benefit in using partial
reallocations.
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Figure 5.8: Distribution of Results for Robot Failures with the MiniSum Team Objective.
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Table 5.6: Dynamic Robot Failure with the MiniSum Team Objective Results (percentage
increase in cost after reallocation compared to initial cost in brackets).

Capacity Failures Baseline λ Partial Realloc λ Global Realloc λ
1 2 31262 36551 ( 16.9%) 36672 ( 17.3%)
1 4 31262 43473 ( 39.1%) 45293 ( 44.9%)
1 6 31262 49973 ( 59.9%) 55958 ( 79.0%)
1 8 31262 60731 ( 94.3%) 66042 (111.3%)
3 2 18914 24092 ( 27.4%) 25119 ( 32.8%)
3 4 18914 29773 ( 57.4%) 30972 ( 63.8%)
3 6 18914 36163 ( 91.2%) 36812 ( 94.6%)
3 8 18914 43563 (130.3%) 43848 (131.8%)
5 2 16191 21207 ( 31.0%) 21666 ( 33.8%)
5 4 16191 27599 ( 70.5%) 28121 ( 73.7%)
5 6 16191 36218 (123.7%) 34074 (110.5%)
5 8 16191 43542 (168.9%) 44143 (172.6%)
∞ 2 10628 19682 ( 85.2%) 19887 ( 87.1%)
∞ 4 10628 30574 (187.7%) 29859 (181.0%)
∞ 6 10628 40588 (281.9%) 41278 (288.4%)
∞ 8 10628 52248 (391.6%) 50929 (379.2%)

Computation Time

Finally, we consider the overall computation time required for generating the initial allo-
cation and for reallocation. Table 5.7 presents the mean timings for the MiniSum team
objective (we omit the MiniMax team objective data as the results are nearly identical).
The results in this table show that the time required for partial reallocation is much lower
than for global reallocation. We note that for the initial allocation the capacity constraint
has almost no impact on the time required. For partial reallocation, as the capacity con-
straint increases there is a smaller increase in the time taken. In global reallocation, this
trend is not as apparent, except in scenarios with no capacity constraints. As the number
of failed robots increases, both reallocation techniques require more computation time.
In particular, the time required for global reallocation grows at a very rapid rate. Overall,
from this data and the previous results we can conclude that partial reallocations are a vi-
able technique for handling robot failure. Their resultant costs are at least equal to global
reallocation and they have much faster computation times.
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Table 5.7: Mean Computation Time (s) for Handling Robot Failure with the MiniSum
Team Objective (percentage increase in time after reallocation compared to initial time in
brackets).

Capacity Failures Initial Partial Realloc Global Realloc
1 2 209 250 (19.3%) 330 (57.6%)
1 4 209 265 (25.9%) 439 (110%)
1 6 209 280 (33.3%) 510 (143%)
1 8 209 302 (44.3%) 579 (176%)
3 2 211 261 (23.8%) 339 (60.9%)
3 4 211 284 (36.1%) 419 (101%)
3 6 211 314 (48.4%) 493 (134%)
3 8 211 340 (61.3%) 553 (162%)
5 2 213 269 (25.3%) 343 (59.4%)
5 4 213 307 (44.2%) 433 (103%)
5 6 213 358 (68.7%) 509 (140%)
5 8 213 398 (86.7%) 615 (189%)
∞ 2 240 382 (59.3%) 434 (80.8%)
∞ 4 238 536 (125%) 563 (136%)
∞ 6 238 688 (190%) 747 (214%)
∞ 8 236 834 (253%) 878 (271%)

5.3.3 Discussion

Our experiment results are unexpected and appear to contradict previous results on real-
location of tasks using auctions. We can classify previous work into two groups, the first
being work that present algorithms for task reallocation [10, 23, 43, 81], and the second
dealing with task reallocation upon new task insertion [106, 124]. We are unaware of
previous work comparing partial and global reallocation of tasks using repeated auctions.

In this chapter’s introduction we stated that dynamic task insertion is a very similar
problem. Naı̈vely, one can assume that adding a new task to the set of tasks: T ←
T ∪ {tnew} and removing a robot from the set of robots: R ← R\{rfail} would affect
the task allocation problem in a similar manner, as the complete solution: ∪ri∈RTri = T ,
relies on both R and T (Theorem 2.1).

However, a key difference between dynamic task insertion and robot failure is the
location of the tasks for reallocation. Most dynamic task insertion approaches assume that
the task location is random. In contrast, when a robot fails, despite the failure occurring
at random, the tasks for auction are not randomly distributed in the environment. They
are generally geographically close and also contain tight inter-task synergies.

Additionally, in a set of tasks, there may be certain tasks that are undesired by all
robots. These tasks are often in locations that are far from other tasks and therefore have
high costs, or in the case of robot failure, in locations that are opposite to the remaining

120



5.3. Task Reallocation upon Robot Failure

operating robots’ directions of travel. During reallocation, robots seek to minimise the
global cost through minimisation of their local costs. Generally this works well, however,
there are instances where a robot gives up an undesired task in order to commit to addi-
tional lower cost tasks, and in later bidding rounds become forced to recommit to their
undesired task. In these instances this causes the overall team costs to increase more than
if the undesired task was always retained by the original robot and the lower cost tasks
distributed to other robots.

Overcoming this problem is difficult, for example, modifying the bidding process to
allocate tasks with large costs early on may improve some scenarios. However, previous
studies show, this approach has its own local minima and it is also difficult to identify
which scenarios are best approached through local cost minimisation and those best ap-
proached through minimising maximum task costs [120].

In two examples below, one for the MiniMax (Figure 5.9) and one for the MiniSum
(Figure 5.10) team objective, we show this problem occurring in the scenario of robot fail-
ure. In both scenarios, the cost to complete one task gradually becomes so great that both
robots chose not to bid for this specific task until it is the only task remaining. Because
of this the cost to complete this task relative to each robot’s current allocation becomes
even greater than if it had been allocated prior to less expensive tasks. The reason that
this problem doesn’t occur in partial reallocations is the retention of previously allocated
tasks ensures that the costs to complete these undesired tasks are taken into consideration
when bidding for additional tasks.

In both of these examples we assume a capacity constraint of 1.

MiniMax Example

The layout for our MiniMax team objective example is given in Figure 5.9. In this layout
all robots are initially travelling to the right. The initial task allocations and path costs
are:

λr1(Tr1 ← {〈t1c , t1d〉, 〈t2c , t2d〉}) = 11

λr2(Tr2 ← {〈t3c , t3d〉, 〈t4c , t4d〉}) = 8

λr3(Tr3 ← {〈t5c , t5d〉, 〈t6c , t6d〉}) = 8

The maximum cost of any one of the initial paths is maxr∈Rλr(Tr) = 11. Now assume
that one time step has elapsed. At this moment robot r2 fails: R ← R\{r2}. All robots
have moved one cell towards their first collection location, robot r1 is now located at the
task collection point t1c and robot r3 at point t5c .
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Figure 5.9: MiniMax Team Objective Task Reallocation Example (tasks initially assigned
to r1 are in red, to r2 in blue, and to r3 in violet).

We first consider a partial reallocation. Robot r2’s tasks are offered for auction:

T̄ ← Tr2 = {〈t3c , t3d〉, 〈t4c , t4d〉}

In Table 5.8 we present the bid calculations for each auction round for a reallocation of
these tasks to robots r1 and r3. In the first round, robot r1 is awarded task 〈t3c , t3d〉 and
in the following auction round, the cost of completing this additional task is factored into
bid calculations. Subsequently, in the second round, robot r3 is awarded task 〈t4c , t4d〉.

The final task allocations and total path costs are:

λr1(Tr1 ← {〈t1c , t1d〉, 〈t3c , t3d〉, 〈t2c , t2d〉}) = 17

λr2(Tr2 ← {t3c}) = 1

λr3(Tr3 ← {〈t5c , t5d〉, 〈t6c , t6d〉, 〈t4c , t4d〉}) = 20

The maximum cost of any one of the paths after partial reallocation is maxr∈Rλr(Tr) =

20.

Now consider a global reallocation. The tasks for auction are:

T̄ ← {〈t2c , t2d〉, 〈t3c , t3d〉, 〈t4c , t4d〉, 〈t6c , t6d〉}

Robot r1 continues executing its first task 〈t1c , t1d〉 and robot r3 continues executing task
〈t5c , t5d〉 during the reallocation. Table 5.9 presents the bid calculations for each auction
round. In the first round robot r3 wins task 〈t6c , t6d〉. In the second round robot r1 wins
task 〈t3c , t3d〉. In the third auction round robot r1 wins task 〈t4c , t4d〉. In the final round
of the auction robot r1 wins its third additional task 〈t2c , t2d〉 through simple tie breaking
(N.B. the maximum cost would remain the same if task 〈t2c , t2d〉 was awarded to robot
r3).
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Table 5.8: Partial Reallocation SSI Auction with the MiniMax team objective for example
given in Figure 5.9 (winning bids and assignments in bold).

Round r1 Bids r1 Bid r3 Bids r3 Bid
Calculated Submitted Calculated Submitted

1 βt3r1 ← 〈r1, t3, 16〉 βt3
r1

βt3r3 ← 〈r3, t3, 17〉 βt3r3
βt4r1 ← 〈r1, t4, 20〉 βt4r3 ← 〈r3, t4, 19〉

2 βt4r1 ← 〈r1, t4, 22〉 βt4r1 βt4
r3

λri(Tri) 17 20

Table 5.9: Global Reallocation SSI Auction with the MiniMax team objective for example
given in Figure 5.9.

Round r1 Bids r1 Bid r3 Bids r3 Bid
Calculated Submitted Calculated Submitted

1 βt2r1 ← 〈r1, t2, 10〉 βt3r1 βt2r3 ← 〈r3, t2, 18〉 βt6
r3

βt3r1 ← 〈r1, t3, 9〉 βt3r3 ← 〈r3, t3, 13〉
βt4r1 ← 〈r1, t4, 13〉 βt4r3 ← 〈r3, t4, 15〉
βt6r1 ← 〈r1, t6, 17〉 βt6r3 ← 〈r3, t6, 7〉

2 βt3
r1

βt2r3 ← 〈r3, t2, 22〉 βt3r3
βt3r3 ← 〈r3, t3, 17〉
βt4r3 ← 〈r3, t4, 19〉

3 βt2r1 ← 〈r1, t2, 16〉 βt4
r1

βt4r3
βt4r1 ← 〈r1, t4, 15〉

4 βt2r1 ← 〈r1, t2, 22〉 βt2
r1

βt2r3
λri(Tri) 23 8

The final task allocations and total path costs are:

λr1(Tr1 ← {〈t1c , t1d〉, 〈t3c , t3d〉, 〈t4c , t4d〉, 〈t2c , t2d〉}) = 23

λr2(Tr2 ← {t3c}) = 1

λr3(Tr3 ← {〈t5c , t5d〉, 〈t6c , t6d〉}) = 8

The maximum cost of any one of the paths after global reallocation is maxr∈Rλr(Tr) =

23. Which, in this example, is higher than the cost for a partial reallocation.

When one looks at the bidding calculations, the last task allocated 〈t2c , t2d〉 was only
chosen as the task to bid on by either robot in the very last round of bidding. Despite
being the second best option for robot r1 in the first round of bidding, due to the changing
costs in inter-task synergies as more tasks were allocated, this task was never considered
the best option by any robot until they were forced to commit. Finally, robot r1 recommits
to this task which now has a greater cost than earlier due to the additional tasks to which
the robot has committed. In comparison, the partial reallocation auction for this example,
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Figure 5.10: MiniSum Team Objective Task Reallocation Example (tasks initially as-
signed to r1 are in red, to r2 in blue, and to r3 in violet).

never had the problem of task 〈t2c , t2d〉 as robot r1 retained it from its original allocation
and considered the costs of this task when bidding for other tasks.

MiniSum Example

An example of this for the MiniSum team objective is given in Figure 5.10. The initial
task allocations and paths are:

λr1(Tr1 ← {〈t2c , t2d〉, 〈t1c , t1d〉}) = 6

λr2(Tr2 ← {〈t3c , t3d〉, 〈t4c , t4d〉}) = 9

λr3(Tr3 ← {〈t5c , t5d〉, 〈t6c , t6d〉}) = 13

The robot r1 begins by travelling to the left, robot r2 downwards and robot r3 will travel
to the left to deliver task 〈t5c , t5d〉 and then turn around to complete task 〈t6c , t6d〉. The
summated total cost of the initial paths is

∑
r∈R λr(Tr) = 28.

Again we assume that one time step has elapsed and all robots have moved one cell
towards their first collection location. At this point robot r1 fails: R ← R\{r1}. When
this occurs, robot r2 is located at the task collection point t3c and robot r3 is one cell away
from task collection point t5c .

First we consider a partial reallocation. Robot r1’s tasks are offered for auction:

T̄ ← {〈t1c , t1d〉, 〈t2c , t2d〉}

In Table 5.10 we present the bid calculations for each auction round for a reallocation of
these tasks to robots r2 and r3. During the first auction round robot r2 wins task 〈t2c , t2d〉.
In the second auction round robot r2 again wins and is awarded task 〈t1c , t1d〉.
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Table 5.10: Partial Reallocation SSI Auction with the MiniSum team objective for exam-
ple given in Figure 5.10 (winning bids and assignments in bold).

Round r2 Bids r2 Bid r3 Bids r3 Bid
Calculated Submitted Calculated Submitted

1 βt1r2 ← 〈r2, t1, 8〉 βt2
r2

βt1r3 ← 〈r3, t1, 21〉 βt2r3
βt2r2 ← 〈r2, t2, 4〉 βt2r3 ← 〈r3, t2, 15〉

2 βt1r2 ← 〈r2, t1, 4〉 βt1
r2

βt1r3
λri(Tri) 17 13

Table 5.11: Global Reallocation SSI Auction with the MiniSum team objective for exam-
ple given in Figure 5.10.

Round r2 Bids r2 Bid r3 Bids r3 Bid
Calculated Submitted Calculated Submitted

1 βt1r2 ← 〈r2, t1, 8〉 βt2
r2

βt1r3 ← 〈r3, t1, 11〉 βt4r3
βt2r2 ← 〈r2, t2, 4〉 βt2r3 ← 〈r3, t2, 7〉
βt4r2 ← 〈r2, t4, 6〉 βt4r3 ← 〈r3, t4, 5〉
βt6r2 ← 〈r2, t6, 9〉 βt6r3 ← 〈r3, t6, 6〉

2 βt1r2 ← 〈r2, t1, 4〉 βt1
r2

βt4r3
βt4r2 ← 〈r2, t4, 6〉
βt6r2 ← 〈r2, t6, 18〉

3 βt4r2 ← 〈r2, t4, 6〉 βt4r2 βt4
r3

βt6r2 ← 〈r2, t6, 18〉
4 βt6r2 βt6r3 ← 〈r3, t6, 11〉 βt6

r3

λri(Tri) 11 23

The final task allocations and total path costs are:

λr1(Tr1 ← {t2c}) = 1

λr2(Tr2 ← {〈t3c , t3d〉, 〈t4c , t4d〉, 〈t2c , t2d〉, 〈t1c , t1d〉}) = 17

λr3(Tr3 ← {〈t5c , t5d〉, 〈t6c , t6d〉}) = 13

The final summated path cost after partial reallocation is
∑

r∈R λr(Tr) = 31.

Now we consider a global reallocation. The tasks for auction are:

T̄ ← {〈t1c , t1d〉, 〈t2c , t2d〉, 〈t4c , t4d〉, 〈t6c , t6d〉}

Robot r2 continues executing task 〈t3c , t3d〉 and robot r3 continues executing task 〈t5c , t5d〉
during the reallocation. In Table 5.11 we present the bid calculations for each auction
round of the reallocation. In the first two auction rounds, robot r2 is awarded tasks
〈t2c , t2d〉 and 〈t1c , t1d〉 respectively. In the third auction round both robots bid on task
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〈t4c , t4d〉. Robot r3 wins the auction round and is allocated this task with the lowest bid
which results in a different task allocation to the previous partial reallocation. In the final
auction round robot r3 additionally wins task 〈t6c , t6d〉.

The final task allocations and total path costs are:

λr1(Tr1 ← {t2c}) = 1

λr2(Tr2 ← {〈t3c , t3d〉, 〈t2c , t2d〉, 〈t1c , t1d〉}) = 11

λr3(Tr3 ← {〈t5c , t5d〉, 〈t4c , t4d〉, 〈t6c , t6d〉}) = 23

The final summated path cost after global reallocation is
∑

r∈R λr(Tr) = 35 which, for
this example, is higher than that of partial reallocation.

Again, in this example, a task 〈t6c , t6d〉 that was previously allocated to the remaining
operating robot r3 becomes undesired. In this instance, the two tasks from the failed robot
are the first two tasks allocated in the reallocation. However, the robots that these tasks are
allocated to do this at the expense of increasing the inter-task synergies to their previous
commitments. This is particularly true for robot r3 in this instance.

We have now shown for both team objectives possible scenarios in which partial re-
allocations can generate lower costs than global reallocation. In both scenarios, one task
that was previously assigned to a remaining operating robot becomes problematic due to
high inter-task synergies in global reallocations. While undesired tasks can occur in any
task reallocation scenario, it is particularly problematic in the scenario of a failed robot as
the tight-knit inter-task synergies of the failed robot’s tasks are often more highly desired
by other robots than their own previous commitments.

5.4 Summary

In this chapter we have built on our previous work on SSC auctions and demonstrated their
effectiveness in task allocation with collection and delivery in dynamic environments.
For the scenario of dynamic task insertion our empirical analysis considered the trade-
off in performance between local replanning and global reallocation. The key results for
this showed that, despite global reallocation generally producing better results than local
replanning, there is a large cost in computational time.

For the scenario of task reallocation upon robot failure we focused on two techniques
for the reallocation of tasks: partial reallocation which considers only a subset of the
total tasks in the system; and, global reallocation which considers almost all tasks in the
system. Our empirical evaluations show, that despite global reallocation considering more
inter-task synergies, partial reallocations on average performed at least as well.
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This result was surprising and contradicted the results for dynamic task insertion
which is a similar task reallocation problem. To understand the differences in these dy-
namic scenarios we generated two simple scenarios in which partial reallocation produces
lower cost solutions than global reallocation and discussed the differences in inter-task
synergies where tasks are randomly inserted versus tasks requiring reallocation being
located in a geographically close area. In particular, we highlighted the problem of un-
desired tasks and the impact the costs of completing these tasks relative to each robot’s
other task commitments has on the overall team cost.
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Chapter 6

Conclusion

In this thesis we have developed SSC auctions which quickly generate low cost solu-
tions to MRTA problems. Although, there are many existing distributed auction-like
approaches for solving this type of problem, few have considered grouping tasks with
high inter-task synergies while still ensuring fast solution generation times. Additionally,
through repeated cluster formation and auctioning during task execution, our approach al-
lows for solutions to be improved post-initial allocation and react to changes in dynamic
environments.

In the related work chapter we outlined four different types of auctions for MRTA
problems:

1. Parallel auctions which are a simple approach for distributed and rapid solution
generation for MRTA problems. Generally, they produce high cost, and at worse,
unbounded cost solutions as they fail to consider inter-task synergies when con-
structing bids.

2. Sequential auctions which improve on parallel auctions through bid calculations
for additional tasks including the cost of completing previously allocated tasks.
This approach lowers the team cost as some inter-task synergies are considered.
However, the order in which tasks are offered for auction heavily influences the bid
calculations and the resulting overall solution costs.

3. SSI auctions which improve this further by allowing individual robots to select any
unallocated task of its choosing to place a bid on, and one task is awarded per
auction round. Although SSI auctions have provable solution bounds they continue
to suffer from problems where tasks that one robot should, for optimality, complete
are allocated to different robots. To this end, a number of extensions have been
proposed that seek to improve the solution quality by considering different bidding
and winner determination strategies.
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4. Combinatorial auctions which generate optimal solutions in one auction round are
an alternative auction approach. Although optimal solutions are highly desired,
in systems with limited resources, the cost involved in calculating these solutions
makes them impractical for use in most environments.

A number of authors have previously suggested [102] or studied [21, 139, 31] task
clustering as an approach for overcoming these weaknesses in single item auction ap-
proaches. In each approach there is a trade-off between the number of inter-task synergies
considered, the quality of the solution and the time required to obtain a solution.

For SSC auctions, our approach was to address problems with inter-task synergies
arising in single-item auctions and to ensure that SSC auctions ran in a similar time to
SSI auctions. As fewer auctions rounds are required in SSC auctions the time gained is
used to generate the initial task clusters. Our approach also allows for clusters of different
sizes — this differs from other approaches which set fixed cluster sizes (e.g. SSI auctions
with bundles [57]) — allowing clusters with many tasks of high inter-task synergies to be
formed, rather than arbitrarily limiting the size of clusters.

The key results from our development and empirical study of SSC auctions are:

• SSC auctions produce lower cost solutions than standard SSI auctions and SSI auc-
tions with bundles, and run in equivalent time to standard SSI auctions in static
environments with capacity constraints (Section 3.1.8).

• Repeated SSC auctions with dynamic task clusters allow solution costs to be grad-
ually reduced during the execution of tasks (Section 3.2.5).

• SSC auctions with agglomerative clustering are statistically equivalent to SSI auc-
tions in static environments with no capacity constraints (Sections 4.3.1 and 4.3.2).

• For the MiniMax team objective modifying the SSC auction rules to allow the prior-
ity allocation of large task clusters produces statistically significant lower team costs
compared to standard SSI auctions without capacity constraints (Section 4.4.1).

• In dynamic environments with online tasks requiring collection and delivery, a
global reallocation of tasks through repeated auctions greatly reduces the overall
team costs compared to local replanning (Section 5.2.1).

• In dynamic environments with robot failure, using SSI auctions to perform a partial
reallocation of subsets of the total tasks to be completed outperforms full realloca-
tion of all uncompleted tasks (Section 5.3.2).
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6.1 Future Work

The work in this thesis has formed a foundation on which future work that encompasses
task clustering and auction mechanisms can build on. There are four broad areas that
future work falls under: task clustering algorithms, solution quality measures, extended
problem domains, and robot capabilities. In the following subsections we offer sugges-
tions in each of these areas of possible further research focus.

6.1.1 Task Clustering Approaches

Throughout this thesis we have used clustering algorithms that require a pre-defined k
value for the number of clusters to form. While we offered a discussion of the merits
of possible alternative approaches in Section 4.5, experimental evaluation of these and
other approaches may further improve the quality of solutions generated by SSC auctions.
Additionally, clustering algorithms that include knowledge of robot locations and likely
inter-cluster associations (i.e. the likelihood that two clusters are assigned to the same
robot), may produce lower cost MRTA solutions.

Another area of possible consideration is a pre-clustering analysis of the structure of
the task set. In some clustering algorithms, the quality of clusters formed is dependent
on the distribution and structure of the items being clustered. A pre-clustering analysis
may reveal which algorithms are likely to produce the most suitable clusters for a given
problem, which in turn, may allow the system to dynamically choose the most appropriate
clustering algorithm accordingly.

6.1.2 Solution Quality Measures

In Chapter 3 we presented some basic formal analysis of the bounds of SSC auctions.
However, these lack strong formal rigour. A more formal foundation of clustering prop-
erties and their relation to auctions would be of benefit. In particular, understanding the
relationships between tasks, clusters, robots and the auction process may aid in develop-
ing a system which is guaranteed to produce near optimal solutions in minimal time.

In the context of empirical evaluation, a more rigorous study of the relation between
the time taken to form clusters and allocate tasks and the cost of the solution would be of
interest. For instance, if task clustering approaches that incorporated additional domain
knowledge, as discussed above, had a large increase in cluster formation time, how would
this trade-off against the improved solution execution time?
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6.1.3 Extended Problem Domains

In Section 2.2.1 we listed a number of extensions to the standard MRTA problem defini-
tion, and in Chapter 5 we studied two dynamic environment scenarios with tasks requiring
collection and delivery. While these two scenarios are relatively common problems faced
in MRS domains, there are more complex extensions of these which may be of interest in
future work.

One such extension and question is whether knowledge of task locations, robot loca-
tions and direction can be used to determine the likelihoods that partial or full realloca-
tions will result in overall lower costs. Additional knowledge of the environment may also
factor into decisions about task selection, for instance, in a highly hostile environment,
robot failure may be very high, and as such not all tasks in the system may be able to be
completed. In this scenario, robots may select tasks to bid on based on the likelihood of
completing the highest number of tasks and ensuring self preservation rather than simply
trying to lower the overall team cost.

Finally, the trade-off between competing constraints may also be of interest in com-
plex task domains. For instance, in a rideshare scenario, passengers desire to get from
a pickup location to a drop-off location as quickly as possible. Whereas, the company’s
objective may be to minimise distance travelled and therefore energy used.

6.1.4 Robot Capabilities

To date, all empirical evaluations have been simulation based and not validated on physi-
cal robot systems. Although simulation is common in many multi-robot auction systems
[126, 8, 62, 122, 138, 57, 58, 75, 80, 81], validation on real robots is highly desired. A
possible suitable platform for such experimentation is the newly formed RoboCup Logis-
tics League.1

Additionally, empirical evaluation with teams of heterogeneous robots and tasks would
be of interest. Tasks requiring specific robot capabilities would require appropriate changes
to cluster formation algorithms and this would result in disparities in bidding and task al-
locations based on the abilities of individual robots to complete specific tasks, rather than
simply on their location and current task commitments.

1http://www.robocup-logistics.org/
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