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SYNOPSIS: 

lihen water is drawn from a cooling pond, heated by 

some industrial process and discharged "back into the pond to 

dissipate its heat load to the atmosphere an orderly motion is 

generated within the pond. This motion and the subsequent heat 

transfer from the surface of the pond is governed by the inlet 

Densimetric Proude Number, the inlet Reynolds Number, and the 

rate of heat transfer from the surface. 

In this dissertation, a two-dimensional cooling pond 

has been studied. The heated water is discharged onto the 

surface of the pond and, after losing heat at the surface, is 

eventually withdrawn from the bottom of the pond. The laminar 

equations of motion and the boundary conditions describing the 

problem have been approximated using finite differences and the 

equations have been solved using a numerical technique. The 

results of this mathematical model have been compared with the 

results of a laboratory-scale experimental investigation of the 

problem. The experimental results have also been compared with 

those obtained from a modified form of the mathematical model 

proposed by Koh and Fan for surface buoyant jets. 

Under steady state conditions the flow consists of a 

surface layer entraining fluid from below and losing heat at the 

surface. This layer subsides at the downstream boundary of the 



pond and passes through the pond outlet. A recirculation eddy is 

formed under the surface flow to replenish fluid entrained 

into the surface layer. 



ACKNOWLEDGEMENTS: 

The work described in this thesis was carried out at 

the University of New South Wales Water Research Laboratory under 

a State Electricity Commission of Victoria post-graduate 

scholarship. I am extremely grateful to the Commission for the 

award of this scholarship. 

To the following people, I would like to extend my 

sincere thanks: 

Professor I.R. Wood for his guidance during the 

formulation of the project; 

Dr. B. Jenkins and Professor G. de Vahl Davis 

for their supervision throughout the project; 

G.D. Mallinson for his assistance with the 

numerical work and for his computer program 

which was used as a basis for the solution of 

the mathematical model; 

the staff of the Water Research Laboratory for 

their assistance in building the experimental 

apparatus j 

the Electricity Commission of New South Wales 

for assistance in the purchase of experimental 

equipment : 

the Herman Central Scientific Laboratory of the 

State Electricity Commission of Victoria for the 

use of temperature measurement and recording 

equipment. 



Finally I vould like to thank my wife, Lorraine, for 

her encouragement and assistance during the whole of the 

research project. 



TABLE OF CONTENTS 

SYNOPSIS 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

NOMENCLATURE 

Page No, 

1. INTRODUCTION AND LITERATURE SURVEY 1 

1.1 General 1 
1.2 The Cooling Cycle 2 

1.2.1 Terminology 2 
1.2.2 The Inlet 3 
1.2.3 The Heat Transfer Region k 
1,2,h The Outlet 6 

1.3 Definition of the Problem to "be Studied 6 
1.k Literature Review 7 

l.U.l General Properties of Stratified Flow 7 
1.U.2 Flow Conditions Near the Inlet 13 
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NOMENCLATURE: 

Note 

1. Certain symbols which have limited use and are defined in 

the text are not mentioned here. 

2. Distinction is made in the text where the same symbol is 
\ 

used to define dimensional and non-dimensional parameters 

Roman Symbols 

Cf Local shear stress coefficient. 

Cp Specific heat of the fluid, 

d Depth of the cooling pond. 

D Dimensionless depth of the cooling pond. 

DT Stability ratio for numerical solution, 

e Entrainment coefficient. 

V F Densimetric Froude Number = . 

Fi Densimetric Froude Number at the inlet. 

F Critical Densimetric Froude Number, cr 

g Acceleration due to gravity, 

h Interfacial depth, 

hi Inlet depth of the cooling pond, 

ho Outlet depth of the cooling pond. 

Hi Dimensionless inlet depth = 1.0. 

Ho Dimensionless outlet depth. 

Ha Overall heat transfer coefficient. 



2. 

k Coefficient of thermal conductivity. 

K Dimensionless heat transfer coefficient. 

1 Length of the cooling pond. 

L Dimensionless length of the cooling pond. 

M Niunber of mesh points in the vertical direction. 

N Number of mesh points in the horizontal direction. 

Nu Nusselt Number = ^ 
k 

P Pressure. 
P^Cpv 

Pr Prandtl Number = —z k 

Vh 
V 

Vh 

Re Reynolds Number = 

R Reynolds Niimber = e 

Ri Richardson Niimber = F""̂ . 

T Temperature. 

Ti Temperature at the inlet. 

To Temperature at the outlet. 

Tew & T^ Temperature of the heat sink, 

t Time. 

u Vertical velocity. 

Ue Entrainment velocity. 

V Mean horizontal velocity. 

VH Flow rate per unit width. 

V Horizontal velocity. 



3. 

vi Horizontal velocity at the inlet, 

vo Horizontal velocity at the outlet, 

w Width of the test flume. 

X Vertical co-ordinate in the transformed solution region. 

X Vertical co-ordinate. 

y Horizontal co-ordinate in the transformed solution region, 

y Horizontal co-ordinate. 

Greek Symbols 

a False transient coefficient. 

3 Coefficient of thermal expansion. 

Laplacian operator = 
92 ^ 82 
3x2 

e Eddy viscosity. 

C Vorticity. 

6 Dimensionless temperature, 

ei Dimensionless inlet temperature = 1.0. 

6o Dimensionless outlet temperature. 

Dimensionless heat sink temperature, 

e Stability parameter for the interface. 

V Kinematic viscosity, 

p Density, 

p^ Reference density. 

ip Stream function. 

T Shear stress. 



Subscripts 

i Denotes the ith grid point in the vertical direction. 

Denotes the jth grid point in the horizontal direction. 

Superscripts 

n Denotes the nth time step in the progression throu^ time 



1. INTRODUCTION AND LITERATURE SURVEY: 

1.1 General 

Stratified flow is defined as the flow, imder the action of 

gravity, of a fluid over, under or through a second fluid which is 

of a different density. The density difference may be due to a 

temperature difference, dissolved compounds or particles in 

suspension. The present study has been confined to stratified flow 

in water where the density difference is due to a temperature 

difference caused by the disposal of low grade waste heat from 

industrial processes. 

This particular research project was initiated as the 

result of the State Electricity Commission of Victoria's desire to 

be able to predict the temperature distribution in cooling ponds 

and estuaries where future power stations might dispose of waste 

heat. Thermal power stations require a large quantity of water to 

condense exhaust steam from their turbines. The waste heat,taken 

from the condenser, is disposed of to the atmosphere either via 

cooling towers or by discharging it into adjacent cooling ponds or 

waterways. Systems emp3.oying the latter method of disposal can 

be divided into two classes -

(a) The once-through system where the cooling water is 

taken from the ocean or a river, passed through 

the condensers and discharged, at a hi^er 

temperature, at a point where recycling to the 

inlet is unlikely. 



2. 

(b) The closed system where the water is tsiken from 

a cooling pond or lake^ passed through the 

condensers and discharged, at a higher temperature, 

remote from the inlet. Heat transfer to the 

atmosphere reduces the temperature of the water 

before it is recycled through the condensers. 

The efficiency of the power station is partly dependent 

upon the temperature to which the steam is condensed by the cooling 

water and hence is a function of the temperature of the cooling 

water. It is therefore desirable to draw the coldest water available 

into the condensers. For the once-through system this involves 

ensuring that only water at ambient temperature is drawn into the 

power station inlet and that no short circuiting from the outlet 

occurs. In the closed cooling pond it involves maximising the heat 

transfer to the atmosphere to obtain the coolest water possible at 

the power station inlet for a given heat transfer area. 

With the increasing demands for power, the thermal loads 

imposed on available cooling water resources will be increased. It 

therefore becomes increasingly important to be able to predict the 

behaviour of heated water discharged into the environment. 

1.2 The Cooling Cycle 

1.2.1 Terminology 

Up to this point the centre of discussion has been the 

industrial process. To discuss the motion of water within the 
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external environment it is necessary to define some general terms which 

will be adhered to for the remainder of this report -

(a) Inlet: The position where the water^ heated by the 

industrial process, is discharged into the 

environment. 

(b) Outlet : The point where the cool water is drawn 

into the industrial process. 

(c) Cooling Pond: An enclosed lake or man-made pond 

where the only significant fluid transfer across 

the boundaries takes place at the inlet and outlet. 

(d) Temperature Excess: The temperature difference 

between the heated water and the water below the 

interface. 

(e) Heat Transfer Region: The region of the receiving 

t 

waters where the temperature excess is reduced due 

to heat transfer to the atmosphere. 

Interface: The dividing line, normally taken as 

the position of maximum density gradients between 

the buoyant and ambient fluid. 

(s) Surface Flow: The fluid flow above the interface. 

1.2.2 The Inlet 

Heated water can either be discharged onto the surface of 

the receiving waters or discharged below the surface. Since water has 

a positive coefficient of thermal expansion, warm water tends to float 



on the surface of the receiving waters. If a submerged inlet is usedj 

the heated water tends to rise towards the surface and in doing so 

mixes with the surrounding water, reducing its temperature excess. 

Alternatively, if the heated water is discharged at the surface it is 

possible to design an inlet structure such that minimal mixing occurs 

between the heated water and its surroundings. Under these conditions5 

the temperature excess will be greater than if mixing had occurred. 

This immediately suggests two design alternatives. With a submerged 

inlet, the temperature of the discharged water will be quickly reduced 

due to mixing. However, when the buoyant plume reaches the surface, 

the temperature difference between it and the atmosphere will also be 

decreased thus reducing the rate of heat transfer per unit area to the 

atmosphere. Hence a larger surface area will be required to dissipate 

the same heat input than would be required with a surface discharge 

scheme and the consequent higher heat transfer per unit area. 

1.2.3 The Heat Transfer Region 

Away from the inlet the buoyant plume spreads over the surface 

of the lake and loses heat to the atmosphere. The prediction of the 

temperature distribution in this region is dependent on a full 

knowledge of the past history of the fluid and the controls which 

govern its path. Wilkinson(23) foimd that the motion of a buoyant 

fluid discharged onto the surface of another was dependent on the 

downstream controls. In his experiments, he used an inverted broad 
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crested weir as the downstream control and found that the position of 

this weir governed the conditions at the inlet, and hence governed 

the reduction of temperature excess which occurred in the inlet region. 

Koh and Fan(13) conducted a theoretical examination of a two-dimensional 

buoyant jet and found that both the heat transfer and the interfacial 

shear stress controlled the inlet flow conditions. Hence the inlet 

region and the heat transfer region are mutually dependent on one 

another. 

The predominant mechanisms of heat transfer to the atmosphere 

are radiation, convection and evaporation. These are all a fimction of 

the atmospheric conditions which vary from day to day. 

Evaporative water leaving the lake surface increases the 

vapour content of the air immediately above the water surface. Under 

certain conditions this air can become saturated preventing further 

evaporation. Air movement across the water surface scours away this 

saturated layer, bringing air of lower vapour content to replace it 

and at the same time reducing the thermal boundary layer thus also 

aiding convective heat transfer. Wind also imposes a shear stress on 

the water surface which^ although small, can be of the same order of 

magnitude as the forces driving the plume. While conducting radio-

active tracer tests on a cooling pond at Maitland, N.S.W., 

Ellis et. al.(6) found that winds with velocities of between 1 and 

k m/s blowing towards the inlet completely stopped the forward motion 
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Figure 1*1  Surface temperature ( F) survey at Hâelwood 
Power Station (Victoria) cooling pond 
(reprint from reference 21). 
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of the plume. Wind stresses on the water surface can therefore 

influence the motion of a buoyant plume and should "be considered in 

the design of cooling systems. 

1.2.i| The Outlet 

Two types of outlet can be employed. In the open system, 

where adequate supplies of ambient-temperature water are available 5 

the outlet can be directly connected to the pumping station for supply 

to the heat source. Wnere recycling of hot water to the inlet is 

likely, or in the closed circuit pond, advantage is taken of the 

stratification and a deep outlet is employed to selectively with-

draw the colder water from below the interface. Figure 1.1 shows 

such a deep outlet employed in a closed circuit type cooling pond at 

Hazelwood Power Station (Victoria) during conditions of adverse wind 

direction. The submerged outlet prevents the hot surface water 

adjacent to the outlet retaining wall,from entering the re-

circulation pumps and draws off the colder sub-surface water instead. 

1.3 Definition of the Problem to be Studied 

In this dissertation it is proposed to study the closed 

circuit cooling pond. Heat transfer away from the surface is taken 

into account, and the heated water is assumed to be discharged onto the 

the surface of the cooling pond and withdrawn from a deep inlet 

structure. A further simplification is made by considering the 

cooling pond to be two-dimensional in the vertical and horizontal 

senses as shown in Figure 1.2. 



ELEVATION 

Figure 1»2 Two-dimensional cooling pond. 
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1.^ Literature Review 

An extensive review of the literature pertaining to 

stratified flow has been compiled hy Jenkins(ll). Hence, the 

following literature review has "been confined to that concerning 

surface buoyant jets. 

1.^.1 General Properties of Stratified Flow 

Flow of a less-dense fluid over a denser fluid is 

characterised by a density change at the interface. In the ideal flow 

the interface is the position of the density discontinuity. In the 

real fluid the property causing the density difference is diffused 

through the fluid resulting in a density gradient across the interface. 

Hence the interfacial depth is defined as the distance from some datum 

(in this case the water surface) to the point of maximum density 

gradient. A parameter often used to describe the condition of the 

interface is 

¥ = F^Re (1.1) 

where F is the local Densimetric Froude Niunber, and 

Re is the local Reynolds Number, 

e can be regarded as a stability parameter for the interface, the higher 

the value of Q the more unstable or disturbed is the interface. 

Sherenkov et. al.(l9) classified the form of the interface in terms 

of 6 as follows: 

6 i: 150 Stable interface; vxscous type flow with 

planar boundary or division at the interface. 

150 < 9 $ 500 Stabilised wave flow (long regiilar waves). 



V, 
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Interface 

Figure 1»3 Definition sketch for the stability parameter 
as defined by Sherenkov et al (19)* 
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500 < 9 ̂  800 Unstable waves. 

800 < 9 ̂  1650 Disruptive waves; i.e. internal waves 

breaking at the interface. 

1650 < e Waveless mixing between the layers and 

development towards fully txirbulent flow. 

9 was based on a characteristic boundary layer thickness 6 as 

defined in Figure 1.3. The Densimetric Froude Number and the 

Reynolds Number were obtained using the mean fluid properties and 

were defined as 

Vi»V2 
= 
/(P2~Pl) , 
— g6 
Pi 

(P1V1+P2V2) 
Rê  = (Vi-V2)5/— 

Other workers in this field have used various foms of the 

stability parameter to characterise the entrainment of ambient fluid 

into the flowing layer. In the case being considered here of a 

less-dense fluid flowing over a denser fluidj entrainment will be 

from the denser fluid to the surface layer causing a reduction in 

the temperature of the surface layer and a corresponding increase 

in the mass flow. 

Ellison and Turner(T) defined an entrainment coefficient as 

= f (1.2) 



•2 . -6 

Richardso n Numbe r (Ri ) 

Fij^re The entrainment coefficient (e) as a function 
of the Richardson Number (Ri) - Ellison & 
Turner (?)• 
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where Ue is the velocity of inflow into the surface layers and 

reasoned that the entrainment coefficient was a function of the local 

Richardson Number* ( Ri) provided that the Reynolds Number was high 

enough for viscous effects to be negligible. They found that for 

Richardson Numbers above 0.83 the entrainment of ambient fluid across 

the interface was negligible. Their experimental results for the 

relationship between the entrainment coefficient and the Richardson 

Number are shown in Figure l.U and may be approximated by the 

relationship 

1 e = 0.075 

or alternatively 

l+Ri/0.85 

1O75 

(1.3) 

e = 0.075 exp(-5 Ri). 

Keulegan (12B) found that the critical velocity for mixing 

depended on whether the surface flow was laminar or turbulent. For 

turbulent flow he found that the critical velocity above which 

mixing would occur was given by the relationship 

V3 , 

f̂R 
e 

3 = 0.178 (I.Î4)  

This relationship was later confirmed by Lofquist(l5). 

Lofquist's experimental results for Reynold Numbers greater than 1000 

confirmed that the entrainment coefficient was dependent on the 

* The  Riclzardson Number is the reciprocal of  the Densimetric Froude  

Ntanber squared Ri = (F)"'̂,  
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Densimetric Froude Number "but he found that entrainment can exist down 

to very low Densimetric Froude Numbers. 

The discontinuity in velocity at the interface implies that 

shear stresses act in opposition to the surface flow. The shear 

stress (T) acting on a fluid can be related to the local Reynolds 

Nimiber by the relationship 

T = I Cf PU^ and (I.5) 

Cf = const X (Re„)" 
J 

where Cf is the local shear stress coefficient, 

n is a constant J and 

Re y V 

For laminar flow over a flat plate the characteristic length for 

defining the Reynolds Number is taken as the distance from the 

leading edge and the solution as given by Blasius(l8) for the local 

shear stress coefficient is 

Cf, = — ^ = 1.33 (Re (1.6) 

Bata(2) carried out a similar analysis to that of Blasius to 

determine the interfacial shear stress coefficient and found that the 

interface acted as a reverse boundary layer in which the local shear 

stress coefficient was given by 

Cf, = O.lil; (Re^r'^ (l.T) 
1 qy±2 y 



11 . 

where xi is the interfacial shear stress, and 

Vi is the interfacial velocity. 

Keulegan (12A) foijind, using the Von Karman integral approach a that the 

interfacial shear stress depended upon the ratio P1V1/P2V2 '«'here the 

subscripts 1 and 2 refer to the fluids above and below the interface 

respectively. For values of this ratio approximately equal to imity, 

he found that the interfacial shear stress coefficient was given by 

Cf. 0.39 (Re^)"' (1.8) 

and the interfacial velocity was 

Vi = 0.59 V 

This is in good agreement with Bata's results as equation (l.T), 

when put into the same terminology, gives 

Cf. = 0.398 (Re (1.9) 
1 y 

The interfacial shear stress is also affected by the presence 

of any near boundary or externally applied shear stress (e.g. wind over 

the surface). Ippen and Harleman(lO) found that for a fluid flowing 

under a less-dense one and over a solid boundary, the total shear 

stress coefficient was given hy 

Cf = {0.11k Re)'l (1.10) 

Vh 
where Re = , and 

h = depth from the interface to the solid boundary. 



Lamina 

Flow 

Transitional 

Flow 
Turbulent  Flow 

Log(Re) 

figure 1«3  The form of the relationship between the 
interfacial shear stress coefficient and the 
Reynolds Number - Abraham 8c Eysink (1). 
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This formulation is more useful for practical problems as 

it gives the local shear stress coefficient in terms of the local 

depth. 

For non-buoyant flows, as the Reynolds Number of the flow 

increases, the shear stress coefficient becomes independent of 

the Reynolds Number and becomes dependent upon the relative 

roughness of the external boundaries. An effect similar to 

that of boundary routness has been observed in the presence of 

waves on the interface at higher values of the stability 

parameter described earlier. Abrahp-m and Eysink(l) reasoned that 

the presence of these interfacial waves has the same effect 

as the roughness in the normal Moody diagram. 

An increase in the density difference across the 

interface has a stabilising effect on the interface and tends 

to damp out interfacial waves 5 reducing the roughness and hence 

reducing the shear stress coefficient. They found that the 

shear stress coefficient became independent of the Reynolds 

Number for turbulent flows and was only dependent on the 

Densimetric Froude Number. This general concept is shown 

in Figure 1.5. Abraham and Eysink's experimental results 

supported this concept and they concluded that the interfacial 

shear stress coefficient was independent of the Reynolds 

Number for turbulent flow. 
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Figure 1#6 Classification of the Internal Hydraulic 
Jump - Wilkinson (23). 
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l,k,2 Flow Conditions Hear the Inlet 

Stratified flow, like open channel flow, can "be subcritical 

or supercritical. It is not uncommon for the flow at the cooling pond 

inlet to "be supercritical (i.e. to have a Densimetric Proude Number 

greater than unity). Wilkinson(23) showed that under certain 

conditions, supercritical density flows were unstable at the inlet 

and changed to subcritical flow by means of a density Jump (referred 

to here as an internal hydraulic jump). This, he found, was usually 

associated with a decrease in density due to part of the upstream 

energy being dissipated in entraining ambient fluid. Wilkinson 

separated the density jump into two parts, an entrainment region 

and the roller region (Figure 1.6) and he classified the flow 

according to the existence of these regions as follows: 

(a) Fully entraining jump no roller region. 

(b) Partially entraining jump roller and entraining 

region both present. 

(c) Flooded jump no entrainment region. 

Wilkinson found that the existence of these regions depended upon the 

downstream control. In his experiments he used an inverted broad 

crested weir as the downstream control but reasoned that heat transfer 

away from the siirface and interfacial shear can also act as the 

control. 



Koh and Fan(13) formulated a mathematical model to describe 

the temperature distribution and depth of flow for the two 

dimensional surface buoyant jet. The model takes into account heat 

transfer away from the surface, entrainment of ambient fluid, and 

the interfacial shear. Like Wilkinson, they found that the flow 

conditions at the inlet could be classified in three ways, which 

they described as 

(a) Inundation (flooded jiimp). 

(b) Internal hydraulic jump. 

(c) Jet-like (maximum entraining jump). 

The type of solution applicable to a particular situation depended 

upon 

(a) the inlet Densimetric Froude Number, 

(b) the non-dimensional heat transfer coefficient, and 

(c) the Reynolds Number, which determines the 

interfacial shear stress, 

and these parameters acted as the downstream control referred to by 

Wilkinson. 

Stolzenback and Harleman(20) present a mathematical 

model for the three dimensional surface buoyant jet. It 

incorporates the heat transfer from the surface, vertical entrainment 

from below, and horizontal entrainment into the plume as it spreads 

in the lateral direction. They consider the solution to be that 
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of a normal surface jet with buoyancy forces superimposed on the 

flow. No evidence of an internal hydraulic jump was found in their 

solution but experimental verification of their model indicated 

that it was better suited to the hi^ Densimetric Froude Number 

condition corresponding to the 'jet-like' solution described by 

Koh and Fan. 

For subcriticai flows at the inlet (Fi < l) it has been 

found that a cold water wedge penetrates into the inlet resulting 

in a reduction of the inter facial depth. Harleman(9) found the 

reduced interfacial depth was that which gave F = 1 at the inlet. 

1.Ì+.3 The Overall Cooling Pond 

A steady state solution cannot be found to the cooling 

pond problem without considering heat transfer away from the surface. 

For the closed cooling pond (Figure 1.2) the hotter fluid from the 

inlet will flow along the surface, losing heat to the surface 

boundary until it reaches the downstream vertical boundary where 

the fluid must subside. Hence the temperature of the fluid at the 

downstream vertical boundary will be the ambient or minimum pond 

temperature. It is this temperature which determines the reduction 

in the surface layer temperature when ambient fluid is entrained into 

the surface flow. 

The flow pattern below the interface for a submerged outlet 

has not been reported in the literature to the author's knowledge. 
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In their experiments with the outlet at the surface. Lean and 

Willock(li^) reported a slight backflow to replenish the fluid 

entrained at the inlet. A "snaking" flow pattern has been observed 

by the author during the establishment of steady-state conditions 

(this flow pattern is discussed later in this report). Under these 

conditions, the entire surface flow moves back under the interface 

towards the inlet. Upon reaching the solid boundary below the 

the interface, it again reverses direction. Flow to the outlet 

occurs as a series of layers, alternate layers flowing in opposite 

directions. Such a flow pattern will increase the interfacial shear 

stress and affect the stability of the interface. 

As the surface flow approaches the downstream boundary so 

the density difference across the interface decreases and 

consequently the Densimetric Froude Number, defined as 

F = ^ (1.11) 

/ f gh 

would tend to increase unless the decrease in Ap is compensated 

for by an increase in depth and a corresponding decrease in velocity. 

For the two dimensional case the velocity can be represented by 

where Q' is the volume flow rate/unit width, and equation (l.ll) 

becomes 

/AfighS 
P 



IT. 

If the inlet is inundated or an internal hydraulic jump forms, the 

interfacial depth must increase to compensate for the decrease 

in density difference for the surface flow to remain subcritical. 

Aims of this Study 

The aims of the work presented in this dissertation were 

to investigate the overall flow and temperature fields in the two-

dimensional cooling pond under steady state operating conditions. 

Steady state conditions were achieved in both the theoretical 

and experimental investigations by including the heat transfer away 

from the surface of the pond. 

(a) Theoretical Investigation 

The laminar equations of motion and the appropriate 

boundary conditions for the two-dimensional cooling pond are 

formulated in Chapter 2 and a numerical technique (Chapter 3) has 

been used to solve these equations. The results of this model are 

presented in Chapter 

(b) Experimental Investigation 

The experimental apparatus used is described in Chapter 5 

and the results of the experimental investigation are given in 

Chapter 6. 

The mathematical model of the two-dimensional surface 

buoyant jet proposed by Koh and Fan has been modified to account for 

the finite length of the cooling pond and the results of this m.odified 
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model, using the values of the entrainment coefficient obtained in 

the experimental investigation, are compared with the experimental 

results in Chapter J, 
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2. THE COOLING POI^ PRQBLM M P GOVERNING EQUATIONS: 

2 .1 Formulation of the Mathematical Model 

The problem to he modelled (Figure 2.1) is a two-dimensional 

cooling pond, the space dimensions heing depth (d) and length {I), 

The inlet to the pond is situated at the surface and is of depth hi. 

The outlet,of depth ho, is in the diagonally opposite comer. These 

are the only regions where mass transfer occurs across the boundary. 

Heat is convected into the model at the inlet and lost by conduction 

away from the free surface (x = o) and by convection from the outlet, 

all other boundaries being adiabatic. 

The aim of the model is to produce a mathematical 

representation of the overall flow pattern imposed upon an otherwise 

quiesent system, by the introduction of a buoyant plume at the inlet. 

For most practical cooling ponds the flow at the inlet, and in the 

subsequent plume, is turbulent and as such can not be mathematically 

modelled without certain assumptions regarding the characteristics of 

this turbulence. The experimental investigation showed that the 

flow in the buoyant plume is influenced by the convection of heat 

from the body of the plume to the top surface, resulting in a uniform 

velocity and temperature distribution across the siorface layer, and a 

discontinuity at the interface with the underlying velocity 

distribution resembling that of laminar flow (see Figure 2 .2) . 

The turbulent flow could be modelled by assuming that the 

fluid was laminar and introducing false diffusion into the goveniing 
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Figure a>2 Typical vertical profiles of (a) velocity and 
(b) temperature from the experimental 
investigation-
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equations. At best this is a first order approximation to the physical 

process and in this case becomes less appropriate because of the 

discontinuity in velocity and temperature at the interface. The 

mathematical model proposed by Koh and Fan(13) overcomes this 

problem by assuming the form of the temperature and velocity 

distribution within the surface layer and integrating the equations 

of motion in the vertical plane to obtain a system of one dimensional 

equations describing the flow. However this approach does not give 

any information on the resultant flow below the interface. It is 

therefore proposed to study the laminar equations of motion in an 

attempt to obtain a better understanding of the overall flow 

phenomena. 

In the formation of the governing equations the following 

assimiptions were made: 

(a) The variations in temperatures throughout the model 

are sufficiently small that the corresponding 

changes in density have negligible effect on the 

inertia forces, and only become important when 

associated with the gravity vector. This is 

commonly referred to as the Boussinesq assumption. 

(b) No internal energy is generated within the model. 

(c) Heat generation due to friction is negligible. 



21. 

(d) The free surface elevation remains constant. 

(e) Evaporation from the free sin'face is negligible. 

(f) Surface tension forces are negligible. 

(g) The fluid is incompressible. 

2.2 The Governing Equations 

The steady state equations describing the fluid motion are 

those expressing conservation of mass 5 momentm and energy and may 

be expressed for the two dimensional cartesian co-ordinate scheme 

defined in Figure 2.1 as -

(2.1) 

+ ̂  ,v2u (2.2) 
9x dy p^ p^ 8x 

vV^v (2.3) 
3x 8y Po 9y 

9x 9y PoCp 

where u and v are the velocity components in the x and y 

directions respectively, 

T is the fluid temperature, 

P the pressure, 

p the density of the fluid at the outlet, and 
o 

V, k, and Cp are the kinematic viscosity, thermal conductivity, 

and specific heat of the fluid respectively. 
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The operator V^ is defined by -

9x2 8y2 

Fx is the body force acting on the fluid due to gravity 

and can be expressed as -

Fx = pg (2.5) 

where p = p^ - Ap (Ap being the density difference), and 

g is the acceleration due to gravity. 

The pressure term may be represented as -

P = Ps + Pd 

where Pd is the dynamic pressure, and 

Ps is the hydrostatic pressure given by Ps = P^gx 

hence, 

f = p . H . f i (2.6) 
3x o 3x 

The momentum equations (2.2) and (2.3) therefore become 

+ W^u (2.7) 
8x 8y Po Po ^^ 

3x 3y p^ 3y 

Ass\aming that the density variation is small and is only a function 

of temperature, the density p may be expressed as -

p = p^ - Ap 

= P. - ''' o 3T (T - To) 
o 
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therefore 

^o " ^ - A l P fT 

^ = -3 (T » To) (2.9) 
o 

o 1 

where p = - ~ — is the coefficient of thermal expansion of 

the liquid and is assumed to be constant over 

the range of temperatures encountered in the model. 

Hence, the vertical moment-um equation (2.7) "becomes 

u + V = BgAT - ^ ^ + vV^u (2.10) 
3x 3y pQ 9x 

Differentiating equations (2.8) with respect to x and 

(2.10) with respect to y,subtracting to eliminate the pressure term 

and invoking the continuity equation (2.1) results in the vorticity 

transport equation (2.11). 

+ VV^C (2.11) 

3x 9y 3y 

where C is the vorticity defined by 
r = ^ ^ ^ (2 12) 
^ 3x 9y 

Expressing the velocity components in terms of the stream function lî  

so that the continuity equation is satisfied gives 

U = and (2.13) 
3x 

3y 
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The vorticity can then be expressed in terms of the stream 

function as 

? = (2.Ill) 

Hence, the governing steady state equations become 

+vv^c (2.15) 
9y 

u 

8x 

aT ̂  ^ -
3x 

V^T (2.16) 
o ̂  

C = -V̂ ip (2.17) 

2.3 Non-Dimensionalisation of the Equations 

The governing equations can be non-dimensionalised in 

terms of the mean inlet velocity (Vi), the inlet depth (hi) and the 

temperature excess at the inlet (Ti - To). Usually stratified flows 

of this nature are characterised by the density difference between 

the inlet and the ambient fluid below the interface which implies that 

the temperature of the ambient fluid should be selected as the 

reference temperature. However, as mentioned in Chapter 1, the 

ambient fluid ten̂ ierature depends upon the previous history of the 

fluid in the cooling pond and hence is not known prior to the 

solution. This can be shown from an overall heat balance on the 

pond. For steady state conditions 

the rate of heat = rate of heat + rate of heat loss 

inflow outflow from the surface 
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AssTMing that heat is only convected across the inlet and outlet 

boundaries this can be expressed as -

¡1 
MCp (Ti - To) = ha (Tu - Ta) dy 

•'o 

where M is the mass flow rate per unit width, 

ha is the overall heat transfer coefficient between 

the fluid surface and the ambient air. 

Tu is the surface temperature, and 

Ta is the ambient air temperature. 

Selecting the outlet temperature (To) as the reference 

temperature requires that the surface temperature be chosen to 

satisfy the above equation. This becomes difficult as the 

distribution of the surface temperature depends on the solution 

within the cooling pond. It is therefore more convenient to choose 

the ambient air temperature as the reference ten̂ ierature. 

The primary non-dimensional terms are defined as 

U* = rrr- V* = Vi Vi 

^ hi hi 

fl* - (T - Ta) 
® " (Ti - Ta) 

where the starred quantities represent the non-dimensional variable. 

The non-dimensional stream function (iĵ*) and vorticity (c*) expressed 
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in terms of these primary variables using equations (2.13) and (2.12) 

are 

r* = M . r 
^ Vi ^ 

Applying these non-dimensional quantities to equations (2.15) to 

(2.IT) they reduce to 

3y* ^ Vi2 9y* vihi 

3x* 9y* P^CpVihi 

The non-dimensional coefficients of these equations can he expressed 

in terms of familiar non-dimensional numbers 

vhere Re is the Reynolds Number based on the inlet depth. 

Utilising equation (2.9) the coefficient of reduces to 

Vi^ Vi^ 

ge (Ti - Ta) hi g ^ hi 
P 

= Fi^ 

where Fi is the ideal Dens imetric Froude Number and identical 

to the Densimetric Froude Number at the inlet should the fluid cool 

to ambient air temperature, i.e. Ta = To. The remaining 

dimensionless coefficients reduce to 
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Figure 2.5  Dimensionless cooling pond geometry, 
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p CpVihi p Cpv 
Vihi 

k k • V 

= PrRe 

where Pr is the Prandtl Number. 

The geometric configuration defined in Figure 2.1 can 

"be non-dimensionalised in terms of the inlet depth as follows: 

D = — the non-dimensional depth, 

^ " M ^^^ non-dimensional length, 

Hi = 1.0 the inlet depth. 

Ho = ^ the outlet depth, 

and are shown diagramatically in Figure 2.3. The non?-dimeTisional 

steady state equations (dropping the starred superscript) therefore 

are 

K 1 A v ^ c (2.18) 
3x Fi2 8y Re 

u i i + ^ i i = - J ^ V^e (2.19) 

3x ay RePr 

C = (2.20) 

where u = , and 
ay 

V = - ^ 
3x 

2. ii Boundary Conditions 

(a) Rigid Non-Slip Boundaries 

For the rigid non-slip boundaries (l < x < D, y = 0: 
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0 < y < L, X = Dj and y = L , 0 < x < (D- Ho)) the non-dimensional 

velocity is zero 

u = V = 0 (2.21) 

which implies that 

l i i = M = 0 
9s 

where s is the spacial component parallel to the boundary. 

Hence, the stream function is constant along the non-slip boundaries 

= constant (2.22) 

and the definition of vorticity (equation (2.20)) reduces to 

? = (2.23) 

where n is the spacial component normal to the boundary. 

The rigid non-slip boundaries are adiabatic and therefore 

the temperature bo\mdaiy condition is 

36 = 0 (2.2i|) 
3n 

("b) Surface Boundary (x = 0, 0 < y < L) 

On the assimiption of a horizontal free surface the 

vertical velocity (u) is zero, hence 

^ = M = 0 
3y2 3y 

and 

ip = constant (2.25) 

which is arbitrarily set at zero. 
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In the absence of -wind stresses and assuming surface 

tension forces are negligible the vorticity along the free surface 

becomes 

C = (2.26) 

and the horizontal velocity is given by 

(2.27) 

ax 

Heat is transferred across the air water interface of a 

cooling pond by conduction, radiation and evaporation. It is 

assumed that the mass transfer by evaporation is negligible and 

the subsequent heat loss, together with that due to radiation, 

can be represented by an overall heat transfer coefficient. 

Distinguishing dimensional quantities by primes, the rate of heat 

transfer from the water per unit width dq' is given by 

dq' = k dT dy' 
x=0 9x' 

where k is the thermal conductivity of the water. The rate of heat 

transfer to the air can be expressed as 

dq* = ha (Tu - Ta) dy' 

where ha is the overall heat transfer coefficient from the water 

surface to the air. 

Hence, the temperature gradient at the surface is given by 

^ (Tu' -Ta') (2.27) 
ax' x=0 k 
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Non-dimensionalising equation (2.27) gives 

96  Nu 

L 

where Nu is the Nusselt Number defined "by 

HT  haZ 
Nu = -r— 

k 

(c) Inlet Boimdary Conditions (0<x<l, y = 0) 

Heat and mass are transferred across the boundary at the 

inlet.  The velocity at the inlet is assumed to be horizontal 

(i.e. u = 0) and the distribution across the inlet 

vin' = f (x') 

(is parabolic such that at x = 0.) 

v' = v'max and f̂ =  at x = 1, v = o 
Hence, the non-dimensional velocity distribution is given by 

vin = I (1 - x2) for 0 < X < 1  (2.29) 

The temperature at the inlet is assumed to be uniform 

and hence the non-dimensional temperature is unity, i.e. 9 = 1 for 

0 < X < 1. 

The stream function and vorticity distributions across 

the inlet are found from 

-ir  — 

9x 

where  = 0 at x = 0 by definition, and 

i£i - ii 
 ̂"  9x2 " 9x 
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which for the velocity distribution assumed (2.29) give the 

following stream function and vorticity distributions: 

C = - 3x (2.31) 

The stream function at x = 1 is given by equation (2.30) as 

^ = -1 (2.32) 

and by equation (2.22) ip has this value along the boundaries 

l < x < D 3 y = 0 and x = D, 0 < y < L. 

(d) The Outlet Boundary Conditions 
((D - Ho) < x < D, y = L) 

Conservation of mass implies that the mass flow across 

the outlet is the same as that across the inlet. Hence, assuming 

that the vertical velocity at the outlet is zero (i.e. u = O), 

the mean velocity at the outlet is expressed as 

rD rl 
vout dx = 

D-Ho 
vin dx = 1.0 

0 

Assuming a parabolic velocity distribution at the outlet is 

similar to laminar flow between parallel plates, i.e. a t x = D , v = 0 

and a t x = D ~ Ho, v = 0 the velocity distribution is given by 

V = -
Hô  

for 

(D - Ho) < X < D 

x^ " (2D~Ho)x + D^ - D Ho (2.33) 
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and hence the stream function and vorticity distributions are 

 ̂ = 

C = -

Ho 3 

. 6 

3  2 2 6 3 

Hô 
2x - 2D + Ho 

(2.3̂) 

(2.35) 

Since no heat transfer occurs away from the system in the vicinity 

of the outlet3 it can be assum.ed that heat is transferred across 

this boundary by convection alone and hence the temperature boundary 

condition is found from 

86 

ay out 
0 (2.36) 

The boundary conditions for the non-dimensional cooling 

pond shown in Figure 2.3 are STJimmarised in Table 2.1. 



TABLE 2.1 

WON-DIMSIONAL BOUKDARY CONDITIONS 

Boundary Velocity Temperature 
Stream 

Function 
Vorticity 

y = 0 

0 <x <1 

u = 0 

v = | (l-x2) 
8 = 1 . 0 

^ 2 
C =-3x 

y = 0 

1 <x <D 

u = 0 

V = 0 

0 <y < L 

x = D 

u = 0 

V = 0 
= 0 

8x 

y = L 

D - Ho < X < D 

u = 0 

v = f i ( x ) 
f2(x) 

y = L 

0 < X < D - Ho 

u = 0 

V = 0 

9 0 = 0 
9y 

ip = 0 

0 <y < L 

X = 0 

u = 0 

^ 3x 

30 Nu 
3x " L ® 

ijj = 0 c = 0 

fl (x)=-
Ho3 

x^ - (2D-Ho)x + D(D-Ho) 

f2(x) 
Ho3 

( D + D(D - H o ) x e i 
3 2 2 6 3 

2x - 2D + Ho 
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3. METHOD OF SOLUTION OF THE GOVERNING EQUATIONS; 

3.1 Selection of Solution Technique 

For most practical applications the equations describing 

f luid motion can not be solved analytically and numerical 

techniques must be employed in an e f f or t to obtain a solution. The 

numerical technique used to solve the cooling pond problem was 

to approximate the governing equations (2.18, 2.19, 2.20) by 

f in i te differences derived from the Taylor's expansion(l+). The 

resulting set of f in i te difference equations was solved at a 

series of mesh points superimposed on the solution region. 

The steady state equations derived in Chapter 2 are a 

set of coupled non-linear e l l ip t i c equations and as such are 

d i f f i c u l t to solve numerically(U). The order of d i f f i cu l ty can 

be reduced by assuming that the steady state solution is unique 

and therefore can be reached by solving the time dependent 

governing equations from some in i t ia l condition, through a sequence 

of time steps, until the steady state solution is reached. Including 

the time dependent term in the governing equations for the cooling 

pond problem (2 . l8 , 2.19, 2.20) gives 

i i = _ l _ v 2 e _ ^ 30 _ ^ l i (3.2) 
3t Ee Pr " 8x 3y 

0 = C + V̂ tJ) (3.3) 



Equations (3.1) and (3.2) are parabolic in time and, after 

linearising assumptions are made to their finite difference 

approximations,they can be solved by a single iterative scheme(3). 

Equation (3.3), however, remains of elliptic form and its 

numerical solution requires an iterative technique at each time 

step to determine the stream function at that time. Hence the 

overall solution process is a double iterative procedure although 

only one inner iterative cycle is needed as compared with three 

for the solution of the steady state equations. 

Mallinson and de Vahl Davis(l6) reasoned that when the 

steady state solution is unique, and hence is independent of the 

transient approach to it, arbitrary transient terms may be added 

to the governing equations such that a steady state solution is 

reached with a minimum of computational effort. They used this 

false transient method to study natural convection in a cell and 

found that by suitable choice of the false transient terms the 

steady state solution was reached with at least an order of 

magnitude less computer effort than had been possible with previous 

techniques. 

Preliminary experiments performed by the author suggested 

that the steady state solution to the cooling pond problem was 

unique but the approach to steady state was slow. Hence by using 

the false transient solution technique it was thought that a numerical 
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solution coiild "be obtained within reasonable computer time. The 

false transient method has also been successfully applied to 

various three-dimensional problems (IT)? and hence could be used 

to solve the three-dimensional cooling pond problem. 

3.2 The False Transient Equations 

The false transient method (described in Reference l6) 

transforms equation (3.3) into parabolic form by the addition of 

a transient term to the left hand side. The time derivatives of 

(3.1) and (3.2) are given modified coefficients. The false 

transient equations for the cooling pond problem are 

V^c Re (3.U) 

V2e - Re Pr ( u | | + (3-5) 
a^ 3t 3x 3y 

+ C (3.6) 

where the values of a , a- and a, are used to control the 

relative rate of advancement between equations. !By suitable 

choice of these parameters the convergence to the steady state 

solution can be optimised. 

3.3 Numerical Solution of the Equations 

3.3 .1 Solution Region 

The false transient equations (equations (3.^) to (3 .6) ) 

and the boundary conditions are approximated using finite 

differences and solved at the nodes of a mesh superimposed on the 
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solution region R(x,y). A non-imiform mesh was employed to obtain 

greater resolution near the "boundaries vrithout the use of a 

prohibitively fine mesh. Hence, a new solution region R*(X,Y) 

can "be defined in which a rectangular mesh is employed, and the 

space variables (x,y) within R* are defined as 

X = X (X) 

y = y (Y) (3.T) 

The mesh notation used over the region R* is defined in Figure 3.1. 

The transformation employed for the x direction was 

X = x(X) = D I  - 1.0) + (1.0 -  - 1.0))X 

for 0 < X ̂ 0.5 

and (1 - x) = X (0.5 - X) (3.8) 

for 0.5 < X < 1.0 

where D is the non-dimensional depth of the pond, and 

A and n are constants; 

and a similar transformation in the y direction. The form of the 

transformation is shown in Figure 3.2 for various values of A and n. 

3.3.2 Finite Difference Equations 

The false transient equations (equations (3.̂) to (3.6) are 

all a special case of the more general equation 

A .B^« C (uli-̂ v^) 3̂.9) 
9t  9x2 3y2  By  9x  9y 

and the finite difference approxim.ation to this general equation 

will be illustrated here. A full set of finite difference 
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approximations to the governing equations are given in Appendix A. 

Equation 3.9 may be rewritten in terms of the new 

solution region (R*) defined "by equation 3.T as 

t=A|x- (3.10) 

Where X» = ~  and Y' = — 
3x ay 

Using the notation defined in Figure 3.1 the derivatives 

on the R.H.S. of equation 3.10 can be represented for the P. . node 
1»J 

using a central differencing approximation(U). 

Hence, 

The advection term 

X'u M + Y»v   ̂
 ̂  ̂9X   ̂3Y 

may be rewritten in conservative form by utilising the continuity 

equation as 

X'  ̂ (uc|)) + Ŷ  ̂ (v̂) 

the latter form guaxanteeing conservation of  in the finite 

difference approximation(l6). 

The central difference approximation to the advection 

term becomes 
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(3.12) 
j 2AY 

The diffusion term may be approximated by expressing each 

differential by a central difference approximation over half one 

mesh interval. 

Hence, 

Y» J- fx» i i ) « Y, 3 
AX 

= x' 
AX2 

AX2 
(3.13a) 

and similarly. 

Y' -L (Yi l i = Y' 
* 9Y ^^ aY AY' 

AY^ 
(3.13b) 

Abbreviating the foregoing finite difference equation by the 

notation 

«X = S -
and 

6 2 
X! 

X i ,J AX^ 

XI 

- ^ - ^i-lJ^ 
(3.15) 
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the finite difference approximation to the R.H.S. of equation 3.9 is 

(3.16) 

3.3.3 Solution of the Finite Difference Equation 

To obtain a solution to equation 3.l6 the linearising 

assumption is made that it is an equation in <|) only, all other 

variables being constants known from their most recent estimate 

in their respective equations. 

The solution to equation 3.16 can be advanced through 

one time interval by using the Implicit Alternating Direction 

(A.D.I.) method(U). Essentially this method is to employ two 

difference equations to progress through one time step. The first 

is implicit in the x direction and explicit in the y direction to 

progress the solution through one half of the time step. The 

second is explicit in the x direction and implicit in the y 

direction to progress the solution through the other half of the 

time step. 

Introducing the notational superscript n to indicate the 

time ti and (n + l) the time at (ti + At) (where t is the time 

step), and hence (n + i s the time at (ti + ̂  the A.D.I, 

method may be written for equation 3.16 as 

. n  

IIJ  l A  ̂ = A  6 2 + 6 2  I + B6 e. 
At/2 X  J y y 1,0 
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for the first half time step, and 

^ ^̂ ^̂  = A I 6 2 n+l 
At/2 ^ y 

+ BÔ e. , y 
n 

(3.18) 

for the second half time step. The value of ^ ^ ^ is found from 
1 > J 

the first equation (3.17) and the values of e", and v^ are the 

most recent estimates of these variables at time ti. 

Rearranging equation 3.IT with the iinknowns on the 

L.H.S. gives 

At 

Applying this equation to the Jth column in the solution 

region, incorporating the given "boundary conditions, gives the 

matrix equation 

= {G} (3.20) 

the L.H.S. of which is known and can be evaluated. |d| is a 

tri diagonal matrix and can be inverted by the Thomas algorithm( ) 

to give the new estimate of (}> at the half time step as 

D "1{G} (3.21) 
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Repeating this process for the (N-2) unknown coltrnms gives the 

new field of (J). . over the solution region for the first half 
1J J 

of the' time step. 

A similar procedure is then applied to equation 3.18 

using the values of a s the known values on the L.H.S. of 
1J 0 

equation 3.20 to obtain the new values of a t the end of one 
»̂J 

complete time step. 

The A.D.I, technique is found to he stable for all 

values of At when applied to a single linear equation. Mallinson 

and de Vahl Davis (l6) found, however, that when solving a system 

of eqiiations, the coupling between the equations imposes an upper 

limit on the usable time step. For an even mesh spacing they 

found the stability ratio DT = At/Ax̂ to have an upper limit of 

0.8 when the parameters a had a value of unity. This criteria 

was used as an upper limit on the time interval At. The time 

interval for the transformed mesh is given by 

At = DT/2 
Ax2 Ay ^  

where DT is the stability ratio (DT ̂ 0.8), and 

Ax and Ay are the true mesh spacings, 

3.3.1+ Finite Difference Approximation to the 
Boundary Conditions 

The derivative boiindary conditions (section 2.U) were 

approximated using a forward (or backward) differencing scheme 

(3.22) 
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which gave a second order approximation to the particular "boundary 

condition. 

For example, on the vertical non slip boundary 

l < x < D j y = 0, the vorticity boundary condition is 

C 

Applying Taylor's expansion to the ith point along this 

boundary 

where O(h^) is the order of magnitude of the error associated 

with neglecting the remaining terms in the 

expansion, and 

h is the actual mesh size next to the boundary, 

i.e. 

Similarly, 

= -

where k = - y. 

k3 

h' 

equation 3.2k from the result gives, after implementing the velocity 

k 
Multiplying equation 3.23 by = r^ and subtracting 

boundary condition (u^ = O), 
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"̂i.l îr-X)  

where ̂  ~ ̂ 

A complete set of finite difference approximations to the derivative 

"boimdary conditions shown in Table 2.1 is given in Appendix B. 

The Overall Solution Procedure 

The overall solution procedure is described here in step 

by step form and the resultant computer procedure used is shown 

in flow chart form in Figure 3.3 -

(a) The initial values of temperature, vorticity and 

stream functions are set up either as zero, 

or from the results of a previous solution. 

(b) The non-variant boundary condition and co-ordinate 

transformations are determined. 

(c) The boundary conditions which depend upon the most 

recent values of if;, 8 and c are determined. 

(d) The velocity field is set up from ̂ = ^ ^  

'•-If-

(e) The tenderature equation is incremented by one 

time step using the A.D.I, technique and the 

most recent estimate of the temperature field 

is updated. 
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(f) step (e) is repeated for the vorticity equation 

and stream function eq\iation respectively. 

(g) Steps (c) to (f) are repeated, advancing the 

solution through time omtil the steady solution 

has been reached. 

The test for convergence to the steady state solution was 

that prc^osed hy Mallinson and de Vahl Davis (l6). Ihe solution 

was assumed to have converged to the steady state solution when the 

average rate of change of each of the solution fields, relative to 

the maximuiD function value of that field, was less than some pre-

determined value e, where e was in the range to lO"®. For 

example, it was assmmed that a steady state solution for the 

te!i5)erature field had been attained when 

»n+1 an M N 
I I ^ M.N a. e (3.27) 

where AZ is the smallest mesh interval. 

Similar criteria were applied to the vorticity and stream function 

equations. The solution was assumed to have converged when a U 

three equations satisified this criteria. 



NUMERICAL RESULTS MP DISCUSSION 

The solution of the f i n i t e difference equations was 

carried out i n i t i a l l y on the IBM 360/50 computer at the University 

of New South Wales and later using the State Electric ity Commission 

of Victor ia 's IBM 370/155 computer. 

U.l Stabi l i ty , Convergence and Consistency 

For any nmerical technique to be successful in 

solving a system of partial d i f ferent ia l equations, the procedure 

should be stable , consistent and convergent. The f i n i t e 

difference approximation to the partial d i f ferent ia l equations are 

(a) stable i f , as the solution progresses through 

time, the errors associated with the f i n i t e 

difference approximation remain bounded: 

(b) consistent with the partial d i f ferent ia l equations 

i f , as the time step and mesh size decreases, 

( i . e . as the number of mesh points increases) 

the f i n i t e difference approximation approaches 

the partial d i f ferent ia l equations; 

( c ) convergent i f , as the time step and mesh size 

approach zero, the solution to the f i n i t e 

dif ference equations approaches the solution 

to the partial d i f ferent ia l equations. 
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It can be shown for a linear partial differential 

equation that if the consistent finite difference approximation 

is stable then it is convergent, and vice versa. However, no 

similar theory is available for non-linear partial differential 

equations and, with the added difficulty of coupling between 

equations, the ultimate proof of convergence lies in the comparison 

of the solution with experimental results. 

Consistency is dependent upon the finite difference 

approximation used. Examination of the errors associated with 

the finite difference approximation derived in Chapter 3 indicates 

that these equations are consistent with the partial differential 

equations. 

The stability of the solution is dependent upon the 

equations and the method used to solve the equations. Previous 

workers(15) have found the A.D.I, technique used here to be 

inherently stable, and hence the limitation on the allowable time 

step reported here was attributed to the coupling between the 

equations. 

k,2 Modifications to Solution Procedore 

In using the false transient method to solve the 

governing equations it was assumed that the steady state solution 

was unique and therefore independent of the initial conditions and 

the transient approach to the steady state. This assumption was 

questioned in the solution of the cooling pond problem, as it was 



(a) 

(b) 

Figure NumericsJ. Solution -

(a) Streamlines and (b) the assumed isotherm 
contours for Re=10, FI2=:I.2, D=I6, L=32 
using a 3̂x31 mesh. 
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fo"und that some initial conditions from which a solution was 

attempted resulted in numerical instability regardless of the 

time step \ised. This instability was traced to the teii5)erature 

field being convected into the body of the solution region by 

the developing flow field. The flow fields in response to the 

buoyancy, tended to move towards the top surface to form what 

has been termed the surface layer. The heat transfer away from 

the top boundary caused this fluid to become cooler than the 

underlying fluid. Consequently j convective cells were set up 

within the body of the pond to rectify this anomaly and the 

rapidly changing temperature and vorticity fields caused the 

solution field to become unstable. 

A similar effect to that described above could be 

produced in the experimental rig, described in Chapter by 

increasing the heat transfer away from the surface of a previous 

steady state experiment. Consequently, the effect was a real one 

and cannot be attributed to a lack of uniqueness or inconsistency 

in the finite difference approximations. 

This problem was overcome by assuming a temperat\ire 

field in the surface layer and solving the vorticity and stream 

function equations for this assumed temperature field until the 

characteristic flow pattern (see Figure U.l) was established. 

Ihe ten^ierature equation could then be incorporated in the solution 



and, provided that the heat transfer coefficient vas less than 

that which would give the assumed temperature distribution, the 

normal solution procedure resumed. 

Results 

The geometric configuration of the solution region was 

limited to the dimensions defined by the experimental rig so that 

a direct comparison could be drawn between the numerical and 

e3qperimental results. The upper limit of the Reynolds Number for 

which solutions could be obtained depended upon the length of the 

cooling pond. A Reynolds Number based on the cooling pond length 

(Re^) can be expressed in terms of the inlet Reynolds Number (Re) 

by -

Re = Re^ x L (U.l) 

where L = ^ is the non-dimensional length, eind provided 

Re^ < 1500 stable solutions could be obtained. 

A solution region of dimensions L = 2D was used with 

a non-dimensional depth (D) (as fixed by the allowable adjustment 

of the inlet depth in the experimental rig) of l6. In order to 

represent the boundary conditions at the inlet and outlet over as 

many mesh points as possible and at the same time keep the number 

of mesh points within reasonable limits to conserve computer 

effort, the transformation given by equation 3.8 was employed 

with the constants A = 0.65 and n = 2. For a 31 x 31 mesh, this 



(a) 

(b) 

Figiire 4.2 Numerical Solution -
.(a) Streamlines and (h) isotherm contours for 

Re=10, Fi2=1.2, Pr=1.0, Nu=100, D=16, L=32 
using a 31x31 mesh. 
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gave 6 mesh points over which the inlet and outlet "boundary 

conditions were represented and a maximum mesh spacing of L/15 

at the centre of the solution region. 

Figure h,2 shows the stream function and temperature 

fields obtained by using, as a starting condition, a previously 

converged solution (see Figure h.l) where the temperature field 

was assumed and the temperature equation excluded from the 

solution procedure. The non-dimensional variables for these 

solutions were Re = 10, F^^ = 1.2, Pr = 1.0, Nu = 100. 

Before the temperature equation was included in the 

solution procedure, the flow consisted of the surface layer flowing 

along the top surface, in response to the buoyancy forces, and 

flowing down the end wall and through the outlet. A primary 

eddy was generated under the surface layer and a very weak 

secondary eddy was apparent in the corner under the inlet (Fig. U.l). 

I'Jhen the temperature equation was included in the solution procedure, 

the buoyancy forces, resulting from the convection of the 

temperature field into the lower portion of the solution region, 

lifted the reverse flow from the base, distorting the primary 

eddy and increasing the strength of the secondary eddy. Eventually 

the temperature field became uniform below the interface and the 

stream function resumed its previous form (Figure h,2) with a 

slight increase in the strength of both the primary and secondary 

eddies. 
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The rate of convergence to the steady state solution 

was governed by the choice of the false transient coefficients 

and the stability ratio (DT). V7ith a, = a^ = l the value 

of DT required to prevent instability in the solution fields 

was prohibitively small (DT < O.l). By decreasing the value 

of a^ and a^a the response of the vorticity and stream function 

fields to the varying temperature field was reduced enabling 

a larger value of DT to be used, with a considerable saving 

in computer effort. VJith a^ = 0.5 and 0,1 it was found 

that a stability ratio of 0.3 could be used in the initial 

stages of the solution, without introducing instability, and 

graduaJ-ly increased as the steady state solution was approached. 

The computer effort required to obtain the steady state 

solution (see Table U.l) was large and prevented a wider range 

of parameters being investigated. Some improvement might have 

been achieved by further reducing a^ and optimising the stability 

ratio. However, the main contributing factor was thought to bciKe 

slow rate at which thermal balance was achieved in the model 

(this was also a characteristic of the experimental investigation) 

and the sensitivity of the flow form below the surface layer to 

small temperature changes convected into this region during the 

transient approach to steady state. These factors prevented the 

full benefits of the false transient method being utilised 

(see Ref. l6). 



TABLE h,l 

COMPUTER EFFORT FOR Re = 10, Pr = Fi = 1.2, Hu = 100 

- Q̂p = 0-3, a^ = 0.1 and a 31 X 31 MESH 

COMPUTATIONS PERFOR^M) OW IBM 3TO/155 COMPUTER 

Run No. Initial 
Conditions 

No. of 
Iterations 

Computer 
Time (min) 

Temp. 
Solution 

DT 

1 Zero* kOQ 8.5 No 0.3 

2 Run 1 koo 8.5 No 0.5 

3 Run 2 300 9 Yes 0.3 

k Run 3 300 9 Yes o.u 

5 Run 300 9 Yes 0.6 

6 Run 5 200 6 

Total 50 

Yes 0.8 

* - Solution fields zero. 
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Figure h.3 Streamlines for Re=40, Fi2=i.2, D=16, L=32 
using a 31x31 mesh and using the temperature 
fields shown in Fig. 4.1(b), 
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Differences "between the true temperature field and 

the assumed temperature field had only small effects on the 

overall flow pattern once steady conditions had "been achieved. 

Hence 3 solutions at higher Reynolds Numbers vere obtained by 

assuming the temperature distribution and solving only the 

vorticity and stream function equations. 

Increase in the Reynolds N'omber increased the strength 

of both the primary and secondary eddies. Figure H.3 shows 

the stream f\mction field for Re = UO. The secondary eddy has 

grown and dominates the flow form under the inlet, while the 

primary eddy has moved downstream towards the end wall and a 

third eddy has formed between the secondarjr eddy and the surface 

flow. 

Experimental results were obtained using the experimental 

rig described in Chapter 5 for similar geometry and inlet conditions 

but with Re = l80. The experimental velocity profiles obtained 

at y/hi = 10 and y/hi = 20 are shown in Figure together with the 

velocity profiles derived from the stream function field of the 

numerical solution for Re = ^0. 

The experimental results show a similar primary eddy 

under the inlet (Figure k,ha.) although it is not as strong as 

that predicted by the numerical solution, and is lower down in 

the solution region. The velocity profiles varied considerably 
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Experimental Profiles Re "  ¡80 

Numerical Solution Rr. = 40 

(b)  = 20 

Figure  Comparison between the vertical profiles of 
velocity given by the experimental results 
(Test 17) and that given by the numerical 
solution (Figure 
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with time in this portion of the flimie over the duration of 

the experiment, velocities dropping to almost zero at some 

stages (see profile 2, Figure Dye injected into the lower 

portion of the flume, and observed over a period of time, show 

that the primary and secondary eddies were separated as shown 

by the stream function field in Figure h.3^ but the extent of 

the secondary eddy varied with time. The primary eddy 

periodically joined up with the third eddy forcing the secondary 

eddy back into the lower corner of the flume. From this and 

subsequent experiments (see Chapter 6) it was concluded that 

the flow below the surface layer was unsteady. Oscillations 

in the solution fields were also observed in the numerical 

solution and, although some oscillation is characteristic of 

the solution technique during the transient approach to steady 

state (13), the convergence rate would be impaired by any 

oscillations characteristic of the problem. 

The velocity field at y/hi = 20 was obtained through a 

vertical section near the core region of the secondary eddy. 

The numerical results predict a stronger secondary eddy than 

that obtained in the experiments (Figure .̂î b) and, as it was 

found that the strength of the secondary eddy increased as the 

Reynolds Number increased, the numerical results presented 

would be an underestimate of the secondary eddie's strength if 

a solution could be attained at Re = l80. 
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The secondary eddy is driven "by viscous forces 

originating from the surface flow and from the subsequent flow 

down the end boundary towards the outlet. Increase in the 

Reynolds Number results in an increase in the vorticity generated 

at the flow boundaries,and since in the experimental investigation 

the flow was turbulent in these regions this vorticity 

would be diffused through the fluid, whereas the laminar flow 

assumption of the numerical model results in the vorticity being 

convected through the solution by the flow field. This would 

explain some of the discrepancy between the numerical and 

experimental results. The assimiption was made in formulating 

the governing equations of the mathematical model that the flow 

was two-dimensional. This implies a solution region of infinite 

width. In the experimental investigation the side boundaries have 

an influence on the resulting flow form. Mallison(lTA) found, 

in the investigation of the flow induced in a cube by a sliding lid, 

that the two-dimensional assumption resulted in an over-estimate 

if the velocity field. For high Reynolds Number the velocities 

given by the two-dimensional solution were approximately double 

those given at the centre plane of the three-dimensional solution, 

the difference being due to the third dimension's boundaries. The 

side walls of the flume in the present case would have an even 

greater influence since the width of the flume was only 1/3 of the 

depth (D). Mallinson's restilts suggest that the two-dimensional 



assumption over-estimates the velocity field obtained in the three-

dimensional solution by a factor vhich is inversely proportional 

to the width to depth ratio. In the present case this would 

result in a solution whose velocity field was approximately six 

times that measured in the experimental investigation. This 

effect is apparent in the flow region below the interface 

(Figure J+.Ub). 

U.^ Conclusions 

The numerical technique employed to solve the laminar 

equations of motion for the two-dimensional cooling pond 

problem was successful in predicting the flow form vrLthin 

the cooling pond. It is believed that good quantitative agreement 

with the experimental results would have been obtained if the 

experimental rig had been of sufficient width to justify the 

two-dimensional assmption. 

The coupling between the governing equations and the 

inherent instability of the cooling pond problem limited the time 

step which could be incorporated in the solution. Consequently^ 

the savings in computational effort which can be gained by using 

the false transient technique could not be fully utilised. The 

slow convergence to the steady state solution was found to be a 

general property of the problem and indicated the sensitivity of 

the flow below the interface to any perturbation from the steady state 
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5. EXPERIMENTAL INVESTIGATION 

5.1 Experimental Apparatus 

The experiments were carried out in a flume 6,h m long, 

760 mm deep and 1 6 1 mm tfide located at the University of New 

South Wales Water Research Laboratories. Details of the test 

flume are shown in Figure 5.1. The walls of the flume were 

constructed of perspex 19 mm thick bolted to a steel base and 

supporting frame. A horizontal inlet structure, which could be 

adjusted to give an inlet depth of up to 50 mm from the free 

surface?was incorporated in one end of the flume and the outlet 

was located at the base of a false wall inserted in the other end 

of the flume. To minimise heat transfer from the test section to 

the steel base of the flume, a false bottom was inserted so that 

water from the outlet flowed back under the test section before 

flowing to waste over a weir. The weir was used to control the 

free water surface level in the test section. 

Significant heat transfer away from the water surface was 

achieved by placing a cooling tray flush with the water surface and 

circulating cool water over the tray to act as a heat sink. Access 

for inserting measuring instruments into the test section was 

provided by soldering copper tubes to the base of the cooling tray 

at various intervals along its length. 



Figure 3«2 Flow circuit and related controls external to 
the test flume. 
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The water flowing into the test section was heated "by 

a mains pressure three phase V) electrical heater. 

Fluctuations in the outlet temperature from the heaters due to 

variations in the electrical system loading and the town water 

pressure were found to cause up to 20% fluctuations in the inlet 

Densimetric Froude Number. This variation was reduced to within 

2% of the mean by incorporating an electronically controlled 

"Billman'' mixing valve to control the water temperature and by 

using a constant head tank to control the flow rate. The 

temperature and flow control system is shown in Figure 5.2. 

Heat loss from the side walls was found to be a problem 

in earlier experiments (not reported here) when water at ambient 

temperature was used as the heat sink and the temperature 

of the water flowing into the flume was raised to approximately 

35^C to obtain a significant temperature drop over the length of 

the flume. A vertical temperature gradient occurred below the 

interface and the fluid "snaked"' backwards and forwards, in response 

to this temperature gradient, as it progressed towards the outlet. 

This problem was overcome by using refrigerated water at 

approximately 5°C as the heat sink and dropping the inlet 

temperature so that the desired temperature difference across the 

interface was obtained when the water below the interface was at 

approximately ambient air ten̂ ierature. 
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The cooling water for the heat sink was recirculated 

through a coniinercially available water chiller (rated at 

h2 Mj/h) at approximately ten times the rate of the hot water flow. 

The water chiller was on/off controlled by a pen thermostat 

resulting in a 2°C cyclic variation in the temperature of the 

water supplied to the cooling tray. The oscillation period of 

the cooling water temperature was approximately one-quarter of 

the residence time of the hot water in the surface layer and 

consequently the variation in the mean heat transfer away from 

the hot water surface was less than resulting in a maximum 

of variation in the hot water outlet temperature. 

5.2 Measuring Equipment 

The variables required to characterise the flow are -

(a) the vertical distribution of temperature, 

(b) the vertical distribution of velocity; 

(c) the interfacial depth; 

(d) the cooling water temperature. 

The interfacial depth has been defined as the depth where the 

density gradient is a maximum. It can, therefore, be determined 

from the vertical profile of temperature. 

5.2.1 Temperature Measurement 

Four resistance thermometer units were used to measure 

the temperature of the hot and cold water at the inlet and outlet. 
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Figure 5.3 Circuit diagram of the platinum resistance 
thermometer unit (Zk), 
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Each unit consisted of a platinum resistance thermometer probe 5 

having a resistance of 100^ + O.OTT^ at 0°C and a temperature 

coefficient of 0.385^/°C5 connected via a three wire lead to a 

bridge net-work, the third wire (r') providing compensation for 
L 

changes in lead resistance due to temperature variation. 

Figure 5.3 shows a circuit diagram for a single bridge including 

lead resistance compensating facilities. A constant voltage 

E applied across the bridge and through a 5 K^ resistor defines 

a current in the thermometer w^hich is independent of temperature(). 

Any change in temperature at the probe results in a proportionate 

change in voltage across the output. The output from each bridge 

was recorded on one channel of a four channel pen recorder and the 

output signal calibrated against pen movement by disconnecting 

the probe from the bridge network and replacing it with resistors 

whose values corresponded to 20°C and 

Vertical profiles of temperature were obtained in the 

test section using a thermistor attached to a motorised traversing 

mechanism. The rate of travel of the traversing mechanism was 

controlled by varying the voltage supply to the driving motor, 

the output speed of which was further reduced by a gear train 

before driving the main traversing screw. Provision was made in 

this gear train to reverse the direction of travel of the probe. 

The thermistor was wired into one arm of a bridge network (see 

(Figure 5.^)J and the output from the bridge recorded on one channel 

of a two channel pen recorder. The vertical position of the 
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probe at any given time was obtained by driving the sliding arm 

of a voltage divider from the traversing mechanism and connecting 

the variable voltage output of the voltage divider to the second 

channel of the pen recorder. Hence, by directly calibrating 

the pen movement against probe travel and correlating the two 

at some reference depth, the temperature profile could be 

ascertained from the chart recording. The circuit diagram for 

the voltage divider is shown in Figure 5.5. 

5.2.2 Velocit?/ Measurement 

Velocity measurements in laboratory-scale stratified 

flows are difficult because of the small velocities involved. 

Typical velocities in the surface layer for the experiments 

reported here range from 60 mm/sec down to 1 mm/sec. Velocities 

in the underlying flow are an order of magnitude lower. Instruments 

suitable for measuring velocities in stratified flow are discussed 

by Feitz(8) and Wilkinson(23). However, the selection of a 

suitable technique for the experiments reported here was governed 

by the convective motion in the surface flow due to the heat 

transfer away from the surface, and the resulting longitudinal 

temperature gradient. 

Three techniques to detemine the velocity profile at 

a vertical section were tried. 

1. Hydrogen bubble technique 

A similar technique as that used by ¥ilkinson(23) was 

experimented with but it was found that the convective motion in 
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the surface layer dispersed the bubbles before profiles could be 

obtained. 

2. Suspended particles 

3y choosing small particles whose buoyancy is neutral 

with respect to the fluid, velocity profiles may be obtained by 

photographing the particles over a known time interval. Neutrally 

buoyant particles were, however, caught in the convective motion 

of the surface layer and tended either to lodge against the cooling 

tray or to be caught in the boundary layer at the interface. Those 

particles that survived this condition initially, soon found 

themselves surrounded by denser fluid (due to the longitudinal 

temperature gradient) and floated towards the cooling tray. 

3. Pye Streaks 

This method was found to be the most successful of the 

three. Dye streaks were generated by dropping crystals of 

potassium permanganate into the test flume. Velocity profiles 

were obtained by photographing the position of the dj'-e streak at 

the beginning and end of a known time interval. The turbulence 

in the surface layer was found to quickly disperse the dye 

generated from a single crystal but it was found that by dropping 

a number of crystals into the flume the dye remained visible for 

10 to 15 seconds. This period was sufficient to enable velocity 

profiles to be obtained. The flow below the interface was 

laminar sind hence this method was found to be quite successful in 
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obtaining representative velocity profiles in this region. 

However, as discussed later, the velocity distribution across the 

flume was not m i form below the interface and hence the mean flow 

in the surface layer could not be checked by a mass balance 

throu^ a vertical plane. 

The dye traces were recorded on colour film against 

a white background illuminated by six 500 watt photoflood lamps. 

A green filter was used on the camera lens to improve the contrast 

between the red dye and the background. Distortion in the 

photographs due to the relatively short focal length of the camera 

lens (Ç l.if) was corrected in the analysis of results by 

reference to a grid marked on the perspex walls of the flume. 

The velocity distribution in the surface layer obtained by 

this method varied considerably from profile to profile. However, 

the mean velocity measured by integrating the velocity profile 

over the depth to the interface were reasonably consistent. The 

centreline velocity distribution in the surface layer was assumed 

to be representative of the velocity across the flume and althou^ 

the walls must exert some influence, results suggested that the 

horizontal velocity profile was typical of turbulent flow between 

parallel plates. The mean velocity in the surface layer obtained 

from any one profile was within 10^ of the mean calculated from 

a number of profiles. 
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5.3 Experimental Procedure 

The inlet and outlet temperatures of the cooling water 

and the hot water were recorded continuously to ensure that 

steady state conditions were maintained diiring each test. 

Temperature and velocity profiles were recorded under steady 

state conditions. 

Thermal steady state was said to have "been achieved 

when a constant hot water outlet temperature was reached and no 

vertical temperature gradients were discernible below the 

interface. This usually took 2 - 3 hours from the start of each 

test run with a further 2 - 3 hours "before the flow below the 

interface responded and became consistent. 

Temperature profiles were recorded while traversing in 

both directions at each measuring station. On each traverse 

the recording chart was marked when the thermistor had reached a 

known depth, this being used as the reference level for determining 

the interfacial depth when analysing the results. 

Two velocity profiles were taken on the centreline of 

each measuring station. To check the two-dimensional nature 

of the flow, additional velocity profiles were taken 50 inm either 

side of the centreline for at least two measuring stations in 

each test. 

At the conclusion of each test the inlet hot water was 

dyed and the flow at the inlet photographed to ascertain whether 

the inlet was inundated or an internal hydraulic jump formed. 
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The hot water and the cooling water flow rates were 

measured at the start and end of each test by weighing a sample 

collected over a known time interval. 

Table 5.1 gives a summary of the physical and non-

dimensional variables for each test. 



TABLE 5.1 

SUMMARY OF TEST CONDITIONS 

Test 
No. 

Inlet 
Depth 
h^ (mm) 

Inlet 
Temp. 
(^C) 

Outlet 
Temp. 

Inlet 
Velocity 

V. 
1 

(mm/sec) 

Surface 
Heat Transfer 
Coefficient 
k X 10^ m/sec 

Inlet 
Densimetric 
Froude No. 

Inlet 
Reynolds 
Number 

Flow Conditions 
at the Inlet 

10 36.1 25.6 16.7 18.8 6.7 0.719 768 Inundation. 

11 UO.6 25.6 18.1 21.7 6.16 0.869 1000 Inundation. 

12 ko.e 2k,6 19.0 26.6 6.62 1.195 1200 Inundation. 

13 22.9 2k,2 18.5 k6,6 6.25 2.875 1158 Int. Hyd. Jump. 

Ih 17.6 23.9 19.1 57.2 5.33 U.25 1085 Int. ifyd. Jump. 

15 31.1 2k, k 17.7 23.6 5.58 1.11 810 Inundation. 

16* 29.0 21,0 18.2 9.5 6.15 0.73 279 Inundation. 

IT* 13.6 22.5 17.3 13.1 7.0 1.1 188 Inundation. 

NOTE: * - Flume length reduced to 950 mm. 
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Figure 6«1 Experimental results - typical chart recording 
of the temperature profile (taken at the 
third measuring station in Test 12). 



6. EXPERIMENTAL RESULTS MP DISCUSSION; 

The experimental results are presented in two parts -

(a) the flow above and including the interface 

(referred to as the surface f low) , and 

(b) the secondary flow below the interface. 

6 .1 General Description of the Flow 

(a) Surface Flow 

Experiments were carried out for Densimetrie Froude 

Numbers at the inlet ranging from 0.7 to U.5. In a l l cases the 

downstream controls were such that either the in let was 

inundated or an internal hydraulic jump occurred Just downstream of 

in le t (Tests 13 and lU). 

The flow in the surface layer was influenced greatly 

by the heat transfer away from the surface. A parcel of f l u i d 

near the cooling tray cooled to a stage where i t was heavier 

than i t s surroimdings and hence dropped towards the interface 

where i t s vert i ca l motion was retarded by the presence of the 

denser sub- inter fac ia l f lu id . Hence, an overall convective 

motion was imparted to the f lu id in addition to the normal 

turbulence associated with the flow. 

The convective motion i s re f lec ted in the fluctuations 

in the temperature pro f i l e s (Figure 6 .1 ) . The fluctuations 

decrease in magnitude with increase in depth, indicating that 

the temperature dif ference between a descending parcel of f l u i d 

and i t s surroundings i s reduced by di f fus ion of heat. 
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(a) 
Velocity Profil* A-A 

Tb 

Temp«ratur« Profile A-A 

(b) Velocity Profile B -8 

^ T a 

Tempereture Profile B -B 

Figure 6e2 Typical flow pattern during (a) the transient 
approach to steady state said (b) after steady 
state conditions had been achieved. 
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In the absence of heat transfer from the surface the 

interface was disturbed "by long waves travelling along it as 

described by Sherenkov et. al(l9) for equivalent values of the 

stability parameter (6 =200->'500). However, in the presence of 

heat transfer the interface was irregular with bulge-like 

depressions protruding through it. This additional disturbance 

is attributed to the convective motion within the surface layer. 

As the surface flow approached the end of the flume the 

density difference across the interface was reduced and the 

interface became more disturbed. Just before the end wall parcels 

of fluid passed through the interface and remained below itj 

contributing to the general turning effect of the flow at the 

end wall. Determination of the mean velocity and interfacial 

depth became more difficult in this region, 

(b) Secondary Flow 

During the transient approach to the steady state 

the flow field below the interface changed from a "snaking flow'' 

(where the flow oscillated backwards and forwards until it 

reached the bottom of the fl\ime and passed through the outlet) 

to a vertical recirculation eddy under the interface. These two 

types of flow are represented diagrammatically in Figure 6.2 . 

The transient flow pattern was accompanied by a vertical 

temperature gradient below the interface and although this 
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gradient was small (Ta - Tb =i 0.2®C) it was sufficient to affect 

the form of the flow pattern." Once the temperature "below the 

interface "became uniform, the flow changed to the recirculation 

eddy shown in Figure 6.2(b) and the net volume flow below the 

interface diminished as the outlet flow was drawn from the 

subsiding surface layer. 

6.2 The Surface Layer 

The experimental results have been non-dimensionalised 

in the following form: 

(a) Temperature 

T - Tew 
"Ti - Tew 

where Ti is the water temperature at the inlet to the 

test section, 

T is the mean temperature of the surface flow at a 

cross-section, and 

Tew is the mean cooling water temperature in the 

cooling trays. 

(6.1) 

(b) Interfacial Depth 

H = A (6.2) 

where hi is the depth of the inlet, 

(c) Flow Rate/Unit Width 
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where vi is the mean inlet velocity to the test section. 

These parameters are shown in Figures 6.3 - 6,5 plotted 

against Yj the non-dimensional distance downstream from the 

inlet. The Densimetric FroudeNumber for the surface layer has 

been derived from these results and is shown in Figure 6.6. 

In Tests 13 and li| an internal hydraulic Jump occurred 

downstream from the inlet. Photographs of dye injected into the 

surface layer indicate that in Test 13 the roller region of the 

jump extended from the inlet to a point approximately 300 mm 

(Y = 0.05) downstream from the inlet. The back flow associated 

with the roller region occurred above the interface and hence 

reduced the mean velocity of the surface layer in this region. 

In Test lU the inlet Densimetric Froude Number was far higher 

and consequently the roller region of the jump was located further 

downstream, extending from a point just beyond the first measuring 

station (Y = 0.05) to just beyond the third measuring station 

(Y = 0.22). Velocity profiles obtained at the first three 

measuring stations indicated an initial large increase in volume 

flow and then a decrease at the fourth measuring station (Y = 0.3) 

spuriously suggesting de--entrainment at the end of the roller 

region. The back flow associated with the roller region was 

accounted for in determining the mean flow. The error in the 

mean flow obtained in the vicinity of the roller region is 
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attributed to the velocity profiles being taken over a length 

of approximately 200iGniin which relatively high horizontal 

velocity gradients existed (this length is the distance between 

the initial and final photographed positions of the dye trace). 

Accordingly, the mean surface flow determined in the vicinity 

of the roller region was not the true mesin at a vertical 

section. The internal hydraulic jump was associated with a 

significant drop in temperature (Figure 6.3) due to 

entrainment of ambient fluid, and this enabled a more realistic 

estimate of the mean flow to be calculated by performing a 

heat balance over a control volume bounded by the interface, 

the surface and two consecutive measuring stations. This 

approximation is derived in Appendix C and has been applied 

to the results presented for Test l̂f in Appendix D. 

6.2.1 Entrainment of Ambient Fluid into the Surface Layer 

The volume flow per unit width increases with distance 

along the flume (Figure 6.5) indicating that althou^ the Densimetric 

Froude Number was less than unity a significant amount of ambient 

fluid was being entrained from below the interface. The 

entrainment coefficient is defined as the ratio of the entrainment 

velocity (ve) to the mean velocity of the surface layer V, i.e. 

Ue^iaCVhX 
® V h dy ^ ' 
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Values of e were determined from the experimental results "by 

fitting a curve to each set of experimental values of VH shown 

in Figure 6.5 and measuring the gradient at the position of the 

known mean velocities. When the values of the entrainment 

coefficient are plotted against the Densimetric Froude Number 

(Figure 6.7) the values derived from the present investigation 

are seen to be generally greater than those implied by the results 

of Ellinson and Turner and of Lofquist as presented by Lean 

and V7hillock(li+). This marked increase in the entrainment 

coefficient is attributed to the convective action within the 

surface layer causing capture of ambient fluid from below the 

interface. No definite trend is apparent between tests although 

it appears that the entrainment coefficient is greater just 

downstream of the internal hydraulic jump than is the case for 

similar Densimetric Froude Numbers in the absence of a jump 

(Figure 6.7, Tests 13 and ik). Dornhelm et. al(5) found that 

for some inlet conditions the turbulence intensity in a buoyant 

three-dimensional jet increased to a maximum value and then 

decreased again with distance downstream from the inlet. This 

they attributed to some disturbsmce such as an internal hydraulic 

jump at the interface, although the existence of an internal 

hydraulic jump was not verified directly. The above results are 

consistent with these observations, with the increased turbulence 

resulting in a higher rate of entrainment of ambient fluid. 
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Vertical profiles of temperature obtained during 

field measurements on a cooling pond at Maitland, N.S.H.(6), 

shoved the temperatiire gradient across the interface to "be 

less than those obtained in the laboratory experiments, 

indicating that heat tends to diffuse across the interface. 

The relatively high entrainment coefficients found in the 

laboratory experiments are attributed to the convective motion 

in the surface layer being able to penetrate into this 

diffusion zone, capturing fluid and hence sharpening-up the 

interface. This phenomena could be absent at the lower heat 

transfer rates from the surface in full scale cooling ponds. 

6.2.2 Temperature Distribution 

The temperature distribution along the length of the 

pond is governed by the heat transfer avay from the surface 

and by the entrainment of fluid into the surface layer. 

Entrainment of the cooler fluid into the surface layer results 

in a drop in the mean temperature and consequently reduces the 

rate of heat transfer away from the surface. This is illustrated 

by comparing the temperature distributions for Tests lU and 15 

(Figure 6.3) which have similar heat transfer coefficients. In 

Test the temperature was initially decreased by the relatively 

larger entrainment of cooler fluid before the internal hydraulic 

jump (due to the high inlet Densimetric FroudeNumber) while Test 15 

has a lower inlet Dens imetri c Froude Number and consequently the 
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inlet was inundated. Although the inlet conditions were such 

that a density jump occurred in Test 13-, a large decrease in 

the temperature excess similar to that in Test l̂i was not 

observed. This is attributed to the entrainment zone of the 

density jump being suppressed by the roller region which was 

attached to the inlet. 

6.2.3 Densimetric Froude Number 

Within experimental accuracy the distribution of the 

Densimetric Froude Number with distance from the inlet 

(Figure 6.6) appear to lie on the same curve for Tests 10, 11, 

12 and 15 in which the inlet was inundated. T-There an internal 

hydraulic jump occurred (Tests 13 and lU) the distribution of 

the Densimetric Froude Number with distance from the inlet 

collapses onto the same curve downstream of the jump. This is 

not surprising since the flow at the inlet is governed by the 

downstream controls which, in this case, are the interfacial 

and wall shear stress (a function of the Reynolds Number), the 

heat transfer coefficient and, to some extent, the distance to 

the end wall. All of these factors were of the same order of 

magnitude for the abovementioned tests. Tests l6 and IT were 

carried out in a shorter flume and at lower Reynolds Numbers 

with the result that the Densimetric Froude Number, for an 

equivalent non-dimensional distance downstream, was greater 

in magnitude. 
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The Densimetric Froude Number increases with distance 

downstream of the inundated inlet or of the internal hydraulic 

Jump.  Values calculated at the last measuring station (Y = 0.89) 

indicate that in some cases the Densimetric Froude Number "becomes 

greater than unity as the downstream "boundary is approached. 

As Y  1, 

P 

Y ̂  0 

and the interfacial depth h  «>. 

Consequently the Densimetric Froude Number "becomes 

indeterminate at the end wall.  Experimental results indicate 

F  «> 

which could be the extrapolation from a buoyant to non-buoyant 

flow.  The Densimetric Froude liumber was found from -

(6.5) 

/AP  g h3 
p 

where Q is the volume flow/unit width; 

and the accuracy of determining the interfacial depth at the 

last measuring station was doubtful due to the instability of 

the interface and the low temperature differential across the 

interface.  Assuming then that the interfacial depth was 

under-estimated at this point when the Densimetric Froude Number 

would be reduced and it could be postulated that as Y  1, F  1 

which implies that the end wall acts as the control for the 
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preceding flow. Both these interpretations seem possible in the 

li^t of the experimental results and will be piarsued further 

in the following chapter. 

6.3 Sub-Interfacial (Secondaiy) Flow 

Once the thermal steady state had been achieved the 

flow below the interface formed the recirciilating eddy shown 

diagrammatically in Figure 6.2(b). The surface layer, on reaching 

the end wall of the flume, flowed down towards the outlet where 

part of the flow passed out of the test section, the remainder 

flowing back along the base of the flume to form a recirciilating 

eddy below the interface. The reverse flow along the base of the 

flume has been termed the ''backflow" while the flow below the 

interface, but in the same direction as the surface flow, has been 

termed the ''shear flow". The recirculating eddy is partly 

driven by the shear at the interface and partly by pressure 

gradients to provide replenishment of fluid entrained from the 

shear flow into the siirface layer. 

The shear flow and backflow were obtained by 

integrating the centre line velocity profile over the 

respective depths. They are shown plotted against the non-

dimensional length in Figures 6.8 and 6.9. The absolute values 

of these flows should be viewed with caution since the flow 

in the recirculating eddy was not uniform across the flume. 

Figure 6.10 shows the profiles of vertical velocity taken at 

the centre of the flume's width and 50 mm either side of the 

centre for the fifth measuring station during Test 10. They 
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the flumes width and 50 ram either side of the 
centre. The profiles were taken at the sixth 
measuring station during Test 10• 
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show that the backflow was more pronounced along the rear wall and 

less pronounced towards the front wall, while the shear flow has 

the opposite tendency. The same trend was observed in all tests. 

The variation across the flume became more pronounced as the 

backflow approached the inlet end of the flume. This seems to 

suggest that it is a characteristic of the flow rather than a 

boundary effect. 

The mean flow at any cross-section (calculated from the 

velocity profiles at that section) was found to be consistent from 

one profile to the next provided that the time interval between 

obtaining the profiles was small, but varied considerably when two 

profiles were obtained at a larger time interval. It was concluded 

that the flow below the interface was unsteady and varied according 

to the conditions dictated by the flow at the downstream end of the 

flume. The unsteadiness in the resultant sub-interfacial flow was 

also demonstrated by the intermittent appearance of a reverse eddy 

under the inlet. This eddy was detected in the velocity profiles 

obtained at the first two measuring stations. 

The backflow decreases as it approaches the inlet end 

of the flume (Figure 6.8), the deficit in flow being transferred 

into the shear flow region. However, the shear flow does not 

reflect this gain with increase in distance from the inlet but 

remains reasonably constant (Figure 6.9) because of the 

entrainment of fluid from this region into the surface flow. 
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The high entrainment rate in the vicinity of the inlet for 

Test lU is reflected in the increase in the "backflow and a 

corresponding decrease in the shear flow. In one preliminary 

test run where the inlet Densimetric Froude Nuniber was 

increased to 10 (as compared to U.25 for Test the 

entrainment vol\ime required for the surface flow was so h i ^ 

that the shear flow disappeared altogether and the interface 

divided the surface layer from the backflow. Unfortimately, 

the turbulence in the surface layer prevented velocity profiles 

being obtained with the method used, and the test was abandoned. 

It would appear that in such situations (i.e. when the Densimetric 

Froude Number was h i ^ or the total depth of the flume reduced) 

the requirements of fluid to satisfy the entrainment at the 

inlet could generate additional shear at the interface and 

consequently act as an additional control on the surface flow. 

For exaiEple, the backflow in increasing the interfacial shear, 

would tend to cause the internal hydraulic Jump to occur 

further upstream. This would restilt in a reduction in the fluid 

required for entrainment and the backflow woxild consequently 

be reduced. The process would eventually reach eqiiilibrium. 

It is concluded therefore that xinder certain conditions the 

physical depth of a cooling pond would act as a control on the 

surface flow. 
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^ ExperimentaJ. Errors 

The main source of errors in the experimental 

investigation weis the measurement of the mean velocity in the 

stirface layer. It is estimated that the average flow per unit 

width determined from the velocity profiles is within 10^ of the 

true flow per unit width when allowance is made for the boundsoy 

layer along the side walls. 

The interfacial depth was obtained from the temperature 

profiles. To reduce the error introduced "by the thermal 

inertia of the probe the interfacial depth was averaged from 

two profiles recorded while traversing in different directions. 

The interface, however, was disturbed by the convective action 

in the surface layer and consequently the average interfacial 

depth varied from profile to profile. This error is estimated 

to be in the order of ±3^ where the temperature differential 

across the interface was large, and up to ±6^ at the downstream 

end of the flume where the temperature differential was small 

and the interfacial disturbance high. 

The Densimetric Froude Number was determined from 

Equation 6.5 and consequently is largely affected by the accuracy 

of the interfacial depth. The density difference Ap was 

determined from the temperature difference across the interface 

and therefore was only dependent upon the relative accuracy 
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of measuring instriments and not the absolute calibration. This 

error again becomes more pronounced as the temperat\are 

differential beccanes smaller. An estimated error bound was 

2% to 5% depending on the position along the flume. Consequently 

the error in the Densimetric Proude Number is quite laûge and 

could vary by 17% of the calculated value near the inlet to 

as hî  as kO% at the last measuring station. This could 

explain the variation between tests in the values of F 

calculated at the last measuring station (Y = 0.89) and throws 

some doubt on the implication that F -»• « as Y ->- 1. 
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7. COMPARISON OF SXPERBCTTAL RESULTS WITH THE MATHEMATICAL 
MODEL PROPOSED BY KOH AÎD FAĴI: 

7.1 Mathematical Model 

7.1.1 Governing Equations 

Koh and Fan(13) derived a mathematical model, including 

the effects of heat transfer from the surfaces entrainment of 

ambient fluid and interfacial shear, for a two-dimensional 

surface buoyant jet. The model vas reduced to a set of one-

dimensional equations by assuming the form of the vertical distribution 

of velocity and temperature. The governing equations, expressed in 

terms of the co-ordinates defined in Figure 7.1, are -

Continuity 

 ̂(Vh) = ̂ V (7.1) 
äy a  

Momentiim 

Enerar 

 ̂ (V̂h) = ai ̂ (Aph2) ̂  (t̂ - T.)  (T.2) 

 ̂(AphV) = -a2H (7.3) 
dy 

where e is the entrainment coefficient, 

T is the surface shear stress, 
s 

T̂ is the interfacial shear stress and 

H is proportional to the rate of heat loss from the surface, 

a, ai and a.2 are constants derived from the assumed vertical 

distributions of velocity and temperature. The results from the 
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experimental investigation (Chapter 6) indicate that the 

velocity and temperature distributions may be considered uniform 

across the jet with a step change at the interface. The numerical 

values of thea's are accordingly(13) -

a = 1 

«1 

a2 = 1 

The density difference Ap is a function of the 

temperature and may be expressed as -

Ap = (To - T) (T.î ) 

where 3 is the coefficient of thermal expansion and 

To is the ambient fluid temperature below the interface. 

To obtain a solution to the governing equations it is 

necessary to specify e, T and H as functions of the unknowns V, h 

and the temperature T. The relationship between these parameters 

and the unknowns differ from those used by Koh and Fan due to 

the boundary conditions imposed by the experimental rig. However^ 

the general form of the relationship as used by them will be 

retained and the solution procedure remains the same. 

7.1.2 The Entrainment Coefficient 

Entrainment of ambient fluid into the surface layer was 

found to be significant in the sub-critical flow region (F < l) 

of the experimental investigation and hence some approximation 
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vas required to predict this entrainment rate in the model. It 

was assumed that the entrainment coefficient was a linear function 

of the Densimetric FroudeNumber for F < i.e. 

e = a F+b (7.5) 

The constants a and b were chosen to suit the experimental results. 

Tb.e relationship proposed by Koh and Fan, from Ellison 

and Turners results, was used for the flow region where F > 1. 

T.1.3 Surface Heat Transfer 

The quantity H is defined as -

H = -^^Po® i x=0 

where D^ is the thermal diffusivity. 

Substitution of T.^ into the energy equation gives ~ 

dy ~ ^ (ThV) = x=0 

The rate of heat transfer away from the surface can be expressed in 

terms of an overall heat transfer coefficient (k) such that -

k 

Po^p 
(T T ) (7.6) 

where T^ is the temperature of the heat sink and 

C is the SDecific heat of the fluid. 
P 
7.1.U Shear Stress 

In the experiments the motion of the surface layer was 

opposed by shear along the surface and side walls of the flume 
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in addition to the shear at the interface. The combined shear 

stress can be expressed as -

T = (1 + Cf, + Cf. ^ (T.T) 
W D 1 

where Cf^ is the boundary shear stress coefficient and 

Cf^ is the interfacial shear stress coefficient. 

To estimate the relative magnitude of the boundaiy shear 

stress coefficient Blasius' smooth wall formulae for turbulent 

flow in conduits(l8) was used -

= ̂  (7.8) 
® {mr 

where the Reynolds Number (ITP.) was calculated using the hydraulic 

radius bounded by the solid boundaries and the interface. The 

interfacial shear stress coefficient was calculated using 

Harlemans foimilation(l) ~ 

Cf, = (T.9) 

Koh and Fan assumed the shear stress to be of the form -

T i = # (7.10) h 

where e was the effective viscosity coefficient. This form was 

retained with e being given from Equation T.T as -

Vh 
e = d + — ) Cf, + Cf. w b 1 
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Hence, 

e = , + Q.QT9 ̂  11.3" 
^ (T.ll) 

1.1*5 Non-Dimensional Equations for the Surface Jet 
of a Cooling Pond 

Non-dimensionalising the equations with reference to the 

inlet conditions Vi, Hi and (Ti - To) such that -

y* = y/hi 

and defining 

Fi2 = Vi^/g (Ti - To)hi, R = and 

the governing equations T.lr. 7.2 and J . 3 become, after dropping 

the superscript (*) -

-- (vh) = ev (T.12) 

(vh6) = ~ K0 (T.l^) 

cty 

These equations are identical to those derived "by Koh 

and Fan except that the effective viscosity coefficient (e) and 

the non-dimensional heat transfer coefficient (K) are not constant 

over the solution field. Koh and Fan assumed that the fluid 
in the jet was eventually cooled to the temperature of the 



KRe 

Figure The flow pattern expected in a surface buoyant 
jet as a function of the inlet parameters -
Koh and Fan (13). 
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heat sink5 and consequently the non-dimensional heat sink 

temperatiire (6«) was zero. This, in general, does not occur 

within the confines of a cooling pond. 

Equations J.12 to 7.1^ can he rearranged to give -

dy 

ày 

dv 

M i 
vh "" ̂  h (T.15) 

e(2 " 1/2 Fi^) - K/2 Fi^v + l/Rhvl / 1 - l/Fi^ 1 (T.16) 

dy 
(T.IT) 

dy h 

and these equations can be solved numerically to give 6, h and v 

as a function of the distance from the inlet y. 

7.2 Discussion of Koh and Fan^s Solution 

For = 0, e = 0 when F^ < 1, and for e and K constant 

over the region of solution, Koh and Fan found that three types 

of solution could exist, depending on the relative magnitude 

of Fi, R and K (see Figure 7.2). 

(i) For -

KR > Fi -0,655 

A Jet type solution would exist over the whole of the 

solution region. 

(ii) For 

Pi2" "•0„555 < > F2 
J cr 
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A Jet type solution vould exist up to some distance 

from the inlet where an internal hydra,ulic jump would form at 

F = F^^ and the flov would become sub-critical, cr 

(iii) For -

KR < F^ cr 

the inlet would be inundated and the resulting flow sub-critical. 

On the assumption of zero entrainment within the 

internal hydraulic jump, the do^mstream conditions (y2) after 

the jump can be expressed in terms of the conditions immediately 

upstream from the jump (yi) by -

hi 
h2 = 

V2 = 

Fi = 

/l + 8 f2 - 1 

2vi 

/l + 8 Ff - 1 

2 
8Fi 

/l+ 8Ff - 1 

(7.18) 92 = 61 

Koh and Fan deduced from the solution to the governing 

equations in the sub-critical flow region (i.e. e = 0 and F < l) 

that the intemal hydraulic jump would occur when the Densimetric 

FroudeNumber just downstream from the jump was less than the 

critical Densimetric Froude Number, i.e. 

F2 < F cr 
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where the critical Densimetric Froude Number was given hy -

F  = (A „ i)-2 (j .Q) 

This is a necessary but not sufficient condition to 

locate the position of the internal hydraulic jump and the 

further assumption was made that the jump occurred at the 

furthermost location from the inlet. This corresponds to the 

least possible increase in depth and consequently the least 

energy loss across the jump. 

In arriving at the relationship for the critical 

Densimetric Froude Number two other observations were made for 

the sub-critical flow region -

(i) ̂  > 0 depth is always increasing in 
dy the sub-critical flow region. 

(ii) F̂ < 1 the Densimetric Froude Number in the 
region downstream of the jump is 
always less than unity. 

l-Ihen the downstreain controls are such that the inlet is 

inundated the sub-critical inlet conditions can be found from 

by Fi = F . 
cr 

7.3 Solution of the Equations to the Modified Model 

The modified equations describing the siirface flow in the 

experimental investigation differ from those proposed by Koh and 

Fan only in the functional form of ê R and K. The general 

conclusions from Koh and Fan's investigation should therefore be 

applicable to the present model although the critical Densimetric 
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Froude Nimiber for determining the position of, and downstream 

conditions just after, the internal hydraulic jump will differ. 

The observed surface flow form in the experimental investigation 

all lie in the same regions as predicted by Koh and Fan's theory 

(Figure 7.2). 

It is interesting to note that although the inlet 

Densimetric Froude Number was less than unit for Tests 10, 11 and l6 

the inlet was inimdated and intrusion of ambient fluid into the 

inlet did not occur as postulated by previous workers(9). If it 

is initially assumed that intrusion would occur and the calculated 

inlet depth reduced to give a Dens imetric Froude Number of unity 

at the inlets the downstream controls on the subsequent flow predict 

inundation (see Figure J.2) to a depth greater than the inlet 

depth. Intrusion of ambient fluid into the inlet would not be 

expected until the predicted inundated depth calculated by this 

method was less than the inlet depth. 

7.3.1 Determination of the Critical Froude Number 

Deriving a relationship for the critical Densimetric 

Froude Number from the governing equations (as was derived by 

Koh and Fan) for the conditions in the sub-critical flow region 

is difficult because the entrainment is not negligible in this 

region and hence equation 7.12 can not be solved analytically. 

Some insight can be gained into the effect of the entrainment 

on the value of F by examining equation T.I6 with the 
CI* 
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restriction that ̂  > 0 for F < 1. Expressing the non-dimensional 

heat transfer coefficient as -

K = K' (1 - (7.20) 
Doo 

where K' is the mean heat transfer coefficient and is assumed 

to be constant over the solution regions it can be shown that 

for dh/dy > 0 -

where, by definition, 0<» is negative for heat transfer from the 

surface of the jet. 

If the downstream conditions are such that the inlet 

is inundated then for the inlet conditions 0 = v = h = 1 

equation 7.21 reduces to 

(l - 0")K' > (7.22) 

The effect of the entrainment of ambient fluid into the surface 

layer on the restriction that — > 0 depends upon the value of Fi -

(i) for 1 > Fi^ > 0.25 the entrainment coefficient decreases 

the allowable Densimetric Froude Number which satisfies Equation 

7.22 and 

(ii) for 0.25 > Fi^ the entrainment coefficient helps satisfy 

eqmtion 7.22 and hence increases the limiting value of the 

Dens imetri c Froude Number. 



88. 

Using the iniindated inlet conditions for Test 12, 

equation 7-22 is satisfied if Fi < 0.?^. This criterion was 

well satisfied by the experimental results (Fi = O.U). The 

temperature term dominates the left-hand side of equation 7.21 

and hence if the condition described by equation 7.21 is 

satisfied at the inlet, it will be satisfied for the whole of 

the sub-critical flow region. 

The second requirement satisfied by Koh and Fan's 

solution was that F < 1 at any point downstream from the internal 

dF^ 
hydraulic jump. It can be shown(13) that -r— , for any point in 

dy 

the solution region, is given by -

dF^ 

dy (2F^+l)Rvh V 
(7.23) 

2h(l-F2) 

and therefore, in the sub-critical flow region, F increases or 

decreases according to whether -

K' 

— is less than or greater than 

(3e +-:ro—ZTZ—) 

(2F2+i)Rhv e-e«' 

dF 
In particular for > 0 and F < 1 

(3e+ ^ ) Q (7.2^) 

V (2F2 + l)Rhv 0 - eoo 

The ri^t side of 1.2h is dominated by the temperature 

term and consequently decreases as y increases -(8 0 as y L) 
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If the inlet is inundated and equation 7,2h is 

satisfied at y = O9 two possible conditions occur as y L  -

(i) Equation 7.2h is always satisfied and F increases as 

y L .  

(ii) The right-hand side of equation 7.2h approaches K'/v 

dF 

until =  0 and F then decreases for further increases in y. 

If the first condition (i) is satisfied then 

equation J.2k implies that ̂ ^̂ ̂ « > as F ̂ 1. This solution 
would be valid provided F < 1 for y < L. 

If F = 1 for y < L then equation 7.23 implies a 

dF 
discontinuous solution (i.e. for F 1  — < O) and a transition 

ay 

from sub-critical to super-critical flow would be expected via 

an internal hydraulic jump. This would be possible only if 

the boundary conditions transmitted additional energy to the 

flow, and hence, for the present case it is not a possible 

solution. Therefore, the initial sub-critical Densimetric Froude 

Number must decrease so that F < 1 always in the sub-critical flow 

region, the limiting case being F 1  as y ̂ L. 

An upper bound on the critcal Densimetric Froude Number 

is therefore the maximum Densimetric Froude Number just downstream 

of the internal hydraulic jump (or at the inlet if inundation 

occurs) which gives F < 1 for the remainder of the surface flow. 

This condition also corresponds to the minimm energy loss across 

the jump. 
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T.3.2 Solution of the Equations 

Koh and Fan's niJinerical program(l3) was modified to 

incorporate the functional dependence of e, e and K (equations 7.5, 

T.ll and 7-20). The governing equations were then solved for 

the inlet conditions defined "by the experimental investigation. 

Two typical solutions are presented here. Test 12 representing 

the condition where the inlet was inundated and Test ik where 

an internal hydraulic jump formed downstream of the inlet, 

(a) Test 12 

The critical Densimetric FroudeNumber (F ) for the cr 

inundated conditions at the inlet was obtained by progressively 

reducing Fi from the critical value given by Koh and Fan's 
2 

solution (equation 7.19. F = 0.h9) until F < 1 for 0 < y < L. cr 

Figure 7.3 shows the variation of the Densimetric Froude Number 

with increase in distance from the outlet for Fi > F , cr' 
dF Fi = F and Fi < F . For Fi > F^ 5 ~ was greater than zero cr cr cr' ay ^ 

over the whole solution region resulting in F = 1 for y < L. 

For Fi = F^^, F initially increased to a maximum value and then 

decreased, the decrease being caused by a rapid increase in 

the interfacial depth as the distance from the inlet increased. 

This general form of the distribution was retained for Fi < F^^ 

but the maximum value of F attained decreased as Fi was 

decreased until equation 7.2U was not satisfied at the inlet 

dF and < 0 for 0 < y < L. 
ay 
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Figure 7,3 Surface buoyant jet model - Densimetric Froude 
Number versus the dimensionless distance from 
the inlet for Fi = Fcr, Fi = Fcr + fiF and 
Fi = Fcr - 6F, Fcr pertains to Test 12 
where e = (8.55 F + 3) x 10-3, e^ = 
k = 6,62 X 10-5 m/sec, Re = 1200 and e given 
by equation 7«11« 
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Variation in the assumed relationship giving e and e 

only resulted in the magnitude of F^^ being altered^ the 

general form of F versus y/L remaining the same as that shown 

in Figure T.3. 

The assumed form of the shear stress coefficient 

(equation T-ll) can not "be justified from the experimental 

results. Blausius' formulae (7.8) was used as a first 

approximation to obtain the boundary shear stress coefficient. 

However, the Reynolds Numbers for the experimental 

investigation were low and therefore equation T.ll could result 

in an under-estimate of the boundary shear stress. The interfacial 

shear stress was small in comparison with the boundary shear 

stress and the error in using the laminar flow interfacial 

shear stress coefficient proposed by Harleman (equation 7-9) 

would have little influence on the theoretical results. 

It was found that the model gave better agreement with the 

experimental results when the total shear stress was increased 

by 30^, i.e. 

^actual = ^ 

where e way given by equation 7-11. 

Figures 7.^3 7.5 and 7.6 show the longitudinal 

distribution of F, 0 and h as calculated by the theory for the 

inlet conditions pertaining to Test 12. e was calculated from 
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Figure Densimetric Froude Number versus the dimension-
less distance from the inlet. Comparison 
between the experimental results and the 
surface buoyant jet solution for Test 12. 
Solution parameters e = (8,3F + 3) x 
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Figure 7*3 Dimensionless temperature versus dimensionless 
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the experimental results and the surface 
buoyant jet solution for Test 12. Solution 
parameters e = (8.35F + 3) x 10-3, e„> = 2.46, 
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and e given by equation 7»25. 
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Figure 7.6 Dimensionless interfacial depth versus the 
dimensionless distance from the inlet. 
Comparison between the experimental results 
and the surface buoyant jet solution for 
Test 12. Solution parameters e = (8.35? + 3) 
X 10"^, 8„ = -2.46, k = 6.62 X 10-5 m/sec, 
Re = 1200, Fcr = .42?, and e given by equation 
7.25. 
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equation 7.25 and the entrainment coefficient was given by -

e = (8.35 F + 3) X (gee Figure 6.7) 

The theory shows good agreement with the experimental 

results with the exception of the interfacial depth, and 

consequently the Densimetric Froude Numher, in the latter 

stages of the solution (y/L > 0.75). For h to remain bounded 

as F 1, the numerator of equation 7.16 

- e(2 - -
2F^v 2F^ Rhv 

must decrease as the denominator -

1 
f2 

decreases. 

As F 1 and 6 0 

- 1 

- - 1.5 e 

K K' ^ L z ^ ) ^ CO 
2F^v 2F^v e 

f2 

The entrainment coefficient (e) has an upper bound of 

0.075 corresponding to a non-buoyant turbulent jet(7) and hence 

for h to remain bounded, R 0. 

The local Reynolds Number is given by ~ 
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and since vh is increasing due to the entrainment of ambient 

fluid, for R -»- 0, £ which implies (equation 7-11) that 

the resistance to flow increases as y L. Therefore the 

discrepancy between the models' predictions and the experimental 

results would be due to the influence of the end wall and to 

the underlying flow becoming the dominant controls on the 

surface flow as the influence of the inlet momentum decreases 

with increase in distance from the inlet. 

The experimental results support the assmption that 

the critical Densimetric Froude Number is the maximum which 

gives F < 1 in the sub-critical flow region and hence corresponds 

to the minimum energy loss in the transition from super-

critical to sub-critical flow, 

(b) Test Ik 

In Test ih the flow was initially of the jet type and 

transferred to a sub-critical flow by means of an internal 

hydraulic jump. The entrainment of ambient fluid into the 

surface flow was found to be higher in this test than in the 

tests where the inlet was inundated (see Figure 6.6). e was 

approximated by -

e = (8.35 F + 13) X lO""̂  (T.26) 

in the theoretical investigation. F^^ was obtained by 

calculating the Densimetric Froude Number that would be applicable 



Figure 7>7 Densimetric Froude Number versus tne aimension-
less distsince from the inlet. Comparison 
between the experimental results and the surface 
buoyant jet solution for Test Solution 
parameters e = (8,35F + I3) x 10-3, e^ = -3.05, 
k = 5.33 X 10-5 m/sec, Re = IO85, Fi = k.2 and 
e given by equation 7«25. 
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Figure 7.9  Dimensionless interfacial depth versus the 
dimensionless distance from the inlet. 
Comparison between the experimental results 
and the surface buoyant jet solution for Test 

Solution parameters e = (8.35F + 13)̂ 
Bqa = -3.05, k = 5.33 X 10-5 m/sec, Re = 1083, 
Fi = if,2 and e given by equation 7»25* 



downstream of the jump at each solution step in the super-

critical flow solution, and using the values obtained at this 

assumed position of the jump (y = yj) as a separate starting 

condition for the sub-critical flow solution. The process was 

repeated until the condition F > 1 for yj > y > L was just 

satisfied. The distribution of F, 6 and h obtained are shown 

in Figures T-T, 7.8 and T.9 respectively. 

The model considered the internal hydraulic jump to 

be an abrupt discontinuity in v, h and F whereas the experiments 

showed the transition to occur over a finite distance (Ay ̂ ^ 0.2L). 

Consequently, more fluid was entrained than was indicated by the 

theoretical solution. Hence, the theoretical results show a 

higher temperature and a smaller interfacial depth downstream of 

the jump. 

The general forms of the theoretically-derived parameters 

downstream of the jump are similar to those obtained in the 

experiments, up to the point where the end wall and the underlying 

flow became the dominant controls. With the inclusion of an 

adequate model of the internal hydraulic jump it is believed 

that the mathematical model would show good quantitative 

agreement with the experimental results. 



8. CONCLUSIONS: 

The inclusion of the heat transfer from the surface of 

the cooling pond enabled the stratified flow within the pond to "be 

studied under steady-state operating conditions. 

The numerical solution to the laminar equations of motion, 

presented in Chapter showed that a primary eddy was formed under 

the surface flow and a secondary eddy, rotating in the opposite 

direction, formed in the bottom corner under the inlet as shown 

in Figure k.2. The solutions obtained for higher Reynolds Numbers 

showed that part of the primary eddy, which separated the secondary 

eddy from the surface flow, became isolated and formed a third 

eddy3 as shown in Figure U.3. The existence of the primary and 

secondary eddies was confirmed by the experimental investigation 

although^ due to the influence of the side walls, the strength of 

these eddies was not as great as that predicted by the theory. In 

the experiments, part of the reverse flow (backflow) in the primary 

eddy replenished the fluid entrained into the surface layer. The 

entrainment of fluid from a denser fluid to a less dense fluid is 

a turbulent flow phenomena and hence would not be represented by 

the laminar equations of motion solved in the theoretical 

investigation. The third eddy, predicted by the numerical solution, 

was diminished in the experiments by entrainment into the surface 

layer and only appeared intermittently. This fluctuation is thought 

to be the origin of the iinsteadiness in the flow below the interface 

which was observed in the experiments. 
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The surface flow in the experimental investigation -was 

turbulent, the turbulence being influenced by the convective 

motion superimposed on the flow by the relatively large temperature 

gradient which was imposed at the surface to achieve a significant 

heat transfer in the laboratory scaled experiments. This resulted 

in the mean horizontal velocity and the mean temperature tending 

to be uniform with depth within the surface layer. The observed 

entrainment coefficient was higher than the values previously 

reported for sub-critical flows (see Figure 6.7). The increased 

entrainment found in the experiments was attributed to the 

convective motion in the surface layer being able to penetrate 

into the thermal diffusion zone between the surface layer and the 

fluid below the interface and sharpen up the interface, a phenomena 

which could be absent at the lower heat transfer rates normally 

associated with full scale cooling ponds. 

The mathematical model proposed by Koh and Fan, when 

modified to account for the finite length of the cooling pond, 

showed good agreement with the experimental results in the vicinity 

of the inlet when the inlet was inundated. For the condition where 

an internal hydraulic jump occurs doTTnstream of the inlet, the model 

assumes that the transition from super-critical to sub-critical flow 

occurs as a discontinuity in the solution whereas the experimental 

results showed this transition to occur over a finite distance. The 
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entrainment of ambient fluid within the region over which the 

internal hydraiilic jiamp occurs is consequently under-estimated. 

This discrepancy results in an under-estimate of the downstream 

depth and an over-estimate of the downstream temperature. 

Wilkinson(23) found, in his experiments with no heat transfer 

away from the surface, that the entrainment in this roller region 

was negligible and hence it could be assumed that Koh and Fan's 

representation of the region might be more appropriate for 

conditions where the rate of heat transfer away from the surface 

was lower. The experimental results indicate that the internal 

hydraulic jump imposes its own disturbance on the flow downstream 

of the Jump resulting in a higher rate of entrainment of ambient 

fluid in the sub™critical flow region (see Test ik. Figure 6.7). 

The interfacial depths and hence the Densimetric Froude 

Number, given by the modified mathematical model of the surface 

buoyant jet, deviated from the experimental results as the flow 

approached the downstream boundary of the cooling pond. Examination 

of the mathematical model showed that for the interfacial depth 

to remaim bounded in this region, as indicated by the experimental 

results 5 the resistance to the flow must become greater than that 

which could be attributed to the boundary shear stress. The 

deviation between the two results is attributed to the pressure 

field set up by the downstream boundary and the underlying flow 
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becoming the dominant control on the flow in this region, an 

effect not accounted for by the mathematical model. 

The accuracy of the experimental measurements were not 

sufficient to confidently characterise the surface flow parameters 

near the downstream boundary of the cooling pond. However, the 

analysis of Koh and Fan's mathematical model (Chapter 7) has 

indicated that the existance of an internal hydraulic Jump and 

the position and flow conditions just downstream of that jump 

(or alternatively the flow conditions at an inundated inlet) 

are governed by the requirement that the Densimetric Froude 

Number in the downstream sub-critical flow region is always less 

than unity. 

8.1 Suggested Fields for Further Research 

The experimental apparatus proved successful in studying 

the two-dimensional cooling pond problem although the width of 

the flume used was not sufficient to justify the two-dimensional 

assumption in the flow below the interface. 

Future investigations could be directed towards ~ 

(a) determination of the influence of the heat transfer 

mechanism on entrainment of ambient fluid into 

the surface layers 

(b) determination of the influence of the depth of the 

cooling pond on the surface flow^ 
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(c) development of a suitable model of the internal 

hydraulic jump for inclusion in Koh and Fan's 

models 

(d) determination of the influence of downstream 

boundaries and the underlying flow on the 

critical Densimetric Froude Number; 

(e) determination of the influence of the internal 

hydraulic jump on the entrainment of ambient 

fluid downstream of the Jump; 

(f) study of the time transient behaviour of 

cooling ponds ; 

(g) extension of the study to three dimensions. 
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APPENDIX A 

FDIITE DIFFERENCE APPROXIMATIONS TO 

GOVERNING EQUATIONS 

The finite difference approximations to the false 

transient equations in Section 3-2 using the notation of 

Figure 3.1, are -

(a) The vorticity equation 

Xl r 
J:. -  . 4r ( c -  c )  
â at a F _ 

Re 
Fi2 

rY] 
iZx "  

- Re 
r X̂ r Â 

2AX 

("b) The energy equation 

1 39 ̂ ̂ i 

St " AX̂ 

+ 

AY' 



A/a 

- RePr 2AX 

H 

(c) The streamfunction equation 

xl r-
-L it - r  +  ̂
â 3t -   ̂aF 

where  " and yl -
3y 



APPENDIX B 

FINITE DIFFERENCE APPROXIMATIONS TO THE DERIVATIVE 

BOUNDARY CONDITIONS 

The finite difference approximations to the derivative 

boundary conditions given in Table 2.1, using the notation of 

Figure 3.1, are -

(a) For the free surface x = 0, 0 < y < L 

(r2-l) + ̂  k(r-l) 

- 1 

'IJ k(r2-l) 

where k = X3 - xx and r = 
X3 - XI 
X2 - XI 

(b) For the vertical boundary l < x < D , y = 0 

-2 

where k = ys - yx and r = 
ya - yi 

Y2 - yi 

(c) For the bottom boimdary x = D, 0 < y < L 



B/2 

- K o . + (r̂-l) 

where k =  - M̂  ^̂  ̂  ̂= 

M-IJ 

(d) And for the vertical boimdary at y = L 

e 

-2 

for 0 < X < D 

- l'i.N-2 

for 0 < X < (D-Ho) 

where k = yj,_2 - yjj and r = 



APPENDIX C 

CALCULATION OF ENTRAINMENT VOLUME INTO THE 
SURFACE LAYER IN THE VICINITY OF THE 
INTERNAL HYDRAULIC JUMP OF TEST ik 

Consider a control volume "bounded by the interface, 

the top surface and two consecutive measuring stations at yl and y2 

as shown in Figure CI. T1 and T2 are the temperatures of the siirface flow 

into and out of the control volume. To is the temperature of the 

fluid below the interface. Ml is the surface mass flow into the 

control volume. Me is the entrainment mass flow across the 

interface and q is the rate of heat flow from the surface. 

Assuming that heat is only convected across the boundaries 

a-b, b-c and c- d and is conducted across d-a, a heat balance on 

the control volume gives 

faCpTl + MeCpTo = (Ml+Me) CpT2 + q (Cl) 

where Cp is the specific heat of the fluid. 

As Me approaches zero, q is given by 

q = m C p (T1-T2). 

An approximation to q can be obtained by using the 

temperature gradient downstream of the internal hydraulic jump, 

where Me 0, to find an equivalent temperature drop due to heat 

transfer ATeq. The heat transfer rate from the control volume is 

given by 

q = (Ml + CpATsq (C2) 



mi +1*1. 

Figure C1 Definition sketch. 

24 

p 23 
o 
£ 3 
a 22 
« a 
E v f-

21 

20 

Estimate of temperature drop due to heat 

transfer from the surface 

1 2 -3 - 4 

Dimensionless Distance from the Inlet (̂ î ) 

Figure C2 Temperature versus dimensionless distance from 
the inlet in the region of the internal 
hydraulic jump for Test 



C/2 

and hence the entrainment rate is 

Me _ Tl-T2-ATe(i . v 

Under the approximations made. Equation (C3) is only-

valid in the region where the temperatiire drop in the surface 

layer due to entrainment is large compared to that due to heat 

transfer. 

The mass flow at the jth measuring station is given from 

Equation (C3) as 

= " j - i 
T -ATeq. -

1 + ( -JZ± J i ) 
^ T -To+ATeq^/2 ̂  (Ck) 

Equation ick) has been used to estimate the mass flow-

rate in the region of the internal hydraulic jmp from the known 

temperatiire distribution, shown in Figure C2, for Test 1̂ +. 



APPMDIX D 

EXPERDCTTAL RESULTS 

Notation 

Vh flow per unit width (inm^/sec ). 

h inter fac ia l depth (mm). 

T temperature ( ) . 

y/Z non-dimensional distance from the in let . 

F Densimetrie Froude Number ( ) 

1 length of test section (m). 

Subscripts 

i in le t . 

s shear flow, 

b back flow, 

o outlet , 

cw cooling water, 

surface flow. 

Notes 

1. Flow rates were not measured at a l l measuring stations in 

some tests . 

2. The shear flow and back flow were calculated from the centre 

l ine veloc i ty pro f i l es . 

3. Results presented are the average from a number of measurements 



Test 10 

D/2 

F̂ = 0.T2 

Vĥ = 6TT mm̂/sec 

ĥ = 36.1 mm 

T. = 25.55°C 

Z = 5.5 m 

T = I6.6T°C 
o 

T . = 3.89°C cwi 

T  = 
cwo 

Inlet inundated 

y/l I Vh F 

0.055 67.1 2U.6 7U8 0.335 - -

0.112 69.1 23.75 751 0.3î9 156 

0.22U 65.2 22. U5 „ 
- - -

0.306 72.6 21.8 855 0.UU7 ii50 ii32 

0.i+T2 73.6 20.1 922 0.575 

0.5̂ 6 77.5 19.3 " - - -

0.T22 83.8 18.U 105 0.761 739 710 

0.89 109.0 17.5 109 0.787 356 1020 



Test 11 

D/3 

F̂ = 0.8? 

Vĥ = 883 ram̂/sec 

ĥ = 1̂0.6 mm 

T. = 25.55°C 

Z = 5.5 m 

T̂ = 18.11®C 

T  . = 2.5°C 
cwi 

T  = 
cwo 

Inlet inundated 

y/l k T Vh F Vh 
— s 

0.055 76,5 25.17 968 0.37 - -

0.112 82.8 2li,6l 981 0.35 îl+O 210 

O.22U 85.1 23.16 - - - -

0.306 86.0 22.56 1013 0.U2 3̂2 i+05 

0.k72 87. U 21.06 1135 0.57 1+20 323 

0.T22 101.6 19.67 1158 0.65 UlO 366 

0.89 116.8 18.5 13î5 1.2 755 397 



Test 12 

d a 

F^ = 1.2 

/̂ĥ  = 1080 mm^/sec 

h^ = ii0.6 mm 

T^ = 2U.56°C 

Z = 5.5 m 

T = 19.0°C o 

T . = 5.16°C cwi 

T = 5.T2°C cvo 

Inlet inundated 

y/^ h T Vh F Vh — s 

0.055 86.9 2U.22 1200 0.U4 193 116 

0.112 91.0 23.56 1226 G.h3k 310 235 

0.22U 97.5 22.67 ™ - - -

0.306 103.il 22.1 1265 O.U76 217 237 

O.U72 lOT.O 21.1 13^0 0.59 219 2U5 

0.5^6 117.6 20.67 - - -

0.T22 122.2 20.17 1523 0.75 U52 606 

0.89 132.0 19.6 i6ko 0.995 3h2 i+23 



T e s t 1 3 

D/5 

F. = 2 . 8 8 

Vh^ = 1065 mm^/sec 

h^ = 2 2 . 9 imi 

T^ = 2U.1T°C 

I = 5 . 5 m 

T^ = 1 8 . 5 ° C 

T . = 3 . 8 ° C cwi 

T = U.T6°C 
cwo 

I n t e r n a l h y d r a u l i c jump formed 

J/t h T Vh F Vh 
— s 

0 . 0 5 5 61;.6 2 3 . 7 2 1232 0 . 5 1 90 1 1 6 

0 . 1 1 2 9 8 . 0 2 3 . 2 2 128U 0. i i23 270 268 

O.22U lOU.O 2 2 . 2 2 - - -

0 . 3 0 6 1 0 8 . 5 2 1 . 5 6 1322 O.i+7 3kQ Ul3 

0.UT2 1 1 2 . 3 2 0 . 6 7 IU8U 0 . 5 9 297 512 

0 . 7 2 2 1 2 6 . 5 1 9 . 5 6 1658 0 . 8 1 1 6 1 3U3 

0 . 8 9 1 5 1 . ^ 1 8 . 7 8 1768 1 . 3 6 - -



Test 111 

D/6 

F̂ . = k.2^ 

Vĥ  = 1000 mm /̂sec 

h^ = 17.5 mm 

T̂  = 23.9^C 

Z = 5.5 m 

T̂  = 19.1°C 

T . = U.IT C cvi 

T = 
cwo 

Internal hydraulic jump formed 

y/t h T Vh F Vh — s 

0.055 69.0 22.3 IU50* 1.0 0 710 

0.112 105.2 21.9 1535* 0.60 99 60U 

0.22U 1U2.2 21. U 1652* 0.1̂ 5 0 687 

0.306 lii7.2 21.2 1755 O.I85 92 672 

0.ii72 165.^ 20.67 20h0 0.5^ 738 

0.5^6 167.0 20.22 - - - -

0.722 186.0 19.9 2160 0.70 13 1568 

0.89 200.6 19.5 2612 l.Oii 57 1130 

- Calculated from heat balance. 



Test 15 

D/T 

F. = 1.07 1 

Vh^ = 735 mm /̂sec 

h^ = 31.1 mm 

Z = 5.5 m 

T^ = 17.67°C 

T . = h.O°C cwi 

T = 5.0°C cwo 

I n l e t inundated 

y/Z h T Vh F Vh — s 

0.055 7l4.il 2I1.O3 82 O.3U6 238 81 

0.112 76.2 23.52 852 0.358 280 192 

0.22U 81.0 22.28 881+ 0.398 316 355 

0.306 81.3 21.72 929 0.1+1+7 230 212 

0.1+72 87.1 20.1|li 929 O.i+92 1+33 336 

0.5^+6 9I+.O 19.81 - - -

0.722 100.2 18.9 1226 0.796 1+39 U82 

0.89 129.8 18.07 1I+90 1.21 335 626 



Test 16 

D/8 

F^ = 0.T3 

/̂ĥ  = 275 mm^/sec 

h^ = 6U.5 mm 

T^ = 21.0°C 

I = 0.95 m 

T = 18.1°C o 

T = cw 

Inlet inimdated 

y/X h 1 Vh F 

0.32 20.17 387 0.55 

0.6U 56.9 19.22 529 0.73 



Test IT 

D/9 

F̂  = 1.1 

Vĥ  = ITT mm /̂sec 

h^ = 13.6 mm 

T^ = 22.5°C 

I = 0.95 m 

T - 18.1°C o 
T = cw 
Inlet inundated 

y/l h T Vh F 

0.32 31. T 20.33 2ii5 0.56 

o.6ii i+2.T 18.6 323 O.T^ 
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