
Protection domain extensions in Mungi

Author:
Vochteloo, J; Elphinstone, Kevin; Russell, Susan; Heiser, Gernot

Publication details:
Proceedings of the International Workshop on Object Orientation in Operating
Systems
pp. 161-165
0818676922 (ISBN)

Event details:
International Workshop on Object Orientation in Operating Systems
Seattle, USA

Publication Date:
1996

Publisher DOI:
http://dx.doi.org/10.1109/IWOOOS.1996.557913

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39930 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/http://dx.doi.org/10.1109/IWOOOS.1996.557913
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39930
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Protection Domain Extensions in Mungi�

Jerry Vochteloo, Kevin Elphinstone, Stephen Russell, and Gernot Heisery

School of Computer Science and Engineering
The University of New South Wales, Sydney, Australia 2052

Abstract

The Mungi single address space operating system pro-
vides a protected procedure call mechanism named protec-
tion domain extension (PDX). The PDX call executes in a
protection domain which is the union of (a subset of) the
caller’s domain, and a fixed domain associated with the
procedure. On return, the caller’s original protection do-
main is re-established. Extensive caching of validation data
allows amortisation of setup costs over a possibly large
number of invocations. The PDX mechanism forms the ba-
sis for object support in Mungi, particularly encapsulation.
It is also used for accessing devices, and to implement user-
level page fault handlers and other services.

1. Introduction

One of the most attractive features of object-oriented op-
erating systems is the ability of users to transparently extend
the OS. Such extensibility is of particular interest if users
can access methods provided by other users without com-
promising security. Hence, the system should efficiently
support object encapsulation and safe method invocation.

Capability systems are particularly well-suited to sup-
port extensibility [Lev84]. Safe method invocation in these
systems is made possible by the provision of a protected
procedure call mechanism, which allows the callee to per-
form operations the system would not permit the caller to
do directly.

Mungi [HERV94] is a 64-bit single address space op-
erating system (SASOS) based on password capabilities.
Mungi’s protected procedure mechanism is called protec-
tion domain extension (PDX). This paper describes Mungi’s
PDX mechanism and its implementation.

�This work was supported by Australian Reseach Council grant
A49330285.

yPhone: +61-2-9385-5156, fax: +61-2-9385-5995, e-mail:
disy@cse.unsw.edu.au, www: http://www.cse.unsw.edu.au/ ˜disy

2. Protection Domains in Mungi

Mungi’s basic protection model has been described
in [VRH93]. In short, each task (which consists of one or
more threads) has associated with it a protection domain,
which is the set of objects accessible to the task. The pro-
tection domain is implemented as a set of pointers to ca-
pability lists, which are arrays of capabilities. Contrary to
classical software-based capability systems, Mungi’s capa-
bility lists are not system objects but are user-maintained.
Object accesses are validated by matching the list of valid
capabilities (and corresponding access rights) recorded in
the central object table against the capabilities found in the
protection domain. If the validation succeeds an entry is
made in a per-task segment list, which caches validations.

Capabilities in Mungi refer to “objects” which are con-
tiguous ranges of virtual memory pages. No internal object
structure is assumed by the system. The search of the pro-
tection domain implies that capabilities need not be explic-
itly presented to the system on the first (or any subsequent)
access to an object. If, however, a capability is presented
explicitly, it is immediately validated, and the segment list
is updated as appropriate.

On a page fault, the segment list is first consulted, and if a
matching entry is found, the corresponding page is mapped,
otherwise the access is validated as above.

3. Protection Domain Extension

Validation of object access in the Mungi system requires
the searching of two large data structures (object table and
the capability lists). To amortize some of the validation
costs much of the validation information is cached. Imple-
menting protected procedure calls based on an extension of
the caller’s protection domain has two main benefits: firstly
we can re-use the cached validation information from the
caller’s protection domain, and secondly the extension al-
lows for the implicit sharing of large numbers of objects
between the caller and the protected procedure.

Mungi’s PDX mechanism allows the extension of a
thread’s protection domain for the duration of a procedure

1



call. The kernel call

PdxCall(Cap pdx, Cap clist, uint method, uint nargs, ...)

invokes, with the given arguments, the entry-point desig-
nated by method of the object addressed by pdx. The kernel
verifies that the method number falls into the range recorded
in the object table. The invocation executes in a protection
domain which is the union of the supplied clist and the pro-
tection domain registered (in the object table) for the PDX
object (Fig. 1).

/v
ar

/p
ri

nt
er

/s
po

olTask Protection
Domain

PDX Protection Domain

Figure 1. The PdxCall

If a null capability is passed to the clist parameter (as
opposed to a capability to an empty clist, which indicates
an empty protection domain) the caller’s whole protection
domain is merged with the protection domain registered for
the PDX, effectively extending the caller’s protection do-
main (hence the name PDX).

To return to the caller, the procedure executes a PdxRe-
turn kernel call, which restores the caller’s protection do-
main.

3.1. Implementation

Setting up a new protection domain is not a lightweight
operation. However, the setup cost can be amortised by
caching the PDX procedure’s protection domain, in particu-
lar its access validations, between calls. When a task t calls
a PDX procedure p for the first time, a new task tp is cre-
ated. The PDX call essentially becomes a blocking RPC
call, which spawns a new thread in tp for the duration of
the PDX execution. The operation of creating a new thread
and transferring control to it is very lightweight in Mungi,
as it maps directly onto the corresponding operations of the
underlying, very efficient, L4 microkernel [Lie95].

In the case of a proper protection domain extension (i.e. a
null clist parameter is passed), tp can inherit t’s cached val-
idations by having tp reference t’s segment list. If, during
p’s execution, new objects are validated, these validations
are prepended to tp’s segment list, without affecting t’s part

of the segment list. If t validates further accesses between
calls to p, these are inserted into t’s part of the segment list.
On the next call to p, tp will then inherit these further vali-
dations as well.1 This is shown in Fig 2. The kernel’s data
structure describing a task contains references to all PDX
tasks belonging to it, so these can be cleaned up when the
task exits.

Segment List
Pointer, PDX

Segment List
Pointer, non−PDX

PDX segments
added here

non−PDX segments
added here

Caller’s Domain

PDX Domain

SEGMENT LIST

Figure 2. Mungi segment lists

In the case of PDX calls with an non-null clist parameter,
caching can also be used, provided the clist has not changed
since the last call. The kernel can verify this by storing a
hash of the clist with the cached protection domain.

3.2. Implicit PDX calls

PDX calls can also be made implicitly, i.e. without ex-
plicit presentation of the PDX capability. This happens
when a task jumps to a PDX object, to which it holds (in
its protection domain) no execute, but a PDX capability. If
such a call is to a valid entry-point, it is equivalent to per-
forming a PdxCall with the appropriate pdx and method pa-
rameters, and a null clist. However, such an implicit call is
much more expensive than an explicit one, as a full valida-
tion of the access to the PDX object (i.e. matching the object
table entry against the protection domain and verifying the
entry-point) needs to be performed on each invocation.

1The same happens if, while one of t’s threads executes p, another one
of t’s threads adds further validations — these become immediately visible
to tp.



4. Supporting Objects

The NOM object system on the IBM AS/400 [MM96]
has demonstrated that it is possible to build an object ori-
ented system on top of abstractions like those provided by
Mungi (see Sec. 6). Here we show how Mungi can enforce
encapsulation and support inheritance.

4.1. Encapsulation

Encapsulation can be enforced by the protection system
if the provider of an object never hands out read, write, or
execute capabilities to the object. Instead a PDX procedure
is provided which, when invoked, extends the caller’s pro-
tection domain by the appropriate capabilities to the object.
Clients can thus only operate on the object by invoking this
procedure. The PDX procedure code can actually be part of
the object, or it can be separate.

4.2. Inheritance

To implement inheritance, jump tables used to access vir-
tual methods are associated with the PDX objects. Poten-
tially, these jumps are further PDX calls to methods of other
classes. This can lead to a proliferation of cached PDX in-
vocations.

A reduction of this overhead is possible if there is some
trust between the classes (as there is likely to be if they are
part of the same library). The derived class can then be
given the capability to execute the superclass methods di-
rectly, i.e. by a normal procedure call.

Window

Screen

Menu

Window

PdxCall PdxCall

PdxCall
User 1

User 2

Menu

Figure 3. Inheritance

An example of this is given in Figure 3. There are three
classes in this example: Menu, which is derived from Win-
dow which is derived from Screen. If user 1 invokes Menu

and user 2 invokes Menu as well as Window, a total of eight
PDX protection domains would need to be cached. How-
ever, if the various classes in the hierarchy trust each other,
invocation of a superclass method by a subclass is by a nor-
mal procedure call, and only 3 PDX protection domains
need to be cached.

5. Other Uses of PDX

5.1. Device drivers

Mungi takes the single address space concept seriously,
by keeping out of the model anything which would intro-
duce other forms of address space. For example, there is
no disk model; clients, such as database systems, which re-
quire explicit control over I/O, can achieve this via virtual
memory operations [ERHL96].

Similarly, other devices are mapped into VM. The device
driver is given capability to the appropriate memory region.
Users can then safely perform operations on the device by
invoking the driver via a PDX call.

5.2. Services

Object oriented systems traditionally implement services
using active servers, which interact with clients via IPC. In
Mungi we use PDX objects instead. These are just passive
entities which become active only when they are invoked
via PdxCall. The “server” has access to the client’s objects
without having to pass them explicitly as IPC parameters.
Clients still have the option of limiting the propagation of
their protection domains, by specifying a reduced protection
domain in the PDX call, if they do not trust the called PDX
“library function”.

5.3. User-level page fault handlers

User-level page fault handlers (ULPs) are essential for
efficiently supporting databases and implementing persis-
tence in Mungi [ERHL96]. A ULP is a PDX procedure
which is invoked by the kernel when a page fault occurs on
an object for which that ULP had been registered. ULP in-
vocation uses an empty clist parameter, hence the ULP runs
just within the protection domain which was registered for
it. As the ULP has no access to either the kernel’s or the
faulting thread’s protection domain, it does not need to be
trusted. This is important, as every memory access can po-
tentially lead to a page fault and a thread could otherwise
not rely on keeping any secrets, as soon as it accesses an-
other user’s object.2

2Note, however, that the ULP can still interfere with the client’s opera-
tion by denying service.



A single ULP can handle a large number of objects. Fur-
thermore, as the ULP is invoked by the kernel and is passed
an empty protection domain, all clients of a particular ULP
can share the same cached PDX protection domain. This
limits the number of ULP protection domains that need to
be cached to one per ULP in actual use.

6. Relation to Other Work

PDX is conceptually very similar to the profile adop-
tion mechanism used on the IBM System/38 [Ber80], and
its successor, the AS/400. This mechanism allows invoca-
tion of a procedure with an amplified protection domain.3

The caller can also restrict the part of its protection domain
that is available to the callee (this is called “profile propaga-
tion” by IBM). The main difference to Mungi, in this con-
text, is that System/38’s implementation makes extensive
use of specific hardware support, e.g. for tagging capabili-
ties. Mungi’s protection system is software based and can
be implemented on standard hardware.

Opal [Cha95] is also a SASOS based on password capa-
bilities. Opal uses a different form of protected procedure
mechanism: Each protection domain can have one portal,
which is an entry-point for cross-domain calls. When a
call is made to the portal, control is transferred to a place
specified by the domain. Any thread that knows a portal id
can transfer to the portal’s domain, so access control is left
to the called domain. As portal invocations switch protec-
tion domains, rather than extending the caller’s, the caller’s
and callee’s protection domains may be disjoint. In order to
make some of its objects accessible to the callee, the caller
needs to pass capabilities for such objects explicitly to the
portal. This is probably not a significant disadvantage in the
context of Opal, as it is normal to present capabilities ex-
plicitly in that system. In Mungi, however, capabilities are
normally presented implicitly (by storing them in a clist),
which makes the protection system much less intrusive. Our
PDX mechanism is consistent with this approach.

Angel [MSS�93] is another SASOS. Its approach to pro-
tection is to use upcalls to a protection server, which can
implement any protection model.

The Grasshopper system [DdBF�94] is not a SASOS,
but presents a generalised approach to address spaces, in-
cluding the ability to emulate a SASOS. In Grasshopper, a
protection domain is the union of the protection domains as-
sociated with the locus (execution abstraction) and the con-
tainer (storage abstraction). When a locus enters a different
container, its protection domain automatically changes ac-
cordingly.

3IBM’s term “user profile” essentially refers to a protection domain.

7. Conclusion

In this paper we have presented the mechanism of pro-
tection domain extension and described its implementation
in the Mungi single address space operating system. The
mechanism is relatively expensive on a first call, compara-
ble to the creation of a process, but extensive caching of val-
idation information across calls allows this cost to be amor-
tised over many invocations. The cost of a call other than
the first one is essentially that of two cross-domain IPC op-
erations and a thread creation. These are extremely fast in
the underlying L4 microkernel, we therefore expect good
performance of PDX in Mungi.

The PDX mechanism presents the basis of object sup-
port, particularly encapsulation, in Mungi and is also used
to access devices and for implementing user-level page fault
handlers.

References

[Ber80] Viktors Berstis. Security and protection in the
IBM System/38. In Proceedings of the 7th
Symposium on Computer Architecture, pages
245–250. ACM/IEEE, May 1980.

[Cha95] Jeffrey S. Chase. An Operating System Struc-
ture for Wide-Address Architectures. PhD the-
sis, University of Washington, 1995.

[DdBF�94] Alan Dearle, Rex di Bona, James Farrow,
Frans Henskens, Anders Lindström, and Fran-
cis Vaughan. Grasshopper: An orthogonally
persistent operating system. Computing Sys-
tems, 7(3):289–312, 1994.

[ERHL96] Kevin Elphinstone, Stephen Russell, Gernot
Heiser, and Jochen Liedtke. Supporting per-
sistent object systems in a single address
space. In Proceedings of the 7th International
Workshop on Persistent Object Systems, Cape
May, NJ, USA, May 1996. To be published.

[HERV94] Gernot Heiser, Kevin Elphinstone, Stephen
Russell, and Jerry Vochteloo. Mungi: A dis-
tributed single address-space operating sys-
tem. In Proceedings of the 17th Australasian
Computer Science Conference, pages 271–80,
Christchurch, New Zealand, January 1994.

[Lev84] Henry M. Levy. Capability-Based Computer
Systems. Digital Press, 1984.

[Lie95] Jochen Liedtke. On �-kernel construction. In
Proceedings of the 15th ACM Symposium on
OS Principles, pages 237–250, Copper Moun-
tain, CO, USA, December 1995.



[MM96] Ashok Malhotra and Steven J. Munroe.
Schema evolution in persistent object systems.
In Proceedings of the 7th International Work-
shop on Persistent Object Systems, Cape May,
NJ, USA, May 1996. To be published.

[MSS�93] Kevin Murray, Ashley Saulsbury, Tom
Stiemerling, Tim Wilkinson, Paul Kelly, and
Peter Osmon. Design and implementation
of an object-orientated 64-bit single address
space microkernel. In Proceedings of the
2nd USENIX Symposium on Microkernels
and other Kernel Architectures, pages 31–43,
September 1993.

[VRH93] Jerry Vochteloo, Stephen Russell, and Ger-
not Heiser. Capability-based protection in the
Mungi operating system. In Proceedings of
the 3rd International Workshop on Object Ori-
entation in Operating Systems, pages 108–15,
Asheville, NC, USA, December 1993. IEEE.


