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Abstract. This paper presents a new page table structure, the variable
radiz page table, which overcomes many of the disadvantages of other
page table structures. Unlike a hashed page table, the variable radix
page table naturally accommodates shared segments and mixed page
sizes. But unlike a multi-level page table, the radix page table is space-
efficient and requires few memory references to look up, even in large
and sparse address spaces. Our measurements show that the variable
radix page table outperforms other page table structures, and is even
competitive with a memory-based TLB cache.

Recent research has shown that thrashing of the TLB is an increas-
ing bottleneck in modern processors: measurements of the TLB’s con-
tribution to execution time often exceed 40%. Such results sometimes
even understate the full impact of TLB thrashing due to the presence of
indirect overheads such as cache pollution and the effect of exceptions on
the processor pipeline. By reducing the cost of TLB misses, the variable
radix page table can achieve a significant overall speedup. The variable
radix page table’s mixed page size support also facilitates the reduc-
tion of TLB miss frequency, addressing the architectural imbalance that
causes TLB thrashing. Our conclusions are also significant in the debate
on the different hardware organizations in use for virtual memory.

1 Motivation

1.1 Performance

Virtual memory (VM) is almost universally supported in modern architectures
and operating systems. VM has many benefits and one main cost: the overhead
in time and space for maintaining and looking up page tables. In most processors,
page table look-ups are cached in a hardware translation lookaside buffer (TLB).
Historically, TLBs have been very effective. Clark and Emer [1] measure the
contribution of TLB misses to execution time of a variety of workloads on the
VAX-11/780 in the range 5-8%.

However, more recent measurements show that the TLB overhead in modern
processors is surprisingly high. Huck and Hays [2], Romer et al. [3], Subrama-
nian et al. [4], and Navarro et al. [5] all report TLB overheads which often exceed



40%. Using simulations, Kandiraju and Sivasubramaniam [6] report data TLB
miss rates in excess of 20% for some benchmarks, which translates to an ex-
tremely high overhead given that the typical cost of a TLB miss is 30 cycles or
more.

What is the cause of such poor TLB performance results? The TLB is another
casualty of the widening gap between processor and memory speed. Processor
speed and memory sizes have been increasing steadily, but the coverage of the
TLB much more slowly. Navarro et al. observe that the coverage of the TLB
ten years ago was in the order of 1% of the main memory size: today it is
in the order of 0.01%. There are architectural reasons why the TLB has been
growing slower than the rest of the memory hierarchy. The TLB is a virtual
cache, so it usually requires wider content-addressable memory (CAM) tags. The
TLB must be frequently invalidated, so larger sizes bring diminishing returns.
To avoid context switch invalidations, each tag is often widened further by an
address space identifier. Because of their relatively small size and potential for
pathological misses, the TLB often has high associativity already: as a result,
TLBs are difficult to build simultaneously large, fast, and cool. Shared pages
also effectively increase the amount of physical memory without reducing the
number of TLB entries required to cover it. The cost of each individual TLB
miss is also increasing due to deeper pipelining, the overhead of handling precise
exceptions, and page tables for 64-bit address spaces.

Inertia must also be blamed. Once specified in the architecture, TLB param-
eters (such as the page size) are often difficult to change without introducing
incompatibilities with existing system software. There is also some neglect. Much
attention is paid to enhancing caches with prefetching, multiple levels of hier-
archy, and better integration with the processor pipeline. The TLB does not
receive nearly as much attention as the rest of the memory hierarchy.

1.2 Superpages

An easy way to improve TLB coverage is to increase the page size. However,
an architecture’s page size often cannot be changed in an upwards-compatible
manner. Larger pages also increase fragmentation and I/O latency. Therefore,
many architectures instead provide multiple page sizes: a base page and one
or more superpages, which are power-of-two multiples of the base page size. A
superpage TLB allows pages of different sizes to be used simultaneously, even
in the same address space (provided, of course, that they do not overlap). Most
current processors provide superpage TLBs to extend TLB coverage rather than
attempting to build larger conventional TLBs.

The first applications of superpages in operating systems were special-
purpose: kernel virtual memory, memory-mapped I/O devices, and mappings
which bypass address translation. Superpages are ideal for these applications as
their mappings are usually large, contiguous, and long-lived.

The more general use of superpages is inhibited by assumptions pervading
the operating system. The whole VM subsystem, in its page fault handling,
page replacement algorithms, and free frame management generally assumes



throughout that all pages are the same size. Several approaches for the general
use of superpages for ordinary applications have recently been presented, with
varying extents of modification to existing operating system software. Romer
et al. count TLB misses to small pages, promoting them when the miss count
exceeds a threshold. Ganapathy and Schimmel [7] use a background daemon
which promotes pages based on memory pressure and hints specified by the user
in the executable. However, because both these schemes still allocate small pages
to noncontiguous frames, the pages must first be copied into a contiguous region
before promotion. Copying is such a performance penalty that Swanson, Stoller,
and Carter [8] have proposed adding another TLB at the DRAM interface to
optimize it. Subramanian et al. avoid copying altogether: they reserve contiguous
memory for superpages by using a free frame manager based on the buddy
system. Navarro et al. also use the page reservation technique, and have solved
many practical issues using this scheme.

However, while several approaches exist for making use of superpages in
higher layers of the VM subsystem, very little advantage of superpages is taken
in the page table. Most page tables support only one or two page sizes directly.
Other page sizes must typically be expanded into multiple page table entries
(PTEs), each with the coverage of the base page size. For example, if the base
page size is 8 kBytes, a 4 MByte superpage would require 512 PTEs. Not only
does this duplication waste space, but it can make superpage promotion and
demotion operations expensive. It is also a poor match for page size assignment
policies which use a single page size for each process or for each segment. With
most page tables, these simple policies would suffer much from PTE duplication.

1.3 Sharing

Many systems allow physical frames to be shared between address spaces. This
is used for shared code segments, shared libraries, memory-mapped I/O, and
interprocess communication. However, most page tables also have poor support
for shared segments. The PTEs for the shared segment are usually duplicated in
every page table. A page table which could represent shared segments without
duplication would save space, be easier and faster to update, and friendlier to
caches.

A shared page shares the same physical memory and physically-indexed cache
lines, but not TLB entries. With typical address space identifier (ASID) tags,
a separate TLB entry is still required for each address space which shares a
page. Sharing therefore increases the coverage of memory and physically-indexed
caches, but not the TLB. This makes TLB performance worse relative to the rest
of the memory hierarchy. Some TLBs have more sophisticated tags which allow
TLB entries to be shared between address spaces [9,10]. The tag identifies not
an individual address space but a whole protection domain, of which more than
one address space may be a member. Whether or not the TLB supports domains
directly, the motivation for improving the performance of shared segments in the
page table is clear.



Another effect of shared segments is that the page tables occupy more space
relative to the size of physical memory. According to Khalidi and Talluri [11],
unshared page tables for shared pages can increase page table size by an order
of magnitude. Since many operating systems cannot page out page tables, page
table space can be a significant problem.

2 Previous Page Tables

The most common page table structures in current use fall into two broad cate-
gories: those based on radix trees and those using hashing.

2.1 Radix-Based Page Tables

Probably the most common page table structure is the multi-level page table
(MLPT), which is essentially a shallow radix tree. To look up an MLPT, the
page number is split into m fields which are used to index m arrays in turn
(see Fig. 1). The choice of m and the size of the arrays is a time-space tradeoff.
Choosing fields of about 10 bits wide yields a page table of manageable size.
With 32-bit addresses, only two or three levels are required.

But with full 64-bit addresses, a manageable MLPT would require at least five
levels. Looking up a 5LPT would require five sequential memory references: an
unacceptably large overhead. Moreover, a 5LPT is not particularly space efficient
either. Segments of memory scattered sparsely throughout the address space
would require many arrays to be allocated, which are mostly empty space. These
problems make MLPT impractical to use with 64-bit addresses. Nevertheless, the
new AMD x86-64 architecture defines a 4LPT, but restricts virtual addresses to
48 bits.

MLPT enables some simple optimizations. Since an aligned superpage of
appropriate size would fill a whole leaf page table level, a common technique is
to factorise it into a single leaf entry in the upper level page table. Fig. 2 shows
the effect of this representation: indexing is truncated when enough bits of the
page number have been translated to uniquely identify the superpage. However,
the number of different page sizes that can be supported with this technique
is limited. Typically the minimum supported superpage size is several MBytes,
and all other page sizes must be represented by duplicating PTEs. Nevertheless,
superpage factorization is common in systems using MLPT.

Another optimization to MLPT is to share whole segments by cross-linking
page tables. However, similar limitations apply to this technique: each shared
segment must be isolated in its own aligned region of several MBytes. If many
small segments must be shared, the amount of virtual address space wasted
by putting each into its own aligned region is considerable. Few systems using
MLPT cross-link page tables.

The virtual linear array (VLA) page table is a variation of MLPT which
mirrors the multi-level structure, but allocates the page tables in virtual memory.
The page table thus appears to be a single large array indexed by virtual page
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number. Storing page tables in virtual memory effectively allows interior nodes
to be cached in the TLB, short-circuiting page table look-up in the common
case to a single (virtual) memory reference. Only if all levels miss in the TLB
does the full m-level look-up take place. However, unless the necessary control
is included in hardware, each miss requires an expensive nested exception to
handle. TLB entries for the virtual linear array also compete with TLB entries
for applications. Finally, the virtual linear array consumes a large swath of virtual
address space: a finite resource. Nevertheless, VLA page tables are popular, and
some architectures provide support for them either directly or by assistance with
nested exceptions or multiple exception vectors.

2.2 Hashing-Based Page Tables

An alternative to ordinary page tables is the inverted page table (IPT), which is
indexed by physical, not virtual, address. An IPT is particularly attractive with
64-bit addresses because its size is proportional to the size of physical memory,
not the size of the virtual address space. Moreover, only one IPT is required for
all address spaces in the system, and the reverse function (physical to virtual) is
provided automatically. But unless hardware is available to search it in parallel,
the IPT requires an additional hash anchor table to look up the IPT by virtual
address. Another disadvantage of IPT is that sharing a frame between multiple
address spaces is hard.

Huck and Hays [2] show that a hash table on its own performs slightly better
than IPT, and removes some of its disadvantages. Their hashed page table (HPT)
is essentially a hash table with collision chaining (Fig. 3). A HPT is somewhat
larger than other page tables because the virtual address must be present in
each PTE to check for hits and collisions.

The clustered page table (CPT) proposed by Talluri, Hill, and Khalidi [12] is
a variation of HPT which stores multiple adjacent PTEs per hash bucket. This
combines both hashing and radix-based approaches, applying hashing on the



sparse high-order bits and array indexing on the dense low-order bits. A CPT
may also use less space than a pure HPT, as only one virtual address needs to
be stored per hash bucket, instead of one per PTE.

Hashing-based page tables are attractive for 64-bit address spaces as a hash
function is just as efficient for large virtual addresses as small ones. Sparse ad-
dress space distributions are also no problem. However, hashing has some un-
desirable properties. Collisions cannot be eliminated, even with a perfect hash
function. Hash tables are also difficult to traverse: consider the problem of delet-
ing an address space whose PTEs are scattered throughout an HPT. Finally,
hashing does not support superpages well: common workarounds are to try mul-
tiple hash functions or to expand superpages into many base page size PTEs.

Nevertheless, the advantages of HPT are such that many recent architectures,
wishing to include page table support in hardware for performance but not
wishing to set an inflexible page table in stone, have included hardware support
for HPT, either as a complete page table or as a cache to accelerate another
page table implemented in software.

2.3 Path Compression

Path compression is an established technique for reducing the depth of radix
trees [13]. Path compression works on chains of non-branching nodes, whose
entries are all invalid except for one. Every such chain is abbreviated into a
single entry containing just the tail of the chain and an indication that several
bits of the key were skipped on the path. The skipped bits may also be stored
in the entry and checked during the look-up; alternatively keys may be stored
in the leaves and checking deferred till the end.

The guarded page table (GPT) is a multi-level page table which applies path
compression (Fig. 4). In the terminology of Liedtke [14], each node is ‘guarded’
by skipped bits, which must compare equal with the page number key before
descending further in the page table.

collision chains
page
table
—] =1 ] root
{ ] { ]
1 frame
'—r . number
— frame
equal? number
‘ equal?
| | page offset | | | | ! I page offset

Fig. 3. A hashed page table Fig. 4. A guarded page table



The GPT works well in sparse address spaces [15]. Since very few applications
use more than a tiny fraction of a 64-bit address space, path compression is
effective at reducing radix tree depth, especially in higher levels of the radix
tree.

However, implementations of GPT have not performed well in large and
dense address space regions. While Liedtke originally contemplated a GPT with
variable radices, all implementations have to date used a fixed radix. Moreover,
to take advantage of sparsity, and to reduce the cost of GPT updates, this radix
is typically small. Elphinstone [15] determined that the optimal GPT radix over
a range of look-up, creation, and deletion benchmarks is 16. As a result, GPT
depth can sometimes blow out, especially for large contiguous segments.

3 Radix Page Table

3.1 Level Compression

Level compression [16] is another technique for reducing the depth of radix trees.
It works by reducing complete subtrees, whose nodes are all valid, reducing them
to a single, flat super-node.

The variable radiz page table (VRPT) is a radix tree which applies both path
compression and level compression (Fig. 5). Each node may skip any number of
bits which are insignificant, and point to an array of any power of two in size.
Each level may be a different size, and the depth of the tree may be different at
different regions of the address space.

VRPT also dispenses with the need for actual guards. Instead, checking the
validity of a look-up is deferred until a leaf is reached. This optimistic strategy
is reminiscent of hashing, where key comparison only occurs after the hash algo-
rithm selects a bucket. Omitting guards also greatly simplifies VRPT updates,
allowing the easy restructuring of VRPT levels to arbitrary powers of two.

The combination of path compression and level compression is more effective
at reducing page table depth than either technique alone. Flexible radices allow
VRPT to take advantage of any regularity or structure present in the address
space layout to reduce the number of required levels. There is no need to choose a
compromise radix that suits both sparse and dense address spaces. If an address
space contains a mixture of sparse and dense regions, the level size and depth
may even be different in the different regions.

Sparse address space distributions contain many compressible paths, espe-
cially near the root of the page table. Path compression is therefore most effective
near the page table root. Level compression is effective at the leaves, though is
sometimes also effectively applied near the root for certain address space lay-
outs. Large dense segments benefit the most from level compression. Regularly
laid out address spaces typically require only two or three levels, even in 64-bit
address spaces.

Indexing an VRPT may seem to be a complex operation, but in fact the
data structure and look-up algorithm can be made simple and reasonably effi-
cient using bit arithmetic (Fig. 6). Each page table index is extracted with two
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instructions: a variable left shift followed by a variable right shift. An internal
node consists only of a pointer and two shift amounts. The left shift amount,
which is related to the number of bits skipped before indexing, is called skip.
The right shift amount, which is related to the size of the following level, is
called size. A bias is applied to size so that the index is ‘pre-scaled’ to the size
of page table entries. Bits skipped in the page number are simply ignored during
indexing, and are checked at the end. With a typical RISC instruction set, the
inner loop can be implemented in only 7 or 8 instructions.

3.2 Radix Policy

The difficult part of implementing a flexible radix tree is choosing the radices.
Nilsson and Tikkanen [17] promote or demote a level to the next power of two if it
fills up or empties below certain thresholds. Elphinstone [15, p. 36] proposes using
knowledge supplied from higher layers about the structure of the application.
However, in the absence of such information it is difficult to guess such structure
in advance from the lowest layers of the VM subsystem. Moreover, address space
structure may evolve during the life of a process. The choice of radix is also a
time—space tradeoff, and depends on the resources available to the system. A
system with low memory pressure may be able to apply level compression more
aggressively, whereas a system which is suffering from paging I/O may decide
that aggressive level compression is not worth it.

Instead, our implementation of VRPT uses a radix policy which balances
memory pressure against the desire for shallow page tables. The page tables use
a smart allocator, based on the buddy system, which ‘greedily’ allocates the
largest levels possible with the available contiguous physical memory. However,
it reserves the right to take back some or all of the memory if it is unused and
more memory is needed. This policy requires co-operation from the code which
updates page tables, but the amount of extra complexity is small. The benefit
is that room is provided for growth wherever possible, avoiding expensive tree
restructuring operations as an address space is populated.



This policy also solves a subtle garbage collection problem. If higher layers
unmap pages for a short time, the memory allocator may incur significant ex-
pense if the page tables are eagerly freed and quickly reallocated again. The
VRPT allocator frees such page tables lazily, only when required. The VRPT
allocator also integrates easily with resource management mechanisms designed
to limit the amount of kernel memory which can be consumed by each user.

4 Benefits

In addition to look-up performance, the VRPT structure has some other bene-
ficial properties. Mixed page sizes, shared segments, and many common virtual
memory update operations are simple and easy to implement relative to other
page table structures.

4.1 Superpages

Section 2 described how MLPT can incorporate limited page size mixtures in
an efficient way. VRPT also naturally accommodates page size mixtures, but
is much more flexible, allowing the operating system to achieve the maximum
benefit of superpages.

Many architectures provide a large number of page sizes, in multiples of 4 or 8.
VRPT supports arbitrary page size mixtures by superpage factorization: super-
pages may be treated as variable-length keys in the radix tree, and compressed
into small leaves which truncate look-up at any point in the tree. Factorization
saves space and allows superpage PTEs to be quickly updated.

Factorization in VRPT is always optional. Our implementation avoids factor-
izing superpages if the factorized version requires as much space as the expanded
version (or more). This heuristic is not motivated by a compulsion to save mem-
ory but by the observation that a smaller page table is usually also simpler
and shallower. In practice this superpage expansion generally only occurs if a
superpage is promoted in-place from a population consisting mostly of smaller
pages. In this case, full factorization only occurs when enough pages have been
promoted to justify it. This policy also avoids the pathological situations which
can occur with certain page size mixtures.

The one drawback of superpage factorization is that it can increase page
table depth slightly. However, for this effect to become significant, a very large
number of page sizes must be present, in which case the performance benefit of
the large pages far outweighs the slight increase in page table depth.

4.2 Cross-linking

VRPT supports cross-linked page tables in a similar manner to the MLPT. But
with VRPT, cross-linking is more flexible. Shared segments may be aligned on
any power-of-two boundary, not just at a fixed boundary such as 4 MBytes.



Cross-linked page tables can eliminate minor page faults, which occur when
there is a page fault on a page which is already resident in memory. A common
reason for minor page faults is when shared pages are brought into the page cache
by another application but not entered into every application’s page table. If the
shared segment is mapped by a cross-linked page table, this problem goes away.

Compared with the TLB miss handler, the page fault handler is usually a
‘slow path’ through the system, and is not as aggressively optimized. For this rea-
son, minor page faults have a significant performance cost in many systems, even
though they involve no actual I/O. Linux has recently addressed this problem
by optimizing its page cache with a radix tree [18]. FreeBSD has instead added
code to preload page tables from its page cache on address space creation [19].
Cross-linked page tables achieve the same effect as page table preloading without
the added start-up cost.

4.3 Page Table Updates

When higher layers update page tables, they often do so in particular ways. The
VRPT structure allows some simple optimizations for these common update
patterns.

One common operation is to map, unmap, or change the protection attributes
of an entire segment of memory at once. The VRPT structure allows the inter-
nal nodes to contain protection bits which qualify all underneath PTEs. These
qualifying protection attributes may be accumulated during look-up by adding
one extra AND instruction to the VRPT indexing loop: an instruction which may
be free on a multiple-issue processor. Protection operations on whole memory
segments may be implemented by modifying the internal node rather than ev-
ery leaf PTE. When combined with sharing, address spaces may share segments
with different protection attributes.

Another common operation is to update or invalidate all the PTEs which
refer to a particular physical frame. For example, the page daemon may write-
protect or pageout a frame from all address spaces. In some systems the number
of PTEs referring to one frame may be large due to features such as shared
libraries and the indiscriminate use of copy-on-write. Cross-linked page tables
can help, but can not always be used, for example if segments are shared at
different addresses or are inappropriately aligned. Searching for all the PTEs
may be expensive. In some systems it is not even known at pageout time which
address spaces contain a particular frame, and a brute force search is required.

A simple enhancement allows such operations to be optimized. A single
pointer is added to each PTE which links together all the PTEs referring to
the same physical frame. An operation on all virtual pages for a single physical
frame may simply follow the linked list to find all affected PTEs. While this
technique is not specific to VRPT, the inclusion of the virtual address in the
VRPT leaf allows common operations such as pageout to proceed by following
this list without reference to any external data structure. Other systems have
a similar data external structure, such as the pv_entry structures in FreeBSD,
which are actually used as machine-independent templates for generating the



hardware page tables [19]. Merging this data structure into the page table itself
saves considerable complexity at the cost of only one word in each PTE.

5 Performance

VRPT was benchmarked on two 64-bit architectures: MIPS64 and TA-64.

MIPS64 is a typical RISC architecture: all TLB misses are handled by trap-
ping to software. Its TLB has been extensively studied, for example by Chen,
Borg, and Jouppi [20]. Seven page sizes from 4kBytes to 16 MBytes are sup-
ported. The hardware and experimental methodology is comparable with that
of Elphinstone [15]: a 100 MHz MIPS R4700 processor running benchmarks se-
lected from the SPEC CPU95 suite.

TA-64 is an architecture for high-performance servers, and includes many
architectural features supporting fast virtual memory. The TLB is tagged by a
domain (called a protection key). Eleven page sizes from 4 kByte to 4 GByte are
supported. TLB refill hardware (called the virtual hash page table, VHPT) can
be configured in one of three ways: as a hardware-walked VLA page table (short-
format), as a hardware walked TLB cache (long-format), or disabled, with all
TLB misses handled by software exception handlers. Our test platform used a
733 MHz Intel Itanium processor, using a custom kernel created for the purpose.

5.1 Methodology

A common methodology used in the literature is to count TLB misses and in-
strument the TLB miss handler, either in hardware or software. Instrumentation
usually does not include effects such as the disruption of the processor pipeline
and the cache misses due to displacement of cache lines by the TLB miss han-
dler. More complex instrumentation could conceivably measure these indirect
overheads, but it would be difficult to verify both the correctness of the mea-
surements and the absence of other introduced overheads.

A better methodology which includes all the direct and indirect costs of TLB
misses is to perform a second run of each benchmark in physical mode, with the
TLB disabled. (Where the machine does not allow physical addressing in user
mode, the effect can be simulated with very large superpages.) The relative
difference between the two times is the TLB overhead.

Indirect costs are the probable explanation of the anomalous observation of
Subramanian et al. [4] that the speedup due to superpages exceeded the total
apparent TLB overhead.

5.2 Comparison between Page Tables

VRPT was implemented as a kernel module in the L4/MIPS microkernel [21].
For comparison, several other page table modules are also available in L4/MIPS.
Fig. 7 shows the results. HPT, CPT, and GPT are implementations of the page
tables described in Section 2. The implementation of GPT is also described



in detail by Liedtke and Elphinstone [22]. An MLPT implementation was also
available, but performed so poorly that it was excluded to avoid distorting the
graph. CACHE is the same as GPT, but page table look-ups are accelerated by
a 128 kByte software-maintained TLB cache in main memory [23].

On the MIPS, VRPT outperforms other page tables in terms of TLB miss
overhead by a factor of two. VRPT is competitive with CACHE, even though
the TLB cache in this benchmark achieves close to 100% hit rate. The number
of memory references made by each page table is the main determiner of perfor-
mance. Because these benchmarks are compact in their use of the address space,
both CACHE and VRPT touch only one cache line per TLB reload. HPT and
CPT must touch at least two to compute the hash and resolve collisions. GPT
typically requires three or more levels.

Our results are generally consistent with the conclusion of Huck and Hays [2]
that page table look-up is dominated by cache misses. In their simulations, 20—
35% of the cycles spent in handling TLB misses are cache miss penalty cycles.
They also compute cache miss rates of 2-3% for a 2LPT root, 12-15% for a
2LPT leaf, and 20-50% for an HPT. The advantages of hashing must be balanced
against its reduced locality.

Not surprisingly, TLB performance is also highly sensitive to the locality of
the application. Swim’s data segment is large, but its working set is relatively
small. Gece is smaller, but touches a large number of pages, perhaps due to the
preponderance of algorithms operating on linked data structures.

An application’s locality behaviour may benefit different levels of the memory
hierarchy differently. We find little correlation between TLB miss rate and L1
cache miss rate, L2 cache miss rate, or page fault rate. This makes it difficult to
compare TLB coverage with cache sizes, or to recommend a TLB size.

On the Itanium, (Fig. 8), two other page tables were also measured for com-
parison: 3LPT is Linux 2.5.43, which uses a three-level page table (but does not
supports the full 64-bit address space). Linux was patched to use the HPT (as a
TLB cache) rather than the VLA, as the latter does not support the use of super-
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pages. (The overall performance difference between the two hardware-supported
page table formats has been found to be negligible [9].) HPT is FreeBSD 5.0,
which uses software TLB reload from a hashed page table.

Every effort was made to minimize the inaccuracy due to the different oper-
ating system kernels. All executables were statically linked with the same ver-
sion of the standard libraries. These libraries emulate most system functionality
such as file I/O. The executables were preloaded into the system’s page cache
by performing a dummy run before benchmarking. The benchmarks themselves
are designed to have very little interaction with the system. Nevertheless, some
lingering system impact may be present in these results.

Because Itanium features a hardware-loaded TLB, the results in Fig. 8 are
somewhat less pronounced. The majority of hardware TLB misses hit in the
memory-based VHPT, and do not require page table lookup. Moreover, the cost
of taking an exception is a large component of the TLB miss overhead on this
processor.

5.3 The Effect of Superpages

One of the benefits of VRPT is its ease in accommodating superpages. In order to
establish the benefit of using superpages, VRPT was benchmarked against itself
in one of several different configurations. The 4k only or 8k only configuration
uses only one (base) page size. The other configurations automatically promote
smaller pages to superpages where possible.

The use of 64k and larger superpages all but eliminates the TLB overhead
in these benchmarks. This shows that TLB thrashing on the MIPS processor is
dominated by TLB capacity misses: conflict misses are all but eliminated by the
fully-associative TLB, despite the pseudo-random replacement algorithm.

Results for the Itanium processor are similar. However, a problem with using
superpages on the Itanium is that the VHPT cannot cache superpages effectively:
only the base page size is cached. Therefore, all TLB misses for superpages
become VHPT misses. Despite the high cost of VHPT misses on this processor,



superpages reduce the hardware TLB miss rate so dramatically that they are
still a win.

A limitation in these benchmark is that it assumes that memory pressure is
low, and that there is no paging I/O activity. We may expect different results if
the system decides to run the application partly resident in memory.

6 Conclusions

Architectural imbalances have resulted in VM overheads forming a significant
bottleneck for many workloads. The contribution of TLB misses to execution
time often exceeds 40%. We have attempted to address this problem to the
extent possible in software, using commodity hardware.

Page table look-up is the most important algorithm to optimize in software.
We have presented the variable radix page table, which attempts to minimize
the depth of page table look-ups. Measurements show that page table look-up
time is dominated by cache misses.

Superpages present the single biggest opportunity for reducing TLB overhead
by extending the coverage of the TLB and thus reducing the frequency of misses.
VRPT is ideal for VM subsystems that use superpage optimizations. It provides
efficient support for page size mixtures without restricting the way they are used.
However, further analysis is required to determine whether sophisticated policies
are required to take advantage of superpages, or whether simple policies such as
increasing the page size across the board is sufficient.

Another open question is whether the hardware complexity of a superpage
TLB is justified given the complexity this adds to operating system software.
Clearly a configurable page size is a very desirable feature to allow future ex-
pansion or scaling to large memory configurations, but the benefit of supporting
arbitrary page size mixtures must be evaluated against simpler TLB configu-
rations. In particular, a TLB with a per-process page size and/or a sub-block
TLB [24] may be attractive to compare with a superpage TLB.
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